
Evolving Robots:
from Simple Behaviours to Complete Systems

Wei-Po Lee

. t4 1 V /? „

*4

>

Ph.D.

University of Edinburgh
1997

Abstract

Building robots is generally considered difficult, because the designer not only has to
predict the interaction between the robot and the environment, but also has to deal
with the ensuing problems. This thesis examines the use of the evolutionary approach
in designing robots; the explorations range from evolving simple behaviours for real
robots, to complex behaviours (also for real robots), and finally to complete robot
systems — including controllers and body plans.

A framework is presented for evolving robot control systems. It includes two com¬

ponents: a task independent Genetic Programming sub-system and a task dependent
controller evaluation sub-system. The performance evaluation of each robot controller
is done in a simulator to reduce the evaluation time, and then the evolved controllers
are downloaded to a real robot for performance verification. In addition, a special rep¬
resentation is designed for the reactive robot controller. It is succinct and can capture
the important characteristics of a reactive control system, so that the evolutionary sys¬
tem can efficiently evolve the controllers of the desired behaviours for the robots. The
framework has been successfully used to evolve controllers for real robots to achieve a

variety of simple tasks, such as obstacle avoidance, safe exploration and box-pushing.

A methodology is then proposed to scale up the system to evolve controllers for more
complicated tasks. It involves adopting the architecture of a behaviour-based system,
and evolving separate behaviour controllers and arbitrators for coordination. This
allows robot controllers for more complex skills to be constructed in an incremental
manner. Therefore the whole control system becomes easy to evolve; moreover, the
resulting control system can be explicitly distributed, understandable to the system
designer, and easy to maintain. The methodology has been used to evolve control
systems for more complex tasks with good results.

Finally, the evolutionary mechanism of the framework described above is extended
to include a Genetic Algorithm sub-system for the co-evolution of robot body plans
— structural parameters of physical robots encoded as linear strings of real numbers.
An individual in the extended system thus consists of a brain(controller) and a body.
Whenever the individual is evaluated, the controller is executed on the corresponding
body for a period of time to measure the performance. In such a system the Genetic
Programming part evolves the controller; and the Genetic Algorithm part, the robot
body. The results show that the complete robot system can be evolved in this manner.

ii

Acknowledgements

I am especially grateful to my supervisor, Dr John Hallam, whose patience and under¬
standing has helped me to complete my project. His tolerance and encouragement is
unforgettable.

There are a number of scholars and colleagues who have also helped me in various
ways. I would like to thank Henrik Hautop Lund for his enthusiastic assistance and
discussions, and Dr Peter Ross and Tim Taylor for their valuable suggestions.

I deeply appreciate Professor K. J. Fielding of University of Edinburgh, who has been
the most affectionate friend of my family through these years in Edinburgh.

Finally I thank my parents and my wife Shu-Fang who are my strongest backup all
the year round.

iii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

iv

Contents

Abstract ii

Acknowledgements iii

Declaration iv

List of Figures xiv

1 Introduction 1

1.1 Robot Control 2

1.1.1 Classical Robot Control and the Problems 2

1.1.2 Behaviour-Based Control and the Challenges 3

1.1.3 Robot Learning 4

1.1.4 Learning by Evolution 5

1.2 Evolutionary Computation 6

1.3 Contributions of this Work 7

1.4 Overview of the Thesis 9

2 Evolutionary Algorithms 11

2.1 A Gentle Introduction 11

2.1.1 Evolution Strategies and Evolutionary Programming 14

2.1.2 Genetic Algorithms and Genetic Programming 15

2.2 Genetic Programming 17

2.2.1 Representation 19

2.2.2 Initialisation 21

v

2.2.3 Fitness Measure 22

2.2.4 Selection Methods 23

2.2.5 Creating Offspring 24

2.2.6 Automatic Defined Functions 26

2.3 Parallelising Simulated Evolution 27

2.3.1 Coarse-Grain Models 28

2.3.2 Fine-Grain Models 29

2.4 Summary 29

3 Evolutionary Robotics 31

3.1 Prom Artificial Life to Evolutionary Robotics 31

3.2 Evolution in Simulation Only 33

3.2.1 Koza's Work 33

3.2.2 Reynolds's Work 35

3.2.3 Ram's Work 35

3.3 Work Involving Both Simulated and Real Robots 36

3.3.1 Work by the Sussex Group 36

3.3.2 Miglino, Lund, and Nolfi's Work 38

3.3.3 Dorigo and Colombetti's Work 39

3.3.4 Grefenstette and Schultz's Work 40

3.3.5 Yamauchi and Beer's Work 41

3.3.6 Gallagher and Beer's Walking Robot 41

3.4 Evolution on Real Robots 42

3.4.1 Floreano and Mondada's Work 42

3.4.2 Cliff, Husbands, and Harvey's Work 44

3.4.3 Work by AAI 44

3.5 Discussion 45

4 Evolving Reliable and Robust Behaviours 48
4.1 Introduction 48

4.2 The Genetic Framework 50

vi

4.2.1 Representation 50

4.2.2 The Selection Scheme 54

4.2.3 The Genetic Operators 55

4.2.4 Parallelism 56

4.2.5 Simulation 57

4.3 Evolving a Reliable and Robust Controller 60

4.3.1 Preparation for a GP Run 61

4.3.2 Fitness Measure 63

4.3.3 Experiments and Results 64

4.3.4 Performance and Cost 67

4.4 Summary and Discussion 70

4.4.1 Summary 70

4.4.2 The Control Parameters 71

5 Evolving Controllers for Real Robots 73

5.1 Introduction 73

5.2 The Use of Simulation 74

5.2.1 The Need and the Role of Simulation 74

5.2.2 The Gap between Simulated and Real Worlds 76

5.2.3 The Comparison of Different Kinds of Simulators 77

5.3 The Real and Simulated Robots Used in this Chapter 79

5.3.1 The Khepera Robot 79

5.3.2 Building a Simulator from Real Sensor and Motor Response ... 81

5.4 From Simulation to Reality 82

5.4.1 Obstacle Avoidance 84

5.4.2 Box-Pushing 87

5.4.3 Box-Side-Circling 91

5.4.4 Exploration 93

5.5 Summary and Discussion 97

6 Evolving Control Systems for Complex Tasks 99

vii

6.1 The Scale-up Problem in Evolutionary Robotics 99

6.1.1 About Control Architectures 100

6.1.2 About Evolutionary Computation 102

6.1.3 Some Ways to Achieve Complex Tasks 103

6.2 Task Decomposition and Integration 108

6.2.1 Two Types of Task Decomposition 108

6.2.2 Two types of Task Integration 110

6.3 Evolving Hierarchical Task-achieving Controllers Ill

6.3.1 Control Architecture Ill

6.3.2 The Application Task 113

6.3.3 Task Decomposition 114

6.4 Experiment I 115

6.4.1 Hardware Limitations 115

6.4.2 Evolving an Arbitrator for the push-box-toward-light Task 116

6.4.3 Evolving an Arbitrator for the Overall Task 119

6.5 Experiment II 122

6.6 Summary and Discussion 128

7 Co-evolution of Robot Brains and Bodies 129

7.1 Introduction 129

7.2 Related Work in Co-evolving Morphology 131

7.2.1 Co-evolving Sensors 131

7.2.2 Evolving Complete Agents 132

7.3 Simulation 133

7.4 Evolving Complete Robot Systems 134

7.4.1 System Overview - 134

7.4.2 Evolving Brains with Sensors - The GP Part 136

7.4.3 Evolving Robot Bodies - The GA Part 137

7.5 Experiments in Co-evolving Brains and Bodies 139

7.5.1 Interpretation of the Control Output 139

7.5.2 The Specification of a Robot Body 140

viii

7.5.3 Experiments and Results 140

7.5.4 Analysis of the Evolved Robot 141

7.6 The Importance of Appropriate Brain-Body Coupling 144

7.6.1 Further Investigation 144

7.7 Exploring the Relationships between Different Body Parameters 147

7.7.1 Wheel Base and Body Size 147

7.7.2 Motor Time Constant and Wheel Radius 151

7.8 Summary and Discussion 155

8 Summary and Conclusions 158

8.1 Summary and Conclusions 158

8.1.1 The Construction of an Evolutionary Robotics Framework 158

8.1.2 Achieving Complex Tasks 161

8.1.3 Evolving Complete Systems 162

8.2 Future Research 163

Bibliography 165

A Publications 178

ix

List of Figures

1.1 The architecture of classical robot control v.s. behaviour-based robot
control (after [Brooks 86]) 4

2.1 The general flow of a simulated evolution mechanism 13

2.2 An example of one-point crossover in GA 16

2.3 Examples of randomly generated tree individuals. The function set is
{+, —, *} and the terminal set is {X, Y, 5?} 19

2.4 An example of crossover in GP. Two new trees are created by swapping
subtrees of parents 25

2.5 An example of a tree individual in GP with ADFs (after [Koza 94]). . . 26

3.1 The general diagram of an Evolutionary Robotics system in which a
controller could be a neural network, a classifier system, a computer
program, etc; and the controller could be evaluated by a simulated robot
in a simulated world or a real robot in the real world 32

4.1 An example shows converting a circuit network to a tree 52

4.2 The structure of a typical controller. In this figure, NO, Nl, N2 repres¬
ent the three types of non-terminals, root-node, logic components, and
comparator, respectively. The terminal T can be a normalised sensor

response or a threshold between 0 and 1 inclusive 54

4.3 The n-cube models. Prom left to right: n = 1, 2, 3 respectively 57

4.4 (a) The sensor arrangement of the simulated robot; (b) The sensor field
of view 58

4.5 (a) Illustration of the relevant symbols of a motion system. M, rep¬
resents the motor i (with a time constant rz); is the actual angular
velocity of motor i; ri is the radius of wheel i; L is the length of the
wheel base; and v and ui are the forward and turning speeds of the robot
respectively.(b) The dynamic of a motor i: Ti is the motor time constant. 59

4.6 The best and average fitness (penalty) of each generation for an example
run 65

x

4.7 Four examples of emergent behaviours, in which the robot started from
different situations (different start positions in (a)(b), or different envir¬
onments in (c)(d)) 66

4.8 A figure contrasts the number of successful runs for different sets of ex¬
periments with different sample sizes (10 runs were done for each sample
size). The case with sample size 25 represents the set of experiments in
which 25 fixed fitness cases were used (see Table 4.3) 68

5.1 The Khepera miniature robot and its sensor arrangement. In the right
figure, a sensor Si can function as an infra-red or an ambient light sensor. 80

5.2 The sensing-motion cycle of the look-up table approach in simulation. In
this figure, d and a represent the relative distance and angle of the robot
to an object, respectively; Ad and Aa mean the changes in distance and
angle when the robot performs the motor command < I — motor, r —

motor > produced by the control system for one time step 81

5.3 The best and average fitness during a run for evolving an obstacle avoid¬
ance controller 85

5.4 The obstacle avoidance behaviours of the simulated (a)(b)(c) and real
(d) robots. In these figures, the darker circles are the robots. The
figure for the real robot is obtained by setting LEDs on the tops of the
robot and obstacles, and using a video tracking system to record their
trajectories 86

5.5 The relevant sensor and motor activities corresponding to the Figure 5.4(a).
(a) is the maximum of the normalised sensor activations; (b) and (c) are
the normalised speed and turning rate of the simulated robot 87

5.6 The best and average fitness during a run for evolving a box-pushing
controller 89

5.7 The trajectories of simulated (a) and real (b) robots when they are
pushing a box (the darker circles represent the robots and the boxes are
pushed from top to bottom) 89

5.8 The related sensor and motor information when the robot is perform¬
ing the evolved controller for the box-pushing task, (a) is the average
activation of the front two IRs; (b) and (c) are the command indices for
left and right motors respectively 90

5.9 The best and average fitness during a run for evolving a box-side-circling
controller 92

5.10 The box-side-circling behaviours of simulated (a) and real (b) robots.
In this figure, the darker circles represent the robots. . 93

xi

5.11 The relevant sensor and motor activities for the behaviour shown in

Figure 5.10(a). (a) includes the activations of sensor IRO (higher) and
IR1 (lower); (b) and (c) are the commands indices for left and right
motors respectively. 94

5.12 The best and average fitness during a run in evolving an exploration
controller 95

5.13 The exploration behaviours of simulated (a) and real (b) robots 96

6.1 The general design of centralised (a), and distributed (b) control ar¬
chitectures. In this figure, Si, Sj, Sk could be any kind of sensory
information, such as sonars, infra-reds, cameras, etc 101

6.2 The design of the evolutionary system which uses an indirect encoding
scheme to evolve control systems 104

6.3 The representation of an evolutionary system which co-evolves the main
program body together with building blocks 106

6.4 The aspect of incremental evolution in which there is a fitness function
defined in each task 106

6.5 A typical example of flat decomposition and its corresponding control
architecture 109

6.6 A typical example of hierarchical decomposition and its corresponding
control architecture 109

6.7 Two typical ways to implement an arbitrator, (a) The current output
is the weighted sum of it inputs; (b) the current output of an arbitrator
is one of its inputs Ill

6.8 The general architecture of a control system in which an arbitrator is
implemented as shown in Figure 6.7(b). S and A represent the sensors
and actuators related to a certain control work 112

6.9 Illustration of the application task. The robot starts from an arbitrary
position within a closed area; it has to find the box (placed within the
area brightened by the light) and push the box toward the light centre. 113

6.10 The decomposition and integration of the target task. Si indicates the
sensory information relevant to taski 114

6.11 (a) An ideal way to satisfy the sensor requirements for both arbitrators
is to duplicate a set of eight sensors on the top of the robot; (b) the
sensor arrangement - a sensor Si can function as an infra-red or an
ambient light sensor 116

xii

6.12 The behaviour sequence of the robot during a typical test: (1) The
initial positions of the box (dark circle), the light (smallest circle) and
the robot; (2) the robot moved along the side of the box; (3) pushing the
box forward; (4) circling again to an appropriate position; (5) pushing
the box again to the goal position; (6) continuously circling after the
box has been pushed to the goal position 118

6.13 The output sequence corresponding to the behaviour in Figure 6.12. In
this figure, the y-axis indicates the controller which was activated: 0 is
for box-pushing and 1 is for box-side-circling 119

6.14 The behaviour sequence of the robot: (1) the initial conditions; (2) the
robot wandered around the environment before finding the box; (3) (7)
the robot continuously performed the building block controller push-box-
toward-light to achieve the task 121

6.15 The output sequence corresponding to the behaviour in Figure 6.14. In
this figure, the y-axis indicates which controller was activated: 0 is for
exploration and 1 is for push-box-toward-light 122

6.16 The equipment for examining the performance of an evolved arbitrator
on a real robot. From left to right: the LED ring, the box and the robot.
The black box on the top of the robot includes a light detector 123

6.17 The desired situation in which the robot heads toward the box and
detects the light at the same time 123

6.18 An example for explaining how the fitness is defined for evolving the
new circling behaviour. The dotted line indicates how the space around
the box is divided into small regions for fitness measurement 124

6.19 Two different circling behaviours generated by the simulated robot. . . . 125

6.20 The trajectory of the real robot when it performed the evolved controller
with the behaviour shown in Figure 6.19(a) 125

6.21 The typical behaviours of the simulated (a) and real (b) robots, when
they used the evolved arbitrator to coordinate two lower-level controllers
for the push-box-toward-light task. In both figures, the darker circles are
robots and the smallest circles indicate the centre of the LED ring. In
the right figure, the solid and dotted lines are the trajectories of the box
and the robot, respectively 127

7.1 The structure of an individual defined in this work: in the tree structure,
a node with an N/T is a non-terminal/terminal node; in the string
representation, Pi is a real number 134

7.2 Diagram of a typical controller 136
7.3 An example of the behaviour of the evolutionary system, when it was

used to co-evolve robot brains and bodies to achieve an obstacle avoid¬
ance task 141

xiii

7.4 Two examples of emerged behaviours, in which the robot started from
different situations 142

7.5 Two examples of testing the evolved agent in changed environments. . . 142

7.6 Three different strategies are used by the evolved robot to avoid obstacles. 143

7.7 Some faults caused by the inappropriate brain-body couplings (see text
for explanation) 146

7.8 The distribution of the body size and wheel base of the evolved solutions
from the successful runs 149

7.9 (a) The body size and wheel base of the best individual at each genera¬
tion; (b) the corresponding fitness curve 150

7.10 The distribution of the evolved body size and wheel base after the sensor

range was doubled 151

7.11 The distribution of the co-evolved motor time constant and wheel radius. 153

7.12 (a) The motor time constant and wheel radius of the best individual at
each generation; (b) the corresponding fitness curve 154

7.13 The distribution of the evolved body parameters in which criterion 1
co-evolved both the time constant and wheel radius with controllers;
criterion 2 used fixed time constant (2.5 sec) and only wheel radius was
co-evolved; criterion 3 used fixed time constant (4.0 sec) and only wheel
radius was co-evolved 155

7.14 The comparison of three different criteria described in Figure 7.13. . . 156

xiv

Chapter 1

Introduction

Building behaviour-based control systems that decompose the competence of an agent

into multiple task-achieving control modules has now become a serious alternative to

the traditional approach in robot design. This approach has been used to construct

many real robots acting in real time in the real world. While it is also realised that

building a robot by iteratively dealing with the robot-environment interaction is a

tough job, especially when the number of modules increases with the complexity of

tasks and environments, it would go beyond a designer's capability to construct all

the modules and the relationships between them. The idea of self-adaptation is thus

proposed as an attempt to make the robot learn to adapt to its environment by itself.

Evolutionary computation is a form of adaptation. It has been widely applied to the

study of artificial life to evolve simulated creatures acting in simulated worlds where the

creatures are demonstrated to be able to change their structures (internal or external)
to find the form which best suits their environment. As a result, in the early 1990s, this

idea was extended to synthesise situated creatures (i.e., robots) in the real world. This

thesis addresses problems in the application of evolutionary algorithms to automate

the generation of robot creatures. Topics include the evolution of robust and reliable

behaviours, the behaviour transfer from simulation to reality, the scaling up problem,

and the co-evolution of robot controller and body.

1

CHAPTER 1. INTRODUCTION

1.1 Robot Control

2

1.1.1 Classical Robot Control and the Problems

In the traditional study of artificial intelligence (AI), researchers have presumed that

intelligent behaviours are obtained as the results of reasoning about the encoded know¬

ledge and determining appropriate operations to react [Steels 93a, Malcolm et al. 89,
Maes 92]. Robotics is a subfield of AI, and therefore inevitably inherits many of the

principles and assumptions of traditional (classical) AI research. However, treating
AI machines as symbol processing systems in classical AI does not succeed in building
autonomous robots. The main reason is that in the classical approach, the operation of

a robot is regarded as a so-called sense-think-act cycle [Malcolm et al. 89]. A situation
in the environment is first sensed; based on the results, the robot begins to build a

model of the world and then construct a plan to reason about what is the best way

to act; after determining the operation, the robot then performs the operation in the
real world. This approach has been criticised for a number of reasons. The first is that

for each cycle the robot has to build a model and to construct a plan before taking

any action. This is difficult to perform in practice because the world is continuously

changing and unpredictable. For a world filled with uncertainties, it is unrealistic to

build a world model for the robot in advance, and it is extremely time-consuming to

update an internal world model at any particular time. These problems make the ro¬

bot unable to act in real time in the real world. In fact, some working examples have

shown that it is not necessary to build such an internal world model: when a robot

is acting in the environment, only a small part of the environment is relevant to its

actions; most of it is irrelevant and does not need particular attention.

The other problem is that, in a symbol processing system, the world is modelled in
terms of symbols which are defined in advance, and the meaning of the symbols exists
in the form of how they are related to each other and how they are processed. That is,
the symbols are defined to be understandable (meaningful) for the designer (observer);
they are meaningless to the robot itself. The lack of direct semantic coupling between
the robot and its environment results in the problem of how to map the information

from sensors to the internally-defined symbols.

CHAPTER 1. INTRODUCTION

1.1.2 Behaviour-Based Control and the Challenges

3

To overcome the problems caused by using classical AI methodology to build ro¬

bots, Brooks has proposed his subsumption architecture as an alternative approach

[Brooks 86]. Unlike the classical robot control which divides the task of implement¬

ing intelligent behaviour along functional lines, subsumption architecture performs

behaviour decomposition in which the overall control mechanism is implemented as

layers of behaviour modules in an incremental manner. Each module is a fairly

simple computational machine and higher-level layers can subsume the role of low

levels by suppressing their outputs. Later on, this distributed control idea was adop¬

ted by many researchers to build different robot systems (e.g.,[Payton 86, Arkin 89,
Rosenblatt &; Payton 89, Verschure et al. 92, Steels 93b]), and this type of control is
now well-known as behaviour-based control. In behaviour-based control, the "think"

phase has been removed: the robot does not model the world and construct the plan

at each time step any more. The control system is now considered as a network of

task-achieving control modules called behaviours in which the sensor information is

connected directly to actions as in subsumption architecture. This approach not only

results in a robot capable of acting in real time but also the performance of the overall
control system does not depend on the weakest link as in the functional decomposition

approach. In addition, behaviour-based control solves the symbol processing problem
mentioned above: the world now becomes meaningful to the robot itself rather than

the observer, because the robot can directly decide what to do by looking at the world

and acquiring the relevant information through its own sensors. Figure 1.1 contrasts

the decompositions of classical and behaviour-based control.

Although behaviour-based robots have been proven to be successful in acting in the

physical world, the extension of this approach to design complete autonomous creatures

for more complicated tasks still presents some challenges at different levels: micro,

macro, and multitude levels, as the original proposer Brooks points out [Brooks 90].
The micro level challenge concerns the robustness of a single behaviour module; issues
at this level include how to code a behaviour which is always capable of dealing with the

complexity of real world by concentrating on what is relevant, to guarantee achieving
a specific task. The macro level challenge is actually the problem of action selection; it

CHAPTER 1. INTRODUCTION 4

object indetifying [»■
map building |*~

•[
4

exploring

wandering

>
>

>A> actuators

obstacle avoiding

Figure 1.1: The architecture of classical robot control v.s. behaviour-based robot
control (after [Brooks 86]).

concerns how to decide, for a system including multiple behaviours to handle a variety

of situations, which behaviour or behaviours should be active at any particular time,

to achieve various tasks. And the multitude level challenge is to consider how to deal

with the interaction between such robots, once we can design a single physical robot

operating successfully in a real world (i.e., once the problems at the above two levels
are solved).

1.1.3 Robot Learning

As we can observe, the above problems are mainly derived from the fact that the robot

must face unforeseen situations, such as using unreliable sensors and actuators to act

in an incompletely known world, by using the control systems given by the designer.

On the one hand, the designer must correct the control programs for the robot again

and again by observing and analysing its behaviours, in order to achieve the task. On
the other hand, the robot is responding to the environment by using the combination

of its own sensors, actuators, and the designer's brain. In this way, the task is achieved

only in the situations where the human designer's brain and the robot's body are fully

integrated. This is not efficient for either of them.

One solution to cope with these problems is to adopt learning methods in which the

CHAPTER 1. INTRODUCTION 5

robot is expected to self-improve its own behaviours to fit the different situations which

it experiences, through the robot-environment interaction, without explicit program¬

ming. This is a more efficient strategy since now it is the robot itself which determines

how to change its internal control structure to fully exploit its noisy sensors and actu¬

ators, to adapt to the environment.

Based on the amount of built-in structure (which is required to be pre-defined) in robot

learning, Brooks and Mataric categorise the existing learning methods into strong and
weak learning [Brooks & Mataric 93]. Strong learning is to learn everything; it begins
with a control system that contains no behavioural module or any predefined structure
- it learns the control system as a whole. In contrast, weak learning is to learn a control

strategy given predefined capacities or structures. There is a tradeoff between strong

and weak learning: the less built-in knowledge, the more difficult to learn; while the
more predefined knowledge, the more restrictions in learning. How to find a suitable

intermediate approach is case-dependent, relying on the designer's decision.

1.1.4 Learning by Evolution

Evolution-based algorithms, inspired by the Darwinian principle of selective repro¬

duction of the fittest, are a specific kind of machine learning approach. They sim¬

ulate the natural evolution process in which members of populations change their

structures to adapt to the environment, in order to survive. In the last few years,

the evolutionary algorithms have been proposed to synthesise robot control systems

[Brooks 92, Cliff et al. 93], and this research field is called evolutionary robotics. The
central idea of evolutionary robotics is that by defining a fitness function as the se¬

lective pressure, the control systems which drive the robot to perform the desired
behaviour well will emerge over generations, through competition between members of

populations. Since this approach is meant to aid the designer in programming robots,
it must encounter those challenges in robot programming - dealing with the complex
robot-environment interaction to create robust and reliable control systems, and scal¬

ing up to achieve more complicated tasks. In this dissertation, we intend to explore
some specific issues in evolutionary robotics. Topics investigated include:

CHAPTER 1. INTRODUCTION 6

• How to employ evolutionary algorithms to evolve robust and reliable robot be¬

haviours.

• How to evolve single behaviours for physical robots acting in the real environment.

• How to evolve complex behaviours in terms of dealing with the problem of be¬
haviour selection by evolutionary algorithms.

• How to evolve a complete creature, including the control system and the corres¬

ponding robot body.

For these topics, we analyse the existing approaches, propose our methodology and
conduct experiments for investigation and verification. Each topic is arranged in a

different chapter in this thesis accordingly.

1.2 Evolutionary Computation

The theory of natural selection presented by Darwin in his most famous book The Ori¬

gin of Species explains the cause of evolution: in any environment members of species

struggle and compete for available resources, and it is those most adapted to their

surroundings that survive [Darwin 59]. This theory profoundly influenced the early

biologists and is currently playing an important role in the study of artificial intelli¬

gence. As more and more evidence shows, the key matter in AI research, intelligent

computation, often requires adaptive search mechanisms which can dynamically adjust

the searching direction according to the features of the problem itself. Evolutionary

Computation (Evolutionary Algorithm) techniques, representing algorithms which sim¬
ulate the natural evolution process on computers, were thus developed to construct

more dynamic models of computational intelligence.

Evolutionary algorithms include genetic algorithms [Holland 75, Goldberg 89],

evolutionary programming [Fogel et al. 66, Fogel 95], and evolutionary strategies

[Rechenberg 73, Schwefel 81]. Although different in detail, all share the same concept of
simulated evolution. In an evolutionary algorithm, a population of problem solutions is

manipulated simultaneously (conceptually, at least). The performances of members of
a set of candidate solutions to a specific problem are evaluated, then the new candidate

CHAPTER 1. INTRODUCTION 7

solutions are generated by selecting current candidates and applying some operations

on them. How to select current candidates to be the "parents" depends on a criterion

which is generally based on the candidates' performance. The new candidate solutions

are then evaluated and the same cycle continues until a certain termination criterion is

met. As mentioned above, in this thesis, we will explore how to employ this approach

for the design of robot systems and the considerable details of evolutionary algorithms
are introduced in the next chapter.

1.3 Contributions of this Work

This thesis focuses on exploring the use of evolutionary computation techniques in

designing robots. The major contributions of this thesis can be summarised as follows:

• An evolutionary robotics framework is constructed for evolving reliable and robust

controllers in relatively short time. This framework includes two components: a

task-independent Genetic Programming sub-system and a task-dependent evalu¬
ation sub-system. In our framework, a special circuit representation is designed

for robot behaviour controllers. Successful results show the advantages of this

representation: it enables the evolutionary system to efficiently evolve desired
robot behaviours within a relatively small number of generations, using a rel¬

atively small population size (saving evolution time); it is easy to execute (also

saving evolution time); and easy to translate to other languages for different ro¬
bots. A series of experiments is also conducted to investigate how to evolve high

performance controllers with modest computation cost.

• The robot controllers evolved by our simulation can be transferred to real robots

without losing performance. The major goal of evolutionary robotics research is
to produce controllers working on real robots. However, the use of simulation to
evolve controllers within reasonable time makes this difficult to achieve. In this

work, a specific simulator is developed and included in the evaluation sub-system
to achieve both. The results prove that our GP framework, with its specific robot

simulator, can evolve high quality controllers for real robots.

CHAPTER 1. INTRODUCTION 8

• A methodology is presented to scale up our system to evolve hierarchical control

architectures for more complex tasks. It involves adopting the behaviour-based
control architecture and evolving separate behaviour primitives and coordinators.

This allows robot control systems for more complex tasks to be evolved in an in¬

cremental manner. The approach presented not only makes the fitness functions

easy to define, but also the task easy to achieve. Therefore, the framework can

be used to build (evolve) a behaviour library for a robot; and the behaviour con¬

trollers included can be arbitrarily combined by evolving coordinators to achieve
different kinds of tasks.

• The framework is extended to co-evolve robot controllers and morphologies. Based

on our observation that both controller systems and body plans can influence the

behaviours of robots, a hybrid GP/GA approach is developed to co-evolve them.
In the approach presented, the above evolutionary framework is extended to

include a Genetic Algorithm sub-system for evolving robot morphologies. Ex¬

perimental results show the promise of this approach: both control systems and

robot bodies have adapted to the given environment to achieve the task. A series
of experiments is also conducted to thoroughly explore the relationships between
different parts of a robot body for a specific task.

This thesis aims to show that genetic programming can indeed be used to synthesise
robot controllers in a reliable way, rather than to argue that it is the fastest way to

create controllers or that it can produce the most compact controllers. Thus, there

is no direct comparison in this thesis between the results of genetic programming

methods and the results of methods such as hill-climbing or skilled human design. But

the performance graphs do suggest strongly that genetic programming is very much
better than random search; the evolved controllers do perform their intended tasks

adequately in the real world; and the results of co-evolving the controllers and the

physical parameters of the robot also suggest that the performance of a controller does
depend on and exploit the characteristics of a specific robot. This suggests that the
search for a reliable controller is therefore not a trivial task.

CHAPTER 1. INTRODUCTION

1.4 Overview of the Thesis

9

The previous sections briefly describe the motivation and summarise the contributions

of this thesis. This section provides an overview of the contents and the structure of this

thesis. After the chapter on evolutionary algorithms and the chapter on evolutionary
robotics with a review of related work, there are chapters to explore evolutionary
robotics arranged so that each chapter documents a stage of the exploration: from
the evolution of simple robot behaviours to complex robot behaviours, and finally to

complete robot creatures. The contents of each chapter are summarised as follows:

Chapter 2 gives a general introduction of evolutionary algorithms. It starts with ex¬

plaining how an evolutionary algorithm works and then focuses on the techniques

in one of the evolutionary algorithms, genetic programming, which is applied to

evolve the robot control systems in the subsequent chapters.

Chapter 3 presents a literature review of evolutionary robotics. The review includes

work using different forms of control mechanisms, such as neural networks, clas¬

sifier systems, computer programs, as well as various experimental approaches,
such as pure simulation, complete on-line evolution, and the simulation-reality

transfer.

Chapter 4 describes the framework of our genetic programming system which can

evolve simple behaviour modules in simulation, and studies the trade-off between
the performance of the evolved results and the computational time. Experiments
focus on seeking the most economic way which guarantees the success of the
evolved robot behaviours with least computation resources.

Chapter 5 discusses the advantages and disadvantages of off-line and on-line meth¬
ods in evolutionary robotics. It suggests using simulation to reduce evolution
time and stresses the result must be verified on real robots. Experimental res¬

ults demonstrate that the technique of simulation-reality transfer can be used to

evolve successful behaviour controllers for real robots.

Chapter 6 analyses the difficulties in scaling up evolutionary robotics. It suggests
that instead of handcoding the controller or evolving the controller as a whole,

CHAPTER 1. INTRODUCTION 10

one can use a compromise approach which involves task decomposition by a

human designer and the evolution of decomposed components by an evolutionary

system. Experimental results show the promise of such a combination.

Chapter 7 discusses the evolution of a complete robot creature. It describes a hybrid

GA/GP approach to co-evolve robot controller and body plan. Experiments are

conducted to show how such an approach works, and to explore the relationships

between the different components of a robot body.

Chapter 8 summarises and concludes the thesis. It also indicates some potential
research directions in evolutionary robots.

Chapter 2

Evolutionary Algorithms

Evolutionary Algorithms are a kind of computer algorithm which simulate a natural

evolution process to evolve solutions for problems. It has become increasingly popular
to employ this kind of algorithm to solve problems in different domains. In this thesis,

we intend to construct a system, based on the idea of simulated evolution, to automate

the design of robots. Before detailing our research paradigm, we will introduce some

evolutionary algorithms and the relevant techniques in this chapter. The first section

explains the general concept of Evolutionary Algorithms and various forms of this kind
of mechanism; the second section describes details of the specific genetic techniques

used in this thesis; and then, different ways to parallelise the mechanisms of simulated

evolution will be characterised in the last section as they can dramatically reduce

execution time and enhance performance.

2.1 A Gentle Introduction

Evolutionary algorithms (evolutionary computation) represent the kind of algorithms
which simulate the process of natural evolution to search for the fittest through se¬

lection and re-creation over the generations. Based on different philosophies, three

main streams of research are currently used in evolutionary computation: evolutionary

strategies, evolutionary programming, and genetic algorithms. Although sharing the
same concept of simulated evolution, they are developed independently and emphasise
the adaptive changes at different levels. Evolution strategies (ES) stress behavioural

changes at the level of the individual; evolutionary programming (EP) emphasises be¬

ll

CHAPTER 2. EVOLUTIONARY ALGORITHMS 12

havioural changes at the level of species; and Genetic algorithms (GAs), including
traditional genetic algorithms and recent genetic programming, emphasise the genetic

operations at the chromosome level. We first explain the shared concept among these

approaches, and then describe their individual concerns.

Evolutionary algorithms are population-based optimisation processes; they are based
on the collective learning process within a population of individuals/species each of
which represents a search point in the space of potential solutions for a given problem.
In general, the process of an evolutionary algorithm mainly includes initialisation, re¬

production, re-creation, and selection. The initialisation is usually to randomly select a

set of initial points in the search space. The number of points (population size) varies
from a small (e.g., less than 10) to a large number (e.g., several thousands), depending
on the difficulty of the specific problem. By manipulating a population of potential

solutions, an evolutionary algorithm can search various regions of the solution space

simultaneously. Reproduction is an obvious way to propagate individuals/species; it is

accomplished through transferring the genetic features of the members in the current

generation to the next generation. Based on the fitness brought about by the environ¬

ment, the members with better fitness are favoured to reproduce more often than the

worse ones. Re-creation is a method to introduce variety for the individuals/species;
it adjusts the genetic features which are inherited from their parent population. Dif¬
ferent evolutionary algorithms involve different types of re-creation. For example, in

evolutionary programming, mutation is strictly the only way to change the members'

components; while in genetic algorithms, re-creation usually includes point mutation,
and crossover (this is specially referred as recombination in GAs). Selection is the

process in which different individuals/species compete for finite resources; in an evolu¬

tionary algorithm, this process can be simulated in an entirely random or stochastical

way based on the fitness.

Thus, the outline of an evolutionary algorithm can be described as follows. An initial
population of candidate solutions is generated at random; and each member is evalu¬
ated by a problem-dependent criterion which measures how good this member is for
the specific problem. The result is quantified by a fitness function and is used as this
member's survival fitness. The fitness function here is similar to a cost function used

CHAPTER 2. EVOLUTIONARY ALGORITHMS 13

in other search-based techniques; it normally gives a real value to indicate how fit a

candidate solution is for the problem. Essentially, an evolutionary algorithm is trying
to maximise/minimise the value given by the fitness function. Once all the candidates

in a population are evaluated, an evolutionary algorithm employs a certain selection
scheme to select a subset of the current population to act as parents to generate a

new population. There are various selection schemes used to choose parents. In gen¬

eral, the members with best fitness are preferred, but the relatively worse ones are not

excluded, in order to maintain the diversity of the population. Therefore, the fitness

corresponding to different members are regarded as the probabilities of survival and
certain probability-based methods are used to choose parents. After that, an evolu¬

tionary algorithm applies a set of operators on the chosen parents to alter their features
to form a subsequent population. As described above, the operations can be recom¬

bination or random re-generation, depending on what kind of algorithm (ES, EP, GA)
is employed. The above cycle is an iteration (or generation) of an evolutionary mech¬

anism; it is repeated until a certain termination criterion is met (e.g., a solution with
a fitness better than the expected value appears; or the algorithm has been executed

for a pre-defined number of generations). Figure 2.1 illustrates the general flow of an

evolutionary mechanism.

Initialisation
(create a population at random)

E
Evaluation

(measure performance of individuals)

Selection
(choose individuals based on fitness)

I
Re-creation

(reproduce offspring by some operators)

satisfy termination criterion ?

Yes No

Figure 2.1: The general flow of a simulated evolution mechanism.

The above passage has explained the common concept of an evolutionary algorithm.
As mentioned earlier, different evolution-based algorithms emphasise different evolu-

CHAPTER 2. EVOLUTIONARY ALGORITHMS 14

tion philosophies which lead to differences in their implementations. The individual
characteristics of different evolutionary algorithms are briefly described below.

2.1.1 Evolution Strategies and Evolutionary Programming

The first kinds of algorithm in simulating evolution were independently adopted; they
include evolutionary strategies by Schwefel and Rechenberg in Germany [Schwefel 81,
Rechenberg 73], and evolutionary programming by Lawrence Fogel in the United States

[Fogel et al. 66]. Unlike GAs, these kinds of evolutionary algorithm emphasise the
behavioural link between parents and offspring.

In the ES model, a member of the population is considered as an individual which is

constituted by a set of parameters: each component of an individual is viewed as a

behaviour parameter rather than a gene. The evolution strategies aim at creating off¬

spring whose behaviours are similar to their parents and at optimising the components

of behaviours. Typically, the relation between different parameters of an individual is

unknown. Thus, in an ES system, each parameter is represented as a real value which

has no connection with others. As a result, an individual in ES is then a fixed-length,

real valued string.

As described previously, evolutionary strategies model evolution at the level of the in¬

dividual and emphasise the behavioural linkage between parents and offspring. Hence,

two kinds of genetic operation could happen. The first involves only one parent; it
creates a new individual by adding a Gaussian random variable with zero mean and a

standard deviation (adaptable or pre-defined) to each component of the parent. The
second involves different parents (two or more); it recombines the parameter sets of
different parents to create new individuals in several ways. This operation is much
like the crossover in standard GAs, but with more options because of its real value

representation. For example, it can randomly choose the values from multiple parents

to generate multiple children, or average individual components from parents by a

specific weighting strategy. Some implementations also explore whether the selected

parents should participate in the competition for survival. More details can be found
in [Back 96, Back & Schwefel 96].

CHAPTER 2. EVOLUTIONARY ALGORITHMS 15

Similar to evolutionary strategies, evolutionary programming emphasises the behavi¬
oural linkage between parents and offspring. But EP models evolution at the level of

species rather than at the level of individuals as ES. In EP, a population is regarded
as composed of different species which compete with each other (a member in an EP

population is regarded as a kind of species). An offspring is generally similar to its par¬

ent in the behaviour-level with only slight variation. Thus, different species (members)
in the population are considered to have independent behaviour features and then are

not allowed to mix with each other. In other words, the creation of a new offspring
involves only one parent, and the offspring is derived from the selected parent with

different forms of mutations.

EP often uses finite state machines as its representation because its original inventor,

Lawrence Fogel, thinks that this kind of machine involves intelligent behaviour which

requires the ability to predict environment conditions and to generate suitable re¬

sponses for the given goal [Fogel et al. 66]. As mentioned earlier, no recombination is
involved in EP; offspring machines are created by randomly mutating parent machines.

Given that a finite state machine has a number of states, an initial state, a collection

of transitions between the states, and an output associated with each transition, five

possible modes of random mutation are used: adding a state, deleting a state, chan¬

ging the initial state, changing a state transition, and changing an output symbol on
a transition. The selection of mutation operation is based on the principle that the

distribution of child structures would approximate a normal distribution around the

parent. Details can be found in [Back 96, Fogel 95].

2.1.2 Genetic Algorithms and Genetic Programming

Genetic algorithms as they are known today were first developed by John Holland

[Holland 75]. They are currently the most popular form in modelling evolution pro¬

cesses for optimisation problems. This model emphasises adaptive changes at the gene

level; it treats a member in the population as the chromosome of an individual. A
chromosome is constituted by a string of genes; each of them is regarded as carrying

a genetic feature of an individual. An individual with better fitness is said to have
some genetic features that are capable of solving the problem, and these features are

CHAPTER 2. EVOLUTIONARY ALGORITHMS 16

expected to be propagated to the subsequent population by means of duplicating or

recombining the gene sequence of parent populations.

In genetic algorithms, an individual is represented as a fixed-length string, often, but
not necessarily, in the form of a bit string. The most important thing in designing
a representation is to ensure that a potential solution in the search space for the

problem to be solved can be expressed as a string of the developed representation. It

often requires considerable knowledge and insight for the problem.

As other evolutionary algorithms, the GA is operated as an iteratively cyclic mech¬

anism which includes a sequence of selecting parents and creating children, after the
initialisation phase. Selection involves probabilistically choosing individuals from the
current population as parents to generate offspring to form a new population. Different

selection schemes have been proposed; they will be described in a later section. Unlike

evolution strategies and evolutionary programming which rely on mutation to produce
children individuals, in GAs, crossover is the major operator to create children. The

operations of reproduction and mutation produce relatively small numbers of offspring;

they are secondly operators. The operation of crossover is typically to recombine two

parent individuals which are selected independently, to create two children individu¬
als. The recombination is generally implemented as alternately copying gene sequences,

separated by randomly chosen crossover points, from the selected parents. One or two

point crossover is the method often employed in GAs. Figure 2.2 illustrates an example
of creating new individuals by the use of one-point crossover.

parents
i crossover point

children

b a a a b a b

i

a a b b a b a

b a a b a b a

a a b a b a b

Figure 2.2: An example of one-point crossover in GA.

A variant of genetic algorithms, named genetic programming, was recently invented by
John Koza, and it is popularity is currently increasing in the community of evolutionary

algorithm research [Koza 92, Koza 94, Koza et al. 96a, Koza et al. 97]. Genetic Pro¬
gramming is similar to traditional genetic algorithms in its concept that the change

CHAPTER 2. EVOLUTIONARY ALGORITHMS 17

mostly happens at the gene level, but is different from it in the representation and the

implementation of the corresponding genetic operators. Hence, GP can be regarded
as an extension of GA: it applies techniques used in GA to evolve dynamic-length tree
structures rather than fixed-length strings as standard GA does. In GP, an individual
is represented as a tree; this is inspired by the fact that a program in any computer

programming language can be expressed as a parse tree with respect to the syntax of

the language. As in GA, the tree-like individuals with better fitness are expected to

pass their genetic features to the child population through the application of replication
or recombination. Recombination in GP involves the swapping of subtrees. This new

evolutionary approach has demonstrated its potential by evolving programs in a wide

range of application, such as circuit design [Koza et al. 96b, Hemmi et al. 94], pattern
recognition [Johnson et al. 94, Nguyen & Huang 94], computer animation [Sims 94b,
Sims 94a], and signal processing [Alcazar & Sharman 96].

In this thesis, all of the experiments in evolving robot control systems are done based
on GP. We will detail the techniques of this approach in a separate section.

2.2 Genetic Programming

GP is an extension of traditional GAs with the basic distinction that in GP the indi¬

viduals are dynamic tree structures rather than fixed-length vectors. It aims to evolve

dynamic and executable structures which are often interpreted as computer programs,

to solve problems without explicit programming.

As in computer programming, a tree structure in GP is constituted by a set of non¬
terminals which are the internal nodes of the trees, and a set of terminals which are

the external nodes (leaves) of the trees. The construction of a tree is based on the syn¬

tactical rules which extend a root node to appropriate symbols (non-terminal and/or

terminals) and each non-terminal is extended again by suitable rules accordingly, until
all the branches in a tree end up with terminals. The search space in genetic program¬

ming is the space of all possible tree structures which are composed of non-terminals
and terminals.

As the original GP inventor John Koza mentions in his book [Koza 92], there are five

CHAPTER 2. EVOLUTIONARY ALGORITHMS 18

major preparatory steps for one to apply GP to solve a problem. They include the
determination of

• the terminal set

• the non-terminal set

• the fitness measure

• the parameters for controlling a run

« the termination criterion

The first two steps are about the genetic representation; they are to define the syn¬

tactic rules (organising the architecture of a tree) for the problem to be solved. These
two steps correspond to the procedure of specifying the representation scheme for tra¬
ditional GAs. The other three steps are about operating an evolutionary algorithm;
similar steps can also be found in other evolutionary algorithms (i.e., ES, EP, GAs).

After the preparatory steps, which are the kernel events in the application of genetic

programming, the evolutionary mechanism breeds individual tree-structures to solve

problems by executing the following steps:

• Randomly generating a population in which each individual is constituted by the

pre-defined non-terminals and terminals and is correct in syntax.

• Executing each tree-individual in the population and assigning a fitness value,
based on the specified fitness function, to it to indicate how well this individual

solves the target problem.

• Creating a new population by applying some operators on members of the old

population which are chosen with probabilities based on their fitness. Duplication
and recombination are two primary operators in GP; mutation is only the minor

operator.

• Terminating the run and giving the result, according to the termination criterion

specified previously.

CHAPTER 2. EVOLUTIONARY ALGORITHMS 19

The second and third steps are iterated until the termination criterion, which is nor¬

mally defined as a certain number of generations or when a fitness threshold is met.

2.2.1 Representation

The basic structure of an individual in GP is a tree, so the first step to create a GP

population is to define the sets of non-terminals (functions) and terminals that will

comprise the evolving tree. As in a rewriting system in which a non-terminal will
be substituted by a set of symbols, in GP, each function included in the function set

must take a specified number of arguments for the corresponding branches in a tree.

Terminals take no argument by definition. In this way, functions and terminals occupy

the internal and external nodes of the trees, respectively; and the overall structure of

a tree is determined by the number of arguments to the functions. For example, if a
function set is defined as {+, —, *} in which each of the functions has two arguments
and performs the usual arithmetic operation, and if a terminal set is defined as {X, Y,

5ft} in which X, Y are numerical variables and 5ft represents the set of real numbers, the
typical tree individuals look like the ones in Figure 2.3. A tree is equivalent to a parse

tree which most compilers construct internally to represent a given computer program.

Thus, evolving individuals in this form is equal to manipulating computer programs

genetically.

Figure 2.3: Examples of randomly generated tree individuals. The function set is {+,
—, *} and the terminal set is {X, Y, 5R}.

Defining Functions and Terminals

According to Koza (in [Koza 92]), there are two desirable properties in defining func¬
tions and terminals to form the tree individuals in GP. One is sufficiency which is to

ensure that the defined functions and terminals are capable of expressing the solution

to the problem. The other is the closure property which guarantees the consistency of

Y 0.65

0.51 Y X 0.34 X Y

CHAPTER 2. EVOLUTIONARY ALGORITHMS 20

the data value or type returned by a function or a terminal. That is, each function

in the function set should be well defined to accept any combination of components

(function or terminal) it may encounter.

Depending on the problem, defining a function set and terminal set which satisfy the

property of sufficiency may be obvious or may require considerable insight. In some

domains, the requirements for sufficiency are well-known. For example, for the task of

evolving combinational logics to achieve some specific goal, the function set including

logic operators and, or, not, is known to be sufficient for realising any boolean function;
and the terminals can be defined to include the related input variables. However,

sometimes it is not clear how to define these sets - some knowledge and understanding
about the problem is necessary. The knowledge and understanding is not related to

any specific theory at all but the problem itself.

As in traditional computer programming, each function and terminal in GP has an

associated type, such as an integer or boolean. When a function or a terminal is called

by others, it returns a value to the calling function and the types of the values passed

through the tree must be consistent to guarantee the tree to be executable. Koza thus
defines the closure property such that each of the defined functions is able to accept

its own arguments with any value or data type that may possibly be returned by any

function or terminals. With this property, the new offspring can be created by using

the operator of crossover to swap subtrees at arbitrary points, and as a result the new

trees will be still correct in syntax.

In general, a straightforward way to achieve the property of closure is to use a single
return type for all the functions and terminals, and to carefully handle certain special
situations such as calculating the result of a numerical variable divided by zero or the

square root of a negative number. Typically, GP users have to pre-define some special
operations, such as returning a constant in the former case or giving the square root
of the absolute value of a negative variable in the latter case, to deal with cases like
these.

CHAPTER 2. EVOLUTIONARY ALGORITHMS

Constrained Syntactic Structure

21

Although using a single return type makes GP easy to manipulate, it also constrains

the development of a tree. For some problems, it is necessary to include different return

types for the tree components. Koza thus introduces the concept of constrained syntax

structure in his book [Koza 92] to allow components of different types to appear in
the same tree. This is also one of the fundamental concepts of strongly typed genetic

programming [Montana 95]. According to [Koza 92], a constrained syntax structure is
a subtree in which the construction of this subtree is based on a set of problem-specific

syntactic rules. In this case, the crossover is not allowed to happen at arbitrary points;

it must be defined to enforce all syntactic restrictions which are introduced by the type

constraints. This is usually implemented as selecting a subtree from one parent and

determining its return type, and then choosing a crossover point in the second parent

from only those with the same return type. In this way, swapping subtrees can then

always guarantee the offspring to be correct in syntax.

2.2.2 Initialisation

As in other evolutionary algorithms, the initial phase in operating GP is to randomly

generate a population of individuals. As GP uses dynamic tree structure as its repres¬

entation, to create an initial population thus involves determining the length (depth)
and the way of growing a tree.

In practice it is necessary to restrict the size of a tree when one is using GP to solve

problems. Without a limitation on size, the tree evaluation will soon saturate the com¬

putational resources. In general, the limitation on tree size can be done by specifying
a maximal depth or a maximal number of nodes for a tree. As noted in [Koza 92],

any reasonable limitation on tree size will not be a factor affecting the development
of trees since the number in the search space will still be extremely large. In fact, for

most of the experiments in his book, Koza uses 6 and 17 as the default constraints
on depths for trees in initialisation and after crossover, respectively. And he claims
that the above values are enough to evolve expected solutions for most of the problems
described in his books.

