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ABSTRACT 

The room-temperature Raman spectra of bulk As-S and As-Se glasses 

have been recorded. 	The compositions studied range throughout the 

glass-forming regions but are mainly close to the stoichiometric 

composition As 40X50  (X r  S or Se): eleven compositions in the range 

As35X55  - As45X55  have been studied in each system. 	Polarisation 

measurements have been made on all the glasses and from them have been 

derived the depolarisation spectra. 

The frequencies and polarisation states of the bands in the 

a-As40S60  and a-As40Se50  spectra can be accounted for using the Lucovsky-

Martin molecular model. It is found that the spectra of these two 

glasses scale by the same two factors that relate the spectra of the 

corresponding crystals. The applicability of the interlayer scale 

factor to the glass spectra supports the presence of layer regions in 

the glasses. 

The spectra on the chalcogen-rich side of the stoichiometric 

composition As40X50  have also been analysed in terms of the Lucovsky-

Martin molecular model and indicate the replacement of the As—X—As 

links between the AsX 3  pyramid units by 4s—X—X—As links as the chalcogen 

content is increased. 	The presence of 
S8 
 rings is increasingly 

apparent in the sulphide compositions more S-rich than As 37S53 . 

In the case of the As-rich sulphides sharp spectral features 

characteristic of the crystal -As4S4  appear near stoichiometry and 

increase smoothly as the As content is increased through the limit of 

the glass-forming region, —As 43S57 , and on into the phase-separated 

region. 	The results also indicate that As 4S 3  or As4S 5  molecules are 

present and that As—As bonds are formed in the glass network. 	In the 

case of the As-rich selenides, for the compositions between As 40Se60  and 

As45Se 55  the additional As atoms go mainly into the formation of As—As 



bonds in the network. 	For compositions containing more than 50 at.% As 

the production of As4Se molecules predominates over the formation of 

As—As bonds in the network, although these are still present. 
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CHAPTER 1, 

INTRODUCTION 

1.1. 	Non-crystalline solids 

A solid is classified as either crystalline or non-crystalline 

according as its structure is periodic or aperiodic. 	A crystal may 

be defined as a substance in which the atomic arrangement is 'periodic 

in three dimensions, over intervals which are large compared with the 

unit of periodicity' ( ' ) . 	A non-crystalline solid is one in which 

this periodicity is absent. 

The ordered structure of a crystal can be described using the 

geometrical concept of a space lattice, a three-dimensional periodic 

array of points: for any crystal one can identify a basic unit of the 

structural pattern and a lattice such that the crystal structure can 

be obtained by placing one of these units at each lattice point. 	The 

pattern unit - termed the 'basis! - may be a single atom or a group of 

atoms and its composition, arrangement and orientation is identical at 

each lattice point, so that any basis is in exactly the same environment 

as any other. While the basis may be asymmetric the lattice always has 

some degree of symmetry - the defining property of a lattice is that it 

possesses translational symmetry. 	The symmetry characteristics of both 

basis and lattice are taken into account when determining the crystal's 

'space group', which expresses the symmetry of the crystal as a whole 

and is the set of all symmetry operations (rotations, inversions etc.) 

that map the crystal into itself; the space group specifies the long-range 

order (l.r.o.) of the crystal. 

Because the group of atoms associated with each lattice point has 

-- the same composition, arrangement and orientation throughout the crystal, 

corresponding atoms in different unit cells of the lattice have identical 

-1- 
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surroundings. Thus for a particular basis atom the local environment - 

that is, the number and positions of its neighbouring atoms - is the 

same anywhere in the crystal; this invariance of local environment is 

termed the, short-range order (s.r.o.). 	The spatial configuration 

adopted by the atoms in a crystal is determined by the nature of the 

interatomic bonding, that is to say, the type of bonds formed, the number 

and strength of these bonds and their direction. 	(Since the bonds are 

affected by temperature and pressure the atomic arrangement in the 

crystal also depends on these thermodynamic factors). 	It is the 

electronic structure of the atoms in the crystal that determines the 

nature of the interatomic bonding. 

The above discussion really refers only to ideal crystals: real 

crystals contain a variety of imperfections which interrupt the period-

icity of the structure. The fact that real crystals are of finite size 

and hence bounded by surfaces is an inevitable imperfection; the atoms 

at the surface of a crystal are in a different environment to those in 

the interior. A more significant deviation from the ideal situation is 

that most crystalline solids are composed of an aggregate of minute 

crystals, termed 'crystallite' or 'grains'; as these crystallites are 

randomly oriented abrupt changes in the orientation of the lattice occur 

at the grain boundaries. The crystallites are typically 10 - lO cm 

in diameter so that the structure of the crystal is periodic only over 

distances of the order of 10 - 10 4 lattice parameters (1) . 	(This mosaic- 

like structure that real crystals possess was taken into account in the 

definition of the crystalline state given in the opening paragraph.) 

Within these crystallites defects such as impurities, broken bonds, 

dislocations and stacking faults may occur. Crystal alloys may exhibit 

compositional disorder, that is the various constituent atomic species 

may be distributed in an irregular way over the lattice sites. Phonons 

and other excitations also disturb the periodicity of the structure. 
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In the case of molecular crystals the individual molecules may be 

identical but their orientations may vary irregularly throughout the 

sample. 

The problem of surface atoms in real crystals is in general not 

important since the ratio of surface to interior atoms is small 

for a mole sample) (2) the problem can be overcome by the use of 

periodic boundary conditions. Also, phonon and compositional disorder 

do not eliminate the l.r.o. of the structure: these imperfections are 

examples of 'cellular' disorder, that is disorder which is present 

only within the unit cell, and a lattice can still be defined for 

materials with this type of disorder 	(the orientational disorder 

in molecular crystals is of this type). 	The other forms of imperfection 

can usually be regarded as perturbations of the periodicity. 	Hence 

although the atomic arrangement in real crystals deviates considerably 

from perfect periodicity the concept of a lattice is still useful in 

describing their structure. 	It should be noted, however, that the 

physical properties of crystals are significantly influenced by the / 

imperfections they contain. 

The distinguishing feature of non-crystalline solids is that their 

structure has no l.r.oJ: the atomic arrangement in a non-crystalline 

solid is not periodic and there is no way in which a lattice can be 

defined. This is not, however, equivalent to saying that the atomic 

arrangement is completely random as in a gas. The nature of the inter-

atomic bonding in a solid is determined by the electronic structure of 

the constituent atoms, hence the bonding forces in a non-crystalline 

solid will be very similar to those of the corresponding crystal; since 

the local atomic environment is in turn determined by the bonding forces 

it will also be virtually the same in the non-crystalline solid as in 

the corresponding crystal. Thus non-crystalline solids, as well as 

crystals, possess s.r.o.; the s.r.o. in a non-crystalline solid extends 
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only for distances of three or four bond lengths, i.e. about 10 - 20 

In the present study the terms 'amorphous', 'non-crystalline' and 

'disordered' will be regarded as synonymous when applied to solids and 

will indicate the absence of l.r.o., though strictly speaking 'disordered' 

is a more general term and is sometimes applied to crystals. 	The terms 

'vitreous' and 'glassy' will also be used to indicate the absence of 

l.r.o. in a solid but will be restricted to amorphous solids prepared by 

quenching from the .liquid state. 	When it is necessary to indicate the 

structural nature of a particular solid under discussion it will some-

times be convenient to use the standard convention of prefixing the 

solid's chemical formula by 'a' (for amorphous) or 'c' (for crystalline), 

thus for example amorphous arsenic trisulphide may be abbreviated a-As 2 S 3 . 

One can establish whether or not l.r.o. exists in a solid by deter-

mining its radial distribution function 	(r.d.f.), D(r), given by 

D(r) = 4Ar2 f(r)dr 	 (1.1) 

where r is the radial distance from a reference atom and ,p(r) is the 

number density of atom centres at this distance; the r.d.f. gives the 

number of atom centres in a spherical shell of radius r and thickness dr 

centred on the reference atom. When D(r) is plotted against r one 

obtains the radial distribution curve (r.d.c.) of the solid. 	If l.r.o. 

is absent in a material then its r.d.f. should tend to the limiting form 

2
Po 

 LI1r 	as r becomes large (f being the average atomic density), i.e. 

at large values of r the r.d.c. tends to a parabola. 	If the r.d.f. does 

not tend to 47cr2 f 0 
for large r then l.r.o. is present in the solid; 

the r.d.c. of an ideal crystal would consist of a series of vertical 

lines separated by distances corresponding to the interatomic spacings 

of the crystal. 	R.d.f. 's are obtained by Fourier transformation of 

X-ray, electron or neutron diffraction data. 	These diffraction 

techniques can detect the presence of ordered regions greater than "20 

in extent. 	Since 20 2 is the upper limit of the s.r.o. in an amorphous 
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solid it can conveniently be taken as the dividing line between long- and 

short-range. order, so that an amorphous solid may be defined as one in 

which there is no l.r.o., meaning order greater than 20 	in extent. 

Several types of disorder can occur in an amorphous solid, although 

absence of l.r.o., being the distinguishing characteristic of such solids, 

is the most important feature of the disorder. 	Many of the imperfections 

that are found in crystals can also occur in amorphous solids, fot' example 

phonons, impurities and, in particular, broken bonds. 	Compositional 

disorder may exist in compound amorphous materials, as in the case of 

crystals, possibly resulting in the formation of 'wrong' bonds, i.e. bond 

types not found in the corresponding perfect crystal. 	However, as 

remarked earlier, compositional disorder does not destroy l.r.o. 	It is 

the disordered arrangement of-the atoms in an amorphous solid that is 

responsible for the lack of structural periodicity; this positional 

disorder arises from the distortion of bond lengths, bond angles and 

dihedral angles in the material. 	If disordering of the atomic arrangement 

results in the topology of the structure of an amorphous solid differing 

from that of the corresponding crystal then the structure is said to be 

topologically disordered. 	In topological disorder the atomic coordination 

remains the same as in the crystal but the connectivity of the network 

is disordered, so that the atomic arrangement in the amorphous solid 

cannot be transformed back to the crystalline arrangement without breaking 

bonds. 	Since topological disorder results in the occurrence of rings 

with different numbers of members it is easily identified. 	Some of the 

various types of disorder are illustrated in Figure 1.1, which shows a 

two-dimensional representation of the structure of a hypothetical compound 

of stoichiometry X 2  Y  3 
 in its crystalline form (Figure 1.1(a)) and its 

amorphous form (Figure 1.1(b)). 	The periodic nature of the crystal 

structure is obvious in Figure 1.1(a) while Figure 1.1(b) shows clearly 

the disordered arrangement of the atoms in the non-crystalline form. 

/ 



(a) 

(b) 

•XQY 
Figure 1.1 

A two-dimensional representation of the structure of a hypothetical compound 

of stoichiometry X 
2  Y  3 

 in (a) its crystalline form and (b) its amorphous form. 
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In addition to this positional disorder, compositional and topological 

disorder are present in the structure shown in Figure 1.1(b). 	The 

compositional disorder gives rise to the presence of X—X and Y—Y bonds 

(i.e. 'like-atom' bonds) in addition to the X—Y bonds which are the 

only type present in the perfect crystal. 	The existence of topological 

disorder is obvious since the number of atoms per ring varies from 6 to 

16 whereas in the crystal the rings are all 12 membered 

There are several approaches to describing the structure of non-

crystalline materials, the simplest being the perturbed crystal approach, 

in which the amorphous material is regarded as a crystal containing a 

high density of conventional structural defects. 	This approach, 

however, is generally unsatisfactory since the entropy and degree of 

order it predicts are respectively too low and too high, and it cannot 

readily account for observed diffraction effects. Other approaches 

fall into two categories: the microdomaiñ approach, in which the solid 

is taken to be made up of small (typically 10 —is X in diameter), 

randomly oriented ordered regions, and the continuous random network 

(c.r.n.) approach, in which the solid is thought of as a continuously 

connected network having no regular structural unit apart from the 

nearest-neighbour configuration. 

The ordered regions in microdomain models of amorphous solid 

structure are generally taken to be small crystallites; the micro-

crystallite approach was suggested by early workers 	to account for 

the type of diffraction pattern characteristic of amorphous materials, 

viz a series of broad, diffuse haloes. 	Whereas the diffraction pattern 

of a single crystal is composed of an array of isolated points, that of 

a polycrystalline specimen consists of a series of sharp, concentric 

rings; as the crystallite size decreases the rings broaden and become 

diffuse, and the diffraction pattern starts to resemble that for an 

amorphous solid. 	Hence it was proposed that an amorphous solid might 
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be composed of an assembly of randomly oriented crystallites 10 - 15 

in size, each one being perfectly ordered internally in the simplest 

version of the model, though in other versions the crystallites may 

contain defects or may have different crystal structures. 

There are several objections to the microcrystallite model. Firstly, 

the boundaries between the crystallites are abrupt and the question arises 

of how the crystallites are connected to one another in order to minimise 

the number of broken bonds at the boundary atoms: if the majority of 

boundary atoms have broken bonds then this type of structure would be 

energetically unfavourable since about half the atoms in a crystallite 

of size 10 - 15 R are at the surface. 	It has been suggested that the 

microcrystallites might be connected via positionally disordered regions 

/ but details of these regions and the way they connect with the crystallites 

have not been specified 30 . 	A second, more philosophical objection 

to the model is that since such a large proportion of the crystallite 

atoms reside at the surface can the domains really be regarded as 

crystalline? The most important objection, however, is the absence of 

the 3rd crystalline nearest-neighbour peak in the r.d.f.'s of all amorphous 

materials studied to .date. 

In some microdomain models the domains are not crystallites but 

polyhedral clusters of atoms; these units - termed 'amorphons' - are 

regular but not crystallographically symmtriJ 12 . The amorphons give 

rise to amorphous-like diffraction patterns with no 3rd crystalline 

nearest-neighbour peak. Because the amorphons have non-crystallographic 

symmetry they cannot fill all space and so it is necessary to regard the 

structure as a mixture of amorphons and crystallites continuously connected 

to each other. Even so, densities calculated from such models are much 

lower than observed values because of the unavoidable presence of large 

voids in the model structure 

Renewed interest in microdomain models has recently been stimulated 
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by the observation of 'fringes' in electron micrographs of some amorphous 

materials (14). 	If the observed fringes are not artefactual they indicate 

the presence of ordered regions 10 - 15 R in size. 	However, the inter- 

pretation of these fringes is still a matter of controversy 	and even 

if they are genuine they can also be accounted for by a c.r.n. approach. 

The dark field electron microscopy of amorphous materials has been-

dis-cussed by Stobbs 6 . 

In c.r.n. models of the structure of amorphous solids it is assumed 

that the atoms form a continuously connected random array. 	Thec.r.n. 

approach was first proposed by Zachariasen(17)  in 1932: Connectivity 

is the essential feature of the model and in an ideal c.r.n. there are 

no broken bonds. 	It is variations in bond lengths, bond angles and 

dihedral angles that enable all the bonds to be satisfied. 

Since liquids (with the exception of liquid crystals) exhibit s.r.o. 

but no 1.r.o. their, structure is also amorphous. 	Liquids and amorphous 

solids have the same type of r.d.c., consisting of a few broad maxima 

at small values of the separation, r, and tending to a parabola as r 

becomes large. 	There is, however, a significant difference between 

the atomic arrangement in an amorphous solid and that in a liquid: in 

the former the atomic arrangement is essentially static whereas in the 

latter it is constantly changing due to the thermal motion of the atoms, 

so that for a liquid the rd.c.  is really a time average for a continuously 

(5)  changing configuration . As a liquid is cooled its atoms move more and 

more slowly and if crystallisation can be prevented it can be cooled to 

the point where the atoms cease to move and the disordered atomic - 

arrangement of the liquid becomes static or 'frozen in'. 	This is the 

principle behind glass formation. 

If a molten material is cooled below its melting point, T, it becomes 

thermodynamically unstable with respect to a transformation into the 

solid state and will crystallise provided there is a crystal.form and 



sufficient time is available for nucleation and crystal growth (18)  

In the growing process atoms diffuse from the liquid onto the surfaces 

of the nuclei, the rate of diffusion being limited by the liquid's 

viscosity, which generally increases as eA'T,  T being the absolute 

temperature and A a constant. 	1f the liquid is cooled quickly the 

accompanying increase in its viscosity may be so rapid that crystal 

growth is inhibited; for some cooling rates crystal growth may be 

inhibited to such an extent that crystallisation does not take place, 

so that the material remains a liquid below the melting point (in which 

case it is said to be in a supercooled state). 	When the temperature 

reaches a value at which the viscosity is so high that the material may 

be regarded as a solid, it is called a 'glass', 'glassy solid' or 

'vitreous solid'. 

The atomic arrangement in the glass is identical with the 'frozen in' 

configuration of the liquid at the temperature at which atomic motion 

ceases. 	This temperature is called the glass transition temperature, T  

Strictly speaking, the glass transition occurs over a range of temperature, 

so that T  does not have a single, well-defined value. 	Also, T  depends 

on the cooling rate and the thermal history of the material. 	Over the 

glass transition region first-order extensive thermodynamic variables 

such as volume, enthalpy and entropy change continuously with temperature 

but undergo a change of slope; however, second-order thermodynamic 

quantities such as expansion coefficient, specific heat and compressibility 

change discontinuously at T 
g (5,19) 

The crystalline state is the thermodynamically stable state of a 

solid; amorphous solids are metastable with respect to their corresponding 

crystals. A glass can always be made to revert to its crystal form by 

holding it at a temperature just below the melting point for a sufficiently 

long time ' . 	There will always be some tendency for an amorphous solid 

to crystallise; in some cases, particularly for certain amorphous materials 
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prepared in thin film form, crystallisation occurs rapidly. 	For some 

glasses, however, the rate of crystallisation (devitrification) is 

negligible, even at high temperatures, and from a practical viewpoint 

they are perfectly stable. 

1.2 	The preparation of non-crystalline solids 

There are numerous methods of preparing solids in amorphous form,. 

the principal ones being: 

(a) Thermal evaporation (2:  In this method the source material is 

heated until it evaporates and then part of the vapour is allowed to 

condense on a substrate to form a thin amorphous film. This is probably 

the commonest method of producing such films. Electron beam bombardment 

or an electric filament is usually used to heat the source material and the 

process is carried out in a vacuum of 1)4 or better. The technique has 

several disadvantages. 	Firstly, the vapour is generally contaminated 

with atoms from parts of the evaporation system, e.g. the filament or 

the evaporation crucible, and so the films produced may contain a high 

level of impurities. 	Secondly, in the case of amorphous compounds the 

evaporated film may not have the same composition as the source material, 

due to differences in the evaporation rates of the atomic species involved. 

Also, the structure of the film is affected by the temperature of the 

substrate, T5 . 	If T5<Tg  the effective 'cooling rate' is extremely high 

and the atoms deposited in the film cannot rearrange themselves to any 

significant extent; the structure of the filiri will differ from that of 

the corresponding glass, being more disordered and containing more broken 

bonds. 	If T5  is slightly greater than T.g  the film will be annealed and 

its structure will be similar to that of the glass. As well as reducing 

the amount of disorder in a film, annealing can also alter the nature of 

its structure, for example non-annealed films of a-As 2 5 3  are made up partly 

of As,S5  molecules but annealing causes this molecular component to poly- 

merise, so that the annealed film has the network structure characteristic 
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of the glass. 

Flash evaporation (J23 is a variant technique designed to overcome 
the problem of differential evaporation encountered when producing films 

of compounds. 	In this method the source material is fed onto a 'hearth' 

electrically heated to a sufficiently high temperature that the material - 

evaporates virtually instantaneously. 

Sputtering
(20)  : This is also a widely used technique for preparing 

thin amorphous films. 	In this method atoms or groups of atoms are 

'knocked out' of the source material by the impact of ions and are deposited 

on a substrate. 	A d.c. or r.f. field is used to accelerate the ions onto 

the source material. 	Argon ions are commonly used but in 'reactive' 

sputtering a gas that combines with the source material is used in order 

to deposit a compound. Unlike evaporation rates, sputtering yields do 

not vary markedly from one atomic species to another!,  so that when depositing 

compounds, the film composition is closer to that of the source material 

than it is in the case of thermal evaporation. 	Also, the structure and 

properties of sputtered films are generally closer to the structure and 

properties of the corresponding glasses than are those of thermally 

evaporated films. 	However, films prepared by this method are always 

contaminated with the sputtering gas. 

Glass formation by cooling a liquid 5 : The  physical principles of 

glass formation were outlined above. 	In practice the process involves 

melting the source material and then cooling the melt quickly enough to 

prevent nucleation and crystal growth. 	Most liquids can, in principl e ,! 

be cooled to form a glass: it is simply a question of attaining a suff-

iciently rapid cooling rate. 	The cooling rates that can be achieved at 

present cover twelve orders of magnitude, viz lO - lO °CJs. The former 

rate is used in the production of the annealed glasses used in optical 

equipment while the latter is used to produce certain metallic alloys in 

glassy form. Quenching rates in the range 10 - 10 °C/s are achieved 
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using the 'splat cooling' technique (22), in which very small droplets 

of the molten source material are projected at high velocity onto a cold 

metal substrate. 	However, even quenching rates as high as lO °C/s are 

not sufficient to vitrify certain materials, e.g. molten alkali halides. 

Te, Ge, Si, B, GeTe and a number of other materials cannot be prepared in 

amorphous form by cooling from the melt; for these materials the bonding 

in the liquid state is generally radically different from that in the solid. 

Nevertheless, a wide range of 'materials can be prepared in amorphous form 

using this method. 

For any glass-forming melt there will be a minimum or critical 

cooling rate required for glass formation and all rates in excess of this 

will result in vitrification. Hence all materials which form glasses can. 

also be prepared in amorphous form by deposition from the vapour phase. 

(d) Glow-discharge decomposition (23) : This is another technique - for 

producing thin amorphous films. 	In this method an r.f. field is used to 

decompose a gas containing the element to be deposited; atoms of the 

element that are liberated in the decomposition are collected on a substrate. 

For example, a-Si can be prepared from silane, SIH4 , by this method. 

Amorphous compounds can be prepared by using a mixture of gases, e.g. a 

mixture of SiH4  and 1120  yields a-Si0 2 . 	The decomposition takes place 

at a relatively low temperature, the energy required being supplied by 

the ri. discharge. 

Spear and co-workers (23)  have used this technique with considerable 

success to produce a-Si from SiH. 	They maintain that films prepared by 

glow-discharge decomposition contain many fewer broken bonds than films 

obtained by thermal evaporation or sputtering(24),  but there is some 

controversy over whether the low level of broken bonds is due to the 

nature of the deposition process or simply to the incorporation of 

hydrogen atoms (from the S1H 4 ) in the structure 
(25) 	The number of 

defects in an amorphous film is of practical importance for it determines 
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whether or not the film is suitable for substitutional doping, which 

is the basic process involved in the fabrication of a p-n junction; 

if there are too many defects the extra states arising from the added 

impurities will have little influence on the conduction processes in 

the material. 	Spear et al. (24) claim that the glow-discharge technique 

is the most suitable method for producing films capable of being used 

in the fabrication of amorphous p-n junctions. 	 - 

There are various other methods of preparing amorphous materials, 

including vapour-phase pyrolysis or hydrolysis, electrolytic deposition 

from solution, chemical reaction and precipitation from solution, 

dessication, oxidation and loss of a volatile constituent. 	Certain 

crystals can be transformed to the amorphous state by shock waves or by 

irradiation with fast neutrons, gamma rays or ions, and in some cases 

the surface of a crystal can be amorphised by grinding or comminution. 

Some of the above methods, however, are applicable only to a very 

limited range of materials. 

1.3 	The classification of amorphous semiconductors 

Amorphous materials do not belong exclusively to any one class of 

solid: there exist amorphous metals (e.g. alloys in the Cu-Zr and Au-La 

systems), amorphous semiconductors (e.g. a-Si and a-As 2Se 3 ) and amorphous 

insulators (e.g. a-5i0 2  and a-As 20 3 ). 	The amorphous semiconductors can 

be divided into several chemically different groups, the principal three 

being: 

the tetrahedrally coordinated amorphous semiconductors such as 

a-Si, a-Ge and the amorphous III - V compounds; 

the transition-metal oxide glasses - in these the major con-

stituent is a transition metal oxide such as 

the chalcogenide amorphous semiconductors - these contain one 

or more of the chalcogen elements 5, Seand Te. 

It is the last group that is of most interest in the present case since 
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the glasses investigated in this study are all in the As-S or As-Se 

systems. 

In the chalcogenides the elements 5, Se and Te are usually combined 

with one or more of the elements from groups IV and V, e.g. Ge or As. 

a-As2 S 3  and a-As 2Se3  are regarded as typical members of this group, though 

a-Se is probably the most studied chalcogenide material. 	Unlike the 

tetrahedrally coordinated amorphous semiconductors, which cannot be 

produced by cooling from the melt, most chalcogenides are readily prepared 

in glassy form; As 25e 3  and As 2 S 3  are particularly easy to vitrify, the 

latter forming a very stable glass. Also, the properties of amorphous 

chalcogenides are generally not as sensitive to the method and conditions 

of preparation as are those of the tetrahedrally coordinated materials; 

in particular, they are not significantly affected by the presence of 

impurities, though there are some exceptions to this. 

A wide range of compositions in the As-S and As-Se systems can be 

prepared in vitreous form: the glass-forming region extends from 5 to 

43 at.% As in the As-S system and from 0 to 55 at.% As in the As-Se 

system (26). 	In this study compositions will generally be written in 

terms of atomic percentage; e.g. As 25 575  rather than AsS3 . 	However, 

except when they are being discussed in relation to the non-stoichiometric 

glasses, those materials - particularly the crystals - which are better 

known by their molecular or empirical formulae will be referred to by 

those formulae, e.g. c-As 2 S 3  rather than c-AsS 60 . 	Also, the terms 	- 

'As-rich', 'S-rich' and 'chalcogen-rich' that are used throughout this 

account will, unless otherwise stated, mean rich relative to the stoi-

chiometric composition As 40X50 , X = S or Se. 

1.4 Experimental methods for deterthining the structure of amorphous solids 

X-ray, electron and neutron diffraction are the traditional techniques 

for determining the structure of condensed matter: These techniques 

provide information in the form of an r.d.f., from which can be deduced the 
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number of first nearest neighbours, the average separation between them, 

and the density  of the material; bond angle distributions and rotations 

can also be derived(27). 	The r.d.f. is of most use in the case of 

elemental amorphous solids since for amorphous compounds and alloys it 

is a convolution of the diffractions produced by the different types of 

atoms present and can thus be difficult to interpret. 	In particular, 

the mixing of diffractions in the case of amorphous compounds and alloys 

makes it difficult to identify r.d.f. features arising from 'wrong' or 

'like-atom' bonds in such materials(28). 	In principle the contribution 

to the r.d.f. from each type of atom in a multi-component system could 

be determined by making use of the fact that the dependence of the 

atomic scattering factor on incident wavelength is not the same for each 

atomic species, but this has not yet been done. 

One general shortcoming of diffraction experiments is that the 

r.d.f. does not provide a sufficiently sensitive test for structural 

models: radically different models of the same material can yield a 

satisfactory fit to its r.d.f. 	For example the r.d.f. 's of the elemental 

amorphous solids a-Si and a-Ge can be fitted by a random network model 

containing numerous 5- and 7-fold rings (29) and also by one in which such 

rings are absent (30). 

Hence although diffraction experiments provide much useful infor-

mation they do not give a complete picture of the structure; in fact, 

there is no one experimental technique that can be used to uniquely 

specify the structure of an amorphous solid and a complete picture can 

only be obtained by using a variety of techniques in conjunction. Other 

methods of structural determination include nuclear magnetic resonance, 

nuclear quadrupole resonance, electron spin resonance, optical and electron 

microscopy, density measurement, calorimetry, and vibrational spectroscopy, 

which is discussed in more detail in the following section. Of particular 

importance is the new technique of extended X-ray absorption fine structure 
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which seems a promising method for deconvolving the structural features 

of multi-component amorphous solids (31) 

1.5 	The vibrational spectroscopy of amorphous solids 

Vibrational spectroscopy is an indirect method of structural deter-

mination in which information on the structure is derived from the 

infra red (i.r.) or Raman spectrum of the material. 	The frequencies at 

which the atoms in a substance vibrate against one another are determined 

mainly by the atomic masses - which are well known -, the interatomic 

forces and the structure, and hence structural information can be deduced 

from a knowledge of the vibrational frequencies and the interatomic 

potential
(28) . 	In some instances information, such as the identity of 

discrete molecular species, can be obtained by comparison with known 

spectra; for example the presence of S 9  rings in an As-S glass can be 

established by comparing its vibrational spectrum with that of the S3  ring 

(see Section 5.5.2). 

Raman and i.r. spectroscopy may generally be regarded as complementary 

techniques and usually both must be employed in order to obtain a complete 

determination of the vibrational spectrum of a material. This is because 

vibrations which give rise to intense Raman(i.r.) lines sometimes contribute 

only weakly - or even not at all - to the i.r.(Rarnan) spectrum. 	In the 

case of amorphous materials, however, Such complementarity of i.r. and Raman 

spectra is less common since the structural disorder leads to a relaxation 

of the selection rules governing i.r. and Raman activity. Thus in general 

more information is contained in the individual spectra of non-crystalline 

solids than in those of crystals. 

In the case of crystals i.r. and Raman spectroscopy provide information 

on not only the frequencies of the vibrations but also their symmetry 

properties. For amorphous materials, however, only Raman scattering can 

yield any information on the symmetry properties, because only the Raman 
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process involves a tensor quantity (the polarisability). 	This gives 

Raman scattering an advantage over i.r. spectroscopy in the study of 

amorphous materials. 

The structural information that can be obtained from the vib-

rational spectra of non-crystalline solids largely relates to the local 

bonding: the types of covalent bond present in the material can be 

identified (hence the technique is suitable for detecting like-atom 

bonds (28))  and the basic structural units of the material can be deduced. 

Also, if molecular species or phase-separated materials are present they 

can be identified by comparison with known spectra. 

In certain cases vibrational spectroscopy not only reveals the 

nearest-neighbour atomic arrangements but also yields information on the 

atomic arrangements over larger regions. 	In the case of Ge-Se glasses, 

for example, vibrational spectroscopy has identified the basic structural 

unit as a GeSe 4  tetrahedron and has shown that these tetrahedra are 

generally positioned in such a way that they form larger structural 

elements, viz 10- to 16-membered rings(32). 	Similarly, DeFonzo and 

Tauc 	have shown that it is possible to deduce from the vibrational 

spectrum of a-As 2 S 3  'not only that a well-defined unit exists but also 

that certain correlations between these units are preferred' (the units. 

in this instance are AsS 3  pyramids). 	Also, in the case of molecular 

amorphous solids vibrational spectroscopy can yield information on the 

packing of the molecules (34)  

Further information on the structure of an amorphous solid beyond 

the first coordination sphere can be obtained from the low-frequency 

region of the light-scattering spectrum, for it is possible to determine 

the structural correlation range (s.c.r.) from this region (35-39)  

The s.c.r. is one of the key parameters specifying the structure of a 

disordered material and is the characteristic length over which the 

positions of atoms in the solid are correlated. 	Raman scattering has 
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been used to determine the s.c.r. of a-Se 3 , a-As 2O 3 , a-GeS 2 (38,39) 

a-GeSe 2 , a-As 2S 3 , a-As 2Se 3  and amorphous alloys in the (As 2  S3 )l-x (GeS ) 2x 

system (39) 

As well as yielding information on the structure of amorphous 

materials, vibrational spectroscopy, of course, provides information on 

their vibrational excitations. For many amorphous materials one can 

derive from the i.r. or Raman spectrum a reasonable approximation to the 

41) 
vibrational density of states (40, 
	, which can then be used to calculate 

other thermodynamic quantities such as specific heat. This is not 

possible in the case of the chalcogenide glasses but even for them, much 

information On the phonons can be obtained from the vibrational spectra: 

for example, from a Raman study of the light-induced crystallisation of 

a-As2Se 3  Finkman et a1J42)  were able to deduce the approximate shape 

of the phonon dispersion curves in c-As 2 Se 3 . 	Also, it is possible to 

obtain through light-scattering and i.r. experiments information on the 

anomalous low-temperature thermal effects which are exhibited by non-

crystalline solids and which are currently of great interest: i.r. spec- 

troscopy 	and Raman and Brillouin
(44,45)  have been used 

to investigate the nature of the very low frequency vibrational states 

thought to be responsible for these effects. 

As well as having certain general advantages over other techniques 

used in the analysis of amorphous solid structure, Raman spectroscopy 

is an ideal tool for investigating the photo-induced structural changes 

(28,46 - 48) 
that take place in some of these materials 	 . 	The photo 

induced processes, that occur (e.g. crystallisation, dissociation, phase 

separation and polymerisation) usually involve molecular species or 

crystal products and Raman spectroscopy is a sensitive method of detecting 

these; also, the molecules or crystals concerned can often be identified 

simply by comparison with known spectra. 	For example, X-ray diffraction 

studies of as-deposited evaporated a-As 2S 3  films show that they are composed 
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of densely packed As 4S5  molecules which polymerise on illumination or 

annealing to form the network structure characteristic of the bulk or 

(49 
sputtered material 	); Raman experiments, however, indicate firstly 

that not only are As 4S6  molecules present in the as-deposited films 

but also other species such as As4S4 , and secondly that the films contain 
- 	

(46) 
a considerable amount of polymeric As 2 S 3  to begin with 

Raman scattering also has certain practical advantages over other 

methods of analysis. For example, both Raman scattering and X-ray 

diffraction can be used to test nominally amorphous samples for traces 

of crystallinity but the former method is considerably quicker: Brodsky (48)  

reports that the Raman examination of an a-Si film can be completed 

tin about 5 minutes compared with the several hours required for 

diffraction'. 

Possibly one of the most important advantages of Raman spectroscopy 

as a structural probe of amorphous solids is that it can also be used to 

relate the electronic properties of these materials to their structure. 

The electronic properties of non-crystalline solids differ in many respects 

from those of crystalline materials and one of the fundamental questions• 

in the study of the amorphous state is how these differences result from 

the difference in the structural nature of these two classes of solid. 

Light scattering can be used to investigate electronic states because the 

coupling of the incident light to the vibrations in a material involves 

these states. 	Information on the electronic states is obtained by 

monitoring the Raman spectrum as a function of the frequency of the light 

used to excite the spectrum: as this frequency approaches the frequency 

of an electronic transition of the material the scattering efficiency 

of those Raman bands associated with the vibration involving this transition 

is enhanced, so that one observes resonances in the spectra (hence the 

technique is known as resonance Raman spectroscopy). 	So far the technique 

(50—..2) 
has mainly been applied to a-As 2S 3 	. , where it has been used to 
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investigate the nature of the states in the region of the absorption 

edge and to determine the structural origin of defect states. 	Resonance 

(53) (54) 
Raman scattering has also been studied in a-Se 	and a-Si 

1.6 	Aims of the present work 

The present study is part of a more general investigation being 

carried out in these laboratories into the properties and applications 

of amorphous semiconductors. 	Other projects in this programme include 

photornobility measurements in As 2Te 3 , As-Se, As2Se 3  -As 2Te 3  and in multi-

component glasses, photoconductivity in As 2Te 3 , As-Se and multicoraponent 

glasses, transit-time drift mobility measurements in a-Se and As-Se 

glasses, optical absorption in As-Se and Cu-As-Se glasses and conductivity, 

thennopower and optical absorption measurements in V 2OçTeO2  glasses. 

The use of amorphous chalcogenides as solid-state-switches and ion-

selective electrodes is also being studied. 

The aim of the present study- is to obtain information on the structure 

of glasses in the As-S and As-Se systems using Raman spectroscopy as the 

structural probe. The reason for investigating a range of glasses in 

these systems is two-fold: firstly, while the properties of the prototype 

chalcogenide glasses As 2S 3  and As 2Se 3  have been extensively studied, 

research into the ncn-stoichiometric glasses has been limited, and 

secondly, determining how properties change as a function of composition 

is often of value in understanding the physics of amorphous materials. 

In the present case, measuring the spectra of the non-stoichiometric 

glasses will not only yield structural information on them, but will 

also help in interpreting the spectra of the compound compositions 

As S and As Se 

As well as being of general use, the information obtained in this 

study will form the basis of a future project in which it is hoped to 

relate the electrical properties of these glasses to their structure. 



21 

This project will use the technique of resonance Raman scattering, 

described in the previous section. 	Also, the structural information 

obtained in this study will provide a starting point for investigating 

the potentially useful photostructural changes that occur in these 

materials. 
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CHAPTER 2 

THE STRUCTURE OF MATERIALS IN THE As-S AND As-Se SYS 

2.1 	Introduction 

When determining the structure of an amorphous solid it is useful 

to know the structure of the related crystals; also, since no single 

technique can give a complete picture of the structure of a disordered 

material it is necessary to utilise information from all types of 

measurements. Consequently, this chapter surveys the existing infor-

mation on the structure of crystalline and amorphous solids in the As-S 

and As-Se systems. Only information obtained by techniques other than 

vibrational spectroscopy is included in this survey; information derived 

from i.r. and Raman experiments is presented elsewhere. 

2.2 	Structure of the crystals 

2.2.1 	c-As253  

MorimotoW and Mullen and Nowacki(2)  have shown that arsenic 

trisulphide crystallises in a monoclinic structure, the space group being 

P2
1 
 /n (Ch).  The unit cell dimensions are a r  11.475, b = 9.577 and 

c r  4.256 	. The angle between the a and c crystallographic axes is 

900 41 (2);  because this is almost a right angle the structure can be 

considered as orthorhombic for many purposes , . 

The atomic arrangement in c-As 2S 3 , which -is a layer crystal, is shown 

in Figure 2.1; Figure 2.1(a) shows part of a single layer as viewed along 

the normal to the layer, plane while Figure 2:1(b) shows the layers edge on. 

The layer planes are parallel to the ac plane and perpendicular to the 

b axis so that 	Figure 2.1(a) is a projection along the [010] direction 

and Figure 2.1(b) is a projection along the [ooi] direction. Figure 2.1(b) 

shows that the alignment!  of adjacent layers is determined mainly by packing 

considerations. 



I' 

Figure 2.1 

The atomic arrangement in c-As 2S 3 . 	(a) A view along the b axis, 

looking down on a single layer. 	(b) A view along the c axis, looking 

at the layers edge on. 	The five inequivalent atoms in the unit cell 

are labelled in (b). 
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c-As 2 S 3  can be regarded as a molecular crystal in which the 

molecular unit is a layer infinitely extended in two dimensions. 	In 

directions parallel to the layers, this crystal is a network solid while. 

in the direction perpendicular to the layers it is a molecular solid. 

In accordance with the 8-n rule each As atom is covalently bonded 

to three S atoms while each S atom is covalently bonded to two As atoms. 

These covalent bonds are only formed between atoms in the same layer, so 

that there is no cross-linking of the layers. The bonding between layers 

is primarily of the weak, van der Waals type. As a result of this very 

weak interlayer bonding c-As 2S 3  exhibits perfect micaceous cleavage 

parallel to the layer plane (2,4)  

The relation of the unit cell axes a, b and c to the atomic arrange-

ment is also indicated in the diagrams of Figure 2.1. 	There are twenty 

atoms in the unit cell - eight arsenics and twelve sulphurs. However, 

only two of the As atoms are inequivalent and only three of the S atoms 

are so; these inequivalent atoms are labelled As 11  As  2 1 S  l' 2 and S 3  in 

the figure. 	Figure 2.1(b) shows that the unit cell contains segments 

from two layers. 

It is clear from Figure 2.1 that the basic structural unit of the 

layers is an AsS 3  pyramid. Each pyramid is linked to three neighbouring 

AsS 3  units via the three shared S atoms at its base. 	In fact the AsS 3  

units that make up c-As 2 S 3  are not identical: two types of pyramid can 

be identified in the structure. The pyramidi adjacent to any particular 

pyramid of one type are always of the other type, so that the basic 

structural unit of the crystal is really a linked pair of these two 

different AsS3  pyramids; Such a pair is shown in Figure 2.2(a). 

Allowing for the S atoms that are shared with other pyramids there are 

five atoms per pair-unit; all five inequivalent atoms in the crystal 

unit cell are represented in the pair-unit. 
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Figure 2.2 

The basic structural unit of c-As 2S3 . 

The 'average' pyramid based on the structure of the c-As 2S 3  units: 

the pyramid is regular and its bond length and apex angle are the 

average values for the crystal units. 	AD is the three-told axis. 
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Data on the geometry of the two types of AsS 3  pyramid - which are 

both irregular - is given in the figure. The average As-S bond length 

for the AsS 3  units is 2.28 R and the average of their S-As-S angles 

98.950 (since the crystal is made up of a number of pair-units identical 

with the one shown, these average values also apply to the crystal as a 

whole). 	Both types of pyramid are fairly shallow. 	It is noteworthy 

that the smallest interatomic separation between the layers is 3.24 	
(2), 

which is -'42% greater than the average As-S bond length. This reflects 

the fact that the bonding between the layers is much weaker than the 

intralayer bonding. 

It is clear from Figure 2.2(a) that although the two types of pyramid 

are not identical they are similar, and in practice it is often sufficient 

to consider a single pyramid based on the structures of the two types. 

If this average pyramid is taken, for simplicity, to be regular then it is 

specified by a single bond length and apex angle, and these parameters can 

be set equal to the average values given above. Such an average pyramid 

is shown in Figure 2.2(b). 	The pyramidal angle, 	, of a regular pyramid 

is defined as the angle between the axis of symmetry (AB in the figure) and 

any of the three edges that intersect it (in the present case the As-S bonds 

form these edges); 	is related to the apex angle, &Cp by the relation 

sin 
 fr

p r-sin (G2) 	 (2.1)  ff 
The value of fir for the approximate pyramid (for which &&j,.Z  98.95° ) is 

61.4° . 	This average pyramid will be of use later in determining the 

vibrational frequencies of vitreous As 2 S 3  

Ito et a1J 6  consider the layers of c-As 2 5 3  to be composed of 

-As-S---As-S- spiral chains running parallel to one another in the c direction. 

The chains are linked to each other by sulphur bridges between neighbouring 

As atoms in adjacent chaihs. The bridging S atoms and the spiral chains 

(viewed end on) are obvious in Figure 2.1(b). 	Figure 2.3(c) (after p.28) 

shows one of the chains viewed along a direction normal to the c axis. 
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The repetition length of the chain is simply the length of the unit cell 

side c, i.e. 4.256 . It is noteworthy that the As—S--As angles in the 

chain differ considerably from the As—S--As angle at the S atoms bridging 

the chains: the angle As 1—S3  —As 2  is 87.9°  but the angles As1—S1  —As 2  and 

As12 s2  are 103.7 °  and 101.00 respectively (2) 

As well as chains, rings can also be identified in the structure of 

c-As2S 3 . 	These rings are obvious in Figure 2.1(a) which shows them 

viewed along the normal to the planes in which they lie. The rings are 

puckered and have twelve members. 	The ring diameter is -8.3 R in the a 

direction and is equal to the unit cell side c (4.256 ) in the c direction. 

c-As 2 S 3  occurs in nature as the yellow mineral orpiment. No poly-

morphs have been reported at room temperature and pressure; a red 

modification is known to exist but it has not been determined whether 

this material has a different crystal structure to orpiment or whether 

impurities it simply contains mpurities 	. 	It is well established that when 

orpiment is heated above "170 °  C it transforms to a red modification 

- 11) which is structurally different to orpiment. At high 

temperatures and high pressures two other polyinorphs occur, - and 

€ -As 2 S 3 2 . 

2.2.2 	c-As4S4  

The structure of c-As 454  has been determined by several 

(2 6 13 14) 	 (13) 
workers ' ' ' 	. 	Porter and Sheldrick 	- have shown that this 

material occurs in two polymorphic -forms, o 	f-As4S4  c&-As4S4  

being identical with the mineral realgar; the crystal structure of 

both polymorphs is monoclinic. 	In the case of Gk-As454  the space group 

is P21/n and the unit cell parameters have the following values: a z  9.325, 

b = 13.571, c = 6.587 	and P z 106°  23 (2) 
	

For 	-As4S4  the space 

group is C2/c and the unit cell dimensions are a z  9.957, b r  9335 

0 (13) 
c 8.889 and 	r 102 . 48 	The unit cell volumes for the two 
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polymorphs are similar, being 797.4 and 806:7 R3 for the at and p forms 

respectiveiy. 

Both polymorphs consist of discrete, covalently bonded As4S molecules 

bound to one another by van der Waals forces. The As 4S 4  molecules of the 

modification are identical with those of the 	form but the packing of 

the molecules is different in the two polymorphs. 	The As4S4  molecule, 

which is of D2d  symmetry, has the cradle-like structure shown in Figure 2.3(a) 

(see also Figure 2.4(a) after p.32); the four S atoms and the four As atoms 

form a square and a tetrahedron respectively, with the square cutting 

through the tetrahedron in the middle. 

The average values of the As—S and As—As covalent-bond lengths are 

2.237 and 2.569 R respectively. 	The As4S4  molecule of the crystals is 

almost identical with the gaseous As 4S4  molecule 5,16) 
	The c and 

polymorphs both have four As 4S4  molecules in the unit cell. The shortest 

intermolecular As.. .As distance in a-As 4S4  is considerably longer than 

that in -As 4S4 , being "3.51 R in the former and "3.97 R in the latter. 

Although the bond lengths and bond angles of c-As 4S4  are similar to 

those of c-As2S 3 , there appears, at first sight, to be little similarity 

between the structures of the two crystals: c-As 4S4  is made up of small 

discrete molecules while c-As 2 S 3  is formed from layers effectively infinite 

in extent. 	Ito et al. (6), however, have shown that on closer inspection 

the structures of the two crystals are remarkably similar; both structures 

are in fact made up of the same basic unit. 

The As 4 S4  molecule is in the form of a closed loop, as Figure 2.3(b) 

shows, and can be divided into two virtually identical halves; by rotating 

the molecule about an axis passing through the mid-points of the two As—As 

bonds (these are omitted in Figure 2.3(b)) it can be brought into approx-

imate coincidence with itself. The four atoms labelled A - D make up one 

of the halves of the As 4S4  molecule; these atoms are arranged in the order 
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Figure 2.3 

The realgar molecule, As4S4 . 

The AskS4 molecule oriented to emphasise its closed loop form (the 

As—As bonds are omitted). 	(After Reference 6.) 

The spiral chains that can be generated from the molecule; c is 

the repeat length. 	(After Reference 6.) 
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S—As--S—As and form a spiral. 	If a number of these As 2 S 2  spiral units 

are identically oriented and placed end to end one obtains a chain 

running in the direction of the spiral axis (see Figure 2.3(c)). . These 

chains are almost identical with those observable in the c-As 2 S 3  structure 

(see p.26). 	To account for stoichiometry in the case of c-As 2S 3  there must 

be an additional S atom with every As 2 S2  unit; these extra S atoms form 

the bridges between neighbouring chains.. 

18)17, 
According to some workers (6, 

17,18) 	changes readily to c-As 2S3  

on exposure to light. 	Ito et al. 
(6) suggest that the ease with which 

the transformation occurs is a result of the similarity of the basic 

(13) 
structural units of these two crystals. 	Porter and Sheldrick 	, however, 

find no evidence for the formation of c-As 2S 3  when - and ,5-As4S are 

illuminated although they do find that the two polymorphs undergo some 

light-induced structural change. 	These authors suggest that the discrete 

As4S4  molecules polymerise on irradiation, presumably forming a network 

containing As—As bonds. 	 - 

2.2.3 	c-AsS3  

c-As 4S 3  exists in two polymorphic forms, - and -As4S 3 ; both 

polymorphs occur in nature, the corresponding minerals being QL-  and 

?_dimop11te. 	The structure of the two modifications has been determined 

by Whitfi eld(1920)The  crystal structure of both polymorphs is ortho- 

rhombic, the unit cell dimensions being a = 9.12, b = 7.99 and c r  10.10 

in the case of 0(-As4S4 , and a z  11.21, b z  9.90 and c r  6.58 9 in the 

case of fl. -As 4 S4 . 	For both crystals the space group is Puma. 	The unit 

cell volumes are similar, being 736.0 and 730.2 	for the ck and p forms 

respectively. 

The two polymorphs consist of discrete, covalently bonded As 4S 3  

molecules bound to each other by van der Waals forces. The As 4S 3  molecules 

of the çç form are identical with those of the p form and have the structure 
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shown in Figure 2.4(b); the four As atoms are at the corners of a tetra-

hedron and the three S atoms form bridges along the three adjacent apical 

edges. The molecule is of C 3,  symmetry. The average values of the As--S 

and As-As covalent-bond lengths are 2.21 and 2.45 respectively. 	The G& 

and p polymorphs both have four molecules in the unit cell. The shortest 

intermolecular As... As and As... S distances in 	-As4S 3  are 3.60 and 3.47 

respectively, compared with 3.83 and 3.47 R respectively in the case of 

A
-
As 4S 3 . ,b-As 45 3  is stable at room temperature but transforms to 

-As4S 3  on heating above 130
0 
 C. 

2.2.4 	c-As4S5  

c-As4S 5  is less well known than the other crystalline phases in the 

As-S system. The structure of this material, which is not naturally 

occurring, has been determined by Whitfield 
(21). 	The crystal is mono- 

clinic, with space group P2 1 
 /m, and the unit cell dimensions are a = 7.98, 

b r  8.10, c r  7.14 R and /5 	101.00. 	The unit cell volume is 453 

c-As4S 5  is made up of discrete, covalently bonded As 45 5  molecules 

having the structure shown in Figure 2.4(c). 	The As45 5  molecules, of 

which there are two in the unit cell, are linked to one another by 

van der Waals forces and form strings parallel to the b axis of the crystal. 

The As4S 5  molecule is of C 2  symmetry. The average value of the As-S 

covalent-bond length is 2.24 R and the single As-As bond has a length of 

"2.55 X. 	The shortest intermolecular As.--S distance is 3.37 

2.2.5 	c-As2Se 3  and c-As 4Se 4  

Since c-As 2Se 3  and c-As4Se4  have been shown to be isomorphic with the 

corresponding sulphide crystals much of the discussion in Sections 2.2.1 

and 2.2.2 is applicable to these two materials also; the structures of 

c_As2Se3(2223) and c_As4Se4(2324) differ only in detail from those of 

orpiment and realgar. 	The mean As-Se bond length is 2.40 R in c-As 2Se 3  

23  and 2.38 	in c-As4Se4. 
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2.2.6 	Other As-S and As-Se crystals 

There are a number of crystals in the As-S system whose existence is 

in dispute or has not been confirmed In order of increasing S content 

they are: 

As-S: In the first quarter of this century two reports(2526)  appeared 

describing methods of preparing a solid compound having the formula As 3S. 

Its existence was not generally accepted 
(8)  and a more recent investigation (27) 

asserts that it definitely does not exist. 	As3S molecules, however, have 

been observed in the vapour of some As-Se-S compounds ( 28 ) . 	 - 

As4S 1 : A new isomeric form of As 4S4  has recently been reported (29) 

Like realgar, this new crystal is a molecular solid made up of discrete 

As4S4  units bound to one another by van der Waals forces. However, the 

structure of the molecule in the new form is significantly different from 

that of the realgar molecule: the four As and four S atoms in the new 

molecule are arranged as shown in Figure 2.+(d). 	The crystal structure 

is monoclinic and the unit cell parameters are a r  11.193, b = 9.994, 

c = 7.153 X and p z 92.80 . 	The space group of the crystal is P2 1/n. 

As2S215 : Crystals with the non-stoichiometric composition 	 2.15 
 have 

recently been reported (30,31) . 	The crystals are made up of As 4S 4  realgar 

molecules with a small number of S atoms randomly distributed in the lattice. 

The crystal structure is monoclinic and the unit cell parameters are 

a z  9.89, b r  9.6, c = 9.05 R and z 103° . The unit cell contains four 

(As 4S 4  + S 03 
units. The space group of the crystal is Cc. 

As2 S 5 : The existence of a solid compound As 2S 5  is well established. 	The 

majority of chemistry texts list As 2 S 5  as one of the principal sulphides of 

As along with As 2 S 3  and As4S4 , and describe the method for producing it 

chemically (32 	
34) 	Generally, though, the structure of this solid is 

not specified. 	It has been asserted that As 2 5 5  exists only in amorphous 

in which case it is perhaps misleading to put it in the same 
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category as As 2 S 3 , As 4S4  and the other arsenic sulphide compounds since 

a wide range of As-S compositions can be prepared in amorphous form and 

As 25 5  is not exceptional in any way (any As-S mixture containing between 

5 and 43 at.% As can be made into a glass). 	A crystalline form of.As 2S5  

does, however, exist at high temperatures and pressures: above 250 ° C 

and at pressures between 50 - 70 kilobars a- .As 2 S 5  crystallises in an 

orthorhombic structure having unit cell parameters a z  10.37, b = 9.9 and 

c r  8.66 R (35)• 

c-As43e 3  has recently been synthesised (36) (it occurs in two poly-

morphic forms) and As 3 S4 , As 3Se and As3Se4  molecules have been observed in 

the vapour of certain As-S-Se and As-Se compounds 
(28)  but no solids having 

these formulae have been reported. As 45 6  molecules have been observed in 

the vapour from 	
(15)  and are also believed to be present in non- 

39) 
annealed evaporated films of a-As2S37 - 
	but there is no crystalline 

compound corresponding to arsenolite, a stable polymorph of As 203  

consisting of As406  molecules. 

C 

2.2.7 	Arsenic 

• 	There are two crystalline forms of arsenic, rhombohedral and 

orthorhombic As (arsenolamprite). Rhombohedral As consists of double 

layers in which each atom is bonded to three neighbours, the layers being 

held together by weak mesomeric bonds. The unit cell parameters are 

a = 4,132 R and &l. i 54.126. There are 6 atoms in the unit cell and 

the space group of the crystal is D 5 (41) ad 

Orthorhombic As also consists of layers; it is isostructural with 

black phosphorous. 	The unit cell contains 8 atoms and has the dimensions 

a r  3.63, b r  4.45 and c r  10.96 (42), The space group of the crystal 

is 
 18 
h.' 

2.2.8 	Sulphur 	 . 

There are numerous solid allotropes of sulphur but the only mod-, 

if ication thermodynamically stable at room temperature and pressure is 



(a) AsS4  (in realgar) (b) As4S 3  (c) As4S5 

(a) AskS4 (e) As 14S5  

Figure 2.4 

The molecular species in the As-S system. 
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orthorhombic S ( ct-S 8.), a molecular crystal composed of S 8 
 rings in the 

form of a puckered octagon. 	The unit cell contains 16 S molecules 

and has the dimensions a r  10.437 1  b = 12.845, c = 24.369 R. 	The space 
24 

group of the crystal is D2h. The structures of the allotropes are 

described in Section 5.5.1.5.2. 

2.2.9 	Selenium 

Selenium also exhibits extensive allotropy but again only one form, 

trigonal Se, is thermodynamically stable at room temperature and pressure. 

Trigonal Se is composed of infinite unbranched helical chains packed 

(44) 
closely together and running parallel to one another 	. The hexagonal 

unit cell parameters are a r  4.366 and c r  4.954 and the space group of 

the crystal is either D or D. 	There are 3 atoms in the unit cell. 

The structures of the allotropes are described in Section 6.5.1.5.2. 

2.3 	Structure of the non-crystalline solids 

2.3.1 	a-AsQS 

X-ray diffraction studies of vitreous As 2S 3  have been carried out 

(45-51) by a number of workers . The structura], information obtained 

in these studies can be summarised as follows: 

(a) 	The nearest-neighbour configuration in the glass closely 

resembles that in the crystal, so that both forms are made up from 

similar structural units, namely shallow AsS 3  pyramids. In fact, 

the s.r.o. in the glass resembles that in the crystal out to next-

nearest neighbours. - 

(b): 	The distribution of As—S bond lengths in the glass is Gaussian, 

the average bond length being that for c-As 2S 3 , viz 2.28 R. and the 

o (51) 	 i r.m.s. deviation being 0.1 A 	, so that there s approximately . a 

spread in bond lengths 
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Vitreous As 2S 3  is a network glass in which the simple covalent 

bonding requirements given by the 8-n rule are satisfied, so that 

the As and S atoms are three-fold and two-fold coordinated respectively. 

Because the s.r.o. of the glass is similar to that of the 

crystal one might expect the layer structure of c-As 2 S 3  to be present 

in the glass to some extent. 	Direct evidence for the presence 

of a sheet-like structure in vitreous As 2S 3  is provided by the fact 

that the first diffraction maximum of the glass is extremely sharp 

and corresponds in position to the (020) orpiment reflection, which 

arises from the stacking of the parallel layers along the b axis! (50,51) 

The first peak in the diffraction pattern of the glass does not, 

however, occur exactly at the position of the (020) c-As 2S 3  peak, but 

the density of the glass (3.1 9/cm 3 ) is less than that of the crystal 

(3.46 g/cm 3 ) and it can be shown that if the separation of the layers 

in c-As 2S 3  were increased so that the crystal density was reduced to 

the glass value then the difference between the peak positions would 

be very small. 	This suggests that the layer separation in the glass 

is larger than that in the crystal: the calculated layer separation 

for vitreous As 2 S 3  is about 5 R, compared with 4.79 2 in c-As 2S 3 . 	it, 

seems that the lower density of the glass is predominantly due to the 

wider separation between its layers; the atomic density within the 

layers must be very similar to what it is in the crystal. 

In the glass the correlation length perpendicular to the layers 

is found. to be "15 R. which means that on average the interlayer 

correlation extends over about four layers since the layer separation 

is 'u5 . 	The correlation length within the layers is ll R, so 

correlation between layers extends further than correlation within 

layers (51)  

There is no feature in the r.d.f. of vitreous As 2 S 3  corresponding 

to the cross-ring distance c (4.256 ), i.e. the repetition length of 



35 

(50 51) 
the ring pattern in the c direction 	' 	. 	This indicates that 

the ring structure of the c-As 2S 3  layers is not preserved in the 

glass. 	The layers in the glass will be disordered, possibly being 

0 i wavy and cross-linked (45) . 	The absence of a peak at "4.3 it n the 

r.d.f. of the glass means that microcrystallite models based on the 

orpiment structure are not appropriate. 

(f) 	The number of like-atom, bonds formed is very small. 

Neutron 
(50,51)  and electron (52) diffraction studies of vitreous As 2S 3  

yield much the same information as the X-ray studies. 

Small angle X-ray scattering (s.a.x.s.) measurements on As 2 5 3  glass 

show no evidence for the presence of voids in the structure and suggest 

that it is a homogeneous material; the results indicate that the maximum 

volume which could be occupied by voids is less than 1% of the sample 

volume. Hence the 8% density deficiency of the glass compared with the 

crystal cannot be attributed to the presence of voids. These measurements 

are inconsistent with a microcrystallite model of the glass since such a 

model would lead to a void volume in excess of 1%. 

The s.a.x.s. data also supports the presence of layer-like regions in 

vitreous As 2 S 3 , and the 1% limit on void volume implies that the lateral 

extent of the layers is greater than the lb R correlation length perpen-

dicular to the layers. 

Nuclear quadrupole resonance (n.q.r.)
(5,54)  on vitreous 

As2S3  also support the presence of layer-like regions. 	In addition they 

show that the distribution of pyramidal apex angles (i.e. the S-As—S angles) 

in the glass has a halfwidth of ,110. 

The structure of sputtered and annealed evaporated films of a-As 2 5 3  

has been shown by X-ray diffraction to be identical with that of the bulk 

(38) 	 (53) 	 films  . 	S.a.x.s. measurements 	indicate that evaporateu films are i  

as homogeneous and void-free as the bulk glass. However, non-annealed 



36 

evaporated films of a-As 2 S 3  have been shown 
by(38,55) 

 and neutron 

diffraction to be composed partly of network regions and partly of 

molecular species such as As 4 S 6  and As 4S4 . 	When the as-deposited 

evaporated films are illuminated with band-gap radiation or annealed the 

molecular component polymerises, so that the film eventually acquires the 

network structure characteristic of the bulk glass (38) 

2.3.2 	Other amorphous arsenic sulphides 

The structure of a number of As-S glasses with compositions ranging 

from As 2S27  (As 
42.6 

 S 
57.4 

 to As2 S12  (As 
14.3 

 S 
85.7 

 has been investigated 

by Tsuchihashi and Kawamoto(48) using a variety of techniques, including 

X-ray diffraction and density measurements. These authors deduce from 

their results that all the glasses studied have a layer structure. 	In 

the case of the S-rich glasses they conclude that as the S content 

increases above 60 at.% the additional S atoms go at first into the for-

mation of chains between As atoms in the network, so that the As-S-As 

linkages are gradually replaced by As-¼As  units; however, in the com- 

positions more S-rich than As 2 S 8  - As 259 
	
(As 20S80  - As17 4S82.6 

 ) S rings 

are also formed. 	In the case of the As-rich glasses, the As-S--As linkages 

disappear as the As content increases above 40 at.% and As-As bonds are 

formed in the network. As a result of As-As bond formation the layers - 

become deformed and their thickness increases relative to that of the 

layers in vitreous As 40S50 . 	The interlayer separation is found to increase 

from 5 2 to 5.19 R as the composition changes from As 40550  to As412S588  

(As 252.85). 

