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Abstract

The LHC has begun collecting data and the first results have now been published. This is

truly an exciting time in the field as we wait for the experimental data to exclude or verify

new physics beyond the Standard Model. In order to make a precise prediction for the LHC

one must go beyond the leading order of our perturbation series. In this thesis I present the

extension of tools for the automation of one loop calculations for supersymmetric models. The

second part of the thesis contains the application of these tools to neutralino pair production

in the Minimal Supersymmetric Model.
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Chapter 1

Introduction

1.1 The Standard Model

1.1.1 Introduction

The Standard Model of particle physics began emerging in the 1970’s as a framework for the

fundamental constituents of the world. Over the last four decades it has provided a platform

on which to make experimental predictions for a variety of phenomena to a high precision.

Furthermore, it explains physics on a vast range of energy scales from an electron volt to

100 GeV and is currently being tested at the Large Hadron Collider (LHC) at the TeV scale.

Thus far it has been remarkably successful.

It is based on the idea that we can reduce the matter content of our world into fundamental

particles: quarks, leptons and gauge bosons. The simplicity of the model is apparent when one

writes it down in one line:

LSM =
∑
j

iq̄j /Dqj −
1

2
trGµνGµν +

∑
k

iψ̄k /Dψk −
1

4
F jµνF

jµν − 1

4
BµνBµν + LHiggs. (1.1)

The Standard Model incorporates the electromagnetic force, the weak nuclear force and the

strong nuclear force into a renormalizable quantum field theory. The strong force is described

by Quantum Chromodynamics [4, 5, 6] and provides a very rich and diverse area of physics

research. A major success in the development of the Standard Model was the unification of the

electromagnetic and weak forces into the electroweak theory of Glashow, Salam and Weinberg

[7, 8, 9, 10, 11]. This unified symmetry is broken at low energies and the breaking was confirmed

with the discovery of the massive W and Z gauge bosons. When brought together the Standard

Model is a non-abelian Yang Mills theory based on the gauge group SU(3)c×SU(2)L×U(1)Y

with SU(2)L × U(1)Y spontaneously broken to U(1)em.

The cornerstone of the Standard Model is the Higgs mechanism that offers an explanation

as to how electroweak symmetry is broken. The minimal version of the Higgs mechanism

postulates a massive scalar field: the Higgs boson. The inclusion of the Higgs mechanism in

the Standard Model is a contentious issue, as no experimental evidence for the Higgs boson has

1



Chapter 1. Introduction

been found. How electroweak symmetry is broken is an open question in current research in

Beyond the Standard Model (BSM) physics.

1.1.2 Experimental tests of the SM

The Standard Model has been verified experimentally to a high degree of precision. Generally,

the development of particle physics has been driven by the increasing power of particle

accelerators allowing matter to be probed at ever decreasing distances. The development

of QCD began with the quark model introduced by Murray Gell-Mann as a mathematical

explanation behind the particle zoo, an explosion in the discovery of different species of hadrons.

Initially quarks were not thought of as physical particles and it wasn’t until 1968, when

Bjorken scaling was discovered at SLAC confirming that protons were made up of partons,

that quarks were thought of as real confined physical particles. This discovery followed on from

the accelerator passing a physical boundary 1 GeV that allowed the substructure of the proton

to be resolved for the first time. In 1976 the τ lepton was discovered at SLAC; this was a

completely unexpected discovery and was the first observation of a third generation particle.

Later, in 1983, striking evidence for electroweak symmetry breaking was found as the W and

Z bosons were discovered at CERN. In 1995 the predicted top quark was found at the CDF

and D0 experiments at the Tevatron collider with a mass of about 175 GeV.

This brief historical review teaches us that progress in theoretical particle physics has been

achieved by using theoretical models as guiding principles in the search for new physics, and

refining these models with the advent of new experimental evidence. Pertinently, at this time,

we observe that for every increase in energy at particle accelerators new physics has been found,

whether or not it was predicted by the accepted model of the time.

1.1.3 Experimental issues with the Standard Model

Despite the success of the Standard Model, there are good experimental and theoretical reasons

to believe that is it incomplete. We list some of the experimental reasons below:

• In 1998 it was confirmed that neutrinos are not in fact massless as is assumed in the

Standard Model and do, in fact, have a small mass.

• The WMAP experiment conclusively confirmed the existence of cold dark matter in the

Universe which has no explanation in the Standard Model.

• Current direct searches for the Higgs boson have been inconclusive and indirect searches

have set exclusion limits on the mass range.

1.1.4 Theoretical issues with the SM

Alongside the reasons outlined above there many theoretical issues with the Standard Model.

These issues are:

2



1.1. The Standard Model

• There is no underlying explanation to the pattern of masses and mixing parameters

observed. Questions of this type include, for example,: “Why are there 3 generations?”

and “Why is the top quark so heavy compared to the other quarks?”.

• Why do the fundamental particles lie in the representations they do and is there a reason

the world is described by these gauge groups?

• The Higgs potential behind electroweak symmetry breaking is completely ad-hoc and is

chosen because it is the simplest potential that breaks electroweak symmetry.

• Gravity is not included in the framework of the Standard Model.

• Finally, the hierarchy problem provides a convincing argument as to why a fundamental

scalar needs to be protected by some symmetry at a higher energy scale, and therefore

why the Standard Model is not complete. We examine this in more detail in Section 1.1.5.

The first two are mostly philosophical questions. One can adopt a pragmatic viewpoint and

accept that we have free parameters and there is no underlying reason behind them. The third

point is an issue that can be illuminated by further experiment. It is certainly hoped that the

LHC will shed light on the nature of electroweak symmetry breaking and, if it is caused by a

scalar potential, the form of the potential can be uncovered. The fourth problem is certainly

one that questions how natural and complete the Standard Model is and we shall outline it

in the next section. In fact, it can be rephrased to point to the scale of new physics (see, for

example, [12]).

1.1.5 The Hierarchy Problem

The most compelling theoretical argument concerns the notion of naturalness in the electroweak

symmetry breaking sector. If one considers the Standard Model as a low energy effective theory

then one must introduce a scale, an ultraviolet cut off, into the picture at which physics outside

the Standard Model ceases to become negligible. Gravity is not included in the Standard Model

therefore one could choose this cut off to be the Planck scale. However, we have no reason to

assume that the Standard Model is valid all the way up to the Planck scale and it is more

common to introduce a generic scale Λ for new physics, the Planck scale being an upper bound

on its value. In perturbative calculations one way to regulate ultraviolet divergences arising

from the integral over the unresolved loop momenta is to use Λ as a ultraviolet momentum

cut-off. Symbolically ∫
dk →

∫ Λ

dk. (1.2)

Our perturbative calculations to any given loop order will therefore have dependence on this

scale. If we focus on corrections to particle masses, then the corrections to the scalar particle

mass are the most problematic to appear as these are quadratic divergences. One can contrast

this with the corrections to the fermion mass which are milder due to chiral symmetry and gauge
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boson masses are protected by gauge invariance (one must use a gauge invariant regulator to

see this, such as dimensional regularisation). The problem is that the mass term for the scalar

field has the form

m2 = m2
0 + cΛ2 (1.3)

and we see that the scalar mass correction is driven to the scale Λ. If this scale is large then

we have a problem in keeping the m2 as small as indicated by theoretical and experimental

constraints. We need to “fine-tune” the parameter in the bare Lagrangian m0 to cancel with

the large contribution Λ2 [13]. This will need to be repeated at each order in perturbation

theory.

We are led to the following tension [14]: precision electroweak physics show no compelling

evidence for physics beyond the Standard Model, and we have no signal for a Higgs boson. And

as of now there has been no indication of any new particles being produced. This seems to

point that the scale of new physics is quite high above 1 TeV leading to fine-tuning.

1.1.5.1 Solutions

How does one solve the hierarchy problem? We present four possible solutions below. Firstly,

one could simply be happy with the fine tuning, after all this quadratic divergence is no longer

manifest when we use dimensional regularisation. However, by adopting this viewpoint, we lose

contact with the interpretation of the cut-off being a scale of new physics which is what we

wish to investigate.

The second solution could be that fundamental scalars do not exist and that composite

objects play the role of the Higgs boson. These ideas go by the name Technicolor (for a recent

review see [15]) and consist of new technipions that are are bound together by a new color-like

force that becomes strong at the TeV scale. The idea that the electoweak sector is simply QCD

at a higher scale is attractive but due to constraints on flavour changing neutral currents the

original models are incompatible with experimental results. However, new research in the field

of walking technicolor [16] look promising as a way of avoiding experimental constraints.

Thirdly, we can embed our gauge group into a larger one and use collective symmetry

breaking in order to solve the problem at the one-loop level. This is exactly what happens in

little higgs models (for a comprehensive review see [12]).

The final solution we present is that of supersymmetry where we work on the observation

that loop diagrams containing fermions and bosons come with the opposite sign; one can arrange

a cancellation of the quadratic divergences between diagrams containing fermions and bosons at

the multiloop level if there is a suitable relation between the two couplings. The implications of

this symmetry is that each Standard Model particle has a superpartner with the same quantum

number except spin, where a fermion has a boson for a partner and vice versa. An equivalent

way to describe this solution is that the unrenormalized theory is free of quadratic divergences

[17] and therefore provides a natural solution to the hierarchy problem before renormalization.

We will talk more about this theory in the next chapter.
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1.1.6 Outline of Thesis

In this thesis we present the development and implementation of an automated approach to

Next to Leading Order (NLO) calculations within the context of the Minimal Supersymmetric

Standard Model (MSSM), specifically focusing on the virtual contribution.

