
Using Proof-Planning to Investigate the Structure of

Proof in Non-Standard Analysis

Ewen Maclean

T
H

E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429715197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis presents an investigation into the structure ofproof in non-standard analysis using

proof-planning. The theory of non-standard analysis, developed by Robinson in the 1960s,

offers a more algebraic way of looking at proof in analysis. Proof-planning is a technique for

reasoning about proof at the meta-level. In this thesis, we use it to encapsulate the patterns of

reasoning that occur in non-standard analysis proofs.

We first introduce in detail the mathematical theory and the proof-planning architecture.

We then present our research methodology, describe the formal framework, which includes an

axiomatisation, and develop suitable evaluation criteria. We then present our development of

proof-plans for theorems involving limits, continuity anddifferentiation. We then explain how

proof-planning applies to theorems which combine induction and non-standard analysis.

Finally we give a detailed evaluation of the results obtained by combining the two attractive

approaches of proof-planning and non-standard analysis, and draw conclusions from the work.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except asspecified.

(Ewen Maclean)

iv

Acknowledgements

I am enormously indebted to my supervisors Jacques Fleuriotand Alan Smaill for their unfal-

tering support and invaluable guidance. I am also hugely grateful to all of the members of the

DReaM group, past and present, who have provided me with suchan enjoyable and stimulating

research environment, and great friendship; to all of the members of Felicidade and the Latin

Quarter whose talents have brought my music to life; to my great friend and colleague Ruli,

who started and ended his thesis on the same day as me; and finally to my family who have

somehow always managed to put up with me.

This work was funded by the EPSRC, award number 99303126.

v

Table of Contents

1 Introduction 1

1.1 Background to the idea .. 1

1.1.1 Mechanisation of mathematical theory 2

1.1.2 Automation using Proof-planning 2

1.2 Specific goals . 2

1.2.1 Limit Theorems . 3

1.2.2 Theorems involving induction .. . 3

1.3 Research contribution 3

1.3.1 Implementation . 3

1.3.2 New and readable proofs . 4

1.3.3 Understanding of the structure of proofs 4

1.4 Organisation of the thesis 4

2 Analysis 7

2.1 Brief Historical background for NSA 7

2.2 Standard Analysis .. 8

2.2.1 Properties of reals . 8

2.2.2 The construction of the real numbers 9

2.2.3 Intuitive proofs . 10

2.2.4 Notions of limit and convergence 11

2.3 Versions of non-standard analysis 13

2.3.1 Ultrapower construction .. 13

2.3.2 Internal Set Theory . 16

2.3.3 Constructive non-standard analysis 17

2.3.4 Bell’s infinitesimal calculus 18

vii

2.3.5 A brief comparison of the approaches 19

2.4 Simplified definitions and proof 19

2.4.1 Transfer Theorem . 19

2.4.2 Limits . 20

2.4.3 Continuity . 21

2.4.4 Differentiability .. 21

2.4.5 On the notion of “limit” . 22

2.5 Summary . 22

3 Automated Theorem Proving 25

3.1 Theorem proving in analysis 25

3.1.1 Mechanised standard analysis .. . 26

3.1.2 Mechanised non-standard analysis 30

3.2 Proof-planning .33

3.2.1 Proof plans . 34

3.2.2 Methodicals . 35

3.2.3 Backtracking . 36

3.2.4 The productive use of failure in proof-planning 37

3.2.5 Rippling . 39

3.2.6 Fertilisation . 41

3.2.7 Worked example . 42

3.2.8 Proof Architecture . 43

3.3 Summary . 44

4 Conceptual Framework 45

4.1 The methodology . 45

4.1.1 The research hypothesis .45

4.1.2 Research goals . 46

4.1.3 Proof-planning . 46

4.1.4 Testing . 47

4.2 Formal Framework . 48

4.2.1 Logic . 48

4.2.2 Number types . 50

4.2.3 Rippling and rewriting .51

viii

4.2.4 The axiomatisation . 52

4.3 On the transfer principle 58

4.3.1 Use of the transfer principle .. . 58

4.3.2 Limits and continuity .59

4.3.3 Induction . 60

4.3.4 Choice of representation .. 61

4.4 Evaluation Methodology .. . 62

4.4.1 Possible evaluation criteria 62

4.4.2 Discussion of evaluation issues 63

4.4.3 Our evaluation scheme . 66

4.5 Summary . 66

5 Proof-planning limit theorems 67

5.1 System enhancement .67

5.2 Reasoning patterns from the proofs 68

5.2.1 Development examples . 68

5.2.2 Common reasoning patterns .76

5.3 Plan-specifications .. . 77

5.3.1 Outermost plan-specification 77

5.3.2 Embedding patch plan-specification 78

5.3.3 Wave patch plan-specification .. . 80

5.3.4 Fertilisation patch plan-specification 80

5.3.5 Evaluation plan-specification 82

5.4 Methods and Critics .. 83

5.4.1 Embedding critic . 84

5.4.2 Wave Critic . 85

5.4.3 Fertilisation critic .. . 87

5.4.4 Methods for the evaluation plan-specification 88

5.4.5 Subgoals in the evaluation plan-specification 92

5.5 Test set . 92

5.5.1 Continuity of� . 92

5.5.2 Continuity of= . 93

5.5.3 LIM� . 94

5.5.4 LIM = . 94

ix

5.5.5 Product Rule . 95

5.5.6 Extra limit conjecture .. 97

5.6 System Performance and results 98

5.6.1 Successes and Failures .98

5.6.2 Search space . 99

5.6.3 Evaluation . 101

5.6.4 Comparison with other work .103

5.7 Discussion . 104

5.8 Summary . 105

6 Incorporating induction 107

6.1 System enhancement .107

6.2 The technique . 108

6.2.1 Defining thepartitioning function . 109

6.2.2 Abbreviated definitions for inductive theorems 110

6.2.3 Using non-standard analysis .. . 111

6.2.4 General overview of technique .. . 112

6.3 The development set .114

6.3.1 Rolle’s Theorem . 114

6.3.2 Lemma 6.14: uniform differentiability lemma 125

6.4 Common reasoning patterns .. . 126

6.4.1 Partitioning function .. 126

6.4.2 The final stages of the proof-plans 127

6.5 Obtaining a plan-specification 128

6.5.1 Overall plan-specification .. . 128

6.5.2 Induction plan-specification 129

6.5.3 Transfer-back plan-specification 131

6.5.4 Well-partitioned plan-specification 132

6.5.5 Transfer plan-specification 134

6.5.6 A note on the degree of automation 134

6.6 Methods, Critics and Lemmas .. . 135

6.6.1 The partitioning function .. . 135

6.6.2 Adding Intermediate lemmas .. 136

6.6.3 The transfer-back plan-specification 136

x

6.7 Test Set . 138

6.7.1 Simplified Rolle’s Theorem .139

6.7.2 Mean Value Theorem . 140

6.7.3 Simple higher order test .142

6.7.4 The trisection method . 143

6.8 System Performance and results 148

6.8.1 Successes and Failures .148

6.8.2 Search Space . 149

6.8.3 Evaluation . 152

6.8.4 Comparison with other work .154

6.9 Discussion . 155

6.9.1 Higher order theorems . 155

6.9.2 Comparison with real analysis proofs 155

6.9.3 Algorithmic Content . 156

6.9.4 Rolle’s Theorem . 156

6.10 Summary . 157

7 Further Work and Conclusions 159

7.1 Further Research .159

7.1.1 Integration . 159

7.1.2 Theorem . 160

7.1.3 Verifying algorithms .162

7.1.4 Object-level proofs .162

7.1.5 Mathematical assistant .. 163

7.1.6 Non-standard annotation .. 163

7.2 Concluding remarks .. 164

7.2.1 Research Hypothesis . 164

7.2.2 Non-standard analysis .165

7.2.3 Proof-planning . 166

7.3 Suggested extensions to the work 166

7.3.1 Object-level proofs .167

7.3.2 The issue of human intervention 168

7.3.3 The value of the work done . 169

xi

A Sample plan-specifications and output 171

A.1 Chain Rule . 171

A.2 Rolle’s Theorem .176

A.3 Example code for atomic methods 184

B Proof-plans for the inductive lemmas 187

B.1 Proof of the Intermediate Value Theorem 187

B.2 Inductive lemmas for Rolle’s Theorem 197

B.3 Intermediate lemmas .. 203

Bibliography 205

xii

List of Figures

2.1 A function with limit l atx= a . 12

3.1 General purpose induction proof-plan 35

5.1 The outermost plan-specification 79

5.2 Embedding patch plan-specification 79

5.3 Wave patch plan-specification 80

5.4 Fertilisation patch plan-specification 81

5.5 Evaluation plan-specification 83

6.1 A sequence of partitions .. . 109

6.2 The partitioning function for the Intermediate Value Theorem 109

6.3 The wave rules representing the partitioning function for the Intermediate Value

Theorem . 110

6.4 Proof architecture .. . 112

6.5 Our characterisation of Rolle’s Theorem 115

6.6 The cases that constitute the partitioning criterion for Rolle’s Theorem 116

6.7 Finding a point of zero derivative 117

6.8 The partitioning function for Rolle’s Theorem 118

6.9 The wave rules representing the partitioning function for Rolle’s Theorem . . . 119

6.10 The four possible situations of the end points of the partition for Rolle’s theorem120

6.11 The reformulation of Rolle’s Theorem 121

6.12 Overall plan-specification 128

6.13 Induction plan-specification for proofs of partitioning function 130

6.14 The transfer-back plan-specification 133

6.15 Our characterisation of the Mean Value Theorem 140

xiii

6.16 The Mean Value Theorem .141

6.17 The wave rules representing a partitioning function with a simple higher order

partitioning criterion .. 143

6.18 The characterisation of the Intermediate Value Theorem for use with the trisec-

tion method . 144

6.19 The partitioning function for the trisection version of the Intermediate Value

Theorem . 144

6.20 The wave rules representing the partitioning functionfor the trisection method

for the Intermediate Value Theorem .. . 145

A.1 The outermost compound method for the limit conjectures. 172

A.2 The output from XBarnacle for the chain rule 176

A.3 The outermost compound method for the partitioning examples. 177

A.4 The compound method for the final part of the partitioningexamples 182

xiv

Chapter 1

Introduction

The mechanisation of mathematical proof is a field of research which has gained success in

many areas such as verification, and for many different mathematical theories such as induc-

tion. One of the main challenges of mechanisation is the automation of such proof. We present

here a study into the feasibility of automating proof from the mathematical domain ofnon-

standard analysis. We are particularly interested in finding common structurein non-standard

analysis, and use theλClam proof-plannerto investigate the nature of such structure. The at-

traction of combining proof-planning and non-standard analysis is that they both simplify the

problem of automating real analysis proofs. Non-standard analysis formalises the idea of an

infinitesimal, used informally by Newton and Leibniz, and proof-planning allows us to encap-

sulate this informal reasoning.

1.1 Background to the idea

Proof-planning is a technique for automating proof which has been successfully applied to

a large corpus of theorems from induction, and more recentlyto problems from First Order

Temporal Logic [Castellini and Smaill, 2001], finding loop invariants in imperative programs

[Stark and Ireland, 1998] and in [Janičić et al., 1999, Janičić and Bundy, 2002] for the auto-

matic synthesis of decision procedures. In this thesis we exploit the expressive powers of the

proof-planning to investigate the structure of proof in a new mathematical theory– non-standard

analysis.

Following the explicit formalisation of the Ultrapower Construction for non-standard anal-

ysis [Robinson, 1966] performed in Isabelle/HOL by [Fleuriot, 2001a], the proofs of many

1

2 Chapter 1. Introduction

standard analysis theorems were mechanised using non-standard analysis. Many of the proofs

in this work benefitted from the automatic tactics in Isabelle, but there remains the challenge of

automating the harder parts of the proofs. The aim of the thesis is then to use proof-planning

to encapsulate the common patterns of reasoning that occur in these more difficult parts of the

proofs.

1.1.1 Mechanisation of mathematical theory

The initial task of the thesis is to specify a formal framework by which to reason about non-

standard analysis. Our approach is to take the formal construction of [Fleuriot, 2001a] and

to produce an axiomatisation based on the higher level theorems proved in that work. We

construct such an axiomatisation, presented in chapter 4, on which we justify the soundness of

the proof-plans we yield.

1.1.2 Automation using Proof-planning

Proof-planning allows us to reason at a more abstract level than with an object-level theorem

prover. We can specifymethodswhich transform a goal in a way which corresponds to the

application of many tactics. We can also specifycritics, which analyse the failure of a method

and suggest some course of action to allow the proof-plan to proceed. The way in which we

combine methods and critics is by using aproof-plan.

In our work we develop methods, critics and proof-plans to account for a number of

real analysis theorems. We are interested in encapsulatingthe structure of proofs using non-

standard analysis, and the methods and critics we develop account for large parts of the associ-

ated object-level proof. We do not attach an object level prover, and so we cannot claim that we

yield proof-plans which correspond to a sequence of tactic applications. However, we present

an axiomatisation for our work, and show at each point which axioms are being used, allowing

us to ascertain that it is possible to yield object-level proofs from our proof-plans.

1.2 Specific goals

The aim of this work is to advocate the use of proof-planning as a tool for automating proof by

accounting for common proof structure, and also to show thatnon-standard analysis proofs of

real analysis theorems contain such structure, and are hence a good candidate for automation.

1.3. Research contribution 3

1.2.1 Limit Theorems

The first family of proofs we investigate includes high leveltheorems about limits and con-

tinuity. We describe how non-standard analysis provides a simpler characterisation of limit

and continuity and exploit this in the design of the proof-planning machinery. Using the

λClamproof-planner allows us to reason naturally about higher order concepts, and we make

use of this higher order capability by studying theorems which involve arbitrary functions. For

example we study such theorems asLIM �, which states that the product of the limits of two

functions at a point is equal to the limit of the product of thefunctions, characterised by

lim
x!a

f (x) = l f ^ lim
x!a

g(x) = lg ` lim
x!a

f (x)�g(x) = l f � lg:
Here we are reasoning about arbitrary functions, and we can see from the work presented

in chapter 5 that when finding a proof-plan for this theorem using non-standard analysis, we

exploit the higher order functionality ofλClam.

1.2.2 Theorems involving induction

We introduce a different approach for finding proof-plans for a number of theorems in real

analysis which are existentially quantified. We follow techniques from computable analysis,

such as those presented in [Bishop and Bridges, 1985], and use non-standard analysis to sim-

plify some of the reasoning. The central notion in this work is one ofpartitioning, which we

explain and describe in more detail in chapter 6.

1.3 Research contribution

We outline three major areas where we have made a research contribution through this work. It

is important to mention here that proof-planning does not yield object-level proofs, but instead

gives a description of how the proof should proceed at a more abstract level.

1.3.1 Implementation

We use the proof-plannerλClam, in which we have provided an axiomatisation for non-

standard analysis, and a set of methods and critics by which to reason about proofs. In the

course of this work, we have also implemented a number of proof-planning devices which are

now part of the mainλClamsystem. These are described in detail in chapters 5 and 6, when

we cover the specific families of proofs we study.

4 Chapter 1. Introduction

1.3.2 New and readable proofs

We present what we believe to be a new proof of a slightly modified version of Rolle’s Theorem,

and construct a proof-plan for it inλClam. Some of the theorems for which we construct proof-

plans have been proved in other settings. In particular [Bledsoe and Ballantyne, 1977] had an

automated theorem prover based on resolution which was capable of proving many of the

theorems we present in chapter 5. We argue that due to the resolution style, their proofs are

not very easy to read, and do not follow the sorts of patterns of reasoning that a human would

perform. Our work, by contrast, produces proof-plans whichcorrespond more closely to the

strategies a human might adopt during proof.

It must be noted here however, that the proof-plans we produce are not executed in an

object-level theorem prover, and so a direct comparison between our work and that of Bledsoe

and Ballantyne is not possible.

1.3.3 Understanding of the structure of proofs

The work presented in this thesis provides a fundamental understanding of the structure of cer-

tain analysis proofs using non-standard concepts. Using proof-planning we are able to study

the general proof techniques which can be used to tackle analysis theorems using non-standard

concepts. Investigating proofs of the theorems we present in this thesis has allowed us to de-

velop general purpose techniques for automation. Since theissue of automation is contentious

in this work due to the lack of explicit object level proofs wemust provide an argument for the

soundness of the proof-plans yielded. We discuss the validity of our approach further in section

7.3.

1.4 Organisation of the thesis

In the next chapter we describe the mathematical backgroundto our work. We highlight the

various attempts at finding a formal basis for the sort of informal reasoning performed by

Newton and Leibniz, with particular reference to the differene between formal constructions

of number systems such as the real numbers, and axiomatic approaches. Chapter 3 presents

an overview of the literature that exists on theorem provingin analysis. We present interactive

and automatic work done on both standard and non-standard analysis.

In chapter 4 we describe our methodology, and introduce our logic and axiomatisation. We

introduce first our research hypothesis and research goals,and describe some nomenclature for

1.4. Organisation of the thesis 5

the proof-planning entities we describe. We then go on to introduce our type system, and our

axiomatisation for all of the types we introduce. We discusssome theoretical issues, and give

a detailed description of our evaluation scheme.

Chapters 5 and 6 rely heavily on the both the axiomatisation and the evaluation scheme set

out in chapter 4. Chapter 5 describes the theorems involvinglimits and continuity which we

study. We introduce representations of the proof-plans developed for each theorem, and then

describe the methods and critics we develop in order to construct a proof-plan which accounts

for as much of the automation as possible. We perform some experiments with more naı̈ve

search strategies, and give an evaluation of the results, comparing the work with other systems.

Chapter 6 introduces induction and a different technique for constructing proof-plans for

analysis. We describe the technique using Rolle’s Theorem as an example. We give descrip-

tions of the proof-plans yielded for each part of the theorem, and present the proof architecture

which we capture using proof-planning. We describe the methods and critics we develop, and

show how we construct proof-plans to account for the theorems.

In chapter 7 we draw some conclusions about the work, and describe some further avenues

of research which have not been fully investigated in this thesis.

Finally in the appendices we include some sample code and proof output fromλClam, to-

gether with a description of the proof-plan yielded for one of the important theorems described

in chapter 6.

Chapter 2

Analysis

In this chapter we review the background of the central mathematical ideas of this thesis. We

start by motivating the construction of non-standard analysis through a brief description of

the history behind the notion of the “infinitesimal” and describe the most important concepts

involved. We then introduce the real numbers, paying particular attention to the difference

between axiomatic approaches, and formal constructions. We go on to describe the important

concepts involved in any theory of the reals. Finally we describe three different versions of non-

standard analysis which provide a formal basis for introducing the notion of the “infinitesimal”.

We discuss some of the properties that these theories have, in particular with relation to a more

algebraic notion of limit.

2.1 Brief Historical background for NSA

In the eighteenth century, Newton and Leibniz both relied ona concept of an infinitesimal in

order to reason about derivatives. The problem with this work was that the number system

they used did not contain the infinitesimal quantities whichtheir proofs relied on, and as such

did not have a sound mathematical basis. The issue was so philosophically controversial that

Bishop Berkeley wrote an attack on the use of infinitesimals in [Berkeley, 1734], ending his

attack with a series of questions, the 54th of which being

...whether the same things which are now done by infinities may not be done
by finite quantities? And whether this would not be a great relief to the imaginings
and understandings of mathematical men?

Leibniz tried to solve this problem by constructing a numbersystem which included both

infinite and infinitesimal quantities, using as inspirationthe construction of the imaginary num-

7

8 Chapter 2. Analysis

bers. The problem with inventing a number system which includes infinitesimal numbers is that

some formal way of stating how to define infinitesimals is needed. When this failed to mate-

rialise, interest in infinitesimal reasoning waned, and a different approach was taken up by

mathematicians like Cauchy and Weierstraß.

Cauchy gave the first rigorous development of mathematical analysis, basing his work on

the notion of a limit– a process, viewed geometrically, where a point was approached so that

it always got nearer, but was never reached. This notion, which had been used by Newton and

d’Alembert although not rigorously, satisfied the doubtersof infinitesimal reasoning. Weier-

straß developed a formal notion of limit, known as theε-δ formulation, which has become the

standard analysis teaching method.

The issue of infinitesimals was left dormant for some time until Robinson applied some

well known results from mathematical logic to the problem ofconstructing a number system

which included infinite and infinitesimal quantities. Robinson used a set theoretic concept

known as anultraproductto construct such a number system. This was the number systemthat

Leibniz had been looking for to justify his work. This application of model theoretic results

gave rise to non-standard analysis.

2.2 Standard Analysis

Standard analysis studies the properties of functions overthe real numbers. We present here

some of the choices there are in formulating a real number system, and outline a brief descrip-

tion of a formal construction of the real numbers using just set theory. We do this here to

provide context for our presentation of non-standard analysis, shown in section 2.3.1.

2.2.1 Properties of reals

We want to be able to make use of a number system which has various important properties.

Firstly we want the real numbers to form a real closed field. The field axioms, which underlie

the main properties we need for the real numbers, include group axioms about multiplication

and addition, and rules defining an order on the numbers. Given just the ordered field axioms,

there is nothing to distinguish the real numbers from the rational numbers. A full description of

the axioms for areal closed fieldis given in section 4.2.4, where we present the axiomatisation

we adopt for this work. The important properties which definethe number system to be the

real numbers are

2.2. Standard Analysis 9

The completeness of the reals

This states that any non-empty set of real numbers which has an upper bound, has a least

upper bound. This is not true for the rationals, evident in the fact that
p

2 is not a rational

number. Thesupremumproperty which characterised the completeness is given in higher

order logic as follows. For any propertyP of the reals,(9x2 R: P(x))^ (9U 2 R: 8y2 R: P(y)! y�U)!9u2 R: (8x2 R: P(x)! x� u) ^8u0 2 R: (8x2 R: P(x)! x� u0)! u� u0
The Archimedean property of the reals

This states that every real number is bounded above by a natural8x2 R: 9n2 N: x< n:
The consequences of this property are that the real numbers cannot contain infinitesimal

quantities. If there were such a number, then its inverse would be greater than any natural

number, which cannot be the case.

There are other noteworthy axiomatisations of the reals, which differ from the standard real

closed field axiomatisation presented in section 4.2.4. In particular, there are constructive ax-

iomatisations of the real numbers. These are of particular interest because using a constructive

real number system allows algorithms to be extracted from proofs. The axiomatisation for the

constructive real numbers is in general characterised by adding an extra concept ofnearness,

as in the works of [Beeson, 1985, Cruz-Filipe, 2002], orapartnessas in [Troelstra, 1973] for

example.

2.2.2 The construction of the real numbers

It is often of interest to mathematicians to verify that a mathematical theory can be constructed

purely from the axioms of a set theory. We give a brief presentation here of how this is possible,

in order to motivate the choice of representation chosen later for non-standard analysis.

Given a definition of the natural numbers,N, we can construct the integers, the rationals

and the real numbers. There is more than one way of doing this,but we consider here just

a method motivated by Cauchy sequences, of considering equivalence classes of converging

sequences of rationals.

10 Chapter 2. Analysis

We define an equivalence relation� on pairs of naturals to be< x1;y1 >�< x2;y2 >() x1+y2 = x2+y1:
The integersZ can then be defined by the equivalence class of all pairs< x;y> under�. We

can show that the definitions for addition and multiplication are closed for this equivalence

class and are hence defined forZ.

We can further define an equivalence relation�0 on pairs of integers, whose second element

is non-zero, to be < x1;y1 >�0< x2;y2 > x1�y2 = x2�y1

The rationalsQ can then be defined by the equivalence class of all pairs< x;y>, y 6= 0, under�0. This can be shown to be well behaved for addition and multiplication also. The rationals

can be shown to be dense i.e. that between any two rationals there exists another rational. The

famous proof that
p

2 is irrational shows that there is no number which is a solution of the

polynomialx2�2 = 0. What is possible is to construct an infinite sequence of rationals that

approaches such a number arbitrarily closely. In order to dothis, we define aCauchy sequence

Definition 1 An infinite sequence over the rationals is a Cauchy-sequence, if its members ap-

proach each other arbitrarily closely. Formally, f: N ! Q is a Cauchy sequence if and only

if 8ε 2 Q : ε > 0! 9N 2 N: 8m;n2 N: m� N^n�N ! j f (m)� f (n)j< ε

Stated simply, for any positive rationalε, there is some naturalN such that for any point in the

sequence afterN, the difference between subsequent elements of the sequence is less thanε.

The idea is to define the set of all Cauchy sequences of rationals, and to define an equivalence

relation between sequences, which is true for sequences that approach each other arbitrarily

closely. Each such equivalence class denotes a real number with arithmetic being defined

pointwise for each rational number in the sequence. Now the real number we yield is the

limiting position of theε width “tunnel”.

2.2.3 Intuitive proofs

At school we are often taught to write the following fractionto find the derivative of a function

f at a pointx:
δ f (x)

δx
= f (x+δx)� f (x)

δx

2.2. Standard Analysis 11

and then told to consider what happens whenδx approaches 0. The notion ofdx, some fictional

quantity representing an infinitesimal is then introduced to write the derivative off at the point

x to be
d f(x)

dx
= lim

h!0

f (x+h)� f (x)
h

where a limit is a loosely defined concept meaning thath is considered when it is very small.

This characterisation of differentiation becomes natural, and people understand the notion of

limit intuitively, and can reason about behaviours in very small neighbourhoods of points.

The problem is that using infinitesimals to help reason in very small neighbourhoods is ill-

defined. The real number system does not contain such quantities, so we need some system for

formalising the notion of “infinitesimal”.

2.2.4 Notions of limit and convergence

In the nineteenth century Karl Weierstraß developed the theory of standard analysis by formal-

ising the notion of the “neighbourhood” of a point. He first devised theε-δ formalisation of

limits in standard analysis. Stated formally we have the following definition: The limitl , of a

function f : R ! R at a pointa is defined as

Definition 2(lim
x!a

f (x) = l)�(8ε 2 R: ε > 0!9δ 2 R: δ > 0^8x2 R: 0< jx�aj< δ! j f (x)� l j< ε)
and is the crux of most standard analysis proofs. This is the main idea used in most analysis

proofs because it formalises the notion of a function approaching a certain value at a certain

point. It is not immediately clear why this definition shoulddemonstrate this. The best way to

view it is by considering a picture of a unary function approaching a value at a certain pointa as

in figure 2.1. The limit definition can be interpreted graphically by considering the quantitiesε

andδ on figure 2.1. The definition states that for every lengthε, a lengthδ can be chosen such

that for all points froma�δ to a+δ, the difference between the limitl and the function value

will be less thanε. The idea of continuity of functions follows easily from thedefinition of a

limit.

Definition 3 A function f : R ! R is continuous at x0 if

lim
x!x0

f (x) = f (x0)

12 Chapter 2. Analysis

f(x)

ε
δ

l

aδ

δ
ε

δ
x

l+e

l−e

a+a−

Figure 2.1: A function with limit l at x= a

We also yield the following definition:

Definition 4 A function f: R ! R is uniformly continuous if8ε 2 R: ε > 0!9δ 2 R: δ > 0 ^8x;y2 R jx�yj< δ! j f (x)� f (y)j < ε:
Now that limits have been formally defined, the notion of a derivative can be taken straight

from Newton and Leibniz’s work.

Definition 5 The derivative f0(x) of a function f: R ! R at x is given by the limit expression

f 0(x) = lim
h!0

f (x+h)� f (x)
h

where f 0(x) can be interpreted as the function of the gradient off at the pointx. There are

many concepts which make use of the notion of a limit, such as the definition of an integral.

As an example of a simple proof using standard analysis, and as a motivation for what

follows, consider a proof of uniform continuity usingε-δ notation. Let us say that we want to

prove thatx2 is uniformly continuous on the interval[0;1℄ 1. We can writej f (x)� f (y)j = jx2�y2j= j(x�y)(x+y)j
1Uniformly continuous on an interval means that the definition for uniform continuity holds for all points within

the interval

2.3. Versions of non-standard analysis 13= jx�yjjx+yj� jx�yj(jxj+ jyj)� 2jx�yj:
We are now faced with the task of finding aδ such that for any value ofεjx�yj< δ! j f (x)� f (y)j < ε:
Clearly if we chooseδ = ε

2 this will be satisfied, becausej f (x)� f (y)j � 2jx�yj.
The reasoning involved in this proof is typical of many proofs in standard analysis. The

common formulation of limits and continuity in standard analysis, means that it is always the

case that aδ has to be found which can satisfy the inequality involving the ε term. In this case

a δ was found which was a function of theε term. In proofs which demonstrate more general

results, often aδ can be shown to exist which satisfies the inequality involving theε term, but

where the specific instantiation is not found.

2.3 Versions of non-standard analysis

We first present in this section the construction of the hyperreal number system which Robin-

son developed. This follows some of the same ideas as that of the development of the reals,

and we present this first to show the rigorous formal basis forthe hyperreals, and as a result for

the theory of non-standard analysis. As with the real numbers, there is more than one approach

to introducing the hyperreals. Here we present overviews offour such approaches: an exten-

sional formal construction using set theory (i.e. one whichenumerates the members of the set);

an intensional set theoretic approach (i.e. one which refers to a defining property of the set);

constructive version of an axiomatisation for non-standard analysis; and finally one motivated

by the introduction of a nilsquare infinitesimal. We end the chapter by presenting definitions

for limit and continuity which can be shown to be equivalent to standard definitions shown in

section 2.2.4.

2.3.1 Ultrapower construction

The construction of the real numbers can be formalised by considering converging sequences

of rationals. Hyperreal numbers can likewise be obtained byconsidering sets of sequences of

real numbers, much in the same way that real numbers can be obtained by considering sets of

sequences of rationals. The method outlined here is called the ultrapower construction.

14 Chapter 2. Analysis

Definition 6 An ultrafilterF on I is a nonempty collection of subsets ofI , F � P (I), where

P (I) is the set of all subsets ofI :

P (I) = fA : A � Ig
An ultrafilterF must satisfy the following properties:

1. if A;B2 F , then A\B2 F
2. if A2 F and A� B� I, then B2 F
3. /0 62 F
4. for any A� I, either A2 F or I �A2 F

A free, or nonprincipalultrafilter is one which does not contain any finite sets. The Ultrafilter

Theorem guarantees the existence of a free ultrafilter whereI is infinite [Robinson, 1996]. The

set of hyperreals can be defined by considering equivalence classes of sequences with respect

to a free ultrafilter on the natural numbers (N) defining the ordering of these sequences. A

hyperreal number is represented by an equivalence class of sequences of real numbers< rn >,

and equivalence is defined with respect to the chosen nonprincipal ultrafilter onN. The type of

equivalence on sequences is called the “Almost-EverywhereAgreement” and is defined as< rn >�< sn >() fn2 N : rn = sng 2 F :
So two sequences of reals are equivalent if their indexing set i.e. the set of natural numbers

containing the positions at which they agree, is in the ultrafilter F . Because of the axioms

defining an ultrafilter, this equivalence is unique modulo the choice of ultrafilter. To show that

this is a well-defined representation of the hyperreals, onemust show that it contains the reals,

and that it is an ordered field. The set of equivalence classes(thequotientset), ofRN is�R = f[r℄ : r 2 RN g
where[r℄ is the equivalence class of sequencer 2 RN :[r℄ = fs2 RN : r � sg:

Now to show that�R is an ordered field one needs to give well-defined definitions for

addition and multiplication of sequences, and a well-defined definition for the order relation<:[r℄+ [s℄ = [< rn+sn >℄[r℄� [s℄ = [< rn�sn >℄[r℄< [s℄ () fn2 N : rn < sng 2 F :

2.3. Versions of non-standard analysis 15

We introduce here another piece of useful notation:

Definition 7 k< rn >�< sn > k � fn2 N : rn � sng
where� is some relation onR�R and�R� �R . k< rn >=< sn > k gives the indexing set of

the sequences< rn > and< sn >.

With these definitions, it is relatively easy to show that�R is an ordered field with additive

identity [0℄ and multiplicative identity[1℄. Now it remains to show that there is an order pre-

serving injective mapb : R ! �R . To illustrate this one can represent a real numberr 2 R in

the hyperreals�R as the constant sequencebr = [r℄ = [< r; r; ::: >℄. For r;s2 R:dr +s= br +bsdr�s= br�bsbr < bs () r < sbr = bs () r = s:
Thenon-standard extensionof a function f defined over the reals, is the function� f which is

extended to accept hyperreal arguments. This can be defined by� f ([< r1; r2; ::: >℄) = [< f (r1); f (r2); ::: >℄
Now infinite and infinitesimal numbers can be represented in the hyperreals. The interesting

points about the definition of the ultrafilter are that eithera set is in the ultrafilter or its com-

plement is, and that the empty set is not contained in it. Thismeans that ifF is an ultrafilter

andfA1; :::;Ang is a finite collection of disjoint sets andA1[:::[An 2 F , then exactly one of

Ai 2 F . Because the ultrafilter chosen cannot contain finite sets, it must contain all cofinite

sets from property 4 of the definition. Hence one can construct both infinite and infinitesimal

numbers by considering the hyperrealε =< 1=(n+1) : n2 N >:k0< εk= fn2 N : 0< 1=(n+1)g = N:
As N 2 F , [0℄< [ε℄ in �R. Now consider the setkε < brk= fn2 N : 1=(n+1) < rg
for any positiver 2 R. This is clearly cofinite, asε tends to 0 inR. Hence this set is in

the ultrafilter, and so[ε℄ < [r℄ in �R. This shows that[ε℄ is a positive infinitesimal. A similar

16 Chapter 2. Analysis

argument can be given for[ω℄ = [< 1;2;3::: >℄ to show that infinite numbers can be represented

in the hyperreals.

The non-standard natural numbers, or hypernaturals, can bedefined in a similar way to

the hyperreals. The hypernaturals can be defined by taking equivalence classes of sequences

of natural numbers. The finite hypernaturals are just the natural numbers, but there are also

infinite hypernaturals. In chapter 6 we extend functions which map from the natural numbers

to the reals. We do this by defining the functional extension to include the map� f ([< n1;n2; ::: >℄) = [< f (n1); f (n2); ::: >℄:
2.3.2 Internal Set Theory

An axiomatic version of non-standard analysis has also beendevised by Nelson, and is known

asInternal Set Theory[Nelson, 1977]. The idea behind this version of non-standard analysis

is to work in first-order logic and augment the axioms of Zermelo-Fränkel set theory by intro-

ducing a new predicate calledstandard, and its associated axioms. One can then mimic the

formal constructions of the hyperreals by attributing setsto the types of object that appear in

the non-standard model for analysis.

Nelson introduced the new predicatestandard purely syntactically, and defines semantic

classes of objects according to how this predicate appears.Every object of classical mathe-

matics is now either standard or non-standard. Also one can define objects which areexternal

to classical mathematics, as those which use the standard predicate. As an example, the set

of standardnaturals is an external entity because it cannot be defined without reference to the

standard predicate.

Nelson augmented the axioms of Zermelo-Fränkel set theorywith three axioms calledide-

alisation, standardisationandtransfer.

Idealisation If E is an internal object which is defined from standard objects,thenE is stan-

dard.

Standardisation All elements of an internal set are standard if and only if this set is finite.

Intuitively, if a set is infinite then it must contain non-standard elements, and if a set

contains non-standard elements (introduced by the new predicatestandard) then there

is no restriction on the number of non-standard elements introduced, so the set must be

infinite.

2.3. Versions of non-standard analysis 17

Transfer principle Let P(x) be an internal expression relative tox. P(x) is true for allx, if

and only ifP(x) is true for all standardx.

These three axioms along with the axioms from Zermelo-Fränkel set theory allow us to con-

struct a theory of non-standard analysis in which integers are said to belimited or unlimited.

For any real numberx, we have� x is limited () there is a standard integer greater than x,� x is unlimited () it is greater than any limited integer,� x is infinitesimal() jxj< 1
n, for any limited integern,� x is infinitely closeto y () x�y is infinitesimal.

Now one can show that any limited real is infinitely close to a standard real number, and hence

introduce astandard partoperator which returns the unique standard real infinitely close to any

limited real number. This axiomatisation gives a calculus for non-standard analysis.

2.3.3 Constructive non-standard analysis

As is demonstrated in [Palmgren, 1995], it is possible to axiomatise a constructive version of

non-standard analysis using the notion of sheaf-theoreticnonstandard models. This develop-

ment of a model for non-standard analysis is similar to Nelson’s Internal Set Theory described

in section 2.3.2. Again in this setting we can define notions of transfer and idealisation, but

instead of standardisation, the notion ofunderspillis introduced. This states that if a statement

is true in the non-standard model for all non-standard elements, then there must be at least one

standard element for which it is true.

The precise details of such an axiomatisation are too complex to describe here in detail.

The differences between this approach and a non-constructive approach is that we interpret

formulas using sheaf-theoretic semantics, as opposed to the usual Tarskian semantics, which

means that the interpretation of certain logical symbols ismore involved. This allows the logic

for the model to be intuitionistic. Other papers which use this sheaf-theoretic approach include

[Palmgren, 1997].

Other versions of constructive non-standard analysis include [Liu, 1980], which introduces

a constant∞ to the axioms of Zermelo-Fraenkel set theory. He shows that such a constant is not

constructive in any number type, and indeed the Zermelo-Fraenkel set theory is classical, but

shows how it is possible to extract constructive content from proofs in non-standard analysis.

18 Chapter 2. Analysis

2.3.4 Bell’s infinitesimal calculus

Another axiomatic version of infinitesimal calculus has been formalised by Bell, which takes

as its motivation the implicit use of nilsquare infinitesimals in physics [Bell, 1998]. In this

work, Bell sets out the different philosophical and logicalnotions of a continuum and a point,

and defines geometrically the features we expect fromsmooth worlds. Crucially he points out

that the assumption of the law of the excluded middle is falsein this formulation of the realm of

continuous functions. He introduces the usual ring definitions of addition and multiplication,

and assumes the existence of a square root for any positive real number. All of these rules hold

with respect to the semantics of the geometric model he creates.

In the geometric model there are some statements which in a normal axiomatisation of the

reals we expect to hold, but in this case do not. Precisely, the following conjecture is invalid:8a;b: a�b= 0 ! a= 0 _ b= 0:
This is a result of not being able to assume the law of the excluded middle in proofs. He defines

a set of infinitesimal quantities,∆, and states the following principle:

Principle of Microaffineness For any mapg : ∆ ! R, there exists a uniqueb 2 R, such

that8ε 2 ∆ we have:

g(ε) = g(0)+b� ε

which states thatg is a straight line with slopeb.

What is important about this definition is that it constitutes purelylocationanddirection. ∆

consists of entities which are too short to constitute a line, but are nonetheless not a point. Bell

identifies this with a “rigid rod” which can be rotated to be tangential to any part of a curve, but

cannot be bent around the curve. He then goes on to prove the following important properties

of the domain∆:

1. ∆ is included in the closed interval[0;0℄, but is not identical withf0g.
2. Every element of∆ is indistinguishable from 0 i.e. cannot be determined to be to the left

of right of 0.

3. It is falsethat for allε 2 ∆, eitherε = 0 or ε 6= 0.

4. ∆ satisfies:8a;b2R; ε2∆: if ε�a= ε�b, thena= b. In particular if8ε2∆: ε�a= 0

thena= 0.

2.4. Simplified definitions and proof 19

Now we have a calculus where we have formally defined anilsquareinfinitesimal, i.e.9ε2
∆ such thatε2 = 0, yetε 6= 0. This follows from the four properties outlined above. This allows

us to define derivatives in the normal way, and reason about “higher-order” infinitesimals in the

way that physics proofs often do.

2.3.5 A brief comparison of the approaches

The approaches discussed in section vary in their formalisation and motivation. Bell’s approach

is motivated by physics problems and attempts to construct an axiomatisation by which proof

can be performed using a notion of a nilsquare infinitesimal.The Ultrapower approach is a

formal construction of the non-standard real numbers usingthe fundamental concepts of set

theory. Internal Set Theory attempts to simplify the axiomatisation by using the intensional

approach of adding a defining predicate to the axiomatisation by which a new number system

can be defined.

2.4 Simplified definitions and proof

The reason why theε-δ proofs are in general considered to be difficult is because ofthe need

to express the notion of a limit, without appealing to infinitesimals. The notion of limit in

standard analysis involves alternating quantifiers which make the proofs sometimes difficult

to complete. We want to exploit the fact that such an infinitesimal element now exists in the

hyperreal domain. We introduce some notions in non-standard analysis which will occur often

elsewhere in this thesis.

In what follows we use macros for limits.lim is used to denote limits andNSlimis used to

denote the macro for the non-standard characterisations ofa limit. This is just a presentational

macro and is not used internally inλClam. For this reason we do not use the macro notation

when showing the proof-plans developed for the theorems in chapters 5 and 6.

2.4.1 Transfer Theorem

In the case of the ultrapower construction for the hyperreals, we can appeal to a very powerful

result from logic, called Łoś’s Theorem which is the key to using non-standard analysis to prove

results from standard analysis [Hurd and Loeb, 1985]. We introduce thetransfer principle,

which serves both as a definition of the so-called *-transform and a theorem about its most

important property.

20 Chapter 2. Analysis

Definition 8 If φ is a first order statement expressed over the reals, then the *-transform ofφ

denoted�φ is defined by applying the following rules:

replace functions and predicates inφ by their non-standard extensions;

replace unquantified real numbers inφ by their embeddings in the hyperreals;

variables quantified over the reals inφ become quantified over the hyperreals in�φ.

Theorem 1 Any statementφ expressed over the reals,R, is true if and only if its transform�φ
is true over the hyperreals,�R.

This principle allows results in standard analysis to be guaranteed to be true also in the

non-standard domain. Also it means that if the transform of atheorem can be proved in the

non-standard domain, then it is true in the standard domain.

2.4.2 Limits

The advantage of formally defining such an extension of the real numbers is that one can

formally state what it means to be in an “infinitesimal neighbourhood”. This is defined using

the so-called “infinitely close” relation denoted by�. This relation simplifies definitions and

proofs, as will be seen when we consider the non-standard versions of the definitions presented

in section 2.2.4.

Definition 9 The limit of a function f: R ! R, with limit l at a is given in non-standard

analysis by (NSlima f = l) � (8x2 �R x� ba^x 6= ba! � f (x)� bl) (2.1)

whereba andbl are the embeddings of the real numbers a and l respectively in the hyperreals,

and� f is the non-standard extension of the function f .

This definition matches exactly our intuitive understanding of the more abstruseε-δ formu-

lation of a limit. Indeed, it simply says that in an infinitesimal neighbourhood, a continuous

function will also take values within an infinitesimal neighbourhood. The corresponding theo-

rem which is easily proved by the transfer principle is: (seesection 4.3.2)

Theorem 2

lim
x!a

f (x) = l () (NSlima f = l):

2.4. Simplified definitions and proof 21

2.4.3 Continuity

The definition of continuous at a point can be unfolded using the non-standard definition of

a limit. Throughout this thesis however, we use uniform continuity as it has a very simple

characterisation in non-standard analysis.

Theorem 3 A function f : R ! R is uniformly continuous if and only if8x;y2 �R : x� y! � f (x) � � f (y):
We refer to this characterisation as uniform continuity since it can be defined at infinitex andy.

This theorem provides a much more intuitive and simple understanding of uniform continuity.

Although we use uniform continuity in general, there is an analogous result which charac-

terises continuity:

Theorem 4 A function f : R ! R is continuous if and only if8x;y2 �R : f inite(x)^x� y ! � f (x)� � f (y) :
Continuity cannot be defined at infinite hyperreals.

