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Abstract 

Flavocytochrome C3 is a soluble, periplasmic, fumarate reductase from Shewanella 

frigidimarina which consists of three domains. Four c-type hemes in a cytochrome 

domain supply electrons to a non-covalently bound FAD in a flavm domain. The 

third, clamp, domain undergoes conformational changes to allow substrate access. 

Fumarate is reduced to succinate by hydride transfer from the flavin N5 and 

protonation by Arg402, the active site acid (Doherty; 2000). Arg402 is reprotonated 

by a proton pathway involving G1u378 and Arg381. This thesis reports an 

investigation into the enzyme mechanism by site directed mutagenesis. 

Fumarate is bound in the active site via important interactions with the side chains of 

His504, His365, Thr377 and Arg544. The substitution of Thr377 by alanine causes a 

13-fold decrease in kc. and a 27-fold increase in KM, consistent with a role purely in 

substrate binding. Substituting Arg544 with methiomne dramatically lowers the k cat  

by 104-fold and raises the KM 29-fold. This residue is involved in substrate binding 

but is likely to have an additional role polarising the substrate molecule, for hydride 

attack. 

A structural sodium ion is located close to both the active site and the FAD tail 

group. It is bound in approximately octahedral geometry by five backbone carbonyls 

(Thr506, Met507, G1y508, Thr536 and G1u534) and a water molecule. Substituting 

Glu534 results in an inability to retain FAD. His505 hydrogen bonds to the water 

molecule ligating the sodium and is also next to His504, which is one of the substrate 

binding residues. The pH-activity profile of wild-type fits to a single pK a  value of 

7.5 ± 0.1 which is attributed to His504 stabilising the build up of charge in the 

reaction intermediate. This pKa  is raised to 8.2 ± 0.1 by the substitution H505Y and 

to 9.0 ± 0.2 by H505A. The k t  value is lowered 2-fold and 20-fold for these mutants 

respectively. In the mutant enzymes His504 has become a weaker acid and is less 

able to enhance the rate at low pH. The role of His505 may be to moderate the effect 

of the negative charge of G1u534 on His504. 

The active site acid, Arg402, has a dual role as both a Lewis acid (stabilising the 

build up of charge after hydride transfer) and a Brønsted acid (delivering a proton to 
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the substrate C3). The structure of the mutant enzyme R402A revealed a water 

molecule at the active site (Mowat; 2001), but this is too far from the substrate C3 to 

act as the acid catalyst and the enzyme is completely inactive (Doherty; 2000). The 

double mutant Q363F/R402A, however, is active, but at a level 10 4-fold lower than 

wild-type. The structure shows that the water molecule is now close enough to the 

substrate C3 to act as an acid catalyst. 

Wild-type fcc3 has an overall solvent isotope effect, kH/kD, of 8.2 ± 0.4 and its proton 

inventory fits to a model for multiple exchangeable hydrogenic sites, consistent with 

a complex transition state involving a proton pathway. Q363F/R402A has double the 

solvent isotope effect of wild-type and the proton inventory indicates that the 

transition state remains complex. So the active site water is trapped and requires 

reprotonation by the proton pathway. 

Substituting Arg402 by glutamine lowers the k cat  105-fold. Not only is glutamine a 

poor Lewis acid but the structure shows that the shorter side chain results in an 

increased proton transfer distance. The mutant R402F is completely inactive as 

phenylalanine is unable to protonate the substrate. 

Substitution of either of the proton pathway residues dramatically decreases the 

activity of the enzyme. E378A is completely inactive. Substituting G1u378 with 

aspartate or glutamine lowers the "t 
102  -fold  or 103  -fold  respectively. Arg3 81 is 

close to the protein surface but substitution with lysine or methionine lowers keat 10 

fold or 102-fold respectively. The solvent isotope effect is only slightly increased for 

E378Q, R381K and R381M, but for E378D it is double that of wild-type, indicating 

compromised proton transfer in this mutant. The structure of R3 81K has two water 

molecules in the proton pathway, which may mediate in proton transfer. E378D has 

no water in the pathway so the increased isotope effect must be a direct result of the 

substitution. 
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Mechanistic Studies on Flavocytochrome C3 

1.0 Introduction 

Flavocytochrome c3 (fcc3) is the fumarate reductase from Shewanella frigidimarina. 

It catalyses the two-electron reduction of fumarate to succinate (Figure 1.1) in the 

terminal step of a common anaerobic respiratory pathway. Fcc3 is a member of a 

large family of fumarate reductases and succinate dehydrogenases (which catalyse the 

reverse reaction) from a wide variety of organisms. The entire family have 

structurally similar catalytic domains with high sequence identity, implying a 

common mechanism for fumarate reduction/succinate dehydrogenation. The majority 

of fumarate reductases are membrane bound, multi-subunit complexes. Fcc3, 

however is a soluble, single-subunit enzyme (Pealing et a!, 1992) and is therefore 

ideal for establishing a mechanism for fumarate reduction which can be applied 

throughout the family. 

OOQ><H 	2e + 2H 
-00 	H 

 
IH 

H 	coo- 	 H 	coo  

Fumarate 	 Succinate 

Figure 1.1: The reduction of fumarate to succinate, involving the transfer of two electrons and 

two protons. 

1.1 Redox Centres 

Page et a! (1999) searched the protein data bank for structures of redox proteins with 

known function and analysed the electron transfer distances between redox centres. 

They found that there is a physiological range of 4-14 A, within which electron 

transfer may occur. Beyond that, a chain of redox cofactors spaced :!~ 14 A can 

mediate fast electron transfer over great distances. 
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Nature has evolved a wide variety of redox centres, for example: Herne, flavin, metal 

ions such as iron and copper, NAD/NADH, quinones/quinols and even amino acid 

residues may be redox active. Of these, heme, flavm and metal ions are usually 

bound within a protein complex, while NADH and quinols are mobile electron 

carriers. The latter are hydrophobic and located inside the cell membranes. 

1.1.1 Heme 

The heme moiety consists of an iron bound by four ring nitrogens at the centre of a 

porphyrin macrocycle. Hemeoproteins have several different roles in nature. These 

include electron transfer (eg. cytochrome c), storage (such as oxygen storage by 

myoglobin) or in catalysis (eg. P450s). Heme is generally a one-electron cofactor, 

with iron accessing the two most stable oxidation states, Fe 2  and Fe3 , but some 

mechanisms have been shown to involve ferryl intermediates (Fe 4+),  such as the P450 

and heme-copper oxidase reaction cycles. 

Hemes are classed according to the nature of the porphyrin ring, hemes a-c are shown 

in Figure 1.2. Each type has a characteristic UV-visible absorption spectrum which 

arises from it - ir electronic transitions of the porphyrin ring. The b-type hemes are 

also called iron protoporphyrin LX with the other naturally occurring porphyrin types 

being modifications of this. A c-type heme is an iron protoporphyrin LX that is 

covalently bound to the protein via thioether links formed by the condensation of 

cysteine with the vinyl groups of the porphyrin. Heme a is less common and has two 

modified side chains: a formyl group and a seventeen carbon sidechain. Heme a is, to 

date, only found in the family of heme-copper terminal oxidases (section 1.2.3.4). 
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Hemeb Hemec 

H3C cH3  

s-c 
H3C 

H3C 'i, AJ CH 
 

(\>( I) 
N 	N 

H3C 013 

0 Heme a 
0  O 

OH 043  

H,C 	/ 
/ 

\ 
C} N 	N 

\ 	/Fe / 
N 	N 

01  
3 

H 

OH OH 

Figure 1.2 Herne types. Herne b, or iron protoporpyrin IX, is shown in the top left of the 

diagram. Herne c differs from heme b in that it is covalently bound to the protein via two 

cysteine residues. Herne a has two modified side chains, a formyl group and a seventeen 

carbon chain. Heme a is only known to be a cofactor in the family of heme-copper terminal 

oxidases. An example of heme axial ligation, by two histidine residues, is shown in the 

bottom right. 
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11.2 Flavin 

Flavin is an extremely versatile cofactor. The redox active section is the isoalloxazine 

ring, which has three redox states (Figure 1.3c), fully oxidised, semiqumone and a 

fully reduced or hydroquinone. Depending on the protonation state, either a blue or a 

red semiquinone is formed. The availability of three oxidation states means that the 

flavin can act as a transceiver, receiving electrons singly and performing a two 

electron reduction, or vice versa. 

Flavin occurs in biology as either flavin adenine dinucleotide (FAD) or flavin 

mononucleotide (FMN) (Figure 1.3), both of which are derived from vitamin B 2 , 

riboflavin. They undergo almost identical electron-transfer reactions but the 

difference between them is in their tail groups, which serve to anchor the flavin to the 

protein (Figure 1 .3b,c) by hydrogen bonding interactions with surrounding residues. 

Flavin may also be bound into the protein by a covalent link with the isoalloxazine 

ring (Scrutton, 1999). The flavin binding motifs are shown in Figure 1.3d. Known 

examples of covalently bound flavin involve linkage of the 80t or 6 carbon to a 

histidine, cysteine or tyrosine residue. 
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- 

HO 

b 
Hot 

d 

8a-(N1 )-histidyl 

8a-(N3)-histidy1 

III1IIN 

OH 8a-O-tyrosyl 

HO 

2e 
-00 

7H 

memo- 

Oxidised 

1e 

Reduced 

1e 
8a-S-cysteinyl 

N 
H3C 	N 

NH 

H,C 

'! 

semiquinone 
H)JN(yo 

H 	N '- ( 6-S-cysteinyl 
Cationic 	H  Aniunic 	o 

Figure 1.3: Fla vins. (a) Riboflavin, vitamin B2, from which both FAD and FMN are derived. (b) 

Flavin mononucleotide (FMN) (C) Flavin adenine dinucleotide (FAD). The redox states of a 

flavin isoalloxazine ring are shown. Flavin may act either as a two-electron or one-electron 

donor/acceptor as it can access three redox states; fully oxidised, fully reduced and 

semiquinone. Depending on the pmtonation of the semiquinone it may be cationic (blue), 

neutral (colourless) or anionic (red). (d) Flavin covalent binding motifs. 
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1.1.3 Iron Sulfur Clusters 

Iron is important for many protein 	 2+ redox reactions, cycling between Fe and Fe '. It 

may be incorporated as mononuclear iron co-ordinated largely by 4 cysteine residues, 

or as an iron sulfur cluster, lion in a cluster is covalently bound to the protein by 

cysteine residues and within the cluster, iron atoms are bridged by inorganic sulfur 

atoms. Typical examples of mononuclear iron binding and iron sulfur clusters are 

shown in Figure 1.4. Although they generally have 2-4 iron atoms, overall the 

clusters only act as one electron centres. 

- MIN 

Fe(ST)4 

Y [Fe2S2](S)4 

[Fe3S4](ST)3  

 

[Fe4S4](S)4 

Figure 1.4: Examples of mononuclear iron binding and iron sulfur clusters. Iron is usually 

bound to the protein by the sulfur atoms of cysteine residues (an exception being the Rioske 

centre with two cysteine and two histidine ligands) and within the cluster is bridged to other 

irons by sulfur. 
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1.1.4 Quinones 

Quinones are extremely hydrophobic molecules, owing to their long isoprenoid tail 

groups and they act as two electron carriers within the membrane. They occasionally 

also undergo more integral roles with binding sites within the protein, notably in the 

Q-cycle of complex III (section 1.3.3.1) and possibly in other respiratory complexes. 

The length of the tail groups varies depending on the organism, usually 10 isoprene 

units in mammalian cells and 6 in bacterial cells. 

Mitochondria tend to use ubiquinone (UQ) in the electron transport chain, whereas 

bacteria utilise menaquinone (MK) (Figure 1 .5a). Both can undergo 2& + 21-[ 

reduction to form quinol or partial reduction to a semiquinone. 

1.1.5 NADH 

Nicotinamide adenine dinucleotide (NAD) is a redox coenzyme. The nicotinamide 

ring is easily reduced and acts as an oxidising agent. NADH is widely used as a 

mobile reductant in respiratory pathways. The reduction of NAD can be thought of 

as hydride transfer because, formally, two electrons and one proton are lost from the 

nicotinamide ring (figure 1 .5b). In enzymes such as NADH dehydrogenase there are 

specific binding sites so that NADH is acting as a second substrate, which is 

constantly recycled in the cell. 
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In 
ubiquinone 

 

I n 
menaquinone 

CH, 

0 	 HQNO 

In 
ubiquinol 

I n 
menaquinol 

 

H 	H3 

02 

DnNP 
NO2  

Figure 1.5: (a) Structures of quinone(ol)s and two quinone binding inhibitors; 2-heptyl 4-

hydroxy quinoline N-oxide (HQNO), thought to be a semiquinone mimic, and 2-[1-(p-

ch!orophenyl)ethyl) 4, 6-dinitmphenol (DNP). Organisms respiring aerobically tend to utilise 

ubiquinone, whereas anaerobic organisms sometimes use menaquinone. (b) The reduction 

of NAD to NADH. 
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1.2 Respiration 

Cellular energy requirements are fulfilled by coupling with the hydrolysis of ATP 

(adenosine triphosphate), to ADP (adenosine diphosphate) and inorganic phosphate 

(Figure 1.6a). ATP is maintained in the cell at a concentration 7-10 orders of 

magnitude above its equilibrium level. Taking the typical concentrations of Pi 

(10-'M) and ADP (10-3M)  in the cytoplasm would give an ATP concentration, at 

equilibrium, of only 10 -10 M. The mitochondria., however, manage to maintain ATP 

around 10-2  M. It is this displacement from equilibrium that gives ATP the capacity 

to do work (Nicholls and Ferguson, 1992). 

ATP is synthesised as a result of the breakdown of nutrient molecules such as 

carbohydrates. The sum of the processes involved in the catabolism of nutrients and 

the consequent release of energy is termed respiration. In eukaryotes, respiration is an 

aerobic process carried out in mitochondria. Bacteria may respire either aerobically 

or anaerobically, the latter will be discussed in sections 1.4 - 1.8. 

1.2.1 Glycolysis 

In glycolysis, 6-carbon sugar molecules are split into two 3-carbon pyruvate 

molecules, in the mitochondrial matrix. It is a multi-step, enzyme catalysed process 

but, overall, glycolysis is anaerobic and undergoes no net oxidation or reduction. The 

first five steps are an energy-investment-phase with two moles of ATP used to 

produce two moles of 3-carbon sugar phosphate from one mole of sugar. The next 

five steps are an energy generation phase resulting in four moles of ATP and two 

moles of pyruvate. Two reducing equivalents in the form of NADH also result from 

glycolysis: 

2NAD + sugar (6C) + 2ADP + 2P'-+ 2 pyruvate (3C) + 2ATP + 2NADH 
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Pyruvate is then decarboxylated by the enzyme system 'pyruvate dehydrogenase 

complex' using coenzyme A to form acetyl CoA which then enters the citric acid 

cycle. A further reducing equivalent (NADH) is generated in the process. 

1.2.2 The Citric Acid Cycle 

The organic metabolites from glycolysis are oxidised in the citric acid cycle, which is 

another enzyme catalysed, multi-step, pathway (Figure 1.6b). Carbon enters the cycle 

as acetyl-CoA. In one cycle the acetyl group (originally from pyruvate) is oxidised to 

CO2. In three of the four oxidation steps NAD is the cofactor, reduced to NADH. In 

the fourth, the FAD cofactor of succinate dehydrogenase is used to oxidise the 

saturated carbons of succinate. 

ATP is generated indirectly via GTP at one step in the cycle, the formation of 

succmate from succinyl-CoA. The oxidation of sugar to CO2 through glycolysis and 

the citric acid cycle yields, in total, four moles of ATP per mole of sugar: 

Sugar + 6H20 + 10NAD + 2FAD + 4ADP + 40 

--> 6CO + IONADH + 10H + 2FADH2 + 4ATP 

The reducing equivalents, NADI-I and FADH2, are then reoxidised by a chain of 

membrane bound protein complexes which transfer electrons, ultimately reducing 

dioxygen to water. The electron transfer is coupled to the synthesis of further ATP. 
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ATP 

Hydrolysis 	Syntheses 

-1-bC 

ADP 

HS-CoA 
- coo H 
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COO I 
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- coo - cool 
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ipo H 
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NADH+H' 

FAO +II 
1160 --A coo - 	 ATP ADP I 	(, FADO . 

Furnate I K 	2e 	
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COO  

p2e 	 COO 
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HH 
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k 
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COO 	
fOO 
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HH 
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Figure 1.6: (a) Synthesis/hydrolysis of A TP. (b) The citric acid cycle. The organic metabolites 
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1.2.3 Oxidative Phosphorylation 

The electron transport pathway consists of protein complexes anchored to the inner 

mitochondrial membrane (or the inner cell membrane of aerobic bacteria). Figure 1.7 

shows the essential electron transfer complexes I-N. Complexes I, Ill and IV 

generate a transmembrane proton electrochemical gradient which is utilised by 

complex V (ATP synthase) for the production of ATP. Electrons enter the chain 

either as NADH at complex I (NADH:quinone oxidoreductase), or directly from the 

citric acid cycle enzyme succinate:quinone oxidoreductase (SQR, complex II). 

Figure 1.7 (following page): Oxidative Phosphorylation. (a) Schematic representation of the 

electron transport complexes I-/V showing the cofactors and the flow of electrons. 

Complexes I, Ill, and IV pump protons across the membrane, setting up an electrochemical 

gradient that is used by Complex V to drive A TP synthesis. (b) Crystal structures of the 

oxidative phosphorylation complexes. No structure is available for NADH dehydrogenase. 

The structure shown for succinate dehydrogenase is that of the closely related fumarate 

roductase (W succinogenes). 
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Mechanistic Studies on Flavocytochrome c 3  

1.2.3.1 Complex I: NADH:Quinone Oxidoreductase 

(NADH Dehydrogenase) 

NADH dehydrogenase is the largest and most complex of the electron transport 

proteins with >30 subunits, which is reflected in the lack of a crystal structure to date. 

Complex I catalyses the oxidation of NADH and the reduction of quinone in the 

membrane. it translocates protons across the inner membrane with a stoichiometry of 

4I{/2e (Nicholls and Ferguson, 1992). The complex contains one FMN cofactor and 

possibly as many as seven iron sulfur clusters, four of which are well characterised: 

NI 	2Fe:2S 	low potential 

N2 	4Fe:4S 	high potential 	Probably donor to UQ 

N3 	4Fe:4S 	low potential 

N4 	4Fe:4S 	low potential 

The complex may also contain an internal quinone that is involved in proton 

translocation but not exchangeable with the quinone pool. 

NADH dehydrogenase can be degraded into three different fractions by disrupting the 

water structure with chaotropic agents, such as NaBr. The flavoprotein and the iron 

sulfur protein are both soluble but the remainder of the protein forms a hydrophobic 

fraction. The flavoprotein fraction is comprised of three subunits and contains the 

NADH binding site, FMN, Ni, and a 4Fe:4S cluster. This fraction can catalyse the 

transfer of electrons from NADH to non-physiological acceptors. The iron sulfur 

protein consists of six polypeptides and contains three iron sulfur clusters. The rest of 

the enzyme makes up the hydrophobic fraction, which contains an unknown 

number/type of iron sulfur clusters. The high potential 4Fe:4S cluster N2 is thought 

to be located in the membrane section of the protein and to be the electron donor to 

quinone. 

Low resolution electron microscopy data suggest that the enzyme is L-shaped (Weiss 

et a!, 1990). A smaller NADH dehydrogenase is expressed in the fungus Neurospora 

Chapter 1: Introduction 	 13 



Mechanistic Studies on Flavocytochrome c 3  

crassa when protein synthesis is inhibited by chioramphenicol. This corresponds to 

the hydrophilic arm of the molecule and suggests that the larger enzyme evolved 

from the combination of the small enzyme with another pre-existing collection of 

subunits, perhaps to enable the complex to pump protons across the membrane. 

A mechanism for complex I has been proposed (Figure 1.7a) whereby NADH binds 

and passes electrons to the FMN which then transfers them sequentially to an 

'electron pool' consisting of the low potential iron sulfur clusters, NI, N3 and N4. 

The electrons then enter an internal theoretical Q-cycle before passing to the high 

potential cluster N2 and finally reduce free quinone to quinol (Weiss et a!, 1990). 

1.2.3.2 Complex II: Succinate:Quinone Oxidoreductase 

(SQR, Succinate Dehydrogenase) 

As mentioned previously, SQR is one of the enzymes from the citric acid cycle and it 

passes electrons directly into the electron-transport chain. The protein consists of two 

domains. Figure 1.7a includes a schematic of complex H and the flow of electrons. In 

the soluble domain, succinate is oxidised by FAD and electrons are passed along 

three iron sulfur clusters (2Fe:2S, 4Fe:4S, 3Fe:4S). Quinones are then reduced at the 

hydrophobic domain. The complex II family is discussed in further detail in section 

1.5, including structural information about fumarate reductase which is of the 

complex II family. 

1.2.3.3 Complex Ill: Quinone:Cytochrome c Oxidoreductase 

(Cytochrome bc1) 

Cytochrome bc 1  catalyses the reduction of the small soluble electron transport protein 

cytochrome c, taking electrons from the quinol pool. It also translocates protons 

across the membrane with 4H/2& stoichiometiy (Trumpower, 1990). Crystal 
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structures have been solved for complex III from bovine (Iwata et a!, 1998) and 

chicken heart mitochondria (Zhang et a!, 1998) and also from yeast (Lange and 

Hunte, 2002). 

The number of subunits in this complex varies greatly between organisms, but the 

cofactors are all located in three essential subunits, an iron sulfur protein (ISP, 

Rieske), cytochrome c 1  and cytochrome b. The ISP is a soluble, globular protein 

located in the inter-membrane space, but anchored to the membrane by the 

hydrophobic N-terminus (Rieske fold). It contains a single 2Fe:2S cluster where one 

iron is co-ordinated by two cysteine residues and the other by two histidines. The 

crystal structure shown in Figure 1.7b is a dimer. In this figure, the Rieske protein is 

coloured green, cytochrome Cl is yellow and cytochrome b is red. The remaining 

membrane spanning subunits are in orange and the subunits that lie in the matrix or 

inter-membrane space are in blue and purple. The structure shown is from 

Saccharomyces cerevisiae (Lange and Hunte, 2002) and was solved with the 

physiological electron acceptor; cytochrome c bound (pink). The redox cofactors are 

shown in black for clarity. Different crystal forms have yielded three 

conformationally different structures with regard to the Rieske protein. The iron 

sulfur cluster binding fold can either be positioned for fast electron transfer with cyt 

Cl or cyt b or may adopt an intermediate configuration (Zhang et a!, 1998; Iwata et a!, 

1998). 

Cytochrome c 1  is also located in the inter-membrane space but is anchored to the 

membrane by its C-terminus. This subunit is entirely a-helical and contains one 

heme which is His, Met ligated. The cytochrome b subunit consists of 

transmembrane helices. It contains two hemes, one at each side of the membrane. 

The heme on the matrix side (bH) is of high potential, +50 mV and the heme located 

near the inter-membrane space (bL) is of low potential, -100 mV. Proton translocation 

is coupled to electron transfer in a Q-cycle: 
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Quinol binds on the outer side of the membrane (inter-membrane space) at a 

binding site called Qp, from where an electron is transferred to the iron sulfur 

cluster in the Rieske protein. During this step two protons are released into the 

inter-membrane space. This first electron is then passed down the chain to cyt c1 

and cytc. 

A second electron is transferred from the semiquinone radical at Qp, but this time 

to heme bL and quinone leaves Qp. The electron passes from b1 to bH which is 

near a second quinol binding site QN  at the matrix side of the membrane. Quinol 

binds at QN  and receives the electron from bH to form a semiquinone. 

Another quinol binds at Qp with the two electrons distributed as before. The 

second electron is given eventually to the semiquinone at QN  to form quinol, with 

two protons taken from the matrix. So overall only two protons are taken from 

the matrix but four are given out to the inter-membrane space. 

I 

-7  Cyt1 c1  
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Q spool' 	
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...... 	je 
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Figure 1.8: The Q-cycle. The diagram shows the electron transfer and proton transfer events 

occurring at the two quinol binding sites in complex Ill (Qp and QNj. 
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1.2.3.4 Complex IV: Ferrocytochrome:02 Oxidoreductase 

(cytochrome c oxidase) 

The terminal complex in the electron-transport chain is cytochrome c oxidase, which 

takes electrons from cytochrome c in the inter-membrane space and reduces 02 to 

water in the matrix. Protons are pumped across the membrane with 4H/4e 

stoichiometry (Ferguson-Miller and Babcock, 1996). Crystal structures have been 

solved from Paracoccus denitr4flcans (Iwata et at, 1995) and bovine heart 

mitochondria (Tsukihara et a!, 1996), both to 2.8 A. The bovine structure is a dimer 

and shown in Figure 1.7b. 

Bacterial complex IV is generally comprised of only three subunits but the 

mammalian complex may have up to thirteen. Sequences of the subunits making up 

the catalytic core are highly conserved throughout the family. The major catalytic 

subunit is embedded in the membrane (Figure 1.7b, red) and consists of twelve 

membrane spanning helices arranged in three semicircles of four helices with C3 

symmetry. There are three metal centres in this subunit, a copper ion (CUB) and two a 

type hemes (a and a3). Herne a is bis-His ligated and as a result, low spin. Herne a3 

has only a proximal histidine and is thought to be high spin. CUB has three histidine 

ligands. These six histidines are completely conserved throughout the family. CUB 

and the high spin heme form a dinuclear site of 02 reduction. 02 is thought initially 

to form a short-lived bridged ferrous-oxy intermediate and to proceed via peroxide 

bridged and fenyl intermediates. The steps involving oxidation of the latter two 

species are coupled to proton translocation. 

The second subunit is a ten strand 3-barrel soluble domain, anchored to the 

membrane by two transmembrane helices (cyan). This subunit contains a mixed 

valence dinuclear copper centre bridged by two cysteine residues (CuA). One copper 

ion is also ligated by histidine and methionine residues and the other by glutamate 

and histidine. CuA  is the first metal site to be reduced and is thought to pass electrons 

first to heme a, from where they are transferred to the dinuclear site (Figure 1.7a). 
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1.2.3.5 Complex V: F1F0-ATP Synthase 

Electrons are transported by complexes I-IV whilst protons are pumped across the 

membrane perpendicular to the direction of electron transfer. This generates a proton 

gradient, across the inner mitochondrial (or bacterial) membrane. Complex V, 

ATP synthase uses this electrochemical proton gradient to drive the synthesis of ATP 

from ADP and inorganic phosphate (Figure 1.6a). 