In Chapter 2 of this thesis we examine the theory of the Higgs mechanism and explore the

current experimental status of the search for the Higgs boson. We then proceed to motivate

Supersymmetry as a solution to the Hierarchy problem. After a discussion of different sectors

of the MSSM we discuss the current experimental searches for this theory.

In Chapter 3 we discuss details of NLO calculations, namely how one deals with the color

and spinor degrees of freedom. We present an algebraic method of reducing our amplitude to an

expression involving spinor products suitable for a numerical evaluation. We also consider how

one defines a regularisation scheme and how to deal with fermionic objects specific to beyond

the Standard Model theories.

In Chapter 4 we investigate the computation of virtual diagrams and, in particular, how we

reduce the integrals to a suitable basis. We introduce a reduction scheme that avoids potential

artificial singularities in certain kinematic regions. The end point of this reduction requires

the analytic evaluation of the basis set of massive infra red divergent triangles and we present

our results for these. Furthermore, we look at the end point of our reduction process for the

corresponding tensor integrals.

Our implementation of these ideas into an automated code is tested in Chapter 5 where

we present the full NLO results for neutralino pair production for the LHC in the MSSM.

This includes the presentation of the relevant counter terms needed for our renormalization

procedure and a discussion of the checks that we performed.

The conclusions reached are presented in Chapter 6.
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Chapter 2

Higgs bosons and

Supersymmetry

2.1 Introduction

In this chapter we examine the Higgs mechanism. Firstly we look at its representation in the

Standard Model, the so called minimal Higgs mechanism and its experimental and theoretical

constraints within the Standard Model. Then we move on to a popular extension of this

implementation, the two Higgs doublet model in the context of the Minimal Supersymmetric

Standard Model (MSSM). Finally, we discuss other aspects of the MSSM and its experimental

status.

2.2 The Standard Model Higgs Sector

In this section we examine the Standard Model Higgs sector, what is known as the minimal

Higgs sector. Although electroweak symmetry breaking is concerned with a larger gauge group,

the main features of the Higgs mechanism are present in the U(1) group, so we begin with this

case and move on to the Standard Model gauge group.

2.2.1 Spontaneous Symmetry Breaking and the Higgs Mechanism

The solutions of an equation of motion generally do not possess the same symmetries as the

equation of motion. If we act on these solutions with a symmetry transformation of the equation

of motion we will obtain other solutions with the same total energy. However, if the solution is

invariant under the symmetry transformations we cannot generate new solutions this way; we

have a unique solution to our equation of motion.

In the following chapter we consider the case that the ground state of the system is not

invariant under the original symmetry therefore we can generate other solutions by acting on

a given ground state with the symmetries of the Lagrangian. Therefore the ground state is

7



Chapter 2. Higgs bosons and Supersymmetry

degenerate. One must choose between these (infinite, in our case of a continuous symmetry)

equivalent ground states. Once the choice has been made, and we re-express the ground state

in terms of this choice the original symmetry of the Lagrangian is hidden or is said to be

spontaneously broken. The Higgs mechanism is the general idea that describes the process by

which the Goldstone bosons that are associated with a spontaneously broken gauge symmetry

are absorbed when the symmetry is gauged to become the longitudinal components of a massive

gauge field.

The simplest way to break the gauge symmetry is through a scalar potential. This can lead

to Higgs bosons. These are fundamental scalar particles of the original gauge multiplet from

which the Goldstone bosons came from. They are degrees of freedom that can not be absorbed/

gauged away and are therefore observable particles.

2.2.2 Abelian Higgs Toy Model

We choose the simplest example to demonstrate the main features of the Higgs mechanism.

We will see that most of the ideas that go into this case are simply repeated for larger gauge

groups. We consider the abelian U(1) group. The field content is a complex scalar field

φ = 1√
2

(φ1 + iφ2) and a gauge field Aµ. The Lagrangian is written as

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)− V (φ∗φ). (2.1)

where the covariant derivative is Dµ = ∂µ + igAµ and the field strength tensor is Fµν =

∂µAν − ∂νAµ. This is gauge invariant under the gauge transformations

Aµ → UAµU† − i

g
U∂µU† (2.2)

φ→ Uφ (2.3)

where the gauge transformation is

U = exp

[
i
θ(x)

υ

]
(2.4)

and θ is a local gauge parameter. We choose the potential to be of the form

V (φ∗φ) = λ(φ∗φ)2 − µ2(φ∗φ) (2.5)

with λ > 0, µ2 > 0. This potential has a local maximum at the point (φ1, φ2) = (0, 0) and has

a circle of degenerate minima at radius (see Figure 2.1)

|φ|2 =
µ2

2λ
=
υ2

2
. (2.6)

This circle comprises of an infinite number of degenerate ground states. If we act on this

ground state with the U(1) transformation, a symmetry of the Lagrangian, we obtain another
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2.2. The Standard Model Higgs Sector

Figure 2.1: A picture of the Higgs potential.

ground state. However, we can only have one ground state, therefore we must choose one point

on this circle. Once we make this choice the symmetry is hidden or is said to be spontaneously

broken. Goldstone’s theorem tells us that for each broken generator of the symmetry we have

a massless field, and the Higgs mechanism is the process of a massless gauge boson absorbing

this degree of freedom. This means that, in this case, we have broken the U(1) symmetry so

we expect one massless Goldstone field to be absorbed by the gauge boson. We must choose

a gauge to really examine what happens to the degrees of freedom after breaking. We look at

the unitary gauge and then the ’t Hooft gauge.

2.2.2.1 The Unitary Gauge

We start our discussion by reparameterizing the field. We expand φ about one of the ground

states giving:

φ =
υ + h(x)√

2
exp i(θ(x) + α). (2.7)

We break the gauge symmetry by choosing a particular value for α (i.e. we choose a point

on the circle of degenerate minima, α = 0). Because the model is gauged the field θ(x) can

be considered as a parameter of the local gauge transformation (2.4) i.e. it has no physical

significance. With this parameterization we have

φ†φ =
1

2
(υ + h)2 (2.8)

i.e. we are at the vacuum expectation value only where the field h = 0. This fixes the gauge to

be the unitary gauge; in this gauge we have removed the unphysical degree of freedom θ. We
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have

DµU†φ =
1√
2

(∂µ + igAµ)U†(h+ v)

=
1√
2
U†
[
∂µ + ig

(
Aµ − 1

g
∂µθ

)]
(h+ v) (2.9)

=
1√
2
U† [∂µ + igAµ] (h+ v) = U†Dµφ

as we expect from the covariant derivative. Upon expanding out the Lagrangian we see that

there are bilinear terms mixing the h field and the Aµ field. The Aµ field now has a mass

M = gυ and the h field also has a mass. We have 4-point and 3-point h interactions coming

from the scalar potential and interactions between the A and h fields from the gauged kinetic

part. The field θ that links the two fields, has completely disappeared and the degree of freedom

associated with it has been absorbed by the gauge boson for it to become massive.

2.2.2.2 The ’t Hooft Gauge

While the unitary gauge is very convenient it is instructive to look also at another choice. We

begin with a reparameterization of our complex field

φ =
1√
2

(υ + h(x) + iχ(x)) (2.10)

so our new fields, h and χ have zero vacuum expectation value. Our fields are defined relative

to the point on υ + i0 on the complex plane. In the new coordinates, φ†φ = υ2

2 only at the

point χ = h = 0. Our covariant derivative is now:

Dµφ =
1√
2

[∂µh+ i(∂µχ+ gυAµ) + igAµ(h+ iχ)] . (2.11)

Because of the spontaneous symmetry breaking the gauge field is now mixed with the Goldstone

mode χ. We see this by examining the gauged kinetic term for the scalars:

(Dµφ)∗(Dµφ) =
1

2

[
∂µh∂

µh+ ∂µχ∂
µχ+M2AµA

µ + g2h2AµA
µ − g2A2

µχ
2
]

(2.12)

+MAµ(∂µχ)− g(∂µχ)hAµ − gMhAµA
µ.

where, as before, we are led to M = gυ. The scalar potential looks like

V (h, χ) =
λ

4
χ4 +

λ

2
h2χ2 +

λ

4
h4 + υλχ2h+ µ2h2 + υλh3 − λ

4
v4 (2.13)

i.e. as expected we have a mass term for the h field and the χ field remains massless. This is

not the whole story here as our term MAµ(∂µχ) mixes our gauge field and the χ field; this is

the usual problem of not being able to write down a gauge boson propagator without fixing a

gauge. We now outline a procedure in which the gauge is fixed and in doing so the two fields
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are disentangled. We add a ’t Hooft gauge fixing term to the Lagrangian

Lfix ≡ −
1

2ξ
(∂µAµ −ξMχ)

2
(2.14)

= − 1

2ξ
(∂µA

µ)2 −MAµ(∂µχ)− 1

2
ξM2χ2.

This term un-mixes the fields Aµ and χ and gives the field χ a mass
√
ξM . In this gauge the

χ field has the usual scalar propagator

i

k2 − ξM2 + iε
(2.15)

and the gauge field has the propagator

Dµν =
i

k2 −M2

(
−gµν +

kµkν

k2

)
− iξ

k2

(
kµkν

k2 − ξM2

)
. (2.16)

where we decompose it into transverse and longitudinal components. We see that the ξ

dependence of the propagator lies in the longitudinal part of the propagator i.e. the mixing

between the fields χ and Aµ is between the field χ and the longitudinal part of Aµ. If we wish

to recover the physical “unitary” gauge we take the limit ξ →∞. In this limit the χ propagator

vanishes and the longitudinal part of the gauge boson propagator tends to the usual massive

case

lim
ξ→∞

Dµν =
i

k2 −M2

(
−gµν +

kµkν

k2

)
+ i

kµkν

k2M2
(2.17)

=
i

k2 −M2

(
−gµν +

kµkν

M2

)
.