2.4.4 Differentiability

In non-standard analysis one can use the non-standard definition of a limit to rewrite the stan-

dard definition of a derivative given in section 2.2.4. We canthen state the theorem

Theorem 5 The derivative of a function f: R ! R at a point x is f0(x) if and only if:8h2 �R : h 6= 0^h� 0! � f (bx+h)� f (bx)
h

� f 0(bx)
This characterisation of a derivative can be further generalised by consideringuniform differ-

entiability. When transferred this gives us a definition for the extendedderivative function� f 0
evaluated at an arbitrary hyperreal point:8x;h2 �R : h� 0^h 6= 0! � f (x+h)� � f (x)

h
� � f 0(x):

We use this generalised notion when considering the real analysis theorems presented in chapter

6. Support for our approach is provided by [Hoskins, 1990], for example, where it is argued

that uniform continuity and differentiability are more natural ways of reasoning about analysis

proofs.

22 Chapter 2. Analysis

2.4.5 On the notion of “limit”

The majority of the preceeding definitions make use of the concept of limit, and so transfer

directly into the non-standard realm from the standard domain. The proofs become much

simpler in non-standard analysis fundamentally because welift the restriction of the field being

Archimedean, and hence we can introduce an infinitesimal element.

As an example of a simple proof in non-standard analysis, consider once again the problem

of proving f (x) = x2 to be uniformly continuous in the interval[0;1℄. When stated over the

hyperreals, this means that the non-standard extension off has to be uniformly continuous

over the hyperreals in the non-standard extension�[0;1℄ of the interval[0;1℄.8x;y2� R: 0� x� 1 ^ 0� y� 1 ^ x� y ! x2 � y2

We rewrite this conjecture by reformulatingy asx+ ε for some infinitesimalε8x;ε 2� R: 0� x� 1 ^ ε� 0 ! x2 � (x+ ε)2

and then rewrite the conclusion to

x2 � (x+ ε)2� x2+2� ε�x+ ε2� x2;
sinceε is infinitesimal andx is finite as it is in the range�[0;1℄ 2.

The techniques involved in this proof are of the sort employed by students when first con-

fronted with calculus. Until non-standard analysis was formalised, these techniques were not

sound and could lead to problems. Now it is possible formallyto say that two numbers are very

close together, and it is also possible to properly define what adding an infinitesimal amount

actually means. For a good introductory article outlining all of the important issues in non-

standard analysis see [Simpson, 1990]. Other texts, such as[Goldblatt, 1991, Robinson, 1966,

Hurd and Loeb, 1985, Hoskins, 1990], providing a more complete coverage of the subject, are

also of interest.

2.5 Summary

We have presented various important mathematical conceptswhich we use in our research. We

have shown different approaches to formalising a theory of non-standard analysis, and given

2x must be finite in order to guarantee thatε�x� 0

2.5. Summary 23

brief descriptions of formal constructions of both the reals and the hyperreals using axioms

from a set theory. The choice of whether to introduce the fieldaxioms, or to derive them

from a more fundamental logic, will become important in the next chapter, when we present

mechanised versions of both standard and non-standard analysis.

In sections 2.4.2 and 2.4.3 we gave simplified non-standard definitions for limit and conti-

nuity, which will be important later in the thesis when we study proofs from real analysis using

such simplified definitions.

Chapter 3

Automated Theorem Proving

In this chapter we describe the work that exists in theorem proving in nalysis. The initial

research in this area done by [Bledsoe et al., 1972], focussed on reasoning techniques for stan-

dard analysis, which were later applied to proofs in non-standard analysis. We review some

of the significant work that has taken place since then on theorem proving analysis and non-

standard analysis in both interactive and automatic settings. In each case, we state whether the

work done provides an axiomatisation as its basis, or whether it develops a theory of analy-

sis from a more fundamental logical perspective such as the approach of [Harrison, 1998] and

[Fleuriot, 2001a].

In the final part of the chapter we give an overview of the central ideas of proof-planning,

and briefly describe some of the implementational additionswe have made to theλClamsystem,

which is the vehicle for analysing the structure of proof in non-standard analysis. We also show

diagramatically how the architecture ofλClam is organised to allow us to automatically con-

struct plans of proofs in which we are interested.

Throughout this section we use the symbol) to denote rewriting, and! to denote impli-

cation. Conditional rewrites rules are written asA! B)C, whereA is the condition under

which B rewrites toC. It is important the rewriting()) is not read as implication (!). See

section 4.2.3 for an explanation of this. We use the turnstile symbol,̀ , to denote derivability.

3.1 Theorem proving in analysis

In 1972, Bledsoe set a series of challenge problems to the theorem proving community, and

together with Boyer, went about trying to prove them [Bledsoe et al., 1972]. The challenges he

25

26 Chapter 3. Automated Theorem Proving

set now form a corpus of examples [Bledsoe, 1990], and his first ideas are still being used by

the latest theorem provers [Benzmüller et al., 1997].

3.1.1 Mechanised standard analysis

In this section we review some of the important work that has been done in mechanising proof

in standard analysis.

Bledsoe and Boyer

The success of the impressive work done by Bledsoe and Boyer relies mainly on what they

called their “Limit Heuristic”. Although the prover was comprised of many methods, this was

the part which was designed more specifically for limit theorems. Given a goal of a general

form jBj<E, with a set of hypotheses containing one of the formjAj<E0, one tries to express

B in the formKA+L. One then proves the following three subgoals for someM:jKj< MjAj< E
2MjLj< E
2 :

Two common theorems that we discuss further in chapter 5 are LIM+ and LIM�, which pertain

to real-valued functions. LIM+ states the sum of the limits equals the limit of the sums, and

LIM� states that the product of the limits equals the limit of the products. For example in

proving LIM�, the conclusion can be expressed asj f (x)g(x)�L1L2j< E, and one hypothesis

is j f (x)�L1j< E0. The conclusion can be rewritten asjg(x)(f (x)�L1)+L1(g(x)�L2)j< E:
Now the originalB has been expressed in the formKA+L. Now by the limit heuristic there

are the following three subgoals remaining (for someM):jg(x)j < Mj f (x)�L1j< E
2MjL1(g(x)�L2)j< E

2 :
The proof then follows from the hypotheses in a much simpler way.

3.1. Theorem proving in analysis 27

ΩMEGA

More recently there have been several other attempts to automatically prove many of these limit

theorems, most notably by [Beeson, 1998] and [Melis, 1998, Melis, 1996]. In theΩMEGA

proof-planner and mathematical assistant, there has been much work done in developing proof-

plans for limit theorems using what is referred to in [Benzm¨uller et al., 1997] as “multiple

strategies”. TheΩMEGA proof-planner builds on Bledsoe’s work by introducinga “complex

estimate”, and a constraint solver in order to calculate theinstantiations of the variables. A

good example to illustrate this type of reasoning is the theorem LIM+. The difficult part of

this proof in a standard setting is trying to find the appropriate instantiations for theδ term in

the conclusion, and theε terms in the hypotheses. In a rewriting setting, this means knowing

the rule1

X+Y < E) X < E
2 ^ Y < E

2 :
Melis argues that in most mathematical texts, the fact that the ε terms in the hypotheses are

both instantiated to half theε term in the conclusion, and that theδ term in the conclusion

is chosen to be the minimum of theδ terms in the hypotheses, is plucking an answer out

of nowhere [Melis, 1996]. This makes the proof very difficultto automate. The solution is to

make all of these problematic variables meta-variables, and to create a partial proof-plan, which

is completed by finally instantiating these variables usingsome form of constraint satisfaction.

This technique creates an abstraction of the actual proof, hence creating a partial planπ

which is a tuple(T;�;B;C), whereT is a set of methods,� is a partial order onT, B is a set of

binding constraints on variables, and finallyC is a set of inequalities. The setC of inequalities

are passed to the constraint solver in order to instantiate the variables listed inB. The plan

is set up withT = t0; t∞, wheret0 are the hypotheses, andt∞ is the final goal andt0 � t∞.

The planner refines the partial plan by introducing steps andconstraints into the partial plan.

The plan is complete when the initial state is transformed into a state where the goal holds

and the constraints are satisfied. The general techniques used in solving standardε�δ proofs

are encapsulated in the two methods which are used specifically for solving inequalities. One

uses such ideas as the triangle inequality, and the other instantiates variables in inequalities

by introducing unifying substitutions. The work of theΩMEGA group with regard to proof-

planning is thoroughly covered in [Benzmüller et al., 1997, Melis, 1998, Melis, 1996]. This

work is very successful in that it is able to prove many complicated limit theorems, but the

1Logical implication is in the opposite direction to rewriting

28 Chapter 3. Automated Theorem Proving

system described here has been used exclusively for limit theorems.

Mathpert

The Mathpert system is also capable of performing some automaticε�δ proofs. [Beeson, 1998]

presents how theWeierstraßcomponent of Mathpert is capable of this sort of reasoning. Math-

pert is a combination of both a formal system, and a system that can perform mathematical

computations. He explains how some of the algorithms used cannot ensure soundness as can

be done in a formal logical system. He presents a technique for solvingε�δ proofs which as in

Melis’ work involves introducing meta-variables and delaying their instantiation. The system

combines computation with first order logic, by introducingcertain additional features. These

include a component for finding upper and lower bounds, whichBeeson claims is as good as

a very good calculus student at finding such bounds; a component for factor bounding, which

proves that products of variables are small, if one is small and one has a bound; a component for

exploiting the transitivity of like inequalities; and finally he allows the use of the mean value

theorem, which splits certain goals into logically simplersubgoals. Beeson presents various

proofs of continuity of specific functions in Mathpert usingthese techniques and a factoring

algorithm common to the whole Mathpert system.

This work is intended to serve as a mathematical assistant for those working withε� δ

proofs. The system does not serve as a theorem prover, as someof the algorithms are not

guaranteed to be sound. Its behaviour is thus more akin to that of a computer algebra system

rather than a theorem prover. Moreover, many of the techniques that are available to the system

during these proofs are quite advanced in themselves. Beeson himself says that when proving

the continuity of
p

x, Mathpert uses the mean value theorem, which is a more complicated

theorem than the continuity of
p

x. His reason for using the mean value theorem is that it

is a less ad hoc rule than the factoring rule needed to otherwise complete the proof. This

demonstrates the fact that theWeierstraßsystem is predominantly a mathematical assistant as

opposed to a theorem prover.

PVS

The PVS system [Owre et al., 1992] includes an axiomatisation of the reals [Dutertre, 1996].

PVS is a specification and verification system designed to make formal proofs practical and ap-

plicable to real world problems, in particular software engineering. The axiomatisation of the

real numbers has been included to verify properties ofhybrid systems[Henzinger et al., 1997,

3.1. Theorem proving in analysis 29

Henzinger et al., 1992]. In such systems physical constraints involve continuous functions of

time. Given common results from analysis about continuous functions, reasoning about these

functions of time becomes much simpler. The PVS interactiveproof checker uses a classical

higher order logic, with a rich type system that supports subtyping and dependent types. The

libraries provided by Dutertre consist of analysis withrational functions, which is to say that

they are comprised of identity functions, constants and thesymbols+;�;� andn. Also in-

cluded are many theorems from the theory of real analysis, including most significantly results

about the composition of continuous functions. As an example [Dutertre, 1996] shows a proof

of the mean value theorem, given Rolle’s theorem.

This implementation in PVS assumes many results from analysis, so that quick progress

can be made on verification problems from hybrid systems. In [Gottliebsen, 2000], the axioma-

tisation is further used to construct proofs about transcendental functions. First a definition of

partial sums is constructed, and then using the convergencetheorems from the library provided

by Dutertre, some trigonometric identities are proved. Also a continuity checker is imple-

mented which uses some of the continuity lemmas from the libraries to determine whether

more complicated compositions of functions are continuous. In later work, a study of definite

integrals is performed in PVS using VSDITLU, a verifiable symbolic definite integral table

look-up [Adams et al., 1999].

Coq

Another axiomatisation of real analysis has been done in theCoq system by [Cruz-Filipe, 2002]

and [Mayero, 2001]. The former provides a constructive basis for many proofs, including

Rolle’s theorem, given results from power series; the latter is a generous axiomatisation which

is used to give a classical proof of the three gap theorem which is a challenging problem for

proof assistance systems.

HOL and Isabelle/HOL

The systems described above all use various axiomatisations in order to reason about analysis

proofs. However, in both the HOL and Isabelle/HOL theorem provers, developed at the Uni-

versity of Cambridge, the methodology is one of definition rather than postulation. Both sys-

tems provide solid logical constructions of the real numbers. Jutting’s translation of Landau’s

“Grundlagen der Analysis” in Automath is the first example ofa rigorous mechanised defini-

tion of the real numbers [van Benthem Jutting, 1977]. This has been done by [Harrison, 1998]

30 Chapter 3. Automated Theorem Proving

in HOL using Cantor’s method, and by both [Harrison, 1992] inHOL and [Fleuriot, 2001a]

in Isabelle/HOL using Dedekind cuts. Standard analysis proofs have been performed in these

interactive settings, and Harrison explains succinctly why this type of proof is difficult to auto-

mate [Harrison, 1998]:

Very often one sets out to establish some overall bound onε, say, and to get this
one instantiates otherε-δ properties and uses the triangle law to get the result. The
required instantiations generally follow not just from thefact to be proved, but
from the structure of the intended proof. Taking the finishedproof for granted, the
reasoning is not deep, but it’s often difficult to guess the right instantiations until
the proof structure has been developed.

3.1.2 Mechanised non-standard analysis

Interestingly a significant proportion of those people who have worked on theorem proving in

standard analysis have subsequently tried their hand at non-standard analysis. A brief overview

of some of the work done in this area is given below. The majority of the work uses what is

referred to here as an axiomatisation. This means that the object logic of the theorem prover

has been augmented by the addition of various rules which have not been defined in terms of

the axioms of the logic. [Fleuriot, 2001a] uses the HOL methodology of definition rather than

postulation, and defines everything with respect to the axioms of higher order logic. His work

does not therefore add any axioms to the axioms of the underlying logic, and hence does not

use what is referred to here as an axiomatisation, apart fromthat of the higher order logic itself

and some simple definitions for the construction of sets [Gordon and Melham, 1993].

Bledsoe and Ballantyne

[Bledsoe and Ballantyne, 1977] presents a resolution theorem prover whose proof engine is

modified from an existing prover. The goal of this work is to automatically prove a substan-

tial amount of a significant mathematical theory, and also todemonstrate how non-standard

analysis allows mathematicians to prove theorems in analysis more easily than by using the

ε�δ formulation. The paper presents the methods employed in theprover, and explains how it

handles the various types that occur in non-standard analysis. Their work uses a generous ax-

iomatisation and the prover is able to prove simple results about standard parts of numbers, as

well as more significant results such asLIM+, and even the Bolzano-Weierstrass theorem that

any bounded sequence has a convergent subsequence. By including non-standard definitions

of compactness, sequence convergenceandcontinuity, the domain of theorems proved is very

3.1. Theorem proving in analysis 31

impressive.

Mathpert

Beeson has used non-standard analysis in theMathpert system to great success. His work

uses non-standard analysis to ensure the correctness of calculations, specifically in evaluating

certain expressions which involve limits [Beeson, 1995]. His reason for appealing to non-

standard analysis in this way is that by introducing infinitesimals one removes many of the

problems in trying to prove tricky side conditions for limits. The example he gives is that in

trying to calculate the derivative of the functionf (x) =p
x, where f : R! R, it is necessary to

add certain assumptions which involve variables which are bound by the limit term. The limit

expression in question is given by the equation

d
dx

(px)� lim
h!0

p
x+h�px

h
:

Beeson explains how in the calculation of this limit term, one has to use the rule

y� 0! (py)2) y

but this causes problems because in the calculation of the above limit term one has to say

that (px+h)2 = x+h. In order to do this, the assumption thatx+h� 0 has to be added to

the system. This is not possible ash is bound within the limit term, and hence referring to it

outside the term is futile. The solution is to simply addx� 0 as an assumption, but Beeson

claims that doing this can only be done in a very ad hoc way. Hissolution is to axiomatise

non-standard analysis, requireh to be infinitesimal, and to write a specialised procedure for

the elimination of infinitesimals from this type of expression. In other words he is trying to

automate the kind of reasoning about limits that is performed in schools when differentiation

is first introduced. He introduces the axiomatisation used,and explains in detail the algorithm

developed for eliminating infinitesimals. He also demonstrates the sort of proofs that his system

is capable of doing, and claims that Mathpert is able to solveany example of a limit problem

found in calculus text books.

ACL2

ACL2 [Kaufmann and Moore, 1997] is the successor to theNQTHM (or Boyer-Moore) theo-

rem provers [Boyer and Moore, 1990], and is capable of automatically proving a wide range

32 Chapter 3. Automated Theorem Proving

of theorems. Originally the system could not reason about irrational numbers, as it permit-

ted a proof that the square root of two did not exist. [Gamboa,1999] has used non-standard

analysis to approximate results over the real numbers. He uses Nelson’s internal set theory

[Nelson, 1977] to axiomatise the non-standard numbers. He explains how irrational numbers

have been left out of ACL2 in order to try and keep the prover asclose to common lisp as

possible. In ACL2 it is possible to prove that
p

2 does not exist, in the same way that
p

2 can

be proved to be irrational. Hence adding irrational numbersto ACL2 by the addition of axioms

would produce an inconsistent theory. Gamboa presents an iterative method for approximat-

ing the value of a square root, and then uses his axiomatisation in non-standard analysis to

define a square root function and prove theorems involving it. Many of the lemmas needed to

automate these proofs are given by the user. He also uses non-standard analysis to prove inter-

esting versions of classical theorems of analysis such as the intermediate value theorem, and

presents some definitions of transcendental functions suchassin andcos, and proves Euler’s

theorem:eiπ +1 = 0. It is unclear exactly what degree of automation is involved in proving

these theorems.

Bedrax

Bedrax has also written a theorem prover using non-standardanalysis, which serves mainly as

a mathematical assistant [Bedrax, 1993]. She uses a very generous axiomatisation, which is

given as a set of inference rules which are not formulated within the underlying formal logic

of the system. She is thus able to prove such theorems as the intermediate value theorem. This

work is not as significant as that of Beeson, as the prover is both axiomatised and interactive,

thus removing two of the most challenging aspects of theoremproving in the non-standard

domain.

Isabelle/HOL

The most significant work done in the area of non-standard analysis and theorem proving has

been performed in Isabelle/HOL by [Fleuriot, 2001a]. In this work, the hyperreals are con-

structed from just the axioms of the underlying logic of the theorem prover, and the construc-

tion used to prove substantial portions of real analysis in the hyperreals.

As in the case of Harrison’s work [Harrison, 1998], the HOL methodology requires deriva-

tion of mathematical notions rather than postulating them,and so anything proved in this setting

is guaranteed to be correct. Since everything is formulatedwithin higher order logic the need

3.2. Proof-planning 33

for axiomatisation is obviated. Axiomatisations can contain inconsistencies, as has been the

case in the past for non-standard analysis. In order to construct the hyperreals in Isabelle, the

reals must first be constructed. This was done by following the pathZ+�!Q+ �!R+ �!R.

From the real numbers, the hyperreals are constructed by first defining the notion of an ultrafil-

ter.

Fleuriot shows how he proves a version of the axiom of choice –Zorn’s Lemma – to to

be able to prove the existence of a free ultrafilter, which is central to the ultrapower construc-

tion of the hyperreals. This is possible in Isabelle/HOL because the Hilbertε operator is used

as a primitive in the axiomatisation of Higher Order Logic. He demonstrates his subsequent

construction of the hyperreals, and the correctness of the construction with the respect to em-

bedding the real numbers into the hyperreals.

The work then goes on to prove many important results, which are required when formu-

lating a theory of calculus in non-standard analysis e.g. the standard part theorem, which states

that all finite hyperreal numbers are infinitely close to a unique real number. Notions of limit

and continuity are explained in the non-standard setting, and proofs of the equivalence of the

standard and non-standard definitions are given. The work also shows that the non-standard

definition of limit can be interpreted in a useful way when thelimit is at infinity or at zero. Im-

portant calculus theorems are proved such as the chain rule and Rolle’s Theorem. These proofs

are just an indication of the sort of proof that Isabelle is capable of, using Fleuriot’s construction

of the hyperreals, and subsequent formalisation of a mechanised infinitesimal calculus.

More recently this work has been extended by using the existing framework to introduce

transcendental functions such assinandcos, and formalise the notion of power series in general

[Fleuriot, 2000].

3.2 Proof-planning

Proof-planning [Bundy, 1988] is a technique for devising anoverall plan for a proof, which

can then be used to guide the proof search itself. A proof-plan consists of methods and critics.

The methods embody common patterns within proofs, such as the use of induction, which

correspond to tactics at the object-level, which carry out these methods explicitly. For each

conjecture a precise proof-plan is built, but a general formof a proof-plan can be developed for

certain types of conjecture. The mechanism for proofcritics with respect to proof methods is

described when Ireland’s work on proof planning and the productive use of failure is presented

in section 3.2.4.

34 Chapter 3. Automated Theorem Proving

The main advantage of proof planning is that it reduces the search space by reasoning

using methods, which are a specification of when a tactic applies, and what its effects are. The

λClamtheorem prover [Richardson et al., 1998] developed at the University of Edinburgh, and

theΩMEGA system [Benzmüller et al., 1997], developed at the University of Saarbrücken, are

examples of proof-planners which embody many of the notionsdeveloped in the field. In what

follows, a brief overview of the main concepts needed for this work is provided.

3.2.1 Proof plans

Induction is a perfect example for demonstrating the use of proof-planning. An inductive proof

always takes on a certain form, and by imposing a plan on the search, the choices to be made

are considerably reduced. In general an inductive proof always contains a base case, which may

itself involve subsequent inductions, and a step case, which introduces extra term structure to

the conjecture. A typical proof-plan for induction would look like figure 3.1. This high level

plan is intended as an abstraction of any inductive proof, and it has been very successful at

proving several theorems about natural numbers and lists automatically. It may not at first be

immediately obvious where the difference lies in this kind of plan, and a waterfall system. A

waterfall of methods is an ordered set of methods which are tried cyclically until the goal is

proved or no method applies. InλClam, however, the use of methodicals— constructs which

comprise of many applications of other methods— allows the possible form of a plan to be

more adaptable than a simple waterfall system such as the onein NQTHM.Using this system,

it is easier to develop a generic abstraction of certain types of proof.

As described in [Ireland, 1992, Ireland and Bundy, 1996], a method in proof planning has

a number of “slots” assigned to it. It has a name by which it is recognised, an input which

is matched against the current goal, and a set of preconditions which determine whether the

method is applicable to the current goal. It also has a set of effects which define what must be

satisfied after the method has been applied, and a tactic which controls the object level prover.

Finally it has an output which is the result of applying the effects to the current goal. When the

object level prover is referred to, it means that an automated theorem prover that could carry

out the tactic specified by the proof plan developed inλClam. An example of the application

of critics demonstrating the nature of slots is given in section 3.2.4.

In the version ofλClamthat we use, there is a distinction made betweenatomicmethods

and compoundmethods. Those which have a form similar to that described above, where

slots are used, are calledatomicmethods. and compound methods comprise of a sequence of

3.2. Proof-planning 35

Induction

Base Case Step Case

Fertilise

Ripple

Figure 3.1: General purpose induction proof-plan

applications of atomic methods. For a description of how compound methods are composed

see section 3.2.2.

3.2.2 Methodicals

Methodicals are a way of combining methods. Compound methods are a set of atomic methods

combined using methodicals. A simple example of a methodical is then meth , which applies

one method, and then applies another to the resulting goals.TheλClammethodicals which are

used in the work presented in this thesis are the following.

id meth

This automatically succeeds and is used as a way of passing goals back to higher level

compound methods.

triv meth

This succeeds if the goal is trivially true.

orelse meth

This attempts one method, and if it fails, attempts another.

cond meth

This only applies a method if a condition is passed.

36 Chapter 3. Automated Theorem Proving

try meth

This attempts a method but does not fail if the method fails.

repeat meth

This repeatedly applies a given method until it cannot apply.

then meth

This applies one method, and then another to all the resulting goals. If one method solves

a goal, then the branch is closed and the next goal is tackled.

then meths

This applies one method, and then gives the opportunity to apply different methods to

different resulting goals.

pair meth

This method is used in conjunction withthen meths and applies a pair of methods to a

pair of goals.

patch meth

This methodical tries to apply an atomic method and then usesa meta-interpreter to

analyse which of the preconditions to the atomic method failed, using a critic strategy to

suggest a patch.

3.2.3 Backtracking

λClam is written in λprolog [Miller and Nadathur, 1988], which is a higher order declarative

implementation of prolog. When a call to aλprolog predicate fails, backtracking occurs to

the nearest choice point in a depth-first fashion. InλClam, backtracking can occur during the

applications of methods by theorelse meth methodical, and also in the preconditions to atomic

methods. In the case of the induction proof-plan shown in figure 3.1 for example, backtracking

can occur in the choice of rule to apply in symbolic evaluation and rippling.

As an example of backtracking consider the next situation, where we assume. Here we are

assuming a depth-first planning strategy, which has available to it the following rewrite rules:

s(X)+Y) X+s(Y) (3.1)

s(X)+Y) s(X +Y): (3.2)

3.2. Proof-planning 37

We have to establish a proof for the conjecture

x : N; y : N ` s(x)+y= s(x+y):
λClamtackles this with the following compound method:

(then_meth

(repeat_meth rewriting)

reflexivity)

whererewriting is a general rewriting method, andreflexivity is a method which looks for

goals of the formX = X. When it applies the compound method to the goal,λClamrepeatedly

applies rewrite rules until no further rewriting is possible. This yields the goal

x : N; y : N ` x+s(y) = s(x+y)
which is not an identity. Now the planner backtracks to the last choice point, where it applied

rule (3.1). The rewrite rule (3.2) then applies, and the resulting goal is an identity and so the

proof-plan succeeds.

3.2.4 The productive use of failure in proof-planning

The use of inductive theorem provers such asNQTHMshows that failed proofs can provide use-

ful information about failure, and hence can help to suggestways to render proofs successful.

One piece of useful information that could come out of a failed proof attempt is a suggestion

of how to pre-process the conjecture in some way to help the proof succeed. In proof-planning

this information is captured bycritics. This is of particular importance to the work presented

in this thesis, as we make use of critics throughout.

The specification of a critic is comprised of a number of slotsin the same way as that of a

method. The definition given by [Ireland, 1992] is:

critic(Name(Arguments),

Input,

Preconditions,

Effects,

Output,

Tactic).

38 Chapter 3. Automated Theorem Proving

Here the name slot is the name of the critic, which corresponds to the method name to

whose failure it is reacting. The input slot holds the current goal sequent. The preconditions

slot contains the preconditions as to whether the critic should fire. The effects slot is used to

evaluate the new subgoal sequents. The output slot posts thenew subgoals, and the tactic slot

specifies the object-level tactic.

Consider the following attempted proof of a simple equational conjecture in which a critic

is able to react to a common failure pattern. The conjecture to be proved is(x+y)2 = x2+(x�y)+(y�x)+y2

where we have the following rewrite rules available to us:

X2) X�X(X+Y)�Z) (X�Z)+(Y�Z)
The only methods that are available to the planner are:

rewrite with(Rule) This method rewrites the current goal with the rewrite rule specified by

Rule ;

identity This method checks to see whether the current goal is an identity, i.e. something of

the formX = X and completes the proof.

The critic is attached to therewrite with method, and so reacts to its failure, and suggests

a new rule according to the difference between each side of the equality. The preconditions

of this critic are simply that no rewrite rule can apply, and the current goal is not an identity.

The patch slot of the critic must then prove two subgoals. Theoriginal conjecture must still be

proved, and the rule suggested must also be proved to be sound.

The proof proceeds until the point(x� (x+y))+(y� (x+y)) = (x�x)+(x�y)+(y�x)+(y�y)
when no more rewrite rules apply. The critic then fires, as therewriting method has failed.

It analyses the failure of the rewriting method, and tries tosuggest a rule that will reduce the

difference between the two sides of the equality. The sensible rule to suggest in this situation

is (X� (Y+X))) (X�Y)+(X�X)

3.2. Proof-planning 39

which completes one branch of the proof. The proof that the above rewrite rule is sound is

omitted here. Critics can be used in many situations to complete otherwise stuck proofs. Their

attraction is that they act in a way that humans do when they perform mathematical proof.

When a proof is carried out, it is not a sensible strategy simply to give up once a certain path

is blocked; the reason for the blockage should first be analysed. In this very simple case,

the reason is not very complicated, but the critic is able to identify which term is not being

rewritten, and suggest a sensible rewrite rule which will complete the proof.

3.2.5 Rippling

Rippling is a heuristic used in proof-planning for guiding the proof search. It was initially mo-

tivated by Aubin’s observation on how terms introduced by induction are affected by rewriting

[Aubin, 1976, Aubin, 1979]. Bundy formalised this idea intoa theory of annotated rewriting

[Bundy et al., 1993], and a formal calculus has been developed from which one can prove ter-

mination [Basin and Walsh, 1996]. The idea of rippling has been extended to non-inductive set-

tings in [Yoshida, 1993, Yoshida et al., 1994, Walsh et al., 1992, Hutter, 1997]. A full worked

example using rippling can be seen in section 3.2.7.

Rippling provides a formal way of annotating conclusions ofa conjecture in such a way that

the difference between the conclusion and the hypotheses are represented by what are known

as “wave fronts” and “wave holes”. For example the followingconjecture has been annotated

according to the rules of rippling; the hypothesis is contained within the conjecture. Those

terms in the conclusion which do not appear in the hypothesisare contained in the shaded parts

of the wave fronts; the wave holes are the non-shaded parts enclosed within the wave fronts:

x= y` s(x) " = s(y) " :
Rewrite rules are also annotated according to some preservation and measure reducing rules.

When annotated the rewrite rules are referred to as “wave-rules”. As rewriting takes place,

this annotation changes according to the annotation on the wave rules. The advantage of using

rippling is that termination is guaranteed, and one can either determine how close a conjecture

is to being proved, or the reason for its failure by analysingthe annotation. If the proof is

successful, then once no more rewriting applies, the terms that are contained in the wave-holes

should be instances of the hypotheses. Completing a proof bythis sort of instantiation is an

example of “fertilisation” [Bundy, 1988], which is described further in section 3.2.6.

As just mentioned, rippling can be shown to be terminating. This is done by imposing

a measure on the annotated term and showing that it decreases. One can rippleout, in, or

40 Chapter 3. Automated Theorem Proving

sideways. In all of the examples we present in this thesis, we ripple out, which is signified

by an up arrow on the wave front. Intuitively this means that as rippling proceeds, more term

structure in the conclusion becomes encapsulated by the wave front. If this is not possible, then

one can ripple sideways and then the arrow on the wave front points downwards, and we start

to ripple in. Intuitively, this means that the annotation decreases until any extra term structure

that exists in the conclusion in comparison with the hypotheses exists in the same position as

a universally quantified variable in one of the hypotheses. Aterm in such a position is known

as asink, and rippling in cannot be successful unless a sink exists inthe conclusion. Sinks are

shown in this presentation of rippling by a light yellow background surrounding the sink itself.

A typical example of such a rippling process is when proving theorems about tail-recursive

functions, as described in [Ireland and Bundy, 1996]. Rippling sideways can only change the

direction from out to in, ensuring termination.

An extension of rippling iscoloured rippling[Yoshida, 1993] which extends the notion of

rippling to cases where more than one hypothesis can represent wave holes in the conclusion.

This extends to non-inductive theories where multiple hypotheses exist. The reason why it is

calledcolouredrippling is that a colour is attributed to each hypothesis, and annotated as such

in the wave holes of the conclusion. For example we could write the conjecture:

a� b;c� d ` a+ c
" � b+ d

"
and then introduce an annotated rewrite rule:

a+ c
" � b+ d

") a� b+ c� d
"

which allows us to rewrite the conclusion to the point where the hypotheses apply. Introduc-

ing this sort of annotation allows us to keep track of the terms from each hypotheses in the

conclusion during the rewriting process.

More generally, the notion ofembeddingshas been developed to account for rippling in

a higher order setting. [Smaill and Green, 1996] describes how theλClamproof-planner uses

embeddings to enable hypotheses to embed in conclusions in the presence of lambda terms.

Importantly a measure has been devised for embeddings whichpreserves the termination prop-

erties of rippling. Coloured rippling can be described in this context by attributing an embed-

ding to each hypothesis. InλClam, the method which incorporates the ideas of rippling with

embeddings is called thewave method.

Work by [Hutter and Kohlhase, 1997] extends the idea of annotation by working on higher

order terms, and by annotating equational conjectures according to the difference between

3.2. Proof-planning 41

the expressions on each side of the equality [Hutter, 1997].He refers to this annotation as

“colouring terms” although the general idea behind the annotation remains the same.

The full calculus of rippling is too complicated to explain fully in this section. For a full

description of such a calculus see [Basin and Walsh, 1996], and for a detailed description of

Hutter’s work on colouring terms for equational rewriting see [Hutter, 1997]. As an example

of a typical proof using annotated rewriting see the exampleproof of a non-standard conjecture

using proof-planning and annotation in the next section.

3.2.6 Fertilisation

Fertilisation is a proof-planning technique for completing a proof-plan. There are two main

forms of fertilisation which can take place:strong fertilisation andweak fertilisation. An

example of strong fertilisation can be seen in section 3.2.7.

Strong fertilisation corresponds to instantiating the hypotheses with the conclusion and

hence completing the proof. For example, the goal

a� b;c� d ` a� b^ c� d
"

can be strongly fertilised since each of the conjuncts in theconclusion, which exist in wave

holes, correspond to an instance of the hypotheses.

Weak fertilisation takes place when strong fertilisation cannot be performed, but there is

a way of rewriting the conclusion with the hypotheses. This happens if there is a hypothesis

which involves an equality, an equivalence or an implication. In the case of implication, the

issue of polarity must be taken into account. This means thatthe corresponding rewrite rule

rewrites in the opposite direction to the implication.

In some cases we need to usepiecewisefertilisation, which analyses the failure of any sinks

to match. For example consider the goal

R(t);8x2 τ: P(x)!Q(x);P(y) ` P(z)!Q(y) ^ R(t) "
to which strong fertilisation does not immediately apply. In order to determine that this goal is

provable, piecewise fertilisation first notes that the termin the red wave hole can immediately

be discharged as it corresponds to a hypothesis. The blue wave hole contains mismatching

sinks, and so does not correspond to an instantiation of a hypothesis. We note that the term

Q(y) matches with the conclusion of the implication of the universally quantified hypothesis,

and so ifP(y) can be established then the whole goal is provable.

42 Chapter 3. Automated Theorem Proving

3.2.7 Worked example

As an example of rippling and fertilisation in action, we show a proof of the associativity of+
over natural numbers. We state the theorem as` 8x;y;z : N: (x+y)+z= x+(y+z):
Induction onx is chosen setting up the induction hypothesis

x : N; 8y;z : N: (x+y)+z= x+(y+z)
and the step case conclusion` (s(x) " + y)+ z = s(x) " +(y+ z):
Notice here the existence of sinks corresponding to the position of universally quantified vari-

ables in the hypotheses. The base case becomes` 8y;z : N: (0+y)+z= 0+(y+z):
We solve the base case using the rewrite-rule

0+X) X:
In order to solve the step case, we use wave-rules

s(X) " +X) s(X+Y) "
s(X) " = s(Y) ") X = y

Apply the first of these repeatedly reduces the annotated goal to

s((x+ y)+ z) " = s(x+(y + z)) " :
Then applying the second yields(x+y)+z = x+(y+z)
which is an instantiation of the induction hypothesis. At this point strong fertilisation applies

and the proof-plan is complete.

3.2. Proof-planning 43

3.2.8 Proof Architecture

λClamuses all of the above techniques to construct proof-plans. We use a depth first planner

for our work, and so it is important to note where and how backtracking can occur. We note

the important places where choices can be made in constructing a proof-plan.

Method choices

When a method with a certain name is invoked by a proof-plan, there may be more than

one clause for that method.

Critic choices

When a critic fires, the pattern of failure may be recognised by more than one critic, in

which case more than one critic is attempted.

Choices within atomic methods and critics

The most common form of backtracking occurs within the meta-language of the atomic

method and critic definitions. These choice points do not show up in the proof-plan itself,

as the proof-plan is composed of atomic method applications, but significantly affect the

performance of the system.

Methodical choices

When anorelse meth is employed in a compound method, backtracking can occur at

this point.

The way in which backtracking occurs in the presence of critics is vital. If a critic is

attached to a method, then it will fire as soon as the method fires, not allowing the method

to backtrack to other possible method applications. The methodical language allows us to

construct a solution to this problem by using thetry meth methodical. For example, if we

want to be able to attach a critic to thewave method, then we would write

(patch_meth wave wave_critic_strat)

but this reacts to the first failure of the wave method. If thisis not the desired behaviour, then

we can write

(orelse_meth

(try_meth wave)

(patch_meth wave wave_critic_strat))

which will first try all of the occurrences of the wave method,and if this fails then try the patch

to the failure.

44 Chapter 3. Automated Theorem Proving

3.3 Summary

In this chapter we have presented the important work done in mechanising proof in analysis,

and outlined the main techniques used in proof-planning. Throughout the thesis we will refer

to the proof-planning terminology such as methods, criticsand methodicals whenever appro-

priate.

[Bledsoe and Ballantyne, 1977] presents work on proving real analysis theorems using an

axiomatisation for non-standard analysis and a resolutionstyle theorem prover. This work

presents fully automated proofs of some of the same conjectures we study later in chapter 5.

[Gamboa, 1999] presents a proof of the Intermediate Value Theorem, which is pertinent to our

work, which we present in chapter 6. [Fleuriot, 2001a] provides a mechanised construction

of non-standard analysis, and proves many of the theorems westudy in our work. This is

important as it form the formal basis for the axiomatisationwe present in the next chapter.

Chapter 4

Conceptual Framework

In this chapter we discuss the methodology behind the research. We show our approach, ex-

plicitly stating how we arrive at planning proofs of theorems automatically. We first describe

in detail the goals of the work, and the techniques we employ to achieve these goals. We go

on to describe our logic and axiomatisation, citing explicitly each axiom. We describe some

theoretical issues regarding proof in the non-standard domain, and finally we give a set of eval-

uation criteria by which the success of the work should be judged, and discuss some of the

issues regarding evaluation.

4.1 The methodology

We intend to show that proof-planning can encapsulate the common pattern of reasoning in

non-standard analysis proofs. We show that there is a commonstructure to reasoning in non-

standard analysis, and also that proof-planning is a usefultool for discovering such structure in

proof.

4.1.1 The research hypothesis

We state our research hypothesis as:

Through proof-planning we arrive at intuitive and successful representations of the
structure of proof in non-standard analysis.

By successful here we mean that we are able to yield proof-plans for the theorems we study, and

by intuitive we mean that the reasoning patterns involved follow what we would expect when

45

46 Chapter 4. Conceptual Framework

the proofs are performed by hand. We test this hypothesis, using the information gathered from

the evaluation measurements outlined in 4.4.3.

4.1.2 Research goals

We construct a set of plan-specifications which will accountfor many theorems, stated in non-

standard terms. We hope that these plans will lead us to an understanding of the structure

of proof in non-standard analysis. We start from an axiomatisation of non-standard analysis

whose axioms are in fact theorems of a more fundamental logic, namely the higher-order logic

included in the Isabelle/HOL theorem prover [Paulson, 1989].

In some text books on non-standard analysis (for example [Keisler, 1977]), it is often

claimed that the reasoning involved in non-standard analysis matches that of Newton and Leib-

niz, in their non-rigorous early calculus proofs. We show that the reasoning involved in the

proofs we study follows similar patterns, given the axiomatisation we have inλClam, by eval-

uating our results according to the criteria set out in section 4.4.1. We further demonstrate,

by using non-standard analysis as a case study, the suitability of proof-planning to automated

theorem proving.

4.1.3 Proof-planning

We need to set out precisely what our framework is for this research. We first explain some

nomenclature, and then give a precise explanation of our proof-planning structure.

Nomenclature for proof-plans

It is important to make a distinction between the type of proof-plan which is given to the

planner, and the proof-plan output by the planner.

The proof-plan which is given to the planner, consists of applications of methods and crit-

ics, and hence is expressed in the meta-logic. It consists ofgeneral reasoning techniques,

expressed as methodicals, which apply to methods. This sortof proof-plan, which exists at the

meta-level, is of typemethod . This can be seen as a specification of a proof strategy for an

object level prover. We will refer to this type of proof-planas theplan-specification.

The proof-plan which results as output from the planner consists of a tree of tactic applica-

tions, as expressed by thetactic slot of the methods involved. In fact this proof-plan is of type

tactic . This sort of proof-plan therefore exists at the object level. From now on, when we

refer toproof-plan, we mean this sort of plan.

4.1. The methodology 47

The proof-planning framework

In our research we are predominantly interested in the structure of the proof at the method level.

We do not claim to execute the proof-plans in an object-leveltheorem prover, although this has

been done for some combinations of proof-planning systems and object level provers such as

for example [Boulton et al., 1998, Bundy et al., 1990] and [Castellini and Smaill, 2002]. As

methods are user-defined, it is possible for a method to be unsound, if for example there is a

mistake in its definition. It is also possible that a method may not correspond to a set of tactics

at the object level. We strive for soundness, which depends upon the following issues:

1. the existing mechanisms for rewriting, and method application are sound inλClam;

2. the extra inference rules and axioms which comprise the theory we add to the system are

sound;

3. the machine representation of these axioms and inferencerules is correct.

By formally stating our framework in section 4.2, we show exactly the rules that can make up

the effect of a method on a proof state. This means that we do not encounter problems with the

second soundness issue.

4.1.4 Testing

Our testing methodology is to separate the set of theorems into a test set and a development set,

and to judge both sets according to various evaluation criteria using quantitative experiments.

We create a set of plan-specifications by analysing the proofs of the theorems in the devel-

opment set. These examples are intended to be indicative of the different types of theorems

that one might encounter in non-standard analysis. Once an initial set of plan-specifications

has been found we reduce their number by grouping them, and accounting for each group by

a more general plan-specification. For example, consider the following two schematic plan-

specifications:

1. (repeat_meth 2. (then_meth taut

(then_meth trivial (then_meth (repeat_meth sym_eval)

(then_meth taut sym_eval)) trivial)

48 Chapter 4. Conceptual Framework

Here taut is a tautology method which either discharges the goal or leaves it alone, and

sym eval represents symbolic evaluation. Plan-specification2 is a more specific version of

example1. Any resulting proof-plan produced by2 could equally be achieved by1. In this

case we only include1 in the set of plan-specifications. See section 4.4.2 for a discussion of

this procedure.

Once we have a reduced set of plan-specifications, we apply each one to each of our test

examples, and evaluate their success according to the criteria set out in section 4.4.1.

In order to illustrate the development process we document anumber of facts for each of

the examples in the development set. Our approach follows partly the evaluation methodology

outlined in [Cantu et al., 1996] and considers:� The time taken for the planner to find a complete plan for the theorem;� The time taken for the implementation of each of the methods and critics and ancillary

code;� The number of lemmas used in the plan.

These facts are documented because they demonstrate how successful the development process

was, and how well the development set was chosen.