The structure of a number of AsLrich compositions between As 40560  and 

As44 4S555  (As 2 S 2  ) has been investigated by Maruno and Noda 	also 

using a variety of techniques, including X-ray diffraction, density measure- 

ment, differential thermal analysis and electron microscopy. 	These authors 

conclude that only those As-rich glasses with more than 'v57  at.% S have a. 

layer structure containing As-As bonds: those compositions having less than 
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rv57 at.% S have a phase-separated structure and consist of regions of 

As4S4  molecules in a matrix of a-As 2 S 3 . 

2.3.3 	a-As2Se 3  

There have been a number of X-ray diffraction studies of vitreous 

the information they yield on the structure of 

As 2Se 3  glass is essentially the same as that obtained in the X-ray studies 

of the related glass As 2S 3 , the only differences being in the details. 

The findings of these studies can be summarised as follows: 

The nearest-neighbour configuration in the glass closely 

resembles that in the crystal, so that both forms are made up from 

similar structural units, namely shallow AsSe 3  pyramids. 	In fact, 

the s,r.o. in the glass resembles that in the crystal out to next-

nearest neighbours. 

The distribution of As—Se bond lengths in the glass is Gaussian, 

the average bond length being that for c-As 2 Se 3 , viz "2.4 2, and the 

R (5l) 
r.m.s. deviation being 0.08 a 	, so that there is approximately a 

spread in bond lengths. 

Vitreous As 2Se 3  is a network glass in which the simple covalent 

bonding requirements given by the 8-n rule are satisfied, so that the 

As and Se atoms are three-fold and two-fold coordinated respectively. 

Perfect coordination throughout the structure is not expected but the 

number of vacancies, interstitials and atoms with dangling bonds cannot 

(5l) 
exceed 2 or 3% 

Because the s.r.o. of the glass is similar to that of the crystal 

one might expect the layer structure of c-As 2Se 3  to be present in the 

(45)  
glass to some extent 	• 	Direct evidence for the presence of a sheet 

like structure in vitreous As 2Se 3  is provided by the fact that the first 

diffraction maximum of the glass is extremely sharp and corresponds in 

position to the (020) c-AsSe 3  reflection, which arises from the 



stacking of the parallel layers along the b axis (50951) 

The first peak in the diffraction pattern of the glass does not, 

however, occur exactly at the position of the (020) c-As 2Se 3  peak, but 

the density of the glass (4.58 g/cm3 ) is less than that of the crystal 

(4.85 g/cm 3)  and it can be shown that if the separation of the layers 

in c-As 2Se 3  were increased so that the crystal density was reduced to 

the glass value then the difference between the peak positions would 

be very small. This suggests that the layer separation in the glass 

is larger than that in the crystal, as was the case for the sulphide. 

It seems that the lower density of the glass is predominantly due to 

the wider separation between its layers; the atomic density within the 

layers must be very similar to what it is in the crystal. 

In the glass the correlation length perpendicular to the layers 

is found to be 20 R, which corresponds to four to five layers occurring 

together on average. The correlation length within the layers is 

tvll , so correlation between layers extends further than correlation 

within layers (51)  

It should be noted that Renninger and Averbach (57) maintain that 

their X-ray diffraction data does not support the presence of layers 

in vitreous As 2Se 3  but rather chains. However, there is much evidence 

from other experiments that layer-like regions exist in this glass. 

(e) 	There is no feature in the r.d.f. of vitreous As 2Se 3  corresponding 

to the cross-ring distance c (4.30 ), i.e. the repetition length of 

the ring pattern in the c direction (50,51). 	This indicates that the 

ring structure of the c-As 2Se 3  layers is not preserved in the glass. 

The layers in the glass will be disordered, possibly being wavy and 

cross-linked. 	The absence of a peak at nj 43 R in the r.d.f. of 

the glass means that microcrystallite models based on the orpiment 

structure are not appropriate(505l57). 
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(f) 	The number of like-atom bonds formed is very small. 

Neutron 
(50,51)  and electron (52) diffraction studies of vitreous As 2 Se 3  

yield similar information to the X-ray studies. 

S.a.x.s. measurements on vitreous As2Se3 (53)  indicate that it, also, 

is a homogeneous material with a void volume of less than 1%. As in the 

case of As 2S 3 , these measurements are inconsistent with a microcrystallite 

model of the glass but support the presence of layer-like regions. 

N.q.r.
(5$54)  on As 2Se 3  glass also support the presence 

of layer-like regions and show that the distribution of pyramidal apex 

angles (i.e. the Se-As-Se angles) in the glass has a halfwidth of 

This distribution is broader than that for As2S 3  glass (for which the half-

width is 'vl%) because the average apex angles of the two inequivalent 

pyramids in c-As 2Se 3  differ more than those for c-As 2S 3 . 	Leadbetter and 

Ap1ing 	calculate from their X-ray and neutron diffraction results that 

the average Se-As-Se angle in vitreous As2Se 3  is 96.80  (the value for 

c-As 2Se 3  is 99.7° ). 

X-ray diffraction experiments have shown that sputtered and annealed 

evaporated films of a-As 2Se 3  have the same structure as the bulk glass (38) 

but that non-annealed evaporated films of a-As 2Se 3  contain molecular species 

such as As 4Se 6 . 	As in the case of As 2 5 3 , when these as-deposited evaporated 

films are illuminated with band-gap radiation or annealed the molecular 

component polymerises to form the network structure characteristic of the 

bulk glass. 

2.3.4 	Other amorphous arsenic selenides 

The structure of a number of amorphous arsenic selenides with corn-

positions ranging from elemental Se to As 50Se50  has been investigated by 

(38 50,51,57) 	 (50,51) 
X-ray 	' 	and neutron 	diffraction. The results of these 

studies suggest that the As and Se atoms in these materials are three-fold 

and two-fold coordinated respectively. The results for compostions near 
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As40Se 50  are consistent with the excess atoms being incorporated into the 

As405e 60  network structure through the formation of As—As and Se—Se bonds, 

the number of like-atom bonds formed being the minimum number needed to 

satisfy compositional requirements (50,51). 	Layer-like regions occur in 
- 	 (50,51) 

all the glasses with compositions between about As 50Se 50  and As 30Se 70  

the layer structure becoming more pronounced with increasing As concentration 

as a result of steric factors. 	The layers are disordered and the 

interlayer separation increases from 5.1 R to 5.6 R as the As content 

increases (50,51) 	The nearest-neighbour correlation peak shifts linearly 

from 2.35 R in a-Se to 2.41 R in As 36Se 54  glass but remains constant at this 

value at higher As concentrations. 

Monte Carlo models of the atomic arrangements in sputtered films and 

glasses with compositions ranging from elemental Se to As 50Se 50  have been 

developed by Renninger et aiJ 58 . The models yield information on the 

bond-length and bond-angle distributions in these materials and indicate 

that the films and glasses have very similar structure, though the films 

are more disordered, their bond-length and bond-angle distributions being 

broader than those of the corresponding glasses. 

2.3.5 	Amorphous arsenic 

The structure of a-As is more similar to that of orthorhombic As than 

to that of the rhombohedral modification 	and is well represented by .a 

three-fold coordinated c.r.n. model (60-62) . 	In this model the nearest- 

neighbour separations are within 1% of the bond length in rhombohedral As 

(2.49 ), and the bond-angle distribution peaks at 98.2 °  (the average bond 

angle in rhombohedral As is 
970)  and has an r.m.s. deviation of 7•40• 

Although the model is based on the structure of the crystalline forms it 

is not layer-like in appearance but is three dimensional. 	The network is 

fully connected but still contains voids, these being interconnected to form 

a cavern-like structure. 	The presence of these 	' enables the model 
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to reproduce the 10 - 20% density deficit of a-As compared with the 

crystalline forms. 

2.3.6 	Amorphous sulphur 

64) 
Although sulphur can be prepared in an amorphous state 

(63, this 

form of the element is not stable at room temperature and pressure; it 

consists of twisted helical chains 10 1O 5  atoms in length. The bond 

lengths, bond angles and dihedral angles in the chains have the values 

0 
2.04 a, 106

0 
 and 95

0 
 respectively. 

2.3.7 	Amorphous selenium 

a-Se is not thermodynamically stable under room conditions but may 

be regarded as stable in the practical sense (65) . 	It is believed to be 

composed of twisted helical chains and Se  rings (58.65 - 68), though 

some workers dispute the presence of the iatter. The Se  rings in 

a-Se have the same structure as those in monoclinic Se and the bond 

lengths and bond angles in the chains are essentially those of the chains 

in trigonal Se, viz 2.373 R and 103.1 respectively; there is some 

controversy over whether the dihedral angles along the chains have random 

magnitude or a fixed value equal to that in trigonal Se 	 - 72) 
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CHAPTER 3 

I 
	 THE RAMAN EFFECT 

3.1 	Introduction 

This chapter is concerned with some of the theoretical aspects of 

Raman scattering. 	The basic concepts are first outlined and then 

discussed in relation to crystalline and amorphous solids: Numerou 

texts and reviews on Raman scattering, particularly in crystals, have 

been written; Anderson's book 	contains much information on the 

historical, theoretical and experimental aspects of the Raman effect 

and includes references to many other works on the subject. 

The section dealing with amorphous solids (Section 3.1+) describes 

how the vibrational spectra of such materials can be interpreted and 

outlines the methods for extracting structural and other information 

from the data. 	Chapters 5 and 6 contain detailed discussions of these 

methods in relation to a-As 2 S3 and a-As 2Se 3 . 	Section 3.4 also contains 

a brief summary of the results of the many vibrational studies that have 

been carried out on amorphous materials. More comprehensive and 

detailed reviews of the vibrational spectroscopy of amorphous semi- 	- 

conductors have been given by Lucovsky(2) and Brodsky, while 

(4) 	(5) 	(6) 
Bottger 	, and Bell 	and Dean 	have reviewed the vibrational studies 

of general non-crystalline solids and oxide glasses respectively. 

Solin 	has discussed the use of optical probes for investigating the 

structure of disorded solids. 

3.2 	Principles of Raman scattering 

Light may be either elastically or inelastically scattered by matter 

Elastic scattering by particles that are small compared with the wave-

length of the incident light is termed 'Rayleigh scattering', while 

'Brillouin scattering' and 'Raman scattering' both refer to the inelastic 
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scattering of photons by such particles, Brillouin scattering being the 

historical name for inelastic scattering by sound waves in the illuminated 

material. 

In the case of Raman scattering from rarefied gases an incident 

photon undergoes a change in energy through interaction with one of the 

constituent molecules and an equal and opposite change is produced in the 

vibrational and/or rotational energy of the molecule. 	The magnitudes of 

these changes correspond to differences between the molecule's vibrational 

and/or rotational energy levels, which are determined by the structure 

and components of the molecule. 	It is often possible to account for an 

observed Raman spectrum by setting up a simplified model of the molecule 

in question and calculating the spectrum the model would exhibit. 	The 

parameters of molecular geometry, bond strengths, internal interactions 

etc. needed to specify the model may be obtained from other types of 

experiment and then varied within experimental limits to give the best 

fit to the Raman spectrum. 

The simple classical theory of Raman and Rayleigh scattering con-

siders the oscillating dipole moment, ,pi , induced in a polarisable molecule 

by the electric field of the incident radiation 

/1. z E cos 2OLt 
	

(3.1) 

where çc  is the molecular polarisability, E the amplitude of the oscillat-

ing electric field and P. the frequency of the incident radiation. 	The 

polarisability depends on the motion of the nuclei in the molecule so 

that if these are already oscillating with frequency '9, LX can be written 

as the sum of a constant part, ct, and an oscillating part with amplitude R. 

t2 cos 2X))t 	 (3.2) 
o 	1 	m 

Substituting this in Equation 3.1, 

,jfl ra  E cos 2Si).t + R E cos 2KV.t cos 2ü) t 

cos 2.t +' 1Efcos[2R 1  + 	)t] + cos [2(. - 	)t]} 	(3.3) 

Two beat frequencies, Yi t 'pm' have now appeared in the expression for /A 
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From classical electromagnetic theory the rate at which power is radiated 

by the oscillating dipole is given by 
44a 

I r 	
34 	

(34) 
c 3   

Inserting Equation 3.3 in the above and omitting the cross terms, which 

usually make a negligible contribution to the radiated power, one obtains 

3c3 	o 	
+OE cos [2R 	+ )ntj..+tc(E2cos2[27co - i 	l54V4{ 2E2  22)t 2 2 2 

The first term in the bracket accounts for the Rayleigh scattering, i.e. 

scattering without change of frequency, while the other two account for 

the frequency-shifted radiation at 	± '1), i.e. the Raman scattering. 

Hence the spectrum of the scattered light consists of lines symmetrically 

placed on either side of the incident frequency. The lowfrequency 

lines 	are referred to as 'Stokes lines', and 
3. 	in1 	1 

the high-frequency lines (V. +)) , V + V 	are called 'anti-Stokes 

	

1 	2 
lines'. 	(Since it is the vibrational frequencies, ) 	, that are of

M. 

interest the abscissa of the Raman spectrum is taken to be not the 

absolute frequency of the scattered radiation but its frequency shift, 

i.e. the difference in frequencies between the incident and scattered 

light. 	These differences are identical with the )) 	.)
M. 

3 

The classical theory, however, is unable to account for the relative 

intensities of corresponding Stokes and anti-Stokes lines, for .although 

the bands are symmetrically situated about V. they are not symmetric 

with respect to intensity. The quantum explanation is that the mole-

cules of a sample in thermal equilibrium at temperature T are distributed 

over the possible energy levels according to the relation 

N = Ne')<T 	 (3.6) 

where k is Boltzmann's constant, w is the angular frequency of a normal 

mode, N is the number of molecules in the state with energy tiw and N 

the number in the ground state, so that more molecules are available for 

Stokes scattering, in which energy is transferred from the incident 
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photons to the molecules, than for anti-Stokes scattering, where 

energy passes from excited molecules to the photons. 

Observation of the temperature dependence of band intensities is 

one method of differentiating fundamentals or first-order bands 

O) 	m1 ' 	i 	m2' 	
overtones ci). 	V ml  'Vi t 21), •. .) 

and combination bands (' 1 V 	. . .), for the last two types 
1 	2 

may also appear in the spectrum of the scattered light. 	First-order 

Stokes and anti-Stokes lines are proportional to 1 t n(w,T) and n(w,T) 

respectively where n(w,T) is the Bose-Einstein occupation factor: 

n(w,T) 	[xp(w/kT) - 11 -1 	 (3.7) 

An important feature of Raman scattering is the .fact that the 

bands may be polarised to some extent, but not necessarily identically 

for each band. 	Measurement of the degree of depolarisation of the 

Raman lines is necessary in order to assign them to particular normal 

modes and can help in deciding the actual geometrical arrangement of 
/ 

the atoms in the molecule. 	The quantity used to specify the degree of 

polarisation is the depolarisation ratio,f, which is the ratio of I, 

the intensity of the scattered light polarised perpendicular to the 

direction of polarisation of the incident light, to I, the intensity 

of the scattered light polarised parallel to this direction: 

f 
	

(3.sy 

Not all the fundamental frequencies of the irradiated molecule 

appear in the spectrum of the scattered light for while Rayleigh scatter-

ing arises from the polarisability of the molecule, and so is expected to 

occur in all substances, Raman scattering is due to changes in the 

polarisability during molecular motions, and not all motions produce such 

changes. A fundamental frequency will appear in the Raman spectrum if 

the amplitude of the dipole moment induced by the incident radiation 

changes during the molecular motion concerned. 	Such motions and fre- 

quencies are termed 'Raman active', while the missing ones are said to 

be 'Raman inactive' 
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3.3 	Raman scattering in crystals 

In the case of a rarefied gas the molecular motions responsible 

for Raman scattering may be rotational or vibrational or both and the 

resulting spectra arise from changes of polarisability during the 

rotations or vibrations of the individual constituent molecules. As 

the molecular density is increased collisions between molecules become 

more frequent and these, together with other intermolecular interactions 

that begin to occur, lead to spectral changes, the most obvious being 

the broadening of the rotation lines. 	In general, by the time the 

gas has condensed into the liquid phase quantised rotation is not possible 

and rotational fine structure is no longer observed in the Raman spectrum. 

In solids rotational motion is hindered to an even larger extent than 

in liquids, due to intermolecular coupling, so that rotational features 

are generally absent from solid-phase spectra. 

The Raman spectrum of molecules in a molecular crystal differs in 

several other respects from that of the free molecules. 	The vibrations 

of the atomic nuclei in crystals can generally be divided into two types: 

lattice or external vibrations and molecular or internal vibrations. 

The former are between the molecules considered as rigid entities and 

arise from the hindered rotations and translations of the molecules in 

the solid phase. 	They give rise to new, low-frequency bands in the 

Raman spectrum of the solid. 	The molecular vibrations occur within 

the individual molecules and are modifications-of the vibrations of the 

free molecules. 	These modifications are caused by the intermolecular 

forces that hold the solid, together, the degree of modification depend-

ing on the strength of these forces - the stronger they are the more the 

crystal spectrum will differ from the gas-phase spectrum. 	These mod- 

ifications take the form of frequency shifts, changes of relative band 

intensities, and the splitting of bands into multiplets. 	The last 

may be due to the coupling of identical vibrations of adjacent molecules 
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in the crystal unit cell or to the removal of degeneracies by a lowering 

of the effective symmetry of the molecule on account of its environment. 

A further feature of the Raman spectra of solids is that, in the case 

of a single crystal, the observed Raman spectrum depends on the overall 

orientation of the sample, since the molecules in the crystal have 

certain fixed orientations whereas gas molecules can assume all orientations. 

In crystals the vibrations of the component molecules or atoms are 

coupled, producing lattice waves, or phonons, which propagate through 

the crystal. 	Depending on the circumstances and the particular material, 

waves other than these vibrational ones may be obtained in the crystal. 

Plasmons and magnons are examples of such waves and, like phonons, can 

scatter light. 	In the present study only phonons are the scattering 

excitation, and, in particular, optic phonons, since Brillouin 

scattering is not being investigated. 

Whereas for gases and liquids only energy conservation need be 

considered, in crystalline solids, because of the wave nature of the 

vibrations, conservation of wavevector must also be taken into account. 

In the case of one-phonon scattering, in which a single phonon is created 

or destroyed, the two laws may be written 

K E k. 
1 

- k 
-s 	, 	

q - wavevector conservation 	(3.9) 
- -  

liW E ti(w. - w) r -i-tiw.(q) - energy conservation 	(3.10) 

where w. and k. are respectively the angular frequency and wavevector of 

the incident photon and w and k are those of the scattered photon; 
5 	-5 

K is the wavevector transfer, a is the phonon wavevector, K is a 

reciprocal lattice vector, W is the frequency transfer and w(q) the 

phonon frequency, j being the branch index of the dispersion curve. 

and k are the photon wavevectors inside the crystal, so that 

Jc jj = 21(n/A,Ij = 24n/)¼ 5  where n is the refractive index of the 

crystal and 	and ) are the respective free-space wavelengths. 
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Diagram A of Figure 3.1(a) shows a schematic phonon dispersion 

relation for a particular symmetry direction in a crystal. The 

Brillouin zone boundary occurs at q r q 	= -Kl, where a is the 
- --Max 	a1q1 

crystal lattice constant corresponding to the symmetry direction. 

Since practical and theoretical considerations usually require the 

light source to be in the visible, the wavelength,X., of the incident 

light is generally very much greater than the unit cell dimensions,X 

being in the range 'tOOO - 7000 R while a is typically "S . 	Accord- 
5 -1

-m 	
8 -1 

I ingly k _i  I . and 
1<-aI 
 are of the order 10 cm while e ax 

rvl0 cm 
'  

so that if crystal momentum is to be conserved a solution to Equation 3.9 

exists only for 	0 and values of q very small compared with the 

Brillouin zone dimensions, i.e. the scattering can create or destroy only 

phonons with q0. 

Because the optical branches of the phonon dispersion relation vary 

slowly with q near q = 0, the frequencies in the Raman spectrum are 

practically independent of. the angle of scattering and correspond to 

intersections of the dispersion curves with the q = 0 axis (see B in 

Figure 3.1(a)), though not all optic modes of zero wavevector are Raman 

active. The general requirement for one-phonon scattering to occur is 

that the polarisability of the atoms should vary with the same frequency 

as the optic mode in question. 	The q  0 selection rule does not apply 

in the case of two-phonon scattering since here all that is needed to 

conserve crystal momentum is that the wavevectors of the two phonons 

involved should cancel, and thus phonons throughout the Brillouin zone 

can participate in the scattering. 	Consequently two-phonon spectra are 

generally broad and continuous, unlike one-phonon crystal spectra, 

exemplified by B in Figure 3.1(a), which consist mainly of sharp discrete 

lines. 

' ):9 



Figure 3.1 

Diagram A is a schematic phonon dispersion relation for a 

particular symmetry direction in a crystal, a being the crystal 

lattice constant corresponding to that direction. 	Diagram B 

• 

	

	 shows how the Raman bands of the crystal correspond to inter- 

sections of the dispersion curves with the S,=  0 axis. 

Typical form of the Raman spectrum of an amorphous material. 

The reduced Raman spectrum of the same amorphous material. 

The form of 1 + n(w,T) over the range 0 - 400 cm -1  for T = 300°  K. 
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3.4 
	Raman scattering in non-crystalline materials 

The absence of long-range order in amorphous materials leads to 

the relaxation of the jO selection rule, so that, as for two-phonon 

scattering, all modes can participate in the scattering process.. 

Consequently Raman scattering yields much more information on vibrational 

spectra in the case of amorphous materials and the Raman spectra of these 

solids consist of very broad bands instead of the narrow lines observed 

in crystal spectra (see Figure 3.1(b)). 

3.4.1 	The density-of-states interpretation 

The Stokes and anti-Stokes intensities for first-orderprocesses 

are temperature dependent since they are proportional to 1 + n(w,T) and 

n(w,T) respectively. 	Because this temperature dependence is negligible 

for high frequency shifts but is marked at low frequency shifts, where 

n(w,T) is greatest (see Figure 3.1(d)), the shape of the spectrum of an 

amorphous solid changes considerably between 00  K and room temperature. 

As the temperature increases from absolute zero there appears in the 

low-frequency region a peak that is due not to a vibrational mode but 

(8-11) 
to the thermal population of the lower states 	• 	This spurious 

peak, which is characteristic of first-order Raman scattering from an 

amorphous solid (]2),  can be removed by dividing the Stokes or anti-Stokes 

intensity at each frequency shift w by 1 t n(w,T) or n(w,T) respectively. 

In some studies this boson peak has been incorrectly interpreted as a 

genuine vibrational band. 

As the scattering is due to vibrations the data must also be 

corrected for the harmonic oscillator amplitude, w 1 , and as the scatterers 

are induced dipoles the data must be corrected for its fourth-power 

dependence on the scattered frequency, w: w r  w. - W. 	The spectra 

obtained by dividing the measured intensity at each frequency shift vi 

by w4/w and the appropriate temperature factor are termed 'reduced spectra' 

(see Figure 3.1(c)). 
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For some amorphous materials the reduced spectrum is not just a 

means for presenting data unambiguously but is of theoretical importance 

also. 	Shuker and cairon(913) have shown that under certain conditions 

the reduced spectrum of an amorphous material is closely related to its 

phonon density-of-states, from which it is possible to calculate other 

thermodynamic properties, e.g. specific heat. 	This result is a con- 

sequence of the fact that all modes can participate in the scattering 

process because of the disorder-induced breakdown of crystal and 

momentum selection rules. 

In an ideal harmonic crystal the correlation lengths, jk1 , which 

characterise the spatial extent of the normal modes of vibration, are 
iI..&  

infinite and the normal modes are plane waves of the type e 

These waves, or phonons, have well defined wavevector, j.,  and the 

plane-wave nature of the vibrations leads to the 	0 selection rule. 

In a real crystal, defect and coupled-phonon damping mechanisms reduce 

the correlation lengths to values of the order 1000 2 but the crystal 

momentum selection rule is still a useful approximation. Shuker and 

Gammon assumed that in a disordered material the 	are short (-10 - 100 

which implies that the vibrational modes are nearly localised and so 

can no longer be represented by plane waves. Under these circumstances 

the vibrations are better approximated by plane waves with spatial decay. 

If this decay is exponential then the jth normal mode can be represented 

by the product 	 - 
H 

e 	e  
- r /X• 

where e 	is the damping factor. The j.  are no longer good quantum 

numbers and there is no longer any 	0 selection rule. 	The exponential 

spatial damping mixes the formerly distinct a states so that modes are no 

longer characterised by a single wavevector. 

The scattered Raman intensity of the jth mode is proportional to the 

Fourier transform of its space-time correlation function, which is in turn 
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proportional to expression 3.11. 	Summing over the modes, all of which 

are now allowed to contribute to the scattering, Shuker and Gammon find 

that the non-resonant Stokes intensity at frequency shift w is given by 

I 	(w,T) r 	0P' (11w) 11 +n(w,T)]g(w) 	 (3.12) 
V(P is b 

where g(w) is the density of vibrational states in band b, and c' 1  is 

a polarisation-dependent coupling coefficient that describes the coupling 

of band b to the incident radiation - the •tensor components index 

the polarisation of the incident(scattered) light. 	These authors assume 

that the vibrations fall into bands and that the vibrations in each band 

have similar microscopic motions, similar optical coupling factors and 

similar correlation volumes, 	so that the C'are constants. 	Thus 

it is assumed that all vibrations within a band couple equally to the 

incident radiation and the coupling coefficients are frequency independent 

over the whole band. 	Kobliska and Solin 4,15) point out that the well- 

known fourth-power frequency dependence of an induced dipole scatterer is 

contained in the coupling coefficients so they are not, in fact, frequency 

independent. 	Shuker and Gammon apparently assume that the variation in 

is negligible . 	
-1 

w '4 
	 ble for scattered frequencies n the range 0 - 550 cm but 

Kobliska and Solin(14)  show that for incident radiation of wavelength 

6328 	the w'4  term for a 5 cm-1  Stokes shift is 9% larger than it is for 

a 380 cm' Stokes shift. Accordingly, in the present study the expression 

obtained by Shuker and Gammon has been modified to show this w' 4  dependence 

explicitly: Equation 3.12 becomes 

(w,T) 	AP' (w'4 /w)[l ± n(w,T)] g(w) 	 (3.13) 

where the AP' are now the true coupling constants. 	The anti-Stokes 

intensity is obtained simply by replacing 1 + n(w,T) by n(w,T) in Equation 

3.13. 	Equation 3.13 predicts a continuous first-order Raman spectrum for 

a disordered material, in contrast to the line spectrum exhibited by 

crystalline solids. 

The reduced Stokes Raman intensity at frequency shift w, I 
red 

 6(w,T), 
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is derived from the measured intensity, 	(w,T), by dividing the 

latter by the temperature factor, 1 + n(w,T), the dipole scattering 

term, w, and the harmonic oscillator amplitude, 11w: 

red 	wI1s(wT) - 

I 	(w,T) 	 (3.14) 
- w[l. + n(w,T)] 

Re-writing Equation 3.13 in terms of the reduced Raman intensity 

defined by Equation 3.14 one obtains 

red 
I 	(w,T) 	AJ P'1  g(w) 	 (3.15) Apos

The vibrational density of states, c3(w), is simply given by 

G(w) rg(w) 	 (3.16) 
b 

so the right hand side of Equation 3.15 may be regarded as an approximate 

density of states the less the coupling coefficients Ab°?'  vary from 

band to band the better the approximation, and if they are completely 

band independent then they can be taken outwith the summation in 

Equation 3.15 and the reduced Raman spectrum will be exactly proportional 

to the actual density of states, G(w). 

For essentially the same reasons the i.r. spectrum of an amorphous 

solid is also reducible to an approximate density of states which is 

exactly proportional to G(w) if the coupling coefficients involved are 

again band independent. If the i.r. and Raman spectra of a particular 

amorphous solid are closely related to its vibrational density of states 

then the reduced spectra should be similar to one another. 	Thus by 

comparing the reduced i.r. and Raman spectra of the material in question. 

it is possible to determine whether this density-of-states interpretation 

is applicable - the less similar the spectiAa,  the less likely it is that 

the reduced Raman spectrum is a good approximation to G(w). 	If the 

vibrational density of states of the material has been measured or 

calculated then the extent to which the reduced Raman spectrum can be 

regarded as a measure of G(w) can be ascertained directly. 	For a dis- 

ordered material with a corresponding crystalline phase, a reasonable 
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approximation to G(w) can be obtained by broadening the one-phonon 

density of states of the crystal (or sometimes even its Raman spectrum) 

using a Gaussian convolution function. 

One of the advantages of Raman scattering over Lx'. spectroscopy 

in the study of amorphous materials is that the former provides inform-

ation on not only the frequencies of the vibrations but also their 

symmetry properties. 	This extra information is contained in the polar- 

isation states of the Raman bands. As the Raman spectrum of an amorphous 

material is continuous the depolarisation ratio will also be a continuous 

function of frequency shift and this function may be termed the 

'depolarisation spectrum' of the material. 	If the coupling constants, 

are really band independent for a given amorphous solid then its 

polarised Raman spectra should have the same shape and so the corresponding 

depolarisation spectrum should have a constant amplitude. 	Thus the 

applicability of the Shuker-Gammon theory to the Raman spectrum of a 

particular amorphous material can be determined from the depolarisation 

spectrum of the scattered radiation and no knowledge of the material's 

i.r. spectrum or actual density of vibrational states is required. 	The 

more irregular the depolarisation spectrum is, the less valid is the 

density-of-states interpretation of the reduced Raman spectrum. 

In the case of the tetrahedrally coordinated amorphous semiconductors 

it is found that the Shuker-Gammon theory is indeed applicable. The 

reduced Raman spectra of the elements (e.g. Si andGe), compounds (e.g. 

GaAs and InP) and alloys (e.g. SijxGex  and  Ge1_xSnx O<xcl) in this 

relatively simple class of amorphous material are broadly similar to the 

corresponding reduced i.r. spectra and, in the case of the elements and 

compounds, approximately resemble a broadened crystalline density of 

vibrational states. 	Differences in relative intensity between corresponding 

features in the reduced Raman and i.r. spectra can be attributed to 	- 

frequency-dependent coupling coefficients or the incomplete breakdown of 
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selection rules in the disordered material. 	Lannin (16 - 18) has 

investigated the frequency dependence of the coupling coefficients 

of Equation 3.12  for i-Si and a-Ge and finds that in both 

cases cP' (w) 	w2  in the low-frequency range where G(w) is 

expected to be Debye-like. 	Taking the C' (w) as constant for 

materials where they vary as 
	will tend to depress the low-frequency 

region of the reduced Raman spectrum relative to the high-frequency 

region and will also depress it relative to the low-frequency region 

(19) 
of the reduced i.r. spectrum 	. 	Intensity differences may also 

arise from the fact that the selection rules operative in the crystal 

may not break down completely in the disordered material so that for 

the latter, bands that correspond to Raman(i.rJ -active vibrations in 

the crystal will be stronger in the Raman(i.r.) spectrum than bands 

whose activity is solely disorder induced(2). 

In the case of the compounds the vibrational spectra may exhibit 

structure that has no counterpart in the broadened crystalline density of 

states. 	This extra structure arises from the presence of 'wrong' bonds 

in the disordered material, e.g. P—P bonds in inp(2) or c-c bonds in 

(21) sic 	• 	In the crystalline compounds these bonds between like atoms 

are not present. 	Spectral features due to bonds between like atoms are. 

also observed in the case of the alloys, e.g. Ge 0  5Si0 (22) 

Several other theoretical approaches to the vibrational spectra of 

the tetrahedrally coordinated amorphous semiconductors have been proposed. 

Using a random network model employing a two-parameter elastic potential 

energy and local-bond optical coupling mechanisms for the i.r. and Raman 

activities, Alben et al. 
(23-25) have calculated i.r. and Raman spectra 

for a-Si and a-Ge which are in excellent agreement with experiment. 

Alben et al. considered isolated-cluster models as well as periodic models 

of these materials and found that both types of model gave similar results 

(26) 
provided boundary effects were taken into account. Thorpe 	has put 



M 

forward a method for establishing physically reasonable boundary 

conditions for the dangling bonds of surface atoms of clusters and 

employs this method in his own small-cluster approach 
(27) 

 to calculating 

the vibrational spectra of a-Si and a-Ge. 	Although only the density 

of states has been calculated, Thorpe's model can be extended to 

calculating the Raman spectrum. 

(29) 
Mitra at al. 

(28)  and von Heimendahl 	calculate the vibrational 

spectra by methods which basically broaden crystalline effects in accord 

with the broadening of the pair correlation function. 	These methods 

reproduce the basic shape of the reduced Raman spectrum and in the case 

of von Heimendahi's approach the w2  dependence of its low-frequency - 

region is reproduced analytically. 

Weatre and ATh (30)en 	have propounded a theorem which accounts for 

the general features of the vibrational density of states of tetra-

hedrally bonded solids. 	Their theorem states that the phonon density 

of states of a tetrahedrally coordinated system subject to the Keating 

form of the short range potential energy 	- the form used by Aften 

(23 - 25) 	 (29) 
at al. 	and von Heimendahl 	- should have the form of a 

'one-band' Hamiltonian density of states bracketed by two bands which 

tend to delta functions as the ratio of the bond-bending to bond-stretching 

force constants tends to zero. 

3.4.2 	The molecular model 

It has recently been showJ 32  that the density-of-states interp-

retation is applicable not only to the tetrahedrally coordinated amorphous 

semiconductors but also to the more complicated materials a-GaSe, a-MoS 2  

and amorphous graphite. 	However, there is a large class of amorphous 

materials whose vibrational spectra are not well described by a density- 

of-states approach - these are the amorphous chalcogenides. 	The reduced 

i.r. and Raman spectra of these materials are often complementary rather 
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than similar, which suggests that selection rules are still operative 

in these solids. 	This complementarity of i.r. and Raman activity is 

clearly evident in the case of a--As 2S3 t . 	Also, the reduced spectra 

(3L) 
of some amorphous chalcogenide materials, e.g. a-Te 	, do not resemble 

broadened versions of their corresponding crystalline densities of states. 

The depolarisation spectra of the chalcogenides, furthermore, are rich 

in structure and do not exhibit the unvarying amplitude that would be 

expected if the corresponding reduced Raman spectra were density-of- 	- 

states-like. 	The irregularity of f(w) in the case of a-As 2S 3  is clearly 

seen in Figure 5.14, after p.119 

The sharpness of the features in the chalcogenide spectra compared 

with those of the density-of-states-like spectra, together with the fre-

quent complementarity of i.r. and Raman activity in the chalcogenides, 

35,36)33 
has lead some workers (2, ' 	to suggest a molecular approach to these 

materials. Such an approach will be appropriate for those amorphous 

solids composed of small, weakly coupled, molecule-like units. 	The 

approach consists of identifying a basic structural unit for the material 

concerned and using the well-established techniques of molecular vibrational 

analysis to determine the frequencies of its normal modes. 	Some amorphous 

materials are truly molecular and consist of discrete units (a-S and a-Se 

fall in this category), but in other materials the basic units are joined. 

The effects of inter-unit coupling in the non-molecular materials can be 

accounted for by considering the links between the units: the frequencies 

of the coupled modes are determined by applying the above techniques to 

the link 'molecule' connecting the units. 	The continuous nature of the 

vibrational spectra of the amorphous solid can be thought of as arising 

from a spread in the bond lengths, bond angles and force constants of the 

link and unit 'molecules', and the structure in the depolarisation spectrum 

reflects the prevailing i.r. and Raman 'molecular' selection rules. 

The molecular model is also applicable to materials other than the 
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chalcogenides, e.g. a-sio 2 	is a suitable candidate for this type 

of analysis because the strongly bonded 5104  tetrahedral units of which 

it is composed are only weakly coupled, as a result of the softness of 

the bond-bending force constant associated with the oxygen atoms bridging 

the tetrahedra. A molecular approach is clearly inappropriate. for 

materials in which all chemical bonds are equivalent: in a-Si, for 

example, the bonding at the bridging Si atoms is as strong as the 

bonding within the basic SiSi4  tetrahedral units, which cannot, therefore, 

be regarded as weakly coupled. 

Although it seems naive to suppose that a non-molecular material 

might be regarded as being composed of decoupled, molecule-like units, 

it is possible to justify this approach theoretically. DeFonzo and 

(38,39) Tauc 	have studied the conditions for the potential and kinetic 

decoupling of vibrations of local units in a network and have found that 

decoupling is possible provided the structure satisfies certain geometrical 

conditions. (It follows that if the vibrations in a material are found 

to be decoupled, further information on its structure can be deduced 

using these conditions). 	Thus a weak bond-bending force constant at the 

bridging atoms shared by neighbouring units may be a necessary condition 

for a molecular analysis to be appropriate but it is not a sufficient one. 

Their theory, which they tern the 'decoupled network' approach, was first 

applied by them to the case of a-As 2S 3 . 

Lucovsky and co-workers have demonstrated that the molecular approach 

is applicable in the case of the three amorphous chalcogen elements, which 

are truly molecular. They have shown that using the molecular model it 

is possible to interpret the vibrational spectra of 	ase(3540 —42) 

(35,Lf3,4q). 
and a-Te 	, although account must be taken of intermolecular forces 

in the last two cases. 	In the case of the amorphous arsenic chalcogenides 

the molecular model has been successfully applied to a_As2S3(23335)4546), 

a_As2Se3(233354546) and a_As2Te3(247);  the molecular analysis of the 
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a-As2 S 3  and a-As 2 5e 3 spectra is discussed in detail in Sections 5.4.4.4, 

5.4.5, 6.4.4.4 and 6.4.6 where it is shown that the model yields very 

good agreement with experiment. 	Solin and P apatheodorou(4849)  have 

recently shown that the vibrational spectra of the related amorphous 

material aAs 203  can also be accounted for by the molecular model. 	In 

Sections 5.5.1.5.4 and 6.5.1.5.4 the model is applied for the first time 

to binary arsenic-chalcogen alloys; it will be shown there that the 

spectral changes occuring in the As-S and As-Se systems as the chalcogen 

content increases above 60 at.% can be accounted for by the molecular model. 

The vibrational spectra of the ternary alloys in the a_(As2S3)j_x  - 

(As 2Se3) (2,45,46150)  and a_(As 2Te 3 ) lx  (As 2 Se 3 ) x(25U  systems have also 

been shown to be consistent with the molecular model. 

A molecular approach is appropriate in the case of the amorphous 

germanium chalcogenides too: it has been successfully applied to the 

vibrational spectra of the compounds a_Ge S 2 ( 24546 S 2) , a _Ge Se2 (24546 ) 

and a-GeTe2 2 ' 53 , the alloy a_GeSSe(2), and the alloy systems 

(2 52 54,55) 	 (2,55) 	 (53) 
l-x x 	 ' 	1-x x 	 l-x x a-Ge 	S 	' ' 	a-Ge Se 	and a-Ge 	Te 	. 	It is also 

applicable in the case of the alloy systems a_(As 2S 3 ) x (GeS 2 ) i _x(24546)  

and (45,46) which contain both As and Ge. 

Between the limiting situations of purely molecular spectra and 

purely density-of-states-like spectra there is a continuum of behaviour. 

For example, since in the periodic table As lies between Ge, whose 

spectra are predominantly density-of-states-like, and Se, whose spectra 

are molecular, one expects the spectra of a-As to exhibit .a combination 

of these two types of behaviour (2) and it will be shown in Section 5.3.2 

that this expectation is confirmed. 

	

(3) 	 (56) 
Brodsky 	and Lucovsky 	have pointed out that conceptually the 

molecular and density-of-states approaches are not very different, for 

the dispersion in the optic modes of a truly molecular system is inherently 

small and dispersion curves confined in narrow energy bands give rise to 
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sharp structure in G(w). 	(Finkman et al. 
(57) have used this fact to 

deduce the form of the dispersion curves of c-As 2Se 3  from observations 

of the Raman spectrum of a sample of a-As 2Se 3  undergoing photo-induced 

crystallisation between T  and Ta). 	Thus the sharpness of the spectral 

features of the chalcogenides compared with those of the tetrahedrally 

bonded semiconductors, whose dispersion curves are broad in energy space 

and therefore lead to broad features in G(w), is still compatible with 

a density-of-states description. 	The Raman spectra of a-As 2S 3  and 

a-.As 2 Se 3  are to a certain extent amenable to the density-of-states 

(14) both spectra, for example, are similar to broadened 

versions of the respective crystalline Raman spectra. This is because 

even in the crystals the main contribution to the density of states 

comes from modes with a molecular nature. The application of the 

density-of-states approach to a-As 2 S 3  and a-As 2Se 3  is discussed in detail 

in Sections 5.4.4.1 and 6.4.4.1 respectively. 	Other models for the 

vibrational spectra of a-As 2S3  and a-As 2Se 3  are discussed in Sections 

5.4.4 and 6.4.4. 

3.4.3 	Low-frequency Raman scattering 

The low-frequency region of the Raman spectrum of an amorphous 

material is of considerable importance: it can be used to investigate 

the frequency dependence of the coupling coefficients, cP' , of 

Equation 3.12, it can be used to derive an upper bound to the structural 

correlation range in the material, and it can contain, at very low 

frequencies, information on the states responsible for the specific heat 

anomaly that non-crystalline solids display. 

The reduced Raman intensity, as defined by Shuker and Gammon, at 

frequency shift w is proportional to £ C 
xpjs g(w) where f g(w) r  G(w), 

the vibrational density of states (see p.54). 	If the form of 0(w) is 

known the frequency dependence of the C' can be found. 	At low 

frequencies G(w) is expected to be Debye-like, i.e. to vary as w2 , and 
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hence the coupling coefficients in this region can be determined from 

58 - 60) 
the reduced Raman spectrum. 	Theory (19, 
	predicts that the 

are also proportional to w2  for vibrations whose average wave-

length, ), is much greater than the correlation length, L, of the 

fluctuations, i.e. for vibrations which satisfy the inequality 

1 	 (3.17) 

Equation 3.17 defines the 'long-wavelength limit'. 	Lannin has shown 

that the low-frequency coupling coefficients do, indeed, vary as w 2  in 

the case of 	and a_Ge(38). 	G(w) is expected to be Debye-like 

below n55 cm' in a-Si and •v35 cm— 1 in a-Ge, and in these spectral 

ranges Lannin found that 
dP , ts 
	w2 . 	The low-frequency coupling 

coefficients of a-As 2 S 3 , a-As 2Se 3 , a-GeS 2  and a-GeSe 2  have also been 

2 (61) 
shown to vary as w 

For an amorphous solid the correlation length, L, of the fluctuations 

is expected to be comparable with the structural correlation length 

obtained from diffraction experiments (17) .  Martin and Brenig 	have 

derived expressions for the scattered-light intensity in the region 

2 	 i where the 0b 	
are expected to vary as w . Their theory s valid in 

the frequency range for which 	- 

	

1cwL/vcZ< 1 	 (3.18) 

where c is the velocity of light and v t the transverse sound velocity 

in the material (w being the frequency in wavenuinbers). 	On the basis of 

this inequality, which is similar to Equation 3.17, Martin and Brenig have 

deduced from the data of Reference 17 an upper limit to L in a-Si of It 

Using the Martin-Brenig model, Nemanich(6U has determined the structural 

correlation ranges of a-As 2 S 3 , a-As 2Se 3 , a-GeS 2  and a-GeSe 2 : the values 

obtained are 6.5 ± 1 2 and 8.5 1 R for the As and Ge chalcogenides 

respectively. 

It was stated above that for an amorphous solid, as in a crystal, 

the vibrational modes at low frequencies are expected to be Debye-like.. 
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This is not strictly true for it has been suggested that at very low 

frequencies there occur, in addition to the Debye phonons, special modes 

which account for the anomalous specific heat in these materials. 	If 

these special modes couple to the incident light with sufficient strength 

they will produce a detectable contribution to the Raman spectrum and it 

will be possible to obtain some information on the nature of these states 

from light-scattering experiments. 

The low-frequency Raman spectrum of an amorphous material is believed 

to be predominantly due to disorder-induced scattering from high-frequency 

59)58 13, 	, 
sound waves. 	Current theories (9, 
	of disorder-induced scattering 

are based on the Debye model and so predict that the scattered intensity 

should vanish as w-'O. According to the Martin-Brenig model, for example, 

the spectrum in the frequency range satisfying Equation 3.18 should consist 

of the Brillouin peaks and an 'amorphous' background that is expected to 

vary as w2  at not too small temperatures (i.e. at temperatures for which 

(l/w)[n(w,T) + 1] varies as w 2  and so cancels the w 2  dependence of the CP"). 

63) 
Winterling (62, 
	, however, has measured the low-frequency Raman spectra of 

a-Si02 , a-8 203 , a-As 2 S3  and the borosilicate glass BK7 and finds that the 

scattered intensity does not tend to zero as w-0 but reaches a finite 

minimum and then increases slightly. 	In a-Si02  the minimum occurs at 10 cm'. 

Winterling has established that this excess intensity arises from true 

inelastic scattering and points out that it is peculiar to the amorphous 

state since the scattered intensity at low frequencies is much weaker in 

the corresponding crystals: in c-Si0 2 , for example, the scattering in the 

range 4< w <20cm 1  is about one order of magnitude weaker than in a-Si0 2 . 

Brillouin lines have been observed in a-Si02 (12,63 - 
65) thus confirming 

the presence of Debye phonons of very low frequency (<1 cm, 1 ). 	Winterling 

has deduced from intensity and polarisation measurements on the excess 

scattering that it cannot be attributed to the high-frequency tails that 

appear on the Brillouin lines as a result of disorder-induced damping of 
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these very low frequency phonons. He-has also examined the temperature 

dependence of.the excess scattering and found it to be inconsistent with 

second-order processes - in the case of crystals such processes, particularly 
/ 

difference processes, can contribute to the scattering at low frequencies. 

The models proposed to explain the specific heat anomaly in amorphous 

materials fall into two classes: those based on atomic tunnelling between 

two near-equivalent equilibrium
(66,67)  and those assuming the 

presence of special low-frequency vibrational states(6869),  e.g. strongly 

damped high-frequency sound waves. Winterling has shown that his observ-

ations on the excess scattering are consistent with disorder-induced 

scattering from damped high-frequency sound waves but not with a Raman 

process involving a two-level system. 	However, he points out that his 

measurements extend only to 400  K and any contribution arising from atomic 

tunnelling might be detectable at lower temperatures. 	In principle 

atomic tunnelling could give rise to excess scattering at low-frequencies 

and Winterling proposes a mechanism for the direct coupling of the incident 

light to the defects. 	Investigations of Brillouin and excess Raman 

scattering below 400  K are necessary to determine whether atomic tunnelling 

also occurs in these materials. 

As the present study is primarily concerned with a structural invest-

igation of As-S and As-Se glasses no detailed examination of the low- 

-1 
	 - frequency (<10 cm) regions of their spectra has been carried out. 	No 

one has yet experimentally deteripined the vibrational density of states of 

any of the As-S or As-Se glasses so no firm conclusions can be reached on 

the form of the frequency dependence of the c 1ff' or on the correlation 

lengths of the fluctuations in these materials. 
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CHAPTER 4 

EXPERIMENTAL TECHNIQUES 

4.1 	Introduction 

This chapter outlines-the methods and equipment used in the 

production of the samples, in the Raman experiments themselves, and 

in the processing of the Raman data. Only a brief description is 

needed since the apparatus is fairly standard, most of it being of 

commercial origin, while comprehensive accounts of many of the 

techniques ,which are also fairly standard, already exist. 

The basic requirements for a Raman scattering experiment are 

a monochromatic light source, a target, a dispersing element and a 

light-detector. - The laser is an eminently suitable source for Raman 

experiments and has almost completely replaced the arc-lamp. Modern 

lasers provide a selection of excitation frequencies in the visible, 

near i.r. and near u.v. and their intense, polarised radiation is stable 

and of narrow linewidth (typically o;oos cm). 	Solids in their various 

forms, gases and liquids may all be examined by light scattering and 

sampling techniques have been developed for all types of specimen. 

Grating spectrometers have replaced prism instruments as the dispersing 

element and the photographic plate has given way to the photomultiplier 

as detector. 

The historical development and present features of experimental 

Raman-spectroscopy are described in many texts, e.g. Reference 1. 	Future 

developments include the use of automation techniques(2) and tunable lasers 

for excitation (3). 
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4.2 	The samples 

The information given in this section is summarised in Table 4.1, 

after p.80. 

14.2.1 	Material production and sources 

4.2.1.1 Glasses: As 35 S65  - As45 S55  

The amorphous samples used in the Raman experiments were all in 

the form of bulk -ingots and were prepared by the staff of the Department's 

chemistry laboratory, in the usual way, by melting the constituents under 

vacuum in a quartz tube, as outlined below. 

Appropriate amounts of the pure constituents were weighed out and 

placed in a quartz tube of approximately 1 cm bore. As pure arsenic 

oxidises quickly it was more convenient to use an arsenic-sulphur compound 

rather than arsenic as one of the initial constituents, for example 

As40550  and S could be used to produce all glasses more S-rich than 

As40S50 . Pure As was only used when no suitable compound was available, 

and in the making of the base compound itself. 	In the case of the eleven 

glasses centred on the stoichiometric composition.-As 40  S  60 
 (see Figure 5.1, 

after p.107) '-70 gm of each of the two end compositions, As 45555  and 

As S 	were made up first and the remaining nine compositions were made 
35 65' 

up, in '-'10 gm quantities, from mixtures of these. 

The tube was then evacuated, sealed and placed in a rocking furnace 

at 8500  C for 24 hours. Next, the material was annealed  for several 

hours just below its glass transition temperature, Tg - which is around 

2000 C for these materials 	- and then cooled slowly to ambient temp- 

erature. 	It was found that the annealing stage was necessary for three 

reasons. First, the samples tended to break up during cutting and 

polishing unless annealed. 	Secondly, it was found that laser-induced 

changes (see Section 4.3.5) were more pronounced in a non-annealed glass, 

as would be expected. 	Finally, annealing is necessary to reduce the 
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amount of strain-induced birefringence in the glass since this effect 

hampers the recording of accurate polarisation data 

The annealing routine was as follows. The tube containing the 

molten sample was removed from the furnace and allowed to cool in air 

until the contents had solidified. 	The top of the melt was warmed in 

a bunsen flame during this process; this increased the vapour pressure 

above the melt and so prevented it from boiling. It was then inserted 

in a brass block at 240 °  C and the temperature of the block allowed to 

fall freely to 205 °  C. The block was then maintained at 195 - 205°  C 

for between 4 and 16 hours, the exact annealing period not being critical 

provided it was longer than about 2 hours. After this the block was 

cooled to 170°  C at the rate of approximately 0.25°  C/min and then from 

170°  C to 120°  C at the rate of 10  C/mm. 	Finally, the temperature of 

the block was allowed to fall freely from 120°  C to ambient. 

The stoichiometries of three of the melts, As36 S64  and the two end 

compositions As 45S55  and A5 35 S65 , were checked by chemical analysis, 

particularly with respect to possible variations through the bulk. 

Several specimens from each of the thee melts were analysed by the method 

of gravimetric titration and the results showed no significant variation 

through the bulk and no significant difference from the nominal comp- 	- 

ositions. 	The glasses are within 	at.% of the stated stoichiometries. 

The Raman spectra of all the materials studied in this project were 

compared with the reported spectra of the various arsenic oxides and 

as the characteristic spectral features of these contaminants were not 

observed in the glass spectra, significant quantities of these oxides 

cannot be present in the samples or produced in them during laser illumin-

ation. 
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The Raman spectra obtained from the glasses were typical of 

vitreous materials, that is they were continuous and consisted of broad 

features. As a further check on the composition and nature of the 

samples, two sets of spectra for the stoichiometric glass As 40360  were 

compared, one being run on a commercial sample and the other on the sample 

produced in the Department. The commercial sample was obtained from the 

American Optical Company and chemical analysis showed it to have a slightly 

As-rich composition, viz As403S597 . 	The two sets of spectra - 1, 5 and 

6 (commercial) and 2, 3 and 4 (Department) - of Figure 4.14 (see also 

Figure 4.15) do not differ significantly and are in good agreement with 

the published spectra of this glass ( 678. 9) . 	Spectra of some of the other 

compositions were compared with Ward s(10)  spectra for bulk As-S glasses 

and found to be in agreement with them. The homogeneity of the samples 

was evident in the experiments since no significant differences were 

observed between spectra run in different places in the same sample. 

4.2.1.2 Other As-S glasses 

The four other glasses examined, As28.6 
 S 
71.4 

 (i.e. As 25 5 ), As25 S75 , 

As15 5 85 , and As 5S 95 , were also made up by melting the constituents under 

vacuum in a quartz tube but did not all .undergo the standard annealing 

procedure. 	In the case of As 25 5  the glass resulted from an attempt to 

make the crystal form of this composition. The components were fused 

together in the usual way and the furnace was switched off after 24 hours, 

but the melt, instead of being removed for annealing, was left inside where 

it cooled slowly at the cooling rate of the furnace. The resulting 	( 

material, however, was perfectly glassy, as evinced by its Raman spectrum,  

(10) 
which was broad and continuous and in agreement with Ward's data 

The glass transition temperature, Tg, of the As-S glasses peaks at 

As40S 60 , where Tg 11 200°  C, and falls linearly as the sulphur content is 

(4) 	 i increased . 	Tg for the As 5S 95  composition s approximately 0 C and 
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this glass was not annealed. This composition did not vitrify when 

cooled in air but turned opaque and pale yellow, presumably due to the 

formation of sulphur crystallites. The material had to be re-melted 

and quenched in water. A transparent, dark yellow, elastic glass was 

produced which turned opaque within 24 hours and which eventually lost 

its elasticity. Raman spectra recorded in the transmission mode while 

the sample was still transparent and in the back reflection mode once 

it had turned opaque were identical to Ward's spectrum of this material 

The region irradiated by the laser turned opaque more quickly than the 

non-irradiated regions. 

The As 15 S35  melt was mistakenly annealed at 1600  C, '-'lOO°  C above 

Tg for this glass, but yielded a satisfactory sample. 	The standard 

annealing procedure was carried out on the As 25S75  melt, (Tg120
0 
 C). 

There was no significant difference between the behaviour of the - 

standard-anneal glasses and that of the three S-rich glasses which 

underwent different cooling procedures. The latter were no more diff-

icult to polish than the others and exhibited the same level- of photo-

and strain-induced effects. The spectra recorded from them were 

typically vitreous and in agreement with Ward's work. 

4.2.1.3 The selenides 

The amorphous arsenic selenides used by Dr. Sik were also in the 

form of bulk ingots and were all prepared and checked by the same methods 

that were used for the sulphide glasses, Tg in the annealing regime 

being taken from Reference k again 
	The samples were all black and 

opaque. 

4.2.1.4 The crystals 

The crystal compositions that exist in the As-S system are discussed 

fully in Section 2.2. 	c-As2 S 3 , which is the.mot widely known and 
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studied of the crystalline arsenic-sulphides, occurs naturally as the 

mineral orpiment and can also be made synthetically by chemical (11) or 

physical (12) means, though with some difficulty in the latter case. 

It is extremely difficult to devitrify glassy As 2 S 	 Two forms 

of c-As 25 3  exist (14,15) : 	-As2S
35 
 the ordinary yellow mineral 

orpiment,aid a red modification, though it is not known whether this 

represents another crystal structure or is due to impurities. 

In our investigation we used samples of orpiment obtained from 

two sources: the Department of Geology of the Royal Scottish Museum 

and the Department of Geology, University of Edinburgh. 	The specimens 

provided by the Museum were in the form of small ('-2 mm diameter) 

irregularly shaped yellow platelets of poor optical quality. Those 

obtained from the latter source were opaque, pink lumps (-2 cm diameter) 

speckled with yellow. The Raman spectra obtained from these specimens 

were in excellent agreement with one another and also with the published 

spectra of orpiment (16-20,6)  

c-As454  is the other well- }nowrt crystalline form of arsenic 

sulphide and occurs naturally as the mineral realgar. 	It exists in 

14) 22, 
two polymorphic forms (21, 

22,14) 
	the red mineral realgar, and 

fl -As 4S4 . 	In addition to obtaining a sample of the mineral from the 
of Gco1oq 

Departmenthof the Royal Scottish Museum an attempt was made to produce 

a specimen in the Department. The procedure used was the same as that 

mentioned in Section 4.2.1.2 for the As 2 S 5  crystal and consisted simply 

of fusing the constituents together and cooling the melt slowly in the 

furnace. The Raman spectrum of this material (see Figure 5.4) was 

very similar to the spectra offl -As 454  shown in Reference 22. The 

material is more fully discussed in Section 2.2.2. 

The Raman spectrum of the Museum specimen, which was a deep red, 

transparent lump ("8mm diameter) of poor optical quality, showed it to 
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be a completely crystalline sample of-As 4S 4  and agreed with the 

published spectra(7,l6 ,l7 ,22) 

The compound As 4S3  is less well known. 	It occurs naturally as 

the mineral dimorphite(23)  and, as the name suggests, exists in two 

polymorphs,&-As 1 S 3  and /_As4S 3 2 ' 2  with distinct crystal structures. 

As a specimen of this rare mineral could not be obtained, the compound 

was synthesised in the Department. The material produced, using the 

above method of slow cooling of the melt, was opaque and dark pink in 

colour, and its Raman spectrum was typically crystalline. Only the 

i.r. spectrum of this substance has so far been published (26) so that 

a complete comparison of our spectrum with published data is not 

possible. However, the Raman frequencies are in agreement with the 

i.r. data for /-A5 13S 3 . 

Little is known of the compounds As 2S 5  and As 3S, neither of which 

occur in nature, though vitreous As 2 S 5  has been much studied. 	Specimens 

of these two compositions were made up by slow cooling of the corresponding 

melts. 	The As 35 turned out to be a brittle, dark brown material while 

the As 2S 5 , as mentioned before, was perfectly glassy. 

The recently reported compound As455 (27)  is also not naturally 

occuring. The c-As4S 5  specimen used in these experiments was made by 

allowing a solution of As43 3  in CS  to evaporate slowly to dryness, as 

(27) outlined by Whitfield 	. The process was carried out in a dark cup- 

board to prevent the light-induced formation of realgar. This method 

provided a yellow powder in which were dispersed fine, needle-like, orange 

crystals. 

The sample of crystalline As 2Se 3 , a black wafer "3 mm x 5 mm, was 

synthetically produced and supplied by Philips Research Laboratories 

(Eindhoven). 
•1 
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4.2.1.5 Other materials 

The sample of sulphur used was a 6N pure powder obtained from 

Koch-Light Laboratories Ltd. Its Raman spectrum was in good agree-

ment with the published spectra of orthorhombic sulphur (72829)30). 

The a-As specimens were also provided by Koch-Light and were in the 

form of 6N pure lumps of 'lS mm diameter. 

4.2.2 	Specimen preparation 

4.2.2.1 The transparent glasses 

The glass-forming region in the As-S system extends approximately 

from As 5S 95  to 	
(4,31) 
	In bulk form the glasses, which are 

transparent, range in colour from deep red at the composition As 43S57 , 

through orange, to dark yellow at As 5S95 . The specimens of As 43S57  

and As45555 , the two compositions studied which are outwiththe 

glass-forming region, are pink, opaque and granular in appearance. 

The standard scattering configuration for specimens that are 

transparent to the laser line - red in this case - is the transmission 

mode (see Figure 4.5(a)). 	Accordingly, the specimens of the trans- 

parent compositions were prepared as follows. For each composition 

the nil  cm i.d. quartz tube containing the solidified melt was sawn 

through with a diamond saw at approximately 1 cm intervals to produce 

cylinders of material ivl  cm high by all cm diameter. 	As the glasses 

did not adhere to the quartz the cylinders slipped easily from the 

surrounding quartz annuli. A cylinder was then selecte4 and its two 

faces ground and polished flat on a Logitech PM2 polishing machine. 

Since these materials .are fairly soft, having Vickers hardnesses of 

—140 kg/mm2 
(32),  the grinding, which was done on a brass plate using 

600 mesh carborundum powder, did not take long. The polishing was 

done using filtered 'Syton' solution on a porous pad. 



These materials tended to crack when heated, because of their low 

thermal conductivity, so great care had to be taken in the mounting of 

the sample for grinding and polishing since it involved placing the 

cylinder in a well of hot wax (Cottrellts  Sticky Wax) on an aluminium 

holder, which was screwed into the polishing jig once the wax had 

solidified and was holding the sample in place. The procedure used 

was as follows. After being melted initially with a hot-air blower, 

the wax in the well was left to cool while the cylinder was warmed 

carefully with the blower; the cylinder was only placed in the well 

once the wax had started to whiten and become tacky. 	It was found 

that an effective method of avoiding heat damage to the sample when 

removing it from the wax after polishing was to leave the aluminium 

mount, with the sample still attached, in a beaker of trichloro-

ethylene, which soon dissolved the wax. 