Thus our field content is the same as in the unitary gauge where the unphysical Goldstone boson

χ is gauged away. Before taking this limit the longitudinal degree of freedom of the gauge boson

and the Goldstone boson mix through the parameter ξ. The two degrees of freedom correspond

to only one physical degree of freedom which is obtained when we take the limit ξ →∞. In the

Higgs mechanism this limit corresponds precisely to, what is referred to as, the gauge boson

“eating” the Goldstone boson. The Higgs mechanism is much more tangible with this gauge

choice, whereas the unitary gauge somewhat hides the mechanism. Now it is understood, it is

certainly more convenient to choose the unitary gauge for the discussion of the Standard Model

Higgs sector as is is far simpler algebraically.

2.2.3 Gauge Boson Interactions

We extend the above analysis to the Standard Model electroweak gauge group SU(2)L×U(1)Y ,

where we have three massless bosons associated with the gauge group SU(2): W i(i = 1, 2, 3) and

one massless boson B associated with the abelian U(1) gauge group. We follow the procedure
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presented in [18]. The kinetic part of the Lagrangian is

Lkin = −1

4
W i
µνW

i
µν −

1

4
BµνB

µν (2.18)

with the field strength tensors defined as

W i
µν = ∂µW

i
µ − ∂νW i

ν − gεijkW jW k (2.19)

Bµν = ∂µBν − ∂νBµ (2.20)

where g is the SU(2) gauge coupling. One couples gauge fields to matter by introducing the

covariant derivative

Dµ
ij = δij∂

µ + ig(T ·Wµ)ij + iY δijg
′
Bµ (2.21)

where g
′

is the U(1) coupling. The matrices T are a representation of the SU(2) algebra and

the matrix Y δij is a representation of the U(1) algebra. We are free to choose a representation

for the matter fields. We choose T i = τ i/2 where τ are the usual Pauli matrices

[T i, T j ] = iεijkT k (2.22)

and we choose Y = 1/2. With this choice we can rewrite

Dµ = ∂µ + ig[W 1
µ · T 1 +W 2

µ · T 2] + i[
g
′
Bµ
2

+ gT 3W 3
µ ] (2.23)

Under the field redefinitions:

W±µ =
W 1
µ ∓ iW 2

µ√
2

(2.24)

and rewriting the SU(2) generators as raising and lowering operators:

T± = T 1 ± iT 2 (2.25)

this becomes

Dµ = ∂µ + ig
[T+W+

µ + T−W−µ ]√
2

+ i

[
g
′
Bµ
2

+ gT 3W 3
µ

]
. (2.26)

With the explicit choice for generators of SU(2) specified above we have

T 3 =
1

2

(
1 0

0 −1

)
T+ =

(
0 1

0 0

)
T− =

(
0 0

1 0

)
. (2.27)

Our Lagrangian describes four massless vector bosons that form a singlet B and a triplet

W±,W 3 under the gauge group. Physically, this is unsatisfactory. To describe the electroweak

12



2.2. The Standard Model Higgs Sector

interaction one needs to introduce a Higgs sector that provides the theory with the following

particle content: three massive gauge bosons (to describe the weak interaction) and one massless

gauge boson (the photon). The minimal choice to achieve this is a scalar doublet with four

degrees of freedom. We break SU(2) × U(1) down to U(1)em as above. Goldstone’s theorem

tells us that we have 3 massless Goldstone boson’s corresponding to the three broken generators

in this breaking. Because of the gauge symmetry, one can consider these Goldstone bosons

as parameters of the gauge transformation. Therefore, one can gauge away these unphysical

degrees of freedom. The most convenient choice of gauge is, as above, the unitary gauge. We

parametrise our SU(2) doublet as

φ =
1√
2
U†

(
0

h+ υ

)
=

1√
2

exp

[
− i
υ
T · θ(x)

](
0

h+ υ

)
(2.28)

with U belonging to our gauge group. This parameterisation allows us to manipulate the

covariant derivative

Dµ = (∂µ + igT ·Wµ + ig
′
Y Bµ)

= (∂µ + igT ·Wµ + ig
′
Y Bµ)

1√
2
U†(h+ υ)α

= U†
(
∂µ + igUT ·WµU† + ig

′
Y Bµ + U∂µU†

) 1√
2

(h+ υ)α (2.29)

= U†
(
∂µ + ig(UT ·WµU† − i

g
U∂µU†) + ig

′
Y Bµ + U∂µU†

)
1√
2

(h+ υ)α

= U†
(
∂µ + igT ·W ′µ + ig

′
Y Bµ

) 1√
2

(h+ υ)α

= U†D
′µ 1√

2
(h+ υ)α

where α is the unit vector (0, 1)T . So under the gauge transformation U we have

Dµφ→ UDµφ = D
′µ 1√

2
(h+ υ)α. (2.30)

Using this result alongside (2.23) we can easily write out our Lagrangian. Focusing on the part

that is quadratic in the gauge fields we have

L ⊃ (Dµφ)†(Dµφ)

=
1

2

[
αT
(
∂µ − igT ·Wµ − ig′Y Bµ

)
(h+ υ)

(
∂µ + igT ·Wµ + ig

′
Y Bµ

)
(h+ υ)α

]
(2.31)

=
1

2
∂µh∂

µh+
(υ + h)2

2
αT
[
gT ·Wµ + g

′
Y Bµ

] [
gT ·Wµ + g

′
Y Bµ

]
α.

This gives two terms quadratic in the gauge boson fields. The first is simply

L ⊃ (v + h)2

4
g2W+W− (2.32)
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and the second is

L ⊃ (v + h)2

2

(
g
′
Bµ − gW 3

µ

)(
g
′
Bµ − gW 3µ

)
. (2.33)

These terms include interactions between the Higgs field h and the gauge fields and also mass

terms for the bosons. There is a slight complication in the second expression- we have mixing

terms between the gauge fields B,W 3 meaning we cannot write down two separate propagators

for these fields. We diagonalise the mass matrix for these two fields to the basis Z and A. The

mixing is

(
Zµ Aµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
W 3µ

Aµ

)
(2.34)

where

sin θ =
g
′√

g2 + g′2
. (2.35)

The observed value of sin2 θ is about 0.23, therefore we see that the Z field is dominated by

the W 3 component and the photon by the B field. This is reflected in the mass spectrum of

the theory where

mW =
υg

2
(2.36)

and

mZ =
mW

cos θ
(2.37)

so the Z boson mass is pushed slightly higher than the W boson mass.

2.2.3.1 Yukawa Sector

As we have just seen, the Higgs mechanism allows one to construct a mass term in the

Lagrangian in a gauge invariant way for gauge bosons. In addition to this the Higgs mechanism

also allows one to write gauge invariant mass terms for the fermions. This is provided in the

Yukawa sector. Now we outline how this works. For one generation of quarks and leptons our

Lagrangian is [19]

Lyukawa = λeēRφ
†

(
νe

e

)
L

+ λdd̄Rφ
†

(
u

d

)
L

+ λuūRφ
T (iσ2)

(
u

d

)
L

+ h.c. (2.38)

which is invariant under SU(2)L×U(1)Y with the correct assignments of the quantum numbers

Y . What’s interesting to note here, for reasons later, is the different structure of the up-

type and down-type quark terms. We will see this structure reappearing when we consider

supersymmetric theories. As before, we expand the field around its vacuum expectation value

14



2.2. The Standard Model Higgs Sector

and pick the unitary gauge, again for convenience,

Lyukawa = λe
υ√
2

(ēReL + ēLeR) + λd
υ√
2

(d̄RdL + d̄LdR) + λu
υ√
2

(ūReL + ūLeR)

+ λe
h√
2

(ēReL + ēLeR) + λd
h√
2

(d̄RdL + d̄LdR) + λu
h√
2

(ūRuL + ūLuR)

= meēe+muūu+mdd̄d (2.39)

+ λe
h√
2
ēe+ λd

h√
2
d̄d+ λu

h√
2
ūu

where, explicitly, we have substituted

φ→ 1√
2

(
0

υ + h

)
. (2.40)

We have managed to write mass terms for the fermions in a gauge invariant way. To do so we

had to introduce interactions between the fermions and the Higgs. It is non-trivial to extend this

example to accommodate three generations as experiments shows that the matrices cannot be

diagonal (or universal) in flavour space. We need to accommodate this into our Yukawa sector.

To do this we introduce three 3 by 3 complex matrices. These are non-diagonal matrices in

flavour space, explicitly,

Lyukawa = − (ēR, µ̄R, τ̄R)Cl



φ† ·
(
νe

e

)
L

φ† ·
(
νµ

µ

)
L

φ† ·
(
τe

τ

)
L



+
(
d̄
′

R, s̄
′

R, b̄
′

R

)
Cq



φ† ·
(

u

d
′

)
L

φ† ·
(

c

s
′

)
L

φ† ·
(

t

b
′

)
L


+ (ūR, c̄R, t̄R)C

′

q



φT · iσ2 ·
(

u

d
′

)
L

φT · iσ2 ·
(

c

s
′

)
L

φT · iσ2 ·
(

t

b
′

)
L


(2.41)

+ h.c.
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where the set of C matrices are 3× 3 complex matrices. Above we have five distinct “vectors”

in flavour space. We can therefore define 5 distinct basis changes, one for each “vector”: eR

µR

τR

→ U1

 eR

µR

τR

 ,

 uR

cR

tR

→ U2

 uR

cR

tR

 ,

 d
′

R

s
′

R

b
′

R

→ U3

 d
′

R

s
′

R

b
′

R

 (2.42)



(
e

νe

)
L(

µ

νµ

)
L(

τ

ντ

)
L


→ V1



(
e

νe

)
L(

µ

νµ

)
L(

τ

ντ

)
L


,



(
u

d
′

)
L(

c

s
′

)
L(

t

b
′

)
L


→ V2



(
u

d
′

)
L(

c

s
′

)
L(

t

b
′

)
L


. (2.43)

where Ui, Vj ∈ U(3) for i = 1, 2, 3 and j = 1, 2.