4.2 Formal Framework

One vital part of the framework in which the proof-plans are executed is the logical axioma-

tisation adopted. In this section we first review our logicalframework, and then introduce all

the types and subtypes used inλClam. We introduce our constant symbols and our axioms for

both standard and non-standard analysis.

4.2.1 Logic

The basic logic used is higher-order and is represented by a simply typed sequent calculus

with single conclusion. The sequent rules which the plannerhas at its disposal are given in

table 4.1. Here,> denotes truth, and? denotes falsehood. Importantly we introduce the typeB to which> and? belong, and the constant symbol= with polymorphic typeX�X ! B ,
which we use in the substitution ruleeq. We assume the standard transformation rules for

the lambda-calculus, and assume a type system similar to Church’s formulation for the simple

theory of types [Church, 1940] augmented with a product type. In the presentation of our

4.2. Formal Framework 49

sequent calculus shown in table 4.1, the contexts in the sequents (Shown asΓ) are lists of

typing judgements and propositional-typed formulae. The structural rules for adding formulae

or typing judgements to the context are omitted here as list constructors are used internally in

λClam. Any extra elements in the context other thanΓ can be thought of as singleton lists, and

the ; which appears in the context as an append function.

Γ;A` A
axiom Γ ` > axiom

Γ;? ` A
f axiom

Γ;A` D Γ ` A
Γ ` D

cut

Γ ` A Γ;B` D
Γ;A! B`D l! Γ;A` B

Γ ` A! B
r!

Γ;A;B` D
Γ;A^B` D l^ Γ ` A Γ ` B

Γ ` A^B
r^

Γ;A` D Γ;B`D
Γ;A_B` D l_ Γ ` A

Γ ` A_B
r_ Γ ` B

Γ ` A_B
r_

Γ ` A
Γ;:A` B l: Γ;A` ?

Γ ` :A
r:

Γ;A[c=x℄ ` D
Γ;8x2 τ: A` D l8 a : τ;Γ ` A[a=x℄

Γ ` 8x2 τ: A r8
a : τ;Γ;A[a=x℄ `D

Γ;9x2 τ:A` D l9 Γ ` A[c=x℄
Γ ` 9x2 τ:A r9

B_:B;Γ ` A
Γ ` A

em
Γ ` P(x)

x= y;Γ ` P(y) eq

variablea cannot appear anywhere in the conclusion forr8 andl9
Table 4.1: The sequent calculus

50 Chapter 4. Conceptual Framework

4.2.2 Number types

The development of non-standard analysis as given in section 2.3.1 shows that one can con-

struct non-standard extensions of all the basic number systems used in standard analysis. We

concern ourselves here mainly with the natural numbers and the real numbers.

The naturals and hypernaturals

The naturals (N) can be defined using the Peano axioms. We introduce a successor function,

and azeroelement, by which induction can be performed. We introduce atypenat, and a typehypernat, and relate them by introducing an operatoremb, of typenat! hypernat, which

denotes the embedding of a natural number within the hypernaturals�N . As the setN within �N
is a copy of the natural numbers, it must preserve all of the properties of the natural numbers.nat andhypernat are the internal representations for the naturals and hypernaturals, but in

this presentation we useN and�N .

The reals and hyperreals

In our work we introduce the real numbers and the hyperreal numbers as simple typesreal
andhyperreal, and introduce the usual field axiomatisation. In addition to this we introduce

some axioms which express the connection between these numbers system. As with the natural

numbers we introduce the operatorsemb andext, of typeR! �R and(R! R)! (�R! �R)
respectively. In the presentation of the axioms we writeemb(x) asbx, andext(f) as� f .

An important subtype of the hyperreals is thefinite numbers. The real numbers are all

finite, but there are also other finite hyperreal numbers, such as hyperreals which are not equal

but infinitely close to real numbers. This subtype is important because multiplication is not

uniformly continuous over the hyperreals. In other words, for any hyperrealsx;y andz, such

thaty� z, it is not the case thatx�y� x�z. This is however true ifx is finite. Thus many rules

involving multiplication only apply to finite hyperreals. The way this subtype is introduced

is by predicate subtyping. We introduce a predicatef inite which takes a single hyperreal

argument.

4.2. Formal Framework 51

4.2.3 Rippling and rewriting

In λClam, axioms are expressed as rewrite rules. For example, the reflexivity axiom for equality

is written: 8x : τ:x= x

In λClamthis is expressed as a rewrite rule:X = X)>.

The methods which use rewrite rules inλClamare rippling and symbolic evaluation. Rip-

pling and symbolic evaluation differ from a more standard notion of rewriting as expounded

for example in [Baader and Nipkow, 1998], where rewriting refers to finding normal forms for

terms. InλClamwe use a more general notion, where we do not only define rewrite rules from

formulae whose outermost relation is equivalence or equality. We also define rewrite rules

from formulae whose outermost relation is implication. Thepolarity of a term refers to which

way a uni-directional rewrite rule applies when matched to the term. Stated simply, if all of the

negation and implication symbols are removed using the sequent rules in section 4.2.1, then

terms which appear on the left of the sequent havenegative polarity, whereas terms which ap-

pear on the right havepositive polarity. Terms can appear both on the right and the left of an

implication, in which case each specific instance of the termhas its own polarity.

When formulae with implications are used as rewrite rules, the direction in which they

apply depends on the polarity of the term. We rewrite terms ofpositive polarity, in the opposite

direction to the implication, and terms of negative polarity in the direction of the implication.

These polarity consideration are all dealt with by the rewriting mechanism inλClam.

λClamalso has the capability of reasoning usingconditionalrewrite rules. This means that

whenever a condition is attached to the rewrite rule, it mustbe satisfied in order for the rule to

be applicable. Consider the field axiom8x : τ: x 6= 0! x�x�1 = 1:
We can use this axiom as a rewrite rule in a number of differentways:

X 6= 0 ! X�X�1) 1

X 6= 0 ! 1) X�X�1

X�X�1 = 1) X 6= 0:
According to the usual notion of rewriting, the second of these rules causes the set to be non-

confluent and non-terminating. InλClam it is possible to apply such a rule once, but its appli-

cation must be controlled. When we apply these rewrite rulesto the conclusion of a goal, we

52 Chapter 4. Conceptual Framework

observe different behaviours. If the first is applied then the subgoalX 6= 0 must be established

for the instantiation ofX which is found. If the second is applied then the subgoalX 6= 0 must

be set, but the subgoal will not be provable until an instantiation for X is found by proceed-

ing with the proof of the goal. If the third is applied then theentire formulaX�X�1 = 1 is

rewritten and the formulaX 6= 0 is replaced.

In subsequent chapters we give examples of howλClamautomatically speculates lemmas

if rewriting or rippling cannot apply to a goal. We show how the lemma is stated, and a form

chosen for the representation as a rewrite rule.

SinceλClam is a higher-order proof-planner, we can use higher order rewrite rules. This

is important to this research because we find proof-plans forsome higher-order theorems. We

shall see an example of higher-order axioms in our axiomatisation for non-standard analysis

given in section 4.2.4.

4.2.4 The axiomatisation

In this section, we present the axioms of our system, by considering the different notions in-

volved in our work. For each of these, we first introduce the constant symbols and their types,

and then the axioms with which we augment the sequent calculus described in section 4.2.1.

It is possible inλClamto overload function symbols, by giving them more than one type, and

this is shown here. We present these axioms as they are represented inλClam . For example

where we write 0 :R; �R , internally 0 is typed both as a real number and as a hyperreal. This

means that when an axiom is unquantified, it is assumed to be universally quantified, and is rep-

resented internally as an unquantified rewrite rule. Where quantification is explicit in rewrite

rules, we use the notation8x : R to distinguish from the notation for typing in goals, where we

write 8x2 R, as can be seen in the rules for quantifiers in the sequent calculus shown in table

4.1.

Peano axioms for arithmetic

We introduce the following constants here:

0 : N; �N
s : N ! N; �N ! �N+ : N�N ! N; �N � �N ! �N� : N�N ! N; �N � �N ! �N

4.2. Formal Framework 53:x : N�N ! N; �N � �N ! �N
Notice here that we only consider axioms for functions of oneargument. In order to generalise

the notion of extension to functions of more than one argument requires more work than was

feasible during this work. If we were able to generalise the notion of extension to functions

with an arbitrary number of arguments would extend the number of theorems possible for

consideration, and allow us to define extensions for functions of arity two, such as+, which

would in turn would allow us to generate field axioms for the hyperreals from those from the

reals. The drawback of generalising the notion of functional extensions to functions of an

arbitrary number of arguments is that we would complicate our represenation. We would have

to introduce an inductive datatype such as lists in order to represent the arguments to a function.

The Peano axioms are:

02 N (4.1)8x: s(x) 6= 0 (4.2)8x;y: s(x) = s(y)! x= y (4.3)

We introduce induction as an inference rule, only over the natural numbers:

Γ ` P(0) Γ;y : N;P(y) ` P(s(y))
Γ;x : N ` P(x) ind

This is true over the hypernaturals if perceived as an axiom schema whereP can be instantiated

to any first order predicate expressible in the language of Peano arithmetic. Equivalently stated,

this holds as long asP is internal in the non-standard model. For a discussion of this see section

4.3.

We also add the following definitions for+,� and exponentiation:

0+x= x (4.4)

0�x= 0 (4.5)

x0 = s(0) (4.6)

s(x)+y= s(x+y) (4.7)

s(x)�y= (x�y)+y (4.8)

xs(y) = x�xy (4.9)

We define the reflexivity of equality:

A= A (4.10)

This is represented internally as a rewrite rule, and not as an inference rule, as discussed in

section 4.2.3.

54 Chapter 4. Conceptual Framework

The field axioms

We introduce the field axioms in this section. A standard axiomatisation can be found in

[Apostol, 1974]. Wh en axioms are stated without explicit quantification, it is assumed that the

variables range over both the reals and the hyperreals.

Firstly we introduce the following constants:

0 : R ; �R
1 : R ; �R+ : R�R ! R; �R � �R ! �R� : R�R ! R; �R � �R ! �R� : R ! R; �R ! �R:�1 : R ! R; �R ! �R<: R ! R ! B ; �R ! �R ! B

As discussed in section 2.2.1, the following theorem expresses the completeness of the reals:8P2 R ! B : (9x2 R: P(x))^ (9U 2 R: 8y2 R: P(y)! y�U)!9u2 R: (8x2 R: P(x)! x� u) ^8u0 2 R: (8x2 R: P(x)! x� u0)! u� u0 (4.11)

We do not include this as an axiom in our system because it is not required explicitly for any of

our proof-plans. It must be noted at this stage that the fact that we do not use the completeness

of the reals explicitly in our axiomatisation is because completeness is implicitly contained

within some of the axioms (axiom (4.40)) for example. Specifically, in order to prove these

axioms in Isabelle/HOL, the completeness of the reals must be used. As will be seen in Chapter

6, hyperreals can be defined using infinite hypernaturals whereby some uses of completeness

can be obviated.

The ordered field axioms are:

4.2. Formal Framework 55

1 6= 0 (4.12)

x+(y+z) = (x+y)+z (4.13)(�x)+x= 0 (4.14)

x� (y�z) = (x�y)�z (4.15)

x 6= 0! x�x�1 = 1 (4.16)

x� (y+z) = (x�y)+(x�z) (4.17)

x< y^y< z! x< z (4.18)

y< z! x+y< x+z (4.19)

x+y= y+x (4.20)

0+x= x (4.21)

0�x= 0 (4.22)

x�y= y�x (4.23)

1�x= x (4.24)

x= y_x< y_y< x (4.25)

x 6< x (4.26)

0< x^0< y! 0< x�y (4.27)

There are two important properties of a real closed field, which we do not include in our

axiomatisation as they are not necessary in any of the proofswe study. For an ordered fieldK

these are:

1. Every positive element ofK has a square root inK ;

2. Every polynomialf (x) 2K of odd degree has a root inK

Extra axioms for non-standard analysis

We introduce the following constant symbols:

emb: N ! �N ; R ! �R
f inite : �R ! B ; �N ! B�: �R ! �R ! B

ext : (R ! R) ! (�R ! �R);(N ! N) ! (�N ! �N);(N ! R) ! (�N ! �R)
We treatN as a subtype ofR, leaving the relation between the two implicit in the axiomatisa-

tion. We define� as an equivalence relation:

A� A (4.28)

A� B! B� A (4.29)

A� B ^ B�C! A�C (4.30)

56 Chapter 4. Conceptual Framework

We need to distinguish between equality and the infinitely close relation over the hyperreals:8A;B : �R : A= B! A� B (4.31)8X : �R : 9Y : �R : X �Y^X 6=Y (4.32)

We also to make a distinction between the naturals and the hypernaturals:9M : �N : 8N : N: M > bN (4.33)

We state the closure axioms for the embedding operatoremb:8X;Y : R: bX+ bY =\X+Y (4.34)8X;Y : R: bX� bY =\X�Y (4.35)8X : R: X 6= 0 ! bX�1 =dX�1 (4.36)8X : R: � bX =d�X (4.37)

We must add some axioms which distinguish the reals from the hyperreals, and the finite num-

bers from the reals: 8X : �R :8Y : R: X � bY ! f inite(X) (4.38)8X : �R : f inite(X)!9Y : R: X � bY (4.39)8X;Y : R: bX � bY ! X =Y (4.40)9X : �R : 8Y : R: f inite(X)^X 6= bY (4.41)8X;Y : �R : f inite(X)^ f inite(Y)! f inite(X +Y) (4.42)8X;Y : �R : f inite(X)^ f inite(Y)! f inite(X�Y) (4.43)8X : �R : f inite(X)! f inite(�X) (4.44)8X : �R : X 6� 0! f inite(X�1) (4.45)

We state the closure axioms for non-standard extensions:8 f ;g : R ! R: 8x : �R : � f (x)+ �g(x) = �(λy:(f (y)+g(y)))x (4.46)8 f ;g : R ! R: 8x : �R : � f (x)� �g(x) = �(λy:(f (y)�g(y)))x (4.47)8 f : R ! R: 8x : �R : � � f (x) = �(λy:� f (y))x (4.48)8 f : R ! R: 8x : �R : � f (x)�1 = �((λy: f (y)�1))x (4.49)8 f ;g : R ! R: 8x : �R : λx: � f (�g(x)) = �(λy: f (g(y))) (4.50)

4.2. Formal Framework 57

We must distinguish functions in the hyperreals domain fromstandard functions:9 f : �R ! �R : 8g : R ! R: f 6= �g (4.51)8X;Y : R: 8 f : R ! R: f (X) =Y () � f (bX) = bY (4.52)

We formalise the behaviour of the field operators around an infinitesimal neighbourhood:8X;Y;Z : �R : X � Z^ f inite(Y)! X�Y � Z�Y (4.53)8X;Y : �R : X � Z^Y � 0! X+Y � Z (4.54)8X : �R : X � 0!�X � 0 (4.55)8X : �R : X � 0!: f inite(X�1) (4.56)

We add an inference rule which describes transfer of a goal from the standard domain to the

non-standard domain (using the definition of the *-transform given in section 2.4.1):

Γ ` φ�Γ ` �φ (4.57)

Notes on the axiomatisation

We claim that the logic given in section 4.2.1 augmented withthe axioms given in is a sound

axiomatisation of non-standard analysis, but we do not claim completeness. We cannot guar-

antee that there may be some true statement in the non-standard domain that we are unable to

prove using this axiomatisation, since we have arithmetic for the natural numbers. The chosen

axioms are theorems of the Isabelle/HOL theorem prover, thanks to the construction of the

hyperreals performed by Fleuriot therein [Fleuriot, 2001a].

The axiomatisation outlined is a presentation of the rules which make up the non-standard

analysis theory ofλClam. In many cases the application of rules is controlled. It is also

important to note that the atomic methods which are presented in subsequent chapters often

correspond to the application of many of these axioms. We justify their behaviour in terms

of these axioms, but as we do not claim to yield object-level proofs, our proof-plans do not

correspond to sequences of applications of these axioms. Itwill be made clear how such

methods are developed, and why this is the case, in subsequent chapters.

Although the axioms presented in this chapter are those we have implemented in theλClam

system, there are various interdependencies which should be noted. Firstly, we can derive

axiom (4.41) from axioms (4.38) and (4.32), by simply choosing a realY in axiom (4.32). Also

58 Chapter 4. Conceptual Framework

axiom (4.51) can be derived from axioms (4.52) and (4.41). Also an equivalent and perhaps

neater version of (4.52) would be8X : R: 8 f : R ! R: � f (bX) =[f (X):
The axioms we have presented here represent those implemented inλClam. No claim is made

about these forming a minimal set.

4.3 On the transfer principle

This section discusses how simpler definitions and proofs can be achieved, and explains how

there is a choice to made in the representation. The discussion that follows is relevant to this

research, because we make choices about representation throughout. In order to show that we

are reasoning about the same problems as are stated in real analysis, we must justify this choice.

4.3.1 Use of the transfer principle

We use the transfer principle directly in our work, by employing an instance of the meta-

theorem in both directions to validate statements in both the standard and the non-standard

domain. We use rule (4.40) as an implementation of transfer from the non-standard to the

standard domain: 8X;Y : R: bX � bY! X =Y:
This incorporates the rule 8X;Y : R: bX � bY ! bX = bY
and an implementation of transfer from the hyperreals to thereals.

When we deduce results in the standard domain and transfer them to the non-standard

domain, we use instances of inference rule (4.57) representing the transfer meta-theorem. An

example of such an instance of this rule is given in section 6.5.5 of chapter 6. We do not

explicitly implement the transfer principle in our work, instead preferring to use instantiations

of it where necessary. In order to correctly formalise the transfer principle a function which is

recursive on the term structure is necessary.

As an example of a function carrying out transfer, consider the following functiontermre,

which is recursively defined over the term structure. We restrict this exposition to functions of

a single argument for simplicity. We use! to represent the conditions under which a rule

4.3. On the transfer principle 59

applies. termre quant var = quant var

x 6= quant var ! termre x = termre bxtermre f (x) = � f (termre x)termre 8x : τ: (λy:P(y)) x = 8x0 : �τ: (λ quant var: termre P(quant var)) x0
The behaviour of this function formalises the transfer principle as described in section 2.4.1.

A precise definition of transfer, and the conditions under which it is applicable can be seen in

[Robinson, 1966].

4.3.2 Limits and continuity

As shown in chapter 2, the definitions of limit and continuityare very much simplified in non-

standard analysis. In order to justify its use, it is important that this simplified definition be

explained. The transfer theorem, as stated in 2.4.1, allowsus to transfer sentences expressed in

standard terms to the non-standard domain.

Recall definitions 2, and 9 from chapter 2. The proof of the equivalence involves reasoning

“across” the models. What is in fact happening in the proof isthat there is reasoning being

done about both theinternal sentence of the�-transformed standard definition, and thestan-

dard sentence of the standard definition expressed entirely in the non-standard model. It is

important to note that in what follows we are presenting a penand paper proof. We do not

claim to have planned this proof inλClam. Let us just prove that the standard definition (2)

implies the non-standard definition (9):

Suppose first that limx!a f (x) = l . Now fix a hyperreal,α, such thatα � ba andα 6= ba. We

need to show that� f (α)� bl . We know from the standard definition that:8ε 2 R: ε > 0!9δ 2 R: δ > 0 ^ 8x2 R: 0< jx�aj< δ! j f (x)� l j< ε

Now let n be a standard natural number, and letε = 1
n. By definition, we thus have aδ for

which: 8x2 R: 0< jx�aj< δ! j f (x)� l j< 1
n

now by transfer we have8x2 �R : 0< jx� baj< bδ! j� f (x)�bl j< 1bn

60 Chapter 4. Conceptual Framework

Now letx= α. As α�a� 0, jx�αj must be less than all positive real numbers, so we havej� f (α)�bl j< 1bn
Sincen is standard and arbitrary, this means thatj� f (α)�bl j is less than all positive real numbers

(this follows directly from the Archimedean property of thereals), and hence� f (α) � bl as

required.

This proof is interesting because the choice at which transfer was applied was vital to the

correct conclusion to the proof. The reason why this proof succeeds is thatn has to be a

standard natural number at the end, as doesδ, so these quantifiers were eliminated. If transfer

had been applied earlier we would not have been able to introduce the� relation. If transfer

had been applied afterx had been fixed as a real, we could not have usedα to yield the result.

4.3.3 Induction

The Peano axioms for the natural numbers can be transferred to the hypernatural domain, mean-

ing that induction is possible on the hypernaturals. Any instantiated induction scheme can also

be transferred as it constitutes a first order standard sentence. An example of an uninstantiated

induction scheme is:
Γ ` P(0) Γ;y : N;P(y) ` P(s(y))

Γ;x : N ` P(x) ind
which can be written as follows in the non-standard domain:

Γ ` �P(0) Γ;y : �N ; �P(y) ` �P(s(y))
Γ;x : �N ` �P(x) ind:

This has a higher-order variableP that can be instantiated and then the scheme transferred to

the hyperreal domain, wherex represents the variable chosen for induction. For example the

theorem 8x;y 2 N: x+s(y) = s(x+y)
has an instantiated induction scheme:` 8y 2 N: 0+s(y) = s(0+y) x : N; 8y 2 N: x+s(y) = s(x+y) ` 8y 2 N: s(x)+s(y) = s(s(x)+y)

z : N ` 8y 2 N: z+s(y) = s(z+y) ind
This could be expressed in non-standard analysis by transferring it to the hypernaturals.

Equally the induction could be performed entirely over the standard naturals and the result-

ing theorem transferred to the hypernatural domain. This research adopts the latter approach,

planning proofs of conjectures in the standard domain, and then transferring the results across

4.3. On the transfer principle 61

to non-standard analysis. We choose this approach because we can then draw on the consider-

able work already done inλClamon developing plan specifications for inductive proofs.

4.3.4 Choice of representation

When standard theorems are presented in this work, we must decide how to state the hypotheses

and conclusions of a goal in non-standard analysis. As can beseen from the proof in section

4.3.2 we must choose at which stage in the proof to transfer statements. In some cases a wrong

choice will lead to a harder proof when reasoning entirely inthe non-standard model.

In order to exemplify this, let us consider the statement of the Intermediate Value Theorem:

Theorem 6 Let f be a function, f: R ! R, which is continuous on the closed interval [a, b].

Suppose that c is a real number between f(a) and f(b); then there exists x in [a, b] such that f(x)

= c.

We must consider how to state this theorem in non-standard analysis. In some text books, the

c here is presented as a universally quantified variable in theconclusion, and in some it is a

parameter. In the standard case these two steps are equivalent, but the transfer principle means

the non-standard versions of these two statements are different.

In the first approach, where the standard conclusion is:8c2 R: f (a) � c� f (b)! 9x2 R f (x) = c

the�-transformed conclusion is:8c2 �R : df (a)� c�df (b)! 9x2 �R � f (x) = c

and in the second approach, where the standard conclusion is:

f (a)� c� f (b)! 9x2 R f (x) = c

the�-transformed conclusion is:df (a)� bc� df (b)! 9x2 �R � f (x) = bc
wherec is now of typereal .

In the current work, as can be seen in section 6.2 we opt for thesecond approach when

specifying non-standard versions of familiar theorems.

62 Chapter 4. Conceptual Framework

4.4 Evaluation Methodology

Each plan-specification that is introduced into the system must be evaluated according to var-

ious criteria. The performance of theripple out method, which is used in most of the in-

ductive proofs here, is evaluated according to many criteria in [Bundy, 1989]. Some of these

criteria apply to plan-specifications, and some to the resulting proof-plans. In our research we

are interested in judgements about the plan-specifications, but we also make references to the

criteria pertaining to the proof-plans themselves.

4.4.1 Possible evaluation criteria

The following criteria describe some of the ways in which plan specifications can be evaluated.

This follows closely the discussion given in [Bundy, 1989].In the current discussion however,

we split the criteria up into two categories: the output criteria pertaining to theproof-planwhich

analyse what the planner produces, the criteria about theplan-specification, which measure the

suitability of the plan-specification, and theprocesscriteria which analyse how the planner

goes about producing its results. This categorisation of criteria has not been done previously.

Proof-plan criteria� Expectancy

A proof-plan hasexpectancyif we have a means of predicting its success. A formal way

of stating this is that if the preconditions to the proof planare met by the input to the

tactic then the output to the tactic will meet the effects of the proof-plan.� Correctness

A proof-plan is said to becorrect if its execution at the object level produces a proof.

Plan-specification criteria� Generality

A plan-specification is said to be moregeneral, the more theorems it produces complete

proof-plans for. Generality is a measure that can be appliedto all plan-specifications,

but cannot be judged alone, or there will be a tendency to build over-complicated plan-

specifications. For more discussion on this see section 4.4.2.

4.4. Evaluation Methodology 63� Intuitiveness

A plan-specification is said to beintuitive if the proof-plans it produces correspond to

the structure of the proof when performed by a human. It is difficult to quantify the

intuitiveness of a single proof-plan, but we gain some idea by measuring how many

steps correspond to the human pattern of reasoning. We can then produce an overall

measure of intuitiveness by assessing all of the proof-plans that the plan-specification

creates.� Simplicity

A plan-specification is given more credit the more conciselyit is stated. The resulting

proof-plan may be very complex. However,simplicityapplies to plan-specifications.

Process criteria� Prescriptiveness

A plan-specification is said to beprescriptive if it performs little search in finding a

proof-plan.� Efficiency

A plan-specification is given more credit if it isefficient. This means that the process

of finding a complete proof-plan, given the plan-specification, is not computationally

expensive.

4.4.2 Discussion of evaluation issues

We discuss some of the issues which are relevant when constructing a scheme for evaluation.

We justify the choice of evaluation measurements given in section 4.4.3, by explaining some

of the factors that affect the success of proof-planning.

The set of plan-specifications

For any particular theory we would ideally attain, through proof-planning, one succinct plan-

specification which would account for all of the theorems in the development set, but this is

rarely the case. It is possible of course to make one large proof plan in order to account for

all of the development examples, by making a large over complicated plan-specification which

incorporates the others. This approach would score badly onprescriptiveness, simplicity and

64 Chapter 4. Conceptual Framework

efficiency. We would prefer in this case to have a small set of prescriptive and simple proof-

plans, which are fundamentally different, to account for the theory.

Evaluation in the presence of Critics

As described in [Ireland, 1992], critics are a proof-planning tool, which react to the failure of

methods by analysing the failure of the preconditions to apply. A plan-specification can be

very simple in its structure of method applications, but there may be very many critics attached

to it, which themselves perform complex proof transformations.

It may be the case that one plan-specification may account foran entire theory, and so

should be rated highly in terms ofgenerality, but it is not clear how well it would fare according

to the other criteria. Our attitude is to favour a plan-specification which is simple, but has

many critics attached to it. If the general form of the majority of proofs in a certain class can

be found and captured in a general plan-specification, whichis transformed by the application

of critics, then this is preferable, as we claim that such a plan-specification is moreintuitive,

generaland prescriptive. This approach will certainly be lessefficient than having a set of

plan-specifications, but we believe that this is a reasonable price to pay. The object of finding

plan-specifications in this research is to understand the structure of our mathematical theory.

In order to argue forgenerality, simplicityandefficiency, simple quantitative measures can

be made to determine whether the plan-specifications work better with respect to a certain

criterion, with or without critics attached.

In order to argue for a plan-specification being moreintuitivewith critics attached, we need

to argue that our reasoning follows the same pattern during the proofs. Critics are an attractive

part of the proof-planning paradigm because they help mimicthe reasoning performed by a

human during the proof process. It is not the case that when a branch is searched that we forget

all information yielded when we find the way is blocked. In general we analyse the failure of

a proof and alter it according to the knowledge gained by the failure. For this reason we argue

that simple plan-specifications with critics attached havea more intuitive structure than those

which are comprised entirely of methods.

In order to argue that a plan-specification is moreprescriptivewe can appeal to the fact

that we put stringent preconditions on methods which reducethe search space. This can be

measured for example by investigating the factors affecting the size of the search tree, such as

the branching factor at each node.

We claim that the methodology of constructing simple but general plan-specifications with

4.4. Evaluation Methodology 65

associated sets of critics, is a more intuitive way of performing proof. It reproduces the be-

haviour of proofs performed by humans more closely than a larger set of more specific plan-

specifications. We give our set of experiments and evaluation scheme in section 4.4.3

Evaluation with intermediate lemmas

One of the criteria by which we judge the success of proof-plans is how many lemmas were

needed. In previous work [Bundy, 1988] this was very relevant because the lemmas were added

to the system as rewrite rules by the user. This will be the case for some of the theorems which

are planned in this research also.

It is a goal of this work to obviate the need to add by hand anything that does not appear

in our axiomatisation. We plan to incorporate lemma speculation critics, as first devised in

[Ireland and Bundy, 1996], to guess the rewrite rule needed to complete the proof at any time,

and to to set it as a subgoal. Very often these speculated rules are equational and can easily

be verified by a computer algebra system. The mathweb system [Franke and Kohlhase, 1999,

Franke et al., 1999] can be used to send these subgoals out to such programs. In this case the

plan-specification should not be penalised in its evaluation, because the lemmas were specu-

lated and verified by the planner during the proof, hence there is no loss ofgenerality.

User supplied definitions

As described in chapter 6, there is a class of theorems whose proofs involve induction. These

proofs have a modular form: they are comprised of several inductive lemmas, and of a final

stage of the proof which uses these lemmas to deduce the required result. The inductive lemmas

relate to a recursive definition supplied by the user.

As it is not the case that the original conjecture is given on its own to the planner, a mea-

surement has to be made here about how “automatic” these proofs are. One simple measure

that can be made is to count how many recursive functions and lemmas had to be stated by hand

in order for the final part of the proof, which uses these lemmas, to be planned automatically.

Also, these proofs may individually require separate plan-specifications; the intermediate lem-

mas result in inductive proof-plans, but the final part of theproof will need a plan-specification

for reasoning in non-standard analysis.

66 Chapter 4. Conceptual Framework

4.4.3 Our evaluation scheme

For our evaluation we intend to judge our proof-plans only bythespecificationcriteria, and the

processcriteria. As mentioned in section 4.1.3, we do not claim to execute the proof-plans in

an object level theorem prover, and are hence less interested in theoutputcriteria.

For each theorem and for each plan-specification, we make thefollowing measurements.

1. Was a complete proof-plan yielded?

2. Number of lemmas automatically speculated

3. Number of user defined lemmas

4. Size of eventual proof-plan

5. Size of successful plan-specification

6. Average branching factor per node

7. Number of critics fired

We can make immediate judgements about thegenerality, efficiency, simplicity andprescrip-

tivenessof the plan-specifications.

In order to make a judgement about whether the plan-specification areintuitive, we should

perform experiments to map the proof-plans to actual human proof. One simple way of showing

that the plan specifications are not intuitive is to show thatthe resulting proof-plans are not

understandable. If they are not understandable, then the plan-specification can surely not be

intuitive. It may be possible to investigate human proof using these tools, by introducing an

interactive component to the system at important choice-points.

4.5 Summary

Up to this point we have set out an axiomatisation, and a proof-planning framework, by which

we can construct plan specifications for proofs using non-standard analysis. We have also set

out a methodology for evaluating the success of the research.

We go on to use this methodology to understand the structure of certain classes of proof in

non-standard analysis. The combination of proof-planningand non-standard analysis has not

previously been investigated.

Chapter 5

Proof-planning limit theorems

This chapter describes the work that was done to implement the automation of plan construction

for conjectures involving limits and continuity. We first describe the implementational research

contribution of the work presented in this chapter. We go on to present proofs-plans for the

theorems in our development set. The proof shown for each theorem matches exactly the steps

taken by the proof-plan. We then describe the reasoning observed in these proofs, and describe

the specifications of methods which encapsulate some of these patterns. We show the critics

we construct, and the set of plan-specifications we define to account for the majority of the

development set. We finally describe the application of the resulting planning machinery to a

new set of theorems- the test set- and analyse the results.

5.1 System enhancement

Apart from the plan-specifications and proof-plans we yieldfor these proofs, we have also

providedλClamwith some necessary functionality which is now in use.

Coloured Rippling

We have altered the rippling methods so that it is possible toembed more than one

hypothesis in the conclusion of a goal sequent, and thence follow the progress of the

wave fronts. This is a generalisation of rippling with just one hypothesis, as is usually

done in inductive proofs, and does not affect existing theorems since coloured rippling

generalises to reasoning with one or more hypotheses.

Lemma speculation

We have implemented a mechanism to allow speculated lemmas to be used as rewrite

67

68 Chapter 5. Proof-planning limit theorems

rules during the execution of a proof-plan. Previously thiswas not possible, and lemmas

had to be introduced by adding them to the hypotheses of a sequent. This is not desirable,

as often conditional rewrite rules need to be specified wherethe condition is separated

from the left and right side. Our mechanism allows a lemma to be added a rewrite-rule

to the context, so that it can be used to rewrite the goal.

Conditional Rewriting

Another significant implementational device we have introduced is the ability to reason

using conditional rewrite rules. Before, it was assumed that when rewriting with con-

ditional rewrite rules the condition had to be part of the hypotheses. Now we treat the

condition as a separate goal, and try to establish a plan for the proof of the condition first,

thus justifying its use in the original goal.

5.2 Reasoning patterns from the proofs

We present here the theorems which constitute the development set for our system. We con-

structed a specific proof-plan for each theorem, and the proofs described here follows the steps

dictated by the proof-plan. We also discuss the patterns of reasoning we find in the set of

proofs. Importantly we use non-standard characterisationof uniform continuity in the theorems

we study here, but we do not use uniform differentiability, as it is possible to yield proof-plans

using the normal non-standard characterisation shown in theorem 5 of section 2.4.4.

5.2.1 Development examples

Our methodology for constructing general plan-specifications is to generate proof-plans in

λClam for the development set, and to analyse them to determine howbest to generalise the

reasoning patterns. When we use rewrite rules in the proof-plans, we must verify that they

are valid using our axiomatisation, by stating lemmas whichjustify the use of each rule. This

increases the size of the development set significantly. Lemmas are often needed in order to

complete the proofs, and we present proofs of the non-trivial ones here. Where possible we

give the theorems and lemmas names, but in some cases we referto them by number. We

highlight some reasoning patterns in the presentations of the proof-plans by mentioning them

in bold font. These are explained in more detail in section 5.2.2.

5.2. Reasoning patterns from the proofs 69

LIM+

Let us take as a first motivating example the conjectureLIM+ which states that the sum of

limits of two functions at a particular point is equal to the limit of the sums at the point. We

write this is as

lim
x!c

f (x) = l f ^ lim
x!c

g(x) = lg ` lim
x!c

f (x)+g(x) = l f + lg:
When the theorem is written out formally using the non-standard characterisation of a limit,

we yield the conjecture

c ; l f ; lg : R f ;g : R ! R(8x2 �R : x� bc ^ x 6= bc! � f (x)� bl f)^ (8x2 �R : x� bc^x 6= bc! �g(x) � blg) `8x2 �R : x� bc^x 6= bc! �(λz: f (z)+g(z))(x)�\l f + lg:
Before performing any proof steps we can notice important facts about the shape of the con-

jecture. Firstly, in the form stated all the hypotheses thatare not simply typing information

embed into the conclusion so that it is possible to use annotated reasoning techniques, such as

those described in section 3.2.5. After the application of rule r8, we embed the hypotheses in

the conclusion, and after the application of rules (4.46) and (4.34) we see that the conclusion

becomes

x � bc^ x 6= bc! � f (x) + �g(x) " � bl f + blg " :
Now we want to rewrite the conclusion so that the terms in like-coloured wave holes move

together after rewriting. Eventually we want each wave holeto correspond precisely to an

instantiation of a hypothesis. In this case we need to use thetwo wave rules

X + A
" � Y + B

") X �Y ^ A� B
"

(5.1)

A! B^C
") A! B^ A!C

"
(5.2)

and rules (4.46) and (4.34) which can also be annotated. Embedding the hypotheses in the

conclusion and rewriting using these wave rules is an example of rippling out , which is a

reasoning pattern we try to employ.

Rewriting with these rules gives us the conclusion

x � bc^ x 6= bc! � f (x)� bl f ^ x � bc^ x 6= bc! �g(x)� blg " :
Now we can instantiate the hypotheses using fertilisation and the theorem is proved.

70 Chapter 5. Proof-planning limit theorems

LIM�
Let us now consider a proof for LIM� in non-standard analysis. The conjecture looks similar

to that of LIM+, so one would expect the reasoning to be similar. The conjecture is written as

c ; l f ; lg : R f ;g : R ! R(8x2 �R : x� bc ^ x 6= bc! � f (x) � bl f)^ (8x2 �R : x� bc^x 6= bc! �g(x)� blg) `8x2 �R : x� bc^x 6= bc! �(λz: f (z)�g(z))(x) �\l f � lg:
After applying the rulesr8, (4.47) and (4.35), we can embed the hypotheses in the conclusion

to yield

x � bc^ x 6= bc! � f (x) � �g(x) " � bl f � blg " :
Now in order to reach the point at which fertilisation can complete the proof we need to use

the wave rules

f inite(Y)^ f inite(B)! X � A
" � Y � B

") X �Y ^ A� B
"

(5.3)

A! B^C
") A! B^ A!C

" : (5.4)

Using these rules is another example ofrippling out , which allows completion of the proof by

fertilisation. The side conditions to rule (5.3) are provedeasily because every real number is

finite, characterised by rule (4.38).

Chain Rule

The chain rule is a more complicated example from calculus. For this we need to use non-

standard notions of differentiability introduced by theorem 5 of section 2.4.4. Note that for

the theorems we present in this chapter, we are capable of yielding proof-plans using the non-

standard characterisations for both uniform differentiability and non-uniform differentiability

given in section 2.4.4. In this case we use the non-uniform differentiability. For ease of pre-

sentation we show the statement of the chain rule after applying rules (4.47),(4.50) and (4.35),

which distribute the embedding and extension functions across multiplication and function

composition:

x;d1;d2 : R f ;g : R ! R8h1 2 �R : h1 � 0^h1 6= 0! � f (dg(x)+h1)�\f (g(x))
h1

� bd1 (5.5)8h2 2 �R : h2 � 0^h2 6= 0! �g(bx+h2)�dg(x)
h2

� bd2 ` (5.6)8h2 �R : h� 0^h 6= 0! � f (�g(bx+h))�\f (g(x))
h � bd1� bd2: (5.7)

5.2. Reasoning patterns from the proofs 71

The first operation which we perform afterr8 is to add the following formula to the hypotheses�g(bx+h)�dg(x) = 0_ �g(bx+h)�dg(x) 6= 0: (5.8)

We also set up the subgoal

x;d1;d2 : R f ;g : R ! R
h 6= 0

h� 08h1 2 �R : h1 � 0^h 6= 0! � f (dg(x)+h1)�\f (g(x))
h1

� bd18h2 2 �R : h2 � 0^h2 6= 0! �g(bx+h2)�dg(x)
h2

� bd2 `�g(bx+h)�dg(x)� 0: (5.9)

In order to prove this subgoal, we first instantiate the universally quantified variableh2 to h in

the hypotheses. We now know thath� 0, and also that
�g(bx+h)�dg(x)

h � bd2. We introduce and use

the conditional rewrite rule

f inite(X)^Y � 0^Y 6= 0 ! Z� 0) Z
Y � X: (5.10)

Recall that heref inite(X)^Y � 0^Z� 0 is the condition by whichZ� 0 rewrites toZ
Y . The

rewrite rule applies to the conclusion of (5.9) as its conditions are all satisfied sinced2 is real

and hence by rule (4.38), finite.

It will be apparent why these steps (i.e. the case-split and the addition of a subgoal) were

introduced when we come to complete this presentation of theproof. Once (5.8) has been

added to the hypotheses of the chain rule, rulel_ is applied, and the proof splits into two

branches which need to proved.

We first deal with the branch where�g(bx+h)�dg(x) 6= 0. We can see that the hypotheses

(5.5) and (5.6) do not embed separately in the conclusion (5.7) as we would like. By inspection

we can see that we would like the term in one wave hole to be�g(bx+h)�dg(x)
h

:
To achieve this, we need to use the lemma8X 2 �R : X 6= 0! Y

Z � Y
X � X

Z : (5.11)

This can be strengthened to an equality, but in order to complete the proof, we want to appeal

to the transitivity of�. We use transitivity to rewrite the conclusion (5.7) and embed the

72 Chapter 5. Proof-planning limit theorems

hypotheses. By inspection we can see that theX in the rewrite rule should be instantiated to�g(bx+h)�dg(x). The conclusion becomes8h2 �R : h� 0^h 6= 0! � f (�g(bx+h))� \f (g(x))�g(bx+h)�dg(x) � �g(bx+h)�dg(x)
h

� bd1� bd2:
Now notice that we can rewrite terms in the conclusion using the equality

a= b+(a�b) (5.12)

which is the rule is central to the reasoning pattern ofinfinitesimal introduction . We embed

the hypotheses as desired yielding

h � 0^ h 6= 0! � f (dg(x)+�g(bx+h)�dg(x))�\f (g(x))�g(bx+h)�dg(x) � �g(bx+h)�dg(x)
h

" � bd1 � bd1

" :
Now we can rewrite using (5.3) and (5.2), and yield the fully rippled conclusion

h � 0^ h 6= 0! � f (dg(x)+�g(bx+h)�dg(x))�\f (g(x))�g(bx+h)�dg(x) � bd1 ^ h � 0^ h 6= 0! �g(bx+h)�dg(x)
h

� bd2

" : (5.13)

Once again in the last part of the proof we observe the reasoning pattern ofrippling out . We

can see that while the term in the blue wave hole matches a hypothesis exactly, the term in

the red wave hole does not, as it has mismatching sinks. In order to complete the proof in

this branch, we would like the wave hole to correspond to an instantiation of the remaining

hypothesis. It is in this situation that piecewise fertilisation, as described in section 3.2.6, can

take place. In this branch of the proof, we introduced the hypothesis�g(bx+h)�dg(x) 6= 0

and before that we also introduced and proved the subgoal�g(bx+h)�dg(x)� 0

Now piecewise fertilisation can succeed since the sinks in the red wave hole can be made to

match.

Now let us consider the other branch in the proof, namely where�g(bx+h)�dg(x) = 0. Then

we can writedg(x) for �g(bx+h) everywhere in the original goal using substitution ruleeq from

our sequent calculus. Afterr8 andr !, the conclusion of the original goal (5.7) becomes� f (�g(bx+h))� \f (g(x))
h

� bd1� bd2:

5.2. Reasoning patterns from the proofs 73

We know from the hypotheses that

h 6= 0 ;h� 0 ; �g(bx+h)�dg(x)
h

� bd2:
Substitutingdg(x) for �g(bx+h) we see thatbd2 � 0, and asd2 2 R, d2 = 0. Now we can rewrite

the conclusion using the substitution ruledg(x) = �g(bx+h), thereby reducing it to

0
h
� bd1� bd2:

We can use rule (4.53), together with rule (4.22) to obtain

0� 0

which completes this branch of the proof. In this branch of the proof we see that we have had

to use field rules in order to yield a proof-plan. Using the field rules constitutes a reasoning

pattern, which we refer to asarithmetical rearrangement.