Once polished on both faces the samples were ready for experiment-

ation. 	Although striations, produced in the formation process, were 

present in the glasses they had no effect on the unanalysed Raman 

spectra - spectra recorded on the a-As 2 S 3  made in the Department were 

effectively identical with spectra from the commercial a-As 2 S3 , which 

was of good optical quality (see Figures 4.14 and 4.15). 	The 

striations, however, did prevent the acquisition of accurate polaris-

ation data since they tended to depolarise the incident beam. The 

output polarisation of the He-Ne laser is vertical in the lab frame 

and the linear cross component is given by the manufacturer as <.03%. 

With the polarised 6328 R He-Ne laser light an extinction ratio of 

—27 db was measured on the American Optical a-As 25 3  while this ratio 

for the samples made in the Department was typically tv10 db. The 

consequences of this are more fully discussed in Section  5.5.1.3. 
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4.2.2.2 The opaque glasses 

Because of the positions of their respective absorption edges, 

the selenides were not transparent to the laser radiation available, 

while the sulphides As 44S55  and As45S 55  were opaque because of their 

granularity. The standard scattering configuration for opaque samples 

is the back-reflection mode (see Figure 4.5(b)), for which only one 

area of sample surface need be polished. 	In this mode the scattering 

is from a surface layer of the material so that thick specimens are 

unnecessary. Accordingly, the quartz tubes containing the opaque melts 

were sawn through at "2 mm intervals to produce discs of material - 

".2 mm thick and .i.l  cm in diameter. 	The sulphide discs were mounted 

and ground and polished on one face by exactly the-same methods that 

were used for the transparent sulphides. The mounting and polishing 

of the selenide discs was slightly different. They were mounted with 

'sticky' wax on a 3 cm diameter aluminium disc during grinding and 

polishing and as this served as the mount for the spinner (see Section 

4.3.1) there was no need to de-mount the samplesafter polishing, which 

was done with 1/ and 	solder laps- rather than 'Syton'. The 

selenides were fairly straightforward to polish, with the exception of 

the most As-rich composition studied, As 55 Se45 , which was extremely 

brittle. Several of the discs broke up during the sawing and grinding 

stages. 	A specimen was eventually polished, though the finish was of 

poor quality. 	 - ---- 

4.2.2.3 The crystals 

None of the crystalline samples was of sufficient optical quality 

or size for transmission-mode experiments and, either because of their - 

size or fragility, few were in a form suitable for polishing. The 

specimens obtained from outside the Department were in the form of 

platelets, wafers or lumps of *12 - 20 mm diameter, and for the Raman 



80 

experiments they were used as they were or powdered. The Department-

made AsS and Ass, both of which basically consisted of micro-

crystals, were either cut, mounted and polished on one face in the 

same way as the opaque sulphides, or crushed to a powder. An attempt 

was made to polish a sample of As 35 but because of the brittleness of 

this material a good polish was not obtained. 	Unpolished lumps of 

As35 were also examined. 	The ASLfS5  was used in powder form, as this 

was the form in which it was produced. 

All the spectra were recorded by back reflection and, despite the 

nature of the samples, very intense spectra were obtained with all the 

compositions except As 3S, crystals of which probably do not exist (see 

Section 2.2.6). 

4.2.2.4 Other materials 

As a-As is a very weak scatterer of visible radiation a well-

polished surface was essential for the a-As samples in order to maximise 

the weak signal. However, it is not an easy material to polish because 

it is fairly brittle. The first sample used was ground and then 

polished carefully by hand using diamond polishing paste. 	An acceptable 

finish was obtained in this way but in the first experiment the sample 

was damaged by the laser radiation. 	It was realised that a spinning 

sample (see Section 4.3.2) would be necessary and for this a flat 

polished surface is required, so in the end the polishing machine had 

to be used. An a-As lump with an already approximately flat face was 

selected and ground and polished using the 1/i and 	solder laps. 

Although parts of the edge broke off during the process, an acceptable 

sample was eventually produced with an approximately rectangular 

polished face "10 mm x 15 mm.- 

The crystalline sulphur used was supplied in powder form and the 
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ell /, 	 erj 
1c 
 /,  
c S 8  K pd y Orthorhombic sulphur. 

a As 5 S 95  D sc,sd y,t Initially elastic. 

a As15 S85  D Sc o,t 

a As25 S75  D sc o,t 

a As28 5 S71  D sc o,t As 2S 5  

a As35 S55  D sc,sp r o t sa 

a As 35 S54  (1) D sc r ot sa 

(2) D sc r ot Not annealed. 

a As37 S53  D so r ot sa 

a As38 S52  D sc r o t sa 

a As 39 S51  D sc r ot sa 

a As40S50  (1) D sc,f r o t sa 

(2) AO cu r ot 

c As40S50  (1) N pd,pl y Orpiment. 

(2) G 1 p Orpiment; speckled with yellow. 

a As 41S 59  D sc dr,t sa 

a As42 S58  D sc dr,t sa 

a As43S57  D sc dr,t sa 

m As44 S 55  D sd p sa; granular in appearance. 

c As444 5555  P pd y As45 5  

m As45S55  D sp,l,sd,f p sa; granular in appearance. 

m As50S50  P s dp 

c As 50S50 . N 3. 	- dr,t Realgar (0&-As 4S4 ). 

c As571S429  P s dp R-Dimorphite (As 4S 3 ). 

m As 75 S25  P l,lp brown As 3S; brittle. 

a As K ip metallic Brittle. 

a Selenides black sa; As 55 Se45 was extremely brittle. 

c As40Se50 

jDsd 

w black 

The material had turned opaque after '24 hours. ----  

a - amorphous 
AO - American Optical Company 
c - crystalline 
cu - cuboid 
D - Department of Electrical 

Engineering 
dp - deep pink 
dr - deep red 
f - sputtered film 
G - Department of Geology 

5ccsk Mw 

K - Koch-Light Labs r - red 
Ltd. sa - standard anneal 

1(p) - lump (polished) (see text) 
in - phase-separated sc - standard cylinder, 

mixture viz "1 cm long and 
0 - orange "1 cm in diameter 
p - pink sd - standard disc, viz' 
pd - powder N0.2—I cm long and 
Ph - Philips Nl cm in diameter 
p1 - platelet s(p) - slab (polished) 

t - transparent 
y - yellow 

Table 4.1 Summary of the information relating to sample production and 

preparation. 
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spectrum was recorded from the powder by back reflection. 

4.2.2.5 Films 

A few compositions were also prepared as thin films so that the 

spectra of this form could be compared with the bulk glass spectra. 

The films were r.f. sputtered by the usual techniques onto glass slides. 

To ensure that the Raman spectrum of the glass substrate should not 

contribute to the observed spectrum, a layer of aluminium or gold was 

first evaporated onto the slide and the chalcogenide material was 

sputtered onto this layer. The metal layer prevents the beam from 

reaching the glass substrate and as the metals have very weak spectra 

they do not affect the chalcogenide spectra. 

4.3 	Experimental aspects of the Raman scattering 

4.3.1 	The apparatus and method 

The methods and equipment used to record the spectra in this 

study are standard in experimental Raman spectroscopy. 	The system 

that was employed is shown schematically in Figure 4.1 and a photo- 

graph of the optical stage is presented.in  Figure 4.2. 	Figure 4.3 

gives the key to the photograph. The components, not all of which are 

needed for each experiment, are listed and described below; numbers 

in square brackets refer to Figure 4.3. 

Laser 

The red 6328 R line of a He-Ne laser (Spectra Physics model 125) 

[i] was initially used to excite the sulphide spectra. This is the 

line most often used in Raman studies of these materials (6,7,8,9,10)  

which are strong scatterers at red wavelengths. The maximum output 

power of the laser at 6328 R was "80 mW and the short term amplitude 

stability was better than 1% peak to peak. The long-term stability 



Figure 4.1 

A schematic diagram of the experimental system. 
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Figure 4.2 

The optical elements 
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over a three hour period was better than 3%. 	In the course of the 

study a Kr-ion laser (Spectra Physics model 165-01) [2] became 

available and later experiments were performed with this. As it 

provided a more powerful and stable source of red light than the 

He-Ne laser, better quality spectra were obtainable with it. 	Many 

of the earlier experiments were repeated using this laser as the 

light source but the spectra, apart from their reduced noise level, 

were identical with those excited by the He-Ne laser. 	The 6471 

line, which was used to excite the sulphide spectra, had an output-

power in excess of 500 mW (though to avoid sample damage the power 

used never exceeded 250 mW) and the long term power stability was 

over 10 hours. 	The r.m.s. noise in the beam intensity was 

typically 0.2%. 

Because the arsenic selenide glasses are highly absorbing at 

red wavelengths (tc(6328 )>10 
cm-1 (33)) the spectra excited with 

the 6328 R line were of very poor quality, having peak counts 

ni50 counts/sec. 	However, good spectra were obtained using the 

7993 R i.r. line of the Kr laser, since radiation of this wavelength 

is not so strongly absorbed. 	The output power of this line is 

rj60 mW. The positions of several of the available exciting lines 

with respect to the absorption edges of a-As 2S 3 , a-As 2Se 3  and a-As 

are shown in Figure 4.4. 

Polarisation rotator 

The output polarisation of the lasers is vertical, the linear 

cross component being less than .03%. 	This polarisation was suitable 

for the transmission-mode experiments but in the case of back- -reflection 

from polished surfaces a better signal was obtained using horizontally 

polarised light. The polarisation was rotated through 90 °  by a i-wave 

plate or a polarisation rotator (Spectra Physics model 310-21) [s] 
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Plasma line rejection filter 

This element [1 is a narrow-band filter and is used to isolate 

the laser frequency from the accompanying plasma emission (see Section 

4.3.3). 	A filter was available only for the 6328 R line. 	The effect 

of this filter (Grubb Parsons narrow band type 2) on the emission 

spectrum is shown in Figure 4.9. 

-'50%. 

The filter had a transmission of 

Laser-power monitor 

The output power of the He-Ne laser, which had no power-stabiliser, 

was monitored continuously during experiments. The photo-diode of a 

laser-power monitor (Scientifica and Cook) [5] was placed in the beam 

reflected by the rejection filter. The detector was connected to the 

chart recorder, which registered the beam power and Raman signal 

simultaneously. 

Neutral density filters 

These [s] could be used to attenuate the laser beam by a factor 

of —10-n  ,where n r  1,2,...,7. 

Iris 

This [fi blocks the cone of non-lasing emission which surrounds 

the beam. 

Floating lens 

The power density of the laser beam, which is initially A'3  mm in 

diameter, can be considerably increased at the sample by using a lens 

[s] to focus the beam into it. 	In the case of the glasses, however, 

high incident power densities damaged the samples 
(6) (see Section 

4.3.5) so the unfocussed 3mm beam was used. 	The lens was used with 

the selenides, which were spun in the beam to overcome this damaging 

effect, and with the crystals, which were not affected by the focussed 

radiation. 



W. 

Specimen stand 

For the transparent samples this [9] consisted of a mirror set 

beneath a platform containing an aperture "3 mm in diameter. 	The 

sample is placed on the platform so that it covers the aperture and 

is held in place with tape. The mirror reflects the beam upwards 

through 900  so that it passes through the aperture and the volume of 

sample vertically above it (see Figure 4.5(a)). 

In the case of the opaque samples, the back reflection technique 

is used. The platform is removed and the sample is mounted on a 

plate which is held in the vertical beam by a stand (see Figure 4.5(b)). 

The surface of the sample faces the spectrometer and is set so that 

the angle of incidence of the beam is equal to the Brewster angle. 

The Brewster angle for a-As 2 S 3  as 71.5 0(9) 

As focussed radiation was necessary in the case of the selenides 

a special rotating mount to spin the sample in the beam had to be made 

in order to avoid laser damage. 	The mount, built by Dr. 51k, consisted 

of a circular brass plate attached by a collar to the shaft of an 

electric motor. The whole was held steady in a sturdy frame which had 

provision for orienting the motor and attatched plate. The aluminium 

mounts to which the selenide samples were fixed could be bolted onto 

the plate. 

By focussing the beam near the rim of the disc sample the heating 

effect of the beam was spread over a large area. The mount proved 

very effective, for no laser damage occurred to the rotating samples. 

Light-proof screening 

In order to prevent background light from entering the 

spectrometer, either black card or a light-proof wooden box was used 

to screen the region in front of the entrance slit. 
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Figure 4 . 5 

The sampling arrangements: 

transmission mode 

back reflection 
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Collection lenses 

Two lenses [lo,lo'} collect the light scattered at 90°  to the 

vertical plane containing the laser beam and focus it onto the 

entrance slit of the spectrometer 

Polarisation analyser 

By inserting a sheet of polaroid [11] in the collected light the 

polarisation of the scattered radiation can be analysed. Polarisation 

spectra as well as unanalysed spectra have been recorded for all the 

glass samples studied. 

Since the pairs of polarised spectra for each of the compositions 

were to be used to obtain depolarisation data it was essential that 

they be recorded under identical conditions. Accordingly the two 

spectra were always recorded successively, in the usual way, with the 

only change in experimental conditions being the rotation of the 

analyser by 900  between scans. The program which generated the 

depolarisation spectrum from the polarised spectra applied a correction 

to each one to compensate for any change in incident laser power or any 

photo-induced effects occucing over the period taken to scan the two 

spectra. 	 - 	 - 

Discrepancies in the value of the depolarisation ratio, which 

should lie in the range 0 to 24 , between the published data and that 

obtained in the present study can be attributed to the depolarising 

effect of striations and imperfections in the specimens (see Section 

4.2.2.1). However, these do not affect the structure in the spectra. 

Polarisation scrambler 

As the transmission factor of a grating varies with the polaris-

ation of the incident light a polarisation scrambler [121 must be 

placed in front of the entrance slit of the spectrometer, or else a 



correction for the transmission factor must be applied to the raw data. 

The polarisation scrambler simply changes the polarisation of the light 

incident on it to a mixture of polarisations. 

Spectrometer 

The element used to disperse the scattered radiation was a double 

grating spectrometer (Spex 1400) [13] . 	The scanning in this instrument 

was linear in wavflength and driven by a 'stepper' motor. 	The spectro- 

meter control is described in Reference 35. 

Unless otherwise stated, the mechanical slit widths used were 

200p\ (1.), 200,,M (m.), .2007% (r.) for the glasses and 100/4 (1.), 

100p (m.), 100J\ (r.) for the crystal samples, which correspond to a 

spectral slit width of "3 cm-1  and —1.5 cm-1  respectively. 

The third monochromator 

Stray light in the spectrometer can mask weak Raman features - 

especially near the exciting line, where it is most intense - and can 

also give rise to spurious features (grating ghosts). 	One way of over- 

coming this problem is to attach another grating monochromator at the 

spectrometer's exit slit. 	This extra stage acts as a variable bandpass, 

variable frequency filter. The width of the spectral region passed is 

determined by the width of the exit slit of the added monochromator, and 

the central frequency of this region is set by the angular orientation 

of its grating. 	Stray light rejection is achieved by tuning the extra 

monochromator so that the exciting line is occulted by one of its exit 

slit blades. 	 -. 

In the course of this study a third monochromator (Spex TTM) [in] 

was added to the system for the reason outlined above. Improved stray 

light rejection was not necessary for most of the glasses, partly because 

they produced a strong Raman signal well above the background and partly 



because the low-frequency region near the exciting line was of minor 

interest in the present study. 	When this facility was not required 

the third monochromator was turned into an optical relay by replacing 

the grating with a high-reflectance mirror. However, this facility 

was useful for the optically poor samples, which reflected much of 

the incident radiation into the spectrometer. The bandpass profile 

for the third rnonochromator is shown in Figure 4.6(a) (the slope in 

the plateau is due to the white light source used for this test). 

The cut-offs are fairly sharp, occuring over a-5 cm' interval, as 

is seen in Figure 4.6(b) and (c), which show the two edges of the 

bandpass profile in greater detail. As the maximum width of the 

bandpass was "-260 cm -1  for the excitation used it was necessary to 

shift the 'window' along when recording Raman spectra extending more 

than '-260 cm- 
1.  This was done by interrupting the recording of the 

spectrum at a suitable point and rotating the grating to shift the 

centre of the bandpass to the appropriate frequency. 	As the plateau 

in Figui'e 4.6(a) is horizontal, after allowance is made for the source, 

no discontinuities in intensity were produced at the points in the 

spectra where the shifting operation was performed. 	This is seen in 

spectra 3 and 4 of Figure 4.14 which were run using this facility. 

From Figure 4.14 comparison of 3 and 4 with the others, which were 

recorded before the third monochromator was introduced, show that the 

addition of this instrument to the system has-- not altered the performance 

of the spectrometer, apart from improving its stray light rejection 

capability. 	Spectra recorded using the mirror mode of the third mono- 

chromator are identical with those recorded before its addition to the 

system. 

The efficiency of the third monochrornator in rejecting stray light 

near the exciting line is illustrated in Figure 4.7, which shows two 



Figure 4.6 

The bandpass profile for the third monochromator. 

Magnification of the low-frequency edge of the bandpass profile. 

Magnification of the high-frequency edge of the bandpass profile. 
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spectra obtained from a powdered sample of c-As 2S 3 . 	Spectrum (a) was 

obtained before its addition while (b) was recorded using it in the 

grating mode. 	In spectrum (b) much of the background has been removed, 

along with a number of spurious features. 

Photomultiplier 

Photoelectric detection was used in this system, the detector 

being a cooled RCA C31034A photomultiplier. The sensitivity of this 

tube throughout its spectral range, which includes the laser frequencies 

used, is extremely high, rising from 100 mA/W at 265 nm to 155 mA/W 

at 830 nm. The total dark count obtained was "10 cps. 

The detection system 

The method of detection used was photon counting )  whereby the 

current pulses from the photomultiplier are amplified, shaped, passed 

through an analyser which discriminates against noise pulses and then 

fed to a counting scaler. The scaler displays the number of counts 

and outputs to a chart recorder and a teletype. The recorder plots 

the spectrum, together with the beam power in some cases, while the 

teletype records the individual counts and punches them on paper tape 

for the computer. 

The repetitive 'step, stop-and-count' process used to measure 

the spectra is controlled by a unit which links the scaler and the 

'stepper' motor rotating the tandem gratings in the spectrometer. 

Prior to running a spectrum the desired number of steps, step-size and 

count-time are set on this control, which is also used for slewing the 

motor in either direction and stopping and starting the scan. 	It is 

also possible to interrupt the recording of the spectrum from this 

control without spoiling data or calibration. The design and operation 

of the scanning system is discussed in detail in Reference 35. 
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Figure 4.7 

The stray-light rejection capability of the third monochromator 

demonstrated on a sample of c-As 2S 3 . (Courtesy of Dr. M.J.Sik, 

Reference 36.) 

Recorded without TTM. 

Recorded with TTM in grating mode. 
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In these experiments count-times of 3 and 4 seconds were used 

for the sulphide and selenide glasses respectively. The crystalline 

materials generally yielded very intense spectra, so the minimum 

count-time of 1 second was sufficient for most of these. 	The step- 

size used in all the sulphide experiments corresponded to a channel-

width of -0.5 cm-1  , and that used for the selenides corresponded to a 

channel-width of N0.4 cm -1 

The maximum signal obtained for the glasses was "5000 cps and 

"20000 cps for the sulphides excited with the He-Ne and Kr lasers 

respectively, and "'3000 cps for the selenides excited with the i.r. 

line. 

4.3.2 	The amorphous arsenic experiment 

It was mentioned earlier (see Section 4.3.1) that very poor 	 - 

spectra were obtained for the. selenides when red excitation was used, 

because of their high absorption at these frequencies. The Raman 

signal from the a-As was also very weak, even when the 7993 2 i.r. line 

was used, presumably for the same reason since the optical gaps for 

a-As25 3 , a-As 2Se 3  and a-As are 	 and 1.1 

respectively (see Figure 4.4). 	As the a-As was opaque to the radiation 

available the back-reflection technique had to be employed and the weak 

signal necessitated the use of a long count-time. 	In these circum- 

stances several problems arise. 	The Raman lines become comparable in 

intensity to spurious features such as plasma lines and air lines, and 

the distortion of the spectrum, due to time-dependent signal loss arising 

from laser-induced damage to the sample, is exacerbated. 	Preliminary 

spectra obtained for the a-As were dominated by plasma lines, for the 

peak Raman signal was "50 cps, of which'-10 cps was dark count. This 

peak signal fell to "35 cps in the course of a scan lasting 10 hours 



We 

because over this period the laser beam had gradually cut a groove in 

the polished surface of the specimen. 

To overcome these problems the following experimental scheme, 

suggested by Mr. H. Vass and shown in Figure 4.8, was used. 	The 

6764 red line of the Kr laser was chosen for excitation - a compromise 

between the needs for a powerful line and one of long wavelength. As 

no plasma line rejection filter was available for this wavelength the 

system of prisms, irises and mirrors shown in the figure was used to 

reduce the amount of non-lasing emission entering the spectrometer. 

This system proved very effective since no plasma lines were apparent 

in the final spectrum (Figure 5.9, after  p.115). 

For maximum transmission through the optics and maximum coupling 

to the sample the laser radiation had to be polarised horizontally. 

A polarisation purifier was placed just before the sample to correct 

any depolarisation of the beam on passing through the optics. Of 

the 210 mW of power output by the laser "80 mW reached the sample, the 

remainder being lost at the irises and optical elements. 

To avoid laser-induced sample damage the spinning mount made by 

Dr. Sik for the selenides (see Section 4.3.1) was used to rotate the 

specimen rapidly in the beam. Because the sample was being spun, its 

irradiated face had to be flat, in addition to being well polished, to 

minimise the stray light background in the spectrum. 

In order that the Raman lines of air should not appear in the 

spectrum the sample was kept in an argon atmosphere. Rather than 

lose signal by enclosing the sample in an argon-filled container, 

argon gas was simply blown over the sample as shown in the inset in 

Figure 4.8. A tube from the Ar cylinder fed the gas to a short length 

of copper pipe positioned so that the reflected beam passed axially up 

it. 



Figure 4.8 

The configuration used in the recording of the a-As spectrum. 	The 

inset shows the arrangement for blowing argon gas across the face of 

the sample. 
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The mechanical slit widths were 300,M(l.), 	300)M(m.), 300Jt(r.), 

and the count-time was 60 seconds. The third monochromator was used 

for additional stray-light rejection. 	There was no detectable signal 

loss or sample damage over the 10 hours it took to scan the spectrum. 

Plasma lines 

In addition to the intense coherent radiation of the lasing 

frequency, relatively weak incoherent light of other frequencies emerges 

from the laser. This light arises from non-lasing transitions in the 

energising discharge from the plasma and can give rise to spurious 

lines - termed 'emission' or 'plasma' lines - in the Raman spectra. 

(10) 
As certain features in Ward's Raman spectrum of a-As 2 S 3 	have been 

attributed by Kobliska and Solin 	to these plasma lines, particular 

care has been taken in the present study to exclude such lines from 

the spectra. 

The non-lasing emission passes through the output window of the 

laser along with the coherent radiation and diverges to form a cone 

around the beam. Some of this light is scattered or reflected by the 

sample into the spectrometer and appears in the Raman spectra as a set 

of very sharp lines. Because the intensity of the emission reaching 

the sample is very much less than the beam intensity the emission lines 

are typically 40 of the intensity of the Rayleigh line in the 

spectrum and observable Raman spectra corresponding to each of the 

emission lines are not produced. 

There are certain standard methods of reducing the amount of 

emission entering the spectrometer, the simplest being the insertion 

of an iris ( 7 in Figure 4.3) to block off the cone of emission 

surrounding the beam. Since the emission accompanying the beam 

diverges, the amount passing through a certain area at a fixed distance, 

L, from the output window falls off as 	so that the iris should be 
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placed as near the sample as possible and the path length of the beam 

from the laser to the sample should be made large, perhaps by the use 

of mirrors and prisms (see Figure 4.8). 	Inevitably some emission 

passes through the iris and reaches the sample but the amount diffusely 

reflected into the spectrometer by the sample can be reduced by using 

well polished samples in the case of back reflection and samples free 

from internal cracks, bubbles etc. when the transmission mode is being 

used. 	A narrow-band filter (4 in Figure 4.3) inserted in the beam 

can also be used to isolate the laser. frequency. As the emission may 

escape from other-apertures in the laser, such as cooling vents, and 

be reflected into the spectrometer from, for example, the laboratory 

walls, it is necessary to screen off the region round about the entrance 

slit (see Figure 4.1). 

If the Raman signal is intense the plasma lines may be swamped 

and unnoticeable, even when filters, irises etc. are not used. 

However, in the recording of weak spectra where high sensitivity and 

long count-times are required, plasma lines may be observed in the 

spectra despite the use of the above experimental precautions. Thus 

it is necessary to know the positions and relative intensities of the 

emission lines in the frequency range of interest so that they can be 

identified. 

Two laser lines have been used in the present investigation of 

the arsenic-sulphur glasses 	the 6328 R line of a He-Ne laser and 

the 6471 R line of a Kr-ion laser. A Grubb-Parsons plasma line 

rejection filter was available for the 6328 line only. A in 

Figure 4.9 shows the emission lines of the He-Ne laser in the region 

0 - 475 cm' on the Stoks side of the exciting line (15,802  cm). 

B in Figure 4.9 shows the effect of the plasma line rejection filter 

on the emission spectrum. The effect of plasma lines on the spectra 

is seen in Figures 4.11, 4.12 and 4.13 in which the spectra were 



Figure 4.9 

The plasma lines of the He-Ne laser in the range 0 - 475 cm' on the 

Stokes side of the 6328 R line. 	Spectrum A is the emission spectrum 

and B shows the effect on it of inserting a plasma line rejection 

filter in the laser beam. 

Figure 4.10 

The plasma lines of the Kr laser in the range 0 - 475 cm -1  on tfle 

0 
Stokes side of the 6471 A line. 
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Absolute frequency (cm 1 ) Frequency shift (cm 1 ) 

--12510.9 0 

12408.5 102.4 

12362.5 148.4 

12339.6 171.3 

12327.4 183.5 

12324.4 186.5 

12300.1 210.8 

12277.8 233.1 

12230.9 280.0 

12211.5 299.4 

12200.0 310.9 

12192.4 318.5 

12169.2 341.7 

Table 4.2 The frequencies of the principal plasma lines of the Kr-ion 

laser on the Stokes side of the 7993 R (12510.9 cm 1 ) laser 

line in the range 0 - 350 cm-1. 
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unavoidably weak due to the conditions necessary for these three 

experiments. The sharp peaks marked 'P' at —180 cm -1  and -432 cm -1  

in these spectra are due to the intense plasma lines at these 

frequencies. 

No filter was available for the 6471 R line of the Kr-ion laser 

and an iris alone was used to reduce the amount of emission reaching 

the sample. However, the Raman signal generated by this laser was 

intense - peak counts of approximately 20,000 counts/sec were typical - 

and the plasma lines were not noticeable. Figure 4.10 shows the 

emission spectrum of the Kr-ion laser in the region 0 - 500 cm- 1 on 

the Stokes side of the 6471 R (15,454 cm 1 ) line. 

The special precautions taken in the recording of the a-As 

spectrum are detailed in Section 4.3.2. The Stokes plasma line 

frequencies of the 7993 R line of the Kr-ion laser, which was used in 

the experiments on the As-Se glasses, are given in Table 4.2. No 

filter was available for this line but the plasma lines were effectively 

excluded from the spectra by the use of irises. All the spectra 

presented in this investigation were recorded with screening in place 

around the entrance slit of the spectrometer so that no emission could 

be reflected into it from surfaces in the laboratory. 	 - 

Comparison of the emission spectra in Figures 4.9 and 4.10 with 

the spectra of Figure 4.14 shows that the contribution of non-lasing 

emission to the spectra recorded in this study is negligible. There 

is, for example, no trace in spectra 1,2,3,5 or 6 of Figure 4.14 

(which were excited with 6328 R radiation) of the 432 cm-1  plasma 

line although it occurs in a region where the Raman signal is weakest. 

Finally, comparison of spectrum 4 (which was excited by the Kr-ion 

laser) with the other spectra of Figure 4.14 shows no significant 

differences between them (see also Figure 4.15). 	It can therefore be 
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concluded that none of the features in the spectra is attributable to 

plasma lines. 	The implications of this result in the light of Ward's 

and Kobliska and Solints work are discussed in Section 5.6.1. 

4.3.4 	Effect of absorption on the spectra 

In Figure 4.15 an increasing divergence in intensities as one 

approaches the origin is obvious but this difference is not important. 

As the spectra are normalised near .338 cm '  they are in good agreement 

here and the small spread in intensities at lower wavenumbers is a 

manifestation of small changes in absorption due to positioning of the 

sample in the laser beam, different exciting frequencies and to heat-

and light-induced effects. These changes in absorption lead to 

changes in relative intensities because the absorption coefficient 

increases as the photon frequency increases. As these are Stokes 

spectra the 338 cm -1 peak corresponds to scattered light of a lower 

frequency than that of the scattered light corresponding to the 

30 cm-1  peak so that the latter radiation is absorbed more strongly 

than the former. 

The divergence in the spectra at low energies is, of course, 

hardly observable when one compares the reduced spectra normalised to 

the peak at 338 cm -1 because the low energy band disappears as a 	-. 

result of the reduction process. 

Figure 4.11 shows the effect of increased absorption due to an 

increase in the path length of the scattered light through the sample. 

Spectrum A was obtained from a cuboidal sample, "1.5 x 1.5 x 0.8 cm, 

with the laser beam positioned as close as possible to the face nearest 

the spectrometer - this was the standard position used in the experi-

ments and in this position the centre of the beam was N0.2 cm from the 

side facing the spectrometer. 	Spectrum B was deliberately recorded 

with the beam near the opposite face of the sample, so that the distance 



Figure 4.11 

The effect on the Raman spectra of changes in absorption due to 

increasing the path length of the scattered light through a sample 

of a-As2 S 3  from sv0.2 cm (A) to "-1.3 cm (B). 	The spectra are 

normalised to the height of the 338 cm- 1 band. 
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of the beam centre to the side nearest the spectrometer was 1.3 cm. 

The intensity ratio IC 	 for any two spectral frequencies 

is related to the absorption coefficient ck(V) in the . following 

way 

K(V11 ...) 	e 	 (4.1) 

I ( 

 ~)2 	
K( 2I . I) 

 X 
-2)d 

where d is the path length of the scattered light through the sample 

and the K() ..... ) account for the other factors governing the observed 

Raman intensity. 	On comparing this ratio for two spectra recorded 

under identical conditions, but corresponding to different values of d, 

one obtains 

'A 9P"A2 = e 
_fr(vp- 	2)ICdA - dB)  

'B 'l 	' V2 ) 
	

(4.2) 

where the subscripts A and B index the spectra 
	If the spectra are 

normalised at 	2  the L.H.S. = IAO))/IB() 

Taking d as the distance from the centre of the beam to the front 

face, d  
- 

dB 1 cm in this experiment. For the 29 cm -1  and 338 cm 

peaks ))= 15,773 cm -1  and 15,464 cm' respectively since the exciting 

frequency was 15,802 cm -
1  in this case. The difference in absorption 

coefficients at the two frequencies is 0.15 cm -1  so that 1A'1B z 1.16 

for the 29 cm -1  peak. Experimentally from Figure 4.11 the ratio is 1.17. 

In this project changes in absorption have been minimised by making-

a simple correction, discussed in Section 4.3.5, for the small 

temperature- and light-induced changes that occur during runs and also 

by standardising the experimental procedures,e.g. performing all runs at 

a fixed distance d from the front of the sample. 	However, the change in 

absorption due to the use of different compositions in the experiments is 

unavoidable. For the sulphur-rich glasses near stoichiometry it is known 

that in the region of the exciting frequency, 15,802 cm 1 , the absorption 



coefficient varies exponentially with 	so that for a composition 

As 	S 
lOO-x x 

Ce 
X 	 (43) 

where x indexes the sulphur content and C ,b are constants. 	It is also 

found (37) that an approximately parallel shift to higher frequencies 

occurs in the plots of log(( ()))) versus )) as the sulphur content is 
X 

increased from the stoichiometric value of 60 at.%, which implies that 

the change in 	with x occurs in the pre-exponential constant 

and so is frequency independent. Hence a xd-- const. x Ud as x 

changes and the effect is equivalent to changing d. 	In going from As 40S60  

to As 35S55 , cL) decreases by approximately a factor of 1/2 which is 1/3 

of the fractional change in d in the measurement on which Figure 4.11 is 

based. 	It is not necessary to make a correction for this compositional 

change in the absorption since, as Figure 4.11 shows, the consequent 

change in ad does not affect the spectral features significantly. A 

comprehensive correction for the absorption of both incident and scattered 

radiation would, however, be essential in a study of the resonance Raman 

effect in these materials (40,41) 

4.3.5 	Laser damage and photo- tduced effects 

It is customary in laser Raman spectroscopy to focus the beam onto 

the sample so as to maximise the incident power density. However, when 

50 raW of focussed 5328 radiation (corresponding to a power density of 

2 x 
10  mw/cm2 ) was incident on samples of a-As 2S 3  a rapid decrease 

occurred in the initially intense Raman signal. Over the first 10 minutes 

of exposure the initial Raman intensity, to, fell to about 1/3, but the 

rate of count loss tapered off so that after 20 minutes the intensity had 

reached 1/5 and was decreasing linearly with time at a rate of 20 - 25% 

of this value per hour. 

Examination of the irradiated sample under a microscope revealed a 
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small pit ('2OOf\ diameter) on the surface at the point of incidence 

and showed a black region ns2  mm long extending from this point into the 

sample. 	Similar damage with a focussed beam has been observed by other 

workers (6 ' 42)  • 	Vitreous As 2S 3  has a very low thermal conductivity 

(4 x lO cal/sec cm °C) and it seems that the focussed radiation is 

sufficiently intense to vaporise a small region on the surface of the 

glass around the point of incidence and also to cause subsurface physical 

or chemical changes near this point. The pit formed in the initially 

polished surface effectively defocusses the beam and the consequent 

reduction in incident power density decreases the rate at which the 

surface and subsurface damage is occuring. This defocussing effect 

accounts for the rapid initial count loss but a stage is probably reached 

where further melting does not occur, or does not increase the defocussing 

of the beam, and subsurface damage becomes the principal mechanism for 

decreasing the Raman signal. The incident power density must still be 

sufficient to cause the physical or chemical changes that are producing 

the blackening and as the blackened regions grow they will attenuate the 

beam. 	Since the scattered light entering the spectrometer originates 

from a volume in the centre of the sample and well above the damaged 

region, these phenomena affect the Raman intensity only indirectly, that 

is by reducing the power density in the scattering volume. 

An attempt was made to reduce the heating effect of the laser beam 

at the point of incidence by using the technique of refractive index match-

ing, whereby the sample is immersed in a liquid of similar refractive 

index so that reflection at the point of incidence is reduced. However, - 

the count loss was markedly present even when the sample was immersed in 

a cell of silicone oil, which is a good thermal conductor. 	 - 

It was then decided simply to use the focussing lens to defocus the 

beam until no optical damage occurred. For incident beam widths of 

- 5 mm in diameter (corresponding to power densities of '700 - 250 mW/cm2) 



the rate of count loss was found to be considerably decreased, though it 

was not entirely removed, and no pitting or blackening of the sample was 

observed. 	As the initial signal, 10,  obtained with the 5 mm beam, which 

was the widest one investigated, was not acceptable, a 3 mm beam was 

preferable. The lens was made redundant by the fact that the normal 

diameter of the laser beam was n.3  mm so that reproducible spectra of 

reasonable intensity could be obtained simply by using the direct, 	I 

unfocussed beam. The count loss rate under these conditions was linear 

and a% of I 0 
 per hour - the time taken for a scan. 

When a sample that had been exposed to the laser radiation (either 

focussed or unfocussed) was viewed under a polarising microscope a change 

in optical density throughout the region traversed by the beam was clearly 

evident, indicating that laser-induced changes are also occurring within 

the sample. The path of the beam through the sample appears in the 

polarising microscope as a sharply defined volume differing in colour from 

the unirradiated region. As no surface or subsurface damage occurs when 

the samples are exposed to unfocussed radiation, the small count loss rate 

obsexved in this case can be attributed to these internal changes. 	For 

the focussed beam case the rapid intensity loss is primarily due to the 

laser damage and the internal changes make only a small contribution. 

To investigate the nature of the count loss due to these physical or 

chemical changes taking place inside the samples several experiments were 

performed to observe the scattered intensity as a function of time. 	An 

unfocussed 50 mW beam was incident on the samples and the laser power was 

monitored continuously throughout each experiment so that changes in 

scattered intensity could hot be attributed to fluctuations in beam power. 

The following points emerged 

the effect occurs in all the As-S glasses A5 35 S 65  —As45S55 ; 

the scattered intensity decreases linearly with time over the 
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first 1 - 2 hours of exposure but tails off at long times; 

for the standard-anneal samples the count loss rate is 

approximately the same for all compositions viz -'3% of 10 

per hour; 

the only non-annealed sample examined yielded a count loss 

rate of -'10% of 10  per hour. 

A number of experiments were carried out to ascertain whether the 

signal loss was accompanied by any changes in the shape of the spectra. 

These experiments consisted of exposing a sample to 50 - 80 mW of 

unfocussed radiation for several hours and recording Raman spectra at 

intervals using an attenuated beam. The spectra were then compared and 

examined for new features, peak shifts etc. 	The results of Figure 4.12 

are taken from a typical experiment of this type on a-As 2 S 3 . Each of 

the five spectra shown was excited with 'vs mW of unfocussed 6328 

radiation, the first spectrum, A, being recorded before the sample was 

exposed to the full beam. 	One hour's exposure to the unattenuated 50 mW 

beam occurred between each of the first four recordings. To see whether 

or not the sample recovered after exposure, the fifth spectrum, B, was 

recorded eleven hours after the fourth with no irradiation at all during 

that interval. 	The only difference in the five spectra, which have been 

normalised to the height of the 338 cm- 1 band, is the increasing reduction 

in intensity of the last four spectra relative to the first as one 

approaches the origin. 	This discrepancy in intensities would be expected 

if the count loss mentioned earlier was frequency dependent, being larger 

for higher absolute scattered frequencies. There are no signs of any 

new features appearing in the spectra nor of any change in the features - 

already present but there is some indication of recovery in the final 

spectrum, B. 

Apart from the changes in relative intensity of certain features in 

the spectra of the As-rich glasses as a function of exposure (see Section 5.7), 



Figure 4.12 

- 	The effect on the Raman spectrum of a-As40 S50  of prolonged exposure 

- 	to laser radiation. 	Five spectra, normalised to the height of the 

- 

	

	338 CM-1  band, are shown, A being recorded first and B last, after 

an eleven-hour period of recovery. 

Figure 4.13 

The effect on the Raman spectrum of a non-annealed sample of As 36 S64  

of prolonged exposure to laser radiation. 	Spectrum A was recorded 

before exposure and spectrum B after exposure to 50 mW of 6328 

radiation for 3 hours. 	B' is B normalised to the height of the 338 cm 1  

band of spectrum A. 
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no changes in spectrum profile were observed in these experiments, in 

which the maximum continuous exposure and the maximum total exposure of 

one region to the 50 mW beam was 6 hours and 10 hours respectively. 

Figure 4.13 shows spectra obtained from the non-annealed sample of 

As 36 S64 , which exhibited a much larger count loss than the annealed 

samples. 	Before exposing the sample to the full beam, spectrum A was 

recorded using a 5 mW beam. Then the full 50 mW beam was passed through 

the sample for 3 12  hours, after which spectrum B was recorded using the 

attenuated beam. Comparison of A and B shows that the Raman signal has 

fallen by almost 50% after the 3 hour exposure but there is no sign of 

any change in profile. 	Comparison of A and B'(which is spectrum B scaled 

so that A and B' are normalised to the height of the 338 cm-1  band) shows 

that the increasing intensity discrepancy as one approaches the origin is 

again present (cf. Figure 4.12). 	The increased noise level in the 

spectra of Figure 4.13 is due to the use of an attenuated beam and no 

compensating long count-time. 

The only laser-induced spectral changes observed in these experiments 

were due to the wavelength-dependent signal loss. 	This loss is con- 

sistent with a shift in the absorption edge to lower energies as a result 

of irradiation. 	Several workers (5,43)'  have observed heat- and light- 

induced shifts of the absorption edge in these materials. 	There is no 

indication that the samples recover completely when left after exposure, 

since the blackened regions and the regions of changed optical density 

were still visible under the microscope three years later. 

In the selenides also, gross physical damage occurred when focussed 

radiation was incident on the samples. 	However, as a focussed beam was 

necessary to obtain an acceptable Raman signal the problem was overcome 

by rapidly rotating the sample in the beam rather than by simply defocuss-

ing it. 	This method proved extremely effective, for under these con- 

ditions absolutely no count loss was observed. 	No experiments were 
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performed to see whether a photodarkening effect similar to that in the 

sulphides occurs in the As-Se glasses but a signal loss may well set in 

as the rate of rotation is decreased. 	Heat- and light-induced absorp- 

(5,44,45) 
non edge shifts have also been observed in the selenides 

The only other material damaged by focussed radiation was the 

a-As, which had to remain in the beam for 10 hours for its spectrum to 

be scanned. 	This problem was again overcome by using a rapidly rotat- 

ing sample and no signal loss occurred when this method was used. 	The 

crystal samples, which were all excited with focussed radiation, showed 

no sign of damage and their spectra exhibited no change in profile or 

intensity over the period required for a scan, viz 20— 60 minutes. 

Heat- and lightinduced changes have been observed, however, in 

c-As2S3 ' 6  and particularly in c-As 4S4  which can photodecompose in 

(14,22,47,48) 
several ways 	- 

All Raman spectra of the As-S glasses recorded subsequent to the 

experiments outlined in this section were excited with unfocussed beams, 

the incident beam powers used being 	mW, .'-240 mW and -'60 mW for the 

6328 , 6471 R and 7993 R lines respectively. 	As no spectral changes 

occurred during six hours continuous exposure to the full beam it is 

unlikely that any such changes would occur in a spectrum during the 

hour taken to scan it. Moreover, the total exposure of any region in 

a sample never exceeded the 10 hour maximum total exposure during which 

no spectral changes occurred (apart from the one region used which set 

this maximum) and spectra were generally recorded from unexposed samples 

or unexposed regions of samples. To compensate approximately for the 

small intensity loss occurring in the course of a scan, a simple linear 

correction was applied to the data. At the end of each scan the inten-

sity of the low energy peak was re-measured and comparison of this with 

the initial intensity gave a value for the combined intensity loss due 

to laser-induced effects and drift in beam power occurring over the 



102 

I 	 recording period. 	A computer routine was written to correct each 

intensity value in the spectrum by the appropriate fraction of the 

total loss. 

4.3.6 	Data handling 

In this study extensive use was made of the computer to process, 

analyse and present the spectral data, the work being carried out on 

the multi-access system provided by the Edinburgh Regional Computing 

Centre. 	A comprehensive library of routines, written by Dr. J.W. 

Arthur 5 , was already available for handling Raman data and all that 

was required was to add to this the programs arising from the special 

requirements of this particular study. These extra programs were 

either written by Dr. M.J. Sik or by the present author. 	Listed 

below are the operations that could be carried out on the data. 

Basic preparation 

The following preliminary operations were performed on all the 

spectra 

* Removal of substitute characters. 

Subtraction of dark count. 

Removal of noise spikes. 

Linear correction for fall-off in laser power or for the photo-

darkening (see Section 4.3.5). 

* Conversion from wavelength to wavenuxnber. 

Processing 

* Smoothing. 

Normalisation to area, peak height etc. (see Section 5.5.1.1). 

-I- Shulcer-Gammon reduction (see Section 3.4.1). 
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Analysis 

Peak finding. 

* Integration and differentiation. 

* Curve fitting. 

9: Graphing/multiple graphing on line-printer or teletype. 

Presentation 

"C Graphing/multiple graphing on the Calcomp computer graph-plotter 

attached to the system. 

Miscellaneous operations 

Determination of location and value of maximum count on any interval. 

Subtraction of one spectrum from another to obtain the difference 

spectrum. 

Generation of the depolarisation spectrum from two polarised spectra. 

± Convolution with a Gaussian. 

+ Changing intensity scale from linear to logarithmic 

A number of housekeeping routines were also available for storing 

the spectra and for listing and altering their parameters and contents. 

The spectra could be translated, expanded or contracted along either the 

intensity or the frequency axis. The routines marked + were written in 

Fortran IV by Dr. Sik while those marked * were written by Dr. Arthur in 

(49) 
Imp 	, which was the language used by the present author. 

All the spectra presented in this study have been automatically 

plotted by the computer graph-plotter. 

4.3.7 	Reproducibility 

The reproducibility of the results is illustrated in Figures 4.14• 

and 4.15 which show typical spectra for the stoichiometric glass As 2S3 . 

The same set of six spectra, normalised to the peak intensity of the 

338 cm-1  band, are shown displaced above each other in Figure 4.14 and 



Figure 4.14 

Six spectra of the As 2S 3  glass obtained under different experimental 

conditions (see Table 4.3). 	The spectra are all normalised to the 

height of the 338 cm' band and are shown displaced above one another. 

Figure 4.15 

The same six spectra of Figure 4.14 superimposed. 
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Spectrum Source of 
sample 

TIM 
grating in 

Exciting 
line (X) 

Slits (1M) 

l:m:r 
Incident 

power (mw) 
Count 

time 	(s) 
Step 
size* 

1 A.O.C. No 6328 80:100:80 75 6 6 

2 Department No 6328 200:200:200 50 3 8 

3 Department Yes 6328 200:200:200 50 3 8 

4 Department Yes 6471 200:200:200 140 3 8 

S A.O.C. No 6328 150:150:150 50 7 7 

6 A.O.C. No 6328 150:150:150 50 7 7 

A.O.C. - American Optical Company 

Step size is in multiples of O.03 

Table 4.3 The main experimental factors varying between the six recordings of 

the a-As 2S 3  spectrum shown in Figures 4.14 and 4.15. 

09 
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superimposed in Figure 4.15. 	The six spectra were recorded at various 

stages in the project and under different conditions, some being 

recorded specifically to test the effects of experimental factors on 

the spectra while others are taken from the various Raman experiments 

performed. 	Table 4.S gives the main experimental factors that vary 

among the six runs. 	No significant differences between the spectra 

are apparent and all the features mentioned in Section 5.4.1 are present 

in the spectra, apart from the weak hump around 160 cm 1 , which appears 

only in the most intense spectra, and the 490 cm -1 peak in spectra 5 

and 6. - 	 -- 

Since some runs on the same sample -  are separated by more than 

16 months it is clear from the agreement of the spectra that no sample 

deterioration occurs over this period, even though the samples were 

stored in ordinary room conditions and not in an evacuated or dessicated 

atmosphere. 	There is no evidence of oxidation, decomposition or 

crystallisation. 	Because As2 S 3  glass has a very - low hygroscopicity (50)  

it would be expected that the samples are unaffected by humidity. 

Using the peak finding routine 	it was found that the frequencies 

of corresponding peaks in the six spectra agreed to within +1.5 cm' and 

this valueis taken as the reproducibility of the frequencies for the 

glass spectra in this project. 
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CHAPTER 5 

RESULTS AND DISCUSSION; THE As-S SYSTEM 

5.1 	Introduction 

This chapter presents and discusses the results obtained for the 

arsenic sulphides: amorphous and crystalline materials throughout the 

As-S system, including the elements, have been investigated in the 

present study, with particular emphasis on the composition range around 

the stoichiometric glass As 2S 3 . 	Figure 5.1 shows the compositions 

investigated in this study and also those examined in Raman and i.r. 

studies carried out by other researchers, including Ward (1 '2)  , whose 

work on the As-S glasses has been augmented by the present study, which 

includes polarisation measurements on all the glasses and examines in 

greater detail the composition range within t5 at.% of a-As2 S 3 . 	Eleven 

near -stoichiometric compositions extending from As 35 S55  to As45S55  in 

1 at.% steps have been investigated. 

Raman spectra presented here are substantially in agreement with 

the corresponding spectra obtained in the other studies, though some new 

features in the glass spectra have been observed and there is no sign of 

the spurious structure apparent in Ward's results'. 	All the spectra 

presented in this study were recorded at room temperature. 

5.2 	Spectra of the crystalline As-S compounds 

A knowledge of the vibrational spectra of the crystals in the system 

is essential in the study of the glasses, firstly because it may help in 

the identification of individual features in the glass spectra and secondly 

because a comparison of crystal and glass spectra for the same composition 

will show to what extent the structure of the glass is related to that of 

the crystal. 	Consequently, the Raman spectra of as many as possible of 

the numerous crystal compounds which occur in the As-S system (see Section 2.2) 
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The compositions investigated in vibrational studies of materials in 

the As-S system. 
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have been recorded in this study 
	It is evident from Figures 5.2 - 5.6, 

which show the crystalline Raman spectra obtained in this study, that 

the vibrational spectra of these materials are complex. Apart from 

As 3S, all the compounds were very strong scatterers at red wavelengths. 

5.2.1 	c-As2S 3  

The Raman spectrum of the mineral orpiment is presented in 

Figure 5.2. 	The spectrum is representative' of the present results, 

which were obtained on mineral samples from two independent sources. 

Several investigations of the Raman (2,3,5 - 10) and 	
—12) 

spectra of this material have been carried out by other workers and the 

11)6, 
effects of pressure 

(13)  and low temperature (3, 
	on the spectra have 

6) 
also been examined. 	Zallen et al. 

(5, discovered that the optical 

properties of c-As 2S 3  are determined not by the Ch  space group symmetry 

of the crystal but by the 02v symmetry of the individual layers in the 

crystal. For one of the c-As 2S 3  layers in isolation there are 3 zone-

centre acoustic modes and 27 non-degenerate (i.e. with no symmetry-

induced degeneracies) zone-centre optical vibrations, all of which are 

Raman active. The symmetries of the 27 optical modes are given by 

r - P = 7A1 ,t 7A2  i- 7B 	 + 632. As the crystal unit cell contains two 

layer units there are twice as many normal modes for the crystal as for 

the layer, that is 60. 	If the interaction between layers were to tend 

to zero, the 60 crystal vibrations would collapse to 30 degenerate doublets, 

each pair corresponding to a single 'layer vibration with adjacent layers 

vibrating with equal or opposite phase. The weak interlayer interaction 

lifts these degeneracies, however, resulting in a set of closely spaced 

doublets one member of which is Raman active and the other i.r. active. 

The crystal also gives rise to three low-frequency zone-centre 

rigid-layer modes, all Raman active. These are the layer-crystal counter-

parts of the rigid-molecule, or external, vibrations which occur in 



Figure 5.2 

The Raman spectrum of c-As2S3. 
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crystals composed of small molecules. 	Because the crystal unit cell 

is two layers thick and the crystal space group contains centres of 

symmetry which interchange adjacent layers, these rigid-layer modes are 

of even symmetry and thus i.r. inactive. 	Two of these modes are shear 

vibrations in which adjacent layers slide over each other in opposite 

directions parallel to the layer planes, while the third is a com-

pressional vibration in which adjacent layers beat against each other 

along the normal to the layer planes. Hence there are 30 lines poss- 

ible in the first-order Raman spectrum of c-As 2S 3 : 19 have been observed. 

The symmetry assignments for the observed frequencies of orpiment 

have been determined by Zallen et al. (5) from Raman polarisation 

measurements, and Mathieu and 	 mainly from i.r. measurements, 

but the two sets of results are not in complete agreement. 	No polaris- 

ation data could be obtained in the present study because of the poor 

optical quality of the specimens. 

From Figure 5.2 it is seen that the bands occur in three distinct 

spectral regions: below 80 cm 1 , between 100 and 210 cm -1 and from 

290 to 400 cm- 1. 	Those in the high-frequency region are the As-S bond- 

stretching modes and those in the 100 - 210 cm -1  range are the bond-

bending modes. The four low-frequency bands are the rigid-layer 

modes. 	In the scaling relation (see Section 6.4.5) that has been shown 

to exist'' between c-As 2S 3  and c-As 2Se 3  these four bands scale differ- 

ently to the others. 	Those at 27 and 37 cm are the two non-degenerate 

shear modes. The compressional rigid-layer mode is also Raman active in 

c-As 2 S3  and it appears that this mode has become heavily intermixed with 

one of the low-frequency bond-bending intralayer modes to produce the 

doublet at 63 and 70 cm -1 	Some of the very weak features in the 

spectrum may be due to overtones or combinations. 
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5.2.2 	c-As4S4  

The Raman spectrum of the mineral realgar ( a-As 4S4 ) and the 

synthetic sample (fl-As4 54 ) are displayed in Figures 5.3 and 5.4 

respectively. In the case of -As 4S4  both the Raman ,2,9,10,14) 

(9 - 11,15) 
and i.r. 	 spectra have been investigated by other workers. 

Since the Raman spectrum of this molecular crystal cannot result from 

the van der 4aa1s forces between the As 454  molecules the spectrum has 

to be explained in terms of the D molecular symmetry rather than the 

Ch crystal symmetry. This leads to the following distribution of 

vibrational fundamentals: 3A1  + 2A2  + 281 + 3B 2  t 	All modes 

are Raman active except those of A2  symmetry, which may, however, become 

active in the crystal due to the lower site symmetry. 

Examination of Figure 5.3 reveals that the principal Raman bands 

of 0rAs4S4  fall into three distinct spectral regions, as did those of 

c-As 23 3 : below 70 cm 1 , between 120 and 225 cm -1  and from 320 to 380 cm-1 . 

On the basis of the assignment determined for the spectrum of the As4S2  

ion' the high-frequency bands are associated with the As-S bond-

stretching modes and the bands in the range 120 - 225 cm -1  are mainly 

attributable to bond-bending modes(9)  . The frequencies below 70 cm -1  

can be ascribed to the external vibrations of the molecules and deform-

ations of the cradle involving movement of the neighbouring As atoms. 

Tentative symmetry assignments for the observed frequencies have been 

- made by Forneris (9)  . 	Once again, no polarisation data could be obtained 

in the present study because of the poor optical quality of the sample 

used. 	The symmetries of the As-S stretching modes are distributed as 

A1  + A2  + 81 + 82 t 2E and thus five As-S stretching bands are expected 

in the high-frequency region of the Raman spectrum: five are observed, 

viz 328, 343, 354, 368 and 374 cm-1
. 	The symmetries of the cradle 

deformations are distributed as 2A1  -t- A + B1  + 282 1- 2E so seven bending 

bands are expected: according to Forneris's interpretation these would 



Figure 5.3 

The Raman spectrum of -As 4S4 . 

Figure 5•14 

The Raman spectrum of fl_As1+S4. 
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be the bands at 47, 61, 144, 173, 183, 193 and 221 cm ' . 	The lowest 

two of the seven frequencies correspond to deformations in which the 

pairs of As atoms on the same side of the plane formed by the four S 

atoms move toward and away from each other. 

Whitfield 
(11)  suggests that the band at 235 cm- 

I  in Forneris's 

Raman spectrum may arise from an As—As stretching mode. This may well 

be correct but the feature at 235 cm -1  is absent from the spectrum 

observed in this study (and also from Ward's data(12))  and is possibly 

due to light-induced structural changes in the material 
(14). 	This is 

discussed fully in Section 5.7. 

The very weak bands appearing in the spectrum may be due to overtones 

or combinations, or may arise from already present or photo-induced regions 

of c-As 2S 3  in the sample. 	For example, the features at 293 and 308 cm 

occur near strong orpiment bands. 

In the case of fi -As 454  only the Raman spectrum has been previously 

recorded 	and no vibrational analysis exists. The As454  molecules in 

,fr-As 4S4  are identical to those in 0x-A54S 4  but the space group for the 

crystal is C2/c. The molecules are arranged in an approximately cubic 

close-packed array and the shortest intermolecular As ... As distances are 

considerably longer than in c.-As4S4 . 	The Raman spectrum of fi 5454  is 

shown in Figure 5.4 (see also Figure 5.76 after p.193) and is fairly 

similar to that of d-As 4S 4 , the bands falling in the same three spectral 

regions. 	There are, however, a number of peak shifts and the intense 

doublet centred at 188 cm-1  in the spectrum of &(-As, 4S4  is replaced by a 

single band in the spectrum of ?_A54S4. 

Porter and Sheldrick(14)  also observe light-induced structural changes 

in both forms and comparison of the spectrum of -As 4S4  obtained in this 

study with the spectra of irradiated c-As 4S4  obtained by them suggests that 

these extrinsic structural features are already present in our sample 
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since their characteristic bands are apparent in Figure 5.4. 	This is 

discussed fully in Sections 5.6.3 and 5.7. 	Ignoring these extraneous 

bands the spectrum presented here is in reasonable agreement with the 

published •data. 

5.2.3 	c-As4S 3  

Figure 5.5 shows the Raman spectrum of the synthetic fl-As4S3  

produced in the Department. 	Only the i.r. spectrum of this material 

has been published (11). 	The As4S3  molecule has point-group symmetry 

C3  and of its ten fundamental frequencies nine should appear in the 

Raman spectrum, four belonging to the symmetrical class A1  and five to 

the degenerate class E. 

Once again the principal Raman bands fall into three spectral 

regions: below 60 cm 1 , between 160 and 280 cm and from 330 to 380 cm_I . 

The high-frequency bands are due to the stretching of As—S bonds, those 

in the intermediate range arise mainly from bond-bending modes and the 

low-frequency lines arise from external vibrations. 	From WhitfieldTsU 

interpretation of the i.r. spectrum of ?_A5453 the feature at 373 cm 1  

can be attributed to the symmetric stretch of the apical As atom with 

respect to the three attached S atoms, the band at 336 cm-1  can be attributed 

to the symmetric stretch of the As—S bonds of the triangle of As atoms 

with respect to the attached S atoms, and the doublet at 171 and 178 cm-1  

can be ascribed to the S—As--S bending mode of degenerate class E. On 

(17) 
the basis of a valence force field calculation Rogstad 	attributes the 

band at 271 cm' to a cage 'breathing' mode with emphasis on the As  basal 

triangle. 	The features at 230 and 236 cm' may arise from an As—As. 

stretching mode. 	Whitfield calculates the As—As single bond stretching 

frequency to be 264 cm -1 , assuming a bond length of 2.45 X, and attri-

butes the 235 cm-1  band in Fornerists ()  Raman spectrum of R.-As 4S4  to 

an As—As stretching mode. 



Figure 5.5 

The Raman spectrum of i-As4S3. 
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5.2.4 	c-As4S5  

Figure 5.6 shows the Raman spectrum of the yellow powder obtained 

by Whitfield's 8  method for producing c-As 4S 5 . 	As the vibrational 

spectrum of this crystal has not been previously recorded it cannot be 

asserted that the substance investigated here is pure c-As 4S 5 . 	The 

sample is certainly a crystalline arsenic sulphide since the main bands 

are sharp and occur in the frequency regions characteristic of the As-S 

crystals. The presence of certain impurities can be ruled out immediately: 

there is no feature near 473 cm', the highest vibrational frequency of 

orthorhombic sulphur (see Figure 5.7 after p.114), and there are no CS  

features present. Any impurities in the sample will probably be other 

arsenic sulphides but comparison of Figure 5.6 with the other crystalline 

spectra recorded in this study suggests that these better-known forms are 

not present, since many of their strong lines are absent from the spectrum. 

As the vibrational spectra of the less well-known arsenic sulphides have 

not been measured one cannot determine whether they are contributing to 

the spectrum in Figure 5.6, but since the vibrational spectrum of 6C-As 4S3  

is very similar to that of ,,&_A54S3 (1Y)  the former material is possibly 

responsible for some of the spectral features, e.g. the strong band at 

271 cm-1 . However, evan if the specimen studied is a mixture of these 

less well-known crystals its spectrum is still of use in identifying 

crystalline features in the glass spectra. Nevertheless, it will be 

assumed here that the material is predominantly c-As 4S5 . 

Like the other As-S crystal spectra, the principal bands in the 

c-As4S 5  spectrum fall into three regions: a low-frequency region below 

60 cm 1 , an intermediate region centred around 200 cm -1  and a high-frequency 

region centred around 350 cm. 	The three belts of frequencies can be 

attributed to external vibrations, predominantly bond-bending modes, and 

As--S bond-stretching modes respectively 
	

The 233' cm 1  feature may arise - 

from stretching of the As-As bond. 



Figure 5.6 

The Raman spectrum of c-AsS5. 
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5.2.5 	Other crystalline compounds 

The As 3S examined yielded a very weak spectrum which was a 

combination of the- spectra of 	and 11&-AsS4 . 	It is unlikely that 

this compound exists and the material is probably mainly a mixture of 

arsenic and c-As4S4 . 

The vibrational spectra of the other crystalline compounds and 

polymorphs in the As-S system have not, as far as is known to the present 

author, been reported. 

5.3 	Spectra of the elements 

5.3.1 	Orthorhombic sulphur 

The crystalline form of sulphur thermodynamically stable at room 

temperature and pressure is orthorhombic sulphur ( cX-S 8 ), a molecular 

crystal composed of S rings. Its vibrational spectrum has been exten- 

sively 
	- 22) 	(1,2,23 - 25) 

sively studied in i.r. 	and Raman 	 experiments and 

the effect of temperature (2,26,27) and pressure 
(13)  on the spectrum have 

been investigated. 	The external vibrations have been investigated by 

Arthur and Mackenzie 
(28). 	The spectrum obtained in the present study 

from a powdered sample is shown in Figure 5.7 and is in agreement with 

the published data. As 6k- 8  is a strong scatterer at red wavelengths 

intense spectra were easily obtained. 