These transformations give the mass eigenstates. Without going into details we are able to

choose U1 and V1 such that the combination appearing in the leptonic Yukawa interaction is

diagonal: i.e. Cl → U†1C
lV1 = D, where D is a diagonal matrix with its entries as the coupling

λe, λµ, λτ . We can do this because ClCl† is a positive, semi-definite Hermitian matrix that can

be diagonalised.

We can carry out the same procedure for the quark cases: we are free to choose U2, V2 to

give us Cq
′ → U†2C

q′V2 = D2 where D2 is a diagonal matrix with entries of λu, λc and λt. We

have already used our free choice for U2 and V2 so we transform

Cq → U†3CqV2 = U†3V3V
†
3 V2 = U†3CqV3V

† = V V †U†3CqV3V
† = V (U3V )†CqV3V

† (2.44)

which allows us to choose V3 and U3 to give us

Cq → V D3V
† (2.45)

where D3 is a diagonal matrix with eigenvalues λd, λs and λb. We have already used our free

choice for U2 and V2 to diagonalise C
′

q so we are unable to fully diagonalise C
′

q at the same time.

Hence we are left with a unitary rotation that acts on the d, s, b quarks. This is V (= V2V
†
3 )

and is known as the CKM matrix. The entries of this matrix occur in charged W boson, flavour

changing, interactions. We have a 3 × 3 unitary matrix therefore we have 9 parameters. We

have 3 rotation angles (i.e. O(3) rotation) and 6 phases. We can make phase rotations on all

6 quarks to get rid of these phases but we still have an overall phase. Therefore, the CKM

matrix has 4 physical parameters: 3 rotation angles and a complex phase. The complex phase

is responsible for all the CP -violation that occurs in the Standard Model. A review of the

experimental measurements of this matrix and the current values can be found in [20].
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2.2. The Standard Model Higgs Sector

2.2.4 Higgs Mass bounds

The Higgs boson enters the Standard Model with the free parameter: its mass mh. We outline

a few arguments here that give limits on the mass in the minimal model outlined above. They

are derived from considerations of triviality, vacuum stability and unitarity.

2.2.4.1 Triviality

We consider the simplest case of a pure scalar theory defined by (2.5). We relate the coupling

to the mass by

λ =
m2
h

2υ2
. (2.46)

The renormalization group equation gives [21]

dλ

dt
=

3λ2

4π2
+O(λ3) (2.47)

where t = log(Q2/Q2
0) and Q0 is some reference scale. We solve this to get

1

λ(Q0)
− 1

λ(Q)
=

3

4π2
log

(
Q2

Q2
0

)
. (2.48)

where we have evolved from a large scale Q to a lower scale Q0 (typically we would choose this

as the electroweak scale). If we keep our coupling at the higher scale fixed λ(Q) > 0 and then

take the limit Q→∞ then λ(Q0)→ 0. The theory is trivial as, at low energy, the theory is no

longer interacting; we have a free scalar propagator only.

Alternatively, we could solve (2.47) to give:

λ(Q) =
λ(Q0)[

1− 3λ(Q0)
4π2 log(Q

2

Q2
0
)
] . (2.49)

We have a Landau pole as Q → Λ only if (2.47) remains correct up to a high scale. We can

obtain a bound on the Higgs mass by essentially demanding that the above behaviour does not

happen i.e. that the quartic coupling be finite as Q→∞:

1

λ(Λ)
> 0 (2.50)

where Λ is the scale of new physics. Letting Q0 = υ gives the following upper bound on the

Higgs mass:

m2
h <

8π2υ2

3 log
(

Λ2

υ2

) . (2.51)

This is known as the triviality or perturbativity bound. Decreasing the scale of new physics

pushes up this bound. In the Standard Model the relation (2.47) changes as we now have
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Chapter 2. Higgs bosons and Supersymmetry

Figure 2.2: A plot of the perturbativity (or triviality) bound and the vacuum stability bound
[23].

fermions and gauge bosons for the Higgs boson to couple to. As we are interested in the upper

bound we look at the region where the Higgs is heavy therefore the quartic coupling is dominant

and we can use the same bound we arrived at above.

2.2.4.2 Vacuum Stability

A lower bound on the Higgs mass can be derived from the allowed shape of the potential. If λ

becomes negative at some scale Λ the potential has no state of minimum energy and spontaneous

symmetry breaking cannot occur. We arrive at the bound [22]

m2
h >

3y4
t υ

2

8π2
log

(
Λ2

υ2

)
(2.52)

where yt = mt
υ , the coupling of the Higgs to the top quark (in this regime, this is the dominant

contribution). This is know as the stability bound.

A more detailed study of both bounds was carried out in [23] and we show the result in

Figure 2.2. They use the full two loop renormalization group evolution equations to extrapolate

the effective Higgs potential to high scales. We can conclude from this picture that, if the Higgs

mass is large enough, the quartic coupling will blow up entailing some new non-perturbative

dynamics or, if the Higgs mass is small enough, the vacuum may be unstable. In summary the

Standard Model could be perturbative all the way up to the Planck scale for values of the Higgs

mass between 160 GeV and 170 GeV but for all other masses new physics must set in below

the Planck scale.
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Figure 2.3: The ∆χ2 electroweak analysis. The plot is an update of the plot in [25]

2.2.4.3 Unitarity

The amplitude for WW →WW scattering is proportional to its centre of mass energy if we do

not include the Higgs boson channel. The Higgs boson regulates this unsatisfactory high energy

behaviour and prevents unitarity violation. This is because the theory is renormalizable with

the Higgs boson. One can derive a bound on the Higgs boson by demanding that unitarity is

not violated [24]

m2
h ≤

4π
√

2

3GF
∼ (700 GeV)2. (2.53)

This a bound from the tree-level amplitude: in the large Higgs mass regime the Higgs self

coupling is becoming strong so one cannot reliably ask if the higher order corrections will

restore unitarity above this bound. The bound is the highest Higgs boson mass that allows

WW scattering to be perturbative at all energies. The LHC can study WW → WW up to a

centre of mass energy of 1 TeV so unitarity will be violated in this channel if the Higgs, and/or

some new strongly interacting sector is not seen.

2.2.5 The Hunt for the Higgs

The theoretical bounds narrow down the mh search window significantly. Direct experimental

searches have failed to find the Higgs boson: these lead to stringent exclusion ranges in the mass

range. Furthermore, we can use indirect searches to get an idea of favourable mass ranges from
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precision electroweak data. These arise from examining the effect that Higgs boson quantum

corrections have on electroweak observables. We show the χ2 electroweak analysis in Figure 2.3

[25]. If one combines all the present electroweak data (a total of 17 high energy observables)

we see that the preferred value of the mass (the minimum of the curve) lies at 92 GeV with

an experimental uncertainty of +34 GeV and −26 GeV at the 0.68 confidence level, where the

theoretical uncertainty of the blue band is not taken into account, nor the low Q2 observables.

On this plot we can also see the direct search exclusions in the yellow band. These are indicated

on the plot but not used in the determination of ∆χ2. LEP excluded the Higgs mass up to

114.4 GeV and Tevatron excluded the mass from 156 to 177 GeV. In making these fits one is

assuming that the Standard Model is true and we have previously outlined theoretical arguments

and experimental hints why this assumption may not be true.

Presently the LHC is reporting some exciting updates to the excluded direct search region.

At the 0.95 confidence level, the ATLAS experiment excludes the range 146 to 232, 256 to 282

and 296 to 466 for a Standard Model Higgs [26]. Likewise, CMS excludes the ranges 145 to

216, 226 to 288 and 310 to 340 [27]. The hunt for the Higgs boson at the LHC continues.

2.3 Supersymmetry

2.3.1 Introduction

One of the most popular extensions to the Standard Model of particle physics is the theory of

Supersymmetry. The origins of supersymmetry lies in two independent branches. Around 1971

Golfand and Likhtman [28] wrote down an extension of the Poincaré algebra and constructed

a version of supersymmetric scalar QED with a charged Dirac spinor and two charged scalars.

Subsequently Akulov and Volkov [29] tried to associate the massless fermion that appeared due

to spontaneous symmetry breaking with the neutrino. This idea was used in supergravity: a

spin 3/2 gravitino becomes massive upon eating this Goldstino. Concurrent to the development

of these ideas Wess and Zumino [30] formulated a supersymmetric gauge theory. The roots of

this idea came from work in the area of dual resonance models of strong interactions [31,

32, 33]. Although both branches were developed independently they were both theory driven

as opposed to data driven; they were not developed to explain experimental evidence. Since

then, supersymmetry has become a large area of research but no experimental evidence for its

existence has been discovered. It is widely believed that the LHC will either provide evidence

to support supersymmetry as a theory or rule it out in most regions of parameter space. Many

comprehensive reviews of Supersymmetry exist including [34] and [35].

2.3.1.1 How supersymmetry solves the Hierarchy problem

Although not the original source of the Hierarchy problem one may introduce and motivate

supersymmetry by showing that it provides a solution to it. Let’s elaborate on the discussion

started in Section 1.1.5 by considering the following example [36].