Rule (5.1): Uniform continuity of +
The continuity of+ is in itself a important theorem to prove. We cannot claim that the proof of

LIM+ is complete until we have proved all of the lemmas involved, including the continuity

of + which is important to the proof. In standard analysis the proof of LIM+ is simple given

the continuity of+ as a lemma. In our case we are faced with trying to prove

a;b;c;d : �R :
a� b

c� d `
a+c� b+d:

We could annotate the conclusion to become

a+ c
" � b+ d

" ;
but we do not include annotation as it serves no purpose in theproof. We now use rule (5.12) to

introduce new infinitesimal variablesx andy, wherex= a�b andy= c�d. We then rewrite

the conclusion to (b+x)+(d+y)� b+d:

74 Chapter 5. Proof-planning limit theorems

For the last part of the proof we rearrange the conclusion using our knowledge about the asso-

ciative and commutative properties of+ to yield

b+d+x+y� b+d:
We know thatx� 0, andy� 0, so we can use the rule (4.54) twice to yield the trivially provable

conclusion

b+d� b+d:
Using rule (5.12) in the way introduced here is a reasoning pattern we refer to asinfinitesimal

introduction .

Rule (5.3): Continuity of �
The continuity of� is crucial to the proof of LIM�, and in non-standard analysis, we need to

prove

a;b;c;d : �R
f inite(b)^ f inite(d)

a� b

c� d `
a�c� b�d:

In order to prove this we use rule (5.12) again to introduce two new infinitesimal variables,

x= (a�b) andy= (c�d) to rewrite the conclusion and yield(b+x)� (d+y)� b�d:
We can rearrange this using the distribution laws for� to(b�d)+(x�d)+(b�y)+(x�y)� b�d

and now we can use rule (4.53), together with rules (4.17),(4.22) and (4.54) to reduce the

conclusion to

b�d� b�d

which is completed by the reflexivity rule (4.28). The way that this rearrangemenet is achieved

from the axioms is to write the axioms as rewrite rules. For example, in the case of axiom

(4.53) we use the following conditional rewrite-rule:

f inite(Y) ! X�Y � Z�Y) X � Z

5.2. Reasoning patterns from the proofs 75

in the case of rule (4.54) we write the rewrite-rule

X+Y � Z) X � Z^Y � 0:
This allows us to rewrite the goal and discharge the extra goals such asx� 0 andy� 0. Once

again, the pattern of reasoning observed here is ininfinitesimal introduction . Also in this

proof-plan we observearithmetical rearrangement.

Rule (5.2): Propositional rules

The rule (5.2) can be proved easily by the sequent rules presented in chapter 4. We conjecture

the goal

A! B;A!C ` A! B^C

which is trivially proved using the sequent rules from the logic presented in section 4.

Rule (5.10): Auxiliary lemma for the chain rule

We need to prove the rule

f inite(X);Y � 0;Y 6= 0; Z
Y
� X ` Z� 0:

We can use rule (4.53) together with rule (4.22) to reach the goal

f inite(X);Y � 0;Y 6= 0;X�Y � 0; Z
Y
� X ` Z� 0:

We know thatY is finite from rule (4.38). Now we can use rule (4.53) again to yield

f inite(X);Y � 0;Y 6= 0;X�Y � 0; Z
Y
�Y � X�Y ` Z� 0:

We can then apply field rules (4.15), (4.16) and (4.24) to yield the conclusion

f inite(X);Y � 0;Y 6= 0;X�Y � 0;Z� X�Y ` Z� 0

which is proved using the transitivity of�, given by rule (4.30).

Rule (5.11): Rule used in the chain rule proof

The associated theorem with this rule can be proved using simply the field rules given by rules

(4.13), (4.14), (4.15), (4.16), (4.20), (4.21), (4.22), (4.23) and (4.24). We take the theorem

x;y;z : �R
z 6= 0 `

x
z� z

y � x
y:

76 Chapter 5. Proof-planning limit theorems

Internally inλClamthe left hand side of the conclusion is represented(x�z�1)� (z�y�1):
Using rule (4.15) twice, and then rules (4.16) and (4.24) we yield an identity.

5.2.2 Common reasoning patterns

The aim of developing plans for the proofs of the developmentset examples is to encapsulate

the reasoning patterns that occur when performing these proofs. We mention in this section

some of the patterns which are apparent in the proof, and how we represent them. We also

discuss in section 5.3 how we incorporate these patterns in aset of plan-specifications.

For the more complicated method and patch specifications, wedescribe in words what

happens and how we output new goals. There are some examples of the code written for these

critics in section A.3.

Rippling out

One of the heuristics which underlies our approach to the automatic constructions of plans for

the types of proof we present here isrippling out. In the proofs of the theorems presented,

the first strategy is to rewrite the conclusion in such a way that it matches the hypotheses. In

some of the proofs of section 5.2.1, this strategy works, andthe proof can be completed by

invoking the hypotheses as intended. In other proofs, we cansee that some processing needs

to be done in order to allow rippling to take place. In the firstinstance we want to be able to

yield proof-plans for goals by embedding the hypotheses, rippling out fully, and invoking the

hypotheses through strong fertilisation.

Infinitesimal introduction

As can be seen from the presentations of the proof-plans yielded for the development examples,

we make use of rule (5.12) in order to yield proof-plans for some of the examples.

L’Hôpital suggested that it is possible to substitute infinitely close quantities. While this

is sometimes possible, it is not always the case, since otherwise all infinitesimal values would

reduce to 0. The purpose of rule (5.12) is to mimic equality substitution, and to reduce conclu-

sions to the form

X � 0; Y � 0` B+X � B+Y (5.14)

5.3. Plan-specifications 77

which can be proved by using rule (4.54) from the axiomatisation. When rippling cannot apply

to a goal we try to yield proof-plans by reducing the conclusion to this form.

Arithmetical rearrangement

In order to be able to yield proof-plans for the examples in section 5.2.1, we need to apply

field equations. We notice various patterns in which conclusions of goals can be rearranged.

These are described in our presentation of the plan-specifications developed to account for the

development set of theorems presented in section 5.2.1.

5.3 Plan-specifications

We initially constructed individual plan-specifications for each of the theorems in the develop-

ment set. We show here how we amalgamate these plans into one initial plan-specification, and

use critics to incorporate other general plan-specifications.

The plan-specifications are presented next as directed graphs. The names of the atomic

methods are given in the boxes. If a method is capable of terminating with success, then

the box is augmented with a horizontal line. Arrows between box indicate an application of a

then meth methodical. A directed loop indicates the application of arepeat meth methodical.

5.3.1 Outermost plan-specification

The outermost plan-specification is written inλClamas follows:

compound nsaconjectures nsa_top_meth_ripple_critics

(repeat_meth

(then_meth tautology

(then_meth (patch_meth set_up_ripple embed_critic_stra t)

(then_meth

(repeat_meth

(or_else_meth

(patch_meth (wave_method outward R1) wave_critic_strat)

(patch_meth (cond_wave_method outward R2) wave_critic_s trat)))

(then_meth (patch_meth fertilise fert_critic_strat))))))

_

78 Chapter 5. Proof-planning limit theorems

true.}

This is represented schematically by figure 5.1. As can be seen it works on the assumption

that the conclusion should be rewritten until the hypotheses match. The idea is that the critics

should react to failure of this strategy to suggest lemmas which can rewrite the conclusion. The

following is a description of the steps shown in figure 5.1:

1. Tautology

Firstly the plan tries thetautology method, which applies all of the rules in the logic un-

til a proof-plan is found, or leaves the goal completely unchanged. Since thetautology

method only applies inference rules, it only solves propositional tautologies.

2. Embed Hypotheses

The hypotheses are embedded in the conclusion. If this failsthen the embedding critic is

employed to suggest a rule by which the conclusion can be rewritten so embedding can

take place.

3. Ripple out

Once embedding has successfully taken place, the wave methods try to ripple the goal

outwards. As discussed, we always try to ripple out, and never try to ripple in. Once

rippling has successfully taken place, we re-calculate theembeddings of the hypotheses.

If rippling fails then the wave critic is employed to suggesta lemma to unblock the

rippling process.

4. Fertilise

Once the goal is completely rippled out, fertilisation is attempted. If this is not suc-

cessful, the fertilisation critic is employed to suggest new subgoals which will allow

piecewise fertilisation to take place.

5.3.2 Embedding patch plan-specification

When embedding fails, we employ a critic to analyse the failure and suggest a rule which

can be used to rewrite the conclusion so that embedding will take place. We show the plan-

specification we use for this in figure 5.2. The following is a description of the steps shown in

the figure:

5.3. Plan-specifications 79

3.

4.

1.

2.

Ripple out

Fertilise

Embed hypotheses

Tautology checker

Figure 5.1: The outermost plan-specification

1. Apply embedding patch

The failure of embedding is analysed and a patch is suggestedwhich outputs a lemma to

use to rewrite the goal, and the rewritten conclusion. See Method 1 of section 5.4.1 for

more details.

2. Lemma! Evaluation plan-specification

We attempt to find a proof-plan for the lemma using the evaluation plan-specification

which we describe in section 5.3.5.

3. Goal! Outermost plan-specification

The goal is rewritten using the lemma, and then tackled usingthe outermost plan-specification.

2.

3.

1.

Evaluation plan−specification

Outermost plan−specification

lemma

Goal

Apply Method 1 − embedding patch

Figure 5.2: Embedding patch plan-specification

80 Chapter 5. Proof-planning limit theorems

5.3.3 Wave patch plan-specification

When rippling out fails, we want to be able to speculate a lemma which will unblock the

rippling process. We show the plan-specification we employ for this process in figure 5.3. We

describe the steps that are shown in this figure as follows:

1. Apply wave patch

When rippling fails, the wave critic analyses the failure and speculates a lemma by which

to rewrite the goal, and rewrites the goal using this lemma. See Method 2 of section 5.4.2

for more details.

2. Lemma! Evaluation plan-specification

The evaluation plan-specification described in section 5.3.5 is applied.

3. Goal! Outermost plan-specification

The rewritten goal is sent back to the outermost plan-specification.

3.

1.

2.

Outermost plan−specificationGoal

Lemma

Apply Method 2 − wave patch

Evaluation plan−specification

Figure 5.3: Wave patch plan-specification

5.3.4 Fertilisation patch plan-specification

When the goal is fully rippled out, but fertilisation cannotapply, we want to be able to add new

subgoals which will allow piecewise fertilisation to apply(see section 3.2.6 for a description

of piecewise fertilisation). This strategy is taken because we hypothesise that the reason that a

fully rippled conclusion will not fertilise is due to mismatching sinks. The fertilisation patch

plan-specification is shown in figure 5.4, and its steps can bedescribed as follows:

1. Apply fertilisation patch

The failure of fertilisation prompts the critic patch to suggest facts which when added to

the hypotheses would allow piecewise fertilisation to succeed.

5.3. Plan-specifications 81

2. FactsC
The facts output by the fertilisation critic patch are both set as subgoals in step 4, and

added to the hypotheses of the input goal in step 3.

3. H[C `G ! Outermost plan-specification

Here the facts in step 2 are used to augment the hypotheses of the initial goal. The

outermost plan-specification is the applied to the new sequent.

4. For eachCi 2 C: H0 `Ci ! Appropriate plan-specification

At this point the facts in step 2 are interpreted as subgoals and are set as goals using

the hypotheses from the fully rippled goal. The goal is then tackled with an appropriate

plan-specification. See below for an explanation of this.

Initial goal isH ` G

Fully rippled goal isH 0 ` G0
Outermost plan-specification

For eachCi 2 C
H 0 `Ci

H [C `G

Appropriate plan-specification

Apply fertilisation critic patch1.

3.

4.

2.FactsC
Figure 5.4: Fertilisation patch plan-specification

The original goalH ` G is the initial statement of the theorem with all of the universal

quantifiers removed fromG using ther8 inference rule from our logic. This is done to preserve

any instantiations found for universally quantified variables in the hypotheses during the proof.

WhenλClamsets up the subgoalsH0 ` Ci in step 4 of figure 5.4, it chooses which plan-

specification to apply according to what form the subgoal has. If the subgoal has the form

L 6= R thenλClamaddsL = R to the hypotheses of the original goal, and applies the evaluation

plan-specification. Thus, if the original goal isH ` G, λClamconjectures the new goalH[fL = Rg ` G

82 Chapter 5. Proof-planning limit theorems

and tackles it using the evaluation plan-specifications. Inthe other branch of the proof, the

hypotheses of the original goal are augmented withL 6= R yielding the goalH[fL 6= Rg ` G:
This operation usesem rule from our sequent calculus, which introduces a case-split to the

hypotheses. Thenl_ is applied and the two branches described above are produced.

When the fertilisation critic patch outputs facts which arenot of the formL 6= R, a subgoal

is set up using the hypotheses from the fully rippled goal. Thus if a fact of the formL � R is

output by the fertilisation critic patch, for example, then, as indicated in step 4 of figure 5.4,

the following subgoal is yielded: H0 ` L� R:
This is tackled using the outermost plan-specification.λClamuses the hypotheses from the

fully rippled goal,H0 ` G0, because they may contain information yielded during the attempted

proof of the original goal,H ` G. Using facts both to augment hypotheses and to be set as

subgoals is an example of the use of thecut rule of inference from our sequent calculus.

The factL � R is added to the hypotheses of the original goal,H ` G, along with any

other facts which were output by the fertilisation critic patch. For the two examples of subgoal

mentioned above:L� RandL 6= R, λClamyields the new goalH[fL� Rg[fL 6= Rg ` G

which is tackled using the outermost plan-specification.

5.3.5 Evaluation plan-specification

The evaluation plan-specification shown in figure 5.5 shows how we tackle goals which cannot

be completed using the outermost plan-specification. This is very important as it incorporates

the patterns of reasoning we see in proofs such as the continuity of � given in section 5.2.1.

The following is a description of the steps shown in figure 5.5

1. Simulating substitution

This is described in section 5.4 by Method 3. We simulate substitution for the infinitely

close relation by using rule (5:12) to replace terms.

2. Multiplying through by denominators

We perform some simple field operations on the conclusion of agoal to put it into a

chosen normal form, as described by Method 4 in section 5.4.

5.4. Methods and Critics 83

3. Using equality substitution

When appropriate equalities are found in the hypotheses we apply substitution to the

goal, as described by Method 5.

4. Simplification

We apply simplification rules to the goal as described in Method 6.

5. Eliminate infinitesimal terms

As described in Method 7, we eliminate infinitesimal quantities from either side of the

infinitely close relation.

6. Goal trivially provable

We use some rules to determine whether the goal is trivially provable, as described in

Method 8.

Apply Method 6: Use equality substitution3.

Apply Method 5: Multiplying through by denominators 2.

Apply Method 7: Simplification4.

Apply Method 4: Simulating substitution1.

Apply Method 8: Eliminate infinitesimal terms5.

Apply Method 9: Goal trivially provable6.

Figure 5.5: Evaluation plan-specification

5.4 Methods and Critics

We describe the methods and critics we have written to allow the plan-specifications of the

previous section to produce proof-plans. We start with a presentation of the critics developed,

84 Chapter 5. Proof-planning limit theorems

and their associated patches, and then go on to describe the methods which are used in the

evaluation plan-specification shown in figure 5.5. Our presentation of methods includes the

input goal sequent, all of the preconditions and postconditions, and the output goal sequent.

We denote sets by true type symbols, such asH, and terms in standard font, such asG, with

functions in calligraphic font such asF . Where substitutions are to be applied, we use the

symbolÆ and apply sets of substitutions to terms.The output goal sequent can be a single goal

sequent, or can be constructed from pairs of goal sequents.

5.4.1 Embedding critic

We hypothesise that all proofs introduced in this chapter should end by invoking the hypotheses

using fertilisation. Although this is not always possible,we want the ability to embed the

hypotheses and then use the coloured rippling machinery to ripple out as far as possible. Let

us consider the example of speculating rule (5.11) used in proving the chain rule. In particular,

let us consider again the blocked conclusion encountered inthe proof of the chain rule

h� 0^h 6= 0! � f (�g(bx+h))� \f (g(x))
h

� bd1� bd2:
We cannot embed the hypotheses (5.5) and (5.6) in the conclusion, and so the method cannot

employ coloured rippling. The critic here is attached to theset up ripple method, which is

called every time before rippling. The patch suggested is described schematically by Method

1.

We impose strict conditions on the ability to embed hypotheses so that this critic can sug-

gest rules that allow rippling to occur. For example, we state that for any termA� B in the

hypotheses, bothA andB must embed fully in the conclusion for rippling to take place. Clearly

this is a very stringent condition but it allows the outermost plan-specification to deal with the

most general structure of the proof, and the embedding critic to find the rules which manipulate

the term structure of the conclusion to allow this conditionto be met. Any resulting rule will

then be tackled with the evaluation plan described in section 5.3.5.

The general idea underlying the patch for the embedding critic shown by Method 1 is

to speculate a rule by hypothesising that the infinitely close relation works in some way like

equality. Thus lemmas are speculated by replacing terms in the conclusion with infinitely close

terms in the hypotheses. While this is not necessarily correct, it is a heuristic which guides

us towards finding the shape of a lemma which can be used to rewrite the goal, and allow

embedding to take place. In order to construct the lemma, we must reason about subterms of

5.4. Methods and Critics 85

universally quantified variables. This means that we must guess instantiations for the variables

which are universally quantified in the hypotheses. We employ a simple equational unification

algorithm which incorporates the equality

A= B+(A�B)
which is crucial to the reasoning pattern ofinfinitesimal introduction . The way that the lemma

is stated, and then subsequently used as a rewrite rule follows the same technique as that for

the wave critic, which we present later in section 5.4.2.

Method 1 Embedding critic patch
Input: Goal:H ` A! B�C

Conditions:

Find termsL1 � R1; ::::;Ln � Rn in hypotheses

Unify C with F (R1; :::;Rn) instantiatingF

State Lemma asB� F (L1; :::;Ln)
Output: Lemma and Rewritten Goal

5.4.2 Wave Critic

In this work we are interested in rippling out fully, so that the hypotheses can apply. In some

cases sinks can accumulate terms using rippling in, but thisnormally happens in recursive

proofs. As our current theories do not involve induction, wedo not want to ripple in, and we

attempt to ripple out only in the proof-plan. When the wave method fails, it indicates that

a rewrite rule cannot be found to continue rippling out, and acritic is fired to speculate the

missing lemma. Coloured rippling allows us to analyse what the form of the rewrite should be.

The preconditions to the built-in wave method are

given goal H |- G with embedding E:

rewrite goal H |- G with rule R to give goal H |- G’

calculate embedding E’ of H in G’

check that measure reduces from E to E’.

The critic fires if the measure does not reduce. This means that the only wave rule applicable

is one which does not ripple out but in, since rippling out wastried in every possible way

before rippling in attempted. Now the critic’s job is to find asuitable rule that can rewrite the

86 Chapter 5. Proof-planning limit theorems

conclusion. We employ the procedure outlined by Method 2. For the code which describes this

patch see section A.3.

Method 2 Lemma speculation method for wave-critic patch
Input: Goal:H ` G

Conditions:

Case: if only one wave hole per hypothesis:

Join each wave hole to nearest shared term

Speculate rule which allows new wave holes to match more of hypotheses

Case: if more than one wave hole per hypothesis:

Join wave holes together using functors in skeleton

Speculate rule which allows new wave holes to match more of hypotheses

Output: Lemma and Rewritten Goal

As an example of this method at work, consider the proof ofLIM� given in section 5.2.1.

We show how the patch specified by Method 2 calculates a lemma which can be used to allow

rippling to proceed. In particular we show how meta-variables are used to represent conditions

to lemma which can only be discovered during the execution ofthe proof-plan. We start with

the blocked conclusion

x � bc^ x 6= bc! � f (x) � �g(x) " � bl f � blg " :
Firstly the method preconditions find the terms in the wave holes using the embedding for each

hypothesis. In this presentation we represent the binding of each term to a hypothesis using

colour: � f (x) �g(x) bl f
blg:

Now the method attempts to join the like coloured terms together using the information from

the hypotheses and the conclusion. In the first (red) hypothesis, the method records the formula� f (x) � bl f , and from the second (blue) hypothesis, it records the formula �g(x) � blg. Now

λClamgeneralises each term to a new variable, determining its type, and conjectures the goal

a;b;c;d : �R
M (a;b;c;d)` a� b^c� d! a�c� b�d:

HereM is a higher-order variable which is initially uninstantiated. During the construction

of the proof-plan for the lemma, it is instantiated to a function of the variablesa;b;c and

5.4. Methods and Critics 87

d. We discuss this issue further in section 5.4.5, and a proof of this theorem is presented in

section 5.2.1. We can see from this proof thatM becomes instantiated toλa;b;c;d: f inite(b)^
f inite(d). Once this goal has been proved, we can add wave rule (5.3) to the system, and it

can be used in yielding proof-plans for other theorems. We choose to represent the lemma as a

conditional wave rule withM (a;b;c;d) as the condition.

5.4.3 Fertilisation critic

We hypothesise that the failure of strong fertilisation is due to the existence of mismatching

sinks in the wave holes. In this case we must set new subgoals which allow piecewise fertili-

sation to succeed. In some cases these subgoals are not complicated to prove, but in others we

need a specific strategy for proving difficult subgoals. We employ a case-split in the instance

where must prove a subgoal of the formA 6= B, addingA= B_A 6= B to the hypotheses of the

goal, and splitting it into two branches.

As can be seen from the proof of the chain rule in section 5.2.1, a case-split must be

performed at the beginning of the proof. This operation is characterised by ruleem from the

logic given in table 4.1. This rule is non-terminating, and so its application must be carefully

controlled. We choose to control it by limiting its application just to critics, which react to the

failure of the strong fertilisation method. If the wavefronts are all fully rippled out, and the

strong fertilisation method does not apply, then the sinks do not match. In this instance we

attempt such a case split.

The preconditions to the built-in strong fertilisation method are that all of the conjuncts of

the goal should match a hypothesis exactly. The preconditions to the method are

given goal H |- G with embedding

Conclusion G is fully rippled

Sinks in G match in H.

The critic reacts to the failure of the sinks to match. The method for the fertilisation critic patch

is used by the plan-specification in 5.4.

As an example of the fertilisation patch at work, let us consider again the proof of the chain

rule. The orignal conclusion of the chain rule (with the hypotheses abbreviated toH), andr8
applied, is

h : �R : H ` h� 0^h 6= 0! � f (�g(bx+h))�\f (g(x))
h � bd1� bd2: (5.15)

88 Chapter 5. Proof-planning limit theorems

Once the conclusion has been fully rippledλClamyieldsH0 ` h � 0^ h 6= 0! � f (dg(x)+�g(bx+h)�dg(x))�\f (g(x))�g(bx+h)�dg(x) � bd1 ^ h � 0^ h 6= 0! �g(bx+h)�dg(x)
h

� bd2

" :
In the fully rippled conclusion, the fertilisation patch notices that the term in the red wave hole

has mismatching sinks. The facts which are output by the critic patch are�g(bx+h)�dg(x) 6= 0: (5.16)�g(bx+h)�dg(x)� 0 (5.17)

Following the plan-specification in figure 5.4 we set up threenew goals in order to allow

piecewise fertilisation to succeed:� Firstly, for the fact (5.16),λClamspecifies the subgoal

h : �R ;H; �g(bx+h)�dg(x) =0 ` �R : h�0^h 6=0! � f (�g(bx+h))� \f (g(x))
h

� bd1� bd2

which is tackled using the evaluation plan-specification.� Secondly, for the fact (5.17),λClamspecifies the subgoalH0 ` �g(bx+h)�dg(x)� 0

which is tackled using the evaluation plan-specification.� λClamspecifies a restatement of the original goal:

h : �R ; H; �g(bx+h)�dg(x) 6= 0; �g(bx+h)�dg(x)� 0` h� 0^h 6= 0! � f (�g(bx+h))�\f (g(x))
h � bd1� bd2:

This is tackled using the outermost plan-specification.

5.4.4 Methods for the evaluation plan-specification

We present here the methods employed in yielding proof-plans via the evaluation plan-specification

in figure 5.5. If any conditional rewrite rules are used in themethods, the conditions are set as

subgoals, and attempted by this plan also.

5.4. Methods and Critics 89

Infinitesimal introduction

When rippling is not possible, we need to make use of the hypotheses in a different way than

by just instantiating them with the terms in the conclusion.Notice in the proofs presented in

section 5.2.1 that when rippling was not used, the rule (5.12):

A= B+(A�B)
was very often central to the proof. This rule is used so oftenin the proofs because it mir-

rors the behaviour of substitution for equality, but with the� operator. When we know from

the hypotheses thata� b, we can simulate the substitution behaviour of equality by writing

b+(a�b) for a in the conclusion. This leaves us with termsa�b which we know to be in-

finitesimal, and so can disregard under certain circumstances. The proof of the continuity of+
given in section 5.2.1 shows an example of how this techniquecan yield a proof.

Method 3 describes the approach used to carry out the rearrangement of the conclusion

using rule 5.12. Here we use the notationÆ when applying subsitutions to terms. For example

GÆSdenotes the goalG under the subsitutionS.

Method 3 Use of infinitesimal introduction in simulating substitution
Input: Goal:H ` G

Conditions:X = fY � 0^B�A=Y : A� B 2 HgS = f(B+Y)=A : Y � 0^B�A=Y 2 Xg
Output: Goal:H[X `GÆS
Multiplying through by denominators

One more important technique which has been used in the proofs is that of simple field opera-

tions to collect terms. As can be seen from theorem (5.1) for example, the field equations are

needed to rearrange the terms in conclusions so that we can get to a point where we have the

form given by (5.14):

X � 0; Y � 0` B+X � B+Y:
We can then complete the proof using other rules from the axiomatisation.

The advantage non-standard analysis gives us, is being ableto always prove conjectures of

the form shown by (5.14). When working with the reals we are not able to exploit the concept

of infinitely close, which encapsulates the notion of a limitin standard analysis.

90 Chapter 5. Proof-planning limit theorems

The first stage in the process of yielding a form for the conclusion which looks like (5.14)

is to expand all terms using the distributive rule (4.17) from the axiomatisation, and its commu-

tative counterpart, and to multiply through by denominators. Method 4 describes this process.

It is important to notice that we can only multiply through byfinite quantities to preserve the� relation.

Method 4 Multiplying through by denominators
Input: Goal:H ` L� R

Conditions:

Exhaustively Apply rules:

r !; l !
A� (B+C)! (A�B)+(A�C)(A+B)�C! (A�C)+(B�C)
Multiply R through by all finite denominators ofL

Multiply L through by all finite denominators ofR

Output: Goal:H ` L� R

Use equality substitution

We describe the method which replaces values according to equalities which arise in hypothe-

ses in method 5. This method applies substitution in one direction, and replaces terms in the

conclusion, setting the conclusion up for simplification.

Method 5 Using equality substitution
Input: Goal:H `G

Conditions:S= fA=B : A= B;A�B= 02 Hg
Output: Goal:HÆS= GÆS
Simplification

Method 6 uses the identity rules from the axiomatisation (4.21),(4.14),(4.16), (4.24) and (4.22).

In this method, duals of each rule are used to include symmetry. For example, the rules 0+x)
x andx+0) x are included.

5.4. Methods and Critics 91

Method 6 Simplifying the goal
Input: Goal:H `G

Conditions:

Exhaustively apply rules toH andG

0+X) X(�X)+X) 0

X 6= 0! X�X�1) 1

1�X) X

0�X) 0bX � bY) X =Y

To G until no more apply yieldingG0
Output: Goal:H `G0
Eliminate infinitesimal terms

We introduce Method 7 which will recognise the structure of agoal which has the shape de-

scribed by the form given by (5.14). This is important since we can employ rules (4.54) and

(4.53) from our axiomatisation to eliminate these terms. Itreplaces all infinitesimal terms in a

sum by zero if the sum is on one side of the infinitesimally close relation�.

Method 7 Finding infinitely close quantities in conclusions
Input: Goal:H `G

Conditions:

G= T1+ :::+Ti � Ti+1+ :::+Tn

S= f0=Ti : Ti = (A�B);A� 02 H; f inite(B) 2 Hg
Output: Goal:H `GÆS
Goal trivially provable

Method 8 shows the rules we can use in order to complete a proof. We use the tautology

method, as described in section 5.3, and rules (4.38), (4.10) and (4.28) from the axiomatisation.

Note that here we include rules to show finiteness and non-zero properties which are set as

subgoals for some rules. We discuss this issue further in thenext section.

92 Chapter 5. Proof-planning limit theorems

Method 8 Rules for proving goals
Input: Goal:H `G

Conditions:

Apply Rules:

X = X)>
X � X)>
f inite(bX))>
Apply tautology method

Output: Branch closed

5.4.5 Subgoals in the evaluation plan-specification

Some conditional rewrite rules are used in the evaluation plan-specification, such as (4.16)

X 6= 0! X�X�1) 1:
The rewriting process can go ahead if the condition exists inthe hypotheses; if not then the

condition is set as a subgoal which is tackled using the evaluation plan-specification.

When lemmas are speculated by the wave critic or the embedding critic, a higher-order

variable is placed in the hypotheses. During the construction of the proof-plan for the lemma,

this higher-order variable is instantiated to a conjunction of all the unprovable conditions to the

rewrite-rules that were used. This can be seen in the proof-plan described for the continuity of� in section 5.2.1, where finiteness conditions must be imposed on the variables.

5.5 Test set

We present the examples used for our test set, describing whether the plan-specifications pre-

sented in section 5.3 successfully yielded proof-plans, and if not, what work still remained to

be done interactively.

5.5.1 Continuity of �
λClamconstructs a proof-plan for the following theorem

a;b;c;d : �R
a� b

5.5. Test set 93

c� d `
a�c� b�d:

The conclusion is annotated to become

a� c
" � b� d

" :
At this point rippling cannot continue and so the lemma speculation machinery fires via the

wave critic, and the resulting lemma is proved using the plan-specification shown in figure 5.3.

Using rule (5.12) twice the conclusion is rewritten to(b+(a�b))� (d+(c�d))� b�d:
Using the evaluation plan-specification this is rearrangedand the proof-plan completed by the

reflexivity of� (4.28) incorporated into Method 8.

5.5.2 Continuity of =
We attempt to construct a proof-plan for the conjecture

a;b;c;d : �R :
M (a;b;c;d)

d 6= 0

a� b

c� d `
a
c � b

d

λClamnow annotates the conclusion to become

a
c

" � b
d

" :
At this point rippling cannot continue and so the lemma speculation machinery fires via the

wave critic. The wave critic patch uses the evaluation plan-specification to yield a proof-plan

for the goal. It introduces infinitesimal variablesx = (a�b) andy = (c�d) and leaves the

following lemma to be proved:
b+x
d+y

= b
d
:

94 Chapter 5. Proof-planning limit theorems

This is rearranged by Method 4, which cross-multiplies withthe denominators, and then solved

using Methods 7 and 8 from the evaluation plan-specification. M becomes instantiated to

f inite(d)^ f inite(d+(c�d)) during the execution of the proof-plan.

This is in fact an incorrect proof, since the correct conditions for the theorem to hold are

a� b ^ c� d ^ d 6� 0. The problem here is that there is a fundamental error in Method 4,

which incorrectly imposes finiteness properties when in fact the correct properties to impose

are that divisors are not infinitely small. This is discussedfurther in section 5.7.

5.5.3 LIM �
We write this theorem as:

c ; l f ; lg : R f ;g : R ! R(8x2 �R :x� bc; x 6= bc! � f (x)� bl f)^ (8x2 �R :x� bc^x 6= bc! �g(x) � blg) `8x2 �R :x� bc^x 6= bc! �(λz: f (z)�g(z))(x)�\l f � lg

The outermost plan-specification and the lemma speculationmachinery successfully construct

a complete proof-plan for this theorem. The lemma speculation machinery speculates the rule

shown in section 5.5.1, and uses it to complete the proof of this theorem.

5.5.4 LIM =
We write this theorem as:

lg 6= 0 ^ 8x2 R: g(x) 6= 0 ^ lim
x!c

f (x) = l f ^ lim
x!c

g(x) = lg ` lim
x!c

f (x)
g(x) = l f

lg

Notice that we restrict the functiong to be non-zero everywhere, and define the limit pointlg to

be non-zero, since we want the conclusion to be well-defined.When the theorem is written out

formally using the non-standard characterisation of a limit, the following conjecture is yielded:

c ; l f ; lg : R f ;g : R ! R
lg 6= 08x2 �R : �g(x) 6= 0(8x2 �R : x� bc^ x 6= bc! � f (x) � bl f)^ (8x2 �R : x� bc^x 6= bc! �g(x)� blg) `8x2 �R : x� bc^x 6= bc! �(λz: f (z)

g(z))(x) � bl f

lg

5.5. Test set 95

We apply the outermost plan-specification shown in figure 5.1. The conjecture becomes blocked

when the ripple out method is attempted and the wave critic fires. The patch is to speculate the

rewrite rule

M (a;b;c;d)! a
c
� b

d
) a� b^c� d

whose proof was shown in section 5.5.2. The instantiation for M which is calculated is

f inite(d)^ f inite(d + y), wherey = c�d. The outermost plan-specification uses this lemma

to rewrite the conclusion. From this point the goal is fully rippled out and fertilisation applies

and a complete proof-plan is yielded.

λClam is left to satisfy the conditions of the rewrite rule. In particular, it must show that

f inite(blg) and f inite(�g(x)) wherex is the variable introduced by ther8 rule. These subgoals

are attempted by the evaluation plan-specification. Method8 produces a proof-plan for the

f inite(blg) subgoal sincelg is real. However, it does not yield a proof-plan for the subgoal

f inite(�g(x)). We need to yield a proof-plan for this goal interactively with the system.

It is easy to see how the conditionf inite(�g(x)) can be proved. With hindsight, we should

have introduced a method which dealt specifically with finiteness conditions. Given the in-

stantiation we know for the universally quantified variables in the hypotheses, and the rules

we introduced for the predicate subtypefinite in the axiomatisation– namely (4.42), (4.43),

(4.44) and (4.45), it would be easy to implement such a method.

We note at this point, as in the presentation of the proof-plan for the continuity of= in

section 5.5.2 that the lemma

M (a;b;c;d)! a
c
� b

d
) a� b^c� d:

only applies ifd 6� 0. This can be deduced sincelg 6= 0, yet lg is a real number, hencelg 6� 0.

It is in fact not necessary for this theorem to impose the condition 8x2 �R : �g(x) 6= 0. These

are flaws in the implementation of Method 4, and is further discussed in section 5.7.

5.5.5 Product Rule

For ease of presentation we show the product rule conclusionafter interactively applying rules

(4.34), (4.35) and (4.47), which distributes the embeddingand extension functions across ad-

dition and multiplication:

x;d1;d2 : R f ;g : R ! R8h2 �R : h� 0^h 6= 0! � f (bx+h)�df (x)
h � bd1

96 Chapter 5. Proof-planning limit theorems8h2 �R : h� 0^h 6= 0! �g(bx+h)�dg(x)
h � bd2 `8h2 �R : h� 0^h 6= 0! � f (bx+h)��g(bx+h)�df (x)�dg(x)

h � (bd1�dg(x))+(df (x)� bd2): (5.18)

We apply the outermost plan-specification to this goal. Initially, the embedding mechanism

does not succeed as it cannot find an embedding according to the stringent conditions placed

upon it. The planner therefore fires the embedding critic plan, which suggests rewriting the

conclusion to

h� 0^h 6= 0! (� f (bx+h)�df (x)
h)�dg(x)+df (x)� �g(bx+h)�dg(x)

h

" � d1 �dg(x)+df (x)� d2

" :
In order to do this, the embedding critic patch shown in Method 1 calculates the formula� f (bx+h)��g(bx+h)�df (x)�dg(x)

h � (� f (bx+h)�df (x)
h)�dg(x)+df (x)� (�g(bx+h)�dg(x)

h):
This is used to guide the rewriting of the conclusion (5.18),so that embedding can take place.

The associated lemma which is speculated is

a;b;c;d;e : �R
M (a;b;c;d;e) `(a�b)�(c�d)

e � (a�c
e �d)+(c� b�d

e): (5.19)

The evaluation plan-specification does not yield a proof-plan for this lemma, as the proof re-

quires factorisation. As this lemma will help to produce a proof-plan for the product rule, we

interact withλClam, and add the following rewrite rule to the system:

A�C^B� D^E� 0! (A�B)� (C�D)
E

) (A�C
E

�D)+(C� B�D
E

)
thus instantiatingM (a;b;c;d;e) in the lemma toa� c^b� d^e� 0. The application of this

lemma can be seen intuitively to be correct in the context of the product rule by considering

the equality(A�B)� (C�D)� (A�C)� (B�D)
E

= ((A�C)�D)+(C� (B�D))
E

if E 6= 0. If A� B andC� D, then(A�B)� (C�D)
E

� ((A�C)�D)+(C� (B�D))
E

5.5. Test set 97

since (A�C)�(B�D)
E � 0. Now we can appeal to the transitivity of�, to rewrite the conclusion

(5.18). The goal is rewritten to

x;d1;d2 : R f ;g : R ! R h : �R8h2 �R : h� 0^h 6= 0! � f (bx+h)�df (x)
h � bd18h2 �R : h� 0^h 6= 0! �g(bx+h)�dg(x)

h � bd2 `
h� 0^h 6= 0! (� f (bx+h)�df (x)

h)�dg(x)+df (x)� �g(bx+h)�dg(x)
h

" � d1 �dg(x)+df (x)� d2

" :
The wave critic then speculates the rule

f inite(X)^ f inite(Y)! A�X+Y� B
" � C�X+Y� D

") A�C ^ B� D
"

(5.20)

which leads to a completion of the construction of a plan for the product rule using the outer-

most plan-specification. We find a proof-plan for the lemma associated with this rule automat-

ically using the evaluation plan-specification.

As mentioned, part of this proof-plan needs to be constructed interactively. The embedding

critic patch successfully suggests a rule by which to rewrite the conclusion (5.18), but the

evaluation plan-specification is not capable of constructing a proof-plan for the speculated

lemma. We therefore add this lemma to the system as a rewrite rule, so that a proof-plan

for the product rule can be completed.

A brief analysis shows thatλClamis unable to find a proof-plan for lemma (5.19) through

the evaluation plan-specification because the proof of thislemma requires factorisation which

was not accounted for in the design of our methods and critics.

5.5.6 Extra limit conjecture

One final conjecture which we tested on the system is8x2 �R : x 6= bc^x� bc! � f (x)� bl ` 8y2 �R : y 6= 0^y� 0! � f (y+bc)� bl : (5.21)

When the outermost plan-specification is applied, the hypothesis fails to embed, so the em-

bedding critic follows the plan shown in figure 5.2. This doesnot suggest a rule to rewrite

the conclusion, which would allow the outermost plan-specification to continue. This is be-

cause the rewriting needs to take place in the hypotheses in order to yield a proof-plan. We

have assumed in our implementation of lemma speculation viathe embedding critic and the

wave critic, that we need to find a way of rewriting the conclusion. We rewrite the hypotheses

interactively and yield a proof-plan for the conjecture.

98 Chapter 5. Proof-planning limit theorems

5.6 System Performance and results

We give a description of how the well the system performed on the both the development set

and the test set. The theorems being tested in this chapter are relatively complex, and so we do

not have a vast test set and development set. We perform some empirical studies which help us

argue whether the plan-specifications and machinery presented in this chapter are successful at

capturing the patterns of reasoning in the proofs.

5.6.1 Successes and Failures

The plan-specifications and associated methods for automating the construction of proof-plans

described in this chapter were created by taking into account the structure of the proof observed

in the development theorems. We show in tables 5.1 and 5.2 howwell the system performed

on each theorem. We show whether a complete proof-plan was yielded automatically, whether

it had to be completed by specifying a new proof-plan interactively, or whether it was impos-

sible to construct a complete proof-plan. We note also how lengthy the proof-plan for each

theorem was in atomic method applications. This size refersto the plan construction of just the

main goal in atomic method applications, and not the size of the plans for the lemmas which

were speculated or needed for the theorem. We show how many critics fired, and how many

lemmas were speculated automatically. We also show how manylemmas had to be introduced

by hand. Finally we add a column to describe how many hours it took in development time

to encode each theorem and achieve a complete proof-plan. For the development conjectures,

this time indicates how long it took to achieve a complete proof-plan without the help of the

plan-specifications we devised as a result of studying the development examples. For the test

conjectures this represents the time taken to yield a complete proof-plan, or to give up attempt-

ing to construct one, given the planning machinery implemented as a result of the analysis of

the development set. Those conjectures which have been automatically speculated during the

proof-plan construction of the proof of another conjectureare denoted with a *.

The number of lemmas introduced by hand for the Product rule is 0, sinceλClam was

able to speculate the correct lemmas. In one caseλClam could not obtain a proof-plan for

one lemma, but it was able to correctly speculate the correctlemma to use, so the value in this

column is 0.

The test sets are relatively small and could have been augmented with more theorems such

as l’Hôpital’s rule and the Fundamental Theorem of Calculus. We did not have time to test the

system on these theorems. These would have proved to be challenging theorems on account

5.6. System Performance and results 99

Conjecture Proof-plan Size of No. critics No. spec. No. lems Dev.

yielded p-plan fired lems by hand time /hours

LIM+ yes 8 2 2 0 12

LIM� yes 8 2 2 0 12

Chain Rule yes 21 4 3 1 30

*Continuity of + yes 4 0 0 0 24

*Continuity of� yes 4 0 0 0 12

*Rule (5.2) yes 3 0 0 0 1

*Rule (5.10) by hand 11 - - 2 12

*Rule (5.12) yes 4 0 0 0 1

*Rule (5.11) yes 3 0 0 0 12

Table 5.1: Development set results

Conjecture Proof-plan Size of No. critics No. spec. No. lems Dev.

yielded p-plan fired lems by hand time /hours

LIM = yes 8 2 2 0 1

LIM � yes 8 2 2 0 1

*Continuity of = no 9 0 0 1 6

*Continuity of� yes 3 0 0 0 1

Product rule yes 11 3 3 0 36

Conjecture (5.21) yes 5 1 1 2 8

*Rule (5.20) yes 4 0 0 1 1

Table 5.2: Test set results

of their complexity. In particular we have not yet formally defined integration. Preliminary

attempts at formalising integration can be seen in chapter 7.

5.6.2 Search space

In order to justify the use of the reasoning patterns set out in section 5.2.2, we must show that

the proofs would not have been possible without use of these encoded heuristics, or at least the

search space would have been very much bigger.

100 Chapter 5. Proof-planning limit theorems

In order to discuss how the search space is constructed in oursystem we must indicate at

which points backtracking can occur and show which groups ofrules apply to which plans.

Backtracking can occur in the following places:� within the tautology method, which just applies logical rules;� in the embedding critic for the substitution calculation;� in rippling and rewriting choices can be made for which rule to apply.

The rules available to rippling are just those which can be annotated. These are rules (4.34) to

(4.37) and (4.42) to (4.49). There is only one way in which these can be applied by rippling.

When rules are suggested by lemma speculation, rippling canalso annotate and use these rules.

The planner prefers to fire a critic for the failure of rippling, but if the critic does not result in

success, then symbolic evaluation is attempted. This has access to all of the rules, and hence

can result in large search spaces.

As the system mentioned here uses critics to such a large extent, it is hard to make a judge-

ment on the amount of search that is being performed internally. We perform three experiments

to analyse the extent to which the search space has been reduced. In what follows, our analysis

uses the chain rule as the motivating example.

Our system

In our plan-architecture, backtracking occurs in the fertilisation critic where a case-split is in-

serted at the initial node of the plan. This case-split is controlled by only employing it within

the fertilisation critic. For the chain rule, the system explores 8 nodes of the plan before trying

fertilisation, which fails, inducing backtracking to the initial node, where a case split is intro-

duced. Also one other subgoal is introduced in order to allowfertilisation to take place. From

this point, the evaluation methods complete the proof-plan. The number of atomic method

applications for the resulting proof-plan is 29, indicating a negligible branching factor.