ATP synthase is referred to as F I FO-ATP synthase. F1 is the extra-membranous 

soluble fraction of the enzyme, located in the matrix and F0 is embedded in the 

membrane. The structure varies little between organisms. The simplest ATP synthase 

is prokaryotic, which has subunit stoichiometry of a 3 f 3y8cab2c 10 .. 14. The likely 

arrangement of these subunits is shown in Figure 1.7a. F1 consists of a33y8c and 

several crystal structures of this portion of the protein are available. The most recent 

from bovine mitochondria, (Gibbons et a!, 2000, 2.OA) is shown in Figure 1.7b. The 

a (blue) and P (cyan) subunits have similar structures, with an N-terminal a-barrel 

domain furthest from the membrane and they alternate in a ring around the y  subunit 

(red). 

An electron density map for an F 1 c10 complex from yeast mitochondria has been 

obtained by Stock et a! (1999), which clearly shows the c subunits forming a ring at 

the foot of the y subunit. The resolution is unfortunately insufficient for the residue 

side chains to be discerned. 

The c-ring forms a motor in the membrane that converts the proton gradient energy 

into rotational energy (Suzuki et a!, 2002). There is currently no structure for subunit 

a but it is thought that the interface between a and c is important for proton 

translocation down the gradient. The b2 and 8 subunits are thought to form a 'stator 

stalk', anchored to subunit a at the membrane and a at the other end of the protein. 

Subunits y and c form a 'rotor stalk', connected to the c-ring at one end. This 

transmits energy to the catalytic domain, rotating within the a3 ring. There are three 
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catalytic sites located at the interfaces between a and P pairs, where the rotational 

energy is used for the formation of a chemical bond between ADP and P 1 . 

The recent bovine mitochondrial ATP synthase structure (Gibbons et a!, 2000) is the 

first to be solved with all three exchangeable sites occupied. The nucleotides are 

coloured black in Figure 1.7b. The crystals were grown in the presence of MgADP 

and AIF3 . In the structure two sites contain MgADP.A1F 4  with the site in a closed 

conformation. The third site contains MgADP and is in a half closed conformation. 

This final site also contains a sulfate ion which is thought to mimic the binding of 

inorganic phosphate. 

The three sites are thought to act sequentially (Boyer, 1993). In a recent review, 

Senior et a! (2002) proposed a tn-site model, whereby catalysis at each site is at a 

different step in the cycle: 

ATP synthase is reversible, also capable of catalysing the hydrolysis of ATP. The 

active site is modified for binding of ADP and P' by movement of aArg376 into 

the catalytic site, resulting from changes at the af3 interface caused by rotation. 

uArg376 creates a P binding pocket and prevents ATP binding, so ADP binds in 

a complex with Mg2t 

The a3 interface closes, forcing P' and ADP together, overcoming their charge 

repulsion and forming the catalytic transition state. Upon complete closure of the 

site the ADP-P' distance shortens and ATP is formed, leaving product water 

bound to fGlul81. 

Further rotation of y rearranges aArg376 so the catalytic transition state cannot 

reform and allow hydrolysis of the ATP. 

4) Al? is released from the catalytic site. 
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1.3 Anaerobic Respiration 

Many bacteria respire anaerobically as well as, or instead of, aerobically. A wide 

range of organic molecules and metal ions may be utilised as terminal electron 

acceptors. A common terminal electron acceptor for anaerobic respiration is 

fumarate, which is reduced to succinate (Figure 1.1) by quinol:fumarate reductase, 

QFR. A typical electron transport chain is shown in Figure 1.9. The chain has fewer 

components than those of the aerobic respiration electron transport chain, with 

hydrogenase and/or formate dehydrogenase reducing quinones in the membrane and 

fumarate reductase as the terminal reductase. 
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Figure 1.9: A typical anaerobic electron transport pathway. Quinones in the membrane are 

reduced by formate dehydrogenase (Fdh) and/or hydrogenase (Hyd). Fumarate reductase 

(QFR) takes electrons from the quinol pool for the reduction of fumarate. The top part of the 

diagram shows in schematic form the cofactors and flow of electrons and the lower part 

shows crystal structures of the enzymes. For hydrogenase the structure of the soluble 

enzyme from Desulfovibrio desulfuricans Miyazaki F (Higuchi et a!, 1997) is included to 

illustrate the structure of the two most highly conserved subunits. 
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1.4 The Complex II Family 

During aerobic respiration succinate dehydrogenase operates as part of the citric acid 

cycle, oxidising succinate to fumarate and feeding electrons directly into the electron-

transport chain. Under anaerobic conditions, in the presence of fumarate, many 

bacteria express a quinol:fumarate reductase (QFR) that is analogous to SQR, but 

preferentially catalyses the reverse reaction (Cole et a!, 1985; Van 1-lellemond and 

Tielens, 1994; Maklashina et a!, 1998). The enzymes are structurally similar and are 

capable of catalysing both the reduction of fumarate and the oxidation of succinate. 

The complex H family of enzymes (SQR and QFR) have very similar soluble 

domains, consisting of a flavoprotein and an iron sulfur protein (Cecchini et a!, 2002; 

Lancaster et a!, 2002). There are differences in the membrane anchors between 

members of the family and they are divided in 5 types depending on the number of 

subunits and their heme content (Figure 1.10). Type A tend to be 'classical' archaeal 

enzymes and have two hydrophobic subunits of transmembrane helices and two b 

hemes. Type B enzymes, such as Wolinella succinogenes QFR, have only one 

membrane spanning subunit, which has two hemes. Type C have two subunits and 

only one heme, an example being E.coli SQR. E.coli QFR, however, is of type D, 

which has two subunits but no heme. The final type of enzyme included in the 

complex II family is a little different. Enzymes of this type are 'non-classical' 

archaeal SQRs (Schafer et a!, 2002) and contain no heme in two hydrophobic 

subunits, which bear little resemblance to other members of the family. 

There are as yet no crystal structures available for SQR, although structure of the 

E. co/i enzyme is currently being refined (Tomroth et a!, 2002). In 1999 five crystal 

structures of fumarate reductases were solved. Two were from complex II type QFRs 

(E. coli and W. succinogenes) and three were from Shewanella strains that express 

soluble periplasmic fumarate reductases. The highest resolution structure is that of 

fcc3 from S.frigidimarina, at 1.8 A (section 1.10). 
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Figure 1.10: Classification of the complex // family of enzymes, SQRs and QFRs. There is 

great similarity in the hydrophilic domains but classification is based on the hydrophobic 

domains and their heme content. 

1.4.1 The Structure of E.coli QFR 

E. coli fumarate reductase is composed of 4 subunits, FrdABCD, and has a molecular 

weight of 121 kDa. The crystal structure was solved in 1999 by Iverson et alto 3.3 A 

resolution (Figure 1.11 a). The structure is of a dimer, however it is not thought that 

E. coli QFR is a physiological dimer, as the contact region is small and mediated by 

two detergent molecules. A QFR monomer has two distinct domains; the hydrophilic 

catalytic domain containing the flavin subunit (FrdA) and the iron sulfur subunit 

(FrdB), and the membrane anchor (FrdC and FrdD). 
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Figure 1.11: (a) The crystal structure of E. coIl QFR. The monomer on the left is coloured 

according to subunits and domains. The flavin subunit is in yellow with the capping domain 

highlighted in orange. The iron sulfur subunit is in green and the membrane anchor subunits 

in blue and purple. The monomer on the right shows the cofactor locations within the protein. 

(b) Active site residues. The FAD in E. coli QFR is covalently bound to the protein by His44. 

The diagram shows the conserved residues involved in substrate binding, in green is the 

physiological inhibitor oxaloacetate. 
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1.4.1.1 Flavin Subunit (FrdA) 

The flavoprotem subunit, as in all fumarate reductases and succinate dehydrogenases, 

consists of two domains; a capping domain is connected to the flavin binding domain 

by a short P sheet hinge. The active site lies at the interface between these two 

domains. 

Fumarate is reduced to succinate by FAD that is covalently bound to the protein via 

His44 (Ackrell et a!, 1989, Figure 1.11 b). The covalent linkage and protein 

environment raise the flavin reduction potential to around —50 mV (Léger et a!, 2001; 

Heering et al, 1997; Sucheta et a!, 1993), compared to —219 mV for free FAD. This 

increase in potential is thought to be responsible for the reversibility of the complex 

II type enzymes (Blaut eta!, 1989). The active site residues of E. coli QFR are shown 

in Figure 1.11 b. The enzyme was crystallised with the inhibitor oxatoacetate bound at 

the active site. This ligand is bound by hydrogen bonds with His355, Arg390, 

Thr244, His232 and Arg287 (Figure 1.11b), all of which are strictly conserved 

throughout the family. Substituting His232 for Ser resulted in a drop in turnover rate 

from 133 s_ I  to 33 s-1  (menaquinol:fumarate oxidoreductase assay). Before the crystal 

structure was solved it was suggested that His232 was the proton donor but that 

alternate donors could substitute for it when mutated, but it is clear now that it is only 

involved in substrate binding. 

1.4.1.2 Iron Sulfur Subunit (FrdB) 

The second soluble subunit, FrdB, contains three iron sulfur clusters that are arranged 

in a linear chain with edge-edge distances ideal for fast, efficient electron transfer 

(Figure 1.12). At the edge of the membrane is a 3Fe:4S cluster, 11.2 A from a 417e:4S 

cluster which is in turn 7.6 A from a 2Fe:2S cluster. This third cluster is ideally 

positioned close to the flavin domain to pass electrons to the FAD (9.2 A). All the 

clusters are Cys ligated with typical iron sulfur cluster binding motifs: 

CxxxxCxxC ...C (2Fe:2S), CxxCxxC ... CP (4Fe:4S) and CxxxxxC ... CP (3Fe:4S) 

(Werth et a!, 1990). These sequences are largely conserved throughout the SQRJQFR 

family. 
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Before the crystal structure was solved the low midpoint potential of the 4Fe:4S 

(Figure 1.12) cluster had led to the suggestion that it was not involved in electron 

transfer, but the structural arrangement of the clusters clearly points to a role in 

electron transfer for all the clusters. With the distances concerned, the electron 

tunnelling rates will be sub millisecond despite the low potential of the 4Fe:4S 

cluster. For the observed turnover rate of 133 s W' , electrons would only need to arrive 

every 0.004 seconds. 
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Figure 1.12: The chain of cofactors in E. coil QFR. The closest distances for electron transfer 

are shown. There is some evidence for the presence of a third quinol binding site, 'M', 

between Qp and Q0 (Iverson et a!, 2002). The midpoint potentials for FAD and the iron suffur 

clusters are shown on the left (Leger et a!, 2001). 
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1.4.1.3 The Membrane Anchor (FrdCD) 

The hydrophobic domain of E. coil QFR is two subunits, each of which consists of 

three membrane spanning helices (Figure 1.11 a) connected by extra membrane loops. 

As mentioned previously, E. coli QFR has no heme in its membrane spanning region 

to mediate electron transfer from menaquinol to the 3Fe:4S cluster. Two quinol 

binding sites were observed in the crystal structure, one on either side of the 

membrane, Qp (proximal, near 3Fe:4S) and QD  (distal) (Iverson et a!, 1999; Cecchini 

et a!, 1986a, b, Rothery and Weiner, 1998). Further crystal structures of E. coil QFR 

were solved by Iverson et a! (2002) with the quinol binding inhibitors (Figure 1 .5a) 

2-heptyl 4-hydroxy quinoline N-oxide (1-IQNO) at 2.7 A and 2-[l-(p-

chlorophenyl)ethyl] 4, 6-dinitrophenol (DNP) at 3.6 A. Both inhibitors are found at 

the Qp binding site. The sites exhibited anti-cooperative binding behaviour with the 

inhibitors, as no density was observed at QD,  although density was observed for the 

physiological quinol in both sites of the original structure. 

Qp and QD  are positioned too far apart for direct electron transfer (25 A). It was 

suggested that Qp alone was involved in electron transfer and that QD  played a 

structural role, but with inhibitor bound at Qp, QD is empty and the structure is 

uncompromised. A third quinol binding site ('M') has been postulated between the 

two sites to mediate electron transfer, based on some unassigned density and a cavity, 

but at 3.3 A resolution this is speculative. It has been suggested that the Qp site 

expands, incorporating the 'M' site for double occupancy, but Iverson el al are of the 

opinion that the helical structure will not allow movement of the intervening 

residues. There is, however, evidence to suggest that the 'M' site is important in 

some capacity, as the residues in that region have been shown by mutagenesis to be 

essential for enzyme function (Westenberg et al, 1990). The cavity also has the 

hydrophobicity characteristics of a quinol binding pocket. 
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1.4.2 The Structure of Wolinella succinogenes QFR 

The structure of QFR from W. succinogenes was originally solved to 2.2 A by 

Lancaster et a! (1999, Figure 1.7b). The overall topology is very similar to that of 

E. coli QFR. The only obvious difference being the single subunit membrane anchor 

of four membrane spanning helices (Simon et a!, 1998). Looking more closely, 

however, there are conformational differences around the active site, particularly to 

Arg301 (equivalent to Arg287 in E. coli and Arg 402 in S. frigidimarina. See Table 

1.1). Water is now included at the active site (Figure 1.1 3a). Lancaster et al proposed 

a mechanism whereby water was the proton donor. A further crystal form later led 

them to conclude that their original structure was an open and inactive conformation 

(Lancaster et a!, 2001, Figure 1.13b). The distances between Arg301 and the 

substrate cannot be compared between the two conformations as unfortunately the 

second structure has malonate bound at the active site instead of fumarate. The 

arrangement of active site residues in the new structure closely mirror those of 

S. frigidimarina fcc3, S. oneidensis MR  fcc3, S. frigidimarina ifc3 and E. coli QFR. 

All of the above have very similar active site architecture and all exclude water. 

fl 

Fumarate 

- 	 •H20 

7i 
-( Arg3Ol 3YP )nate 

kArg3ol 

Figure 1.13: The active site of W. succinogenes QFR. (a) Open conformation including water 

(Lancaster et a!, 1999) (b) A further crystal form contained the active site in a closed 

conformation (Lancaster et a!, 2001). No water is now present. 
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1.5 Formate Dehydrogenase 

The crystal structure of formate dehydrogenase from E. coli has been solved by 

Jormakka el al (2002) to 1.6 A resolution. Formate dehydrogenase transfers electrons 

to the quinol pool for nitrate and fumarate respiration. The protein appears to be a 

trimer, each monomer comprised of three subunits. For clarity, only one monomer in 

Figure 1.9 is coloured according to subunit composition, the second and third 

monomers are coloured black and white. The structure is not dissimilar to QFR, with 

the a (orange) and P (blue) subunits forming a soluble domain, and the y subunit 

(purple) is a membrane anchor of four transmembrane helices. The protein is bound 

to the inner membrane with the soluble domain located in the periplasm. The a 

subunit has two molybdopterin guanine dinucleotide cofactors, a 4Fe:4S cluster and a 

functionally relevant Se-cys. The P subunit has four 4Fe:4S clusters. The y subunit 

has two b-hemes and a quinol binding site, located near the cytoplasmic side of the 

membrane. 

1.6 Hydrogenase 

There are three main types of hydrogenases; NiFe, Fe only and metal free. The NiFe 

type generally consist of one large catalytic subunit and a smaller iron sulfur subunit, 

they may, however, be anchored to the inner membrane by a third subunit (Kroger et 

a!, 2002; Sawers, 1994). The membrane bound NiFe hydrogenases participate in the 

anaerobic electron transport chains of such bacteria as W. succinogenes and E. coli. 

The two hydrophilic subunits are similar throughout the family. Crystal structures 

have been published of soluble enzymes from Desulfovibrio gigas (Volbeda et a!, 

1996), Desulfovibrio desu!furicans Miyazaki F (Higuchi et a!, 1997), Desulfovibrio 

desulfuricans ATCC 27774 (Matias et a!, 2001), Desulfovibrio fructosovorans 

(Rousset eta!, 1998) and Desu!fomicrobium baclatum (Garcin eta!, 1999). 

The structure shown in Figure 1.9 is from Desulfovibrio desu!fiiricans Miyazaki F 

(1-liguchi et a!, 1997). The large subunit (red) contains the NiFe active site and the 
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smaller subunit (blue) has three iron sulfur clusters; 4Fe:4S, 3Fe:4S and 4Fe:4S. In 

the membrane bound enzyme the catalytic subunit is HydB, the iron sulfur subunit is 

HydA which is anchored to the membrane by the hydrophobic C-terminus (Grop et 

a!, 1998). The third subunit, HydC, is hydrophobic and contains two b-type hemes 

(Figure 1.9). 

1.7 ApiH formation by the anaerobic electron transfer chain? 

Jormakka et a! (2002) proposed a mechanism by which formate dehydrogenase and 

nitrate reductase together translocate protons. Formate dehydrogenase converts 

HCOO to CO2 in the periplasm, releasing two protons on that side of the membrane. 

It also reduces menaquinone to menaquinol for which two protons are taken up from 

the cytoplasm. Nitrate reductase then uses protons from the cytoplasm as it reduces 

nitrate to nitrite. It takes electrons from menaquinol and releases protons into the 

periplasm. 

Liposome experiments by Kroger have established that W. succinogenes complexes 

are capable of generating a transmembrane electrochemical proton gradient and that 

it can drive ATP synthesis (Kroger et a!, 2002; Lorenzen et a!, 1993; Lancaster et a!, 

2000, Ohnishi et a!, 2000). So it might be imagined that a similar mechanism to the 

one outlined above might be in operation. However, it has been shown that the 

membrane potential created during fumarate respiration is entirely due to electron 

transfer from hydrogen or formate to menaquinone and not from menaquinol to 

fumarate. Additionally, the stoichiometry involved is I-[Ve, which conflicts with the 

loop mechanism above, which would have stoichiometry of 2H/&. A possible 

mechanism of i.tI{' generation with the correct stoichiometry is shown in Figure 

1.14. Hydrogenase converts 112 to 2H in the periplasm and reduces menaquinone, 

taking protons from the cytoplasm. In doing so, this complex effectively translocates 

protons with stoichiometry of H +/e-. Fumarate reductase, however, takes two protons 
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from the cytoplasm to form succinate but also releases two into the cytoplasm on 

menaquinol oxidation. So there is no further proton translocation. 

Despite the evidence from liposome experiments for W. succinogenes complexes, it 

is not certain that all anaerobic respiration electron transport pathways generate 

membrane potentials and drive ATP synthase in vivo. The metabolic ATP 

requirements of a bacterium may be supplied by glycolysis. 

r. 

/ 
2W 

MK 

2e 

2W 

Fuma rate +2W Succinate 

Figure 1.14: Possible mechanism for energy transduction in W. succinogenes by fumarate 

reductase and hydrogenase. Hydrogenase oxidises H 2  to 2H 4  in the periplasm and reduces 

menaquinone to menaquinol in the membrane, taking two protons from the cytoplasm. 

Fumarate reductase oxidises menaquinol to menaquinone, releasing two protons into the 

cytoplasm and also reducing fumarate to succinate in the cytoplasm. So the net effect of the 

two complexes is the translocation of two protons from the cytoplasm to the penpiasm. 
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1.8 Shewanella frigidimarina 

Shewanella is a gram negative facultative anaerobe. Its range of terminal electron 

acceptors for anaerobic respiration is broad (Saffarini and Nealson, 1993; Saffarini et 

a!, 1994), ranging from the metal ions Fe 3+  and Mn4  (Myers and Nealson, 1990; 

Baliaev and Saffarini, 1998; DiCbristina and DeLong, 1994), to organic molecules 

such as TMAO (Ogdami et a!, 1994), DMSO and fumarate and to nitrate, nitrite, 

sulfite, thiosulfate and elemental sulfur. This range of possible growth conditions 

makes Shewanella species extremely versatile bacteria, found in a wide range of 

environments. Shewanella strains have been isolated from many diverse 

environments. Two novel strains found in Antarctic sea ice samples were assigned as 

new species named S. gelidimarina and S. frigidimarina by Bowman in 1997. 

S. oneidensis was isolated from Lake Oneida, NY, USA (Myers and Nealson, 1988). 

S. amazonensis originated from sediment of the Amazon river delta (Venkateswaren 

et a!, 1998). Shewanella species have even been observed in human clinical samples 

(Levin, 1972). 

S.frigidimarina NCIMB 400 was first isolated from the North Sea, off the coast of 

Scotland. Originally classified as S. putrefaciens, it was re-classified by Reid and 

Gordon in 1999 to the recently defined S. frigidimarina species. As a marine 

bacterium it has been implicated in the corrosion of deep sea pipelines (Pickard et a!, 

1993). Shewanella is thought also to be involved in food spoilage, particularly fish, 

by the conversion of TMAO to TMA (Morris et a!, 1990). 

Anaerobic growth leads Shewanella to express a remarkable number of c-type 

cytochromes (Morris et a!, 1990), the most abundant being flavocytochrome C3, a 

fumarate reductase (Gordon et a!, 1998; Morris et a!, 1994; Reid et a!, 1998; Pealing 

et a!, 1992; 1995). When grown anaerobically in the presence of ferric iron an iso-

enzyme of fcc3 is produced (ifc3) which is also a fumarate reductase, although 

strangely it is not expressed purely in the presence of fumarate (Dobbin et a!, 1999). 
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Shewanella oneidensis MR1 also expresses an analogous fumarate reductase termed 

fcc3-MR1. 

1.9 Structure of Flavocytochrome c 3  from She wanella 

frigidimarina NCIMB 400 

Fcc3  from Shewanella frigidimarina and its analogous enzymes from other 

Shewanella species are a novel class of fumarate reductases. They differ from the 

QFR-type fumarate reductase in several ways. Fcc3 is a small soluble protein of 

63 kDa. It reduces fumarate to succinate in the periplasm of the cell, whereas QFR is 

bound to the inner membrane and reduces fumarate in the cytoplasm. Fcc3 is 

comprised of a single subunit unlike the three or four subunits required to make up 

complex II. There are also differences in the cofactor composition; although still a 

flavoprotein, fcc 3  is a flavocytochrome, and has no iron sulfur clusters. 

The structure of fcc3 was solved by Taylor et al at the University of Edinburgh in 

1999, to 1.8 A (Figure 1.15). The polypeptide is clearly divided into three domains. 

The heme domain is coloured red in Figure 1. 15, with the four heme groups in atom 

type colours. The rest of the protein is similar to the flavin subunit of QFR, with a 

flavin domain (yellow) and a clamp domain (blue) and FAD at the active site 

between those two domains. 
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/ 

Figure 1.15: The crystal structure of fcc3  from Shewanella frigidimarina. The flavin domain is 

in yellow, the heme domain in red and the clamp domain in blue. The heme groups, FAD and 

fumarate are all in atom type colours. In purple is the structural sodium ion located within the 

flavin domain. 

1.9.1 Heme Domain 

The C-terminal 104 residues form a cytochrome domain, containing four c-type 

hemes. Each heme is bis-His ligated and covalently linked to the protein by a CxxCH 

motif. The hemes supply electrons to the active site. They form a - 40 A molecular 

wire for electron transfer, arranged in an unusual 'dog-leg' configuration. The edge-

edge distances are all :!~ 8 A (Figure 1.16a) so fast electron transfer is possible from 

heme I to heme IV, although hemes 1-I11 are all clearly accessible to electron donors 

through the open protein structure. The midpoint potentials of the four hemes have 

been determined by potentiometric titration (-238, -196, -146, -102 mV, Turner et a!, 
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1999). Assignment of potentials to specific hemes is not possible from potentiometric 

data alone. 

Shewanella species also contain a periplasmic tetraheme cytochrome C3, which is 

closely related to the heme domain of fcc3 (Tsapin et al, 1996; Gordon et a!, 2000). 

The hemes form the same unusual 'dog-leg' arrangement (Figure 1.16b) Although 

heme IV is slightly closer to the other hemes than in fcc3, the heme core bears little 

resemblance to the well characterised c 3 's from Desulfovibrio species (Picarra-

Pereira et a!, 1993; Turner et a!, 1996). Herne assignment for this protein has been 

carried out by Passahna et a! (2001) using 2D 1 H NMR. Heme IV was found to be 

the first to oxidise, followed by II, I and finally III. The extra protein bulk of fcc3 and 

the nearby FAD group make comparison for the purposes of assignment impossible, 

but Passahna et al are currently undertaking a similar NMR assignment for fcc3. 
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Figure 1.16: (a) The home arrangement in fcc3. The edge-edge distances are labelled. (b) c3  

is very similar to the heme domain of fcc3. The structure shown is from MR1 (Leys et a!, 

2002) but the heme potentials for c3 from S.frigidimarina have been assigned by NMR 

(Passahna et a!, 2001). 
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1.9.2 Clamp Domain 

The domain known as the clamp domain in fcc3 is the equivalent of the 'capping 

domain' in QFR. This domain has significant freedom of motion. When open it 

allows substrate access to the active site, which is at the interface between the clamp 

and flavin domains. The active site is inactive until the clamp domain closes, as the 

substrate binding residues l'hr377 and His365 are part of the clamp domain and 

hinge region respectively. 

The structure of fcc3-MR1 was solved in 3 different forms by Leys et a! (1999); 

substrate free, fumarate bound and succinate bound. The three structures overlay well 

in the flavin and heme domains but some movement of the clamp domain is apparent 

in the substrate free structure. More conclusive evidence for active site access 

regulation by the clamp domain comes from open conformation of ifc3. 

1.9.2.1 Iron Induced Flavocytochrome c3 (1k3) 

Ifc3  is a 63.9 kDa fcc3  analogue, expressed by S. frigidimarina when grown 

anaerobically in the presence of ferric iron (Dobbin et al, 1999). Ifc3  is the first 

observation of a protein being induced by growth on a metal ion. It has 43 % 

sequence identity with fcc3 and similar heme and FAD potentials. Although ifc3 is a 

fumarate reductase, it is not produced by the bacterium for fumarate respiration, even 

in the fcc3  deficient strain EG301. When the ifc3 gene is disrupted, S. frigidimarina 

NCIMB400 will still grow on Fe 3+  but elevated levels of two other cytochromes are 

seen, a 35 kDa soluble protein and a 45 kDa membrane bound protein. There are 

multiple pathways to iron reduction, one involves ifc3 but in its absence the other 

pathways can compensate. 

The crystal structure of ifc3 has been solved to 2.15 A by Bamford et a! (1999). The 

enzyme crystallised as homodimer, with the majority of the contact between the 

flavin domains. The protein is in the open conformation, in the absence of substrate. 

Ifc3 (red) is overlaid with fcc 3  (blue) in Figure 1.17. The movement of the clamp 
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domain is clear, with ifc3 in a more open conformation than fcc 3  by - 200 .  Colouring 

by surface electrostatic potential clearly shows the basic fumarate binding pocket 

(Figure 1.17 inset). 