CHAPTER 2. EVOLUTIONARY ALGORITHMS 22

Two ways are normally used to generate trees; one is the full method and the other
is the grow method. The former is to create a full tree in which the length of a path
from root node to any terminal must be equal to the specified maximum depth value.
And the latter is to allow the tree to grow arbitrarily but to meet the maximum depth
constraint. In the latter case, the sizes and shapes of trees generated by the grow

method can be quite different.

2.2.3 Fitness Measure

In genetic programming, to evaluate a tree individual is to execute its corresponding

code in the environment of the particular problem. The fitness is measured in terms of

how well this individual performs during the evaluation process. This is normally done

by pre-defining a fitness function which quantitatively describes those matters relevant

for the target task, and accumulating the quantities described during the evaluation
to be the fitness.

In general, an individual is evaluated over a number of different situations which are

called fitness cases in GP. Different fitness cases may represent a set of samples for

different values of an independent variable, or a set of samples for different initial

conditions of a system. For example, in the case of evolving robot controllers, the

different fitness cases may represent different starting positions for the robot. The
fitness is then measured as the sum or the average over the different cases. This is for

evolving more general solutions. If the set of fitness cases are quite large, sometimes
a random sampling technique is employed to save evaluation time [Koza 92] (We also
conduct some experiments in Chapter 4 to verify the usefulness of random sampling

techniques in evolving robots).

Since the size of an individual is variable in GP and the GP solutions tend to grow

in length, those solutions with best fitness and short in length are preferred. Thus, it
becomes common to include the parsimony pressure, which is measured by counting

the nodes in a tree, in a fitness function to encourage shorter solutions. Some GP
researchers are currently investigating different ways to inject this pressure to the
evolution [Kinnear 93, Blickle 96].

CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.2.4 Selection Methods

23

Evolutionary algorithms simulate natural evolution processes in which the fitter mem¬

bers of the population have higher probabilities of producing offspring genetically.
Selection criteria are thus implemented in evolutionary algorithms to play the role of

choosing the fitter members for the creation of offspring.

There are many different selection methods based on the fitness; they mainly include

fitness-proportional selection, rank-based selection, tournament selection, and local se¬

lection. Fitness-proportional selection is the original selection method proposed for

genetic algorithms by John Holland [Holland 75]. In this method, the probability of
an individual being selected as a parent is directly proportional to its fitness value. It

causes the selection probabilities to strongly depend on the scaling of the fitness values
in the population. For example, if the worst and the best fitness values are 1 and 10 in

a population respectively, the probability of the best individual being selected is then
ten times than the worst one; however, if the worst fitness is 1000 and the best fitness is

1010, the probabilities of the best and the worst individuals being selected are almost
identical. This undesirable property is due to the fact that fitness-proportional selec¬

tion method is not translation invariant. Some scaling methods have been proposed to

overcome this property (e.g., [Grefensette & Baker 89, Goldberg 89]).

Rank-based selection was first suggested by Baker as a way to eliminate the disadvant¬

age of the fitness-proportional selection method [Baker 85]. In a rank-based selection

scheme, the individuals in the population are sorted first, according to their fitness

values; this requirement of global information results in implementations of this selec¬
tion method being slower than those without sorting. The probability of an individual

being selected as parent is now based on its relative rank in the population (rather than
the numerical fitness value). Different types of rank-based selection methods have been

developed; the most popular form is the one proposed in [Whitley 89] in which a bias
factor is involved to control the selection pressure.

In tournament selection, a group of individuals is chosen randomly from the whole

population and the individual with best fitness value is selected as a parent. The
number of individuals in a group is the so-called tournament size. The tournament

CHAPTER 2. EVOLUTIONARY ALGORITHMS 24

selection method has become more and more popular because its selection is based

on rank and it only uses local information - no extra sorting on the fitness values of
the whole population is required as in the rank-based selection method. The evolution

experiments in this thesis employ tournament selection.

Local selection methods are typically used in massively parallel genetic algorithms (or
cellular GAs, described in a later section) (e.g., [Collins & Jefferson 91b, Gorges-Schlenter 92]).
In general, an algorithm using this type of selection arranges the individuals on a tor¬

oidal, two dimensional grid, with one individual at a grid position. Selection occurs

locally at each grid position: the competition is among a small number of neighbouring
individuals with this individual as centre. A typical implementation is that the parents

chosen to produce a new individual at a certain grid position are the ones with the
best fitness during a random walk starting from that position.

2.2.5 Creating Offspring

As in conventional genetic algorithms, reproduction and crossover are two primary

operators in GP to create offspring. When reproduction happens, it involves only one

parent tree which is selected from the parent population according to a certain selection

criterion, and this parent tree is simply copied to be one of the new population members

without any alteration.

Crossover is the major operator to create most of the offspring. It recombines two

selected parent trees to generate two children. When this operation happens, two

trees are chosen, based on their fitness, from the current population, then a randomly

selected subtree is identified in each of them and the subtrees are swapped. Since

the crossover points are randomly chosen, the sizes and shapes of the offsprings are

generally different from their parents. A typical crossover operation is illustrated in

Figure 2.4.

The operation of crossover is based on the belief that by recombining randomly chosen
parts of those trees with better performance, we can produce new tree individuals which
are even fitter for the problem. In GP, the terminals (leaf nodes) typically represent the

input variables without involving specific functions; thus, in order to generate fitter

CHAPTER 2. EVOLUTIONARY ALGORITHMS 25

x/G y\ Ao,
o.5i y(x o.34 J fx yy

subtrees of parents.

solutions, the GP user normally specifies higher probabilities on the internal nodes

(functions) to allow the subtrees which carry certain functions to be exchanged more

often than the terminals.

If the trees include constrained syntactic structures as described earlier, crossover must

be performed carefully. As mentioned, two nodes of crossover points must have the

same return type to guarantee the correctness of the produced offspring. In this thesis,
we define some constrained syntactic structures on our tree representation; the details

will be described in the corresponding chapters.

As in GAs, mutation only plays a minor role in creating a new population in GP. This

operator happens on one tree; it picks a subtree from the selected parent, deletes it,

and generates a new subtree at random to substitute for the removed one. Since the

operation of swapping subtrees in crossover can provide a similar ability of regenerating
a subtree to mutation, some GP work even does not use mutation at all. However, it is

worth noticing that some recent ongoing work in GAs suggests that mutation may be
more important than it is now considered (e.g., [Hinterding et al. 95]), and a similar

trend is predictable in GP.

CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.2.6 Automatic Defined Functions

26

In traditional computer programming, if the problem to be solved becomes complic¬

ated, the programmer usually designs some building blocks (i.e., subroutines) to sim¬

plify the programs. Genetic programming is designed to evolve tree-like programs as

a way of automatic programming, so the same idea of building blocks in traditional

computer programming can also be applied to the evolution paradigm. In his book

[Koza 94], Koza introduces the concept of an automatic defined function (ADF) to

tackle the scaling problem in GP in order to solve more complicated problems. Ac¬

cording to his definition, an ADF acts as a subroutine that is dynamically evolved

during a GP run and it may be called by a calling program which acts as a main

program in a GP tree. Both the called ADF and calling main program are evolved

simultaneously.

The simplest way to implement an ADF is to establish constrained syntactic structures

for the individuals - they have a fixed architecture and crossover is restricted to happen

only between the same type of ADFs or between main programs. Each tree individual

contains multiple branches; some of them are ADFs and one (or more) is the main

program. Figure 2.5 illustrates an example of a tree individual including ADFs and
the main program.

Figure 2.5: An example of a tree individual in GP with ADFs (after [Koza 94]).

In this figure, the DEFUN nodes represent the roots for subroutines (ADFs); they
appear only to maintain the structure of such trees. The first branch of each subroutine
stands for the name of this subroutine; it is used as a non-terminal symbol in the main

program. The second branch of a subroutine is a list of arguments for this subroutine;
they are typically localised dummy variables. The third branch contains the content

CHAPTER 2. EVOLUTIONARY ALGORITHMS 27

of the subroutine; its return value is the evaluation result of this subroutine. All the

names of ADF (e.g., ADF1, ADF2) are included in the non-terminal set of the main

program. Whenever any of them is called in the main program, the actual values of
its arguments in the main program are provided to substitute the dummy variables
in the subroutine and then the corresponding ADF is evaluated once. The outputs

of the whole tree are defined to be the values returned by the main program. During

evolution, all the contents of ADFs and the main program are allowed to change: they
are co-evolved. In this way, some useful information can be efficiently reused and
then the performance of a GP system is enhanced. In [Koza 94], Koza has shown

many examples in which GP with ADFs is able to solve more difficult problems and
it solves problems faster than the plain GP. Similar concepts can also be found in

[Angeline & Pollack 93b, Rosea & Ballard 94],

2.3 Parallelising Simulated Evolution

Although evolutionary algorithms have been proved to be promising search approaches
and have been applied successfully to different problem domains, two of their inherent

features must be improved in order to solve more difficult problems. The first is pre¬

mature convergence. As is well known, one of the attractive features of an evolutionary

algorithm is that it can quickly concentrate on searching promising areas of the solution

space. But, this feature sometimes has the negative effect that the EA loses population

diversity before the goal is met. In other words, the EA converges to local optima.

Although the genetic operator, mutation, can offer the ability of maintaining diversity
of population, it performs a destructive operation. With a high mutation rate, an EA
can increase the diversity but the good solutions may also be lost. Thus, a method
which can maintain the population diversity to explore new areas of the solution space

without destroying the current results is desired.

The second feature which has to be improved is the computation time. As we know, an

EA is a population-based approach; it has to evaluate all the population members and
then can select the fittest to survive. Basically, the population size must be reasonably

large in order to allow an EA to search the space globally, and the population size
typically increases with increasing difficulty of problem. As a result, an inordinate

CHAPTER 2. EVOLUTIONARY ALGORITHMS 28

amount of time may be required to perform all the evaluations for a hard problem.

Parallelising EAs was proposed by different researchers and has been proven to be
a promising method to overcome both of the above problems. The parallelism is
to divide a big population in a sequential EA into multiple smaller subpopulations
which are distributed to separate processors and can then be evaluated simultan¬

eously. According to the subpopulation size, the parallel EAs are categorised into
two types: coarse-grain (e.g., [Tanese 89, Cohoon et al. 87, Koza & Andre 95]), and
fine-grain (e.g., [Spiessens & Manderick 91, Gordon & Whitley 93, Baluja 93]). The
characteristics of the two different types parallel EAs are described individually below.

2.3.1 Coarse-Grain Models

A coarse-grain EA divides the whole population into a small number of subpopulations

in which each subpopulation is expected to be evaluated by an independent EA in a

separate processor. The subpopulations are kept relatively isolated from each other,

so this kind of distributed EA is also called an island model EA. In this model, each

subpopulation is manipulated by a sequential EA, and the selection and genetic opera¬

tions are limited to happen only in the local subpopulations. A communication phase

is introduced in island model EAs. This idea is that an EA periodically selects some

promising individuals from each subpopulation and sends them to different subpopula¬

tions, according to certain criteria. For example, one can use the selected individuals to
substitute the worst ones in the destination subpopulations. This operation is called

migration and the selected individuals are called migrants. In this way, an EA has

higher possibility to maintain population diversity and protect good solutions found

locally.

Running a coarse-grain EA involves the determination of some parameters: the topology
of the distributed system, the migration rate, and the migration interval. Topology
defines the connections between different subpopulations; migration rate determines

the number of individuals to be migrated from one subpopulation to others; and the

migration interval controls how often the communication phase should happen. Most
of the work in the study of coarse-grain EAs determines these parameters through

empirical study; theoretical analysis is still needed.

CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.3.2 Fine-Grain Models

29

The other type of parallelism is the fine-grain model in which an EA is implemented
to be massively parallel: the originally large population is divided into a large number
of subpopulations in which each of them includes only a small number of individuals.
This model is designed to take advantage ofmachines with a large number of processors

(1000 or more); in the ideal case, each individual is evaluated on a different processor.

In the fine-grain model, the whole population is viewed as numerous small overlapping

subpopulations in which each individual belongs to multiple subpopulations. The
selection and mating are restricted to occur only between an individual and its localised

neighbourhoods (i.e., those individuals within a certain range).

The network topology in a fine-grain type EA affects the performance of such a system

profoundly. If the connectivity among the subpopulations is high, the local optimals
will spread quickly to the entire population. This situation is more serious than coarse-

grain models or sequential ones, because the population size in this model is quite small
which makes it easy for the local optimals to dominate the subpopulations. How to

constrain the interactions between subpopulations is yet to be investigated.

Although there has been some research work trying to compare the performance of

coarse-grain and fine-grain models of parallelism, the results came out to be inconclus¬
ive [Cantu-Paz 95]. In [Baluja 93], the author prefers the fine-grain model, while in

[Gordon & Whitley 93], the results favour the coarse-grain algorithms. Because of the
lack of a connection machine for fine-grain model and the easy implementation of the

coarse-grain model, we choose to use the latter in this thesis.

2.4 Summary

In this chapter, we have briefly introduced the concept of evolutionary computation,
and its most popular forms including evolutionary strategies, evolutionary program¬

ming and genetic algorithms. We have also described more details about genetic pro¬

gramming, which is an extension of traditional genetic algorithms as well as the major
approach used in this thesis for evolving robot control systems. Different methods to
parallelise sequential evolutionary algorithms have then been characterised; they are

CHAPTER 2. EVOLUTIONARY ALGORITHMS 30

essential for enhancing performance and reducing computation cost.

In the following chapters, the relevant techniques described in this chapter are employed
to construct an island model evolutionary system to evolve robot systems for various

tasks.

Chapter 3

Evolutionary Robotics

3.1 From Artificial Life to Evolutionary Robotics

Artificial life research has attracted much attention since the first two interdisciplinary

workshops organised by Langton in 1987 and 1990 [Langton 89, Langton et al. 91].
According to Langton, artificial life research complements traditional biological science
which concerns the analysis of living systems, by synthesising artificial systems that can
exhibit the behaviours of natural living systems. In this field, evolutionary techniques

have been widely applied to evolve systems with life-like behaviours. Yet, most of the

work in synthesising artificial systems focused on evolving simulated organisms which
live in grid worlds (e.g., [Wilson 85, Collins & Jefferson 91a, Koza 90]); there had been
no attempt to apply this technique to evolve real agents (i.e., real robots) until 1991
when Brooks started to explore the problem of using artificial life techniques (i.e.,

evolutionary algorithms) to evolve programs to control real robots in the real world

[Brooks 92]. Since then, some groups have been conducting research in this field which
was later named Evolutionary Robotics.

In general, the process of evolving control systems for robots is similar to the tra¬
ditional evolution-based work. It involves generating an initial population consisting

of different control systems; evaluating each control system on a robot (simulated or

real) to determine the corresponding performance; and applying genetic operators on

the current robot population to create a new population, according to the fitness.

Figure 3.1 shows a typical cycle of evolving control systems for robots.

31

CHAPTER 3. EVOLUTIONARY ROBOTICS 32

final controller

Figure 3.1: The general diagram of an Evolutionary Robotics system in which a con¬
troller could be a neural network, a classifier system, a computer program, etc; and
the controller could be evaluated by a simulated robot in a simulated world or a real
robot in the real world.

In theory, it sounds promising that one can look forward to seeing that the control

system drives the robot to generate behaviours closer and closer to what we expect,

over the generations and through the fitness improvement by genetic techniques; while
in practice there are still a few problems to be solved before this idea comes true. From

the point of view of designing a robot, the problems include the performance of the

real robot, and the robustness and reliability of the evolved control systems; and as

far as the GA is concerned, they also include the representation of a control system,

the design of the fitness function, the convergence rate of the evolutionary system, the

scalability of the evolutionary approach, etc. In the following sections, we will review
some work in the Evolutionary Robotics literature, and then discuss relevant problems.

Since the research work on evolutionary robotics involves different representations for

robot control systems (e.g. neural networks, control programs, classifier systems),
different experimental approaches (e.g. evolving controllers entirely on real robots, or

evolving the controllers in simulation first then transferring them to real robots), and
different robot platforms, it will be clearer if the related work is reviewed according
to certain categories. As we have mentioned in previous chapters, the final goal of the

CHAPTER 3. EVOLUTIONARY ROBOTICS 33

study of evolving robot controllers is to produce control systems working on real robots,
no matter what kinds of representation are used. Therefore, in the following sections,
we review some research work in evolutionary robotics in respect to the degrees of their
involving real robots: the work involving only simulation is presented first, followed
by the work involving both simulated and real robots, and finally the work conducted

entirely on real robots.

3.2 Evolution in Simulation Only

As indicated in the above section, there has been a few work evolving simulated or¬

ganisms in simulated worlds. This section will only review some well-known examples

which are relevant to robotics. They include Koza and Reynolds' GP work ([Koza 91,
Koza & Rice 92, Reynolds 93, Reynolds 94b]), and Ram's GA work ([Ram et al. 94]).
The famous 3D simulation, involving the evolution of creatures' morphologies, by Sims

([Sims 94b, Sims 94a]) will be introduced in Chapter 7 because that chapter focuses
on the investigation of co-evolving robot controllers and morphologies.

3.2.1 Koza's Work

Most of the work in Evolutionary Robotics encodes a control system to be a linear

string and employs a standard Genetic Algorithm (GA) to search for the most suitable
solution. In addition to the work applying GA to evolve robot controllers, there is some

research work using Genetic Programming (GP) techniques to evolve robot controllers;
for example, [Koza 91, Koza & Rice 92, Reynolds 93, Reynolds 94b]. Unlike the string
representation in GA, a controller in GP has a tree-like structure. This encoding scheme
allows the size of the genotype to be variable. It is an important feature for evolving
control systems, because it provides complete freedom for the control architecture.

Koza was the first person to apply GP to evolve robot controllers. In his pioneering
work [Koza 91], the author launched into evolving LISP-like programs to control a
simulated robot to follow walls as Mataric's robot did [Mataric 90]. After examining

Mataric's LISP code carefully, Koza picked up some useful terms to define his terminals
and functions (non-terminals) which constituted his control programs. Those terms

CHAPTER 3. EVOLUTIONARY ROBOTICS 34

include the sensor information (sonar sensor distances, the shortest sensor distance,
the minimum safe distance for the robot, and the edging distance); the motor actions
(packed motor actions for moving and turning); and two other functions (one for
connection, and one for conditional branch). As his result showed, the simulated robot
was able to perform the wall following task in simulation.

In his later work [Koza & Rice 92], Koza applied a similar GP approach to evolve
control programs for the box-pushing experiment which was previously conducted by
Mahadeven and Connell [Mahadevan & Connell 91]. For this task, Koza used two ad¬
ditional conditional branches for two extra sensors to detect the situations of bumping
and stuck, as originally suggested in [Mahadevan & Connell 91]. The evolved control

program can push a box to the nearest wall.

As some roboticists remark [Brooks 92, Mataric & Cliff 95, Gomi & Griffith 96], there
are certain questions in Koza's work. The major query is whether or not his approach

can be extended to control embodied robots. His simulator is over-simplified and

idealised: the robot has no physical size, the sonars have no bearings, and the sensors

are capable of returning accurate distance information at any time, etc. Since the

results of simulation were never verified on any real robot, the reliability and the

performance of his results are thus doubted.

In [Mataric & Cliff 95], the authors also raised the problem of how to select the proper

primitives (terminals and functions) in applying GP to evolve robot controllers. They
commented that one may need expert knowledge to define primitives to avoid over¬

simplified or over-expansive design space, and then argued about the practicality of

applying GP to evolve controllers. However, it is undeniable that the problem of how to
construct an appropriate search space exists not only in GP, but also in all other search-
based approaches. Like encoding proper information to define a suitable genotype in

GA, or arranging proper network size, type, and architecture in the neural network
approach, defining primitives in GP is a way of building knowledge to help the search
rather than a burden to the designer. And, the importance of the domain knowledge
needed in GP for solving a specific task is the same as in any other approach: the
more we understand about the specific task, the more possibilities we can find some

way to achieve it. In this work, we have explored how to use GP to evolve controllers

CHAPTER 3. EVOLUTIONARY ROBOTICS 35

to achieve different kinds of control tasks, and according to our experiences, employing
GP to achieve tasks is not so difficult as is argued in [Mataric & Cliff 95].

3.2.2 Reynolds's Work

In addition to Koza's simulation, Reynolds has also conducted a series of experiments
to evolve agents capable of avoiding obstacles by GP [Reynolds 93, Reynolds 94b,
Reynolds 94a]. The major concern in his work is the steering direction; the author
intended to evolve specific functions, which are designated to be constituted by arith¬
metic operators, such as +, —, *, %, to fuse perceptual information from different
distal sensors to control the agent's turning. However, like Koza's work, Reynolds's
simulation used an over-simplified model for sensors and motors and he even assumed

his simulated agent moved forward at constant speed except when turning. Again, all
his experiments have the same limitation: they were only conducted in simulation but

not on real robots.

3.2.3 Ram's Work

[Ram et al. 94] is an example of using GA to investigate the problem of robot control.
Unlike all other work, however, they did not use GA to evolve controllers themselves

but to optimise some control parameters (the corresponding weights) for some given
behaviour controllers in order to control the robot's speed and steering. In their work,

they gave the robot some pre-designed behaviour modules; each of them only focused
on a certain task such as move-to-goal or obstacle-avoidance, and each could generate

its own response to control the steering and speed of the robot. The actual direction
and speed of the robot were controlled by the summed and normalised contributions
from individual behaviour controllers through the corresponding control parameters

(weights). These parameters were encoded as a string of floating point numbers and
the GA was used to tune their values.

The task for the simulated robot was to navigate from a fixed starting position to

a fixed goal position, and to avoid obstacles along the way in the meantime. Dur¬
ing the evolution, the environments were changed randomly at each generation (i.e.
re-arrangement of obstacles) to prevent the evolved parameter set from overfitting to

CHAPTER 3. EVOLUTIONARY ROBOTICS 36

some specific environments. The simulation results were successful. There were no

further experiments on real robots provided, but the authors claimed that their simu¬

lation was based on a simulator which was previously demonstrated in other research
work (e.g.,[Arkin 89]) in which a good correlation between simulation and real robot

performance can be observed.

3.3 Work Involving Both Simulated and Real Robots

The most popular approach to achieve the purpose of evolving controllers for real ro¬
bots is to evolve control systems in simulation and then to test them on real robots.

Research work based on this approach so far includes those who evolve controllers for

the miniature mobile robot Khepera [Nolfi et al. 94, Miglino et al. 96, Jakobi et al. 95,
Lund & Hallam 96], for a more complex mobile robot Nomad 200 [Grefenstette & Schultz 94,
Schultz et al. 96, Yamauchi & Beer 94], and for a walking robot [Gallagher & Beer 96].

3.3.1 Work by the Sussex Group

Cliff, Harvey, and Husbands conducted the first known experiments in the field of

evolutionary robotics [Harvey et al. 92, Cliff et al. 92]. In their work, they advocated

using recurrent neural networks as the robot controllers, and studied how to employ
Genetic Algorithms to evolve such controllers based on a realistic simulator. They have
also analysed the evolved networks in detail by some techniques and studied the effect
of noise on the behaviour of the evolved controllers [Husbands et al. 95, Cliff et al. 93].

Their evolution framework SAGA (described in [Harvey 92, Harvey 93]) is different
from traditional GA research: the length of genotype is variable. The development of

SAGA was based on Harvey's idea that the complexity of the control systems is always

unpredictable so the dimensions of the search space should not be fixed in advance. In
addition, the evolution of control systems in their work is incremental: they believe that
in order to solve a complex task, one should first define a sequence of tasks which lead
to the target task gradually in complexity, and then define different selective pressures
for those tasks to guide the evolution step by step. During evolution, the population
evolved from a certain task will be slightly mutated and used as the initial population

CHAPTER 3. EVOLUTIONARY ROBOTICS 37

of its successor task. Since the length of the genotype is variable, some genes can no

longer represent the same features after crossover. In order to minimise the variation

of the features of genes, SAGA restricts the second parent to be the one with least
difference to the first parent when the crossover is performed.

The application task in their simulation is to find a way to the centre of a circular room

by the use of visual information. The experiment results showed that they were able
to evolve dynamic recurrent neural network controllers to achieve the visually guided
task in simulation.

After the Khepera robot was available in 1994, Jakobi developed a simulator for it to

investigate techniques of evolving controllers in simulation and testing on the real robot

[Jakobi 94, Jakobi et al. 95]. In his simulation, Jakobi applied elementary physics and

basic control theory to construct an idealised mathematical model for the ambient light,
reflected infra-red, and the wheel speeds. Several sets of experiments were performed

and curve-fitting techniques were used to find the appropriate mappings from the

simulated devices to real ones.

This simulator was then used to evolve controllers for the Khepera robot [Jakobi et al. 95].

Basically, the method used in [Jakobi et al. 95] was similar to those of [Harvey et al. 92,
Cliff et al. 93]: Jakobi et al. used Harvey's SAGA system to evolve recurrent neural
networks, except that the network parameters were restricted to be integers within
the predefined intervals for the purpose of reducing search space. According to

[Jakobi et al. 95], they have successfully evolved network controllers for the tasks of
obstacle avoidance and light seeking. Also, when the evolved controllers were trans¬
ferred to the real robot, it too can achieve the tasks.

The Sussex group has also investigated the importance of noise in the evolution experi¬
ments. After doing a series of experiments with different levels of noise, they concluded
that in order to obtain the best match of behaviours for simulated and real robots,

the noise injected in the simulation must be at the right level. They emphasised that
over-high or over-low noise used in the simulation will lead the real robot to produce
behaviours different from those in simulation.

CHAPTER 3. EVOLUTIONARY ROBOTICS

3.3.2 Miglino, Lund, and Nolfi's Work

38

In investigating the approach of evolving controllers in simulation and testing on real
robots, there has been some research work involving the use of a specific simulator built

by the look-up table approach [Nolfi et al. 94, Nolfi & Parisi 95, Miglino et al. 96,
Lund & Hallam 96]. In this kind of simulation, the sensor and motor responses were

recorded before the evolution experiments, and then used in the later simulation. Ex¬

periments based on this kind of simulation all obtained successful matches between

simulated and real robots. This is due to the fact that the sensor and motor tables

were built through the robot itself and thus can precisely capture the characteristics

of the devices.

In this work, the controllers to be evolved were feed-forward neural networks without

any hidden layer. A direct encoding scheme was employed: networks with fixed struc¬

tures were represented as linear strings of fixed length, and the GA was used to find the
network parameters. The evolution experiments in this work did not involve crossover

but relied mostly on mutation to generate the new populations. The best individuals
of a certain generation were duplicated into several copies with slight mutation; these

copies then formed a new generation. In [Nolfi et al. 94] and [Miglino et al. 96], the
authors used the method described above to evolve controllers for an obstacle avoid¬

ance task; in [Lund & Hallam 96], the authors evolved exploration behaviour in which
the robot was required to visit as much of a closed area as possible during a fixed period
of time, and homing behaviour in which the robot had to move outward to explore the
environment but came back to the charging station (indicated by an ambient light) if
the simulated battery went low; and in [Nolfi & Parisi 95], a grasping behaviour was
evolved in which the robot can explore the environment to find an object, grasp it, and
move toward the wall to release it. All of the results showed that when the evolved

controllers were downloaded to a real robot, the behaviours generated by the Khepera

robot were similar to those observed in simulation.

In addition to evolving controllers in simulation and then testing them on real robots,
Miglino et al. also conducted some experiments which allowed the last few generations
of evolution to happen on the real robots [Miglino et al. 96]. In their experiments,

CHAPTER 3. EVOLUTIONARY ROBOTICS 39

they evolved controllers of obstacle avoidance in simulation as described above, and
then continued the evolution on a real Khepera robot. The authors have shown that

the population of controllers which were transferred to an on-line evolution process can

rapidly improve their performance to a satisfactory level for the target task.

3.3.3 Dorigo and Colombetti's Work

Dorigo and Colombetti applied Genetic Algorithms to a learning classifier system in or¬

der to train robots to achieve specific tasks [Dorigo & Schnepf 93, Dorigo & Colombetti 94,

Dorigo 95, Colombetti et al. 96]. In their work, a population was constituted by a set

of classifiers (rules) in which each classifier had an associated strength indicating how

good this classifier was, as far as the goal of the whole system was concerned; and the

strength of each classifier was determined by a credit system. In their system, the GA

plays the role of creating new classifiers to substitute the worst ones in the population,

based on the strength of the individual classifiers. This is different from Grefenstette

and Schultz's work (described in the next section): an individual in Grefenstette and
Schultz's work is a rule set and the GA is employed mainly to create new rule sets by

recombining old rule sets without changing the contents of rules, but an individual in

Dorigo and Colombetti's work is a rule and GA is used to modify the content of a rule.

In their work, they have emphasised the importance of incremental learning through

shaping to accelerate the learning process. To prove the correctness of the pro¬

posed methodology and the performance of their learning system, they have conduc¬
ted some experiments for different tasks on different robots. One example provided
in [Colombetti et al. 96] is that the robot had to move toward a light which was hid¬
den behind a wall, and the sensors provided included light sensors, sonars, whiskers,
and a virtual sensor which can give information if the robot turned. This task was

decomposed into two subtasks: searching for light and approaching it. Both sub-
tasks were learned separately, and the interaction between them was pre-designed as

suppression: the robot performed light-approaching if light was seen; otherwise it per¬
formed light-searching. After a period of time of training in simulation, the learned
controllers were transferred to a real robot and the learning strategy continued. As
in [Nolfi et al. 94, Miglino et al. 96], this hybrid approach has the advantage that the

CHAPTER 3. EVOLUTIONARY ROBOTICS 40

rough control frame is learned in simulation to save time, and the on-line learning
phase can give the best performance for the real robot in achieving target tasks.

3.3.4 Grefenstette and Schultz's Work

Grefenstette and Schultz have also conducted experiments on evolving controllers for
mobile robots, by using the technique of simulation-reality transformation. Instead of

using a miniature robot as the work described previously, they used a more complicated
Nomad 200 mobile robot [Grefenstette & Schultz 94, Schultz et al. 96]. The controller
used in their work was also different from others: it is a set of stimulus-response rules.

Basically, the controller is to examine the stimuli which include the current sensor

and environment conditions, and then to suggest responses, such as a translation or

steering velocity command, to the robot according to these conditions. In order to
resolve potentially conflicting motor commands suggested by different decision rules in
the same rule set, they employed a learning system SAMUEL which was previously

developed by Grefenstette (described in [Grefenstette et al. 90]) to evolve controllers
of rule sets.

In their work, the authors took a more engineering view, and did not insist that all

of the task must be learned from the very beginning. Thus they did not generate the

initial population at random, but included a variety of rule sets from different sources
such as hand-coded rule sets and their variants. This approach was reported to be able

to evolve high performance controllers in less time than starting from a completely
random initial population [Schultz & Grefenstette 94]. In [Grefenstette & Schultz 94],
the task was to move from a starting position to a goal position without bumping any

obstacle. The simulated robot with best performance completed the navigation task

in 93.5 % of the tests and the evolved controller enabled the real robot to achieve the

task with 86 % successful rate during 28 tests.

According to their latest report [Schultz et al. 96], the authors applied the same ap¬

proach to evolve a shepherd robot. Here, both shepherd and sheep were Nomad 200
mobile robots, and the sheep was pre-coded to perform the behaviour of random move¬

ment whilst avoiding the obstacle (i.e. the shepherd robot). Consequently, what the
shepherd must learn is how to move itself properly to affect the behaviour of the sheep

CHAPTER 3. EVOLUTIONARYROBOTICS 41

robot to get it to move into a specific goal area within a limited amount of time. They
reported that in the simulation, the best shepherd robot can reach a success level of 86

% from 100 episodes, and the real robot can have a 73 % success during the 27 tests

(if the communication failures were ignored).

3.3.5 Yamauchi and Beer's Work

Instead of evolving controllers for pure reactive tasks, Yamauchi and Beer evolved
recurrent neural networks for tasks which require the intergration of perceptions over

time [Yamauchi & Beer 94]. In their work, recurrent neural networks were represented
as strings as in the above work but each neuron was regarded as an indivisible unit. It
cannot be separated by the crossover operator; only mutation can change the intrinsic

parameters or thresholds in neurons.

The task they achieved is that the robot has to move along the sides of crates (as

landmarks) for a period of time, and then identify the landmark as one of the two

possible candidates. Since only one sonar signal was used at a time step, the controller

has to integrate this information over a period of time to give the correct output. It

means that the successful controller should have the ability to gradually set its internal

parameters to appropriate values through its recurrent characteristics. An eight neuron
network was evolved successfully in simulation and can correctly classify landmarks in

17 out of 20 tests after being transferred to a Nomad 200 mobile robot.

3.3.6 Gallagher and Beer's Walking Robot

In addition to that work evolving controllers for mobile robots, Gallagher and Beer
have successfully evolved neural network controllers for a walking robot in simulation

[Beer & Gallagher 92], and also transferred the evolved controllers to a real hexapod
robot [Gallagher & Beer 96]. In their work, they used recurrent neural networks as
controllers and employed a direct encoding scheme to encode all network parameters
to a linear string. They then used a standard GA to determine the values of parameters.

The robot has six legs and each leg was controlled by a fully-interconnected network of
5 neurons. Each neuron also received an additional weighted input from the leg s angle

CHAPTER 3. EVOLUTIONARY ROBOTICS 42

sensor which gave the leg's angular position relative to the body. In order to simplify
the problem and reduce the search space, the authors assumed that each neuron in a

leg controller connected only to the corresponding neuron in each of the leg controllers
adjacent to it, rather than all leg controllers being fully interconnected to make a full
locomotion controller.

In their experiments, they evolved locomotion controllers under different conditions:

with or without the sensory feedback from the angle sensor. They found that in both

cases, successful controllers can be evolved, but the controller evolved from the case

using sensor information did not work well if it lost this information; and the controller
evolved from the case without sensor cannot take advantage of the sensor to perform
better when it was available. In order to evolve a controller which can take advantage of
sensor information if that was available and can still work well if that was unavailable,

they eventually adopted the method of taking the average performance of the network
with and without sensor information to be the fitness. Thus the evolved controllers

were seen to work well in both cases.

Finally, they transferred their evolved controllers to a hexapod robot [Gallagher & Beer 96],
and reported that the evolved controllers performed quite well in the real world. The
success of transferring controllers from simulated to real robots could be due to the
fact that they evolved controllers from different trials in which sensor information was

not always available. This resulted in robust results which can be transferred to a real
robot successfully.

3.4 Evolution on Real Robots

3.4.1 Floreano and Mondada's Work

Different from most of the evolutionary robotics work, the experiments of evolving
control systems conducted by Floreano and Mondada happened entirely on a real robot
without involving any simulation [Floreano & Mondada 94, Mondada & Floreano 95,
Floreano & Mondada 96a]. In their work, the robot was attached to a host computer
via a cable; all low-level processes (such as sensor reading and motor control) were
performed by the on-board chips, while others (such as operations for neural networks

CHAPTER 3. EVOLUTIONARY ROBOTICS 43

or genetic algorithms) were operated by the host computer. In this way, controllers
can be evolved through the process of the real robot interacting with the real world.

The controllers used in their experiments were multi-layer neural networks with fully
recurrent connections between the hidden units. The network parameters, such as

weights or thresholds, were encoded to a linear string and a standard GA was used
to find the appropriate values for these parameters. In their first set of experiments,

they evolved controllers for the task of navigating a robot in a simple maze. Since
the work was purely reactive, no hidden layer was used in the network controllers:

sensory neurons were connected directly to motor neurons. The results showed that

the expected behaviour can be evolved through the on-line evolution procedure.

Floreano and Mondada applied the same approach to evolve a homing behaviour in
which the robot was virtually recharged if it was in a specific area. The robot's battery

was assumed to be discharged gradually during its life, so it must move to the charging
station (indicated by a light) to extend its life cycle when the simulated battery went

low. For such a task, 3-layer neural networks were used: one sensor input layer,

one hidden layer, and one motor output layer; and the input sensors include infra¬

red sensors, ambient light sensors, a charging station detector, and a battery level
detector. The evolved behaviour was that the robot moved around the environment

while avoiding the walls (safe-wandering) if the battery was high; and it moved toward
the light once the battery status was lower than a critical value. After moving to the
station and being charged virtually, the robot switched its behaviour to the previous

wandering one.

In their most recent work [Floreano & Mondada 96b], they have begun to evolve learn¬
ing systems which support learning after evolution, rather than the control systems
which cannot be altered after evolution. In [Floreano & Mondada 96b], the authors
did not encode the synaptic weight values of the neural networks to the genotypes, but
encoded a set of parameters describing synapses' properties (including the synaptic
types and the roles) and learning rules (including some possible hebbian learning rules
and learning rates). In this way, a controller in their work is a learning system: during
the life cycle of a network, the synapses gradually updated according to their own local
learning rules and learning rates.

CHAPTER 3. EVOLUTIONARY ROBOTICS

3.4.2 Cliff, Husbands, and Harvey's Work

44

After a series of experiments in simulation described above, Cliff, Husbands, and

Harvey developed their Gantry robot to evolve control systems through real vision
[Harvey et al. 94]. Unlike work by Floreano and Mondada in which all perception and
motion operations were performed directly by the robot itself, work by Harvey et al.

([Harvey et al. 94]) used real vision but simulated motion. The robot was actually a

camera with a mirror, and the mirror can be adjusted by a stepper motor. By adjusting
the mirror, the robot can acquire the projected vision of the environment through the
camera. However, the robot did not have wheels but was suspended from the gantry

frame; the motor commands were translated to the movement of the gantry in the
x and y directions by the stepper motors, together with appropriate rotation of the

sensory apparatus.

They then employed Harvey's SAGA system to evolve recurrent neural networks to

achieve a recognition task in which two targets (one triangle and one rectangle) were

present in the environment and the robot had to move toward the triangle by using its

vision. As described earlier, instead of evolving controllers for the target task directly,

they employed an incremental evolution approach. They divided the whole evolution

into different stages for a sequence of tasks with increasing difficulty and finally led
to the target task. In the first stage, they evolved controllers for a forward-movement

task; after a few generations, the task was changed to movement-toward-large-target,
where the initial population for the latter task was the population evolved from the
former task with slight mutation; then a similar method was used to evolve a population
for a task of movement-toward-small-target and finally for the task of distinguishing-

triangle-from-rectangle. The best controller in the final population was able to achieve
the desired goal.

3.4.3 Work by AAI

Applied Artificial Intelligence (AAI) is a company which specialises in developing ro¬
bots with subsumption architectures or other behaviour-based mobile robots. Since
1994, they began to be interested in evolutionary robotics. Their current approach is

CHAPTER 3. EVOLUTIONARY ROBOTICS 45

similar to Floreano and Mondada's work described above: adopting the on-line evolu¬
tion. The task was expected to perform navigation in a maze which was organised as a

hypothetical floor of an office building. The robot needed to visit each room and come

back to the first room to complete the mail-delivering task. Since their environment
was much more complicated than that in Floreano and Mondada's work, a hidden layer
was introduced to the neural network controllers to increase the robot's capability in

negotiating the environment. The other difference between theirs and others is that

in their evolution experiments, the observers were allowed to comment on the robot's

behaviours by pressing the G/B (good/bad) keys on the keyboard to increase/decrease
the fitness score. According to their work [Gomi & Griffith 96], this interactive evalu¬
ation may make the evaluation process less objective, but it much better reflects the

reality in evolution.

Their recent experiment is to set up the whole evolution process directly on the robot
without using a host computer [Gomi & Griffith 96]. This work is currently in progress,

and no further results have been reported yet.

3.5 Discussion

In this chapter, we have reviewed some of the related research work. As we can

see, work in Evolutionary Robotics shared similar ideas in principle. It improved the

performance of robot populations over the generations by the use of evolutionary tech¬

niques; and all of the reviewed work has provided preliminary results which support the
idea of synthesising robot controllers through genetic evolution. However, depending
on the research motivations behind the work, different authors explored the same topic

from diverse points of view, thus the implementation details of individual evolutionary

systems are quite different. For example, since Beer was concerned more about how
a dynamical system works, he proposed to use dynamical recurrent neural networks
as the internal representation and paid much attention to the analysis of the evolved
systems. On the other hand, Nolfi took a more engineering view, and intended to solve
more complex control tasks. He thus used a simpler control mechanism, a feedforward
network without hidden units, as the robot controller. Our work focuses on investigat¬

ing whether the evolutionary approach, in practice, can be used to design robots and

CHAPTER 3. EVOLUTIONARY ROBOTICS 46

on exploiing how to evolve complex robot behaviours, so our major concerns are the
following problems:

• the performance of the real robot: Since the main goal of Evolutionary Robotics
research is to produce controllers for real robots, the performance of the real robot
is then the most important issue to consider. If the performance evaluation for a
control system happens completely on a real robot (i.e., on-line evolution), then
the result should work on that robot without doubt. However, as pointed out by
Mondada and Floreano, a homing behaviour took them about 10 days to evolve;
and if they put obstacles in the environment, the evolution of controllers for the

same task took 40 days. This makes this approach impractical in implementation.
On the other hand, the pure simulation without involving any real robot, such as

Koza's work, never reached the purpose of this research in practice. The approach
used in [Nolfi et al. 94, Dorigo 95, Miglino et al. 96] seems more promising. It
evolved controllers first in simulation and then transferred the evolved results to

a real robot. If the performance of a real robot was not satisfactory, then the

evolution process was continued on a real robot for a few generations to improve
it. In addition, the robustness and reliability of the evolved control systems

should also be taken into account. In other words, the evolved controllers must

still work in spite of slight changes of the environment or the noisy response of the
robot's sensors and motors. We will investigate the above problems in Chapter

4 and Chapter 5.

• the scalability problem: As this research means to aid the robot designer in devel¬

oping robots, it must show its ability to evolve control systems to achieve more

complex tasks. Harvey has proposed that to evolve controllers for complex tasks,
one should not take any architecture in advance, but should define a sequence

of tasks with increasing complexities to gradually lead to the target task and
evolve controllers stage by stage for all the tasks in the sequence. In Dorigo and
Colombetti's work, they proposed a more formal methodology called behaviour
engineering to evolve modular behaviour networks. In Nolfi s work, the author
claimed that after trying different architectures, he found that evolving feed for¬
ward networks as a whole was the best way. Instead of subjectively arguing

CHAPTER 3. EVOLUTIONARYROBOTICS 47

which approach is better to offer the scalability, we would rather objectively ana¬

lyse what kind of role a human designer plays in these approaches. In Harvey's
approach, a designer has to take the job of defining a sequence of tasks with in¬

creasing complexities to guide the evolution; in Dorigo's approach, a designer has
to decompose the target tasks; and in Nolfi's work, a designer has to try networks
with different topologies and sizes to look for the most suitable one. Therefore,
which approach to take completely depends on the designer's decision. Chapter
6 will furthermore analyse the difficulties a designer will have to face in using
different approaches to achieve complex tasks.

• the representation problem: In the research of Evolutionary Robotics, the repres¬

entation of the robot controller directly relates to the efficiency of an evolutionary

system, since it determines the dimensionality of the search space and the eval¬
uation time. From the above reviewed work, we can find that there have been

a few different representations for controller used, and each of them has its own

advantages and disadvantages. The controllers of recurrent neural networks have

the characteristics of biological compatibility and noise resistance; however, the

property of recurrence will extend the length of the chromosome which will inap¬

propriately enlarge the search space and make the search difficult. In addition,
the evaluation of dynamic neural networks is computationally expensive. For the
work using classifier systems as controllers, the controllers can have the ability
to learn but extra effort is needed to resolve the conflicts between different clas¬

sifiers and to assign credit to individual classifiers. Using feed-forward networks
as control mechanisms may be straightforward and simple; but this method may

not have the potential to solve the problems involving internal states without
introducing hidden layers, and it may need some effort in choosing suitable net¬
work structures and sizes, as mentioned above. Again, which representation to

take entirely depends on the designer's concerns, such as the computation cost
or biological similarity. In our work, we intend to develop a mechanism which
is ideal for robot control, easy to evaluate, and changeable in length. We thus
choose to adopt circuit networks as controllers; which is inspired by the circuit
approaches in robot control (explained in the coming chapter). The details will
be described in the next chapter.

Chapter 4

Evolving Reliable and Robust
Behaviours

4.1 Introduction

The previous chapter has shown the growing interest in Evolutionary Robotics and

reviewed some related research work. Although they have all reported their preliminary
results of evolving controllers to achieve certain tasks, most of them focus on discussing
what kind of control system, i.e., neural networks or high level languages, should be
evolved to control a robot, and on using their own evolution-based systems to evolve

the proposed control structures for a simple task such as obstacle avoidance to claim

the validity of their approaches. In fact, in designing an adaptive robot, there are two

important issues about control that have not been emphasised yet, which are:

• reliability: This concerns how well a system does what it was designed to do. It
measures how well a robot system can repeat externally identical tasks, subject to

internal variation (e.g., sensor/motor noise). For example, if a robot was trained
in three different trials to achieve a task from three different starting positions,

the reliability of this robot is the rate of success in testing this robot for a certain
number of trials in which the robot always starts from one of the three positions

used in training.

• robustness: This concerns how well a system does what it was not explicitly

designed to do. It measures how well a robot can achieve a given task, subject to

48

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 49

external variation (e.g., introducing new objects or starting from new positions).
A case of testing the robustness of a robot in the above example is to start
the robot from a position different from the three positions used in training.
Robustness is much more difficult to measure, but it is nonetheless an important
concept in designing robots.

Some research work mentioned that their control systems were trained in multiple trials
(e.g., [Cliff et al. 93, Floreano &; Mondada 94, Miglino et al. 96]; this may encourage

the reliability of the evolved controller. But there is no further evidence of how reliable

their evolved solutions are, or whether the evolved solutions can achieve the specific
task in a different environment.

In addition to the performance, we should also consider the computational cost, when

applying the evolutionary approach to solve problems. Basically, the computational
cost of an evolution-based system is measured in terms of the population size, the
number of generations, the number of trials used to deal with an individual, and the
cost of an individual trial. Therefore, to evolve a robot controller we must find a

suitable point in the tradeoff between performance and cost in which a reliable and

robust controller is evolved by modest computational effort.

In this chapter, we will first describe our genetic programming framework for robot

evolution, including the development of the representation, the genetic operators, and

the implementation details. The developed evolutionary system will then be used to

evolve behaviour controllers. We will not only show the correctness of the evolved

behaviour, but also conduct a series of tests to prove the reliability and robustness
of the solution evolved from our GP system. In addition, a series of experiments

will be arranged to explore how to evolve such a controller and the corresponding

computational cost will be analysed. These experiments and analysis are helpful for
us to understand the characteristics of the developed genetic system in evolving robot

controllers. After that, we will also have an idea of how to choose appropriate values
for the control parameters in this system to evolve robot controllers by the least effort.
Once such a system is established and understood, it can then be used to evolve
different behaviour controllers for different tasks described in the following chapters.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS

4.2 The Genetic Framework

The main flow of evolution in our genetic system is similar to the typical evolutionary
approach, it mainly involves initialising a population at random and breeding them to

produce the new population from generation to generation. The following subsections
concern the main issues in developing our genetic system.

4.2.1 Representation

When using evolutionary computation techniques to solve a problem, the first import¬
ant step is to choose the proper representation for an individual. On the one hand, a

genetic representation must be able to express explicitly the features of the solution of
the problem to be solved; on the other hand, it must be suitable to be manipulated

by the genetic operators to obtain the solution. Therefore, one must study and un¬

derstand the specific knowledge related to the problem in order to develop a proper

representation.

In our work, we intend to apply the genetic approach to evolve a behaviour system

for mobile robot control. Hence, we shall begin with understanding and analysing the
characteristics of a behaviour controller, and then design a genetic representation for

it to be evolved.

The Behaviour Controller

As described in the first chapter, to resolve the problem of robot control, Brooks in¬

troduced the behaviour-based control paradigm which advocates using the parallel

decomposition of tasks to substitute the traditional vertical general-purpose function

decomposition. In the behaviour methodology, the traditional world model is discarded
from the control system because of the uncertainty of the world and the large amount
of computational time needed to maintain the model. Thus, a behaviour controller will
involve the least computation; it is a special-purpose computational module and only
deals with the information directly related to itself. In general, such a computational
module can be regarded as a finite state machine or automaton, which performs trans¬
duction in an embedded world. It has a stream of inputs, it also generates a stream of

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 51

outputs to the world according to its inputs and internal states.

In principle, the behaviour controller modelled by this kind of machine can be categor¬
ised into two types, depending on whether internal states are involved. The first type
are called sequential controllers, in which the current outputs are determined by the
current inputs and the internal states. State transitions occur in this type of controller.
It can be modelled as:

at = f(pt,st)

s«+i = dipt, st)

in which at is the output action from the machine to the environment at time f; pt is

the perception information from the environment at time t; and St, st+i represent the
internal states of the machine at time t and t + 1, respectively.

The second type are called reactive controllers, which can be viewed as the simplest

form of the state machine: no internal state is involved. Thus, the output of a reactive

system is completely determined by the current input; it can be modelled as:

at = fipt)

Reactive controllers are the most popular behaviour controllers built in the robot com¬

munity nowadays. However, we should note that the behaviour controller need not be
reactive and that not all tasks can be accomplished by reactive controllers.

The Circuit Model of a Behaviour Controller

From the above section, we have seen what constitutes a basic behaviour controller
and how it functions. We are now going to discuss how to develop a representation
which can both express explicitly such a computational module and be suitable to be
manipulated by a genetic system.

A promising choice is the circuit network which has been proven to provide a finer-
grained view to represent a behaviour controller. In the circuit approaches
[Agre & Chapman 87, Rosenschein & Kaelbling 95, Rosenschein & Kaelbling 86], an
agent (behaviour controller) exists in the form of digital hardware; and it is made
up of two types of components, pure functions and delays, depending on what kind

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 52

of tasks (reactive or sequential) it is achieving. Pure functions mean logic gates and

delays correspond to the flip-flops or registers. The output of one component may be

input to one or more other components, thus forming a network. Signals propagate

through the network and sensing is thus linked to action. As is well known, any finite
state transduction can be carried out by such a network.