Naı̈ve Strategy 1

We first attempted the chain rule with just access to symbolicevaluation using our axiomati-

sation, and an iterative deepening planner. We ran this experiment overnight, and reached a

depth of 8, having explored roughly 100,000 nodes. At this point there were very many meta-

variables introduced into the conclusion via transitivityand field rules. The average branching

factor up to this point in the proof-plan is roughly 4.

5.6. System Performance and results 101

Naı̈ve Strategy 2

For the second experiment, we took the atomic methods, and their associated critics, and used

an iterative deepening planner on a waterfall of these methods. In this case the planner explored

roughly 100 nodes before completing a proof-plan for the chain rule, indicating a negligible

branching factor.

Iterative Deepening with our plan-specification

In this experiment, we see that only 40 nodes are visited before a proof-plan for the chain rule

is found. Again this constitutes a negligible branching factor.

5.6.3 Evaluation

We discuss the results shown in tables 5.1 and 5.2 with relation to the criteria set out in section

4.4. A similar evaluation scheme is given in [Cantu et al., 1996], where proof-planning was

used to automate proof in large hardware verification problems.

Plan-specification criteria� Generality

In order to determine how well our plan-specifications can bereused, we must look at

how easy it was to yield a complete proof-plan for the examples in the test set. It can

be seen that for examples such as LIM� that the mechanism works well; the time taken

to develop the theorem is just that to encode it inλClam, and the necessary lemmas are

speculated and planned automatically. LIM= is more problematic; in order for a proof-

plan to be yielded, we had to modify a speculated lemma by hand. Both the product rule

and the extra limit conjecture (5.21) took some time, and required lemmas, which were

added by hand. The time taken to yield proof-plans for these theorems is significant,

and indicates that the plan-specifications are not general enough. Some of the speculated

lemmas in this case are accounted for automatically by the evaluation plan-specifications,

and are not trivial to automate.

From the results of the search-space experiments we see thatgiven the methods and

plan-specifications we have provided, there is very little search. The most significant

discrepancy in the search space size occurs where the axiomatisation is provided with

102 Chapter 5. Proof-planning limit theorems

just an iterative deepening planner. In this case we see thatour planning mechanisms

reduce the search space considerably. This is because we encapsulate many applications

of the axioms into each atomic method. For example, the evaluation methods rewrite

terms in the conclusions using heuristics which make it simpler to show that the terms

are infinitely close. These methods do automatically produce proof-plans for difficult

parts of the proof, and do apply easily to problems from the test set. It must also be

noted that a lot of work has to be done by hand in some cases to transform these plan-

specifications to render them successful on the test examples.� Intuitiveness

It is difficult to make a judgement as to whether the plan-specifications we develop cor-

respond to a human intuition of how to carry out the proofs. Clearly the proof-plans do

not correspond to the standard proofs presented in text books, but the general patterns

are similar. In particular we claim that the three critics used, correspond to suggestions

for proof-transformation which occur when attempting the proofs as a human. Reducing

the form of conjecture to (5.14) through rules such as (4.54)mirrors the sort of reasoning

which exists in the informal proofs of Newton and Leibniz. Wehave shown that this is

possible in an automated setting, and hence that the resulting proof-plans mirror a form

of reasoning which is believed to be intuitive.� Simplicity

As can be seen from the description given in section 5.3, the plan-specifications are

quite compact. The specifications can be so simple because a lot of the reasoning steps

are encoded in the atomic methods. Also, critics further simplify plan-specifications

since they analyse the failure of the associated methods andperform appropriate proof-

transformations. This means that the main reasoning patterns which we wish to encom-

pass are encapsulated in the methods, and the variations on these are described by the

critic applications.

5.6. System Performance and results 103

Process criteria� Prescriptiveness

Our planning machinery should greatly reduce the search space, in comparison with less

informed searches. We can see from the experiments performed in section 5.6.2 that

indeed the search space is greatly reduced. This is because the heuristics incorporated in

the methods can plan large sections of each proof automatically.� Efficiency

As efficiency is not of direct interest to the idea of investigating the structure of proof, we

do not make explicit timing measurements. The proof-plans in general take several min-

utes to complete. Instead, the size of the search space is viewed as more important. The

parts of associated object level proofs which are computationally expensive are encoded

mainly in the atomic methods which are guided by heuristics.

5.6.4 Comparison with other work

There has been little work done on automating the kinds of theorem presented in this chapter.

[Bledsoe and Ballantyne, 1977] produced proofs of some of these theorems in a resolution the-

orem prover. They produced other proofs such as the Bolzano-Weierstraß conjecture, and their

work was very successful. Their approach was different fromours as they were interested in

yielding proofs without investigating the nature of the advantage given by non-standard anal-

ysis. In our work we produce proof-plans whose nodes describe various common patterns of

reasoning which apply.

Some of the theorems presented here have been proved interactively in Isabelle, as de-

scribed in [Fleuriot, 2001a]. The resulting proof-plans are very similar in shape to those that

result from proving the theorems in Isabelle. This is partlybecause we chose to base our ax-

iomatisation on the same extensional formalisation of non-standard analysis as that in Isabelle.

The ΩMEGA proof-planner [Benzmüller et al., 1997] has producedproof-plans for some

of the limit theorems presented in this chapter. It uses standard analysis definitions to yield

proof-plans, and is very successful at some types of conjecture. It bases its work on a sophis-

ticated constraint solver, which calculates instantiations for the meta-variables introduced in

standard proofs. It does not, however, have a critics mechanism such as ours, and cannot spec-

104 Chapter 5. Proof-planning limit theorems

ulate lemmas during proof-plan execution as our system does. Comparing our development

with that of theΩMEGA proof-planner is difficult. Although the work described in this chap-

ter studies some similar theorems to theΩ proof-planner (e.g. continuity of�), the two systems

are based on different mathematical theories. TheΩMEGA corpus is much larger than our set

of examples, but the ones that we study are more fundamental and require more complicated

proofs.

5.7 Discussion

We have analysed the performance of our system according to the evaluation criteria set out

in section 4.4.2. There are some points worth noting about the types of proof-plan that are

constructed for the theorems presented in this chapter. While it is the case that non-standard

analysis provides us with a mathematical framework which allows the automation of proof for

real analysis problems, we cannot claim that these proofs are more or less intuitive than their

standard counterparts. The techniques we employ here are not complicated, and the problem

of having to guess the instantiations of variables early in the proof is less than in the standard

case.

The introduction of the� relation through non-standard analysis hides a lot of compli-

cated alternating quantifier terms from non-standard analysis. However, by introducing a new

number system which includes infinite quantities, we cannotuse some of the simplification

procedures common to the usual reasoning over the reals without first ascertaining finiteness

properties of the variables involved. This often results infiniteness conditions being imposed

on the rules available to the system. Note also that when speculating lemmas it is easy to im-

pose stringent conditions by applying rules naively. For example consider the continuity of

times as stated by the lemma speculation machinery during the proof of LIM�
a;b;c;d : �R
M (a;b;c;d)

a� b

c� d `
a�c� b�d:

If we attempt to use the rule

C 6� 0! A�C� B) A� B
C

5.8. Summary 105

we end up with the condition thatb and d in the conjecture cannot be infinitesimal. These

conditions cannot be proved using just the hypotheses in theLIM� theorem. This is why we

introduce rule (5.12) to mimic the substitution rule for equality.

After the work in this thesis had been completed it was noted that other possible defini-

tions for derivative exists which may have simplified the proofs. In particular, Carathéodory’s

criterion for differentiability is of interest:

Theorem 7 A function f is Carath́eodory differentiable at a if there exists a functionφ which

is continuous at a such that

f (x)� f (a) = φ(x)(x�a)
It is not clear how using any other form of derivative would have rendered any proof simpler,

as any definition for the derivative would still rely on the notion of limit, which produces the

tricky extra cases that exist in, for example, the chain rule.

As mentioned in section 5.5.2, Method 4 is unsound and must becorrected. This was

discovered after completion of the work, and has repercussions on the validity of any proof-

plan which uses Method 4. Method 4 should be stated as in Method 9. The mistake we made

is that we based the troublesome rewriting steps on axiom (4.53), but rewrote in the direction

of the implication. The correct application of the axiom, written as a rewrite rule is

f inite(Y)! X�Y � Z�Y) X � Z:
Thus if we want to multiply through by denominators, we statethe rule as

f inite(Y�1)! X�Y�1 � Z�Y�1) X � Z:
Thus from axiom (4.56) we deduce that the correct condition for multiplying through by a

denominator is that the denominator is not infinitesimal.

The only two theorems affected by this are those already mentioned, as described in sec-

tions 5.5.2 and 5.5.4.

5.8 Summary

The research contribution of this work is to provide the proof-planning machinery by which

proofs involving limits and associated concepts can be planned automatically. We have ex-

plored and implemented ideas from proof-planning which help us to encapsulate reasoning

106 Chapter 5. Proof-planning limit theorems

Method 9 Correct version of multiplying through by denominators
Input: Goal:H ` L� R

Conditions:

Exhaustively Apply rules:

r !; l !
A� (B+C)! (A�B)+(A�C)(A+B)�C! (A�C)+(B�C)
Multiply R through by all denominators,D, of L, whereD 6� 0

Multiply L through by all denominators,D, of R, whereD 6� 0

Output: Goal:H ` L� R

within a mathematical theory. We have shown that it is possible to construct plan-specifications

which encapsulate the common patterns of reasoning in the proofs presented in this chapter.

In the next chapter, we enhance our framework by combining inductive arguments and

non-standard analysis to deal with important theorems fromreal analysis.

Chapter 6

Incorporating induction

In this chapter we present the work done on automating the construction of plans for another

area of analysis. In this case we study proofs of theorems which describe general properties

of certain types of function. In particular we look at properties of uniformly continuous and

differentiable functions over a closed interval. In order to reason about these functions we

develop a technique which uses a recursive function to splitthe interval up. This allows us to

conjecture properties about this recursive function, which we call thepartitioning functionand

prove them by induction. Once the interval has been partitioned an infinite number of times,

we can use non-standard analysis to analyse the function in an infinitesimal interval.

We first describe briefly the implementational research contribution of the work presented

in this chapter. We then go on to present the main technique ofthis work using the Intermediate

Value Theorem as an exemplary case study. Next we give detailed presentations of the plans

constructed for Rolle’s Theorem, which we believe to represent a novel proof. We then fur-

ther present a version of the intermediate value theorem which follows ideas from constructive

analysis, and mention the other theorems to which the technique has successfully been applied.

We discuss the reasoning patterns which are evident in the proof-plans, and discuss the imple-

mentation done to encapsulate these patterns of reasoning.Finally we give an evaluation of the

system, according to the criteria set out in chapter 4.

6.1 System enhancement

During the implementation of the work in this chapter, we included inλClamthe proof-plans

and plan-specifications which were constructed, and also a more general way of dealing with

107

108 Chapter 6. Incorporating induction

case-splits. Previously inλClam, a case-split was assumed to take place only if a conditional

rewrite rule had a dual, in the sense that if the condition to one wasX, then another similarly

applicable rewrite rule had a condition which was:X. When a case split set is employed, the

disjunctive composition of all of the conditions is set as a subgoal.

6.2 The technique

In this section, we discuss proofs, rather than plans, as we do not refer to any implementation.

We describe the general form of the technique in section 6.2.4, but first illustrate it by means

of an example. As our example we use the Intermediate value theorem, which stated in non-

standard analysis is

f : R ! R
a;b;c : R8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x) � � f (y) (6.1)

a� b

f (a)� c� f (b)` 9x2 R: a� x� b^ f (x) = c: (6.2)

It is important to notice that our characterisation of the theorem involves uniform continuity,

which means that this is a slightly modified version of the standard statement for the Interme-

diate Value Theorem. Intuitively the theorem states that any uniformly continuous function

attains all the values taken between the values at the end points of a closed interval. We ap-

proach the proof from an algorithmic perspective, reducingthe size of the interval recursively,

and showing that a pointx satisfying f (x) = c always lies within the interval. We illustrate this

using figure 6.1. The intervals[ai ;bi ℄ are decreasing withi, and always contain the pointx. The

interval [as(n);bs(n)℄ is defined by assigning it to the left or right half of the interval [an;bn℄. As

f (a)> f (b) in the diagram, we choose the right half of the interval[an;bn℄, namely[an+bn
2 ;bn℄,

if f (an+bn
2) > c, and the left half, namely[an; an+bn

2 ℄ otherwise. We refer to this choice of how

to calculate successive partitions as thepartitioning criterion. The idea of this approach is

to show that an algorithm for finding a point with property specified by the conclusion of the

Intermediate Value Theorem (6.2) will converge on that point at infinity.

6.2. The technique 109

c

f

1

b0
b1
b2

b3a3

a
2

x0a
a

Figure 6.1: A sequence of partitions

ivtrec F A B C 0 = [A,B]

ivtrec F A B C s(N) = (let [X,Y]=ivtrec F A B C N

in if F((X+Y)/2)>C then [(X+Y)/2,Y]

else [X,(X+Y)/2])

Figure 6.2: The partitioning function for the Intermediate Value Theorem

6.2.1 Defining the partitioning function

We define a recursive function, which we henceforth refer to as thepartitioning function, as

shown in figure 6.2. This returns the intervals shown in figure6.1 by [ai ;bi ℄, and calculates

successive partitions according to the partitioning criterion described above. We need to show

that the interval returned for this function always contains a witness forx in the statement of

the theorem. In order to do this we conjecture theorems aboutthe partitioning function.

In λClam we represent the partitioning function by means of rewrite rules. Two sets of

rules, ivtrel and ivtrer, are attributed to the left and right end points of the interval

respectively. For a full exposition of these rewrite rules,and how they can be annotated see

figure 6.3, where we give the conditions to the rewrite rules in red for clarity. We can now state

conjectures about the partitioning function, and use the wave rules to produce proof-plans.

110 Chapter 6. Incorporating inductionivtrel F A B C0) Aivtrer F A B C0) B

F((ivtrel F A B C N+ivtrer F A B C N)=2)�C!ivtrelF A B C s(N) ") ivtrel F A B C N

F((ivtrel F A B C N+ivtrer F A B C N)=2)�C!ivtrerF A B C s(N) ") (ivtrer F A B C N+ivtrel F A B C N)=2
"

F((ivtrel F A B C N+ivtrer F A B C N)=2)>C!ivtrelF A B C s(N) ") (ivtrel F A B C N+ivtrer F A B C N)=2
"

F((ivtrel F A B C N+ivtrer F A B C N)=2)>C!ivtrerF A B C s(N) ") ivtrer F A B C N

Figure 6.3: The wave rules representing the partitioning function for the Intermediate Value

Theorem

6.2.2 Abbreviated definitions for inductive theorems

We state various lemmas about the partitioning function to be8n2 N: ivtrer f a b c n�ivtrel f a b c n= b�a
2n (6.3)8n2 N: ivtrer f a b c n� a^8n2 N: ivtrer f a b c n� b (6.4)8n2 N: ivtrel f a b c n� a^8n2 N: ivtrel f a b c n� b (6.5)8n2 N: f (ivtrer f a b c n) � c ^ c � f (ivtrel f a b c n): (6.6)

These lemmas about the partitioning function can be proved inductively. Once proved, they

can be transferred to the non-standard domain. From there wecan reason about their properties

at infinite hypernaturals.

We abbreviate each of the lemmas by attributing new variables to the common subterms.

Let l(n) = ivtrel f a b c n, and r(n) = ivtrer f a b c n. We can then transfer to the

6.2. The technique 111

non-standard domain yielding for example8n2 �N : �r(n)� �l(n) = bb� ba
2n

:
Using the abbreviated and transferred forms of (6.3)–(6.6)we can write a number of statements

about the transferred terms�l(n) and�r(n) for an infinite hypernaturaln. In particular, using

the additional fact that
bb�ba
2n � 0: �l(n)� �r(n)ba� �r(n)� bbba� �l(n)� bb� f (�l(n)) � bc� � f (�r(n))

6.2.3 Using non-standard analysis

Using the abbreviated inductive theorems we can reformulate the Intermediate Value Theorem

as follows:

l ; r : �N ! �R
n : �N

f : R ! R
a;b;c : R: f inite(n)�l(n)� �r(n)ba� �r(n)� bbba� �l(n)� bb� f (�l(n)) � bc� � f (�r(n))8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y)` 9x2 R: a� x� b^ f (x) = c

Now we can use techniques from non-standard analysis to complete the proof. We useλClamto

manipulate the knowledge in the hypotheses using forward reasoning steps. For example, we

can use uniform continuity to deduce more properties about�l(n) and�r(n) such as� f (�l(n)) � � f (�r(n)):

112 Chapter 6. Incorporating induction

Now it follows that � f (�l(n)) � bc, since� f (�l(n)) � bc� � f (�r(n)). From continuity it also

follows that 9x2 R: ba� bx� bb ^ �l(n)� bc ^ � f (�l(n))�df (x):
From transitivity df (x)� bc
from which it follows that 9x2 R: a� x� b^ f (x) = c

as required.

6.2.4 General overview of technique

Now that a brief presentation of an example proof has been given, we can describe in more

general terms the structure we have identified for this type of proof. Figure 6.4 shows the

results of our investigations and is described next.

1

2

3

4

6

5

7

Conjecture

...

Formulate recursive function
Conjecture properties

induction induction

Formulate in non−standard
Analysis

Reason in infinitesimal
interval

Find real point
which satisfies conjecture

Abbreviate

Figure 6.4: Proof architecture

6.2. The technique 113

1. Conjecture

We state the conjecture using the non-standard characterisations for limit, continuity and deriva-

tive. We add subsequent results derived from the conjectures about the partitioning function to

the hypotheses.

2. Formulate partitioning function

The partitioning function is defined. Its precise behaviouris determined by the partitioning

criterion, but many of the inductive lemmas are independentof the this and the proof-plans are

identical modulo the name and number of arguments of the partitioning function.

3. Prove by induction properties of partitioning function

We state by hand various lemmas about the partitioning function. These properties can be

proved using structural induction on the natural numbers.λClamuses rippling, together with

the other powerful techniques which exist to tackle inductive conjectures inλClam.

4. Abbreviate

Once the proofs of the conjectures about the partitioning function have been planned, the results

are abbreviated byλClam, leaving them in the form8n2 N: P(n). This is done automatically,

as described in section 6.5.

5. Transfer to hypernaturals and hyperreals

λClam transfers the abbreviated conjectures to the non-standarddomain using the transfer

principle set out in section 2.4.1. It then reasons about theabbreviated conjectures at an in-

finite hypernatural, deducing properties of the resulting infinitesimal partition. This is done

automatically– see section 6.5 for a description of the procedure.

6. Reason using non-standard analysis

The proofs we perform using the abbreviated inductive conjectures are all forward reasoning

proofs.λClamrewrites the hypotheses to yield the result we need. This is because we introduce

extra existential variables into the hypotheses and then deduce properties about them using

appropriate definitions, such as that for uniform continuity for example.

114 Chapter 6. Incorporating induction

7. Find real point that satisfies conjecture

λClamgenerates a real number witness finally for the real analysisresult by appealing to rule

(4.40) which allows us to remove the non-standard annotations and replace� with =, and

hence move back into the real domain making use of rule (4.40).

6.3 The development set

We include only two real analysis theorems in this set of conjectures, as they are comprised of

many user-stated and automatically speculated lemmas, andcomplicated proof architectures.

In this section we present in detail the steps given by the proof-plan found for Rolle’s Theorem.

The presentation gives a proof which is guided by the steps specified by the proof-plan. A

similar presentation is given for Intermediate Value Theorem in appendix B.1.

This section contains the proof-plan for a proof of Rolle’s Theorem which we believe to

be novel. We use definitions foruniform continuity anduniform differentiability as these are

more natural for reasoning in non-standard analysis- as discussed in [Hoskins, 1990]. During

the presentation we point out common reasoning techniques in bold font which we later refer

to in section 6.4.

6.3.1 Rolle’s Theorem

Figure 6.5 show our statement of Rolle’s Theorem for real analysis using non-standard def-

initions for continuity (6.7) and uniform differentiability (6.8). It should be noted that the

conclusion for this proof is slightly different from the standard version, as we are allowing the

range of the existential variable to include the end points of the interval. Also we requiref 0 to

be uniformly differentiable in the closed interval[a;b℄, so that we can determine the sign of the

derivative at the end point of the interval. For a discussionand justification of this see section

6.9.

As with the Intermediate Value Theorem, we introduce a recursive function for which we can

encode a set of wave rules to prove inductive conjectures that we state. In this case we introduce

a more complicated partitioning criterion which ensures that there is a point with zero derivative

in any interval. We do this by considering the sign of derivative and the relative positions of the

endpoints and their midpoint. Figure 6.6 shows our construction of the partitioning criterion

for Rolle’s Theorem. Because we begin where the endpoints are equal, we can guarantee that

we are always dealing with one of the cases shown in figure 6.6 at any step of the partitioning

6.3. The development set 115

f 0; f : R ! R
a;b : R8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y) (6.7)8x2 �R : 8h2� R: ba� x� bb ^ h� 0 ^ h 6= 0 ! � f (x+h)�� f (x)

h � � f 0(x) (6.8)

a< b

f (a) = f (b)` 9x2 R: a� x� b ^ f 0(x) = 0

Figure 6.5: Our characterisation of Rolle’s Theorem

function.

We represent the algorithm using the partitioning functionshown in figure 6.8. This function

is then expressed inλClamby the set of wave rules about the end-points of the interval given

in figure 6.9, where the conditions are shown in red for clarity.

Next λClamconjectures the following lemmas about the partitioning function:8n2 N: rolrer f f 0 a b n�rolrel f f 0 a b n= b�a
2n (6.9)8n2 N: rolrer f f 0 a b n � b^rolrer f f 0 a b n � a (6.10)8n2 N: rolrel f f 0 a b n � b^rolrel f f 0 a b n � a (6.11)8n2 N: rolrer f f 0 a b n > rolrel f f 0 a b n (6.12)

The more interesting conjecture is one specific to the partitioning criterion for Rolle’s Theorem

shown in figure 6.8. In particular, we want to show that the endpoints of any interval obey one

of the cases in figure 6.10, so we conjecture the lemma8n2 N:
f 0(rolrel f f 0 a b n)� 0 ^ f 0(rolrer f f 0 a b n)< 0 _
f 0(rolrel f f 0 a b n)< 0 ^ f 0(rolrer f f 0 a b n)� 0 _
f 0(rolrel f f 0 a b n)� 0 ^ f 0(rolrer f f 0 a b n)� 0^ f (rolrel f f 0 a b n)� f (rolrer f f 0 a b n) _
f 0(rolrel f f 0 a b n)< 0 ^ f 0(rolrer f f 0 a b n)< 0^ f (rolrel f f 0 a b n)� f (rolrer f f 0 a b n):

(6.13)

116 Chapter 6. Incorporating induction

P=(A+B)/2

A

A B A B

A B B

f(P) >= f(A) and f’(P) >= 0 f(P) >= f(A) and f’(P) < 0

f(P) < f(A) and f’(P) >= 0 f(P) < f(A) and f’(P) < 0

P P

PP

Chosen interval is [P,B]

Chosen interval is [P,B]

Chosen interval is [A,P]

Chosen interval is [A,P]

Figure 6.6: The cases that constitute the partitioning criterion for Rolle’s Theorem

Setting up the reformulation of Rolle’s Theorem

We show in this section howλClamabbreviates conjectures (6.9)–(6.13) and adds them to the

hypotheses of the original goal about Rolle’s Theorem. Following the plan-specification which

will be presented in more details in section 6.5, we introduce two new functionsr andl , which

we assign asl(n) = rolrel f f 0 a b n and r(n) = rolrer f f 0 a b n. Now the inductive

theorems can be reformulated and transferred to the non-standard domain giving:8n2 �N : �r(n)� �l(n) = bb� ba
2n8n2 �N : �r(n)> �l(n)8n2 �N : ba� �r(n)� bb8n2 �N : ba� �l(n)� bb

6.3. The development set 117

f

1

b0
b1
b2

b3a3

a
2

x0a
a

f’(x)=0

Figure 6.7: Finding a point of zero derivative8n2 �N : (� f 0(�l(n)) � 0^ � f 0(�r(n)) < 0) _(� f 0(�l(n))< 0^ � f 0(�r(n)) < 0^ � f (�l(n)) � � f (�r(n)))_(� f 0(�l(n))< 0^ � f 0(�r(n)) � 0)_(� f 0(�l(n))� 0^ � f 0(�r(n)) � 0^ � f (�l(n)) � � f (�r(n)))
Next, we apply the plan-specification set out later in section 6.5.5 for converting these formulae

into a simple form which can be added to the hypotheses of Rolle’s Theorem. Using the plan-

specification, this allows us to reformulate Rolle’s Theorem with the new hypotheses

l ; r : �N ! �R
n : �N: f inite(n)�r(n)� �l(n)ba� �l(n)� bbba� �r(n) � bb�r(n)> �l(n)� f (�r(n))� � f (�l(n))� f 0(�r(n))� � f 0(�l(n))(� f 0(�l(n))� 0^ � f 0(�r(n)) < 0)_ (� f 0(�l(n))< 0^ � f 0(�r(n)) < 0^ � f (�l(n)) � � f (�r(n)))_(� f 0(�l(n)) < 0^ � f 0(�r(n))� 0)_ (� f 0(�l(n))� 0^ � f 0(�r(n)) � 0^ � f (�l(n))� � f (�r(n))):

118 Chapter 6. Incorporating induction

rolrec F F’ A B 0 = [A,B]

rolrec F F’ A B s(N) =

(let [X,Y]=rolrec F F’ A B N

in

if F((X+Y)/2) >= F(X) and F’((X+Y)/2) >= 0

then [(X+Y)/2,Y]

else if F((X+Y)/2) >= F(X) and F’((X+Y)/2) < 0

then [X,(X+Y)/2]

else if F((X+Y)/2) < F(X) and F’((X+Y)/2) >= 0

then [X,(X+Y)/2]

else if F((X+Y)/2) < F(X) and F’((X+Y)/2) < 0

then [(X+Y)/2,Y])

Figure 6.8: The partitioning function for Rolle’s Theorem

6.3. The development set 119

rolrel F F 0 A B0) Arolrer F F 0 A B0) B

F((X+Y)=2)� F(X)^F 0((X+Y)=2)� 0 !rolrelF F 0 A B s(N) ") (rolrer F F 0 A B N+rolrel F F 0 A B N)=2
"

F((X+Y)=2)� F(X)^F 0((X+Y)=2)� 0 !rolrerF F 0 A B s(N) ") rolrer F F 0 A B N

F((X+Y)=2)� F(X)^F 0((X+Y)=2)< 0 !rolrelF F 0 A B s(N) ") rolrel F F 0 A B N

F((X+Y)=2)� F(X)^F 0((X+Y)=2)< 0 !rolrerF F 0 A B s(N) ") (rolrer F F 0 A B N+rolrel F F 0 A B N)=2
"

F((X+Y)=2)< F(X)^F 0((X+Y)=2)� 0 !rolrelF F 0 A B s(N) ") rolrel F F 0 A B N

F((X+Y)=2)< F(X)^F 0((X+Y)=2)� 0 !rolrerF F 0 A B s(N) ") (rolrer F F 0 A B N+rolrel F F 0 A B N)=2
"

F((X+Y)=2)< F(X)^F 0((X+Y)=2)< 0 !rolrelF F 0 A B s(N) ") (rolrer F F 0 A B N+rolrel F F 0 A B N)=2
"

F((X+Y)=2)< F(X)^F 0((X+Y)=2)< 0 !rolrerF F 0 A B s(N) ") rolrer F F 0 A B N

X = rolrel F F 0 A B N Y = rolrer F F 0 A B N

Figure 6.9: The wave rules representing the partitioning function for Rolle’s Theorem

120 Chapter 6. Incorporating induction

Case 1 Case 2

Case 3 Case 4

Figure 6.10: The four possible situations of the end points of the partition for Rolle’s theorem

Note thatλClamappeals to uniform continuity to yield� f (�l(n)) � � f (�r(n)) from �r(n) ��l(n), and uses the following lemma8x;y2 �R : x� y! � f 0(x) � � f 0(y) (6.14)

to obtain� f 0(�l(n)) � � f 0(�r(n)). To see why it is possible for us to this lemma, which states

the uniform continuity off 0 see section 6.3.2. Deriving these facts and adding them to the

hypotheses is an example of a reasoning pattern, which we call discharging conditions.

Proving Rolle’s Theorem using non-standard analysis

Here we describe how non-standard analysis is used to manipulate the information in the hy-

potheses to yield a witness for the conclusion. We describe the steps of the proof-plan yielded

for Rolle’s Theorem. We use axiom (4.39) to introduce a real variable to the hypotheses. Recall

that this axiom is stated as8X : �R : f inite(X)!9Y : R: X � bY
We know that�l(n) is finite since the hypothesis holdsba� �l(n)� bb
so, we know that introducing a new real variablex to the hypotheses, and establishing thatbx� �l(n) is a valid proof step. Using this reasoning,λClamemploys existential elimination

(rule l9) from our sequent calculus, and adds two facts to the hypotheses automatically:

6.3. The development set 121

l ; r : �N ! �R
n : �N

f 0; f : R! R
a;b : R: f inite(n)�l(n);�r(n) : �R�r(n)� �l(n) (6.15)ba� �l(n)� bbba� �r(n)� bb�r(n)> �l(n)� f (�r(n))� � f (�l(n))� f 0(�r(n))� � f 0(�l(n))(� f 0(�l(n))� 0^ � f 0(�r(n))< 0)_ (� f 0(�l(n))< 0^ � f 0(�r(n))< 0^ � f (�l(n))� � f (�r(n)))_(� f 0(�l(n))< 0^ � f 0(�r(n))� 0)_ (� f 0(�l(n))� 0^ � f 0(�r(n))� 0^ � f (�l(n))� � f (�r(n))) (6.16)8x;y2 �R: ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y)8x2 �R: 8h2� R: a� x� b ^ h� 0 ^ h 6= 0 ! � f (x+h)�� f (x)

h � � f 0(x)
a< b

f (a) = f (b)` 9x2 R: a� x� b ^ f 0(x) = 0

Figure 6.11: The reformulation of Rolle’s Theorem� bx� �l(n)
This ensures the existence of a real number in the infinitesimal neighbourhood of any

interval in the sequence produced by the partitioning function. This is an example of

witness introduction.� a� x� b

λClamestablishes bounds on the introduced real variablex, using the facts thatbx� �l(n)

122 Chapter 6. Incorporating induction

andba� �l(n)� bb. In order to do this we introduce the following lemmas interactively:

A� B^A> X ! B� X_B> X

B� A^A> X ! B� X_B> X

A� B^A< X ! B� X_B< X

B� A^A< X ! B� X_B< X:
Using rules in this way to establish bounds on the variablex is an example of usingorder

constraints.

λClamnow introduces four cases to the proof of Rolle’s Theorem, each corresponding to a

disjunct in hypothesis (6.16). For each case we show howλClamyields a proof-plan for lemma� f 0(�l(n))� 0, and hence establishes a witness for the conclusion of Rolle’s Theorem. In each

casen represents an infinite hypernatural. Each bullet point represents a goal which is proved

using the argument in the corresponding text.

Case 1:�f0(�l(n))� 0^ �f0(�r(n))< 0� � f 0(�l(n))� 0

We introduce the following rules interactively toλClam:

A� B ^ A< 0^B> 0 ! A� 0

A� B ^ A< 0^B> 0 ! B� 0: (6.17)

We know that� f 0(�l(n)) � 0^ � f 0(�r(n)) < 0. We perform a case split on� f 0(�l(n)) >
0_ � f 0(�l(n)) = 0. In the first case we use rule (6.17) to yield� f 0(�l(n))� 0 as required.

In the second case we use rule (4.31) to establish the result.The reasoning involved here

is another instance of usingorder constraints.� f 0(x) = 0

Now we have the fact that� f 0(�l(n)) � 0 and we can use lemma (6.14) to ascertain that[f 0(x)� � f 0(�l(n))
and hence by transitivity of� we can write[f 0(x)� 0;

6.3. The development set 123

and hence by (4.40),f 0(x) = 0.

Case 2:�f0(�l(n))< 0^ �f0(�r(n))� 0
We yield a proof-plan forf 0(x) = 0 here as well. The steps of the proof-plan are omitted as

they follow very closely the steps used in the case where�f0(�l(n))� 0^ �f0(�r(n))< 0.

Case 3:�f0(�l(n))< 0^ �f0(�r(n))< 0^ �f(�l(n))� �f(�r(n))
For this case we need to do more complicated reasoning about the sign of the derivative at

each of the points�l(n) and�r(n). In order to do this we require the uniformly differentiability

condition we imposed onf .� � f 0(�l(n)) � 0

Using the information in the hypotheses about�r(n) and�l(n) λClamcan usesimplifi-

cation of derivatives to yield� f 0(�l(n))� � f (�r(n))�� f (�l(n))�r(n)��l(n) : (6.18)

We now consider two cases: one where� f (�l(n)) = � f (�r(n)) and one where� f (�l(n))<� f (�r(n)).
In the first case, we can evaluate the fraction given in (6.18)using the rules

A= B! A�B= 0 (6.19)

A 6= 0! 0
A = 0 (6.20)

yielding the result� f 0(�l(n))� 0 as required, since we know that�r(n)� �l(n) 6= 0.

In the second case, we analyse expression (6.18), and use therules

A> 0^B> 0! A
B > 0 (6.21)

A> 0^B� A! B� 0_B> 0 (6.22)

together with rule 6.19 to determine that� f 0(�l(n))� 0 _ � f 0(�l(n)) > 0:

124 Chapter 6. Incorporating induction

The first disjunct is easily discharged. For the second case acontradiction is yielded

since� f 0(�l(n)) < 0 in this branch of the case split, and the proof-plan is completed

using rule f axiomour sequent calculus.

In this case of the proof, the reasoning patterns we observe are examples oforder con-

straints andsimplification of derivatives.� f 0(x) = 0

We prove this in the same way as the previous cases.

Case 4:�f0(�l(n))� 0^ �f0(�r(n))� 0^ �f(�l(n))� �f(�r(n))
The reasoning involved for this case follows exactly the shape of the proof-plan for the previous

case, and so we omit the details.

Inductive lemmas

It now remains for us to prove the inductive lemmas (6.9),(6.10),(6.11),(6.12) and (6.13), which

allowed us to add the abbreviated hypotheses to the statement of Rolle’s Theorem. Presenta-

tions of the proof-plans yielded by the induction plan-specification for these inductive lemmas

are given in section B.2. In all of the presentations of the proofs we usecase analysisandrip-

pling. We refer to lemmas (6.9), (6.10),(6.11) and (6.12) as thecommon inductive lemmas.

As an example of the reasoning patterns observed in these proof-plans, we consider the

proof-plans for lemmas (6.10) and (6.11). For simplicity wewrite

r(n) = rolrer f f 0 a b n

l(n) = rolrel f f 0 a b n

We can then write these lemmas together as a conjunct:8n2 N: r(n) � b^ r(n) � a ^ l(n) � b^ l(n) � a:
In order to yield proof-plans for these goals, we must use results from the proof of one conjec-

ture in order to prove the other. InλClam, we simulate a mutual induction scheme. We perform

induction the conjunction of all the goals, and then we can use the induction hypothesis of any

of the conjuncts in order to rewrite the conclusion.

6.3. The development set 125

We study the step case here in order to point out the patterns of reasoning observed. The

induction hypotheses are

n : N
r(n)� b

r(n)� a

l(n)� b

l(n)� a

Consider one conjunct from the conclusion:

r(s(n) ")� b:
When the case-split set (see figure 6.9) is applied, in one case this conclusion is rewritten to

l(n)+r(n)
2

" � b:
We refer to the reasoning pattern of using the case-split setin this way ascase analysis. Notice

here that the induction hypothesis from the conjunctl(n) � b is embedded in the conclusion.

This is an example of bothmutual induction andcoloured rippling . In order to complete the

proof-plan, some lemmas are needed, as can be seen in section6.6.2.

6.3.2 Lemma 6.14: uniform differentiability lemma

To obtain a proof-plan for (6.14) we need the definition for uniform differentiability, and using

it, we state the lemma

f ; f 0 : R8x2 �R : 8h2� R: h� 0 ^ h 6= 0 ! � f (x+h)�� f (x)
h � � f 0(x) `8θ;φ 2 �R : θ� φ ! � f 0(θ)� � f 0(φ):

λClamfirst performs rule (8r) twice, and (!r) to yield the conclusion� f 0(θ) � � f 0(φ):
It then makes a case split onθ = φ. In this case, the conclusion reduces to an identity. In the

other case, whereθ 6= φ, we haveθ�φ 6= 0, and then sinceθ� φ λClamevaluates the derivative

of � f at θ andφ. It also uses rule (5.12) to simplify the expressions. This reasoning yields� f 0(θ)� f (θ)� f (φ)
θ�φ

126 Chapter 6. Incorporating induction

and � f 0(φ)� f (θ)� f (φ)
θ�φ

hence by transitivity of�, � f 0(θ) � � f 0(φ) as required. We refer to the reasoning patterns we

observe here assimplification of derivatives.

Notice that in this proof-plan the form of the conjecture is different to that of Rolle’s The-

orem and of the Intermediate Value Theorem. In particular, acase-split forθ is needed, and

rules8r and!r have to be applied. These are specific to this theorem and not used in any other

proof-plan from the development set.

6.4 Common reasoning patterns

In the presentation of the proofs of Rolle’s Theorem and the Intermediate Value Theorem, we

observe general reasoning patterns and a high degree of modularity. In this section we highlight

these patterns of reasoning, which allow us to construct a set of plan-specifications by which

to automate proof-plan construction.

6.4.1 Partitioning function

The first and most apparent common concept in the proofs just presented is the partitioning

function, which introduces common structure in the proof-plans for the inductive lemmas. The

resulting structure is then encapsulated in the plan-specifications. From the proofs of the de-

velopment set, the following reasoning patterns are evident:

Case-split analysisAs the partitioning function splits intervals in two and chooses a left or

a right half according to a partitioning criterion, we must implement a system that can

plan proofs involving case analysis. We introduce the notion of a case-split set, which

is a set of conditional rewrite rules whose conditions can beshown to becase complete.

This means that the disjunction of all of the conditions to the rewrite rule are provable.

Division by 2 We notice that in many cases, since the termX+Y
2 occurs in the proofs, we use

lemmas involving division by two. We incorporate this by adding interactively the set of

lemmas shown in section B.3.

Rippling As we are performing inductive proofs, we can use the rippling machinery which

already exists inλClam. This allows us to speculate lemmas by analysing the terms in

6.4. Common reasoning patterns 127

wave holes. Notice also that we can apply coloured rippling to some inductive proofs as

they are mutually recursive and have more than one hypothesis.

Common inductive lemmas

As we can see from the inductive proofs about the intermediate value theorem and Rolle’s

Theorem, many common lemmas must be proved. The inductive lemmas which are common to

both theorems are proved independently of the partitioningcriterion, and so could theoretically

be proved as theorems of a higher order, more general form of the partitioning function. We

have not included such proofs here as they proved too difficult to formulate for an arbitrary

number of arguments inλClam, but we discuss some preliminary experimentation in section

6.9.1. Our solution is to introduce plan-specifications which encapsulate the common lemmas,

and reasoning patterns which are true of all partitioning functions. This can be seen from the

plan-specification represented in figure 6.5.

Mutual induction and coloured rippling

As can be seen from the inductive proofs which establish the outer bounds of the partitions,

λClamhas to prove a conjunction of goals. Applying induction to a conjunctions of goals

allowsλClamto use the induction hypothesis from each conjunct in the conclusion. Since there

is more than one induction hypothesis, coloured rippling can be used. This sort of reasoning

corresponds to mutual induction and happens with the left and right points of the partition.

6.4.2 The final stages of the proof-plans

The reasoning steps at the end of the proof-plans contain many reasoning patterns which can be

encapsulated. The general idea incorporated in this stage of the proof-plan is to transfer back

to the real numbers from the non-standard domain. As the proofs are in a forward direction,

we introduce methods for rewriting hypotheses. We notice the following patterns of reasoning:

Witness introduction We introduce a real variable in the hypotheses, infinitely close to the ab-

breviated variables, and determine the appropriate boundsusing the lemmas introduced

in section 6.6.2.

Discharging conditions In the hypotheses, there exist definitions which take on the form

A! B (e.g. uniform continuity), and if we can showA then we can generate the ex-

tra hypothesisB. We do this until no more extra hypotheses can be generated.

128 Chapter 6. Incorporating induction

Simplification of derivatives For Rolle’s theorem we obtain an expression for the derivative

using the definition for uniform differentiability (6.8). We do this in conjunction with

rule (5.12).

Order constraints As can be seen from the proofs, we often have to reason about order con-

straints on variables to ascertain their sign, or find an infinitesimal neighbourhood in

which they exist. We introduce the set of lemmas shown in section B.3 to help us reason

about goals involving order relations.

6.5 Obtaining a plan-specification

We present the plan-specifications we developed for the automatic construction of proof-plans

for theorems belonging to the same family as those in the development set (i.e. Rolle’s Theo-

rem and the Intermediate Value Theorem). In what follows, the graphical description of plan-

specifications follows the same annotation scheme as that described in section 5.3 of chapter

5.

6.5.1 Overall plan-specification

Overall conjecture1.

Case−split set2.

User stated Lemma3.

Transfer−back plan−specification7.

Well−partitioned plan−specification4.

5.

6. Transfer plan−specification

Induction plan−specification

Induction plan−specification

Figure 6.12: Overall plan-specification

The overall plan-specification which accounts for Rolle’s Theorem and the Intermediate

Value Theorem is described by figure 6.12. The steps that are specified by the overall plan-

specification are:

6.5. Obtaining a plan-specification 129

1. Overall conjecture

This is an input to the plan-specification, and refers to the statement of the theorem from

analysis, such as Rolle’s Theorem.

2. Case-split set

This is an input to the plan-specification, and refers to the name of the rewrite rules

representing the partitioning function which is specific tothe overall conjecture.

3. User stated lemma

This refers to the inductive lemma which is specific to the partitioning function for the

overall conjecture, such as (6.13) for Rolle’s Theorem.

4. Well-partitioned plan-specification

Collects the input information and sets up inductive lemmaswhich are common to all

partitioning functions.

5. Induction plan-specification

Produces proof-plans for each of the inductive lemmas produced by the well-partitioned

plan-specification.

6. Transfer plan-specification

Abbreviates inductive lemmas, and adds transferred form tohypotheses of the overall

conjecture.

7. Transfer-back plan-specification

Produces a proof-plan for the overall conjecture augmentedwith the new hypotheses.

6.5.2 Induction plan-specification

The induction plan-specification that we use for the inductive lemmas is very similar to that

which already exists inλClam(see figure 3.1 of section 3.2). Figure 6.13 shows our specifi-

cation for automating the plan construction for the inductive proofs. It may be interesting to

compare this with the standard induction plan-specification shown in figure 3.1: ours has the

same overall form, as expected, but is more elaborate, producing proof-plans for the inductive

lemmas that we are investigating. In the base case we add a case-split after symbolic evaluation

which accounts for such base cases as that for Rolle’s Theorem, for which we must make a case

split on f 0(a)< 0 _ f 0(a)� 0 for example. We embed the hypotheses using coloured rippling

130 Chapter 6. Incorporating induction

Tautology Case split Identity or_left

Case analysis ripple_out

fertilise strong fertilise weak

Symbolic Evaluation

Tautology

ORELSE

Induction Strategy

Base Case Step case

Symbolic Evaluation Coloured set up ripple

ORELSE ORELSE

1.