We consider the one-loop corrections to the Higgs mass from a massive fermion. There is
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(a) (b) (c)

Figure 2.4: Contributions to the Higgs mass correction. The fermionic line is a generic quark
of which we have Nf flavours and the internal scalar line is a generic scalar with Ns flavours.

Yukawa type coupling between the massive fermion and the Higgs λf =
√

2mf/υ. The one loop

fermionic contribution, as in Figure 2.4(a), gives the following correction to the Higgs mass:

δm2
h = Nf

λ2
f

8π2

[
−Λ2 + 6m2

f log
Λ

mf
− 2m2

f

]
+O(1/Λ2) (2.54)

where Nf is the number of fermions with mass mf . The mass correction for a scalar particle is

driven to the cut-off scale as we discussed in Section 1.1.5 and we have the fine-tuning problem.

We assume that in this same theory we have Ns scalars with masses ms and 3-point and 4-point

interactions with the Higgs boson (their couplings are υλs and λs). We can compute the scalar

correction to the Higgs mass, as in Figure 2.4(b) and Figure 2.4(c) and obtain

δm2
h =

λsNs
16π2

[
−Λ2 + 2m2

s log

(
Λ

ms

)]
− λ2

sNs
16π2

υ2

[
−1 + 2 log

(
Λ

ms

)]
+O

(
1

Λ2

)
. (2.55)

The crucical observation is that the dangerous quadratic divergences are present in this result

also, but come with the opposite sign to (2.54). If we impose the constraint that

λ2
f = −λs (2.56)

and Ns = 2Nf then we have the total contribution

δm2
h =

λ2
fNf

4π2

[
(m2

f −m2
s) log

(
Λ

ms

)
+ 3m2

f log

(
ms

mf

)]
+O

(
1

Λ2

)
. (2.57)

Our quadratic divergences can be made to cancel by imposing a symmetry between the

two couplings. Therefore our solution to the Hierarchy problem is that for every Standard

Model particle we have a supersymmetric partner and we adjust the couplings such that the

quadratic divergences are cancelled. The result (2.57) shows us that if the masses of the

superpartners are not exactly the same we can have soft-breaking of supersymmetry. We know

that supersymmetry must be softly-broken by the mass differences between the Standard Model

particles and their superpartners; we have not observed equal mass superpartners. To avoid a

reintroduction of fine-tuning problems the mass difference should be small; the new particles

should be around the TeV scale. The details of the breaking of supersymmetry are not known,

and are not discussed here but comprehensive reviews can be found in the literature (for example
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in [35]).

2.3.2 The MSSM Higgs Sector

As we touched upon previously, the choice of the Standard Model Higgs potential is ad hoc.

We simply chose the simplest representation. The supersymmetric Higgs sector is a two Higgs

doublet model. Two constraints on extensions of the minimal Higgs lead us to consider the two

Higgs doublet model. The first is the experimental fact the parameter

ρ =
m2
W

m2
Z cos2 θW

(2.58)

is measured to be very close to 1. The second is that experimentally there are very strong

limits on the (non)existence of flavour changing neutral currents (FCNCs). In the minimal

Higgs model considered above these are absent. For higher representations of the Higgs one

can evade these limits by either pushing up the Higgs masses (to the unacceptably large 1

TeV) so that the tree level FCNCs are suppressed sufficiently or one follows the theorem in

[37]. This states that tree-level FCNCs will be absent if all fermions of a given electric charge

couple to no more than one Higgs doublet. Therefore, for the MSSM one introduces two Higgs

doublets; one couples to up type quarks and the other to down type quarks. This idea is also

reinforced because supersymmetry imposes structure on what Higgs multiplets are allowed in

the potential. The interactions of Higgs bosons and fermions arise from the superpotential [17]:

WF = wij

[
fĤi

1L̂
jR̂+ f1Ĥ

i
1Q̂

jD̂ + f2Ĥ
j
2Q̂

iÛ
]
. (2.59)

and supersymmetry prevents the inclusion ofH∗1 andH∗2 ; the superpotential must be an analytic

function of left chiral superfields. The simplest way to think of this is that supersymmetry

imposes that the superpotential be an analytic function of the superfields, but the Higgs

mechanism wants a term of the form φ†φ. Therefore we must introduce two superfields to

allow for this type of term.

2.3.2.1 Two Higgs Doublet Model

The next to minimal Higgs sector contains two Higgs doublets which we call φ1,φ2 with

hypercharge Y = 1. The scalar potential which spontaneously breaks SU(2)L × U(1)Y down
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to U(1)em is [17]:

V(φ1, φ2) = λ1(φ†1φ1 − υ2
1)2 + λ2(φ†2φ2 − υ2

2)2

+ λ3

[
(φ†1φ1 − υ2

1) + (φ†2φ2 − υ2
2)
]2

+ λ4

[
(φ†1φ1)(φ†2φ2)− (φ†1φ2)(φ†2φ1)

]
(2.60)

+ λ5

[
Re (φ†1φ2)− υ1υ2 cos ξ

]2
+ λ6

[
Im (φ†1φ2)− υ1υ2 sin ξ

]2
.

where the parameters λi are real. The minimum of this potential can be written as

〈φ1〉 =

(
0

υ1

)
〈φ2〉 =

(
0

υ2e
iξ

)
. (2.61)

Supersymmetry imposes the condition that λ5 = λ6 and therefore can redefine one of the fields

by rotating away the phase ξ. Thus our vacuum expectation values for the potential can be

chosen to be real and positive. Therefore, from here on we set ξ = 0. This is the most general

CP-invariant two-Higgs doublet model.

2.3.2.2 Higgs Potential in the MSSM

We carry out the same analysis as in the Standard Model case except we start from the vector

boson kinetic term where now g1, g2 are the SU(2), U(1) gauge couplings. :

DµH1 =
(
∂µ + ig1T ·Wµ + i

g2

2
Bµ

)
H1 (2.62)

DµH2 =
(
∂µ − ig1T

∗ ·Wµ − i
g2

2
Bµ

)
H2. (2.63)

We now have two vevs which modify our gauge boson mass relations as:

m2
W =

g2
2

2
(υ2

1 + υ2
2) (2.64)

m2
Z =

g2
1 + g2

2

2
(υ2

1 + υ2
2). (2.65)

The new vevs are related to the Standard Model one by the relation:

υ =
√
υ2

1 + υ2
2 . (2.66)

The Higgs potential is [38]

V = m2
1|H1|2 +m2

2|H2|2 −m2
12

(
εabHa1Hb2 + h.c.

)
(2.67)

+
1

8
(g2

1 + g2
2)
[
|H1|2 − |H2|2

]2
+

1

2
g2

2 |H†1H2|2 (2.68)
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where m1,m2,m12 are soft SUSY breaking parameters. We rewrite this in terms of component

fields, where the decomposition is

H1 =

(
H0

1

H−1

)
=

(
υ1 + 1√

2
(φ0

1 + iχ0
1)

−φ−1

)
(2.69)

H2 =

(
H+

2

H0
2

)
=

(
φ+

2

υ2 + 1√
2
(φ0

2 + iχ0
2)

)
. (2.70)

Both Higgs doublets develop a vev. We can use the SU(2)L symmetry to rotate the vev of

〈H1〉 = υ1 to its upper component and likewise 〈H2〉 = υ2 to its lower component. The vevs are

neutral forcing 〈φ−1 〉 = 0 and 〈φ+
2 〉 = 0. Furthermore, the Higgs potential has been constructed

to be CP-invariant therefore the φ and χ fields decouple. Also, conservation of electric charge

on its own forbids mixing between the charged scalars and the neutral scalars.

Minimizing the potential, and evaluating it at the above vevs gives the following constraints

m2
1 = −m12 tanβ +

1

4
(g1 + g2)(υ2

2 − υ2
1) (2.71)

m2
2 = −m12 tanβ +

1

4
(g1 + g2)(υ2

1 − υ2
2).

where we have defined the useful parameter:

tanβ =
υ2

υ1
. (2.72)

Therefore, one expects that large tanβ gives an enhancement to up-type quark couplings and,

conversely small tanβ enhances down-type quark couplings. We use the relations (2.71) to

extract the physical particles from the potential. The physical masses are

m2
A = −m12(cotβ + tanβ) (2.73)

m0
G = 0 (2.74)

mH,h =
1

2

[
(m2

A +m2
Z)±

√
(m2

A +m2
Z)2 − 4m2

Am
2
Z cos2 2β

]
(2.75)

m±H = −m12(cotβ + tanβ) +m2
W (2.76)

m±G = 0 (2.77)

and are obtained by rotating the gauge eigenstates using the following representation:(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
φ0

1

φ0
2

)
(2.78)(

G0

A0

)
=

(
cosβ sinβ

− sinβ cosβ

)(
χ0

1

χ0
2

)
(2.79)(

G±

H±

)
=

(
cosβ sinβ

− sinβ cosβ

)(
φ±1
φ±2

)
(2.80)
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where

tanα =
−(m2

A +m2
Z) sinβ cosβ

m2
Z cos2 β +m2

A sin2 β −m2
h

, −π
2
< α < 0. (2.81)

To summarize we have the following Higgs spectrum:

• h,H: 2 neutral CP even bosons

• A: 1 neutral CP odd boson

• H±: 2 charged bosons

• G0, G+, G− :3 unphysical Goldstone bosons.

For certain regions of parameter space, α and β can enhance the couplings of the charged

Higgs bosons to quarks. This could have new phenomenological consequences.