The isolated S molecule, which is a puckered octagon of D 4 symmetry, 

has eleven fundamental vibrations distributed as follows: 2A 1  t 3D2  + 2E 3  

(Raman active), B2  + 2E1  (i.r. active) and B1  (inactive). 	The presence 

of four S molecules in the crystal unit cell leads to splitting of the 

fundamentals and a group theoretical analysis shows that the Raman spectrum 

of the crystal should contain 48 bands, twelve of which arise from external 

modes ( 27) 	However, since the van der Waals intermolecular forces in 

are weak compared with the covalent intramolecular forces, not all 



Figure 5.7 

The Raman spectrum of orthorhombic sulphur. 

Figure 5.8 

The normal modes and frequencies of the S8  ring (after Reference 29). 
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48 bands may be observable in the Raman spectrum. Symmetry assignments 

for the observed frequencies are proposed in several of the studies 

(23 - 25,27,28) 
referred to 

Although the spectrum presented in Figure 5.7 is in general agree-

ment with the published data, a number of the splittings have not been 

resolved. 	To observe the splittings fully one must use good single 

crystals or make measurements at Low temperatures. However, their 

observation is not essential in the present study. 

Using the normal coordinate analysis of the isolated S molecule 

carried out by Scott et al. ( 29) ,  Anderson and Loh 
(27)  have related the 

crystal frequencies to the specific vibrations of the S 8 ring. This 

is shown in Figure 5.8, where the frequencies obtained on 

shown beside the corresponding normal modes of the S molecule. 	The - 

bands below 80 cm
-1  arise from external vibrations. 	 - 

5.3.2 	Amorphous arsenic 

The Raman spectrum of bulk a-As obtained in the present study is 

shown in Figure 5.9 and is in good agreement with the results of 

(30,31) 
Lannin 	. 	The i.r. spectrum of the bulk material has been recorded 

(32) 	 . 	(33,34) 	 - 
by Lucovsky and Knights - 	, and the first- 	and second-order (34)  

Raman spectra of rhombohedral arsenic have also been reported. Renucci 

et al. 
(33) have also studied resonance Raman scattering in the rhombo- 

hedral crystal. 

The spectrum of Figure 5.9 consists of a broad, asymmetric band '-

centred 	
- centred at "225 cm together with two much weaker bands at "145 and 

280 cm 1 . 	The main band peaks at 200 cm '  and has a shoulder at 

'-'237 cm -1 . These frequencies are in agreement with those obtained in 

the other vibrational studies of a-As30 - 32), though the two sharp, 

weak features at —115 and 165 cm-1  in the i.r. spectrum are not observed 

in the spectrum of Figure 5.9, possibly due to its poor signal/noise ratio. 



Figure 5.9 

The Raman spectrum of amorphous arsenic. 
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The Raman spectrum of rhombohedral arsenic has two bands in the 150 - 

1  region, one at 195 cm and the other at 257 cm 	
(33,34)• 

300 cm  

The depolarisation ratios (corrected for the background) measured 

r the 237, 200 and 145 cm' bands were 0.46, 0.28 and 0.54 respectively. 

These values are in agreement with the polarisation measurements made by 

Lannin 3  and indicate that the 200 cm -1  band is polarised while the 

237 and 145 cm-1  bands are predominantly depolarised. 

The vibrational spectra of a-As are expected to be partly 'molecular' 

and partly density-of-states-like 3 . 	Comparison of the i.r. and Raman 

spectra suggests that they are similar rather than complementary, which 

is consistent with a density-of-states description. 	Also, the reduced 

Raman spectrum of a-As is similar to the density of states determined for 

(31) 
this material by inelastic neutron scattering 	. 	In contrast, the 

large rise in the depolarisation ratio between 200 and 237 cm 1  is typical 

of 'molecular' spectra, for a perfectly 'non-molecular' amorphous solid 

is expected to have a depolarisation spectrum of constant amplitude. 

Hence the expectation of dual behaviour is borne out. 

As this is an elemental material a totally molecular approach is pre-

cluded since the equivalence of all chemical bonds in such materials 

implies that the intermolecular coupling would be as strong as the intra-

molecular forces. However, Lucovsky and Knights 32  have shown that the 

general form of the vibrational spectrum of a-As can be derived by con-

sidering a small structural unit, viz an As  pyramid. 	The two crystalline 

forms of arsenic, orthorhombic and rhombohedral As, are made up from layers 

composed of As  pyramids and these pyramids have been taken as the basic 

(36)  
structural units of a-As 	. 	Lucovsky and Knights calculate the vib- 

rational frequencies of the As  pyramid and show that these account for 

the number of gross features in the a-As spectra; they do not attempt to 

explain the finer structure in the spectra. 
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5.4 	The stoichioinetric glass: As 40S60  

5.4.1 	The polarisation-unanalysed spectrum 

Room-temperature, polarisation-unanalysed Raman spectra represent-

ative of the results obtained in this study for vitreous As 2S 3  are dis-

played in Figures 5.10 and 5.11. 	An anti-Stokes spectrum is included in 

Figure 5.11 for comparison with the Stokes data but for all other com-

positions examined in the present investigation only the Stokes spectrum 

has been recorded, since no further information of interest can be obtained 

from the anti-Stokes data. The spectra in Figure 5.11 have been normal-

ised to the height of the 29 cm- 
1 
 band. 

The Raman —4,8,37 - 46) and i.r.(1l46 - 51) spectra of this 

extensively studied glass have been recorded by several workers. 	The 

spectra of Figures 5.10 and 5.11 are in good agreement with the published 

Raman spectra, with the exception of some features of Ward's results. 

Pronounced features at 140, 189, 230 and 490 cm -1 in Ward's 
(1,2)

spectrum 

of a-As 2S 3  have been attributed to plasma lines by Kobliska and Solin', 

who maintain that these features are absent froth their spectra. However, 

since Kobliska and Solin's investigation, the spectrum has been re-recorded 

under various experimental conditions by a number of
(8,39,44)  who 

confirm the presence of structure at these frequencies. 	These features 

were also observed in the a-As 2S 3  spectra obtained in the present study 

which are free of plasma lines (see Section 4.3.3). 	The structure is 

apparent in both Stokes and anti-Stokes spectra, as Figure - 5.11 shows, and 

is present in spectra excited by different light sources, viz the He-Ne 

and Kr-ion lasers. 	In fact, the structure is evident in many of Kobliska 

38)4, 
and Solin s spectra (3, 
	

also. 

The difference bets.Ieen Ward's spectra and those of other workers is 

one of degree, as this structure is far more pronounced in his results 

than elsewhere. 	Since features grow rapidly at 135, 146, 187 and 233 cm-l-  



Figure 5. 10 

The polarisation-unanalysed Stokes Raman spectrum of vitreous AS2Sa• 

- 	 Figure 5.11 

The Stokes and anti-Stokes Raman spectra of vitreous As253. 
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as the As content of the glass is increased (see Section 5.6..t) it is 

probable that this prominent structure in his spectra arises from a 

slightly As-rich specimen. 

4) Kobliska and Solin (3, have studied the temperature dependence of 

the Raman spectrum of a-As 25 3  in the range 0 - 500 cm' and have shown 

it to be that characteristic of first-order Raman scattering. Most of 

the features-observed in the present study have been observed by other 

workers and Table 5.1 (after 122) compares the published frequencies 

with those obtained here. The weak 490 cm -1  band is shown at greater 

magnification in Figure 5.36 (after p.147). 

5.4.2 	Polarisation measurements 

Kobliska and Solin 	have also pointed out the importance of 

polarisation measurements in Raman scattering investigations of amor-

phous solid structure and have defined a new type of spectrum, called 

the 'depolarisation spectrum', which they measure for a-As 2 S 3 . 	The 

depolarisation ratio, /9(w), of a Raman band is defined as the ratio of 

the intensity of scattered light polarised in the scattering plane to 

that polarised perpendicular to the plane. Whereas the Raman spectrum 

of a crystalline material consists of a set of discrete lines with a 

corresponding set of discrete depolarisation ratios, the Raman spectrum 

of an amorphous solid is continuous and so the associated depolarisation 

ratio is a continuous function of frequency shift. 	It is this con- 

tinuous function that is termed by Kobliska and Solin the 'depolarisation 

spectrum' of the material. 	This spectrum provides a test for the appli- 

cability of structural models and determines the extent to which the 

reduced spectrum of the glass can be regarded as a measure of the phonon 

density of states. 	The more 'molecular' an amorphous solid is, the 

more irregular is its depolarisation spectrum. 

The polarisation data obtained in this study for a-As 2 5 3  is shown in 
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Figure 5.12. 	In the abbreviations such as VV and Vii used in various 

places throughout this account the first letter indexes the polarisation 

of the incident beam with respect to the scattering plane and the second 

indexes that of the scattered beam with respect to the scattering plane; 

H and V correspond to radiation which is polarised in and perpendicular 

to the scattering plane respectively. 	Figure 5.13 compares the unana- 

lysed spectrum with the VV and VH spectra, Figure 5.14 shows the depolar-

isation spectrum and Figure 5.15 compares it with the unanalysed and 

polarised spectra. As a check on the polarisation data, spectrum A in 

Figure 5.13 has been generated by adding the VV and VH spectra, whose 

intensities are as originally measured, and is compared with the unana-

lysed spectrum, B, which was run consecutively with the polarised spectra. 

The two spectra are virtually indistinguishable. 

The depolarisation spectrum of Figure 5.15 agrees with the published 

data (3,40 - 42) both in terms of absolute value for /(w) and shape, 

although some of the structure is absent from Kobliska and so1in's 3  

original spectrum because of the large channel width between their data 

points. 	Finkman et al. 	 also report a number of these new features 

in the depolarisation spectrum and Kobliska and sonn 3  have shown that 

the depolarisation spectrum is temperature independent. 

Ii 

In addition to being of use in the interpretation of the Raman 

results, the polarisation data yield a more accurate value for certain 

frequencies in the vibrational spectrum and emphasise the presence of 

others. For example, the shoulder on the low-frequency side of the 

-1 	 i 338 cm band in the unanalysed spectrum s transformed into a well- 

defined peak at 315 cm-1  in the Vii spectrum and the previously unreported 

knee on the high-frequency side appears as a well-defined dip at 400 cm -1  

in the depolarisation spectrum. 	The depolarisation data also reveals 

structure in the vibrational spectrum at 106 and 160 cm1 



Figure 5.12 

The VV- and VU-polarised spectra of a-As 2S 3 . As the VU spectrum is 

considerably weaker than the VV spectrum (see Figure 5.13) they have 

been normalised by equalising the intensities of the 315 and 339 cm -1 

bands of the VU and VV spectra respectively. 	11,500 counts have been 

subtracted from the "20 - 60 cm '  region of the VU spectrum. 

Figure 5.13 

A comparison of the VV, VU and polarisation-unanalysed spectra. The 

spectra have not been normalised in any way. 	Spectrum A is the sum of 

the two polarised spectra; spectrum B was recorded consecutively with 

the polarised data. 

Figure 5.14 

The depolarisation spectrum of a-As2S3 .. 

Figure 5.15 

The VV, VU, deolarisation(D)andpo1arisation-unana1ysed (PU) spectra 

of a-As2S3. 
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5.4.3 	Deconvolution of the main band 

In the molecular model the continuous nature of the a-As 2S3  Raman 

spectrum arises from the distribution in •both pyramid apex angles and 

force constants. 	If these distributions are Gaussian then it should 

be possible to construct the Raman spectrum by summing the amplitudes 

of a set of overlapping Gaussian lines, each line being centred on a 

vibrational frequency. This procedure was carried out by Ward 
(2) 
 and 

is also described in Section 5.4.4.3 (see Figure 5.24 after p126) but 

in both cases the vibrational frequencies used were those of orpiment. 

In this section it is seen whether the main band of the a-As2S3  spectrum 

can be generated by a set of Gaussian lines centred on the observed 

frequencies for a-As 2S 3 . 	The shape of the main i.r. absorption band of 

a-As Se  has been shown to be Gaussian 
(50),  though there is some con- 

troversy over 	 and Lucovsky and Martin 
(62)  have pointed out 

that this would also arise naturally in their model as inhomogeneous 

line broadening due to molecular interactions. 

In the case of the main band the results of this study show that at 

least three vibrational frequencies occur in the region 250 - 420 cm 1 , 

namely those at 315, 339 and 395 cm-1
. 
	Inspection of Figure 5.16 shows 

that the main band (dotted curve) is highly asymmetric, having a shoulder 

on the low-frequency side of the peak and an almost linear fall-off on 

the high-frequency side ending in a knee at '-"395 cm-1
. 
	Comparison of 

the two sides of the main band suggests that at least one other frequency 

is present between 339 and 395 cm'. 	It it is assumed that these two or 

more bands at frequencies >339  cm' make a negligible contribution to 

the intensity occurring on the low-frequency side of the peak (section 

AB in Figure 5.16) then it is possible to fit to section AB two uniquely 

determined Gaussian lines centred at 315 and 339 cm-1
. 
	Provided that 

the disorder-induced broadening gives rise to the same standard deviation, 

C , for each Gaussian, only three points in section AB are needed to 
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determine the Gaussians. 

The dotted curve in Figure 5.16 is the measured 250-450cm '  

region of the a-As 2 S 3  spectrum after the weak background has been sub-

tracted. The full curve was fitted to section AB of the observed 

spectrum using the method outlined above and is the sum of two Gaussians 

centred at 312 and 340 cm '  and with Cr z  13 cm 1 . 	The fit on the low 

frequency side is fairly exact but clearly these bands cannot account 

for the high-frequency side. 	Even ignoring the inflections at 315 and. 

395 cm-1  the main band is highly asymmetric. 	Gaüssians with standard 

deviations greater than 13 cm-1  could not be made to fit the low-frequency 

side of the main band. 	Figure 5.17 compares the measured a-As 2S 3  VU 

spectrum, in which the 315 cm
-1  peak is prominent, with the 312 cm

-1  

Gaussian band used in generating the fitted curve of Figure 5.16. 	It 

is clear that this Gaussian is of approximately the correct width. The 

standard deviation of 13 cm -1  is comparable with the +15 cm- 
1  spread in 

'' 
the 339 cm -1 frequency calculated by Kobliska and Solint3 ' and arises 

mainly from a ±9  spread in the stretching force constant - the dis-

tribution of S-As--S angles in a-As 2S 3  has been shown by Taylor and 

Rubinstein 
(66)  to have an upper limit of ±2°  which leads to an approx-

imately i-l% spread in the vibrational frequencies. 

Figure 5.18 shows the difference curve (dotted line) Obtained by 

subtracting the fitted curve of Figure 5.16 from the measured spectrum. 

The difference curve has a peak at 367 cm -1 and exhibits a knee at 

395 cm 1 . 	The breadth and asymmetry of this curve show that it cannot 

arise from a single Gaussian band of standard deviation equal to 13 cm -1 

It was found, however, that two such bands could account for the curve. 

The full curve shown in the figure was fitted to the difference curve 

using the same procedure that was used above; both Gaussians had a stan-

dard deviation of 13 cm -1  and were centred near the inferred frequencies. 

The overall fit is reasonable but agreement at the base is poor and the 



Figure 5.16 

The main band (dotted curve) of the a-As 2 S 3  spectrum after subtraction 

of the background. The full curve has been fitted to section A8 of the 

main band and is the sum of two Gaussians. 

Figure 5.17 

The main band of the a-As 23 3  VH spectrum (dotted curve) and a Gaussian 

of standard deviation equal to 13 centred at 312 cm -1  (full curve). 

The Gaussian has been scaled so that its maximum intensity equals the 

intensity of the VH spectrum at 312 cm
-1  

Figure 5.18 

The difference curve (dotted line) obtained by subtracting the fitted 

curve of Figure 5.16 from the main band of the polarisation-unanalysed 

spectrum. The full line has been fitted to the difference curve and 

is the sum of two Gaussians. - 

Figure 5.19 

The four Gaussians used in the analysis and the curve generated by summing 

them (A). Curve B is the observed main band of the polarisation-unanalysed 

spectrum after subtraction of the background. 
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knee at 395 cm-1  is not reproduced exactly in the fitted curve. 	This 

is possibly because the assumption that each Gaussian in the main band 

has the same standard deviation is only approximately correct; two 

slightly narrower Gaussians would fit the data better. Both of these 

bands are thought to arise from vibrations of the As-­S—As inter-pyramidal 

link (see Section 5•4.14.4)  whereas the 315 and 338 cm-1  bands are attri-

butable to vibrations of the pyramid itself, so the slight difference in 

line width for the two pairs of bands might be due to slight differences 

in the bond-angle and force-constant distributions for the two 'molecules'. 

The hidden 367 cm- 
1 
 line in the main band can be attributed to the 

vibration of the As 2S 'molecule'. 	Although there is no sign of any 

feature at 367 cm -1  in the Raman spectrum, Lucovsky' 9  reports an inflec-

tion at 375 cm -1  in the i.r. spectrum. 

Figure 5.19 shows the four Gaussians derived in the analysis and the 

curve generated by adding them together (curve A). 	Displaced above is 

the observed main band (curve B). 	The four Gaussians clearly produce a 

reasonable facsimilie of the observed main band. 

5.4.4 	Structural interpretations of the vibrational spectrum 

5.4.4.1 The density-of-states description 

In Section 3.4.1 it was shown that Shuker and Gammon's theory (52,53) 

leads to the following approximation for the one-phonon density of states 

of an amorphous solid: - -; 

I 
red  (WT) S 

wI(w,T) 	
(5.1) 

P' 	W[. tn(w,T)1 
red 	

5 

I 	is referred to as the approximate density of states or the reduced 

Raman spectrum and if the coupling coefficients it contains are band indep-

endent then it is simply proportional to the actual density of states, G(w). 

Figure 5.20 shows the reduced Raman spectrum of a-As 25 3  obtained by multip-

lying the observed Stokes Raman intensity, I p (wT) at each frequency 



Figure 5.20 

The reduced Raman spectrum of a-As 2S 3 . 

Figure 5.21 

The reduced (full line) and unreduced (dotted line) spectra of a-As 2S3 .. 

Figure 5.22 

The reduced spectra of a- and c-As 2S 3 . The crystal spectrum was obtained 

by applying Equation 5.1 to the Raman spectrum of a powdered sample of 

orpiment 

Figure 5.23 

The reduced S/H (dotted line) and VV (full .line) spectra of a-As 2S. 	The 
VH spectrum has been scaled to make its peak intensity at 316 cm equal 

to that of the 342 crn+ band of the VV spectrum. 
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OTHER STUDIES 	 I THIS STUDY 

RAMAN I.R. UNREDUCED REDUCED 

Ref. 1/2 Ref. 	3/4 Ref. 	8 Ref. 	39 Ref. 44 Ref. 47 Ref. 48 Ref. 49 VV VT-i PU VV VH PU IS ALL PS ASSIGNMENT 

30 27 29 28 29 29 dp boson peak 

106 106 p  V2 	
As2S 

140 164 163 130-175 160 130-175 160 160 160 dp ' 	AsS3  

189 180 185 170-190 185 185 185 187 187 187 185 p V2 	As S3 

208 208 210 210 210 208 p V3 	
As2S2 

230 232 230 235 231 231 231 232 232 232 231 231 p As—As bond 

310/325 310 310 310 309 315 315 315 316 316 316 315 315 dp 3 	As S3 

340 340/344 340 344 340 340 339 339 338 342 339 341 338 339 p V1 	As S3 

375 36V, ? '1.13 	As2S 

400 395 395 396 396 400 395 p V1 	As25 

490 490 485 490 490 490 490 491 491 491 500 490 p V1 	As2S2 

PU - polarisation unanalysed; PS - polarisation state; p - polarised; dp - depolarised; DS - depolarisation spectrum; 
VV and VT-i refer to the polarised spectra. 
All frequencies in cnf\ 

This value is deduced from the deconvolution analysis. 

Notes: 1. Many of the other vibrational studies show structure near some of the frequencies observed in the present study 
but do not quote frequency values. 

2. In the present study the uncertainty in the frequencies is not the same for each value shown in the table. 

Table 5.1 The observed vibrational frequencies of a-As2S3. 
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shift w by the factor w/w Li t n(w,T)] . 	With the exception of the low- 

frequency band, all the features present in the Raman spectrum are present 

in the reduced spectrum, though at slightly increased frequencies. 	The 

two specta are compared in Figure 5.21. 

Kobliska and Solin have pointed out that the coupling coefficients 

of Equation 3.12 are not band independent for a-As 2 S 3  because in 

the VV and VH spectra (Figure 5.12) the ratio of the intensities of the 

low- and high-frequency bands is quite different. Thus the reduced 

spectrum is not proportional to G(w). 	Moreover, it is not a good approx- 

imation to G(w) because the density of states derived from the Raman 

spectrum should be identical with that deduced from the i.r. spectrum but 

for a-As 2S 3  the two reduced spectra are
(3,35,49) 	 Although 

the Shuker-Gammon theory was developed to account for the Raman spectra of 

molecular glasses such as a-As 2S 3  it is least successful for these materials. 

It is nevertheless useful to reduce the data using Equation 5.1 since 

this corrects the observed Raman spectrum for its dependence on temperature 

and exciting frequency. The low-frequency peak at 29 cm
-1  is not due to 

a vibrational mode but to the thermal population of the lower states and 

is highly temperature d ependent (5253) . 	The reduced spectrum resembles 

the low-temperature Raman spectrum of the glass ', in which the 29 cm 

peak is absent. 	It has been shown 	that the reduced spectrum of a-As 2S 3  

is temperature independent over the range 20 - 4500 K. which is consistent 

with its being interpreted as a phonon density of states, since G(w) is 

expected to change very little with temperature over the above range. 	It 

was
(4,39)  that the half-width of the 338 cm band in the reduced 

spectrum was temperature independent and a constant half-width is a 

characteristic of G(w). 	The inclusion of the w term in Equation 5.1 

accounts for the well-known fourth-power-law dependence of scattered inten- 

sity for an induced-dipole scatterer. 	For 6328 X excitation the w term for 

a5 cm-1  Stokes shift is 9% larger than that for a 380 cm -1  Stokes 
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Although the evidence is mainly not compatible with interpreting 

the reduced spectrum as a good approximation to G(w) the reduced spectrum 

is, however, very similar to the phonon density of states derived from 

the crystal spectrum. 	Figure 5.22 compares the reduced spectrum obtained 

for a powdered sample of orpiment with that for the glass; the two 

spectra are normalised to the peak intensity of the 353 cm orpiment 

band. 	The glass spectrum is approximately the envelope of the crystal 

lines, which implies that the phonon dispersion curves of c-As 2S3  are 

relatively flat. 	If the force-constant and bond-angle distributions 

in a-As 2 3 3  are Gaussian then the spectrum obtained by replacing each peak 

in the reduced spectrum of the crystal with a Gaussian-broadened line and 

summing the overlapping amplitudes should be similar to G(w). Figure 5.24 

compares a spectrum generated by the above process with the reduced spectrum 

of the glass; the two spectra are very similar in shape and resemble the 

density of states calculated by Bermudez (54) 

The reduced VH and VV spectra exhibit the same properties as the 

reduced unanalysed spectrum; they are shown in Figure 5.23. 

As the reduction process tends to obscure spectral features below 

"150 cm 1 , the corresponding unreduced spectra are also presented in this 

study. 	In addition, since the process introduces a small blue shift in 

the spectrum, frequencies quoted will refer to the unreduced spectrum 

unless otherwise stated. 

5.4.4.2 The random network model 

It is believed by many workers 
(55-58) that the layer structure of 

crystalline As 2S 3  and As 2Se 3  is retained to some extent in the corresponding. 

glasses, so a reasonable structural model for vitreous As 2 3 3  and As 2Se 3  

might be based on a single disordered layer. 	With the object of estimating 

force constants and assigning the observed vibrational frequencies for the 

two glasses, Bermudez 	has considered such a model, consisting of a 
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computer-generated 390-atom c.r.n. Although the layers in c-As 2S3  and 

c-As 2 Se 3  are really three-dimensional, the network studied by Bermudez 

is strictly two-dimensional. 

The force constants obtained from the model are reasonable and the 

calculated spectra are generally in agreement with the experimental data, 

though in the case of a-As 2 S 3  Bermudez ignores the structure at 140, 189, 

230 and 490 cm -1 on the strength of Kobliska and Solin's attribution of 

these features to plasma lines. The model breaks down, however, when 

the polarisation properties of the Raman spectrum are considered, for it 

predicts a rise in the depolarisation spectrum of a-As 2 S 3  between 310 and 

-1 	 (3,40 —42) 
340 cm whereas the measured spectrum decreases over this range 

(see Figure 5.14). 	Thus the planar-random-network model is of limited 

use in explaining the vibrational properties of these glasses. 

5.4.4.3 The layer model 

Taylor et alJ 5  have proposed a model for the vibrational spectra 

of a-As 2S 3  and a-As2Se3  which is based on the layer structure of the 

corresponding crystals. They generate approximate i.r. absorption spectra 

for these materials by broadening an average of the three principal-axis 

contributions to the corresponding crystalline absorption spectra using 

a single Gaussian convolution function. The resulting spectra have the 

same general features as the observed absorption spectra and these authors 

take this as evidence that a layer model is appropriate. 

Zallen et alJ' have shown that the Raman spectra of c-As 2S 3  and 

c-As2Se 3  are related via an exact scaling relation: the internal bands 

for these crystals scale by a factor of 0.71 while the external bands 

(which correspond to interlayer vibrations in layer crystals - see 

Section 5.2.1) scale by a factor of 0.81. 	It will be shown in Section 6.4.5 

that the Raman spectra of the glasses are also related by the same scale 

factors. The two lowest-frequency features in the spectra - the intense 
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peak <30 cm-1  in the Raman spectra and the first dip in the depolar-

isation spectra - scale by a factor of "-'0.81 which suggests that the 

layers are possibly retained in the glasses. As the layer modes in 

ä-As 2 S 3  and c-As 2 Se 3  lie below 100 and 70 cm' respectively, the presence 

of the dips at 106 and 86 cm -1  in the corresponding glass spectra 

indicates that the compressional rigid-layer mode in the glasses may be 

more heavily intermixed with the low-lying bond-bending modes than in 

the crystal case, possibly as a result of crossr-linking of the layers. 

This intermixing means that associating these dips in /(w) with the 

layers does not affect the assignment of these frequencies to the bond-

bending mode of the As2X (X = S. Se) link in the molecular model (see 

Sections 5.4.5 and 6.4.6). 

Such a model is limited in that it is only applicable to amorphous 

materials which have a corresponding crystal with a layer structure. 

For example, it is inapplicable to the glass of composition As 39561 , 

which may contain layers but has no corresponding crystal, and also to 

a-Se, which has a corresponding crystal but one which is not layered. 

Although the general features of the observed absorption spectrum of 

a-As2S 3  are reproduced in the generated spectrum, quantitative agree-

ment is poor. The Raman equivalent of the approximate spectrum of 

Taylor et al. is shown in Figure 5.24. 	This spectrum (A) was obtained 

by broadening the reduced polarisation-unanalysed Raman spectrum of 

polycrystalline orpiment using a Gaussian convolution function. The 

spectrum was computer-generated by Dr. M.J.Sik and is shown above the 

reduced Raman spectrum of vitreous As 2 53  (spectrum B). 	As in the i.r. 

case, most of the features of the measured Raman spectrum are present in 

the model spectrum; the broad low-frequency peak, the shoulder on the 

main band and the high-frequency peak are all reproduced in the generated 

spectrum. 	In the model spectrum, however, the peak occurs at "355 cm -1  

and the shoulder on the main band is far more pronounced and is shifted 



Figure 5.24 

Reduced Raman spectra of As 2 S 3 : spectrum A has been generated by 

broadening the reduced Raman spectrum of polycrystalline orpiment 

using a Gaussian convolution function, while spectrum B is the measured 

reduced spectrum of a-As2S 3 . 	(Courtesy of Dr. M.J.Sik) 

/ 
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to "300 cm- 
1.  The shoulder in the model spectrum arises from the 

strong orpiment bands at 292 cm -1  (which lies outside the main band of 

a-As2 S 3  - see Figure 5.22) and 310 cm -1
. 
	In addition, the broadening 

process does not give rise to a knee at "'395 cm 1  on the main Raman 

band, though the corresponding feature in the i.r. spectrum is reproduced 

by the model. However, the small feature at 231 cm' in both observed 

spectra does not appear in either of the model spectra. 	It will be seen 

in Section 5.4.5 that this feature can be attributed to As—As bonds in 

the As-S network. 	Such bonds are believed to be a genuine feature of 

the a-As2S3  structure and are not due to deviations in the stoichiometry 

cf the samples used. 	c-As2S3  contains no As—As bonds and as there is 

no line near 231 cm -1  in its spectra the broadening proóess fails to 

reproduce this feature. This illustrates one of the deficiencies of 

such a quasi-crystalline model, that is its inability to account for 

compositional disorder in the amorphous counterpart of the crystal. 

Although the region, beyond 450 cm -1  is not shown in Figure 5.24 or in 

the data of Taylor at al., the same considerations apply to the 490 cm-1  

peak present in the measured i.r. and Raman spectra of the glass. 	This 

peak is attributable to S—S bonds in the As-S network. 	Such bonds are 

not part of the intrinsic c-As 2 S 3  structure but are thought to be a 

genuine feature of the a-As 25 3  structure (see Section 5.4.5). 	The 

orpiment spectra have no lines near 490 cm -1  and so the model cannot 

account for this band in the glass. 

The depolarisation spectrum of a-As 2S 3  obtained by Kobliska and 

Solin 	has a constant amplitude of 4 between 100 and 300 cm-1 . The 

basic structural unit of c- and a-As 2 S 3  is an AsS 3  pyramid and Taylor 

at al. state that this feature of the depolarisation spectrum would be 

expected if the inter- and intra-pyramidal coupling could not be separ-

ated, whereas a depolarisation ratio of '-j should be observed if the 

molecular model were valid. 	However, the failure of the depolarisation 
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spectrum to achieve the theoretical maximum amplitude of 24  can be 

accounted for in the molecular model by intermolecular coupling 

Also, since Kobliska and Solin's investigation the a-As 2 S 3  depolarisation 

spectrum has been recorded by other workers 	- 42), including the 

present author (see Figure 5.14), and has been shown to exhibit con-

siderable structure below 300 cm 1 ; this is more readily accounted for 

by the molecular model. 

Taylor et alJ 59  also suggest that the layers in As 2X 3  type glasses 

disintegrate at a •characteristic temperature, T, which is approximately 

the temperature at which 103.c)?  10 P where 7 is the viscosity. 	Solin 

and Papatheodorou 0  show that in the case of a-As 2031  which is believed 

to be structurally similar to a-As 2S 3 , neither the Raman nor the depolar-

isation spectrum changes significantly in shape with temperature, and the 

spectra of the liquid at 9200  K are essentially the same as those of the 

glass at 3000  K. 	Yet T for As203  lies in the range 525<T 5<725 °K (60), 

These authors point out that similar behaviour has been reported for amor-

phous and liquid As 2 S 3  - all the prominent Raman bands of a-As 2S 3  persist 

up to 1040 K. 	T for a-As 2S 3  is in the range 600<T 5<700 °K (61), 

There seems to be no evidence, therefore, of layer-breakdown in disordered 

As 2 S 3 . 

The vibrational evidence for the existence of layer regions in these 

glasses is thus not conclusive, and even if they are present the model is 

of limited use. 

5,4.4,4 The molecular model 

The vibrational spectra of a-As 2 S 3  and a-As 2Se 3  have been analysed in 

term 	
(52)

s of a molecular model by Lucovsky and Martin 	, who advocate this 

approach for the chalcogenide glasses in general, and Austin and Garbett, 

who use it in their discussion of the i.r. spectra of c- and a-As 2Se 3 . 	The 

sharpness of the spectral features and the complementary nature of the i.r. 
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and Raman spectra for a-As 2S 3  suggest that the selection rules governing 

i.r. and Raman activity still operate in the glass and the disorder-

induced breakdown of these rules is incomplete. This behaviour would 

arise if the glass were composed of weakly coupled identical structural 

units. 	Lucovsky and Martin have chosen as the molecular unit for 

/ a-As2S 3  an AsS 3  pyramid, which is the basic structural unit of the crystal, 

and using this have obtained a vibrational spectrum in good agreement with 

experiment. 	It is found that the dominant bands in the i.r. and Raman 

spectra at 310 and 340 cm-1  respectively do not arise from the same 

vibration but correspond to different vibrational modes of the As 3S pyramid. 

The Lucovsky-Martin model is based on the local atomic arrangement 

shown in Figure 5.25. The glass is regarded as a network of randomly 

positioned As$ pyramids joined to one another via shared S atoms; three 

of these pyramids are shown in Figure 5.25. 	When calculating the normal. 

modes of a cluster of AsS 3  pyramids, which is a closer approximation to 

the real structure than a single pyramid, it is necessary to consider the 

interaction between the pyramids since they are coupled. 	This interaction 

is accounted for by considering the bent As-S--As chains which connect the 

pyramid molecules. Provided the coupling at the bridging S atoms is 

sufficiently weak the intramolecular (AsS 3 ) and intermolecular (As 2S) 

modes can be treated independently. 

For the symmetric pyramidal XY3  molecule, which belongs to the point 

group C 3 , there are two totally symmetric vibrations (species A 1 ) and two 

doubly degenerate vibrations (species 	 These are shown in 

Figure 5.26. 	The molecule remains a symmetric pyramid throughout the 

former oscillations but it does not in the latter. General valence force 

field formulae for the four vibrational frequencies, all of which are both 

i.r. and Raman active, have been determined by Herzberg (64) and are given 

inAppendix I. 	Using force constants scaled from the existing molecule 

AsCl3 , which has a similar structure and mass ratio to the AsS 3  'molecule', 
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Figure 5.25 

A schematic representation of the molecular structure of a-As 2S/Se3 ; 

three pyramid 'molecules' are depicted. 	(After Reference 62.) 
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and geometrical parameters based on the two shallow, asymmetric pyramids 

of the orpiment structure, Lucovsky and Martin have obtained for the 

frequencies of the symmetric AsS 3  molecule the values 133, 162, 310 and 

344 cm-1  for the V4 , 	and 2) modes respectively. 	These are in 

reasonable agreement with the observed values. 

As the dominant i.r. and Raman modes for the XY3  molecule are the 

1)3  and 211  vibrations respectively, the model accounts for the com-

plementary nature of the two types of spectra. Also, since the 

mode should generate a polarised Raman band and dominate the VV spectrum 

while the 	mode should generate a depolarised line and dominate the 

VH spectrum (neglecting the low-frequency thermal peak), the model 

explains the polarised spectra and the dip in the depolarisation spectrum 

-1(3)  
between -'310 and 344 cm 	. 	The failure of the depolarisation spectrum 

to attain the theoretical maximum amplitude of for the antisymmetric 

vibrations is attributed to intermolecular coupling. The coupled modes 

have admixtures of symmetric and antisymmetric eigenvectors of the AsS 3  unit. 

For the non-linear, symmetric X 2 
 Y molecule, which belongs to the point 

group C 2 , there are two symmetric vibrations (species. A 1 
 ) and one anti-

symmetric vibration (species B 1 ). 	These are shown in Figure 5.27. 

General valence force field formulae for the three vibrational frequencies, 

all of which are both i.r. and Raman active, have been determined by 

Herzberg and are given in Appendix I. When applying these formulae to 

calculate the frequencies of the bent As-S---Aschain molecule, Lucovsky 

and Martin use the As-S bond-stretching forceconstant obtained for the 

AsS 3  molecule and, as the coupling at the bridging sulphur is assumed to 

be weak, they take the bond-bending force constant to be 1/100th- of this 

(as is the case in Si02 65 5. 	The As-,S-As angle is taken to be 1500 (3) 
The frequencies they obtain for the As 2S 'molecule' are 55, 218 and 438 cm' 

for the 2' l' and 2)3  modes respectively. 	No features have been 

observed at these frequencies in the vibrational spectra but a similar 



Figure 5.26 

The nob-planar symmetric XY 3  molecule and its normal modes of vibration. 

Figure 5.27 

The non-linear symmetric X 2 
 Y molecule and its normal modes of vibration. 
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calculation for the As 2Se 'molecule' of a-As 2Se 3  gives good agreement 

with experiment. 

In the molecular model the continuous nature of the Raman spectrum 

of a-As 2 S 3  arises from the spread in the values of the bond angles, 

lengths and force constants. Rubinstein and Taylor 	have set an 

upper limit of 12°  on the distribution in pyramidal apex angles in vitreous 

As2S 3 . 	Transferring this limit to the symmetric ASS  'molecule', Kobliska 

and sonn(3)  have shown that a 12°  variation in the S—As—S angle about a 

nominal value of 97.2 °  produces a 12 - 4 cm -1  spread in the individual 

frequencies of the ASS  'molecule' and so cannot account for the continuous 

spectrum. 	However, they find that a 	spread in the bond-stretching 

force constant produces a considerable broadening and conclude that the 

continuous nature arises from the cumulative effects of distributions in 

both apex angles and force constants. They argue that in view of the 

force constant distribution that would arise from the varying bond lengths 

in orpiment a 9% spread in force constants in the glass is quite feasible. 

	

The molecular nature of the glass spectra is consistent with the 	- 

well-established fact (55 - 58) that the local atomic arrangement in a-As 2S 3  

is similar to that in orpiment. 	Since crystalline nearest-neighbour 	- 

distances are mainly preserved in the glass, the principal bond-stretching 

frequencies of the group will alsobe retained, so the model also accounts 

for the similarity between the reduced spectra of crystalline and vitreous 

As 25 3  (see Figure 5.22). 	Since both crystal and glass are built up from 

similar pyramidal'molecules' it is not surprising that the main bands of 

orpiment fall near the frequencies determined from the molecular model. In 

principle, the molecular model could be used to calculate the vibrational 

spectrum of c-As 2S 3  by considering a larger structural unit consisting of 

A more recent study by Taylor and Rubinstein 
(66) sets an even smaller 

0  upper limit to the S—As--S bond-angle distribution in a-As 25 3 , viz ±1. 
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several pyraTmids arranged as they are in the crystal. 

In conclusion, the model gives better agreement with experiment than 

the planar-random-network model and is not as limited as the layer model 

since it can be extended to the non-stoichiometric glasses
(46) However, 

with the simple AsS 3  pyramid as the molecular unit the model cannot dis-

criminate between the proposed alternative structures for a-As 2S 3  since 

these are all composed of AsS 3  pyramids. There are also  a number of 

minor failings in the model as it stands at present and these are discussed 

in Section 5.4.5. 

5.4.4.5 The composite model 

Finkman et 	
(39)  have proposed a composite model for the structure 

of vitreous and liquid As 2S 3  incorporating features of both the molecular 

model and the layer model. They suggest that the disordered phases contain 

layer-like regions in which the AsS 3  pyramid units of the molecular model 

are each joined to three neighbours, as they are in the crystal, and regions 

where the pyramids are joined via double As-S--As bridges, i.e. regions 

containing this structural feature: -As( )As-. This model is more fully 

described in Section 5.7 where it is shown how Finkman et al. use it to 

account for the temperature dependence of the reduced Raman spectra of these 

materials. The doubly bridged pyramids are not present in the crystal 

layer and when the -As()As-- units link to one another they form chain-like 

structures 

Claudetite, one of the forms of c-As 20 3 , is a layer crystal and is in 

fact isomorphic with c-As 2S 3 . 	Solin and Papatheodorou ° ' 7  have studied 

the Raman spectrum of a-As 203 , which may be structurally similar to 

a-As2S 3 , and show that only the composite model satisfactorily accounts 

for all the spectral features. 	However, these authors point out that the 

molecular and layer models are more similar than dissimilar, and the 

differences between them are differences of degree rather than kind, for 
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the layers are made up from the pyramid 'molecules 	Both the layer 

and composite models can be regarded as special cases of the molecular 

model. 

5..5 	Discussion 

When Lucovsky and Martin proposed their model only one unequivocal 

vibrational feature, the peak at 340 cm 1 , had been found in the Raman 

spectrum of a-As2S 3  and their analysis was based on the vibrational fre-

quencies obtained from i.r. experiments. 	Since then, this and other 

Raman studies have authenticated the additional frequencies observed by 

Ward and have reported new features. 	It will be shown in this section 

that all the observed vibrational frequencies can be accounted for by the 

molecular model. 

In the model the frequencies of the ASS  pyramid are calculated from 

Equations A.1—A.4 (see Appendix I) using the average values of tand 1 
for c-As 2 S 3  and force constants scaled from those of the known molecule 

AsCl3 . 	The scaling relation for the force constants can be derived from 

either Equation A.2 or Equation A.4. 	In the case of Equation A.2 it is 

I 	II II 
seen that for two pyramidal molecules XI  and X Y 	 with the same

II  
geometry, the frequencies 1)1 	 '- and 	will scale with 	and 2 

 if 

the force constants scale, i.e. 

II 	I II 

	

ck (j 	1, 1', S, 6') 	n 

where n and c are the frequency and force constant scale factors 

respectively. The latter is given by 

II 

	

m(l t 3mh/m')2 	
-j 

	

yx 	2 
c- 	 111 n 

m (1 + 3m /m )2 

	

y 	y x 

If, as well as being isostructural, the two molecules have the same 

mass ratio m 
y x 
/m then Equation 5.2 reduces to 

II 
m 
_y 2 

	

C --y—n 	 (5.3) 
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and from Equation A.4 it will be seen that in this case we also have 

.911 	nl) (i r  3 4). 	For the AsS 3  'molecule' Lucovsky and Martin 

take 'l' the symmetric-stretch frequency, to be the frequency of the 

principal Raman band in a-As 2 S 3  and obtain n by comparing this measured 

frequency with the observed value of 	for As013 . Taking As013  and 

AsS3  as molecules I and II respectively, the actual values used are 

410 	
-1 (64) %I 	344 cm-1 

(2,4)  and nr 344/410 = 0.839. 

Inserting n and the masses in Equation 5.3 one obtains a value for c 

of 0.655, which can now be used in the relations k II = ck to generate 

a set of force constants k for the AsS 'molecule' from the known force 
• 	 : 	 3 	

11 
constants k of the AsCl molecule 

(64). 	The values obtained for 

	

3 	 1 

k, kJ and kV 
 are, in units of md/k, 1.33, 0.15, 0.125 and 0.013 

respectively and using these, Equations A.l - A.4 can be solved for the 

frequencies of the AsS 3  'molecule'. 	The resulting frequencies are given 

by L.ucovsky and Martin and are in fair agreement with the observed 

frequencies. 

In the present study the calculation for deriving the set of force 

constants k and that for determining the frequencies of the XY 3  molecule 

were set up in programs and carried out by computer. This made it 

possible not only to repeat Lucovsky and Martin's calculations but also to 

examine with ease the dependence of the k and 
))II  on the various par- 

ameters. The program for computing the frequencies V of the XY 3  molecule 

was checked with data from Herzberg 	on existing XY 3  molecules. 

Using the frequencies and force constants of the known molecule AsBr 3 68 , 

Luctovsky and Martin perform an identical calculation for the AsSe 3  pyramid 

and again obtain frequencies in good agreement with those observed in the 

corresponding glass. However, when the results of the model for both 

a-As 2 S 3  and a-As 2Se 3  are compared they are not entirely satisfactory in 

view of the work of Zallen et 	on the crystal. forms. 	Zallen and 

co-workers have shown that the Raman frequencies, R' 
 of c-As 2 S 3  and c-As2Se3 
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accurately obey the scaling relation i) (c-As Sc ) 	K ) (c-As S ) R 	2 3 	c R 	23 

where K  z 0.81± 0.05 for the rigid-layer modes (which occur below 

80 cm- 1 ) and K  z 0.71 0.01 for the intralayer modes. 	In the case 

of the molecular model the ratios, K:,  of corresponding selenide and 

sulphide frequencies lie in the range 0.59<K<0.71 and average to 

0.65. 	The difference between Kc  for the intralayer modes and the K: 

is not important in itself and could arise if the structure of the AsS 3  

pyramid differed from that of the AsSe 3  pyramid to a larger extent in 

the glasses than in the crystals. 	However, Zallen et al. show that the 

scaling relation for the intralayer frequencies implies that the intra- 

layer bonds in As 2Se 3  are about 10% softer than those in As 2S 3 . 	The 

values of the bond-stretching force constants for a-As 2 S 3  and a-As2Se 3  

derived from the Lucovsky-Martin model(42)  imply that the As—Se bonds 

are 20% softer than the As—S bonds. 	It is unlikely that such a 

difference in relative bond strengths should exist between the crystals 

and the glasses, and it would seem, therefore, that there is a failure in 

the model. However, the results and calculations of the present study 

suggest that this discrepancy is not due to a flaw in the model but to a 

mistake in fitting the observed frequencies to the model. 	In Section 

6.4.5, the scaling relation between the crystals and the glasses is dis-

cussed more fully and evidence is put forward which indicates that the 

most intense Raman peak'in each of the unanalysed glass spectra does not 

correspond to the same vibration and 2)1  for the AsSe 3  'molecule' is 246 cm 1  

rather than 227 cm 1 , the value used by Lucovsky and Martin. 	It will be 

shown in Section 6.4.6 that when this value for 1)1  is used the model 

yields a set of frequencies  in good agreement with experiment and a bond-

stretching force constant which is 10% softer than that for the As—S bond. 

A minor point concerning the bond-stretching force constants for 

As 2S 3  and As 2Se 3  is the difference between the values obtained from the 

(69) molecular model and those computed from Gordy 's rule 	- 	For the As—S 
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bond Gordy's rule yields a value of 1.98 md/, compared with 1.33 mdJ 

from the model calculation. This large discrepancy is not significant 

because in the case of XY3  molecules the rule is a good approximation 

only if the atomic-radius ratio r/ry>r1l.S,  i.e. if X is sufficiently 

larger than Y to ensure no interaction between non-bonded atoms. 

rA/rS Pc 1.14 and for this value a 33% deviation from the force constant 

derived from Gordy's rule is not unreasonable. 

In the case of a-As 2 S 3 , using the value of V1  determined in this 

.study (339 cm 1 ) and taking geometrical parameters from the most recent 

investigation of the crystal structure of orpiment(70) , the following 

values for the frequencies and force constants of the AsS 3  'molecule' 

were obtained: 

k. 	1.35, 0.14, 0.14, 0.016 md/X for j = 1 , 	, 	- 	respectively 

340, 159, 312, 130 cm -1 for i = 1, 2, 3, 4 respectively 

The calculation for the set of force constants k. took into account 

differences in 
16 
 and 2between the AsC1 3  and AsS 3  pyramids as well as 

differences in the mass ratios and used force constants for AsCI 3  obtained 

from the frequencies reported by Davis and Long. The values of 1.6 

used were 61° (72)  and 61.40  for the AsC13  and AsS 3  pyramids respectively, 

the sulphide angle being an average of the crystal vaiues(70). 	The 

calculated frequencies, 2'., are in agreement with the observed values 

(see Table 5.2). 	The two low frequencies are not in such close agree- 

ment as the two high frequencies due to the greater solid state inter- 

actions they experience 	( the polarisation data indicates that the 

calculated frequencies 130 and 159 cm can be taken to correspond to the 

160 and 185 cm -1  features in the observed spectrum). 

Inspection of Figure 5.15 reveals that the model not only yields the 

correct frequencies but also gives the correct symmetry properties, for 

the l 
 and 

 2 
 bands should be polarised and the V   and V4  bands should 

be depolarised. 
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As was mentioned earlier, the coupled modes are dealt with in terms 

of an As---S/Se—As bent chain 'molecule' and it is assumed that the coupling 

is sufficiently weak that the pyramid and chain modes can be treated 

independently. The three frequencies of the X 2 
 Y molecule are calculated 

in the model from Equations A.5 - A.7 (see Appendix I). 	The bond- 

stretching force constant, k 1 , is known from the pyramid calculation and 

Lucovsky and Martin assume that the ratio of k 1  to ks,  the bond-bending 

force constant, is 100 1 (k 1  and k 6  now refer to Equations A.5 - A.7). 

This high ratio accounts for the weak intermolecular coupling. The 

frequencies reported by Lucovsky and Martin for the chain 'molecules' 

As 2S and As2Se agree with experiment in the case of the selenide but in 

the case of the sulphide they have not been observed in the vibrational 

spectra. 

Again, the calculation for determining the frequencies, W1  

(I = 1, 2, 3), of the X 2 
 Y molecule was set up in a program and carried 

out by computer so that the V. could be generated easily for any com-

bination of the various parameters. The program was checked with data 

on X 2 
 Y molecules taken from Herzberg. 	Lucovsky and Martin's calculation 

was repeated but it was found that for both the As 2S and As2Se 'molecules' 

the values of V. reported by these authors could not be obtained without 

using values for c. that were considerably different from those derived 

from c-As 2 5 3  and c-As 2Se 3 , and values for k1  that differed from those 

derived from the pyramid 'molecules' • 	For the sulphide the reported 

frequencies could be obtained using the values 1.58, 0, 0.0158 md/R and 

75.2 °  ( 	104.80  —see below) for k1 , k12, k  and & respectively. 	From 

the structure of orpiment (X, which is half the As—S--As angle, is expected 

to be rJl390. 	In their discussion of the Lucovsky-Martin model, Kobliska 

and Solin 	state that the As—S—As angle in the model is 150°  but do not 

comment on this value. 	Coincidentally, taking 20L = 150 °  is almost 

equivalent in Equations A.5— A.7 to taking the full value of the As--S—As 
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angle as GL instead of as 20k,, i.e. if CC were 105°  then 20C would be 

the reflex angle 210
0  which is equivalent to the obtuse angle 150

0 
. 

Similarly in the case of the selenide the reported frequencies could be 

obtained exactly using the values 1.26, 0, 0.0126 md/R and 104 0  for 

k12 , k and % respectively. 	In c-As 2Se 3  the average As—Se--As angle 

is 	
o(73) 

'94  

If a non-zero value is taken for the interaction constant k12  in 

Equations A.5 - A.7, the simple valence force field is extended to a more 

general force field and a more accurate description of the vibrational 

frequencies should result. 	By examining the variation in the calculated 

frequencies as k12  is changed it should be possible to find the value for 

k12  which best improves the agreement between the observed and calciulated 

frequencies. 	In the present case, for both the selenide and the sulphide, 

an abnormal value for cc still had to be used in addition to k12  and even 

then the frequencies generated agreed only approximately with those reported 

by Lucovsky and Martin. 

Although the ratio of bond-stretching to bond-bending force constants 

is typically 10 1 	(provided the latter have the dimensions of 

energy per unit length), Lucovsky and Martin assume this ratio is 100 1 

in the As2S and As 2Se 'molecules', which is equivalent to assuming very 

weak coupling between the AsX 3  pyramids. 	Kobliska and Solin have suggested 

that the failure of the depolarisation spectrum to attain its maximum theor-

etical amplitude of is due to intermolecular-coupling, which may therefore 

not be as weak as expected by Lucovsky and Martin and may yield a smaller 

value for the ratio of k 1  to k 5  . 	Variation in ks  mainly affects 2' 
 the 

bending frequency, and produces only small percentage changes in ).)j 	As 

kS  appears only in the equations for 1)l  and i?  (Equations A.5 8 

is unaffected by this parameter. 	If k1  for a-As 2 S 3  is taken as 1.35. md/X 

then k is 0.135 md/X, assuming the above ratio is 10 1, and when these 

values are inserted in Equations A.5 —A.7 together with the correct value 
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for %, viz 49 ° , the following frequencies are obtained for the simple 

valence force field case (k 12  to) : 	323, V2 	
101, 1)3 r 334 cm-1  

Whereas the Lucovsky-Martin calculation predicts a very low frequency 

line (55 cm-1  ), a line at high frequency (438 cm -1  ) and one intermediate 

between these (218 cm 1), the above calculation suggests a different 

arrangement of bands, namely one medium-frequency line (101 cm 1 ) and two 

high-frequency lines (323 and 334 cm 1 ) falling on the main band of the 

a-As 2S 3  spectrum. 	This picture is more compatible with the experimental 

results since there are two observed frequencies in the high-frequency 

region which have not been accounted for, viz 367 and 395 cm- 
1 
 (the former 

is discussed in Section 5.4.3). 	The calculated value for 	is also 

close to a feature in the vibrational spectrum, i.e. the dip at 106 cm -1 

in the depolarisation spectrum. 

Both calculations fail, however, to account for the polarisation 

properties of the spectrum since in each case 1)3  the frequency of the 

antisymmetric vibration, is larger than i),  the symmetric-stretch frequency, 

and so the depolarised line is predicted to occur at a higher frequency than 

the polarised line. 	Excluding the 490 cm -1  band, which is associated 

with S—S bonds, the highest frequency band in the a-As 2S 3  spectrum occurs 

at 395 cm' and as this line corresponds to the minimum in the depolarisation 

spectrum it is clearly polarised . and must therefore arise from a symmetric 

vibration. 	The 367 cm -1  band is not polarised to the same extent as the 

ays cm band and its depolarisation ratio is possibly reduced from the 

expected value of 3  by intermolecular coupling. 

In the case of the Lucovsky-Martin calculation the reversal of 	and 

is a serious failing since 	(218 cm 1 ) occurs so far below 

(438 cm 1 ) that agreement with experiment cannot be obtained even by 

varying the interaction constant k within realistic limits. 	In the
12 

present case, however, this problem can be overcome by 'taking a non-zero 

value for 
<12' 	

As k12  is increased V increases while V
3
decreases. 
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Using the corrected values for k1, ks  and 6A. given above it was found 

that 	and 	coincided at 328 cm -1  for k z 0.05 md/s and that for12 

values of k12  greater than this 	> V3 . However, with these values 

for id, ks and O quantitative agreement with experiment could not be 

obtained by varying k 12  since the cross-over frequency, 328 cm 1 2  is 

already well below the lower experimental frequency. 	Quantitative agree- 

ment could be achieved only by using unrealistic values for the other 

parameters. 

Just as the van der Waals interaction between the non-bonded sulphurs 

in the AsS3  pyramid 'molecule' led to a discrepancy between the calculated 

value for k 1  and that predicted from Gordy's rule, so it may be that the 

valence force field potential function for the As 2S 'molecule' is an 

inadequate representation of the real intramolecular potential because of 

the van der Waals interaction between the non-bonded arsenic atoms. By 

extending the simple valence force field (i.e. that with k12 = 0) for the 

X 
2 
 Y molecule to include a central force between the two non-bonded X atoms 

it is possible to derive, using the expected values for the various param-

eters, a set of frequencies which is in agreement with the polarisation 

properties and which is in better quantitative agreement with the experi-

mental values. 	For k1 = 1.35, k r  0.135 md/2 and &- = 49 °  and taking 

the central force constant; a 33 , as 0.3 md/s the following frrequencieè 

were calculated: 2)1 z 342 cm, '2 	
106 cm 1 , i)3 = 334 cm

-1 
. 

A summary of the preceding results is presented in Tables 5.2 and 

5.3. 	The corresponding analysis for a-As 2Se3  is given in Section 6.4.6. 

Including the hidden 367 cm 1  band there are eleven features in the 

first-order Raman and depolarisation spectra of a-As 2 S 3  (see Table 5.1). 

One of these is the Bose peak, four arise from vibrations of the AsS 3  

pyramid units and three are due to the As 2 S links between these pyramids. 

The three weak features at 208, 231 and 490 cm -1  are unaccounted for. 

None of these features scale with structure in the a-As 2Se 3  spectrum 

Li 



Observed 
values 

Para- 
meter 

Model 
value 

% Diff. 
in freqs.. 

1.35 

kz  0.14 

- k S  0.14 

kV 0.016 

61.4 61.4 

339 340 0.3 

185 V2  159 14 

315 V3  312 1 

160 ))4  130 19 

All frequencies and force constants are 
in units of cm-1  and md/A respectively; 

p is in degrees. 

Table 5.2 The molecular model parameters and frequencies for the AsS 3  

'molecule'. 	The last column gives the difference between 

the observed and calculated frequencies expressed as a per- 

centage of the former. 



Observed 
values 

Para- 
meter 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
infreqs. 

1.58 1.35 1.35 1.35 

0.0158 0.135 0.135 0.135 

k 12 0 0 0.05 0 

0 0 0 0.3 a33  

49 X 75(105) 49 49 49 

395 Vi  218 - 323 18 328 17 342 13 

106 V2  55 - 101 5 101 5 106 0 

367 V3  438 - 334 9 328 II 34 9 

All frequencies and force constants are in units of cm -1  and md/s respectively; 
&is in degrees. 

Table 5.3 The molecular model parameters and frequencies for the As 2S 

'molecule'. 	The differences between the observed and calculated 

frequencies expressed as a percentage of the former are also given. 

I 
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(see Section 6.4.5) which suggests that the structural elements giving 

rise to them are not present in c-As 2 5 3 . 	In Section 5.5.1 it will be 

shown that the 208 and 490 cm -1  features grow as the sulphur content of 

the glasses is increased and can be attributed to —S--S— links between 

the As atoms in the network (because the 492 cm' —S--S— band is very 

weak in the a-As 2S 3  spectrum and is superimposed on a sloping background 

it is shifted slightly to 490 cm). 

Applying the 0.71 scale factor derived by Zallen et al. (5,6) one 

would expect the a-As 2Se 3  counterpart of the 231 cm -1  band to occur at 

AJ164 cm -1
. 
	As will be shown in Section 6.4 there is no feature in the 

Raman or depolarisation spectra of a-As 2Se 3  near this frequency, though 

aweak band at 156 cm -1 appears in some of the published i.r. spectra. 

Figure 6.33 (after p.242) shows, however, that as the arsenic content of 

the selenide glasses is increased beyond 40 at.% two bands grow in the 

i Raman spectrum at '155 and 220 cm
-1  so it s possible that the 156 cm

-1  

feature observed in some of the i.r. studies is due to a slight excess 

of As in the samples used or As—As bondS in the As-Se network, for, as 

will be shown below, the 231 cm- 
1  feature in the a-As 2 S 3  spectrum can be 

attributed to As—As bonds in the As-S network. 

The 231 cm a-As 25 3  band differs from the rest of the vibrational 

(39) 
features in certain respects. Finkman et al. 	have shown its temp- 

erature dependence to differ from that of the main band and resonance 

Raman
(43,44)  show that this is the only feature to resonate about 

the optical gap energy (2.32 eV at 3000  K). 	The Raman scattering 

efficiency over the whole a-As 2S 3  spectrum increases monotonically as 

the incident photon energy ,h V, increases 	and shows no resonance in 

the range 1.8 cc h 	2.7 eV, apart from the 231 cm -1 band, which
ift 

resonates smoothly about the optical gap energy. 	Figure 5.28 compares 

two spectra obtained for a-As 2 S 3  under identical experimental conditions 

with the exception that one was excited with 6328 R (1.96 eV) radiation 



Figure 5.28 

Raman spectra of a-As 2S 3 : one spectrum was excited with near band-gap 

radiation ( \exc 5145 	and the other with 6328 radiation which is 

weakly absorbed. 	The change in spectral density around 231 cm' is 

manifestation of the resonance Raman effect. 
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and the other with 5145 R (2.41 eV) radiation which is close to the band-

gap energy. 	The poor signal/noise ratio in the near-resonance spectrum 

is due to the fact that the band-gap radiation is being strongly absorbed. 

The difference in absorption coefficients at 5145 and 6328 R also accounts 

for the increasing divergence in intensities at frequencies below 338 cm -1 , 

which is the frequency at which the spectra are normalised. The shapes 

of the two spectra are identical, ignoring the intensity divergence, except 

for the 231 cm-1  feature, which is very pronounced in the near-resonance 

spectrum. In molecules the fundamental displaying the resonance Raman 

effect is principally bond stretching in form, which suggests that the 

vibration responsible for the 231 cm-1  frequency is associated with As-As 

bonds since the bond-stretching frequencies of As--S and S-S bonds are much 

higher than 231 cm 1 . 

The 231 cm-1  feature grows as the As content of the glasses is 

increased beyond 'tO at.% (see Section 5.6), which is consistent with it 

being associated with As-As bonds. In addition, the vibrational spectra 

-1 
of elemental As (30-34) contain features near 231 cm 	In the As-Se 

glasses a feature also grows at 220 cm-1  as the As content is increased 

beyond 40 at.% (see Section 6.6) and cannot be attributed to monomeric 

species. 

Porter and Sheldrick(14) show that the Raman spectrum of c-As4S4  

changes after prolonged irradiation and deduce that the changes are due 

to photo-induced polymerisation of the As 4S4  molecules. 	One of the 

changes is the growth of a strong band near 230 cm -1 which may well arise 

- 	 i 	
(11) 

rrom the presence of As-As bonds n the polymeric product. Whitfield 

attributes the 235 cm -1 band of Fornerists () 	-As4S4  Raman spectrum to 

As-As bonds, though he does not suggest that these bonds are part of any 

network structure. 

It has been suggested 	that the 185 and 231 cm' bands are due to 

the presence of As45 4  monomers in the As 2S 3  glass. This seems unlikely 
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since these bands grow very rapidly as the As content is increased 

beyond 40 at.% but no such rapid change occurs as the As content is 

decreased below this value. Attempts to normalise the S-rich spectra 

to obtain a regular decrease near 185 cm- as a function of increasing 

S content led to inexplicable changes in other regions of the spectra. 