2.

3.

4.

ORELSE

Figure 6.13: Induction plan-specification for proofs of partitioning function

6.5. Obtaining a plan-specification 131

since there may be more than one induction hypothesis. We employ a special case-split method

which sets up a conjunction of goals according to the cases ofthe case-split set chosen. We

also add in a part of the plan-specification which removes alldisjuncts from the hypotheses

if it is not possible to complete a plan leaving such disjuncts in place. Loops in figure 6.13

correspond to the application of arepeat meth methodical. This means that the method is

applied repeatedly until it fails, and then the proof-plan proceeds from the next point in the

plan-specification.

The important steps of the induction plan-specification areas follows:

1. Tautology orelse Case-split

If after symbolic evaluation, the base case is not provable by the tautology method, then

we attempt a case split on the sign of variables in the conclusion. For example iff 0(a)<0

in the conclusion, then we make a case-split onf 0(a)� 0 _ f 0(a)< 0.

2. Coloured set up ripple

λClamembeds all of the induction hypotheses if the goal itself is aconjunction. When

rippling takes place each induction hypothesis is attributed with an embedding in the

hypothesis.

3. Identity orelse or left

The identity method leaves the goal unchanged. If the coloured rippling or fertilisation

process later fails, then the proof-plan backtracks to thispoint and applies thel_method

repeatedly (shown in figure 4.1 of section 4.2.1), and then rippling is re-attempted. This

is done since some of the inductive lemmas can be proved by embedding the hypotheses

without having to split up the disjuncts in the hypotheses. In the case where this is not

possible, thel_ produces a conjunction of goals on which to apply coloured rippling.

4. Case analysis orelse rippleout

If λClamfinds a case-split set that applies then a conjunction of goals is set up according

to the cases of the case-split and the conclusion rippled out. If a case-split does not apply

thenλClam looks for another applicable wave rule to apply.

6.5.3 Transfer-back plan-specification

The final part of the proofs in the development set involves using non-standard analysis to

reason about the original analysis theorem (e.g. Rolle’s Theorem) using the extra hypotheses

132 Chapter 6. Incorporating induction

generated by the well-partitioned and transfer plan-specifications (see sections 6.5.4 and 6.5.5

repectively), and to transfer-back to the real numbers. Theplan-specification used to direct

this part of the proof inλClam is shown in figure 6.14. Each of the steps employs one of the

methods described later in section 6.6.3. We describe the steps as follows:

1. Discharge Conditions

The discharge conditions method generates conditions suchas � f (�l(n)) � � f (�r(n))
using uniform continuity and the hypothesis�l(n)� �r(n).

2. Introduce witness

Method 10 adds a real variable to the hypotheses.

3. Establish bounds

Method 11 establishes bounds on the real variable introduced in step 2.

4. Introduce cases

Method 12 applies rulel_ to the goal, introducing cases to the proof which correspond

to those introduced by the user-defined inductive lemma, forexample (6.13).

5. Simplify derivatives

Method 13 instantiates the definition for uniform continuity, simplifies the resulting for-

mula, and adds it to the hypotheses.

6. Order constraints

The order constraints method determines the sign of terms introduced by step 5, intro-

ducing new hyperreals and reasoning using transitivity andfield equations. If this fails,

it uses the lemmas introduced in section 6.6.2 to determine the sign of such terms.

7. Transfer back

Method 14 applies rule (4.40) to determine that the witness introduced in step 1 satisfies

the conclusion of the theorem.

6.5.4 Well-partitioned plan-specification

We develop a plan-specification which takes as input a lemma,and a case-split set for which

a set of common lemmas can be stated. The plan-specification then applies the induction plan

to each of the lemmas. Thus for the Intermediate Value Theorem, for example, we give the

well-partitioned plan-specification the names of the rewrite rules and the lemma which are

6.5. Obtaining a plan-specification 133

1.

2.

3.

4.

5.

6.

7.

Apply discharge conditions method

Apply Method 14: Transfer back

Apply order constraints method

Apply Method 10: Introduce witness

Apply Method 11: Establish bounds

Apply Method 12: Introduce cases

Apply Method 13: Simplify derivatives

Figure 6.14: The transfer-back plan-specification

specific to the Intermediate Value Theorem. This plan-specification generates the inductive

lemmas which are common to any partition function. It generates these lemmas from the input

information, namely the names and arguments to two case-split sets, e.g.ivtrel f a b c n

andivtrer f a b c n, and the definition of a user-supplied lemma, such as for example8n2 N: f (ivtrer f a b c n) � bc ^ bc � f (ivtrel f a b c n)
which is the crucial inductive lemma for the Intermediate Value Theorem. The plan-specification

now generates a set of inductive lemmas which are common to all partitioning functions, given

the names of the rewrite rules provided– in this caseivtrel andivtrer:8n2 N: ivtrer f a b c n�ivtrel f a b c n= b�a
2n8n2 N: ivtrer f a b c n� a^8n2 N: ivtrer f a b c n� b8n2 N: ivtrel f a b c n� a^8n2 N: ivtrel f a b c n� b8n2 N: ivtrer f a b c n > ivtrel f a b c n:

134 Chapter 6. Incorporating induction

6.5.5 Transfer plan-specification

The well-partitioned plan-specification, described in theprevious section, generates a set of in-

ductive lemmas which the transfer plan-specification abbreviates as described in section 6.2.2.

For example, one of the inductive lemmas specified by the well-partitioned plan-specification

for the Intermediate Value Theorem is8n2 N: ivtrer f a b c n� a (6.23)

We introduce functionsr : N ! R andl : N ! R, wherer(n) = ivtrer f a b c nandl(n) =ivtrel f a b c n. The inductive lemma (6.23) is then abbreviated to8n2 N: r(n)� a:
NextλClamtransfers all of the variables to the non-standard domain, extending the functionsr

andl and embedding the unquantified real variables. The following is an instance of rule (4.57)

from our axiomatisation:

X : R; F : N ! R ` 8N 2 N: F (N)� X

X : R; F : N ! R ` 8N 2 �N : �F (N)� bX:
λClamuses this rule to state the transferred abbreviation of the inductive lemma:8n2 �N : �r(n) � ba:
6.5.6 A note on the degree of automation

It is not possible to enter Rolle’s Theorem as stated in figure(6.5) and yield a proof-plan

immediately. There are two specific points in the plan-specification which must be dealt with

interactively.

1. The rewrite rules for the partitioning function must be added by hand

2. Any inductive lemmas specific to the partitioning function for the conjecture in question

must be added by hand

Once the case split set for the partitioning function has been added to the theory, and the

conjecture entered, a crucial inductive lemma must be provided interactively to the system.

Once this has been done, the overall plan-specification given in figure 6.12 can produce a

complete proof-plan for the Intermediate Value Theorem andfor Rolle’s Theorem.

6.6. Methods, Critics and Lemmas 135

6.6 Methods, Critics and Lemmas

We describe the method and critics developed to allow the plan-specifications presented in the

previous section to produce proof-plans.

6.6.1 The partitioning function

We describe first the methods and critics developed in order to yield proof-plans for the induc-

tive lemmas about the partitioning function.

Case-split analysis

We introduce a new definition for rewrite rules inλClamwhich allows case split analysis to

be performed in a principled way. When a case-split set is applied, it is first shown to be

complete, meaning that the disjunction of all the cases is provable. Then a conjunction of goals

is established, corresponding to each of the cases of the case-split.

Lemma speculation critic

We implement a simple critic which analyses the failure of rippling in an inductive proof.

This follows the lemma calculation critic of [Ireland, 1992], and uses the evaluation plan-

specification shown in figure 5.5 (of chapter 5) to prove it. For example consider the simple

inductive goal for the intermediate value theoremivtrel f a b c n+ivtrer f a b c n
2

" �ivtrel f a b c n= 1
2� b�a

2n

"
after weak fertilisation and generalisation of common subterms this corresponds to speculating

the rewrite rule

Y+X
2

" �Y) 1
2� X�Y

" :
Mutual induction

We implement mutual induction inλClamby applying induction to a conjunctive goal. This

allows us to have more than one induction hypothesis, and we can then apply the built-in

embedding method which embeds more than one hypothesis in the conclusion, and then ripples

in the normal way with multiple embeddings.

136 Chapter 6. Incorporating induction

6.6.2 Adding Intermediate lemmas

We add a number of lemmas to the system interactively which are often used in the proof-plans

for the inductive lemmas. These are described in full in section B.3.

6.6.3 The transfer-back plan-specification

We introduce the methods which make up the transfer-back plan-specification shown in figure

6.14.

Discharge Conditions

The discharge conditions method assumes we have hyperreals�l(n) and�r(n) introduced by

the transfer plan-specification. It looks for definitions ofcontinuity and differentiability in the

hypotheses and derives new hypotheses such as� f (�l(n))� f (�r(n)), as for Rolle’s Theorem.

Introduce witness

Method 10 uses rule (4.38) to introduce a fresh real variableto the hypotheses. If finds a

hyperrealθ in the hypotheses and determines if it is finite by finding bounds, e.g.ba� θ� bb in

the case of Rolle’s Theorem.

Method 10 Introducing a real witness to the hypotheses
Input: Goal:H ` G

Conditions:

hyperrealθ 2 H
f inite(θ)

Output: Goal:H[fx : Rg[fbx� θg `G

Establish bounds

Method 11 establishes bounds on the introduced real variable, using the lemmas introduced in

section 6.6.2.

Introduce cases

Method 12 looks for a hypothesis of the formD1_ :::_Dn in the hypotheses, and constructs a

conjunction of subgoals using rulel_.

6.6. Methods, Critics and Lemmas 137

Method 11Establishing bounds on the real witness
Input: Goal:H ` G

Conditions:

θ� bx 2 Hba� θ� bb
Output: Goal:H[fa� x� bg `G

Method 12Constructing a conjunction of subgoals
Input: Goal:H ` G

Conditions:

D = D1_ :::_Dn 2 H
Apply rule l_ exhaustively

Output: Goal:H[D1 `G ::: H[Dn `G

Simplify derivatives

Method 13 finds hyperrealsθ andφ in the hypotheses such thatθ� φ andθ 6= φ. It then looks

for a definition of uniform differentiability for a functionf in the hypotheses, determines an

expression forf 0(θ), and adds it to the hypotheses.

Method 13Simplifying derivative expressions
Input: Goal:H ` G

Conditions:

hyperrealsθ;φ 2 H
θ� φ

θ 6= φ

Definition for uniform differentiability for a functionf in H
Output: Goal:H0[f f 0(θ)� f (θ)� f (φ)

θ�φ g `G

Order constraints

The order constraints method uses arithmetic rules (e.g. (B.15)–(B.20) in Appendix B) to

rewrite the hypotheses until a termF (θ)� bD can be found. These rules describe the deductions

that can be made about terms constrained by ordering relations such as>. It uses all of the

constraints of the hyperreal variables it can find, performing case splits if the constraint involves

138 Chapter 6. Incorporating induction� or�. An outline of the order constraints method is given in sectionintlemap.

As an example of its actions, consider Rolle’s Theorem. The term �l(n) � �r(n) exists

in the hypotheses, and bounds forf 0(�l(n)) and f 0(�r(n)) exist in the cases which are intro-

duced to the hypotheses via Method 12. In one casef 0(�l(n)) � 0 and f 0(�r(n)) < 0. The

order constraints method performs a case-split forf 0(�l(n)) = 0 or f 0(�l(n)) > 0. The result

f 0(�l(n))� 0 is then obtained by applying arithmetic rules such as

A� B^A<C^B>C ! A�C:
Transfer back

This method uses rule bX � bY ! X =Y

and the transitivity of� to establish that a witness for the theorem in question, and closes the

branch of the proof-plan. For example, in Rolle’s Theorem wewant to establish the existence

of a real variablex such thatf 0(x) = 0.

Method 14 Transfer back
Input: Goal:H ` 9y2 R: P1(y)^ :::^Pn(y)

Conditions:

realx, hyperrealθ 2 Hbx� θ

Uniformly continuous functionf in hypothesesH
f (θ)� bA 2 H
add f (x) = A to hypotheses

Uniformly differentiable functionf in hypothesesH
f 0(θ)� bB
add f 0(x) = B to hypotheses

All conjuncts occurPi(x) in hypotheses

Output: Branch closed

6.7 Test Set

We describe here two real analysis theorems which we use to test the plan-specifications we

constructed using the development set. The first of these is anon-standard version of Rolle’s

6.7. Test Set 139

Theorem which assumes the existence of a maximum point. The second is a generalised version

of Rolle’s Theorem called the Mean Value Theorem.

6.7.1 Simplified Rolle’s Theorem

f 0; f : R ! R
a;b;c : R
a< c< b (6.24)8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y) (6.25)8x2 �R : 8h2� R: a� x� b ^ h� 0 ^ h 6= 0 ! � f (x+h)�� f (x)

h � � f 0(x) (6.26)

a< b8x2 �R : ba� x� bb! � f (x) �df (c) (6.27)` 9x2 R: a< x< b ^ f 0(x) = 0

In this weakened version of Rolle’s Theorem, we have alreadyintroduced a pointc which we

know to be the maximum. This mirrors part of the proof in real analysis, where we use the fact

that a function attains its maximum on a compact set [Apostol, 1974] to prove Rolle’s theorem.

There is a dual which states that a function also attains its minimum on a compact set which

we do not study here. The important new hypotheses are (6.24)and (6.27).λClamdoes not

need to generate any new hypotheses by introducing a partition function in this case as we can

deduce the result from the existing hypotheses. It applies the transfer-back plan-specification

directly. However, the transfer-back plan-specification fails to apply in this case. The discharge

conditions method cannot apply as there are no hyperreals inthe hypotheses. In order to allow

the methods to apply as intended, we must introduce hyperreals to the hypotheses interactively.

We introduce hyperrealsθ andφ such thatθ < bc, φ > bc andθ � φ. This allows the transfer-

back plan-specification to succeed by analysing the sign of the terms� f 0(θ) and� f 0(φ) using

the order constraints method, and then using Method 14 to establish that f 0(c) = 0 over the

reals. Now the transfer-back plan-specification succeeds.

The reason for the failure of the transfer-back plan-specification in this case lies in its

assumption that hyperreals have already been introduced bythe transfer plan-specification.

For this characterisation of Rolle’s Theorem, we need to addthese hypotheses interactively.

140 Chapter 6. Incorporating induction

6.7.2 Mean Value Theorem

We introduce a generalised version of Rolle’s theorem, known as the Mean Value Theorem.

We characterise the theorem in non-standard analysis as shown in figure 6.15.

f 0; f : R ! R
a;b : R8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x) � � f (y) (6.28)8x2 �R : 8h2� R: a� x� b ^ h� 0 ^ h 6= 0 ! � f (x+h)�� f (x)

h � � f 0(x)(6.29)

a< b` 9x2 R: a� x� b ^ f 0(x) = f (b)� f (a)
b�a

Figure 6.15: Our characterisation of the Mean Value Theorem

In most text books on analysis (e.g. [Apostol, 1974]) the Mean Value Theorem is proved by

transforming the functionf in the statement of Rolle’s Theorem. Recall that the conclusion of

Rolle’s Theorem is 9x2 R: a� x� b ^ f 0(x) = 0

If we define a functiong as

g(x) = f (x)� f (a)� (x�a)� (f (b)� f (a)
b�a

)
we yield the expression

f 0(x) = g0(x)+ f (b)� f (a)
b�a

:
Now notice thatg(a) = g(b) = 0. We know thatg is uniformly continuous and differentiable

on the interval[0;1℄ since it is a linear composition of the functionsf andλx:x. Now Rolle’s

theorem tells us there is some pointc whereg0(c) = 0. From this we can determine that

f 0(c) = f (b)� f (a)
b�a as required.

We present a different proof-plan for the Mean Value Theorem, not assuming Rolle’s The-

orem and applying the plan-specifications shown in section 6.5.

For a graphical representation of the Mean Value Theorem, see figure 6.16. In Rolle’s

theorem, as the functionf at the pointx in the figure had zero derivative, the tests for the

partitioning criterion were simple; they depended on the sign of f 0 and whether the value at

6.7. Test Set 141

a b

f(a)

f(b)

x

f’(x)= f(b)−f(a)
b−a

Figure 6.16: The Mean Value Theorem

one end point of the interval was less than or greater than thevalue at the other end point. In the

case of the Mean Value Theorem, this is more general, and the tests for the partitioning criterion

become more complicated. More specifically, we define a partitioning criterion, dependent on

whether the value of the derivative is greater or less than the value of the derivative at the point

x- namely f (b)� f (a)
b�a . Also we test whether one end point is ‘further above’ or ’further below’

the line produced from the tangent to the pointx than another. In order to do this we test for

end pointsr andl

f (r)� (f (b)� f (a)
b�a

� r)� f (l)� (f (b)� f (a)
b�a

� l)
in the case where the right pointr must be ‘further above’ the tangent line than the left pointl .

We omit the presentation of the wave rules here, as they are similar to those of Rolle’s The-

orem. The common conjectures encapsulated by the well-partitioned plan-specification (see

section 6.5.4) can all be planned automatically. We conjecture with pen and paper a corre-

sponding version of the disjunctive lemma introduced for Rolle’s Theorem (6.13), and provide

it to the overall plan-specification..

The well-partitioned plan-specification and transfer plan-specification all succeed. For sim-

plicity we write

r(n) = mvtrer f f 0 a b n

l(n) = mvtrel f f 0 a b n

X = f (b)� f (a)
b�a :

142 Chapter 6. Incorporating induction

The induction plan-specification produces proof-plans automatically for the following lem-

mas: 8n2 N: r(n)� l(n) = b�a
2n (6.30)8n2 N: r(n) � b^ r(n) � a (6.31)8n2 N: l(n) � b^ l(n) � a (6.32)8n2 N: r(n)> l(n) (6.33)8n2 N: f 0(l(n)) � X ^ f 0(r(n))< X _

f 0(l(n))< X ^ f 0(r(n))� X _
f 0(l(n))� X ^ f 0(r(n))� X ^ f (l(n))� (X� l(n))� f (r(n))� (X� r(n)) _
f 0(l(n))< X ^ f 0(r(n))< X ^ f (r(n))� (X� r(n))� f (l(n))� (X� l(n)) (6.34)

The transfer-back plan-specification does not succeed for the Mean Value Theorem as it re-

quires the following two lemmas which are not available to the system:

C�E 6= 0 ^ A� (B�C) = D� (B�E) ! A�D
C�E = B

C�E 6= 0 ^ A� (B�C)< D� (B�E) ! A�D
C�E < B:

Having added these rules to the system interactively, the plan-specification successfully yields

a complete proof-plan.

6.7.3 Simple higher order test

As a simple test of the higher order capabilities ofλClam, we introduced a partitioning function

with an arbitrary partitioning criterion, which bisects the interval. We introduce a partitioning

function which bisects an interval for an arbitrary partitioning criterionP . The partitioning

criterion we include in this case is the simplest we can devise –P _:P – i.e. a simple case

split such as that for the Intermediate Value Theorem. The wave rules which are introduced, as

shown in figure 6.17, allow the well-partitioned plan-specification to yield proof-plans for all

of the common inductive lemmas it specifies. This simple example causes no problem because

the completeness of the case-split set can be shown purely byassuming the law of the excluded

middle.

The induction plan-specification automatically produces proof-plans for the following lem-

mas: 8n2 N: horer f f 0 a b n�horel f f 0 a b n= b�a
2n (6.35)

6.7. Test Set 143horel F A B C0) Ahorer F A B C0) B

P F A B C N !horelF A B C s(N) ") horel F A B C N

P F A B C N !horerF A B C s(N) ") (horer F A B C N+horel F A B C N)=2
":P F A B C N !horelF A B C s(N) ") (horel F A B C N+horer F A B C N)=2
":P F A B C N !horerF A B C s(N) ") horer F A B C N

Figure 6.17: The wave rules representing a partitioning function with a simple higher order

partitioning criterion8n2 N: horer f f 0 a b s(n) � b^horer f f 0 a b n � a (6.36)8n2 N: horel f f 0 a b s(n) � b^horel f f 0 a b n � a (6.37)8n2 N: horer f f 0 a b n > horel f f 0 a b n (6.38)

6.7.4 The trisection method

As another test of the plan-specifications developed, the trisection method for a restricted ver-

sion of the Intermediate Value Theorem is attempted inλClam.

As described in [Bishop and Bridges, 1985], this method is algorithmically realisable. This

means that it is possible for a machine to verify which of the cases of the partitioning criterion

apply. For this reason it is an interesting test case, as there is true algorithmic content in the

partitioning function (see figure 6.19), unlike with the bisection method.

We restrict the class of functions under consideration to bethose which are monotonically

increasing, and uniformly continuous on the interval[a;b℄. We note here that we deal with a

function which is monotonically increasing everywhere, when the function should in fact only

be monotonically increasing in the interval[a;b℄; this restriction could easily be lifted.

This restricted characterisation of the Intermediate Value Theorem can be seen in figure

144 Chapter 6. Incorporating induction

6.18.

f : R ! R
a;b;c : R8x;y2 R: x< y! f (x) < f (y) (6.39)8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x) � � f (y)

a� b

f (a)� c� f (b)` 9x2 R: a� x� b^ f (x) = c

Figure 6.18: The characterisation of the Intermediate Value Theorem for use with the trisection

method

In order to construct a partitioning criterion for this method, we must rely on the fact that

givenx;a andb,

b> a ! x> a_x< b

is constructively true. We thus set up the partitioning function shown in figure 6.19.

trirec F A B C 0 = [A,B]

trirec F A B C s(N) =

let [X,Y]=trirec F A B C N

in

if C > F((2X+Y)/3) then [(2X+Y)/3,Y]

else if C < F((X+2Y)/3) then [X,(X+2Y)/3]

Figure 6.19: The partitioning function for the trisection version of the Intermediate Value Theo-

rem

We then attempt to yield proof-plans for inductive lemmas which are almost the same as those

for the version of the Intermediate Value Theorem using bisection. We note here the differences

in the proof-plans for the inductive lemmas taking particular note of any extra theorems that

were needed. We introduce wave rules fortrirer andtrirel in the same way as we did

for the Intermediate Value Theorem (see figure 6.20).

6.7. Test Set 145

trirel F A B C0) Atrirer F A B C0) B

F(((2�trirel F A B C N)+trirer F A B C N)=3)<C!trirerF A B C s(N) ") trirer F A B C N

F((2� (trirel F A B C N)+trirer F A B C N)=3)<C!trirelF A B C s(N) ") ((2� trirel F A B C N)+trirer F A B C N)=3
"

F(trirel F A B C N+(2�trirer F A B C N)=3)>C!trirerF A B C s(N) ") (trirel F A B C N+(2� trirer F A B C N)=3) "
F(trirel F A B C N+(2�trirer F A B C N)=3)>C!trirelF A B C s(N) ") trirel F A B C N

Figure 6.20: The wave rules representing the partitioning function for the trisection method for

the Intermediate Value Theorem

146 Chapter 6. Incorporating induction

When we apply the overall plan-specification to the Intermediate Value Theorem using the

trisection case-split (see figure 6.20) we find that the induction plan-specification fails at the

point where the case-split set needs to be proven to be complete. From figure 6.20 we see that

the conditions are

F(((2�trirel F A B C N+trirer F A B C N)=3)<C

F(tritrel F A B C N+(2�trirer F A B C N)=3)>C

which can only be proved to be complete by using hypothesis (6.39):8x;y2 R: x< y! f (x) < f (y);
and the lemma 8n2 N: trirer f a b c n > trirel f a b c n : (6.40)

This must then be used as an assumption in all subsequent inductive lemmas in order for the

case-split set to be used.

In order to solve this problem we construct first a proof-planfor lemma (6.40). During the

step case of the proof-plan, we interactively generate the subgoal

f : R ! R
a;b;c : R

n : Ntrirer f a b c n > trirel f a b c n `
f ((2�trirel f a b c n)+trirer f a b c n

3)<C_ f (trirel f a b c n+(2�trirer f a b c n)
3)>C

which makes use of the induction hypothesis of (6.40) and therewrite rules

F(X)<C_F(Y)>C) F(Y)> F(X)(X+2Y)=3> (2X +Y)=3)Y > X:
We use hypothesis (6.39) as a rewrite rule

F(Y)> F(X))Y > X

In order to finally ascertain that the case split is valid, we need to know that the right point of

any partition is always greater than the left point. Recall that this was not necessary for the

6.7. Test Set 147

version of the Intermediate Value Theorem using bisection.The only place in the proof-plan

where we use the fact that the function is monotonically increasing (given by hypothesis (6.39))

is in showing that the case-split set is complete.

We need a proof-plan for the lemma8n2 N: trirer f a b c n�trirel f a b c n= (b�a)� 2
3

n
(6.41)

which succeeds because the wave critic is able to speculate the following lemmas8X;Y 2 R: X+2Y
3 �X = 2

3� (Y�X)8X;Y 2 R: Y� 2X+Y
3 = 2

3� (Y�X)
which are crucial to yielding a complete proof-plan. The other inductive lemmas which are

planned automatically are8n2 N: trirer f a b c n� a^8n2 N: trirer f a b c n� b (6.42)8n2 N: trirel f a b c n� a^8n2 N: trirel f a b c n� b (6.43)8n2 N: f (trirer f a b c n) � c ^ c � f (trirel f a b c n): (6.44)

We need to introduce more lemmas interactively in order to yield complete proof-plans for

these remaining inductive lemmas. The wave rules for these new lemmas are

2X+Y
3

" > Z_ 2X+Y
3

" = Z) X > Z_X = Z ^Y > Z_Y = Z
"

2X+Y
3

" < Z_ 2X+Y
3

" = Z) X < Z_X = Z ^Y < Z_Y = Z
" :

They are the trisection counterparts of the bisection ones presented in section 6.6.2.

In order for the transfer plan-specification to add hypotheses which will allow the transfer-

back plan-specification to succeed, we need to ascertain that(bb� ba)� (2
3)n � 0

whenn is infinite. Once this has been done, the transfer-back plan-specification succeeds in

exactly the same way as for the intermediate value theorem.

We needed to make modifications to the plan-specifications inorder to yield a complete

proof-plan for the Intermediate Value Theorem using the trisection method:

148 Chapter 6. Incorporating induction� We alter the well-partitioned plan-specification so that the inductive lemmas are all

planned at once using mutual induction. This alteration is ageneral pattern which would

not affect the success of the proof-plan construction for the theorems in the development

set.� We alter the transfer plan-specification so that rule (6.45)is used when adding the trans-

ferred versions of the inductive lemmas to the hypotheses.� We add the rules (6.45) and (6.45) to the system interactively in order to yield proof-plans

for the inductive lemmas.

6.8 System Performance and results

We discuss here the performance of our system in tackling complex theorems from real anal-

ysis. We give a detailed description of the various aspects of the automation of each theorem.

We discuss the search space involved, argue that our system reduces the search space, and

give an evaluation of the results obtained. Finally we discuss the evaluation, and make some

comments on the proof-plans generated.

In order for us to give a meaningful evaluation, let us first remind ourselves of the claims

that we make about constructing proof-plans for non-standard analysis.

Plan reuse

We claim that the techniques we use can be easily and quickly applied to new conjectures,

Search space reduction

We claim that our proof-architecture and plan-specifications reduce the search space,

Readability

We claim that the proof-plans we yield are readable.

6.8.1 Successes and Failures

Tables 6.1 and 6.2 shows the results obtained from the development and testing of the plan-

specifications and methods that we have developed. These tables demonstrate the degree of

automation for each proof-plan. We record whether a proof-plan was yielded, and the size

of the proof-plan in the number of atomic methods fired. We also add how many lemmas

were speculated, and how many were added by hand. For the mainreal analysis theorems,

6.8. System Performance and results 149

the inductive lemmas are not included in the number of lemmasadded by hand. The relevant

inductive lemmas to each theorem are presented in groups under the name of the main theorem.

WhereλClamused mutual induction, we present the figures for the proof-plans of the lemmas

together. The number of critics fired represents the number of times the lemma calculation

critic fired, and the number of speculated lemmas corresponds to the number of lemmas which

were correctly calculated. The lemmas which were added by hand for the development set are

those in section 6.6.2, which are used throughout all of the proofs. Finally we record the time

taken to encode and yield proof-plans for the conjectures inhours.

Conjecture Proof-plan Size of No. critics No. spec. No. lems Dev.

yielded proof-plan fired lems by hand time /hours

IVT yes 8 0 0 2 120

(6.3) yes 18 1 2 1 36

(6.4),(6.5) yes 44 0 - 2 40

(6.6) yes 18 1 1 2 24

Rolle yes 36 0 0 2 80

(6.9) yes 18 1 2 1 2

(6.10),(6.11) yes 44 0 - 2 2

(6.12) yes 18 1 0 2 2

(6.13) yes 60 0 0 0 24

(6.14) yes 16 0 0 3 8

Table 6.1: Results for the development set

Once again the test set in this chapter is relatively small. We were not able to test the plan-

specifications on other theorems, but some investigations were made into integration as can be

seen in chapter 7.

6.8.2 Search Space

The issue of whether our plan-specifications reduce the search space is important in analysing

the success of our proof-planning machinery and plan-specifications. We cannot claim that we

have successfully found structure in these proofs, if it turns out that applying all of the lemmas

in a more simple search would have resulted in proofs.

In the case of induction, the rippling mechanism is more useful for analysis for the lemma

150 Chapter 6. Incorporating induction

Conjecture Proof-plan Size of No. critics No. spec. No. lems Dev.

yielded proof-plan fired lems by hand time /hours

Sim.Rolle yes - - - 2 8

MVT yes 8 0 0 8 12

(6.30) yes 18 1 2 1 2

(6.31),(6.32) yes 44 0 - 2 2

(6.33) yes 18 1 0 2 4

(6.34) yes 64 0 0 1 12

(6.35) yes 18 1 2 1 1

(6.36),(6.37) yes 44 0 - 2 1

(6.38) yes 18 1 1 2 1

Trisection yes 8 0 0 3 1

(6.41) yes 16 1 0 3 24

(6.42),(6.43) yes 18 1 2 1 12

(6.40) yes 44 0 - 4 12

(6.41) yes 18 1 1 4 12

Table 6.2: Results for the test set

calculation critic, but does not significantly reduce the search space as there is only one univer-

sally quantified variable. The case analysis allows us to complete the proof-plans in a principled

way, and is not included in the usual induction method. In these proof-plans the important piece

of reasoning is encapsulated in the lemmas we include by handin section 6.6.2. The actions of

the lemma calculation critic can be reproduced with a generalisation step after weak fertilisa-

tion, and in order to plan these proofs at all we need the case analysis. What is crucial to the

proofs are the lemmas we supply in 6.6.2.

In the case of the transfer-back plan-specification, we construct three tests to determine the

degree to which the search space has been reduced. In these tests we use the reformulation

of the theorems using the abbreviated information from the inductive lemmas. Without these

it is not possible to yield a proof-plan. We test the transfer-back plan-specification using the

reformulation of Rolle’s Theorem (see figure 6.11) as a conjecture. The numbers relating to the

size of the proof-plan and average branching factor are approximate, since this is just a rough

measure of the search space.

6.8. System Performance and results 151

Our technique

In our technique, there is no backtracking for Rolle’s theorem, and a proof-plan is found at

depth 8. This is because the first route found is successful, and the methods used by the plan-

specification are very strongly linked to this type of proof.

Naı̈ve strategy 1

The first strategy we tested is an iterative deepening planner, equipped only with a rewriting

strategy, and access to the axiomatisation presented in chapter 4. Unsurprisingly, there is an

enormous combinatorial explosion, and does not find a proof-plan for Rolle’s Theorem even

after three days of searching. This is because the introduction of new variables and the order

relations. In the proof-plan script which was produced during the experiment, the planner

reached a depth of 8 and the number of nodes reached was of the order of 100,000, which

denotes an average branching factor of roughly 5.

Naı̈ve strategy 2

The second strategy we tested was a plan-specification whichtested all of the atomic methods

shown for the transfer-back plan-specification in section 6.6.3, using an iterative deepening

search strategy. This was more successful yielding a proof-plan for Rolle’s Theorem at a depth

of 8. The methods are normally applied in a specific order which is determined by the transfer-

back plan-specification shown in figure 6.14. In this case, onaccount of the iterative deepening

planner and the naı̈ve waterfall of methods, many unnecessary nodes were visited. There is

more than one way in which the atomic methods can apply at any one point. For example,

there may be more than one possible way of discharging a condition from a hypothesis, as is

the case with Rolle’s Theorem. The total size of the proof-plan is roughly 2000 nodes, giving

an average branching factor of about 2.4.

Iterative Deepening with current plan-specification

In this case we use an iterative deepening planner with the plan-specification shown in figure

6.14. Now the only choice points which occur are those that exist within the atomic methods

as discussed above. In the case of Rolle’s Theorem this happens at 2 specific places:

Simplification of derivatives

We can choose either�l(n) or �r(n) to yield a simplified expression for the derivative.

152 Chapter 6. Incorporating induction

Order Constraints

We can choose either�l(n) or �r(n) to perform the order constraints.

In this case the number of nodes in the search space is 20 as opposed to 8, since the plan

duplicates at these choice points. The branching factor here is negligible, due to the fact that

there is very little search involved as the plan-specification itself is very prescriptive,

The plan-specifications we have presented in this chapter provide the planner controlled

use of non-terminating rules, and allow manipulation of thehypotheses in such a way that a

proof-plan can be yielded. The transfer-back plan-specification introduces heuristics which

guide the search to find this step in the proof-plan.

6.8.3 Evaluation

We discuss the results shown in tables 6.1 and 6.2, together with the investigations into the

search space, in relation to the criteria set out in section 4.4.3. A similar evaluation scheme is

given in [Cantu et al., 1996], where proof-planning was usedto automate proof in large hard-

ware verification problems.

Plan-specification criteria� Generality

Recall from section 4.4.3 that generality must be judged according to how well we can

reuse our plan-specifications on new conjectures. Looking at the information in tables

6.1 and 6.2, we notice the difference in development time between the conjectures in

the development set and those in the test set. We see that the time taken to develop the

inductive lemmas for the Mean Value Theorem and the Higher Order Test is significantly

less than for the Intermediate Value Theorem, for which the inductive planning machin-

ery was initially implemented. In the case of trisection, more work must be done as new

lemmas are needed, and in particular the completeness of case-split set proves harder to

show than in the case of bisection.

The most significant difference between the test set and development set is in the devel-

opment time taken to yield a proof-plan from the transfer-back plan-specification. In the

case of the trisection for the Intermediate Value Theorem weneed only add one lemma,

and the transfer-back plan-specification produces exactlythe same proof-plan as that for

the bisection technique. We require some lemmas to completea proof-plan for the Mean

6.8. System Performance and results 153

Value Theorem, but the development time is significantly less than for Rolle’s Theorem.

Notice that the number of unspeculated lemmas is increased in the test set, indicating

that the plan-specifications are too tailored to the development set.

We can say that the plan-specifications we developed for the development set apply to

the theorems in the test set with only slight modification in each case, and hence our

claim of reusability is to some extent substantiated. It must be noted however that the

plan-specifications are not as general as we would hope. One reason for this is the

low number of critics fired as opposed to lemmas we provide by hand. Also, in such

a complex proof-structure, it is unsurprising that slight variations in the method will

cause a large difference in the plan-specification needed toproduce a proof-plan. An

example of this is the use of trisection, where a slight difference in the way the interval

is partitioned causes complications in proving the inductive lemmas.� Intuitiveness

In order to test the intuitiveness of the proof-plans, we must assess to what extent they

follow the steps that a human would perform. Comparing the proof-plans we construct

with text-book proofs of the theorems presented here from standard analysis, we cannot

claim that the proofs are intuitive. However, we claim that the forward proof-steps which

we use in the transfer-back plan-specification exploit the simplicity of non-standard anal-

ysis and produce readable and intuitive proof-plans in thatthe steps performed are not

dissimilar from those that a human would perform. The size ofthe proof-plan is very

small, but this is also due to the amount of complexity which is encapsulated in the

atomic methods.� Simplicity

The inductive plan-specifications that we develop are simple, and can yield relatively

large proof-plans. The simplicity of inductive plan-specifications is well documented in

for example [Bundy, 1989]. As we encapsulate most of the reasoning in the atomic meth-

ods, the plan-specifications are simple. This is because each atomic method encapsulates

many rules that would need to be applied at the object level.

154 Chapter 6. Incorporating induction

Process criteria� Prescriptiveness

In order to assess the prescriptiveness of the process of finding a proof-plan, we must

analyse the search space examined. We can see from the simpleexperiments in section

6.8.2 that our plan-specifications perform less search thana naı̈ve search. The best mea-

sure of this rests in the size of the search space when our atomic methods are applied

in an arbitrary waterfall, as opposed to ordered and structured in the way shown in fig-

ure 6.14. This demonstrates that although much of the searchis encapsulated within the

methods themselves, the ordering of these methods reduces the search space, and hence

is a good representation of the structure of proof for this type of conjecture.� Efficiency

The issue of efficiency is not our prime concern in this thesis, however it is worth not-

ing that the search space is relatively small in these examples, so the computationally

expensive parts of the proof-plan happen within the atomic methods.

6.8.4 Comparison with other work

[Gamboa, 1999] tackles the automation of similar proofs in ACL2 . In his thesis, he introduces

a proof of the intermediate value theorem, assuming that theendpoints of the initial interval,[a;b℄, satisfy f (a) > 0 ^ f (b) < 0. He introduces a partitioning function calledfind-zero

which takes a natural numbern and partitions the initial interval inton pieces and finds which

one of these intervals contains a point where the function is0. When thisn becomes infinite

it can be shown that this interval is infinitesimal, and thestandardpoint in this interval is

the point at which the value of the function is 0. This approach uses induction as well. The

construction of the relevant lemmas which build up to be ableto prove the Intermediate Value

Theorem is done by hand, using the axiomatisation introduced. He reuses a lot of the lemmas

he proves by showing the same result where the endpoints of the initial interval satisfyf (a)<
0 ^ f (b)> 0. The proofs of the lemmas are fully automated, but the proofof the Intermediate

Value Theorem itself requires some hints, which correspondto the structure information which

we have encoded in our overall plan-specification given in figure 6.12. This work has the

advantage of being proved in an object level theorem prover.The disadvantage is that the

6.9. Discussion 155

techniques employed in proving the Intermediate Value Theorem are not reused, and hence

cannot claim to have generality, although it is unclear how well his techniques would have

worked on such as examples as we present here.

In [Fleuriot, 2001a], the Intermediate Value Theorem is proved in Isabelle. In this case the

bisection method is used, and the proof follows much the samepattern as the proof-plan we

obtain from our plan-specification. The final stages of the proof are more lengthy in Isabelle,

as there are many object level steps encapsulated in our atomic methods. In his work, Fleuriot

points out the advantage that can be gained from automation.Despite the use of non-standard

analysis, Fleuriot notes that a fair amount of interaction needs to happen within Isabelle to

prove these involved theorems. Many lemmas are needed and variables still need to be instan-

tiated explicitly. Our proof-planning approach seems to have a higher level of automation and

in cases requiring interaction, our machinery provides information that can help us to provide

the appropriate lemma toλClam, a facility not available in Isabelle.

6.9 Discussion

In this section we discuss some of the issues with planning proofs in the manner described in

this chapter. We discuss some theoretical properties, and possible applications, and discuss the

difference between the proofs presented here and the classical real analysis proofs.

6.9.1 Higher order theorems

We notice from the simple higher order test we presented in section 6.7.3, that some of the com-

mon structure involved in the inductive proof can be described using the higher order aspects

of λClam. We could use these features to construct a higher order version of a partitioning

function, where we give the arguments as a list. This way we can argue about partitioning

functions with any number of arguments.

Our approach instead favours the proof-planning methodology to allow us to construct a

plan-specification which produces proof-plans for each of the important properties that are

general to all partitioning functions.

6.9.2 Comparison with real analysis proofs

In constructing proof-plans in the manner shown, we are attempting to show that an algorithm

for finding a point with a certain property will converge on that point at infinity. It is not

156 Chapter 6. Incorporating induction

possible to implement this algorithm on the computable reals as checking whether two arbitrary

real quantities are greater or less than each other is undecidable. However, performing the

proofs in this manner behaves in an unexpected way in comparison to the real analysis proofs.

In Rolle’s Theorem for example, we require that the range of the existential variable includes

the endpoints, which in fact is too weak a claim. In real analysis it must exist within the open

interval. This is because it is possible for a point with zeroderivative to exist at the end points,

but were it to occur, there would have to be another point withzero derivative in the open

interval. As a consequence we must weaken Rolle’s Theorem further, since we must assume

that the derivative is defined at the end points. The problem is that the “algorithm” that we

employ for Rolle’s Theorem does not necessarily find this point, perhaps finding the end point

instead.

The proofs presented in this chapter, as in chapter 5, use non-standard analysis to establish

their results. However, non-standard analysis is used to a lesser degree in the theorems pre-

sented in this chapter. A standard version of these proofs would appeal to completeness of the

reals. Intuitively the partitioning function provides a sequence of reals. Allow the sequence to

be infinite, by transferring to the non-standard domain and using infinite hypernaturals provides

us a means of “accruing” the infinite sequence to a point infinitely down. This does rely on the

non-standard notion of convergence of a sequence, and henceimplicitly uses the completeness

of the reals. The partitioning parts of these proofs are entirely standard.

6.9.3 Algorithmic Content

The partitioning functions we which use bisection are only algorithms if we assume a decision

procedure for ordering real numbers. However, the trisection version of the Intermediate Value

Theorem introduces a partitioning criterion which is constructively provable. In this sense there

is computational content in the inductive lemmas for which we obtain proof-plans. However,

as we use non-standard analysis to establish the final result, the overall proof-plan does not

have immediate computational content.

6.9.4 Rolle’s Theorem

We claim that the proof-plan we show for the proof of Rolle’s Theorem represents a new

method for the proof of a weakened version of Rolle’s Theorem. Other partitioning techniques,

for example [Abian, 1979], have been attempted. Here, Abiantakes an interval (initially[a;b℄
in our example) and finds the pointsai ; pi ;mi;qi ;bi which split the interval[ai ;bi ℄ into four equal

6.10. Summary 157

intervals. The recursive function he writes then chooses the successive interval[as(i);bs(i)℄ to

be the first of the intervals [ai ;mi ℄ [pi ;qi ℄ [mi;bi ℄
for which the midpoint which is not exceeded by the midpoint of the other intervals. This

ingenious approach contructs a constructive proof which iscompleted using standard analysis.

The general technique is very similar to that which we adopt in this chapter. Our method differs

in that the partitioning criterion is dependent on the derivative of the function in question.

Had we been aware of this method at the time of writing this thesis, it would have been very

instructive to attempt it inλClam. We anticipate that it would not have proved difficult to

formulate a partitioning function for this method, and yield a complete proof-plan for Rolle’s

Theorem.

6.10 Summary

We have presented proof-planning machinery and sample proof-plans for another family of

analysis theorems. We incorporated induction into our approach, borrowing ideas from com-

putable analysis. We introduced the notion of a partitioning function, and showed how we yield

proof-plans for lemmas about partitioning functions for specific examples. We abbreviated our

inductive lemmas and transferred the results to the non-standard domain, where we were able

to use non-standard analysis techniques to yield proof-plans for the original analysis theorems.