Figure 1.17: Clamp domain movement. The structures of fcc 3  (blue) and ifc3  are overlaid. The 

flavin and heme domains correspond well but the clamp domain of ffc 3  is in a significantly 

more open conformation. The fumarate bound in fcc3  is in green. Inset (taken from Bamford 

et a!, 1999): i1c3  surface coloured according to electrostatic potential revealing the basic 

binding pocket. 
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1.9.3 Flavin Domain 

The flavin domain is the largest section of the fcc3 polypeptide. This domain does, in 

fact, bear great similarity to the flavin domains of the complex II enzymes, both 

structurally and in sequence identity. The FAD in fcc3 is non-covalently bound with a 

potential of —152 mV. The enzyme is found to be essentially unidirectional. The 

fumarate is bound within the active site by hydrogen bonds with the residues Arg544, 

His504, His365 and Thr377 and Arg402 is positioned 3.0 A from the fumarate 0 for 

proton transfer (Section 1. 14, chapter 5). A summary of numbering for these 

conserved residues in the different proteins discussed in this chapter are in Table 1.1. 

An interesting feature identified from the crystal structure of fcc3 is the presence of a 

structural sodium ion close to the active site. It is visible in purple in Figure 1.15. The 

sodium ion and its environment is discussed in chapter 4. 

Fcc3  Fcc3-MRI Ifc3  
L-aspartate 

oxidase 

E.coli 

QFR 

Wsuccinogenes 

QFR 

Arg402 Arg40I Arg397 Arg290 Arg287 Arg30I 

His365 His364 His360 His244 His232 His257 

His504 His503 His499 H1s351 His355 His369 

Thr377 Thr376 Thr372 Thr259 Thr244 Thr269 

Arg544 Arg544 Arg539 Arg386 Arg390 Arg404 

Table 1.1: Numbering of the catalytically important conserved active site residues for the 

members of the family for which crystal structures are available. 
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1.10 A Related Structure - L-Aspartate Oxidase 

L-Aspartate oxidase (laspo) converts L-Asp to iminoaspartate as the first step in the 

biosynthesis of NAD. The enzyme is soluble with FAD as a cofactor, which is 

reoxidised by molecular oxygen, forming peroxide. Laspo may also use fumarate as 

an electron acceptor so the protein can function both aerobically and anaerobically. 

The structure of iaspo is very like that of fcc3, with the active site situated between 

flavin and capping domains, but it has no requirement for hemes and instead has a C-

terminal a-helical domain (Mattevi et a!, 1999; Bossi et a!, 2002, Figure 1.18). The 

protein has —30 % sequence identity with members of the fumarate 

reductase/succinate dehydrogenase family. The active site contains all the conserved 

substrate binding residues and overlays well with that of fcc3 (Tedeschi eta!, 2001). 

Figure 1.18: The structure of L-aspartate oxidase. L-aspartate oxidase bears great 

resemblance to the soluble fumarate reductases. All the residues important for catalysis are 

strictly conserved. The flavin domain is in yellow and the clamp domain is in blue. The FAD in 

L-aspartate oxidase is reoxidised by molecular oxygen so there is no requirement for heme 

groups. The third domain, in green, is referred to as the helical domain. 
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1.11 CymA: The Physiological Electron Donor to Fcc 3  

QFRs receive electrons directly from quinols in the membrane pool. As fcc3 is not 

associated with the membrane it must receive electrons from an alternate source. 

CymA is a 21 kDa c-type cytochrome from S. oneidensis MR1. It has a globular 

periplasmic tetra-heme domain that is anchored to the membrane by an N-terminal a-

helix. The structural type is similar to the NapCfNirT family found in a range of 

facultative anaerobes (Myers and Myers, 1997; Simon et a!, 2000). Another member 

of the family (Nrfl-1) has been shown in liposome experiments to oxidise 1,4-

napthoquinol and reduce NrfA, a periplasmic nitrite reductase from W. succinogenes. 

Knock-out experiments have shown CymA to be essential for growth on nitrate, Fe 3 , 

and fumarate (Simon et a!, 2000; Myers and Myers, 2000). It is proposed to act 

in a similar manner to Nrf}I, taking electrons from the membrane quinols and making 

them available to other electron transport proteins in the periplasm. In this way it may 

function in several pathways including fumarate respiration (Figure 1.19). 

A solubilised form of CymA has been prepared (CymA 0i) and both fcc3 and fcc3-

MR1 have been shown to receive electrons preferentially from CymA S(,I over 

cytochrome c3, the soluble periplasmic electron transport protein (section 1.10.1). 

CymAi transfers electrons to fcc3 almost as fast as the artificial electron donor 

methyl viologen (Schwalb et a!, 2002). 
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Figure 1.19: Schematic representation of the respiration pathways involving CymA. Quinones 

in the inner membrane are reduced by membrane bound dehydrogenases. It is not known 

whether CymA receives electrons directly from quinol or indirectly via a membrane integral 

electron transfer protein (Y) CymA is involved in the pathways of fumarate, Fe 3  and Mn4  

respiration. It may transfer electrons directly to the reductases or via a soluble electron 

transport protein in the periplasm (Z) (Schwalb et a!, 2002). 
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1.12 Mechanism of Fumarate Reduction 

Based upon the crystal structure of fcc3, Taylor ci al (1999) proposed a mechanism of 

fumarate reduction which is shown in Figure 1.20a. 

A hydride is transferred from N5 of the fully reduced flavin to the fumarate C2. 

The resulting intermediate is thought to be stabilised by His504. 

The intermediate C3 abstracts a proton from the nearby residue Arg402. 

Arg402 is reprotonated by a proton pathway consisting of residues G1u378 and 

Arg3 81. 

Fcc3 was crystallised in the presence of fumarate but the species at the active site in 

the fmished structure is malate. Figure 1.20b shows a proposed mechanism for 

hydroxylation at C2. During the crystallisation process the enzyme is oxidised so 

hydride transfer does not occur, but the substrate is activated so is susceptible to 

attack by water. This is purely an artefact of the crystallisation process. 

All the residues involved in the above mechanism by substrate binding and proton 

transfer, including the active site acid Arg402 (Doherty ci a!, 2000), are strictly 

conserved throughout the soluble fumarate reductases and complex II family. L-

aspartate oxidase also contains all the conserved residues implicated in the 

mechanism, so it appears to follow the same mechanism for dicarboxylate 

oxidation/reduction as the fumarate reductase/succinate dehydrogenase family. When 

Arg290 of laspo (Arg402 in fcc3) was mutated to leucine the enzyme was completely 

inactive. 

Fcc3 is an ideal subject with which to study the mechanism of fumarate 

reduction/succinate oxidation as it is soluble and easier to prepare and crystallise. It is 
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also simpler to study kinetically because there is no quinone oxidation occurring 

simultaneously. The conservation of all important residues and the structural 

similarity between flavin domains of the whole family indicates that the catalytic 

mechanism of fcc3 will be a universal mechanism for fumarate reduction. The work 

described in this thesis is an investigation into that mechanism by site directed 

mutagenesis. The detailed roles of the residues involved have been resolved by 

kinetic and crystallographic analysis of mutant forms of fcc3. 
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Figure 1.20: (a) Proposed mechanism for fumarate reduction by fcc3. The first step is hydride 

transfer from the flavin N5, the resulting intermediate then abstracts a proton from Arg402 

(Taylor at a!, 1999). Arg402 is reprotonated by a proton pathway (G1u378 and Arg381). (b) 

Possible mechanism of substrate hydroxylation. The substrate is activated but the FAD is 

oxidised, so instead of hydride transfer occurring, a water molecule attacks the fumarate C2. 
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2.0 Materials and Methods 

2.1 Media and solutions 

2.1.1 Luria Bertani High Salt Growth Media 

Bacto tryptone 	10 g/l 

Yeast 	 5g/1 

NaCl 	 lOg/i 

Filter sterilised antibiotics (50 mgF' kanamycin and 25 mgr' streptomycin) were 

added to the autoclaved media immediately prior to use. 

2.1.2 Buffers 

1M TRIS.HCI, I = 1M (TrishydroxymethylJaminoethafle) 

dH20 	 500 ml 

IMHCI 	 100 ml 

NaCl 	 52.65 g 

Adjusted to pH 8.4 with Trizma base and made up to 11. 

Lysis Buffer 

10 mM TRIS.HC1, 1=10mM, pH 8.4 

1 mM EDTA 

0.2 mg/ml egg white lysozyme 
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50 mM MOPS, I = 50mM (3[NMorpholinoIpropanesUIfOfliC acid) 

dH20 	 500 ml 

IMNaOH 	50m1 

NaCI 	 26.3 g 

Adjusted to pH 7.8 with MOPS and made up to 11. 

50mM TRIS.HCI (pH 7-9), I = 0.45M 

dH20 500 ml 

IMHCI 50m1 

NaCI 26.3 g 

Methyl Viologen 0.5 g 

Adjusted to the required pH at 25°C with Trizma base and made up to 11. 

50mM MES.NaOH (pH 5.5 - 6.7), I = 0.45 

(2-[N-MorphoLino]ethanesulfOfliC acid) 

dH20 	 500 ml 

IMNaOI-I 	50m1 

NaC1 	 26.3 g 

Methyl Viologen 	0.5 g 

Adjusted to the required pH at 25°C with MES and made up to 11. 
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50 mM CHES.NaOH (pH 8.6-10), I = 0.45 (2-

IN_Cyclohexylaminolethanesulfonic acid) 

dH20 	 500 ml 

IMNaOH 	50m1 

NaCl 	 26.3 g 

Methyl Viologen 	0.5 g 

Adjusted to the required pH at 25°C with CHES and made up to 11 

2.2 Protein Purification 

Site-directed mutants were prepared by Dr. Caroline Miles, ICMB, University of 

Edinburgh. 

Recombinant enzyme was prepared using the pEGX1IEG301 expression vector 

system (pEGX1 plasmid - pMMB503EH fcc with signal sequence, EG301 - 

Shewanella frigidimarina NCIMB 400 Rif, Mcc:ahp KniR).  Bacterial Strains were 

stored long term as DMSO stocks (-80 °C). 

2.2.1 Growth of Recombinant and Mutant Forms of Fcc 3  

• Starter flasks (50 ml Luria Broth) were inoculated with a single colony and grown 

overnight at 23°C, 150 rpm. 

• 10 flasks (21) containing 500 ml media were then inoculated with 5 ml portions of 

starter culture and grown for 8 hours as before. 

• The Cultures were induced with IPTG (250 mg]-1 ) and grown for a further 8-10 

hours, 200 rpm. 

• Cells were harvested by centrifugation (20 mins at 8,000 rpm, using a SLA-3000 

rotor in a Sorvall RC-5B centrifuge). 
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2.2.2 Protein Extraction 

The cells were re-suspended in the minimum volume of lysis buffer and stirred for 30 

minutes at 4°C and then sonicated on ice at 10 microns for 3x20 seconds. The cell 

debris was pelleted by centrifugation (1 hr at 20,000rpm, using a SS-34 rotor in a 

Sorvall RC-26 Plus centrifuge). The supernatant was then 40% saturated with 

(N1-L1)2SO4, re-centrifuged (20 minutes at 20,000 rpm) and the pellet discarded. The 

final supernatant was dialysed against 10mM TRIS.HC1, pH 8.4 (3x51). 

2.2.3 Anion Exchange Chromatography - DE52 (Whatman) 

A 4x15 cm DE52 (Whatman) column was equilibrated with 10mM TRIS.HC1, pH 

8.4 The protein solution was loaded, binding in a dark red band to the top 2 cm of the 

column. The protein was washed with the same buffer until the eluent absorption at 

280 nm was minimal. The protein was eluted with a stepped gradient of NaCl in 

0.1 M increments. Fcc3 generally eluted at 0.2 M NaCl and was dialysed against 2x51 

10 mM TRIS.HCI. 

2.2.4 Hydroxyapatite (Bio-Rad) 

A 3x5cm column was equilibrated with 10mM TRIS.HC1, the protein was loaded 

and then washed with buffer until the absorption at 280nm was minimal. The protein 

was eluted with 0.1 M K2HPO4 . 

2.2.5 FPLC (Fast Protein Liquid Chromatography) 

For final purification the protein was dialysed into 10mM MOPS, pH 7.8 and further 

purified on an 1 ml Resource Q column (Pharmacia). All solutions were filtered prior 
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to use through a 0.45 j.tm Whatman nylon membrane. The pumps were equilibrated 

with the following solutions: 

IOmMMOPS 

10 mM MOPS, 0.5 M NaCl 

The protein was filtered from a syringe through an FP point 45 ST filter unit, loaded 

through pump A and washed with 50 ml of buffer A at a flow rate of 4 ml/minute. 

The protein was eluted with a 20 ml linear gradient 0-0.5 M NaCl and collected in 

1 ml fractions. The procedure is shown in schematic form in Figure 2.1. 

Volume (MIS) 

Figure 2.1: Elution profile used for final purification of fcc 3  by FPLC using a Im! Resource Q 

column. 

The column was regenerated as follows: 

lOmi IMNaCI 

10 ml Buffer  

10 ml IMHCI 

lOmi Buffer  

10 ml IMNaOH 

10 ml Buffer  

The column was stored in 20% ethanol, which was run through the column at a rate 

of 0.5 ml/min due to the greater viscosity. 
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2.3 Determination of Protein Purity and Concentration 

2.3.1 Gel Electrophoresis 

Pre-poured InvitTogen NuPAGE Novex 4-12 % Bis-Tris gels were used to determine 

the purity of the protein throughout the purification procedure and to ensure that 

protein of the correct molecular weight was obtained. Samples were prepared in 

NuPAGE LDS sample buffer (4x). The running buffer used was WAGE MES. 

Gels took approximately 35 min to run at a constant voltage of 200 V. SeeBlue Plus 

2 pre-stained protein standard was used to mark the molecular weight. The 

approximate molecular weights for the markers in the buffer system described were: 

Myosin 188 kDa 

Phosphorylase B 98 kDa 

BSA 62kDa 

Glutamic Dehydrogenase 49 kDa 

Alcohol Dehydrogenase 38 kDa 

Carbonic Anhydrase 28 kDa 

Myoglobin Red 17 kDa 

Lysozyme 14 kDa 

Aprotinin 6 kDa 

Insulin, B chain 3 kDa 

The gels were stained with I % coomassie blue in 40 % MeOH, 10 % AcOH for 30 

minutes and then the excess stain was removed with 40 % MeOH, 10 % AcOH. 

(Figure 2.2a) 

2.3.2 UV-Visible Spectroscopy 

A known volume of protein (typically 50-100 j.il) was diluted to I ml with 10 mM 

TRIS.HC1 and the oxidised protein spectrum between 240 and 650 nm was obtained 

using a Schimadzu UV-Vis scanning spectrometer. The relative intensities of heme 

- 
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(409 nm) and total protein (280 nm) peaks were used to determine the purity of the 

protein. Abs409/Abs280 - 4.2 indicated pure protein. (Figure 2.2b) The reduced 

spectrum was then obtained by addition of sodium dithionite. The soret peak at 

419 nm was used to determine the protein concentration (c = 752,800 M'cm'). 

a  I ___ 	

— 

4-98k0a 

4-62kDa  

- 4--49kDa 

4- 38kDa 

428kDa 

4—l7kDa 

't—l4kDa 

4-6kDa 

N N 
.- 	th 

p.) 	0 

CD 

•1 
CD 

(I, 
•0 

b 
Reduced 
Oxidised 

1.5 

C 
Cu 
.0 
0 1.0 'I) 
.0 

0.5 

0.0 
300 	 400 	 500 	 600 

Wavelength (nm) 

Figure 2.2: Determining the of purity of fcc3  mutants. (a) Protein samples at each step of the 

purification procedure of an fcc 3  mutant, run against commercial markers and a sample of 

wild-type fcc3  (b) The oxidised (red) and reduced (pink) spectra of fcc 3. The spectrum of FAD 

after protein precipitation is also shown (yellow). 
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2.4 Determination of FAD Content 

The percentage of FAD incorporated into the protein was determined by the method 

of Macheroux et a! (1999). A 1 ml aliquot of protein solution (-'3.2 PM) was 

precipitated with 150 .il 50 % trichioroacetic acid. The protein was pelleted by 

microcentrifugation, leaving the FAD in solution (Figure 2.2b). The supernatant was 

removed and its pH was adjusted to 7 with solid sodium carbonate. The UV-visible 

spectrum was obtained, the FAD concentration was determined 

= 11,100 M'cm' 1 ) and expressed as a percentage of the total protein 

concentration. The average FAD content for recombinant wild-type protein was 

73 %. All kinetic data were corrected to 100 % FAD. 

2.5 Determination of Molecular Weight by Mass Spectrometry 

2.5.1 Electrospray Mass Spectrometry 

The molecular weights of wild-type and all mutants forms of fcc3 were determined by 

electrospray mass spectroscopy. Protein samples lof 0-20 gM were prepared in 

5 mM ammonium acetate and 0.2 % formic acid was added to promote positive 

ionisation. Immediately prior to induction the samples were diluted 1:1 with 

acetonitrile. The samples were introduced to the instrument by direct infusion. Ten 

spectra were acquired over 500-2500 mlz using a cone ramp of 40-100 V over 700-

1500 mlz. The raw data were baseline subtracted and smoothed, then centred to 

extract the charged ion series and transformed to give the total mass of the protein 

sample (Figure 2.3). Wild-type fcc3 has a mass of 63,033 Da which indicates that the 

sodium ion is bound but the FAD does not fly with the protein in the spectrometer. 
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2.5.2 LC-MS 

In order to desalt the protein for mass spectroscopy it can be eluted from a column 

directly into the spectrometer. The samples were loaded onto a 50x2mm 

Phenomenex jupiter C5 column. The protein was washed for 5min with solution A 

(95 % water, 5 % acetonitrile) at a flow rate of 0.2 ml/min. The protein was eluted 

with a 30 min gradient to solution B (5 % water, 95 % acetonitrile). The eluted 

protein passed into the mass spectrometer via a UV detector (280 nm). The protein 

spectra were combined and any surrounding features were subtracted. The spectra 

were processed as before. 

100 a 

63O33Da 

500 	 10 	 1500 

Figure 2.3: Mass Spectrum of fcc3. (a) The raw data are shown at the top, below that are the 

subtracted and smoothed data and at the bottom are the centred data. (b) The transformed 

mass of wild-type fcc3  is 63,033 Da. 
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2.6 Kinetic Analysis 

2.6.1 Fumarate Reductase Assay 

Enzyme activity was measured using a method adapted from Thorneley (1974). 

Assays were carried out under a nitrogen atmosphere in a Belle Technology glove 

box (<2 ppm 02)  at 25°C, using a Shimidzu UV-PC1201spectrophotometer. 3 ml of 

50 mM buffer (MES, TRIS or CHES), I = 0.5M was placed in a disposable cuvette of 

1cm pathlength and the methyl viologen (Figure 2.4a) was reduced with dithionite 

until the absorbance was 1-1.5. Protein was added and background activity was 

monitored at 600 nm to ensure that there was no re-oxidation by residual 02.  For 

wild-type the concentration was 2 nM but for less active mutants concentrations of 

up to 5 tM were used. The reaction was initiated by the addition of fumarate and 

reoxidation of methyl viologen during fumarate reduction was monitored over 

60-300 s (c for methyl viologen at 600 nm = 13,000 M'cm). A schematic 

representation of the assay is shown in Figure 2.4b. The rate of fumarate reduction 

over a range of substrate concentrations was fitted to the Michaelis-Menten equation 

(Appendix) by least squares regressional analysis in Microcal Origin, in order to 

determine the turnover number (k) and the Michaelis constant (KM). 

The rate of turnover of fumarate by wild-type fcc3 was tested and found to agree well 

with the data of Doherty et a! (2000). In this thesis the turnover rates of the mutant 

forms of fcc3  are compared to the published data. 
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b 	 M 	 Fcc3 0 Succinate 

Figure 2.4: (a) The structure of methyl viologen. (b) Schematic representation of the fumarato 

assay. The blue arrows represent the flow of electrons. The methyl viologen is initially 

reduced by dithionite, it then passes electrons to fcc 3  which reduces fumarate to succinate. 

2.6.2 Solvent Isotope Studies 

Buffer and substrate solutions were prepared in both D20 and H 20 for fumarate 

assays under substrate saturated conditions. The pH was adjusted with DO or NaOD 

as required, applying the equation pD = pH* + 0.4, (where pH*  is the pH meter 

reading) to correct for the acidity of the pH electrode itself (Glascoe and Long, 1960). 

Protein samples in 1120 were concentrated so that the minimum volume was added 

leaving the isotopic fraction essentially unaltered by the large dilution factor. Proton 

inventories (Appendix) were constructed by measuring the rate of fumarate reduction 

in a range of isotopic fractions, 0-100 %. The correct proportion was achieved by 

mixing 1120 and D20 buffers in the assay cuvette. Isotopic exchange was fast; similar 

rates were observed 1 minute and 30 minutes after protein dilution. 
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2.6.3 Determining the Activity-pH Dependence 

The pH dependences of wild-type mutant forms of fcc3 were determined by 

measuring activity under conditions of fumarate saturation over the range p1-I 6-10 at 

intervals of 0.5 pH units. The profiles were fitted to one or two pK a  values in 

Microcal Origin. 

The pL (where L = H or D) dependence of the pK a  values could be observed by 

constructing profiles in both H20 and D20. Buffers were made up in the range of pH 

(meter reading) 5-10. 
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3.0 Substrate Binding 

Analysis of the fcc3 sequence originally led to the proposal that fumarate would be 

bound in the active site by two arginines and two histidine residues (Arg3 81, Arg544, 

His365 and His504), all of which are completely conserved throughout the family. It 

was proposed that one of the histidines would act as the active-site acid catalyst, with 

arginine merely involved in substrate binding, since its pK a  (around 12) was thought 

to be prohibitive to the role of an active site acid. When the crystal structure of fcc3 

was solved it became apparent that Arg381 was not located at the active site, it was 

in fact found to be close to the surface of the protein, so participation in the proton 

pathway was suggested instead (introduced in section 1.12). It is clear from the 

structure that Arg402 is the residue ideally placed for proton transfer and that the two 

histidines are involved in hydrogen bonding at either end of the fumarate molecule 

(Figure 3.1). 

kA 

Figure 3.1: The active site of fcc3. The substrate molecule (orange) is bound by hydrogen 

bonds to the side chains of residues His504, Arg544, Arg402, His365 and Thr377. There are 

also hydrogen bonds to some backbone amides, for example that of G1u378. The Cl 

carboxylate is twisted out of the plane of the molecule by the hydrogen bonding interactions. 
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The substrate molecule is bound within the active site by 11 hydrogen bonds (Taylor 

et a!, 1999). Several of these bonds are interactions with protein backbone amides, 

such as that with G1u378 shown in figure 3.1. The amino acid side-chains important 

for substrate binding are those of His504, Arg544, His365 and Thr377. The latter two 

residues bind to the Cl fumarate carboxylate and the former to the C4 carboxylate. 

For all four residues the extent of their importance in hydrogen bonding and their 

involvement in fumarate reduction has been investigated by site directed 

mutagenesis. The residues and mutations made are shown in Table 3.1. All were 

substituted by alanine, with the exception of Arg544 which was replaced by 

methionine. In each case the hydrogen bonding capability of the residue was 

eliminated. Arg402 also participates in substrate binding via a hydrogen bond with 

the C4 carboxylate. Substitution of this residue is reported in chapter 5. 

X I i 
HO 	CH 3  GH3 

H 

H2NNI4. 

NH 

H,C 

A4  
H,N' H,N 	Coo  H,N H3N H 3N 

His365 
His504 Thr377 Alanine Arg544 Methionine  

Table 3.1: Substrate binding residues and substitutions made. His365, His504 and Thr377 

were all mutated to alanine, whereas Arg544 was substituted with methionine. 
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3.0.1 The Active Site Histidines. 

Both His365 and HisS 04 were mutated to alanine to remove their ability to form 

hydrogen bonds. A double mutation was also constructed (H365A/F1504A). Kinetic 

characterisation of these mutants was carried out by Doherty and Moysey (Doherty et 

a!, 2000; Doherty, 1999; Moysey, 2001) and the Michaelis parameters from these 

studies are shown in table 3.2. Both the single substitutions lower the activity of the 

enzyme to -- 10 % of wild-type activity. They also affected Michaelis complex 

formation, with the KM values increased 10-fold. So His365 and l-1is504 are therefore 

involved in substrate binding and are important, but not crucial, for enzyme activity. 

Even substitution of both histidines does not entirely disable the enzyme, k cw  izz 1 s 1 . 

The KM value for the double mutant is elevated 50-fold. These results for the 

substitution of the active site histidines are consistent with a role in substrate binding. 

A more drastic loss of fumarate reductase activity would be expected if either His365 

or His504 were the active site acid catalyst. 

k 	(sd ) 
KM (j.tM) 

pH 
WT 1-1365A H504A 

H365A1 

H504A 
WT H365A H504A 

H365A1 

H504A 

6 658±34 47±2 26±1 0.3 ±0.1 43± 10 113±20 38±3 -280 

7.2 509± 15 51±2 65±3 0.8±0.1 25±2 259±20 256±23 -.1100 

7.5 370± 10 54±2 58±2 0.9±0.1 28±3 143±20 200± 15 -1800 

9 210± 13 52±2 76±3 0.9±0.2 7±2 1  224±20 635±37 -1300 

Table 3.2: Comparison of Michaelis parameters for H365A, H504A and H365A/H504A with 

wild-type. Values taken from Doherty et a!, 2000. 

The crystal structure of H365A was solved to 1.8 A resolution (Doherty et a!, 2000). 

The substitution was shown to have had an additional, conformational effect on two 

nearby residues, Arg402 and Met375 (Figure 3.2). The side chains of both of these 

residues have moved from their positions in the wild-type active site to partially 
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occupy the void left by the His365 imidazole ring. Arg402 was described in section 

1.12 as the active site acid. The movement of this residue may contribute to the lower 

k of H365A but it is no further away from the substrate molecule than it is in the 

wild-type structure and the proton pathway residues, Arg381 and G1u378, are 

conlormationally unaltered by the substitution. 

Substrate 

His/Ala 

Figure 3.2: Crystal structure of H365A. The active site of H365A (purple) is overlaid with that 

of wild-type (atom type colours). The side chains of Arg402 and Met375 have altered their 

conformations in order to compensate for the removal of the His365 imidazole ring (Doherty 

et a!, 2000). The pH of the crystal during data collection was 6.5 (due to the freezing 

solution). 
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3.1 Substitution of Thr377 

Thr377 was mutated to alanine in order to assess its individual contribution to 

substrate binding. The active site is formed at the interface between the clamp and 

flavin domains. Thr377 is part of the clamp domain and His365 is on the hinge 

linking the clamp and flavin domains. These residues both hydrogen bond to the C  

end of the fumarate, so a double mutant was also constructed, H365A1T377A, 

removing two major interactions between the fumarate and the clamp domain. 