Also, there is no sign in the a-As 2S 3  spectrum of other characteristic 

As4S4  bands. Numerous As 4S4  bands are observed in the Raman spectra of 

the As-rich sulphide glasses excited with red light but as Figure 5.75 

(after p.193) shows, these bands virtually disappear when near band-gap 

radiation (5145 ) is used to excite the spectra. 	Figure 5.28 shows, 

however, that the 185 cm- 1  feature of the a-As2S 3  spectrum is still 

present in the spectrum excited with 5145 R radiation. 

As most of the published Raman studies report bands at 231 and 490 cm -1  

these are probably genuine features of the a-As 2 S 3  spectrum and do not 

arise from deviations in the stoichiometries of the samples used. 	If the 

samples are stoichiometric then the presence of S-s bonds in the network 

implies the presence of As-As bonds and vice versa. 

5.5 	The sulphur-rich glasses 

5.5.1 	The compositions As40S60  - As 35S55  

5.5.1.1 Normalisation 

The observed polarisation-unanalysed Raman spectra ofthe five near-

stoichiometric S-rich glasses, together with the a-As 40S60  spectrum for 

comparison, are presented in Figure 5.29. 	The spectra, which are normal- 

ised 	 1 sed to the height of the 338 cm band, are shown displaced above one 

another. 	The corresponding reduced spectra are displayed in Figure 5.30 

and exhibit the same structure, apart from the thermal peaks, as the 

ordinary spectra, though it is shifted slightly to higher frequencies. 

These results show that several spectral changes occur with increasing 



Figure 5.29 

The polarisation-unanalysed Raman spectra of the compositions 

As 0S60  - As 35S65 . 

Spectrum Composition 

A - 	 As 	S 
35 65 

B - 	 As 35S54  

C - 	 As 37S63  

D - 	 As38 S62  

E - 	 As 39S61  

F - 	 As40S60  

Figure 5.30 

The reduced spectra corresponding to those in Figure 5.29. 
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S content, the most obvious being the growth of a peak at 492 cm 1 . A 

shoulder emerges on this peak at -472 cm-1  while the shoulder at 315 cm
-1 

 

in the a-As40S60  spectrum gradually disappears. There is also a change 

of profile in the region 160 - 240 cm 1 , with a small peak appearing at 

232 cm 1 . Also, the thermal peak grows relative to the 338 cm -1  band 

and shifts slightly. 

Some of these changes in shape are more obvious if the spectra are 

superimposed and a more exact set of values for the frequencies of the 

changing features can be obtained by generating difference spectra. 

However, in both of these procedures it is necessary to consider the 

normalisation of the spectra, for although the frequencies of the changing 

features can be determined unambiguously the interpretation of these 

changes depends on the normalisation. 

Several methods of normalisation were investigated, including 

normalisation by: 

maximum intensity of the 300 - 400 cm -1  band; 

intensity at 338 cm-1 ; 

intensity at 395 cm
-1  

intensity at 185 cm-1 ; 

integrated intensity over the range 0 - 510 cm -1 ; 

integrated intensity of the 300 - 400 cm -1  band; 

basewidth of the 300 - 400 cm -1  band. 

Because the low-frequency region of the spectra is more affected by 

temperature than the high-frequency region, method (e) was applied only 

to the reduced spectra; the Bose peak itself is strongly temperature 

dependent and so is not suitable for normalisation purposes. 	Also, since 

the peak frequency of the main band does not shift appreciably over this 

composition range, methods (a) and (b) are virtually equivalent. 

Of the various methods, (g) was the most satisfactory; the other 

normalisation procedures turned out to be biased by the spectral changes 
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and yielded •sets of spectra which either did not change in an ordered 

way as a function of composition or which indicated structural changes 

that were not consistent with other data. 	For example, Figure 5.31 

shows the 260 - 340 cm -1  region of a set of difference spectra obtained 

from the unreduced spectra - normalised to the height of the main peak - 

by subtracting each one in turn from the a-As40S60  spectrum. 	(This 

region corresponds to the low-frequency side of the main band and 

similar results are obtained for sets of spectra normalised by methods 

(b) and (f); noise is responsible for the fine structure in the curves.) 

Althbugh these difference spectra change in an ordered way with increasing 

S content they indicate either that a band is growing at "325 cm -1  while 

one is disappearing at '300 cm 1 , or, more probably, that the 315 and 

338 cm-1  bands are shifting towards one another; other results obtained 

i in this study show, however, that there s no band at 300 cm
-1  in the 

a-As40S60  spectrum and that the 315 and 338 cm-1  bands do not shift over 

this composition range. 

Method (g), hereafter referred to as .'normalisation by basewidth', 

was applied to both polarisation-unanalysed and polarised spectra and 

unless otherwise stated the results presented in this chapter have all 

been standardised in this way or are derived from spectra so normalised 

An example of the difference spectra obtained from data normalised by - 

basewidth is provided by Figure 5.33 (after p.146). 	These difference 

spectra, which were generated by subtracting the spectrum of the As 40S50  

glass from each normalised spectrum, are positive over most of the range 

0 - 525 cm-1  and increase in an ordered way with increasing S content. 

These spectra do not, however, change uniformly as a function of composition, 

due possibly to deviations from the nominal stoichiometries of the samples, 

or inaccuracy in the normalisation procedure. 	The latter would account 

for the fact that as the S content is increased the individual features in 

the difference spectra do notall grow at the same rate although most of 



Figure 5.31 

Difference spectra obtained from the polarisation-unanalysed Raman 

spectra of the compositions As39S51  - As 35 S65  by subtracting each 

spectrum from that of a-As 0S60 . The Raman spectra were normalised 

to intensity at v338 cm
-1  

Spectrum 	Compositions 

A 	- 	As 0S 50  - As35S55  

B 	- 	 As 0S60  - As35 S 6  

C 	- 	 As40S50  - As37 S53  

D 	- 	 As40S50  - As38 S62  

E 	- 	 As40S 50  - As39S51 
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them arise, as will be - seen in Section 5.5.1.5.4, from the same structural 

element. In Figure 5.33 the frequency ranges where the difference spectra 

all coincide at zero intensity difference correspond to regions over which 

the Raman spectra are normalised. 

In a similar vibrational study of Ge-S glasses Lucovsky et al. (75)  

base the normalisation procedure for their Raman spectra on the linear 

dependence on S content of certain features in their i.r. reflectance 

spectra and show that this method of normalisation can be deduced from 

theoretical considerations of the structure of the glasses. 	In the 

present case no corresponding i.r. study exists and structural consider-

ations do not lead to a normalisation procedure. 

5.5.1.2 The polarisation-unanalysed spectra 

Figure 5.32 shows the polarisation-unanalysed Raman spectra of the 

glasses As40S50  - As 35355 ; they are normalised by basewidth and are shown 

superimposed (cf. Figure 5.29). 	The spectral changes noted in Section 

5.5.1.1 are more obvious when the data is presented in this way; these 

changes occurring as the S concentration increases are: the growth of 

-1  a band at +92 cm , the emergence on this band of a shoulder at m1472  cm-1 
 

the gradual disappearance of the shoulder at 315 cm-1  on the main band, 

and a change of profile in the region 160 - 240 cm 1 , with a small peak 

appearing at 232 cm -1 . The growth of the thermal peak relative to the 

- 
338 cm-1 
	i band s also evident. 	The intensities of the spectra increase - 

in an ordered, but not uniform, manner as the compositions become richer 

in sulphur. 

An even clearer picture of the spectral changes is provided by the 

difference spectra derived from the normalised spectra of Figure 5.32 by 

subtracting the a-As40S 60  spectrum from each of the others. The difference 

spectra, shown in Figure 5.33, also provide a more exact set of values for 

the frequencies of the changing regions: they exhibit a series of features 



Figure 5.32 

The polarisation-unanalysed Raman spectra of the compositions 

Asj 0S60  - As 35 S65  normalised by basewidth. 

• 	 Spectrum Composition 

A 	- As35 S65  

• 	 B 	- As36S64  

C 	- As37S63  

D 	- As38S62  

E 	- As39S51  

F 	- As40S60  

Figure 5.33 

Difference spectra obtained from the basewidth-normalised spectra of 

Figure 5.32 by subtracting the a-As40S60  spectrum from each. 

Spectrum • 	Compositions 

A 	— Ass -Ass 
• 	 3565 	4060 

B 	— As S -AsS 
3664 	4060 

C 	- As 37 S63  - As40S50  

D 	- As39 S52  - As40S50 	 - 

- 	E 	As39S51  - AsS60  

Figure 5.34 

The reduced spectra corresponding to those in Figure 5.32. 

Figure 5.35 

Difference spectra obtained from the reduced spectra of Figure 5.34. 

The spectra are labelled as those in Figure 5.33. 
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growing at 176, 208, 232, 325 and 492 cm-1  as the S content increases. 

In addition, it is possible that the highly asymmetric 300 - 400 cm -1 

peak contains a band on its high-frequency side. 	Also, a feature 

develops at 472 cm' on the high-frequency peak and is apparent as a 

shoulder in the uppermost spectrum. 

The reduced spectra of the compositions As40S60  - As 35 S 65  are shown' 

normalised by basewidth in Figure 5.34. 	Comparison with Figure 5.32 

shows that the same features, with the exception of the thermal peaks, 

appear in each pair of corresponding reduced and unreduced spectra, 

although in the former the features have different relative intensity 

and are shifted slightly to higher frequencies. 

Difference spectra were derived from the basewidth-normalised 

reduced spectra by subtracting from each spectrum that of the As 40S60  

glass. 	They are shown in Figure 5.35 and apart from the intensity 

difference and the absence of the low-frequency peak they match the 

difference spectra of Figure 5.33. 

The growth of the 492 cm' peak with increasing S content is shown 

in Figure 5.36, which is an enlargement of the 440 - 530 cm -1  region of 

the spectra in Figure 5.29. 	The presence at 472 cm-1  on this band 

of a wing in the As 36S64  spectrum and a shoulder in the As 35 S65  spectrum 

is obvious in this enlargement. 	In the VV spectra (see Figure 5.43 

after p.149) this shoulder is resolved into a peak. 	Also obvious is 

the presence of the high-frequency band in the a-As 40S 60  spectrum, though 

because the feature is weak for this composition and is superimposed on 

a sloping background the peak frequency is shifted slightly to 490 cm-1 . 

Every spectrum of vitreous As 40S60  obtained in this study, whether it was 

recorded from a commercial sample or one produced in the Department, 

contained this feature and it is also present in the a-As 40S60  spectra 

(2 39,44) 
reported in the literature ' 	. 	Thus itis unlikely that deviations 

in the S content of these samples above its nominal value of 60 at.% are 



Figure 5.36 

The 472 and 492 cm bands. This figure is an enlargement of the 

440 - 530 cm-1  region of the polarisation-unanalysed spectra normalised 

to the height of the 338 cm-1  peak 

in Figure 5.32. 

The spectra are labelled as those. 
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responsible for this feature, particularly since chemical analysis of 

the commercial sample showed it to be slightly As rich. 	In Section 

5.5.1.5.4 it is shown that the growth of the 492 cm' peak with 

increasing S concentration is due to the replacement of the bridging 

S atoms between the AsS 3  pyramids by -S--S- linkages. 	If it is correct 

that the a-As40S50  samples studied contain no significant excess of 

sulphur then the presence of this peak in their spectra indicates that 

S-S bonds are a genuine characteristic of the a-As 40S50  network. The 

fact that S-S bonds are not present in cAs4oS&o  accounts for the absence 

in its spectrum of any feature near 1+92 cm -1 . 
	If As-As bonds are 

present in a-As40S50  (see Section 5.4.5) then S-S bonds would also be 

expected. 

In addition to being the most obvious change in the spectra, the 

growing 492 cm-1  peak was found to be the only feature that changed in 

an ordered way with S content irrespective of the method of normalisation. 

The intensity over the region 450 - 520 cm' increased monotonically 

with increasing S content for every normalising procedure mentioned in 

Section 5.5.1.1. 

5.5.1.3 Polarisation measurements 

The observed VV-polarised Raman spectra of the compositions As 40S50  - 

As35 S55  are shown in Figure 5.37. 	The spectra, which are normalised to 

the intensity of the 339 cm- 
1  peak, are shown displaced above one another. 

Since the VV spectra are very similar to their polarisation-unanalysed 

counterparts the results they yield are essentially identical with those 

of Section 5.5.1.2 and require no further comment. 	Figures 5.38 and 5.39 

show, respectively, the vv spectra normalised by basewidth and superimposed, 

and the difference spectra derived from these by subtracting the a-As 40S50  

VV spectrum from each of the others. 	Figures 5.40 and 5.41 show the 

corresponding results for the reduced spectra. 



Figure 5.37 

The VV-polarised Raman spectra of the compositions As 40350  - As 35 S 55 . 

Spectrum Composition 

• 	 A 	-. As5S 65 

B 	- As 35 S 54  

C 	- As 37 S 63  

D 	- As 38 S 52  

E 	- As 39 S 61  

F 	- As 0 S 50  

Figure 5.38 

The spectra of Figure 5.37 normalised by basewidth (A - F as above). 

Figure 5.39 

The difference spectra obtained from the spectra of Figure 5.38. 

Spectrum 	Compos ition 

A 	As 35 S55  - As405 50  

B 	As 35 S64  - As 0S 50  

C 	As 37 S 53  - As405 50  

D 	As 38 S52  - As4bS60 

E 	As39 S 61  - As40S 50  

Figure 5.40 

The reduced spectra corresponding to those in Figure 5.38. 

Figure 5.41 

The difference spectra obtained from the spectra of Figure 5.40. 	The 

spectra are labelled as in Figure 5.39. 
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One feature which is significantly different in the VV spectra, 

however, is the shoulder at tv472  cm -1 in the spectra of the two most 

S-rich glasses. 	Figure 5.42 is an enlargement of the 440 - 520 cm -1 

region of the spectra in Figure 5.38 and when compared with Figure 5.36 

shows clearly that this feature is more pronounced in the VV spectra 

than in the polarisation-unanalysed spectra. 	In fact, when the 

experimental conditions are improved slightly this feature in the VV 

spectrum of As 35555  is just resolved into a peak at 472 cm 1 , as shown 

in Figure 5.43 where the spectra were recorded using a narrower than 

normal channel width between data points. 

The observed VH-polarised Raman spectra of the compositions As 40S60  - 

As35 555  are shown in Figure 5.44 and clearly differ considerably from 

the VV and polarisation-unanalysed spectra. 	The Vii spectra, which are 

normalised to the intensity of the 315 cm-1  peak in the a-As 40S60  spectrum, 

are shown here displaced above one another. 	The Vii spectra differ most 

obviously from the other two types in the shape of the 300 - 400 cm' band 

and in the intensity of the thermal peakrelative to this band: in the 

Vii spectra the low-frequency peak is much more intense than the 300 - 400 cm' 

band, which for the compositions As 40S60  - As 38 S52  has a peak at 315 cm -1  

rather than a shoulder. Although the changes produced in the VH spectra 

by the increasing S content occur over the same frequency regions as they,  

do in the other two sets of spectra, some of the changes are of a slightly 

different nature. 	As before, a.peak grows at -492 cm
-1  and a change in 

profile occurs over the range 160 - 240-cm -1 , with a small peak appearing 

at 232 cm-1 . However, in the VH spectra no wing or shoulder develops at 

472 cm' on the high-frequency -peak and instead of a disappearing shoulder 

at 315 cm-1  on the main band there is a disappearing peak. 	As in the case 

of the polarisation-unanalysed and VV spectra, the low-frequency peak grows 

relative to the 300 - 400 cm-1  band shifts towards the origin. 	Similar 

results are obtained with the reduced spectra, shown in Figure 5.47, although 



Figure 5.42 

The 440 - 520 cm 
-1  region of the VV-polarised spectra of the compositions 

As40S60 — As 35S55 . 	The spectra are labelled as in Figure 5.37. 

Figure 5.43 

The VV and VH spectra of As 35S55  glass over the range 450— 530 cm' 

recorded using a channel-width of 0.25 cm . The 472 cm band is 

resolved in the VV spectrum. 
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the thermal peaks are absent in these and the features are shifted 

slightly to higher frequencies. 	The reduction process has also trans- 

formed the shoulder at 339 cm-1  in the unreduced VH spectra into a peak. 

The spectral changes are more obvious in Figure 5.45 which shows 

the unreduced VH spectra normalised by basewidth and superimposed. 

The intensities of these spectra increase in order of increasing S content. 

Difference spectra, derived from the spectra of Figure 5.45 by subtracting 

the a-As40S60  VH spectrum from each of the others, are displayed in 

Figure 5.46 and show a series of features growing at 176, 204, 222, 232, 

332 and 491 cm -1  as the S content increases. Another feature may also 

be present on the high-frequency side of the highly asymmetric 300 - 400 cm -1 

-1 
band. 	There is clearly no shoulder at 472 cm an these spectra. 

The reduced VH spectra are shown normalised by basewidth in Figure 5.47. 

Comparison with Figure 5.45 shows that corresponding pairs of unreduced 

and reduced VH spectra exhibit essentially the same set of features, with 

the exception of the thermal peaks. 	The transformation of the 339 cm-1  

shoulder into a peak as a result of the reduction process is obvious in 

Figure 5.47. 	Difference spectra, derived from the reduced VH spectra in 

the standard way, are displayed in Figure 5.48 and, apart from the absence 

of the low-frequency peak, they are similar to those of Figure 5.46, 

although their features have different relative intensities. 

The results shown in Figure 5.43, which compares the 450 - 530 cm -1 
 

regions of the VV and VH spectra of the most S-rich composition, As 35 S65 , 

are not enlargements taken from other spectra but were recorded in a 

separate experiment using a channel width equal to half of that normally 

used. 	The 472 cm' feature is just resolved into a peak in the VV spectrum 

but is completely absent in the Vii spectrum, indicating that this vibration 

is strongly polarised. 	The depolarisation ratio at 472 cm-1  is "0.4. 

The depolarisation spectra for the compositions As 40S60  - As 35 S65  are 



Figure 5.44 

The VH-polarised Raman spectra bf the compositions As 40S50  - As35 S65 . 

Spectrum Composition 

A 	- As35S65  

B 	
- As36S64  

C 	- As37 S63  

D 	- As38S52  

E 	- As39S51  

F 	- As40S50  

C- 	- 

Figure 5.45 

The spectra of Figure 5.44 normalised by basewidth (A - F as above). 

Figure 5.46 

The difference spectra obtained from the 
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Figure 5.47 

The reduced spectra corresponding to those in Figure 5.45. 

Figure 5.48 

The difference spectra obtained from the spectra of Figure 5.47. The 

-. spectra are labelled as in Figure 5.46. 
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shown in Figure 5.49. 	For clarity they have been displaced vertically 

in order of increasing S content. 	The spectra are similar in many 

respects: they all decrease initi ally to a minimum around 106 cm -1  and 

they all have a broad peak at "160 cm-1  and a well-defined trough with a 

sloping bottom at -'300 - 425 cm_ I . 	Dips at 211, 400 and 500 cm -1 are 

present in each spectrum. 	As the S content increases, however, several 

changes occur in the spectra relative to the a-As40S60  spectrum, the most 

obvious being the growth of a peak and other structure in the region 

210 - 240 cm -1 . The broad peak at '160 cm -1  becomes flatter, a peak 

grows at 233 cm and dips appear at 226 and 467 cm -1 

The incident laser beam is partly depolarised on traversing the 

samples because of their imperfect optical quality and thus the polarisation 

measurements are only qualitatively correct. 	It was found that when 

the depolarisation spectra were superimposed they did not change in a 

completely ordered way with increasing S content and since the spectra do 

not require normalising these discrepancies must arise from experimental 

effects. 	The frequencies of some of the features in the depolarisation 

spectra do not coincide exactly with features in the Raman spectra; in 

some cases, such as that of the 492 cm-1  band, this is due to weak signal 

but in others, e.g. the 395 cm-1  knee, it probably arises from overlapping 

of bands. 

Although the depolarisation spectra have the advantage that when 

recorded from samples of good optical quality they do not require normal- - 

isation, they are of limited use in showing up spectral changes, for while 

the intensity of a Raman band may change as the population of the associated 

structural element changes, its depolarisation ratio remains constant. 

For example, though the population of AsS 3  pyramids decreases relative to 

the S atom population as the S content of the glasses increases; the 

depolarisation ratios of the four pyramidal vibrations will not change. 

The only circumstances that will give rise to changes in the depolarisation 



Figure 5.49 

Depolarisation spectra of the compositions As40S50  - As 35 S55 . 

Spectrum Composition 

A 	- As35S65  

B 	- As35S64  

C 	-. As S 3753 . 

D 	- As38S52  

E 	- As39S51  

F 	- As40S50  

/ 
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spectra are the occurrence in the Raman spectra of shifting bands dr of 

overlapping bands whose intensities are changing at different rates, 

though in the latter case no changes will be observed if the bands have 

the same depolarisation ratio. Should the changes in the environment 

of a species of 'molecule' affect the depolarisation ratios of its 

vibrations then corresponding changes will, of course, be observed in 

the depolarisation spectra. Discontinuous changes will occur when a 

fading band is on the point of disappearing completely or when a new 

band, e.g. that at 492 cm 	just appearing —once it is established 

no change should occur unless any of the above circumstances are prevail-

ing. 	The main use of the depolarisation spectra is in revealing hidden 

vibrations.in  the Raman spectra and helping in relating the bands to 

structural features in the glasses. 

5.5.1.4 Second-order spectra 

In order to confirm that the first-order spectra of these glasses 

lie entirely below 500 cm-1  the spectral regions beyond this frequency 

were, in a number of cases, examined for any additional features. 

Although structure was, in fact, observed above 500 cm 1  in these experi- 

ments it could be satisfactorily accounted for as overtones or combinations 

of first-order bands and there was no sign of any features that could be 

definitely attributed to first-order processes. 

Figure 5.50 shows the 500 - 1000 cm -1 region of the a-As 40S50 , As 35 S55  

and 
As28.6 

 S 
71.4  (As 2 S 5 ) spectra. 	The results have not been normalised in 

any way and are shown superimposed. The bands are relatively weak, having 

peak intensities "0.1 of those of the corresponding main first-order bands, 

and are situated between the frequencies 600 and 1000 cm 1 , which are 

double the frequencies that bound the strongest first-order bands, i.e. 300 

and 500 cm-1 . All the features in these spectra can be attributed to 

overtones or combinations of bands contained in the 300 - 500 cm' region 

of the corresponding first-order spectra, e.g. 630 = 2 x 315, 680 Z 2 x 339(76) 



Figure 5.50 

Second-order Raman spectra of the compositions As 40S50 , As 35 S55  and 

As71  14S286  (As 2S5). 
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The results for a-As 40S60  are in general agreement with those 

obtained by Howard et alJ 44 ' 77  who, on the basis of both i.r. and 

Raman studies of this spectral region, also attribute these bands to 

mul-tiphonon effects. 	It can thus be concluded that the spectra of 

Figure 5.50 are simply the second-order spectra of the glasses. 

Although there is no band at '710 cm -1  in the a-As 40S60  spectrum 

of Figure 5.50 whereas there is in the Raman data of Howard et al., 

this may be due to the fact that these authors excite their spectra with 

5145 .R (2.41 eV) radiation. 	This was the wavelength used to excite the 

resonance spectrum in Figure 5.28 and it is significant that in the Raman 

experiments of Howard et al., as the sample temperature decreases (and 

therefore as the a-As 40S60  band gap approaches 2.41 eV), the 710 cm' 

peak grows along with the 235 cm -1  band and a broad weak feature at 

485 cm'. This effect is possibly similar to the multiple excitation 

effect observed in crystalline semiconductors at resonance(78)  and the 

485 and 710 cm' lines may simply be overtones of the resonating 235 cm -1  

band (2 x 235 r  470, 3 x 235 = 705). 	If the 710 cm -1  shoulder in the 

a-As40S60  spectrum of Howard et al. cannot be attributed to a resonance 

effect it may be further evidence for the presence of the hidden vibr-

ational mode on the high--frequency side of the main band since the fre- 

quency is double 355 cm -1 	 i ; the frequency deduced n Section 5.4.3 for 

the hidden band was 367 cm-.l  . 

Markov and Reshetnyak(8) also report a band at 680 cm' in the 

a-As40S60  spectrum and attribute it to an overtone of the main first- 

order band. 

5.5.1.5 Discussion 

There are four possible explanations of the results presented in 

Sections 5.5.1.2 and 5.5.1.3. 	The spectral changes described in these 

sections can be attributed to one or more of the following processes which 
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might occur as the S content of the glasses is increased: 

(1) the appearance of some form(s) of elemental sulphur in the 

glasses; 

the disappearance of features of the a-As40S50  structure, such 

as AsS 3  pyramids, As—As bonds or As—S--As bridges; 

the formation of new features in the network e.g. the incor-

poration of sulphur chains between As atoms to give AS2Sn 

tmolecules', n = 2,3,..., 

the distortion of the a-As 40S50  structure as a result of the 

other three processes. 

These processes are discussed separately below, starting with the last case. 

5.5.1.5.1 Geometrical changes 

Shifts in the bond-length or bond-angle distributions of a-As 40S50  

caused by the addition of S atoms are more likely to give rise to 

frequency shifts in the Raman spectra, rather than growing bands such as 

the one at 492 cm', and hence can only account for some of the spectral 

changes. 	It was mentioned in Section 5.5.1.1 that when the Raman data 

was normalised by the maximum intensity of the 300 - 400 cm -1  peak it 

yielded difference spectra that could best be interpreted as evidence 	- 

that the 315 and 338 cm-1  bands shifted towards one another as the S 

content increased. 	(It is unlikely that geometrical changes alone are 

responsible for the spectral changes in this region since the calculations 

of Section 5.5.1.5.4, which are necessary to account for the 492 cm 1  

peak, suggest that new bands are growing here.) When the appropriate 

values for the AsS 3  pyramids are inserted, it can be shown from 

Equations A.]. - A.4 that while a change in the length (and hence in the 

stretching force constant) of the As—S bond will not lead to this 

behaviour, the frequencies )) 3  and V1 , which correspond to the 315 and 

338 cm-1  bands respectively, do converge if the pyramid angle, 5 , increases. 

This is illustrated in Figure 5.51 which shows the frequency variation of 



Figure 5.51 

The effect of changes in the pyramid angle p on the frequencies V 

and 	of the AsS 3  pyramid. 	(Courtesy of Dr. M.J.Sik.) 
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the V and 	modes as a functionof 	for the values of k 1  and k 8  

shown; for a-As 40560 	61 . 	However, analysis of the VH-polarised 

spectra of the compositions As 40S60  - As 37S53  shows that as the S content 

increases there is no shift in the frequency of the V 3  mode, which is 

present in these spectra as a well-defined peak (see Figures 5.45 and 5.47). 

Indeed, none of the features in any of the a-As40S50  spectra shifts with 

the increase in S content, apart from the boson peak. 	Thus significant 

general distortions of the geometry of the a-As 40S30  network do not occur. 

5.5.1.5.2 The presence of sulphur allotropes 

The most obvious explanation of the spectral changes is that as the 

S content of the glasses is increased the additional sulphur does not 

combine in any way with the a-As 40S50  structure but exists alongside, it 

in the form of pure sulphur allotropes. There is no evidence of phase 

separation in these glasses, unlike the case of the As-rich compositions, 

and their optical properties are those of a homogeneous system 	so 

the size of individual pure-sulphur regions, if they occur, is not large. 

Over 30 solid allotropes of sulphur have been reported
(80)  though 

only one form, orthorhombic sulphur (.-S) , is thermodynamically stable 

at room temperature and pressure. The other allotropes exist only under 

non-standard conditions and eventually revert to 0.-S 8  as the temperature 

and pressure of their environment approach room conditions. The allotropes 

are all made up of either rings or unbranched chains that are weakly bound 

to each other by van der Waals forces. 

In their dissolution experiments Tsuchihashi and Kawamoto(8 

established the presence of S rings in As-S glasses more S-rich than 

As2S8 
- 	

(As 20S80 - As17.4 S 82 ) 
but did not detect any in compositions 

with less sulphur than this. In the present study similar experiments 

carried out on the compositions As 40S50  and As 35 S65  also failed to detect 

S rings. 	However, Ward's work (1,2) and the results of Section 5.5.2 
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show that S 8 rings are certainly present in those glasses more S-rich 

than As29 S71  and suggest that they are present at even smaller S 

concentrations. 	Figures 5.55 - 5.60 (after p.168) show that as the S 

content is increased beyond 65 at.% the features at 472, 232 and 222 cm -1 

in the As 35 S65  spectrum grow rapidly and overtake the other emerging 

bands. 	The figures also show that the Raman spectrum of Dc-S 8  contains 

bands very near these frequencies. 	ozin(2 has shown that the 248 cm -1  

band in c-S8  is depolarised while the 221 and 1473 cm -1  bands, which arise 

from totally symmetric modes, are polarised, the 473 cm' band more 

strongly than the other. 	It is seen in Figure 5.49 that the corresponding 

bands in the As 35 S65  spectrum have the R-5 8  polarisation properties, the 

233 cm- 1 feature having almost the largest depolarisation ratio in the 

-1 spectrum while the 222 and 472 cm bands both give rise to dips. 	It is 

due to its strongly polarisad nature that the 1472 cm- 
1  feature is resolved 

into a peak in the VV spectrum (see Figure 5.42). 	As geometrical changes 

or the disappearance or appearance of network features cannot account for 

these particular spectral changes and as it is shown below that the glasses 

do not contain significant amounts of the other allotropes, these three 

growing features can be attributed to the increasing presence of S. rings. 

It can thus be concluded that S rings occur in all the glasses more 

S-rich than As 37S63 , since these features are first detectable in the Raman 

spectrum of this composition, and judging by the depolarisation spectra, 

S rings may even be present, though in very small amounts, for glasses 

less S-rich than this - the structure characteristic of S rings is also 

observable in the depolarisation spectra of the compositions As 39 S61  - 

As 
37 553 . 

The failure of the dissolution experiments to detect the 5 5  rings in 

glasses less S-rich than approximately As2 S8  is probably due to the fact 

that a-As 40550  is insoluble in CS 2' which was the solvent used in these 

experiments, so that the S rings in the bulk are trapped. 
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The presence or absence of any other S allotrope in the glasses 

can similarly be determined by comparing its vibrational spectrum with 

the glass spectra82 - 84)• The Raman spectra of the following cyclic 

(85) 
forms were compared with the glass spectra: p -monoclinic S 	(this 
is also made up of S 

8 
 rings), hexasulphur ( 5)(86) cycloheptasulphul?.(S7)(87) 

(88) and cyclododecasulphur 	 It was concluded from this comparison 

thatp-monoclinic S and 51  S7  and 
l2 
 rings are not present in appreciable 

quantities in these glasses. The vibrational spectra of other cyclic 

forms have not yet been recorded but Steudel(89)  has carried out a 

theoretical analysis of the vibrational spectra of the cyclic S molecules. 

Comparison of the As-S spectra with his results suggests that other ring 

species are also absent from these glasses. 

In addition to rings, S atoms can form unbranched chains of up to 

10 atoms in length (80). 	The glas spectra were compared with the Raman 

spectra of the following polymeric S allotropes: purple sulphur (9O9, 

(2) 	 (2) fibrous sulphur (92) , sublimed sulphur 	and 'crystex' 	, in which the 

chains are stabilised by organic substituents. They were also compared 

with the Raman spectrum of the S
2 
 diradical 93  and the calculated vib-

rational frequencies of the linear S molecule. The comparisons 

indicated that there are no appreciable quantities of either long or 

short S 
n 
 chains in these glasses. 	 -- 

It can thus be concluded that the only form of sulphur present in 

the glasses is the S 
8 
 ring, which is as expected since this is the basic 

unit of the only allotrope thermodynamically stable at room temperature 

and pressure. 

5.5.1.5.3 Disappearing features 

As was seen in Section 5.4.5, the features of the a-As 40S50  structure 

are AsS3  pyramids, As 2 S bridges, As—As bonds and S—S bonds. 	Spectral 

changes due to the disappearance of these features will only be observed 



158 

in the normalised results if the ratio of the populations changes, i.e. 

if some of these structural elements are disappearing faster than others. 

This explanation of the spectral changes is limited because it cannot 

account for bands which are definitely growing in the spectra, such as 

the 492 cm -1 band. 	It is also unable to account for different changes 

occurring in spectral features associated with the same structural element 

since such features would be expected to decrease in intensity at the same 

rate; thus the change occurring on the low-frequency side of the main 

band cannot be attributed to this process, for the 315 and 338 cm -1  bands 

are both associated with the AsS 3  ? molecule? 

It will be shown in the following section that the number of S—S 

bonds in the network does in fact increase as the S content is increased 

so they need not be considered in this section. 	The increase in the 

number of S—S bonds in the network should lead to a change in the ratio 

of AsS 3  pyramids to As 2S bridges, for the latter are being replaced by 

As—S--S--As links; however, the spectral changes arising from the change 

in this ratio are difficult to assess because the AsS 3 	4 
and AS rS bands 

occur in regions where spectral changes due to other processes are 

occurring. 

As—As bonds give rise to only one feature in the a-As 40S60  spectrum, 

namely the weak band at '231 cm -1
. 
	Figure 5.32 shows that little change 

seems to occur in this region with increasing S content apart from the 

appearance of a peak at 232 cm in the more S-rich compositions. 	It 

was seen in the previous section that this peak can be attributed to the 

appearance of S rings in the glasses. 	However, the region of the 

depolarisation spectra (Figure 5.49) around 230 cm-1  changes markedly 

and rapidly as a function of S content. 	A considerable change in profile 

around 230 cm 
-1  occurs even on increasing the S content from 60 to 61 at.%. 

The depolarisation spectrum of a-As40560  contains a dip at 231 cm but 

this is absent for the other compositions. 	As the S content increases 
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a peak grows rapidly at 233 cm-1  in the depolarisation spectra. 	In 

Section 5.5.1.3 it was remarked that structural features that are 

disappearing or newly appearing will only give rise to changes in the 

depolarisation spectrum when they are on the verge of disappearing or 

have just appeared. 	In the previous section the peak at 233 cm 
-1 
 in 

the depolarisation spectra was associated with the depolarised 248 cm. -1  

band of the S ring which is starting to appear in the glasses. 	It is 

possible that the marked change around 230 cm -1  in the depolarisation 

spectra of these first few S-rich compositions may be partly due to the 

rapid disappearance of the As-As bonds and the predominantly VV-polarised 

scatter they give rise to at this frequency. 	The polarisation-unanalysed 

spectra show no noticeable change in intensity over the region 225 - 

240 cm', with increasing S content, since the reduced contribution from 

As-As bonds is compensated by the growth of the S band but as the 

and As-As bands have different polarisation properties this substitution 

is revealed in the depolarisation spectra. 

Further evidence for the disappearance of As-As bonds from the matrix 

is furnished by Figure 5.52 which compares two spectra recorded by back 

reflection from a sample of As 35 S55  glass, one being excited by 5145 

radiation and the other by 6328 R radiation. Comparing this with 

Figure 5.28, which was obtained in a similar experiment, it is clear that 

there is no resonance of the 231 cm' feature in the As 35 S65  spectrum 

excited with band-gap radiation. 	This absence of resonance cannot be 

attributed to the compositional shift in the absorption edge (79)  since 

the optical gap of As 35 555  glass is closer to the incident photon energy 

than is the optical gap of a-As 40S60 . 	The non-resonance of this feature 

in the As 35 565  spectrum can be accounted for if there are no longer any 

As-As bonds in the matrix so that the feature is due solely to S 8 
 rings. 

The absence of significant quantities of As-As bonds in the S-rich 

glasses is consistent with the chemically ordered network model for the 



Figure 5.52 

Raman spectra of the glass As 35 S55 : one was excited with near band-gap 

radiation C A exc r 5145 and the other with 6328 R radiation, which is 

weakly absorbed. 
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composition dependence of bond types (46). 	Accordingto this model, 

which has been shown to be applicable to many amorphous chalcogenides, 

bonds between like atoms do not occur in compositions which are deficient 

in that species of atom relative to the stoichiometric composition. 

5.5.1.5.4 The appearance of new features - the As-S-S-As bridge 

The fourth process possibly occurring in the glasses as the S content 

increases, and hence leading to spectral changes, is the formation of new 

structural features other than S rings. There is no indication in the 

S-rich spectra that the various monomer species or regions of elemental 

As are present, which is not surprising since increasing the S concentration 

is not expected to.lead to a break up of the a-As40S50 network(9596). 

Any new structural elements appearing must therefore be part of the net-

work. 	It was shown in the previous section that the number of As-As 

bonds decreases and therefore these new elements can only be due to the 

incorporation of extra S atoms between the As atoms. Because sulphur is 

divalent, forming only rings and unbranched chains, the S atoms between 

the As atoms must form a chain and the new features are simply As-€-As 

(n >1) bridges. 	The spectral changes resulting from this process will 

consist of the appearance of new bands specific to the A5_Sn-As  bridges; 

the growing 492 cm -1 peak may be such a band. 	 - - 

Because these As 2 n S 'molecules' contain S-S bonds it is expected 

that each type will give rise to at least one band in the characteristic 

-1 range of stretching frequencies for the S-S bond viz -'450 - 550 cm 

Two bands do, in fact, appear in this region but as they grow at different 

rates with increasing S content they cannot both be associated with the 

same structural feature. 	The one at 472 cm -1  was attributed in Section 

5.5.1.5.2 to S 8  rings, so only the 492 cm -1  band can be associated with 

a stretching vibration of the S-S bonds in these 'molecules'. 	The 

presence of only one band attributable to S-S stretching suggests that 
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one type of As 2S 'molecule' may preponderate, assuming that the 

scattered intensity does not vary significantly with n, since the 

S-S stretching frequencies for the various 'species' are not necess-

arily the same. 	If no particular value of n is favoured in the 

formation of these 'molecules' and their populations are determined on 

a stochastic basis, then As 2 S 2  links will occur more frequently than 

any other type. 	The predominance of As 2 S 2  'molecules' is further 

suggested by the absence in the spectra of features characteristic of 

the polymeric sulphur species, for as n increases, the vibrations of 

these 'molecules' will be less influenced by the terminal As atoms and 

will increasingly approximate to those of 
5n 
 chains. 	There is no 

evidence in the spectra for the presence of polymeric S species in the 

glasses so it seems unlikely that A526n  bridges with n>2 occur in 

significant quantities. 	Other workers (97,98) have also proposed that 

some of the additional S atoms in the S-rich glasses go into the 

formation of these As-S-&-As links in the network. 

The molecular model can be extended to account for the spectral 

changes resulting from the appearance of such links by considering now 

a second type of intermolecular coupling between the AsS 3  pyramids. 

In .the S-rich glasses a pyramid can be joined to a neighbouring pyramid 

by either an As-S--As or an As-S---S---As bridge and the coupled modes 	- 

arising from the latter can be treated in the same way as those due to 

the single bridging S atom (see Section 5.4.4.4). 	Assuming that the 

bridge and pyramid modes can be dealt - with independently the new frequencies 

appearing in the spectra will simply be those of anAs 2S2  'molecule'. 

The simplest case is a linear bridge. Frequency formulae for a 

linear X 
2  Y  2 

 molecule of Dh  symmetry have been derived by Herzberg (64)  

on the basis of a general valence force field and are given in Equations 

A.8 - A.12. 	Figure 5.53 shows the form of this molecule and its five 

normal modes of vibration, only three of which are Raman active. As at 



Figure 5.53 

The linear symmetric X 
2  Y  2 

 molecule and its normal modes of vibration. 

Figure 5.54 

The non-planar X 
2  Y  2 

 molecule of 02  symmetry and its normal modes of vibration. 
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least four, and possibly five, new bands appear in the S-rich Raman 

spectra . a linear As 2 S 2  'molecule' cannot account for all the spectral 

changes unless the molecular selection rules break down and allow the 

two Raman-forbidden bands to appear. 

The calculation for the frequencies of the linear As 2S 2  'molecule' 

using Equations A.8 - A.12 was set up in a computer program so that a 

set of frequencies could readily be generated for any combination of 

values of Mx,  M. 	k_y  and kit . The effect of changes in these 

parameters on the frequencies was thus easy to investigate. The program 

was tested with data on linear X 2Y 2  molecules taken from Herzberg. 

The bond lengths and bond-stretching force constants for the As 2 S2  

'molecule' are expected to be similar to those in other compounds con-

taiqing As—S and S—S bonds and the atomic masses are, of course, well 

known. 	 - 

Equation A.8 shows that the frequency, V2 , of the symmetric Y—Y 

bond-stretching mode which is Raman active, depends only on the atomic 

masses, the bond-stretching force constants and the interaction constant 

I or the adjacent bonds. 	When 'V2  was calculated for various sets of 

potential constants, keeping the accurately known atomic masses fixed, it 

was found that the value of 492 cm -1  could only be achieved using an 

exceptionally small value of the S—S bond-stretching force constant, 

k c _ ç , or an exceptionally large interaction constant. 	kS-  is usually 
in the range 2.35 - 2.60 md/9 and interaction constantsrarely exceed - 

one tenth of the average of the bond-stretching force constants of a 

molecule 	Table 5.4, which gives 'V2  for various sets of potential 

constants, shows that, for a simple valence force field (kint 

using kAs 	1.35 md/R - the value derived from the molecular model 

analysis of a-As40S50  (see Section 5.4.5) - and kss = 2.5 md/ yields 

a value of 590 cm for )4, which as much too large. 	Frequencies 	
1 

obtained from a simple valence force field treatment should be within 



ks_s kAs s k. t  

2.50 	- 1.35 0 585 

2.50 1.35 0.45 492 

1.50 1.35 0 490 

2.10 1.35 0.25 495 

2.50 0 o 514 

All frequencies and force constants are in units 
C 

of cm and md/A respectively. 

Table 5.4 The symmetric 5—S bond-stretching frequency,)),, of the 

linear As 2S2  'molecule' for various values of the force 

constants affecting it. 
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10% of the observed trequencies. 	In view of this it seems unlikely 

that the As 2 S 2  link is linear. 	 - 

The more general and complicated case is that of the non-linear, 

non-planar X 2  Y  2 
 molecule shown in Figure 5.54. This molecule is of C 2  

symmetry and has six normal modes of vibration, which are also shown in 

the figure. The fact that all six of these modes are Raman active is 

not inconsistent with the observation of only five new bands since the 

frequency of the torsional mode is expected to be c 100 cm -1  and would 

thus be difficult to detect in the glass spectra. The five new bands 

occur beyond 170 cm 1. - 

The six vibrational frequencies of the As 2S 2  molecule of C 2  symmetry 

(74,101) 
can be calculated using the FG matrix method 	, in which the 

frequencies, ', are found by solving the secular equation 

FG - IX zQ 

where F is the matrix of potential constants, G is the inverse kinetic 

energy matrix, I is the identity matrix and 	z 42 \J., the X being 

the roots of the equation. The general valence force field and C matrix 

elements for this molecule, expressed with respect to its valence coor-

dinates, are given in References 99 and 100 respectively (the G matrix 

elements are listed in Appendix II). Generally it is more convenient 

to express Fand C in terms of symmetry coordinates: normalised and - 

orthogonal symmetry coordinates for this molecule are also given in 

Reference 99. 

Once again; the calculation was set up in a computer program so that 

the frequencies could be readily generated for any set of values of the 

input parameters. The program was tested with eighteen sets of data on 

various X 
2  Y  2 

 molecules of C 2  symmetry and gave satisfactory results in 

each case. 	The test molecules were H 0(99,102,103) D202(J02lO3), 

(105) 

	

(102,104,105) s 2Ô12 0°2 '104 '105 '
106)  , 3e 28r2 	, Se2Cl (105) S 2Br 2   2 2 



Observed 
freqs. & 
polns. 

Para- 
meter 

Value 
1 

% Diff. 
in 

freqs. 

Value 
2 

% Diff. 
in 

freqs. 

Value 
3 

% Diff. 
in 

freqs. 

Value 
4 

% Diff. 
in 

freqs. 

2.5 2.5 2.5 2.37 

1.35 1.35 1.35 1.33 

koL  0.2 0.18 0.18 0.18 

ko 0.05 0.16 0.16 0.16 

k DoL 
0 0 0.15 0.15 

90 108 108 108 

90 102 102 102 

492p 526 7 530 8 509 3 496 1 

.v350 p? V2  336 - 353 - 339 - 337 -. 

208p 03  152 27 211 1 213 2 212 2 

- 60 - 90 - 92 - 92 - 

325dp? V 340 5 330 2 330 2 328 1 

176dp7 1)5  171 3 177 1 	- 177 1 177 1 

p - polarised; dp - depolarised. 	 -1 
All frequencies and force constants are in units of cm and md/R respectively; 
and 'are in degrees. 

Table 5.5 	Parameter values and frequencies of the As 2S 2  'molecule' of 02 

symmetry. 	The differences between the observed and calculated 

frequencies expressed as a percentage of the former are also given. 



Molecule S—S bond 

length () 

Bond angle 

(degrees) 

Dihedral angle 

(degrees) 

S2F2(105) 1.888 108.3 87.9 

- 32012 1.931 108.2 84.8 

52&12 1.98 106 83 

S 8  2.048 107.9 98.9 

(8092) 2.04 106 95 

Table 5.6 Geometrical parameters of S.,  S and some X 2  Y  2 
 molecules 

containing S—S bonds. 
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F (105) s H (102,105) and D2S (107) 
S 2 2 	' 2 2 	. 	The program was also suc- 

cessful in the special case of linear X 
2  Y  2 

 molecules ( cc 1800) e.g. 

02H2 ( 64 ) .  

The parameters involved in the calculation are the atomic masses 

(M 
A.

and N), the bond lengths and bond angles (D, d, R  and 0 ) the 
principal force constants (kD, k  k and k 

0 
 ) and the interaction constants 

(kDd. kD etc.), of which there are nine. NA5  and M are accurately 

known and the bond lengths are expected to be close to their usual values. 

The bond-stretching force constants are also expected to be close to 

their values in other compounds and many of the interaction constants will 

have little effect on the frequencies, so the only unknowns are G(, çb, k, 

k and the few significant interaction constants. However, the possible 

range of values for O(  and can be estimated from the other X 2  Y  2 
 molecules 

and •setting all the interaction constants equal to zero (simple valence 

force field case) should still yield frequencies within 10% of those 

observed. Bond-bending force constants are generally about a factor of 

0.1 smaller than the corresponding stretching force constants 	and 

hence a rough estimate of k and k#  can be obtained. 

The first step in finding the As 2S2  frequencies was to calculate them 

approximately using a set of trial values for the parameters and to observe 

how they were affected by changes in these parameters. The trial values 

and corresponding frequencies are given in column 1 of Table 5.5. Each 

parameter in turn was varied while the others were kept fixed at their - 

initial values and the new frequencies generated were compared with the 

original- set. 	It will be seen from column 1 of Table 5.5 that these first 

approximate frequencies follow the same pattern as the observed bands, that 

is one occurs at r500 cm 1 , two occur in the region N300 - 1400 cm-1  and 

two occur in the region'100 - 200 cm-1
. 	The torsional mode, V4 , as 

expected, occurs below 100 cm -1 . 	It was found that this pattern was 

preserved even for large deviations in the parameters from their trial 
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values. k and k0  were varied between 0.05 and 0.4 md/k and the inter-

action constants between —0.2 and 0.2 md/s but the same distribution of 

frequencies was always produced. 

The symmetric-stretch frequency, 'Vi,  was found to be significantly 

influenced only by kD, kD and O(. . 	Since k   is expected to be "'2.5 md/ 

and kDx r 0 in the simple valence force field case only t can be varied 

to bring 
l 
 within 10% of 492 cm -1 . As çk was increased from 0°  

decreased but reached a minimum at R 920 and then started to increase 

with increasing &( . The six frequencies changed very little as 	was 

varied throughout the range 92 18° . 	The minimum value of 'V1  for 

k  r 2.5 md/R was 526 cm 1 , which is within 10% of 492 cm-1. 	- remained 

within 10% of 492 cm' for all values of CC between 66 and 119 ° , which 

covers the range of values for 6k observed in other compounds with S—S 

bonds (see Table 5.6). 	Hence this bent As 2S 2  bridge can certainly account 

for the 492 cm- 
1  frequency. 	can be taken as 1080,  the average of the 

values given in Table 5.6. 

The six frequencies were found to be re1atiely insensitive to the 

dihedral angle 	. Varying 	throughout the range 90 25 had almost 

no effect on iL, V and 	and did not alter any other frequency by 

more than 8% of its original value. The values of 	shown in Table 5.6 

lie in the range 90 ± 10° . 	Assuming the dihedral angle of the As 2 5 2  

'molecule' is in the range 90 150, any error in the value chosen for it 

will not affect V13  V and 
'6 

 and will lead to an error in the other 

frequencies of at most '4%. 	Accordingly, 	can be taken as 102. 	This 

value is consistent with the fact that there is no change in the geometry 

of the AsS 3  pyramids and As 2S bridges with increasing S content, for 102 °  

is the value 	must have in order that the As—As spacing in the As 2S2  

bridge is the same as that for the As 2S bridge. 

The only principal force constants that affected V6 , the antisymmetric 

bending frequency, were k and kd. 	116 was influenced by certain 
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interaction constants but for the simple valence case these are taken 

to be zero. 	varies slowly with LX over the range 115 to 1000  and, a's 

was mentioned above, is almost completely independent of 	. 	Since k  

and 0 have been fixed, a more exact value for k  can be found by fitting 

to the experimental value of 176 cm 1 . 	It was found that 116 
was 

within 10% of 176 cm-1  for all values of k between 0.14 and 0.22 md/R so 

that as k is expected to lie in the range 0.135 to 0.25 md/R an exact 

value of k  is not required in order to account for this frequency on the 

simple valence force field picture. 	However, 'V.a  took the value 

176 	
-1  for k = 0.18 md/.. 

The final parameter needed for the simple valence force field 

calculation is k0. 	Only 1 and, of course, the torsional frequency 

were affected by 1c; the other frequencies wer3 completely independent 

of it. 	A more exact value for k 0  can thus be obtained by fitting 

to its observed value of 208 cm 1 . The 208 cm 1  band can be assigned 

to the ') mode on the basis of its polarisation properties since it 

corresponds to a sharp dip in the depolarisation spectra and thus arises 

from a symmetric vibration. 	If the torsional frequency had been detected 

it would have provided a check on this process. 	It was found on inserting 

the revised values of the other parameters that V was within 10% of 

208 cm-1  for all values of k#  between 0.11 and 0.2 md/k. 	The expected 

value for ko is NO.14 md/R and the value which makes 	208 cm) is 

0.16 md/R. 

The revised values of the parameters for the simple valence force 

field case, together with the new calculated frequencies, are given in 

column 2 of Table 5.5. 	The agreement with experiment is reasonable 

The largest percentage deviation from the measured values is in 'l 
 and 

is 8%. lCD  is known and any change in && will increase l 
 so only k DA 

can be altered to bring l closer to 492 cm -1 since none of the ,other 

parameters significantly affect this frequency. 	A value of 0.15 md/s 
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for k   yields a value of 509 cm -1  for V1 . 	This value for k 1  is 

comparable with values for k   observed in other X 2  Y  2  molecules. 	It 

was found that k DDL  had no effect on the two antisymmetric frequencies 

and only slightly influenced V21  '93 and 	The final set of 

parameter values used and the corresponding frequencies are given in 

column 3 of Table 5.5. 	The parameter values given in column 4 of 

this table were obtained by adjusting those in column 3 to give the 

best fit to the observed frequencies. 

The spectrum of the As 2 S 2  'molecule' must not only match the 

observed bands in frequency but must also have the correct polarisation 

properties. 	The three observable symmetric modes, l)1 'V2 and VV  
are expected to give rise to dips in the depolarisation spectra while 

the two antisymmetric modes, 'V! and V51 should correspond to raised 

regions. 	Figure 5.49 shows that dips do occur in the depolarisation 

spectra at 211 cm' C 	and "492 cm '  C 'Vi ) but that no new structure 

occurs at the other frequencies. 	In Section 5.5.1.3 it was pointed 

out that new Raman bands which overlap existing ones and have similar 

depolarisation ratios to these will not give rise to changes in the 

depolarisation spectra. 	It is therefore possible that the absence of 

new structure at 176, 325 and 350 cm' in the S-rich depolarisation 

spectra is due to the fact that these three As 25 2  bands have similar 

depolarisation ratios to the three pyramid and As 25 bands to which they 

are in proximity, viz those at 185, 315 and 367 cm -1 . 	Ifthis is the 

case then the observed bands at 176, 325 and '350 cm -1  do have the 

required polarisation properties since the a-As40560  bands at 315 and 

367 cm-1  arise from antisymmetric vibrations while that at 185 cm -1 is 

due to a symmetric mode. 

Alternatively, the weakness of these three As 2S2  bands compared 

with the pyramid and As 25 bands they overlap may mean their contribution 

to the depolarisation ratio is swamped by that of the latter. 	It is 



perhaps significant that the pronounced changes that do occur in 

the depolarisation spectra are in regions of low Raman signal. 	If 

the polarisation states of the growing bands at 176, 325 and 350 cm -1  

are being masked then no definite conclusions on the presence of the 

As2S2  bridge can be drawn from the depolarisation spectra. 

5.5.2 	The compositions As 35 S65  - As 5 S95  

5.5.2.1 The polarisation-unanalysed spectra 

Figure 5.55 shows the polarisation-unanalysed Raman spectra of 

the four compositions studied in the range As28.6 S 71.4 - As 5 S95 ; for 

the purpose of comparison the corresponding spectra of a-As 40560 , As 35S55  

and powdered ct-s 8  are also shown. The spectra have been vertically 

displaced for clarity and have been scaled in such a way that the peak 

intensity of the low-frequency band in each of the glass spectra is 

equal to the intensity of the 156 cm -1  band in the 	59  spectrum. 

Figure 5.56 shows the same set of glass spectra superimposed with the 

VI-S 8  spectrum below. 	The results are in good agreement with those 

2) obtained by Ward (1, 2). 	Figure 5.57 shows the reduced spectra for 

these six glasses. 	For clarity the As 28 6 S714  spectrum has been 

arbitrarily scaled to separate it more from the As 25 575  spectrum. 

The spectral changes that occur as the S content is increased 

beyond 65 at.% consist of the steady growth of sharp peaks at frequencies 

characteris -ticof S8  rings and the transformation and disappearance of 

the 300 - 400 cm band. 

5.5.2.2 Polarisation measurements 

The VV- and VH-polarised Raman spectra for the compositions 

As28.6 S 71.4 - As 5 S95  are shown, together with the corresponding spectra 

of a-As40S60  and As 35 555 , in Figures 5.58 and 5.59 respectively. 	The 

spectra have been vertically displaced for clarity and have been normalised 



Figure 5.55 

The polarisation-unanalysed Raman spectra of £(S8  and compositions 

in the range A540S50  - As 5S95 . 

Spectrum Composition 

A 	- A55Sg5  

B 	- As15S85  

• 	 C 	- As25 S75  

D 	- As28 5 S71 (As 2S 5 ) 

E 	- As35S55  

F 	- As40S50  

Figure 5.56 

The glass spectra of Figure 5.55 superimposed and the t(-S 8  spectrum. 
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F 

Figure 5.57 

The reduced spectra corresponding to the glass spectra of Figure 5.56. 
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by the peak intensities of the low-frequency bands. 	Figure 5.60 shows 

the depolarisation spectra for these six compositions. No polarisation 

data on these S-rich glasses has previously been reported, with the 

exception of Ward's measurements on As 5 S95  at elevated temperatures(2). 

The spectral changes that occur in the VV and VII spectra with 

increasing S content ane essentially the same as those outlined above 

for the polarisation-unanalysed data - S bands grow steadily while the 

300 - 400 cm band changes shape and gradually disappears. Corresponding 

VV and VII spectra are not, of course, identical since the various spectral 

features are polarised to different extents and this is reflected in the 

depolarisation spectra. 

In addition to the appearance of sharp structure due to S rings, 

the following changes occur in the depolarisation spectra of Figure 5.60 

-1 . 
as the S content increases: the dip at 106 cm 	n the a-As40560  spectrum 

moves to higher frequencies, there is an increase in the depolarisation 

ratio over the ranges '-'170 - 210 cm -1  and 220 - 300 cm 1 , and a change in the 

shape of the 340 - 400 cm -1  trough 

5.5.2.3 Discussion 

It is clear from Figure 5.55 that the S component of the glass 

spectra does not exactly match the OS 3  spectrum. 	Of the G&-S 8  lattice 

modes only the 86 cm- 
1  band stands out from the low-frequency background 

and even this band is not resolved and is evident only in the As 15 585  and 

As 5595  spectra. 	Also, in the glass spectra most of the S bands are 

broader than their counterparts in the -S spectrum; the 472 cm- 
I  band 

has a pronounced shoulder at 461 cm -1  while the -S feature at 217 cm -1  

is not resolved. 	The ratio of the peak intensities of the S bands in 

the glass spectra is different from that of the GkcS 8  lines as well. 	In 

fact, the S component of the glass spectra resembles more the Raman 

spectrum of liquid sulphur than the %-S spectrum. 	Ward 
(2)  has recorded 



Figure 5.58 

The VV-polarised Raman spectra of compositions in the range 

As40S50  - As 5 S95 . 	The frequencies of the bands are identical 

with those of Figure 5.55. 

Spectrum Composition 

A 	- As5S95  

B 	- As15S85  

C 	- As25S75  

D 	- As28.6 S 71 	(As 2S5 ) 

E 	- As35S65  

F 	- As40S60  

r 

Figure 5.59 

The VH-polarised Raman spectra corresponding to the compositions of 

Figure 5.58. 	The frequencies of the bands are identical with those 

of Figure 5.55. 	The spectra are labelled as in Figure 5.58. 

- 	Figure 5.60 

The depolarisation spectra corresponding to the compositions of 

Figure 5.58 (A - F as in Figure 5.58). 
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the Raman spectrum of liquid sulphur at various temperatures and his 

results show that the bands in the crystal and liquid spectra differ 

in the same way as the S bands in the crystal and the As-S glasses: 

in the spectrum of liquid S 8 the bands are broader than them-S 8  

counterparts and the external bands are absent or barely resolved. 

The intensity ratio for the lines in the liquid spectrum also differs 

from that for the R-5 8  bands. A particularly noteworthy similarity 

between the liquid sulphur and the glass spectra is the behaviour of 

the weak S band at 232 cm'. 	In Ward's data
(2)  this band occurs at 

247 cm- 
1  in 	at 25°  C and shifts steadily to lower frequencies as 

the temperature increases. Just above the melting point it is at 

243 cm 1  while in the liquid at 213
0  C it is at 237 cm 1 . 	In the case 

of the As-S glasses the band occurs at 240 cm-1  in As5S 95  and shifts 

steadily to lower frequencies as the As content increases until at the 

composition As 35 S65  it is at 232 cm ' . As this band occurs in a region 

where the Raman signal from the As-S network is weak its shift cannot be 

attributed to changes in the background on which it is superimposed. 

As Ward points out, these temperature-dependent changes are 

particularly marked in the 473 cm- 1 band, which grows relative to the 

221 and 156 cm-1  bands and broadens considerably as the temperature 

increases, developing a wing on its low-frequency side. 	The "472 cm-1  

bands of the liquid and As-S glass spectra are very similar. 	Ward 

suggests that this temperature-induced broadening and growth of the 

473 cm-1  band is due to either the formation of polymeric species, 5n' 

or the appearance of Raman-forbidden S fundamentals near this frequency. 

From theoretical considerations 2), Raman-active fundamentals of S are 

expected at 450 and 420 cm -1 and so could account for the very broad 

wing on the 473 cm' band in the liquid sulphur spectra but there is 

nothing significant in the glass spectra at these frequencies. 	The 

472 cm-1  S band of the As-S spectra barely extends to 450 cm- 
1  and there 
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is no feature at all at 420 cm -1  The Raman spectra of the various 

polymeric forms of sulphur all have a band of strong to medium intensity 

in the region 456 - 466 cm 1 , which does span the frequency range over 

which the pronounced shoulder on the 472 cm -1  band in the glass spectra 

occurs. 	If, however, the 461 cm -1  shoulder is due to Sn  chains one 

would expect to see bands in the glass spectra at -'420 and 'v275 cm -1  

since these are also present in the polymeric S spectra and are character-

istic of S  chains. Bands at 420 and 275 cm-1  would be easily detected 

since the Raman signal due to other bands is very weak in these regions 

but no features are observed at these frequencies. 

The alternative explanation of the temperature-dependent broadening 

and growth of the 473 cm-1  band is that the Raman-forbidden S 
8 
 ring 

fundamental that occurs in the region N465 - 471 cm -1 (2,29)
becomes Raman 

active as a result of the thermally induced distortion of the S ring 

symmetry. 	If the S 
8  rings in the As-S glasses are also distorted, in 

keeping with the disordered nature of these materials, then this explan-

ation may also account for the wing on the 472 cm band in the glass 

spectra. 

Thus the resemblance of the S 
8  component of the glass spectra to the 

spectrum of liquid sulphur suggests that the S rings in the sulphur 

regions inside the glasses do not form regular arrays but are randomly 

arranged as in liquid sulphur. Further, the shoulder at 461 cm -1  in 

the glass spectra suggests that the S rings themselves may be distorted - 

in the glasses. 