We believe our technique of combining techniques from computable analysis and non-

standard analysis to be novel. In particular we present a novel proof of a weakened version of

Rolle’s Theorem, and showed that is was possible to use our approach to yield a proof-plan

for a restricted version of the Intermediate Value theorem using a trisection technique, which

allows the proof to be algorithmically realisable.

Chapter 7

Further Work and Conclusions

In this chapter we present some possible further research directions, indicating some work we

have already done to indicate their viability. We also draw some conclusions from the results

we achieved in this thesis.

7.1 Further Research

We describe five main areas of research which we have not investigated in this thesis, but which

follow on naturally from the work done.

7.1.1 Integration

Following on from the definition of the finite sums given in [Fleuriot, 2001a], we can apply

rippling and proof-planning techniques to some theorems about integration. We present here a

simple version of an integration theorem using this formalisation.

Integral definitions

We present a simplified definition of the Riemann integral over the realsZ b

a
f (x)dx= I () lim

h!0
(k=b b�a

h
∑
k=1

f (a+kh) �h) = I

which using a more simple functional notation can be rewritten toZ b

a
f (x)dx= I () lim

n!∞
sum(1;n;λx: f (x);a;b) = I :

159

160 Chapter 7. Further Work and Conclusions

where f : R ! R, anda;b2 N andI 2 R. The functionsumtakes two natural numbers, which

represent the limits of the sum, a real-valued function, andtwo real numbers. The function

argument is evaluated in the interval given by the real numbered arguments, at the positions

given by the natural numbered arguments, and a sum is taken.

The first two arguments represent the limits to the summation, within the specified end-

points. The function is We borrow some of the theorems provedin [Fleuriot, 2001a]:8N:in f t(N)! hrsum(1;N;�λx: f (x);ba;bb)� bI () �((λn:sum(1;n;λx: f (x);a;b)))N� bI : (7.1)

Here the type of hrsum is�N ! �N ! (�R ! �R)! �R ! �R ! �R , and the subtyping pred-

icatein f t(N) indicates thatN is an infinite hypernatural. This allows us to write the following

unfolding rule

NSint(a;b;λx: f (x)) = I () 8N: in f t(N)! hrsum(1;N; �λx: f (x);ba;bb)� bI
where the information about how sums work is contained within thehrsumfunction, andNSint

is a non-standard extension of integral.

7.1.2 Theorem

The following is a theorem over the reals:Z b

a
f (x)dx+Z b

a
g(x)dx= Z b

a
f (x)+g(x)dx

and we want to be able to prove it over the hyperreals. So statethe theorem as

NSint(a;b;λx: f (x)) = I f ^NSint(a;b;λx:g(x)) = Ig ` NSint(a;b;λx:(f (x)+g(x))) = I f + Ig

and rewrite as 8N: in f t(N)! hrsum(1;N; �λx: f (x);ba;bb)� bI f8N: in f t(N)! hrsum(1;N; �λx:g(x);ba;bb)� bIg` 8N: in f t(N)! hrsum(1;N; �λx:(f (x)+g(x));ba;bb)�\I f + Ig:
Rewriting using rule 7.1 we yield8N: in f t(N)! (λn:sum(1;n;λx: f (x);a;b)�)N � bI f8N: in f t(N)! (λn:sum(1;n;λx:g(x);a;b)�)N � bIg` 8N: in f t(N)! ((λn:sum(1;n;λx:(f (x)+g(x));a;b))�)N �\I f + Ig:

7.1. Further Research 161

Now it is possible to set up the coloured rippling process. After 8 introduction, choosing an

arbitrarym for N, the conclusion becomes

in f t(m)! �(λn:sum(1;n;(λx:(f (x) + g(x) ");a;b)))m � \(I f + Ig
"):

Now we use the rules

sum(M;N;λx: F(x) + G(x) " ;A;B)) sum(M;N;λx:F(x);A;B) + sum(M;N;λx:G(x);A;B) "\
I f + Ig

") bI f + bIg "
to ripple the conclusion to

in f t(m)! �((λn:(sum(1;n;λx: f (x);a;b) + sum(1;n;λx:g(x);a;b) ")))m � bI f + bIg " :
Now appeal to the wave rules

λx:(F(x) + G(x) ")) λx:F(x) + λx:G(x) "�(λx:F(x) + λx:G(x) ")) �(λx:F(x)) + �(λx:G(x)) "(�(λx:F(x)) + �(λx:G(x)) ")N) (�(λx:F(x)))N + (�(λx:G(x)))N "
which ripples the conclusion to

in f t(m)! �(λn:sum(1;n;λx: f (x);a;b))m+ �(λn:sum(1;n;λx: f (x);a;b))m " � bI f + bIg " :
Now it is possible to use the two familiar wave rules in order to finish the proof

X + A
" � Y + B

") X �Y ^ A� B
"

A! B^C
") A! B^ A!C

"
which finally yields the conclusion

in f t(m)! (λn:sum(1;n;λx: f (x);a;b)�)m� �I f ^ in f t(m)! (λn:sum(1;n;λx:g(x);a;b)�)m� �Ig "
at which point strong fertilisation applies, as each wave hole is an instance of a hypothesis.

We yielded a proof-plan for this theorem inλClam, but did not pursue the research avenue any

further. It would be interesting to see to what extent more complex integration theorems such

as integration by parts could be tackled byλClam.

162 Chapter 7. Further Work and Conclusions

7.1.3 Verifying algorithms

As described in [Harrison, 1999], there has been a significant amount of work done in verifying

correctness properties of floating point formalisations. As mentioned, the work described in

chapter 6 cannot truly be called algorithm verification, as there is no decision procedure for

equality over the reals. With the exception of the trisection method, there is no algorithmic

content to any of the proofs. As described in [Chippendale, 1995], it is possible to combine

proof-planning and computable analysis. A further interesting avenue of research would be to

construct such proofs using floating point number systems. It is not clear at this point what role

non-standard analysis would play in such proofs.

7.1.4 Object-level proofs

In order to justify our work as helping in the automation of proof, we must be able to execute the

proof-plans at the object-level. As we have described the methods we use are complex and do

not correspond exactly to the application of one rule at the object-level. We have presented an

axiomatisation for our system and have indicated how the methods correspond to applications

of these axioms.

We would like to be able to attach the work performed by Fleuriot in Isabelle/HOL to

the system we have devised in order to yield object-level proofs [Fleuriot, 2001a]. This is of

particular interest since we follow a similar formalisation for non-standard analysis, also using

the transfer theorem in both directions in our proof-plans.

As mentioned in section 3.2, methods comprise of a number of “slots”. One of these

corresponds to the name of a tactic in an object-level theorem prover. This communication

has successfully been achieved in the Clam/HOL project [Boulton et al., 1998], where a new

tacticclam tac was implemented in HOL which called the Clam proof-planner with inductive

conjectures. Using the HOL tactic name in the slot of each method, the proof-plan returned a

tree of tactic applications to HOL, which automatically proved the inductive conjecture.

It is feasible that tactics could be written in Isabelle/HOLwhich correspond to the methods

we have implemented. It would then be possible to automate proofs at the object-level by

attaching these tactic names to the tactic slot in each atomic method. We have focussed our

research on finding structure in proof at the proof-planninglevel, but a natural extension to our

work would be to implement such tactics in Isabelle/HOL.

7.1. Further Research 163

7.1.5 Mathematical assistant

A further area of research pertaining to this thesis would beto take the techniques presented in

[Heneveld et al., 2001] and to apply them to the problem of finding proofs for the continuity of

specific functions using non-standard analysis. This work implements methods inλClamwhich

mirror the general techniques used by students in solving integral and differentiation problems.

In particular, a best-first search is employed to choose the best method to apply at each stage

according how suitable its application is. The motivation is to use the system as a mathematical

assistant, and to model human reasoning in a particular mathematical domain.

The ΩMEGA system [Benzmüller et al., 1997] has many examples of functions which it

proves to be continuous using standard analysis, advertising this work in the context of a mathe-

matical assistant. In order to use the approach described in[Heneveld et al., 2001] to the realm

of analysis, the techniques would mirror those used in chapter 5, and in particular the use of

Method 7, where infinitesimal terms are eliminated from goals. The work of Heneveld is par-

ticularly interesting here as we would be able to useλClamas a basis for learning how humans

reason about such proofs, and may even be able to make a comparison between standard and

non-standard style proofs.

7.1.6 Non-standard annotation

A final research direction would be to devise some annotationfor the elements of non-standard

analysis which do not appear in standard analysis. The motivation for this came from chapter 6

where we establish a result in the reals by moving out of the non-standard model in which we

have been reasoning. Specifically, when we establish a result such asdf (x) � bc
we yield the result

f (x) = c

using rule 4.40 from the axiomatisation. If we write� as an annotated non-standard version of

equality, for example
�= , we could introduce some rippling style annotation for eachof the

non-standard elements, and represent this ruledf (x) �= bc :
Similar annotations can be made for� f for example. The idea would then be that in non-

standard analysis proofs, the skeleton of the term would correspond to some structure in the real

164 Chapter 7. Further Work and Conclusions

model, and the manipulations we perform in the non-standardmodel would also manipulate

the wave-fronts. The extensional representation of non-standard analysis which we take here

would allow us to reason with this annotation, but we have notinvestigated this far enough to

see whether it would be feasible or not.

7.2 Concluding remarks

The work presented here has been analysed in the evaluation sections of chapters 5 and 6. It

remains for us to analyse whether we achieved our research hypothesis as described in section

4.1.1, and to describe what the possible repercussions of this work are on both non-standard

analysis and proof-planning.

7.2.1 Research Hypothesis

Recall from chapter 4 that we state our research hypothesis as

Through proof-planning we arrive at intuitive and successful representations of the
structure of proof in non-standard analysis.

We believe that this has been achieved in this work. We have yielded complete proof-plans,

sometimes with full automation, for some complicated theorems from real analysis. The de-

gree of automation is analysed in sections 5.6.3 and 6.8.3, and we have shown that we have

been successful in producing a representation for the structure of proof in non-standard anal-

ysis. We have achieved a substantial degree of automation inthe proof-plans. The other

automated systems which achieve automation of the proofs westudy are those presented in

[Bledsoe and Ballantyne, 1977] and [Gamboa, 1999].

[Bledsoe and Ballantyne, 1977] achieves full automation ofsome complicated analysis the-

orems such as the chain rule. This work uses a resolution style theorem prover together with

an axiomatisation of non-standard analysis. Our system is able to automate the construction

of proof-plans for the same complicated theorems. However,through our use of critics and

domain-specific methods, we produce a much more readable description of the proofs. We

also produce proof-plans for a different family of theorems, such as Rolle’s Theorem, which

Bledsoe’s system is not capable of.

[Gamboa, 1999] presents a system which uses Nelson’s Internal Set Theory [Nelson, 1977]

to define functions using Taylor series and prove propertiesabout them when the number of

terms becomes infinite. He presents a proof of the Intermediate Value Theorem which is fully

7.2. Concluding remarks 165

automated, given the definition of a partitioning function.The version he presents uses a dif-

ferent partitioning function from ours, but the general techniques and level of automation are

comparable. The advantage of our development over Gamboa’slies in the encoding of reason-

ing patterns into plan-specification which are applicable to other, more complicated theorem

such as Rolle’s Theorem. We have shown that the approach is generalisable to other theorems,

requiring only slight modification to the plan-specification or adding some lemmas.

[Fleuriot, 2001a] proves some of our theorems in Isabelle/HOL. In the interactive proofs

he presents, he shows how some difficult steps need to be performed with significant user

intervention in order to yield proofs. Although non-standard analysis provides a more algebraic

formulation of such theorems as the chain rule, difficult proof-steps still need to be performed.

For example, instantiations for universally quantified variables in the hypotheses of the sequent

still have to be determined. We have implemented critics andmethods which help us find these

instantiations, and automate difficult proofs. Also we haveimplemented other useful features,

such as lemma speculation. Fleuriot also presents a proof ofthe Intermediate Value Theorem

which has the same approach as ours. We have fully automated the proof-plan construction for

this theorem, and have shown that the approach applies easily to other theorems.

The question of intuition is much harder to investigate without a study of human proofs

from this domain. What we can claim is that proof-planning enables the construction of

methods which correspond to our reasoning patterns, and of critics which correspond to an

analysis of failure of these reasoning patterns. We can contrast with the work presented in

[Bledsoe and Ballantyne, 1977] for example, where successful proofs were yielded, but were

done so in a resolution theorem prover whose proof steps do not correspond to human style

reasoning.

7.2.2 Non-standard analysis

Our work has shown that is is possible to reproduce reasoningpatterns from non-standard anal-

ysis without using any special techniques, such as the limitheuristic and constraint solver that

are used in theΩMEGA system. The more algebraic formulation of the notion ofcontinuity

allows the proofs to have a simpler common structure, and in general a very similar way of

completing proofs. It certainly can be claimed that the proof patterns of non-standard analysis

are less complicated than those of standard analysis, although we cannot claim that one is more

intuitive than the other since in order to yield the simpler proof structure we must reason in a

new number system which does not correspond to the intuitionwe gain from learning about

166 Chapter 7. Further Work and Conclusions

the real numbers at school.

7.2.3 Proof-planning

We have achieved a substantial amount of automation for a number of complex analysis the-

orems. We have exploited the existing proof-planning machinery in λClamand enhanced the

system with our own work, in order to achieve an understanding of the structure of proof for a

new domain of mathematics.

We have introduced a system for lemma speculation inλClamwhich is not available in

other theorem provers or proof-planners. In section 5.4 we implemented a number of critics

which are capable of lemma speculation. Our system for lemmaspeculation is significantly

more general than those which have been introduced before. In our system we use the infor-

mation we gain from coloured rippling to analyse the types ofthe terms in wave holes, and

suggest a lemma which will “join” the wave holes in the conclusion. In the embedding critic

we introduce (see section 5.4.1), we introduce a patch whichis capable of guessing instantia-

tions to universally quantified variables in the hypothesesand speculating lemmas accordingly,

without instantiating the variables in the hypotheses. It must be noted though that this critic,

along with some of the methods that we introduce, is domain specific and looks for structures

which we expect to find in analysis theorems using definitionsfrom non-standard analysis.

λClamhas been enhanced by the machinery we have introduced. We have introduced

case-split sets, coloured rippling and lemma speculation via critics. Also we have provided a

set of methods by which we can construct proof-plans for analysis theorems using non-standard

definitions inλClam.

We claim that we have not only incorporated new ideas inλClam, such as our implemen-

tation of lemma-speculation, but that they are useful techniques which could be employed

by other theorem proving and proof-planning systems. One such system is ISAPLANNER

[Dixon and Fleuriot, 2003] which incorporates proof-planning into Isabelle.

7.3 Suggested extensions to the work

We discuss in this section some possible extensions to the work which are too involved to have

attempted during the course of research.

7.3. Suggested extensions to the work 167

7.3.1 Object-level proofs

The major issue with the work discussed is that of soundness.Since we are not producing

object-level proofs, it is important that we argue for the soundness of the proofs via our ax-

iomatisation. However, some mistakes in the proofs were discovered upon close inspection

due to mistakes in the axiomatisation (see comments in section 5.5.2).

Ideally we would build up an axiomatisation in a formal framework such as Isabelle/HOL.

This was not done in the work presented in this thesis as it is alengthy undertaking in itself to

write the tactics in the object-logic which correspond to the methods in the proof-planner. In

this section we give an overview of the work required to complete such a task.

The proof-planner performs search on the proof at an abstracted level, and the resulting

output proof-plan should execute a proof at the object-level, by associating methods at the

proof-planning level with tactics, or sequences of tacticsat the object-level. We describe the

stages which need to be implemented and performed in order toautomate such proofs at the

object-level.

Validation of axiomatisation

In order to validate the proofs for our system using an object-level we need to construct an

axiomatisation which can be validated from a fundamental formalisation such as that performed

in [Fleuriot and Paulson, 2000]. Using this work, the axiomspresented in chapter 4 can all be

proven in the more fundamental logic of Isabelle/HOL.

Unfolding compound methods

Compound methods comprise of a set of atomic methods orderedusing methodicals. In or-

der to produce a tactic at the object-level, the proof-plan which was yielded by applying the

plan-specification to the theorem determines how each compound method is unfolded into a

sequence of atomic method applications.

Construction of tactics

When atomic methods are used inλClam we can attach a tactic name in an object-level theorem

prover to the method which performs the same operation. Typically for inference rules each

method application corresponds exactly to the inference rule at the object-level. However for

more complicated atomic methods which perform several rewriting steps or inference rules.

168 Chapter 7. Further Work and Conclusions

For example consider atomic method 6 of chapter 5 which simplifies the goal of a theorem

stated in non-standard analysis. With this method we exhaustively rewrite the goal according

to a particular set of rewrite-rules. In order to translate this into a number of application of

rewrite-rules at the object-level we must return the precise rules which were used and in which

order. This means that we must construct a tactical comprising of the applications of rules used

by the method to simplify the goal.

Critics

Critics pose the greatest problem in constructing object-level proofs from proof-plans. Some

critics perform plan transformation, and some perform goaltransformation but require extra

goals to be performed. Although the plan-specifications do not reflect any plan-transormation,

the final proof-plans show the complete shape of the proof.

In general the critics we have introduced discover lemmas which are needed in order to

yield a complete proof. These lemmas need to be proved and then the cut rule of inference

needs to be employed in order to make use of the discovered lemma.

7.3.2 The issue of human intervention

We have developed various techniques in this thesis for automating the construction of proof-

plans for the types of theorem we study in this thesis. In particular we have developed some

techniques for automating the discovery of lemmas. There are however two issues concerning

human intervention that we discuss here.

Complete automation of lemma discovery

Although we have provided many mechanisms for discovering lemmas automatically, there

are still several lemmas which had to be introduced interactively, such as those introduced for

the chain rule (see equation (5.10), section 5.2.1). In general it is a very difficult problem to

automatically generate required lemmas.

Calculating the correct lemma to allow a proof to proceed often requires some expansion

of the term structure, which introduces an infinite branch point in the search space. This is

because the rule required can introduce new variables whichcan be instantiated to any term of

the correct type. Also, in order to use a rule which expands the term structure, we reduce any

limitation on the rewrite rule used, and so many more rewriterules can potentially apply. In

order to speculate a rule which is correct, which allows the proof to succeed, we use heuristics

7.3. Suggested extensions to the work 169

to reduce to choices in the search space. To obviate the need for heuristics, and to come up

with a general scheme for automating such lemma discovery, amuch more involved piece of

research is required than was possible during the course of this work.

Automation of non-standard formulations

When we enter theorems into theλClam system, we enter fully expanded non-standard for-

mulations. A valid criticism of this approach is that it would be possible to automate this

expansion from a standard formulation of the theorems. As can be seen from section 2.4.2,

there are macros for expanding non-standard characterisations of such notions of limit and

continuous functions. This would facilitate a more convenient way of entering theorems into

λClam. This is a relatively simple operation, and could easily be implemented, but would not

have contributed to the main research problems of the thesisthat we wanted to address.

7.3.3 The value of the work done

Two major areas of work to which this thesis intended to contribute were the automation of

non-standard analysis proofs and to the elucidation of suchproofs using proof-planning.

We have contributed to the automation of proofs in non-standard analysis by designing

methods and critics which exploit the algebraic nature of non-standard analysis, as discussed

in chapters 5 and 6. It must be noted that the lack of object-level proofs reduces the level

of contribution. Producing object-level proofs in a fully expansive theorem proved such as

Isabelle/HOL would have obviated any doubts about correctness which can always be present

using just proof-planning. We have attempted to argue throughout for correctness although as

can be seen from section 5.5.2 mistakes can easily be made.

We claim to have enhanced the readability of proofs in non-standard analysis, using the

proof-plans that have resulted from this work. We cannot claim to have produced object-level

proofs, so a direct comparison is not possible, but we can claim to have produced more readable

proof-plans that the proofs created by Bledsoe’s work [Bledsoe and Ballantyne, 1977], since

the resolution style proofs can be difficult to interpret.

Appendix A

Sample plan-specifications and output

We present some sample plan-specifications as they are written in λClam , and show some

edited output. The output for the theorems shown is very long, so we include only the important

parts. Also we introduce some latex symbols to make the output more readable.

We first show the overall plan-specification for the limit problems we present in chapter 5,

and then give an example of some output for the chain rule. We also show an extract from a

proof-plan for the chain rule drawn by the XBarnacle front end [Lowe and Duncan, 1997] for

an earlier version ofλClam . We also show the outermost plan-specification defined for the

theorems we introduced in chapter 6, and show the output for Rolle’s Theorem.

A.1 Chain Rule

In λClam, the plan-specifications, as shown in section 5.3, are represented by compound meth-

ods. This denotes the theory name, the name of the compound method, a specification of its

actions written in methodical language, an address which isleft uninstantiated here, and a set

of preconditions, which for plan-specifications is set totrue . The compound method shown

in figure A.1 corresponds to the outermost plan-specification described by figure 5.1 in sec-

tion 5.3. Thepatch meth methodical corresponds to the explicit attachment of a critic patch

plan-specification to a method.

The chain rule is tackled using the outermost compound method. We show here an edited

presentation of the output fromλClam, where superfluous information such as embeddings are

suppressed and mathematical symbols such as8 are used where possible. The presentation of

a proof of the chain rule given in section 5.2.1 follows the output fromλClam, which is shown

here.λClamstarts with the initial goal.

171

172 Appendix A. Sample plan-specifications and output

compound nsaconjectures nsa_top_meth_ripple_critics

(repeat_meth

(then_meth tautology

(then_meth (patch_meth set_up_ripple embed_critic_stra t)

(then_meth

(repeat_meth

(or_else_meth

(patch_meth (wave_method outward R1) wave_critic_strat)

(patch_meth (cond_wave_method outward R2) wave_critic_s trat)))

(then_meth (patch_meth fertilise fert_critic_strat))))))

_

true.

Figure A.1: The outermost compound method for the limit conjectures

nsa_plan nsa_top_meth_ripple_critics chainrule.

x: R, d 1: R, d 2: R, f: R!R , g: R!R8 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext f) ((emb (g x))+H)-(emb (f (g x))) � (emb d 1)8 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext g) ((emb x)+H)-(emb (g x)) � (emb d 2)8̀ H 2 �R. (H � 0 ^ H 6= 0) !
H�1 � (ext f) ((ext g) ((emb x)+H))-(emb (f (g x))) � (emb (d 1 � d2))

to which the tautology method is first applied. This fails andthen attempts the methodset up ripple

on the goal, which also fails. So, its preconditions are tested by a meta-interpreter, and the pre-

conditions which failed trigger a patching strategy.

Attempting...

(patch_meth set_up_ripple embed_critic_strat)

strip_forall_embeds _H _E _S _G failed

attempting atomic critic

pop_critic _

A.1. Chain Rule 173

pop_critic _Address

succeeded

attempting atomic critic

embedding_failure _ _

embedding_failure _Hyps _Goal

succeeded

attempting atomic critic

open_node

open_node

succeeded

At this point the embedding critic plan-specification, as shown in figure 5.2 of section 5.3,

applies.

attempting atomic critic

emb_spec _ _ _ _ _ _ _

emb_spec _Pos _Subst A � B�1 (A � H�1) � (H � B�1) H 6= 0 _Goal _NGoal

succeeded

attempting atomic critic

continue_crit (M (pair_meth eval_meth nsa_top_meth_ripp le_critics) M)

continue_crit (M (pair_meth eval_meth nsa_top_meth_ripp le_critics) M)

succeeded

Now once a proof-plan has been found for the speculated lemmagiven by theemb spec , em-

bedding can take place and the proof-plan can proceed. Then at the end of the proof-plan,

when fertilisation is attempted, since there are mismatching sinks, the fertilisation critic sug-

gests adding some information to the hypotheses. This corresponds to the plan-specification

given by figure 5.4 of section 5.3.

Attempting...

(patch_meth fertilise fert_critic_strat)

sink_match G H E

failed

.

.

.

174 Appendix A. Sample plan-specifications and output

attempting atomic critic

fert_spec _ _ _ _

fert_spec _Hyp _G [(ext g) ((emb x) + H) - (emb (g x)) � 0,

(ext g) ((emb x) + H) - (emb (g x)) = 0 _
(ext g) ((emb x) + H) - (emb (g x)) 6= 0] _NewG

succeeded

attempting atomic critic

roll_back_to_crit _ nil

roll_back_to_crit nsa_top_meth_ripple_critics nil

succeeded

attempting atomic critic

set_goal _ _ _ _

set_goal _NewG

_Hyp <> [(ext g) ((emb x) + H) - (emb (g x)) � 0,

(ext g) ((emb x) + H) - (emb (g x)) = 0 _
(ext g) ((emb x) + H) - (emb (g x)) 6= 0]

attempting atomic critic

continue_crit (M (then_meth sym_eval (then_meths or_e (pa ir_meth eval_meth

(then_meth or_e nsa_top_meth_ripple_critics)))) M)

continue_crit (M (then_meth sym_eval (then_meths or_e (pa ir_meth eval_meth

(then_meth or_e nsa_top_meth_ripple_critics)))) M)

succeeded

Notice here that there is an explicit call to thesym eval method, which corresponds to dis-

charging the subgoal �g(bx+h)�dg(x)� 0

which is introduced by the atomic criticfert spec .

We now rejoin the action at the point where rippling fails to find a wave rule. The goal at

this point now has two branches. We concentrate on the branchwhere�g(bx+h)�dg(x) 6= 0.

h: �R, x: R, d 1: R, d 2: R, f: R!R , g: R!R
(ext g) (((emb x)+h) - (emb (g x))) � 0

(ext g) (((emb x)+h) - (emb (g x))) 6= 08 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext f) ((emb (g x))+H)-(emb (f (g x))) � (emb d 1)

A.1. Chain Rule 1758 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext g) ((emb x)+H)-(emb (g x)) � (emb d 2)

(̀h � 0 ^ h 6= 0) !
(((ext g) (((emb x)+h) - (emb (g x)))) �1 �

(ext f) (((emb (g x))+h)-(emb (f (g x))))) �
((h �1) � (ext g) ((emb x)+h)-(emb (g x))) � (emb (d 1 � d2))

Now the rippling process cannot continue so the lemma speculation critic fires.

Attempting...

(patch_meth (wave_method outward _) wave_critic_strat)

measure_check nored outward _E _G _H

failed

.

.

.

attempting atomic critic

spec_colour_wave _ _ _ _

spec_colour_wave _ ((A � B) � (C � D)) ((A � C) ^ (B � D))

((finite B) ^ (finite D))

From here the proof-plan proceeds to the point where the lemma speculation critic suggests the

rule

A! B^C) A! B ^ A!C

and then the proof-plan proceeds until the point where the goal is fully rippled out.

h: �R, x: R, d 1: R, d 2: R, f: R!R , g: R!R
(ext g) (((emb x)+h) - (emb (g x))) � 0

(ext g) (((emb x)+h) - (emb (g x))) 6= 08 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext f) ((emb (g x))+H)-(emb (f (g x))) � (emb d 1)8 H 2 �R . (H � 0 ^ H 6= 0) !
H�1 � (ext g) ((emb x)+H)-(emb (g x)) � (emb d 2)

(̀h � 0 ^ h 6= 0) !
(((ext g) (((emb x)+h) - (emb (g x)))) �1 �

(ext f) (((emb (g x))+h)-(emb (f (g x))))) � (emb d 1) ^
((h �1) � (ext g) ((emb x)+h)-(emb (g x))) � (emb d 2))

176 Appendix A. Sample plan-specifications and output

The fertilise method now succeeds since the mismatching sinks in the antecedent of the

implication in the goal can be replaced with the new hypotheses added by thefertilise

critic. We now have a complete proof-plan for the chain rule.

Figure A.2 shows the output fromXBarnacle[Lowe and Duncan, 1997] – the graphical

user interface to a previous version ofλClam, in which we also constructed a proof-plan for

the chain rule.

Figure A.2: The output from XBarnacle for the chain rule

A.2 Rolle’s Theorem

The compound method which corresponds to the plan-specification given by figure 6.14 in

section 6.5 is shown in figure A.3. We provide the plan-specification with the name of the

theorem corresponding to Rolle’s theorem, the names of the case-split sets to the main plan-

specification shown in figure A.3. We also conjecture one inductive lemma by hand, shown in

section 6.3.1 by lemma 6.13. The initial statement of Rolle’s Theorem is

fp: R ! R, f: R ! R, a: R, b: R, c: R

A.2. Rolle’s Theorem 177

compound nsaind (nsa_partition_final Lem Rewr)

(then_meth (collect_meth Rewr Lem Lems)

(then_meth (induction_all Lems)

(then_meth (generalise_all Lems Hyps)

(then_meth (add_hyps Hyps)

(then_meth final_steps))))).

_

true.

Figure A.3: The outermost compound method for the partitioning examples.8 X 2 �R . 8 H 2 �R .

((emb a) � X � (emb b) ^ (H 6= 0) ^ (H � 0)) !
H�1 � (ext f) (X+H)-(ext f) X � (ext fp X)8 X 2 �R . 8 Y 2 �R .

((emb a) � X � (emb b) ^ (emb a) � Y � (emb b) ^ (X � Y)) !
(ext f) X � (ext f) Y

b > a

(f a) = (f b)9̀ X 2 R. (emb a) � X � (emb b) ! fp X = 0

and the inductive lemma we pass to the plan-specification is

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)8̀ N 2 N.

fp (rolrec l f fp a b n) � 0 ^ fp (rolrec r f fp a b n) < 0 _
fp (rolrec l f fp a b n) < 0 ^ fp (rolrec r f fp a b n) � 0 _
fp (rolrec l f fp a b n) � 0 ^ fp (rolrec r f fp a b n) � 0 ^

f (rolrec l f fp a b n) � f (rolrec r f fp a b n) _
fp (rolrec l f fp a b n) < 0 ^ fp (rolrec r f fp a b n) < 0 ^

f (rolrec l f fp a b n) � f (rolrec r f fp a b n)

The compound methodcollect meth finds proof-plans for all of the common inductive lem-

mas as well as the lemma provided to the outermost plan-specification. We give an example

178 Appendix A. Sample plan-specifications and output

output fromλClamin finding a proof-plan for the theorem8n2 N: rolrer f f 0 a b n�rolrel f f 0 a b n= b�a
2n :

Initially, the base case is established.

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

r̀olrec r (f, fp, a, b, 0) - rolrec l (f, fp, a, b, 0) = (b - a)/2 0

Attempting...

Method application: rewrite_with rol_r

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

b̀ - rolrec l (f, fp, a, b, 0)) = (b - a)/2 0

Attempting...

Method application: rewrite_with rol_l

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

b̀ - a = (b - a)/2 0

Attempting...

Method application: rewrite_with exp1

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

b̀ - a = (b - a)/1

A.2. Rolle’s Theorem 179

Attempting...

Method application: rewrite_with invtimes_ident

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

b̀ - a = (b - a) � 1

Attempting...

Method application: rewrite_with times_ident

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

b̀ - a = b - a

Attempting...

Method application: rewrite_with refleq

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)` trueP

trueGoal!

branch closed!

Now the step case proceeds by structural induction.

Method application: induction_meth nat_struct

succeeded

Method application: step_case

succeeded

Method application: set_up_ripple

succeeded

180 Appendix A. Sample plan-specifications and output

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

rolrec r (f, fp, a, b, N) - rolrec l (f, fp, a, b, N) = (b - a)/2 N

r̀olrec r (f, fp, a, b, s N) - rolrec l (f, fp, a, b, s N)) = (b - a)/2 s(N)
Once embedding has taken place, rippling can go ahead. In order to ripple using the definitions

for rolrel androlrer, we use the case split methods. We show here one branch of the case

split.

Method application: wave_method outward rol_r

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

rolrec r (f, fp, a, b, N) - rolrec l (f, fp, a, b, N) = (b - a)/2 N

f((rolrec l (f, fp, a, b, N) + rolrec r (f, fp, a, b, N))/2) �
f(rolrec l (f, fp, a, b, N)) ^

fp((rolrec l (f, fp, a, b, N) + rolrec r (f, fp, a, b, N))/2) � 0

r̀olrec r (f, fp, a, b, N) - rolrec l (f, fp, a, b, s N)) = (b - a)/2 s(N)
Method application: wave_method outward rol_l

succeeded

fp: R ! R, f: R ! R, a: R, b: R, c: R
b > a

(f a) = (f b)

rolrec r (f, fp, a, b, N) - rolrec l (f, fp, a, b, N) = (b - a)/2 N

f((rolrec l (f, fp, a, b, N) + rolrec r (f, fp, a, b, N))/2) �
f(rolrec l (f, fp, a, b, N)) ^

fp((rolrec l (f, fp, a, b, N) + rolrec r (f, fp, a, b, N))/2) � 0

r̀olrec r (f, fp, a, b, N) -

(rolrec l (f, fp, a, b, N) + rolrec r (f, fp, a, b, N))/2 =

(b - a)/2 s(N)
Now the lemma speculation critic fires and speculates the rule which allows fertilisation to take

place.

A.2. Rolle’s Theorem 181

After the transfer plan-specification is successfully applied, the statement of Rolle’s the-

orem is augmented with new hypotheses. Hereθ represents the�l(n) term introduced by the

transfer plan-specification, andφ represents�r(n).
fp: R ! R, f: R ! R, a: R, b: R, c: R, θ: �R , φ: �R
θ � φ
φ > θ
(emb a) � θ � (emb b)

(emb a) � φ � (emb b)

(ext f) θ � (ext f) φ
(ext fp) θ � (ext fp) φ
((ext fp) θ � 0 ^ (ext fp) φ <0) _

((ext fp) θ < 0 ^ (ext fp) φ < 0 ^ (ext f) θ � (ext f) φ) _
((ext fp) θ <0 ^ (ext fp) φ � 0) _

((ext fp) θ � 0 ^ (ext fp) φ � 0 ^ (ext f) θ � (ext f) φ8 X 2 �R . 8 H 2 �R .

((emb a) � X � (emb b) ^ (H 6= 0) ^ (H � 0)) !
H�1 � (ext f) (X+H)-(ext f) X � (ext fp X)8 X 2 �R . 8 Y 2 �R .

((emb a) � X � (emb b) ^ (emb a) � Y � (emb b) ^ (X � Y)) !
(ext f) X � (ext f) Y

b > a

(f a) = (f b)9̀ X 2 R. (emb a) � X � (emb b) !
fp X = 0

Now the final part of the plan-specification rewrites the hypotheses. The proof-plan follows

that shown in section 6.3.1 using the compound method of figure A.4. This method describes

the transfer-back plan-specification of figure 6.14 in section 6.5.3. The final stages of the proof-

plan yield new hypotheses which we can use to discharge the goal. After application of method

disc cond we yield the goal

fp: R ! R, f: R ! R, a: R, b: R, c: R, θ: �R , φ: �R , x: R
θ � φ
φ > θ
(emb a) � θ � (emb b)

(emb a) � φ � (emb b)

(ext f) θ � (ext f) φ
(ext fp) θ � (ext fp) φ

182 Appendix A. Sample plan-specifications and output

compound nsaind final_steps Goal

(then_meth disc_cond

(then_meth int_witness

(then_meth

(repeat_meth

est_bounds)

(then_meth int_cases

(then_meth simp_deriv

(then_meth ord_const

(repeat_meth realise_wit)))))))

_

true.

Figure A.4: The compound method for the final part of the partitioning examples

((ext fp) θ � 0 ^ (ext fp) φ <0) _
((ext fp) θ < 0 ^ (ext fp) φ < 0 ^ (ext f) θ � (ext f) φ) _

((ext fp) θ <0 ^ (ext fp) φ � 0) _
((ext fp) θ � 0 ^ (ext fp) φ � 0 ^ (ext f) θ � (ext f) φ8 X 2 �R . 8 H 2 �R .

((emb a) � X � (emb b) ^ (H 6= 0) ^ (H � 0)) !
H�1 � (ext f) (X+H)-(ext f) X � (ext fp X)8 X 2 �R . 8 Y 2 �R .

((emb a) � X � (emb b) ^ (emb a) � Y � (emb b) ^ (X � Y)) !
(ext f) X � (ext f) Y

b > a

(f a) = (f b)9̀ X 2 R. (emb a) � X � (emb b) !
fp X = 0

Now when the witness has been introduced by the methodint witness , and the bounds have

been added by methodest bounds , the planner uses methodint cases to introduce four

cases. We consider one case here:

fp: R ! R, f: R ! R, a: R, b: R, c: R, θ: �R , φ: �R , x: R
θ � φ

A.2. Rolle’s Theorem 183

φ > θ
(emb a) � θ � (emb b)

(emb a) � φ � (emb b)

(ext f) θ � (ext f) φ
(ext fp) θ � (ext fp) φ
((ext fp) θ � 0 ^ (ext fp) φ <0)8 X 2 �R . 8 H 2 �R .

((emb a) � X � (emb b) ^ (H 6= 0) ^ (H � 0)) !
H�1 � (ext f) (X+H)-(ext f) X � (ext fp X)8 X 2 �R . 8 Y 2 �R .

((emb a) � X � (emb b) ^ (emb a) � Y � (emb b) ^ (X � Y)) !
(ext f) X � (ext f) Y

b > a

(f a) = (f b)

(emb x) � θ
a � x � b9̀ X 2 R. (emb a) � X � (emb b) !

fp X = 0

Now methodssimp deriv andord const apply and we yield the goal

fp: R ! R, f: R ! R, a: R, b: R, c: R, θ: �R , φ: �R , x: R
θ � φ
φ > θ
(emb a) � θ � (emb b)

(emb a) � φ � (emb b)

(ext f) θ � (ext f) φ
(ext fp) θ � (ext fp) φ
((ext fp) θ � 0 ^ (ext fp) φ <0)8 X 2 �R . 8 H 2 �R .

((emb a) � X � (emb b) ^ (H 6= 0) ^ (H � 0)) !
H�1 � (ext f) (X+H)-(ext f) X � (ext fp X)8 X 2 �R . 8 Y 2 �R .

((emb a) � X � (emb b) ^ (emb a) � Y � (emb b) ^ (X � Y)) !
(ext f) X � (ext f) Y

b > a

(f a) = (f b)

(emb x) � θ

184 Appendix A. Sample plan-specifications and output

a � x � b

(ext fp) θ � 09̀ X 2 R. (emb a) � X � (emb b) !
fp X = 0

Methodrealise wit now applies and the existentially quantified variable in theconclusion is

instantiated to(emb x) , sincefp x = 0 can be established.

A.3 Example code for atomic methods

We give some simple example code for the methods introduced in chapters 5 and 6. Method (3

shown in section 5.4.4 of chapter 5 is entered as follows:

atomic nsaconjectures inf_int

(seqGoal (H >>> G))

(memb (app eq_ic (tuple [Varl,Varr])) H,

T_1 = (app eq_ic (tuple [Int_var,zero])),

T_2 = (app eq (tuple [app minus (tuple [Var1,Var2],Int_var)])),

replace_vars (app plus (tuple [Varr,Int_var])) Varl G Gnew)

true

(seqGoal ((T_1 :: T_2 :: H) >>> Gnew))

notacticyet.

The auxiliary predicatereplace vars is written

%%% replace_vars/4 + + + -

%%% instantiate #4 with #3 with all occurrences of #2 replace d with #1

replace_vars Varout Varin X Varout :-

not (headvar_osyn X),

!,

X = Varin.

replace_vars Varout Varin X X :-

headvar_osyn X,

!.

replace_vars Varout Varin X X:-

not (headvar_osyn X),

A.3. Example code for atomic methods 185

X = (otype_of _ _).

replace_vars Varout Varin X (app C D):-

not (headvar_osyn X),

X = (app A B),

!,

replace_vars Varout Varin A C,

replace_vars Varout Varin B D.

replace_vars Varout Varin X (tuple Lout):-

not (headvar_osyn X),

X = (tuple Lin),

!,

rec_replace_vars Varout Varin Lin Lout.

replace_vars Varout Varin X (abs Y) :-

not (headvar_osyn X),

X = (abs A),

!,

pi u (replace_vars Varout Varin (A u) (Y u)).

%%% Recursive auxiliary function to replace_vars for tuple case

rec_replace_vars _Varout _Varin nil nil.

rec_replace_vars Varout Varin (H::T) (H1::T1) :-

replace_vars Varout Varin H H1,

rec_replace_vars Varout Varin T T1.

The discharge conditions method shown in section 6.6.3 of chapter 6 is entered as follows:

atomic nsaind disc_gen_hyp

(seqGoal (H >>> G))

(memb (otype_of Var1 hyperreal) H,

memb (otype_of Var2 hyperreal) H,

memb (app eq_ic (tuple [Var1,Var2])) H,

memb (app neg (app eq (tuple [Var1,Var2]))) H,

findall (Limp Land Rand (memb (app imp (tuple [Limp, (app and

(tuple [Land,Rand]))])) H)) Imp_args,

forthose Imp_args (I V1 V2 disc_match I V1 V2 List) Var1 Var2,

186 Appendix A. Sample plan-specifications and output

append H List NewH)

true

(seqGoal (NewH >>> G))

notacticyet.

Appendix B

Proof-plans for the inductive lemmas

We describe the proofs that correspond to the proof-plans that λClamconstructed for the Inter-

mediate Value Theorem, and for the inductive lemmas for Rolle’s Theorem. We also present

the lemmas which were added toλClaminteractively for the theorems presented in chapter 6.

B.1 Proof of the Intermediate Value Theorem

Recall first the definition of the intermediate value theorem

f : R ! R
a;b;c : R8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y)

a< b

f (a)� c� f (b)` 9x2 R: a� x� b^ f (x) = c:
Firstly we state the partitioning function

ivtrec F A B C 0 = [A,B]

ivtrec F A B C s(N) = (let [X,Y]=ivtrec F A B C N

in if F((X+Y)/2)>C then [(X+Y)/2,Y]

else [X,(X+Y)/2]).

In the implementation we represent the partitioning function by rewrite rules, and specify one

rule for the left point of the interval, and one for the right point of the interval. So we define

187

188 Appendix B. Proof-plans for the inductive lemmas

rules ivtrec r and ivtrec l as rewrite rules, and annotate them to become wave rules as

shown in figure 6.3. Now we can use these wave rules to prove important conjectures about the

partitioning function. Recall from section 6.2 that we needto prove the following theorems8n2 �N : �ivtrer � f babb bc n � �ivtrel � f babb bc n= bb�ba
2n8n2 �N : �ivtrer � f babb bc n � a^8n2 �N : �ivtrer � f babb bc n � b8n2 �N : �ivtrel � f babb bc n � a^8n2 �N : �ivtrel � f babb bc n � b8n2 �N : � f (�ivtrer � f babb bc n) � bc ^ bc � � f (�ivtrel � f babb bc n):

Once the proofs of these theorems have been planned, we generalise them by hand, by substi-

tuting �l(n) for �ivtrel � f babb bc n, and�r(n) for �ivtrer � f babb bc n. We can then add the

generalised facts to the hypotheses to yield the new statement for the intermediate value theo-

rem given by 6.7. To show all of the proofs of theorems planned, we first show the proof of the

intermediate theorem using the new generalisations, so that we justify the use of the inductive

conjectures whose proofs we show after.