We are now in a position to piece together the mass spectrum; we expect m±H ≥ mW ,

mH ≥ mZ , mA ≥ mh. The lowest mass neutral Higgs is the h boson. There is interesting

result in the limit of m2
A > m2

Z , at fixed tanβ: we have the constraint

m2
h ≤ m2

Z cos2 2β. (2.82)

and the interactions of h are equivalent to the interactions of the Standard Model Higgs [17]. So

in this case we have a very strict upper bound where we expect a SM-like Higgs to be lighter than

the Higgs boson. Direct experimental searches at LEP2 for such a SM-like Higgs completely

rule out this mass range. The MSSM is saved by including radiative corrections which push the

expected mass up. One can conclude that, when looking at the MSSM electroweak breaking

sector, including one-loop corrections is necessary to avoid experimental constraints.

2.3.3 Sfermion Sector

We analyse the mixing in the Squark sector. Because in high energy physics the light quark

masses can be taken to be massless a usual approximation to take is that only the superpartners

of the top quark (the stop) mix but the squarks corresponding to the light quarks do not. This

is because the mixing matrix has a dependence on the mass of the quark. The squark mass

matrix is written as [38, 39]:

Lm = −1

2
(f̃†L, f̃

†
R)Z

(
f̃L

f̃R

)
(2.83)

where

Z =

(
MLL
f̃

+m2
f mf (MLR

f )∗

mfM
LR
f MRR

f̃
+m2

f

)
(2.84)
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where

MLL
f = m2

Z(If3 −Qf sin θw) cos 2β +

{
M2
Q̃

for left handed squarks

M2
L̃

for left handed sleptons
(2.85)

MLR
f = Af − µ∗

{
cotβ for u-type sfermions

tanβ for d-type sfermions
(2.86)

MRR
f = m2

Z(Qf sin2 θw) cos 2β +


M2
Ũ

for right handed u-type squarks

M2
D̃

for right handed d-type squarks

M2
L̃

for right handed sleptons

(2.87)

The parameters Af are the entries in the Yukawa matrix in the superpotential and are present

in the couplings between sfermions and Higgs bosons. The parameter µ is also present in our

superpotential. We diagonalize this matrix to obtain the physical mass eigenstates via the

unitary matrix S:

SfZSf† =

(
m2
f̃1

0

0 m2
f̃2

)
. (2.88)

and the masses are

m2
f̃

= m2
f +

1

2

(
MLL
f +MRR

f ∓
√

(MLL
f −MRR

f )2 + 4m2
f |MLR

f |2
)
. (2.89)

2.3.4 Neutralino Sector

Supersymmetry adds an extra layer of complexity to the electroweak sector. In the MSSM the 4

physical Higgs bosons have fermionic superpartners called Higgsinos and the electroweak gauge

bosons have fermionic partners also, namely the wino, zino and photino. Due to electroweak

symmetry breaking, in analogy to the mixing of the B and W 3 bosons in the Standard Model,

any particle with the same charge, color and spin will mix. So the physical states of this sector

are two Charginos (a mixing of the charged Higgs and winos) and 4 Neutralinos (a mixing of

the neutral Higgsinos and the zino and photino). Here we look at the mixing of the Neutralino

sector in detail in order to clarify the parameters that enter our result.

There are three sources of mass terms in this sector [40]. Firstly, we have quadratic terms

in the superpotential W that, when the derivative is taken, give bilinear terms. Secondly,

electroweak symmetry breaking gives mass terms to the gauginos when the Higgs bosons acquire

a vev (in analogy to the Standard Model case). Finally, there are soft supersymmetry breaking

gaugino masses.

We write the fermionic superpartners, in what is known as the Wino-Bino-Higgsino basis,

as

ψ0
j =

(
B̃0, W̃ 0, H̃0

2 , H̃
0
1

)
. (2.90)
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2.3. Supersymmetry

Explicitly, all the contributions mentioned above, give the mass term in this basis as [17] :

Lm = −1

2
(ψ0)TY ψ0 + h.c. (2.91)

where Y is in general a complex symmetric matrix given by

Y =


M1 0 −mZ sin θW cosβ mZ sin θw sinβ

0 M2 mZ cos θW cosβ −mZ cos θw sinβ

−mZ sin θW cosβ mZ cos θW cosβ 0 −µ
mZ sin θW sinβ −mZ cos θW sinβ −µ 0


(2.92)

with M1 the Majorana mass term for the bino, M2 is the Majorana mass term for the wino.

All the other parameters have been defined previously. We define the two component mass

eigenstates as

χ0
i = Nijψ

0
j (2.93)

where i, j run from 1 to 4. N is a unitary matrix that diagonalises the mass matrix Y :

N∗Y N−1 = ND. (2.94)

One can choose N such that the components of ND are real and non-negative. We can then

write our physical, 4-component, Majorana fermions as

χ̃0
i =

(
χ0
i

χ̄i

)
(2.95)

where again, i runs from 1 to 4.

It is sometimes useful to use the photino, zino, higgsino basis i.e.

ψ
′0
j =

(
Ã0, Z̃0, H̃0

2 , H̃
0
1

)
(2.96)

and χ0
i = N

′

ijψ
′0
j . We can relate the two mixing matrices by

Ni1 = cos θwN
′

i1 − sin θwN
′

i2 (2.97)

Ni2 = sin θwN
′

i1 + cos θwN
′

i2 (2.98)

Ni3 = N
′

i3 (2.99)

Ni4 = N
′

i4. (2.100)

i.e. the wino and bino components of the mixing matrices mix in the same manner as the W 3, B

gauge bosons.

The diagonalisation of the matrix Y can be computed analytically but it is simple, for a
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Figure 2.5: A plot of the excluded region in the mSUGRA breaking scenario [43] .

given point in parameter space, to compute it numerically.

2.3.5 The Search for Supersymmetry

The search for supersymmetry is entering a critical stage, as new data from the LHC is analyzed.

In analogy to the search for the Higgs boson, one could expect deviations from the Standard

Model in low energy experiments that could point towards new physics. Obviously we want to

establish what this new physics is so we need a collider with energy at or beyond the energy

scale of the new physics. In this section we highlight the status of experimental searches for

supersymmetry through both the direct and indirect searches.

Due to the vast number of parameters present in the MSSM it is useful to introduce

certain benchmark points for experimental and theoretical comparison. These are based on

specific SUSY breaking scenarios [41]. The experimental strategy is to search for generic

SUSY signatures and then, from the determined couplings and masses, determine the nature

of supersymmetry breaking. A review of these search strategies can be found in [42].

2.3.5.1 Direct Searches

The lack of any direct evidence for super partners has led to lower bounds on their masses,

however, these negative results are often model dependent. An example of such a result can be

found in [43] and we present it in Figure 2.5. They look at a very generic SUSY signature, that

28



2.3. Supersymmetry

of large missing transverse energy and multiple jets. One can look at this search channel in

the context of the mSUGRA (minimal supergravity) scenario where supersymmetry breaking

is mediated by gravitation interactions, thus, reducing the SUSY parameter space to only 5

parameters : the common scalar mass m0, the common gaugino mass m1/2, the common soft

trilinear SUSY breaking parameters A0, the ratio of the Higgs vevs tanβ and the sign of the

Higgsino mass term µ. In this analysis mSUGRA parameters are chosen to be A0 = 0, tanβ = 5

and µ < 0. Then there are two parameters to vary (m0 and m1/2). The gluino and squark

masses are a function of these two free parameters and shown in the plot are 95% C.L. exclusion

regions.

More recent results from the LHC have also shown negative results in the search for

superpartners. As of writing, the ATLAS [44] and CMS collaboration [45] have released similar

plots to the previous one. The ATLAS result is shown in Figure 2.6. This plot contains a lot

of information, and again, it is model dependent. What is interesting about this plot, is the

difference between the exclusion regions between 2010 and 2011. At this rate supersymmetry,

if it exists, should be in the reach of the LHC within the next year. The collaboration exclude

gluino masses below 500 GeV at the 95 % confidence level for these given parameter points.

Figure 2.6: A plot of the excluded region in the mSUGRA/CMSSM breaking scenario at the
LHC [44] .
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Figure 2.7: The χ2 plots for mh in two SUSY breaking scenarios [46]. On the left hand side
we have the CMSSM breaking scenario and on the right the NUHM1 model. The dotted lines
have not included any LHC data, the dashed lines include CMS data and the solid lines include
ATLAS data.

2.3.5.2 Indirect Searches

As we discussed earlier, new physics can have an effect on electroweak observables through new

particles entering internal loops. Therefore, one can look at the effect that SUSY can have on

our Higgs mass plot Figure 2.3. The direct search limit for a Standard Model Higgs at LEP,

114.4 GeV, and the mass preferred by the electroweak observables is 92 GeV. We show how

this plot changes for two specific SUSY breaking scenarios (these plots are presented in [46]) in

Figure 2.7. The scenarios we consider are firstly the CMSSM, where the soft-SUSY breaking

parameters are assumed to be universal at the GUT scale. This has four input parameters:

the universal soft-SUSY breaking parameter m0 and m1/2, a universal trilinear soft-SUSY

breaking parameter A0, tanβ and the sign of µ. We also consider the NUMH1 parameter

set where we have one additional parameter which is the soft-SUSY breaking contribution to

the masses of the Higgs doublets. The results show that, for the NUMH1 parameter set, the

electroweak observable preferred value is actually increased above the direct search limit (for

these parameters the LEP direct search limit is modified slightly because the hZZ coupling

can be reduced). However, for the CMSSM this direct search limit at LEP is the same as the

Standard Model limit and we see that the preferred value is pushed up form the Standard Model

case. The tension between the LEP bound and the preferred mass of the Higgs is alleviated, in

the SUSY models considered.
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Chapter 3

Details of Next to Leading Order

Calculations

Over the past few years there has been great progress in the calculation of Next to Leading

Order (NLO) corrections to many physical processes for the LHC and also in the development

of tools required for their calculation. A recent review of the state of the art is given in [47].