Since this thesis focuses on evolving reactive controllers, we will only discuss how to

represent controllers of that kind. The approach can be extended to evolve sequential
ones with minor modification.

The genetic representation of our reactive controller is inspired by the logic represent¬

ation in the circuit approaches. By duplicating and separating those components the

outputs of which serve as inputs of multiple components and by introducing a dummy
root node to connect the outputs of a circuit network together, we find it very straight¬

forward to convert a circuit network to a circuit tree. Figure 4.1 shows an example.
After structuring information from the environment and defining simple syntactic rules

properly, we can use a genetic programming system to evolve the circuit trees. The
details are described in the next section.

Figure 4.1: An example shows converting a circuit network to a tree.

Genetic Representation of Our Reactive Controllers

As described above, the world model has been excluded from a behaviour controller,
and the internal states of a robot has been temporarily shelved for reactive tasks. Thus,

the perception inputs always mean the sensor signals of a robot. In tasks of this kind,
the robot continuously senses the environment to monitor the variation; it then de-

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 53

termines its action according to the sensor responses: observing the difference between
sensors (if they are comparable) or checking whether certain sensors reach some kind

of threshold. Based on these observations, in the representation of our controller, we
structure the perception information into sensory conditionals and connect them to

the inputs of a logic circuit.

According to our design, structured sensor-conditionals involve comparing the re¬

sponses of different sensors or comparing sensor response to numerical thresholds. For

these purposes, both sensor responses and numerical thresholds are normalised to be

between 0 and 1 inclusive. Thus a sensor conditional has a constrained syntactic struc¬

ture; it exists in the form of X > Y, where X, Y can be any normalised sensor response

or threshold which is determined genetically.

Depending on the characteristics of the specific tasks, different kinds of sensors will be

required. In general, a sensor is defined to be associated with a value between 0 and

1 which indicates the angle between the direction in which the sensor is pointing and
the robot's heading (the robot is assumed to be round and the sensors are positioned

around the round body pointing radially outward; section 4.2.5 will describe the robot

in detail). Thus, whenever a sensor is called/read in the control system, the normalised
sensor response, in the direction indicated by the value associated with that sensor, is

returned. For instance, a sensor with the value 0.3 will return the normalised sensor

response* in the direction 0.3 revolution (108 degrees) anti-clockwise, relative to the
robot's heading. In this way, the sensor positions and directions are also allowed to

be co-evolved if the sensors are adjustable. For a robot with fixed sensors, the values

associated with the sensor are then constrained, subject to the availability of sensors.

The experiments in this chapter use a robot with fixed sensors and those involving

co-evolving sensors are described in a later chapter.

After organising our genetic representation, we can define non-terminals and terminals
which constitute a circuit tree, for our genetic programming system. In general, three

types of non-terminals, the dummy root node, the logic components and the com¬

parator are defined as non-terminals for a reactive behaviour controller. The dummy
root node is defined for collecting the main outputs of a control system for convenient

manipulation by a genetic programming system; the logic components are defined to

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 54

constitute the main frame of the controller to map the structured sensor information
into appropriate actuator commands; and the comparator is defined to construct the
sensor conditionals. As mentioned, because the elements in a sensor conditional can

be normalised sensor response or numerical thresholds, both of them are defined as

terminals. The tree representation of a typical controller is illustrated in Figure 4.2.
In such a structure, the outputs of the subtrees of a circuit tree are interpreted as

actuator commands to drive actuators.

ROOT

AND

>- NOT
A |

IR(i) IRQ) >=

A
0.62 IRQ)

>=

A
IR(k) 0.35

(a) (b)

Figure 4.2: The structure of a typical controller. In this figure, NO, Nl, N2 represent
the three types of non-terminals, root-node, logic components, and comparator, re¬
spectively. The terminal T can be a normalised sensor response or a threshold between
0 and 1 inclusive.

The above description has shown how we developed our genetic representation. To

evolve instances to solve different control tasks, we will need to define different sensor

terminals, depending on the requirements of the specific tasks. For example, we may

define infra-red sensors as sensor terminals to detect walls and objects for an obstacle

avoidance task; or define ambient light sensors as terminals to sense the light for a

phototaxis task. The sections later in this chapter describing experiments will give the
details of how to evolve behaviour controllers.

4.2.2 The Selection Scheme

In evolutionary systems, a selection scheme is used to choose individuals from the cur¬

rent population, and then the genetic operators are applied to these chosen individuals
to produce offsprings. As introduced in the previous chapter, there are different types of
selection schemes often used nowadays and they can be categorised into proportionate

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 55

selection and ordinal-based selection. In general, ordinal-based selection schemes are

preferred over proportionate selection schemes because of their translation invariance.

Tournament selection is one of the ordinal-based selection schemes and, according to

[Miller & Goldberg 96, Blickle & Thiele 95], it satisfies the criteria of an ideal selection
scheme: it is simple to code, easy to implement on both non-parallel and parallel

architectures, robust to the presence of noise, provides adjustable selection pressure,

and has no need for sorting. In our genetic system, tournament selection is used.

This selection scheme is chosen particularly for its robustness in using noisy fitness (see

[Miller & Goldberg 96]), which is important in robot control. The noises from sensors

and actuators and the environment uncertainty will cause noisy fitness estimates; and
the technique of sampling fitness cases to assess an individual's fitness is used in our

system (described in later sections) to increase run time speed, at the expense of
decreased accuracy of the fitness evaluation. Thus, all these factors suggest the use of
the tournament selection scheme.

4.2.3 The Genetic Operators

In any adaptive or learning system, the key issue for the system to generate better

(fitter) individuals is the change of some structures of current individuals. In our evol¬

utionary system, three different kinds of genetic operators, reproduction, crossover,
and mutation are employed to create the new generation for this purpose. This section
describes their operations.

• reproduction: This operation is the basic engine of the Darwinian natural selec¬
tion and the survival of the fittest. It operates on only one parent and produces

only one offspring. In our GP system, whenever this operation is performed, it
picks up K individuals (tournament selection scheme) and copies the fittest into
the next generation.

• crossover: This is the main scheme to generate new offspring by recombining the

parents. It involves two parent individuals and produces two children. Whenever
it happens, the selection scheme is performed twice to pick up two parents. Be¬
cause of the tree representation of individuals in a genetic programming system,

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 56

the operation of crossover is to randomly swap subtrees of parents to form new

trees. As described in last section, however, there are some constrained syntactic
structures defined in our GP work, so the crossover must be restricted to protect

this defined structure. If the selected crossover point in the first parent is the
root node, the second crossover point must be a root node as well ; if the chosen
crossover point in one parent is an internal node, then the crossover point in the
other parent must be an internal node too; otherwise if the selected crossover

point in the first parent is a terminal node, the crossover point for the second

parent is restricted to be a terminal node.

• mutation: The mutation operation introduces random changes in structures of
individuals in a population. Like reproduction, this operation only applies to

one parent and produces one child. When it is performed, a randomly selected
subtree in the parent is deleted and a new subtree is generated at random to

substitute the deleted subtree to form a new offspring. A new tree must conform
to the syntactic rules to maintain the correctness of structure.

4.2.4 Parallelism

In the previous chapter, we have introduced the idea that parallel genetic systems

allow us to run several populations at the same time each in their own processors

to speed up the process of evolution; and some research results have reported that

parallel versions of genetic systems found better solutions than comparable serial ones,
because their searching in multiple directions maintains the diversity of the population

[Tanese 89, Cohoon et al. 91, Gordon & Whitley 93].

The approach in parallelising our GP system is the island model firstly proposed by
Tanese [Tanese 89]. The main reason why we chose to implement this model is be¬
cause of its easy implementation in software and hardware. The subpopulations in our

distributed genetic system are configured as a binary n-cube; Figure 4.3 includes some

examples of different n cubes. Migration will happen only between immediate neigh¬
bours, along different dimensions of the hypercube, and the communication phase is to
send a certain number of the best individuals of each subpopulation to substitute the

same number of worst individuals of its immediate neighbours at a regular interval. In

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 57

our experiments, the communication phase happens every ten generations; this value
is chosen because it was found to give the best performance in a small pilot study.

Figure 4.3: The n-cube models. From left to right: n = 1, 2, 3 respectively.

Although our parallel GP system is not implemented on real multiple processor hard¬
ware to speed up the evolution, the virtual parallelism of software does help in main¬

taining population diversity. Thus the performance of our GP system is enhanced. It
will be shown in the experiment section.

4.2.5 Simulation

The main aim of this chapter is to establish a GP system and to provide an em¬

pirical study to evolve reliable and robust behaviour controllers by appropriate com¬

putational effort. In this stage, the simulator is a helpful tool for its easy control
and lower time consumption. Thus, all the experiments in this chapter are done by

the use of a physical-based simulator. It should be noted that the experiments con¬

ducted in this chapter are only for the above purposes; and the simulator here can

be substituted by that of any particular robot (see Chapter 5), so that the evolved
control systems can be downloaded to the real robot, like the results reported by

[Jakobi et al. 95, Miglino et al. 96]. We will also show how to achieve the simulation-
reality transformation without loss of performance in the next chapter. The rest of
this subsection describes the simulated robot used in this chapter.

The Simulated Sensors and Motors

In general, agents can be equipped with different kinds of sensors for diverse purposes

to achieve specific tasks. For instance, an agent can use infra-red sensors to acquire
distance information for object detection or use ambient light sensors to measure the

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 58

light intensity for direction distinction. In this simulation, we assume that the robot has
a round physical body and the sensors are positioned around the body pointing radially
outward. The general characteristic of a sensor is that it can only function within a

certain distance and a certain bearing. For example, a simulated infra-red sensor can

have a visual distance of 30 cm and a bearing of 20 degrees. Figure 4.4 illustrates the
sensor arrangement of the simulated robot involved in the later experiments.

Figure 4.4: (a) The sensor arrangement of the simulated robot; (b) The sensor field of
view.

In this simulator, the motion system of the vehicle is regarded as a process with nat¬

ural dynamics, and is modelled by related first-order differential equations. Once the

time constant of the motor system is specified, the system characteristics are determ¬

ined; this system can then be used to convert motor commands with required speeds

(Full/Half, Forward/Reverse), which are determined by the controllers, into actual
motions. The angular velocity of each motor is firstly calculated, then the moving

speed, the turning speed, and the new position of a vehicle are calculated by applying

appropriate kinematic equations, with the specified wheel radius and wheelbase (the
distance between two wheels).

In our implementation, the motor system is modelled by the following first-order dif¬
ferential equation:

Ti~—+ u)i = Di (4-1)
at

in which n is the motor time constant; A is the demanded angular velocity (motor
command); and ul is the actual angular velocity of motor i (i is left or right). This
model shows that if we command motor i with a certain velocity Di, it will actually

revolve at a velocity Wj. To calculate the actual angular velocity Wj, we can reorganise

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 59

equation (4.1) as:

dco-i 1) i
dt Ti

and then perform integration to obtain L0{. The simplest way for integrating the above
first-order differential equation is to apply an Euler method (see [Press et al. 92]) to
derive the formula for w,; as:

i(t + Ah)=Ui{t) + Ahx (4.2)
7~i

w.

in which coi(t) represents the angular velocity of motor i at time t, and Ah is a small
time interval. In our simulation, we assume that the initial angular velocity u;i(0) is
zero and the time interval Ah is 0.1 second.

Once the angular velocities of both motors are obtained, they are then used to calcu¬
late the forward and rotating speeds of the robot. If the wheel radius of the robot is

Ti and the wheel base is L as indicated in Figure 4.5, we can have the following set

of equations which describe the relationships between the angular velocities Wj of the
motors and the forward speed v and rotating speed u; of the robot:

f nx^ = v +wx| (43)1 rr x — v — to x L

By solving the above equations, we can now obtain v and u; as:

_ TlXWl+TrXUlr
U ~ 2

_ riXLUl-TrXLOr
L

(4.4)

T

i

velocity

steady
state

Ti time

(a) (b)

Figure 4.5: (a) Illustration of the relevant symbols of a motion system. M; represents
the motor i (with a time constant t;); w, is the actual angular velocity of motor i; n is
the radius of wheel i] L is the length of the wheel base; and v and to are the forward
and turning speeds of the robot respectively.(b) The dynamic of a motor i; is the
motor time constant.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 60

Finally, with forward speed v and rotating speed u, we can calculate the position

(.Rx,Ry) and the heading 8 of the robot as:

Rx(t + Ah) = Rx(t) + (Ah x v x cos(9))
< Ry(t + Ah) = Ry(t) + (Ah x v x sin(8))

8(t + Ah) = 6(t) + (Ah x u)

In our simulation, a fine time-slice technique is used, therefore the above equations are

arranged in an evaluation loop and are solved iteratively to indicate the position and

heading of the robot at each time step.

Since the simulated robot is driven by two independent motors with separate speed

commands, it is able to move forward, backward, turn right and left at any speed
derivable from the command set. In addition, as we know, the real sensors and motors

of the robot are noisy and unreliable. Hence, in order to make the simulation more

realistic and to enhance the robustness of the evolved solutions, 5% random noise (+5%
~ —5% uniformly) is injected to the perceptions and the motions.

4.3 Evolving a Reliable and Robust Controller

We have described the framework of our GP system which is built for evolving reactive

behaviour controllers. In this section, we will use this system to evolve example con¬

trollers and then design an efficient criterion to evolve reliable and robust solutions.

We will also conduct a series of experiments to analyse the corresponding computa¬

tional costs and find out the proper scales (e.g., 102 or 103, etc.) for those control

parameters, such as population size or the number of generations, of the developed GP

system. The results will help in selecting appropriate values for the control parameters
when this system is used to evolve controllers for other tasks.

The application task to be achieved in this section is obstacle avoidance. This task
is chosen because it is the basic survival scheme of an autonomous robot. Obstacle

avoidance is a general behaviour; a successful evolved controller should be able to keep
a vehicle moving but without collision, no matter where it starts or how many time

steps it moves. Moreover, the evolved controller should be able to achieve the task
if the environment is slightly changed. The following subsections will describe the

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 61

experiments and results.

4.3.1 Preparation for a GP Run

As introduced in Chapter 2, some preparatory steps are required before applying ge¬

netic programming to solve a problem, mainly including defining terminals and non¬

terminals to constitute the target trees, and determining the values of parameters for
a GP system. Additionally, the outputs of a control tree here will be used to drive a

robot to move, so they need to be interpreted to motor commands available for the

particular robot used.

In the previous section, we have specified the general structure for a tree controller. To

apply it to solve different control tasks, we need to define terminals and non-terminals

for individual tasks according to their different requirements. For the task of obstacle

avoidance here, a robot needs distal sensors to provide the distance information so the

infra-red sensor IR is defined as the sensor terminal for this specific task. As mentioned

previously, a sensor terminal is associated with a real number between 0 and 1 which

indicates the direction the sensor is pointing. For a robot with fixed sensors, the

value associated with a sensor terminal must be restricted in regard to the availability

of sensor directions. In the following experiments, the simulated robot illustrated in
section 4.2.5 is used so the available sensor directions are in which n is a integer

between 0 and 7 inclusive.

To evolve a controller for the task of obstacle avoidance, we use one population of

100 individuals (this value is relatively small, compared to the population size 500
in [Koza 91] and 2000 in [Reynolds 94b] in which they also used the GP approach to
solve a task with similar complexity). As mentioned, different genetic operators are

applied to different numbers of individuals to produce offspring. In this work, the
rates of reproduction, crossover, and mutation are 10%, 85%, and 5%, respectively. In
addition, to prevent trees from growing without limit, the initial depth limit for a tree
is 6 and the maximum depth after crossover and mutation is 13. These values are from

[Koza 92] with minor modification. Since the technique of random sampling (only some
of the defined fitness cases are used to evaluate an individual, see experiment section

for explanation) will be used, we do not use the best-so-far solution (the solution with

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 62

Terminal Set: IR, 9?{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >
number of populations: 1

population size: 100
number of generations: 50

Table 4.1: The key features of the problem of evolving an obstacle-avoidance robot
described in the text.

tree

output
motor command motion

descriptionleft right
0 0 0 slow-forward slow-forward forward at low speed
0 0 1 slow-forward fast-forward forward and turn to left
0 1 0 fast-forward slow-forward forward and turn to right
0 1 1 fast-forward fast-forward forward at high speed
1 0 0 slow-reverse slow-reverse backward at low speed
1 0 1 slow-reverse fast-reverse backward and turn to left
1 1 0 fast-reverse slow-reverse backward and turn to right
111 fast-reverse fast-reverse backward at high speed

Table 4.2: The interpretation of tree outputs to motor commands. The motion de¬
scription for each command (including the left and right commands) is based on that
the robot starts from a static state and then continuously executes that command for
a few time steps.

best fitness value during the whole run) as most of the GP work but designate the
best individual appearing in the last generation as the final solution. The number of

generations is 50 in the experiments to follow. Table 4.1 summaries the key features
of the problem of evolving an obstacle-avoidance robot.

Because the output of the tree controllers will be used to drive a robot to move, we

need to convert these outputs to motor commands for the robot used. For simplicity,
the tree controllers in the experiments of this chapter are defined to have only three
subtrees. The output of the first subtree is interpreted as the direction of revolution
of both motors: if the output is 0, the controller will command both motors to revolve

forward, otherwise it commands both motors to revolve backward. The outputs of the
second and the third subtrees determine the speeds of the left and the right motor,

respectively: 0/1 represents half/full speed. Table 4.2 shows the mapping of the tree
outputs and motor commands.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 63

4.3.2 Fitness Measure

In evolving a controller, to evaluate an individual is to execute the controller on a

robot for a given period of time and to measure the performance according to a certain
criterion (fitness function). As mentioned, a fine time-slice technique is used in this
simulation and each time step will last 100 ms in the experiments to follow. At each
time step, the controller is executed once and the output is used to drive the robot to

move; then the corresponding fitness is calculated. The performance of a controller is

thus defined to be the accumulated fitness of an individual during the given time steps.

A direct way to formulate the behaviour of obstacle avoidance is to describe its goal
as keeping the robot as safe as possible at each time step. To achieve this, each robot

individual is virtually equipped with eight IR sensors1, which point towards r, -|7r,
"i71*! 0) i71") 571") I71") and tt relative to the heading of the robot, and is trained to

keep the responses of these IRs as low as possible. The term max-response, meaning

the maximum of the eight IR responses, is introduced in the fitness function for this

purpose. In order to keep it safe, the robot is punished whenever it begins getting

dangerous (that is, the max^response is larger than 0), and the higher this value, the

larger the penalty. In addition, in order to avoid the degenerate situation in which a

robot sticks at a certain position, or the situation in which a robot spins, an agent is

encouraged to move straight, and discouraged from rotation. Thus, the fitness function
is defined as a penalty function:

/= E Eps«
jGCases t— 1

where

Pj(t) = [a x maxjresponse(t) + /3 x (1 — v(t)) + 7 x tu(t)]

in which T is the number of time steps in a single trial; Cases is the set of fitness
evaluations done on this individual (i.e., fitness cases); if the robot collides with an

obstacle at tc < T, say, the trial stops but the robot is penalised with Pj(t) = Pj(tc)
for each remaining time step; maxjresponse(t) is the largest IR response at current
1 The eight IRs mentioned here are used for fitness assessment only: they are independent from
those sensors evolved as parts of the controllers. After the process of evolution, these eight IRs are
removed.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 64

time step (it is time-dependent); v(t) is the normalised forward speed (backward is

regarded as negative); w(t) is the absolute value of the normalised rotating speed (it
is always positive); and a, f3, 7 are the corresponding weights expressing the relative

importance of the above three criteria (they are robot-dependent; in the following

experiments the values 0.2, 0.2, 0.6 are used for a, /?, 7, respectively, because this
combination was found in preliminary testing to give best performance). This would

keep a robot safe and moving forward as straight as possible.

4.3.3 Experiments and Results

One of the reasons for our applying evolution techniques to synthesise controllers is

to enable the robot itself to deal with the robot-environment interaction. Thus, to

be familiar with different environment situations, the robot needs to be evolved from

different trials. One way to do this is to define a sample set to represent the environment

situations for the specified task and then use the samples as fitness cases to evolve

controllers. For the task of obstacle avoidance here, a sample (fitness case) means a

starting position, and a trial is that the robot starts from a new position and then its

controller is executed for 500 time steps. In order to evolve a general solution, different

samples should be distributed over and cover the whole environment. In this work, 25

different starting positions were defined and included in a sample set.

In the first set of experiments, each individual was evaluated 25 times, one time on each

of the pre-defined fitness cases. Each time the robot started from a different position
and was executed for 500 time steps. The fitness was calculated as described in the

above subsection.

Our aim is to evolve a reliable and robust solution capable of achieving a specified task

in different situations. To prove whether the evolved controller is reliable and robust,
we must test it thoroughly. In our experiments, an evolved controller was tested 1000

times, using different starting positions, random effects of sensor and motor noises, and
varied environments; and each test lasted 10000 time steps. An evolved controller was
then claimed to be able to achieve the task reliably and robustly if it did not bump any

obstacle during the 10000 time steps moving, in at least 990 test cases (99% success).

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 65

M no Ps(%)
Co 99.9

Ci 99.6

c2 99.8

c3 99.5
25 c4 99.4

C5 99.2

C6 99.8

C7 99.6

c8 99.2

C9 99.4

Table 4.3: The testing results of evolved controllers. M is the number of trials for an
individual and Ps is the proportion of tests in which no collision happened (based on
1000 tests).

450

400

350

I* 300

| 250

200

150

100

50
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 4.6: The best and average fitness (penalty) of each generation for an example
run.

To be more objective, ten independent runs were conducted for the same task and

each evolved controller was tested exactly as described above. The testing results are

listed in Table 4.3 in which Ps represents the percentage of tests in which no collision

happened. As shown in Table 4.3, all of the evolved controllers are reliable and robust,
and this table also shows the reliability of our genetic system. Figure 4.6 shows the

best and average fitness at each generation for a typical run and the evolved solution
from this run is (the constants in PROG are what Koza calls ephemeral constants -

they are generated in the initial population or by mutation):

(PROG
(> IR 0.000 IR 0.500)
(AND (OR (AND (> IR 0.000 IR 0.625) (> IR 0.000 IR 0.500)) (> 0.48 IR 0.625))

(> IR 0.875 IR 0.000))
(> IR 0.000 IR 0.500))

t
i
i
i

be

averac

St

e

\

\

\
\

\
\ /
s /

\

\ i

V *

\ / J "\
A

t\ \ '\
- / \

/\'i s
_

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 66

Figure 4.7: Four examples of emergent behaviours, in which the robot started from
different situations (different start positions in (a)(b), or different environments in
(c)(d)).

Figure 4.7 illustrates some of the behaviours generated by the above controller: (a)(b)
are two examples in which the robot started from two different positions in the environ¬

ment used in the evolution; (c)(d) show the trajectories of the robot when it performed
the same controller in different environments. To analyse the emergent behaviour, we

use Figure 4.7(a) as an example. From Figure 4.7(a) we can see that the vehicle always

kept moving forward. Yet when it sensed any obstacle, some special behaviours can be
observed: in situation 1, the vehicle slowed down and approached the obstacle, then
it sped up to move away from the obstacle; in situation 2, it slowed down and moved
backward to leave the obstacle, and then sped up to turn away from the obstacle; and

in situation 3, it did not slow down but simply sped up to leave the obstacle. As a

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 67

reactive agent, how it behaved depended entirely on what it sensed.

4.3.4 Performance and Cost

After showing that a reliable and robust solution can be evolved from multiple trials, we

conducted a series of experiments to explore whether the technique of random sampling
can be used to decrease evolution time, and studied how different sample sizes affect

the performance. Instead of being evaluated on each of the 25 fitness cases in the

sample set, an individual was evaluated for M (M < 25) trials which were randomly

sampled from the pre-defined sample set. All the individuals in the same population

were evaluated from the same sampled start positions; and the starting positions were

randomly sampled again at the beginning of each new generation.

In order to observe the influence of M, we experimented with different M and did

10 independent runs for each M to reduce the influence of the random effects. Each

evolved controller was tested by exactly the same procedure described in the above

section. Table 4.4 lists the results and Figure 4.8 contrasts the number of successful
runs for different sets of experiments with different sample sizes (where a 'successful'

run means that a reliable controller was evolved).

M no P.(%) type
Co 89.8 2

Ci 97.5 2

c2 4.2 2

Cs 60.9 2
1 c4 99.8 1

c5 99.2 1

Co 80.3 2

Cj 99.7 1

Cs 0.0 2

Co 15.9 2

Co 99.2 1

Ci 68.4 2

c2 99.8 1

Cs 99.6 1

5 Ci 45.5 2

Co 99.4 1

Co 99.2 1

C7 99.5 1

Cs 72.4 2

Cg 65.8 2

M no Ps{%) type
Co 99.8 1

Ci 87.6 2

c2 61.6 2

Cs 85.3 2
10 Ci 99.0 1

C5 99.4 1

Co 99.8 1

Ct 99.2 1

Cs 99.7 1

Cg 99.5 1

Co 99.3 1

Ci 99.4 1

c2 99.4 1

c3 99.3 1

15 c4 82.4

Cs 99.8 1

Co 99.1 1

cv 99.8 1

Cs 99.1 1

Cg 99.3 1

Table 4.4: The testing results of evolved controllers for different sample size M.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 68

Figure 4.8: A figure contrasts the number of successful runs for different sets of exper¬
iments with different sample sizes (10 runs were done for each sample size). The case
with sample size 25 represents the set of experiments in which 25 fixed fitness cases
were used (see Table 4.3).

According to Ps, which is the percentage of testing cases without collision, the evolved
controllers in Table 4.4 are categorised into two types: the controllers with very high

Ps (Ps > 99%) are classified as type 1; and the others are classified as type 2. From

this table, we can see that the larger the sample size, the higher the probability that

a type 1 controller is evolved.

Although a larger sample size used in an evolutionary experiment can result in a higher

probability of obtaining a successful controller, it also implies longer evolution time.

To investigate this tradeoff, we suggest using a "try until success" strategy, i.e., we run

single experiments until we succeed, then stop. This can also be stated recursively: our

strategy is to run an experiment and if it succeeds, stop; otherwise we use our strategy

again. This recursive formulation allows us to calculate the expected computational
cost of the strategy (x, say) given the chance of success of a single run and the cost of
a single run:

x = CxP+(C + x)x(l-P)

in which C is the computational cost of running a single experiment by this strategy;

and P is the probability of success of a single experiment (we assume the experiments
are probabilistically independent). By solving the above equation, we find

C

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 69

Now, suppose we have conducted (M + N) independent single experiments; M of them
succeeded and N of them failed. The distribution of the probability of success P can

then be described as [Gradshteyn & Ryzhik 80]:

= PM(1-P)N1 '
B(M + 1,N + 1)

in which is the Beta function. Thus, we can calculate the expected cost of x as:

EP[x\ = f1
J o

C PM(l-P)N ,v i L rip
P B(M+1,N + 1)

C

B(M + 1,N + 1) f1PM-\l- P)NdP
JO

Cx B(M,N +1)
B(M + 1, JV + 1)

By the definitions B(m, n) = and r(a: +1) = aT^a:), we can simplify the above
result to:

pi r I r< ^ T N 2c x -mTT-
According to the results of different sets of runs, for the strategy of using 25 fitness

cases, we have M = 10 and N = 0; if we assume the cost of conducting a run by this

strategy is (7, then the expected cost of this strategy is C x || (~ 1.09(7). Similarly,
for the strategy of using 15 fitness cases, we have M = 9, N = 1, and the cost of a

single run ^|C, so the expected cost of this strategy is C x (= 0.72(7). This shows
that running evolutionary experiments by the latter is in fact more efficient (in terms

of expected cost) than the former.

As indicated, we have implemented an island model to support the virtual parallelism

for our evolutionary system. To investigate whether it can improve the performance

of the GP system, we used two populations of 50 individuals to replace the original

single population of 100 individuals and then repeated the experiment. The sample
size remained as 15 in this set of runs. The results show that all of the ten independent

runs can evolve successful controllers for the obstacle-avoidance task. It suggests that

the parallel model does enhance the performance of our GP system. We can also
estimate the expected cost for this experimental strategy, as for the above two sets of

experiments. Here, M is 10, N is 0, and the cost of a single run is C, so we can

calculate the expected cost of this strategy as ^§(7 x ^ (~ 0.65(7). This shows that
by using this strategy (two populations of 50 individuals and 15 randomly sampled

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 70

popsize num. of fitness num. of type 1 expected
pops cases controller cost

100 1 25 10 1.09C
100 1 15 9 0.72C
50 2 15 10 0.65 C

Table 4.5: The comparison of results from different strategies. In this table, C is the
computational cost of conducting a single run by the strategy of population size 100
and 25 fitness cases.

fitness cases) one can evolve successful controllers in all of the ten runs by relatively
less computational effort. The comparison of three different strategies is listed in Table
4.5.

4.4 Summary and Discussion

4.4.1 Summary

In this chapter, we have described the framework of our genetic programming system

in which a circuit-tree is proposed to represent a behaviour controller. This system has

been used to evolve the control system for an application task. We not only showed
the correctness of the evolved behaviour but also verified the reliability and robustness

of the evolved controllers. To verify the reliability of the developed GP system, we

have run it a number of times for the same experiments.

We have also investigated how to use a more efficient criterion to evolve this kind of
solution. In particular, the trade-off between the performance and the computation
cost has been analysed. The results suggest that although the more fitness cases

sampled and used in one generation, the higher probability a successful solution is

evolved, it also takes a longer time; one should analyse the computational cost of
obtaining a high performance solution to choose an efficient strategy. Experiments
were conducted to find out the suitable scale of different control parameters and to

enhance the performance of our evolutionary system by a parallel model.

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 71

4.4.2 The Control Parameters

When a genetic mechanism is operated to solve a problem through evolution, there
are some parameters, which control the operation of such a mechanism, needing to be
determined. In the work of evolving robot controllers, the values for these parameters

are task-dependent - they depend on the difficulty of the given task. Though there is
no theoretical evidence supporting whether the values of the parameters we obtained

above can directly be used for other tasks, from the above experiments, we have been

able to capture the characteristics of the developed GP system in applying it to evolve
robot controllers and therefore the results obtained from the above obstacle avoidance

task will certainly help in setting the initial values of the control parameters in achiev¬

ing different control tasks. For instance, we may use the developed GP framework,

with a population size 50 to evolve controllers for a different task (e.g., light seeking),
rather than with a population size 500 as in Koza's work [Koza 91, Koza & Rice 92] or

Reynolds' work [Reynolds 93, Reynolds 94a] in evolving robot controllers by GPs. In

fact, the following chapters will show that the strategies derived from this chapter can

be used, with slight variations, to evolve controllers for a variety of tasks successfully.

Based on the experimental results, we can estimate the appropriate scales of the para¬

meters for evolving robot controllers by our GP system. They are summarised as

follows:

• population size and number of populations: Both of them are decided by the

difficulty of the problem to be solved. As the experimental results suggest, pop¬

ulation size 50 may be a proper choice (for both evolving successful controllers

efficiently and obtaining relatively more successful runs) for the task of which
the difficulty is similar to that of obstacle avoidance; and two to four populations
should be able to evolve controllers to achieve reasonably complicated tasks.

• number of generations: In all the experiments, we observed that the GP system

converged to a stable state within 30 generations. Therefore, the number of
generations (50) used in the above experiments should be suitable.

The above parameters play important roles in evolution-based systems. In addition to

CHAPTER 4. EVOLVING RELIABLE AND ROBUST BEHAVIOURS 72

them, the values of other minor parameters used in the above experiments are similar

to those of a general genetic system. They include:

• probabilities of genetic operators: We have mentioned in the previous chapter

that in a GP system, crossover is the main scheme active while mutation is

not. So the probability of operating crossover is relatively higher than others.
The probabilities 10%, 85%, and 5% for operators reproduction, crossover, and

mutation respectively are derived directly from [Koza 92].

• depth constraints: The depth limit for the initial trees is 6, and the maximum

depth allowed after crossover and mutation is 13. The latter is slightly smaller
than those default values in [Koza 92],

• The rate of migration is 12% and the migration interval is 10 generations in our

island model GP system. These values are inspired by [Tanese 89].

The values ofminor parameters seem promising when they were used in our GP system

to evolve controllers. Thus, they will be the default values in employing our GP

system to evolve different behaviour controllers for different kind of tasks. The related

experiments are described in the coming chapter.

Chapter 5

Evolving Controllers for Real
Robots

5.1 Introduction

In the last chapter, we have described our genetic framework in detail and have verified

that it can be employed to evolve high performance controllers for mobile robots.

Even though an experimental model has been established and an efficient approach

to evolve controllers has been empirically explored, all the previous experiments were

conducted in simulation. However, the main purpose of developing an Evolutionary

Robotics methodology is to produce control systems which can actually work on real

robots. Therefore, after the computational framework of the genetic system has been

established and proved, we now need to investigate whether this approach works on a

real robot.

There are two kinds of experimental approaches applied in Evolutionary Robotics for

evolving control systems, namely on-line and off-line approaches. The former indicates

that all of the evaluations are performed on real robots; while the latter involves the use

of simulation. Before choosing one of them, we need to consider the tradeoff between
the performance of real robots and the consumed time to evolve controllers. In the

on-line approach, there is no need to verify the performance, because it evolves control

systems directly on the real robot and in the real environment. However, an evolution-
based approach requires the evaluation of populations of robots over a number of

generations, so the on-line methodology will then involve evaluating the populations

73

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 74

of controllers one by one on the real robot in the physical environment. As far as the

time consumed is concerned, this method is not economic, which makes it unrealistic

as a tool for developing robots.

On the other hand, off-line evolution is much quicker in obtaining the result, though
there exists the problem of the simulation-reality gap in this kind of approach [Brooks 92,
Smithers 94]. If it is difficult to remedy the disadvantage of the unreasonable time-

consumption of the on-line approach, an alternative is to adopt the off-line approach

and to bridge the gap between simulated and real robots. This seems to be an inev¬

itable step in the study of Evolutionary Robotics: before exploring the Evolutionary
Robotics approach further, we need to study how to bring it to reality.

In this chapter, we will first analyse the time consumed in developing control systems

by the evolutionary approach, and discuss the need for, and the role of, simulation.

The advantages and disadvantages of different methods of simulation will also be com¬

pared from different perspectives. In addition, we will describe briefly how to build

a simulator which takes the dynamics of the real world into account, as suggested in

[Nolfi et al. 94, Miglino et al. 96, Lund & Hallam 96]. To prove that the evolutionary

approach can evolve working real robots, in the experimental section we will choose a

specific simulator to evolve various behaviour controllers for different tasks and then

transfer them to real robots. The results show that using the methodology developed
in the last chapter and a realistic simulator, one can transfer the evolved controller
from simulation to reality successfully: the behaviours observed in the real robot are

extremely good as expected.

5.2 The Use of Simulation

5.2.1 The Need and the Role of Simulation

The use of simulation nowadays seems inevitable in developing methodologies of robot

learning or evolution, because of their time-consuming characteristics. In the field of
Evolutionary Robotics, some researchers have briefly analysed and discussed the time-

consumption of this kind of approach [Mataric & Cliff 95, Lund & Hallam 96]. Based
on their analysis, the estimated computational cost of running a single Evolutionary

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 75

Robotics experiment is

NxTx/ixIxG

where N is the number of trials in which the robot is evaluated (for the purpose of

measuring the fitness objectively from some uncertain factors such as the arrangement

of objects in the environment, the initial conditions of the robot, and the random noise

of sensors and motors, etc); T is the number of time steps to evaluate a controller

in a single trial; p is the time taken by the robot to perform a single action; I is the
number of individuals in the population(s); and G is the number of generations for run¬

ning the evolution system. If we do not use simulation but perform on-line evolution
as [Floreano & Mondada 94, Floreano & Mondada 96a, Mondada &; Floreano 95], the
time for evolving a controller can easily rise up to a few weeks even if the task to

be achieved is only to avoid obstacles in a fairly simple environment, as reported in

[Floreano & Mondada 94], The above estimation includes only the time of the ac¬

tions performed by the robot, but not the time for other processing, such as dealing

with selection and crossover in a genetic system, executing controllers, reading/sending
information from/to sensors/actuators, etc., though the latter tends to be small com¬

pared to the former. It shows that the time taken to evolve control systems for the
real robot on-line is far beyond what we can afford.

From the evolution time estimated above, we can observe that the time /j, for a robot

to perform a single action determines the difference of duration of run in on-line and
in off-line approaches. In the on-line evolution, /j is measured as real time and cannot

be sped up; whereas in simulation, it means only a few instructions executed and is
machine dependent - the faster the machine we use, the sooner the result comes out.

In general, for a task as "obstacle avoidance", off-line evolution is about 102 ~ 103
times faster than the on-line approach, on a single user SPARC-5 machine. Therefore,
simulation becomes necessary for researchers to speed up building and prototyping

their evolutionary robotics systems. Though some researchers have argued that once
vision is involved, the simulation of vision will become a serious computational burden
of off-line evolution [Cliff et al. 93, Harvey et al. 94], the speed of vision processing
should be improvable in some ways, such as the hardware implementation of vision
chips.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 76

Although using simulation can save us a dramatic amount of time in developing evol¬
ution systems and evolving controllers for autonomous robots, it must be noted that

simulations should be considered only as scientific models rather than substitutes for

physical robots. The results of simulation must be verified on real robots. In the next

section, we will examine the issue of transferring evolved controllers from simulation

to reality.

5.2.2 The Gap between Simulated and Real Worlds

In the study of building control systems for real robots to act in the real world, there

have been a number of roboticists warning us of the danger in the use of simulation
in the design of robots (i.e., [Brooks 92, Smithers 94]). Their reasons include the

following:

• The use of over-simplified robot simulators: Some researchers studying robot

control have been using simulators of abstract models rather than the physical-

based ones which are modelled carefully from the real robots. Research results

based on the kind of abstract models could not, normally, be verified on real

robots, and thus cannot result in any conclusion in practice.

• The difficulty of simulating the actual dynamics of the real world: It is very

hard to capture the characteristics of the real sensors and actuators. Devices like

sensors may not return clean readings when acting in the real world. Therefore,
the sensing and actuation differences between real and simulated worlds will

probably lead the control systems working well in simulation to fail on real robots
even if physical-based simulators are used.

Before exploring the above problems, we should recall the conclusion of the last chapter
- the evolved controllers were able to achieve the desired behaviours when they were

tested in a new/changed world (though in simulation). It provides evidence that if
the difference between a new world Wj and the world used in evolution We is within

a certain range (in which case we say that they are compatible), then the controllers
evolved from We still work reliably in Wl. Similarly, if we consider the real world as

one of the Wj, and try to keep the simulated world used in the evolution compatible

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 77

to (not necessarily identical with) the real world, then a controller evolved from the

simulated world should be able to work well when it is delivered to the real world.

The description above reveals that what we need is a simulator compatible with, rather
than identical to, the real world. Instead of simulating all the details of dynamics, we

only need to capture the characteristics of the real world at a certain level, especially

when we are only expecting to see a real robot with behaviour which is qualitatively

rather than quantitatively similar to the simulated ones when performing the evolved
controller. Therefore, though it has been argued that to simulate the detail of a physical

world is probably not possible, this does not mean that the transfer from simulation

to reality is extremely hard to achieve. We will demonstrate this in the experiments

that follow.

5.2.3 The Comparison of Different Kinds of Simulators

There have been two kinds of simulators widely used in the community of Evolutionary

Robotics: one is the mathematical modelling approach [Cliff et al. 93, Jakobi et al. 95,
Michel 95, Lee et al. 96], and the other is the look-up table approach [Nolfi et al. 94,

Miglino et al. 96, Lund & Hallam 96, Lee et al. 97a, Lee et al. 97b]. The former one
describes the responses of sensors and the dynamics of actuators by a set of equations;

while the latter one first records the responses of each sensor to each object in the

environment through the robot's sensors themselves and records the effects (such as

displacement in distance or angle) of the actuators for each allowable command be¬
fore the simulation, and then accesses the sensor/actuator tables in the simulation.
Before deciding which approach to take, we have an analysis of their advantages and

disadvantages classified and listed below.

• The look-up table method gives more reliable responses of devices: As mentioned

above, the mathematical modelling method models the responses of sensors and
actuators by mathematical equations. For the convenience of modelling, this

approach always assumes that devices with the same type have the same charac¬
teristics. However the hypothesis is not true. In [Miglino et al. 96], the authors
have shown significant differences between different sensors, even if they belong

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 78

to the same type and are exposed to the same external stimulus. The differences

are due to the different intrinsic characteristics of sensors, and are difficult to take

account of in the mathematical modelling method. However, if one ignores these
intrinsic characteristics of sensors, the performance may be reduced when the

evolved system is transferred to a real robot. The look-up table method does not

have this disadvantage because of its direct sampling of the device-environment

responses.

• The mathematical modelling method is computationally more expensive than the

look-up table method when the simulator is running: Because of the use of equa¬
tions to model the sensor and actuator responses, the mathematical modelling

method has to solve those equations once at each time step. In contrast, the look¬

up table method does not have to do so because the sensor and motor tables are

built before the simulation starts, and it only takes constant time to access these

tables when the simulator is running. This makes the latter method faster than

the former one. This situation is particularly apparent when the environment

becomes relatively complicated where the number of equations are increased and

consequently the simulation is slowed down. For a typical Evolutionary Robotics

experiment such as evolving obstacle avoidance behaviour for a Khepera robot,

employing the look-up table approach is at least 3 times faster than the use of
the mathematical modelling approach [Lund & Hallam 96].

• The look-up table method is not scalable in constructing the tables of sensor and
actuator responses: Since this kind of simulation is based on the robot's own

sampling of sensor and motor responses, all these responses must be recorded
before the simulation starts. Although the procedure of sampling can be done

automatically [NolfL et al. 94, Miglino et al. 96], it is still computationally ex¬

pensive when the environment becomes more complicated. Furthermore, if there
are objects with non-symmetrical shapes, we will need to sample the responses of
sensors from different angles. In addition, robots like Lego vehicles do not have

precise motor systems as does the Khepera robot, so when building tables for that
kind of robot it may be necessary to repeat the sampling procedure more times
and then take the average values as the response [Spagocci 96]. In the above

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 79

situations, the building of a simulator of this kind is quite time-consuming. This

disadvantage does not apply to the mathematical modelling method since the

equations can be easily added to the simulator in that approach.

Although both of the above methods have their own disadvantages, each has shown its

capabilities to evolve controllers which can be transferred to real robots successfully

[Jakobi et al. 95, Miglino et al. 96]. From their reports, however, we observe that the

look-up table approach gives the best match of behaviours in simulation and reality:

by measuring real sensor and motor responses, one can then build a simulator with

the least gap to the reality. In the next section, we will briefly describe how to use

the look-up table technique to develop a simulator; and in the following sections, we

will show some examples of using this kind of simulator to evolve controllers for a real
robot.

5.3 The Real and Simulated Robots Used in this Chapter

As mentioned earlier, the approach used in this chapter is to evolve controllers in

simulation and then to verify them on a real robot. Building a simulator for the real

robot is thus involved. In this section, we will first describe the robot to be used in

the later experiments and then explain how we construct a simulator for it through
the look-up table method.

5.3.1 The Khepera Robot

The robot used to test the evolved controllers is the miniature mobile robot Khepera

[Mondada et al. 93] (Figure 5.1). It is designed by LAMI1 and has been widely used
in the study of autonomous robots, in particular, in the field of Evolutionary Robot¬
ics. It is designed in a modular manner. Different kinds of modules and sensors can

be added easily without the need for changing software. This flexibility allows the
researchers to use the most suitable configuration to conduct their own experiments.

The main characteristics of this robot are described below and the details can be found

1 Laboratory of Microcomputing, Swiss Federal Institute of Technology

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 80

in [Mondada et al. 93] or the home page of Khepera2.

The Khepera robot is cylindrical with a diameter of 55 mm, a height of 30 mm, a

weight of 70 g, and is supported by two wheels and two small Teflon balls. Its two

wheels are driven by two DC motors with incremental encoders (12 pulses per mm of
robot displacement) and both motors can revolve forward and backward. The robot is

equipped with eight infra-red proximity sensors; six sensors are positioned on the front

and the other two on the back. These sensors can also be used in a different mode to

measure ambient light around the robot. For identification purposes, the sensors are

numbered from 0 to 7 as illustrated in Figure 5.1.

In the internal design, the robot uses a Motorola 68331 controller with 256 Kbytes

of RAM and 512 Kbytes of ROM to manage all the input-output routines, and can

communicate with a host computer via a serial port. Thus, the robot can be controlled

by the host computer via a cable or can run the control program on its own control

chips. The former allows the robot to exploit all the computational power and storage

capabilities available in the host computer; and the latter provides the ability to test an

evolved controller by downloading it to the real robot and running it on the on-board

processor. In the experiments that follow, the controllers evolved from simulation will
be downloaded to the robot to evaluate the performance without cable connection.

Figure 5.1: The Khepera miniature robot and its sensor arrangement. In the right
figure, a sensor Si can function as an infra-red or an ambient light sensor.

2 http://www.lamiwww.epfl.ch/Khepera/

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 81

a-id

< d, a>

The Simulated World

heading {/ J

(Trobot—

<Ad,Aa>

3 □

SENSOR-TABLE

r-id

MOTOR-TABLE

< SO,SI, ...,S7 >

O
Control

System

o
< l-motor, r-motor>

Figure 5.2: The sensing-motion cycle of the look-up table approach in simulation.
In this figure, d and a represent the relative distance and angle of the robot to an
object, respectively; Ad and Aa mean the changes in distance and angle when the
robot performs the motor command < I - motor, r — motor > produced by the control
system for one time step.

5.3.2 Building a Simulator from Real Sensor and Motor Response

The basic idea of building sensor tables is to sample the robot's sensor responses to

different types of objects in the environment. To take the samples, the robot is placed

in front of an object, which could be a wall, an obstacle, or a light source, and then

its sensor responses are recorded at different distances. For a certain distance, the

robot is turned 360 degrees in steps of 2 degrees; at each step its eight sensor responses

are recorded 10 times and then the averages are used to construct sensor tables. The

motor table is constructed in a similar manner. For the motors of the robot, there are

some speed settings available which enable the robot to move and turn. By setting

allowable speeds to the two independent motors separately, we can measure and record

the displacement, including distance and angle, as the entries of the motor table.

After these tables are built, they are used in the simulation. The sensing-motion cycle

of the look-up table approach is illustrated in Figure 5.2. At each time step in the

simulated world, the relative distance and angle between the simulated robot and a

certain object are firstly calculated and indexed, and then all sensor responses of an

entry are read from the sensor table according to the indices of distance and angle.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 82

This is done for each relevant object, to construct a complete set of simulated sensor

responses. These sensor responses are used as inputs to the control system. Then motor

commands, that are the corresponding outputs of the control system, are converted to

the indices of the motor table (the actual mapping between the outputs of a controller
and the indices of a motor table is described in the experiment section). According to

the indices, the displacements of distance and angle caused by the revolution of the

motors are read and then used to update the position and heading of the robot in
simulation. The changes in distance and angle produced by the motor table are used

in simulation, instead of any explicit model ofmotor movement. The sensor and motor

tables are used to avoid the need to simulate sensors and motors explicitly; they are

not needed with a real robot.

Since the responses of sensors and motors are recorded by the robot itself, the simulator

based on them can be very precise. The experiments in the later sections of this

chapter will show that the controllers evolved from the simulation can be successfully

transferred to a real Khepera robot in which very similar behaviours on simulated and

real robots can be observed. However, due to the fact that the displacements of distance

and angle generated by each motor command (actually a pair of commands, one for
left motor and one for right motor) are obtained by isolated measurement,3 sometimes
the motor command chaining effect in reality makes the behaviours of simulated and

real robot differ. Section 6.5 will provide an example in which the controller evolved

by simulation cannot be transferred to a real robot successfully.

5.4 From Simulation to Reality

As mentioned, the final aim of Evolutionary Robotics is to evolve controllers which
work on real robots. Once we have shown that the developed GP system can evolve

control systems working well in simulation, the next step is to examine whether the
evolved controllers can work on real robots. In this section, we intend to use our

GP system with the simulator described in the above section to evolve controllers to
3 for each command, the robot starts from a static situation and executes the same command for 100
time steps, and then the average displacements of distance and angle axe used as the effect of a
single step motion.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 83

grouped
outputs

index

(in simulation)
command

(in reality)
0 0 0 3 -2
0 0 1 2 -4
0 10 1 -6
0 11 0 -8
10 0 4 2
10 1 5 4
1 1 0 6 6
1 1 1 7 8

Table 5.1: The grouped outputs and their corresponding motor activities. In this
table, index means the index for accessing the motor look-up table in simulation, and
command means the actual value sent to the Khepera's motor in reality.

achieve various tasks in simulation first, then transfer them to a real Khepera robot to

evaluate the corresponding performance.

According to the experience learned from the last chapter, in the following experiments,

multiple populations are used to enhance the performance of the evolution. Also we

define a training set of fitness cases which are sampled randomly at each generation to

evaluate the controllers for multiple trials during the run, in order to evolve reliable

and robust controllers. The best individual that will appear in the last generation is

designated as the final solution.