The mutations were confirmed by DNA sequencing and electrospray mass 

spectroscopy. Wild-type fcc3 has a mass of 63033 Da. The mass difference was found 

to be —38 Da for T377A (expected difference of —30 Da) and —103 Da for 

H365A1T377A (expected difference of-96 Da). 

The average FAD contents were calculated to be 79 % for both T377A and 

H365A1T377A, which is comparable to the average recombinant wild-type FAD 

content of 73 %. 

3.1.1 The kinetic Properties of T377A and H365A!T377A 

The ability of the mutants to catalyse fumarate reduction was determined over a 

range of pH values. Michaelis plots were constructed by measuring the rate of 

fumarate reduction at increasing substrate concentration (Figure 3.3). Data were 

fitted by least-squares regressional analysis to the Michaelis-Menten equation and the 

resulting parameters; the turnover number, k, and the Michaelis constant, KM are 

shown in Table 3.3. 

The single substitution of Thr377 to alanine has lowered the keat for the enzyme 

10-50-fold from wild-type. The range reflects an alteration in the pH dependence. 

Wild-type protein is most active at pH 6 but T377A is least active at that pH. The 

substitution of T377A has had a greater effect on catalytic activity than either H365A 
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or H504A, the kct  is slightly lower at 38 s_ I  compared with 51 s- ' and 65s' 

respectively (pH 7.2). The double mutation, T377A1H365A, has had a more drastic 

effect on the activity of fcc3, a 1000-2000-fold decrease. There is no crystal structure 

yet available for H365A1T377A but it is possible that conformational changes to 

surrounding residues, as seen in H365A, contribute to the low level of activity in this 

mutant. As the H365A11377A mutation has no ability to hydrogen bond to the Cl 

carboxylate, several monocarboxylate molecules were tested to determine whether 

they could be reduced by the enzyme. No turnover, however, was detected for 

acrylate, butenoate or hexenoate. 

The substitutions have also had a great effect on KM.  In T377A the KM value is 

increased 10-200 fold over the pH range studied, with a reversal in the pH 

dependence. The KM for wild-type fcc3 ranges from 43 .tM at pH 6 to 7 iM at pH 9. 

Conversely, the KM of T377A increases from 0.5 mM at pH 6 to 1.4 mlvi at pH 9. 

Such a large increase in KM is to be expected from the removal of a hydrogen bond to 

the substrate molecule. T377A/H365A removes two hydrogen-bonds to the substrate 

and accordingly the KM is increased 100-600-fold. These changes are summarised in 

Table 3.3. 

pH 
k 	(s) KM (pM) KM (mM) 

Wild-type T377A H365A1T377A Wild-type T377A H365A1T377A 

6 658±34 14±1 0.08±0.003 43± 10 497± 101 1.8±0.3 

7.2 509± 15 38±1 0.24±0.02 25±2 676±27 2.0±0.3 

r-75 370± 10 38±1 0.26±0.03 28±3 941± 121 3.3±0.6 

9 210±13 35±1 0.17±0.02 7±2 1444±81 5.4±1.0 

Table 3.3: Comparison of Michaelis parameters for T377A and H365A1T377A with wild-type 

(Doherty et a!, 2000). The rate of fumarate reduction has been decreased ? 10-fold by the 

single mutation T377A and .> 103-fold by the double mutation H365A/T377A. The 

substitutions have greatly affected Michaelis complex formation, particularly in the double 

mutant which has KM values in the mihimolar range. The errors quoted are the standard 

deviations of the data from the curves fitted. 
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Figure 3.3: Michaelis plots for T377A at pH 7.2 (top) and 9.0 (bottom). At pH 9 the turnover 

number, k is slightly lower and the Michaelis constant, KM,  is double that at pH 7.2. 
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3.1.2 pH-Activity Profiles 

The pH-activity profile for wild-type fcc3 is shown in Figure 3.4a. The data fit to a 

single pKa  of 7.5 ± 0. 1, which is attributed to His504. This residue is thought to 

enhance the catalytic rate when protonated, by stabilising the build up of charge in 

the intermediate (Figure 1.20). The pH profile of H504A is a bell shaped curve that 

fits to two pK a  values of 6.8 ± 0.2 and 10.3 ± 1.0 (Figure 3.4b). The maximum rate of 

fumarate reduction is reached at pH 8.5. All the substrate binding mutants have 

activity well below the wild-type minimum value, where different groups will 

influence the rate of fumarate reduction. At high pH, His504 will be deprotonated 

and so will be unable to stabilise the build-up of negative charge. The enzyme is seen 

to retain activity of -200 s -1  >_ pH 9, so the intermediate is still able to form at a 

considerable rate. The pH activity profiles of mutants that are less active than the 

wild-type minimum will not be affected by His504. 

T377A has a broad pH profile, with the maximum rate at pH 7.2 with one discernible 

pKa  value of 9.1 ± 0.1. It is not possible to determine the origins of the pK a  values 

observed for the mutant enzymes. 

The lower activity of the mutants T377A, H365A and especially T377A/11365A 

when compared with wild-type, may be due in part to poor activation of the substrate 

molecule. The twisted conformation prevents conjugation between the Cl 

carboxylate and the C2-C3 double bond. The driving force for this comes from the 

hydrogen-bonds formed, including those with His365 and Thr377. Removing one or 

both of these residues will make substrate activation less favourable and decrease the 

rate. Closure of the clamp domain is thought to be regulated by binding of the 

substrate in the twisted conformation. So the low rates observed when substitutions 

are made in the locality of the C  carboxylate are likely to be the sum of multiple 

effects. Michaelis complex formation is compromised and there will be less driving 

force for the twisted conformation. Thus substrate activation and clamp domain 

movement are likely to be occurring at a lower rate. 
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Figure 3.4: pH profiles of wild-type, H504A and T377A (a) The activity profile of wild-type fcc 3  

fits to a single pK8  of 7.5 ± 0.1. (b) pH profiles of H504A (blue) and T377A (purple). The pH 

profile of H504A is a bell-shaped curve that fits to two pKa values of 6.8 ± 0.2 and 10.3 ± 1.0. 

One pl( value of 9.1 ± 0.1 can be calculated for T377A. 
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3.2 Arginine 544 

Arg544 contributes two hydrogen bonds to the substrate, one to each branch of the 

carboxylate. This residue was mutated to methionine. The mass difference of R544M 

was —23 Da from wild-type (expected difference of —25 Da). At 56 %, the FAD 

content of the mutant was a little lower than wild-type (73 %). 

R544M was found to have a k w  value of 0.15 ± 0.01 s-1  and a KM of 714 tM at pH 

7.2. The increase in KM is large and consistent with Arg544 contributing two 

hydrogen bonds. What is more surprising is the very low level of activity observed 

for this mutant. When the other residues involved in substrate binding were 

substituted, the rate of fumarate reduction fell only —10-fold, but in R544M the 

decrease is 3500-fold. 

This residue clearly has an additional part to play in fumarate reduction, it is not 

purely involved in substrate binding. Analysis of the wild-type crystal structure 

shows Arg544 to be part of a very positively charged environment surrounding the 

C4 carboxylate (Figure 3.5). This must serve to polarise the substrate. The extensive 

loss of activity in R544M suggests that Arg544 is the major contributor in this 

polarisation. The twisted conformation of the substrate removes the Cl carboxylate 

from delocalisation and with the double bond polarised, the overall effect is to 

generate some positive charge at C2. This renders the molecule susceptible to hydride 

attack by the flavin N5. An additional effect of the substrate environment is likely to 

be modulation of the pK a  at C3 to be capable of abstracting a proton from Arg402. 
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Figure 3.5: The fumarate environment. Substrate binding in a twisted conformation and the 

polar environment of the C4 carboxylate causes C2 to have significant positive charge. 

Arg544 is very important for polarisation of the molecule. 

3.3 Hydrogen Bond Strengths 

The elevated KM levels that are observed when the residues I-1is365, Thr377, His504 

and Arg544 are substituted show them to be important in substrate binding. The 

strength of their hydrogen bonding contributions can be estimated from the KM 

values, using equation 3.1. KM has previously been shown by inhibition studies to be 

to be similar to KD (Morris et a!, 1994). 

AG = -RT1nKM 	 equation 3.1 
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The difference in free energies between mutant and wild-type gives an estimate of the 

strength of the hydrogen bond (Table 3.4). The two histidine residues contribute 

equal strength hydrogen bond(s) and each end of the substrate has a stronger 

hydrogen bonding species, Thr377 at Cl and Arg544 at C4. Thr377 has by far the 

greatest individual hydrogen bond strength as Arg544 contributes two bonds. The 

combined effect of the double mutations on substrate binding is only slightly less 

than the sum of the individual mutations. 

Residue(s) H-Bonding Contribution (KJmor) 

His365 5.8 

Thr377 8.1 

His504 5.8 

Arg544 8.3 

His365/His504 9.4 

[—His3-65/Thr377 11.6 

Table 3.4: Estimation of hydrogen bonding contributions made by each residue. His365 and 

His504 make the same hydrogen bonding contributions to substrate binding. One residue at 

either end of the molecule has a greater effect (Thr377 and Arg544). The effect of the double 

substitutions appears to be slightly less than the sum of the single contributions. 
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3.4 The 'Clamp' Methionines 

In the crystal structure of fcc3, the fumarate molecule is in a twisted conformation, 

with the C  carboxylate perpendicular to the plane of the molecule. The substrate 

occupies virtually all the available space in the active site (Figure 3.6a). Fumarate is 

ideally a planar molecule, if it is modelled into the active site as such, it sterically 

clashes with two methionine residues (Taylor et al, 1999), Met236 and Met375 

(Figure 3.6b). Met236 is located in the flavin domain and Met375 is in the clamp 

domain. These residues are not, in fact, conserved throughout the family. Sequence 

alignment shows that in the QFRs and SQRs the residues are phenylalanine and 

leucine respectively. In all cases the two residues are hydrophobic and may play a 

similar steric role. By the Cl carboxylate twisting out of the plane to hydrogen bond 

with 11is365 and Thr377, steric clashing with the methionines is avoided. The effect 

of the twist is to remove this carboxylate from conjugation over the whole substrate 

molecule. 

The methionine residues were both mutated individually to alamnes. The mass 

differences were found to be —63 Da for M236A and —68 Da for M375A (expected 

difference - 60Da). 
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Figure 3.6: Orientation of the substrate within the active site. (a) The active site cavity. The 

Connolly surfaces show that fumarate (red) occupies virtually all the available space within 

the active site (green). (b) Planar fumarate (magenta) modelled into the active site. The Cl 

carboxylate stoncally clashes with Met236 and Met375. (Figure taken from Taylor at a!, 

1999). 
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3.4.1 Loss of FAD in M375A 

The FAD content of the M236A mutant was high, 84 % (average for wild-type 

73 %). The FAD content for M375A was initially determined to be 55 %, but when 

the activity was tested a curve was obtained in a steady-state assay under 

fumarate-saturating conditions (Figure 3.7). The decrease in rate was not due to 

consumption of fumarate, as further addition of protein increased the rate again. To 

test whether the decrease in rate was due to loss of FAD, a protein sample was run 

through a gel filtration column after turnover. A yellow band (FAD) eluted after the 

protein band. The FAD content was found to be 42 %. This amount of FAD appeared 

to remain bound to the protein and straight lines were obtained in further assays. 

M375A was found to lose FAD without turnover, but samples were always found to 

retain -40 % FAD and all rates were corrected to 100 % FAD. 

3.0 
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Figure 3.7: Loss of activity of M375A during turnover. The rate of change in absorbance 

decreases over the first 100 s of the assay, indicating a loss of activity. The rate of 

absorbance change then becomes virtually constant. 
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3.4.2 The Kinetic properties of M236A and M375A 

Values of k and KM for the two mutants are shown in Table 3.5. They have similar 

levels of activity to wild-type at p1-I 9 but less activity at lower pH. At pH 7.2 the KM 

of M375A is essentially the same as wild-type fcc3 but the pH trend is reversed, 

activity increasing with basicity. The maximum KM seen for M375A is less than 

twice that of the wild-type protein. In contrast, M236A has a KM at pH 6 equivalent 

to wild-type but the values increase sharply with pH to —2 mM at pH 9. This result is 

difficult to interpret as Met236 itself is not involved in hydrogen bonding. With no 

crystal structure available, it is impossible to tell how the mutation has affected the 

active site architecture. 

pH 
(s') KM  (,.LM) 

Wild-type M236A M375A Wild-type M236A M375A 

6 658±34 16±1 85±2 43±10 38±7 13±2 

7.2 509±15 159±4 117±2 25±2 705±53 17±1 

7.5 370±10 259±8 148±5 28±3 498±60 41±5 

9 210±13 1 	218±10 1 	160±3 7±2 1912±245 1 	70±5 

Table 35: Comparison of Michaelis parameters for M236A and M375A with wild-type 

(Doherty et a!, 2000). Both substitutions have decreased activity at low pH. Only M236A has 

had a significant effect on KM. 

The methionine residues are thought to help regulate the movement of the clamp 

domain. When the substrate is effectively bound in the active site, the formation of 

hydrogen bonds being the driving force for the Cl carboxylate twist, Met236 and 

Met375 will not clash with the substrate when the clamp domain is in the closed 

(active) conformation. Substituting either methionine residue is likely to make this 

process less efficient, resulting in the decrease in rate of fumarate reduction. 

Chapter 3: Substrate Binding 	 73 



Mechanistic Studies on Flavocytochrome C3 

3.5 Chapter 3 Summary 

• Fumarate is bound at the active site by hydrogen bonds with surrounding 

residues, including interactions with the side chains of Arg544, His504, His365 

and Thr377. 

• Each of these residues was substituted with a non-hydrogen bonding residue 

(alanine or methionine) which resulted in large increases in the value of KM. 

• Thr377 and Arg544, at opposite ends of the fumarate molecule, make the greatest 

hydrogen bonding contributions. 

• R544M is - 400-fold less active than the other substrate binding mutants. Arg544 

has an additional role, polarising the double bond and causing the fumarate C2 to 

be slightly positive and susceptible to hydride attack. 

• Hydrogen bonds from His365 and Thr377 to the Cl carboxylate cause the 

substrate to bind in a twisted conformation, removing that carboxylate from 

delocalisation with the rest of the molecule. 

• The twisted conformation avoids steric clashing with Met236 and Met375, thus 

allowing the clamp domain to close. 
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4.0 The Sodium Site and the Role of His505 

The high resolution crystal structure of fcc3 revealed an internally bound sodium ion 

(Taylor et a!, 1999). It is coordinated by five backbone carbonyl oxygens (from 

Thr506, Met507, G1y508, G1u534 and Thr536) and a water molecule, in essentially 

octahedral geometry (Figure 4.1). The architecture of the site is conserved throughout 

the family but the assignment of the metal ion initially varied. 

r*--1 

FAD 
	 G1u534\ 	

Na 
1 	 .G1y508 

Substra 	 L 	WOW 

His5\ 
JT4P 	 Thr506 

Figure 4.1: The sodium site. The crystal structure of fcc3 revealed a structural sodium ion 

close to active site. It is bound in geometry close to octahedral by hydrogen bonds with 5 

backbone carbonyl oxygens (Thr506, Met507, G1y508, G1u534 and Thr536) and a water 

molecule. The water molecule is in turn bound to His505. 

In the structure of Wolinella succinogenes QFR, the ion was tentatively assigned as 

Ca2  (Lancaster et a!, 1999). In the more recent structure of the Wolinella enzyme, 

however, the metal ion is assigned as sodium (Lancaster et a!, 2001). In the crystal 

structures of both S. frigidimarina ifc3 (Bamford et a!, 1999) and S. oneidensis MR  - 

fcc3 (Leys et a!, 1999), the density was interpreted as a water molecule. Neither a 
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metal ion nor a water molecule was included at the putative 'sodium' site in the 

original E. coli QFR structure (Iverson et a!, 1999), but this is unsurprising at 3.3 A 

resolution. The more recent structure of E. coil QFR, with the quinol binding 

inhibitor HQNO, is at 2.7 A and a potassium ion has been assigned. The backbone 

arrangement is also conserved in L-aspartate oxidase. The original structure was of 

apo- L-aspartate oxidase and had no metal ion in the region next to the active site, 

however, the 2002 structure of the R386L mutant was found to contain FAD and had 

a sodium ion next to the active site in agreement with the fcc3 structure. The 

'sodium' sites from the different members of the fumarate reductase family and their 

metal/water assignments are shown in figure 4.2. 

E. coil QFR 	 1 W. succinogenes QFR 

._Ar\ Gtu37J , Ser381 

Tyr356"  

AA 

Met358 

S. frigidimarina ifc3 	k JL 	L-aspartate oxidase 

His500 

His499 	t 

'\ Jrhr53l 

Met502 

Ser377 

iy355 

Figure 4.2: 'Sodium' sites of fumarate reductase family members. The original E. coil 

structure had no species assigned in that region, in ifc 3  (and MR 1-fcc3) the density was 

assumed to be due to water. A calcium ion was originally assigned in W succino genes QFR. 

A recent structure of L-aspartate oxidase has a sodium ion and apparently a water molecule 

only 0.9 A away. 
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There are several known cases of sodium ions playing important roles within a 

protein structure. Many pyridoxal phosphate (PLP)-dependent enzymes, involved in 

amino-acid metabolism are activated by monovalent cations. Dialkylglycine 

decarboxylase has two alkali metal binding sites. The crystal structure of the enzyme 

from Pseudomonas cepacia (Hohenester el a!, 1994; Toney and Kirsch, 1993; Toney 

et a!, 1995, Maklashkevich et a!, 1999), shows that it is a tetramer in the form of a 

dimer of dimers. The active site is at the dimer interface, composed of residues from 

both monomers. Metal site I is close to the catalytic active site and metal site 2 is 

near the protein surface. Site I can accommodate all alkali metal ions but K has 

been shown to activate the enzyme whereas Li and Na have an inhibitory effect. 

The geometric alterations caused by the smaller ionic radii induce long range 

structural changes. Conversely, site 2 appears to select for Na 4  which fits well into a 

tight turn between cc-helix and [i-sheet. The Na has octahedral coordination by 

carbonyl oxygens from a Pro-Pro-Gly-Leu sequence and also two water molecules 

(Toney and Kirsch, 1993). This site is thought to play a purely structural role within 

the protein. 

Tryptophan synthase is from another family of PLP-dependent enzymes. It catalyses 

the last two reactions in the synthesis of L-tryptophan. The subunit stoichiometiy is 

a2P2. The a and 3 subunits catalyse different reactions: 

a: 	indole-3-glycerol phosphate 	indole + D-glyceraldehyde 3-phosphate 

L-serine + indole 	 -* 	L-tiyptophan + H20 

The two active sites are connected by a tunnel for the transport of the intermediate 

indole. A sodium binding site was observed in the P subunit between two domains 

(Rhee et a!, 1996). The ion is coordinated by three backbone carbonyls and two water 

molecules. Replacing Na with K or Cs induces changes in the coordination sphere 

leading to long range structural alterations. Sodium binding is thought to stabilise the 

structure of the 3 subunit. 
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The crystal structure of diaminopelargonic acid synthase (Käck et al, 1999) contains 

another example of a sodium ion largely coordinated by backbone carbonyl oxygens 

within a tight turn, playing a structural role, but near the protein surface. 

In fcc3, the ion is not at the surface of the protein but is apparently performing an 

important structural role adjacent to the active site. One of the coordinating carbonyls 

is from G1u534, which is involved in hydrogen bonding to the flavin tail group. The 

FAD in fcc3 is non-covalently bound and the importance of G1u534 for FAD binding 

is assessed in this chapter. 

The sodium site is closely linked to the active site not only in space but also in 

sequence. The carbonyl groups of G1y508, Met507 and Thr506 all coordinate to the 

sodium ion. His505 hydrogen bonds to the water molecule in the sodium 

coordination sphere. The next residue is His504 which is a completely conserved 

active site residue, important for Michaelis complex formation. His505 is also 

investigated by site directed mutagenesis in this chapter. The soluble Shewanella 

fumarate reductases all have a histidine residue, but rest of the family have tyrosine 

residues at that position in the sequence (Figure 4.3). 

Fcc3 

Frdaecol i 

frdawolsu 

dhsaecoli 

dsha_yeast 

PGVHHTMGGV 

PTAHYTMGG I 

PMQHYSMGGI 

PTCHYMMGGI 

PTVHYNMGGI 

Figure 4.3: Sequence alignment surrounding residue 505 (S. frigidimarina numbering). 

H1s505 (red) is not strictly conserved. The complex Ii family (shown here are sections of 

sequence for E. coil and W. succinogeneS QFR and also E. coli and yeast SQR) have a 

tyrosine residue at that position (blue). 
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Several of the metal sites in the PLP-dependent enzymes may bind different 

monovalent cations, but fcc3 is remarkably resistant to removal or replacement of the 

sodium ion. Extensive dialysis against buffers containing alternative monovalent 

cations, divalent cations or EDTA (to potentially remove the sodium ion) failed to 

have any effect. Sodium remains bound to fcc3 in the electrospray mass spectrometer 

and the dialysed samples gave the wild-type mass of 63033 Da, which includes 

sodium. 

4.1 Substitution of G1u534 

Glu 534 is involved in binding the sodium ion only by a backbone carbonyl which 

cannot be altered by mutation, but the extent of its importance for FAD binding was 

assessed by substitution with both alanine and glutamine. 

4.1.1 E534A 

Initial attempts to purify the mutant were unsuccessful, despite a band at the expected 

mass on the gel, indicating expression. A small amount of protein was obtained when 

the protein preparation was carried out in the presence of excess free FAD, but it did 

not elute in a tight band from DE52, hydroxyapatite or Q-sepharose and remained 

quite impure. After gel filtration to remove the excess FAD, the content was found to 

be 30 %. However, the ability of the protein to bind FAD was clearly compromised 

by the substitution and no kinetic data could accurately be obtained. The inability to 

purify E534A without excess FAD present suggests that the protein does not fold 

correctly without FAD bound. 

4.1.2 E534Q 

Substituting G1u534 with glutamine again caused difficulties in purifying the protein, 

but a little protein was obtained without the need for excess FAD. The FAD content 

was determined as only -15 %. The activity was tested and rates were corrected to 
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100 % FAD, but the protein deactivated over time so only approximate values for k cat  

and KM were obtained; k 4 s_ I  and KM 50 j.tM (pH 7.2). 

4.2 Investigating the Role of His505 

His505 was substituted by both alanine and tyrosine. The tyrosine mutant was 

constructed to investigate the possibility of direct ligation to the sodium ion by the 

tyrosine hydroxyl group replacing water in the sodium coordination sphere. 

Electrospray mass spectroscopy was employed both to confirm the mutations and to 

assess whether sodium remained bound to the protein. Both mutants had mass 

differences that accounted for the substitution, with sodium present in each case: 

-67 Da for H505A (expected difference of-66 Da) and +24 Da for H505Y (expected 

difference of +26 Da). 

The FAD contents of H505A and H505Y were slightly lower than the typical wild-

type value for wild-type (73 %) at 60 % and 56 % respectively. His505 is 3.3 A from 

one of the FAD hydroxyl groups which is bound by G1u534 and may assist in binding 

the flavin, but is clearly not essential. The percentage of FAD incorporated, although 

slightly less than wild-type, remained constant. All rates were corrected to 100 % 

FAD. 

4.2.1 Kinetic Characterisation of H505A and H505Y 

The Michaelis parameters for the two mutants are in table 4. 1, and their pH activity 

profiles are compared to wild-type in figure 4.2. The mutations have had very little 

effect on k at high pH, but as the pH is lowered the effect on the activity increases. 

At pH 6, wild-type exhibits its maximal activity. The activity of H505A is 20-fold 

lower than wild-type and H505Y has half the activity of wild-type at pH 6. 
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kt(s') Km (P.M) 
PH 

Wild-type H505A H505Y Wild-type H505A H505Y 

658±34 32±1 354±19 43±10 43±6 22±5 

509± 15 79±3 377±29 25±2 109± 13 25±7 

370±10 101±3 363±29 ±3 E129± 17±6 

210±13 105±2 240±5 E28±2 21±2 

Table 4.1: Comparison of Michaelis parameters for H505A and H505Y with wild-type 

(Doherty et a!, 2000). The effect on k at  for both mutants is greatest at pH 6. The KM of H505Y 

appears to have no pH dependence. In H505A an increase in KM is seen only at pHs 7.2 and 

7.5. 

The pH dependence of the enzyme has been altered by the substitutions. Wild-type 

fcc3 has a straightforward profile with a single pK a  of 7.5 ± 0.1. In contrast, the 

mutant enzymes have more bell-shaped profiles (Figure 4.4), with maximal activity 

at pH 6.8 for H505Y and pH 8.1 for H505A. Two pK a  values can be determined for 

H505A, at 7.1 ± 0.2 and 9.0 ± 0.2. Only one pKa  can be determined for H505Y at 8.2 

± 0.1. The wild-type pKa is attributed to His504 (Figure 4.5). It is thought to enhance 

the rate of fumarate reduction when protonated, by stabilising the build up of charge 

in the intermediate after hydride transfer. The pH profiles for H505A and H505Y 

show that the pKa  is shifted to more basic values, to 8.2 ± 0.1 in H505Y and to 9.0 ± 

0.2 in H505A. So substituting a neighbouring residue (His505) has modulated the 

pKa  of His504. 

Some small changes were also seen in the KM values. The KM of H505Y is the same 

for wild-type at pH 7.2 but where the wild-type KM decreases with increased pH, 

I-1505Y appears to have no pH dependence. The KM of H505A displays a peculiar pH 

dependence. The values are identical to wild-type at p1-I 6 and 9, but at 7.2 and 7.5 

substrate binding is clearly being affected, with KM values of 109 iM and 129 .tM 

respectively, a four-fold increase from wild-type. 
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Figure 4.4: p1-I profiles of wild-type (black), H505Y (blue) and H505A (red). The substitutions 

appear only to have a significant effect on activity at low pH. The PKa  has shifted from 7.5 ± 

0.1 in wild-type to 8.2 ± 0.1 in H505  and 9.0 ± 0.2 in H505A. A second P1<a  at 7.1 ± 0.2 is 

discernible for H505A. 
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Figure 4.5: The wild-type pKa  of 7.5 is thought to arise from His504 stabilising the build up of 

negative charge in the intermediate, after hydride transfer. 
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4.2.2 The Crystal Structures of H505A and H505Y 

Substituting a histidine for an alanine been seen to cause structural alterations in the 

case of H365A (section 1.1.1). Surrounding residues have compensated for the 

removal of the histidine ring. Slight structural rearrangement of His504, caused by 

the substitution of His505, could reasonably account for the changes in activity and 

substrate binding. 

The structure of H505A was solved to 1.8 A resolution and H505Y to 2.0 A. It was 

immediately clear that neither substitution had induced significant structural change. 