In this chapter we describe the key ingredients of a NLO calculation then go on to describe the

technical details involved in our calculation.

3.1 Set up of Calculation

Leading order results suffer from strong dependence on the scales that enter due to the

truncation of the perturbative series. Typically, a leading order result will point to the order of

magnitude of a cross section and to make a more predictive statement one needs to calculate

higher order corrections. We concentrate on the next order in perturbation theory. This includes

corrections where a particle is emitted and re-absorbed (virtual) and ones where the particle is

not re-absorbed (real). A sample diagram for the process e−e+ → 2 jets at NLO (is shown in

Figure 3.1. The results for each component of a generic process can be divergent individually.

Figure 3.1: From left to right: the born, real correction and virtual correction to the process
e−e+ → 2 jets at NLO.

Specifically, one divergence is of ultraviolet nature in the virtual part from the loop integral.
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Chapter 3. Details of Next to Leading Order Calculations

One needs to specify a renormalization procedure in order to obtain a finite (in the ultraviolet

region) result.

Once renormalization has been performed other divergences remain. One has infrared

divergences coming from the virtual loop integral (present in the renormalised virtual matrix

element) and infrared divergences coming from the integral over the soft and collinear region

in the phase space of the real emission contribution. These two divergences are expected to

cancel between the real and virtual part of the calculation [48, 49, 50] for an inclusive enough

observable.

There is a problem in performing a numerical evaluation of the cross section due to the

mismatch in the number of particles in the phase space. The crucial point is that the infrared

divergences in the renormalized virtual matrix element are explicit in the matrix element and

are thus global with respect to the phase space; the divergences of the real emission graphs

are local as they are implicit in the phase space integral. A näıve numerical setup will not

incorporate this cancellation.

We follow the strategy of [51] where a local counterterm is subtracted from the real emission

part before the phase space integral is performed. This same counterterm is then added back

after the extra one body phase space integral is performed (in order to match the phase space

between the virtual part and the counterterm). Schematically, this looks like

dσNLO =

∫
n+1

[
(dσR)ε=0 − (dσA)ε=0

]
+

∫
n

[
dσV +

∫
1

dσA
]
ε=0

. (3.1)

whereR stands for the real emission piece, V for the virtual part and A for the local counterterm.

Based on the observation that the matrix element factorizes in the soft-collinear region one is

able to write down a process independent algorithm for calculating the counter term and the

integral of the counter term. This is known as “dipole subtraction” [51]. We adopt this strategy

for the real radiation terms in our calculation.

3.2 Hadronic Observables and Scale Dependence at Next

to Leading Order

The matrix element for a given process is a function of the relevant initial state and final state

configuration: in color, momenta, helicity and polarisations. Once the matrix element squared

has been calculated at a given order one needs to integrate over all the possible final states and

normalise by the initial state. This means we average (sum) over the initial (final) state discrete

variables (polarisations/color/helicities) and for the momenta we divide by the incoming “flux”

factor and integrate over the final-state phase space. Thus we arrive at the partonic cross

section for 2 pointlike incoming particles for a 2→ n process:

σ̂ab(pa, pb) =
1

2ŝab

∫
dΦn|Mab|2 (3.2)
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3.3. Color

where ŝab = (pa + pb)
2 is the partonic centre of mass energy, dΦn is the n-body phase space

and Mab is the matrix element for the partonic process.

We are interested in the hadronic equivalent for LHC processes. We must convolve this

partonic cross section with two parton distribution functions (pdfs) and for a given hadronic

process sum over all possible initial partonic states present in the pdf. The hadronic cross

section is therefore [18]:

σ =
∑
a,b

∫
dxa dxbfa/A(xa, µ

2
F )fb/B(xb, µ

2
F )σ̂ab(xaPA, xbPB , µ

2
F , αs(µ

2
R)). (3.3)

where each parton takes a fraction of the incoming hadronic momenta pa = xaPa. We must

pick a scale (the factorisation scale µF ) that splits the process in two: the high energy hard

scattering event and the low energy non-perturbative physics that we include in the pdf. If

we were to include all orders in perturbation theory the dependence on this scale would vanish

from our cross section. However, we calculate at NLO therefore we expect to see some residual

scale dependence in our result; by truncating our series we lose predictive power.

We expect scale dependence from another source: the running of αs. Asymptotic freedom

ensures that the expansion of the hard subprocess as a perturbation series in αs is a good

approximation at high energies because our expansion parameter is small. If we truncate this

series we also expect a dependence on the renormalization scale to be present in our result.

3.3 Color

When calculating a QCD amplitude the color algebra can be factorised from the rest of the

structure. In this section we outline how we treat this and give a couple of examples of how it

is used.

The strong force is described by QCD, a gauge theory of SU(3), where the force carrier (the

gluon) lies in the adjoint representation and the matter particles (quarks) lie in the fundamental

representation. For this section we generalise to SU(Nc) where Nc is the number of colors. The

Lie algebra of SU(Nc) is written as

[
TA, TB

]
= ifABCTC . (3.4)

We let TA stand for the generators in the fundamental representation and the generators in

the adjoint representation are written in terms of the structure constants fABC . Firstly we

normalise our generators:

tr
{
TATB

}
= TRδ

AB (3.5)

where we make the choice of convention TR = 1/2. We label the two representations with the

Casimirs CA and CF such that:
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TAikT
A
kj = CF δij (3.6)

fXYAfXYB = CAδ
AB (3.7)

where CA = Nc and CF = (N2
c − 1)/2Nc and the summation convention is applied. For SU(3)

these values are

CF =
4

3
CA = Nc = 3. (3.8)

In order to calculate color-factors of diagrams in QCD one can use diagrammatic methods as

outlined in [52]. We outline the “Feynman rules” for constructing the color factors in Figure 3.2.

3.3.1 Color Basis

A QCD amplitude will have a colour structure that we wish to strip off so we can write them

as

M =
∑
i

Ai|ci〉. (3.9)

The vectors |ci〉 make up our color basis and the coefficients of this decomposition, Ai, are

known as partial amplitudes, which are smaller gauge invariant pieces of our amplitude. There

are several ways of completing this decomposition and some are more suited to certain processes

[53]. We choose to decompose our amplitudes by using the generators of SU(Nc) as fundamental

objects. Therefore our basis will be written in terms of the objects {TA, δij}.
The color basis is, in general, not orthogonal therefore we need to calculate the color-

correlation matrices. This is straightforward; only a certain number of rules are required to

calculate this. Arriving at our color factor is a two step process:

1. All structure constants (fABC) are converted to fundamental generators of SU(Nc) (TA).

2. Fundamental generators (TA) can be written in terms of the Kronecker deltas (δij).

We now outline the two steps.

3.3.1.1 Step 1

This step can be achieved by inverting the commutation relations. We have the following

formulae: the first for when we have a contraction with one generator, the second for when we

have no contractions:

fABCTCij = −i
(
TAikT

B
kj − TBikTAkj

)
(3.10)

fABC = − i

TR

(
TAij T

B
jkT

C
ki − TCij TBjkTAki

)
. (3.11)

We draw the graphical representation of these relations in Figure 3.3 and Figure 3.4.
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3.3.1.2 Step 2

All contractions of the generators can be simplified by either using the Fierz-identity:

TAij T
A
kl = TR

(
δilδkj −

1

Nc
δijδkl

)
. (3.12)

or the traceless condition on the generator:

tr
{
TA
}

= 0. (3.13)

The Fierz identity is drawn in Figure 3.5.

Certain combinations of coefficients can be eliminated by constructing new rules from the

above ones. These optional identities are:

fAXY fBYX = −2Nc tr
{
TATB

}
(3.14)

fAXY fBY ZfCZX = fABCTRNc (3.15)

TAij T
B
jkf

ABC = iTRNcT
C
ik (3.16)

TAij T
B
jkT

A
kl = −TR

Nc
TBil . (3.17)

The identity (3.14) is simply a rewriting of the usual sum over structure constants (3.7). The

second identity here (3.15) can be shown by first eliminating f by applying (3.11) and repeatedly

applying (3.12) and (3.13) to arrive at our result. The cyclic property of the trace must also

be used. Identity (3.16) can be shown by rewriting the two T generators in terms of symmetric

and anti-symmetric tensors and using the relation fAXY fBXY = Ncδ
AB . The identity (3.17)

can be shown by applying (3.12) and (3.13). We write down the graphical representation of

(3.15) in Figure 3.7 and (3.16) in Figure 3.8.

3.3.2 Color Insertion Operators

We define the following notation of color insertion operators:

〈c′ |Tα|c〉 (3.18)

where α stands for the parton in the color basis. If the parton is a quark then T is a fundamental

generator TA, if the parton is an anti-quark then it is −TA. If the parton is a gluon then T is

fABC . We now show explicit examples for this.

3.3.3 Example: Neutralino Pair Production

For the process qq̄ → χ0χ0 the color structure is simple due to the final state (the Neutralinos)

being colorless. Therefore it is sufficient to define only one color vector. We choose the following
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ji

δij

BA

δAB

A

ji

TAij

A

B

C

ifABC

Figure 3.2: Feynman rules for the computation of color factors in the gauge group SU(Nc). The
dashed line is the adjoint representation, the arrowed line is the fundamental representation.
All tensors are denoted as vertices: the generators in the adjoint representation (the structure
constants of the Lie Algebra) are orientated such that the indices are read in counter clockwise
fashion. If two legs are swapped one obtains a minus sign.