Since the controllers we intend to evolve in this chapter are all monolithic and reactive,

the inputs of the controllers are from sensors and the outputs are used to drive motors

directly. In our design, each controller has six outputs which are organised into two

groups: the first three and the last three outputs are decoded as motor commands
to control the left and right motors respectively. In each group, the first output is

interpreted as the revolving direction (1/0 for forward/reverse) and the other two are

decoded as different revolving speeds. Thus, there are 8 different motor commands
available for one motor, which means there are in total 8x8 different combinations of

moving speeds and turning angles for the simulated and real robots in the experiments
below. In simulation, the groups of outputs are used as indices of the motor tables;
while in reality, they are converted to real motor commands to control a real Khepera
robot. Table 5.1 lists the interpretations of different outputs for the motors. In all the

following experiments, each motor command will last 200 ms for both simulated and
real robots.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 84

Terminal Set: IR, 5R{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50
number of generations: 40
fitness cases: 3 fitness cases are used; they are randomly sampled

from 5 pre-defined fitness cases at each generation

Table 5.2: The key features of the problem of evolving an obstacle-avoidance robot.

5.4.1 Obstacle Avoidance

The first behaviour controller we would like to evolve is one that can fulfill the task

of obstacle avoidance. In fact, we have evolved controllers for the same task in the

previous chapter. Here we attempt to evolve the controller to show that using a specific
simulator associated with a physical robot, one can transfer the controller evolved from

the specific simulator to the corresponding real robot successfully. In other words, we

can expect similar behaviours on the real and simulated robots.

In this experiment, the robot is restricted to use IR sensors to detect objects, so only
IRs and the numerical thresholds are defined as terminals to our GP system. The

fitness function defined here is also the same as the one used in section 4.3.2, which is

T

f = ^[a x max-response(t) + (3 x (1 — v(t)) + 7 x w(t)]
t=1

where T, maxjresponse(t), v(t) and w(t) have the same definitions as the ones de¬
scribed in section 4.3.2; a, /3, 7 are 0.15, 0.3, and 0.55 (determined by preliminary

testing), respectively; and the final fitness of an individual is the summation of fitness
from different trials (fitness cases).

To evolve an obstacle avoidance controller, we used two populations of 50 individuals.

The number of time steps for evaluating a controller in a single trial was 300, and
the number of generations was 40. For this task, 5 different positions and orientations
were defined in the training set; and 3 of the pre-defined 5 positions were sampled
randomly at each generation to be the initial positions of different trials. Table 5.2
summaries the key features of the problem of evolving an obstacle-avoidance robot
here. To evaluate this evolution experiment objectively, we conducted 10 independent
runs for the same task; 8 of them evolved controllers with the expected behaviour. In

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 85

300

250 i • • • best • -i

average j

200

100

150

50
5 10 15 20 25 30 35 40

generation

Figure 5.3: The best and average fitness during a run for evolving an obstacle avoidance
controller.

general, the evolution has converged to a stable state within 20 ~ 30 generations. A

typical example of how the fitness converged is shown in Figure 5.3, and the controller

evolved from this example is

(AND (XOR (>= 0.68 IRJ)(>= IR^ 0.22))(AND (>= 0.04 IR2) (XOR (>= 0.68 IRi)
(>= IR3 0.22))))

(NOT (AND (>= IR^ 0.43)(>= IR2 0.43)))
(>= IR6 0.55)
(>= 0.96 HL0

(>= IR0 IR0)
(AND (AND (>= 0.09 IRS)(>= IR5 0.97))(AND (XOR (>= 0.09 IR1) (>= IR^ IR5))

(>= 0.09 IRS))))

Some of the obstacle avoidance behaviours generated by the above controller are

demonstrated in Figure 5.4. As can be seen, the simulated robot moved straight

forward most of the time, but the robot was able to move away from the obstacles

whenever it approached to them. We can also analyse the behaviour in terms of the

sensor and motor activities. Figure 5.5 shows the related sensor and motor information

corresponding to the behaviour in Figure 5.4(a). We can observe that when the robot

approached the object, the maxjresponse tended to be high (Figure 5.5(a)), and this

caused the robot to slow down (Figure 5.5(b)) and rotate (Figure 5.5(c)) to avoid the

object. From the qualitative and quantitative observations above, it has been shown

(PROG

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS

that the robot was able to achieve the specified task in simulation.

86

Figure 5.4: The obstacle avoidance behaviours of the simulated (a)(b)(c) and real (d)
robots. In these figures, the darker circles are the robots. The figure for the real robot
is obtained by setting LEDs on the tops of the robot and obstacles, and using a video
tracking system to record their trajectories.

As mentioned earlier, the main aim of Evolutionary Robotics is to evolve controllers

for real robots. Once the simulated robot can achieve the task, we then transferred

the controller evolved from the simulation to a real Khepera robot. This downloaded

controller was tested ten times for slightly different conditions and the robot can achieve
the tasks in all of the tests. The typical obstacle avoidance behaviour produced by the

real robot is presented in Figure 5.4(d). This figure is obtained by setting LEDs

on the tops of the robot and obstacles, and using a video tracking system to record
their trajectories [Lund et al. 96]. The behaviour of the real robot is very similar to
the behaviour of the simulated robot, which shows that we have been able to evolve

control system for real robots.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 87

t

Figure 5.5: The relevant sensor and motor activities corresponding to the Figure 5.4(a).
(a) is the maximum of the normalised sensor activations; (b) and (c) are the normalised
speed and turning rate of the simulated robot.

5.4.2 Box-Pushing

The task of box-pushing is that the robot should keep pushing a box forward as straight

as possible. To achieve such a task, the robot needs to use its IR sensors to acquire

perceptual cues for the location of the box. Therefore, we define two kinds of termin¬

als, IRs and numerical thresholds, for our GP system to evolve controllers capable of

achieving this task.

The fitness function can be formulated through the quantitative description of the

expected behaviour, which is to keep the activation value of its front IR sensor high,

the robot moving forward, and the speed difference between the two motors low. The

pressure from keeping the front IR sensors with high activation values is to reinforce
the robot to head toward a box, and the pressure from keeping the robot moving

forward with low speed difference is to encourage the robot to move straight and to

prevent it from getting stuck in front of a box. The combination of these will lead
to a pushing-forward behaviour. Thus, the fitness function for evolving a behaviour

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 88

Terminal Set: IR, 5R{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50
number of generations: 40
fitness cases: 6 fitness cases are used; they are randomly sampled

from 8 pre-defined fitness cases at each generation

Table 5.3: The key features of the problem of evolving an box-pushing robot.

controller of box-pushing can be defined as:

T

f = x (! ~ + z3 x (! - u(*)) + 7 X u>(i)]
t=l

where s(t) is the average of the normalised sensor activations of the front sensors IR2
and IR3; v(t) is the normalised forward speed; w(t) is the normalised absolute speed
difference of two motors at each time step f; and a, /3, 7 are 0.6, 0.2, 0.2 here.

To prove the repeatability of this experiment of evolution, ten independent runs were

conducted. For each run, two populations of 50 individuals were used and each indi¬

vidual was evaluated for 150 time steps during a single trial. The GP system was run

for 40 generations. The key features of the problem of evolving a box-pushing robot are
listed in Table 5.3. For this task, the training set was defined to include eight different
cases in which each case was a different starting position and orientation around the

box. During the run, six cases from the pre-defined ones were randomly sampled at
each generation to evaluate the performance of controllers. With the parameters above,
nine out of ten runs can produce successful controllers which were able to achieve the

box-pushing task all the time from different starting positions and orientations in sim¬
ulation. Figure 5.6 shows how the fitness curve converged in one of the successful runs,
and the controller evolved from this example is:

(PROG
(OR (>= 0.13 IR0)(>= 0.13 IR0))
(>= IR1 IR1)
(XOR (>= IR3 IR7)(OR (>= 0.13 IR0)(>= 0.13 IR0)))
(>= IR 1 0.36)
(>= IR1IR1)
(XOR (>= 0.13 IR0)(>= IR2 0.13)))

The typical box-pushing behaviour of the simulated robot is illustrated in the left figure

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 89

1

\
ave age —

\

\

\

\

\ \
- '\ / -

\

\
l / : / \ '

.... v ^... ^
\ /

'N 'n
/ \ \ \ / \ A

V

10 15 20 25 30 35
generation

Figure 5.6: The best and average fitness during a run for evolving a box-pushing
controller.

of Figure 5.7. As in the above section, we can analyse the related sensor and motor

information to examine whether the robot fulfills the fitness requirements, when it is

performing the evolved controller. As described, the robot is expected to have high
activations from the front IRs, which implies the robot keeping heading toward the

box. Figure 5.8(a) presents the average activation of the two front IRs, and it shows

that the robot was able to achieve the requirement. In addition, Figure 5.8(b) and

Figure 5.8(c) present the left and right motor commands generated by the evolved

controller, corresponding to the box-pushing behaviour in Figure 5.7(a). We can see

that both motors revolved at the same and relatively high speed most of the time;

while at some specific time steps, the left motor revolved reversely at high speed and

200 300 400 500 600 700 800

A0

if'•

1

%
v.
(T)
nD

Figure 5.7: The trajectories of simulated (a) and real (b) robots when they are pushing
a box (the darker circles represent the robots and the boxes are pushed from top to
bottom).

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 90

the right motor revolved even faster forward. These periodical changes were to produce

prompt turns to drive the robot back from path deviations to head towards the box

again. The figures ofmotor commands show that the robot can satisfy the other fitness

requirements: moving forward at high speed with little turning.

After evolution in simulation, the above controller was transferred to a Khepera robot.

The right figure of Figure 5.7(b) shows the typical behaviour of the real robot. This

controller was tested on the real robot ten times and each time it started from an

arbitrary position and heading around the box. The robot always generated consistent

behaviour: it turned to face the box and then approached and pushed it. We can also

see that the real robot recovered from deviations as it did in simulation. Although the

robot did not contact and push the box exactly at its mid-position, it did achieve the

goal reliably: continuously pushing the box forward.

C
o
•a

A ! A A A A /

Figure 5.8: The related sensor and motor information when the robot is performing the
evolved controller for the box-pushing task, (a) is the average activation of the front
two IRs; (b) and (c) are the command indices for left and right motors respectively.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 91

Terminal Set: IR, K{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50
number of generations: 40
fitness cases: 6 fitness cases are used; they are randomly sampled

from 8 pre-defined fitness cases at each generation

Table 5.4: The key features of the problem of evolving a box-side-circling robot.

5.4.3 Box-Side-Circling

The task of box-side-circling is that the robot needs to keep moving forward and circling

along the sides of a box. As it does in the box-pushing task, the robot should use its

own IRs to capture the location of the box. Thus, terminals for evolving a controller
to achieve this task are the same as those in the box-pushing task: IRs and numerical
thresholds.

Again, we should define a fitness function to guide the evolutionary process, and it can

be done through the quantitative description of the expected behaviour: to keep the

left side sensor IR0 with a certain activation value and the speed positive. The former

is to encourage the robot to keep a certain heading relative to the box and a certain

distance away from the box; and the latter is to reinforce the robot moving forward.

The combination of these will produce a box-side-circling behaviour. Thus the fitness
function is defined as:

T

/ = 5> x abs(s(t) — k) + /3 x (1 — v(t))]
t=l

where abs is a function which gives the absolute value of its argument; s(t) is a norm¬

alised activation value of the specific sensor IR0; A: is a pre-defined constant indicating

the distance between the robot and the box, in terms of the normalised sensor range;

v is the normalised forward speed of the robot; and a, (3 are 0.8 and 0.2 here.

Ten runs were conducted with different initial populations to obtain more objective

results. For each run, two populations of 50 individuals were used and the number of

generations was 40. Table 5.4 lists the main features of the problem of evolving a robot
able to circling around a box. Eight different fitness cases were pre-defined; each case

represented a different starting position and heading for the robot. At each generation,
6 from the 8 were sampled at random to evaluate the performance of each controller,

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 92

\

1
1

ave

3.95.t

rage —--

- V

v-

\ N :

;
i

\ :
l :
\
_ x :

\ :N/ \ /
^ i 1 \

^' \V. ' \ -
'\
' \

- \.

O1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

generation

Figure 5.9: The best and average fitness during a run for evolving a box-side-circling
controller.

and each trial lasted 150 time steps. With the parameters specified, all of the ten runs

can evolve successful solutions. Figure 5.9 shows the converged fitness curve for one

of the runs, which indicates that the expected controller can be found rapidly. The

controller evolved from this run is

(PROG
(NOT (>= IRfi IR1))
(>= IR1 0.78)
(OR (>= IR5 IIU)(>= IR3IR3))
(OR (>= 0.32 IR3)(>= IR5 IR^))
(>= IR^ IR,.?)
(OR (>= IR5 IR?)(>= IR6 IR3)))

Figure 5.10(a) presents the evolved box-side-circling behaviour of the simulated robot,
which shows that the task was achieved successfully in simulation. We can also observe

the related sensor and motor information to examine if the evolved robot satisfied the

fitness requirements. In general, we can see that the activations of the specific sensor

IR0 were quite close to the pre-defined threshold 0.9 (Figure 5.11(a)); both motors kept

revolving forward at constant but different speeds (Figure 5.11(b) and (c)), and that
caused the robot to move forward with constant turning rate counter-clockwise. We

can also observe that at certain time steps, noise caused the right motor to slow down

and led the robot to turn slightly toward the right hand side (the activation value of
IR1 in Figure 5.11(a) dropping from a certain value down to zero indicates this). But
this kind of deviation was recovered soon due to the slowing down of the left motor.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 93

(a) (b)

i
1 1

: :

j

i i
:

—\
C

|

i

:

200 300 400 500 600 700 800 4°70 80 90 100 110 120 130 140

Figure 5.10: The box-side-circling behaviours of simulated (a) and real (b) robots. In
this figure, the darker circles represent the robots.

After the heading was adjusted to the appropriate direction, the robot kept circling
the box with constant speed and turning rate again. These figures demonstrate that

the robot was able to achieve the task by satisfying the fitness requirements.

The evolved controller was then transferred to the real robot, and the typical behaviour

of the real robot is demonstrated in Figure 5.10(b). We tested this evolved controller
ten times by putting the real robot around the box with an arbitrary heading each
time. In all the tests, the robot showed similar behaviour: it performed turning to

adjust its heading first and then moved along the side of the box. From the testing

results, we can conclude that the robot is able to achieve the specified task reliably.

5.4.4 Exploration

This task is that the robot needs to wander safely in an enclosure and visit as much

of the enclosed space as possible. It can be described quantitatively as that the space

is divided into some grid squares and the robot must visit as many squares as possible

during a fixed period of time. There are different ways to achieve this task. For

instance, it can be achieved by the use of a map to provide location information to

the robot. With location information, the robot can realise its own location and the

locations of those squares that have been visited already. It can then head to those

squares which have not been visited according to the records of the map. There
is also another kind of strategy without a map; in other words, there will not be
location information available. In such a strategy, the robot does not know where

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 94

Figure 5.11: The relevant sensor and motor activities for the behaviour shown in
Figure 5.10(a). (a) includes the activations of sensor IRd (higher) and IR1 (lower); (b)
and (c) are the commands indices for left and right motors respectively.

it is and which squares it has not visited. To carry out the exploration task, the

robot needs to determine its turning angle carefully in the situations when it senses

the boundary of the enclosure. Actually, it has been shown that without using a

map, the exploration task is achievable by a controller with or without internal states

[Miglino et al. 94, Lund & Hallam 96]. In the experiment below, we intend to evolve
a reactive controller to explore an space without using location information.

Unlike the experiments presented above, the fitness measurement for this task is not the
sum of penalties over each time step but rather can only be assigned after a complete
trial. The main concern for the fitness here is to minimise the number of squares which

have not been visited while an extra pressure on the speed is added to encourage the

robot to move forward in exploring. Thus the fitness function is defined as:

/ = ax(l — P)+/?x(l — Avg)

in P is the proportion of the space visited, i.e., '1S t^ie average speed
of the robot during a complete trial; and a (= 0.85), (3 (= 0.15) are the corresponding

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 95

Terminal Set: IR, SR{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50
number of generations: 40
fitness cases: 4 fitness cases are used; they are randomly sampled

from 6 pre-defined fitness cases at each generation

Table 5.5: The key features of the problem of evolving a safe-exploration robot.

80

70

60

§ 50

40

20
0 5 10 15 20 25 30 35 40

generation

Figure 5.12: The best and average fitness during a run in evolving an exploration
controller.

weights. The enclosure in the exploration experiment here is a square of 50 x 50 cm

and each grid square is 5 x 5 cm.

As described above, the controller to be evolved is reactive and there is no location in¬

formation provided here, so the robot must fully exploit its IR sensors to determine the

turning angle carefully to achieve this task. Since IR sensors are the only mechanism
for providing perception cues, the terminals for the exploration task are then defined
to include IRs and numerical thresholds as in other tasks. To evolve a controller for

exploration, two populations of 50 individuals were used and the GP system was run

for 40 generations as before. The main features of this problem are summaried in Table
5.5 For this task, 6 different starting positions were defined in the training set and 4 of
them were sampled randomly at each generation as different trials to evaluate control¬
lers. Each individual was evaluated for 1000 time steps in each trial. Figure 5.12 shows

the typical converging fitness curve for evolving controllers of exploration. It indicates
the fast and smooth converging behaviour of the evolution. The evolved controller

corresponding to this experiment is:

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 96

(PROG

(>= IR7IR7)
(>= IR7IR7)
(>= IR7IR5)
(NOT (OR (>= IR^ 0.17)(>= IR1 0.97)))
(>= 0.72 IRiS)
(AND (NOT (>= 0.17 IR7))(NOT (>= 0.72 IR^))))

The exploration behaviour produced by this controller is demonstrated in Figure 5.13(a),
which shows that the robot is able to visit most of the specified arena during a fixed

period of time. We should note that it is not important how the robot moves when

it does not sense anything but the appropriate match of the turning angle (when the
robot senses the wall) and the way it moves (when it does not sense anything) is
nevertheless crucial for a reactive controller to perform exploration. As we can see in

Figure 5.13(a), a successful match has been evolved and it enabled the robot to achieve

the task.

Like the previous experiments, the evolved controller was downloaded to the real Khep-

era after the simulation. The behaviour observed from the real robot is presented in

Figure 5.13(b). This behaviour is very similar to the one produced by the simulated
robot in the simulated environment. Once again, it shows a successful example that
we are able to evolve a behaviour controller by our GP system in simulation, and then

transfer it to a real robot.

500

450

400

350

300

250

200

150

100

50

Figure 5.13: The exploration behaviours of simulated (a) and real (b) robots.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS

5.5 Summary and Discussion

97

In this chapter, we have analysed the evolution time of evolving control systems for

robots, explained the main reason for using simulation, and compared the advantages
and disadvantages of different approaches to simulation. To prove that our GP system

can evolve controllers for real robots, we also used it, with a simulator built by look-up
table techniques, to evolve various behaviour controllers for different tasks and then

transferred the evolved controllers to a real robot. Experimental results show that

the behaviours produced by the real robot look very similar to the ones observed in

simulation.

Compared to other research work using GP techniques to evolve robot controllers, our

work is more efficient: the population size used in our work is relatively small and the

solution is relatively succinct. In our experiments, we evaluated 100 individuals at each

generation and can evolve reliable and robust controllers, while in [Koza & Rice 92],
the author used population size of 500 to evolve box-pushing controllers which have
not been proved to be reliable. It means that he may have to increase the population

size if reliable solutions are required. Furthermore, in [Reynolds 94b], the author even
needed a population size of 2000 to evolve a satisfactory controller. In addition, in our

work, the evolved controllers (not simplified) are constituted by only 30 ~ 50 nodes

(terminals and non-terminals) while the controllers evolved from Koza's work include a

few hundred nodes. And most importantly, we have shown that our evolved controllers

work well on a real robot while others have been demonstrated only in simulation.

Since the evolution-based approach involves a large amount of evaluations for individu¬

als, it is important to develop more efficient methods to reduce the time consumed,

especially for evolutionary robotics. Our experimental results show that our GP sys¬

tem has several potential advantages. For example, in the application tasks achieved
in this chapter, the evolutionary system can converge to a stable and sufficient solution
within only 30 generations. Besides, our controllers only involve logical operators, such
as AND OR NOT, that are very simple to evaluate. This means that our approach is

computationally cheap; especially, in cases where the first argument of an AND is false,
or the first argument of an OR is true, there is no need to evaluate the other argument.

CHAPTER 5. EVOLVING CONTROLLERS FOR REAL ROBOTS 98

In addition, because our controllers are composed of very basic logic components, they

can be easily compiled to custom hardware such as FPGAs to speed up the evaluation

in controlling a robot.

Although we have provided some successful examples of evolving controllers for real

robots, the tasks achieved are however not particularly difficult. We should further

investigate how to develop control systems to achieve more complicated tasks by the

evolutionary approach. Shall we still evolve the controller as a whole, or shall we

use the developed techniques to evolve behaviour competences first and then integrate

them by an evolutionary approach in a hierarchical way? We will explore this problem
of scalability in the next chapter.

Chapter 6

Evolving Control Systems for
Complex Tasks

As shown in the reviewed work and our experiments, evolutionary techniques seem

promising for synthesising control systems for robots. Yet, the tasks achieved so far,

such as obstacle avoidance or light seeking, are relatively simple. To help the human

designer develop control systems which are difficult to handcode, we have to resolve the

problem of how to scale up the evolution-based approach in controlling robots. This

chapter will discuss, from different points of view, some of the difficulties one will en¬

counter for evolving controllers to accomplish complex tasks, and conduct experiments

to tackle the problems of applying evolutionary techniques to tasks with increasing

complexities.

6.1 The Scale-up Problem in Evolutionary Robotics

In Chapter 3, which reviews related work, we have mentioned that different research

works have proposed various ways for extending the methods they describe, for evolving

control systems for more difficult tasks. For example, Harvey developed an incremental

evolution system in which the fitness function is gradually changed at different stages
to guide the evolution of control systems [Harvey 93]; Gruau used an indirect encod¬

ing scheme to reduce the search space [Gruau 95]; while Colombetti and Dorigo used
a shaping technique which involves task decomposition to solve more difficult tasks

[Colombetti et al. 96]. This section will first examine some potential problems in scal-

99

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 100

ing up the evolutionary approach to achieve complex tasks, and then analyse the pros

and cons of some possible ways to overcome these problems.

The purpose of evolutionary robotics is to investigate how to develop robot control

systems by evolutionary techniques. We thus should analyse the scaling up problem
from two different points of view: one is about the problem domain itself - robot

control; and the other is about the applied approach - the evolutionary computation

technique. The former is to analyse the properties of the control architectures involved

which are directly related to robot control; while the latter is to examine what kinds of

difficulties will arise in operating the evolutionary techniques when the tasks become

complicated. The following two subsections will discuss the scale-up problem from the

two points of view.

6.1.1 About Control Architectures

As shown in the reviewed work, two kinds of control architectures are used to support

different evolutionary systems: centralised (monolithic) and distributed ones. Central¬
ised architectures here refer to the ones that do not have explicit control structures.

They are evolved as a whole: all different kinds of sensor candidates are provided to

an evolution system, which is expected to choose necessary sensors and to perform

sensor fusion to integrate all information from the chosen sensors in order to generate

appropriate control outputs. On the other hand, distributed architectures here refer to

those similar to the behaviour-based systems. They have explicit structures, including

some independent control modules and coordination modules. In general, work em¬

ploying a distributed architecture also involves the decomposition of the target task, in
which a task is divided into some subtasks recursively and a distributed architecture

is designed to fit the decomposed result in structure. In this kind of architecture, each
distributed control module only takes responsibility for its corresponding subtask, thus

its sensory-motor cycle is relatively clear and simple: only that sensory information

directly related to this specific subtask is involved. Figure 6.1 illustrates the typical

aspects of the two different control architectures.

From the point of view of controlling a robot, the centralised architecture has some

disadvantages. Firstly, it has the problem of sensory bottleneck: all sensor data must

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 101

output command

1 1
output command
I t

coordinator

(N G
u U< U
CD <D 0)

O O
■ . • 0

o
H H H
C "£ "S
O o o
o o o

r t
5. 5.

(a) (b)

Figure 6.1: The general design of centralised (a), and distributed (b) control archi¬
tectures. In this figure, Si, Sj, Sk could be any kind of sensory information, such as
sonars, infra-reds, cameras, etc.

be collected, handled, and integrated; this may degrade the performance of the control

system. Besides, to perform sensor fusion for all sensory information is difficult because

the information from different sources, such as cameras, sonars, maps, and so on, is

normally not amenable to integration. In addition, the centralised architecture may

have the problem that the entire control system will cease to function if only one portion
of the system breaks; it does not have the characteristic of graceful degradation. These

considerations indicate that using the approach of evolving controllers as a whole will

have to solve the difficult sensor fusion problem by evolutionary techniques, and the

evolved control systems may have the performance problem as mentioned above.

A potential problem may also arise from the system-design level, if one intends to evolve

control systems as a whole to achieve complex tasks. In general, achieving a more

complicated task implies designing a relatively complex control system which normally

includes the efforts of different designers. It means that each individual designer may

use his own approach to develop parts of the whole system independently. Under such

circumstances, a control system without an explicitly distributed architecture may lead

to difficulties in the integration of individual subsystems. Furthermore, the design of
a centralised architecture is not flexible, because one cannot easily replace parts of the

overall control system to fit in a new task; every time we must start from scratch.

Thus, from the system-design point of view, evolving control systems as a whole may

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 102

not be preferred.

In contrast, the distributed architecture has some potential advantages for scaling

up for complicated tasks. In a distributed architecture, the perceptual processing is

distributed across multiple independent modules, and every module only deals with

the sensory information directly related to its particular need. This not only reduces
the sensory bottleneck but also allows each control module to employ the most suitable

representation and approach with the least restriction. Because the control architecture

is structured as a behaviour-based system, the performance of the overall system will

degrade gradually, even if some of the devices or control strategies do not function

properly. And, with the explicitly distributed architecture, an overall system would be

easily integrated from different subsystems which could be designed independently; it
can also be easily maintained. Therefore, from the point of view of designing systems

for robot control, the explicitly distributed control architecture seems to have better

scaling capability to achieve tasks with high complexity.

6.1.2 About Evolutionary Computation

In contrast to discussing the scale-up issue from the robot control point of view, we

should also consider the difficulties associated with the applied approach itself. Gener¬

ally speaking, the evolutionary approach is a kind of search-based approach in which

genetic operators, such as reproduction, crossover, and mutation, are used and expected
to find a satisfactory solution in a space; and the dimensionality of this space is determ¬
ined by the length of the chromosome. For instance, in the binary encoding scheme,
a chromosome with length n indicates that the evolution techniques are expecting to

find the appropriate solution from a space with 2" candidates. Thus, when the length
of the chromosome is reasonably increased to match the increase in task complexity,

the solution space will grow exponentially and lead the search to be more and more

difficult. This is particularly apparent in work which uses recurrent neural networks as

control systems since the characteristic of recurrence leads the length of chromosome
to increase quadratically and then enlarges the search space even faster. In fact, in

[Beer & Gallagher 92, Yamauchi & Beer 94], the authors have reported their failure in
trying to evolve recurrent neural networks from scratch for some control tasks. After

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 103

defining modular structures and specifying some connections in advance to simplify
the problems, they can then evolve the desired behaviours successfully.

Increasing task complexity also introduces difficulty in defining fitness functions to

guide the search direction during evolution. In general, an increase of task complexity

implies a higher-level goal to achieve, which almost always involves the interaction

of multiple subgoals. For a complex task, directly defining a fitness function at the

higher-level is relatively straightforward and simple but it makes the task difficult to

be achieved. On the contrary, defining fitness functions at lower-level is more difficult

while it makes the task more achievable. For example, in the work [Nolfi & Parisi 95],
the authors have shown that, in their grasping task, if the fitness function was simply

defined as the number of objects grasped and deposited correctly, then the desirable

behaviour could not be evolved successfully. This is due to the fact that during the

earlier generations none of the individuals can achieve the complete task; this results

in equally bad fitness for all the populations (all scored zero) and made all the control

systems indistinguishable in performance. On the other hand, in the same example,

if lower-level subgoals were introduced to the fitness function, such as rewarding the

behaviours of recognising objects and picking objects up, the performance of controllers

became more distinguishable and then the target task could be achieved. Manipulating
fitness at lower levels can assist the evolutionary system to converge; however defining
an appropriate fitness function at a lower level is never easy because it has to deal with

the multiple subgoals simultaneously. Further, this kind of difficulty will grow with an

increase in task complexity.

6.1.3 Some Ways to Achieve Complex Tasks

In order to evolve control systems for complex tasks, some researchers began to invest¬

igate how to mediate the above problems in two directions. One is to develop advanced

evolutionary techniques, such as indirect encoding schemes or co-evolution of higher
level representations, to enhance the performance of the evolutionary system. The
other is to construct a smooth pathway between the higher level goal and the initial

state to make the goal easier to achieve; this includes incremental evolution or task

decomposition. This section will discuss these approaches in turn.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 104

Indirect Encoding Schemes

In order to enhance the performance of the evolutionary system, some research work

endeavours to develop indirect encoding schemes to reduce the search space by short¬

ening the length of the chromosome. In general, the genotype in this kind of encoding

scheme specifies some developmental rules (or operations) which are used to construct

the corresponding phenotype as the control system (e.g. [Nolfi et al. 94, Gruau 95,

Sims 94b]). The genetic operators are then applied to the genotype in order to evolve

the appropriate developmental rules to construct satisfactory control systems. Fig¬

ure 6.2 illustrates the concept of using an indirect encoding scheme to evolve control¬

lers. Since the number of rules used to develop specific controllers can be much smaller

than the number of units (bits) within a chromosome in a traditional direct encoding

approach, the search space will become correspondingly smaller and the genetic search

may then become relatively easy. This provides more possibilities to evolve control

systems for complex tasks. [Gruau 95] is a successful example, in which he developed
a modular encoding scheme to evolve neural networks controllers for a simulated hexa-

pod walking robot. The genotype in his work specifies a sequence of graph-rewrite

operations to develop a neural network from a single neuron. A similar approach has
been followed by Koza to evolve analog circuits as food-foraging controllers for a simu¬

lated lizard [Koza et al. 96b]. The other successful example is the work done by Sims

[Sims 94b, Sims 94a]. He developed a graph-based grammar to evolve 3D rigid-part
creatures. The genotype in his work is structured as a direct graph of nodes and con¬

nections, and the instructions and information contained in the nodes are used to grow

the creature for walking, jumping, and swimming behaviours in a virtual world.

genotype phenotype

Figure 6.2: The design of the evolutionary system which uses an indirect encoding
scheme to evolve control systems.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 105

Although the indirect encoding scheme has shown its potential in evolving control

systems to achieve complex tasks for robot control, it requires specific techniques; for

example, designing appropriate developmental rules and the operations to construct

the corresponding control system. This requirement of specific techniques may make
this approach difficult to use in practice.

Higher Level Representation

The other way in reducing the search space and improving the performance of an

evolutionary system is the use of higher level representation. The main idea of this kind

of approach is to co-evolve some useful building blocks along with the main program

body of a genetic representation. The relationship between the co-evolved building

blocks and the main program body is much like the one between subroutines and the

main program in the conventional computer programming. In this kind of approach,

each building block has an unique name and only one copy is maintained in the genetic

representation. The building blocks appear in the main program body in terms of
their names (symbols) rather than their contents. Figure 6.3 illustrates this concept.

In this way, the size of the genetic representation becomes relatively small and the

corresponding search space is therefore reduced. The building blocks also allow useful

grouped information to be reused easily; this enhances the power of the evolutionary

approach. Automatic Defined Functions in [Koza 94] and the Genetic Library Builder
in [Angeline & Pollack 93a, Angeline & Pollack 93b] are two typical approaches in the
co-evolution of higher level representation. However, research work of this kind has
been focusing only on exploring the power of artificial evolution. As for how to apply
it to the robot control domain, it may need further investigation.

Incremental Evolution

In contrast to the above two approaches which concentrate on developing techniques to

assist the genetic search, an alternative way is to construct an easier fitness landscape
for the evolutionary system to help the search in an indirect manner. Incremental
evolution is an example of this approach. The main idea of incremental evolution is

that, instead of directly challenging the target task with a relatively high complexity,

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 106

representation

Figure 6.3: The representation of an evolutionary system which co-evolves the main
program body together with building blocks.

one can define a sequence of tasks with increasing complexity to lead to the target

task gradually, and then evolve control systems for each intermediate task in the pre¬

defined sequence. During the process of this kind of evolution, the initial population

for a certain task is the one evolved for its predecessor task with slight mutation.

Figure 6.4 illustrates the general design of an incremental evolutionary system. Since
the complexity of the task is increased gradually, the higher level goal will then be¬
come more achievable through a smoother pathway. The concept of incremental evol¬

ution has been applied to evolve robot controllers, and the result was promising (e.g.,

[Harvey et al. 94, Harvey et al. 96]); however, as the authors themselves pointed out

in [Harvey et al. 96], how to define a sequence of tasks with increasing complexity is
another kind of challenge. It is particularly difficult to define such a task sequence

if the final task includes different inconsistent goals (for example, in [Jakobi 94], the
author tried to use the evolved obstacle avoidance controllers to constitute an initial

population to evolve controllers which fulfill both obstacle avoidance and light seeking

behaviours, but he did not succeed). In addition, it is also difficult to follow this kind
of approach to evolve distributed control architectures.

increasing complexity
taski (fl) task2 (f2) ^ taskn (fn)

Figure 6.4: The aspect of incremental evolution in which there is a fitness function
defined in each task.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 107

Task Decomposition

Another way in constructing a more achievable pathway for higher-level tasks is to take

a more engineering view and adopt the divide-and-conquer problem-solving methodo¬

logy. In this kind of approach, the designers break tasks from complex (higher-level)
down to simple (lower-level) recursively and then achieve the tasks in the reverse se¬

quence. How to decompose a task of course depends on the designers' experience,
and human designers are generally quite good at that. The tasks are arranged to be
achieved in a sequence of increasing complexity and, at each level, the control systems

are evolved on top of the ones evolved at lower levels. Hence, fitness functions will

become easier to define and the tasks will be easier to achieve (the fitness function of a

certain level task can be defined simply as the goal at this level, to reduce the difficulty

in embedding the lower-level subgoals into it; and evolving control systems on top of
other lower-level controllers can exploit their corresponding control skills to achieve

the current goal). In addition, each subtask only needs to deal with the perceptual

information directly related to it, which also makes the tasks easier to achieve.

Actually, the concept of this kind of approach is much like behaviour-based control,

which has been successfully and widely used in the robot community for building

autonomous robots (e.g.,[Brooks 89, Malcolm et al. 89, Pfiefer & Scheier 96, Steels 93b]);
while the main difference is that the approach here employs evolutionary techniques

to evolve new behaviours and behaviour coordinators, which have been the main bur¬

dens in hand-coding systems, rather than to handcode them. By the use of evolu¬

tionary techniques, the human designer can concentrate on the system level design
and let the evolutionary system take care of the implementation details. In addition,

since in this approach the tasks are decomposed in the horizontal way proposed in

[Brooks 86], the corresponding control architectures will be explicitly distributed and
then fully exploit all the advantages of distributed architectures as analysed in the
above section. The task decomposition technique has also been applied to other ro¬

bot learning domains; examples include Dorigo and Colombetti's work in evolutionary

learning [Dorigo & Colombetti 94, Dorigo 95, Colombetti et al. 96], and Mataric and
Lin's work in reinforcement learning [Mataric 94, Lin 94],

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 108

We are particularly interested in investigating ways to reduce the load of robot pro¬

grammers and in evolving distributed architectures for complex tasks. Because, at

the present stage, the task-decomposition technique seems to be the most direct way

to achieve these, we will concentrate on investigating how to use this approach, with
the previously developed GP system, to evolve control modules and coordinators to

achieve complex tasks in the rest of this chapter.

6.2 Task Decomposition and Integration

6.2.1 Two Types of Task Decomposition

There are various ways to decompose a complex task into some simpler subtasks,

and, in general, they can be categorised into two types: flat and hierarchical ones.

The former only decomposes the overall task once into two levels; while the latter

decomposes the task into multiple levels recursively. In the flat type decomposition,

the designer considers the target task as the interaction of a set of lower-level subtasks
which are related to the target task and relatively simple to solve. All the subtasks are

independent and at the same level. They have their own goals, and each of them will
be achieved by a separate controller, which generates its own output according to the

sensory input directly relevant to the subtask itself. Those independent outputs from

the separate controllers will be combined appropriately by an arbitrator in order to

generate the final output to achieve the overall task. A typical flat type decomposition
is illustrated in Figure 6.5.

The other type of decomposition divides tasks in two dimensions; it not only decom¬

poses the target task into some simpler subtasks as the flat type decomposition does,
but also decomposes subtasks into even simpler sub-subtasks in a recursive manner.

Thus, this kind of decomposition will result in a hierarchical structure consisting of
different levels of tasks. With respect to the top-down decomposition described above,

the tasks in the hierarchical structure are achieved in the bottom-up sequence. For

each of the lowest level tasks — the tasks that are not decomposed into any others —

there is an independent controller to achieve its own goal; and the outputs from these
are merged to achieve relatively higher-level tasks. As in the flat decomposition, a cer-

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 109

Target Task

Figure 6.5: A typical example of flat decomposition and its corresponding control
architecture.

tain task composed of some sub-tasks needs a kind of arbitrator to combine multiple

outputs from the sub-tasks involved. After a control system is assembled from a set

of lower-level controllers by an arbitrator, it can be used as a building block to con¬

struct other controllers for even higher-level goals. The final goal can then be achieved,

step by step, in this way. Figure 6.6 illustrates a typical example of hierarchical task

decomposition.

Target Task

Figure 6.6: A typical example of hierarchical decomposition and its corresponding
control architecture.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 110

6.2.2 Two types of Task Integration

The above section has described two types of task decomposition and their correspond¬

ing control architectures. Although they organise their structures differently, both of
them need to deal with the same problem of action selection. This is to specify a way to

combine the various outputs from the involved subtasks in a coherent manner. There

are two ways to implement such an arbitrator, namely command fusion (e.g., [Steels 94,
Rosenblatt & Payton 89, Rosenblatt & Thorpe 95, Pfiefer & Scheier 96]) and command

switching (e.g., [Brooks 86, Firby 94, Blumberg 94, Simmons 94]). In the first way,
command fusion, the arbitrator is a certain function of the outputs from the involved

subtasks (the weighted sum is the most popular function); it makes all of the subtasks
able to contribute to the current outputs simultaneously. If this type of integration is

taken, the evolutionary approach is then used to tune the weights for the corresponding
commands. Figure 6.7(a) presents the general form of this type of arbitration.

The second way, command switching, operates in a winner-take-all fashion; only one

of the output commands from the involved subtasks is chosen to take over the control

at any given moment, according to certain sensory stimuli. This kind of arbitration is

particularly useful in achieving higher-level tasks defined by multiple sequential goals.
For example, the task of requiring the robot to look for a charging station to recharge
itself among different rooms can be achieved by combining two outputs from the sub-
tasks safe-exploration and reaching-charging-station, in the way of command switching:

once the robot finds the charging station the controller reaching-charging-station is in

charge; otherwise the other controller, safe-exploration, is. The mechanism supporting
the arbitration of switching can be regarded as a multiplexer, and can be implemented

by a simple reactive controller whose output is used to trigger one of the outputs from
the involved subtasks, according to the environmental conditions. As with other inde¬

pendent controllers for separate subtasks, the controller for arbitration can be evolved

by an evolutionary system. The general form of this type of arbitration is shown in

Figure 6.7(b).

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 111

sensory information

0=o.

(a) (b)

Figure 6.7: Two typical ways to implement an arbitrator, (a) The current output is
the weighted sum of it inputs; (b) the current output of an arbitrator is one of its
inputs.

6.3 Evolving Hierarchical Task-achieving Controllers

After describing the general ways for decomposing and integrating tasks, we shall
concentrate on employing the task decomposition and integration techniques to evolve

distributed control systems to achieve complex tasks. In this section, we will explain

the features of the control architecture associated with task decomposition used in our

work, and then describe the application task which will be undertaken later to prove

our approach.

6.3.1 Control Architecture

Since we will decompose tasks in a hierarchical way, the control system is organised
in multiple layers. After decomposition, the architecture of our control system looks

like a behaviour-based system; it includes a set of behaviour primitives and behaviour

arbitrators. Here, a behaviour primitive is a reactive controller with the representation

described in the previous chapter; it involves the lowest level sensory-motor control.

Unlike the priority network in the subsumption architecture [Brooks 86], a behaviour
arbitrator here is not hardwired in advance; it is also treated as a reactive controller and

implemented as a switcher as in Figure 6.7(b). The behaviour arbitrator has the same

structure and representation as the primitive; the only difference between them is that

the output of a primitive is used to control the motors and the output of an arbitrator
is used to activate one of the involved subcontrollers. Thus, in a similar manner to a

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 112

reactive planner in [Firby 92, Firby 94] or a conditional sequencer in [Gat 92, Gat 94],
an arbitrator here allows the binding between environmental conditions and activations
of lower level behaviours to take place at run time. This provides adaptiveness not

only at the lower level sensory-motor control but also at the behaviour level.

Depending on whether the computing system used supports parallel computation, the

control flow in the control system with the above architecture can be implemented as

bottom-up (if parallel computation is supported) or top-down (if not). For bottom-up

flow, all reactive controllers are active and they are run in parallel. The behaviour

primitives send outputs to the arbitrators as their inputs, and each arbitrator selects

one of its inputs, according to the environmental stimuli, as its output and then sends

this value to higher-level arbitrators. In this way, the output of the highest-level
arbitrator will be the output of the overall control system. In contrast, for top-down

flow, all the control modules are passive. At each time step, the highest level arbitrator

invokes one of its subcontrollers to be in charge of the control, according to certain

sensory information. If the invoked subcontroller includes an arbitrator, this arbitrator

will be evaluated first and its output can then be used to activate another controller.

This process continues until a control primitive at the lowest level is invoked and drives

the actuators. Because our system does not support parallel computation, top-down

flow is used. Figure 6.8 illustrates the general architecture of our control systems.

Primitive j -^Primitive J

Figure 6.8: The general architecture of a control system in which an arbitrator is
implemented as shown in Figure 6.7(b). S and A represent the sensors and actuators
related to a certain control work.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 113

6.3.2 The Application Task

In the following experiments, we will follow the approach described above to develop

control systems for a moderately difficult box-pushing task. In this task, the robot is

required to explore the given arena in order to find a box; once it detects the box, it

is then required to push the box toward a goal position indicated by a light source.

Figure 6.9 illustrates the environmental setup for this application task.

There have been different versions of box-pushing tasks accomplished by reinforcement

learning [Mahadevan & Connell 91] and genetic programming [Koza &; Rice 92]. How¬

ever, those tasks are simpler than ours because their robots were only asked to push a

box to any wall rather than to a specific position, which in fact can be done without

any deliberate strategy.

The task to be achieved is difficult for the following reasons. First of all, the robot
is round, so that it only contacts the box at one point while pushing it, and the box

tends to slide and rotate unpredictably when the pushing force exerted by the robot
is not directed straight through the centre of the box. Therefore, the robot has to

adjust its own position occasionally in order to push the box forward. Furthermore,
as there is no particular restriction on the initial relative positions of the robot, the

box, and the ambient light, the robot can approach and detect the box at any position

and orientation around the box; in such circumstances, the robot needs to deliberately

move to a proper position in order to perform an efficient push to satisfy the final goal.

light intensity decreases

lisI"
T-O

robot

0

Figure 6.9: Illustration of the application task. The robot starts from an arbitrary
position within a closed area; it has to find the box (placed within the area brightened
by the light) and push the box toward the light centre.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 114

6.3.3 Task Decomposition

To accomplish this task, we decompose it into two subtasks, exploration and push-box-

toward-light. The former is to control the robot to explore the given arena in order to
find the box without bumping into a wall; and the latter, to push the found box to

the light centre. As mentioned above, when the robot finds the box, it has to move to

a proper position before pushing it, so the task push-box-toward-light is decomposed

again into two lower-level subtasks, box-pushing and box-side-circling. The goal of box-

pushing is to keep the robot pushing a box forward, while the goal of box-side-circling
is to keep the robot moving along the side of a box in order to provide the opportunity

for the robot to move to suitable positions for pushing. Each of the atomic subtasks

is controlled by a separate behaviour primitive, and the different subcontrollers for

the same task are merged by an arbitrator, which is implemented as a switcher to

coordinate the relevant subcontrollers. Figure 6.10 shows the decomposition results and
the design of the corresponding architecture for the target task. After decomposition,
the genetic programming system developed previously is used to evolve both behaviour

primitives and arbitrators.

target task

motor commands

Figure 6.10: The decomposition and integration of the target task. Si indicates the
sensory information relevant to taski.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 115

6.4 Experiment I

6.4.1 Hardware Limitations

In the previous chapter, we have evolved separate controllers for the three lower-level

subtasks, exploration, box-pushing, and box-side-circling. The following experiments

will then concentrate on evolving the arbitrators for the hierarchical control architec¬

ture. In order to accomplish the task push-box-toward-light, the arbitrator will need

infra-red sensors and ambient light sensors to detect the box and the light respectively,
so that it can manipulate the relevant two lower level controllers appropriately. The

ambient light sensors must be positioned higher than the box, to ensure they can detect

the light even in the situation that the box is between the robot and the light.

On the other hand, for the overall task, the other arbitrator will require certain per¬

ceptual information, which can be organised as some sensory conditionals for the robot
to recognise the box, to determine when to perform exploration and when to perform

push-box-toward-light. For this purpose, we define a kind of virtual sensor DR, which

can give the normalised reading difference between a pair of upper and lower infra-red
sensors. (The sensor pair here means two sensors pointing at the same direction but
with different heights: one is higher and the other is lower than the box.)

A straightforward way to satisfy the requirements for both arbitrators is to duplicate

Khepera's eight sensors on its top (and the sensors on the top must be higher than
the box) so that the duplicated sensors can serve as ambient light sensors for the
first arbitrator and as infra-red sensors for the second arbitrator (see Figure 6.11).

However, the preliminary tests show that when the robot was within a certain area

around the bulb, the infra-red sensors on the Khepera robot was seriously disturbed by
the normal bulb light and thus cannot function properly. This will cause difficulties in

verifying the simulation results on the real robot. Even so, we can still study how our

approach works by using a simulation in which we assume that there are eight extra
sensors on the top of the simulated robot as described above. Before the simulation,
we constructed the light look-up table using the existing sensors to sample the light
emitted from a real 25 Watt bulb, which was masked by wrapping a piece of paper

around it and suspended 11 cm above the ground. In the later simulation, the responses

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 116

for the assumed ambient light sensors will be obtained by accessing this light table.

Ambient Light upper sensors

lower sensors

(a) (b)

Figure 6.11: (a) An ideal way to satisfy the sensor requirements for both arbitrators is
to duplicate a set of eight sensors on the top of the robot; (b) the sensor arrangement
- a sensor St can function as an infra-red or an ambient light sensor.

6.4.2 Evolving an Arbitrator for the push-box-toward-light Task

As mentioned above, an arbitrator is still implemented as a reactive controller; its in¬

puts are from the sensors and its outputs are used to trigger other controllers. For the
arbitrator here, two kinds of sensors — infra-red (IR) and ambient light (LDR) — are

needed to detect the locations of the box and the light, so both kinds of sensors and the
numerical thresholds are defined as terminals to the GP system to construct the struc¬

tured sensory conditionals for the arbitrator. Since there are only two sub-controllers

involved, the arbitrator is designated to have a single output to activate them: if the

output is 0, then the controller for subtask box-pushing dominates the control; other¬

wise the controller for subtask box-side-circling does. During the experiment, the two

subcontrollers will be frozen and only the arbitrator will be evolved.

In the simulation, the box was placed 22 cm away from the light centre, and the robot

was expected to push the box as close as possible to the centre of the area brightened

by the light. Instead of measuring the distance between the goal position and the final

position of the box at the end of a complete trial, we calculated the summation of the
distance between the goal position and the box at each time step to reinforce the robot
to push the box straight toward the light. Thus the fitness function is defined as:

T

F = y£Db,i(t)
t=l

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 117

Terminal Set: IR, LDR, SR{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 4

population size: 50
number of generations: 40
fitness cases: 6 fitness cases are used; they are randomly sampled

from 8 pre-defined fitness cases at each generation

Table 6.1: The key features of the problem of evolving arbitrators to coordinate the
controllers box-pushing and box-side-circling.

in which Dbti(t) represents the distance between the box and the light source at each
time step t.

As in the experiments of the previous chapters, each individual was evaluated in mul¬

tiple trials and then the average fitness was taken as the corresponding fitness, in order
to enhance the reliability and the robustness of the evolved arbitrators. In this ex¬

periment, we pre-defined 8 positions and orientations around the box to be a training

set, and 6 of them were randomly sampled at each generation as the starting positions

to evaluate the performance of each arbitrator. Each trial lasted 500 time steps and
each step was a complete cycle: both the arbitrator and the activated controller were
executed once. The robot did not need so many time steps to push the box to the

goal position, but it was necessary to evaluate an arbitrator a bit longer to prevent
the box being pushed away after it was pushed to the goal position. In a single run,

4 populations of 50 individuals were used and the evolutionary run lasted 40 genera¬

tions. Table 6.1 summaries the key features of the task of evolving arbitrators here. To
confirm the reliability of the experiment, ten independent runs were conducted, and
the results showed that in 8 of the 10 runs successful arbitrators were evolved, which

were capable of generating proper behaviour sequences to achieve the task. One of the
evolved arbitrators looks like:

(PROG

(OR (OR (>= 0.62 LDR5)(OR (OR (>= IR5 LDR3) (>= 0.62 LDR7)) (AND (>= LDRtf
LDR7)(>= LDR3LDR7)))) (AND (>= LDR3 LDR7)(OR (OR (OR (>= LDR5LDR3)(>=
LDR3 0.62)) (>= IR6 LDR7))(AND (NOT (>= IR6 LDR^))(>= LDR3 LDR7))))))

Figure 6.12 illustrates, step by step, the typical behaviour of the simulated robot. As
can be seen, the arbitrator first activated the primitive box-side-circling to move the

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 118

robot along the side of a box. Once the robot reached an appropriate position in which

the box was between the light and the robot itself, the control was then switched to the

other primitive, box-pushing, to drive the robot to push the box forward. The box-side-

circling and the box-pushing primitives were activated again in the same order if the

pushing path deviated. After the box was pushed to the goal position, the arbitrator

continuously activated the primitive box-side-circling to make the robot circle the box

in order to prevent it pushing the box away from the goal position. Prom Figure 6.12,

we can see that the box was successfully pushed to almost the centre of the bright area.