The sodium site has not undergone any real changes. Figure 4.6 shows the sodium 

sites for each mutant compared with wild-type. In H505A there are two water 

molecules in the cavity left by the imidazole ring, in addition to the one that 

hydrogen bonds to the sodium ion. In H505Y the tyrosine ring occupies the same 

position as the histidine ring of wild-type. The hydroxyl group does not directly ligate 

the sodium ion, but hydrogen bonds to a water molecule at 2.6 A, which in turn 

coordinates to the sodium ion at a distance of 2.5 A. 
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Figure 4.6: The sodium sites of (a) wild-type, (b) H505A and (c) H505Y. The crystals were at 

pH 6.5. Two water molecules occupy the space vacated by the histidine imidazole ring in 

H505A. Tyr505 occupies a similar conformation to His505 and hydrogen bonds to a water 

molecule, it does not directly coordinate the sodium ion. 
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There have been no real alterations to the active site either. The fumarate molecule is 

in the twisted conformation and all the interactions important for catalysis, such as 

proton and hydride transfer, are unaffected. The kinetic data suggest that substitutions 

to His505 have affected the neighbouring residue His504. The crystal structures show 

that this is not caused by conformational changes. 

Looking at the position of His505 in the structure does give rise to a possible 

explanation for the pK a  modulation: His505 is located between the active site and the 

sodium site, or more specifically, between G1u534 and His504 (Figure 4.7). The 

effect of the Glu negative charge on His504 would be to make it a weaker acid, 

raising its pKa. This is observed in the H505A mutant, where the pK a  is shifted from 

7.5 to 9.0. So it is likely that His505 minimises the effect of the negative charge of 

G1u534 on His504. The H505Y substitution has had a less pronounced effect on the 

pKa, which is shifted from 7.5 to 8.2. Tyrosine is to some extent able to moderate the 

effect of the G1u534 charge on His504. It is not surprising to find that H505Y had 

quite a modest effect, as the equivalent residue in other members of the family is a 

tyrosine (Figure 4.3). 
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Figure 4.7: Location of His505. His505 is thought to modulate the pKa of His504 by 

minimising the effect of the G1u534 negative charge. 
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4.3 Chapter 4 Summary 

• A structural sodium ion is found adjacent to the active site, bound by five 

backbone carbonyls Thr506, Met507, Gly508, Thr536 and G1u534) and a water 

molecule. 

• G1u534 is vital for FAD binding. Substitution of this residue renders the protein 

unable to maintain its FAD content. 

• His505 hydrogen bonds to the water molecule. Substitution of His505 causes loss 

of activity at low p1-i but not at high pH. 

• Wild-type fcc3 has a pK a  value of 7.5 which is thought to be due to stabilisation 

of the reaction intermediate by His504. Mutating its neighbour, His505, raises the 

pKa. 

• His505 may moderate the effect of the G1u534 negative charge on His504. 
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5.0 The Active Site Acid Catalyst 

Since the crystal structures of five fumarate reductases were solved in 1999, Arg402 

has been the primary candidate for the active site acid. Until recently, however, there 

remained some controversy, because Lancaster (Lancaster et a!, 1999) found a water 

molecule at the active site in the structure of Wolinella succinogenes QFR and 

proposed it to be the active site acid catalyst. There is no water found in the active 

sites of the other enzymes, so it was thought that the Wolinella enzyme was 

crystallised in an open, inactive form. In 2001 Lancaster published a further crystal 

structure of W. succinogenes QFR. This new crystal form was in a closed 

conformation, with Arg301 (Arg402 of S. frigidimarina fcc3) overlaying the positions 

of the acid catalysts of the other fumarate reductases. 

H2NyNEt. 

NH 3  

L,1 
O.NH, 

NH3  

H3N'COO. 

çH  

H,N 	coo H3N 	co& H,N 	COO H3N 	coo- H3N 	C00 

Arginine (R) Alanine (A) Lysine (K) Tyrosine (Y) Glutamine (Q) Phenylalanine (F 

Table 5.1: Substitutions made to Arg402 (left). The active site acid was substituted by five 

residues with differing abilities to participate in proton transfer. 
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Arg402 was confirmed as the acid catalyst by mutagenesis studies (Doherty et a!, 

2000). Substitution of the conserved histidine residues at the active site has shown 

that they are not essential for fumarate reduction. H365A and H504A retain at least 

10 % of wild-type activity. In contrast, when Arg402 is substituted by alanine in fcc3, 

the enzyme is completely inactive (Doherty et a!, 2000). 

Arg402 was then substituted by lysine and tyrosine (Mowat et a!, 2001). These 

mutant enzymes retained a detectable level of activity, albeit at a 10 3-104-fold lower 

level than wild-type (Table 5.2). 

pH 
kcat 	S_ I 

Wild-type R402K R402Y 

6 658 ± 34 0.02 ± 0.01 0.02 ± 0.01 

7.2 509 ± 15 0.06 ± 0.01 0.05 ± 0.01 

7.5 370± 10 - 0.14±0.01 

9 210±13 - - 

Table 5.2: Turnover numbers (km), for R402K and R402Y compared with wild-type. No rate 

is detectable above pH 7.2 for R402K or above pH 7.5 for R402Y (Mowat et a!, 2001). 
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5.0.1 A Dual Role for Arg402 

The crystal structures of the R402A, K and Y enzymes have each been solved to 

2.0 A resolution and are overlaid with wild-type in Figure 5.1 a. R402A has a water 

molecule in the active site, since this mutant is inactive it must be unable to act as the 

acid catalyst. The schematic overlay of the three mutant structures with wild-type in 

Figure 5.1 b provides an explanation for the inactivity. The active site contains two 

separate positions, A and B. Position A contains the proton donating species for the 

mutants R402K and Y (which do display some fumarate reductase activity) as well as 

one branch of the arginine guanidinium group in wild-type. Position A is empty in 

R402A. The other branch of the guanidinium group is in position B where it 

hydrogen bonds to the fumarate C4 carboxylate and Gln363. R402A and K have 

water molecules in position B. These observations led to the proposal of a dual role 

for Arg402. Hydride transfer from the FAD N5 to the fumarate C2 leads to the build 

up of negative charge at the C4 end of the substrate molecule. The charge is 

stabilised by the interaction with the NH2 group of Arg402 at position B. In 

summary, one amino group of Arg402 acts as a Lewis acid at position B while the 

other acts as a Brønsted acid in position A, protonating the substrate at C3. Arginine 

is the only amino acid capable of fulfilling both of these roles simultaneously. 

Fumarate reduction is detectable if a proton donating species is present in position A, 

but the lack of a species in B to stabilise the transition state results in extremely low 

catalytic rates. 
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Figure 5.1(a): Crystal structures of R402A (red), R402K (green) and R402Y (blue) with 

wild-type (purple). (b) Schematic overlay showing positions A and B within the active site 

(taken from Mowat et a!, 2001). 
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5.1 Results 

5.1.1 R402Q 

Arg402 was also substituted with glutaniine (Table 5.1). The mass difference was 

found to be —27 Da (expected difference of —28 Da) and the protein had 87 % FAD 

incorporation. 

At pH 7.2 R402Q had a 	of 0.010 ± 0.001 s_ I  and a KM of 10 ± 2 tM. This mutant 

displays activity at the extreme lower measurable limit of the assay. A high protein 

concentration was required to observe any rate, which may introduce errors at low 

fumarate concentrations because the Michaelis-Menten equation (Appendix) assumes 

an excess of substrate over protein. The activity of R402Q is 5-fold lower than 

R402K and Y. The pH profile in Figure 5.2 was obtained under fumarate saturation 

conditions and shows that R402Q is most active at pH 7. No activity was measurable 

above pH 9. The rate of fumarate reduction by R402Q is influenced by two ionisible 

groups with pKa  values of 6.5 ± 0.2 and 7.5 ± 0.2. 
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Figure 5.2: The pH profile of R402Q. The mutant has maximal activity at pH 7 and no activity 

can be detected above pH 9. The profile fits to two PKa  values of 6.5 ± 0.2 and 7.5 ± 0.2. 
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5.1.1.1 The Crystal Structure of R402Q 

The crystal structure of R402Q was solved to 1.25 A, the highest resolution structure 

available for fcc3 or any other fumarate reductase. The resolution is sufficient to 

include hydrogens in the model and to distinguish between the oxygen and amino 

branches of the Gln402 side chain (Figure 5.3). The amino group of G1n402 is closest 

to the substrate molecule, essentially in position A. The reason for the minimal 

activity is immediately clear. The side chain of this residue is shorter than that of 

arginine, lysine or tyrosine (Table 5.1). The proton transfer distance is 4.5 A, 

resulting in the barely detectable catalytic rates. Glutamine is also unable to act as a 

Lewis acid in position B, the closest distance to the C4 carboxylate is 4.1 A. The 

hydride transfer distance is slightly increased from 3.4 A in wild-type to 3.6 A in 

R402Q. The distances along the proton transfer pathway are 3.0 A from Arg381 to 

G1u378 and from G1u378 to G1n402, compared with 3.1 A in the wild-type structure. 

There are no water molecules in the active site or along the proton pathway. 
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Figure 5.3: The active site in the crystal structure of R402Q. The 1.25 A resolution allows 

protons to be modelled in and the amine and carbonyl branches of G1n402 can be 

distinguished. 

5.1.2 R402F 

The mutation of Arg402 to phenylalanine was made as a final confirmation of the 

role of the active site acid. Phenylalanine is an aromatic residue that is unable to act 

as a proton donor (table 5.1). The mutation was confirmed by mass spectrometry, 

yielding a mass difference of —10 Da (expected difference of —9 Da). The protein 

prepared had 64 % FAD bound, but, as predicted, R402F had no detectable fumarate 

reductase activity. 
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5.1.3 Addition of Guanidine to R402A 

It has previously been observed that some activity, lost by substituting an acid/base 

catalyst with alanine, can be restored by the addition of an exogenous acid/base. 

Toney and Kirsch (1989) tested the effect of a variety of free amines on the rate of L-

cysteine sulfinate transamination by the K258A mutant of E.coli aspartate 

aminotransferase. Methylamine and ammonia were found to significantly accelerate 

the rate. Longer chain amines were less effective due to the obligatory steric 

constraints of the enzyme active site. 

Rynkiewicz and Seaton (1996) then used guanidine to restore activity to the R57G 

mutant of E.coli ornithine transcarbamylase (OTCase). This enzyme catalyses the 

following reaction in the biosynthesis pathway of L-arginine: 

carbamyl phosphate + L-ornithine 	L-citrulline + p' 

Arg57 was found to be essential for a conformational change induced by the binding 

of carbamyl phosphate. R57G had a k t  value of only 6 mind , compared with 

1.3 x 105  min' for wild-type. The addition of guanidine hydrochloride to R57G 

increased the k value to 1.2 x 104  mm'. 

The R402A mutant was assayed for fumarate reductase activity under fumarate 

saturated conditions, with and without the addition of guanidine hydrochloride. No 

activity was detected in either assay. It is therefore not possible to reactivate the 

mutant R402A by introducing a guanidinium group externally. If guanidine does 

occupy the space vacated by Arg402, it may not be correctly oriented to stabilise the 

transition state, donate protons to C3 and be reprotonated by G1u378 of the proton 

pathway. 
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5.1.4 Engineering Water to Act as the Active Site Acid Catalyst 

The active site of R402A contains a water molecule, which could act as the active 

site acid catalyst, but the crystal structure of R402A revealed that it was hydrogen 

bonded in position B, 4.0 A from fumarate C3. The hydrogen bonding interactions 

make it preferable for water to occupy position B rather than position A. Steric 

constraints prevent double occupation (water molecules in both A and B). This raised 

the question: if the water molecule in R402A was relocated to position A, could it act 

as the proton donor? 

Gln363 hydrogen bonds to the species occupying position B. The double substitution 

of Q363F with R402A was constructed, to determine whether a bulky phenylalanine 

group at position B could sterically block that position, forcing the water molecule to 

occupy position A (Figure 5.4). If this hypothesis is correct and water is able to take 

the role of active site acid, then activity should be restored to the inactive mutant 

R402A by the additional mutation. 

fumarate 

L378,,O 	
......... 	7QGln/Phe363 

/ 	
..........,...... 

0 	 H2N 
A1a402 

Figure 5.4: Schematic representation of Q363F1R402A. A bulky Phe group was introduced at 

position B in order to 'push' the water molecule into position A. 
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5.1.4.1 Activity of Q363F/R402A 

The double mutant Q363F/R402A had a mass difference from wild-type of —65 Da 

(expected difference of-66 Da) and the FAD content was 80 %. 

The additional mutation of G1n363 to phenylalanine did restore activity to R402A, 

although k m  is 103-104-fold lower than wild-type (Table 5.3). The activity levels are, 

however, approximately 5-fold greater than those of R402K and Y. The KM is 

actually 2-5-fold lower than that of wild-type, and increases slightly with increased 

basicity. 

pH 
L(s1) Km (.LM) 

wild-type Q363F/R402A wild-type Q363 FfR4O2A 

6 658 ± 34 0.06 ± 0.001 43 ± 10 6.6 ± 0.6 

7.2 509 ± 15 0.33 ± 0.007 25 ±2 5.0 ± 0.6 

7.5 370 ± 10 0.42 ± 0.012 28 ± 3 5.3 ± 0.8 

9 210±13 0.28±0.007 7±2 3.3±0.5 

Table 5.3: The Michaelis parameters of Q363F,R402A, compared with wild-type (Doherty et 

a!, 2000). The k, values for Q363F1R402A are 103-lcf-fold lower than for wild-type and KM IS 

5-fold lower than wild-type. 

5.1.4.2 The Crystal Structure of Q363F/R402A 

The crystal structure was solved to 2.0 A resolution and confirms that there is now a 

water molecule in position A (Figure 5.5). The phenyl ring of Phe363 occupies the 

space around position B that was vacated by the substitution of Arg402 to alanine. 

The steric bulk of Phe363 has prevented the water molecule from occupying position 

B. Instead it is in position A, 3.5 A from fumarate C3 and 2.7 A from Glu378. The 
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side chain of G1u378 is, however, rotated 90 0  from its position in the wild-type 

proton pathway. This rotation allows Glu378 to occupy a little of the space left by 

Arg402. The distance between the side chains of the proton pathway residues, 

Arg381 and G1u378, is now 4.5 A (compared with 3.1 A in the wild-type enzyme). 

So the proton transfer pathway has been compromised, but as a consequence of the 

change in orientation of G1u378, a water molecule is now included in the pathway 

(2.9 A from Arg381 and 3.8 A from G1u378), which may mediate in proton transfer. 

Figure 5.5: The crystal structure of Q363F/R402A. The active site of Q363F/R402A (atom 

type colours) is overlaid with wild-type (magenta) and R402A (blue), all at pH 6.5. The 

electron density shown is for Q363F,R402.4. The active site of R402.4 contains a water 

molecule in position B, where it is incapable of donating a proton to fumarate C3. In 

Q363F/R402A, density for the water molecule can be seen clearly in position A where it can 

act as the active site acid catalyst. 
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5.1.4.3 Solvent Isotope Effect of Q363F/R402A 

Proton inventories were determined for wild-type and Q363F/R402A by measuring 

the rates of fumarate reduction in a range of mixed isotope buffers (Figure 5.6). 

Wild-type fcc3 has a very large overall solvent isotope effect, kH/kD = 8.2 ± 0.4, 

indicating a complex transition state. The mechanism proposed, which involves 

reprotonation of the active site acid catalyst by a proton pathway, is consistent with 

such a large isotope effect. 

The overall shape of the proton inventory fits to a model for multiple exchangeable 

hydrogenic sites in both transition and reactant (Michaelis complex) states 

(Appendix). With such a fit, it is impossible to draw any conclusions as regards the 

actual mechanism of fumarate reduction, for example, whether it is a step-wise or 

concerted process, but it is consistent with the number of residues involved. 

Q363F1R402A has an overall solvent isotope effect of 17.0 ± 1.9, double that seen 

for wild-type. This indicates that proton transfer has been impeded by the mutation. 

Intriguingly the proton inventory still fits to a model for multiple sites. The water 

molecule must be trapped in the active site by hydrogen bonds with nearby residues, 

and requires reprotonation by the proton pathway for it to function as the acid 

catalyst. if the proton pathway was no longer required one might expect a 

simplification of the proton inventory. Decreasing the number of exchangeable 

hydrogenic sites in the transition state manifests itself as a shallower curve. In the 

extreme case, a single transition state site is seen as a straight line with a negative 

gradient. 

The mechanism for fumarate reduction by Q363F1R402A is shown in Figure 5.7. The 

kinetic and crystallographic evidence indicates that a water molecule in position A is 

the proton donating species in the mutant. The proton inventory suggests that the 

water molecule is bound in the active site and requires reprotonation via the proton 

pathway. 
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Figure 5.6: Proton inventories for wild-type (top) and Q363F/R402A (bottom). The two 

inventories fit to a model for multiple exchangeable hydrogenic sites in both reaction and 

transition states: k = kj1/fl)x, where n is the fraction of 020 (Schowen, 1981). Wild-type has 

an overall solvent isotope effect, k,.fr0, of 8.2 ± 0.4 and k,. 1/k0  for Q363F1R402A is 17.0 ± 1.9. 
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Figure 5.7: Mechanism of fumarate reduction in Q363F/R402A. A water molecule in position 

A functions as the active site acid catalyst as part of the proton delivery pathway. 

5.1.5 Single Substitutions to G1n363 

By way of a control, G1n363 was also mutated to alanine and phenylalanine without 

the R402A substitution. The mutations were, again, confirmed by mass spectrometry. 

The Q363A mass difference was —54 Da (expected difference of —57 Da) and for 

Q363F the difference was +19 Da (expected difference of +19 Da). The FAD 

incorporation for both mutants was the same as the average wild-type content, at 

73%. 
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5.1.5.1 The Kinetic Properties of Q363A and Q363F 

The Q363A mutant enzyme retains a third of wild-type activity at pH 7.2, but the 

value of km  is dramatically lower at pH 6; decreased 20-fold from wild-type (Table 

5.4). The rate of fumarate reduction at pH 7.2 and pH 7.5 is the same. The value of 

k at pH 9 is approximately half that of wild-type. The KM values for Q363A are 

generally a little lower than wild-type, decreased 7-fold at pH 6 but the same within 

error at pH 9. 

Q363F has had a much greater effect on both the Michaelis parameters. The enzyme 

now reduces fumarate with a k value of only P1.5 s_ I , a 400-fold decrease from 

wild-type. The KM,  however, is vastly increased to ~! 1 mM. These values for keat and 

KM suggest great structural changes at the active site. Particularly when compared to 

Q363A which had relatively minor effects. The single mutation Q363F has had a 

greater effect on KM than substitution of any of the residues directly involved in 

hydrogen bonding to the fumarate (His365, Thr377, His504 and Arg544). It is 

equivalent to the double substitutions made to substrate binding residues (chapter 3). 

pH 
KM (P.M) 

Wild-type Q363A Q363F Wild-type Q363A Q363F 

6 658±34 26±1 0.3±0.01 43± 10 5.8± 1.2 834± 102 

7.2 509± 15 152±2 1.3±0.05 25±2 6.6±0.4 999± 132 

7.5 370± 10 156±3 1.6±0.05 28±3 8.4±0.8 1064±115 

9 210±13 131±2 1.6±0.05 7±2 5.7±0.6 1 	1407±160 

Table 5.4: The Michaelis parameters of Q363A and Q363F compared with wild-type (Doherty 

at a!, 2000). Q363A has 2-fold to 25-fold less activity than wild-type. The Q363F mutation has 

had a far more drastic effect, with k,, t  values decreased 102-fold and KM increased 102103 

fold. 
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5.1.5.2 The Crystal Structure of Q363F 

The crystal structure, at 1.8 A resolution, revealed the greatest structural change yet 

seen at the active site of an fcc3 mutant (Figure 5.8) and explained the large effects 

on the values of k and KM. The main difference is the location of Arg402; it is 

rotated away from the active site by almost 1800,  with dislocation of a section of the 

protein backbone between 11e399 and A1a405. Arg402 is now near the protein 

surface. This has allowed a water molecule into the active site in position A. It is 

3.4 A from C3 and 2.7 A from G1u378. As seen in Q363F/R402A, rotation of G1u378 

has included a water molecule in the proton pathway which may mediate in proton 

transfer. In this case it is 3.6 A from G1u378 and 2.9 A from Arg381. 

The second major alteration is to Arg544, which no longer hydrogen bonds via both 

branches of the guanidinium group to the fumarate C4 carboxylate, but has moved to 

occupy some of the space left by Arg 402. In its new orientation Arg544 is 3.4 A 

from the C4 carboxylate, below the plane of the fumarate molecule. It now hydrogen 

bonds to the water molecule in position A at 2.9 A and participates in a stacking 

interaction with Phe363. Two water molecules hydrogen bond to the fumarate C4 

carboxylate oxygen atoms, in the space vacated by Arg544. 
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Figure 5.8: Conformational alterations at the active site of Q363F (Wild-type fcc3 is in atom 

type colours and Q363F is in purple, both at pH 6.5.). The position of Arg402 has altered by 

-1800, now located near the protein surface. Arg544 no longer hydrogen bonds to the 

fumarate C4 carboxylate. The active site acid is a water molecule, 3.4 A from C3. 
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5.1.6 Further Substitutions to G1n363 with R402A 

Substituting G1n363 to phenylalanine simultaneously with R402A resulted in a water 

molecule in position A, giving rise to a small amount of activity (0.35 s'). Further 

substitutions of G1n363 to lysine and arginine were made in conjunction with R402A. 

These double mutants were designed to investigate whether a higher degree of 

activity could be salvaged by blocking position B to water but maintaining a Lewis 

acid species in that position. 

5.1.6.1 Activity of Q363K/R402A and Q363R/R402A 

These double mutants do catalyse the reduction of fumarate in substrate saturated 

assays, but only at levels equivalent to Q363F1R402A. Lysine and arginine are 

capable of hydrogen bonding, unlike phenylalanine, but are unlikely to be acting as 

the Lewis acid in position B, as they do not enhance the rate. The crystal structures of 

the two mutants were solved in order to establish whether Lys363 and Arg363 were 

conformationally able to hydrogen bond to the C4 carboxylate. 

5.1.6.2 The Crystal Structures of Q363K1R402A and Q363R/R402A 

The structures of both mutants were solved to 1.4 A resolution. Figures 5.9 and 5.10 

show the active sites of Q363K1R402A and Q363R1R402A respectively. Water is 

present in position A of both mutants to act as the acid catalyst. 

In Q363K1R402A the water molecule is 3.5 A from 0 and only 2.7 A from G1u378. 

When Arg402 is substituted by alamne, G1u378 rotates to fill some of the space 

vacated. This increases the distance between Arg381 and G1u378 and is accompanied 

by the inclusion of water along the proton pathway. In Q363KJR402A there are two 

water molecules ideally placed to assist in proton transfer (not shown in Figure 5.9). 

The water molecule in A is 3.5 A from C3. The reason that the rate is not accelerated 

by having a lysine in position B, rather than phenylalanine is because the distance to 
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the C4 carboxylate is just a little too far to be a hydrogen bond (3.6 A), so it cannot 

be stabilising the charge build up in the intermediate. 

In Q363R1R402A the water molecule is slightly further away from the substrate, 

3.8 A. The proton pathway is again assisted by two water molecules (not shown in 

Figure 5.11). In this structure it is immediately apparent that Arg363 is not acting as 

the Lewis acid because the side chain is folded away from the active site, far from the 

C4 carboxylate. 

The electron density observed for these two mutants (Figures 5.9a and 5.lOa) shows 

that the molecule bound at the active site is not fumarate. In the wild-type structure 

hydroxylation was seen to have occurred at the substrate C2 during 

crystallisation/diffraction. Figure 1.20b proposed a mechanism for attack by water at 

C2. By binding with the C  carboxylate twisted out of the plane of the molecule and 

the polarisation of the double bond by the positive environment around the C4 end of 

the molecule, C2 is the carbon rendered susceptible to attack. Despite this, 

Q363K1R402A and Q363R1R402A are hydroxylated at C3. This must be due to the 

location of water molecules and the time spent on a particularly high energy beam to 

collect data to 1.4 A resolution. 
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Figure 5.9: The crystal structure of Q363K/R402A (pH 6.5). (a) Electron density around the 

active site. The substrate molecule is hydroxylated at C3. (b) Q363K/R402A (atom type 

colours) overlaid with wild-type (purple). The distances shown are for Q363K/R402A. 
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Figure 5.10: The crystal structure of Q363R1R402A (pH 6.5). (a) Electron density around the 

active site. (b) Q363R1R402A (atom type colours) overlaid with wild-type (purple). The 
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5.2 Chapter 5 Summary 

• Arg402 is the active site acid catalyst. The crystal structure shows Arg402 ideally 

placed for proton transfer at 3.0 A from the fumarate C3. The substitution of 

Arg402 to alanine renders the enzyme completely inactive. 

• Arginine fulfils a dual role within the active site: as a Brønsted acid in position A 

and as a Lewis acid in position B, stabilising the intermediate. 

• R402Q is able to catalyse fumarate reduction but only at the lower limit of 

detection by the assay (a 10 4-fold decrease from wild-type). The crystal structure 

shows that this is because the shorter side chain of glutamine results in a proton 

transfer distance of 4.5 A. 

• Substituting phenylalanine for Arg402 inactivates the enzyme. 

• R402A has a water molecule in position B of the active site, which is too distant 

to act as the acid catalyst. Water can be engineered to act as the acid (in position 

A) by blocking position B with the additional mutation of G1n363 to 

phenylalanine (Q363F/R402A). 

• The double mutants Q363K1R402A and Q363R1R402A are no more active than 

Q363F1R402A, despite their potential to act as the Lewis acid in position B. The 

crystal structures reveal that this is because the Lys and Arg side chains are 

conlormationally unable to hydrogen bond to the C4 carboxylate. 

• The single mutation Q363F disrupts the active site architecture, with Arg402 

rotated away 180° towards the protein surface. 
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6.0 The Proton Pathway 

In its active conformation, the substrate binding site of fcc3 excludes water, but for 

turnover the active site acid, Arg402 must be reprotonated. Analysis of the crystal 

structure suggested that the residues G1u378 and Arg38 1 provided an ideal pathway 

for reprotonating the active site acid catalyst. These residues are completely 

conserved throughout the family of fumarate reductases and succinate 

dehydrogenases (Figure 6.1). 