It is seen in Figure 5.55 that the spectral signature of S is 

certainly present in all spectra more S-rich than As 28 
28.6 71.4 (As  2 S 5 ). 

This conflicts with the results of the dissolution experiments of 

Tsuchihashi and Kawamoto. (81) which suggest. that 
s8  rings are present 

only in the glasses more S-rich than As 20S80 . As was mentioned in 

Section 5.5.1.5.2, the inability of their experiments to detect S 8  rings 
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in the glasses with less than 80 at.% S is probably due to the rings 

being trapped in the insoluble As-S matrix. 	It was shown in Section 

5.5.1.5.2 that the rings are present in glasses of 63 at.% S and possibly. 

even in glasses of 61 at.% S. 

It is also clear from Figure 5.55 that the S bands rapidly over-. 

take and dwarf the As—S—S--As bridge features as the S content is increased. 

The As 2 S 2  features are the first to appear and in the As 35S65  spectrum 

they are larger than the S bands. 	However, in the As28.6 
 S 
71.4 

 spectrum 

the S bands are well established and exceed the chain features. 

Figure 5.61 compares the As 2S 5  difference spectrum (obtained by subtracting 

the reduced a-As 140S60  spectrum from the basewidth-normalised, reduced As 2S5  

spectrum) with corresponding spectra for the compositions As40S60  - As 35S65 . 

The features marked S are the S bands. 	It seems that the additional 

sulphur in the glasses more S-rich than As 30S70  goes mainly into producing 

-1 
rings, though the presence of a feature at 492 cm in each of the glass 

spectra indicates that As—S--S—As bridges are still being formed in these 

-1 
glasses, as would be expected. 	The 492 cm feature is very weak in the 

As 5 S95  spectrum but is just visible in Figure 5.55 and in Ward's spectrum 

of this composition. 

As the 260 - 420 cm-1  region of the S spectrum is completely devoid 

of structure the changes in the band that occurs in this region of the glass 

spectra cannot be attributed to the appearance of S 8 rings. . Other sulphur 

forms or As-S monomers are not present so the .changes in this band must be 

due to changes in the As-S network i.e. changes in the structure or relative 

populations of the various 'molecules'. 

In Section 5.5.1.5.4 it was shown that the As 2 S 2  'molecule' is expected 

to give rise to two bands in the 300 - 400 cm-1  region. 	The asymmetric 

300 - 400 cm -1  peak in the difference spectra (see Figure 5.33) was 

attributed to these bands and yielded a frequency of 325 cm-1  for one of 

them. 	As the S content of the glasses increases it might reasonably be 



Figure 5.61 

The difference spectrum of vitreous As 2S 5 
 (As 28.6

S  71.4) obtained 

by subtracting the reduced a-As40S60  spectrum from the reduced 

As 2 S5  spectrum. The five lower spectra are the difference spectra 

of Figure 5.35. The features marked S are characteristic of the 

ring. 



DiFFerence Spectra For the S-Rich Glasses 

20 

0 
0 
C 
0 
C. 
0 

(I- 

0 

6 15 
>' 

Cl) 
C 
0 

-I- 

C 

0 

>c10 
tjJ 
-J 
CE 
C.) 

5 

335 

S 
472 

S 
461 

492 

S 	
II 

218 	 I  
S 

233 	
S 

210 	 441 

151 	

I 

176 	

I 

I 	i 

0 	60 	120 150 2'IU JUU ibU 'IZU IOU 

Frequency [onC'] ---> 



173 

expected that more and more of the As 2S links would be replaced by the 

As2 S 2  chains so that the number of the latter would increase relative 

to the number of pyramids. 	If this were the case, the Raman intensity 

due to the As 2S 2  'molecules' would also increase relative to that due 

to the pyramids and one might expect any As2S2  bands initially swamped 

by other features to appear for large S concentrations. The fact that 

the ratio of the intensities at -'338 cm-1  and 492 cm-1  (the highest As2S2  

frequency) increases as the S content is increased supports this supposition 

and it is possible that the new structure appearing on the main band at 

334 and '360 cm-1  is due to the emergence of the two chain bands. In the 

limiting situation every AsS 3  pyramid will be coupled via As—S--S—As links 

so that the ratio of pyramids to As 2S2  'molecules' will be 2 : 3 and the 

As2S component of the spectrum will have been completely replaced. 

Only the 221 and 473 cm -1  bands of U-S 8  arise from totally symmetric 

vibrations and are polarised. 	Figure 5.60 shows that the glass-spectra 

bands attributed to S have the correct polarisation properties, for of 

the sharp features only those at 218 and 472 cm -1 correspond to pronounced. 

dips in the depolarisation spectra. Liquid sulphur exhibits similar 

polarisation properties to Ck-S 8 . 	The 400-500 cm-1  region of the liquid 

sulphur spectrum is strongly polarised and its polarisation is virtually 

independent of temperature which suggests that any new features growing 

in this range with increasing temperature must also arise from totally 

symmetric vibrations
(2) According toward this supports the presence - 

of S chains in the liquid since the N450 cm -1 vibration of such species 

is totally symmetric. 	In the case of the S component of the glass 

spectra the 461 cm -1  shoulder is apparent only in the spectra of the 

compositions 
As28.6  S 71.4 - As

5 S 95  and Figure 5.60 shows that in the large 

dip that occurs over the 450 - 500 cm-1  region of the depolarisation 

spectra of these four glasses there is a small upward kink at '465 cm-1 . 

This small kink would arise if the broad, strongly polarised band at 
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472 cm- 
1  overlapped a weaker depolarised band at 465 cm- 

1 
 so the 

shoulder at 461 cm-1  is not necessarily due to a totally symmetric vib-

ration. 	In their Raman study of polymerisation in the glasses As 15S85  

and As 5 S95  Ward and Myers (26) showed that 'free' S   chains - i.e. chains 

not incorporated in the As-S network - did not occur below 1,11200  C. 	If, 

as was suggested in Section 5.5.1.5.4, the Raman spectrum of S (n>2) 

chains between As atoms in the network is similar to that of the 'free' 

chains then the results of Ward and Myers indicate that at room temp- 

erature S chains are not present in the network either. 	Thus it seems 

more likely that the 461 cm-1  shoulder is due to the activation of a 

Raman-forbiddn 8 fundamental as a result of disorder-induced distortion 

of the S ringlsymthetry. 

The rise iii the depolarisation ratio over the region 220 - 300 cm
-1  

is initially greatest near 233 cm 1  and is due to the disappearance of 

As—As bonds and to the growth of a depolarised S band. 	However, for 

large S concentrations the rise occurs mainly at the high-frequency end 

of this range and is due to the weakness of the Raman signal in this region 

relative to the background. 	The depolarisation ratio rises towards that 

of the depolafised stray-light background, just as it does in the region 

above 500 cm -1  where there is also little Raman signal. 	The increase 

in the depolarisation ratio over the range 170 - 210 cm-1  may be attribut-

able to the appearance of the depolarised 176 cm
-.l  band of the As 2S2  

'molecule' (see Section 5.5.1.5.4). 

The 300 to 400 cm -1  trough changes shape considerably with increasing 

S concentration: the minimum at 400 cm -1  in the a-As40S50  spectrum shifts 

to lower frequencies and becomes well resolved from the N338 cm-1  dip. 

The shifts in the 338 cm- 
1  and 400 cm- 

1 
 dips suggest at first that 

geometrical changes may be taking place in the 'molecules'. 	As the 

'338 cm-1' dip does not shift significantly no pronounced geometrical 

changes can be occurring in the AsS 3  pyramid and the shifting 400 cm- 1 
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dip must arise from some other structural feature. 	In Section 5.4.5 it 

was suggested that both the 395 and 106 cm' vibrations were associated 

with the As 25 'molecule'. 	As the ratio of As 2S links to AsS 3  pyramids 

cannot increase beyond its value in a-As40S60 , that is approximately 3 : 2, 

the "360 cm-1  feature that .appears in these very S-rich Raman spectra 

cannot be attributed to these links since it grows relative to the pyramid 

bands. 	It seems, therefore, that these shifts cannot be attributed to 

geometrical changes. 	 - 

The shift of the "'106 cm- 1 dip in the a-As 40560  depolarisation spectrum 

to higher frequencies with increasing S content may be due to a decrease 

in the layer separation (8J ) or  simply to the increase in the relative 

intensity of the depolarised boson peak. 

5.6 	The arsenic-rich glasses: As 40S60  r- As45 S 5  

5.6.1 	The polarisation-unanalysed spectra 

Figure 5.62 shows the polarisation-unanalysed Raman spectra of the 

compositions As40S60  - As45 S55 . 	They have been normalised to the 

intensity of the v338 cm -1  band and are shown displaced above one another. 

The spectral changes that occur with increasing As content are obvious and 

consist of the rapid growth of numerous sharp features. 	Figure 5.63 

shows a similar set of spectra extended vertically to emphasise these 

features, which are visible even in the As41S59  spectrum. 	(Irregularities 

in the relative intensities of the sharp bands will be discussed in Section 

5.7.) 	The corresponding reduced spectra are shown in Figure 5.64 and 

illustrate one of the disadvantages of such spectra, namely the possibility 

of losing information at low frequencies. In this case the structure at 

135, 146 and 167 cm' is barely visible for the compositions As 41S59  - 

As43557 . 

The sharp features grow very rapidly as the As content is increased, 

the first to appear being the bands at 187, 222 and 233 cm -1
. 
	Comparison 



Figures 5.62 and 5.63 

The polarisation-unanalysed Raman spectra of the compositions 

As40S60  - As 5 S55 . 

Spectrum Composition 

A 	- As45555  

B 	- As44S56  

C 	- As 3S57  

D 	- As42S58 	
I 

£ 	- As41S59  

F 	- As40S60 	- 

Figure 5.64 

The reduced spectra corresponding to those of Figure 5.63 (A - F as above). 

Figure 5.65 

Raman spectra of As43S571  the most As-rich transparent glass studied. 

Spectrum A was recorded in the transmission mode and B by back reflection. 
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of Figure 5.62 with Ward's data(l)  suggests that the pronounced features 

at these frequencies in his a_As1+0S60  spectrum are due to an excess of 

Z. 	arsenic in his sample rather than to plasma lines. 

The use of the back-reflection scattering geometry in the case of the 

two opaque compositions, As 44S 55  and As45S55 , has no significant effect on 

their spectra. 	Figure 5.65 shows two spectra obtained for the most As-rich 

transparent composition studied, As43557 , spectrum A being recorded in the 

back-reflection mode and spectrum B in the transmission mode. 	The spectra 

are normalised to the intensity of the 343 cm- 
1  peak and are virtually 

identical, apart from the divergence in intensities on either side of the 

normalisation frequency. 	This divergence was discussed in Section 4.3.4 

and arises from the increased absorption of the scattered light in the 

transmission mode. 

As the spectra of the As-rich glasses and the As-S crystals have no 

first-order bands beyond 450 cm- 
1  the region above this frequency is omitted 

in most of the remaining figures in this section. 

5.6.2 	Polarisation measurements 

The observed VV-polarised Raman spectra of the transparent As-rich 

glasses are shown in Figure 5.66, along with the corresponding spectrum of 

a-As40S60  for comparison. 	The spectra, which are normalised to peak 

intensity at r339  cm 1 , are displaced vertically for clarity. 	As in the 

case of the S-rich glasses, the 'N spectra are very similar to their 

polarisation-unanalysed cou aterparts and yield no further information. 

The VH spectra obtained for these four compositions are shown in 

Figure 5.67 and differ considerably from the VV and polarisation-unanalysed 

spectra. 	They have been normalised to peak intensity at 315 cm' and 

are shown displaced above one another. 	The VH spectra differ significantly 

from the other two types in three respects: the shape of the 300 - 400 cm -1  - 

band, the intensity of this band relative to the low-frequency peak and the 



Fig' are 5.66 

The VV-polarised Raman spectra of the compositions As40S60  - As43S 57 , 

Spectrum Composition 

A 
	- As43S57  

B 
	

As42558  - 

C 	- As41S59  

D 	- As40S60  

Figure 5.67 

The VH-polarised Raman spectra corresponding to the compositions in 

Figure 5.66 (A - D as above). 

Figure 5.68 

The depolarisation spectra corresponding to the compositions in 

Figure 5.66 (A - D as above). 
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profile over the 200 - 250 cm 1  region. 

As the As content increases, the peak at 315 cm -1  in the a-As40S60  

VH spectrum is gradually obscured by the emergence of an intense band 

at 343 cm-1  and is present only as a square shoulder in the As 43S57  

spectrum. 	However, the 315 cm 1  vibration is clearly present in all 

these glasses. 	Also, with increasing As content the low-frequency peak, 

which is much stronger than the 300 - 400 cm' band, shifts towards the 

origin. 	The 222 and 233 cm-1  bands are considerably weaker in the VH 

spectra relative to the other bands. 

The depolarisation spectra for these compositions are shown, vertically 

displaced, in Figure 5.68. 	All the features of the a-As 40S60  depolar- 

isation spectrum are preèent in the As-rich spectra, which have essentially 

the same shape as the a-As 40S60  spectrum but have, superimposed on it, 

numerous sharp dips and peaks at frequencies corresponding to the sharp 

structure in the As-rich Raman spectra. The peaks, which correspond to 

depolarised bands, emerge at 135, 146, 166 and 190 cm- I while the dips, 

which arise from polarised bands, appear at 211, 222, 235, 273 and 361 cm 

It will be shown in Section 5.6.3 that most of these sharp bands are due 

to the presence of the 7 polymorph of c-As 4S4  in the glass; these results 

are particularly interesting because none of the published Raman studies 

of c_As4S4(1291014)  contain polarisation data due to the fact that the 

samples used in each case were not good single crystals. 	The polarisation 

properties of f-A54S4 , however, are clearly apparent in Figure 5.68. 

Polarisation measurements can only be made on powdered or polycrystalline 

samples by immersing them in a medium of similar refractive index, otherwise 

(111,112) 
they tend to depolarise the incident beam 	. 	The refractive index 

of the glassy matrix must be sufficiently well matched to that of the As 4S4  

crystallites that they do not depolarise the beam. 

These polarisation results are in agreement with Solin's polarisation 

(45)  
data on As2S 3  vapour 	, which is thought to contain some of the monomer 
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species present in the glasses, in particular the As 4S4  molecule 

(see Section 5.6.3). 

The a-As40S50  features, consisting of the dips atv106, 338 and 

400 cm 1 , the hump at 160 cm-1  and the shoulder at 315 cm 1 , are not 

only present in the As-rich spectra but also do not shift in frequency 

as the As content increases. The weak feature at 272 cm 
-1  inthe Raman 

spectra of the compositions As 42558  and As43S57  is more obvious in the 

depolarisation spectra. 

5.6.3 	Discussion 

The glass-forming region of the As-S system is known to extend only 

to .43 at.% As 
(108  T110

. 	For compositions more As-rich than As 43S57  

crystal-glass phase separation occurs (109) and this accounts for the 

change in transparency, colour and texture of these materials that was 

mentioned earlier (Section 4.2.2.1). 	In their study of the thermal 

properties of As-S glasses, Myers and Felty 
(110) attribute the inability 

to quench such glasses with more than 43, at.% As to melting behaviour. - 

They suggest that the corresponding liquids are composed mainly of small 

molecules, such as As 4 S4 , which readily order into a crystal lattice as 

the melt is cooled. 	Thus addition of As to the As 40560  composition 

results in a break-down of the continuity of the As-S network and the 

formation of small molecular species. Ward, who has also recorded the 

Raman spectra of As-rich compositions in this sys tem(l) , compares his 

data with the Raman spectrum of crystalline As 4 54  and concludes that the 

sharp structure which grows with increasing As content arises from the 

appearance of As4S4  molecules in these materials. 	The spectra of 

Figure 5.62 are in good agreement with Ward's results but our inter-

pretation of them differs slightly from his, for on closer inspection 

the sharp structure is seen to bear only a general resemblance to his 

c-As 4 S4  spectrum. 	In particular, there are some lines in the glass 
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spectra that have no counterparts in the c-As 4S spectrum. 

The presence of the numerous sharp features makes it difficult to 

observe any spectral changes caused by structural changes in the As-S 

network, which is responsible for the continuous background in the 

spectra. 	Those lines of the glass spectra that are not associated 

with the As4S4  molecule cannot be unambiguously attributed to a change 

in the network structure since they might arise from the presence of 

other As-S monomers in the glass. 	Accordingly, the first step in the 

analysis of the glass spectra was to compare them with the vibrational 

spectra of the various As-S species in order to distinguish the monomer 

bands from those due to the network. There are, as was shown in 

Section 2.2, numerous molecular species in the As-S system, some only 

recently discovered, and not all of these have had their vibrational 

spectra recorded. 	Samples of as many of these molecular forms as 

possible were obtained in the present study and their Raman spectra 

measured. 

Figures 5.69 to 5.71 compare the spectra of a-As and some As-S 

compounds with the As 5 S 55  spectrum, in which the sharp features, are 

clearest. 	It is obvious from Figure 5.69 that c-As 2 5 3  is not present 

in significant amounts in the As-rich glasses for many of its strongest 

bands (e.g. those at 292 and 310 cm -1  ) are absent from the glass spectrum. 

The spectrum of &.-As 4S4  also shown in this figure is identical with the 

one obtained by Ward (1) with which he compared his glass data. There is 

a certain resemblance between the -As 1 S spectrum and the prominent 

structure in the glass spectrum and one can see that if the very sharp 

lines in the R-As 4S4  spectrum were considerably broadened due to disorder 

it could account for many of the glass bands. The -AsS doublet centred 

near. 187 cm could, for example, coalesce on broadening to form the single 

h'oad glass band at this frequency. However, some of the glass bands do 

not occur exactly at the frequency of their expected c(-AsS 4  counterparts - 



Figure 5.69 

Raman spectra: A - c-As 2S 3  

B - As45 S55  

C — ç-ASS 

Figure 5.70 

Ran spectra: A 

B - As45S55  

C 

Figure 5.71 

Raman spectra A - c-AsS 5  

B - As45S55  

C — a-As 
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in particular the 360 cm .As 45 S 55  band occurs N6 cm
-1  above the main 

-As4S band - and, more important, the structure at 135, 153, 233 and 

272 cm '  in the glass spectra do not correspond to any features in the 

ç(-AsS4  spectrum. Thus Ward's analysis is not entirely satisfactory. 

	

Figure 5.70 shows the spectra of c-As4S 3 , As45 S55  and a supposedly 	K 

crystalline sample of As 4S made in the Department by slowly cooling a 

melt of this composition. 	The c-As4S4  spectrum in this figure is very 

similar to the As 45 S 55  spectrum, the only differences are that in the 

former some extra structure is resolved, the bands are sharper and more 

pronounced, and the continuous background is considerably smaller. 

Because of this similarity of the spectra it was thought at first that 

the As 4S4  sample was not crystalline and basically had the same nature 

as the As-rich glasses but comparison of its spectrum with the published 

Raman data for p-As l.fS4 -  showed that the sample was indeed predominantly 

crystalline and consisted mainly of the 	polymorph (see Section 5.7). 

The features near 135, 153, 233 and 272 cm -1  in the As 45 S55  and Department-

made -As4S4  spectra are absent from the published spectra of both LX- 

and -As4S4  but the remaining sharp structure can be confidently attrib-

uted to regions of 	545 4  in the glasses and since it corresponds exactly 

to thep-AsS4  spectrum there are no line shifts to xp1ain and there is 

no need to postulate disorder-induced line-broadening as there was when 

accounting for the features in terms of Dt -As4S4 . 	Fbrter and Sheldrick(14)  

suggest that -As 4S4  is more stable at higher temperature than 

which would explain why the ft rather than the a polymorph is formed in 

the glasses. 

Although attributing most of the sharp structure in the glass spectra 

to 	instead of t(-As 4S4  is an improvement on Ward's analysis the extra 

lines remain unaccounted for. 	From Figure 5.70 it is seen that the most 

intense line in the spectrum of c-As 13S 3  occurs at 271 cm-1  which corresponds 

to the frequency of one of the non-As 4S4  bands. Some of the other 
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unassigned glass bands have no counterparts in the c-As 4S 3  spectrum and 

so this compound cannot account for all the extra lines. Also, the 

very weak intensity of the 272 cm -1  band in the glass spectra suggests 

that the other c-As 1 S 3  bands would not be detected in them. 	The 

unassigned 135 and 233 cm-1  bands are both several times larger than the 	C 

272 cm-1  feature. 	Comparison of the c-As 4S 3  spectrum of Figure 5.70 

with the i.r. spectrum of 	 suggests that the sample made in 

the Department was the p polymorph. The i.r. spectra of the 	and fl 
polymorphs are similar and as the X. form may thus also have a band at 

271 cm-1  it is uncertain which of the two polymorphs is responsible for 

the 272 cm- 1 glass feature. 	Although the t7, form may have bands at 

135 and 233 cm-1  these are unlikely to be stronger than the 271 cm -1 

feature so these extra lines are probably not due to -As 4S 3  either. 

Figure 5.71 compares the spectra of As 45S55 , c-As4S 5  and a-As. 

The strongest line in the c-As4S 5  spectrum also occurs at 271 cm -1  so 

it is possible that this material may be responsible for the glass 

feature at this frequency. 	As in the case of c-As 4S 3 , the other bands 

of the c-As 4S 5  would not be detectable in the glass •spectra and could 

not in any case account for the other unassigned features. The 272 cm -1  

feature in the glass spectra may therefore arise from the presence of 

c-As4S 3  or c-As4S 5  or both. 

It is clear from Figure 5.71 that a-As itself cannot account for 

any of the unassigned glass features and is not present in significant 

quantities in the glasses. However, it will be shown below that the 

233 cm -1  feature may be due to the vibration of As-as bonds in the As-S 

network. The vibrational spectra of a- and(33,34) have features 

near this frequency. 

Samples of the other solid compounds in the As-S system were not 

available and as the vibrational spectra of these materials have not 
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yet been published no conclusions could be drawn about their presence 

in the glasses. However., the Raman spectra of some of the monomer 

species in the vapour phase have been recorded(1745)The  spectrum 

of vaporised As 2 S 3  glass exhibits at least 18 bands of which 9 or more 

() are strongly polarised 	. 	The As4S 6  molecule should give rise to 8 

bands of which 2 are polarised. By analogy with its isomorph As 405  

the 2 polarised bands are expected at 395 and 271 cm -1 . Polarised 

bands are observed in the vapour spectrum at 416 and 269 cm -1  which 

suggests that the As4S6  molecule is present. (It was shown in Section 

5.6.2 that the 272 cm -1  glass feature is also polarised.) 	The other 

bands in the vapour spectrum are mainly due to the As 4S4  monomer. Those 

lines not arising from As 45 6 .or As 454  molecules are attributed to As 41 

and other 'as yet unidentified' species. 	As the As-rich glass spectra 

contain no features near 416 cm-1  it is unlikely that As 456  molecules 

are present in these glasses and so the 272 cm-1  feature cannot be 

attributed to this molecule. 	Of the other unassigned glass bands only 

the 233 cm-1  peak is near to a band in the vapour spectrum. This vapour 

band occurs at 235 cm 1 ; it is polarised (as is the 233 cm- 
1  glass band) 

and must be due to one of the unidentified species present since neither 

(113) 	(93) 
As4 	nor 	has a band at this frequency. 

Raman data on As-rich mixtures of arsenic and sulphur vapours suggest 

that they contain As 
4
, As4S 3 , As 4S 4  and As 2 S 2  molecules (17). 	The only 

band in the spectra of these mixtures which coincides with an unassigned 

glass band is the 271 cm -1  line characteristic of As 4 S 3 . 

The Raman spectrum of rhombohedral c-As has been recorded and exhibits 

2 bands, one at 195 cm -1  and the other at 257 cm-1 
	

clearly 

these cannot account for the unassigned glass features. 

These unassigned features also behave differently from the p -As 4S4  

bands as a function of laser dosage. 	This effect, which is discussed in 

more detail in Section 5.7, consists of a change in the peak intensity 
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of the unassigned bands relative to the ? -As  4S4  lines as a function of 

exposure to the incident light. This effect probably accounts for the 

small differences in the relative intensities of some of the sharp 

structure in Figures 5.62 and 5.63. 	For example, Figure 5.63 shows that 

in the As 45 S 55  spectrum the 135 cm 
-1  peak is larger than its neighbour 

but in all the others it is smaller. 	These intensity changes in the 

unassigned bands relative to the -As4S4  component of the spectra cannot 

be accounted for by the decrease in intensity of the continuous background 

arising form the As-S network (see Section 5.7) and confirm the fact that 

these bands are not associated with -As,3S4 . 	The intensities of these 

unassigned bands also change relative to each other as a function of 

exposure to light, which suggests that they arise from different structural 

features in the glasses. 	In Figure 5.76 (after p.193), for example, the 

233 cm-1  peak is smaller than that at 271 cm 1  

The 272 cm-1  peak has been attributed to the presence of either 

As45 3  or As4S 5  molecules in the glasses. 	The remaining unassigned bands 

must be due to other As-S compounds, posSibly not yet isolated, or must 

be associated with features of the As-S network. Photostruótural changes 

in c-As 4S4  provide some evidence that the 233 cm -1  band arises from As-As 

bonds in the network. 	It is generally believed (9,114,115) that c-As4S 1  

is transformed by light predominantly into c-As 2 5 3 , though some workers 

(10,116) 	 . (14) 
observe no photodecomposition at all 	 Porter and Sheldnck 

have monitored the Raman spectra of both &&- and -As 4S4  as a function - 

of laser dosage and have shown that they change considerably, both 

degenerating into the same spectrum. 	In each spectrum the lattice modes 

disappear completely and a sloping background, similar to that in the 

glasses, develops over the region 0 - 200 cm -1
. 	The internal bands 

decrease in intensity and seem to broaden and coalesce in some cases. 

Numerous weak bands appear in the 100 - 200 cm region. The most inter-

esting change, as far as the present study is concerned, is the growth of 
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very intense band near 230 cm-1 . The complexity of the resulting 

spectrum together with the disappearance of the lattice modes suggests 

to these authors that the photodecomposition product is polymeric. 	The 

resulting spectrum bears little resemblance to that of c-As 2 S3 . 	If 

polymerisation is occurring then As—As bonds will almost certainly be 

formed in the product. One expects a frequency in the region of 260 cm-1 (11) 

for a stretching vibration of such bonds and the i.r. and Raman spectra 

of a-As have a relatively strong feature near this frequency 

The 233 cm' feature appears in some of the published c-As 4S4  Raman 

(9,10,14) 	 (1,2,14) 
spectra 	but not in others 	. 	It was completely absent 

from the -As 4S4  spectrum recorded in the present study (see Figure 5.3) 

and neither were any light-induced changes observed in this spectrum. 

However, Porter and Sheldrick state that spectral changes are observable 

after laser irradiation for evl hour and their photodecomposition spectra 

were obtained after 'prolonged' irradiation. 	In the present case the 

time taken to record the spectrum was -20 minutes and any spectral changes 

N 

occurring over this period might not be noticeable. Schuermann and 

Ritter (10) observe no change in the Raman spectrum of realgar even after 

twelve hours' exposure to 60 mW of focussed 6328 R radiation. 

Porter and Sheidrick also state that the P form converts more slowly 

than the c( 	If the As 4S4  molecules polymerise via the formation of 

As—As bonds then the difference in photodecomposition rates may arise from 

the fact that the shortest intermolecular AsAs contacts in -As 4S4  are 

appreciably longer than in 0(-A 4S4 . 	Whitfield0 	also attributes 

the weak 'v233 cm' peak that occurs in the Raman spectrum of c-As 4S4  to 

As—As bonds. 

In the spectra of the As-rich glasses we have observed photo-induced 

changes similar to those occurring in the case of c-As 4S4 . The photo-

decomposition is gradual, as it is for c-As 4S4 , so that only small changes 
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are observed over a one-hour period, which is approximately the time 

taken to record the spectrum. 	This suggests that the structural 

features giving rise to the unassigned bands are not formed solely by 

the incident light but are already present in significant quantities 

in the glasses before irradiation, since these bands are prominent in 

all the glass spectra. 	If the unassigned bands arose only as a result 

of irradiation then they would have to grow to this extent in the first 

"15 minutes of exposure, which seems unlikely. 

Another spectral change observed in c-AsS 4  by Porter and Sheldrick 

is the growth of a band at 270 cm -1
. 
	It seems that when the As and S 

atoms combine to form a network rather than AsS4  molecules (either as 

a result of irradiation or during the glass-forming process) As 4S3  or 

As4S 5  molecules are a'-so formed. 	If network formation requires less of 

one element than the other then these monomers may be produced to take 

up the surplus atoms.. 

At present it cannot be determined whether or not the other unassigned 

bands are due to network features. 	It was thought at first that a 

valence force field calculation for an As 2 S4  'molecule' (i.e. thenetwork 

unit As-As( ) might account for some of these bands. The calculation 

for the general X 2 Y molecule is fairly lengthy so a preliminary calc-

ulation was made using Herzberg's frequency formulae 	for the simpler 

case of the planar XY4  molecule, which has 12 normal modes, 6 being 

Raman active. 	However, too many unknowns were involved to fix the 	- 

frequencies with any certainty. 	Lucovsky 	has also used the molecular 

model approach to interpret his i.r. and Raman data on As 43S57  glass. 

He calculates the vibrational frequencies of an isolated S2As-AsS2  cluster 

and maintains that such clusters account for the sharp Raman bands,. 

which are attributed in the present study simply to the presence of 

P -As 4S4  in the glass. 	Such an analysis will inevitably yield frequencies - 

near c-AsS4  bands since, as Lucovsky observes, 'the network former 
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S2As—AsS 2  is also a natural precursor to the molecule As 4S4 ' and the 

unknown values of the geometrical parameters in the calculation must be 

based on the molecular structure of As 4S4 . 	It is unlikely that the 

frequencies of an As 2S4  network unit would coincide exactly with those 

of 	ASLSq as suggested by Lucovsky's analysis. A molecular calculation 

may be appropriate at a later stage when the structure of the network is 

-1 
known more exactly. The features at 135 and 153 cm must remain 

unassigned at present. 

The 315 and 395 cm -1  features of the a-As 40S60  spectra are also present 

in the spectra of the As-rich glasses, at least up to the composition 

A%3S57 , though they become less pronounced due to the emergence of strong 

-As4S4  bands near these frequencies (see Figures 5.62, 5.63, 5.66 and 

5.67). 	It follows that AsS 3  pyramids and As—S—As links are still present 

in the network, which is to be expected. This is more obvious in the 

depolarisation spectra (Figure 5.68), where the characteristic AsS 3  and 

As 2 S features at 106, 160, 315, 338 and 400 cm- 1  clearly persist right 

up to the As43S57  composition. 	Furthermore, the fact that none of these 

features shift in frequency suggests that no geometrical changes occur in 

the pyramids and links as the As content is increased. 

The extent of the glass-forming region in the As-S system has been 

determined by Flaschen et al. (108) . 	These workers show that the region 

terminates approximately at the composition As43S57 . As was mentioned 

in Section 4.2.2.1 all the sulphide glasses examined in the present study  

were transparent to visible light apart from the compositions As 44S56  and 

As 5 S 55 , which were pink, opaque and granular in appearance. 	Figures 

5.72(a) 	(e) show photographs of some of the As-rich glasses taken through 

a scanning electron microscope. 	The specimen compositions for the micro- 

graphs are: (a) - As 43 S 57 ; (b) and (c) - As 445 56 ; (d) and (e) .-  As45 S55 , 

The magnifications are given in the figure. 	The As43S57  micrograph shows 

no features but those of the two opaque compositions show pockets of material 



Figure 5.72 

Electron micrographs of As 43S 57 , AsS55  and As5S55. 



(e) 	As 45 S 55 	x 20,000 (d) 	As 5 S 55 	x 10,000 

(a) 	As 3 S 57 	x 20,000 

(b) 	AsS55 	x 10,000 	 (c) 	AsS55 	x 20,000 



embeded in a matrix. Crystal-glass phase-separation is occurring in 

the compositions outwith the glass-forming region and the pockets are 

presumably mainly crystallites of fl-As4S4 . 	The matrix in which they 

are embeded will be glassy in nature and will account for the continuous 

background in the Raman spectra of these compositions. The crystallites 

are -1/ in diameter for both As 44S55  and As 45 S 55  but are more numerous 

in the latter. 	The presence of these crystallites accounts for the 

opacity and granular appearance of these two compositions. 	Similar 

micrographs of glasses in the range As10S50 to -As 45S55  have been obtained 

by Maruno and Noda (109), who also record the X-ray diffraction patterns 

of these materials. 	They conclude from their X'-ray data that the 

crystallites are realgar and show that its characteristic X-ray pattern 

is present in the spectra of only those annealed glasses with As content 

in excess of v43  at.%. 

Figure 5.72(a) shows that the materials seemed to be homogeneous 

glasses up to 43 at.% As. 	The change from transparent to opaque occurs 

abruptly at some composition between As4 S57  and As 44 S 56 . 	This abrupt 

change, however, is not apparent in the Raman spectra, where the 

'crystalline' lines grow steadily as the As content is increased beyond 

40 at.%. 	The As 4S4  molecules in ex— and -As4S4  are identical and it 

is the different packing arrangements of the molecules in the two poly-

morphs that is responsible for the differences in the Raman spectra. 

Consequently, as the As 4S4  bands of the As-rich glasses corrapond exactly 

to those of the p polymorph, the As 4S4  molecules are not dispersed 

randomly through the glasses but must mainly form 'crystallites' of 

Micrograph (a) suggests that in the glasses containing between 

40 and 43 at.% As these regions are less than -300 R in diameter. 

During the course of the present study similar results to those shown 

(117) 
in Figure 5.62 have been obtained by Bertoluzza et al. 	. 	These 

authors also attribute the sharp structure in the As-rich spectra to 

s-As S 
/ 	44 



R-7.1 

53 	Photo-induced spectral changes 

The main photo-induced change observed in the Raman spectra of these 

materials was described in Section 4,35  and consisted of a gradual 

decrease in intensity over the whole spectral range studied. 	This effect 

occurred in all the glasses examined and the average rate of signal loss 

was '3% per hour though it was higher than this in all the As-rich glasses, 

and was rQlO%  per hour in the only non-annealed specimen. 	The count loss 

was approximately linear with time over the first few hours but eventually 

tapered off. 	There was no sign of recovery in the first -"12 hours after 

irradiation ceased. 	Apart-from absorption effects, there was no change 

at all in the spectral density in the case of the S-rich glasses and 

a-As 2 5 3 , that is no new spectral features appeared and those initially 

present did not alter. 	It follows from this last observation that no 

significant structural changes are taking place in these glasses during 

irradiation and so if the gradual intensity loss is due to a structural 

change, it must be associated with one that preserves the basic units 

making up these materials. 

Berkes et al. (118) have studied photo-induced changes in a-As 25 3  thin! 

films and report that illumination with band-gap radiation leads to 

dissociation: 

As 2 S 3  -. 2As t 3S 

A more recent study of structural changes occurring in such films on 

exposure to band-gap radiation was carried out- by deNeufville et al (119) 
 

using X-ray diffraction. These authors found no evidence of dissociation 

and attributed the photo-response of this material to polymerisation of 

As4S 5  molecules. 	They suggested that freshly evaporated a-As 2 S 3  films 

were composed of 'hard -sphere' AsS 5  molecules and on illumination these 

monomers cross-link to form the network structure characteristic of the 

bulk glass. 	They also showed that annealing the films produced structural 

changes that were essentially identical to those induced by illumination 



and the X-ray pattern of the annealed or irradiated film was very similar 

to that of the bulk glass. 

Solin 	has since performed a Raman scattering investigation of 

these structural transformations in a-As 2 S 3  films and basically confirms 

the model of deNeufville et al. He states, however, that there appears 

to be more than one molecular species in the freshly evaporated film and 

As4 S 5  molecules are not necessarily present. Whereas the Raman spectrum 

tht0f 
of the bulk glass consists of broad features,the as-deposited evaporated 

a-As 2 S 3  film contains numerous sharp, intense bands superimposed on a 

continuous background similar to the bulk spectrum. Much of this structure 

can be attributed to the AsS4  monomer and the remaining lines indicate 

the presence of other species in the glass, possibly AS qS 6 • 

Neither dissociation nor polymerisation can account for the spectral 

ahanges observed in the present study since the basic shape of the spectra 

did not change at all during illumination. There is no sign of growing 

As or S bands and no sharp monomer features are present in the initial 

spectra, apart from in the case of the As-rich glasses. 

Finkman et ali39l2) have observed a decrease in the reduced Raman 

intensity of a-As 2S 3  with increasing temperature and attribute it to short 

range structural changes causing a decrease in vibrational coherence. 

(These authors state that the intensity decrease cannot be attributed to. 

the disappearance of As-S bonds, as the observed activation energy of the 

effect is -0.2 eV and thus much smaller than the bond energy.) They 

suggest that the local atomic configuration changes as the temperature 

increases and these configurational changes decrease the size of the 

'coherence regions', i.e. the regions in which atoms vibrate with fixed 

phase relations. 	The waves scattered by the 'molecules' in such a region 

are in phase and thus the amplitudes add but the vibrations in different 

coherence regions have no fixed phase relationships and so the resulting 

scattered intensity is the sum of the intensities produced by the coherence 
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regions. The scattered intensity therefore depends on the average 

number of 'molecules' in a coherence region and on what proportion of 

the total number of 	 in the scattering volume are in coherence 

regions. The Raman intensity will decrease if the average population 

of a coherence region decreases or if the number of 'molecules' outside 

coherence regions increases. 	If this process continues the reduced 

Raman intensity is expected to saturate. 

There is evidence that a-As 2S 3  contains remnants of the layers 

present in c-As 25 3  and Finkman et alJ 3  suggest that the coherence 

regions may be identical with these layer regions. They describe a 

configurational change which disrupts the layer structure without changing 

the nature of the basic structural units. 	In this change bridging 

S atoms move as shown in Figure 5.73 so that adjacent pairs of AsS 3  

pyramid units no longer share only one S atom as they do in the crystal 

layer. This change results in the formation of —AsCAs—S  units which 

when connected to one another produce chain-like structures. 	Finkman 

et al. assume that in the layer-like regions there are definite phase 

relationships between the AsS 3  pyramid vibrations and they propose that 

the above configurational change reduces the extent of these coherence 

regions so that the scattered intensity decreases. 	 - 

There is no significant change in the shape of the a-As 2S 3  spectrum 

with increasing temperature which suggests that this configurational 

change does not alter the geometry of the AsS 3  and As 2S units involved. 

The As-rich glasses seemed to be more susceptible to photo-induced 

effects than did the S-rich compositions. The rate of signal loss was 

slightly higher in the As-rich glasses and they were more easily damaged 

by focussed radiation. As mentioned in Section 4.3.5, when unfocussed 

radiation was used neither the As- nor the S-rich samples sustained any 

damage but the spectra of both types exhibited a decrease in intensity 

with exposure. However, in the case of the As-rich glasses this signal 
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Figure 5.73 

Schematic representation of the configurational change in the c-As, 2 S 3  

layer structure proposed by Finkman et al. (Reference 39) to account 

for the decrease in the reduced Raman intensity with increasing temperature. 
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loss is accompanied by a small change in spectral density. This change 

consists of a decrease in the peak intensity of some of the sharp bands 

relative to others and accounts for the discrepancies in relative peak 

heights in the Raman spectra, e.g. in Figures 5.62 and 5.63. 

The effect is best seen in the As45S55  spectrum since the sharp 

structure is most pronounced for this composition. 	Figure 5.74 shows 

six spectra of the composition As45 S 55  recorded in an investigation of 

this effect. In this experiment eight spectra were recorded from the 

sample, each spectrum being recorded immediately after the previous one 

and there being no change in the experimental conditions between runs. 

Each spectrum took "17 minutes to record so the total period of continuous 

irradiation was -2 1  hours. After irradiation was terminated the sample 

was left for '-12 hours and then a ninth spectrum was obtained to see 

whether any recovery took place over this interval. 	The photo-response 

of the material tends to saturate, making later spectra indistinguishable 

from each other, so for clarity only six of the nine spectra are shown. 

The spectra are as recorded and have not been normalised in any way or 

corrected for the signal loss. 	The time, t, elapsed between the start 

of each run and the commencement of irradiation is marked by the 187 cm -1  

peak. 

The usual decrease in intensity over the whole spectrum is clearly 

present and is particularly obvious over the 40 - 120 cm 1  region. The 

0 intensity at 80 cm -1  falls by more than 20-o during the first 20 minutes 

of exposure. 	The rate of signal loss is much greater for the two opaque / 

compositions As44 S56  and As 45 S55  mainly because a focussed beam is used 

in obtaining their spectra. 	However, the rate of signal loss soon tapers 

off and the continuous background changes only slightly after the first 

20 minutes of irradiation. 

Although the decrease in the intensity of the glassy component of 



Figure 5.74 

Photo-induced changes in the As45S55  spectrum. 	t is the time elapsed 

since the start of irradiation. 
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the spectrum must affect the intensity of the sharp structure super-

imposed on it, the changes taking place in the major peaks cannot be 

entirely accounted for by this decrease. For example, during the 

2 hour exposure the intensity of the 187 cm  band falls by 'vlSOO counts 

while the background on which it stands decreases by only-300 counts. 

Also, as the contribution of the glassy matrix to the scattered intensity 

is greater at 343 cm-1  than at 360 cm -1  one would expect the band at the 

latter frequency to decrease less than that at the former - this is not 

the case and in fact the two bands undergo a reversal of intensities. 

In addition, the spectra for t 17 minutes show that most of the sharp 

structure continues to decrease in intensity even though the signal loss 

in the continuous background has virtually ceased. 	These results suggest 

that some photo-induced change must be taking place in the molecules 

associated with these changing bands, as well as in the matrix in which 

they are embeded. 

The bands at 233 and 272 cm', however, change hardly at all. 	This 

is partly because they occur in regions where the glass background is 

weak but it also suggests that they may arise from structural features 

different from those responsible for the changing bands. 

It was shown in Section 5.6.3 that most of the sharp structure is 

due to the presence of -As 4S4  in the glass. Porter and SheldrickU4) 

have recorded the Raman spectrum of this crystal and show that it does 

indeed change as a function of exposure to red light. They observe 

that .the internal bands decrease in intensity and the external bands 

disappear completely. The three bands at 343, 351 and 360 cm -1  are 

replaced by a very broad, structured band centred around -340 cm -1  - 

this may account for the reversal in the peak intensities of the 343 and 

360 cm' As 45 S55  bands noted above. Although there are initially no 

features in the -As 4S4  spectrum at 233 and 272 cm 	bands do grow near 

these frequencies during irradiation. 	These authors show that the 
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spectrum resulting from the prolonged irradiation of -As 4S4  is very 

similar to that produced on irradiating -As4S4 . Comparing the - 

and -As4S4  product spectra suggests that the 233 and 272 cm -1  bands 

do not grow at the same rate as the broad band centred at 340 cm -1  and 

so may not arise from the same structural feature as the latter. Thus 

although the intensity reversal of the 343 and 360 cm -1  bands suggests 

that the broad 340 cm -1  feature is growing, it is not necessarily expected 

that the 233 and 272 cm-1  bands should also be growing. 	It is thought 

that the structural features responsible for the 233 and 272 cm -1  bands 

are already present in As 45S55  before irradiation (see Section 5.6.3). 

Because the product spectra are complex and the lattice modes 

disappear, the changes in the c-As 4S4  spectra are attributed by Porter 

and Sheldrick to laser-induced polymerisation of the constituent As 4S4  

molecules. Although this process continues in c-As 4S4  until the crystal 

spectrum is almost completely obliterated, Figure 5.74 shows that for 

As45S55  the decrease in intensity of the t_As454 bands comes virtually 

to a halt while they are still fairly intense. However, the process in 

the As-rich glasses does go almost to completion when band-gap radiation 

is used. The Raman spectra A and B of Figure 5.75 were recorded from 

As43S 57  glass using 5145 R and 6328 radiation respectively. 	In 

spectrum A all that remains of thep-As 464  bands is the weak feature at 

-187 cm 	The disappearance of the -As 11S features is accompanied 

by the growth of the 233 cm-1  feature, as observed by Porter and Sheldrick, 

but its size in this case may be largely due to resonance enhancement 

since the 5145 radiation is close to the band gap of this material (43,44,121)  

(see Section 5.4.5). 

During the course of the present study similar results to those 

shown in Figure 5.74 were reported by Bertoluzza et l.17). These 

authors also attribute the change in intensity of the sharp structure 

to polymerisation of the As 4 S4  molecules. 



Figure 5.75 

Raman spectra of the glass As 43S 57 : one spectrum was excited with 

near band-gap radiation C X exe = 5145 	and the other with 5328 
radiation, which is weakly absorbed. 

Figure 5.76 

Raman spectra of 

A - 2 months after sample was produced 

B - 4 months after sample was produced 
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As the spectrum recorded "12 hours after the irradiation was ter-

minated is almost indistinguishable from the 'saturated' spectra, the 

irradiated region recovers little )  if at all, over this period. How-

ever, in the case of c-As 4S4  it is possible that the sample does recover 

but very gradually. 	Spectrum A of Figure 5.76 was recorded from the 

As4S4  specimen made in the Department two months after it was produced. 

The spectrum is similar to the As-rich glass spectra, the only differences '  

being that for the As 4S4  the sharp structure is more pronounced and the 

continuous background is less noticeable. The As 4S4  spectrum also 

'exhibited the same photo-induced changes as the As-rich spectra. 	Spectrum 

B was recorded from an unused sample of the same melt four months after it 

was produced and is clearly more crystalline in nature. 	The continuous 

background has almost completely disappeared, with the result that the 

351 cm '  band is now well resolved. 	The -230 and -270 cra 3  features 

which appear in the spectra of irradiated c-As 4S4  that were obtained by 

Porter and Sheldrick are much less intense and many of the unassigned 

bands (see Section 5.6.3) have diminished or disappeared completely. 

These unassigned bands must correspond to the numerous weak bands observed 

by Porter and Sheld rick in the irradiated c-As 4S4  spectra. 	The sample 

from which spectrum B was obtained was stored in a light-proof cabinet 

at room temperature after production. The conditions under which the 

sample was produced must 'affect the material in the same way as irradiation 

so that the sample is initially  partly polymeric and partly crystalline. 

On being left in a relatively cool and lightless environment the material 

clearly recovers and crystallises. 

to form discrete As4 S 4  molecules. 

The polymeric regions must break up 

It should be emphasised that the material of composition As4S4  was 

the only one whose spectrum changed significantly over the course of the 

study. 	The Raman spectra of the other As-rich compositions examined 

showed no evidence of transformation with time for example the As43557 
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spectrum B of Figure 5.75 was recorded 24 months after that displayed 

in Figure 5.62 but is essentially identical and shows no sign of 

crystallisation. 
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CHAPTER 6 

RESULTS AND DISCUSSION: THE As-Se SYSTEM 

6.1 	Introduction 

In this chapter the results of the Raman experiments on materials in 

the As-Se system are presented and discussed, particularly in relation to 

the corresponding results for the arsenic sulphides. The compositions 

examined range throughout the As-Se system and are shown in Figure 6.1. 

The region within 	at.% of the stoichiometric composition As 25e 3  has been 

investigated in detail: eleven near-stoichiometric compositions extending - 

from As 35 Se55  to As 45 Se 55  in 1 at.% steps have been examined. 	Figure 6.1. 

also shows the compositions investigated in other vibrational studies of 

this system. The Raman and i.r. spectra of a number of glasses with Se 

content 60 at.t have been recorded by Ward and co-workers 
(1'2)  and 

Vasko 	respectively but only i.r. data has hitherto been reported for 

the As-rich selenide glasses. 

In their investigations of Raman scattering in As-Se glasses Ward and 

co-workers monitored only the high-frequency part of the spectra. 	In the 

present study, however, the use of 7993 R excitation has made it possible 

to obtain the low-frequency region as well; good quality spectra have been 

recorded to within 10 cm
-1  of the exciting line and in every case the boson 

peak has been resolved from the stray-light background. Also, Ward made 

no polarisation measurements. 	In the present. study HV- and HH-polarised 

spectra have been recorded for each composition and used to generate the 

depolarisation spectra. 

The Raman spectra presented in this chapter are substantially in agree-

ment with the corresponding spectra obtained in other studies, though some 

new features have been observed in the glass spectra. Generally, only the 

spectral region below 300 cm -1  is shown in the figures of this chapter since 

the structure observed above this frequency arises from overtones and 
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Figure 6.1 

The compositions investigated in vibrational studies of materials in 

the As-Se system. 
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combinations of the first-order bands 
	All the spectra are Stokes spectra 

and were recorded at room temperature. 

The polarisation-unanalysed spectra, with the exception of those for 

the compositions As 25Se75 , As 505e 50  and As 555e 55 , were recorded by 

Dr. M.J.Sik. 	Dr. Sik also carried out the preliminary analysis of his 

data (Figures 6.14 and 6.34 were prepared by him). All the polarisation 

measurements were made by the present author using the technique developed 

by Dr. Sik for recording the selenide spectra. 

6.2 	Spectra of the crystalline As-Se compounds 

6.2.1 	c-As2Se 3  

The two crystalline phases 	best known 	in the As-Se system 

are c-As 2Se 3  and c-As4Se4 . The Raman' and i.rJ4'6 - 
	spectra of 

the former have been recorded by a number of workers. Since c-As2Se 3  

has the same structure as c-As 2 S 3  the vibrational analysis presented in 

Section 5.2.1 for c-As 1 S 3  is also applicable to c-As 2Se 3 . 	This analysis 

5) 
was based on the work of Zallen et al. 

(4, who investigated the vibrational 

spectra of both isomorphs 

Figure 6.2 shows the Raman spectrum of c-As 2Se 3  recorded in the present 

study. 	Zallen et aiJ' have shown that the vibrational frequencies of 

c-As 25e 3  scale with those of c-As 2S 3 , hence the distribution of the lines 

in Figure 6.2 is similar to that in the c-As 2S 3  spectrum (Figure 5.2). 

The c-As 2Se 3  bands occur in three distinct spectral regions: between 275 

and 195 cm 1 , between 150 and 70 cm-1  and below 60 cm-1
. 
	The bands in the 

first and second regions arise from bond-stretching and bond-bending modes 

respectively, while the three low-frequency lines at 20, 30 and 53 cm' and 

the doublet at N50 cm' are due to the rigid-layer vibrations (see Section 

5.2.1). 	The scaling relation, which is a consequence of the close 

isomorphicity of c-As 2Se 3  and c-As 2S 3 , is discussed more fully in 

Section 6.4.5. 



Figure 6.2 

The Raman spectrum of c-As2Se3. 
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6.2.2 	c-As45e4  

In the case of c-As4Se 4  only the i.r. spectrum has so far been 

recorded (10). The vibrational analysis for c-As4Se 4  is identical with 

that given in Section 5.2.2 for X-As 4S4  since both crystals have the 

same structure. Each line in the c-As 4Sé 4  spectrum corresponds to one 

in the spectrum of VC-As 4S4 ; the corresponding pairs and the scale 

factor for each pair are given in Reference 10. 

6.3 	Spectra of the elements 

The vibrational spectra of the various forms of elemental As were 

discussed in Section 5.3.2. 	The i.r. and Raman spectra of the 

(2,11,12,13) 	 (2,12,13) 
trigonal 	 and -monoclinic 	crystalline modifications 

of Se have been recorded by several workers. The vibrational analysis 

for -monoclinic Se, which is composed of Se  rings, is identical with 

that given in Section 5.3.1 for O(S8. 	Lucovsky et al. (12) have shown 

that the vibrational frequencies, t)Se  and 'V5  of the Se  and S 8  rings 

in the corresponding crystals are related by a scale factor: 	5JVse  1.9. 

The normal modes of trigdnal Se, which is composed of helical chains, have 

been determined by Caldwell and Fan (14)  

Numerous workers have studied the i.r. and Raman spectra of amorphous 

Se (1' 2 ' 
 12,13' 
	 investigation (15) ; the most recent Raman 	also includes 

the depolarisation spectrum of this material. 	Figure 6.3, which is 

adapted from Reference 13, shows the Raman spectra of a-Se and the two - 

crystalline forms. Despite the fact that the structure in the vibrational 

spectra of a-Se coincides with bands in the crystal spectra, there is some 

controversy over the assignment of the a-Se features to ring and chain 

modes, although it is agreed the vibrational data suggests that, as 

expected U6),  both rings and chains are present in the amorphous form. 

The features at 235 and 250 cm' in the Raman spectrum of a-Se were 

originally associated with chains and rings respectively since there are 



Figure 6.3 

The Raman spectra of trigonal, amorphous and monoclinic Se, showing 

the frequencies of the principal spectral features. 	(After Reference 13) 
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bands near 235 cm '  in the spectrum of trigona]. Se and near 250 cm 1  in 

that of G-monoclinic Se. 	Smith et ai.(17)  have since shown, however, 

that the intensity ratio of the a-Se features at 235 and 250 cm' does not 

change as this material is heated to above Tg  (Tg  c~ 40°  C for Se) and is 

also unaffected by preparation parameters such as substrate temperature 

and quenching rate. These factors are expected to alter the ratio of 

rings to chains and hence it seems unlikely that the original assignment 

is correct. 

Brodsky et al. 
 (18)  have pointed out that the local environment of a 

ring or chain may alter its normal frequencies, and hence the coincidence 

of an a-Se band with one in the spectrum of trigonal/ O(-monoclinic Se does 

not necessarily imply that it arises from a chain/ring vibration. Force 

field calculations. show that for free Se 
8 	 n 
rings and free Se chains 

the principal high-frequency vibration occurs at "-255 cm -1  but that chain-

chain interactions in the trigonal crystal shift the Sen  mode to '-235 cm-
1 . 

Intermolecular forces in the monoclinic crystal are presumably small, since 

its dominant high-frequency mode is actually located at "255 cm'. The 

dominant band in the vibrational spectra of a-Se also occurs near 255 cm-1  

so that if intermolecular interactions are also negligible in the amorphous 

form, this band may be due to both rings and chains. The spectral 

invariance observed by Smith et al. 
 (17)  would be accounted for if the rings 

and chains in a-Se did make indistinguishable contributions to the spectrum. 

Gorman and Solin (15) point out that the frequency of an a-Se band 

together with its state of polarisation may be sufficient to determine 

whether it arises from a ring or chain mode. These authors consider the 

a-Se band at 112 cm 1  and argue that it must be a ring mode since the 

nearest Raman-active chain mode of comparable symmetry occurs at 237 cm -1  

and the local environment should not shift a vibrational frequency by "100%. 

Thus it seems that the ring frequencies are the same for both the 

crystalline and the amorphous environments; this is also found in the 
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case of the S8  ring, whose frequencies in the crystal and liquid phases 

are almost identical (20)  

6.4 	The stoichiometric glass: As 40Se60  

6.4.1 	The polarisatipn-unanalysed spectrum 

The polarisation-unanalysed Rainan spectrum of vitreous As 2Se 3  recorded 

in the present investigation is shown in Figure 6.4. 	
The Raman (1,2,21 - 23) 

(3,6 - 9,24 - 28) 
and i.r. 	 spectra of a-As 2Se 3  have been measured by several 

workers and the spectrum of Figure 6.4 is in agreement with their results. 

The use in the present study of the 7993 R i.r. line of a Kr-ion laser has 

enabled good spectra to be obtained to within 10 cm' of the exciting line. 

Figure 6.4 shows that the spectral region below 175 cm -1  contains a peak at 

-1 	 -1 
24 cm and weak structure at 106 and 136 cm . During the course of the 

present investigation similar results for the low-frequency part of the 

(21,22) 
a-As 2 Se 3  spectrum were reported by Lucovsky et al. 	, who also used 

the 7993 R line as excitation. 

Table 6.1 (after p.210) compares the published vibrational frequencies 

of a-As2Se 3  with those obtained in this study. The intense peak at 24 cm -1 , 

which is well resolved from the exciting line, is. due to the thermal pop-

ulation of the lower vibrational levels and corresponds to the 29 cm -1  peak 

of a-As2S 3 . 

6.4.2 	Polarisation measurements 

Figure 6.5 shows the HH- and HV-polarised spectra of a-As 2Se 3  recorded 

in the present study. Since the spectra were obtained by back reflection 

the incident radiation was horizontally polarised to increase its coupling 

to the sample. The polarised spectra of this material have not been 

previously reported, although its depolarisation spectrum was presented in 

(21,22) 
the recent studies by Lucovsky et al. 

In Figure 6.5 the curves marked I-IH and liv are the as-measured polarised 



Figure 6.4  

The polarisation-unanalysed Stokes Raman spectrum of vitreous As2Sea. 
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spectra and HVN is the HV spectrum scaled so that its intensity at 

223 cm 1' equals that of the • HH spectrum at 227 cm'. 	The two polarised 

spectra differ considerably in intensity but are similar in shape and 

closely resemble the polarisation-unanalysed spectrum. 	The only 

differences in spectral profile between the two polarised spectra are 

that in the HY spectrum the main band is sharper, falling away faster on 

the high-frequency side, it peaks at a slightly lower frequency, and the 

boson peak is more pronounced. 

The depolarisation spectrum of a-As 2Se 3  measured in the present 

study is shown in Figure 6.6. It is in agreement with the published 

results 
(21,22)  as far as structure is concerned but differs from them 

with respect to absolute value for f(w). Compared with the data of 

(21,22) Lucovsky et al. 	, the spectrum of Figure 6.6 is displaced up the 

f
(w) axis and occupies a narrower range of p(w) values. However, this 

discrepancy, which is probably due to the poor optical quality of the 

samples used in the present study, does not affect the interpretation of 

the spectrum. 

The structure in the depolarisation spectrum consists of a peak at 

223 cm 1 , a broad peak or plateau centred at 136 cm -1  and two broad 

troughs, one at 86 cm 
-1  and one centred at 250 cm 

-1 
 no structure occurs 

at 106 cm 1 . The high-frequency trough contains a well-defined dip at 

275 cm -1 corresponding to the knee on the main band of the Raman spectra. 

Comparison of the a-As 2Se 3  depolarisation spectrum with that of a-As 2S 3  

(see Figure 6.20 after p.213) suggests that the low-frequency 'corner' of 

the trough, which occurs at ' -v240 cm 1 , also corresponds to a vibration, 

although there is nothing in the Raman spectra of a-As 2Se 3  at this 

frequency. The broad trough at 86 cm -1  has no corresponding feature in 

the Raman spectra either. 	Thus, as in the case of a-As 2 S 3 , the depolar- 

isation measurements have revealed vibrations not readily observable in 

the Raman spectra. 	This aspect of depolarisation spectroscopy has been 



Figure 6.5 

The as-measured RH- and HV-polarised Raman spectra of a-As 2Se3 . Spectrum 

if/N is the HV spectrum normalised so that its intensity at 223 cm -1 equals 

that of the HI-i spectrum at 227 cm -1 

Figure 6.6 

The depolarisation spectrum of a-As 2Se 3 . 

Figure 6.7 

The HH, HV, depolarisation (D) and polarisation-unanalysed (PU) spectra 

of a-As2Se3. 
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emphasised by solin(2930)  who has uncovered hidden bands in the Raman 

spectrum of a-As 203  using such measurements. 

Despite the fact that the 136 cm -1  Raman feature corresponds to a 

raised region in f(w) it is possible that it is a polarised band, for 

the Raman intensity is fairly weak near 136 cm-1  and is decreasing as s, 

increases. Since f(w) tends to rise towards the depolarisation ratio 

of the background radiation as the Raman signal becomes very weak, the dip 

that should occur near 136 cm in ,,0(w) if this band is polarised may 

have been transformed into the plateau that occurs in the increasing 

section of f(w) between 90 and -'175 cm 1 . 	(The weak 231 cm-1  polarised 

band in the a-As 25 3  Raman spectrum gives rise to a similar 'step' feature 

in the depolarisation spectrum of this material - see Figure 5.14.) 

Although the polarisation states of the 106 and 136 cm-1  Raman 

bands cannot be deduced with certainty from Figure 6.6, the i.r. spectra 

of a-As 2Se 3  support the assignment suggested in the present study, viz 

that the 106 cm
-1  and 136 cm -1  bands are depolarised and polarised 

respectively. 	All the i.r. studies of this material show that the 

dominant low-frequency mode occurs near 106 cm -1  but none detect any 

mode near 136 cm'; since polarised/depolarised Raman bands are expected 

to have weak/strong i.r. counterparts (27) the i.r. observations are 

consistent with the above assignment. 	The polarisation states of all 

the observed Raman bands of a-As 2Se 3  are given in Table 6.1 along with 

the measured frequencies. 

The depolarisation spectrum is compared with the unanalysed and 

polarised spectra of a-As 25e 3  in Figure 6.7. 	Since both polarised 

spectra are similar to the unanalysed spectrum - unlike the case of 

a-As 2S 3  -, individually they yield no extra information; it is only 

when they are combined to produce the depolarisation spectrum that 

additional vibrational information is obtained. 
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5.4.3 	Deconvolution of the main band 

According to Taylor et aiJ 31  the shape of the main i.r. absorption 

band of a-As 2Se 3  is best fitted by Gaussian lines. 	In this section it 

will be seen whether the main band of the Raman spectrum of a-As 2Se 3  can 

be constructed by summing a set of overlapping Gaussian lines, each line 

being centred on an observed vibrational frequency of a-As 2Se 3 . 	The 

analysis parallels that given in Section 5.4.3 for a-As2S 3 . 