In order to prove the intermediate value theorem we must satisfy the existentially quantified

conclusion 9x : R: a� x� b! f (x) = c

with the hypotheses

n : �R (B.1)

f : R ! R (B.2)

a;b;c : R (B.3): f inite(n) (B.4)�l(n)� �r(n) (B.5)ba� �r(n)� bb (B.6)ba� �l(n)� bb (B.7)� f (�l(n))� bc� � f (�r(n)) (B.8)8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x) � � f (y) (B.9)

a< b (B.10)

f (a) � c� f (b): (B.11)

B.1. Proof of the Intermediate Value Theorem 189

Now we use uniform continuity given (B.9) together with the facts we now about�l(n) and�r(n) given by hypotheses (B.6), (B.7) and (B.5) to deduce that

f (�l(n)) � f (�r(n)):
From this we can use facts we know from the axiomatisation to find a real number which sat-

isfies the conclusion given by (B.1). We know from axiom (4.38) that for any finite hyperreal,

there is a real number which lies infinitely close. From axiom(4.40) we can infer that this num-

ber is unique. We can also infer that there a unique real in theinfinitesimal neighbourhood. In

order to establish the theorem we must show that this number lies betweena andb, and that its

image under the functionf is atc. We proceed by stating a number of lemmas.bx� �l(n)
We can state this directly from axiom (4.38). This ensures weknow the existence of a

real number in the infinitesimal neighbourhood of any interval in the sequence produced

by the partitioning function.

a� x� b

We now state this lemma to ascertain that the existential variable x which satisfies the

previous lemma now lies within the interval. We state the theorem as:

x;a;b : R
n : �Nba� �l(n)� bbbx� �l(n) `

a� x� b

We split the hypothesisba� �l(n) into to goals. In the case whereba = �l(n) we yield

x = a by transitivity. In the case whereba < �l(n), we use the lemma given in section

6.6.2 to determine that bx� ba_bx> ba
which allows us to ascertain thata� x. We perform a similar pattern of proof for the

branch where�l(n) � bb and we provex� b.� f (�l(n))� bc

190 Appendix B. Proof-plans for the inductive lemmas

This subgoal follows by noticing thatc lies between� f (�l(n)) and� f (�r(n)), and that�l(n)� �r(n). We write the following theorem

n : �N
f : R ! R
a;b;c : R: f inite(n)ba� �r(n)� bbba� �l(n) � bb� f (�r(n)) � bc� � f (�r(n))8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x)� � f (y)

a< b

f (a)� c� f (b) `� f (�l(n))� bc:
Firstly we use continuity (B.12) from the hypotheses to write the fact� f (�l(n))� � f (�r(n)):
Now we also notice that � f (�l(n))� bc� � f (�r(n)):
We introduce the following rules:

A� B ^ A<C^B>C ! A�C

A� B ^ A<C^B>C ! B�C:
In the case wheref (�l(n)) = bc we use rule (4.31) to show thatf (�l(n)) � bc. In the case

where f (�l(n)) > bc we use the above rules to obtain the result.

f (x) = c

Using the lemmas we have already planned we can form the lemma

n : �N
f : R ! R

B.1. Proof of the Intermediate Value Theorem 191

a;b;c;x : R: f inite(n)8x;y2 �R : ba� x� bb ^ ba� y� bb ^ x� y ! � f (x) � � f (y)bx� �l(n)� f (�l(n))� bc ` (B.12)

f (x) = c:
We can immediately use continuity (B.12) to determine thatdf (x) � � f (�l(n))
and then transitivity with (B.12) to see thatdf (x)� bc
Now from axiom (4.40) we can determine thatf (x) = c as required.

Now it just remains to present proofs of the inductive theorems. Here we present a proof-

plan for the inductive proof of each of the theorems we provedabove. We use the internal

representation of rewrite rules, and separate partitioning functions for the left and the right end

point of each partition. In the presentations of the inductive proofs that follow we express�
explicitly as> _=, likewise for�.

Lemma (6.3)

We write this theorem as8n2 N: ivtrer f a b c n�ivtrel f a b c n= b�a
2n

:
We then use a standard structural induction scheme for the natural numbers, and choose

single-step induction onn– the only candidate for induction. The resulting non-standard

formulation is8n2 �N : �ivtrer � f babb bc n � �ivtrel � f babb bc n= bb� ba
2n :

We use this to show that for an infiniten, the interval defined byivtre is infinitely

small. The base case to the proof of the lemma isivtrer f a b c0�ivtrel f a b c0= b�a

192 Appendix B. Proof-plans for the inductive lemmas

which is trivially proved by rewriting and identity, using the wave-rules defined for the

partitioning function, the definition for exponentiation given by axiom (4.6) and the field

equations for multiplication (4.15), (4.24) and (4.16).ivtrer f a b c0�ivtrel f a b c0= b�a
20

can be rewritten to

b�a= b�a
20

which can be rewritten to

b�a= b�a

completing the proof of the base case. The step case becomesivtrer f a b c s(n) " �ivtrel f a b c s(n) " = b�a

2
s(n) " :

At this point we introduce two cases, which correspond to theconditions to the wave

rules forivtrer andivtrel. We deal first with the case where

f ((ivtrel f a b c n+ivtrer f a b c n)=2) > c:
After the application of arithmetical rules (4.9) and (4.15), the conclusion becomesivtrel f a b c n+ivtrer f a b c n

2

" �ivtrel f a b c n= 1
2� b�a

2n

" :
Now we speculate the wave rule

Y+X
2

" �Y) 1
2� X�Y

"
which can now be used to rewrite the conclusion to

1
2� ivtrer f a b c n�ivtrel f a b c n

" = 1
2� b�a

2n

" :
Now the proof is completed by rewriting with the induction hypothesis, using weak

fertilisiation. At this point in the proof, the natural stepto take is to cancel the12 terms

on either side of the equality. In proof-planning terminology, this would allow strong

fertilisation to take place- i.e. a direct invocation of thehypothesis. In our case we

use weak fertilisation by using the substitution rule we include in our logic, and then

B.1. Proof of the Intermediate Value Theorem 193

complete the proof using the reflexivity of equality. The resulting goal is an identity,

which is proved using the tautology method.

For the other case, we add to the hypotheses the fact

f ((ivtrel f a b c n+ivtrer f a b c n)=2) < c_
f ((ivtrel f a b c n+ivtrer f a b c n)=2) = c:

We can reason in a similar manner to the other case. We first ripple using the rules

defined forivtrel andivtrer, and reach the annotated conclusionivtrer f a b c n� ivtrel f a b c n+ivtrer f a b c n
2

" = 1
2� b�a

2n

"
for which we speculate the following wave rule

X� X+Y
2

") X�Y
"
2 (B.13)

which allows us to rewrite the conclusion to the point where we can employ weak fertil-

isation as in the first case of the proof.

Lemmas (6.4) and (6.5)

We write these lemmas together as8n2 N: ivtrer f a b c n� a^ivtrer f a b c n� b ^ivtrel f a b c n� a^ivtrel f a b c n� b

In order to prove this goal however, we must use mutual induction. We perform a case

split on the conditions to the recursive wave rule definitionfor ivtrel andivtrer.
Let us first state the conjectures which require proof.

We state the conjecture for the left boundedness of the leftmost point of the partition.8n2 N: ivtrel f a b c n> a_ivtrel f a b c n= a

for which we first state the base caseivtrel f a b c n> a_ivtrel f a b c n= a

194 Appendix B. Proof-plans for the inductive lemmas

which is rewritten immediately using the wave rules introduced to

a> a_a= a

which is proved using the tautology method. The right boundedness condition is written8n2 N: ivtrel f a b c n< b_ivtrel f a b c n= b

for which the base case can be rewritten to

a< b_a= b

which is also proved by the tautology method.

We next state the conjecture for the left boundedness of the rightmost point of the parti-

tion. 8n2 N: ivtrer f a b c n> a_ivtrer f a b c n= a

for which we state the base caseivtrer f a b c0> a_ivtrer f a b c0= a

which can be rewritten to

b> a_b= a

which is proved by the tautology method. The right boundedness condition is written:8n2 N: ivtrer f a b c n< b_ivtrer f a b c n= b

for which we state the base case:ivtrer f a b c0< b_ivtrer f a b c0= b

which can be rewritten to

b> b_b= b

which is proved by the tautology method.

The step case conclusion for the left boundedness of the leftpoint of the partition is

written ivtrel f a b c s(n) " > a_ivtrel f a b c s(n) " = a

B.1. Proof of the Intermediate Value Theorem 195

and for the right point,ivtrer f a b c s(n) " > a_ivtrer f a b c s(n) " = a:
Now for the right boundedness for the left point the step caseconclusion is writtenivtrel f a b c s(n) " < b_ivtrel f a b c s(n) " = b

and for the right pointivtrer f a b c s(n) " < b_ivtrer f a b c s(n) " = b:
Now we construct cases according to the conditions attachedto the recursive wave rules

for ivtrel andivtrer. The first case we consider is

f ((ivtrel f a b c n+ivtrer f a b c n)
2

)> c:
For this case, we can rewrite two of these four conclusions immediately toivtrel f a b n> a_ivtrel f a b n= aivtrel f a b n< b_ivtrel f a b n= b

which can be solved as it corresponds to the induction hypothesis.

In the following presentation, the terms in the red wave holes correspond to the induction
hypotheses forivtrel, and the terms in the blue wave holes correspond to the induction
hypothesis forivtrer. The goal isivtrel f a b c n+ivtrer f a b c n

2

" < b_ ivtrel f a b c n+ivtrer f a b c n
2

" = b:
We use the lemmas

X+Y
2

" > Z_ X+Y
2

" = Z) X > Z_X = Z ^Y > Z_Y = Z
"

X+Y
2

" < Z_ X+Y
2

" = Z) X < Z_X = Z ^Y < Z_Y = Z
"

by which we can rewrite the conclusion toivtrel f a b c n< b_ivtrel f a b c n= b^ ivtrer f a b c n< b_ivtrer f a b c n= b
" :

We can perform the same proof steps for the left boundedness conjecture and arrive at
the conclusionivtrel f a b c n> a_ivtrel f a b c n= a^ ivtrer f a b c n> a_ivtrer f a b c n= a

" :
Now the subgoals are all proved for this branch of the case split, as strong fertilisation

can now apply. The other cases of the proof-plan proceed similarly.

196 Appendix B. Proof-plans for the inductive lemmas

Lemma (6.6)

We write this as two lemmas8n2 N: f (ivtrer f a b c n)> c_ f (ivtrer f a b c n) = c8n2 N: f (ivtrel f a b c n)< c_ f (ivtrel f a b c n) = c

which can also be solved using induction. The base cases becomes

f (ivtrer f a b c0)> c_ f (ivtrer f a b c0) = c

and

f (ivtrel f a b c0)< c_ f (ivtrel f a b c0) = c

which reduce to

f (b) > c_ f (b) = c

and

f (a) < c_ f (a) = c

which can be proved using the tautology method.

The annotated step case conclusions become

f (ivtrer f a b c s(n) ") > c_ f (ivtrer f a b c s(n) ") = c

and

f (ivtrel f a b c s(n) ") < c_ f (ivtrel f a b c s(n) ") = c

which produce two separate proofs each with two cases.

First we consider the case where

f (ivtrel f a b c n+ivtrer f a b c n
2

)< c_ f (ivtrel f a b c n+ivtrer f a b c n
2

) = c:
The first conclusion then becomes

f (ivtrer f a b n)> c_ f (ivtrer f a b n) = c

which corresponds to the induction hypothesis, and hence strong fertilisation applies.

The second conclusion for this case becomes

f (ivtrel f a b n+ivtrer f a b n
2

")< c_ f (ivtrel f a b n+ivtrer f a b n
2

") = c

B.2. Inductive lemmas for Rolle’s Theorem 197

which corresponds exactly to the condition add through the case split.

The next case introduces the hypothesis

f (ivtrel f a b c n+ivtrer f a b c n
2

)> c:
The first conclusion becomes

f (ivtrel f a b n+ivtrer f a b n
2

")> c_ f (ivtrel f a b n+ivtrer f a b n
2

") = c

which is proved as one of the disjuncts corresponds to the hypothesis added by the case

split. The second conclusion becomes

f (ivtrel f a b n)< c_ f (ivtrel f a b n) = c

which is the induction hypothesis, and hence strong fertilisation applies.

B.2 Inductive lemmas for Rolle’s Theorem� Lemma (6.9)

We yield proof-plan for the he inductive lemma8n2 N: rolrer f f 0 a b n�rolrel f f 0 a b n= b�a
2n :

We employ the plan-specification for induction to produce a proof-plan for its lemma.

We choose a standard structural induction scheme for the natural numbers, and choose

single-step induction onn– the only candidate for induction.

The base case can be trivially proved by rewriting and identity, using the wave-rules

defined for the partitioning function, the definition for exponentiation given by axiom

(4.6) and the field equations for multiplication (4.15), (4.24) and (4.16).rolrer f f 0 a b0�rolrel f f 0 a b0= b�a
20

can be rewritten to

b�a= b�a
20

which simplifies to

b�a= b�a

198 Appendix B. Proof-plans for the inductive lemmas

completing the proof-plan for the base case. The step case becomesrolrer f f 0 a b s(n) " �rolrel f f 0 a b s(n) " = b�a

2
s(n) " :

At this point we introduce four cases corresponding to the different conditions attached to

the wave rules in figure 6.9. As an example, we describe here the proof-plan constructed

for the first case in figure 6.9. After the application of arithmetical rules (4.9) and (4.15),

the conclusion becomesrolrel f f 0 a b n+rolrer f f 0 a b n
2

" �rolrel f f 0 a b n= 1
2� b�a

2n

" :
Now we speculate the rule

Y+X
2

" �Y) 1
2� X�Y

"
(B.14)

which can now be used to rewrite the conclusion to

1
2� rolrer f f 0 a b n�rolrel f f 0 a b n

" = 1
2� b�a

2n

"
Now the proof-plan is completed by rewriting with the induction hypothesis, using the

weak fertilisation method as described in section 3.2.5. Atthis point in the proof, the

natural step is to cancel the12 terms on either side of the equality. In proof-planning

terminology, this would allow strong fertilisation to takeplace- i.e. a direct invocation

of the hypothesis. In our case we use weak fertilisation withthe substitution rule of our

logic, and then complete the proof using the reflexivity of equality.� Lemmas (6.10) and (6.11)

We state these lemmas as8n2 N: rolrer f f 0 a b n � b^rolrer f f 0 a b n � a

and 8n2 N: rolrel f f 0 a b n � b^rolrel f f 0 a b n � a

In order to yield proof-plans for these goals, we must use results from the proof of one

conjecture in order to prove the other. In order to do this inλClam, we simulate a mutual

induction scheme. This means that we perform induction on the conjunction of all the

B.2. Inductive lemmas for Rolle’s Theorem 199

goals, and then we can use the induction hypothesis of any of the conjuncts in order to

rewrite the conclusion.

We state the conjecture for the left boundedness of the leftmost point of the partition8n2 N: rolrel f f 0 a b n> a_rolrel f f 0 a b n= a;
for which the base case isrolrel f f 0 a b0> a_rolrel f f 0 a b0= a:
This is rewritten immediately to

a> a_a= a;
which is proved using the tautology method. The right boundedness condition is written8n2 N: rolrel f f 0 a b n< b_rolrel f f 0 a b n= b

for which the base case can be rewritten to

a< b_a= b;
and proved similarly.

The proof-plan for the base case of the left and right boundedness of the rightmost point

follows the same steps so we omit the presentation of their proof-plans here.

The step case conclusion for the left boundedness of the leftpoint of the partition is

written rolrel f f 0 a b s(n) " > a_rolrel f f 0 a b s(n) " = a;
and for the right pointrolrer f f 0 a b s(n) " > a_rolrer f f 0 a b s(n) " = a:
Now for the right boundedness for the left point the step caseconclusion is writtenrolrel f f 0 a b s(n) " < b_rolrel f f 0 a b s(n) " = b;
and for the right pointrolrer f f 0 a b s(n) " < b_rolrer f f 0 a b s(n) " = b:

200 Appendix B. Proof-plans for the inductive lemmas

Now we construct cases according to the conditions attachedto the recursive wave rules

for rolrel androlrer. Once again we consider the first case shown in figure 6.9.

Using the conditions to the wave rules as cases is an example of case analysis. For this,

we can rewrite two of these four conclusions immediately torolrel f f 0 a b n> a_rolrel f f 0 a b n= arolrel f f 0 a b n< b_rolrel f f 0 a b n= b

which can be solved as they correspond to the induction hypotheses.

Let us consider the step case conjunct for the rightboundedness of the right point:rolrer f f 0 a b s(n) " < b_rolrer f f 0 a b s(n) " = b:
When the wave rules for this case are applied, we can embed thehypotheses forrolrel
and forrolrer. The annotated conclusion becomesrolrel f f 0 a b n+rolrer f f 0 a b n

2

" < b_ rolrel f f 0 a b n+rolrer f f 0 a b n
2

" = b:
We introduce the lemmas

X+Y
2

" > Z_ X+Y
2

" = Z) X > Z_X = Z ^Y > Z_Y = Z
"

X+Y
2

" < Z_ X+Y
2

" = Z) X < Z_X = Z ^Y < Z_Y = Z
" ;

which all pertain to the reasoning pattern we refer to asdivision by 2. We can rewrite
the conclusion torolrel f f 0 a b n< b_rolrel f f 0 a b n= b^ rolrer f f 0 a b n< b_rolrer f f 0 a b n= b

" :
We can perform the same proof steps for the left boundedness conjecture and arrive at

the conclusionrolrel f f 0 a b n> a_rolrel f f 0 a b n= a^ rolrer f f 0 a b n> a_rolrer f f 0 a b n= a
" :

Now the subgoals are all proved for this branch of the case split, as strong fertilisation

can now apply. The proof-plans for the other cases proceed similarly.

In the proof-plan for this lemma we usedmutual induction techniques to introduce more

than one induction hypothesis which allowed us to usecoloured rippling .� Lemma (6.12)

B.2. Inductive lemmas for Rolle’s Theorem 201

The inductive lemma we need to prove in order to establish this result is8n2 N: rolrer f f 0 a b n> rolrel f f 0 a b n:
We state the base case for this proof asrolrer f f 0 a b0> rolrel f f 0 a b0

which reduces tob> a, which follows trivially as it is in the hypotheses. The stepcase

is written as rolrer f f 0 a b s(n) " > rolrel f f 0 a b s(n) "
This can be proved independently of the partitioning criterion. In one set of cases the

conclusion ripples torolrel f f 0 a b n+rolrer f f 0 a b n
2

" > rolrel f f 0 a b n:
We use the rewrite rule

X+Y
2

> Z) X > Z^Y = Z _ X = Z^Y > Z _ X > Z^Y > Z

which pertains the reasoning pattern we refer to asdivision by 2. We rewrite the conclu-

sion torolrel f f 0 a b n> rolrel f f 0 a b n^rolrer f f 0 a b n= rolrel f f 0 a b n _rolrel f f 0 a b n= rolrel f f 0 a b n^rolrer f f 0 a b n> rolrel f f 0 a b n _rolrel f f 0 a b n> rolrel f f 0 a b n^rolrer f f 0 a b n> rolrel f f 0 a b n:
The second disjunct is satisfied by the induction hypothesisand the reflexivity of equal-

ity. In the other cases the proof-plans proceed similarly.� Lemma (6.13)

We yield a proof-plan for the conjecture8n2 N:
f 0(rolrel f f 0 a b n)� n ^ f 0(rolrer f f 0 a b n)< n _
f 0(rolrel f f 0 a b n)< n ^ f 0(rolrer f f 0 a b n)� n _
f 0(rolrel f f 0 a b n)� n ^ f 0(rolrer f f 0 a b n)� n^ f (rolrel f f 0 a b n)� f (rolrer f f 0 a b n) _
f 0(rolrel f f 0 a b n)< n ^ f 0(rolrer f f 0 a b n)< n^ f (rolrel f f 0 a b n)� f (rolrer f f 0 a b n):

202 Appendix B. Proof-plans for the inductive lemmas

This lemma is the crucial lemma in establishing Rolle’s Theorem. We consider the base

case here first. This can immediately be rewritten to(f 0(a)< 0^ f 0(b)� 0) _ (f 0(a)� 0^ f 0(b)� 0^ f (a)� f (b)) _(f 0(a)� 0^ f 0(b)< 0) _ (f 0(a)� 0^ f 0(b)� 0^ f (a)� f (b)):
Now with a case analysis for the base case, we addf 0(a)< 0_ f 0(a)� 0 and f 0(b)< 0_
f 0(b) � 0 which splits into four cases when_l is applied twice. Then sincef (a) = f (b)
is in the hypotheses, each of the conjuncts on one of the disjuncts is true in every case.

For the step case, we apply the case-split set for Rolle’s Theorem. In one case we add

the following to the hypotheses:

f ((rolrel f f 0 a b n+rolrer f f 0 a b n)=2) � f (rolrel f f 0 a b n) ^
f 0((rolrel f f 0 a b n +rolrer f f 0 a b n)=2) � 0:

Now we need to satisfy one disjunct in the lemma (6.13). In this case the disjunct of the

step case which is satisfied is

f 0(rolrel f f 0 a b s(n) ")� 0 ^
f 0(rolrer f f 0 a b s(n) ")< 0;

whence the step case then becomes

f 0(rolrel f f 0 a b n+rolrer f f 0 a b n
2

")� 0 ^
f 0(rolrer f f 0 a b n)< 0:

Now one conjunct matches one of the conditions, and the otherconjunct matches a hy-

pothesis.

Now we consider a different case from the case-split set, where we add the following

term to the hypotheses:

f ((rolrel f f 0 a b n+rolrer f f 0 a b n)=2) � f (rolrel f f 0 a b n) ^
f 0((rolrel f f 0 a b n +rolrer f f 0 a b n)=2) � 0:

In this case the disjunct of the step case which is satisfied is

f 0(rolrel f f 0 a b s(n) ")� 0 ^
f 0(rolrer f f 0 a b s(n) ")� 0 ^

f (rolrel f f 0 a b s(n) ")� f (rolrer f f 0 a b s(n) ")

B.3. Intermediate lemmas 203

which under this condition rewrites to

f 0(rolrel f f 0 a b n+rolrer f f 0 a b n2
2

")� 0 ^
f 0(rolrer f f 0 a b n)� 0 ^

f (rolrel f f 0 a b n+rolrer f f 0 a b n
2

")� f (rolrer f f 0 a b n):
Now we appeal to the fact that each of the conjuncts is either acondition or a hypothesis.

The proof-plans all proceed similarly for each of the other cases.

B.3 Intermediate lemmas

Here we state a number of lemmas which were used in the proofs,and which we incorporated

in to λClam interactively. As the proofs of the inductive lemmas for Rolle’s Theorem and

the Intermediate Value Theorem involve many case splits, each branch needs only slightly

different lemmas, which we group into families. We introduce these lemmas interactively into

the system as rewrite rules used often in the proofs. The rules which we use to rewrite the

hypotheses are presented with a logical implication!, as this is the direction of rewriting on

the hypotheses. Those that we use to rewrite the goal, we present using the rewriting symbol). The rules appear to be duplicated, as we have incorporated symmetry. We have

A> 0^B> 0 ! A
B
> 0 (B.15)

A> 0^B< 0 ! A
B
< 0 (B.16)

A< 0^B> 0 ! A
B
< 0 (B.17)

A< 0^B< 0 ! A
B
> 0 (B.18)

A� B^A<C^B>C ! A�C (B.19)

A� B^A<C^B>C ! B�C (B.20)

which help when ascertaining the sign of derivatives. We also add the following rules

A� B^A> X ! B� X_B> X

B� A^A> X ! B� X_B> X

A� B^A< X ! B� X_B< X

B� A^A< X ! B� X_B< X

204 Appendix B. Proof-plans for the inductive lemmas

which allow us to determine the infinitesimal neighbourhoodof points for which we have order

constraints. We also introduce the following lemmas as waverules

X+Y
2

" > Z_ X+Y
2

" = Z) X > Z_X = Z ^Y > Z_Y = Z
"

X+Y
2

" < Z_ X+Y
2

" = Z) X < Z_X = Z ^Y < Z_Y = Z
" :

We add another set of rewrite rules

X+Y
2 > Z) X > Z^Y = Z _ X = Z^Y > Z _ X > Z^Y > Z

X+Y
2 < Z) X < Z^Y = Z _ X = Z^Y < Z _ X < Z^Y < Z:

Bibliography

[Abian, 1979] Abian, A. (1979). An ultimate proof of rolle’stheorem.American Mathematical

Monthly, 86(6):484–485.

[Adams et al., 1999] Adams, A. A., Gottliebsen, H., Linton, S. A., and Martin, U. (1999). VS-

DITLU: a verifiable symbolic definite integral table look-up. In Conference on Automated

Deduction, pages 112–126.

[Apostol, 1974] Apostol, T. (1974).Mathematical Analysis: A Modern Approach to Advanced

Calculus (2nd Edition). Addison-Wesley Publishing Company.

[Aubin, 1976] Aubin, R. (1976). Mechanizing structural induction. PhD thesis, University of

Edinburgh.

[Aubin, 1979] Aubin, R. (1979). Mechanizing structural induction. part I: Formal system. part

II: Strategies.Theoretical Computer Science, 1(9):329–362.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998).Term Rewriting and All That.

Cambridge University Press.

[Basin and Walsh, 1996] Basin, D. and Walsh, T. (1996). A calculus for and termination of

rippling. Journal of Automated Reasoning, 16(1–2):147–180.

[Bedrax, 1993] Bedrax, T. (1993).Infmal : Prototype of an interactive theorem prover based

on infinitesimal analysis. Master’s thesis, Pontificia Universidad Católica de Chile.

[Beeson, 1985] Beeson, M. (1985).Foundations of Constructive Mathematics. Springer,

Berlin/Heidelberg/New York. Metamathematical Studies.

[Beeson, 1995] Beeson, M. (1995). Using nonstandard analysis to verify the correctness of

computations.International Journal of Foundations of Computer Science, 6(3):299–338.

205

206 Bibliography

[Beeson, 1998] Beeson, M. (1998). Automatic generation of epsilon-delta proofs of continu-

ity. In Calmet, J. and Plaza, J. A., editors,AISC, volume 1476 ofLecture Notes in Computer

Science, pages 67–83. Springer.

[Bell, 1998] Bell, J. L. (1998). A Primer of Infinitesimal Analysis. Cambridge University

Press.

[Benzmüller et al., 1997] Benzmüller, C., Cheikhrouhou,L., Fehrer, D., Fiedler, A., Huang,

X., Kerber, M., Kohlhase, K., Meier, A., Melis, E., Schaarschmidt, W., Siekmann, J., and

Sorge, V. (1997).Ωmega: Towards a mathematical assistant. In McCune, W., editor, 14th

International Conference on Automated Deduction, pages 252–255. Springer-Verlag.

[Berkeley, 1734] Berkeley, G. (1734). The Analyst: A discourse addressed to an infi-

del mathematician. Available fromhttp://www.maths.tcd.ie/pub/HistMath/People/

Berkeley/Analyst/ .

[Bishop and Bridges, 1985] Bishop, E. and Bridges, D. (1985). Constructive Analysis.

Springer-Verlag.

[Bledsoe, 1990] Bledsoe, W. W. (1990). Challenge problems in elementary calculus.Journal

of Automated Reasoning, 6(3):341–359.

[Bledsoe and Ballantyne, 1977] Bledsoe, W. W. and Ballantyne, A. M. (1977). Automatic

proofs of theorems in analysis using nonstandard techniques. Association for Computing

Machinery, 24(3):353–374.

[Bledsoe et al., 1972] Bledsoe, W. W., Boyer, R. S., and Henneman, W. H. (1972). Computer

proofs of limit theorems.Artificial Intelligence, 3:27–60.

[Boulton et al., 1998] Boulton, R., Slind, K., Bundy, A., andGordon, M. (1998). An inter-

face between CLAM and HOL. In Grundy, J. and Newey, M., editors, Proceedings of the

11th International Conference on Theorem Proving in HigherOrder Logics (TPHOLs’98),

volume 1479 ofLecture Notes in Computer Science, pages 87–104, Canberra, Australia.

Springer.

[Boyer and Moore, 1990] Boyer, R. S. and Moore, J. S. (1990). Atheorem prover for a com-

putational logic. InProceedings of the Tenth International Conference on Automated De-

duction. Kaiserlauten, Germany.

Bibliography 207

[Bundy, 1988] Bundy, A. (1988). The use of explicit plans to guide inductive proofs. In Lusk,

R. and Overbeek, R., editors,9th International Conference on Automated Deduction, pages

111–120. Springer-Verlag. Longer version available from Edinburgh as DAI Research Paper

No. 349.

[Bundy, 1989] Bundy, A. (1989). A science of reasoning. Research Paper 445, Dept. of

Artificial Intelligence, University of Edinburgh. Also in “Computational Logic: Essays in

Honor of Alan Robinson”, MIT Press, 1991.

[Bundy et al., 1993] Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., and Smaill, A.

(1993). Rippling: A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–

253. Also available from Edinburgh as DAI Research Paper No.567.

[Bundy et al., 1990] Bundy, A., van Harmelen, F., Horn, C., and Smaill, A. (1990). The

Oyster-Clam system. Research Paper 507, Dept. of ArtificialIntelligence, University of

Edinburgh. Appeared in the proceedings of CADE-10.

[Cantu et al., 1996] Cantu, F., Bundy, A., Smaill, A., and Basin, D. (1996). Experiments in au-

tomating hardware verification using inductive proof planning. In Srivas, M. and Camilleri,

A., editors,Proceedings of the Formal Methods for Computer-Aided Design Conference,

number 1166 in Lecture Notes in Computer Science, pages 94–108. Springer-Verlag.

[Castellini and Smaill, 2001] Castellini, C. and Smaill, A.(2001). Tactic-based theorem prov-

ing in first-order modal and temporal logics. In Giunchiglia, E. and Massacci, F., editors,

Proceedings of IJCAR WS10: Issues in the Design and Experimental Evaluation of Systems

for Modal and Temporal Logics, TR DII 14/01. University of Siena.

[Castellini and Smaill, 2002] Castellini, C. and Smaill, A.(2002). Proof planning for feature

interactions: A preliminary report. In Baaz, M. and Voronkov, A., editors,Proceedings of

LPAR 2002, LNAI 2514, pages 102–114. Springer.

[Chippendale, 1995] Chippendale, M. (1995). Planning a proof of the intermediate value theo-

rem. In Calmet, J. and Campbell, J. A., editors,Integrating Symbolic Mathematical Compu-

tation and Artificial Intelligence, Second International Conference, AISMC-2, volume 958

of Lecture Notes in Computer Science. Springer.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types.Symbolic

Logic, 5(1):56–68.

208 Bibliography

[Cruz-Filipe, 2002] Cruz-Filipe, L. (2002). Formalizing real calculus in coq. In Carreño,

V., Muñoz, C., and Tahar, S., editors,Theorem Proving in Higher Order Logics, NASA

Conference Proceedings, Hampton VA.

[Dixon and Fleuriot, 2003] Dixon, L. and Fleuriot, J. D. (2003). IsaPlanner: A prototype proof

planner in Isabelle. InProceedings of CADE’03, Lecture Notes in Computer Science.

[Dutertre, 1996] Dutertre, B. (1996). Elements of mathematical analysis in pvs. In von Wright,

J., Grundy, J., and Harrison, J., editors,TPHOLs, volume 1125 ofLecture Notes in Computer

Science, pages 141–156. Springer.

[Fleuriot, 2001a] Fleuriot, J. (2001a).A Combination of Geometry Theorem Proving and Non-

standard Analysis, with Application to Newton’s Principia. Springer-Verlag.

[Fleuriot and Paulson, 2000] Fleuriot, J. and Paulson, L. (2000). Mechanizing Nonstandard

Real Analysis. To appear in LMS Journal of Computation and Mathematics.

[Fleuriot, 2000] Fleuriot, J. D. (2000). On the mechanization of real analysis in Isabelle/HOL.

In Harrison, J. and Aagaard, M., editors,Theorem Proving in Higher Order Logics: 13th In-

ternational Conference, TPHOLs 2000, volume 1869 ofLecture Notes in Computer Science,

pages 146–162. Springer-Verlag.

[Fleuriot, 2001b] Fleuriot, J. D. (2001b). Nonstandard geometric proofs. In Wang, D. and

Richter-Gebert, J., editors,Automated Deduction in Geometry, volume 2061, pages 238–

260. A shorter version appeared in the published in Proceedings of ADG 2000, pages

259–279, Zurich, Switzerland.

[Fleuriot, 2001c] Fleuriot, J. D. (2001c). Theorem provingin infinitesimal geometry.Logic

Journal of the IGPL, 9(3):471–498.

[Fleuriot and Paulson, 1999] Fleuriot, J. D. and Paulson, L.C. (1999). Proving Newton’s

Propositio Kepleriana using geometry and nonstandard analysis in Isabelle. InAutomated

Deduction in Geometry 1998, volume 1669 ofLecture Notes in Artificial Intelligence, pages

47–66.

[Franke et al., 1999] Franke, A., Hess, S. M., Jung, C. G., Kohlhase, M., and Sorge, V. (1999).

Agent-oriented integration of distributed mathematical services.Journal of Universal Com-

puter Science, 5:156–187.

Bibliography 209

[Franke and Kohlhase, 1999] Franke, A. and Kohlhase, M. (1999). System description:

MATHWEB, an agent-based communication layer for distributed automated theorem prov-

ing. In Ganzinger, H., editor,CADE, volume 1632 ofLecture Notes in Computer Science,

pages 217–221. Springer.

[Gamboa, 1999] Gamboa, R. (1999).Mechanically Verifying Real-Valued Algorithms in

ACL2. PhD thesis, The University of Texas at Austin.

[Goldblatt, 1991] Goldblatt, R. (1991).Lectures on the hyperreals. Springer. Graduate Texts

in Mathematics.

[Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. F., editors (1993).Introduction

to HOL: A theorem proving environment for higher order logic. Cambridge University Press.

[Gottliebsen, 2000] Gottliebsen, H. (2000). Transcendental functions and continuity checking

in PVS. In Aargaard, M. and Harrison, J., editors,Theorem Proving in Higher Order Logics:

13th International Conference, TPHOLs 2000, volume 1869, pages 197–214, Portland, OR.

Springer-Verlag.

[Harrison, 1992] Harrison, J. (1992). Constructing the real numbers in HOL. In Claesen, L.

J. M. and Gordon, M. J. C., editors,Proceedings of the IFIP TC10/WG10.2 International

Workshop on Higher Order Logic Theorem Proving and its Applications, volume A-20 of

IFIP Transactions A: Computer Science and Technology, pages 145–164, IMEC, Leuven,

Belgium. North-Holland.

[Harrison, 1998] Harrison, J. (1998).Theorem proving with the real numbers. PhD thesis,

University of Cambridge.

[Harrison, 1999] Harrison, J. (1999). A machine-checked theory of floating point arithmetic.

In Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., and Théry, L., editors,Theorem

Proving in Higher Order Logics: 12th International Conference, TPHOLs’99, volume 1690

of Lecture Notes in Computer Science, pages 113–130, Nice, France. Springer-Verlag.

[Heneveld et al., 2001] Heneveld, A., Maclean, E., Bundy, A., Fleuriot, J., and Smaill, A.

(2001). Solving integrals at the method level. In Kerber, M.and Kohlhase, M., editors,

Symbolic Computation and Automated Reasoning, pages 251–252.

210 Bibliography

[Henzinger et al., 1997] Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). HYTECH: A

model checker for hybrid systems.International Journal on Software Tools for Technology

Transfer, 1(1-2):110–122.

[Henzinger et al., 1992] Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1992).

Symbolic Model Checking for Real-Time Systems. In7th. Symposium of Logics in Com-

puter Science, pages 394–406, Santa-Cruz, California. IEEE Computer Scienty Press.

[Hoskins, 1990] Hoskins, R. F. (1990).Standard and Nonstandard Analysis. Mathematics and

its applications. Ellis Horwood Limited.

[Hurd and Loeb, 1985] Hurd, A. E. and Loeb, P. A. (1985).An Introduction to Nonstandard

Real Analysis, volume 118 ofPure and Applied Mathematics. Academic Press Inc.

[Hutter, 1997] Hutter, D. (1997). Colouring terms to control equational reasoning.Journal of

Automated Reasoning, 18:399–442.

[Hutter and Kohlhase, 1997] Hutter, D. and Kohlhase, M. (1997). A colored version of theλ-

Calculus. In McCune, W., editor,14th International Conference on Automated Deduction,

pages 291–305. Springer-Verlag. Also available as SEKI-Report SR-95-05.

[Ireland, 1992] Ireland, A. (1992). The Use of Planning Critics in Mechanizing Inductive

Proofs. In Voronkov, A., editor,International Conference on Logic Programming and Au-

tomated Reasoning – LPAR 92, St. Petersburg, Lecture Notes in Artificial Intelligence No.

624, pages 178–189. Springer-Verlag. Also available from Edinburgh as DAI Research

Paper 592.

[Ireland and Bundy, 1996] Ireland, A. and Bundy, A. (1996). Productive use of failure in in-

ductive proof. Journal of Automated Reasoning, 16(1–2):79–111. Also available as DAI

Research Paper No 716, Dept. of Artificial Intelligence, Edinburgh.

[Janičić and Bundy, 2002] Janičić, P. and Bundy, A. (2002). A general setting for the flex-

ible combining and augmenting decision procedures.Journal of Automated Reasoning,

28(3):257–305.

[Janičić et al., 1999] Janičić, P., Bundy, A., and Green, I. (1999). A framework for the flex-

ible integration of a class of decision procedures into theorem provers. In E., G., editor,

Proceedings of CADE-16, pages 127–141, Trento, Italy. Springer-Verlag. LNAI 1652.

Bibliography 211

[Kaufmann and Moore, 1997] Kaufmann, M. and Moore, J. S. (1997). An industrial strength

theorem prover for a logic based on common lisp.IEEE Transactions on Software Engi-

neering, 23(4):203–213.

[Keisler, 1977] Keisler, H. J. (1977).Foundations of Infinitesimal Calculus. Prindle, Weber &

Schmidt.

[Liu, 1980] Liu, S.-C. (1980). A proof-theoretic approach to non-standard analysis with em-

phasis on distinguishing between constructive and non-constructive results. The Kleene

Symposium, pages 391–414.

[Lowe and Duncan, 1997] Lowe, H. and Duncan, D. (1997). XBarnacle: Making theorem

provers more accessible. In McCune, W., editor,14th International Conference on Auto-

mated Deduction, pages 404–408. Springer-Verlag.

[Maclean, 2001] Maclean, E. (2001). Automating proof in non-standard analysis. In Strieg-

nitz, K., editor,Proceedings of the Student Session of the 13th European Summer School in

Logic, Language and Information, pages 191–203.

[Maclean, 2003] Maclean, E. (2003). Proof-planning non-standard analysis.Submitted to the

Annals of Artificial Intelligence and Mathematics (March 2002).

[Maclean et al., 2002] Maclean, E., Fleuriot, J., and Smaill, A. (2002). Proof-planning non-

standard analysis. InProceedings of the Seventh International Symposium on Artificial

Intelligence and Mathematics, Fort Lauderdale, Florida.

[Mayero, 2001] Mayero, M. (2001).Formalisation et automatisation de preuves en analyses

relle et nuḿerique. PhD thesis, Université de Paris VI.

[Melis, 1996] Melis, E. (1996). Progress in proof planning:Planning limit theorems automat-

ically. Technical Report SR-97-08, University of the Saarland.

[Melis, 1998] Melis, E. (1998). AI-Techniques in Proof Planning. In Henri Prade, editor,13th

European Conference on Artificial Intelligence, pages 494–498, Brighton, UK. John Wiley

and Sons, Chichester.

[Miller and Nadathur, 1988] Miller, D. and Nadathur, G. (1988). An overview ofλProlog. In

Bowen, K. & Kowalski, R., editor,Proceedings of the Fifth International Logic Program-

ming Conference/ Fifth Symposium on Logic Programming. MIT Press.

212 Bibliography

[Nelson, 1977] Nelson, E. (1977). Internal set theory: A newapproach to nonstandard anal-

ysis. Bulletin American Mathematical Society, 83. Available fromhttp://www.math.

princeton.edu/˜nelson/books.html .

[Owre et al., 1992] Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS : An integrated

approach to specification and verification. Tech report, SRIInternational.

[Palmgren, 1995] Palmgren, E. (1995). A Constructive Approach to Nonstandard Analysis.

Annals of Pure and Applied Logic, 73(3):297–325.

[Palmgren, 1997] Palmgren, E. (1997). A Sheaf-Theoretic Foundation for Nonstandard Anal-

ysis. Annals of Pure and Applied Logic, 85(1):69–86.

[Paulson, 1989] Paulson, L. (1989). The foundation of a generic theorem prover.Journal of

Automated Reasoning, 5:363–397.

[Richardson et al., 1998] Richardson, J. D. C., Smaill, A., and Green, I. (1998). System de-

scription: proof planning in higher-order logic with Lambda-Clam. In Kirchner, C. and

Kirchner, H., editors,15th International Conference on Automated Deduction, volume 1421

of Lecture Notes in Artificial Intelligence, pages 129–133, Lindau, Germany.

[Robinson, 1966] Robinson, A. (1966).Non-standard Analysis. North-Holland Publishing

Company, Amsterdam. Studies in Logic and the Foundations ofMathematics.

[Robinson, 1996] Robinson, A. (1996).Non-standard Analysis. Princeton University Press,

Princeton, New Jersey. Revised Edition.

[Simpson, 1990] Simpson, A. P. (1990). The infidel is innocent. The Mathematical Intelli-

gencer, 12(3).

[Smaill and Green, 1996] Smaill, A. and Green, I. (1996). Higher-order annotated terms for

proof search. In von Wright, J., Grundy, J., and Harrison, J., editors,Theorem Proving in

Higher Order Logics: 9th International Conference, TPHOLs’96, volume 1275 ofLecture

Notes in Computer Science, pages 399–414, Turku, Finland. Springer-Verlag. Also available

as DAI Research Paper 799.

[Stark and Ireland, 1998] Stark, J. and Ireland, A. (1998). Invariant discovery via failed proof

attempts. In Flener, P., editor,Logic-based Program Synthesis and Transformation, number

1559 in LNCS, pages 271–288. Springer-Verlag.

Bibliography 213

[Troelstra, 1973] Troelstra, A. S., editor (1973).Metamathematical Investigation of Intuition-

istic Arithmetic and Analysis. Number 344 in Lecture Notes in Mathematics. Springer-

Verlag.

[van Benthem Jutting, 1977] van Benthem Jutting, L. (1977).Checking Landau’s ”Grundla-

gen” in the Automath system. PhD thesis, Technische Hogeschool Eindhoven, Stichting

Mathematisch Centrum.

[Walsh et al., 1992] Walsh, T., Nunes, A., and Bundy, A. (1992). The use of proof plans to sum

series. In Kapur, D., editor,11th International Conference on Automated Deduction, pages

325–339. Springer Verlag. Lecture Notes in Computer Science No. 607. Also available from

Edinburgh as DAI Research Paper 563.

[Yoshida, 1993] Yoshida, T. (1993). Coloured rippling. Master’s thesis, Dept. of Artificial

Intelligence, University of Edinburgh.

[Yoshida et al., 1994] Yoshida, T., Bundy, A., Green, I., Walsh, T., and Basin, D. (1994).

Coloured rippling: An extension of a theorem proving heuristic. In Cohn, A. G., editor,

Proceedings of ECAI-94, pages 85–89. John Wiley.