Fcc3 VMVTEAVRGNGAILV EITTRDKASAAIL 

frdaecol i ILMTEGCRGEGGILV ELGPRDKVSQAFW 

frdawol su ILLTEGCRGDGGILR ELASRDVVSRRMI 

dhsaeCOli VLVTEGCRGEGGYLL DLAGRDVVARS IM 

dsha_yea st CLITEGARGEGGFLV DLACRDVVSRAIT 

Figure 6.1: Conservation of the proton transfer residues. A section of the amino acid 

sequence from S. fngidimanna fcc3 is aligned with the analogous sequences from E. coli and 

W. succino genes fumarate reductases as well as those from E. co/i and yeast succinate 

dehydrogenaSeS. Arg402 (blue), G1u378 (red), and Arg381 (green) are all strictly conserved 

throughout the family of fumarate reductases and succinate dehydrogenaSeS. 

Figure 6.2 shows the proton delivery pathway and includes distances for hydride and 

proton transfer. Arg402 is 3.0 A from the fumarate C3. The G1u378 carboxylate is 

approximately perpendicular to the guanidinium groups of both Arg402 and Arg381, 

which are 3.3 A and 3.1 A, respectively, from the same branch of the G1u378 

carboxylate. 
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Figure 6.2: The proton pathway of fcc 3. Arg402, the active site acid catalyst, is reprotonated 

through the protein via the residues Arg381 and G1u378. Arg381 is close to the protein 

surface and may pick up a proton from solvent. 

Arg381 is near the surface of the protein and can receive a proton from solution. The 

structure reveals that there is no water within the proton pathway itself, proton 

transfer must proceed purely via the residues. This is unusual, but not unique, as 

other known proton pathways normally involve hydrogen bonding networks of water 

molecules and residue side chains. 
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Perhaps the most extensively studied proton pathway is that of the reaction centre 

from the photosynthetic bacterium Rhodobacter sphaeroides. The reaction centre 

uses light energy to reduce quinone to quinol. The two protons for this reaction are 

supplied by a hydrogen bonding network consisting of both amino acid side chains 

and water molecules. The proton entry point has been identified from crystal 

structures of the reaction centre with the proton transfer inhibitors Cd 2  and Zn2  

bound (Axelrod et al, 2000; Paddock et a!, 1999). The metal binds to Asp-11124, 

His-1-1126 and His-H128 on the protein surface. Protons travel from there to the 

quinone binding site via Asp-M17, Asp-1,210, Asp-L213, Glu-L212 and Ser-L223 

which are interspersed with water molecules (Figure 6.3a). In this pathway there are 

parallel branches for the uptake of protons, one via Asp-M17 and the other by 

Asp-L210 (Paddock et a!, 2001). Proton uptake is coupled to electron transfer. The 

first electron transfer, forming a semiquinone, is coupled to the protonation of Glu-

L2 12, close to the quinone binding site. During the second electron transfer another 

proton is taken up and performs the first protonation of the semiquinone. Finally 

quinol is formed by transfer of the proton from Glu-L212. 

Shimizu et a! (2000) identified a hydrogen boding network for proton delivery in 

cytochrome P450nor from the denitrifying fungus Fusarium oxysporum. The enzyme 

catalyses the reduction of NO to N20. In a cryotemperature structure they located a 

water molecule (Wat99) hydrogen bonded to the heme-iron bound water molecule 

(Wati). The network of hydrogen bonds continues via Ser286, Wat39 and Asp393 to 

the solvent. This pathway differs from that of fcc3, both by the involvement of 

hydrogen bonded water molecules and also by the fact that this pathway is one of 

several alternative and interlinking networks (Figure 6.3b). 
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Figure 6.3: (a) The proton pathway from the Rhodobacter sphaeroides reaction centre 

(Axelrod et a!, 2000). Proton transfer is coupled to electron transfer. Zn 2  (magenta) is bound 

at the proton entry point. The first proton to be taken up from the solvent protonated Glu-L212 

initially and is then used in the second protonation step at the quinol binding site. (b) Part of 

the hydrogen bonding network for proton transfer from Fusarium oxysporum P450nor 

(Shimizu et al, 2000). Several hydrogen bonding pathways of amino acid side chains and 

water molecules combine to form a larger network to provide protons for the reaction: 

2N0 +21-1' - N20 + H20. 
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6.1 Substitutions Made to the Proton Pathway Residues 

In order to investigate the roles of G1u378 and Arg381, substitutions were made to 

both residues (Table 6.1). Glu378 was substituted with alamne to remove all 

functionality, but also to aspartate, which has the same functional group as glutamate 

but a shorter sidechain length and to glutamine, which maintains the chain length but 

removes the negative charge of the residue. Arg38 I was substituted by lysine; 

replacing a guanidinium group with an amine. Arg381 was also substituted by 

methionine, which is unable to participate in proton transfer. 

The mass differences confirming the mutations and the average percentage of FAD 

incorporated are shown in Table 6.2. 

Y 'H 

H3N 	coo 

H 

HA  

o 
HaN 	coo 

O.NH, 

H3N 	COO 

H2NNW 

NH 	
H 

H3N 	COO  HaN 	COO 

H 3C.. 

H3N 	C00 

Glutamate (E) Alanine (A) Aspartate (D) Glutamine (Q) I 	Arginine (R) Lysine (K) Methionine (lvi)] 

Table 6.1: Substitutions made to the proton pathway residues. G1u378 was substituted with 

alanine, aspartate and glutamine. Arg381 was substituted with lysine and methionine. 
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Mass (Da) 
Mass Difference 

(Da) 

Expected Difference 

(Da) 
%FAD 

Wild-type 63033 N/A N/A 73 

78A 62973 -60 -58 65 

78D 
E
E3 63017 -16 -14 69 

E378Q 63036 +3 -1 75 

R381K 63004 -29 -28 78 

R381M 63013 -20 -25 60 

Table 6.2: Mass differences caused by substitution of the proton pathway residues and the 

average FAD percentages determined for the mutants. The error for the mass data is ±5 Da. 

6.2 Kinetic Analysis 

6.2.1 The Kinetic Properties of E378A, D and Q. 

The kinetic parameters determined for the mutants are shown in Table 6.3. E378A 

was found to be completely inactive within the limits of the assay. Clearly, alanine is 

incapable of functioning in the proton pathway and the substitution has prevented the 

reprotonation of Arg402. The inactivity of this mutant emphasises the importance of 

the proton pathway in fumarate reduction. 

Both E378D and E378Q have measurable fumarate reductase activity but both 

substitutions have greatly decreased the activity of the enzyme. Substitution with 

aspartate has lowered the kcat value by approximately 500-fold. The pH dependence 

of keat has also been reversed; wild-type is most active at pH 6 whereas E378D is 

most active at pH 9. Replacing a glutamate with an aspartate may appear to be a 

conservative mutation, but it has had a significant effect on the rate of fumarate 

reduction by fcc3. E378Q is even less active, the keat values are decreased 10 3-fold. 
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The glutamine substitution can barely maintain the proton pathway and reprotonation 

of Arg402. 

A secondary effect of these mutations is apparent from the KM values for E378D and 

E378Q. Alterations at residue 378 affect substrate binding. The substrate is described 

as being tightly held by 11 hydrogen bonds (Taylor et a!, 1999). The major 

contributors at either end of the molecule are those residues investigated in chapter 3, 

but G1u378 is also involved, via a hydrogen bond from the backbone amide to the Cl 

carboxylate. Glu378 hydrogen bonds to the same oxygen of the carboxylate as 

His365, its neighbour, Thr377, hydrogen bonds to the other carboxylate oxygen. 

Substitution of Glu378 should not affect the hydrogen bond from the amide, but the 

KM values for the mutants suggest that this may not be the case. 

k 	(sd ) KM (.tM) 
PH 

Wild-type E378D E378Q Wild-type E378D E378Q 

6 658± 34 1.27±0.05 0.08±0.01 43 ± 10 72±13 90 ±31 

7.2 509± 15 2.05±0.11 0.38±0.01 25±2 319±63 204±34 

7.5 370 ± 10 2.43 ± 0.07 0.33 ± 0.02 28 ± 3 549 ± 54 207 ± 54 

9 210±13 5.92±0.14 0.29±0.02 7±2 1487± 123 ±l 28  

Table 6.3: Michaelis parameters for E378D and E378Q compared with wild-type (Doherty et 

al, 2000). The kct  values for E3780 and Q are increased from wild-type -500-fold and 103-  

fold respectively. The increased KM values indicate that substitution of G1u378 has also 

compromised substrate binding. 

6.2.2 Substitution of Arg381 

Arginine 381 is at the surface of the protein, but substitution results in a great loss of 

catalytic activity. The R381K mutation has decreased the k 40-200-fold, but 
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maintains the general pH trend of wild-type, most active at pH 6 (Table 6.4). R381M, 

however, is least active at pH 6 and activity is lowered 10 2-103-fold. 

KM values for R3 81K and R3 81 M are not significantly altered from wild-type. 

Arg381 is clearly important for catalytic activity but it has no direct role in substrate 

binding. 

kcat(S') KMUtM) 

Wild-type R381K R381M Wild-type R381K R381M 

658±34 16±0.4 0.49±0.01 43±10 99±7 6.6±0.9 

[7.2  509± 15 8±0.5 2.20±0.12 25±2 35±5 8.7±2.8 

 370±10 5±0.4 2.80±0.12 28±3 33±7 4.7± 1.1 

 210±13 1.2±0.1 2.29±0.11 7±2 5±1 13.9±3.0 

Table 6.4: Michaelis parameters for R381K and R381M compared with wild-type (Doherty et 

a!, 2000). The kcat values are 10-1 02-fold and 102-lcl-fold lower than wild-type for R381K and 

R381M respectively. The KM values are not significantly different to the wild-type values. 

6.3 Solvent Isotope Studies 

The proton inventory for wild-type fcc3 is reported in chapter 5. Proton inventories 

were also constructed for the proton pathway mutants, at pL 6, 7.2 and 9 (where L = 

H or D, Figure 6.4 and Table 6.5). All the inventories fit to a model for multiple 

exchangeable hydrogenic sites (Appendix), as does wild-type. So none of the 

substitutions made have simplified the transition state. The overall solvent isotope 

effect for each mutant is greatest at pL 6, decreasing with pL which is logical as there 

is a higher degree of protonation/deuteration at low pL. 
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Figure 6.4: Proton inventories for the proton pathway mutants. All fit to a model for multiple 

exchangeable hydrogenic sites (k = k(1/n)x where n is the fraction of D 20). 

pe E378D E378Q R381M 

 

R381K 

[W7.2 8.2 

24±5 12±1 11±1 15±2 

.4 15 ± 1.6 9.6 ± 0.8 9.9 ± 0.8 10.3 ± 1.1 

9 4.0±0.3 9±1 6±1 4±0.1 8±1 

Table 6.5: Solvent isotope effects (k,./k0) for the proton pathway mutants. Values of k,,1k0 are 

greater at low pL where there is a higher degree of protonation/detiteration. 
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Too close an analysis of these figures is, at present, impossible. All of these 

substitutions decrease the activity to well below the minimum activity of wild-type 

fcc3. At high pH, His504 is deprotonated and unable to stabilise the intermediate, but 

the intermediate does still form and the enzyme can maintain a turnover rate of 

200 s I .  All the proton pathway mutants are well below this rate so pH profiles are 

not necessarily comparing the same ionisable groups. The same is true of comparing 

pL profiles in H20 and D20. The overall solvent isotope effects for wild-type and the 

mutants are so large that you are not necessarily detecting a shift in one pK a  UpOfl 

deuteration, but perhaps the emergence of different groups influencing the activity. 

For example, Figure 6.5 shows the pL-activity profile for E378Q in both H20 and 

D20. The rate in H20 does not fall below 0.075 s- , whereas in the D20 plot remains 

well below 0.05 s. Schowen (1981) described 'normal' behaviour for an enzyme in 

D20 as a pKa  shift of +0.5 to +0.6 units. The higher pKa  value E378Q is essentially 

unchanged (within error) and the lower pK a  in D20 is extrapolated to 5.1 ± 0.4 which 

is a negative shift. 

So looking purely at trends in the solvent isotope effects, there is a slight increase for 

R381K, R381M and E378Q. At pL 7.2, for example, kH/kD = 10, compared to 8 in 

wild-type. kH/kD for E3781), however, is double that of wild-type at all values of pL. 

This substitution has surely hindered proton transfer. 
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Figure 6.5: Activity profiles for E378Q in H 20 (purple) and 020 (black). The maximal rate of 

fumarate reduction in 020 by E378Q is lower than the minimum rate in H 20, so the pKa  

values (5.8 ±0.1 and 8.2 ±0.1 in !I20, 5.1 ±0.4 and 8.4 ±0.1 in D20) may not be directly 

comparable. 

6.4 The Crystal Structures of E378D and R381 K 

6.4.1 E378D 

The solvent isotope results appear counter-intuitive. E378D could be expected to 

have less effect on proton transfer, due to the similar functionalities of aspartate and 

glutamate. To attempt an explanation, the crystal structure of E378D was solved to 

1.7 A resolution. 

An overlay of the proton pathways in E378D and wild-type in is shown in Figure 6.6. 

Unfortunately it does little to explain why E378D has such a large solvent isotope 

effect. There have been no major structural alterations to the proton pathway. The 

hydride transfer distance, from FAD N5 to fumarate C2, is unchanged at 3.4 A and 
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the proton transfer distance from Arg402 to fumarate C3 is only increased from 3.0 A 

to 3.1 A. The Asp378 carboxylate group does not overlay that of G1u378 in wild-

type, but one branch does occupy almost the same position, 3.2 A to Arg402 (3.1 A 

in wild-type) and 3.5 A to Arg381 (3.1 A in wild-type). These changes in distance are 

not very large, but even small alterations in proton transfer distance may lead to large 

changes in proton transfer rate. 

Figure 6.6: The crystal structure of E378D. The proton pathway of E378D (purple) is overlaid 

with that of wild-type (atom type colours), both at pH 6.5. The distances shown are for E378D 

and are little altered by the substitution. 
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6.4.2 R381K 

The crystal structure of R381K was solved to 2.1 A resolution. This substitution has 

actually had a greater effect structurally, on the proton pathway (Figure 6.7). The 

proton transfer distance from Arg402 to fumarate C3 is unchanged at 3.0 A. G1u378 

has altered its conformation, rotated - 90 0  and is now 3.0 A from Arg402. The 

distance between G1u378 and Lys381 is now large, 6.1 A, however the substitution 

has allowed two water molecules into the pathway. These are likely to mediate 

proton transfer between Lys381 and G1u378. 

FAD 

0. 
2.9A :.35A 

3.1A 
- 	.- 

3.4A 

Figure 6.7: The crystal structure of R38IK. The proton pathway of R381K (purple) is overlaid 

with that of wild-type (atom type colours), both at pH 6.5. Two water molecules are now 

included in the pathway and may mediate proton transfer. The distances shown are for 

R381K and include the two water molecules between Lys381 and Glu378. 
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6.4.3 Water in the Proton Pathway 

Water molecules participating in the proton pathway may be the key to understanding 

why the relatively conservative mutation of G1u378 to aspartate has a far greater 

effect on proton transfer than Glu3 78 to glutamine. R3 81K, R3 81 M and E3 78Q have 

all had a minimal effect on proton transfer (as seen in the solvent isotope effects). It 

is possible that the difference in these situations is the inclusion of water, mediating 

in proton transfer along the pathway, thus compensating for the effects of the 

substitutions. 

Substituting the branched arginine group for a linear amine in R381K, so close to the 

protein surface, has had the effect of including two water molecules. It is likely that 

this also occurs in R381M. The conservative nature of the E3 78D substitution may in 

fact be the key to its comparatively large solvent isotope effect. The charge remains 

the same and Arg3 81 does not alter its conformation, so no water is allowed into the 

pathway to mediate proton transfer. No water is seen within the wild-type proton 

pathway either. No crystal structure is yet available for E378Q but the effect of 

removing the negative charge between the two arginine residues may result in 

repulsion between Arg381 and Arg402, altering the position of Arg381 and allowing 

water into the pathway. 

This is at present merely speculation, the structures of E378Q and R381M must be 

solved to confirm the theory. If it is the case, then E378D is the only mutant for 

which we see the direct effect of the substitution on proton transfer, unmediated by 

water. 
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6.4.4 An Interesting Aside 

The electron density at the active site of E378D suggests that the FAD is covalently 

linked to the protein (Figure 6.8). The nature of the linkage is in itself novel, Met375 

to the FAD C6. Previously observed cases of covalent flavin linkages involve 

cysteine, histidine or tyrosine residues (Figure 1.3d). It is known that the FAD is not 

covalently bound in solution because the FAD content can be determined as usual by 

precipitating the protein to leave FAD in solution. The electrospray mass 

spectroscopy analysis of wild-type and E378D shows that neither has covalently 

bound FAD. If the FAD was always covalently attached then it would 

precipitate/ionise with the protein. So the apparent covalent linkage is an artefact of 

crystallography. The resolution of the structure is high (1.7 A) and no alternative 

configuration of Met375 fits the electron density. 

In order to try and confirm the presence of a covalently bound FAD, four protein 

samples were irradiated either for two hours or overnight on the X-ray beam. The 

solution conditions mirrored those of the crystal and two samples were frozen in 

imitation of crystal freezing. To determine whether the irradiation had caused a 

covalent bond to form, the mass of the samples were determined by LCMS. All four 

samples had the expected mass for E378D and there was no evidence of a second 

population with mass increased by 829 Da. Further crystals are currently being grown 

in an attempt to reproduce the structure with covalent FAD. 
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FAD 

Met375 

Figure 6.8: The covalent linkage of FAD and Met375 in E378D. The electron density around 

the FAD clearly shows that the FAD is covalently linked to the protein via Met375 in this 

mutant. 

6.5 A Link Between Proton Transfer and Electron Transfer? 

R402A, E378A and R381M were analysed by protein film voltammetry (A. Jones 

and E. Rothery personal communication, Jones, 2002). In this technique the protein 

is immobilised on an electrode surface, so electrons entering/exiting the protein can 

be exactly controlled. A typical non-turnover signal is shown in figure 6.9a. The 

sharp feature is the two-electron FAD peak and the shoulder is the envelope of four 

one-electron heme peaks. The rate of electron transfer in the protein can be 

investigated by varying the scan rate. Very high scan rates may exceed the protein 
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internal electron transfer rate and this is seen by a splitting between the oxidative and 

reductive peaks (Figure 6.9b, Jones et a!, 2000). If the peak separations are plotted as 

a 'trumpet' plot (Figure 6.9c), they can be fitted to the Butler-Volmer equations (6.2a 

and b) to give a rate of electron transfer (Hirst and Armstrong, 1998). 

k0  = k0 exp (-anF(E-E °)/RT) 
	

6.2a 

k = k0 exp ((1 -a)nF(E-E°)/RT) 
	

6.2b 

Where k0 is the standard electrochemical rate constant, E is the applied potential and 

E°  is the reduction potential. The number of electrons transferred is n and a is the 

Butler-Volmer transfer coefficient. Trumpet plots for wild-type, E378D and R38 I M 

are in Figure 6.9c. The peak separation occurs at a lower scan rate in the mutants than 

in wild-type, indicating that electron transfer has been impeded. The value of k0 for 

wild-type is 456 ± 23 s_ I . For E378D, k0 is 104 ± 10 s 1 , for R381M it is 70 ± 20 s 

and for R402A it is 42 ± 2 s. So substituting the residues involved in proton transfer 

appears to affect the electron transfer rates within the protein. This is not the case for 

all substitutions made at catalytically important residues. For the substrate binding 

mutant H365A, k0 was unchanged from wild-type (Jones, 2002). 

There is also evidence for the reverse occurring. Substitution of one of the axial 

histidine ligands (His6l) of heme four (closest to the FAD), to an alanine results in a 

loss of electron transfer cooperativity at the FAD, but also results in an increased 

solvent isotope effect. The magnitude of the kH/kD is 16, which is the same as that for 

the proton pathway mutant E378D (E. Rothery, personal communication). 

So results are emerging to suggest that proton transfer and electron transfer are 

closely linked in fcc3. If electron transfer were somehow gated by proton transfer 

then the solvent isotope effect of H61A suggests that the reverse is true also. The 

nature of such a relationship is as yet unresolved. 
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Figure 6.9: (a) A typical non-catalytic PFV signal for fcc 3. The signal can be deconvoluted into 

a sharp 2e FAD peak (cyan) and four broader 1e heme peaks (red, green, blue and black). 

The scan rate is 10 mV&1. (b) At higher scan rates (in this case 100 mVs t) the internal 

electron transfer rate is exceeded and splitting is seen between the oxidative and reductive 

peaks. (c) Trumpet plots for E378A and R381M compared with wild-type. A plot of the peak 

separation as a function of scan rate is called a trumpet plot. Peak separation occurs at a 

lower scan rate for the proton transfer mutants, suggesting that electron transfer has also 

been affected. 
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6.6 Chapter 6 Summary 

• The active site acid, Arg402, requires reprotonation through the protein, by the 

proton pathway of residues Glu3 78 and Arg3 81. 

• Substituting G1u378 or Arg381 showed both residues to be vital for catalysis. 

• The solvent isotope effects for all proton pathway mutants are slightly increased. 

For E378D the value of kHfkD is doubled, so this substitution has clearly hindered 

proton transfer. 

• Water molecules, allowed into the proton pathway by some of the mutations, are 

likely to mediate in proton transfer and so E378D (which has no water in the 

pathway) may have the only isotope effect that truly reflects the mutation made. 

• The crystallisation/diffraction process for E378D has resulted in a novel Met-C6 

FAD covalent linkage. 

• There is evidence to suggest that proton and electron transfer are coupled in fcc3. 

Substitutions to the proton pathway residues also result in a reduced rate of 

electron transfer. Substitutions to a heme axial ligand increase the solvent isotope 

effect. 
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7.2 Abbreviations 

Abs Absorbance 
ADP Adenosine diphosphate 
ATP Adenosine triphosphate 
D20 deuterated water 
DMSO Dimethyl Sulphoxide 
DNP 2-El -(p-chlorophenyl)ethyl] 4, 6-dmitrophenol 
E. co/i Eschericia co/i 
EDTA Ethylene diamine tetraacetic acid 
FAD Flavin Adenine Dinucleotide 
Fdh Formate dehydrogenase 
FMN Flavin Mononucleotide 
FPLC Fast protein liquid chromatography 
Frd Fumarate reductase 
HQNO 2-heptyl 4-hydroxy quinoline N-oxide 
Hyd Hydrogenase 
I Ionic strength 
IPTG Isopropyl-13-thiogalactoside 
ISP Iron sulfur protein 
Laspo L-aspartate oxidase 
LB Luna broth 
MK Menaquinone 
NADINADH Nicotinamide adenine dinucleotide 
NMR Nuclear magnetic resonance 
ox Oxidised 
PAGE Polyacrylamide gel electrophoresis 
P' Inorganic phoshate 
PFV Protein film voltammetiy 
QFR Quinol:Fumarate Reductase 
red Reduced 
Sdh Succinate Dehydrogenase 
SDS Sodium dodecyl sulfate 
SQR Succinate:Quinone Oxidoreductase 
Tris Tris(hydroxymethyl) aminomethane 
UQ Ubiquinone 
UV Ultra-violet 
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7.2.1 Amino Acids 

Alanine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic acid Asp D 
Cysteine Cys C 
Glutamic acid Glu E 
Glutamine Gin Q 
Glycine Gly G 
Histidine His H 
Isoleucine lie I 
Leucine Leu L 
Lysine Lys K 
Methionine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 

7.2.2 Kinetic parameters 

kcw  Rate constant under saturating conditions 

kobs Observed rate 
KM Michaelis constant 
KD Binding constant 

7.2.3 Standard units 

m 	metre °C degrees Celsius 
g 	gram M molar 
s 	second Da Dalton units 
1 	litre A Angstrom 
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7.3 Derivation of the Michaelis-Menten Equation 

k 1 	kcat 
E+S< 'ES 	'E+P 	 (7.3.1) 

Where E = enzyme, S = substrate, ES = enzyme-substrate complex (Michaelis 

complex) and P = product. 

For the enzyme catalysed reaction above, the catalytic rate, V = kcat [ES] (7.3.2) 

At steady state it is assumed that the concentration of the intermediate remains 

constant while the concentrations of substrate and product are changing. So the rate 

of formation of ES is the same as the rate of dissociation of ES (either back to E + S 

or on to E + P). 

k1 [E][S] = kcat [ES] + k..1 [ES] 

[ES] = k1[E][S] 	 (7.3.3) 

kcat  

The Michaelis constant, KM: 

KM = k..1 + ' cat 

k 1  

Compared with the dissociation constant, KD: 

KD=k.I 

k 1  
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So, substituting into expression 7.3.3: 

[ES] = [E] [S] 	 (7.3.4) 

KM 

The substrate is in excess over enzyme so [S], the concentration of free substrate is 

assumed to be the same as the total concentration of substrate. Only a small amount 

of enzyme is added, however so: 

[E] = [E]0  - [ES] 	 (7.3.5) 

Where [E] is the concentration of free enzyme and [E]o is the total concentration of 

enzyme. 

Substituting into expression 7.3.4: 

[ES] = ([E]0 - [ES]) [S] 	 (7.3.6) 

KM 

And rearranging: 

[ES] = [E]0[S] 
	

(7.3.7) 

KM=[S] 

Finally, substituting into expression 7.3.2 gives the Michaelis-Menten equation: 

V = keat [E]0[S] 	 (7.3.8) 

KM+[S] 
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7.4 Solvent Isotope Effects 

Isotope effects arise from differences in the free energies of the ground and transition 

states in D20 compared to H20. The different masses of D and H give rise to 

different specific bond vibrational energy levels. For example, the ground state for 

C-D is - 4.8 kJmo1' lower in energy than that of C-H. So more energy is required to 

break a bond involving D than H. A primary isotope effect is the result of a D bond 

being broken during the rate determining step of a reaction. 

In a mixed isotopic solution any exchangeable hydrogenic sites will contain a 

mixture of D and H at equilibrium. The ratio of occupation at a hydrogenic site 'i' is 

called the isotopic fractionation factor, p,: 

Where n is the atom fraction of deuteration in mixed isotope solvent. 

= 1 only if the strength of binding is the same as an average site in the bulk 

solvent. 

<1 when binding is weaker than an average solvent site. Protium will accumulate 

at these sites. 

(p> 1 when binding is stronger than an average solvent site. Deuterium will 

accumulate at these sites. 

Appendices 	 143 



Mechanistic Studies on Flavocytochrome C3 

Some typical fractionation factors (Schöwen and Schöwen, 1982): 

Group ( 

OL 1.0 

NL 0.92 

NL 0.97 

COOL 1.23-1.28 

SL 0.40-0.46 

Where L = H or D. 

LOD + RH kH >[LOD + TM] 

II ____ 
 

LOH + RD 	> [LOH + TD] 

The scheme above applies to a reactant with one exchangeable hydrogenic site (RH), 

in mixed isotopic solvent. TH is the activated complex which also has one 

exchangeable site. 

kH is the rate of formation of TH 

kD is the rate of formation of TD 

is the equilibrium constant of exchange in the reactant state. 

is the equilibrium constant of exchange in the transition state. 