The main Raman band of a-As 2Se 3 , after subtraction of the weak back-

ground, is shown in Figure 6.8 (dotted curve); it is highly asymmetric, 

as is that of a-As 2S 3 . The high-frequency side is less steep than the 

low-frequency side and has a knee at "275 cm' similar to that at &'395  cm' 

in the a-As 2S 3  spectrum. The 275 cm' knee and the peak at 225 cm' are 

the only features of the main band of a-As 2Se 3 ; there is nothing on the 

low-frequency side corresponding to the 315 cm -1  shoulder in the a7As 2S 3  

spectrum. 

It was found, however, that two Gaussian lines centred at or near the 

knee and peak frequencies-of a-As 2Se 3  could not be made to fit its main 

band, though the low-frequency side could be fitted satisfactorily. The 

full curve in Figure 6.8 is the sum of two Gaussians centred at 223 and 

270 cm'; it is in good agreement with the measured spectrum over the 

region 200 to 225 cm 1 , but not on the high-frequency side. 	The inability 

to fit the main band with these two Gaussians suggests that other lines 

are present between 223 and 275 cm-1 . 

It was also found that the generated curve was a good fit to the low-

frequency side of the main band only for values of the standard deviation, 

i 0, near 13 cm
-1  - this was the value used n the deconvolution of the 

a-As2S 3  main band. 	For both Gaussians used in generating the fitted 

curve of Figure 6.8, 0' = 13 cm -1
. 
	As in the case of a-As 2S 3 , a smaller 

value of (Y for the high-frequency Gaussian would improve the fit to the 

11 



Figure 6.8 

The main band (dotted curve) of the a-As 2 Se 3  spectrum after subtraction 

of the background. The full curve has been fitted to the low-frequency 

side of the main band and is the sum of two Gaussians 

Figure 6.9 

The difference curve (dotted line) obtained by subtracting the fitted 

curve of Figure 6.8 from the main band of the polarisation-unanalysed 

spectrum. 	The full line is a single Gaussian fitted to the difference 

curve. 

Figure 6.10 

The three Gaussians used in the analysis and the curve generated by 

summing them (A). 	Curve B is the observed main band of the polarisation- 

unanalysed spectrum after subtraction of the background. 
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knee feature, since above "275 cm -1  the generated curve falls off more 

slowly than the main band. 	In Section 6.44.4 it will be shown that 

the 223 and 275 cm -1  bands arise from different 'molecular' units, viz 

an AsSe 3  pyramid and an As 2Se bridge respectively; the fact that 

different values of 0' are necessary to reproduce exactly the peak and 

knee of the main band is consistent with these spectral features being 

associated with different 'molecules'. This was found to be the case 

for the sulphide a-lso. 

Figure 6.9 shows the difference curve (dotted line) obtained by 

subtracting the fitted curve of Figure 6.8 from the measured spectrum. 

The principal feature of the difference curve is a peak at 245 cm -1 which 

is slightly asymmetric, tailing off more gradually on the high-frequency 

side. 	The structure between "200 and 225 cm-1  probably arises from 

inaccuracies in the fitting procedure, although As—As bonds in the network 

may be partly responsible for the peak at '215 cm -1 . 	(Such bonds are 

present in the As-rich selenide glasses - see Section 6.6.1.3 - and give 

rise to a vibration at 220 cm 1 ; it is possible that these bonds are 

also present in the As 2Se 3  glass - see Section 6.4.6 -, just as they are 

in a-As 2S 3 ,) 

The full curve in Figure 6.9 is a Gaussian centred at 245 cm-1  with 

-1 	 -1 	
i = 13 cm • Above 245 cm it s a reasonable fit to the difference 

curve but agreement is poor below this frequency, probably because over-

lapping between the 223 and 245 cm -1  bands was-neglected when generating - 

the fitted curve of Figure 6.8. 

These results suggest that there is a third mode at "245 cm-1  

contributing to the main band of a-As2Se 3 . Further evidence for this 

is provided by the results of Lucovsky (27)  who, in his analysis of the 

main i.r. band of this material, deduces the presence of a vibration at 

-1 246 cia 
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Curve A of Figure 6.10 was obtained by summing three Gaussians 

similar to those derived in the above analysis and is clearly a 

reasonable facsimilie of the main a-As 2Se 3  band (curve 3). 	In order 

to take into account overlapping between lines, the heights, central 

frequencies and standard deviations of the Gaussians used to generate 

curve A were chosen to give the best overall fit to the main band and 

so differ slightly from the values given above. The three Gaussians 

used are shown in-the figure; Cr = 12.5 cm-1  for each. 

As in the case of a-As 2S 3 , the deconvolution analysis has revealed 

a hidden vibration on the high-frequency side of the main Raman band. 

However, whereas four Gaussians are needed to reproduce the main band 

of the sulphide, only three are required for generating that of a-As 2Se3 . 

This does not necessarily mean that a fourth vibration is not present 

on the main band of the selenide. 	It will be shown in Section 6.4.6 

that this unobserved band corresponds to the 367 cm' band of a-As 2S 3  

and is expected to occur at 261 cm -1
. 
	Figure 6.10 shows that it will 

therefox'e largely overlap the 245 and 270 cm-1  bands and so, if weak, 

will not be easily detected. 

6.4.4 	Structural interpretations of the vibrational spectrum 

6.4.4.1 The density-of-states descriptiàn 

Figure 6.11 shows the reduced Raman spectrum of a-As 2Se 3  obtained 

by the method described in Section 5.4.4.1. -The reduction process has 

removed the boson peak at 24 cm-1  but has not affected the genuine vib-

rational features of the spectrum, apart from changing their relative 

intensity and shifting them to higher frequencies. For most of the / 

bands this shift is negligible but in the case of the main band it is 

"6 cm-1  , which is considerably larger than any of the shifts observed 

for the sulphide. The reason for this large shift is that in the Raman 

spectrum of a-As 2Se 3  the intensity is a slowly varying function, of 



- 	Figure 6.11 

The reduced Raman spectrum of a-As 2Se 3 . 

Figure 6.12 

The reduced (full line) and unreduced (dotted line) spectra of a-As 2Se 3  

Figure 6.13 

The reduced spectra of a- and c-As2Se3. 
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OTHER STUDIES THIS STUDY 

RAMAN I.R. UNREDUCED REDUCED 

Ref. 1/2 Ref. 23 *Ref. 22 Ref. 24 Ref. 8 Ref. 	25 Ref. 27 Ref. 3 HH HV PU NH NV PU DS ALL PS ASSIGNMENT 

45 38 25 24 24 24 dp boson peak 

86 86 p V2 	As2Se 

90 102 100 113 100 110 106 106 196 106 106 106 106 dp7 V4 	AsSe3  

136 136 136 136  136 136 136 136 p7 
2 	

AsSe3 

227 225 237 221 228 210 218 227 223 225 233 226 231 223 223 dp V3 	AsSe 3  

237 239 235 240 24 p AsSe 3  

250 26 7 V3 	As2Se 

270 280 270 275 275 275 275 275 275 275 275 p 1)1 	As2Se 

PU - polarisation unanalysed; PS - polarisation state; p - polarised; dp - depolarised; DS - depolarisation spectrum; 
NH and HV refer to the polarised spectra. 
All frequencies in cm. 

*This value is deduced from the deconvolution analysis. 
This value is obtained by scaling the 367 cri 1frequency of a-As 25 3  by 0.71. 

ID Recordedat 1.60 K. 
*Recorded at 9 ° K. 

Notes: 1. Many of the other vibrational studies show structure near some of the frequencies observed in the present study 
but do not quote frequency values. 
In the present study the uncertainty in the frequencies is not the same for each value shown in the table. 
Some i.r. studies report very weak structure at 156 and 178 cnf t; the existence of these bands is uncertain but the 
former may arise from the presence of As—As bonds in the network. 	 - 

Table 6.1 The observed vibrational frequencies of a-As2Se3. 
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frequency near the peak of the main band - i.e. the band has a flat 

top - and slowly varying regions are sensitive to the reduction process. 

Figure 6.12, which compares the reduced and unreduced spectra, shows 

clearly the effect of the reduction process on the main band (cf. Figure 

5.21.). 	The 6 cm
-1  difference in the main-band peak positions is obvious. 

The complementary nature of the i.r. and Raman spectra of a-As 2Se3  

together with the pronounced structure in its depolarisation spectrum 

suggest that, as for a-As 2S 3 , the reduced spectrum is not a good approx-

imation to the density of states, G(w). 	The reduced spectrum is, however, 

similar to the density of states derived from the crystal spectrum, as was 

found in the case of the sulphide. 	Figure 6.13 compares the reduced 

spectra of a- and c-As 2 Se 3 , the two curves being normalised at 247 cm -1 . 

Clearly, the glass spe;trum is approximately the envelope of the crystal 

lines. 

Comparison of Figure 6.13 with Figure 5.22, which shows the corres-

ponding sulphide spectra, reveals an interesting similarity. 	In both 

figures one of the high-frequency lines protrudes well through the 

envelope of the glass spectrum; these are the lines at 292 and 202 cm -1  

in the c-As 2S 3  and c-As 2Se 3  spectra respectively (it is the former line 

which in the layer model for a-As 2S3  is responsible for exaggerating the 

shoulder on the main band - see Section 5.4.4.3). 	In Section 6.4.5 it 

will be shown that these are corresponding lines and arise from the same 

mode of vibration. 	The protrusion of the lines through the glass spectra 

would be accounted for if for both the sulphide and the selenide the 

disordering of the crystal structure somehow leads to the contribution 

from this mode being supressed or shifted to higher frequencies. It has 

been suggested 
(32)  that differences in layer separation between the 

crystalline and amorphous forms might lead to the displacement of these 

lines, for in the case of c-As2S3 Zallen(33)  has shown that with decreasing 

pressure (and hence with increasing layer separation) the 292 cm band 
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and the weak 324 cm -1 band shift to higher frequencies whereas all the 

others decrease in frequency. X-ray measurements 	indicate that the 

layer separation in a-As 2 3 3  and a-As 2Se 3  is larger than in the corresponding 

crystals; the increased layer separation in the glasses is responsible 

for their density deficit relative to the crystals. 

The reduced HV and HH spectra of a-As2Se 3  do not differ significantly 

from the reduced unanalysed spectrum. 	The low-temperature (,%,l10 K) HH 

22) 
spectrum was reported in the studies of Lucovsky et al. 

(21, and, as 

expected, is similar to the reduced HH spectrum; the low-temperature and 

reduced HH spectra peak at 239 and 233 cm -1  respectively. 

6.4.4.2 The random network model 

The two-dimensional c.r.n. model proposed by Bermudez 	was described 

in Section 5.4.4.2. 	It yields a vibrational density of states for a-As 2Se3  

that is in reasonable agreement with experiment, although the computed 

spectrum has no feature corresponding to the 275 cm' knee which is 

observed in many of the experimental studies. However, as in the case 

of the sulphide, the main failing of the model is that it predicts the 

wrong polarisation properties for the main band. According to the model, 

the principal low-frequency stretching band is polarised while the principal 

high-frequency stretching band is depolarised; the experimental evidence 

shows that the reverse is true, for the 223 cm -1  band is depolarised while 

the "'245 cm -1  band is polarised. 

6.4.4.3 The layer model 

The layer model put forward by Taylor et al. (31)to account for the 

vibrational spectra of a-As 2S 3  and a-As 25e 3  was discussed at length in 

Section 5.4.4.3. These authors reported that the general features of 

the i.r. absorption spectrum of a-As 2Se 3  were reproduced by the model. 

Figure 6.14, which was prepared by Dr. M.J.Sik, compares the main band 

of the reduced Raman spectrum (full curve) with that of a computed 



- 	 Figure 6.14 

	

The main band of the a-As 2Se 3  spectrum. 	The full curve is the main 

band of the reduced spectrum and the dotted curve is the main band of 

a computed spectrum obtained by broadening the reduced Raman spectrum 

of c-As Se  using a Gaussian convolution function.-. - (Courtesy of - 

Dr. M.J.Sik). 
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spectrum (dotted curve) generated by broadening the bands of the reduced 

spectrum of crystalline As 2Se 3  using a Gaussian convolution function 

(cf. Figure 5.24). 	It is clear from the figure that the model spectrum 

has similar shortcomings to those found in the case of the sulphide, for 

the agreement on the low-frequency side of the peak is poor, due to the 

strong crystal band at 202 cm 1 , and there is no feature in the model 

spectrum corresponding to the observed knee at 275 cm 1 . 

The stretching modes of any As—As or Se—Se bonds in the glass are 

expected to occur near 220 and 265 cm-1  respectively, and thus will fall 

in the frequency range occupied by the main band. 	Since these 'wrong'- 

bond bands, if present, will be superimposed on the main band and weak 

in comparison to it, they are not observed in the measured spectrum and 

hence the presence of 'wrong' bonds in a-As2Se 3  does not significantly 

affect the agreement between the observed and the computed spectrum, which 

is in contrast to the case of a-As 25 3 . 

As was found for a-As 2S 3 , however, the polarisation measurements do 

not support the layer model, for the depolarisation spectrum of a-As 2Se 3 , 

like that of a-As 2S 3 , exhibits pronounced structure at lower frequencies 

instead of having the constant amplitude of 'j which is expected from the 

model. Thus the vibrational spectrum of a-As 2Se 3  is no more amenable to 

this quasi-crystalline approach than was that of a-As 2S3 . 	The general 

objections to the layer model were outlined in Section 5.4.4.3. 

Nevertheless, the fact that the low-frequency regions of the a-As 25 3  

and a-As25e 3  spectra scale by the same factor that relates the interlayer 

bands of the two crystal spectra (see Section 6.4.5) suggests that if 

layer-like regions are present in a-As 25 3  they are also present in 

a-As2Se3. 
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6.4.4.4 The molecular model 

The molecular model and its application to a-As2S 3  was discussed 

at length in Section 5.4.4.4; much of what was stated there is also 

applicable in the case of a-As 2Se 3 . 	Lucovsky and Martin (36) and 

Austin and Garbett 6)  have both used a molecular approach in interpreting 

the i.r. and Raman spectra of a-As 2Se 3 , which, like those of the sulphide, 

are complementary and contain sharp features. 

In the model the 'molecular' unit for a-As 2Se 3  is taken to be an 

AsSe 3  pyramid - the basic structural unit of c-As 2Se 3 . These pyramids 

are connected to one another via bent As—Se--As chains and are randomly 

positioned (see Figure 5.25). 	The interaction between the pyramid units 

is accounted for by considering the vibrations of the non-linear As 2Se 

linking 'molecule'. The bond lengths and bond angles are based on those 

of c-As 2Se 3  and the force constants for the AsSe 3  pyramid are obtained 

by scaling those of the AsBr 3  molecule, which is isostructural with the 

AsSe 3  pyramid and has the same mass ratio. The detais of the application 

of the model to a-As 2Se 3  are given in Section 6.4.6. 

Lucovsky and Martin obtain for the frequencies of the V1 , V2 , V 3  

and 	modes of the AsSe 3  'molecule' the values 227, 102, 220 and 78 cm -1  

respectively and calculate the frequencies of the l' 2 and V3  modes 

of the As 2Se 'molecule' to be 178, 39 and 282 cm' respectively. 	The 

calculated frequencies are all close to structure in the observed i.r. 

37)36 27 22, 	, 	, 
and Raman spectra. Lucovsky and co-workers (21, 

	 have also 

shown that the model accounts for the complementarity of the i.r. and 

Raman spectra of a-As 2Se 3  and for the polarisation properties of the 

high-frequency bands. 

Of the various approaches used in interpreting the vibrational 

spectra of a-As 2Se 3  the molecular model is the most successful but in 

the form used by Lucovsky and co-workers it does not yield complete 



215 

agreement with experiment. The shortcomings of the model as it stands 

are discussed in Section 6.4.6 where it will also be shown how the model 

can be modified to give better agreement with experiment. 

6.4.4.5 The composite model 

Although the composite model of Finkman et al. has only been used 

to interpret the vibrational spectra of a_A52S3(38) and a_As2O3(2939) 

it is probably also applicable to a-As 2Se 3  since the crystalline forms 

of these materials are isomorphous (only the claudetite polyinorph of 

c-As 203  is being considered here). 	The model, which is discussed in 

Sections 5.4.4.5 and 5.7, was originally proposed to account for changes 

in the reduced Raman intensity of a-As 2S 3  as a function of temperature; 

itmay also account for the photo-induced decrease in Rainan signal 

observed for a-As 2S 3 . 	Since similar effects in a-As 2Se 3  have not yet 

been investigated no comparison is possible with the results for the 

sulphide. 	In the present study the absence of a signal loss in the 

Raman experiments on a-As 2Se 3  may be due to the use of a spinning sample. 

6.4.5 	The scaling relation 

Zallen cnd co-workers ' ' have shown that the vibrational 

frequencies of c-As Se 	( )). 

As-Se ) 
23 	x 

are related to those of c-As S 
 - 

	 23 
As-S 

by a simple scalingrelation; 

.As-Se 	K 
1 	 .3. 

where i indexes the modes and K = 0.71 1-  0.01 for the intralayer modes - 

and K r  0.81 0.05 for the rigid-layer modes. 	These authors point out 

that the existence of the scaling relation is a result of the close 

isomorphicity of c-As 2Se 3  and c-As 2S 3 . By considering the AsX 3  

(X = S or Se) units that make up the crystals, they derive an expression 

relating the intralayer scaling factor to the reduced-mass and force-constant 

ratios for the two crystals and show that its value of 0.71 t 0.01 

arises mainly from the difference in the masses of the S and Se atoms. 
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Using this expression they further show that the intra1yer scaling 

relation implies that the bond-stretching force constant of c-As 2Se 3  is 

,vlO% smaller than that of c-As 2S3 . 	The scaling relation is illustrated 

in Figure 6.15 which compares the Raman spectrum of c-As 2 Se 3  with that 

of c-As2S 3 , the latter having been compressed along the frequency axis 

by a factor of 0.71. 

In their first report of this scaling relation Zallen et al. (Li) 
 

obtained a value of 0.70 ± 0.03 for the intralayer scale factor and 

remarked that the vibrational spectra of vitreous As 2 Se 3  and As 2S 3  were 

also related by this factor. 	In the case of the Raffian spectra, Zallen 

et al. matched the peak frequency of the main band of a-As 2Sd 3  (-230 cm) 

with that of the a-As 2S 3  main band (340 cia 1 ), obtaining a value of 

0.68 for the frequency scale factor; this value is within the range 

0.70 t 0.03. 	The frequencies used were taken from Ward's Raman study 

of the glasses 
(1,2,20). 	At the time, the-230 cm 1  band of a-As 2Se 3  

was the only feature of its Raman spectrum that had been observed so no 

other values for the frequency scale factor could be obtained. 

In a subsequent paper Zallen and Slade 	investigate the spectra 

of the two crystals in more detail and obtain a more accurate value for 

the intralayer scale factor, viz 0.71 t 0.01. 	Zallen and Slade do not 

comment on the glass spectra in this second paper. 	The value of 0.68 

derived for the glasses is now well outside the new range of values for 

the crystal scale factor. When more recent values for the main band - 

peak frequencies are used instead of Ward's values, the agreement between 

the crystal and glass scale factors is even poorer: for example, using 

the values measured in the present study (225 and 338 cm- 1 ) yields a 

glass scale factor of 0.67. 

Since c-As 2Se 3  and c-As 2S 3  are isomorphic it is reasonable to expect 

that the structure of a-As 25e 3  will be similar to that of a-As 25 3 . 

Assuming the two glasses do have essentially the same structure, their 



Figure 6.15 

The Raman spectra of c-As2Se 3  and c-As 2S 3 . 	The c-As2S 3  spectrum has 

been compresse& along the frequency axis by a factor of 0.71. 
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vibrational spectra should scale. 	If the 225 cm-1  band of the a-As 2Se 3  

spectrum does correspond to the 338 cm a-As 2S 3  band, so that the glass 

scale factor really is tv0.68, then there should be a band at 214 cm -1 

in the a-As 2Se 3  spectrum corresponding to the a-As 2S 3  band at 315 cm 

In the present study a thorough search was made for structure down the 

low-frequency side of the main band of a-As 2 Se 3  but none was discovered. 

Also, it was found that taking the frequency of the 'V 1  mode of the AsSe 3  

pyramid as '225 cm-1  in the molecular model yields an As—Se bond-stretching 

force constant that is .- 20% smaller than that for the As—S bond, whereas 

the crystal scaling relation implies that the As—Se bonds are only 10% 

softer than the As—S bonds. Since the bond-stretching force constant 

for a-As 2Se 3 (a-As 2 53 ) is expected to be virtually the same as that for 

c-As 2Se 3 (c--A5 2 S 3 ) this discrepancy in relative bond strengths is surprising. 

The above results suggest that the 225 cm-1  a-As 2Se 3  band does not 

correspond to the 338 cm' a-As 2S 3  band. This is confirmed by the 

depolarisation measurements, which show that the latter band is polarised 

while the former is depolarised (see Figures 5.14 and 6.6). 	Thus although 

the 225 and 338 cm. 1  bands are the principal bands in their respective 

spectra they do not arise from the same mode of vibration. 	In fact, there 

is no reason to suppose that just because they are the strongest bands in 

their spectra that they correspond, for the most intense line in the 

c-As 2Se 3  spectrum (that at 215 cm) does not correspond to the most 

intense line in the c-As 2S 3  spectrum (that at 353 cm 1 ). 

Figure 6.16 shows a plot of the Raman frequencies of a-As 25e 3  against 

those of a-As 2 S 3 . Polarisation states were taken into account when pairing 

the bands in the two spectra and the As2S 3  bands thought to be due to S—S 

bonds have been ignored. The frequency pairs are given in Table 6.2, from 

which it is seen that the.225 cm 1  a-As 2Se 3  band corresponds to the 315 cm' 

band of a-As 2 S 3  rather than that at 338 cm -1 . The full line is a least 

squares fit to the unlabelled points and has a gradient of 0.71 t 0.03, 



Figure 6.16 

The Raman frequencies of a-As 2Se 3  plotted against the corresponding 

frequencies of a-As 2 S 3 . 	The frequency pairs are given in Table 6.2. 

The full line has a gradient of 0.71 and the dashed line a gradient 

of 0.82. 
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Is-Se 

I 
As-s 
± 

,9As-Se 
I - 

,9As-S 

24 29 0.828 

86 106 0.811 

106 160 0.663 

136 185 0.735 * 
156 231 0.675- 

223 315 0.708 

245 338 0.725 

275 395 - 	0.696 

All frequencies an cm -1  * 
Taken from i.r. studies (24S25) 

Table 6.2 Frequency pairs for the scaling relation between the 

spectra of the glasses. 	In Figure 6.16 A(29,24) 

BE(106,86) and C(23l,l56). 
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which is the same as the crystal value for the intralayer scale factor. 

The dashed line passes through the origin and the points A and B (see below) 

and has a gradient of N0.82. 

The points A and B lie in the frequency regions occupied by the 

rigid-layer modes of the crystals and were not included in the least 

squares fit since their frequencies should scale by a factor of 0.81. 

The low-frequency features of the Raman spectra are discussed below. 

C is the point (231 cm 1 , 156 cm-1  ); as both these frequencies may 

arise from As—As bonds in the respective glasses this point was also 

excluded from the least squares fit. 

When the Raman and depolarisation spectra of a-As 2S 3  are compressed 

along the frequency axis by a factor of 0.71 they match the corresponding 

a-As 2Se 3  spectra reasonably well (ignoring the frequency region below 

120 cm 1 ), as Figures 6.17 - 6.20 show. 	Also, when the sulphide and 

selenide frequencies are paired as in Table 6.2 the molecular model 

calculations yield a force constant ratio, k1 
As-Se 

 /k1 As-S , of r0.9, which 

is the same as that for the crystals. 	Thus it can be concluded that the 

intralayer regions of both the crystal and the glass spectra scale by the 

same factor, viz 0.71. 

The frequency region below 70 cm-1  in the c-As 2Se 3  spectrum and that 

below 100 cm '  in the c-As 2S 3  spectrum are occupied by the rigid-layer 

bands, which scale by a factor of 0.81. The existence of a scaling 

relation for these regions of the glass spectrã is not immediately obvious, 

Only two spectral features occur in the low-frequency regions of the glass 

spectra: the Bose peak and the broad dip in /2(w). 	The relative 

uncertainty in the frequencies of these features is large, which leads to 

a large uncertainty in the scale factor. However, when these features 

are considered as a whole it is found that they do scale by a factor closer 

to 0.81 than to 0.71. 	This is seen in Figure 6.21 which compares the 

Bose peak of a-As2Se 3  with that of a-As 2S 3 ; the peaks are normalised by 



• 	Figure 6.17 

* 
The polarisation-unanalysed Raman spectra of a-As 2S 3  and a-As 2Se 3 . 

II 

- 	 Figure 6.18 

The reduced Raman spectra of a-As 2S 3  and a-As 2Se 3 . 

Figure 6.19 

The VH- and HY-polarised Raman spectra of a-As 2S 3  and a-As 2Se 3  respectively. 

- 	Figure 6.20 

The depolarisation spectra of a-As 2S 3  and a-As2 Se 3 	The bracketed 

frequencies are those actually measured for a-As 2 S3 . 

* 
In each case the a-As 2S 3  spectrum has been compressed along the frequency 

axis by a fctor of 0.71. 
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Figure 6.21 

The boson peaks of a-As 2S 3  and a-As 2 Se 3 . A, B and C are the boson 

peak of a-As 2S 3  compressed along the frequency axis by factors of 0.71, 

0.76 and 0.81 respectively. 	D is the boson peak of a-As2Se 3  

Figure 6.22 

The low-frequency section of the depolarisation spectra of a-As 2S 3  and 

a-As2Se 3 . 	A, B and C are the a-As 2S 3  spectrum compressed along the 

frequency axis by factors of 0.71, 0.76 and 0.81 respectively. 	D is 

the a-As2Se3  spectrum. 
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maximum intensity and the peaks A, Band C have been obtained by 

compressing the a-As 2 S 3  spectrum along the frequency axis by factors 

of 0.71, 0.76 and 0.81 respectively. 	Curve C is clearly the best fit 

to the a-As 2Se 3  peak (D). 	Similar results were obtained for the dips 

in the depolarisation spectra, as Figure 6.22 shows. 	The curves are 

normalised in such a way that the minimum and maximum values of p(w) 

over the range 30 - 110 cm -1  are approximately the same for each. 

Curves A. B and C were obtained by compressing the depolarisation 

spectrum of a-As 2S 3  along the frequency axis by factors of 0.71, 0.76 

and 0.81 respectively. Curve C is in best agreement with the a-As 2Se3  

curve (D). 

The fact that the low-frequency regions of the glasses scale by 

approximately the same factor that relates the rigid-layer modes of the 

crystals suggests that layer-like regions are still present in the 

glasses. 	Other types of experiment (34240,41)have yielded evidence in 

support of the existence of layer remnants in these materials. 

6.4.6 	Discussion 

In this section it will be shown that the frequencies, activities 

and polarisation properties of the vibrations of a-As 2Se 3  can all be accounted 

for by the molecular model. Originally the vibrational frequencies of 

a-As 2Se 3  were mainly determined through i.r. measurements: only one 

vibrational feature - a peak at 227 cm-1 - was observed in the first Raritan 

studies. However, by using the weakly-absorbed 7993 R line of a Kr-ion 

laser as excitation, later investigations, including the present one, have 

uncovered additional features in the Raman spectruJ2ls22). 

In the model the frequencies of the AsSe 3  pyramid are calculated from 

Equations A.l - A.4 (see Appendix I) using the average values of \eand p 
for crystalline As 2Se 3  and force constants scaled from the AsBr 3  molecule 

(the scaling relation was derived in Section 5.4.5). 	Lucovsky and 
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Martin 	take as V1  for the AsSe 3  pyramid the frequency of the 

principal Raman band of a-As 25e 3  and obtain the scale factor, n, by 

comparing this measured frequency with the observed value of 'V1  for 

AsBr 3 . 	Using the notation of Section 5.4.5 and taking AsBr 3  and 

AsSe 3  as molecules I and II respectively, the actual values used are 

284 cm 	
(42) 	V11 = 227 cm-1 

(1,2)  and n = 227/2840.80. 

Proceeding as described in Section 5.4.5 one obtains the values 1.05, 

0.11 9  0.095 and 0;013 md/s for the force constants k, k, k and 

ksi respectively. The AsSe 3  pyramid frequencies obtained by solving 

Equations A.l - A.4 using the above values for the force constants are 

given by Lucovsky and Martin and are in reasonable agreement with the 

observed frequencies. 

However, as pointed out in Section 5.4.5, the model frequencies for 

a-As2Se 3  do not scale with those for a-As 2 S 3  by the same factor that 

relates the spectra of the two crystals, and, moreover, the ratio of the 

calculated bond-stretching force constants differs from the value for 

As-Se As-S 
k1 1k1 	derived from the crystal scaling relation. 	It was shown in 

Section 6.4.5 that the observed spectra of the glasses do obey the crystal 

scaling relation when their features are paired correctly. The selenide 

band corresponding to that at 338 cm
-1  in the a-As 2 5 3  spectrum occurs at 

"-'245 cm-1  rather than 227 cm
-1  ; the 227 cm -1  selenide band is the counter-

part of the 315 cm '  sulphide band. 	Hence the most intense peak in each 

of the unanalysed spectra does not correspond to the same vibration. 

Taking 	for the AsSe 3  pyramid as 245 cm- 
1  instead of 227 cm -1  yields 

n z  245/284 	0.86 and results in the following values for the frequencies 

and force constants of the 'molecule': 

1.25, 0.11 5  0.13, 0.015 md/s for j = 1, 1 '  , S , ' respectively 

= 246, 109, 239, 84 cm -1  for i = 1, 2, 3, 4 respectively 

The geometrical parameters used to derive the above values of the k and 

were taken from the most recent determination of the structure of 
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c-As 2Se 3 . The calculations were carried out by computer in exactly 

the same way as those for the sulphide. 

were taken from the vibrational analysis 

and the values of 	used were 60.4° (45) 

pyramids respectively, the selenide angle 

Se—As—Se angle of the crystal. 

The force constants for AsBr 3  

f Claeys and Van der 	
(44)  

and 62°  for the AsBr 3  and AsSe 3  

being calculated from the average 

The new value obtained for kt 	
(1.25 m0) is 7% smaller than 

that calculated for 
kt5 

 from the molecular model (1.35 mdJ); this is 

in reasonable agreement with the findings of Zallen and Slade 
(5) 
 who deduce 

from the crystal scaling relation that the As—Se bond-stretching force 

constant is 10% softer than that of the As--S bond. 	Gordy's rule predicts 

a value of 1.76 xnd/g for 
J4SS  but this discrepancy is not significant 

since the atomic-radius ratio, rAs/rSe  is approximately 1.035 for the 

AsSe 3 'molecule'. 	(This value of 1.76 mdJg for kt Se is 11% smaller than 

the value obtained for 
kt5 

 from Gordy's rule - viz 1.98 md/ - so 

although these values are in poor agreement with those calculated from 

the molecular model, their ratio is consistent with the findings of Zallen 

and Slade.) 

The calculated frequencies, V1, are in reasonable agreement with the 

observed values (see Table 6.3). 	As in the case of a-As 2S3 , the two low 

frequencies are not in such good agreement as the two high frequencies 

due to the greater solid state interactions they experience 
(37) (the 

calculated frequencies 84 cm -1  ( 
 

T4  ) and 109 cm 	are taken to 

correspond to the observed vibrations at 106 and 136 cm-1  respectively 

since the latter frequencies scale with the observed values of 	and 

for the As S
3
pyramid). 	Inspection of Figure 6.6 shows that in the 

case of the two high-frequency modes the model also predicts the correct 

polarisations, for V,and  V 3  are expected to be polarised and depolarised 

respectively. The polarisation states of the observed bands at 106 and 

136 cm' are uncertain but they are probably depolarised and polarised 
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respectively (see Section 6.44.2); if this is correct then the model 

also accounts for the polarisation properties of these two bands, since 

V4  and 2 are expected to be depolarised and polarised respectively. 

The frequencies of the As—Se—As bent chain 'molecule' which accounts 

for the coupled modes are calculated from Equations A.5 - A.7. The 

bond-stretching force constant, k1 , is identical with that used in the 

pyramid calculation and Lucovsky and Martin assume that the ratio of 

k1  to k 6 , the bond-bending force constant, is 100 : 1 (k 1  and k 6  now 

refer to Equations A.5 - A.7). 	The three frequencies obtained by these 

authors are close to features in the observed spectra. 

In the present study the calculation for determining the frequencies, 

(i = 1, 2, 3), of the As 2Se 'molecule' was carried out on a computer. 

Lucovsky and Martin's calculation was repeated,first using their value 

for k1  and then the corrected value but in both cases the frequencies 

reported by them could not be obtained. Varying the interaction constant, 

k12 , did not make it possible to generate the reported frequencies either, 

but they could he obtained by taking Ct - which is half the As—Se—As angle 

- as 1040  instead of 47.20, the value derived from the c -As 2Se 3  structure. 

(Taking Gk = l0'4°  is equivalent to taking the full value of the As—Se--As 

angle as l500 - see p.137.) The reported frequencies are reproduced 

exactly when the values 1.26, 0, 0.0126 md/X and 104 0  are used for 

k12 , k 6  and Ct respectively. 

Assuming that the ratio of k 1  to ks  is 10: 1, which is more realistic 

than the 100 : 1 ratio assumed by Lucovsky and Martin, and taking the 

corrected value of 1.25 md/2 for k 1 , k is 0.125 md/i 	If these force 

constants are inserted in Equations A.5 —A.7 together with the correct 

value for Ct, viz .470 the following frequencies result for the simple 

valence force field case (k 12 = 0): 	237, 	2 	
91 and V3 z 239 cm-1  

As was found for a-As 2S 3 , this represents a different arrangement of bands 

to that obtained by Lucovsky and Martin: their calculation predicts a 
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very low frequency line (39 cm- 1 ), a line at high frequency (282 cm 1 ) 

and one intermediate between these (178 cm 1 ), whereas the above 

calculation suggests there is one medium-frequency line (91 cm -1  ) and 

two high-frequency lines (238 and 239 cm 1 ) falling on the main band 

of the a-As 2Se 3  spectrum. In view of the scaling relation that exists 

between the vibrational frequencies of a-As 2Se 3  and a-As 2 S 3  the latter 

arrangement of bands is more acceptable since it matches that for the 

As 2S 'molecule'. 	The predicted frequencies fall in the region of the 

two observed bands that are as yet unaccounted for, viz those at 86 and 

275 cm'. As will be shown later, several modes due to the stretching 

of As-As and Se-Be bonds also occur in the main band region and it is 

possible that the second high-frequency As 2Se band is present but 

unobservable as a result of overlapping - altogether 8 bands are expected 

to occur between 200 and 285 cm' (this does not include the bands of 

elemental Se that occur in this region). As the existence of the reported 

i.r. bands at 170 and 45 cm -1  is uncertain this distribution of bands is 

more compatible with the experimental results. 

A further objection to the Lucovsky-Martin calculation of the As 2Se 

chain frequencies is that it implies that the 275 cm -1  band arises from 

the antisymmetric mode, 1)3 , and is thus depolarised; Figure 6.6 shows, 

however, that this band corresponds to the minimum in the depolarisation 

spectrum and is therefore polarised. 	The polarised stretching mode, 1), 

occurs at 178 cm 1 , according to their calculation, and so is too far away 

to be associated with the observed band at 275 cm-1 . Because the 

frequency difference between the observed and predicted value for V1  is 

so large (100 cm), agreement with experiment cannot be obtained by 

varying the interaction constant, k12 , within realistic limits. 	In the 

calculation proposed in the present study, however, 'V1  and V 3  are 

virtually degenerate .at239 cm-1  for k12  r  o. As k12  increases 'V1  

increases while 	decreases and it is found that V1  > V3  for all 
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values of k12  greater than N0.01  md/L 

By applying the 0.71 scale factor tO the observed value of V3  for 

the As2S 'molecule' (367 cm 3 ) one can deduce that the antisymmetric 

mode for the selenide chain should occur near 261 cm and hence quan- 

titative agreement with experiment cannot be obtained by varying k 12  

-1 -1 
i since the cross-over frequency, 238 cm , s already well below 261 cm 

As in the case of the sulphide, however, quantitative agreement can be 

improved by extending the simple valence force field to include a central 

force between the two non-bonded As atoms. Taking k 1 = 1.25 

k 5 = 0.125 md/, 6&r 47.2 °  and a33 , the central force constant, as 

0.07 md/R the following frequencies were obtained: 	l z 243, 

and 	= 239 cm 1 . The value for a 33  was chosen so that 	scales by 

a factor of 0.71 with the corresponding calculated frequency (342 cm') 

for the As2S 'molecule'; it is smaller than that used for the As 2S chain 

because the As-As separation is larger for the selenide (3.52 ) than 

for the sulphide (3.43 ). 

A summary of the pieceeding results is given in Tables 6.3 and 6.4. 

Including the hidden 245 cm -1  band, seven features have been 

detected in the first-order Raman and depolarisation spectra of a-As2Se 3  

(see Table 6.1). 	One of these is the boson peak, four arise from 

vibrations of the AsSe 3  pyramid and two are due to the As 2Se links 

between these pyramids. 	In contrast to the case for a-As 2S 3  there are 

no unaccounted-for bands which might be associated with 'wrong' bonds. 

As will be seen later, As-As and Se-Se bonds are present in the As- and 

Se-rich glasses respectively; the most intense line due to the former 

occurs at 220 cm -1 and that due to the latter at 265 cm 1 . Because 

these lines fall in the main band region and will be relatively weak for 

the stoichiometric glass, which is expected to contain only a small number 

of 'wrong' bonds, they may be unobservable in the a-As 25e 3  spectrum. 

Indirect evidence for the presence of 'wrong' bonds in the stoichiometric 



Observed 
values 

Para- 
meter 

Model 
value 

% Diff. 
in freqs. 

k i  1.25 

k 3  0.11 

k s  0.13 

0.015 

62 62 

245 246 0.4 

136 'V2  109 20 

223 239 7 

106 V 84 21 

All frequencies and force constants are 
in units of cm 1  and md/A respectively; 

p is in degrees. 

Table 6.3 The molecular model parameters and frequencies for the AsSe 3  

'molecule'. 	The last column gives the difference between 

the observed and calculated frequencies expressed as a per-

centage of the former. 



Observed 
values 

Para- 
meter 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
in freqs. 

Model 
value 

% Diff. 
in freqs. 

k1  1.26 1.25 1.25 1.25 

k 0.0126 0.125 0.125 0.125 

k12  0 0 0.01 0 

0 0 0 0.07 a33  

47.2 Gk 76(104) 47.2 47.2 47.2 

275 178 238 14 238 14 243 12 

• 	86 - 91 6 91 6 93 8 

261 
2 
V3  282 - 239 8 238 9 239 8 

All frequencies and force constants are in units of cm -1  and md/R respectively; 
GXis in degrees. 

This value is obtained by multiplying the corresponding a-As 2 S 3  frequency 067 cm 

by the scale factor 0.71. 

Table 6.4 The molecular model parameters and frequencies for the As 2Se 

'molecule'. The differences between the observed and calculated 

frequencies expressed as a percentage of the former are also given. 



225 

glass is provided by the difference spectra obtained for the Se-rich 

glasses (see Figure 6.25 after p.226): these spectra suggest that as 

the Se content increases, a band at N205 cm' disappears and this is 

close to the frequency characteristic of the As-As bonds, viz 220 cm -1 

For many chalcogenide glasses it has been shown 	that bonds between 

like atoms do not occur in compositions which are deficient in that - 

species of atom relative to the stoichiometric composition (this is true 

for the As-S glasses). 	If this is also the case for the As-Se glasses 

it is expected that any spectral features arising from As-As bonds would 

disappear as the Se content is increased beyond 60 at.%. The presence 

of As-As bonds in a-As 25e 3  implies the presence of Se-Se bonds also, 

assuming that the number of dangling bonds is negligible. Although the 

difference spectra for the As-rich glasses do not provide any evidence 

for the disappearance of Se-Se bonds this is possibly due to the growth 

near 265 cm -1  of features associated with c-As 45e4  (see Figure 6.40 after 

p. 246 ). 

6.5 	The selenium-rich glasses 

6.5.1 	The compositions As 40Se60  - As 35 Se65  

6.5.1.1 Normalisation 

As in the case of. the As-S glasses, before the spectral changes 

occurring as a function of composition could be interpreted the normal-

isation of the spectra had to be considered. - Three methods were 	- 

investigated: normalisation by maximum intensity, by area under the 

reduced spectra, and by intensity at the peak frequency of the main band 

in the spectrum of a-As 40Se60 . All three methods lead to spectral changes 

that were ordered with respect to composition and the interpretation of 

these changes was the same in each case. For the compositions As 405e 50  - 

As 35 Se65  the first and last methods are virtually equivalent because there 

is little shift in the peak frequency of the main band over this composition 
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range. The first method, however, was found to be unsuitable for the 

As-rich glasses since an intense line grows near the peak of the main 

band as the As content is increased beyond 40 at.%. 	This method was 

not, therefore, adopted. Of the other two methods, normalisation by 

intensity at the peak frequency of the main band in the a-As40Se 50  

spectrum is preferable since it shows the spectral changes more clearly. 

Thus, unless otherwise stated, this is the normalisation procedure used 

in the present analysis of the As-Se data. 

It is clear from Figure 6.24, which shows the reduced spectra of the 

compositions As40Se 60  - As 35Se65  normalised at 231 cm -1  and superimposed, 

that this method is almost equivalent to normalisation by the basewidth 

of the main band (the procedure used in the case of the As-S data) since 

the six spectra approximately coincide in the base regions, particularly 

on the high-frequency side. The figure shows that no spectral changes 

occur below r150 cm -1  for this composition range and as the spectra are 

coincident below this frequency the normalisation procedure used is also 

equivalent to normalisation over the region 0 - 150 cm-1  

6.5.1.2 The polarisation-unanalysed spectra 

The polarisation-unanalysed Raman spectra for the six compositions 

in the range As40Se50  - As 35Se 55  are presented in Figure 6.23. 	The 

-1 
spectra, which have been normalised by intensity at 225 cm , are shown 

displaced above one another. 	It is seen in the figure that as the Sc 

content increases from 60 at.% a feature grows at 265 cm-1  and the peak 

of the main band shifts slightly. No change occurs below v150  cm -1 in 

the spectra apart from an increase in the intensity of the boson peak 

relative to the main band (this increase is not obvious in this figure 

but is clearly apparent in the difference spectra - see Figure 6.25); 

The corresponding reduced spectra, normalised at 231 cm' and 

superimposed,are shown in Figure 6.24. 	The spectra change in an 



Figure 6.23 

The polarisation-unanalysed Raman spectra of the compositions 

As40Se60 - As 35 Se65 . 

Spectrum Composition 

F 	 A 	- As35Se55  

B 	- As35Se 64  

-- 	
C 	- As37Se63  

- 	 D 	- As38Se 62  

E 	- As39Se51  

F -  As40Se60  

Figure 6.24 

The reduced spectra corresponding to those of Figure 6.23. 	The spectra 

are shown superimposed (A - F as above). 

Figure 6.25 

Difference spectra obtained from the spectra of Figure 6.23 by subtracting 

the a-As40Se 60  spectrum from each. 

• 	
Spectrum 	Compositions 

A 	T As35Se65 - As 05e60  

B 	- As36Se64  - As40Se60  

C 	- As375e 63  - As40Se60  

D 	- As385e52 - As405e60  

• 	E 	•- As39Se61 - As405e60 
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ordered way as the Se content is increased. Apart from the increasing 

boson peak, all the spectral changes noted above are exhibited by these 

spectra. Superimposition of the spectra has made the growth of the 

265 cm-1  feature obvious and shows clearly the absence of spectral changes 

in the region below viSO cm -1 . 

Figure 6.25 shows the difference spectra derived from the normalised 

spectra of Figure 6.23 by subtracting the a-As 40Se60  spectrum from each 

of the others. 	'Ihree features develop as the Se content increases: a 

-1 
peak centred at -2644 cm

-1  , a dip at 205 cm and a broad peak at "a24 cm
-1  

The peak at 264 cm-1  corresponds to the growing shoulder in the region of 

this frequency in the Raman spectra. 	It is evident from Figure 6.24 that 

some change occurs down the steep low-frequency side of the main band and 

it is this change that gives rise to the steadily growing dip at 205 cm -1  

in the difference spectra. 	The broad peaks at -24 cm' in Figure 6.25 

correspond to the boson peak in the Raman spectra and show that it is 

growing as the Se content increases. No other structure occurs in the 

difference spectra. 

6.5.1.3 Polarisation measurements 

The observed HH- and HV-polarised Raman spectra of the compositions 

As40Se60  - As 35Se 65  are shown in Figures 6.26 and 6.27 respectively. 	In 

each figure the spectra have been normalised by intensity at the peak 

frequency of the main band of the appropriate a-As 40Se60  spectrum and have 

been displaced above one another. The two sets of spectra do not differ 

greatly, unlike the corresponding sulphide spectra; the growing shoulder 

at 265 cm-1  is more obvious in the NH spectra, while in the NV spectra the  

boson peaks are more pronounced and the main bands more sharply peaked. 

The HR spectra are very similar to the polarisation-unanalysed spectra. 

The depolarisation spectra for the above compositions are shown in 

Figure 6.28; they have been displaced vertically in order of increasing 



Figure 6.26 

The HH-polarised Raman spectra of the compositions As 40Se60  As35 Se65 . 

Spectrum Composition 

A 	- As35 Se 65  

B 	- As36Se64  

C 	- As37Se 63  

D 	-. As38Se62  

E 	- As39Se61  

F 	- As 0Se60  

Figure 6.27 

The HV-polarised Raman spectra of the compositions As 40Se60  - As 35Se 65  

A -. F as for Figure 6.26. 

Figure 6.28 

The depolarisation spectra of the compositions As 40Se 60  - As 35 Se 65  

A - F as for Figure 6.26. 
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LI 

Se content. All the spectra decrease initially to a minimum around 

86 cm 1  and have a broad peak or plateau centred at -136 cm 1  and, from 

'200 - 290 cm', a trough with a sloping bottom (similar features are 

observed in the depolarisation spectra of the corresponding sulphide 

compositions - see Figure 5.49). Each trough slopes to a minimum at 

-275 cm-1  and has two raised regions at 223 and "242 cm -1  and a dip at 

rv237 cm 1 . Although there is a feature in the Raman spectra at 106 cm -1  

there is no feature at this frequency in the depolarisation spectra. 

The raised, noisy section from "150 - 200 cm' corresponds to the region 

of minimum Raman signal. 

The depolarisation spectra of the selenides, like those of the As-S 

glasses, were found to be in poor quantitative agreement with one another. 

This is probably because the polarised spectra were recorded by back 

reflection and the samples used were of insufficient optical quality (as 

the samples were opaque, internal defects were unobservable). However, 

the depolarisation spectra yield reliable qualitative information. 

6.5.1.4 Second-order spectra 

For a selection of compositions the spectral region beyond 300 cm -1  

was examined for any additional features. Weak bands were, indeed, detected 

above 300 cm -1  in these experiments but could all be accounted for as 

overtones and combinations of first-order bands. It was thus concluded 

that the one-phonon spectra of these glasses lie entirely below 300 cm -1 . 

6.5.1.5 Discussion 

The four mechanisms that can lead to spectral changes as the Se content 

is increased beyond 60 at.% are: distortion of the a-As 40Se50  geometry; 

the appearance of elemental Se in some form; the disappearance of structural 

features of a-As 40Se 50 ; and the formation of new features, such as 

As--Se--Se-As bridges. These mechanisms were described in more detail for 

the sulphide glasses (see Section 5.5.1.5). 
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6.5.1.5.1 Geometrical changes 

The results presented in Figures 6.23 - 6.28 show that none of 

the a-As405e60  vibrations shift significantly in frequency as the Se 

content is increased from 60 to 65 at.%. Hence it can be concluded 

that no significant changes in the bond-length and bond-angle dis-

tributions of the network occur over this composition range. 

6.5.1.5.2 The presence of selenium allotropes 

Selenium, like sulphur, exhibits extensive allotropy: the existence 

 
of amorphous, trigonal and monoclinic Se is well established (47,48)   (two 

monoclinic forms, ctandpare known to exist) and cubic modifications 

have been reported 	but not confirmed. Trigonal Se is composed of 

infinite unbranched helical chains stacked in parallel, while monoclinic Se 

is made up of Se  ring-molecules, the packing being different in the O( and 

p forms. Amorphous Se is believed to contain both chains and rings (50) . 

In the cubic modification the Se atoms pack as hard spheres and the bonding 

is presumably metallic in nature 
(48).  Only trigonal Se is thermodynamically 

stable at room temperature and pressure; the other allotropes are meta-

stable and eventually revert to the trigonal form. 

By comparing the Raman spectra of the various allotropes with the 

spectra of Figure 6.23 it is possible to determine whether any of them are 

present in the glasses to any significant extent. Since there is no 

evidence of phase separation in these materials and their optical properties 

are those of a homogeneous system 53 , any regions of elemental Se that do 

form as the Se content increases cannot be large in size. The Raman 

spectra of trigonal, R-monoclinic and amorphous Se have been recorded by 

several workers (see Section 6.3); the spectrum of p-monoclinic Se should 

be similar to that of the D. form since the Se  molecules that make up 

both allotropes are identical. 

( 52)  first-order Raman spectruxn. 

Cubic Se is not expected to exhibit a 
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None of the allotropes have first-order Raman or i.r. bands 

beyond 255 cm-1  and their Raman spectra all contain an intense band 

in the region 230 - 255 cm -1 . Thus, assuming that the allotrope 

spectra are not significantly affected by the environment in the As-Se 

glasses, it can be concluded that the presence of elemental Se in some 

form cannot account for the emerging band at 265 cm- 
I  in the glass 

spectra and, moreover, no elemental Se is formed in appreciable quantities 

as the Se content-is increased from 60 to 65 at.%, for there is no 

evidence in the glass spectra of any band growing in the range 230 

255 cm
-1  • 	It is possible, however, that the elemental Se component of the 

glass spectra is undetectable due to its comparative weakness and the fact 

that the principal Se lines fall on the main As-Se band. 	In the case of 

the corresponding sulphide glasses the S band detected at 472 cm 1  in 

the Raman spectra occurs in a region where the scattering due to other 

structural features is weak and even in the As 35 S65  spectrum the intensity 

of this band is only ''l/ 20th that of the main peak at 338 cm-1
. 
	Thus 

elemental Se may be present in an amount comparable with the level of 

present in the sulphide glasses; whether it occurs as rings or chains 

cannot be determined, though in the glasses with Se content >10 at.% 

both species may be present (see Section 6.5.2). 

6.5.1.5.3 Disappearing features 

Much of the discussion in Section 5.5.1.5.3 concerning disappearing 

features is also applicable in the case of theselenide glasses. The 

dip developing at 205 cm -1  in the difference spectra of Figure 6.25 results 

from changes occurring on the low-frequency side of the main band and 

suggests that there are As-As bonds in the network and that these are 

disappearing as the Se content increases, for, as. will be shown in Section 

6.6.1.3, such bonds give rise to a vibration near this frequency. 	The 

disappearance of As-As bonds was also observed for the correspondihg 

sulphide glasses and is consistent with the chemically ordered network 
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model, which has been shown to be applicable to many amorphous 

chalcogenides (46) . 	As in the case of the sulphide glasses, there is 

no indication of any increase in the ratio of pyramids to single-

chalcogen bridges over this composition range; this is probably due 

to the fact that two of the bands of the As 2Se 'molecule' fall near 

the growing 265 cm -1 feature while the third (that at 86 cm -1  ) is weak 

and diffuse. A small increase in the above ratio is expected since, 

as will be shown below, some of the As 2Se links are being replaced by 

As 2Se 2  chains 

6.5.1.5.4 The appearance of new features - the As—Se—Se--As bridge 

The spectra of the compositions As40Se60  - As 35Se55  show no 

indication of the presence of As-Se monomers or regions of elemental As, 

which is as expected since the increase in Se content is unlikely to 

lead to a break-up of the a-As 40Se 60  network (53). Any new structural 

feature appearing (excluding Se species, which were discussed earlier) 

must therefore be part of the network, and since, as was shown in the 

previous section, the number of As—As bonds is decreasing, these new 

features must be due to the incorporation of the extra Se atoms between 

the As atoms. Because selenium, like sulphur, is divalent, forming only 

rings and unbranched chains, the Se atoms between the As atoms must form 

a chain. Hence the new features are simply As—Se nAs  (n >1) bridges. 

Only one new band (that at 265 cm-1  ) is observed to emerge in the - 

spectra as the Se content is increased from 60 to 65 at.%, which suggests 

that, as for the sulphide case, one type of bridge 'molecule' preponderates 

The value of n for the dominant species is most likely to be 2. 	Other 

workers (34,54) have also suggested that some of the additional Se atoms 

in the Se-rich glasses go into the formation of As—Se—Se--As links in the 

network. 

As n increases, the vibrations of the As 2 n Se chain will be less 
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influenced by the terminal As atoms and will increasingly approximate 

to those of Se chains. 	If the equations for determining the vibrational 

frequencies of the X 2  Y and X2Y2 
 chain molecules are solved for the case 

X = Y using the principal force constants and geometrical parameters of 

trigonal Se it can be shown that the frequencies of 3- and 4-membered 

Se chains are essentially those of trigonal Se. Hence the vibrational 

frequencies of the As—Se n 
 —As chains for n > 2 can be taken to be those 

of trigonal Se. Although the most intense line of trigonal Se has not 

been detected in the spectra of these compositions this may be due to the 

fact that it coincides with the main As-Se band (see Section 6.5.2.3), so 

As 2Se bridges with n >2 may be present, but not in appreciable quantities. 

The presence of longer chains is perhaps more likely in the selenide case 

than the sulphide since the stable allotrope of the former is made up of 

chains while that of the latter is formed from 8-membered rings. 

On applying the molecular model analysis described in Section 5.5.1.5M 

to the As—Se—Se--As link it was found that, as for the sulphide case, a 

linear 'molecule' did not yield a satisfactory value for V 2 , the symmetric-

stretch frequency of the chalcogen-chalcogen bond, unless an exceptionally 

large interaction constant or an exceptionally small value of the Se—Se 

bond-stretching force constant, ksese was used. k55  is usually in 

the range 1.85 - 2.10 md/s and the interaction constant is expected to be 

less than one tenth of kse.se• 	Table 6.5, which gives the computer- 

calculated value of V2  for various sets of potential constants, shows 

that taking k Se-Se z 1.9 md/, k As-Se 
r 1.25 md/ (the value derived from 

the molecular model analysis of a-As 40Se60  - see Section 6.4.6) and 

kint 0 (i.e. only a simple valence force field is being considered) 

yields a value of 342 cm -1  for V2 . However, the only unassigned spectral 

feature is the emerging shoulder at 265 cm-1  and no first-order bands are 

observed beyond 290 cm-1  so the calculated value is in error by at least 

29%. 	It was found that V2  could be made less than 290 cm -1  only by 



kse_s kA.._s k. t  

1.90 1.25 0 342 

1.90 1.25 0.45 267 

0.65 1.25 0 268 

1.50 1.25 0.30 265 

1.90 0 0 286 

All frequencies and force constants are in units 
of cnft  and md/A respectively. 	- 

Table 6.5 The symmetric Se—Se bond-stretching frequency, ' 2  of the 

linear As 2Se 2  'molecule' for various values of the force 

constants affecting it. 
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using an unrealistic value for k 	or k. Se-Se 	mt 

The characteristic range of stretching frequencies for the Se—Se 

bond is n'230 - 360 cm 1 . Lucovsky et aiJ 32  have shown that the 

vibrational frequencies of the S ring scale with those of the Se  ring 

by a factor of 1.9. Applying this factor to the observed symmetric- 

_1 
stretch frequency of the S—S bond in the As 2 5 2  'molecule' (viz 492 cm) 

one obtains a value of 259 cm -1  for the corresponding vibration of the 

As 2Se2  link. This value is close to 265 cm 1 , the frequency of the 

emerging shoulder in the selenide spectra. The force field calculations 

show that for both linear and non-linear, non-planar As 2Se 2  'molecules' 

three modes have frequencies in the region of the main As-Se band; two 

of these modes arise from the symmetric stretching of As—Se and Se—Se 

bonds and should yield polarised lines, while the third arises from the 

antisymmetric stretching of As—Se bonds and should give rise to a 

depolarised line. 	It is clear from Figure 6.32 (after p.236) that the 

emerging feature at 265 cm -1 ispolarised and so must be due to one of 

the symmetric stretching modes. Since no new bands are observed to 

emerge above 265 cm -1 and since the calculations show that the stretching 

frequency of the As—Se bond is always less than that of the Se—Se bond 

for all reasonable values of the geometrical and force-field parameters, 

the observed band at 265 cm-1  can be assigned to the Se—Se bond-stretching 

mode of the As 2Se 2  link. 

The shoulder at 265 cm-1  is, in fact, the.. only feature of the Se-rich 

spectra that can be attributed to the As 2Se 2  link with any confidence. 

This is in contrast to the sulphide case since five As 2 S 2  frequencies were 

located. The small dip and peak at 237 and 242 cm -1 respectively in the 

depolarisation spectra of the Se-rich glasses (see Figure 6.28) may 

correspond to the two other high-frequency As 2Se 2  modes, but this is 

uncertain since, as will be shown in Section 6.5.2, Se allotropes may 

also be causing features near these frequencies in the depolarisation 
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spectra. 	The results of Section 6.5.2 also indicate the presence 

-1 	 1. 
of a weak band at 150 cm but this may similarly be due to Se 

allotropes. 

The calculation for determining the six vibrational frequencies of 

the non-linear, non-planar X 2  Y  2 
 molecule was described in Section 

5.5.1.5.4. 	When this calculation was performed for the As 2Se 2  'molecule' 

it was found that V1 , the frequency of the mode involving the symmetric 

stretching of the Y—Y bond, was in the region of 265 cm -1  for all 

reasonable values of the various parameters (these were specified in 

Section 5.5.1.5.4). 	As in the case of the As 2S2  bent chain, only k 0 , 

and a significantly influence V1. 	<D is expected to be close to 

its value in other molecules with Se—Ge bonds, i.e. '1.9 md/, and for 

the simple valence force field approximation kDz  0, so only cxcan be 

varied to bring 	closer to 265 cm -1
. 
	

decreases as a is increased 

from 00 but reaches a minimum at 	
0 93 and then starts to increase 

with increasing V, (this behaviour is similar to that observed for the 

As2S 2 'molecule'). For all reasonable values of the various parameters 

>265 cm, so taking Q r 930 gives the value of 
l 
 closest to 

265 cm 1 . On setting c(r 93°  and taking for the other parameters the 

values given in column 2 of Table 6.7, the minimum value of 	was 

-1  found to be 294 cm , which is "116 greater than the observed value of 

265 cm1. 	l remains within 14% of 265 cm-1  for all values of &.between 

75 
0  and 110 0 , which covers the range of values for R observed in other. 

compounds with Se—Se bonds (see Table 6.6). 	Hence the bent As 2Se2  chain; 

unlike the linear one, can account for the emerging 265 cm-1  band. 

The six frequencies were found to be insensitive to the dihedral 

angle, 95. Using the parameter values given in column 1 of Table 6.7 

it was found that varying 95 over the range 90 t 25 °  had no effect on V1  

and did not alter any other frequency by more than 7% of its value for 



Molecule Se—Se bond 

length () 

Bond angle 

(degrees) 

Dihedral angle 

(degrees) 

Se 2Cl2  2.32 106 84 

Se 2Br2  2.32 106 84 

se8(48) 2,336 105.7 - 101.0 

Se 	(48) 2.373 103.1 103.1 

--3 

Table 6.6 Geometrical parameters of Se 8' Se  and two X2Y 2  molecules 

containing Se—Se bonds. 

/ 



Observed 
freqs.& 
polns. 

Para- 
meter 

Value 
1 

% Diff. 
in 

freqs. 

Value 
2 

% Diff. 
in 

freqs. 

Value 
3 

% Diff. 
in 

freqs. 

Value 
4 

% Diff. 
in 

freqs. 

kD. 2.0 1.9 1.9 1.9 

• k d 1.25 1.25 1.25 1.25 

ka  0.2 0.2 0.2 0.25 

Jc 0.1 0.1 0.1 0.14 

0 0 0.15 0.15 

90 106 106 106 

90 84 84 84 

265 	p V1  302 14 299 13 286 8 287 8 

237?p 240 1 237 0 225 5 231 3 

152? p V3  118 22 133 13 136 11 155 2 
- 73 - 75 - 76 - 87 - 

242? dp V5  241 0.4 243 0.4 243 0.4 246 2 

148? dp 95  122 18 134 9 134 9 148 0 

p - polarised; dp - depolarised. 	
-1 All frequencies and force constants are in units of cm and md/k respectively; 

and 0 are in degrees. 