Figure 6.12: The behaviour sequence of the robot during a typical test: (1) The initial
positions of the box (dark circle), the light (smallest circle) and the robot; (2) the robot
moved along the side of the box; (3) pushing the box forward; (4) circling again to an
appropriate position; (5) pushing the box again to the goal position; (6) continuously
circling after the box has been pushed to the goal position.

We can also examine whether the task decomposition performed has been exploited

in achieving the higher-level goal by observing the output sequence of the arbitrator:
if the sequence is separated as periods of consistent activation, then the performed

decomposition is confirmed to be helpful; otherwise it may be not. Figure 6.13 demon¬
strates the output sequence corresponding to the behaviour shown in Figure 6.12.

According to this figure, the evolved arbitrator was able to generate periods of quite
consistent activation, except the short oscillating period, after the box was pushed to

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 119

the goal position. The reason for the appearance of such a period is probably that
the combination of pushing and circling behaviours may be the best way for the robot
to leave the box without touching it (to prevent pushing the box away from the goal

position). This figure in fact indicates that the relevant lower-level sub-controllers have

been fully exploited.

Figure 6.13: The output sequence corresponding to the behaviour in Figure 6.12. In
this figure, the y-axis indicates the controller which was activated: 0 is for box-pushing
and 1 is for box-side-circling.

6.4.3 Evolving an Arbitrator for the Overall Task

After evolving an arbitrator to combine two pre-evolved lower-level primitives, we can

regard the above integrated control system, including one arbitrator and two primitives,

as a building block, and then evolve a new arbitrator to combine this building block and
the previously evolved exploration controller to achieve the overall task. As described

in section 6.4.1, this arbitrator will need perceptual information which can be used to

recognise the appearance of the box, in order to generate proper output sequences to

coordinate the two control systems involved. Therefore, the virtual sensor DRs and
the numerical thresholds are defined as terminals for our GP system to evolve the

desired arbitrator. Since this arbitrator is to coordinate only two control systems, it

is designated to have one output: if the output is 0, the controller for exploration is

activated; otherwise the controller for push-box-toward-light is. Again, the controllers
to be combined are frozen and only the arbitrator is evolved.

The goal here is the same as the above one: to push the box as close as possible to
the specified position, so the fitness function can be defined as above - to accumulate
the distance between the box and the goal position at each time step. However, the

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 120

Terminal Set: DR, 5R{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50
number of generations: 40
fitness cases: 6 fitness cases are used; they are randomly sampled

from 8 pre-defined fitness cases at each generation

Table 6.2: The key features of the problem of evolving arbitrators to coordinate con¬
trollers exploration and push-box-toward-light.

criterion of simply measuring the fitness function for a fixed period of time as before

cannot give an objective evaluation here because of the fact that in different trials the

robot could start from different positions and then take different numbers of time steps

to find the box - which means that the time periods used to push the box to the light

will be different. Therefore, in this experiment, the robot is given an extra period of

time (800 time steps at most, which should be enough for the robot to visit most of
the given arena if it performs exploration as expected) to find the box; and the fitness
value is accumulated for a fixed period of time which starts from the moment the robot

finds the box (or the end of the time period for looking for the box - in the case where
the robot does not find the box). Thus, the fitness function is defined as:

k+T

f= £ D"At)
t=k+1

in which Dbj(t) is the distance between the box and the goal position at time f; k is
the time when the robot finds the box (or the end of the time period for looking for
the box); and T is the fixed period of time for fitness measurement.

Again, the arbitrators were evolved from multiple trials and the entire evolutionary

procedure was repeated ten times (to decrease the influence of random effects) to

prove the corresponding correctness. For each run, two populations of 50 individuals
were used and the GP system was run for 40 generations, as in most of the previous

experiments. The main features of this task are summaried in Table 6.2. For this task,
8 positions were pre-defined and 6 of them were sampled at random at each generation
to be the starting positions of different trials. Each individual was evaluated for 500
time steps during a trial and each time step was a complete cycle from the highest-level
arbitrator to lowest level controllers. With the specified parameters above, all of the

ten runs can evolve successful solutions which are capable of generating a coherent

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 121

GO 100 1G0 200 250 450 500 550

'■

s

^ ii

r\
vJ
0. | |
r
l; ;

li i i

K N

100 150 200 250 300 350 400 450 500 550

200 250 300 350 400 450 500

V'"

///VK

\ \
•- y

0 50 100 ISO 200 250 300 350

r\(T)
—

)

x
X

i

\
j

0 SO 100 150 200 250 400 450 600 650

y

1

j
ISO 200 250 300 350 400 450 500 550 250 300 350 400 450

Figure 6.14: The behaviour sequence of the robot: (1) the initial conditions; (2) the
robot wandered around the environment before finding the box; (3)~(7) the robot
continuously performed the building block controller push-box-toward-light to achieve
the task.

output sequence to activate the involved sub-controllers appropriately. One of the
evolved arbitrators is:

(PROG

(OR (OR (>= DR0 0.16)(>= DR^ 0.16)) (AND (XOR (>= DR0 DR^)(OR (>= DR3 0.58)

(>= DRJ DR^)))(XOR (>= DR0 DR^) (NOT (>= DR^ 0.16))))))

The typical behaviour of the robot, when performing the whole control system, is
shown in Figure 6.14. From these figures, we can see that the arbitrator firstly kept

activating the controller exploration to drive the robot to explore the given environment
and to avoid the walls. Once the robot found the box, the arbitrator began to activate

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 122

the other controller, push-box-toward-light, according to the sensory stimuli. Since the

arbitrator was able to activate this controller continuously after the robot found the

box, the overall task can then be achieved successfully. In fact, the performance of

the arbitrator above can also be observed from Figure 6.15, which shows the output

sequence generated by this arbitrator during the test shown in Figure 6.14. It clearly
indicates that this arbitrator can keep activating the controller exploration before the
box was found, and after finding the box it can activate the other controller push-box-

to-light consistently to achieve the target task.

Figure 6.15: The output sequence corresponding to the behaviour in Figure 6.14. In
this figure, the y-axis indicates which controller was activated: 0 is for exploration and
1 is for push-box-toward-light.

6.5 Experiment II

The experiments and their results presented in the last section have shown that com¬

plicated tasks with higher-level goals can be achieved by evolving arbitrators to co¬

ordinate lower-level behaviour controllers. Yet, as explained in the last section, due to

hardware limitations, it is difficult to verify the performance of the evolved arbitrators
on a real Khepera. In this section, we design new experiments, based on the available

hardware, to examine if an evolved arbitrator can work on a real robot.

For the task push-box-toward-light, we construct a new light source — a LED ring —

which does not disturb the function of the original infra-red sensors on the Khepera

robot, and then deploy the camera module, which includes a light detector and is

currently available for the Khepera robot, on top of our robot to detect the LED
ring (the original ambient light sensors do not respond to the light emitted by LEDs).
Figure 6.16 shows the new experimental equipment.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 123

Figure 6.16: The equipment for examining the performance of an evolved arbitrator
on a real robot. From left to right: the LED ring, the box and the robot. The black
box on the top of the robot includes a light detector.

robot

Figure 6.17: The desired situation in which the robot heads toward the box and detects
the light at the same time.

To achieve the task of push-box-toward-light in the expected way, the robot must be

able to move to a position where it can sense the box by its front IR sensors and detect

the light at the same time, as illustrated in Figure 6.17. In previous experiments, there
were eight ambient light sensors to detect the light in eight different directions, so the
robot can create the desired situation by circling around the box to the specific position

indicated in Figure 6.17 and then performing the pushing behaviour to face the box.

However, there is only one light detector available now, so it is in fact impossible to

have the above situation by performing the pushing and circling behaviour controllers
evolved previously. Thus, we will have to evolve a new circling behaviour which can

circle around the box and create the desired situation. To satisfy these requirements,

N Tt

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 124

Figure 6.18: An example for explaining how the fitness is defined for evolving the new
circling behaviour. The dotted line indicates how the space around the box is divided
into small regions for fitness measurement.

we define the fitness function for evolving the new controller as:

f = M — P

in which M is the number of regions into which the zone around the box has been

divided (shown in Figure 6.18, M is 12 in that case); and P is the number of visited

regions, where a region is defined as having been visited if the robot faces the box

(i.e., the average response of the two front IRs is larger than a specified value) in that

region.

To evolve the new circling behaviour, we defined the infra-red sensor IRs and the

numerical thresholds as the terminals. In the experiment, 2 populations of 50 individual

were used and 40 generations were run. The key features of the problem of evolving

a new circling robot are summaried in Table 6.3. We also pre-defined 8 positions

around the box as a set of fitness cases and 6 from them were sampled randomly at

each generation as the starting positions to evaluate each controller. Like the earlier

experiments, ten independent runs were conducted; all of them can evolve controllers

which satisfy the requirements perfectly (with zero penalty/fitness) in simulation. Two
different kinds of behaviours, shown in Figure 6.19(a) and (b), were observed, though

Terminal Set: IR, SR{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 2

population size: 50

number of generations: 40

fitness cases: 6 fitness cases are used; they are randomly sampled
from 8 pre-defined fitness cases at each generation

Table 6.3: The key features of the problem of evolving a new circling robot.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 125

(a)

Figure 6.19: Two different circling behaviours generated by the simulated robot,

both of them can achieve the same goal.

Both kinds of circling controllers were transferred to a real robot. The result shows that

only the behaviour presented in Figure 6.19(a) can be transferred to reality successfully,
and the typical trajectory of the real robot is demonstrated in Figure 6.20. According
to our investigation, the reason for the unsuccessful transfer of the behaviour shown

in Figure 6.19(b) is that to generate this behaviour the robot has to switch its speed,

rapidly and regularly, between positive and negative, and this results in considerable
differences between simulated and real robots - each entry in the motor table used

in simulation is obtained by performing a certain motor command for a period of

time and then taking the average value; the values used in simulation are thus quite
different from the actual speed values obtained from real motors if the motors switch

their revolving directions rapidly forward and backward.

Figure 6.20: The trajectory of the real robot when it performed the evolved controller
with the behaviour shown in Figure 6.19(a)

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 126

Terminal Set: IR, LDR, 3£{0..1}
Function Set: PROG, AND, OR, NOT, XOR, >=
number of populations: 4

population size: 50

number of generations: 40

fitness cases: 6 fitness cases are used; they are randomly sampled
from 8 pre-defined fitness cases at each generation

Table 6.4: The key features of the problem of evolving new arbitrators to coordinate
the box-pushing and the new box-side-circling controllers.

The main purpose for doing the experiments in this section is to verify if we can evolve

an arbitrator working on a real robot, so we can simply choose one of the transferable

circling controllers (i.e., the ones that can generate the kind of circling behaviour shown
in Figure 6.19(a)) as a behaviour primitive for the box-side-circling task and use the

previously evolved box-pushing controller as the other primitive, then focus on evolving
new arbitrators to coordinate these two primitives to achieve the push-box-toward-light

task for a real robot. The goal here is the same as previous push-box-toward-light task:

pushing the box as close as possible to the light centre. Thus, the fitness function is
defined as:

T

f = J2Db>l(t)
t=l

in which Db,i(t) represents the distance between the box and the centre of the LED
ring at each time step t, as in the last section.

To evolve the new arbitrators, we define the infra-red sensor IRs and the light detector
LDR as sensor terminals for our GP system, and the control parameters used here are

the same as the ones described in section 6.4.2: four populations of 50 individuals;

40 generations; eight pre-defined fitness cases and six of them sampled randomly at
each generation. Table 6.4 summaries the main features of this problem. The time
to evaluate an individual was longer than in previous experiments (2000 time steps)
because the circling behaviour here is more time-consuming. Ten independent runs
were done and nine of them evolved successful solutions. One of the evolved arbitrators

looks like:

(PROG

(OR (OR (>= LDR0 0.11)(>= LDR0 IRS))(>= 0.89 IR3)))

in which LDR0 is the only light detector on the top of the robot and pointing forward.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 127

Figure 6.21(a) is the typical behaviour generated by the simulated robot. The robot

firstly circled around the box and then pushed it toward the light. As can be seen, the

robot occasionally performed the circling controller to adjust its position for further

pushing. After pushing the box to the region around the light, the robot generated the
mixed behaviour of pushing and circling - it carried on pushing the box but kept it close

to the light. The reason for the generation of this combination is probably that there
is only one light detector available now and this combined behaviour may be the best

way to achieve the task. After being evolved in simulation, the above arbitrator was

transferred to a real Khepera robot to verify its performance at coordinating the lower-

level controllers. The typical behaviour of the real robot is presented in Figure 6.21(b).
The behaviour of the real robot is similar to the one in simulation.1 (The trajectories
of the robot and the box could not be recorded because of the fact that all three cables,

for the LED ring, the robot, and the LED on the top of the box, tangled together when
the box was pushed around the LED ring). It shows that the evolved arbitrator can

successfully manage other lower-level controllers to achieve the specified task on a real
robot.

Figure 6.21: The typical behaviours of the simulated (a) and real (b) robots, when
they used the evolved arbitrator to coordinate two lower-level controllers for the push-
box-toward-light task. In both figures, the darker circles are robots and the smallest
circles indicate the centre of the LED ring. In the right figure, the solid and dotted
lines are the trajectories of the box and the robot, respectively.

1 In fact, we have mentioned in Chapter 5, due to the environmental uncertainty, such as the nature
light from the windows, only qualitatively similar behaviours are expected between the simulated
and real robots.

CHAPTER 6. EVOLVING CONTROL SYSTEMS FOR COMPLEX TASKS 128

6.6 Summary and Discussion

In this chapter, we have analysed, from the points of view of evolutionary computation

and robot control, some difficulties and relevant problems in applying evolutionary

algorithms to evolve robot control systems for complex tasks. We have also discussed

different ways, mostly involving the development of more advanced evolutionary tech¬

niques and the construction of more achievable pathways, to achieve complex tasks by

evolutionary approaches. Because we are particularly interested in investigating meth¬

ods to reduce the load of robot programmers and in evolving behaviour-based control

architectures for complex tasks, and because the approach involving task decomposi¬

tion seems to be the most direct way to achieve these at present, we therefore chose

to focus on using this approach to evolve behaviour arbitrators to coordinate lower-
level controllers in achieving complex tasks. To verify our approach, we have evolved
arbitrators to manage the lower-level controllers involved in a moderately complex

box-pushing task as an example. Successful results have been obtained.

By top-down task decomposition and bottom-up controller evolution, our approach
not only makes the fitness functions easy to define, but also makes the tasks easy to

achieve. In fact, the results have shown that evolving an arbitrator is as straightforward
and simple as evolving a primitive: a relatively small population size was used and the
desired results were quickly obtained. These points indicate that our approach has the

potential to be scaled up to evolve control systems for complex tasks.

Chapter 7

Co-evolution of Robot Brains
and Bodies

The above chapters have explored the application of the evolutionary computation

approach to develop robot control systems, in monolithic and hierarchical ways. In

practice, however, not only the controller but also the robot body itself can affect the

behaviour of a robot. For a given command of rotation, for instance, a robot with a

relatively small wheel base turns more than one with a large base. Hence, the robot

body itself should, ideally, also adapt to the task that we want the evolved robot to

do. In this chapter, a hybrid GP/GA approach is presented to evolve complete robot

systems — including controllers and robot bodies — to achieve fitness-specified tasks.

In order to assess the performance of the developed approach, it is used to evolve

simulated agents, with their own controllers and bodies, to do obstacle avoidance in

the simulated environment. Experimental results show the promise of this co-evolution

approach. In addition, the importance of co-evolving controllers and robot bodies

is emphasised, and the relationships between different body parameters will also be

explored and discussed in this chapter.

7.1 Introduction

In nature, it is reasonably clear that the structure and abilities of a creature's body
are closely related to the kinds of behaviours it can produce. For instance, the hand
of a man is formed for grasping, that of a mole for digging. And of course these

129

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 130

patterns need to be operated by certain skillful strategies, in order to generate the

special behaviours which are beneficial for the creature. In general, any modification
of a creature must be profitable in some way to the modified form, and it is often

affected by changes to other correlated parts of the organisation - be they changes to

physical parts or the strategies operating the parts. That is, the control system and

the morphology co-evolve together over the generations.

Typically, however, in evolutionary robotics research, the robot is always assumed to

have a fixed body (unchangeable physical structure) and the evolutionary algorithm
is applied to evolve control systems on this fixed body to achieve the tasks specified.

Although some researchers occasionally mention co-evolving the morphology of the

robot as well as the controller, their work is limited to co-evolving the placements or

acceptance angles of sensors (e.g., [Harvey et al. 94, Reynolds 94b]).

The main difference between this chapter and other work (including our previous

chapters) is that, this chapter considers co-evolving the structure of a mobile robot,
which has not yet been taken into account in the literature as far as we can discern

(with one exception - Karl Sims's work, described in next section). In most of the

previous work, the authors change just their controllers if the performance of a ro¬

bot is not satisfactory; but our approach in improving the performance of a robot is
to change not only the control system but also the robot body itself: they are co-

evolved [Lee et al. 96, Lund et al. 97]. Due to the considerations of practicality and
computational cost, our way in co-evolving morphologies is to extract the determining

structural parameters of a robot body, and then to apply the evolutionary algorithm
to decide these values, before constructing the physical body of a robot in reality.
In investigating the co-evolution of robot controllers and bodies, experiments include

synthesising the complete robot system to achieve a task, verifying that both control

system and physical structure have co-adapted to the specified task, and exploring the

relationships between different parts of a robot body.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES

7.2 Related Work in Co-evolving Morphology

131

As mentioned, there is little work reported in the literature on applying evolution¬

ary algorithms to co-evolve morphologies with control systems. Moreover, the term

"morphology" in most of the existing work involves sensors only, but not the physical

characteristics, such as the wheel base or the actuator time constant, of a robot. The

only exception is the work developed by Karl Sims [Sims 94b, Sims 94a], in which the

complete morphology of a 3D creature is co-evolved with the control system. This
section gives a brief review of the related work.

7.2.1 Co-evolving Sensors

In the Evolutionary Robotics literature, the most typical study in co-evolving morpho¬

logy is to co-evolve sensors with the controller. In Sussex's work (i.e., [Cliff et al. 92,
Cliff et al. 93, Harvey et al. 94]), the robot is assumed to have a round body and to

be equipped with two adjustable photoreceptors. The acceptance angles of the sensors

and their positions relative to the axis of the robot's heading are coded as a bit string

with fixed length, then the GA acts on this bit string as well as the one coding the

controller. Thus both controller and the visual morphology are co-evolved. In their

work, the number of sensors is pre-defined, so only the angles and positions of the
defined sensors are evolvable.

The other work related to sensor evolution in robotics is [Balakrishnan & Honavar 96].
In this work, both the placement and the range of the sensor are co-evolved with

the controller. However, this work is oversimplified. The simulated robot occupies a

square in a grid world in which the motion of the robot and the response of sensors are

measured in terms of numbers of grid squares. In the simulation, the robot has eight

sensors, each with two associated attributes: one indicates the direction (from the eight
directions surrounding the robot in the grid world) which the sensor is pointing; and
the other indicates the range over which the sensor can detect obstacles (in terms of

grid squares). For instance, a robot could have a sensor looking to the north and detect
obstacles within three grid squares. Both kinds of attribute are coded as parts of the
bit string with the controller and co-evolved by a traditional GA system. As described

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 132

above, this work is over-simplified in simulating sensors and actuators; it thus cannot

be transferred to a real robot.

Another related work of co-evolving sensor morphology is reported in a series of papers

by Reynolds [Reynolds 93, Reynolds 94b, Reynolds 94a]. The author uses Genetic

Programming techniques to determine the steering direction of a turtle vehicle from
sensor information. Basically, there is a special non-terminal defined in his GP work

serving as the sensor; whenever this non-terminal is called, it returns distal information

along a specific direction indicated by the argument of the sensor. In his earlier work

[Reynolds 93], the argument can be any expression satisfying the defined syntax but
he soon found that the argument must be constrained to a numerical value to make his

GP system work [Reynolds 94b, Reynolds 94a]. This sensor representation is similar
to ours; however there is no particular genetic operation acting on the sensor in all his
work. And most importantly, in his work, the sensor information is used to calculate a

steer angle by means of symbolic regression (i.e., a technique that discovers a symbolic

equation to describe a set of data). Arithmetic operators, such as +, —, *, % are

used as symbols in his work which makes his evolved results unreliable and difficult to

understand.

7.2.2 Evolving Complete Agents

The work reviewed above only involves co-evolving sensors with control systems, and
no other physical structure is included. This section introduces work in evolving a

complete agent.

The most famous work on this research topic is the system developed by Karl Sims

[Sims 94b, Sims 94a]. It is inspired by Lindenmayer's L-system [Lindenmayer 68] which
was used to describe the development of plants. In Sims's work, a creature is actually

composed of 3D rigid-parts and acts in a virtual poly-world. Sims added some neural

components which perform particular functions, to the nodes which specify the body
of an agent. By designing a graph-based grammar to grow the nodes, he can then co-

evolve the control system and the physical body. However, his work is more suitable for
animation in computer graphics rather than for the design of a physical robot system
since the resulting morphologies of 3D rigid parts are probably too difficult to construct

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 133

in practice.

Apart from this, Dellaert and Beer have tried to evolve a complete agent - including
brain and body [Dellaert & Beer 94, Dellaert & Beer 96]. They developed a biological-

inspired developmental model which divides a single cell into multiple cells with dif¬
ferent types to eventually produce a complete organism. Unlike Sims's work, their
cells specify the wiring of the control architecture and update rules. Thus, when the

morphology of the agent has settled and cell divisions no longer occur, the control

system develops on top of the arrangement of cells, according to the rules specified by
the types of cells. Their model is relatively complicated and computationally expens¬

ive. Also, the morphology in their work is actually not the physical structure but the

arrangement of cell types, so evolution is mainly exploring the relative placement of

sensors, actuators, and the control system.

7.3 Simulation

In Chapter 5, we described the reasons why roboticists warn of the danger of using

simulations to develop robots. But, as indicated, the simulation may be inevitable

in developing methodologies of learning or evolution because of their heavy time con¬

sumption. The research work presented in this chapter particularly needs the use of
simulation— this work involves the evolution ofmorphology and it is difficult to expect

the physical body of a robot to vary through on-line evolution without human inter¬
vention. A more reasonable way is to co-evolve the robot body with the corresponding

brain (i.e., the control system) in more realistic simulations, and then construct a robot
system according to the evolved result.

The simulator used in this chapter is the one described in Chapter 4; it uses mathem¬
atical models to simulate sensors and motors. However, in this work, the structural

parameters of the robot are not pre-defined; they remain as variables and are de¬
termined by an evolutionary system. The relevant details will be described in a later
section.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 134

7.4 Evolving Complete Robot Systems

7.4.1 System Overview

Our genetic system is a hybrid of Genetic Programming and Genetic Algorithms. An
individual in this genetic system consists of a controller and a robot body, treated

as < brain, body >, in which a brain is a tree-like controller as described in previous

chapters, and a body is quantitatively specified by a string of real numbers. The GP

part of this system evolves the tree-like controller and the GA part evolves the floating

point string. The typical structure of an individual is shown in Figure 7.1.

Figure 7.1: The structure of an individual defined in this work: in the tree structure,
a node with an N/T is a non-terminal/terminal node; in the string representation, Pi
is a real number.

The main flow of our hybrid system is described in Algorithm main-flow, it is sim¬
ilar to those of evolutionary robotics systems without co-evolving body plans. After

an environment has been given and a goal formulated as a fitness function, an initial

population is created at random. But here, each individual has its own brain and

body. To evaluate an individual is to execute the brain on the corresponding robot

body for a period of time, in the given environment, and to measure the perform¬
ance. An individual's survival probability is determined by how well the controller

performs on the corresponding body, to fit the evaluation criterion (fitness function).
Like a conventional evolutionary system, after evaluating each individual, a certain

selection method is employed to choose parent individuals and then genetic operations

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 135

are applied on them to create child individuals. As in the previous experiments, the

tournament selection method is used here.

Genetic operations, such as reproduction, crossover, and mutation, are applied to

the current population to create new individuals. The reproduction operation simply

copies the selected parent individuals, without changing the controllers or the bodies,
into the next generation. The crossover or mutation operation is allowed to take place
on the brain(s) or the body(bodies) at random. Due to the special structure of an
individual here, however, the crossover is constrained to occur on both brains or both

bodies of the involved parents in order to maintain the correctness of the structures.

Because the representations of the brain part and the body part are different, this work

requires separate crossover and mutation operations for the tree expressions and the
linear strings. Related techniques of GP and GA are applied independently for the
brains and the bodies. The details are described in the following subsections.

Algorithm main-flow{nurmgens, pop_size)
create an initial population Pq',
evaluate(Po)-,
for {g = 1 to num_gens)

repeat
choose a genetic operation;
if (reproduction)
select a parent;
copy (parent);

else if (crossover)
choose brain or body;
if (brain)
select parents;
GP-crossover (parent 1, parent2);

else if (body)
select parents;
GA.crossover(parentl, parent2);

else if (mutation)
choose brain or body;
if (brain)
GP-mutation(parent);

else if (body)
GAjmutation{parent);

until (a new population Pg is created);
evaluate(Pg);

end;
end;

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 136

7.4.2 Evolving Brains with Sensors - The GP Part

Although sensors are physical parts of a robot body, they are closely associated with the

controller: the information received from them is directly connected to the controller.

Thus, they can be considered, functionally, as parts of the controller, and directly co-

evolved with it. This section explains how this is implemented; all other parts of a

robot body are left and discussed in the next section.

The Brain with Sensors

A "brain" here means a reactive controller which controls the associated body. The ge¬

netic representation of a reactive controller is the circuit tree used in previous chapters:

it includes a dummy root node, different kinds of logic components as internal nodes,
and sensors and thresholds as leaf nodes. As mentioned in Chapter 4, the robot is

assumed to be round and the sensors are positioned around the round body point¬

ing radially outwards; and each sensor symbol has an associated value to indicate the
direction it is pointing at, relative to the robot's heading anti-clockwise. However, in

all previous experiments, the position candidates for sensors were predefined, subject
to the fixed robot structure; while there is no pre-defined positions for sensors here

because we intend to co-evolve them with the controllers. That is, the value associated

with a sensor was previously restricted to be one of the pre-defined values; but it is now
allowed to be any value, which is determined genetically, between 0 and 1 inclusive in

this chapter. Figure 7.2 illustrates an example of the robot's brain.

PROG

f
NOT

f
AND

IR 0.95 IR 0.50 OR > >

> > IR 0.34 0.55 IR 0.50 IR 0.85

IR 050^0.89 0.76 IR 0.85

Figure 7.2: Diagram of a typical controller.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES

Genetic Operations

137

For the operation of reproduction, the genetic system simply copies individuals, without

changing the brains or bodies, into the next generation. The crossover and mutation

for the tree controllers are the same as the ones we have described in Chapter 4,

except that there is an extra operation, averaging, introduced here for averaging the

values associated with the sensor terminals - this is to provide a way to shift sensors

gradually. Thus, if the crossover points on parent controllers are both sensor terminals,

the operation of averaging or swapping could happen randomly.

When the crossover or mutation occurs to the brains of the individuals, their corres¬

ponding bodies are not changed. This means, a changed brain with an unchanged
robot body is put together to constitute a new individual in the next generation.

7.4.3 Evolving Robot Bodies - The GA Part

As indicated earlier, an agent is made up of a brain and a body; both can affect the
behaviour. The performance of an agent is measured by how well the task is achieved

by executing the brain on the corresponding body. In this section, we will describe
how to specify a robot body and to employ the genetic approach to evolve such a body.

The Robot Body

In order to evolve a robot body we need to analyse what constitutes a body and

extract the crucial elements, which affect the behaviour of a robot profoundly, from

the structure of a robot. Without losing generality, we use the robot described in
section 4.2.5 as an example to explain how to evolve robot bodies. As indicated in the
same section, the robot is composed of motors, wheels, and sensors; and its motion
can be modelled as formula (4.2) and (4.4), which are

u>i(t + Ah) — cui(t) + Ah x —
Ti

ri x u>i + rr x ay
v = -

r; x uji — rr x ay

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 138

where Wi is the actual angular speed of motor i (i = left or right); v and co are the

forward and turning speeds of the robot; and D, r, r, L are the motor command, motor

time constant, wheel radius, and wheel base, respectively. Prom the first formula, we
know that, after the motor command Di is determined by a robot brain (controller)
at each time step, it is used to estimate the actual angular speed for motor i, based

on the corresponding motor time constant r^; and the larger the time constant, the

longer the motor takes to reach the demanded value - the time constant determines

the acceleration of the motor and affects the response of the robot. Prom the second

formula, we can see that the forward speed of the robot is determined by the wheel

radius r^, once the angular speed of the motor is available; and the larger the radius,

the faster the robot moves - the wheel radius determines the maximum and minimum

forward speeds of the robot, for a certain motor command. Also, we can observe, from

the third formula, that the rotating (turning) speed of the robot is determined by both
the wheel radius r,; and wheel base L. In addition to the above, the size of a robot

(the diameter of the body, if we assume the robot is round) is important as well, and
it is task-oriented: a small size robot might be suitable for an obstacle avoidance task,

while a larger robot might be advantageous for pushing a box. In this work, to evolve
a robot body, in fact, means to decide these crucial structural parameters of a robot

genetically.

In our system, the structural parameters (except, as we have seen, the sensor place¬

ment) are arranged as a linear string, in which each position is a real number represent¬

ing the value of the corresponding parameter. In addition, due to hardware limitations
and performance considerations, each structural parameter has its own lower and up¬

per bounds; when we build a robot, the value of each structural parameter must be
between its bounds. Thus, a robot body can then be expressed as

PlP2 Pn

where

Min(Pi) < Pi < Max(Pi) ; 1 < i < n

For this linear string representation, a Genetic Algorithm is employed to determine
the value of each structural parameter Pj within its own range.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 139

Genetic Operations

Two-point crossover and one-point mutation operations are used to create new body

strings. The crossover operation here, like the standard one, involves two parents and
two crossover points. But its function is slightly different from the standard one: it

is defined to perform operations of swapping or averaging randomly, for each pair of

Pi between the two chosen crossover points. The intention for the use of averaging is to

change the structural parameters gradually (for fine tuning) [Janikow & Michalewicz 91,
Davis 91]. The mutation operation randomly picks a Pi for the selected parent and

substitutes it with a re-generated random number which satisfies its upper and lower

bounds, to generate a new string.

7.5 Experiments in Co-evolving Brains and Bodies

In this experiment, we intend to co-evolve robot controllers and bodies to achieve an

obstacle avoidance task (the one described in previous chapters) for the evaluation of
the developed approach. The experiments are arranged in three phases: in the first

phase, we concentrate on how to co-evolve the controller and body for an individual

to achieve the specific task; in the second phase, we investigate the importance of the

appropriate brain-body coupling; and in the third phase, we explore the relationships

between different body parameters. This section describes the experiments and results

of the first phase; the other two are examined and analysed in the following sections.

7.5.1 Interpretation of the Control Output

For simplicity, a tree controller was defined to have only three subtrees as in Chapter
4: the output of the first subtree was interpreted as the direction of revolution of both

motors; and the outputs of the second and the third subtrees determined the speeds
of the left and the right motor, respectively. The mapping between the output of a
controller and the motor command was listed in Table 4.1.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES

7.5.2 The Specification of a Robot Body

140

The structural parameters we hope to evolve in this work are motor time constant, wheel

base, wheel radius, and body size. As mentioned previously, each structural parameter
has its own limitations. In this experiment, the value of the motor time constant was

restricted to lie between 0.5 and 2.5 second; the lower bound and upper bound of the

wheel radius were 1.0 cm and 3.0 cm; the value of body size was limited to be in the

range 10 cm to 25 cm; and the wheel base was constrained to be no larger than the

body size. These values were chosen to approximate the device constraints of Lego
robots which provide the possibility of body reconstruction.

7.5.3 Experiments and Results

The fitness function was the same as in the previous obstacle avoidance task (see

Chapter 4 and Chapter 5). At each time step, the controller was executed once and

the output was used to drive its body to move; and then the corresponding fitness
was calculated. As in the experiments described in previous chapters, the accumulated

fitness of an individual during the given time steps represented its performance.

The control parameters for a single run were: two populations of 50 individuals; 25

pre-defined fitness cases and 15 from them were sampled randomly at each generation;

500 time steps for a single evaluation of an individual; and 40 generations for a run.

In addition, the testing procedure for an evolved robot was the same as in the earlier

experiments. As usual, ten runs were conducted. With the above experimental setup

and the constraints of structural parameters indicated in section 7.5.2, eight of the

ten runs evolved successful robot systems. Figure 7.3 illustrates an example of how

the evolutionary system converged, when co-evolving robot controllers and body plans.
The robot system evolved from this example is indicated below and its typical beha¬

viours are shown in Figure 7.4 (tests with different starting positions) and Figure 7.5

(tests with changed environments).

(PROG

(> IR0.97IR0.52)
(OR (OR (AND (> IR0.971R0.19) (> IR0.97 IR0.21)) (> IR0.971R0.60))

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 141

140

120

| 80

60

40

20
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 7.3: An example of the behaviour of the evolutionary system, when it was used
to co-evolve robot brains and bodies to achieve an obstacle avoidance task.

(> IR0.21 IR0.23))
(> IR0.83 IR0.71))

time constant: 0.68

wheel base: 10.53

wheel radius: 1.56

body size: 10.53

7.5.4 Analysis of the Evolved Robot

The trajectories presented in Figure 7.4 and Figure 7.5 show that the evolved robot
has been able to achieve the behaviour specification described by the fitness function.

In addition, the extensive tests also prove the reliability and robustness of the evolved

robot. We can furthermore analyse the evolved robot to understand how it achieves

this task.

From the evolved controller and the sensor arrangement, we can see that if there is no

obstacle appearing around the robot, i.e., no response from any sensor, the outputs of
the three subtrees are all 0 and the robot will move straight forward. If the robot senses

an obstacle, how it avoids it depends on whether the front sensor IR0.97 is the first
one to detect it. If it is, both motors will revolve backward because the output of the
first subtree is 1. In this situation, the second output will also be 1 since the response

of the front sensor IR0.97 will be larger than the other backside sensor IR0.60 which

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 142

Figure 7.4: Two examples of emerged behaviours, in which the robot started from
different situations.

Figure 7.5: Two examples of testing the evolved agent in changed environments.

is close to the rear sensor IR0.52. This will cause the left motor to revolve at high

speed. And, because the front sensor IR0.97 is the first one that senses the obstacle,

both sensors IR0.83 and IR0.71 will not have responses at that time. This will cause

a zero output from the third subtree, which means the right motor will revolve at low

speed. Thus, the robot will move backward to the right hand side. When the front
sensor does not sense the obstacle any more, which causes both the first and second

outputs to turn to 0, the right hand side sensor TR0.83 will be the sensor closest to
the obstacle, and this will cause the third output to turn to 1. This means the left
and right motors will revolve forward at low and high speeds respectively, and the

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 143

robot will move forward with a left turn to leave the obstacle. Figure 7.6.(a) shows an

example of the corresponding robot behaviour.

On the other hand, if the front sensor IR0.97 is not the first one sensing the obstacle,
the first output will be 0 and both motors will revolve forward. The revolving speeds

depend on which of the front sensors (IR0.83 or IR0.21l) senses the obstacle first. If it is
IR0.83, the third output will be 1 and the second output will be 0. This means the right
and left motors will revolve at high and low speeds, respectively. This will make the
robot move forward and turn to the left to leave the obstacle. Figure 7.6(b) illustrates
this kind of situation and the corresponding robot behaviour. On the contrary, if the
sensor IR0.21 senses the obstacle first, the robot will move forward and turn to the

right to leave the obstacle. This is shown in Figure 7.6(c).

(a) (b) (c)

Figure 7.6: Three different strategies are used by the evolved robot to avoid obstacles.

The above descriptions are the general strategies used by the evolved robot to achieve
the specific task. To sum up, the sensors at three kinds of positions have been co-

evolved with the controller to generate three ways to achieve the task: a front obstacle
will cause the robot to move backward and turn to the right first, then move forward

and turn to left to avoid obstacles; a left front obstacle will cause the robot to move

forward with right turning; and a right front obstacle will cause the robot to move

forward with left turning to avoid the obstacle. In general, the last two ways are similar

to the strategy of Braitenberg's "fear" vehicle [Braitenberg 86]. However, his vehicle
will get stuck in front of a symmetric obstacle (shown in [Floreano & Mondada 94]),
which will not happen on our evolved vehicle because of the extra avoiding strategy

of moving backward and turning to the right. In addition, we notice that the evolved
1 Although IR0.23 is one of the front sensors, it will not be the sensor which senses the obstacle first
since it is slightly behind the other sensor IR0.21 when the robot is moving forward.

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 144

robot has a small size and fast motor response (small motor time constant) which are

helpful in performing the task of avoidance. The issue of the body parameters will be

thoroughly explored in the later sections.

7.6 The Importance ofAppropriate Brain-Body Coupling

We have shown that the controller and the robot body can be co-evolved to achieve

the fitness-specified task. In order to investigate how the evolved controller relies on

the co-evolved body, we tested the evolved controller on different robot bodies which

were designed according to various combinations of structural parameters chosen from

each of their pre-specified ranges.

For each robot body, we tested it with the evolved controller 100 times. Each time it

started from a new position and was allowed to move 10000 time steps, like the testing

procedure described in the above section. Table 7.1 shows the results. Each entry in

Table 7.1 represents the number of successes (the cases when the robot did not bump

any wall during the 10000 time steps) from the 100 test cases for a certain robot body.
From Table 7.1, we find that the combination where the evolved controller was executed

on the co-evolved robot body (marked with an asterisk) has the highest success rate

(actually it is 100%, as reported in the previous section). The inappropriate brain-body

couplings cannot achieve the task perfectly. This demonstrates that both the brain and

body of a robot have participated in the evolutionary process and have adapted to the

specific task.

7.6.1 Further Investigation

Some results in Table 7.1 attract our attention. For the case a (indicated by the mark
a at the corresponding number), for instance, the number of successes increases dra¬

matically, compared to case b. We can explore the reasons by observing the behaviours

emerging from the two pairs of brains and bodies.

In case b, the robot always bumped the wall because of the inappropriate enlargement
of the body size and wheel base. But if the wheel base was enlarged more, the robot
became more difficult to rotate, especially with the relatively small wheels which slowed

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 145

body- wheel- wheel radius wheel radius
size base 1.56 2.34 3.12 1.56 2.34 3.12

1.05 83 74 75 86 79 64
10.53 5.26 96 83 70 84 74 71

10.53 100* 99 97 96 86 81

1.05 64 61 52 71 59 42
15.79 5.26 76 56 74 52 45 27

10.53 89 95 92 95 64 51
15.79 90 88 92 94 92 84
1.05 41 33 26 52 46 34
5.26 51 24 lld 31 13 6

21.05 10.53 30 53 65c 91 34 17

15.79 246 28 27e 67 75 68

21.05 OO -a© 19 30 62 59 41

Table 7.1: The results of testing the evolved controller on different robot bodies. The
motor time constants of the left table and right table are 0.68 and 1.35, respectively,
(the number with mark * is the evolved solution)

down the motion of the robot. This caused the robot to get stuck easily — it oscillated
forward and backward with a little turning at one particular position, so it was safe
in most of the test cases. The typical behaviours of case a and case b are shown in

Figure 7.7.1 and Figure 7.7.2.

The other example we investigated is case c, whose performance is much better than
cases d and e. After examining their behaviours carefully, we found that there were

actually two types of failure caused by certain kinds of robots which bumped the wall

easily. The first was a robot with a large body, small wheel base, and large wheels.
A large body inevitably increased the bumping probability; the small wheel base with

large wheels made the behaviour of the robot unstable: it was easy to turn at high

speed. Consequently, it often drove the robot to bump the wall suddenly. Figure 7.7.3
shows this situation.

The second was a robot with a large body, wide wheel base, and large wheels. As in
the first situation, a large body increased the probability of the robot bumping into
the wall, while the wide wheel base with large wheels, drove the robot forward faster
with a small turning rate. This resulted in the robot bumping the wall in most of the
test cases although it could detect the wall efficiently and tried to move away from the

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 146

wall. Figure 7.7.4 shows this situation.

According to our observations, if the wheel base of the robot became larger, failure of
the first kind decreased, but failure of the second kind increased. In case d, most of the

failures were because of the first situation but in case e most of the failures belonged
to the second situation. Considering both situations which cause bumping behaviour

together, we found case c happened to be the best case with a small number of failures

for both situations. So its performance is better than case d and case e.

Fig 7.7.1 Fig 7.7.2

bumped

Fig 7.7.4

-150 -100 -50 0 50 100 150

150

100

50

0

-50

-100

-150

Fig 7.7.3

-150 -100 -50 0 50 100 150

Figure 7.7: Some faults caused by the inappropriate brain-body couplings (see text for
explanation)

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 147

7.7 Exploring the Relationships between Different Body
Parameters

In the above experiments, it has been shown that the controller and the body of a

robot can be co-evolved by an artificial evolution system. And it has been proven

that not only the brain but also the body was involved in the evolutionary process

and adapted to the given task, by testing the evolved brain on different bodies and

analysing the faults that happened with inappropriate brain-body couplings. In this

section, a series of experiments is arranged to explore whether there exist relationships

between different structural parameters which constitute a robot body.

Before conducting the experiments, we have to decide the method of testing and to

define a criterion for a successful solution, as we did in the earlier experiments. Due to

the large amount of independent runs and tests needed for investigating the relation¬

ships between different parameters, the procedure for a single run is simplified: the

environment is simpler and the number of fitness cases is smaller than that of the pre¬

vious experiments. For each run, the evolved solution is tested randomly 20 times and

each single test lasts 5000 time steps (A random test here means that a test could vary
the random seed for the noise, the starting position and heading, or the arrangement

of the obstacles.). If the robot, evolved from a certain run, does not bump any obstacle
in at least 19 tests, i.e., with a success rate of 95%, this corresponding run is regarded

as successful and the evolved solution is used as sample data in the later analysis.

7.7.1 Wheel Base and Body Size

In section 7.6, we have observed that if a robot has relatively large body size and wheel

base, it gets stuck easily because the bigger body and wheel base make it difficult to
turn away from the obstacle. On the other hand, if the robot has large size and small
wheel base, it tends to bump the obstacle because this condition makes it unstable.

Therefore, we will first investigate what kind of combination of body size and wheel
base is most beneficial to a robot system for this task.

To do so, we conducted 15 independent runs. For each run, the motor time constant

and wheel radius of all robot populations were fixed, and only the wheel base, body

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 148

size and controller were allowed to be co-evolved. The fixed motor time constant and

wheel radius meant that all robots had the same inherent limitations in motor response

and speed, so that we could find out what kind of combination of wheel base and body
size would be the most suitable solution for the robot to turn away from obstacles and

survive in the specific environment.

For all 15 runs, the motor time constant, the wheel radius and the sensor range were

fixed to 0.8 sec, 2.0 cm and 30 cm, respectively. The body size was constrained to be

between 10 cm and 30 cm, and the wheel base was restricted to be no larger than the

body size.

Qualitative Observation

Figure 7.8 shows the distribution of the body sizes and wheel bases of the evolved

robots from the successful runs. From Figure 7.8, we can see that the robots with

relatively small body sizes are the fittest to do the task of obstacle avoidance. The

other observation we can make from Figure 7.8 is that the wheel base tends to be

equal to the body size. In other words, there is an almost linear relation between

these two parameters. From the point of view of robot behaviour, these results suggest

that a small size robot is relatively safe in performing obstacle avoidance, and the

body-sized wheel base results in a relatively small turning angle which keeps the robot

moving stably. From the point of view of evolution, these results also satisfy the
selective pressures formulated in the fitness function: maximising the factor of safety
and minimising the factor of turning.

We can also observe how the wheel base and body size varied during the process of

co-evolution to understand the tendency of these two variables to converge. Figure 7.9

provides a typical example to demonstrate the variation of the wheel base, body size
and the corresponding fitness of the best individuals, during the 50 generations. From

Figure 7.9(a) we can see that the two variables tended to converge to approximately the
same value which is almost the lower bound of the body size (i.e., 10 cm). By contrast¬

ing the converging behaviours of the two variables to the fitness curve (Figure 7.9(a)
and (b)), we can find that in the first 10 generations, both wheel base and body size
converged rapidly to the relatively appropriate value, and this resulted in a dramatic

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 149

30

28

26

24

22

18

16

14

12

10
0 5 10 15 20 25 30

wheel base

Figure 7.8: The distribution of the body size and wheel base of the evolved solutions
from the successful runs.

improvement of the fitness. From generation 10 to generation 20 approximately, there
was no apparent variation in the values of wheel base and body size so the fitness of
best individual remained more or less the same. After 20 generations, the body size

converged slightly toward the value of the wheel base; and this caused the slight but
visible change in fitness curve.

Quantitative Analysis

We have observed a positive correlation between the wheel base and body size from

Figure 7.8. To be more certain, we can also analyse, quantitatively, their correlation

by performing the statistical computation to derive the correlation coefficient between
them. For two variables x and y, Pearson's correlation coefficient rx<y can be obtained

by:
_ E (xj-x){yj-y)

rx,v VE(^-s)2E(yi-y)2
According to this, we can calculate the correlation coefficient f'hase,size as 0.8694 (based
on 14 sample data). This clearly quantifies the relation between the wheel base and

body size. Furthermore, using Fisher's Z transform [Cohen 95], we can show that the
chance of obtaining this value from uncorrelated data (i.e., rx>y = 0) is less than 0.05.

* *
* *

K

*
*

* *
**

: *

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 150

30

25

20

15

10

0
0 5 10 15 20 25 30 35 40 45

generation

(b)
310

300

290

280

270

260

250

240

230

220
0 5 10 15 20 25 30 35 40 45

generation

Figure 7.9: (a) The body size and wheel base of the best individual at each generation;
(b) the corresponding fitness curve.

The Effect of the Sensor Range

The above sections have provided both qualitative and quantitative descriptions of

the relation between the wheel base and body size. However, as we can observe from

Figure 7.8, the scales of the wheel base and body size are distributed in the range

between 10 and 15 cm. Although it is reasonable that small size robots are safer
than bigger ones to achieve the task of obstacle avoidance, it raises a question: what
constrains the range of coverage of the evolved wheel base and body size?

In achieving the task of avoiding obstacles, a robot with a relatively large wheel base

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 151

and body size will have a relatively smaller turning rate and therefore need a relatively

longer buffer distance to turn away from obstacles, if the response of the motors and

the approaching speed are fixed. As we know, this buffer distance is determined by the

characteristics of a sensory equipment (i.e., the sensor range). Therefore, if the range of
the sensors increases, the survival probability of a large size robot should also increase.

To prove this, we repeated the experiments of co-evolving the wheel base, body size

and controller, but doubled the sensor range. Figure 7.10 shows the distribution of the

evolved robots. From Figure 7.10, we can see explicitly that the correlation between

the wheel base and body size remains approximately linear, but the range of coverage
of the evolved wheel base and body size has become wider — from 10 to 25 cm. This

shows that the coverage of the evolved body size and wheel base is constrained by the

sensor range.

30 -

28 -

26 -

24 -

22 -

CD
N
"c/>
>,20 -
"O
o
-O

18 -

14 -

12 -

10 -
15

wheel b£

Figure 7.10: The distribution of the evolved body size and wheel base after the sensor
range was doubled.

7.7.2 Motor Time Constant and Wheel Radius

From formula (4.4), we know that if the wheel base of a robot is fixed, the forward and

turning speeds of this robot are proportional to the wheel radius. Hence, it seems that
a robot with a large wheel radius has the advantages of moving forward faster, if no
obstacle is sensed, and of producing larger turning angles to avoid a detected obstacle.
On the other hand, formula (4.2) tells us that the motor time constant determines

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 152

the response of a robot. Therefore, if a robot does not have appropriate motor time

constants to control its motion well, the larger wheel radius may not be beneficial in

achieving the desired task.

The second series of experiments are therefore to explore whether there is a relationship
between the motor time constant and wheel radius. To do so, the robot populations
are constrained to have a fixed body size and wheel base. Consequently, all the robots

have the same probability of bumping into the wall and their turning speeds will be

proportional to the wheel radii as described above. In this way, we can then observe

what kind of relationship will emerge between the motor time constant and wheel

radius, if both of them are co-evolved with the controller.

Qualitative Observations and Quantitative Analysis

In this experiment, 15 runs were conducted in which the motor time constant and

the wheel radius were constrained to be between 0.5 and 5.0 sec and between 1.5

and 5.0 cm, respectively. Figure 7.11 shows the distribution of the evolved results.
Prom Figure 7.11, we find that all of the evolved motor time constants are very close
to the lower bound and the wheel radius tends to be relatively large. This suggests

that to achieve the specified obstacle avoidance task well, the robot needs motors that

can respond quickly to sufficiently control the speeds of moving forward and turning

while frequently accelerating and decelerating. Besides, the evolutionary system always

chooses a relatively large wheel radius for the robot since that gives the robot inherent

superiority in action.

We can also observe how the time constant and wheel radius converged during the evol¬

utionary process to understand the dependency between them. Figure 7.12 provides
a typical example in which Figure 7.12(a) shows the time constant and wheel radius
of the best individual during the evolution, and Figure 7.12(b) is the corresponding
fitness curve.