Since the cycle is closed thermodinamically: 

kHPT = kDq 
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Rearranging this expression gives the solvent isotope effect in terms of fractionation 

factors: 

(9 
Tyl 

kD 	(9 
Ryl 

For more than one exchangeable site: 

kH = fl (p 11  

kD 	J1 p' 

7.4.1 Proton Inventories 

The rates in mixtures of 1-120 and D20 can sometimes allow the breakdown of the 

overall isotope effect into its component (pR  and contributions. The rate constant in 

mixed isotopic solvent is k which is given by k0 (the rate in pure H20) corrected for 

each contributing hydrogenic site: 

 
kD = 11(1—n+n(1T) 

kH 	11(1—n+nq) 

The numerator is the sum of the transition state contributions and the denominator is 

the sum of the reactant state contributions. So if the isotope effect arises from a 

single hydrogemc site in the transition state (for example, the abstraction of a proton 

from a hydroxyl group in the rate determining step): 

k=ko1J(1—n+np1T) 
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The proton inventory will be linear as shown by the dark blue line in Figure 7.1. 

Increasing the number of sites in the transition state increases the curvature, as shown 

by the increasingly pale blue lines in Figure 7.1. 

For a single exchangeable site in the reactant state: 

k=k0 [1 /11(1 
_+T)] 

This is the deepest bowl-shaped curve, the dark red line in Figure 7.1. Increasing the 

number of reactant state sites decreases the curvature (red to yellow lines in Figure 

7.1). 

Both transition state and reactant state models eventually converge on the black line 

in Figure 7.1, for multiple sites in both reactant and transition states. It is not possible 

to attribute sites to a particular state, so the equation for this line is: 

k = k0  (kD/kH)' 
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N 	— 

 

lTSsite 

k 	 ----2TSsites  
3TSsites 

N 	 4TSsites 

N -Muftiplesites 
4RSsites 
3 RS sites 
2 RS sites 
I RS site 

00 	 02 	
0 14 	 0 16 	 018 	 1 10  

Figure 7.1: Example curves generated for proton inventories. A straight line is obtained if a 

single exchangeable hydmgenic site in the transition state is responsible for the solvent 

isotope effect. The deepest curve is obtained when a single site in the reactant state is 

responsible for the effect. 
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7.5 Conferences and Courses Attended 

• 	th  International Symposium on Flavins and Flavoproteins, Cambridge, 14th18th 

July 2002. (poster presented) 

• 10 International Conference on Bioinorganic Chemistry, Florence, 26 h-3 1 st  

August 2001. (poster presented) 

•34 h  International Conference on Coordination Chemistry, Edinburgh, 9 th-14 'h  

July 2000. (poster presented) 

• 4' Firbush Redox Enzymes Meeting, University of Edinburgh, 79 th  June 2000. 

• 5th  Firbush Redox Enzymes Meeting, University of Edinburgh, 68th  June 2001. 

(speaker) 

• 6th Firbush Redox Enzymes Meeting, University of Edinburgh, 57 th  June 2002. 

• Inorganic Chemistry Group Meeting, University of Edinburgh, Firbush field 

centre, 25 h-27 h  April 2001. (poster presented) 

• inorganic Chemistry Group Meeting, University of Edinburgh, Firbush field 

centre, 25 th-27th  April 2002. (speaker) 

• Department of Chemistry Colloquia. 

• Inorganic Chemistry Group Seminars. 
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ABSTRACT: The X-ray structure of the soluble fumarate reductase from Shewanellafrigidimarina [Taylor, 
P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struci. Biol. 6. 
1108-1112] clearly shows the presence of an internally bound sodium ion. This sodium ion is coordinated 
by one solvent water molecule (Wat912) and five backbone carbonyl oxygens from Thr506. Met507, 
G1y508, G1u534. and Thr536 in what is best described as octahedral geometry (despite the rather long 
distance from the sodium ion to the backbone oxygen of Met507 (3.1 A)). The water ligand (Wat912) is, 
in turn, hydrogen bonded to the iniidazole ring of l-1is505. This histidine residue is adjacent to His504, a 
key active-site residue thought to be responsible for the observed pK a  of the enzyme. Thus, it is possible 
that 1-1is505 may be important in both maintaining the sodium site and in influencing the active site. Here 
we describe the crystallographic and kinetic characterization of the l-1505A and H505Y mutant forms of 

the Shewanella furnarate reductase. The crystal structures of both mutant forms of the enzyme have been 
solved to 1.8 and 2.0 A resolution, respectively. Both show the presence of the sodium ion in the equivalent 
position to that found in the wild-type enzyme. The structure of the l-1505A mutant shows the presence 
of two water molecules in place of the His505 side-chain which form part of a hydrogen-bonding network 
with Wat48, a ligand to the sodium ion. The structure of the H505Y mutant shows the hydroxyl group of 
the tyrosine side-chain hydrogen-bonding to a water molecule which is also a ligand to the sodium ion. 
Apart from these features, there are no significant structural alterations as a result of either substitution. 
Both the mutant enzymes are catalytically active but show markedly different pH profiles compared to 
the wild-type enzyme. At high pH (above 8.5), the wild type and mutant enzymes have very similar 
activities. However, at low pH (6.0). the H505A mutant enzyme is some 20-fold less active than wild-
type. The combined crystallographic and kinetic results suggest that His505 is not essential for sodium 
binding but does affect catalytic activity perhaps by influencing the pK 5  of the adjacent l-1is504. 

In the absence of oxygen, many bacteria are able to use 
fumarate as a terminal electron acceptor for respiration. In 
the majority of organisms, these fumarate reductases (which 
are closely related to succinate dehydrogenase) are bound 
to the inner face of the cytoplasmic membrane and contain 
both iron—sulfur centers and FAD' (1, 2). However, in 
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Shewanella species a soluble, periplasmic fumarate reductase 
is produced. The presence of four c-type heme groups and 
one FAD has led to this enzyme being designated as 
flavocytochrome c3  (Fcc 3 ) ( 3). Examination of the crystal 
structures of the fumarate reductases from Escherichia coli 
(PDB entry I FUM (1)), Wolinella succinogenes (I QLA, 
IQLB (4), IE7P (5)) and Shewanella species (IQJD (6), 
1 D4E (7), 1Q08 (8)) shows a clear conservation of the active 
site architecture. This is consistent with a universal mech-
anism for fumarate reduction in all the enzymes (6, 9-1/). 

The highest resolution (1.8 A) fumarate reductase structure 
is that for Fcc 3  from She wand/a frigidimarina (1 QJD) (6). 
Close examination of this structure reveals the presence of 
an internally bound sodium ion (6, 12). This sodium ion is 
tightly held and is clearly seen in electrospray mass 
spectrometry of wild-type and mutant forms of Fcc 3  (9, ii). 
In the Fcc3  structure (1QJD), the sodium ion is coordinated 
by five backbone carbonyl oxygen atoms (from T506, M507, 
G508, E534, and T536) and one solvent water molecule 
(Wat912) (Figure 1) in a geometry close to octahedral. These 
observations, together with the fact that the sodium ion lies 
close to both the FAD and the active site, led to the 

10.1021/bi020155e CCC: $22.00 © 2002 American Chemical Society 
Published on Web 06/18/2002 
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Ftcuse I: Panel (a) shows the region surrounding the internal bound sodium ion in flavocytochrome c3. The sodium is shown in orange. 
Interactions with ligating oxygen atoms are shown as dotted lines, as are some hydrogen-bonding interactions. All sodium to ligand distances 
are 2.4 A. except for that involving Met507. which is 3.1 A. Panels (b) and (c) show the electron density surrounding the region of the 
internal bound sodium ion in the crystal structures of the H505A and H505Y mutant forms of ulavocytochrome c 3. respectively. The sodium 
ion is shown in orange. Interactions between the sodium and the ligating oxygen atoms are shown as orange dotted lines. Electron density 
maps were calculated using Fourier coefficients 2F0 - F. Where F. and F are the observed and calculated structure factors, respectively, 
the latter based on the final model. The contour level is la, where a is the rms electron density. The figure was generated using TURBO-
FRODO (21). 

suggestion that it might play an important structural or 	hydrogen-bonded to His505, which is, in turn, next to a key 
regulatory role in the enzyme (12). An interesting feature of 	substrate-binding residue, F1is504. In the present paper, we 
the sodium ion site is that the water ligand (Wat912) is 	report an investigation into the importance of His505 in terms 
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of maintaining the integrity of the sodium site and affecting 
catalysis. We describe the kinetic characterization of the 
H505A and H505Y mutant enzymes together with their high-
resolution X-ray crystal structures. 

MATERIALS AND METHODS 

DNA Manipulation, Strains. Media, and Growth. The 
mutant enzymes H505A-Fcc3 and H505Y-Fcc 3  were gener-
ated by site-directed mutagenesis using the method of Kunkel 
and Roberts (13) as described previously (3, 9). 

Mutagenic oligonucleotides CCTGGTGTTCACGCTAC-
TATGGGTGGC (which substitutes histidine 505 with ala-
nine) and GGTGTTCACTACACTATGGG (which substi-
tutes histidine 505 with tyrosine) were used. Mismatched 
bases are underlined. Screening for the H505A and H505Y 
mutations was carried out by sequencing of single stranded 
DNA. Dideoxy chain termination sequencing (14) using the 
Sequenase version 2.0 kit (United States Biochemicals) was 
carried out for the former and automated sequencing on a 
Perkin-Elmer ABI Prism 377 instrument for the latter. Both 
mutated JècA coding sequences were fully sequenced from 
single stranded DNA to check that no secondary mutations 
had been introduced. 

The modified coding sequences were cloned into the 
broad-host range expression plasmid pMMB503EH (15) on 
an 1.8 kbp EcoRI-HindHl fragment to generate pCM89 
(H505A fcA/pMMB503EH) and pCM93 (H505Y fccA/ 
pMMB503EH). Expression in the 4fccA S. frigidimarina 
strain EG30I (3) was carried out as described previously 
(9). 

Protein Purification and Kinetic Analysis. Wild-type and 
mutant forms of Fcc 3  were purified as previously reported 
(16). Protein samples for crystallization and mass spectrom-
etry were subjected to an additional purification step using 
FPLC with a I -mL Resource Q column (Pharmacia) as 
described by Pealing et al. (17). Protein concentrations were 
determined using the Soret band absorption coefficient for 
the reduced enzyme (752.8 mM' cm -1  at 419 nm) (16). 

The FAD content of Fcc 3  mutants was determined using 
the method of Macherow (18), and all steady-state rate 
constants were corrected for the percentage of FAD present. 

Mass spectrometry of proteins was carried out using a 
Micromass Platform II Electrospray mass spectrometer. 
Samples were prepared in 0.1% formic acid and introduced 
to the spectrometer via direct infusion. The spectrometer was 
standardized using horse heart myoglobin. 

The steady-state kinetics of fumarate reduction were 
followed at 25.0 °C as described by Turner et al. (19). The 
fumarate-depen dent reoxidation of reduced methyl viologen 
was monitored at 600 rim using a Shimadzu UV-PC 1501 
spectrophotometer. To ensure anacrobicity, the spectropho-
tometer was housed in a Belle Technology glovebox under 
a nitrogen atmosphere with the 02 level maintained well 
below 2 ppm. Assay buffers contained 0.45 M NaCl and 
0.2 mM methyl viologen and were adjusted to the appropriate 
pH values using 0.05 M HCI or NaOH as follows: Tris/ 
HCI (pH 7.0-9.0): MES/NaOH (p!-1 5.4-6.8); and CHESt 
NaOH (pH 8.6-10). The viologen was reduced by addition 
of sodium dithionite until a reading of around I absorbance 
unit was obtained (corresponding to around 80 M reduced 
methyl viologen). The concentration of reduced methyl 

viologen could be varied between 100 and 20 pM with no 
effect on the rate of reaction. A known concentration of 
enzyme was added, and the reaction was initiated by addition 
of fumarate (0-1 mM). 

Kinetic parameters Km and 	were determined from the 
steady-state results using nonlinear regression analysis (Mi-
crocal Origin software). Profiles of pH versus maximum rate-
constant were constructed by activity measurement under 
saturating substrate conditions at a range of pH values. 

Cn'stallization and Refinement. Crystallization of H505A 
and H505Y flavocytochromes c3 was carried out by hanging 
drop vapor diffusion at 4 °C in Linbro plates. Crystals were 
obtained with well solutions comprising 100 mM Tris-HCI 
buffer (pH 7.4-8.2) (measured at 25 °C), 80 m NaCI, 16-
19% PEG 8000, and 10 mM fumarate. Hanging drops of 4 
uL were prepared by adding 2 pL of 6 mg/mL protein (in 
10 mM TrisHCl, pH 8.5) to 2 pL of well solution. After 
approximately 10 days, needles of up to I x 0.2 x 0.2 mm 
and plates of up to 0.5 x 0.5 x 0.2 mm were formed. 
Crystals were immersed in a solution of 100 mM sodium 
acetate buffer, pH 6.5, 20% PEG 8000, 10 mM fumarate, 
and 80 mM NaCl, containing 23% glycerol as cryoprotectant, 
prior to mounting in nylon loops and flash-cooling in liquid 
nitrogen. For H505A flavocytochrome C3, a data set was 
collected to 1.8 A resolution at Daresbury synchrotron 
radiation source (Station 9.6, A = 0.979 A) using an ADSC 
Quantum 4 detector, and for H505Y flavocytochrome c3 , a 
data set was collected to 2.0 A resolution at DESY in 
Hamburg (Station BW713, 1 = 0.8459 A) using a Mar 
Research mar345 image plate detector. Crystals of both 
mutant forms were found to belong to space group P2 1 . The 
H505A flavocytochrome c3  crystal was found to have cell 
dimensions a = 45.632 A, b = 92.798 A, c = 79.056 A. 
and fl = 91.02°, while the H505Y flavocytochrome c3 crystal 
was found to have cell dimensions a = 76.989 A, b = 87.274 
A, c = 89.366 A, and /3 = 104.43°. 

Data processing was carried out using the HKL package 
(20). The wild-type Fcc 3  structure (IQJD), stripped of water, 
was used as the initial model for molecular replacement. 
Electron density fitting was carried out using the program 
Turbofrodo (21). Restraints for the FAD were calculated from 
two small molecule crystal structures (Cambridge Crystal-
lographic Database codes HAMADPH and VEFHUJIO). 
Structure refinement was carried out using Refmac (22). 

The atomic coordinates have been deposited in the Protein 
Data Bank [entries IKSS (H505A) and 1KSU (H505Y)]. 

RESULTS 

Characterization of Mutant Enzymes. The molecular 
masses of the mutant enzymes were determined by electro-
spray mass spectroscopy. In comparison to wild-type (63 033 
Da, which includes the bound sodium ion), the mass 
difference was found to be -67 Da for H505A (expected 
difference of -66 Da) and +24 Da for H505Y (expected 
difference of +26 Da). These mass differences indicate that 
the sodium remains bound in both mutant enzymes. All the 
mutations were further verified by DNA sequencing. The 
average FAD content of the mutant enzymes was found to 
be 60%. H505A and 56%, H505Y. This is slightly lower 
than typical values for the recombinant wild-type enzyme 
of around 73%. All catalytic rates were corrected for the 
variation in FAD content. 
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Table I: Comparison of k,, and K. Values for Wild-Type. H505A, and H505Y Forms of Fcc3 (25 °C, 1 = 0.45 M) 

k,,(s) 

pH 	 wild-type" 	H505A HSOSY wild-type" 

K. (W)

11505A H505Y 

	

6.0 	 658 ± 34 	 32 ± I 

	

7.2 	 509±15 	 79±3 

	

7.5 	 370± 10 	 101±3 

	

9.0 	 210±13 	 105±2 

354 ± 19 
377±29 
363±29 
240±5 

43 ± 10 
25±2 
28±3 
7±2 

43 ± 6 
109±13 
129±10 

9±1 

22 ± S 
25±7 
17±6 
21±2 

Values for wild-type taken from ref 9. 
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\ 
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PH 

FIGURE 2: pH dependence of fumarate reductase activity (under 
saturating substrate conditions at 25 °C. I = 0.45 M: wild-type 
Fcc3 (triangles), H505A Fcc3 (squares); H505Y Fcc3  (circles). 

The ability of H505-substituted forms of Fcc 3  to catalyze 
fumarate reduction was determined over a range of pH 
values. The resulting and Km  parameters for wild-type 
and mutant forms of Fcc 3  are compared in Table 1. The pH 
profiles shown in Figure 2 show that the mutations have little 
effect on activity at high pH. However, as the pH is lowered, 
there is an increasing effect on activity. In fact, at pH 6.0 
the k value for the wild-type enzyme is some 20-fold higher 
than that for the H505A mutant. The wild-type enzyme 
exhibits a straightforward pH profile with a single plC 0  of 
7.5 ± 0.1 and with optimum activity below pH 6.0. In 
contrast, the two mutant enzymes show more bell-shaped 
pH profiles with two pK, values of 7.1 ± 0.2 and 9.0 ± 0.2 
determinable for H505A and one plC,, of 8.2 ± 0.1 for 
HSQ5Y. 

The Crystal Structures of the Mutant Flavocytochromes 
c3. Data sets to a resolution of 1.8 A (H505A) and 2.0 A 
(11505Y) were used to refine the structures to final R factors 
of 15.64% (H505A, = 20.61%) and 16.70% (H505Y, 
R = 23.86%) (Table 2). For the H505A mutant enzyme, 
the final model consists of one protein molecule comprised 
of residues 1-568, four hemes. the FAD, one substrate 
molecule (fumarate), and one sodium ion. In addition, the 
U505A model contains 1096 water molecules. In the case 
of the H505Y mutant enzyme, there are two molecules in 
the asymmetric unit so the final model consists of two protein 
molecules (with composition as described above) and a total 
of 1866 water molecules. For each protein molecule, three 
residues at the C-terminus (569-571) could not be located 
in the electron density maps. The rmsd fit of all backbone 
atoms for the wild-type and H505A mutant flavocytochromes 
c3  is 0.3 A, and for the wild-type and H505Y mutant enzyme 
the fit is also 0.3 A, indicating no major differences between 
the structures. Because the H505Y crystal structure has two 

Table 2: Data Collection and Refinement Statistics 

H505A H505Y 

resolution (A) 20.0-1.8 20.0-2.0 
total no. of reflections 318233 536347 
no. of unique reflections 58239 77608 
completeness (%) 95.4 99.2 

18.5 11.3 
R,,,,,,(%)" 7.5 7.2 
R,,,.,,, 	in outer shell (%) 18.5 (1.86-1.80 A) 22.3 (2.07-2.00 A) 
R,,, (%)5 15.64 16.70 
R,,,,(%)5  20.61 23.86 
rmsd from ideal values 

bond lengths (A) 0.011 0.012 
bond angles (deg) 2.2 2.4 

Raniachandran analysis 
most favored (%) 87.9 89.0 
additionally allowed (%) 12.1 10.8 

R,,,,,,, = 11(h) - l,(h)l/ h  J,(h), where II(h) and 1(h) are the ith 
and mean measurement of reflection h. respectively. 11  R,, = ,,IF, - 
F 11hF., where F. and F. are the observed and calculated structure factor 
amplitudes of reflection h, respectively. Rr, is the test reflection data 
set, 5% selected randomly for cross validation during crystallographic 
refinement. 

molecules in the asymmetric unit, the rmsd fit value stated 
is the average over both molecules (A and B). 

The crystal structures of the H505A and H505Y mutant 
enzymes do not show any unexpected structural changes 
compared to the wild-type structure (Figure 1). In the wild- 
type structure, HisSOS is seen to form a hydrogen bond with 
a water molecule (Wat912) at a distance of 2.9 A, which in 
turn is part of the coordination sphere of the bound sodium 
ion, some 2.4 A from the sodium. In the H505A mutant 
enzyme, the space vacated by the removal of the imidazole 
moiety is occupied by two water molecules. Wat2 and 
Wat 147, which are 3.4 and 3.9 A from the Ala505 side chain 
carbon, respectively (Figure I). One of these water mol-
ecules, Wat2, is 3.1 A from Wat48, which is in the equivalent 
position to that taken by Wat9l2 in the wild-type structure. 
Wat48 also ligates to the bound sodium ion at a distance of 
2.5 k. In the structure of the H505Y mutant Fcc3, the tyrosine 
side-chain occupies the same position as that taken by the 
His505 side-chain in the wild-type structure (Figure 3). The 
hydroxyl group of the tyrosine is hydrogen-bonded to a water 
molecule (Wat4l in molecule A, WatlX in molecule B) at 
2.6 A. These water molecules are shown to coordinate to 
the sodium ion at a distance of 2.5 A. In all structures 
mentioned, the sodium ion is found in the same position. 

The replacement of the histidine at position 505 has little 
structural effect at the active site even though it is adjacent 
to His504, a residue thought to be involved in both Michaelis 
complex formation and transition state stabilization. The 
bound fumarate assumes the same twisted conformation as 
observed for the hydroxylated, malate-like, molecule in the 
wild-type active site, and the important interactions required 
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FIGule 3: Stereoview of the region surrounding the sodium and 
the FAD in (a) wild-type, (b) H505A. and (c) H505Y flavocyto-
chromes c. In each case, the sodium ion is shown as an orange 
sphere. The orange dotted lines indicate the coordination sphere of 
the sodium in each form of the enzyme, as well as some important 
hydrogen-bonding interactions. This diagram was generated using 
TURBO—FRODO (21). 

for catalysis (hydride transfer distance, proton delivery 
distance) are unaffected by the mutations. 

DISCUSSION 
The mechanism for the fumarate reductase (Fcc3) catalyzed 

reaction, as originally proposed by Taylor et al. (6), is shown 
in Figure 4. In this mechanism His504 of Fcc3 is shown 
protonating the C4 carboxylate to facilitate the transient 
formation of a carbanion at C3. Previous mutagenesis and 
pH studies indicated that a protonated His504 could enhance 
the rate of reaction but was not essential for it (9). This led 
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FIGURa 4: The reaction mechanism for fumarate reduction by Fcc3 
as originally proposed by Taylor et al. (6). Catalysis is initiated by 
the twisting out of plane of the C  carboxylate group (on the left) 
of fumarate. The substrate is polarized by interactions with charged 
residues facilitating hydride transfer from N5 of reduced FAD to 
the substrate C2. The role of His504 is to stabilize the build up of 
negative charge on the substrate prior to protonation. Arg402 (3.0 
A from C3) is ideally positioned to donate a proton to substrate 
C3 resulting in the formation of succinate. Arg402 is immediately 
reprotonated via a proton pathway involving Arg381 and Glu378. 
The relative positions of His505 and G1u534 show schematically 
how His505 decreases the effect that the negative charge of G1u534 
has on His504. 

to the suggestion that it was the imidazole of His504 that 
was responsible for the observed pKa of around 7.5 seen in 
the wild-type enzyme. We have now shown that substitution 
of the adjacent residue, His505, can have significant effects 
on the pH dependence of Fcc3. These are fairly modest for 
the H505Y mutation, with the largest effects on k caj and Km  
being less than 2-fold at pH 6.0, Table I. However, in the 
case of the H505A mutation the effects are quite large with 
a 20-fold fall in the value of k at pH 6.0. 
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It is clear that for both mutant enzymes there has been a 
shift in the pKa value for enzyme activity. The most likely 
explanation is that substitution at position 505 has had an 
effect on the pK of the active site residue His504. Thus, 
the H505Y mutation appears to shift this pK from 7.5 to 
8.2 and the H505A mutation from 7.5 to 9.0. The key 
question is, how do the substitutions at His505 modulate the 
pKa  of His504? The answer may lie in an examination of 
the three-dimensional structure of Fcc3 in the region around 
His505. The imidazole ring of His505 lies between His504 
and G1u534, and it is likely therefore that l-1is505 helps to 
minimize the effect of the negative charge of G1u534 on 
His504. Removing the ring of HisSOS, as is the case in the 
H505A mutant, would allow the charge on Glu534 to affect 
His5O4 making it a weaker acid. This is what seems to have 
happened since the pK3  shifts from 7.5 to 9.0 in the H505A 
mutant. The less pronounced effect seen for the H505Y 
mutation, on the other hand, is consistent with the phenol 
ring of the tyrosine being able to modulate the effect of the 
charge of G1u534 on His504. Indeed, it is not surprising that 
the H505Y mutation has a fairly modest effect, since the 
equivalent residue to His505 in most fumarate reductases 
(including the E. coil and W succinogenes enzymes) is in 
fact a tyrosine. 

In the wild-type Fcc 3  structure (6), His505 hydrogen bonds 
to a water molecule (Wat912) which is in the coordination 
sphere of the bound sodium ion. It is clear from the structures 
of the H505A and H505Y mutant enzymes that the replace-
ment of the histidine does not significantly alter the inner-
coordination sphere of the sodium ion (Figure 1). Two water 
molecules occupy the space vacated by the removal of the 
imidazole ring in the H505A. These form a hydrogen-
bonding network to a water molecule which is in the 
equivalent position to that taken by Wat912 in the wild-
type structure, and which ligates the sodium ion at a distance 
of 2.5 A. In the H505Y structure, the tyrosine side-chain 
occupies approximately the same position as that taken by 
the imidazole ring of His505 in the wild-type structure 
(Figure 3). In this case, the hydroxyl group of the tyrosine 
hydrogen bonds to the water ligand. Thus, the sodium ion is 
found in essentially the same position in the wild-type and 
mutant structures of Fcc 3. An interesting question is how 
the sodium site in Fcc 3  compares to that seen in the other 
known fumarate reductase structures. 

The structures of the fumarate reductases from Shewanelici 
oneidensis MRI (2.5 A resolution) (7) and E. co/i (3.3 A 
resolution) (I) do not show any sodium ions assigned in the 
PDB files (1134E and I FUM, respectively). However, the 
arrangement of the protein backbone around the putative 
"sodium" site in these two enzymes is the same as in the 
wild-type Fcc 3  structure (IQJD, 1.8 A resolution) (6). 
Clearly, the assignment of sodium would be difficult in these 
two lower resolution structures. Overall, however, the 
similarities between the structures of these enzymes would 
lead us to suggest that this sodium site is conserved 
throughout the fumarate reductase family. 