Table 6.7 Parameter values and frequencies of the As 2Se2  'molecule' of C2  

symmetry. The differences between the observed and calculated 

frequencies expressed as a percentage of the former are also given. 
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Because only one of the six X 2 Y  2 
 frequencies has been located 

with certainty for the selenides the evidence for the presence of such 

a 'molecule' is less conclusive than in the case of the sulphides and 

little can be deduced about its force constants and geometry. Excluding 

the "150 cm —1 band which is observed in the spectra of the very Se-rich 

glasses, there is no sign at all of the As 25e2  bending modes; over the 

composition range As 40Se60  - As 355e65  there is no obvious change in the 

-1 
spectra between 50 and 175 cm , the range in which these modes are 

expected to occur. 	It should be noted, however, that the bending modes 

in a-As40Se50  are extremely weak. 

Table 6.7 shows the calculated frequencies of the As 2Se 2  'molecule' 

for various sets of parameter values. 	In each case the bond-bending 

force constants are about one tenth of the bond-stretching force constants 

and all interaction constants, apart from DoL 
 have been taken as zero. 

The -values of 1060  and 84°  for G*. and respectively are averages of the 

compound values (see Table 6.6). 	From columns 3 and 4 of Table 6.7 it 

is seen that the value of k N. 
 needed to give good agreement with experiment 

for 1) is the same as the value of Ic 	used for the As S 'molecule'. 
1 	 22 

For each set of parameters, 2' 	
are close to features in 

the observed Raman and depolarisation spectra but as remarked earlier 

these features may be due to Se allotropes. 

Although the polarisation of the 265 cm-1  feature cannot be deduced 

from the depolarisation spectra of these compositions the results for the 

glasses with Se content '65 at.% show that this band is polarised. The 

absence of structure at 265 cm -1  in the depolarisation spectra of the 

compositions As40Se_ 0  - As 35 Se 55  is probably due to the overlapping of 

bands. 	Table 6.7 shows that the polarisations of the observed bands at 

148 2  152, 237 and 242 cm 1  are consistent with these bands being attributed 

to the As 2Se2  chain. However, the polarisations of the bands at 148 and 

242 cm-1  also match the polarisations of the Se allotrope bands near these 
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frequencies and the dip at 237 cm- 1 in the depolarisation spectra of 

the compositions As40Se60  - As 35Se65  does not necessarily indicate the 

presence of a vibration at this frequency. 

In conclusion, the accommodation of the additional Se atoms in the 

As-Se network is the only one of the four processes that satisfactorily 

accounts for the growth of the 265 cm -1  band as the Se content is increased. 

The results indicate that the extra Se atoms go mainly into the formation 

of As-Se--Se-As bridges and these are non-linear. 	This behaviour parallels 

that found in the corresponding sulphide glasses. 

6.5.2 	The compositions As 35 Se65  - As 25 Se 75  

6.5.2.1 The polarisation-unanalysed spectra 

Figure 6.29 shows the polarisation-unanalysed Raman spectra of the 

compositions As 30Se70  and As 25Se75 . 	For comparison the corresponding 

spectra of the As 40Se60  and As 35Se 65  glasses are also shown. 	The spectra, 

which have been displaced above one another, are normalised to intensity 

at 225 cm-1 . 

Several spectral changes occur as the Se content is increased beyond 

65 at.%, the most obvious being the grovth of an intense broad peak at. 

253 cm-1
. 
	The boson peak has also grown considerably, as it did in the 

case of the sulphide glasses with S content > 65 at.%, and a weak feature 

centred at .- '150 cm -1 has appeared. 	Possibly as a result of the growth of 

the boson peak, the weak feature at 106 cm 1 •...the a-As 40Se50  spectrum 

disappears gradually and is not detectable in the As 25 Se75  spectrum. 	The 

boson peak is the only feature of the a-As 40Se 60  spectrum that shifts in 

frequency as the Se content increases, but the shift is only small. The 

two weak features between -160 and 190 cm -1  in the As 30Se70  and As25 Se75  

spectra are plasma lines. 



• 	 Figure 6.29 

The polarisation-unanalysed Raman spectra of the compositions in the 

range As40Se60  - As 25Se 75 . 

Spectrum Composition• 

A 	- • As 25Se 75  

B 	- As30Se70  

r 	 C 	- As35Se 65  

D 	As40Se 60  

- 	 Figure 6.30 

The HU-polarised Raman spectra of the compositions in the range 

As40Se60  - As25Se 75 . 	A - D as for Figure 6.29. 

- 	 Figure 6.31 

The HV-polarised Raman spectra of the compositions in the range 

As40Se60  - As25Se75 . 	A - D as for Figure 6.29. 

Figure 6.32 

The depolarisation spectra of compositions in the range As 40Se60  - As 25 Se 75 . 

A —D as for Figure 6.29. 	 • 
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6.5.2.2 Polarisation measurements 

The HH- and HV-polarised spectra of the compositions As 30Se70  and 

As25Se 75  are shown along with the corresponding spectra of the As 40Se60  

and As35Se 65  glasses in Figures 6.30 and 6.31 respectively. 	The HF! and 

liv spectra are normalised by intensity at 227 and 223 cm' respectively 

and are shown vertically displaced. The spectral changes occurring as 

the Se content increases beyond 65 at.% are similar for both sets of 

spectra and consist of the growth of the boson peak, an intense band near 

250 cm
-1  and a weak feature centred at ''150 cm 1 . 	The HH spectra of the 

compositions As 30Se70  and As 25Se 75  are similar to their polarisation-

unanalysed counterparts, although the boson and main band peaks are shifted 

to slightly higher frequencies in the former. 	There are, however, several 

differences between the HH and HV spectra of these glasses. In the HV 

spectra the main bands are more rounded, having no pronounced feature at 

223 cm, and peak at slightly lower frequencies; also, the boson peaks 

are more pronounced and comparable in intensity with the main bands. 

The depolarisation spectra for the above four compositions are shown 

in Figure 6.32. 	The three Se-rich spectra are basically similar in 

shape, particularly below ,v200 cm'; the only significant spectral change 

is the growth of a large, broad peak at "234 cm' with a shoulder at 

-242 cm- 1. 	In the As 30Se70  and As 25Se 75  spectra there is no sign of any 

feature at 106 cm -1  nor, surprisingly, of one at 253 cm', the frequency 

of the intense emerging Raman band. None of--the features shifts in 	- 

frequency as the Se content increases. 

6.5.2.3 Discussion 

The most striking spectral change occuring over the composition range 

As40Se60  - As25Se75  is the growth of a broad, intense line centred at 

'v253 cm-1 . This band is not apparent in the spectra of the glasses with 

less than 65 at.% Se but has overtaken the 265 cm-1  band when the Se 



content has reached 70 at.%.. Similar results were reported by Ward 

and co-workers 2) 

The most intense high-frequency band in the first-order Raman 

spectrum of oc-monoclinic Se occurs at 254 cm -1  (see Figure 6.3) and is 

polarised. 	Figure 6.32 shows that the 253 cm -1  band in the spectra of.. 

the compositions As 30Se70  and As 25 5e 75  is also polarised so that the 

presence of Se  rings in these glasses could account for this spectral 

feature. Such bhaviour was exhibited by the S-rich sulphide glasses, 

with the additional S atoms initially being mainly incorporated in the 

network but at S concentrations greater than n70 at.%, going predominantly 

into the formation of S 8 rings. However, Se  chains in an environment 

that prevents interchain interactions also have a polarised band near 

-1 (19) 
253 cm 	. There is no evidence for the presence of trigonal Se 

itself in these compositions. (this crystal has an intense band near 

234 cm i ) but Se  chains may be contributing to the intensity of the 

253 cm-1  band. Nevertheless, the characteristics of the 253 cm -1  band 

are, as will be shown below, similar to those of the 5 5  band in the 

sulphide glasses and so it seems likely that this growing peak mainly 

arises from the presence of Se  rings in the glasses. 

The 253 cm
-1  band in the spectra of Figure 6.29 is too broad to be 

attributed to c-monoclinic Se itself and were this crystal present one 

would expect to observe its most intense band (which occurs at 114 cm) 

in the glass spectra. The 253 cm 1  band in the As-Se spectra must 

therefore be due either to the presence of a-Se (which is believed to 

contain both Se 8  rings and Sen  chains) or randomly arranged Se  rings 

only. Although a-Se does have an intense, broad, polarised band at 

250 cm
-1  there is no sign )f its other Raman bands at 80, 112, 138 and 

235 cm 1 ; these should be observable in view of the intensity of the 

253 cm
-1 	i band n the As 30Se 70  and As 25Se75  spectra. 	There is a 

pronounced peak at ''234 cm -1  in the depolarisation spectra of these two 
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glasses but this cannot be attributed to a-Se since the 235 cm -1 band 

of a-Se is polarised (15) and should give rise to a dip in p(w). 	It 

seems unlikely, therefore, that a-Se is present in these glasses in 

significant quantities. The growth of the 253 cm- 1 band in the As-Se 

glasses can thus be attributed to the formation of Se  rings (ignoring 

any contribution from Se   chains); these rings are randomly positioned 

relative to one another. 

The 253 cm-1  feature of the As-Se spectra is much broader than the 

254 cm-1  band of -monoclinic Se and has a depolarised wing on the low-

frequency side extending to 225 cm 1 . The latter band corresponds to 

the 472 cm-1  band of R -58 , for both arie from the seine vibrational mode 

of the 8-membered ring and their frequencies are related by the scale 

factor determined by Lucovsky et al. 
(12)  (viz 1.9). 	The 472 cm -1 band 

of the As-S glasses arises from the presence of S 8 
 rings and it, too, is 

broader than its crystal counterpart and has a wing on the low-frequency 

side (this wing may be depolarised, though the evidence is inconclusive - 

see Section 5.5.2.3). 	The broadness of the 472 cm -1  band in the As-S 

spectra was attributed to the random positioning of the rings in the 

glasses while the wing was thought to be due to disorder-induced distortion 

of the rings themselves. 	It seems that the Se  rings in the As-Se glasses 

are also randomly positioned and distorted. The depolarised wing which 

gives rise to the peak at 234 cm. in/J(w) will be due to the appearance 

of depolarised Raman-forbidden Se  fundamentals as a result of the 

distortion of the ring structure. These fundamentals will correspond to 

the S vibrations at 471 and 411 cm-1  and thus should occur at &248 and 

216 cm , applying the frequency scale factor of 1.9. 

In Section 5.5.2.1 it was remarked that the 472 cm -1  band in the liquid 

sulphur spectrum and in the spectra of the As-S glasses is much more intense 

relative to the other S lines than it is in c&-S 8 . It has been suggested 

that this enhancement of the 472 cm -1  band of liquid sulphur is due to 
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the contribution of nearby Raman-forbidden bands that appear as a result 

of thermally-induced distortion of the rings20). 	A similar effect 

seems to be occurring in a-Se and the As-Se glasses: for the latter 

the Raman intensity is considerably greater at 253 cm-1  than at 114 cm -1  - 

even allowing for the As-Se network contribution - whereas in -monoclinic Se 

the 254 and 114 cm -1 bands are of comparable intensity (it is assumed that 

Sen chain modes are not contributing to the intensity of the 253 cm -1  band 

in the glasses). 	If the 253 cm-1  band of the Se  rings in the As-Se 

glasses is enhanced relative to the other Se  bands it might account for 

the fact that these other Se 8  bands are not observed in the spectra of 

the As-Se glasses. 

The presence of the characteristic a-As40Se60  spectral features at 

86, 106, 136, 223 and 275 cm 1  in the Raman and depolarisation spectra 

of the Se-rich glasses of Figures 6.29 - 6.32 suggests that the AsSe 3  and 

As 2Se units of the a-As 40Se60  structure are retained as the Se content 

is increased from 60 to 75 at.%. 	Since none of these characteristic 

spectral features of a-As 40Se60  shifts in frequency it can also be con- 

cluded that there is no change in the geometry of these units. 	(The 

-1 	 -1 
275 cm band is probably responsible for the knee at -280 cm in the 

As30Se70  and As 25Se75  spectra of Figure 6.29 - the depolarisation spectra 

show- that the band does not actually shift in frequency.) 	Similarly, 

the AsS 3  and As 2S units of the a-As 40S 60  glass are retained unchanged in 

the very S-rich sulphide glasses. The low-frequency dip in the depolar-

isation spectra of the sulphide glasses does, however, shift to higher 

frequencies as the S content increases •(see Figure 5.60); this is thought 

to be a consequence of the increase in the intensity of the depolarised 

boson peak. 	In the case of the Se-rich selenide glasses the change in 

the boson peak is less marked. 

Although there is no sign of structure at 265 cm 1  in the Raman spectra 

of the compositions As 30Se70  and As 25 Se 75 , the region of low depolarisation 
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'ratio around this frequency in f2(w) suggests that As 2Se 2  units are also 

still present in the network. 	(The fact that 265 cm -1  corresponds to 

a minimum inf(w) indicates that the band at this frequency is polarised.) 

In the case of the S-rich sulphide glasses, As—S--S—As links were found to 

be present up to S concentrations of 95 at.%. 

In addition to the intense 253 cm -1  band, a much weaker feature at 

150 cm' also emerges in the spectra of the As-Se glasses as the Se 

content increasesbeyond 65 at.%. 	In some of the spectra the feature 

appears to be a doublet. The depolarisation spectra also suggest a 

doublet structure, one component being polarised and the other depolarised. 

The 150 cm-1  feature does not grow at the same rate as the 253 cm' band 

and thus cannot be associated with Se  rings, the structural feature 

mainly responsible for this band. 

No Se 8  bands occur near 150 cm -1  but there is a weak band at 142 cm -1  

in the Raman spectrum of trigonal Se so this structure may be due to the 

presence of free Se   chains in the glasses. Alternatively, the 150 cm -1 

doublet may be associated with Se—Se bonds in the network: 150 cm' is 

close to the values calculated for the 1) 3  and V6  bending modes of the 

As 2Se 2  'molecule' (see columns 3 and 4 of Table 6.7). 	The 150 cm -1  band 

also seems to be present in the spectra of the As 35 Se65  glass (in which 

the As 2Se 2  bridges preponderate over Se molecules) and its slow growth 

compared to that of the 253 cm-1  band would be due to the fact that at Se 

concentrations above N65 at.% the additional Se atoms go mainly into the 

formation of Se 8  rings rather than Se—Se bonds in the network. 

In conclusion, although there was no indication of Se  rings in the - 

compositions As40Se60  - As35 Se65  they are definitely present in the glasses 

with Se content above 70 at.%. 	In these very Se-rich glasses Se  ring 

production predominates over the formation of Se—Se bonds in the network, 

though such bonds are still present. The rings are randomly positioned 

and distorted, as were the S 8 
 rings in the S-rich sulphide glasses. 	Se  



242 

chains may also be present, though in small amounts, and the AsSe 3  and 

As2Se units of the stoichiometric glass are retained unchanged. 	These 

findings for the glasses with Se content greater than 65 at.% are essen-

tially identical with those deduced for the corresponding sulphides. 

6.6 	The arsenic-rich glasses 

6.6.1 The compositions As 10Se60  - As45 Se55  

6.6.1.1 The polarisation-unanalysed spectra 

The polarisation-unanalysed Raman spectra of the compositions 

As40Se60  - As 45 Se55  are shown in Figure 6.33. 	The spectra are normalised 

to intensity at 225 cm -1  and are shown displaced above one another. 

Several spectral changes occur as the As content is increased above 

40 at.%, the most obvious being the growth of an intense peak at 220 cm'. 

A very weak band grows at 156 cm -1  and the boson peak shifts to lower 

frequencies, as it did in the case of the corresponding sulphide glasses. 

Figure 6.34 is an enlargement of the 130 - 180 cm -1  sections of the spectra. 

The sections have been superimposed and the figure shows the emerging 

156 cm-1  band ciearly. The weak 106 cm-1  band of the a-As 40Se 60  spectrum 

also appears to shift slightly as the As content increases. A knee at 

275 cm -1 and a weak feature at 136 cm -1 are present in all the spectra. 

Although c-As 4Se 4  exists there is no sign of sharp structure similar to 

that observed for the As-rich sulphide glasses. 

The corresponding reduced spectra, normalised to intensity at 231 cm-1  

and superimposed, are shown in Figure 6.35. 	The spectra change in an 

ordered way as the As content is increased. The emergence of the weak 

band at 156 cm' is obvious in this figure, as is the fact that this 

feature and the emerging high-frequency peak (which is shifted to 221 cm 1  

by the reduction process) grow in an ordered way with increasing As content. 

Below 140 cm-1  the' spectral changes are less obvious: the boson peak is 



Figure 6.33 

The polarisation-unanalysed Raman spectra of the compositions 

As40Se 60  - As45Se 55 . 

Spectrum Composition 

A 	- As45Se 55  

B 	- As44Se55  
C 	

- As43Se 57  

D 	- As 2Se 53  

E 	- As41Se59  

F 	- As40Se60  

Figure 534 

An enlargement of the 130 - 180 cm' sections of the spectra of the 

compositions As40Se 60  - As45 Se 55 . 	The sections have been superimposed. 

(Courtesy of Dr. M.J.Sik.) 

Figure 6.35 

The reduced spectra corresponding to those of Figure 6.33. 	The spectra 

are shown superimposed. 
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completely absent and the change occurring in the 106 - 109 cm -1  region 

is not apparent, although enlargement of the low-frequency sections of 

the reduced spectra shows that they peak at 106 and 109 cm
-1 
 in the case 

of a-As40Se60  and As 45 Se 55  respectively, and at intermediate frequencies 

in the case of the other compositions. 

Figure 6.35 also shows that the high-frequency side of the main 

band does not change significantly in shape but that almost the entire 

low-frequency side is affected by the emerging feature at 221 cm 1 . 

Since the six spectra are approximately coincident in the two base regions 

of the main band, normalisation at 231 cm- 
1 
 is equivalent to normalisation 

by basewidth in this case. 	Ignoring the small changes near 109 cm
-1 

, 

these spectra are approximately coincident over the region 0 - 140 cm -1 

as well, so the method of normalisation used is also equivalent to 

normalisation over the low-frequency part of the spectra. 

6.6.1.2 Polarisation measurements 

The Hi-i- and HV-polarised spectra of the above six compositions are 

shown in Figures 6.36 and 6.37 respectively. 	The HHJHV  spectra are 

normalised to intensity at 227 cm -1  /223 cm -1  and have been vertically 

displaced. 	It is seen in these figures that corresponding HH and HV 

spectra are similar in shape, the on].5r noticeable difference between 

them being that the boson peak and the emerging 156 cm 1  feature are 

more pronounced in the latter. 	Comparison with Figure 6.33 shows that - 

the polarised spectra resemble their polarisation-unanalysed counterparts 

and thus the spectral changes they exhibit are the same as those described 

in the previous section. One change which is not apparent in the polarised 

spectra is the shift in the frequency of the boson peak: since the Raman 

intensity varies slowly with frequency near the maximum, the peak frequency 

is sensitive to the signal/noise ratio and this is poorer for the polarised 

spectra than it is in the case of the polarisation-unanalysed results. 
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Figure 6.36 

The HT-I-polarised Raman spectra of the compositions As 40Se60  - As45Se55 . 

Spectrum Composition 

A 	- AsSe 55 

B 	- As44Se55  

C 	- As 3Se57  

D 	- As42Se58  

E 	- As41Se59 	- 	$ 

F 	- As40Se50  

Figure 6.37 

The HV-polarised Raman spectra of the compositions As4 0Se60  - As45Se 55 . 

A - Fas for Figure 6.36. 

Figure 6.38 	 - - 

The depolarisation spectra of the compositions As 40Se 60  - As45 Se55 . 	A - F 

as for Figure 6.36. 	 - 
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The depolarisation spectra for these six compositions are shown, 

vertically displaced, in Figure 6.38. 	The spectra are basically 

similar; each has a broad dip centred at rs80 cm 1 , a raised region 

around '136 cm -1 and a trough from 200 to 290 cm 1 . As the As content 

increases beyond 40 at.% a peak grows at 157 cm' and a broad, pronounced 

dip develops at 'u209 cm 1 ; also, the low-frequency dip shifts nearer the 

origin. The raised region around 136 cm' and the dip near 275 cm -1  do 

not shift in frequency. 

Although features are present in the 106 - 109 cm
-1  region of the 

Raman spectra there is no structure in this frequency range of the depolar-

isation spectra. 	The noisy sections of the spectra between 150 and 

200 cm' correspond to the regions of minimum Raman signal. 

6.6.1.3 Discussion 

It is clear from Figure 5.33 that the spectra of the glasses in the 

composition range As 40Se 60  - As45 Se55 , unlike those of the corresponding 

sulphide glasses, do not exhibit a series of sharp lines growing rapidly 

with increasing As content. 	The principal spectral changes for these 

selenideglasses consist of the growth of two bands only, one at 220 cm -1 

and a considerably weaker one at 156 cm
-l . The spectra of c-As 2Se 3  and 

c-As4Se 4  do not have bands at these frequencies and in any case the band 

at 220 cm -1  is too broad to be of crystalline origin. 	Also, the glass- 

forming region of the As-Se system has been shown to extend to 55 at.t As (56) 

and there is no evidence of significant crystal-glass phase separation 

over the range 40 - 45 at.% As. 

Figure 6.39 compares the spectrum of the composition As 45Se 55  with 

that of a-As. Although there are bands in the a-As spectrum near 220 

and 156 cm-1  the As 45Se 55  bands at these frequencies do not match them 

exactly. Since, also, there is no evidence of any phase separation in 

these compositions it seems unlikely that the bands at 220 and 156 cm1 



Figure 5.39. 

The polarisation-unanalysed spectra of a-As and the composition As 45 Se 55 . 

'I 
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in the As-rich spectra arise from the presence of a-As in the glasses. 

If the additional As atoms do not go into the formation of crystalline 

species or a-As they must be being incorporated in the As-Se network 

through the formation of As-As bonds. 	The vibrational frequencies arising 

from such bonds in the network are difficult to calculate exactly, as 

(46)  Lucovsky et al. 	have pointed out, since there are many possibilities

Se  
for the 6-atomic 'molecule' formed, e.g. 	As-AsC 	' As AssC etc. 

Se 	Se

However, since a-As has bands near 220 and 156 cm -1  the features at these 

frequencies in the As-rich spectra can reasonably be associated with 

As-As bonds in the network: the 220 cm -1  band will arise from the stretching 

of this bond and the 156 cm
-1 
 band will probably be due to its bending. 

The depolarisation spectra of Figure 6.38 show that the 220 cm -1 	i band s 

polarised while that at 156 cm -1  is depolarised and hence the corresponding 

vibrations are symmetric and antisymmetric respectively. In the As-rich 

sulphide glasses the band attributed to the stretching of As-As bonds 

in the network occurs at 231 cm -1  and is also polarised (the lower value 

of 220 cm for the selenide case may reflect the greater atomic mass 

of selenium relative to sulphur). 	 - 

Although there seems to be no evidence in the spectra of Figure 6.33 

for the presence of As 4Se 4  molecules in these glasses, a careful comparison 

of this data with the results of Section 6.6.2 on the two very As-rich 

glasses As 505e50  and As 555e 45  indicates that a small number of these 

molecules are indeed present. 	Figure 6.41 (after p.247) shows that the 

spectra of As 50Se 50  and As 55 Se45  exhibit numerous relatively sharp bands 

and that the region of the As 455e 55  spectrum below 175 cm' contains 

corresponding structure, though it is extremely weak; the frequencies of 

six of the ten sharp bands (the 156 cm -1  band is being ignored) match 

frequencies in the i.r. spectrum of c-As 4Se4 7 .. 	The growth of the As4Se4  

bands below 175 cm-1  as the As content is increased from 40 to 45 at.% 

is barely discernible in the spectra of Figures 6.33, 6.36 and 6.37. 	The 
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region below 175 cm-1  does not seem to exhibit any change at all over 

this composition range, apart from an apparent shift of the 106 cm -1 

a-As40Se 60  band to 109 cm -1  and the growth of the 156 cm -1  band (note 

that the As 4Se4  structure is even weaker than this feature). 	It is 

the growth of the 110 cm-1  As4Se 1  band that is responsible for the 

apparent shift of the 106 cm -1  a-As40Se60  feature. 	The high-frequency 

As4Se4  bands are not directly observable in the spectra of Figures 6.33, 

6.36 and 6.37 because they occur in a region where the Raman signal from 

the As-Se network is very intense and changing rapidly as a function 

of frequency. 

The difference spectra for the compositions As 40Se60  - As15Se55  

(see Figure 6.40) provide further evidence for the presence of As45e4  

bands in the Raman spectra of these glasses. The spectra exhibit a 

series of sharp features growing regularly as the As content is increased 

and many of these features occur near frequencies found in the i.r. 

spectrum of c-As 45e4 . Note that the high-frequency As 4Se4  bands as 

well as the low-frequency ones are detectable in the difference spectra. 

The polarisation states of the As 1 Se 4  bands can be deduced from 

Figure 6.44, which shows the depolarisation spectra of the compositions 

As505e50  and As 555e45 . 	The intense As 45e4 band at 204 cm-1  is polarised 

and corresponds to the minimum in the depolarisation spectra of these 

two glaSses. 	The fact that in the depolarisation spectra of the 

compositions As40Se 60  - As45 Se 55  the minimum corresponding to the As—As 

bond-stretching band at 220 cm -1  does not occur at this frequency but at 

209 cm-1  may be due to the proximity of the polarised 204 cm -1  As4Se4  band. 

It is clear from Figures 6.33 and 6.40 that as the As content is 

increased beyond 40 at.% the additional As atoms initially go mainly into 

the network, rather than into the formation of As 4Se 4  molecules, for the 

220 and 156 cm-1  bands grow much faster than the As 4Se4  bands, This is 

in contrast to the situation in the corresponding As-S glasses and reflects 



Figure 6.40 

Difference spectra obtained from the spectra of Figure 6.33 by 

subtracting the aAs q0Se 60  spectrum from each. 

Spectrum 	Composition 

A 	- A's 4sSeb5 - As 40Se 60  

B 	- As44Se 56  - As40Se60  

C 	- As 3Se57  - As 40Se 60  

D 	- 	425e 58  - As40Se50  

E 	- As41Se 59  - As40Se60 
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the different melting behaviour of c-As4S4  and c-AsSe4. 	c-As4S4 

melts congruently to a liquid of the same composition and when this 

liquid is cooled the small As 4S4  molecules of which it is composed 

readily order into a crystal lattice. 	c-As4Se4 , however, decomposes 

at 264°  C to a liquid and c-As 2Se 3 ; when liquid As4Se 4  is cooled the 

presence of the As 2Sè 3  network regions inhibits 	
(53) 

It will be shown in Section 6.6.2 that at large excess As con-

centrations the formation of As—As bonds in the network is superceded 

by the formation of As45e 4  molecules and the As 43e 4  bands overtake the 

220 and 156 cm-1  bands. The different growth rates of the two sets 

of features is further evidence that the 220 and 15 cm -1  bands are not 

associated with As 4Se4  molecules. 

The presence of the plateau at 136 cm-1  and the dips at 275 and 

r80 cm-1  in all the depolarisation spectra of the compositions As 40Se60  - 

As455e55  suggests that the AsSe 3  pyramids and As 2Se bridges of a-As40Se60  

are retained in these glasses. 	Since the 275 and 136 cm-1  a-As40Se60  

features do not shift in frequency no change in the geometry of these 

'molecules' can be occurring as the As content is increased. 	It is 

unlikely that the 86 cm -1  vibration of the As2Se bridge shifts to 76 cm' 

as suggested by the depolarisation results, for the dip at 275 cm 1 , which 

also arises from this bridge, does not shift at all. 	The shift in the 

frequency of the low-frequency dip is probably related with the shift of 

the boson peak to lower frequencies (see Figure 6.33); these shifts may 

be due to an increase in the layer separation with increasing As content 

6.6.2 	The compositions As45Se55 - As 55 5e45  

6.6.2.1 The polarisation-unanalysed spectra 

The polarisation-unanalysed Raman spectra of the compositions 

As505e50  and As 55 5e45  are shown in Figure 6.41 together with the corres-

ponding spectra of the As 40Se50  and As 45 Se 55  glasses for comparison. 



Figure 5.41 

The polarisation-unanalysed Raman spectra of the compositions in the 

range As40Se50  - As55 Se45 . 

Spectrum Composition 

A 	- As57 Se45  

B 	- As50Se 50  

C 	- As45 Se55  

D 	- As40Se 50  

Figure 5.42 

The HH-polarised Raman spectra of the compositions in the range 

A540Se50 - As 55 Se45 . 	A - D as for Figure 6.41. 

Figure 6.43 

The HY-polarised Raman spectra of the compositions in the range 

As405e50  - As55 Se45 . 	A - D as for Figure 5.41. 

Figure 6.44 

The depolarisation spectra of the compositions in the range 

As40Se50 - As 55 Se45 . 	A - D as for Figure 6.41. 
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The spectra are normalised by maximum intensity and are shown displaced 

above one another. 

The spectral changes occurring as the As content is increased beyond 

45 at.% consist of the growth of numerous sharp peaks.(this behaviour is 

similar to that observed in the case of the sulphide glasses containing 

more than 40 at.% As - see Figure 5.62). 	Also, the boson peak grows 

relative to the 220 cm' band and continues shifting to lower frequencies. 

It is clear from the spectrum of the As 5 5 Se45  composition that these 

sharp features eventually overtake the 220 and 156 cm -1  bands, which 

emerged when the As content was increased above 40 at.%. 

6.6.2.2 Polarisation measurements 

The HH- and HV-pclarised spectra of the compositions As 50Se50  and 

As55Se45  are shown along with the corresponding spectra of the As 40Se50  

and As45 Se55  glasses in Figures 6.42 and 6.43 respectively. 	The spectra 

are normalised by maximum intensity and are shown vertically displaced. 

For the As 50Se50  and As 55Se45  glasses the HH spectra are basically 

similar to the HV spectra, the only differences being in the intensity 

of the boson peak, which is more pronounced in the HV spectra, and in 

the intensities of the emerging sharp peaks relative to one another. 

Since the polarised spectra of these two compositions resemble their 

polarisation-unanalysed counterparts the spectral changes occurring as 

the As content increases above 45 at.% are the same as those described 

in the previous section. 

The depolarisation spectra for these four compositions are shown, 

displaced above one another, in Figure 6.44. Each spectrum has a broad 

dip in the 25 - 110 cm -1  region followed by a raised section centred at 

-130 cm 1 , and also a trough from '200 to 290 cm 1 , though this differs 

considerably in shape from spectrum to spectrum. 	Several spectral 

changes occur as the As content is increased beyond 45 at.%: the 
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low-frequency dip becomes shallower and shifts nearer the origin, the 

110 - 175 cm '  section rises relative to the maximum in the spectra at 

N25 cm-1  , and numerous sharp features appear. Dips are present at 

203 - 209 and "275 cm -1  in all the As-rich spectra. 

The sharp features occurring in the depolarisation spectra of the 

As50Se50  and As 55 Se45  glasses coincide with the emerging structure in 

the corresponding Raman spectra. 	These sharp dips and peaks in f(w) 

indicate the polarisation states of the growing bands; the states are 

given in Table 6.8 along with the frequencies of these bands. 	Since 	P1 

a number of the sharp features in the depolarisation spectra are not 

well defined and are comparable with the noise structure the polarisation 

states of some of the bands are uncertain; this is indicated in the 

table. 

6.6.2.3 Discussion 

The emergence of numerous, relatively sharp bands in the spectra of 

the As-Se glasses as the As content is increased beyond 45 at.% is 

reminiscent of the spectral changes that occurred in the As-rich sulphide 

glasses. Figures 6.41 - 6.43 show that when the As content reaches 

55 at.% these new bands have overtaken those at 220 and 156 cm-1 , which 

were the first to appear as the As content was increased beyond 40 at.%. 

This suggests that the new structure and the bands at 220 and 156 cm -1  

have different origins. It is notable that traces of this structure are 

observable in the spectra of As 45Se 55 . 

The frequencies of six of the ten new bands are near frequencies in 

the i.r. spectrum of c-As 4Se 4 . 	The glass forming region in the As-Se 

system extends to 55 at.% As and it appears that as the As content 

approaches this level the excess As atoms go more and more into the 

formation of As 45e4  molecules and less and less into the formation of 

As-As bonds in the network, though the presence of the bands at 220 and 



i.r. 
frequency (cm 	) 
(Reference 10) 

Raman 	
-1 

frequency (cm 	) 
(this work) 

Raman 
pain. 
state 

93 (s) 90 (vw) 
104.5 (m) 
114.5 (w) 110 (s) dp 
129 (w) 
134.5 (m) 133 (w) dp? 

145 (m) p 
168 (w) 	- dp 
195 Cm) dp 

205 (in) 204, (vs) p 
220 Cm) 220" (s) p 
235 (m) 236 (s) p 
241.5 (vs) 
252.5 (m) 253 (m) p 

279 (m) p 

p - polarised; dp - depolarised; s - strong; 
w - weak; v - very; in - medium. 

This frequency is also associated with vibrations 
of As—As bonds in the network 

Table 6.8 The frequencies and polarisation states of the As 4Se 4  bands 

observed in the spectra of the As-rich selenide glasses. 

The i.r. frequencies are those of c-As 4Se4  (Reference 10). 
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157 cm' in the spectra of the compositions As 50Se50  and As 55 Se45  

indicate that such bonds are still present in these glasses. 	The sharp 

features in the spectra of these glasses cannot be compared directly with 

the Raman spectrum of c-As 4Se 4  since it has not yet been recorded but the 

breadth of the As 4Se 4  bands in the glass spectra suggests that they do not 

arise from c-As4Se4  itself. 

Figure 6.44 shows that a low-frequency dip, a plateau centred at 

136 cm-1  and a dip at 275 cm-1  occur in all the depolarisation spectra. 

These features are characteristic of ,2(w) for a-As 405e60  and hence indicate 

that the AsSe 3  and As 2Se structural units of this glass are retained in 

these very As-rich compositions. The shift in the frequency of the low-

frequency dip from 86 to 59 cm -1  is attributable to the Shift of the boson 

peak towards the origin. Since the other dip and the plateau do not shift 

there is no change in the geometry of these units!. 

It appears that in the As-Se glasses, as well as in the sulphides, 

monomer species are produced as the As content approaches the maximum value 

permitting glass formation. 	In the case of the As-S glasses As 4S4  is 

produced together with much smaller quantities of As 4S5  or As 4S 3  (or both). 

In the selenides, however, As 4Se4  monomers only are formed; 

6.7 	Photo-induced spectral changes 

In contrast to the case for the As-S glasses, no changes as a function 

of irradiation were observed in the selenide spectra. 	This absence of 

photo-induced spectral changes may, however, be due to the fact that the 

selenide samples were rapidly rotated during the scans in order to over- 

come the damaging effect of focussed radiation (see Section 4.3.1). 	It 	is 

possible that the effective incident power density in these experiments was 

reduced to such an extent by the spinning technique that negligible photo-

induced change occurred in the samples. 
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At incident power densities greater than those used in the present 

experiments, but below the level at which physical damage is produced, 

there may occur a Raman signal loss due to photostructural changes within 

these materials, for, like the sulphides, they also undergo photo.-  

darkening (5758). 	There is evidence that the layer structure of c-As 2Se 3  

i 	
(34,40,41) 

s retained in a-As 	 so if a Raman signal loss does occur 

in the As-Se glasses it may well arise from the mechanism put forward in 

Section 5.7 to account for this effect in the sulphides, viz the break-up 

of the layer remnants: the layers would be disrupted by the formation of 

units and this would result in a decrease in vibrational 

coherence. 	 - 

Photostructural changes in a-As 2Se 3  have been observed by other 

workers but under diff.went conditions to those prevailing in the present 

experiments. DeFonzo and Tauc (59) have shown that at temperatures 

between T and T a-As 2 3 
	 2 3 

Se is transformed into c-As Se when illuminated 
g 	m  

with 5145 radiation. 	(This is a stable glass and it does not crystallise 

in the dark in this temperature range.) Cernogora et ai!23)  report that 

at low temperatures (1.6 °  K) illumination of a-As 2 Se 3  with red light results 

in a feature growing near 260 cm 
-1  in the Raman spectrum. For 6764 

excitation they also observe a decrease in Raman intensity as a function 

of exposure. These authors attribute the effects to changes in the local 

atomic configuration but do not specify any particular structural alteration. 
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CHAPTER 7 

CONCLUSIONS 

7.1 	a-As25 3  and a-As 2Se3  

Of the various models used in interpreting the vibrational spectra 

of amorphous materials the molecular model was found to be the most 

appropriate in the case of a-As 2 5 3  and a-As 2Se 3 . 	For both materials 

the model could account for the number of observed bands and their 

frequencies and polarisation states. The results confirm that the 

short-range order in the two glasses is similar to that in the corres-

ponding crystals and indicate that they have a network structure 

composed of AsX 3  pyramid units linked via As 2X bridges (X r S or Se). 

It was found that the Raman spectra of the two glasses are related by 

the same two scale factors that relate the spectra of the corresponding 

crystals; the applicability of the interlayer scale factor to the glass 

spectra supports the presence of layer regions in the glasses. 

In the case of a-As 2S 3  the spectra indicate that As-As and S-S 

bonds, are present in the network, though in very small quantities (about 

1% of bonds are 'like-atom'). 	Possibly due to the overlapping of bands, 

no features attributable to 'like-atom' bonds were detected in the 

a-As 2Se 3  spectra but the results for the non-stoichiometric glasses 

suggest that As-As and Se-Se bonds may be present in a-As 2Se 3 . There 

is no evidence for the presence of any molecular species such as 

As1+S4 and As 4Se4  in these two glasses.' 	' 

7.2 	The chalcogen-rich glasses 

In the case of the S-rich glasses, for compositions with S content 

between 60 and 65 at.% the extra sulphur is mainly accommodated in the 

As-S network through the formation of As-&-S-As bridges; these bridges 

are non-planar. 
.S8 

 rings are also formed in the glasses more S-rich 
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than As 37S53  though AS 2S 2  bridge formation is the dominant process in 

this composition range. S 8 
 rings may even be present in the glasses 

with S content between 61 and 63 at.%. The As-As bonds in the As-S 

network rapidly disappear as the S content is increased above 60 at.%. 

The spectral changes occurring in the composition range As 40560  - 

As35 S65  can all be accounted for by the appearance of As 2 S 2  bridges and 

8 rings, and the disappearance of As-As bonds. There is no indication 

of any change in the geometry of the AsS 3  pyramids and As2S links. 

As the S content increases beyond 65 at.% the extra S atoms go less 

and less into the formation of As 2S 2  bridges, and S 
8 
 ring production 

becomes the favoured process; in compositions containing more than 

"-70 at.% S S 
8 
 ring formation is the dominant process. 	The A5 2S 2  bridges 

are, however, present in the glasses up to S concentrations of 95 at.%. 

There is no evidence for the presence of S n 
 chains either in the 

As-S network or 'free'. Also, there is no indication of the presence 

of any of the other cyclic sulphur molecules - the S ring is the only 

N 

sulphur species present in appreciable quantities. The S 8 
 rings in the 

glasses are randomly positioned and distorted. No significant changes 

occur in the geometry of the AsS 3  and As 2S 'molecules' as the S content 

increases beyond 65 at.%. 

The conclusions for the Se-rich glasses are similar to those for 

the S-rich glasses. 	In the compositions As40Se50  - As35Se65  the 

additional selenium is mainly accommodated in the As-Se .network through 

the formation of non-linear As-Se--Se--As bridges. Although no bands 

attributable to the Se  ring were detected in the spectra of these 

compositions this is possibly because they are swamped by the intense 

As-Se network bandsthey overlap; such rings could be present in small 

quantities. There is no indication of any change in the geometry of 

the AsSe 3  and As 2Se network units. 
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Se  rings are certainly present in the glasses containing more than 

r-'70 at.% Se. 	In the compositions more Se-rich than As 30Se 70  Se  ring 

production predominates over the formation of Se-Se bonds in the network, 

though such bonds are still present. The rings are randomly positioned 

and distorted. Se chains may also be present in these glasses, though 

in small amounts.. . No significant change occurs in the geometry of the 

AsSe 3  and As2Se 'molecules' as the Se content is increased beyond 65 at.%. 

7.3 	The As-rich glasses 

The limit of the glass-forming region in the As-S system occurs at 

niLf 3 a-t.% As and the sulphide compositions with As content greater than 

this are phase separated; they consist of crystallites (predominantly of 

the P polymorph of c-As 14S4 ) approximately 17 in diameter embeded in a 

glassy matrix. The glasses containing between 40 and 43 at.% As have 

similar Raman spectra to the phase-separated compositions and must also 

contain crystallites ofp-A54S4 . although in the scanning electron 

microscope these glasses appear homogeneous. As 4S 3  or As4S5  molecules 

are also present in small quantities. 

The results indicate that the glassy matrix in which. the crystallites 

are embeded has essentially the same network structure as a-As 40560  - 

the AsS 3  and As 2S •units of the stoichiometric composition are retained 

unchanged in these As-rich glasses. There are no S-S bonds in the As-S 

network for these compositions but As-As bonds are present in the network. 

In the case of the selenides, for the compositions between As 40Se60  

and As45Se 55  the additional As atoms go mainly into the formation of 

As-As bonds in the network. As 4Se 4  molecules are also produced though 

in very small amounts. For compositions containing more than 50 at.% 

As the production of As 4Se 4  molecules predominates over the formation of 

As-As bonds in the network, although these are still present. There is 

no significant change in the structure of the AsSe 3  and As 2Se units of 

the network. 
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APPENDIX I 

FREQUENCY FORMULAE 

This appendix gives the frequency formulae for the normal modes 

of the three simple polyatomic molecules considered in this study. 

The formulae are for a general valence force field and are taken from 

Herzberg, G., 'Infrared and Raman Spectra of Polyatomic Molecules!, 

Van Nostrand, New York, 1945. 

The pyramidal XY 3  molecule 

MX  + 	(1 + 3cos)k1 t 2k / t (1 + 31sin2b 12cos2 2 	 t(ks+ 2k g) 1 
—Y - (A.1) 

m. 	nf(l i- 3cos) 

	

12cos 2fi 	i- 2k)(k+ 2kb') 	
(A.2) 

	

'J?'2_lt3cos 	m 

3m Y 
3(l+cos2  +—sanø) 

3m 	(k1 -kf) 	 P 2m 	 (k- k5') 
X 3 	(1 + 2mX 	m 	

m 2(l t 3cos2f ) 	(A.3) 

mv . 2 
sin 3(1 + cos 	+ 3 	P(k1 - kf)(k - k) 

mY(l t äcosjA) 

In the above formulae: 	47c2))2  the)). being the normal frequencies; 

m X and m are the atomic masses of the X and Y 

atoms; 	 - - 

is the X—Y bond-stretching force constant; 

ks is the bond-bending force constant; 

k, and k5' are interaction constants; 

is the X—Y bond length; 

is the angle between the X—Y bond and the 

symmetry axis. 
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The non-linear symmetric X 2   molecule 

	

 
2 	

k6 2m 	2 k
1  + k12 

t 2(1 + 	sin 	 (A.5) t A - ( 1 t —cos A1 	2 	m. 	m 	 m 	mx 	 - 

2m k(ki-k1) 
\x 	2(l+--) 	l2_22 	 . 	 (A.6) 

2mx 2 k1-k12 
(1 t —sin ) 	 (A.7) 

In the above formulae: k& is the bond-bending force constant at the 

Y atom; 

k12  is an interaction constant; 

ç. is half the angle between the X—Y bonds;. 

the other symbols are as for the XY3  molecule. 

The linear symmetric X 2 Y  2 
 molecule 

= 2k1 - 4k + (1 

mymx 

- 2kk - 4k 1 	2  

- 	mm1 

(1 + _) 2 
m1  

A 
- k- k 	(( + 2) 

k 	 m 

mx k 5 + k 
A5 	(1 + 

M 

 

 

(A. 10) 

(A. 11) 

(A.12) 

In the above formulae: k is the Y—Y bond-stretching force constant 

k2  is the X—Y bond stretching force constant;h 
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is the bending force constant corresponding 

to the change of angle between the Y—Y 

and X—Y bonds; 

k 12 is an interaction constant; K  

is the Y—Y bond length; 

is'the X—Y bond length; 

all other symbols are as for the XY 3  molecule. 

* 
For clarity, k 1 , k2  and k are referred to in the text as kz kA s z12 

and k. mt respectively (Z = S or Se). 
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APPENDIX II 

0-MATRIX ELEMENTS FOR THE NON-PLANAR X  2  Y  2 
 MOLECULE 

In this appendix are given the elements G of the inverse kineticij  

energy matrix for the non-planar X  2  Y  2 
 molecule of C2  symmetry. The 

elements are for the unsyinmetrised 0-matrix and are taken from Decius, J.C.; 

J. Chem. Phys. 16, 1025 (1948). 

Gil = 2m @33= 022 

012 = m1cos& 034  z 025 

@13 012 035  r 024 

014 t_m X:sj.nG( 035 025 

015 

d 

014 	. 044 
1 
-a2 m 	+ 

2 	
-12 (32 ~ 	2 - 	 cos)rn 

015 0 045 
2 	1 

_omy ( 	 - 

1 
acos ) cos  

.022 + in 046 
1 	2 z 	my [3cos 

1 	2 l sin ø 
- 	 (l 

t cos 
A
d sin 

G23 t0 G55 zG44  

024 - -_X sinb 	055  

025 	mxsincxcosØ 066 

026 = _mxcossin ~ 0.. 

In the above expression 

and D, d,OandqSare the 

Figure 5,54). 

G 
46 

:

_- 	[2  n 	 ° t cosø)(cosR -- )cos± -2 mj3 <   	]y 

  

 

mX and m are the masses of the X and Y atoms 

geometrical parameters of the molecule (see 



262 

APPENDIX III 

PUBLISHED RESULTS 

'The Raman spectra and structure of glasses in the As-S and As-Se 

systems', Ewen, P.J.S., Sik, M.J. and Owen, A.E., in 'The Structure 

of Non-Crystalline Materials' (Gaskell, P.H., editor), Taylor and 

Francis, London, 1977, p.231. 
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The Raman spectra and structure of glasses in the As—S and 
As—Se systems 
P. J. S. Ewen, M. J. Sik* & A. E. Owen 

Department of Electrical Engineering, University of Edinburgh 

The room-temperature Raman spectra of bulk glasses 
in the range As 35S/Se 65  to As 5 5 S/Se 45  have been re-
corded. The spectra of the glasses on the S/Se-rich side 
of stoichiometry have been analysed in terms of the 
Lucovsky-Martin molecular model and indicate the 
replacement of the As —S/Se—As links between the 
AsS/Se 3  pyramid units by As—S/Se—S/Se—As links as 
the S/Se content is increased. There is no indication of 
Se 5  rings in the selenides, but the presence of s8 rings 
is increasingly apparent in the compositions more 
S-rich than As 37 S 63 . In the case of the As-rich sulphides 
sharp spectral features characteristic of c-A5 4S4  appear 
near stoichiometry and increase smoothly as the As 
content is increased. The presence of c-As 45 31  c-As 4S 5  
and As—As bonds in the glassy matrix is also indicated. 
The spectra of the As-rich selenidesshow no crystalline 
features and indicate only the increasing presence of 
As—As bonds with increasing As content. 

L Introduction 
This paper is a detailed study of the Raman spectra 
of glasses within ± 5 atomic % of the stoichiometric 
composition As 40 X60  (where X = S or Se). Measure-
ments have been made 

'
..oneleven near-stoichiometric 

glasses extending in each system from 35 to 45 
atomic % As in one atomic % steps, augmenting 
Ward's( '-' )  broader investigation of these systems. 
Some crystalline and amorphous compositions out-
side this range have also been examined. 

Kobliska & Solin °1  have emphasized the im-
portance of polarization measurements in Raman 
scattering investigations of amorphous solid structure 
and have defined a new type of spectrum called the 
depolarization spectrum. Accordingly, the polar-
ization spectra foi each glass have been measured, in 
addition to the unanalysed spectra, and from these 
have been derived the depolarization spectra. 

2. Experimental 
All the amorphous samples were annealed bulk 
glasses. Chemical analysis showed no significant 
difference from the expected compositions and no 
measurable inhomogeneity throughout the samples. 
The near-stoichiometric sulphide glasses were red 
and transparent, apart from the two most As-rich 
compositions which were pink, opaque and granular 

*Present address: Department of Clinical Physics and Bio.Engnieering, 

II West Graham St, Glasgow 64 9LF. 

in appearance. All the selenides were black and 
opaq!Je. 

The c-As4 S 3  used was prepared by slowly cooling 
a melt of this composition and the c-As 4 S 5  was ob-
tained using the method outlined by Whitfield (4). 

Crystalline samples of As 2 Se 3 , As 2 S 3  and As4 S4  were 
obtained from external sources. 

The sulphide spectra were excited with red light of 
either 6328 A from a He—Ne laser or 6471 A from a 
Kr-ion laser. The sulphides are very strong scatterers 
at these wavelengths and peak signals of 5000 
counts/sec were typical. Because of the high ab-
sorption coefficients of the selenides at red wave-
lengths, the selenide spectra were obtained using the 
7993 A IR line of the Kr laser. 

A Spex 1400 monochromator with a cooled 
RCA-C31034A photomultiplier operating in the 
photon-counting mode was used for detection. The 
spectra were all recorded at room temperature using 
right angle transmission geometry for the transparent 
samples and back reflection for the opaque glasses. 
A spectral slit width of 3 em -'  was used. 

To avoid the damaging effect of focused radiation 3  
the selenide samples were spun in the focused beam, 
while an unfocused 3 mm diameter beam was used 
for the sulphides. The beam powers used were ap-
proximately 50 m (6328 A), 60 mW (7993 A) and 
240 mW (6471 A). Although no gross physical damage 
occurred in the sulphides when unfocused radiation 
was used, a gradual loss of signal, z 3% per hour, was 
observed. A non-annealed sample of As 36 S 64  gave 
three times this rate of count loss. The decrease in 
signal could not be attributed to changes in beam 
power. When an irradiated sample was examined 
under a polarizing microscope, the cylindrical path 
of the laser beam through the sample was clearly 
visible, indicating that laser-induced changes are 
taking place inside the glass. All the spectra presented 
here have been corrected for this intensity decrease, 
which is approximately linear with time over the 
first few hours of exposure. The effect is consistent 
with an increase in the optical absorption coefficient 
of thee materials with exposure. (5.6) 

Several experiments were performed to show that 
this count loss was not accompanied by any spectral 
changes which might be attributed to structural 
changes in the glasses. The selenide spectra, recorded 
from the spinning samples, did not exhibit any signal 
loss. 
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Some features in Ward's spectrum of a_A5 2 S 3 U) 

have been attributed to plasma lines 17  and particular 
care was taken to exclude such spurious features. 
Spectra obtained with the He-Ne laser were identical 
with corresponding spectra excited with the Kr laser 
so that the spectral features presented in this study 
cannot be attributed to plasma lines. 

3. Results and discussion 

A. The Stoichiometric Glasses 

36 

2 32 

23 

20 

15 

With the IR Kr laser line as excitation the low energy 
region of the a-As 2 5e 3  Raman spectrum was recorded, 
as well as the main band, and the spectra indicate 
vibrations at 106, 136, 223 and 275 cm 1  plus a 
thermal peak at 23 cm '. The polarization spectra, 
the unanalysed spectrum (see Figure 3) and the de-
polarization spectrum (see Figure 2) were all taken 
into account in deriving these frequencies. In the case 
of the sulphide the results indicate vibrations at 160, 
185, 208, 231, 315, 338, 395 and 490cm plus the 
thermal peak at 29 cm . The 160 cm frequency is 
obtained from the depolarization speetrumt 5 ' 8  (see 
Figure 2), though there is a broad weak feature around 
this frequency in the Raman spectra. The vibration at 
315 cm t  appears as a shoulder in the unanalysed 
spectrum (see Figure 1) but is present as a sharp peak 
in the VH polarization spectrum. The knee at 
395 cm 1  has not been reported in previous Raman 
studies and corresponds to the minimum in the de-
polarization spectrum. A similar knee and minimum 
are found at 275 cm - ' in the corresponding selenide 
spectra. 

In the molecular model" , ")  the glasses are con-
sidered to be made up of pyramidal AsX 3  units 
loosely coupled via bent As-X-As chains. c-As 2 5 3  
and c-As 2 5e 3  are also made up of pyramidal units 
bridged by S or Se atoms so it is not surprising that 
the two amorphous vibrational spectra scale by a 
factor of 071, as in the crystal spectra" 112)  The cor-
responding pairs of frequencies are 106/160, 136/185, 
223/315, 246"/338 and 275/395; the three ex-
ceptions, the features at 208, 231 and 490cm' in 
a-As 2 5 3 , are discussed below. As in the crystal spectra 
the most intense Raman peak in each of the un-
analysed glass spectra does not correspond to the 
same vibration. In Figure 2 the depolarization 
spectrum of a-As 2 53  has been compressed along the 
frequency axis by the scaling factor 071. 

The sulphide features at 208, 231 and 490 cm 
probably arise from structural features not present 
in perfect c-As 2 S 3 , viz., As-As and S-S bonds. 
230 cm ' is the dominant frequency in the IR 
spectrum of a-As" ) while the Raman spectrum of 
a-As contains a broad, flat-topped band extending 
fromi190 to 250cm'. The feature at 231 cm -1  
in a-As 2 S3  becomes more pronounced as the As con-
tent of the glass is increased (see Section C) and 
resonance Raman studies of this materialt 5,16) show 
that the region around 230 cm ' behaves differently 
from the rest of the spectrum and resonates about the 
"optical gap" energy, 232 eV at 300 ° K. The 
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E'cquanc y  ( cc .:] 
Figure 1. The unanalyzed Stokes Raman spectra of the compositions 
A840S60—As 35 55 ,. The spectra are normalized to the height of the 
338 cm band and are displaced above one another, starting with the 
a—As40S 60  spectrum at the bottom and going up in order of increasing 
S content to the As 33 S6 , spectrum at the top. 

features at 208 and 490 cm - ' are discussed in Section 
B. Similar features may be present in the spectrum of 
a-As2 Se3  but probably coincide with the main band 
and are not so easily detected. The other frequencies 
can all be accounted for by the molecular model. 

B. The Chalcogen-rich Glasses: As 40X 60-As 3 5 X 65  
The molecular model can be extended to the chalco-
gen-rich glasses if the extra chalcogen atoms are in-
corporated in the chains linking the pyramidal 
molecules. In the case of the S-rich glasses it was 
found that the changes in the spectra with respect to 
the a-As40 S60  spectrum arise from two sources: the 
appearance of S rings and the above-mentioned re-
placement of As-S-As links with the As-S-S-As 
chains. Figure 1 shows the unanalysed S-rich spectra 
and three regions of change can be seen. As the sulphur 
content is increased a new band grows steadily at 

492 cm', the shoulder at 315 cm disappears 
gradually and a change in profile occurs around 
180-240 cm ', with a small peak appearing at 
233 cm'. The shoulder on the 492 cm' band ap-
pears at 63 atomic % sulphur and is resolved into 

C 
S 
C- 

0 
0. 

	

Frequency 	(c,,'I 

Figure 2. The depolarization spectra of a—As 40S60  and a—As405e50 . 
The frequency scale applies only to the a—As 405e60  since the 
a—As40Ss60  spectrum has been compressed by a factor of 0 7 along 
the frequency axis. The bracketed frequencies are those actually 
measured for a—As40S60 . 
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a peak at 472 cm 1  in the VV spectra. The knee at 
395 cm 1  and the maximum at 160 cm in the de-
polarization spectrum are present for all five S-rich 
glasses and there is no shift in the positions of the 
main peak frequencies. These observations are not 
surprising as it is expected that the pyramids and 
As-S-As chains are retained in the structure. 

A more exact set of values for the new frequencies 
is provided by the difference spectra obtained by sub-
tracting the a-As 40 S60  spectrum from each of the 
others. They are 176, 208, 233, 325, 472 and 492 cm', 
with the possibility of another frequency on the high 
energy side of the asymmetric main band. Ward's 
work- 21  on the very S-rich glasses shows two new 
features appearing on the main band at 337 and 
354 cm 1 , which may correspond to the frequencies 
in this region suggested by the difference spectra. 

The features at 233 and 472 cm , which first 
appear at the composition As3 763'  are associated 
with the presence of S rings. In the spectra of the 
glasses more S-rich than As 35 S 65 , also reported by 
Ward" .21,  these lines are accompanied by others 
of the S. spectrum and grow very rapidly with 
increasing S-content, soon overtaking the other 
emerging features. - 

Standard valence force field calculations show that 
the non-S 8  frequencies can be attributed to a bent 
As-S-S-As chain but not to a linear chain. The A 2 13 2  
molecule of C 2  symmetry has six normal modes of 
vibration, all Raman active 71. It is found that the 
torsional frequency for the A 2 S2  "molecule" is very 
low and would be difficult to detect in the glass 
spectra. The other five frequencies, however, are in 
reasonable agreement with the five experimental 
values. The 492 cm' vibration corresponds to the 
symmetric stretch of the S-S bond and is responsible 
for the weak feature at zt490cm" in the a-As 2 5 3  
spectrum. 

In the case of the selenides the analysis is com-
plicated by the fact that many of the obsqrved fre-
quencies for the various forms of pure selenium and 
the predicted frequencies for the pyramid and chains 
are close to one another. Figure 3 shows the un-
analysed, reduced Se-rich spectra normalized by area 
and superimposed. There are no changes in the low 
frequency region, the only change in the spectrum 
being the growth of a feature on the high energy side 
of the main band. Difference spectra in this region 
show a peak growing at 265 cm -' . The most in-
tense line in the Raman spectra of Se 8  and a-Se 
occurs at 250 cm 1 . Although there is nothing in the 
difference spectra to suggest the presence of these 
forms in the glasses Ward's work on the Se-rich 
compositions beyond As 35 5e55  show a feature steadily 
growing at this frequency. 

There is, however, no feature in the pure selenium 
spectra at 265 cm '. The valence force field cal-
culation for the As-Se-Se-As chain yields a value of 
268 cm -'  for the symmetric stretch frequency of the 
Se-Se bond. The ratio of the frequencies designated 
symmetric stretch for the sulphur and selenium rich 
glasses is 186, which agrees with the frequency scale 
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Figure 3. The unanalyzed Stokes Raman spectra of the compositions 
As 40 Se 60-As 55 5e65 . The spectra have been reduced by the Shuker-  
Gam mon method and are normalized by area- The changes occurring 
at the peak frequency are due to the normalization. 

factor relating S to Se 8  observed by Lucovsky et 
Although structure has been observed in the dif-

ference spectra near other frequencies predicted by 
the chain calculation, it cannot be definitely attributed 
to the As-Se-Se-As "molecule" for the reason 
mentioned earlier. There is no sign of the low fre-
quency bending modes of the As-Se--Se-As chain in 
the region <160 cm', which does not change at all, 
but this might be expected since the bending modes 
of the pyramids and As-Se-As links yield very weak 
features in the spectrum of a-As 2  Se 3 . 

C. The As-rich Glasses: As 40 X 60-As 45 X 55  

In the As-rich sulphide glasses sharp features start 
to appear in the spectra for even small amounts of ex-
cess arsenic, as also observed by Ward" 21 . The lines 
are mostly characteristic of the crystal .$-A0 4 1191, 

but some frequencies -133,231 and 270 cm - ' - cannot 
be ascribed to - or /3-As 4S4 . These results indicate 
the presence of small amounts of c-As 4S 3  and possibly 
c-As4S 5 , but no c-As 2 S 3 , in the glasses, although in 
the scanning electron microscope the material still 
appeared to be a homogeneous glass up to 43% As. 
The feature at 231 cm' probably arises from As-As 
bonds in the glassy matrix, which is also responsible 
for the continuous background in the spectra. 

The change from transparent to opaque occurs 
abruptly at some composition between As 43 S 57  and 
As44 S 56 . Electron micrographs of the As-rich sul-
phides show no features in the transparent glasses but 
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for the opaque samples reveal pockets of material 
embedded in a matrix. These abrupt changes are not 
apparent in the Raman spectra, where the "crystal-
line" lines grow steadily as the As content is increased 
beyond 40 atomic' %. 

In the case of the As-rich selenides phase-separation 
does not occur, although c-As 4 Se4  also exists. The 
spectral features (see Figure 4) remain broad and can 
be associated with the appearance of As-As bonds in 

U) 

C 

06 

C) 	50 , 100 	150 	200 	250 	300 
PnecLJo n cy (cm - '] 

Figure 4. The unanalyzed Stokes Roman spectra of the compositions 
As40Se6 0-A84 5 Se 5 . The spectra have been reduced by the Shaker-
Gammon method and are normalized by area. The changes occurring 
on the high energy side of the main peak are due to the normalization: 

the glasses. The new bands growing at 2 °O and 
155cm 1  both appear in the vibrational spectra 

of a-As. 
Similar conclusions on the structure of the chal-

cogen- and arsenic-rich glasses have been reached by 
Lucovsky et a!!201  
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