From Figure 7.12(a), we find that the time constant explicitly converged to the lower

limit, and the value of the wheel radius seemed to be determined by the time constant:

it increased only if the time constant decreased. In Figure 7.12(a), the time constant

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 153

4.5

4

3.5

| 2.5

2

1.5

1

°
1.5 2 2.5 3 3.5 4 4.5 5

wheel radius

Figure 7.11: The distribution of the co-evolved motor time constant and wheel radius.

clearly moved downwards in the first 10 generations and the wheel radius moved up¬

wards. The time constant remained the same between generation 10 to generation 20

so there was no obvious variation on the wheel radius. After that, the time constant

moved to an even lower value between generation 20 to generation 25. A few gen¬

erations later, the value of the wheel radius rose up again and then reached a stable

value since there was no subsequent significant changes in the time constant. Compar¬

ing Figure 7.12(b) to Figure 7.12(a), we find that the performance was continuously

improved whenever the time constant moved downwards and the wheel radius moved

upwards. This clearly illustrates the dependency between the time constant and wheel
radius during the evolution.

Again, we can perform statistical calculations to derive the correlation coefficient

rtime,radius between the motor time constant and wheel radius for the above evolved
results as -0.3144 (based on 13 sample data). For concreteness, we can do the Z test

to obtain Z score as 0.9942 (less than 1.65) which indicates that the correlation of the

sample data is not significantly different from rtime,radius = 0 (unrelated).

The Effect of Motor Time Constant

The above section has described the dependency between the motor time constant

and wheel radius. To concretely study the influence of the motor time constant, we

n
X*

*

*** *
X
X w

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 154

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5
0 5 10 15 20 25 30 35 40 45 50

generation

320

300

280

260

240

220

200
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 7.12: (a) The motor time constant and wheel radius of the best individual at
each generation; (b) the corresponding fitness curve.

fixed it to higher values, which implies slowing down the motor response, and then co-

evolved the wheel radius with the controller. Two sets of runs, in which the motor time

constants were fixed to 2.5 and 4.0 seconds respectively, were conducted. Again, the
evolved solution of each run was tested as previous experiments and only those results

from successful runs are presented in Figure 7.13. The previous experimental results

of co-evolving both time constants and wheel radius are also presented for comparison.
In addition, the rate of successful runs for three different criteria are illustrated in

Figure 7.14. The results show that for those robots with fixed slow motor responses

(larger time constants), small wheel radii are better choices, in order to control the

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 155

motion well to achieve the task. Under such circumstances, the achievement of the

specific task for the robot will rely heavily on the control systems. In comparison to

the case of co-evolving time constant and wheel radius, we find that the robots with

fixed slow motor response cannot achieve the task easily: the rate of successful runs

decreases apparently (Figure 7.14).

5

4.5

4

3.5

Si 3
1
o

E 2.5

2

1.5

1

0.5
1.5 2 2.5 3 3.5 4 4.5 5

wheel radius

Figure 7.13: The distribution of the evolved body parameters in which criterion 1
co-evolved both the time constant and wheel radius with controllers; criterion 2 used
fixed time constant (2.5 sec) and only wheel radius was co-evolved; criterion 3 used
fixed time constant (4.0 sec) and only wheel radius was co-evolved.

7.8 Summary and Discussion

In this chapter, a hybrid approach of Genetic Programming and Genetic Algorithms has
been presented to co-evolve reactive controllers and their corresponding robot bodies
to achieve a fitness-specified task. In our approach, the crucial structural parameters

of a physical robot are extracted and arranged as a linear string of real numbers to

represent a robot body. The GP part of the system is used to evolve the tree-structure

of a controller and the GA part of the system is applied to determine the string of
structural parameters. Experimental results have shown the promise of the developed

approach.

In addition, we have also analysed the importance of appropriate brain-body coupling
in designing a robot system. The evolved controllers can achieve the task perfectly

- OOQD OC

+: criterion 2

o: criterion 3

H—Htt-

*

* * ; ^ ** *
*
* *

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 156

100%

o

<D

criterion 1 criterion 2 criterion 3

Figure 7.14: The comparison of three different criteria described in Figure 7.13.

only when performing on the co-evolved robot bodies. This means, in the evolutionary

process, the robot bodies themselves also play important roles, because controllers

and bodies have both adapted to the environment in order to achieve the task. For

simple tasks, a human designer may be able to design a robot body according to his

prediction of the difficulty of the task, and then design (or evolve) the controller. But
for more complicated tasks, co-evolving controllers and morphologies for robot systems

may provide a potential alternative.

Finally, we have explored the relationships between different body parameters and

investigated what scales of different parameters will be most beneficial to the task of
obstacle avoidance. The results have suggested that a small robot is relatively safe; the
robot will move stably if its wheel base is about the same as its body size; and a robot

with relatively large wheel radius has the inherent superiority of being able to move

faster, but it needs motors that can respond fast to control its motion well. We have

also analysed the details of the evolutionary runs to better understand the tendency
of different parameters to converge.

Some aspects of future work are worth mentioning. Following our work done in simula¬

tion, it would be interesting to build a real robot according to the evolved results, and
download the evolved controller to it to evaluate the performance. The information

obtained from observing the performance difference between the simulated and real

CHAPTER 7. CO-EVOLUTION OF ROBOT BRAINS AND BODIES 157

worlds can be used to improve the simulator and to make the approach of co-evolving

controllers and robot bodies more practical.

Another issue that can be studied is how to combine the co-evolution approach presen¬

ted in this chapter with the approach of evolving hierarchical task-achieving controllers

described in Chapter 6. As we can see, in the hierarchical approach, all the behaviour

primitives and the arbitrators are evolved separately, and only the lowest-level primit¬

ives are directly relevant to the hardware structure of the robot (only they are directly
connected to actuators). Therefore, one possible way to co-evolve a coherent robot

body for a hierarchical control architecture, may be to co-evolve all the behaviour

primitives involved with a common robot body, after the task decomposition (in such
a case, an individual will include a few controller trees and a string of body para¬

meters). After that, one may then evolve arbitrators, as described in Chapter 6, to
coordinate different lower-level sub-controllers on the fixed but co-evolved robot body

plan to achieve higher-level goals.

Chapter 8

Summary and Conclusions

8.1 Summary and Conclusions

In the first chapter, we have briefly described the main reason why the behaviour-based

approach has become a serious alternative to the traditional approach in designing
robots. As pointed out by its inventor, however, there are still challenges at different

levels, if this approach is to be extended to design complete autonomous robots for more

complicated tasks. These mainly include how to code a robust and reliable behaviour

controller for a single robot (the micro level); how to deal with the action selection

problem to negotiate inconsistencies in actions between different behaviour controllers

(the macro level); and how to coordinate multiple robots to achieve the desired group

behaviours (the multitude level). None of these are trivial, nor are they easy to achieve.
In this thesis, we have examined the use of an evolution-based approach to design robots
- especially focusing on applying evolutionary algorithms to synthesise control systems
for a single robot (i.e., the first two challenges). The explorations range from evolving

simple behaviours for real robots, to complex behaviours (also for real robots), and

finally to complete robot systems - including controllers and body plans.

8.1.1 The Construction of an Evolutionary Robotics Framework

In order to evolve controllers for real robots, we have developed an evolutionary robot¬

ics framework. It includes two components: a task independent Genetic Programming

sub-system which operates as a mechanism for evolution, and a task dependent evalu-

158

CHAPTER 8. SUMMARY AND CONCLUSIONS 159

ation sub-system in which the desired robot behaviour is quantified as a fitness function

and each controller is executed for a period of time to determine its corresponding per¬

formance (fitness). In general, there are two major concerns in such a system: the time
consumed to obtain a solution, and the performance of the evolved solution. In other

words, researchers in this field have been trying to evolve high performance controllers

and to minimise the time consumed. We will draw conclusions along these lines.

The Time Issue

Our analysis has shown that experiments in evolving robots are extremely time-consuming
for the following reasons:

1. The evolutionary system must be run for a certain number of generations;

2. Each population member must be evaluated;

3. Each controller is evaluated for multiple trials to prevent overfitting results;

4. Each single trial lasts a certain number of time steps;

5. At each time step, the controller is executed once;

6. At each time step, the actuators are driven to move.

Apparently, the first, the second and the fifth items rely on the evolutionary system

used (system-dependent) and they are particularly related to the genetic representation
of the controller - a well-designed representation will make it easy for the system to

converge to a good solution, with a relatively small population size; the number of trials

(the third item) for evaluation is system-independent and may be reduced by certain

ways (described below); the number of time steps (the fourth item) is task-oriented
and not related to the system used; and the last item is also system-independent but it
can be reduced dramatically by the use of simulation. We will firstly examine our work
from the point of view of the system-dependent items and then the system-independent
ones.

In this thesis, we have designed a special representation for reactive behaviour con¬

trollers, by carefully analysing their characteristics. With regard to the computational

CHAPTER 8. SUMMARY AND CONCLUSIONS 160

cost, our representation has some advantages. Firstly, it is succinct and only involves

logic operators that are very simple to execute. This means that our evolutionary

system is computationally cheap, compared to others, owing to the fact that each con¬

troller must be executed once at each time step as mentioned above. The execution of

our logic tree is especially quick in cases where the first argument of an AND is false or
the first argument of an OR is true, as there is no need to execute the other argument.

In addition, because our controllers are composed of basic logic components, they can

be easily compiled to custom hardware such as FPGAs for further improvements in

speed. Secondly, our representation has been proven to capture the characteristics of

the reactive controllers well; this makes our evolutionary system able to evolve the

controllers for the desired behaviours efficiently within a relatively small number of

generations, using a relatively small population size. All these points mean that less

computation is needed in our system, compared to others. Thirdly, we do not distin¬

guish genotypes from phenotypes in our system, so that there is no extra computation
cost in converting a chromosome to its corresponding controller before a controller is
executed. This also saves a certain amount of time.

In order to reduce the time consumed in evaluating each controller for multiple trials

(which is system-independent) without losing the performance of the evolved results,
we have used a random sampling technique in our work to evolve the controller from a

large number of trials, while evaluating each controller only a relatively small number
of times. Different sets of experiments for evolving different robot behaviours have

been done, and the results have shown that such an approach can certainly decrease
the evaluation time while retaining the performance of the evolved controllers.

The other system-independent way to reduce the time consumed in running an evolu¬

tionary robotics experiment is to use simulation. As indicated in Chapter 4, the actual
time for a simulated/real robot to perform a single action determines the difference
in evolution time between the on-line and off-line approaches. In this thesis, we have

chosen to use the approach of evolving controllers in simulation and then to transfer
the evolved results to a real robot for performance verification. Our framework has

been used to evolve controllers for real robots to achieve a variety of simple tasks

successfully, such as obstacle avoidance, safe-exploration, and box-pushing.

CHAPTER 8. SUMMARY AND CONCLUSIONS

The Performance Issue

161

Two kinds of performance have been emphasised in this thesis; one is about the ro¬

bustness and reliability of the evolved controllers; the other is the reliability of our

evolutionary system. The former concerns whether the evolved controllers can still

work well when subject to different environmental situations and random noise; and

the latter concerns whether high performance controllers can still be evolved using dif¬
ferent random seeds. In our experiments, we have shown that by introducing suitable

random noise on sensors and motors, and evolving controllers from multiple trials, con¬
trollers with very high performance (gauged by a thorough testing procedure) can be
obtained. In addition, by carefully constructing simulators to capture the character¬
istics of the real world, the controllers evolved from simulation have been transferred

to a real robot without losing performance. Additionally, for each task, at least ten

runs have been conducted to prove the reliability of our evolutionary framework.

8.1.2 Achieving Complex Tasks

After verifying that our system can evolve high performance controllers for real robots
with relatively low computational effort, we discussed different ways to evolve control

systems for complex tasks. They can be categorised into two different strategies: the

first has been focussed on developing advanced evolutionary techniques to enhance the

capability of a genetic system; and the second has stressed the construction of a more

achievable pathway in an incremental manner to evolve controllers. In this thesis, we
have proposed a methodology, which can be regarded as the second kind, to scale up

our system to evolve controllers for more complicated tasks.

Because we aim to reduce the load of robot programmers and are particularly interested
in evolving behaviour-based control systems, our approach involves task decomposition

(in which a behaviour-based architecture is adopted and a target task is decomposed to
fit that architecture), and the evolution of separate behaviour primitives and arbitrators
for coordination. This allows robot control systems for more complex skills to be

evolved in an incremental way. As indicated in Chapter 6, by evolving arbitrators to

coordinate lower-level controllers for complex tasks, the job of defining fitness functions

CHAPTER 8. SUMMARY AND CONCLUSIONS 162

becomes more straightforward and simple, and the tasks become easier to achieve.

Moreover, the resulting control systems can be explicitly distributed, understandable
to the system designer, easy to maintain, and perform like a behaviour-based system.

We have employed this approach to evolve control systems to achieve a moderately

complex task, in which a robot has to explore a given environment to find a box

without bumping the walls, and then push the box to a goal position indicated by a

light source. Experimental results have shown that this approach can evolve control

systems for the target task well.

8.1.3 Evolving Complete Systems

Based on the observation that the physical body of a robot can also affect its behaviour,

we have extended our Genetic Programming framework to include a Genetic Algorithm

sub-system for the co-evolution of robot controllers and body plans, in the last set of

experiments. In our work, a robot body means the structural parameters of a physical

robot, such as wheel base and wheel radius; and it is encoded as a linear string of

real numbers. Therefore, an individual in the hybrid system consists of a controller

and a body; and to evaluate the performance of such an individual is to execute the
controller on the corresponding body. The GP part of the hybrid system is used to

evolve controllers; and the GA part, the robot body.

In addition to evolving complete robot systems to achieve the specified task, we have
conducted a series of experiments to verify that the controllers and bodies have both

adapted to the given environment to achieve the task. Furthermore, we have also

explored the relationships between different body parameters for the specified task.

Experimental results have shown the promise of our co-evolution approach. As pointed
out in the same chapter (Chapter 7), for more complicated tasks, co-evolving control¬
lers and morphologies for robot systems may provide a potential alternative to other

approaches, since both controllers and morphologies can offer their own opportunities
for adaptive advantage.

CHAPTER 8. SUMMARY AND CONCLUSIONS

8.2 Future Research

163

This thesis has provided some concrete evidence to verify that evolutionary compu¬

tation approaches can be used to evolve simple behaviour controllers for real robots,

and has shown, in detail, the possibility of extending this kind of approach to evolve

control systems for more complex tasks and to evolve complete robot systems. Based

on the work presented, some directions for further research can be suggested.

The first concerns simulation. As indicated in this thesis, the simulator plays a very im¬

portant role in conducting research in evolutionary robotics. It is system-independent

and can reduce the time consumed for the experiments dramatically. Indeed, a simu¬

lator must be easy to build and computationally fast, as pointed out by Mataric and

Cliff [Mataric & Cliff 95], in order to evolve controllers for complex tasks. Recently,
Jakobi in the University of Sussex has proposed to minimise the simulation (i.e., paying
attention to what is relevant) to try to fulfill these requirements [Jakobi 97]. In addi¬
tion to that, there are still other possible ways to speed up the simulation. One is the

development of a massively parallel system on real machines in which each controller

can be run on a simulated robot on a separate processor; this can reduce the time

for running a single experiment linearly, subject to the population size. The other is
to code the simulator by the hardware description language VHDL, and compile the
simulator to reconfigurable circuits (i.e., FPGA); this can make the simulation much
faster than any other technique (results could be obtained in a matter of seconds).

Another useful direction for research is to conduct more experiments to evolve control

systems for more complex tasks. Although we have successfully evolved a hierarchical

task-achieving control system for a moderately complex task, it will be worth using
this approach to evolve more control systems for different kinds of tasks, and for even

more complex tasks, to examine the generality of this approach. Particularly, it will be

interesting to extend our system to evolve controllers for sequential tasks which involve
internal states in the control mechanisms. For this, it will be necessary to introduce

some memory components, such as flip-flops, to our circuit trees to participate the
evolution.

For the long term goal, building complete autonomous robots should also include the

CHAPTER 8. SUMMARY AND CONCLUSIONS 164

construction of the physical bodies of robots. As indicated, we have developed a

promising approach for the co-evolution of robot controllers and body plans, but the

experiments currently involve simulation only. Consequently, more research into the

realisation of this approach in the real world is to be undertaken. To achieve this,

a precise simulator for the robot to be used will be required, because the physical

structure of the robot can now adapt to the environment to fulfill the task.

Bibliography

[Agre & Chapman 87]

[Alcazar & Sharman 96]

[Angeline & Pollack 93a]

[Angeline & Pollack 93b]

[Arkin 89]

[Back & Schwefel 96]

[Back 96]

[Baker 85]

P. Agre and D. Chapman. Pengi: an implementation of
a theory of activity. In Proceedings of AAAI-87, pages
268 - 272. Morgan Kaufmann, 1987.

A. I. E. Alcazar and K. C. Sharman. Some applications
of genetic programming in signal processing. In Late
breaking papers at the Genetic Programming 96 Confer¬
ence. 1996.

P. J. Angeline and J. B. Pollack. Co-evolving high
level representation. In Proceedings of Artificial Life III,
pages 55 - 72. Addison Wesley, 1993.

P. J. Angeline and J. B. Pollack. Evolutionary mod¬
ule acquisition. In D. Fogel, editor, Proceedings of the
Second Annual Conference on Evolutionary Program¬
ming. Morgan Kaufmann, 1993.

R. Arkin. Motor schema-based mobile robot naviga¬
tion. International Journal of Robotics Research, 8(4) :92
- 112, 1989.

T. Back and H.-P. Schwefel. Evolutionary computation:
An overview. In Proceedings of IEEE International Con¬
ference on Evolutionary Computation, pages 20 - 29.
1996.

T. Back. Evolutionary Algorithms in Theory and Prac¬
tice. Oxford University Press, 1996.

J. E. Baker. Adaptive selection methods for genetic al¬
gorithms. In Proceedings of the First International Con¬
ference on Genetic Algorithms, pages 101 - 111. San
Mateo: Morgan Kaufmann, 1985.

[Balakrishnan & Honavar 96] K. Balakrishnan and V. Honavar. On sensor evolution
in robotics. In Proceedings of International Conference
on Genetic Programming. MIT Press/Bradford Books,
1996.

165

BIBLIOGRAPHY 166

[Baluja 93]

[Beer & Gallagher 92]

[Blickle & Thiele 95]

[Blickle 96]

[Blumberg 94]

[Braitenberg 86]

[Brooks & Mataric 93]

[Brooks 86]

[Brooks 89]

[Brooks 90]

[Brooks 92]

[Cantu-Paz 95]

S. Baluja. Structure and performance of fine-grain par¬
allelism in genetic search. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages
155 - 162. San Mateo: Morgan Kaufmann, 1993.

R. D. Beer and J. C. Gallagher. Evolving dynamical
neural networks for adaptive behavior. Adaptive Beha¬
vior, 1(1):91 - 122, 1992.

T. Blickle and L. Thiele. A Comparison of Selection
Schemes used in Genetic Algorithms. TIK-Report-11,
Computer Engineering and Communication Networks
Lab., Swiss Federal Institite of Technology, 1995.

T. Blickle. Evolving compact solutions in genetic pro¬

gramming. In Proceedings of Parallel Problem Solving
from Nature IV. Springer-Verlag, 1996.

B. Blumberg. Action selection in hamsterdam: Les¬
sons from ethology. In From Animals to Animats 3:
Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, pages 108 - 117. MIT
Press/Bradford Books, 1994.

Braitenberg. Vehicles: Experiments in Synthetic Psy¬
chology. MIT Press, 1986.

R. A. Brooks and M. Mataric. Real robots, real learning
problems. In J. H. Connell and S. Mahadevan, editors,
Robot Learning. Kluwer Academic Publishers, 1993.

R. A. Brooks. A robust layered control system for a mo¬
bile robot. IEEE Journal of Robotics and Automation,
2(1):14 - 23, 1986.

R. A. Brooks. A robot that walks; emergent behaviors
from a carefully evolved network. Neural Computation,
1 (2):365 - 382, 1989.

R. A. Brooks. Challenges for complete creature archi¬
tectures. In From Animals to Animats: Proceedings of
the First International Conference on Simulation of Ad¬
aptive Behavior, pages 434 - 443. MIT Press/Bradford
Books, 1990.

R. A. Brooks. Artificial life and real robots. In Proceed¬

ings of the First European Conference on Artificial Life,
pages 3 - 11. MIT Press/Bradford Books, 1992.

E. Cantu-Paz. A summary of research on parallel ge¬
netic algorithms. IlliGAL Report No.95007, University
of Illinois at Urbana-Champaign, 1995.

BIBLIOGRAPHY

[Cliff et al. 92]

[Cliff et al. 93]

[Cohen 95]

[Cohoon et al. 87]

[Cohoon et al. 91]

[Collins & Jefferson 91a]

[Collins & Jefferson 91b]

[Colombetti et al. 96]

[Darwin 59]

[Davis 91]

[Dellaert & Beer 94]

[Dellaert & Beer 96]

167

D. Cliff, P. Husbands, and I. Harvey. Evolving visu¬
ally guided robots. In From Animals to Animats II:
Proceedings of the Second International Conference on
Simulation of Adaptive Behavior, pages 374 - 383. MIT
Press/Bradford Books, 1992.

D. Cliff, I. Harvey, and P. Husbands. Explorations in
evolutionary robotics. Adaptive Behavior, 2(1) :73 - 110,
1993.

P. R. Cohen. Empirical Methods for Artificial Intelli¬
gence. MIT Press, 1995.

J. P. Cohoon, S. U. Hegde, W. N. Martin, and
D. Richards. Punctuated equilibria: a parallel genetic
algorithm. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 148 - 154. San
Mateo: Morgan Kaufmann, 1987.

J. P. Cohoon, W. N. Martin, and D. S. Richards. A
multi-population genetic algorithm for solving the k-
partition problem on hyper-cubes. In Proceedings of
International Conference on Genetic Algorithms, pages
244 - 248. San Mateo: Morgan Kaufmann, 1991.

R. J. Collins and D. R. Jefferson. Ant-farm: Towards
simulated evolution. In Proceedings of Artificial Life II,
pages 579 - 601. Addison-Wesley, 1991.

R. J. Collins and D. R. Jefferson. Selection in massively
parallel genetic algorithms. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages
249 - 256. San Mateo: Morgan Kaufmann, 1991.

M. Colombetti, M. Dorigo, and G. Borghi. Behavior
analysis and training: A methodology for behavior en¬

gineering. IEEE Trans, on Systems, Man, and Cyber¬
netics, 26(6):365 - 380, 1996.

C. Darwin. The Origin of Species. John-Murray, 1859.

L. Davis, editor. Handbook of Genetic Algorithm. Van
Nostrand Reinhold, 1991.

F. Dellaert and R. D. Beer. Toward an evolvable model
of development for autonomous agent synthesis. In
Proceeding of Artificial Life IV, pages 246 - 257. MIT
Press/Bradford Books, 1994.

F. Dellaert and R. D. Beer. A developmental model
for the evolution of complete autonomous agents. In

BIBLIOGRAPHY 168

[Dorigo & Colombetti 94]

[Dorigo & Schnepf 93]

[Dorigo 95]

[Firby 92]

[Firby 94]

[Floreano & Mondada 94]

[Floreano & Mondada 96a]

[Floreano & Mondada 96b]

[Fogel 95]

[Fogel et al. 66]

From Animals to Animats f: Proceedings of Interna¬
tional Conference on Simulation of Adaptive Behavior,
pages 393 - 401. MIT Press/Bradford Books, 1996.

M. Dorigo and M. Colombetti. Robot shaping: Devel¬
oping autonomous agents through learning. Artificial
Intelligence, 71 (2):321 - 370, 1994.

M. Dorigo and U. Schnepf. Genetic_based machine learn¬
ing and behavior_based robotics: A new synthesis. IEEE
Trans, on Systems, Man, and Cybernetics, 23(1):141 -
153, 1993.

M. Dorigo. Alecsys and the autonmouse: Learning to
control a real robot by distributed classifier systems.
Machine Learning, 19(3):209 - 240, 1995.

R. J. Firby. Building symbolic primitives with continu¬
ous control routines. In Proceedings of the First Inter¬
national Conference on AI Planning Systems. Morgan
Kaufmann, 1992.

R. J. Firby. Task networks for controlling continuous
processes. In Proceedings of the Second International
Conference on AI Planning Systems, pages 49 - 54. Mor¬
gan Kaufmann, 1994.

D. Floreano and F. Mondada. Automatic creation of
an autonomous agent: Genetic evolution of a neural-
network driven robot. In From Animals to Animats:

Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, pages 421 - 430. MIT
Press/Bradford Books, 1994.

D. Floreano and F. Mondada. Evolution of homing nav¬

igation in a real robot. IEEE Transactions on Systems,
Man and Cybernetics, 26(3):396 - 407, 1996.

D. Floreano and F. Mondada. Evolution of plastic
neurocontrollers for situated agents. In From Animals
to Animats IV: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior. MIT
Press/Bradford Books, 1996.

D. B. Fogel. Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. IEEE Press, 1995.

L. Fogel, A. Owens, and M. Walsh. Artificial Intelli¬
gence through Simulated Evolution. John Willey and
Sons, 1966.

BIBLIOGRAPHY

[Gallagher & Beer 96]

[Gat 92]

[Gat 94]

[Goldberg 89]

[Gomi & Griffith 96]

[Gordon & Whitley 93]

[Gorges-Schlenter 92]

[Gradshteyn & Ryzhik 80]

[Grefensette & Baker 89]

[Grefenstette & Schultz 94]

[Grefenstette et al. 90]

[Gruau 95]

169

J. C. Gallagher and R. D. Beer. Application of evolved
locomotion controllers to a hexapos robot. Robotics and
Autonomous Systems, 19:95 - 103, 1996.

E. Gat. Integrating planning and reacting in a hetero¬
geneous asynchronous architecture for controlling real-
world mobile robots. In Proceedings of AAAI-92, pages
809 - 815. 1992.

E. Gat. Robot navigation by conditional sequencing. In
Proceedings of IEEE International Conference on Ro¬
botics and Automation, pages 1293 - 1299. 1994.

D. E. Goldberg. Genetic Algorithms in Search, Optim¬
ization, and Machine Learning. Addison-Wesley, 1989.

T. Gomi and A. Griffith. Evolutionary robotics - an
overview. In Proceedings of IEEE International Confer¬
ence on Evolutionary Computation, pages 40 - 49. 1996.

V. Gordon and D. Whitley. Serial and parallel genetic
algorithms as function optimizers. In Proceedings of the
Fifth International Conference on Genetic Algorithms,
pages 177 - 183. San Mateo: Morgan Kaufmann, 1993.

M. Gorges-Schlenter. Comparison of local mating
strategies in massively parallel genetic algorithms. In
Proceedings of Parallel Problem Solving from Nature II,
pages 553 - 561. 1992.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integ¬
rals, Series, and Products (corrected and enlarged edi¬
tion, prepared by A. Jeffrey). Academic Press, 1980.

J. Grefensette and J. E. Baker. How genetic algorithms
work: A critical look at implicit parallelism. In Pro¬
ceedings of the Third International Conference on Ge¬
netic Algorithms, pages 20 - 27. San Mateo: Morgan
Kaufmann, 1989.

J. Grefenstette and A. Schultz. An evolutionary ap¬

proach to learning in robots. In Proceedings of Ma¬
chine Learning Conference, Workshop on Robot Learn¬
ing. 1994.

J. Grefenstette, C. L. Ramsey, and A. Schultz. Learning
sequential decision rules using simulation models and
competition. Machine Learning, 5(4):355 - 381, 1990.

F. Gruau. Automatic definition of modular neural net¬
works. Adaptive Behavior, 3(2): 151 - 183, 1995.

BIBLIOGRAPHY

[Harvey 92]

[Harvey 93]

[Harvey et al. 92]

[Harvey et al. 94]

[Harvey et al. 96]

[Hemmi et al. 94]

[Hinterding et al. 95]

[Holland 75]

[Husbands et al. 95]

[Jakobi 94]

170

I. Harvey. Species adaption genetic algorithms: the basis
for a continuing saga. In F. J. Varela and P. Pourgine,
editors, Proceedings of the First European Conference
on Artificial Life, pages 346 - 354. MIT Press/Bradford
Books, 1992.

I. Harvey. Evolutionary robotics and saga. In Proceed¬
ings of Artificial Life III, pages 299 - 326. Addison-
Wesley, 1993.

I. Harvey, P. Husbands, and D. Cliff. Issues in evol¬
utionary robotics. In From Animals to Animats II:
Proceedings of the Second International Conference on
Simulation of Adaptive Behavior, pages 364 - 373. MIT
Press/Bradford Books, 1992.

I. Harvey, P. Husband, and D. Cliff. Seeing the light:
Artificial evolution, real vision. In From Animals to An¬
imats: Proceedings of the Third International Confer¬
ence on Simulation of Adaptive Behavior, pages 393 -
401. MIT Press/Bradford Books, 1994.

I. Harvey, P. Husband, and D. Cliff. Evolutionary ro¬
botics: the sussex approach. Robotics and Autonomous
Systems, 1996.

H. Hemmi, J. Mizoguchi, and K. Shimohara. Devel¬
opment of evolution of hardware behaviors. In Pro¬
ceedings of Artificial Life IV, pages 371 - 376. MIT
Press/Bradford Books, 1994.

R. Hinterding, H. Gielewski, and T. C. Peachey. The
nature ofmutation in genetic algorithms. In Proceedings
of the Sixth International Conference on Genetic Al¬
gorithms, pages 65 - 72. San Mateo: Morgan Kaufmann,
1995.

J. Holland. Adaptation in Natural and Artificial Sys¬
tems. The Michigan University Press, 1975.

P. Husbands, I. Harvey, and P. Husbands. Circling in
the round: State space attractors for evolved sighted
robots. Robotics and Autonomous Systems, 15(1):83 -
106, 1995.

N. Jakobi. Evolving sensorimotor control architectures
in simulation for a real robot. School of Cognitive and
Computing Science, University of Sussex, 1994.

[Jakobi 97] N. Jakobi. Half-baked, ad-hoc and noisy: Minimal
simulation for evolutionary robotics. In Proceedings of

BIBLIOGRAPHY 171

[Jakobi et al. 95]

[Janikow & Michalewicz 91]

[Johnson et al. 94]

[Kinnear 93]

[Koza & Andre 95]

[Koza & Rice 92]

[Koza 90]

[Koza 91]

[Koza 92]

[Koza 94]

[Koza et al. 96a]

the Fourth European Conference on Artificial Life. MIT
Press/Bradford Books, 1997.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the
reality gap: The use of simulation in evolutionary ro¬
botics. In Proceedings of Third European Conference on

Artificial Life, pages 704 - 720. Springer-Verlag, 1995.

C. Z. Janikow and Z. Michalewicz. An experimental
comparison of binary and float point representations in
genetic algorithms. In Proceedings of the Fourth Inter¬
national Conference on on Genetic Algorithms, pages 31
- 36. San Mateo: Morgan Kaufmann, 1991.

M. P. Johnson, P. Maes, and T.Darrell. Evolving visual
routines. In Proceedings of Artificial Life IV, pages 198
- 210. MIT Press/Bradford Books, 1994.

K. E. Kinnear. Generality and difficulty in genetic pro¬

gramming: Evolving a sort. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages
287 - 294. San Mateo: Morgan Kaufmann, 1993.

J. R. Koza and D. Andre. Parallel genetic programming
on a network of transputers. Technical Report CS-TR-
95-1542, Stanford University, 1995.

J. R. Koza and J. P. Rice. Automatic programming of
robots using genetic programming. In Proceedings of
AAAI-92, pages 194 - 201. 1992.

J. R. Koza. Evolution and co-evolution of computer pro¬
grams to control independently-acting agents. In From
Animals to Animats: Proceedings of International Con¬
ference on Simulation of Adaptive Behavior, pages 366
- 375. MIT Press/Bradford Books, 1990.

J. R. Koza. Evolving subsumption using genetic
programming. In Proceedings of the First European
Conference on Artificial Life, pages 110 - 119. MIT
Press/Bradford Books, 1991.

J. R. Koza. Genetic Programming: on the Programming
of Computers by Means of Natural Selection. MIT Press,
1992.

J. R. Koza. Genetic Programming II: Automatic Dis¬
covery of Reusable Programs. MIT Press, 1994.

J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors. Genetic Programming 1996: Proceedings of the
First Annual Conference. MIT Press, 1996.

BIBLIOGRAPHY 172

[Koza et al. 96b]

[Koza et al. 97]

[Langton 89]

[Langton et al. 91]

[Lee et al. 96]

[Lee et al. 97a]

[Lee et al. 97b]

[Lin 94]

[Lindenmayer 68]

[Lund & Hallam 96]

[Lund et al. 96]

J. R. Koza, F. H. Bennett III, D. Andre, and M. A.
Keane. Toward evolution of electronic animals using
genetic programming. In Proceedings of Artificial Life
V. MIT Press/Bradford Books, 1996.

J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Gar-
zon, H. Iba, and R. L. Riolo, editors. Genetic Program¬
ming 1997: Proceedings of the Second Annual Confer¬
ence. MIT Press, 1997.

C. Langton, editor. Artificial Life : Proceedings of the
Interdisciplinary Workshop on the Synthesis and Simu¬
lation of Living Systems. Addison-Wesley, 1989.

C. Langton, J. Farmer, S. Rasmussem, and C. Taylor,
editors. Artificial Life: Proceedings of Artificial Life II.
Addison-Wesley, 1991.

W.-P. Lee, J. Hallam, and H. H. Lund. A hybrid gp/ga
approach for co-evolving controllers and robot bodies to
achieve fitness-specified tasks. In Proceedings of IEEE
International Conference on Evolutionary Computation.
1996.

W.-P. Lee, J. Hallam, and H. H. Lund. Applying ge¬
netic programming to evolve behaviour primitives and
arbitrators for mobile robots. In Proceedings of IEEE
International Conference on Evolutionary Computation.
1997.

W.-P. Lee, J. Hallam, and H. H. Lund. Learning com¬
plex robot behaviours by an evolutionary approach. In
A. Birk and J. Demiris, editors, Learning Robots: A
Multi-Perspective Exploration (to appear). 1997.

L.-J. Lin. Scaling up reinforcement learning for robot
control. In Proceedings of International Conference on
Machine Learning, pages 182 - 189. Morgan Kaufmann,
1994.

A. Lindenmayer. Mathematical models for cellular inter¬
actions in development. J. of Theoretical Biology, 18:280
- 315, 1968.

H. H. Lund and J. Hallam. Sufficient neurocontrollers
can be surprisely simple. Research Paper No.824, De¬
partment of Artificial Intelligence, University of Edin¬
burgh, 1996.

H. H. Lund, E. V. Cuenca, and J. Hallam. A simple
real-time mobile robot tracking system. Technical Paper

BIBLIOGRAPHY

[Lund et al. 97]

[Maes 92]

[Mahadevan & Connell 91]

[Malcolm et al. 89]

[Mataric & Cliff 95]

[Mataric 90]

[Mataric 94]

[Michel 95]

[Miglino et al. 94]

[Miglino et al. 96]

[Miller & Goldberg 96]

[Mondada & Floreano 95]

173

No.41, Department of Artificial Intelligence, University
of Edinburgh, 1996.

H. H. Lund, J. Hallam, and W.-P. Lee. Evolving ro¬
bot morphology. In Proceedings of IEEE International
Conference on Evolutionary Computation. 1997.

P. Maes. Behavior-based artificial intelligence. In From
Animals to Animats 2: Proceedings of the Second In¬
ternational Conference on Simulation of Adaptive Be¬
havior, pages 2 - 10. MIT Press/Bradford Books, 1992.

S. Mahadevan and J. Connell. Automatic programming
of behavior based robots using reinforcement learning.
In Proceedings of AAAI-91, pages 768 - 773. 1991.

C. Malcolm, T. Simthers, and J. Hallam. An emerging
paradigm in robot architecture. In Proceedings of Intel¬
ligent Autonomous Systems, pages 545 - 564. 1989.

M. Mataric and D. Cliff. Challenges in evolving con¬
trollers for physical robots. Technical Report CS-95-184,
Department of Computer Science, Brandeis University,
1995.

M. Mataric. A distributed model for mobile robot envir¬
onment learning and navigation. AI-TR 1228, MIT Al
Lab., 1990.

M. J. Mataric. Reward functions for accelerated learn¬

ing. In Proceedings of International Conference on Ma¬
chine Learning, pages 181 - 189. Morgan Kaufmann,
1994.

O. Michel. An artificial life approach to the synthesis of
autonomous. In Artificial Evolution: European Confer¬
ence. Springer, 1995.

O. Miglino, K. Nafasi, and C. E. Tayler. Selection for
wandering behaviour in a small robot. Artificial Life,
2(1):101 - 116, 1994.

O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile
robots in simulated and real environments. Artificial
Life, 2(4):417 - 434, 1996.

B. L. Miller and D. E. Goldberg. Genetic algorithms,
tournament selection, and the effects of noise. Complex
System, 9(3):193 - 212, 1996.

D. Mondada and D. Floreano. Evolution of neural con¬
trol structures: Some experiments on mobile robots. Ro¬
botics and Autonomous Systems, 16:183 - 195, 1995.

BIBLIOGRAPHY

[Mondada et al. 93]

[Montana 95]

[Nguyen & Huang 94]

[Nolfi & Parisi 95]

[Nolfi et al. 94]

[Payton 86]

[Pfiefer & Scheier 96]

[Press et al. 92]

[Ram et al. 94]

[Rechenberg 73]

[Reynolds 93]

174

F. Mondada, E. Franzi, and P. Ienne. Mobile robot mini-
aturation: A tool for investigation in control algorithms.
In Proceedings of the Third International Symposium on

Experimental Robotics. 1993.

D. Montana. Strongly typed genetic programming. Evol¬
utionary Computation, 3(2): 199 - 230, 1995.

T. Nguyen and T. Huang. Evolvable 3d modeling for
model-based object recognition systems. In Kinnear,
editor, Advances in Genetic Programming, pages 459 -
475. MIT Press, 1994.

S. Nolfi and D. Parisi. Evolving non-trivial behaviors on
real robots: An autonomous robot that picks up objects.
In Proceedings of the Fourth Congress of the Italian As¬
sociation for Artificial Intelligence. Spring-Verlag, 1995.

S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How
to evolve autonomous robots: Different approaches in
evolutionary robotics. In Proceedings of Artificial Life
IV, pages 190 - 197. MIT Press/Bradford Books, 1994.

D. W. Payton. An architecture for reflexive autonomous
vehicle control. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 1838 -
1845. 1986.

R. Pfiefer and C. Scheier. Sensory-motor coordination:
the metaphor and beyond. Robotics and Autonom¬
ous Systems, special issue in Practice and Future of
Autonomous Agents, 1996.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, 1992.

A. Ram, R. Arkin, G. Boone, and M. Pearce. Using
genetic algorithms to learn reactive control parameters
for autonomous robotic navigation. Adaptive Behavior,
2(3):277 - 304, 1994.

I. Rechenberg. Evolutinsstrategie: Optimierung Technis-
cher Systemenach Prinzipiender Biologischen Evolution.
Frommann-Holzboog Verlag, 1973.

C. W. Reynolds. An evolved, vision-based behavioral
model of obstacle avoidance behavior. In Proceedings
of Artificial Life III, pages 327 - 346. Addison Wesley,
1993.

BIBLIOGRAPHY 175

[Reynolds 94a] C. W. Reynolds. The difficulty of roving eyes. In Pro¬
ceedings of IEEE International Conference on Evolu¬
tionary Computation, pages 262 - 267. 1994.

[Reynolds 94b] C. W. Reynolds. Evolution of corrider following beha¬
vior in a noisy world. In From Animals to Animats
3: Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, pages 402 - 410. MIT
Press/Bradford Books, 1994.

J. P. Rosea and D. H. Ballard. Hierarchical self-

organization in genetic programming. In Proceedings of
International Conference on Machine Learning, pages
251 - 258. Morgan Kanfmann, 1994.

J. K. Rosenblatt and D. W. Payton. A fine-grain al¬
ternative to the subsumption architecture for mobile
robot control. In Proceedings of IEEE International
Joint Conference on Neural Networks, pages 11.317 -
323. 1989.

J. K. Rosenblatt and C. Thorpe. Combining multiple
goals in a behavior-based architecture. In Proceedings
of IEEE International Conference on Intelligent Robots
and Systems, pages 136 - 141. 1995.

[Rosenschein & Kaelbling 86] S. J. Rosenschein and L. P. Kaelbling. The synthesis
of digital machines with provable epistemic properties.
In Proceedings of Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 83 - 98. Morgan
Kaufmann, 1986.

[Rosenschein & Kaelbling 95] S. J. Rosenschein and L. P. Kaelbling. A situated view of
representation and control. Artificial Intelligence, 73:149
- 174, 1995.

[Schultz & Grefenstette 94] A. C. Schultz and J. J. Grefenstette. Improving tactical
plans with genetic algorithms. In Proceedings of IEEE
International Conference on Tools for AI, pages 328 -
334. 1994.

[Schultz et al. 96] A. C. Schultz, J. J. Grefenstette, and W. Adams.
Roboshepherd: Learning a complex behavior. In Pro¬
ceedings of RoboLearn-96, pages 105 - 113. 1996.

[Schwefel 81] H.-P. Schwefel. Numerical Optimization of Computer
Models. John Wiley and Sons, 1981.

[Simmons 94] R. Simmons. Structured control for autonomous robots.
IEEE Trans, on Robotics and Automation, 10(1) :34 -
43, 1994.

[Rosea & Ballard 94]

[Rosenblatt & Payton 89]

[Rosenblatt & Thorpe 95]

BIBLIOGRAPHY 176

[Sims 94a]

[Sims 94b]

[Smithers 94]

[Spagocci 96]

[Spiessens & Manderick 91]

[Steels 93a]

[Steels 93b]

[Steels 94]

[Tanese 89]

[Verschure et al. 92]

K. Sims. Evolving 3d morphology and behavior by com¬
petition. In Proceedings of Artificial Life IV, pages 28 -
39. MIT Press/Bradford Books, 1994.

K. Sims. Evolving virtual creatures. In Computer
Graphics, Annual Conference Series (SIGGRAPH'94),
pages 15 - 22. 1994.

T. Smithers. On better robots make it harder. In From
Animals to Animats 3: Proceedings of the Third Interna¬
tional Conference on Simulation of Adaptive Behavior,
pages 54 - 72. MIT Press/Bradford Books, 1994.

S. Spagocci. Evolving neurocontrollers and body plans
of a Lego robot. Master thesis, Department of Artificial
Intelligence, University of Edinburgh, 1996.

P. Spiessens and B. Manderick. A massively parallel
genetic algorithm: Implementation and first analysis.
In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 279 - 285. San Mateo:
Morgan Kaufmann, 1991.

L. Steels. The artificial life root of artificial intelligence.
In L. Steels and R. Brooks, editors, The Artificial Life
Route to Artificial Intelligence. Lawrence Erlbaum As¬
sociates, 1993.

L. Steels. Building agents out of autonomous behavior
systems. In L. Steels and R. Brooks, editors, The Arti¬
ficial Life Route to Artificial Intelligence. Lawrence Er¬
lbaum Associates, 1993.

L. Steels. A case study in the behavior-oriented design
of autonomous agents. In From Animals to Animats
3: Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, pages 445 - 452. MIT
Press/Bradford Books, 1994.

R. Tanese. Distributed genetic algorithms. In Pro¬
ceedings of the Third International Conference on Ge¬
netic Algorithms, pages 434 - 439. San Mateo: Morgan
Kaufmann, 1989.

P. Verschure, B. Krose, and R. Pfeifer. Distributed ad¬
aptive control: the self-organization of structured beha¬
viors. Robotics and Autonomous Systems, 9:181 - 196,
1992.

[Whitley 89] D. Whitley. The genitor algorithms and selection pres¬
sure: Why rank-based allocation of reproduction trial

BIBLIOGRAPHY 177

[Wilson 85]

[Yamauchi & Beer 94]

is best. In Proceedings of the Third International Con¬
ference on Genetic Algorithms, pages 116 - 121. San
Mateo: Morgan Kaufmann, 1989.

S. W. Wilson. Knowledge growth in an artificial animal.
In Proceedings of the First International Conference on
Genetic Algorithms. San Mateo: Morgan Kaufmann,
1985.

B. Yamauchi and R. D. Beer. Integrating reactive, se¬

quential, and learning behaviors using dynamical neural
networks. In From Animals to Animats 3: Proceedings of
the Third International Conference on Simulation of Ad¬
aptive Behavior, pages 382 - 391. MIT Press/Bradford
Books, 1994.

Appendix A

Publications

• A Hybrid GP/GA Approach for Co-evolving Controllers and Robot Bodies to
Achieve Fitness-specified Tasks. In Proceedings of IEEE International Confer¬
ence on Evolutionary Computation. Nagoya, Japan, 1996.

• Applying Genetic Programming to Evolve Behaviour Primitives and Arbitrators
for Mobile Robots. In Proceedings of IEEE International Conference on Evolu¬
tionary Computation. Indianapolis, USA, 1997.

• Evolving Robot Morphology. Proceedings of IEEE International Conference on

Evolutionary Computation. Indianapolis, USA, 1997.

• Learning Complex Robot Behaviours by an Evolutionary Approach. To appear
in A. Birk and J. Demiris, editors, Learning Robots: A Multi-Perspective Explor¬
ation. World Scientific Publishers.

178

A Hybrid GP/GA Approach for Co-evolving Controllers and Robot
Bodies to Achieve Fitness-Specified Tasks

Wei-Po Lee John Hallam Henrik H. Lund

Department of Artificial Intelligence
University of Edinburgh

Edinburgh, U. K.
{weipol,john,henrikl}@aifh.ed.ac.uk

Abstract— Evolutionary approaches have been advocated
to automate robot design. Some research work has shown
the success of evolving controllers for the robots by genetic
approaches. As we can observe, however, not only the con¬
troller but also the robot body itself can affect the behavior
of the robot in a robot system. In this paper, we develop
a hybrid GP/GA approach to evolve both controllers and
robot bodies to achieve behavior-specified tasks. In order
to assess the performance of the developed approach, it is
used to evolve a simulated agent, with its own controller
and body, to do obstacle avoidance in the simulated en¬
vironment. Experimental results show the promise of this
work. In addition, the importance of co-evolving controllers
and robot bodies is analyzed and discussed in this paper.

I. INTRODUCTION

The behavior-based approach has been proposed as a

methodology for building autonomous robots. Although
many successful robots have been built based on this ap¬

proach, increasing robot complexity makes the design diffi¬
cult. Consequently, the evolutionary approach was advoc¬
ated to provide some kind of design automation for building
behavioral modules [3] [4].

The first work proposing to use the genetic approach
to synthesize programs for robot control is [6], Due to
being overly simplified, however, it has been criticized as
being not complicated enough to control a real robot [3].
Another example of using a GP approach to evolve control
programs is given in a series of papers by Reynolds. In the
final version [8], the author applied arithmetic operations,
such as +, —, *, %, and the conditional operation "iflte"
to calculate a single output value from sensor values and
interpreted it as the steering direction. The robot is then
assumed to move for a fixed forward distance in the steering
direction.

In our work, the structure of a control program differs
from theirs. Our control programs are defined at the logic
level: a control program is much like a boolean network,
which maps conditional structures (constructed on sensor
information) into appropriate motor commands. Instead
of using compound robot actions, such as moving forward
1 foot or turning left 30 degrees, we use the outputs of the
boolean network to directly drive left and right motors to
revolve at different speeds. This results in a vehicle mov¬
ing forward, backward, turning left, right smoothly and
continuously.

The other difference between this work and all the others
is that this work considers co-evolving the structure of a

mobile robot, which has not yet been taken into account in
the literature so far as we can discern. In previous work,
the authors change just their controllers if the performance
of a robot is not satisfactory. But our approach to improve
is to change not only the controller but also the robot body
itself because both affect the robot's behavior. Although
Sims has evolved creatures with controllers and morpho¬
logies [9], his creatures are actually constituted from rigid
parts which are not practical in the real world. Our way is
to extract the determining parameters in designing a robot
body then to apply the evolutionary algorithm to decide
these values. The main goal of this work is then to invest¬
igate how to evolve the controllers and the robot bodies
together to achieve a specified task.

II. THE SIMULATION

Agents can be equipped with different kinds of sensors
for different tasks. In our current implementation, the
agents are restricted to use only infra-red sensors (IRs)
to acquire distance information. We assume that the ro¬
bot has a physical round body and the IRs are positioned
around the body pointing radially outward. The charac¬
teristic of an IR sensor is that it can only sense objects
within a certain distance and a certain bearing. The visual
distance is 30 cm and the bearing is 20 degrees in our sim¬
ulation.

In this simulator, the motion system of the vehicle is re¬

garded as a process with natural dynamics. It converts
motor commands with required speeds (Full/Half, For¬
ward/Reverse) into actual motions, and is modeled by re¬
lated first-order differential equations. Once the time con¬
stant of the process is specified and the speed commands
are determined by the control program, the rotational ve¬
locity of each motor can be calculated. Then the mov¬

ing speed, the turning speed, and the new position of a
vehicle are calculated by applying appropriate kinematic
equations, with the specified wheel radius and wheelbase.
The vehicle is driven by two independent motors with sep¬
arate speed commands. This results in a vehicle able to
move forward, backward, turn right and left at any pos¬
sible speed. In order to make the simulation more realistic
and to enhance the robustness of the evolved solutions, 5%
random noise (+5% ~ —5% uniformly) is injected to the
perceptions and the motions.

III. GENETIC IMPLEMENTATION

A. System Overview
Our genetic system is a hybrid of Genetic Programming

[6] and Genetic Algorithms [5]. An individual in this ge¬
netic system consists of a controller and a robot body,
treated as < brain, body >, in which a brain is a tree¬
like program and a body is described by a string of real
numbers. The GP part of this system evolves the tree-like
program and the GA part evolves the floating point string.
The aspect of an individual is shown in Figure 1.

< brain, body > = I •

Pl\P 2 | |P, |

Fig. 1. The aspect of an individual defined in this work: in the tree
structure, a node with the N/T is a non-terminal/terminal node; in the
string representation, Pi is a real number.