In conclusion, we have demonstrated that His505 is not 
essential for sodium ion binding but may play a role in 
modulating the pKa  of a key active site residue, His504. 
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ABSTRACT: The ability of an arginine residue to function as the active site acid catalyst in the fumarate 
reductase family of enzymes is now well-established. Recently, a dual role for the arginine during fumarate 
reduction has been proposed [Mowat, C. G., Moyscy, R., Miles, C. S., Leys, D., Doherty, M. K., Taylor, 
P., Walkinshaw, M. D., Reid, G. A.. and Chapman, S. K. (2001) Biochemistry 40, 12292-122981 in 
which it acts both as a Lewis acid in transition-state stabilization and as a Bronsted acid in proton delivery. 
This proposal has led to the prediction that, if appropriately positioned, a water molecule would be capable 
of functioning as the active site Brønsted acid. In this paper, we describe the construction and kinetic and 
crystallographic analysis of the Q363F single mutant and Q363F/R402A double mutant forms of 
flavocytoehrome c3, the soluble fumarate reductase from Shewanella frigidi,narina. Although replacement 
of the active site acid. Arg402, with alanine has been shown to eliminate flimarate reductase activity, this 
phenomenon is partially reversed by the additional substitution of G1n363 with phenylalanine. This Gin 

Phe substitution in the inactive R402A mutant enzyme was designed to "push" a water molecule close 
enough to the substrate C3 atom to allow it to act as a Bronsted acid. The 2.0 A resolution crystal structure 
of the Q363F/R402A mutant enzyme does indeed reveal the introduction of a water molecule at the correct 
position in the active site to allow it to act as the catalytic proton donor. The 1.8 A resolution crystal 
structure of the Q363F mutant enzyme shows a water molecule similarly positioned, which can account 
for its measured fumarate reductase activity. However, in this mutant enzyme Michaelis complex formation 
is impaired due to significant and unpredicted structural changes at the active site. 

Bacterial fumarate reductases allow the use of fumarate 
as a terminal electron acceptor in anaerobic respiration. 
Within this enzyme family, there are essentially two types 
of fumarate reductase. The majority of organisms utilize a 
membrane-bound complex that is closely related to succinate 
dehydrogenase and uses iron—sulfur centers and FAD' as 
cofactors (1, 2). However, in Shewanella species a soluble 
periplasmic, tetraheme, FAD-containing enzyme (flavocyto-
chrome c3) is produced (3). Despite these differences, the 
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crystal structures of ftimarate reductases from Escherichia 
co/i [PDB entry I FUM (I)], Wa/mel/a .ruccinogenes [1 QLA, 
1QLB (4). and IE7P (5)1. and Shewanella species [IQJD 
(6), 1 D4 (7), and 1Q08 (8)] show a clear conservation of 
the active site architecture. This conservation of the active 
site around the FAD is consistent with a common mechanism 
for fumarate reduction. Indeed, there is now a considerable 
body of evidence for the operation of a universal mechanism 
for fumarate reduction throughout this family of enzymes 
(6, 9. 10). 

The structure of the enzyme from Shewanella frigidima-
rina [IQJD (6)] is at 1.8 A resolution, the highest-resolution 
structure available for any of the fumarate reductases. On 
the basis of this structure, a mechanism was proposed 
involving the use of an arginine residue (Arg402) as the 
active site acid catalyst (6). Arg402 transfers protons to the 
substrate as part of a proton delivery pathway involving 
Arg381 and G1u378 (9). More recently, the role of Arg402 
has been investigated further by site-directed mutagenesis, 
and a dual role has been proposed which takes advantage of 
the unique ability of the residue to act as both a Lewis acid 
(stabilizing the build-up of negative charge in the transition 
state) and a Bronsted acid (delivering a proton to the 
substrate) (10). Using this mechanism, we have proposed 
the existence of two separate positions at the active site of 
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FIGURE I: Schematic representation of positions A and B in the 
active site of flavocytochrome c3 . It can be seen that the bifurcated 
side chain of Arg402 results in the occupation of position A and 
position B by Bronsted acid and Lewis acid groups, respectively, 
thus explaining its efficiency as the acid catalyst in fumarate 
reductase. 

fumarate reductase (Figure I): position A. which when 
occupied by a species capable of Brønsted acid function may 
act as the proton donor during succinate formation, and 
position B, which if occupied by a Lewis acid species can 
stabilize the transition state and consequently increase the 
rate of catalysis (10). This conclusion was reached as a result 
of kinetic and structural studies on three Arg402-substituted 
forms of flavocytochrome c3 . Replacement of Arg402 with 
lysine or tyrosine was shown to introduce a Brønsted acid 
function at position A of the active site leading to active 
enzymes, albeit with greatly decreased activity. However, 
replacement of Arg402 with alanine produced an enzyme 
with no measurable catalytic activity. The structure of the 
R402A mutant enzyme reveals the existence of a water 
molecule at position B but no ordered entity at position A. 
This explained the lack of fumarate reductase activity in the 
R402A mutant (10). Our "two-position" model led us to 
propose that if the R402A enzyme could be re-engineered 
to place a water molecule in position A (with conservation 
of the arrangement of the remainder of the proton delivery 
pathway), then fumarate reductase activity would be restored. 
To achieve this aim, we have re-engineered the R402A 
enzyme so that access of water to position B is sterically 
prohibited, with the intention of forcing a water molecule 
into position A. In this paper, we report the construction and 
kinetic and crystallographic characterization of the Q363F 
single-mutant and Q363F/R402A double-mutant flavocyto-
chromes c3 . The structure of the Q363F/R402A enzyme 
reveals the existence of a water molecule at the active site 
of the enzyme which is indeed capable of assuming the role 
of an active Site acid catalyst, while the structure of the 
Q363F single-mutant enzyme reveals the origin of its 
unexpected kinetic characteristics. 

MATERIALS AND METHODS 

DNA Manipulation, Strains, Media, and Growth. The 
mutant enzymes Q363F and Q363F1R402A Fcc were 
generated using the QuikChange XL Site-Directed Mutagen- 
esis Kit (Stratagene). In the case of the Q363F mutation, 
the template for the reaction was pEGXI (WT fccAl 
pMMF3503EH) (3). while for the Q363F/R402A mutation, 
the template was pCM68 (R402AJi'cA/pMMB503EH) (9). 

Oligonucleotides were designed to incorporate the glutamine 
363 to phenylalanine change and were complementary to 
the same sequence on both strands of the plasmid: GA- 
AACIACATGCAGTATATCTTCGCTCACCCAACACTAT- 
CTG (complementary to the antisense strand) and CAGAT- 

AGTGTrGGGTGAGCGAAGATATACTGCATGTCTI-1-C 
(complementary to the sense strand). Mismatched bases are 
underlined. Temperature cycling, product digestion with 
Dpnl, and transformation of E. coil XL-10 Gold ultracom-
petent cells were carried out as per the Stratagene protocol. 
Plasmid DNA (Q363FfccA/pMMB503EH, pCM 138; Q363F± 
R402AJccAIpMIvIB503EH, pCM 139) was screened for the 
required mutation using an ABI Prism 3100 genetic analyzer, 
and the mutated .IccA coding sequence was similarly se-
quenced to verify that no secondary mutations had been 
introduced. Expression in 4[ccA S. frigidimarina strain 
EG301 (3) was carried out as described previously (9). 

Protein Purification and Kinetic Analvsi.s. Wild-type and 
mutant forms of flavocytochrome C3 were purified as 
previously reported (11). Protein samples for crystallization 
and mass spectrometry were subjected to an additional 
purification step using FPLC with a 1 mL Resource Q 
column (Pharmacia) as described by Pealing et al. (12). 
Protein concentrations were determined using the Soret band 
absorption coefficient for the reduced enzyme (752.8 mM' 
cm' at 419 nm) (ii). 

The FAD content of Fcc 3  mutants was determined using 
the method of Macheroux (13), and all steady-state rate 
constants were corrected for the percentage of FAD present. 

Mass spectrometry of proteins was carried out using a 
Micromass Platform II Electrospray mass spectrometer. 
Samples were prepared in 0.1% formic acid and introduced 
into the spectrometer via direct infusion. The spectrometer 
was standardized using horse heart myoglobin. 

The steady-state kinetics of fumarate reduction were 
followed at 25 °C as described by Turner et al. (14). The 
lismarate-dependent reoxidation of reduced methyl viologen 
was monitored at 600 nm using a Shimadzu UV-PC 1501 
spectrophotometer. To ensure anaerobicity, the spectropho-
tometer was housed in a Belle Technology glovebox under 
a nitrogen atmosphere with the 02 level maintained well 
below 2 ppm. Assay buffers contained 0.45 M NaCI and 
0.2 mM methyl viologen and were adjusted to the appropriate 
PH values using 0.05 M HCI or NaOH as follows: Tris-
HCI (pH 7.0-9.0), MESINaOH (pH 5.4-6.8), and CFEES/ 
NaOH (pH 8.6-10). The viologen was reduced by addition 
of sodium dithionite until a reading of --'1 absorbance unit 
was obtained (corresponding to "-80 iM reduced methyl 
viologen). The concentration of reduced methyl viologen 
could be varied between 100 and 20 tiM with no effect on 
the rate of reaction. A known concentration of enzyme was 
added and the reaction initiated by addition of fumarate. 

Kinetic parameters KM and k were determined from the 
steady-state results using nonlinear regression analysis (Mi-
crocal Origin software). 

Crystallization and Refinement. Crystallization of Q363F 
and Q363F1R402A flavocytochrome c was carried out by 
hanging drop vapor diffusion at 4 °C in Linbro plates. 
Crystals were obtained with well solutions comprising 100 
mM Tris-HCI buffer (p1-1 7.8-8.5) (measured at 25 °C), 80 
mM NaCl. 16-19% PEG 8000, and 10 mM fumarate. 
Hanging drops 4 pL in volume were prepared by adding 2 

4uL of 6 mg/mL protein [in 10 mM Tris-HCI (pH 8.5)] to 2 
iL of well solution. After approximately 10 days, needles 
of up to I mm x 0.2 mm x 0.2 mm and plates of up to 0.5 
mm x 0.5 mm x 0.2 mm were formed. Crystals were 
immersed in a solution of 100 mM sodium acetate buffer 
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Table I: Kinetic Parameters for Fumarate Reduction in Wild -Type. Q363F, and Q363F1R402A Flavocytochromes Ci 

KM(/2M) 

pH wild type' 	Q363F1R402A Q363F wild types  Q363F1R402A Q363F 

6.0 658 ± 34 	0.064 + 0.001 0.26 ± 0.01 43 ± 10 6.6 ± 0.6 843 ± 102 

7.2 509 ± 15 	0.332 ± 0.007 1.34 ± 0.05 25 ± 2 5.0 ± 0.6 999 ± 132 

7.5 370 ± 10 	0.420 ± 0.012 1.64 ± 0.05 28 ± 3 5.3+0.8 1064 ± 115 

9.0 210 ± 13 	0.278 ± 0.007 1.61 ± 0.06 7 ± 2 3.3 ± 0.5 1407 ± 160 

Values for the wild-type enzyme taken from ref 9.  

(pH 6.5), 20% PEG 8000, 10 mM fumarate, and 80 mM 
NaCl, containing 23% glycerol as a cryoprotectant, prior to 
mounting in nylon loops and flash-cooling in liquid nitrogen. 
For the Q363F mutant enzyme. crystal data were collected 
to 1.8 A resolution at SRS Daresbury (station 9.6, A = 0.87 

A) using an ADSC Quantum 4 ccd detector, and for Q363F/ 
R402A, crystal data were collected to 2.0 A resolution at 
DESY in Hamburg, Germany (station BW713, A = 0.8459 
A), using a Mar Research mar345 image plate detector. 
Crystals of both enzymes were found to belong to space 
group P2 1 . The Q363F single mutant was found to have the 
following cell dimensions: a = 78.520 A, b = 88.886 A, c 

= 91.194 A, and /3 = 104.42°: the Q363F/R402A double 
mutant was found to have the following cell dimensions: a 

= 77.971 A, b = 88.280 A, c = 90.087 A, and 9 = 103.89°. 
Data processing was carried out using the HKL package 

(15). The wild-type Fcc 3  structure (IQJD). stripped of water, 
was used as the initial model for molecular replacement. 
Electron density fitting was carried out using the program 
TURBO-FRODO (16). Restraints for the FAD were calcu-
lated from two small molecule crystal structures (Cambridge 
Crystallographic Database codes HAMADPH and VEF -
HUJIO). Structure refinement was carried out using Refmac 
(/7). 

The atomic coordinates have been deposited in the Protein 
Data Bank [entries 1LJI (Q363F/R402A) and 1MM (Q363F)]. 

RESULTS 

Characterization of the Mutant Enzyme. The molecular 
masses of the Q363F and Q363F/R402A mutant enzymes 
were determined by electrospray mass spectrometry. In 
comparison to the wild type (63 033 Da), the mass difference 
was found to be -65 Da for the Q363F/R402A enzyme 
(expected difference of -66 Da) and 19 Da for the Q363F 
enzyme (expected difference of 19 Da). Both mutations were 
further verified by DNA sequencing. The average FAD 
contents of the Q363F and Q363F/R402A mutant enzymes 
were found to be 73 and 80%, respectively. This is equivalent 
to the typical values for the recombinant wild-type enzyme 
of -73%. All catalytic rates were corrected for the variation 
in FAD content. 

The ability of the two mutant flavocytochromes C3 to 
catalyze fumarate reduction was determined over a range of 
pH values. The resulting k and K1 parameters for the wild-

type and mutant forms of Fcc 3  are compared in Table 1. 
Unlike the R402A single mutant, the Q363F/R402A enzyme 
does exhibit measurable fumarate reductase activity, albeit 
with a kea  some 103 -104-fold lower (depending on pH) than 
that seen for the wild-type enzyme. In terms of KM, values 
for the Q363F/R402A enzyme are -5-fold lower than those 
of the wild type, decreasing slightly with increasing pH. In 
the case of the Q363F single-mutant enzyme, values of 

Table 2: Data Collection and Refinement Statistics 

Q363F1R402A 	Q363F 

resolution (A) 	 15.0-2.0 	15.0-1.8 

total no. of reflections 	412535 	 604721 

no. of unique reflections 	75611 	 108491 

completeness (%) 	 94.5 	 96.6 

J'[uW] 	 9.2 	 15.8 

R.=, (%)' ,,,(%)' 	 7.2 	 6.2 

R,,,, in outer shell ( °,o) 	22.6 (2.07-2.00) 	17.6 (1.86-1.80) 

Rcryo (%)5 	 16.08 	 16.30 

R5 (%)5 	 23.47 	 22.37 

rmsd from ideal values 
bond lengths (A) 	0.013 	 0.012 

bond angles (deg) 	2.7 	 2.3 

Ramachandran analysis 
most favored (%) 	88.6 	 88.4 

additionally allowed (%) 	11.3 	 11.4 

= L1,11(h) - t,(h)l!j.JAh), where lAh) and 1(h) are the 

ith and mean measurements of reflection h. respectively. 

- FIILF0, where F, and F are the observed and calculated structure 

factor amplitudes of reflection h, respectively. is the test reflection 

data set, 5% selected randomly for cross validation during crystal-
lographic refinement. 

are -103 -fold lower than in the wild-type enzyme, but with 
hugely elevated KM values in the millimotar region that 
would indicate significant impairment of Michaelis complex 
formation. 

Crystal Structure of Q363F and Q363F/R402A Mutant 

Flu vocvtochrome Cl. For the Q363F and Q363F/R402A 
mutant enzymes. data sets to resolutions of 1.8 and 2.0 A. 
respectively, were used to refine the structures to final 
R-factors of 16.30% (Rr, = 22.37% for Q363F) and 16.08% 

(R = 23.47% for Q363F1R402A) (see Table 2). For each 
mutant enzyme, there are two independent molecules in the 
asymmetric unit and the final model consists of two protein 
molecules, each comprised of residues 1-568, four hemes, 
the FAD, one substrate molecule (fumarate), and one sodium 
ion. In addition, the Q363F model contains 2111 water 
molecules and the Q363F/R402A model 1630 water mol-
ecules. For each protein molecule, three residues at the 
C-terminus (569-571) could not be located in the electron 
density maps. The rmsd fit of all backbone atoms for the 
wild-type and Q363F/R402A mutant flavocytoehromes c3  

is 0.3 A, indicating no major differences between the 
structures, while the rmsd fit for all backbone atoms for the 
wild-type and Q363F mutant enzymes is 0.6 A, indicating 
greater differences as a result of the single Q363F substitu-
tion. Due to the fact that there are two molecules in the 
asymmetric unit for each structure, the stated rmsd fit value 
is the average over both molecules (A and B). The rmsd fit 
of all backbone atoms between molecules A and B within 
each model is 0.2 A. 

On comparison of the crystal structure of the Q363F/ 
R402A mutant enzyme (Figure 2) with those of the wild- 
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FIGURE 2: Panel a shows a stereodiagram of the active site of the Q363 F/R402A double-mutant flavocytochrome C3. The water which acts 
as the active site acid catalyst can be clearly seen adjacent to the bound substrate. Electron density was computed using the Fourier coefficients 
2F0  - F0 , where F. and F0  are the observed and calculated structure factors, respectively, the latter based on the final model. The contour 
level is Ia, where a is the rms electron density. Panel b shows an overlay of the active sites of the wild-type (atom color), R402A (purple). 
and Q363F1R402A (orange) flavocytochromes c3 . The catalytic water in the Q363F1R402A mutant enzyme can be seen occupying the 
space designated as position A, which is occupied by one of the NH2 groups of Arg402 in the wild-type enzyme, while the water in the 
R402A mutant enzyme active site occupies the space taken by the other Arg402 NH2 group in the wild-type enzyme known as position B. 
The proton pathway residues (Arg38 I and Glu378) are also shown, along with the water molecules in the two mutant enzyme structures 
which result from the movement of the G1u378 side chain in each. This diagram was generated using TURBO-FRODO (16). 

type enzyme and the R402A single-mutant enzyme, it is clear 
that there are no unexpected structural changes as a result 
of the mutation. The phenyl ring of Phe363 is found to 
occupy the space around position B vacated by the substitu-
tion of Arg402 with alanine. What is also apparent is the 
introduction of a water molecule adjacent to the bound 
fumarate in both protein molecules of the asymmetric unit 
(WAT756 in molecule A and WAT994 in molecule B) some 
3.5 A from C3 of the substrate. This water molecule is 3.0 
A from another water molecule (WAT248 in molecule A 
and WAT328 in molecule B) and 2.7 A from the carboxylate 
group of the side chain of G1u378. G1u378 is one of the 
residues of the proposed proton delivery pathway (Figure 
2b). The water molecule which is found at position B in the 
active site of the R402A single-mutant enzyme (WAT398 
in molecule A and WAT375 in molecule B), which forms 
hydrogen bonding interactions with the side chain of G1n363 
and the fumarate C4 carboxylate group, is absent in the 
structure of the Q363F/R402A double mutant. This absence 
is due to the steric bulk of the phenylalanine side chain 
(Figure 2b). The substrate, fumarate, is bound in the same 
twisted conformation observed in the structure of the wild-
type enzyme and other mutant forms of flavocytochrome c3 
(6, 9. 10). Also, the hydride transfer distance from C2 of 
fumarate to N5 of the FAD isoatloxazine ring is 3.4 A. the 
same as observed in the wild-type and R402A enzyme 

structures. The integrity of the proton transfer pathway 
involving residues Arg381 and G1u378 is slightly compro-
mised by the rotation and movement of G1u378 in occupying 
some of the space vacated by the removal of Arg402, and 
this movement, similar to that observed in the structure of 
the R402A mutant flavocytochrome c3, results in a distance 
of 4.5 A between the side chains of Arg381 and Glu378 
(compared to 3.1 A in the wild-type enzyme). However, as 
a consequence of this change in the orientation of Glu378, 
a water molecule (WAT248 in molecule A and WAT328 in 
molecule B) is introduced between G1u378 and Arg381 2.9 
A from Arg38 I and 3.8 A from Glu378, which may serve 
to mediate in the proton delivery mechanism. 

Comparison of the crystal structure of the Q363F mutant 
enzyme with that of the wild-type enzyme reveals some 
important changes at the active site as a result of the 
substitution (Figure 3). The phenyl ring at position 363 can 
clearly be seen, but it is apparent that the introduction of 
this steric bulk at the active site has caused Arg402 to swing 
away from the active site toward the surface of the protein 
where the guanidinium group resides between Gln201 and 
Lys404; this has led to significant changes in backbone 
position between residues 11e399 and A1a405. These changes 
have allowed a water molecule (WAT300 in molecule A and 
WAT399 in molecule B) to enter the active site and bind 
adjacent to the substrate, in position A, 3.4 A from the 
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FIGURE 3: Panel a shows a stereodiagram of the active site of the Q363F mutant flavocytochrome C3. The water which acts as the active 
site acid catalyst can be clearly seen adjacent to the bound substrate. Electron density was computed using the Fourier coefficients 2F 0  - 

F. where F. and F, are the observed and calculated structure factors, respectively, the latter based on the final model. The contour level 
is la, where a is the rms electron density. Panel b shows an overlay of the active sites of the wild-type (atom color) and Q363F (purple) 
flavocyiochromes c. The side chain of Arg402 in the Q363F mutant enzyme is seen at the bottom right of the figure, and the catalytic 
water in the Q363F mutant enzyme can be seen occupying the space designated as position A. The movement of Arg544 is also obvious, 
and the two resulting water molecules are shown adjacent to the fumarate C4 carboxylate group. This diagram was generated using TURBO- 
FR000 (16). 

fumarate C3 atom. As in the Q363F/R402A structure, this 
water is found to be close to the side chain of G1u378 (2.7 
A), and the slight movement of G1u378 has allowed another 
water molecule (WATI92 in molecule A and WATI7I in 
molecule B) to bind 3.6 A from the Glu378 side chain and 

2.9 A from the Arg381 side chain (as seen in the double-
mutant enzyme structure); this may mediate the proton 
delivery process. 

In addition to these changes, Arg544, a residue that is 
important for the formation of the Michaelis complex, has 
moved to occupy some of the space vacated by the 
reorientation of Arg402, exhibiting a stacking interaction with 
Phe363 and a hydrogen bonding interaction with the water 
molecule located at position A (2.9 A). The Arg544 side 
chain is also found to be 3.2 A from the C4 carboxylate 
moiety of the bound fumarate. This movement of Arg544 
has resulted in the introduction of a further two water 
molecules, each forming a hydrogen bonding interaction with 
one of the fumarate C4 carboxylate oxygen atoms. 

DISCUSSION 
The mechanism for the Fcc1-catalyzed reaction, as orig-

inally proposed by Taylor et al. (6), is shown in Figure 4a, 
and we believe that this mechanism operates throughout the 
family of fumarate reductase enzymes. The role of Arg402 
as the active site acid catalyst has been confirmed by 
mutagenesis experiments, and its efficiency in this role is 
explained in terms of its unique ability to simultaneously 
occupy positions A and B at the active site of the enzyme 
and act as both a Bronsted acid and a Lewis acid at each 
site (10). This is corroborated by recent work on a related 
enzyme, L-aspartate oxidase from E. co/i, which is structur-
ally similar to fumarate reductase and in which Arg290, the 
residue equivalent to Arg402 in flavocytochrome C3, acts as 
the active site base, abstracting a proton from the substrate 
during catalysis (18). 

Substitution of Arg402 with alanine in flavocytochrome 

C3 leads to an enzyme which has no measurable catalytic 
activity. This is attributed to the lack of a species capable of 
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FiGusa 4: Panel a shows the reaction mechanism for fumarate 
reduction in the wild-type enzyme [this is an abbreviated version 
of the mechanism proposed by Taylor et al. (6)]. The substrate is 
polarized by interactions with charged residues facilitating hydride 
transfer from N5 of the reduced FAD to C2 of the substrate. Arg402 
is ideally positioned to donate a proton to C3 of the substrate, 
resulting in the formation of succinate. Arg402 is immediately 
reprotonated via a proton pathway involving Arg38 I and Glu378. 
Panel b shows the mechanism of fumarate reduction in the Q363F/ 
R402A double-mutant enzyme. The water molecule introduced at 
position A of the mutant enzyme is shown to function as the active 
site acid catalyst as part of the proton delivery pathway. 

proton transfer in position A of the active site. In this case, 
however, a water molecule is found in position B, hydrogen 
bonding with the side chain of G1n363 and the C4 carboxy-
late group of the bound fumarate. Clearly, it is these 
hydrogen bonding interactions which result in the preferential 
occupation of position B in the R402A mutant enzyme, with 
steric constraints precluding the simultaneous occupation of 
position A by a second solvent molecule. The construction 
of the double-mutant enzyme incorporating the R402A 
substitution in conjunction with the introduction of pheny-
lalanine at position 363 was designed to force a water 
molecule to preferentially occupy position A rather than 
position B (Figure 5). Since water is capable of acting as a 
Brønsted acid, its occupancy of position A should permit 
fumarate reductase activity to occur via the mechanism 
shown in Figure 4b. The kinetic and structural characteriza-
tion of the Q363F1R402A flavocytochmme c3 confirmed both 
the presence of the water molecule at position A and its 
ability to function as an acid catalyst., albeit with a low level 
of activity. The fact that the k,.,, value for the Q363F1R402A 
enzyme is some 1000-fold lower than that seen for the wild-
type enzyme could, at least in part, be due to the inability of 
water to function as a Lewis acid. There may also be an 
effect arising from the observed perturbation in the relative 
positions of "proton pathway" residues Arg38 I and Glu378. 

Construction of the Q363F single-mutant enzyme as a 
control has proven to be illuminating, leading to a mutant  
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Fiuuiut 5: Schematic representation of positions A and B in the 
active site of (a) R402A and (b) Q363F/R402A mutant flavocyto-
chrome c3 . The water in position B of the R402A mutant enzyme 
is shown in purple, while the water in position A of the Q363F/ 
R402A enzyme is shown in orange along with Phe363. Hydrogen 
bonding interactions are shown as dashed lines. The direction of 
proton transfer in Q363F/R402A flavocytochrome c3 is shown using 
a blue arrow. 

enzyme with unexpected characteristics. Although the en-
zyme was found to display fumarate reductase activity at a 
low level, the high KM value for fumarate results in an 
inefficient enzyme (in terms of k./Km). In this case, the 
crystal structure that was obtained has been crucial in 
accounting for the kinetic observations, showing that Arg402, 
the active site acid, has moved away from the active site as 
a result of the introduction of a phenylalanine residue at 
position 363. This has allowed a water molecule to occupy 
position A of the active site in the mutant enzyme, resulting 
in the measured fumarate reductase activity. In addition, 
Arg544, a residue that is important for substrate binding, 
has moved into the active site, and is no longer involved in 
the Michaelis complex formation, thus explaining the high 
substrate KM value that is observed. Interestingly, the value 
of k, measured for the Q363F mutant enzyme is --3-fold 
greater than that seen with the Q363F/R402A double-mutant 
form. 

In conclusion, by generating the Q363F1R402A double-
mutant form of flavocytochrome C3, we have succeeded in 
the novel engineering of a water molecule as the active site 
acid in a fumarate reductase. 
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