Given an environment and a goal formulated as a fit¬
ness function, an initial population is created at random.
Each individual has its own brain and body. To evaluate
an individual is to execute the brain on the corresponding
simulated robot body for a period of time and to meas¬
ure the performance. The probability of the survival of an
individual is then determined by how well the controller
performs with the corresponding body to fit the evaluating
criteria. After evaluating each individual, a certain selec¬
tion method is employed to choose parent individuals and
genetic operations are applied on them to create children
individuals. In this work, the tournment selection method,
which picks K individuals at random and chooses the fit¬
test as the parent, is used.

Like other genetic work, genetic operations, such as re¬
production, crossover, and mutation, are applied to the
current population to create new individuals. The repro¬
duction operation simply copies the selected parent indi¬
viduals, without changing the controllers or the bodies,
into the next generation. The crossover or mutation op¬
eration is allowed to to take place on the brain(s) or the
body(bodies) at random. Due to the special structure of
an individual here, however, the crossover is constrained to
occur on both brains or both bodies from the involved par¬
ents in order to maintain the correctness of the structures.

Because of the different representations of the brain and
the robot body, this work requires separate crossover and
mutation operations for the tree expressions and the linear
strings. Related techniques of GP and GA are applied
independently for the brains and the bodies. The details
are described in the following sections.

B. Evolving Brains with Sensors

Although sensors are parts of a robot body, they are
closely associated with the control programs. Thus they are
directly co-evolved with the control programs as described
in this section. All other parts of a robot body are left and
discussed in the next section.

B. 1 Interpretation of the Control Program

A "brain" here means a reactive control program which
controls the corresponding body. As we know, a reactive
controller can be considered as a combinational logic sys¬
tem in which the output is determined completely by the
current input states at each time step. It is well accep¬
ted that any combinational system can be described by a
boolean network and a boolean network can be converted
into a boolean tree [1] [2], so that we define our control pro¬
grams at logic level and use logic components, such as AND,
OR, NOT, to map structured sensor conditionals into motor
commands. Genetic Programming techniques are used to
evolve such control programs.

We define a control program organized by three sub¬
trees, and a non-terminal PROG is defined as a dummy root
node to connect the three subtrees. The output of the first
subtree is interpreted as the revolving direction of the left
and right motors: if the output is 0, the control program
will command both motors to revolve forward, otherwise it
commands both motors to revolve backward. The evalu¬
ated results of the second and the third subtrees determine
the speeds of the left and the right motor: 0/1 represents
full/half speed. Three basic logic operations, AND, OR, and
NOT, are defined as non-terminals to constitute the main
frames of the three subtrees and map different combina¬
tions of structured sensor information (described below)
into motor commands.

According to our program design, structured sensor-
conditionals involve comparing the values from different
sensors or comparing the sensor values to the numerical val¬
ues as thresholds. Different kinds of sensors are required
to build different behavioral modules. We use the task
obstacle avoidance, which is the application task used in
the experiment later, as the example to explain how the
sensor information is structured.

We assume the agent uses simulated IR sensors to acquire
distance information in this task. The characteristic of an
IR sensor is that it can only sense the obstacle within a
certain distance. Based on this, the sensor information
from a certain sensor is converted to a signal indicating
how safe the agent is in the direction which the sensor
is pointing. So a safety signal can be 1, indicating that
there is no obstacle within the maximum distance which
an IR sensor can sense, a value between 0 and 1, which
is the ratio of sensed distance to the maximum distance
an IR sensor can sense, or 0, indicating that the agent has
bumped against an obstacle.

We then define the symbol IR as one of the terminals.
In this work, we intend to co-evolve sensor positions with
the controller, so that there are no pre-defined position
candidates for IR sensors. The agent is allowed to acquire
distance information from IR sensors in any direction it
wants. Each terminal IR is defined to be associated with a

value between 0 and 1 which indicates the angle between
the direction in which the IR is pointing and the agent's
heading. In this way, whenever a terminal IR is evaluated,
converted distance information (safety signal), in the direc¬
tion indicated by the value associated with it, is returned.
For instance, a terminal IR with a value 0.5 will return the
converted sensor information in the direction 0.5 revolution

(180 degrees) relative the agent's heading.
The other terminal defined in this task is a numer¬

ical value between 0 and 1 inclusive: these are used as

thresholds. Thus a structured sensor-conditional in this
work is defined as the constrained syntactic structure X >
Y, where X, Y can be any terminal. The symbol '>' is
a non-terminal which performs the comparison operation
and returns a boolean true/false according to the result.

To sum up, a reactive program here includes three
boolean subtrees. The evaluation results of the boolean
trees are interpreted as motor commands to drive left and
right motors directly. A typical control program is shown
and illustrated in Figure 2.

PROG

Ol: 0/1 = forward/backward^^" I ' —0/1 = slow/fast (R-motor)
02: 0/1 = slow/fast (L-motor)

> NOT AND

IR 0.95 IR 0.50 OR > >

> > IR 0.34 0.55 IR 0.50 IR 0.85

IR 0.50 0.89 0.76 IR 0.85

Fig. 2. The diagram of a typical control program.

B.2 The Genetic Operations

As we mentioned previously, the genetic system simply
copies individuals, without changing the brains or bod¬
ies, into the next generation for reproduction. But sep¬
arate crossover and mutation operations are required for
tree structures (controllers) and the string of real numbers
(robot bodies). The crossover and mutation operations
for controllers are described as follows and those for robot
bodies will be described in the next section.

The crossover operation involves swapping two subtrees
from the parent control programs. Because there are some
constrained syntactic structures, such as X > Y, defined in
this work, the crossover operation must be restricted. If
the selected crossover point in the first parent is the root
node, the second crossover point must be a root node as
well (this means two individuals exchange their brains to
become new individuals); if the chosen crossover point in
one parent is an internal node, then the crossover point in

the other parent must be an internal node too; otherwise if
the selected crossover point in the first parent is a terminal
node, the crossover point for the second parent is restricted
to be a terminal node. In the last case there is an addi¬
tional operation, averaging, that will possibly occur. If
the types of the two terminals are different, i.e., a IR and a
numerical constant, the system swaps them as described.
But if the two terminals are the same type then swapping
or averaging would occur randomly. The latter averages
the two values associated with IRs or the two numerical
constants. The mutation operation deletes a subtree at a
randomly selected point and re-creates a random subtree
to substitute it in the selected individual.

When the above genetic operations occur to the brains
of the individuals, their corresponding bodies are not
changed. This means, a changed brain with an unchanged
robot body is put together to constitute a new individual
in the next generation.

C. Evolving Robot Bodies
An agent is made up of by a brain and a body; both

can affect the behavior. The performance of an agent is
measured by how well the task is achieved by executing
the brain on the corresponding body. In this section, we
describe how to represent a robot body and to employ the
genetic approach to evolve such a body.

In order to evolve a robot body we need to analyze and
extract the determining elements, which affect the beha¬
vior of a robot profoundly, from the structure of a robot.
In mobile robot design, for instance, there are some de¬
termining elements such as the wheel radius, the width of
the wheel base, the time constant of the motion system,
the body size (the diameter of the body, if we assume the
robot body is round), and positions (with orientations) of
the sensors, etc. The wheel radius affects the speed of the
robot and determines the maximum and minimum mov¬

ing speed for the specified motor commands; the width of
the wheel base determines the turning rate of a robot; the
time constant affects the response of the robot and determ¬
ines the acceleration of the robot; the size of a robot body
should be task-oriented: to avoid obstacles it may need to
be smaller but to push boxes it may need to be larger; and
the positions and orientations of the sensors allow the robot
to acquire the perceptual information it needs. To evolve
a robot body, in fact, means to decide these determining
structural parameters of a robot genetically.

The structural parameters can be arranged as a linear
string, in which each position is a real number repres¬
enting the value of the corresponding parameter. Due to
hardware limitations and performance considerations, each
structural parameter has its lower bound and upper bound.
When we build a robot, the value of each structural para¬
meter must be between its bounds. Thus a robot body can
then be expressed as

PlP2 Pn

where

Min(Pi) < Pi < Max(Pi) ; 1 < i < n

For the linear string representation, a Genetic Algorithm
can be employed to determine the value of each structural
parameter Pi in its range.

Two-point crossover and one-point mutation operations
are used to create new body strings. The crossover oper¬
ation here, like the standard two-point crossover, involves
two parents and two crossover points for parents. But its
function is slightly different from the standard one: it is
defined to perform operations of exchanging or averaging
at random. The exchanging operation exchanges the Pi
between two crossover points, but the averaging operation
averages the corresponding Pi for the two parent strings in¬
stead. The mutation operation randomly picks a Pi for the
selected parent and substitutes it with a re-generated ran¬
dom number, which satisfies its upper and lower bounds,
so generating a new string.

IV. EXPERIMENTS AND RESULTS

In the experiment, we define "obstacle avoidance" beha¬
vior as the application task to evaluate the developed ap¬

proach. The experiment is arranged in two phases. In the
first phase, we concentrate on how to evolve an individual
to move without collision; and in the second phase, we

investigate the importance of the appropriate brain-body
coupling.

A. Fitness Measures

As mentioned before, to evaluate an individual is to ex¬
ecute the control program on the corresponding robot body
for a given period of time and to measure the perform¬
ance according to certain criteria (fitness function). In this
work, a fine time-slice technique is used. At each time step,
the control program is evaluated once and drives its body
to move; then the corresponding fitness is calculated. The
accumulated fitness of an individual during the given time
steps is then used to measure the performance.

An obstacle avoidance behavior means that an agent can
keep moving without collision. A straightforward way to
formulate this is to keep it as safe as possible at each time
step. To achieve this, each agent is equipped with eight IR
sensors, which point towards -|7r, -\tr, -\ir, 0, j7r, r,
and 7r relative to the heading of the agent, and is trained
to keep the safety signals from these IRs as close to 1 as
possible. (The eight IRs mentioned here are used for fit¬
ness assessment only: they are independent of those sensors
evolved as parts of the controllers. After training, these
eight IRs are removed.) The term minimum-safety, which
is the minimum of the eight safety signals, is used in the
fitness function for this purpose. In order to keep it safe,
the vehicle is punished whenever it begins getting danger¬
ous (that is, the minimum-safety is less than 1), and the
lower this value, the larger the penalty. In addition, in or¬
der to avoid the degenerate situation when an agent sticks

at a certain position, or the situation when an agent spins,
an agent is encouraged to move straight at high speed, and
discouraged from rotation. Thus, the fitness function is
defined as a penalty function. For an individual I,

k

Fitness(I) — ^ penalty (tj)+(N—k)*penalty(tk)}i
jECases i=1

where

penalty = [a * (1 — minimumsafety) + /3 * (1 — v) + 7 * w]

In this function, Cases is the set of fitness evaluations done
on this controller (fitness cases), k is the time the vehicle
hits an obstacle, N is the given number of time steps that
the obstacle avoidance behavior should last for, v is the
normalized forward speed (backward is regarded as negat¬
ive), and w is the normalized rotating speed. This would
keep a vehicle safe and moving forward as straight as pos¬
sible.

B. Evaluation and Testing
In this experiment, we trained the robot to avoid

obstacles using the evolutionary procedure then tested the
evolved pair of controller and robot body to examine the
performance. Before training, we defined a training set
including M starting positions. For a certain generation,
each individual was trained to move from C starting po¬
sitions, which were chosen randomly from the predefined
training set, and ran for N time steps for each start posi¬
tion. The cumulative fitness is designated as the fitness of
an individual. In our experiment, M was 30, C was 15 and
N was 500.

The structural parameters we hope to evolve in this work
are time constant, wheel base, wheel radius, and the body
size, but each structural parameter has its own limitations.
In this experiment, the value of time constant was restric¬
ted between 0.5 and 2.5 second; the lower bound and upper
bound of wheel radius was 1.0 cm and 3.5 cm; the value of
body size was limited from 10 cm to 25 cm; and the wheel
base was constrained to be not larger than the body size.

A simple island model GA[10] is implemented in this
work. It allowed us to use multiple populations to maintain
diversity. We used two populations of 40 individuals each.
The number of generations was 50 and the best individual
appearing in the last generation is designated as the final
solution. The best individual evolved from this procedure
and its typical behavior is shown in Figure 3.

In order to examine the performance of the evolved solu¬
tion, it is necessary to test it in different test cases. In our

testing procedure, the evolved individual was tested 100
times, to control for random effects of perceptual and mo¬
tor noise. Each time it moved from a new starting position
with a given orientation and was allowed to move for 10000
time steps. The evolved best individual did not bump any
obstacle in all the 100 test cases.

(PROG

(> IR 0.52 IR 0
(OR (OR (AND

(> IF

(> IR 0.23
(> IR 0.71 IR 0

time constant : 0.68
wheel base : 10.53
wheel radius : 1.56

body size : 10.53

Fig. 3. The evolved solution(including the control program and the struc¬
tural parameters); and the emergent behavior.

In addition, we tested the evolved agent in somewhat dif¬
ferent environments to examine whether it still had reason¬

able performance. In 10 different tests, the evolved agent
did not have any collision in all of the test cases. Figure 4
illustrates two examples.

ments.

C. The Importance of Appropriate Brain-Body Coupling
We have shown that the controller and the robot body

can be co-evolved to achieve the behavior-specified task. In
order to investigate how the evolved control program relies
on the co-evolved body, we tested the evolved program on
different robot bodies which are the various combinations
of structural parameters available in their own ranges.

For each robot body, we tested it with the evolved con¬
trol program 100 times. Each time it moved from a new
starting position and was allowed to move 10000 time steps,
like the testing procedure described in the above section.
Each entry in Table 1 shows the number of successes (cases
when the robot did not bump any wall during the 10000
time steps) from the 100 test cases for a certain robot body.
From Table 1, we find that the combination where the
evolved controller was executed on the co-evolved robot

body (marked with an asterisk) has the highest success
rate (actually it is 100%). The inappropriate brain-body
couplings can not achieve the specified task perfectly. This
demonstrates that the evolved controller relies on the co-

evolved robot body.

C.l Further Investigation

Some data in Table 1 attracts our attention. For the case

a (indicated by the mark a at the corresponding number),
for instance, the number of success increases dramatically,
comparing to case b. We can explore the reasons by ob¬
serving the behaviors emerging from the two pairs of brains
and bodies.

body- wheel- wheel radius wheel radius
size base 1.56 2.34 3.12 1.56 2.34 3.12

1.05 83 74 75 86 79 64
10.53 5.26 96 83 70 84 74 71

10.53 100* 99 97 96 86 81
1.05 64 61 52 71 59 42

15.79 5.26 76 56 74 52 45 27
10.53 89 95 92 95 64 51
15.79 90 88 92 94 92 84
1.05 41 33 26 52 46 34
5.26 51 24 lld 31 13 6

21.05 10.53 30 53 65c 91 34 17
15.79 24b 28 27e 67 75 68
21.05 87a 19 30 62 59 41

In case b, the robot always bumped the wall due to the
inappropriate enlargement of the body size and wheel base.
But if the wheel base is enlarged more, the robot became
more difficult to rotate, especially with the relatively small
wheels which slow down the motion of the robot. This
causes the robot to get stuck easily — it oscillates forward
and backward with a little turning at a certain position, so
it is safe in most of the test cases. The typical behaviors of
case a and case b are shown in Figure 5.1 and Figure 5.2.

The other example we investigated is case c, whose per¬
formance is much better than cases d and e. After ex¬

amining their behaviors, we found that there are actually
two types of failure caused by certain kinds of robots which
bump the wall easily. The first is a robot with a large body,
small wheel base, and large wheels. A large body inevit¬
ably increases the bumping probability; the small wheel
base with large wheels makes the behavior of the robot un¬
stable: it is easy to turn at high speed. Consequently, it
often drove the robot to bump the wall suddenly. Figure
5.3 shows this situation.

The second is a robot with a large body, wide wheel
base, and large wheels. As in the first situation, a large
body increases the bumping probability for the robot but
the wide wheel base with large wheels, on the contrary,
drives the robot forward faster with small turning rate.
This results in the robot bumping the wall in most of the
test cases although it can detect the wall efficiently and
tries to move away from the wall. Figure 5.4 shows this
situation.

As we can observe, if the wheel base of the robot becomes
larger, failure of the first kind decreases, but failure of the
second kind increases. In case d, most of the failures are
because of the first situation but in case e most of the
failures belong to the second situation. Regarding the two
situations which cause the bumping behavior together, we
find case c happens to be the best case with a small number
failures for both situations. So its performance is better
than case d and case e.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a hybrid approach of
Genetic Programming and Genetic Algorithms to co-evolve
a reactive control program and its corresponding robot

.97)
(> IR 0.19 IR 0.97)
(> IR 0.21 IR 0.97))

I 0.60 IR 0.97))
IR 0.21))

.83))

Fig 7.7.2

SO 100 ISO

Fig 7.7.3 Fig 7.7.4

-60 0 50 100 ISO

Fig. 5. Some faults caused by the inappropriate brain-body couplings (see
text for explanation)

body to achieve the specific behavior. A boolean-tree has
been well-defined to represent a control program and the
determining structural parameters of a physical robot are
extracted and arranged as a linear string of real numbers
to represent a robot body. The GP part of the system
is used to evolve the tree-structure of a control program
and the GA part of the system is applied to determine the
string of the structural parameters. Experimental results
have shown the promise of the developed approach.

In addition, we have also analyzed the importance of ap¬
propriate brain-body coupling in designing a robot system.
The evolved controller is successful only performing in the
co-evolved robot body. This means, in the evolutionary
process, the robot body itself also plays an important role
because they both have adapted to the environment in or¬
der to achieve the task. For the simple tasks, a human
designer may be able to design a robot body according
to his prediction of the difficulty of the tasks, then design
(or evolve) the controller. But for more complicated tasks,
co-evolving controllers and morphologies for robot systems
may provide a potential alternative.

Some aspects of future work are important. First of all,
because our work is done in simulation, it is necessary to
build a real robot (Lego-like) and download the evolved
controller to it to observe the performance. Although there
are gaps between simulated and real worlds, research [7] has
shown that we could sample the real sensor data and the
robot motion in the real world to build a more realistic sim¬
ulator to develop evolutionary systems. Our future work
also involves integrating these considerations into our sim¬
ulator. Finally, since our experiment is focused on a certain
behavior, we can go on to consider more difficult behaviors.
Based on what we learned from this, we shall furthermore
see if we can successfully evolve more new combinations of
controllers and robot bodies for different tasks.

References

[1] S. B. Ackers. Binary Decision Diagrams. In IEEE
Transactions on Computers, C-27(6), p509-516, 1978.

[2] R. E. Bryant. Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams. In ACM Comput¬
ing Survey, 24(3), p293-318, 1992.

[3] R. A. Brooks. Artificial Life and Real Robots. In Pro¬
ceedings of the First European Conference on Artificial
Life, p3-10, 1991.

[4] D. Cliff, I. Harvey, P. Husbands. Explorations in Evolu¬
tionary Robotics. In Adaptive Behavior, 2(1), p71-104,
1993.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optim¬
ization, and Machine Learning, Addison-Wesley, Read¬
ing, MA, 1989.

[6] J. R. Koza. Genetic Programming: on the Program¬
ming of Computers by Means of Natural Selection, MIT
Press, 1992.

[7] O. Miglino, H. H. Lund, S. Nolfi. Evolving Mobile Ro¬
bots in Simulated and Real Environments. To appear
in Artificial Life, 1996.

[8] C. W. Reynolds. Evolution of Corridor Following Beha¬
vior in a Noisy World. In Proceedings of the Third In¬
ternational Conference on Simulation of Adaptive Be¬
havior, p402-410, 1994.

[9] K. Sims. Evolving 3D Morphology and Behavior by
Competition. In Proceedings of Artificial Life IV, p28-
39, 1994.

[10] R. Tanese. Distributed Genetic Algorithms. In Pro¬
ceedings of the Third International Conference on Ge¬
netic Algorithms, p434-439, 1989.

Applying Genetic Programming to Evolve Behavior Primitives and
Arbitrators for Mobile Robots

Wei-Po Lee John Hallam Henrik Hautop Lund
Department of Artificial Intelligence

University of Edinburgh
Edinburgh, U. K.

{weipol, john, henrikl}@dai.ed.ac.uk

Abstract— Behavior-based approach has been success¬
fully applied to design control systems of robots. This pa¬
per presents our work, based on evolutionary algorithms,
to program behavior-based robots automatically. Instead
of handcoding all the behavior controllers or evolving an
entire control system for an overall task, we suggest our
approach at the intermediate level: it includes evolving
behavior primitives and behavior arbitrators for a mo¬
bile robot to achieve the specified tasks. To examine the
developed approach, we evolve a control system for a
moderate complicated box-pushing task as an example.
We first evolved the controllers in simulation and then
transferred them to the Khepera miniature robot. Ex¬
perimental results show the promise of our approach and
the evolved controllers are transferred to the real robot
without loss of performance.

I. Introduction

Behavior-based design has become a main alternat¬
ive to traditional robot design nowadays. A number of
behavior-based robots have demonstrated the perform¬
ance of this approach [1; 16]. In general, a behavior-
based system can be considered as a behavior network
consisting of some behavior modules. To design such
a system is to design individual behavior modules first
and then design some kind of coordination mechanism
to manage the interaction between them. This approach
has been proven successful in that its robots can deliver
real-time performance in a dynamic world, by creating
tight coupling between perceptions and actions for each
behavior. However, increasing robot and task complex¬
ity makes the design difficult. Consequently, an auto¬
matic design process using artificial evolution is advoc¬
ated to synthesize the controllers.

Some researchers have used evolutionary algorithms
to evolve robot controllers in the forms of lisp-like pro¬

grams, neural networks, or classifier systems (i.e., [2][4],
see [12] and [5] for a brief survey). Unlike behavior-
based architectures, most of their work has no explicit
pre-defined modular structures for the control systems,
and they expect to create a comprehensive evolution¬
ary system to evolve a single overall control system for
a robot. The application tasks achieved in their work,
such as obstacle avoidance, exploration, light seeking,
are mostly too simple to promise that their work can be
scaled up to achieve other more difficult tasks.

In this paper, we present our approach at the inter¬

mediate level between handcoding a behavior-based sys¬
tem and evolving an overall control system. It takes
the behavior-based architecture as the control scheme
and evolves the individual components, including beha¬
vior primitives and behavior arbitrators, by employing
an evolutionary approach. This will take the advant¬
ages of both but mediate their disadvantages. In our
work, the controllers are defined at the logic level: a
controller is much like a boolean network, which uses
conditional structures (constructed on sensor informa¬
tion) to select appropriate motor commands or activate
a behavior primitive. A genetic programming system is
implemented to evolve this kind of boolean controller.

To prove our approach, we describe how we employ
it to undertake an application task, in which a robot
is required to push a box toward a specific position in¬
dicating by a light source. This task is fairly complex
compared to the ones achieved in previous Evolutionary
Robotics experiments. Due to the time-consuming char¬
acteristic of on-line evolution, we use the technique of
evolving control systems in simulation and then trans¬
ferring to a real robot. Experimental results show that
the robot can achieve the specified task reliably.

II. Real and Simulated Robots

The robot we used to test the evolved controllers is
the miniature mobile robot Khepera [14] (Fig.l). The
Khepera robot has a diameter of 55 mm, a height of 30
mm, and a weight of 70 g. Its two wheels are driven by
two DC motors with incremental encoder and they can
revolve forward and backward. The robot is equipped
with eight infra-red proximity sensors (which can serve
as ambient light sensors as well): six sensors are po¬
sitioned on the front and the other two on the back.
The sensors are numbered from 0 to 7 and the layout
of the arrangement of the sensors is illustrated in Fig.l.
The robot can be controlled by the host computer via
a cable or run the control program on its own control
chips. In the later experiments, the controllers evolved
from simulation are downloaded to the robot to test the

performance without the cable connection.

As mentioned previously, we use the approach of
evolving in simulation and testing on the real robot.
Some research work has shown that the gap between

simulated and real world can be bridged by sampling the
real world through the sensors and motors of the robot
itself to build the simulator, and the simulation time can
be reduced significantly by using the look-up tables con¬
structed from the sampled data of sensors and motors
[13; 15; 10]. In this work, we use this approach to build
the tables to record the responses of infra-red sensors
to a box, the responses of the ambient light sensors to
the 25 Watt light source, and the motion of the robot
at different commanded speeds. These tables are then
used in simulation to evolve the control systems.

X# n ss
/ SI S4 \

f^SO S&\

,!□ □!,

Fig. 1. The Khepera robot and its sensor arrangement. In the right
figure, a sensor Si can be an infra-red or an ambient light sensor.

III. Evolving Control Systems

A. Control Architecture

Like the general behavior-based system, the architec¬
ture of our control system includes a set of behavior
primitives and the behavior arbitrators to coordinate
them. However, unlike the subsumption architecture
[1], for instance, we do not hardwire a priority network
in advance. A behavior arbitrator in our control system
is treated as a reactive controller: it has the same struc¬
ture as the primitives and the only difference is that the
output of a primitive is used to control the motors and
the output of an arbitrator is used to activate a beha¬
vior primitive. Thus, similar to reactive planners [3],
the arbitrators allow the binding between environment
conditions and activations of lower level behaviors hap¬
pening at the run time. This offers adaptiveness not
only at the lower level sensor-motor control but also at
the behavior level. Fig.2 illustrates the general archi¬
tecture of our control systems.

B. The Application Task
To prove the developed approach, we use it to achieve

amoderately difficult box-pushing task, which is to push
a box toward a goal position indicated by a light source.
There have been different versions of box-pushing tasks
accomplished by reinforcement learning [11] and genetic
programming [7]. However, those tasks are simpler than
ours because their robots are only required to push a
box toward any wall, which can be done without any

a (Arbitrator)

^Primitive) Arbitrator)
Primitive) Primitive)

Fig. 2. The general architecture of a control system. S and A repres¬
ent the sensors and actuators needed for a certain control work.

deliberate strategy.

This task is difficult for several reasons. Since the ro¬

bot only contacts the box at a point while pushing it,
the box will tend to slide and rotate unpredictably when
the pushing force exerted by the robot is not straight
through the center of the box. Thus the robot has to

adjust its position occasionally in order to keep pushing
the box forward. Furthermore, as there is no restriction
on the initial relative positions of the robot and the box,
the robot needs to move to a proper position deliber¬
ately to push a box to satisfy the final goal. In learning
such a task by a monolithic kinds of reactive controller,
some failure could happen often: for instance, the ro¬
bot keeps pushing a box but away from the light, or the
robot itself moves toward the light without pushing the
box.

To accomplish this task, we decomposed it into two
other subtasks, box-pushing and box-side-circling. The
goal of box-pushing is to keep the robot pushing a box
forward, while the goal of box-side-circling is to require
the robot moving along the side of a box. Each of them
is controlled by a separate behavior primitive. In ad¬
dition, a behavior arbitrator is involved to arrange the
executing sequence of the behavior primitives. A genetic
programming system is implemented to evolve both be¬
havior primitives and arbitrators.

C. The Genetic System
The main evolutionary flow in this work is similar to

the typical evolutionary approach. Given an environ¬
ment and a goal formulated as a fitness function, an
initial population is generated at random. After evalu¬
ating each individual, a certain selection scheme is used
to choose parent individuals and some genetic operators
are applied on them to create children individuals. In
our implementation, the tournament selection scheme is
used.

Three genetic operators, reproduction, crossover,
and mutation, are applied to create a new generation.
Because there are some constrained syntactic structures
defined in this work, the crossover and mutation oper¬
ations must be constrained, as explained in [8], to pre-

serve the required structures.

In order to maintain the diversity and reduce the com¬
putation cost, an island model ([17]) gp system is im¬
plemented. Instead of using a single large population,
it involves many small subpopulations, with an occa¬
sional exchange of useful information among the sub-
populations. The migration policy used in this work is
to copy a certain percentage of the best individuals in
each subpopulation to substitute the same number of
worst individuals in its neighbor subpopulations after a
specified migration interval.

C.l Representation

In our genetic system, the controller is reactive and is
considered as a combinational logic system in which the
output is determined completely by the current input
states at each time step. In general, three types of non¬
terminals, the dummy root node, the logic components
and the comparator, are defined for evolving the control¬
lers. For the convenience of manipulating a gp system,
a dummy root node is defined to connect some subtrees;
the logic components are defined to constitute the main
frame of the subtrees; and the comparator is defined to
construct sensor conditionals which are described in the
section below. The output of these subtrees are inter¬
preted as actuator commands if a controller represents a
behavior primitive, or used to activate other controllers
if it is a behavior arbitrator.

According to our program design, structured sensor-
conditionals involve comparing the values from different
sensors or comparing the sensor values to the numer¬
ical values as thresholds. Sensors and thresholds, which
are between 0 and 1 inclusive, are defined as terminals
in our gp system. Depending on the characteristics of
the specific tasks, different kinds of sensors are required
and defined for evolving different behavioral modules.
In general, a sensor terminal is defined to be associated
with a value between 0 and 1 which indicates the angle
between the direction in which the sensor is pointing
and the robot's heading. Thus, whenever a sensor ter¬
minal is evaluated, the normalized sensor information,
in the direction indicated by the value associated with
it, is returned. For instance, a sensor terminal with a
value 0.5 will return the converted sensor information
in the direction 0.5 revolution (180 degrees) relative the
robot's heading. In this way, the sensor positions and
directions can be co-evolved with the controllers. The
details are described in our previous research work [8].
In this work, we intend to use a fixed structure robot to
verify our approach, so the sensors are fixed and named
as SO to S7. The sensor arrangement is shown in Fig.l.

Thus, a structured sensor-conditional in this work is
defined as a constrained syntactic structure x >= y,

where x, y can be any terminal. The logic components
then play the roles of mapping the structured sensor
information into appropriate output. The aspect of a
typical controller is illustrated in Fig.3.

Fig. 3. The aspect of a typical controller. In this figure, N1, N2, N3
represent the three types of non-terminals, root-node, logic compon¬
ents, and comparator, respectively. The terminal T can be a normal¬
ized sensor response or a threshold between 0 and 1 inclusive.

C.2 Terminals and Non-terminals

As described earlier, there are three controllers, two
behavior primitive and one arbitrator, involved in the
application task. To apply a gp system to evolve
these controllers, we need to define terminals and non¬
terminals for each of them. For both primitives, we
defined infra-red sensor ir as the sensor terminal to

provide distal information for the robot to locate the
position of the box. In addition, numerical values are
defined as the other kind of terminal, to be used as
thresholds. For the behavior arbitrator here, both infra¬
red sensor ir and ambient light sensor ldr are defined
as terminals to provide the perception clues of box and
the target position. As in other controllers, numerical
values are also defined as terminals to be the thresholds.

In our work, different control tasks need different
kinds of sensor terminals but they use the same non¬
terminals. The non-terminals for evolving all the prim¬
itives and arbitrators are defined to include the root

node prog, the logic components and, or, not, xor,
and the comparator >=.

IV. Experiments and Results

In order to evolve a robust controller, we train a con¬
troller in multiple trials. For each task, we defined a

training set of cases which are sampled randomly at
each generation for training the controllers during the
run. The best individual appearing in the last genera¬
tion is designated as the final solution.

To evaluate a controller is to execute this controller
for a given number of time steps and to measure its per¬
formance by certain criteria (fitness function). The ac¬
cumulated fitness of a controller during the given time
steps represents its performance. In the following ex-

periments, a fitness function is defined as a penalizing
function which needs to be minimized. The rest of this
section describes the evaluation criteria for each control
work and presents the results.

A. Evolving Primitive Box-Pushing
Box-pushing is to keep a robot pushing a box as

straight as possible. It can be described as to keep the
activation value of its front IE sensor high; the robot
moving forward; and the speed difference of two motors
low. The pressure from keeping the front distal sensor
with high activation value will reinforce the robot to ap¬

proach and face a box, and the pressure from keeping
robot moving forward with low speed difference is to
encourage the robot move straight and prevent it from
getting stuck in front of a box. The combination of the
these can lead a pushing forward behavior. The fitness
function for a controller C is defined as:

T

/(C) = y^a* (1 - s(t)) + /3 * (1 - v(t)) + 7* w(t)
t=l

in which s(t) is the average of normalized sensor ac¬
tivations of the front sensors IRH and IR3; v(t) is the
normalized forward speed; and the w(t) is the normal¬
ized speed difference of two motors at each time step
t.

Since this controller is a primitive, the output is
grouped as two sets and converted to motor commands
to drive two motors: the first three and the second three
subtrees are decoded as motor commands for left and

right motor, respectively. In our experiments, each mo¬
tor command lasted 200 ms for both simulated and real
robots.

For a certain run, two populations of 50 individuals
were used and each individual was evaluated for 150
time steps. The evolution process lasted 50 generations
and the best individual appearing in the last generation
is:

(PROG
(OR (>= 0.13 IR0)(>= 0.13 IR0))
(>= IR1 IR1)
(XOR (>= IRS IR7)(OR (>- 0.13 IR0)(>= 0,13 IR0)))
(>= IR1 0.36)
(>= IR1 IR1)
(XOR (>= 0.13 IR0)(>= IR2 0.13)))

After evolving in simulation, we transferred the above
evolved controller to the Khepera robot. Fig.4 shows
the typical behaviors of the simulated (left) and real
(right) robots. This controller was tested many times
on the real robot and each time it started from an ar¬

bitrary position and heading, in which it can sense the
box. It always generated consistent behavior which is to
turn to face the box and then to approach and push it.

Although the robot did not contact and push the box
exactly at the point of front center, it did achieve the
goal reliably: continuously pushing the box forward.

p
//....1
1

L : ;
\\
dS_
wD

200 300 400 500 90 100 110 120

Fig. 4. The trajectories of simulated (left) and real (right) robots in
pushing a box (the darker circles represent the robots). The figure for
real robot is conducted by setting LEDs on the tops of the robot and
box and using a video tracking system [9] to record their trajectories
(©W.-P. Lee, J. Hallam, H. H. Lund, 1997).

B. Evolving Primitive Box-Side-Circling
Box-side-circling is to keep a robot moving forward

and circling along the sides of a box. To prevent itself
from touching the box too often, the robot is encouraged
to keep a certain distance away from the box while circ¬
ling the box. The evaluating criteria are described as to
keep the robot's speed positive and the sensor iRl with
a certain activation value. The fitness function is then
defined as:

T

no) = d« * abs(s(t) — k) + /? * (1 — v(t))
t=l

where abs is a function which gives the absolute value
of it argument; s(t) is a normalized activation value of
the specific sensor; A; is a pre-defined constant indicating
the distance between a robot and the box, in terms of
the normalized sensor range; and v is the forward speed
of a robot.

As in the box-pushing control work, this controller is
a primitive and the output is interpreted exactly the
same as the box-pushing primitive. In this experiment,
two populations of 50 individuals were used. Each indi¬
vidual was evaluated 150 time steps and the number of
generations was 50. The resulting controller is:

(PROG
(NOT (>= IRS IRl))
(>= IRl 0.78)
(OR (>= IR5 IR1)(>= IRS IRS))
(OR (>= 0.32 IR3)(>= IR5 IR^))
(>= IR^ IRS)
(OR (>= IR5 IRi)(>= IRS IR3)))

Fig.5 shows the typical behaviors of the simulated and
real robots. We tested this evolved controller several

times by putting the real robot around the box with an
arbitrary heading each time. In all the tests, the robot
showed similar behavior: it performed turning until the
specific sensor IRJ faced the box and then moved along
the side of the box. Prom the testing results, we can
see that the robot has been able to achieve the specified
goal and generate reliable behavior.

&09

600 600 700 BOO

/"TV
0

Fig. 5. The behaviors of simulated (left) and real (right) robots (©W.-
P. Lee, J. Hallam, H. H. Lund, 1997).

C. Evolving the Behavior Arbitrator
Having evolved the first two controllers box-push and

box-side-circling, we then evolve the third controller
serving as the decision-making mechanism to manage
the first two controllers to achieve the task of pushing
a box toward a light source.

To achieve this goal, the robot needs both infra-red
sensors and ambient light sensors to detect the box and
the light, and the latter must be higher than the box
to be able to receive the light in the case that the box
is between the robot and the light. However, in the
original design of the Khepera robot, there is no physical
distinction between infra-red and ambient light sensors:
the eight sensors equipped on the robot serve as both.
We are currently duplicating the eight sensors on the
top of our Khepera robot to test the evolved arbitrator.
The results presented here are from the simulation. In
the simulation, the look-up table of the light response
is constructed from the existing sensors and we assume
that, in addition, there are equivalent sensors on top of
the simulated robot to respond to the light.

In this experiment, the box was placed 22 cm away
from the light, which was masked by wrapping a piece of
paper around it and placed 11 cm above the area. The
robot is expected to push the box as close as possible
to the center of the area brightened by the light. The
fitness function is defined as:

/(C) = X>6,*C0
t=1

in which Dbii(t) represents the distance between the box
and the light source at each time step t.

This controller is a behavior arbitrator and its single

output is used to activate one of the above evolved prim¬
itives at each time step, according to the environment
conditions. For a single run, 4 populations of 40 indi¬
viduals were used and each individual was trained to

act 600 time steps. The evolved controller is:

(prog
(or (or (>= 0.62 ldr5))(or (or (>= irs ldr3)(>= 0.62
ldr7)) (and (>= ldrg ldr7)(>= ldr3 ldr7)))) (and
(>= ldr3 ldr7)(or (or (or (>= ldr5 ldr3)(>= ldr3
0.62)) (>=ir6ldr7))(and (not (>= ir6 ldr^))(>= ldr3
ldr7))))))

Fig.6 illustrates the typical behavior of the simulated
robot. The arbitrator first activated the primitive box-
side-circling to move along the side of a box to an ap¬
propriate position in which the box was between the
light and the robot itself. It then switched to the other
primitive, box-pushing, to push the box forward. The
box-side-circling behavior was activated again if the ro¬
bot's path was deviated. From Fig.6, we can see that the
box was pushed to almost the center of the bright area
and the robot continuously performed box-side-circling
primitive to prevent pushing the box away from the
light, after the box was pushed to the target position.

» A
V.

r
j ;

dV
CJ

Mj , n

Fig. 6. The behavior sequence of the robot: (1) The initial positions
of the robot, the box and the light; (2) the robot moved along the
side of the box; (3) pushing the box forward; (4) circling again to an
appropriate position; (5) pushing the box again to the goal position;
(6) continuously circling after the box has been pushed to the goal
position (©W.-P. Lee, J. Hallam, H. H. Lund, 1997).

V. Conclusion and Future Work

In this paper, we have presented our approach in ap¬

plying evolutionary techniques to evolve the control sys¬
tem for a simulated robot and then transferred evolved
controllers to a real robot. Instead of hand-coding all
of the individual components needed in a general beha¬
vior system or evolving the whole control system for an
overall task, we propose to take the control architecture
of a behavior-based system and construct the behavior
primitives and arbitrators by the use of an evolutionary

approach. To assess the performance of the developed
approach, we have evolved a control system to achieve
an application task of box-pushing as an example. Ex¬
perimental results show the promise and efficiency of
the presented approach.

By employing the evolutionary approach, our work
shows a way to aid the design of a behavior-based robot,
including automatically programming all the individual
behavior controllers and dealing with the selection prob¬
lem among these behavior controllers. Since the control
architecture in our work is arranged to be similar to
that of behavior-based robots, the resulting control sys¬
tem therefore inherits the characteristic of the behavior-
based robots: it delivers real-time performance.

As far as applying an evolutionary approach is con¬
cerned, our approach also has several potential advant¬
ages. First of all, owing to the separate design of be¬
havior primitives and arbitrators, the goal of each task
is relatively simple. This means that designing a fit¬
ness function for such a task is not as difficult as gen¬
erally thought. Secondly, since each individual control¬
ler involves fewer inputs and outputs, one can apply a

simple evolutionary system to evolve a robust controller
without too much effort. For example, in the applica¬
tion task achieved in this paper, the evolutionary system
can converge to a stable and sufficient solution within
only 30 generations. Thirdly, our controllers only in¬
volve logical operators, such as AND OR NOT, that are
very simple to evaluate. This means that our approach
is computationally cheap; especially, in the cases that
the first argument of a AND is false, or the first argu¬
ment of a OR is true, there is no need to evaluate the
other argument. Finally, because our controllers are
constituted of very basic logic components, they can be
easily compiled to custom hardware such as FPGAs to
speed up the evaluation in controlling a robot.

Some further research work is currently in progress.
The first is the construction of new sensors on the real
robot to test the behavior arbitrator. Another is to in¬

vestigate whether this approach can be applied to evolve
control systems for even more complicated tasks.

Acknowledgements .

Henrik Hautop Lund is supported by EPSRC grant
nr. GR/K 78942 and The Danish National Research
Councils. Facilities provided by University of Edin¬
burgh.

References

[1] R. A. Brooks. A Robust Layered Control System
for a Mobile Robot. In IEEE Journal of Robots and
Automation, vol RA-2(1), pp.14-23, 1986.

[2] D. Cliff, I. Harvey, and P. Husbands. Explorations in
Evolutionary Robotics. Adaptive Behavior, 2(1):73-
110, 1993.

[3] R. J. Firby. Task Networks for Controlling Continu¬
ous Processes. In Proceedings of the Second Interna¬
tional Conference on AI Planning Systems, 1994.

[4] D. Floreano and F. Mondada. Automatic Creation
of an Autonomous Agent: Genetic Evolution of a
Neural-Network Driven Robot. In From Animals
to Animats 3: Proceedings of the Third Interna¬
tional Conference on Simulation of Adaptive Beha¬
vior, pp.421-430. 1994.

[5] T. Gomi, A. Griffith. Evolutionary Robotics - An
Overview. In Proceedings of IEEE International
Conference on Evolutionary Computation, 1996.

[6] J. R. Koza. Genetic Programming: on the Program¬
ming of Computers by Means of Natural Selection,
MIT Press, 1992.

[7] J. R. Koza, J. P. Rice. Automatic Programming of
Robots using Genetic Programming. In Proceedings
of AAAI-92, pp.194-201, 1992.

[8] W.-P. Lee, J. Hallam, H. H. Lund. A Hybrid GP/GA
Approach for Co-evolving Controllers and Robot
Bodies to Achieve Fitness-Specified Tasks. In Pro¬
ceedings of IEEE International Conference on Evol¬
utionary Computation, 1996.

[9] H. H. Lund, E. V. Cuenca, J. Hallam. A Simple
Real-Time Mobile Robot Tracking System. Research
Paper no.41, Department of Artificial Intelligence,
University of Edinburgh, 1996.

[10] H. H. Lund and J. Hallam. Evolving Sufficient Ro¬
bot Controllers. In this volumn.

[11] S. Mahadevan, J. Connell. Automatic Program¬
ming of Behavior Based Robots Using Reinforce¬
ment Learning. In Proceedings of AAAI-91, 1991.

[12] M. Mataric, D. Cliff. Challenges in Evolving
Controllers for Physical Robots. In Robotics and
Autonomous Systems, 19(1): 67-83, 1996.

[13] O. Miglino, H. H. Lund, S. Nolfi. Evolving Mobile
Robots in Simulated and Real Environments. In Ar¬

tificial Life, 2(4), 1996.
[14] F. Mondada, E. Franzi, P. Ienne. Mobile Robot

Miniaturation: A Tool for Investigation in Control
Algorithms. In Proceedings of the Third Interna¬
tional Symposium on Experimental Robotics, 1993.

[15] S. Nolfi, D. Floreano, O. Miglino and F. Mondada.
How to Evolve Autonomous Robots: Different Ap¬
proaches in Evolutionary Robotics. In Proceedings
of Artificial Life IV, pp.190-197. 1994.

[16] L. Steels. Building Agents out of Autonomous Be¬
havior Systems. In The Artificial Life Route to Ar¬
tificial Intelligence. L. Steels and R. Brooks (eds),
1993.

[17] R. Tanese, Distributed Genetic Algorithms. In Pro¬
ceedings of the Third International Conference on
Genetic Algorithms, pp.434-439. 1989.

Evolving Robot Morphology
Henrik Hautop Lund John Hallam Wei-Po Lee

Department of Artificial Intelligence
University of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, Scotland, UK

henrikl@dai.ed.ac.uk john@dai.ed.ac.uk weipol@dai.ed.ac.uk
http: //www.dai.ed.ac.uk/staff/Henrik_Lund.html

Abstract—True evolvable hardware should evolve whole
hardware structures. In robotics, it is not enough only
to evolve the control circuit — the performance of the
control circuit is dependent on other hardware parame¬
ters, the robot body plan, which might include body size,
wheel radius, motor time constant, sensors, etc. Both
control circuit and body plan co-evolve in true evolvable
hardware. By including the robot body plan in the geno¬
type as a kind of Hox gene, we co-evolve task-fulfilling
behaviors and body plans, and we study the distribution
of body parameters in the morphological space. Fur¬
ther, we have developed a new hardware module for the
Khepera robot, namely ears with programmable ampli¬
fiers, synthesizers, and mixers, that allow us to study
true evolvable hardware by modelling the evolution of
auditory sensor morphology.

I. True Evolvable Hardware.

The concept of evolvable hardware (EHW) or evol-
ware has mainly been interpreted as reconfiguring Field
Programmable Gate Arrays (FPGA) by using genetic
learning to adapt the circuit architecture to new un¬
known environments [9; 10; 18; 23; 25]. However, we
will argue that true evolvable hardware should be in¬
terpreted as hardware, where not only the primitive
gates (e.g. AND, OR gates) or high-level functions (e.g.
adder, subtracter, sine generator) of a FPGA are evolv¬
able, but the whole physical morphology is evolvable.
Generally, EHW should refer to hardware that can

change its architecture and behavior dynamically and
autonomously with its environment: "EHW should be
regarded as an evolutionary approach to behavior de¬
sign rather than hardware design" [27]. Therefore,
EHW should include the whole architecture of an inte¬

grated system and not only the circuit, especially when
we are interested in the development of complete au¬
tonomous systems. The motivation for developing com¬
plete autonomous systems has been outlined by Mal¬
colm, Smithers and Hallam [16], and we agree with
Pfeifer [20] that complete autonomous systems should
be autonomous, self-sufficient, embodied, and situated.
Hence, the design of such a system must include self-
organisation, and self-organisation means adaptation of
both morphology and control architecture.
However, the EHW community has looked only at adap¬
tation of control architectures, for example through the

°Invited Paper. In Proceedings of IEEE Fourth International
Conference on Evolutionary Computation, IEEE Press, NJ, 1997.

evolution of FPGAs. Let us, for instance, look at EHW
for robot control, as suggested by Thompson [25]. In
this case, traditionally, one would interpret the EHW
as being the reconfigurable (evolvable) circuit, on which
one can evolve a task-fulfilling robot controller for a
specific task. Hence, one would evolve the architecture
of the control circuit. As identified by Thompson, this
might give some advantages over evolution of controllers
on fixed hardware. On fixed hardware, the evolved con¬
trol system will be implemented as a software simulation
of a specific hardware configuration. Such a software
simulation will likely slow down the processing speed.
Secondly, by giving evolution control over the recon¬

figurable hardware, one might obtain controllers that
exploit the reconfigurable circuit extensively by using
designs that are traditionally prohibited by engineers,
or by exploiting defects in the circuit. However, the cir¬
cuit architecture is only a part of the hardware system,
and ideally we would like to evolve the whole system.
The hardware of a robot consists of both the circuit, on
which the control system is implemented, and the sen¬

sors, motors, and physical structure of the robot.
True EHW should evolve the whole hardware system,
since the evolution and performance of the electronic
hardware is largely dependent on the other parts of the
hardware that constitute the system. We call the lat¬
ter part the robot body plan. A robot body plan is
a specification of the body parameters. For a mobile
robot, it might be types, number and position of sen¬
sors, body size, wheel radius, wheel base, and motor
time constant. With one specific motor time constant,
the ideal control circuit should evolve to a different con¬
trol than with another motor time constant; different
sensors demand different control mechanisms; and so
forth. Further, the robot body plan should adapt to
the task that we want the evolved robot to solve. An
obstacle avoidance behavior might be obtained with a
small body size, while a large body size might be ad¬
vantageous in a box-pushing experiment; a small wheel
base might be desirable for a fast-turning robot, while
a large wheel base is preferable when we want to evolve
a robot with a slow turning; and so forth. Hence, the
performance of an evolved hardware circuit is decided
by the other hardware parameters. When these param¬
eters are fixed, the circuit is evolved to adapt to those

fixed parameters that, however, might be inappropriate
for the given task. Therefore, in true EHW, all hard¬
ware parameters should co-evolve.

II. Biological Background.

A brain does not do much without a body, while a
body cannot do much without a brain to control it.
Brains and bodies have co-evolved and fit almost per¬
fectly to each other. A human brain would not be
much help to a parrot, and an elephant brain would
not be appropriate to control a human body. The fact
that the body largely determines the performance of
the brain (or rather the control mechanism) has previ¬
ously been ignored by the research communities study¬
ing evolutionary computation, artificial life, robotics,
and adaptive behavior, where research has been on

evolving/developing adaptive control systems for agents
with a fixed structure. The normal practice has been
that if one were to test hypotheses in a real agent in
the real world, then one would buy a robot with a pre¬
defined structure (i.e. pre-defined sensors, motors, size,
etc.), or, in some cases, build one's own robot, but then
with a fixed non-reconfigurable body plan.
However, the biological facts about the evolution of
body plans should appeal to these researchers. Na¬
ture tells us that body plans evolve, and the biologi¬
cal data suggest that body plans of all animals, from
fruit flies to elephants, are controlled by the same kinds
of genes, namely the Hox genes [2]. The first multi¬
cellular animals' body plans are believed to have been
largely the work of a primitive set of Hox genes (Antp-
like genes) and descendants of these genes have been
sculpting the body plans of animals ever since. When
changing Hox genes inside embryos, cells may change
and, for instance, limbs might grow in the wrong place.
For example, genetic experiments with homeotic genes
in mice have demonstrated that Hox genes are in part
responsible for the specification of segmental identity
along the anterior-posterior axis, and it has been pro¬
posed that an axial Hox code determines the morphol¬
ogy of individual vertebrae [11], and Hoxa-1 and Hoxa-2
have been shown to play a critical role in head develop¬
ment in both mice and Drosophila [5],
Further, there exist both biological data and philosoph¬
ical reflections that suggest that some biological forms
are impossible in the morphological space [4; 21]. Differ¬
ent species are clustered together in the morphological
space with a long distance e.g. from insects to mam¬
mals, and we agree with Emmeche [4] that there is no
direct jump from one cluster to another (see Fig. 1).
The displacement in the morphological space is a long
evolutionary process that is largely based on exaptations
and pre-adaptations [7; 8; 15].

Insects

Birds

Mammals
I

Fig. 1. The morphological space in which natural forms are clustered
together. The three axes are morphological parameters. Modified
from [4].

III. Evolving Robot Body Plans.

Impossible regions in the morphological space are not
considered in Sims work [22], where he co-evolves mor¬
phologies in simulation. Hence, that approach might
fail in real robots, since also the possibilities in the
robot morphological space are limited. A more fruitful
approach should combine our knowledge about robots
with genetics.
The biological facts about Hox genes suggest that the
evolution of body plans can be modelled by having
parts of a genetic string to express growth of different
body parts. The idea of a developmental morphogenetic
model has been investigated in simulation, e.g. [1; 3],
but only in order to develop the neuronal structure and
not the physical structure of an agent. Spirov [24] has
investigated the pattern-form interplay in a model of the
early development of sea urchin. However, this simula¬
tion work does not give us indications of how to evolve
real hardware structures.

Our first approach toward evolving robot body plans
uses a simple direct encoding from gene to physical ex¬
pression, since our immediate goal is to show the validity
of evolving hardware structures rather than the validity
of a developmental model. The genotype of a robot ex¬
presses a tree structure that is used as controller (and
determines the number of sensors and their position)
and a list of real numbers that determines the robot

body plan (i.e. body size, wheel base, wheel radius,
motor time constant). Hence, we co-evolve robot con¬
trollers (the traditional EHW) and robot body plans.
By using an evolutionary algorithm (in our case, we use
genetic programming to evolve the controller and a ge¬
netic algorithm to evolve the body parameters), we can
evolve robots that adapt to specific tasks, as shown in
[12]. This is done in a carefully made robot simulator,
and as shown in [14; 17], simple robot behaviors can
be transferred from a carefully made robot simulator to
reality with little difficulty. With this technique, we are

currently building a simulator for LEGO robots that will

allow us to co-evolve controllers and body plans in sim¬
ulation before constructing and re-building the LEGO
robots according to the evolved body plans.
When co-evolving robot controller and body, we can in¬
terpret the dimensions of the morphological space as be¬
ing sensor number and position, body size, wheel base,
wheel radius, and motor time constant. For a specific
task, we can then analyze how the evolved robots clus¬
ter in specific regions of the morphological space. For
practical reasons, we map only two dimensions here.
Figure 2 shows the distribution of body size and wheel

30

28

26

24

22

S.20
~u

£
18

16

14

12

10
0 5 10 15 20 25 30

wheel base

Fig. 2. Two dimensions of the robot morphological space. The plots
are of the best robots from a number of evolutionary runs. There is
an almost linear relationship between robot body size and wheel base
in the robots that are evolved to perform obstacle avoidance tasks.

30

28

26

24

22

N

>.20
"O
o
J3

18

16

14

12

10
0 5 10 15 20 25 30

wheel base

Fig. 3. The relationship between robot body size and wheel base for
robots with double sensor range. The relationship is still linear, but
the body size and wheel base can become larger, since the robots sense
an obstacle further away and have more time steps to react.

base in the morphological space of a number of robots
evolved to perform an obstacle avoidance task. We ob¬
serve that relative small body sizes seem to be the most
fit for this task and that there is an almost linear rela¬
tionship between body size and wheel base (the correla¬
tion coefficient is 0.8694). These results explain that a
small size robot is better at performing obstacle avoid¬
ance, and the body-size wheel base reduces the turning

rate in order to keep the robot moving stably. Fur¬
ther,when increasing the sensor range, as in Fig. 3, the
correlation between the wheel base and body size main¬
tains approximately linearity, but the range of coverage
of the evolved wheel base and body size becomes wider.
This is due to the fact that the robots can sense obsta¬
cles further away, and therefore have more time to react
(e.g., to turn). Hence, a larger body and a larger wheel
base that means more time steps to turn the robot can
evolve. In other words, the upper limit of the size and
base of a robot is constrained by the sensor range.

IV. Evolving Auditory Sensor Morphology.

We have developed a new piece of hardware for the
Khepera roboti [19], namely ears (see Fig. 4). This
hardware is reconfigurable, and will allow us to study
the co-evolution of controller and ears morphology.
As an example consider the cricket. The male cricket

Fig. 4. The Khepera robot with ears. The ears have programmable
amplifiers, synthesizers, and mixers.

produces a species-specific song by rubbing his wings to¬
gether, and the female is able to locate males generating
her conspecific song by phonotaxis. The morphology of
the cricket's auditory apparatus is crucial to the suc¬
cessful performance of this skill.
The female cricket has four auditory openings: an ear

(tympanum) located on each upper foreleg, and an audi¬
tory spiricle (or hole) on each side of the frontal section

of her body. The four are linked internally by means
of tracheal tubes. Sound reaches the tympani directly
through the air and, after propagation through the in¬
ternal tubes, from the other auditory openings. The
sound transduced from each tympanum by the cricket's
auditory receptors is thus a combination of delayed and
filtered signals from the other tympanum and the spir-
icles arriving at the back of the tympanum with the
direct sound arriving at its outer face.
The delays and filtering performed by the auditory mor¬
phology improve the cricket's ability to discriminate the
arrival direction of the conspecific song since the phased
combination of sounds from the different sources induces
a strong directional sensitivity into the response of each
tympanum. Essentially, sounds arriving from the same
side as the tympanum are delayed by the internal struc¬
tures to arrive in anti-phase with respect to the direct
path at the ipsilateral ear and in phase at the contralat¬
eral ear. Since the sounds arriving by the two paths are
subtracted (being on opposite sides of the tympanum),
the stimulus intensity at the ipsilateral ear is enhanced
while at the contralateral ear it is diminished.
In the cricket, the delays and filter characteristics of
the internal auditory structures are species-specific. To
model the auditory morphology of the cricket, we have
built an electronic emulation of some of these charac¬
teristics (see Fig. 5). Sound is collected by two or
four microphones whose spacing is carefully controlled.
After amplification and initial filtering three delayed
copies of the sound are generated with programmable
relative delays, which are then scaled and added to¬
gether to construct a tympanal response. The intensity
of the resultant signal is transduced using an analogue-
to-digital conversion system for use by the control pro¬
gram. This hardware allows us to approximate the au¬
ditory morphology of various crickets by adjusting the
programmable delays and the summing gains. It is not
a perfect emulation of the insect, however: two pro¬

grammed delays allow us to sum signals from each tym¬
panum and both spiricles, but not from all auditory
openings; and the summation system allows us to pro¬
gram relative gains, but not frequency dependent gains.
Nevertheless, the emulation circuitry is able to model

a variety of specialised morphology auditory systems,
and allows us to investigate the relationship between
the auditory morphology, the conspecific song, and the
internal control system that generates the phonotaxis
behaviour shown by the female cricket in response to
the call of a mate. One possible investigation is then
to co-evolve controller and auditory morphology to give
good phonotaxis to a specific song while giving good
discrimination between different kinds of songs.
As a test of the reconfigurable hardware, we look at
fixed amplifications, delays, scaling, and adding (i.e. we
model a specific morphology (of Gryllus bimaculatus)).
With these fixed parameters, we can verify that the

Fig. 5. Simplified diagram of the ears circuit. When sound arrives
at each microphone (the analogue of the cricket's tympanum), the re¬
ceived signal is pre-amplified. The signal is then sent with a 'through
delay' to the mixer at the same side, and with a 'cross delay' to the
mixer at the opposite side. The mixed signal is sent through an RMS
and an A/D converter to one of the Khepera's input channels. The
same happens on the opposite side.

hardware works as intended. We do so by designing a
control system that models the female cricket's control
mechanism, and by emitting recordings of male cricket
song from a loud speaker. We would then expect the
robot to navigate toward the loud speaker.
Figure 6 shows the result of five such runs where we

\ \
\ \
\ V\ \
\
\ \
X'

J ;

\—j

Fig. 6. The trajectories of the Khepera robot with ears parameters set
as in Gryllus bimaculatus, and with male song from the same species
being emitted from the loud speaker at the bottom. Data are collected
by putting a LED on the robot and then using a video-tracking system
[13].The robot hits the speaker, but the shown trajectories stop before,
because the LED is placed in the center of the robot.

have modelled the control mechanism and the ears mor¬

phology of the female cricket Gryllus bimaculatus, and
used recordings of the male Gryllus bimaculatus. In this
case, the robot navigates toward the male song emit¬
ted from the loud speaker. Initially, there is no sound
present, and the robot moves forward in a straight line.
When we start to emit the cricket male song from the
loud speaker, the robot will turn and move toward the
loud speaker. The result is significantly different from
our previous results with a LEGO robot prototype in
that we are now able to use real cricket songs where we

previously had to use computerized songs with syllables
much longer than in the real cricket song, though we

expect to be able to demonstrate the same statistical
properties of the robot behavior relative to the cricket
as we have done for the LEGO robot version [26].

V. Conclusion and Future Work.

We have outlined here the framework under which
one can investigate the co-evolution of reconfigurable
control systems and reconfigurable body plans. It is our
view, that, at least in robotics, the concept of evolvable
hardware should be extended to include the robot body
plan, since the evolution of the circuit architecture is
highly dependent on the specific body plan. Analyses
of the robot morphological space tell us that some body
plans are impossible or impracticable, so evolved control
circuits might fail if this is not taken into consideration.
It might be difficult to imagine how to obtain recon¬

figurable robot body plans, yet LEGO robots are one

possibility. We are currently designing a LEGO robot
simulator that allows us to co-evolve LEGO robot brains
and bodies before assembling a LEGO robot accord¬
ingly and down-loading the control system. Fukuda [6]
has also suggested a Cellular Robotic System that con¬
sists of many robotics units that can be reconfigured
depending on given tasks and environments. Another
possibility is to use devices similar to the ears that we
have developed for the Khepera robot. These do indeed
allow on-line reconfiguration, and we can use them to
study the co-evolution of controller, song, and morphol¬
ogy.

Acknowledgements .

Henrik Hautop Lund is supported by EPSRC grant
nr. GR/K 78942 and The Danish National Research
Councils. Robotic experiments in cricket phonotaxis is a
collaboration with Barbara Webb, and the development
of the ears circuit has been done together with Andrew
Haston.

References

[1] A. Cangelosi, D. Parisi, and S. Nolfi. Cell division
and migration in a 'genotype' for neural networks.
Network, 5:497-515, 1994.

[2] S. Day. Invasion of the shapechangers. New Scien¬
tist, (2001):30-35, 1995.

[3] F. Dellaert and R. D. Beer. Toward an evolvable
model of development for autonomous agent syn¬
thesis. In R. Brooks and P. Maes, editors, Pro¬
ceedings ofALIFEIV, Cambridge, MA, 1994. MIT
Press.

[4] C. Emmeche. Mine molekyler vil frikende mig. Un¬
published manuscript, Niels Bohr Institute, 1996.
http: //connect .nbi.dk/ "emmeche/emmeche.html.

[5] M. Frasch, X. Chen, and T. Lufkin. Evolutionary-
conserved enhancers direct region-specific expres¬
sion of the murine Hoxa-1 and Hoxa-2 loci in both
mice and Drosophila. Development, 121:957-974,
1995.

[6] T. Fukuda. Structure decision method for self or¬
ganizing robots based on cell structure-CEBOT.
In Proceedings of International Conference on
Robotics and Automation '89, 1989.

[7] S. J. Gould. Exaptation: A crucial tool for an
evolutionary psychology. Journal of Social Issues,
3:43-65, 1991.

[8] S. J. Gould and E. S. Vrba. Exaptation - a missing
term in science of form. Paleobiology, 8:4-15, 1986.

[9] H. Hemmi, J. Mizoguchi, and K. Shimohara. De¬
velopment and evolution of hardware behaviours.
In R. Brooks and P. Maes, editors, Proceedings of
ALIFE IV, Cambridge, MA, 1994. MIT Press.

[10] T. Higuchi, T. Niwa, T. Tanaka, H. Iba,
H. de Garis, and T. Furuya. Evolving hardware
with genetic learning: A first step towards building
a Darwin machine. In J. Meyer, H. L. Roitblat, and
S. W. Wilson, editors, From Animals to Animats
II: Proceedings of the Second International Confer¬
ence on Simulation ofAdaptive Behavior (SAB92),
Cambridge, MA, 1992. MIT Press-Bradford Books.

[11] M. Kessel and P. Gruss. Murine developmental
control gene. Science, 249:347-379, 1990.

[12] W.-P. Lee, J. Hallam, and H. H. Lund. A Hybrid
GP/GA Approach for Co-evolving Controllers and
Robot Bodies to Achieve Fitness-Specified Tasks.
In Proceedings of IEEE Third International Con¬
ference on Evolutionary Computation, NJ, 1996.
IEEE Press.

[13] H. H. Lund, E. d. V. Cuenca, and J. Hallam. A
Simple Real-Time Mobile Robot Tracking System.
Technical Paper 41, Department of Artificial Intel¬
ligence, University of Edinburgh, 1996.

[14] H. H. Lund and O. Miglino. From Simulated to
Real Robots. In Proceedings of IEEE Third Inter¬
national Conference on Evolutionary Computation,
NJ, 1996. IEEE Press.

[15] H. H. Lund and D. Parisi. Pre-adaptation in pop¬
ulations of neural networks evolving in a changing
environment. Artificial Life, 2(2):179-197, 1996.

[16] C. Malcolm, T. Smithers, and J. Hallam. An
Emerging Paradigm in Robot Architecture. In Pro¬
ceedings of Intelligent Autonomous Systems 2, Am¬
sterdam, 1989.

[17] O. Miglino, H. H. Lund, and S. Nolfi. Evolving Mo¬
bile Robots in Simulated and Real Environments.

Artificial Life, 2(4):417-434, 1996.
[18] J. Mizoguchi, H. Hemmi, and K. Shimohara. Pro¬

duction genetic algorithms for automated hardware
design through an evolutionary process. In Pro¬
ceedings of First IEEE International Conference on
Evolutionary Computation, NY, 1994. IEEE Press.

[19] F. Mondada, E. Franzi, and P. Ienne. Mobile robot
miniaturisation: A tool for investigation in control
algorithms. In Experimental Robotics III. Lecture
Notes in Control and Information Sciences 200,

pages 501-513, Heidelberg, 1994. Springer-Verlag.
[20] R. Pfeifer. Building "Fungus Eaters": Design Prin¬

ciples of Autonomous Agents. In P. Maes, M. J.
Mataric, J. Meyer, J. Pollack, and S. W. Wilson,
editors, From Animals to Animats f: Proceedings
of the Fourth International Conference on Simula¬
tion of Adaptive Behavior, Cambridge, MA, 1996.
MIT Press.

[21] R. Riedl. Order in Living Organisms. A System
Analysis of Evolution. John Wiley & Sons, Chich¬
ester, 1978.

[22] K. Sims. Evolving 3D Morphology and Behavior by
Competition. In R. Brooks and P. Maes, editors,
Proceedings of ALIFE IV, Cambridge, MA, 1994.
MIT Press.

[23] M. Sipper. Designing Evolware by Cellular Pro¬
gramming. In Proceedings of First International
Conference on Evolvable Systems: from Biology to
Hardware, Heidelberg, 1996. Springer-Verlag.

[24] A. V. Spirov. Changes of initial symmetry in
the pattern-form interaction model of sea urchin
early development. Journal of Theoretical Bioloqu,
161:491-504,1993.

[25] A. Thompson. Evolving electronic robot controllers
that exploit hardware resources. In F. Moran,
A. Moreno, J.J. Merelo, and P. Charon, editors,
Advances in Artificial Life: Proceedings of 3.rd Eu¬
ropean Conference on Artificial Life, Heidelberg,
1995. Springer-Verlag.

[26] B. Webb. Using robots to model animals: a cricket
test. Robotics and Autonomous Systems, 16:117-
134, 1995.

[27] X. Yao and T. Higuchi. Promises and Challenges of
Evolvable Hardware. In Proceedings of First Inter¬
national Conference on Evolvable Systems: from
Biology to Hardware, Heidelberg, 1996. Springer-
Verlag.

Learning Complex Robot Behaviours by an

Evolutionary Approach

Wei-Po Lee, John Hallam, Henrik Hautop Lund

Department of Artificial Intelligence,
University of Edinburgh,
Edinburgh EH1 2QL, Scotland, UK
email:{weipol,john,henrikl}@dai. ed.ac.uk

Abstract. Building robots can be a tough job because the designer has to predict the
interactions between the robot and the environment as well as to deal with them. During the
last few years, some researchers have shown the advantages of using evolutionary algorithms
to automate the design of robots. However, the tasks achieved so far are fairly simple. In
this work, we analyse the difficulties of applying evolutionary approaches to learn complex
behaviours for mobile robots. Instead of evolving the controller as a whole, we propose to
take the control architecture of a behavior-based system and to learn the separate behaviours
and the arbitration by the use of an evolutionary approach. By using the technique of task
decomposition, the job of defining fitness functions becomes more straightforward and the
tasks become easier to achieve. To assess the performance of the developed approach, we
have evolved a control system to achieve an application task of box-pushing as an example.
Experimental results show the promise and efficiency of the presented approach.

1 Introduction

In recent years, building reactive control systems
for robots has become a major alternative to tradi¬
tional robot design. This approach has been proven
to be able to achieve real-time performance for ro¬
bots by creating tight coupling between percep¬
tions and actions. However, predicting and dealing
with unforeseen situations and circumstances in the
environment make the design still difficult. Con¬
sequently, the idea of getting the robot to learn to
achieve the tasks, through the interaction between
the robot itself and the environment, is advocated.
Evolutionary Robotics is a kind of approach

which enables the robot to learn behaviours by the
use of evolutionary techniques. This approach dif¬
fers from other learning skills in that it operates a
population of agents rather than a single one. This
kind of approach has recently attracted much at¬
tention; a lot of work has been conducted to evolve
robot controllers and their preliminary results have

shown the promise of this approach (e.g.,[3][6][12]).
Yet, the tasks achieved so far, such as obstacle
avoidance or light seeking, are relatively simple. To
help the human designer to develop control systems
which are difficult to handcode, we have to resolve
the problem of how to scale up the evolution-based
approach in controlling robots. In this work we dis¬
cuss, from different points of view, some of the dif¬
ficulties one will encounter in evolving controllers
to accomplish complex tasks. We also suggest that
task decomposition is an efficient technique in sup¬
porting the evolutionary approach to evolve con¬
trollers for complex tasks. To demonstrate this,
we undertake an application task, in which a robot
is required to push a box toward a specific posi¬
tion indicating by a light source. This task is fairly
complex compared to the ones achieved in previous
Evolutionary Robotics experiments and the results
show that the robot can achieve the specified task
reliably.

2 Evolving Controllers to
Achieve Complex Tasks

2.1 The Difficulties

Generally speaking, the evolutionary approach is a
kind of search-based approach in which genetic op¬
erators, such as reproduction, crossover, and muta¬
tion, are used and expected to find a satisfactory
solution from a hyper-space; and the dimension of
this space is determined by the length of the chro¬
mosome. For instance, in a binary encoding scheme,
a chromosome with length n indicates that the evol¬
ution techniques are expecting to find the appropri¬
ate solution from a space with 2™ candidates. Thus,
when the length of the chromosome is reasonably
increased in respect to the increment of task com¬

plexity, the solution space will grow exponentially
and lead the search to be more and more difficult.
This is particularly apparent in the work that uses
recurrent neural networks as control systems since
the characteristic of recurrence leads the length of
chromosome to increase quadratically and thus en¬

larges the search space even faster.
The increasing task complexity also introduces

difficulty in defining fitness functions to guide the
search direction during the evolution. In general,
the increment of task complexity implies a higher-
level goal to achieve, which almost always involves
the interaction of multiple subgoals. For a com¬
plex task, directly defining a fitness function at the
higher-level is relatively simple but it makes the
task difficult to be achieved. On the contrary, defin¬
ing fitness functions at lower-level is more difficult
while it makes the task more achievable. For ex¬

ample, in the work [13], the authors have shown
that in their grasping task, if the fitness function
is simply defined as the number of objects grasped
and deposited correctly, then the desirable beha¬
viour cannot be evolved successfully. This is due
to the fact that during the earlier generations none
of the individuals can achieve the complete task; it
results in the equally bad fitness for all the popu¬
lations (all scored zero) and makes all the control
systems indistinguishable in performance. On the
other hand, if lower-level subgoals are introduced
to the fitness function, such as rewarding the beha¬
viours of recognizing objects and picking objects up,
the performance of controllers becomes more distin¬
guishable and then the target is achieved. Manip¬
ulating fitness at lower levels can assist the evol¬
utionary system to converge; however defining an
appropriate fitness function at a lower level is never
easy because it has to deal with the multiple sub-

goals simultaneously. Further, this kind of difficulty
occurs in consequence of the increment of the task
complexity.
On the other hand, from the point of view of con¬

trolling a robot, one may want the evolved control
systems to be distributed for their corresponding
advantages. In a distributed architecture, the per¬
ceptual processing is distributed across multiple in¬
dependent modules, and every module only deals
with the sensory information directly related to its
particular need. This not only reduces the sensory
bottleneck but also allows each control module to
be developed with the most suitable representation
and approach with least restriction. Owing to the
modular and distributed characteristics, the per¬
formance of the overall system will degrade gradu¬
ally, even if some of the devices or control strategies
do not function properly. Further, with an expli¬
citly distributed architecture, an overall system will
be easily integrated from different subsystems which
could be designed independently; it can also be eas¬

ily maintained. Therefore, from the point of view
of developing systems for robot control, distributed
control architectures are preferred.

2.2 Task Decomposition
In order to reduce the search space to make the
search easier, to simplify the job of defining fitness
functions, and to obtain a distributed control sys¬
tem, a promising way is to adopt the divide-and-
conquer problem-solving methodology. In this kind
of approach, the designers break tasks from complex
(higher-level) down to simple (lower-level) and then
achieve the tasks in the reverse sequence. How to
decompose a task of course depends on the design¬
ers' experiences, but human designers are normally
quite skillful in doing it. The tasks are arranged to
be achieved in the sequence of increasing complexity
and, at each level, the control systems are evolved
on top of the ones evolved at lower-levels. Hence,
fitness functions will become easier to define and the
tasks will be easier to achieve (the fitness function
of a certain level task can be defined simply as the
goal at this level, to reduce the difficulty in embed¬
ding the lower-level subgoals into it; and evolving
control systems on top of other lower-level control¬
lers can exploit their corresponding control skills to
achieve the current goal). In addition, each subtask
only needs to deal with the perceptual information
directly related to it, which also makes the tasks
easier to achieve. In the robot learning domain,
some work has shown that the decomposition tech¬
nique helps in achieving more complex tasks [4] [11].

Actually, the concept of this kind of approach
is much like behaviour-based control, which has
been successfully and widely used in the ro¬
bot community for building autonomous robots
(e.g.,[14][17]); while the main difference is that the
approach here employs evolutionary techniques to
evolve new behaviours and behaviour coordinators
rather than to handcode them. With evolutionary
techniques, the human designer can concentrate on
the system level design and let the evolutionary sys¬
tem take care of the implementation details. In
addition, since in this approach the tasks are de¬
composed along the horizontal way as proposed in
[2], the corresponding control architectures will be
explicitly distributed and can fully exploit all the
advantages of distributed architecture as analysed
in the section above.
We are particularly interested in investigating

ways to reduce the load of robot programmers and
in evolving distributed architectures for complex
tasks. Because, at the present stage, the task-
decomposition technique seems to be the most dir¬
ect way to achieve these, we will concentrate on

investigating how to use this approach, with our

genetic programming (GP) system [8][9], to evolve
control modules and coordinators to achieve com¬

plex tasks.

haviour arbitrator here is not hardwired in advance;
it is also treated as a reactive controller. The beha¬
viour arbitrator has the same structure and rep¬
resentation as the primitives; the only difference
between them is that the output of a primitive is
used to control the motors while the output of an
arbitrator is used to activate one of the involved
sub-controllers. Thus, similar to a reactive planner
[5] or a conditional sequencer [7], an arbitrator here
allows the binding between environment conditions
and activations of lower level behaviours to take

place at the run time. This provides adaptiveness
not only at the lower level sensory-motor control
but also at the behaviour level.
Because our system does not support parallel

computation, all the control modules are passive
and the control flow is thus from top to down. At
each time step, the highest level arbitrator evokes
one of the involved sub-controllers to be in charge
the control, according to certain sensory informa¬
tion. If the evoked sub-controller includes an arbit¬

rator, this arbitrator will be evaluated first and its
output can then be used to activate another control¬
ler. This process continues until a control primitive
at the lowest level takes control and drives the actu¬

ators. Figure 1 illustrates the general architecture
of our control systems and the implementation of
an arbitrator.

3 Evolving Hierarchical Task-
achieving Controllers

As described above, in order to evolve distributed
control systems to achieve complex tasks, we in¬
tend to use the technique of task decomposition to
break the overall tasks and use the GP techniques to
evolve separate behaviour controllers and coordin¬
ators for integration. In this section, we will explain
the aspect of the control architecture corresponding
to the task decomposition, and then describe the
genetic representation of the control module to be
evolved.

^(primitive

-^(primitive) Primitive)
~J

(a)

Figure 1: (a) The general architecture of a control
system. S and A represent the sensors and actuat¬
ors related to a certain control work; (b) the imple¬
mentation of an arbitrator.

3.1 Control Architecture

Since we will decompose tasks in a hierarchical way,
the corresponding control system is organized as
multiple layers. After the decomposition, the con¬
trol system includes a set of behaviour primitives
and behaviour arbitrators. Here, a behaviour prim¬
itive is a reactive controller with the representation
described in the below section; it involves the low¬
est level sensory-motor control. Unlike the priority
network in the subsumption architecture [2], a be-

3.2 Representation
When using evolutionary computation techniques
to solve a problem, the first important step is to
choose the proper representation for an individual.
On one hand, a genetic representation must be able
to express explicitly the features of the solution of
the problem to be solved; on the other hand, it must
be suitable to be manipulated by the genetic oper¬
ators to obtain the solution. The following sections
are about how we develop the genetic representa-

tion of the reactive controllers to be evolved in this
work.

3.2.2 Genetic Representation ofOur React¬
ive Controllers

3.2.1 The Circuit Model of a Behaviour
Controller

A promising choice to satisfy the above require¬
ments is the circuit network which has been proven
to provide a finer-grained view to represent a
behaviour controller. In the circuit approaches
[1] [15] [16], an agent (behaviour controller) exists in
the form of digital hardware; and it is constructed
by two types of components, pure functions and the
delays, depending on what kind of tasks (reactive
or sequential) it is achieving. Pure functions are
logic gates, and delays correspond to flip-flops or
registers. The output of one component may be
input to one or more other components, thus form¬
ing a network. Signals propagate through the net¬
work and sensing is thus linked to action. As is well
known, any finite state transduction can be carried
out by such a network.
Since this work focuses on evolving reactive con¬

trollers, we will only discuss how to evolve control¬
lers of this kind. The approach can be extended to
evolve sequential ones with minor modification.
The genetic representation of our reactive con¬

troller is inspired by the logic representation in the
circuit approaches. By duplicating and separating
the components of which the outputs serve as in¬
puts of multiple components and by introducing a
dummy root node to connect the outputs of a circuit

According to our design, the perception information
is structured as sensory conditionals and connec¬
ted to the inputs of a logic circuit. The structured
sensor-conditionals involve comparing the responses
of different sensors or comparing sensor response
to numerical thresholds. For these purposes, both
sensor responses and numerical thresholds are nor¬
malised to be between 0 and 1 inclusive. Thus, a
sensor conditional has a constrained syntactic struc¬
ture; it exists in the form of X >= Y, where X, Y
can be any normalised sensor response or threshold
which is determined genetically. Figure 3 shows the
representation of our reactive controllers.

After organizing our genetic representation, we
can classify the involved symbols into terminals
and non-terminals for manipulating a GP system.
The dummy root node, the logic components, and
the comparator are defined as the non-terminals;
while the normalized sensor responses and numer¬
ical thresholds, which constitute the sensory con¬
ditionals, are defined as terminals. In order to
evolve the controllers with the above representa¬
tion to solve different control tasks, we will need to
define different sensor terminals depending on the
requirements of the specific task. The experiment
sections of this work will give the details of how to
evolve such kind of controllers.

XI X2 X3 X4

Figure 2: An example shows converting a circuit
network to a tree.

Figure 3: The aspect of a typical controller. In this
figure, NO is a dummy root node, N1 represent lo¬
gic components, and N2 is the comparator >=. T
can be a normalized sensor response or a threshold
between 0 and 1 inclusive. The outputs of the sub¬
trees are used to drive the actuators or activate an¬

other control system.

4 Experimental Setup

4.1 Application Task

In the following experiments, we will follow the ap¬
proach described above to evolve control systems
for a moderately difficult box-pushing task. In this
task, the robot is required to explore the given arena
in order to find a box; once it detects the box, it
then has to push the box toward a goal position
indicated by a light source.
The task to be achieved is difficult for the follow¬

ing reasons. First of all, the robot is round, so that
it only contacts the box at one point while pushing
it, and the box tends to slide and rotate unpredict¬
ably when the pushing force exerted by the robot
is not directed straight through the center of the
box. Therefore, the robot has to adjust its own

position occasionally in order to push the box for¬
ward as straight as possible. Furthermore, as there
is no particular restriction on the initial relative po¬
sitions of the robot, the box, and the ambient fight,
the robot can approach and detect the box at any
position and orientation around the box; under such
circumstance, the robot needs to move to a proper

position deliberately in order to perform an efficient
push to satisfy the final goal.

4.2 The Decomposition

To accomplish this task, we decompose it into
two subtasks, exploration and push-box-toward-
light. The former is to control the robot to explore
the given arena in order to find the box without
bumping into any wall; and the latter, to push
the found box to a specific goal position. Again,
the task push-box-toward-light is decomposed into
two lower-level subtasks, box-pushing and box-side-
circling. The goal of box-pushing is to keep the robot
pushing a box forward, while the goal of box-side-
circling is to keep the robot moving along the side
of a box in order to provide the opportunity for
the robot to move to suitable positions for push¬
ing. Each of the subtasks, without being decom¬
posed, is controlled by a separate behaviour prim¬
itive, and the different sub-controllers for the same
task are merged by an arbitrator. Figure 4 shows
the decomposition results and the aspect of the cor¬
responding architecture for the target task. After
the decomposition, the GP system is used to evolve
both behaviour primitives and arbitrators.

target task

motor commands

Figure 4: The decomposition and integration of the
target task. Si indicates the sensory information
relevant to control work i.

4.3 The Hardware Limitation

In the experiments below, we will use the method of
evolving controllers in simulation and then testing
them on a real Khepera robot. The simulator is
built by employing a look-up table approach which
has been shown to provide a close match between
simulation and reality [12].

Figure 5: (a) A possible way to satisfy the sensor
requirements for both arbitrators is to duplicate a
set of eight sensors on the top of the robot; (b) the
sensor arrangement - a sensor 5, can function as an
infra-red or an ambient light sensor.

To accomplish the task push-box-toward-light, the
arbitrator needs infra-red sensors and ambient light
sensors to detect the box and the light respectively;
and the ambient light sensors must be higher than
the box to make sure they can detect the light even
in the situation that the box is between the robot
and the light. On the other hand, for the over¬
all task, the other arbitrator will require certain
perception information which can be organized as
some sensory conditionals for the robot to recog¬
nize the box, to determine when to perform explor¬
ation and when to perform push-box-toward-light.
For this purpose, we define a kind of virtual sensor
DR, which can give the normalized reading differ¬
ence between a pair of upper and lower infra-red
sensors (The sensor pair here means two sensors
pointing at the same direction but with different
heights: one is higher and the other is lower than

the box). A straightforward way to satisfy the re¬
quirements for both arbitrators is to duplicate the
eight sensors of Khepera on its top (the sensors on
the top are assumed to be higher than the box) so
that the duplicated sensors can serve as ambient
light sensors for the first arbitrator and as infra¬
red sensors for the second arbitrator (see Figure 5).
However, the preliminary tests show that when the
robot is within a certain area around the bulb, the
infra-red sensors on the Khepera robot are seriously
disturbed by the normal bulb light and thus can¬
not function properly. This will cause difficulty in
verifying the simulation results on the real robot.
Therefore, for the behaviour primitives which in¬
volved IRs only, we evolve them in simulation and
test them on the real robot; but the two arbitrators
are only evolved in simulation in which we assume
that there are eight extra sensors on the top of the
simulated robot as described above.

5 Experiments and Results
5.1 Evolving Primitives for Task Box

Pushing
As mentioned above, the task of box-pushing is that
the robot should keep pushing a box forward as

straight as possible. To achieve such a task, the
robot needs to use its IR sensors to acquire per¬

ception cues for the location of the box. Therefore,
we define two kinds of terminals, IRs and numerical
thresholds, for our GP system to evolve controllers
capable of achieving this task.
The fitness functions in this work are defined as

penalty functions. For this task, the fitness function
is formulated through the quantitative description
of the expected behaviour, which is to keep the ac¬
tivation value of its front IR sensor high, the robot
moving forward, and the speed difference of two mo¬
tors low. The pressure from keeping the front IR
sensor with high activation value is to reinforce the
robot to head toward a box, and the pressure from
keeping robot moving forward with low speed differ¬
ence is to encourage the robot move straight and to
prevent it from getting stuck in front of a box. The
combination of these will lead to a pushing-forward
behaviour. Thus, the fitness function for evolving a
behaviour controller of box-pushing can be defined
as:

T

/ = ^ a * (1 - s(t)) + /3 * (1 - v(t)) + 7 * w(t)
t= l

in which s(f) is the average of normalized sensor
activations of the front sensors 1R2 and IR3; v(t) is

the normalized forward speed; and w(t) is the nor¬
malized speed difference of two motors at each time
step t. During the evolution, each controller was
evaluated in multiple trials and the average fitness
value was used to measure the performance of this
controller.
The typical box-pushing behaviour of the simu¬

lated robot, when performing the evolved control¬
ler, is illustrated in Figure 6(a). After evolution in
simulation, this was transferred to a Khepera ro¬
bot. Figure 6(b) shows the typical behaviour of the
real robot. The figure for real robot was obtained
by setting LEDs on the tops of the robot and box
and using a video tracking system to record their
trajectories [10]. This controller was tested on the
real robot many times and each time it started from
an arbitrary position and heading around the box.
During the tests, the robot always generated con¬
sistent behaviour: it turned to face the box and
then to approach and push it.

t
ss

1
I
\V

Figure 6: The trajectories of simulated (left) and
real (right) robots when they are pushing a box (the
darker circles represent the boxes; and the boxes are
pushed from top to down).

5.2 Evolving Primitives for Task Box-
Side-Circling

The task of Box-side-circling is that the robot needs
to keep moving forward and circling along the sides
of a box. As in the box-pushing task, the robot
should use its own IRs to capture the location of
the box. Thus, terminals for evolving a controller
to achieve this task are the same as those in the

box-pushing task: IRs and numerical thresholds.
Again, we should define a fitness function to guide

the evolution, and it can be done through the quant¬
itative description of the expected behaviour: to
keep the side sensor IR0 with a certain activation
value and the speed positive. The former is to en-

courage the robot to keep a certain heading relative
to the box and a certain distance away from the
box; and the latter is to reinforce the robot moving
forward. The combination of these will produce a

box-side-circling behaviour. Thus the fitness func¬
tion is defined as:

T

/ = ^2 a * abs(s(t) — k) + P * (1 — v(t))
t=1

where abs is a function which gives the absolute
value of it argument; s(t) is a normalized activation
value of the specific sensor IRd; A; is a pre-defined
constant indicating the distance between the ro¬
bot and the box, in terms of the normalized sensor

range; and v is the forward speed of a robot.
Figure 7(a) presents the evolved box-side-circling

behaviour of the simulated robot, which shows that
the task was achieved successfully in simulation.
The evolved controller was then transferred to the
real robot, and the typical behaviour of the real
robot is demonstrated in Figure 7(b). We tested
this evolved controller several times by putting the
real robot around the box with an arbitrary heading
each time. In all the tests, the robot showed similar
behaviour: it performed turning to adjust its head¬
ing first and then moved along the side of the box.
From the testing results, we can see that the robot
is able to achieve the specified task reliably.

Figure 7: The box-side-circling behaviours of simu¬
lated (left) and real (right) robots.

5.3 Evolving Primitives for Task Ex¬
ploration

This task is that the robot needs to wander safely in
an enclosure and visit as much of the enclosed space
as possible. It can be described quantitatively as
the space being divided into some squares and the
robot must visit as many squares as possible during
a fixed period of time. In the experiment below, we
intend to evolve a reactive controller to explore the
space without using the location information.

Unlike the experiments presented above, the fit¬
ness measurement for this task is not to sum up the
penalty of each time step but to give a fitness value
after a complete trial. The main concern for the
fitness here is to minimize the number of squares
which have not been visited, while an extra pres¬
sure on the speed is added to encourage the robot to
move forward in exploring. Thus, the fitness func¬
tion is defined as:

f — a* (1 — P) + f3* (I — Avg)

in which P is the percentage of the space visited,
i-e-. Avg * the average speed of the
robot during a complete trial; and a, /? are the cor¬

responding weights. The enclosure in the explora¬
tion experiment here is a square of 50 x 50 cm and
each grid square is 5 x 5 cm.
As described above, the controller to be evolved

is reactive and there is no location information

provided here, so the robot must fully exploit its
IR sensors to determine the turning angle carefully
to achieve this task. Since IR sensors are the only
mechanism for providing perception cues, the ter¬
minals for the exploration task are then defined to
include IRs and numerical thresholds as in other
tasks.
The exploration behaviour produced by the

evolved controller is demonstrated in Figure 8(a),
which shows that the robot is able to visit most of
the specific arena during a fixed period of time. We
should note that it is not important how the ro¬
bot moves when it does not sense anything but the
appropriate match of the turning angle (when the
robot senses the wall) and the way it moves (when
it does not sense anything) is nevertheless crucial
for a reactive controller to perform exploration. As
we can see in Figure 8(a), a successful match has
been evolved and it enabled the robot to achieve
the task.
Like the previous experiments, the evolved con¬

troller is downloaded to the real Khepera after the
simulation. The behaviour observed from the real
robot is presented in Figure 8(b). This behaviour is
very similar to the one produced by the simulated
robot in the simulated environment. Once again,
it shows a successful example that we are able to
evolve a behaviour controller by our GP system in
simulation, and then transfer it to a real robot.

5.4 Evolving Arbitrators for Task
push-box-toward-light

As mentioned above, an arbitrator is implemen¬
ted as a reactive controller; its inputs are from the

■ f ■ —h"
: / ! .

cS

f = y£Db,l(t)
t=1

position, the arbitrator continuously activated the
primitive box-side-circling to circle the box in or¬
der to prevent pushing the box away from the box.
From Figure 9, we can see that the box was suc¬

cessfully pushed to almost the center of the bright
area.

Figure 8: The exploration behaviours of simulated
(left) and real (right) robots.

sensors and its outputs are used to trigger other
controllers. For the arbitrator here, two kinds of
sensors - infra-red and ambient light - are needed
to detect the locations of the box and the light, so
both kinds of sensors and numerical thresholds are

defined as terminals to the GP system to constitute
the structured sensory conditionals for the arbit¬
rator. Since there are only two sub-controllers in¬
volved, the arbitrator is designated to have a single
output to trigger them: if the output is 0, then
the controller for subtask box-pushing dominates the
control; otherwise the controller for subtask box-
side-circling has the control. During the experi¬
ment, two subcontrollers are frozen and only the
arbitrator is evolved.
In this task, the robot is expected to push the

box as close as possible to the center of the area

brightened by the light. Instead of measuring the
distance between the goal position and the final po¬
sition of the box at the end of a complete trial, we
calculate the summation of the distance between
the goal position and the box at each time step to
reinforce the robot to push the box straight toward
the light. Thus the fitness function is defined as:

O
O °3

in which Db,i(t) represents the distance between the
box and the light source at each time step t.
Figure 9 illustrates, step by step, the typical be¬

haviour of the simulated robot. As can be seen,
the arbitrator first activated the primitive box-side-
circling to move the robot along the side of a box.
Once the robot reached an appropriate position in
which the box was between the light and the robot
itself, the control was then switched to the other
primitive, box-pushing, to drive the robot to push
the box forward. The box-side-circling and the box-
pushing primitives were activated again in the same
order if the box was not pushed directly toward the
goal position. After the box was pushed to the goal

Figure 9: The behaviour sequence of the robot: (1)
The initial positions of the box (dark circle), the
light (smallest circle) and the robot; (2) the robot
moved along the side of the box; (3) pushing the
box forward; (4) circling again to an appropriate
position; (5) pushing the box again to the goal po¬
sition; (6) continuously circling after the box has
been pushed to the goal position.

We can also examine whether the performed task
decomposition has been exploited in achieving the
higher-level goal by observing the output sequence
of the arbitrator: if the sequence is separated as

periods of consistent activation, then the performed
decomposition is confirmed to be helpful; otherwise
it is not. Figure 10 demonstrates the output se¬
quence corresponding to the behaviour shown in
Figure 9. According to this figure, the evolved ar¬
bitrator is able to generate periods of quite consist¬
ent activation, except the short oscillating period
- the transition period between two different beha¬
viours - which did not effect the global behaviour at
all. This figure, in fact, indicates that the involved
lower-level sub-controllers have been fully exploited.

5.5 Evolving Arbitrators for the
Overall Task

After evolving an arbitrator to combine two pre-
evolved lower-level primitives, we can regard the
integrated control system, including one arbitrator
and two primitives, as a building block, and then
evolve a new arbitrator to combine this building
block and the other evolved controller exploration
to achieve the overall task. As described in the

1
i

1 1 1
1

Figure 10: The output sequence corresponding to
the behaviour in Figure 9. In this figure, the y-axis
indicates the controller which was activated: 0 is
for box-pushing and 1 is for box-side-circling.

above section, the arbitrator will need the percep¬
tual information which can be used to recognize the
appearance of the box, in order to generate proper
output sequence to coordinate two involved control
systems. Therefore, the virtual sensor DRs and
numerical thresholds are defined as terminals for
our GP system to evolve the desired arbitrator. As
above, this arbitrator is designated to have one out¬
put: if the output is 0, the controller for exploration
is activated; otherwise is the controller for push-box-
toward-light. Again, the controllers to be combined
are frozen and only the arbitrator is evolved.
The goal here is the same as the one above, to

push the box as close as possible to the specified
position, so the fitness function can be defined as
above: to accumulate the distance between the box
and the goal position at each time step. However,
the criterion of simply measuring the fitness func¬
tion for a fixed period time as before cannot give
an objective evaluation here. This is because, in
different trials, the robot could start from different
positions and then take different numbers of time
steps to find the box - it means that the lengths of
the time of pushing are different. Therefore, in this
experiment, the robot is given an extra period of
time to find the box; and the fitness value is accu¬
mulated for a fixed period of time which starts from
the moment the robot finds the box (or the end of
the time period given for looking for the box). Thus,
the fitness function is defined as:

k+T

f= £ Db<l(t)
t=k+1

in which Db,i (t) is the distance between the box and
the goal position at time t; k is the time when the
robot finds the box (or the end of the time period
given for looking for the box); and T is the fixed
period of time for fitness measurement.
The typical behaviour of the robot, when per¬

forming the whole control system, is shown in Fig¬
ure 11. From these figures, we can see that the

arbitrator firstly kept activating the controller ex¬
ploration to drive the robot to explore the given en¬
vironment and to avoid the walls. Once the robot
found the box, the arbitrator began to activate the
other controller, push-box-toward-light, according to
the sensor stimuli. Since the arbitrator was able to

activate this controller continuously after the robot
found the box, the overall task was then achieved
successfully. In fact, the performance of the arbit¬
rator above can be observed from Figure 12, which
shows the output sequence generated by this arbit¬
rator during the test. It clearly indicates that this
arbitrator can keep activating the controller explor¬
ation before the box was found, and afterward it
can activate the other controller push-box-to-light
consistently to achieve the target task.

; -4 f O

;—f HQ1

Figure 11: The behaviour sequence of the ro¬
bot: (1) the initial conditions; (2) the robot
wandered around the environment before found the

box; (3)~(7) the robot continuously performed the
building block controller push-box-toward-light to
achieve the task.

Figure 12: The output sequence corresponding to
the behaviour in Figure 11. In this figure, the y-
axis indicates the controller which was activated: 0
is for exploration and 1 is for push-box-toward-light.

6 Conclusion

In this work, we have analysed the difficulties of ap¬
plying an evolutionary approach to learn complex
behaviours for mobile robots. Instead of evolving
the control system as a whole, we propose to take
the control architecture of a behavior-based system
and to learn the separate behaviours and arbitra¬
tion by the use of an evolutionary approach. To
assess the performance of the developed approach,
we have evolved a control system to achieve an ap¬

plication task of box-pushing as an example. Ex¬
perimental results show the promise and efficiency
of the presented approach.
The proposed approach has some advantages.

First of all, by using the technique of task decom¬
position, the job of defining fitness function be¬
comes more straightforward and the tasks become
easier to achieve. In fact, for all the evolution ex¬

periments, the GP system converged to stable and
sufficient solutions within only 30 generations. In
addition to that, our controllers only involve lo¬
gical operators, such as AND OR NOT, that are very
simple to evaluate. This means that our approach is
computationally cheap; and the evolved controllers
can be easily compiled to custom hardware such as
FPGAs to speed up the evaluation in controlling a
robot.

Some further research work is currently in pro¬

gress. For example, we have been constructing new
sensors on the real robot to test the behavior arbit¬
rator. We have also been investigating whether this
approach can be applied to evolve control systems
for even more complicated tasks.

References

[1] P. Agre, D. Chapman. Pengi: an Implementation of
a Theory of Activity. In Proceedings of AAAI-87,
pp.268-272. Morgan Kaufmann, 1987.

[2] R. A. Brooks. A Robust Layered Control System for
a Mobile Robot. In IEEE Journal of Robots and
Automation, vol RA-2(1), pp.14-23, 1986.

[3] D. Cliff, I. Harvey, and P. Husbands. Explora¬
tions in Evolutionary Robotics. Adaptive Behavior,
2(1):73-110, 1993.

[4] M. Dorigo, M. Colombetti. Robot Shaping: Devel¬
oping Autonomous Agents through Learning. Ar¬
tificial Intelligence, 71 (2):321-370, 1994.

[5] R. J. Firby. Task Networks for Controlling Continu¬
ous Processes. In Proceedings of the Second In¬
ternational Conference on AI Planning Systems,
pp.49-54, 1994.

[6] D. Floreano and F. Mondada. Automatic Creation
of an Autonomous Agent: Genetic Evolution of
a Neural-Network Driven Robot. In From Animals
to Animats: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior,
pp.421-430. MIT Press/Bradford Books, 1994.

[7] E. Gat. Robot Navigation by Conditional Sequen¬
cing. In Proceedings of IEEE International Con¬
ference on Robitics and Automation, pp.1293-1299,
1994.

[8] W.-P. Lee, J. Hallam, H. H. Lund. A Hybrid
GP/GA Approach for Co-evolving Controllers and
Robot Bodies to Achieve Fitness-Specified Tasks.
In Proceedings of IEEE International Conference
on Evolutionary Computation, 1996.

[9] W.-P. Lee, J. Hallam, H. H. Lund. Applying GP to
Evolve Behaviour Primitives and Arbitrators for
Mobile Robots. In Proceedings of IEEE Interna¬
tional Conference on Evolutionary Computation,
1997.

[10] H. H. Lund, E. V. Cuenca, J. Hallam. A Simple
Real Time Mobile Robot Tracking System. Tech¬
nical Paper No.41, Department of Artificial Intel¬
ligence, University of Edinburgh, 1996.

[11] M. Mataric. Reward Functions for Accelerated
Learning. In Proceedings of International Confer¬
ence on Machine Learning, pp.181-189, 1994.

[12] 0. Miglino, H. H. Lund, S. Nolfi. Evolving Mobile
Robots in Simulated and Real Environments. Ar¬

tificial Life, 2(4), 1996.

[13] S. Nolfi, and D. Parisi. Evolving Non-trivial Be¬
haviors on Real Robots: An Autonomous Robot
that Picks up Objects. In Proceedings of the Fourth
Congress of the Italian Association for Artificial
Intelligence. Spring-Verlag, 1995.

[14] R. Pfeifer, and C. Scheier. Sensory-Motor Coordin¬
ation: the metaphor and beyond. In Robotics and
Autonomous Systems, special issue in Practice and
Future of Autonomous Agents, 1996.

[15] S. J. Rosenschein, L. P. Kaelbling. A Situated View
of Representation and Control. In Artificial Intel¬
ligence, vol 73, pp.149-174, 1995.

[16] S. J. Rosenschein, L. P. Kaelbling. The Synthesis
of Digital Machines with Provable Epistemic Prop¬
erties. In Proceedings of Conference on Theoretical
Aspects of Reasoning about Knowledge, pp.83-98.
Morgan Kaufmann, 1986.

[17] L. Steels. Building Agents out of Autonomous Be¬
havior Systems. In L. Steels and R. Brooks (eds),
The Artificial Life Route to Artificial Intelligence.
Lawrence Erlbaum Associates, 1993.