− =

Figure 3.3: Diagrammatic representation of the inversion of the Lie algebra (3.10).

=TR −

Figure 3.4: Diagrammatic representation of identity of the Lie algebra (3.11).
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= TR − 1
Nc

Figure 3.5: Diagrammatic representation of the Fierz identity (3.12).

= TR

= CF

= CA

Figure 3.6: The Casimirs written in diagrammatic form.

= TRNc

Figure 3.7: Diagrammatic representation of identity (3.15).
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= TRNc

Figure 3.8: Diagrammatic representation of identity (3.16).

color basis:

|1〉 = δi1j2 . (3.19)

We label the incoming quark with i1 and the outgoing anti-quark as j2. The heights of the

indices denote the “color flow” and the labelling of the color operators follows the numbering

of these indices. We can insert a gluon on either the quark or anti-quark. We can use gauge-

invariance to write

(T1 + T2)|1〉 = 0. (3.20)

Therefore we can write all the color structures in terms of the Casimirs CF :

T1 ·T2|1〉 = −T2
1|1〉 = −CF |1〉 (3.21)

T2
1|1〉 = CF |1〉 (3.22)

T2
2|1〉 = CF |1〉. (3.23)

Our color correlation “matrix” is simply

〈1|1〉 = Nc. (3.24)

3.3.4 Example: Neutralino Pair Production plus One Jet

For the process qq → gχχ the color structure is less trivial than the previous case due to the

gluon in the final state. However, as we have only three partons, we can actually write the color

algebra in terms of the Casimir operators.

We choose the color “basis” as

|1〉 = TA3
i1
j2 . (3.25)
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Color conservation gives us the following results:

T2 ·T3|1〉 =
1

2

[
T2

1 −T2
2 −T2

3

]
|1〉 (3.26)

T1 ·T3|1〉 =
1

2

[
T2

2 −T2
1 −T2

3

]
|1〉 (3.27)

T1 ·T2|1〉 =
1

2

[
T2

3 −T2
1 −T2

2

]
|1〉 (3.28)

where

T2
1|1〉 = T2

2|1〉 = CF |1〉 (3.29)

T2
3|1〉 = CA|1〉 = Nc|1〉. (3.30)

Our color-correlation operators give:

T1 ·T3|1〉 = T2 ·T3|1〉 = −CA
2
|1〉 (3.31)

T1 ·T2|1〉 =
1

2Nc
|1〉, (3.32)

and also

〈1|1〉 = CFNc. (3.33)

3.4 Spinor Helicity Formalism

3.4.1 Definitions

The spinor helicity method was introduced in [54] for massless particles in cross-section

calculations. The method is based on two principles: firstly, that one can decompose amplitudes

into smaller gauge-invariant pieces and secondly, that these pieces can be written as functions

of more fundamental “spinor products” as opposed to Lorentz scalar products of momentum.

The final results one arrives at for the amplitudes tend to be more compact and can therefore

lead to fast and numerically stable code.

We consider the spinors u(p) and v(p) the solutions to the Dirac equation

(/p−m)u(p) = 0 (3.34)

(/p+m)v(p) = 0. (3.35)

We define the usual chirality projection operators Π− = 1
2 (I− γ5) and Π+ = 1

2 (I + γ5)

where I is the identity matrix in spinor space. In the massless limit the positive and

negative energy solutions of the massless four dimensional Dirac equation are identical up

to normalisation conventions. We can choose them to be equal to one another. The helicity

eigenstates of massless spinors are denoted by
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Π+u(ki) = Π+v(ki) = |i〉 (3.36)

Π−u(ki) = Π−v(ki) = |i] (3.37)

ū(ki)Π− = v̄(ki)Π− = [i| (3.38)

ū(ki)Π+ = v̄(ki)Π+ = 〈i| (3.39)

where for negative energy solutions, the helicity is the negative of the chirality (or γ5) eigenvalue

i.e.

v∓(p) =
1

2
(1± γ5)v(p) (3.40)

u±(p) =
1

2
(1± γ5)u(p). (3.41)

Physically, helicity is the dot product of the spin vector and the momentum. This is a well

defined quantity for massless particles as one cannot Lorentz boost to a frame that overtakes

the particle. Therefore to all observers the particle has the same helicity. Chirality, is the

mathematical abstraction of this idea for massive particles. Helicity is no longer constant for

massive particles but the chirality is a well defined concept. Because we can no longer use

helicity as a quantum number we seem to lose the ability to use the above compact notation.

We can work round this by choosing a specific frame in which to define the helicity and then

use a light cone decomposition of our massive momentum. In this frame we now have a well

defined helicity state. Explicitly, for a given lightlike vector q, our massive vector pI can be

written as a sum of two lightlike vectors

pµI = kµi +
p2
I

2pI · q
qµ = kµi +

m2
I

2ki · q
qµ (3.42)

k2
i = q2 = 0

which defines the lightlike vector ki. The vector q is arbitrary. Using this decomposition we can

write the solutions of the massive Dirac equation in terms of massless spinors. These solutions

are

(/pI ∓mI)|I±〉 = 0 (3.43)

(/pI ∓mI)|I±] = 0 (3.44)
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and are expressed as

|I±〉 = |i〉 ± mI

[iq]
|q] (3.45)

|I±] = |i]± mI

〈iq〉 |q〉 (3.46)

〈I±| = 〈i| ± mI

[qi]
[q| (3.47)

[I±| = [i| ± mI

〈qi〉 〈q|. (3.48)

That these satisfy the Dirac equation can be shown using the completeness property

|i〉[i|+ |i]〈i| = /ki. (3.49)

We can now write the spinor products for massive particles in terms of massless ones:

〈IJ〉 = 〈ij〉 (3.50)

[IJ ] = [ij] (3.51)

(due to anti-symmetry conditions) and, despite the similarity of appearance, the mixed angled

spinor products are non-zero for massive spinors

[IJ〉 =

(
mI

siq
+
mJ

sjq

)
[i|/q|j〉 (3.52)

〈IJ ] =

(
mI

siq
+
mJ

sjq

)
〈i|/q|j] (3.53)

(3.54)

where siq is the Mandelstam variable (pi + q)2 = 2pi · q.

3.4.1.1 Numerical Implementation

To evaluate these spinor products numerically we need to choose an explicit representation of

the Dirac matrices. At high energy it is convenient to use the Weyl basis

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
1 0

0 −1

)
(3.55)

so that the explicit form of the Chiral projection operators is

Π+ =

(
1 0

0 0

)
,Π− =

(
0 0

0 1

)
. (3.56)

where σi are the usual Pauli matrices. To gain an explicit representation for the solutions of

the massless Dirac equation it is useful to write down the representation of /p in the Weyl basis.
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We have

/p =


0 0 p+ p1 − ip2

0 0 p1 + ip2 p−

p− −p1 + ip2 0 0

−p1 + ip2 p+ 0 0

 (3.57)

where p± = p0 ± p3. We can choose the massless spinors as follows:

u+(p) =


√
p+√

p−eiφp

0

0

 , u−(p) =


0

0√
p−e−iφp

−
√
p+

 (3.58)

where the phase is labelled by the momentum it refers to:

e±iφp =
p1 ± ip2√

(p1)2 + (p2)2
=
p1 ± ip2√
p+p−

. (3.59)

We can write down an explicit expression for our spinor products, in the case where both the

energies are positive, k0
i > 0, k0

j > 0.

〈ij〉 =
√
k−i k

+
j e

iφki −
√
k+
i k
−
j e

iφkj =
√
|sij |eiφij

[ij] =
√
k+
i k
−
j e
−iφkj −

√
k−i k

+
j e
−iφki = −

√
|sij |e−iφij . (3.60)

where sij = 2ki · kj and

cosφij =
k1
i k

+
j − k1

jk
+
i√

|sij |k+
i k

+
j

(3.61)

sinφij =
k2
i k

+
j − k2

jk
+
i√

|sij |k+
i k

+
j

. (3.62)

This completes our numerical implementation when both the energies are positive. To define

the negative energy case we use the same formula (3.60) for 〈ij〉 but with ki → −ki if k0
i < 0

and with an extra factor of i for each negative energy particle. We then define [ij] using the

following identity [55]:

〈ij〉[ji] = ū(ki)Π+u(kj)ū(kj)Π−u(ki) = tr{Π− /ki /kj} (3.63)

=
1

2
ki · kj = sij . (3.64)

3.4.1.2 Collection of useful Identities

We can use the following useful identities in algebraic manipulation:
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• Projection operators:

|i〉[i| = Π+/ki (3.65)

|i]〈i| = Π−/ki (3.66)

|i〉[i|+ |i]〈i| = /ki (3.67)

• Gordon identity:

〈i|γµ|i] = [i|γµ|i〉 = 2kµi (3.68)

• Anti-symmetry:

〈ij〉 = −〈ji〉, [ij] = −[ji], 〈ii〉 = 0 (3.69)

• Schouten identities:

〈ij〉〈kl〉 = 〈ik〉〈jl〉+ 〈il〉〈kj〉 (3.70)

[ij][kl] = [ik][jl] + [il][kj]. (3.71)

(this follows from explicitly showing that |i〉〈j| − |j〉〈i| = 〈ji〉Π+.

• Complex conjugation:

〈ij〉∗ = sign(ki · kj)[ji] (3.72)

• Reversing Spinor Line:

– Even case:

〈i|γµ1 · · · γµ2n |j〉 = −〈j|γµ2n · · · γµ1 |i〉 (3.73)

[i|γµ1 · · · γµ2n |j] = −[j|γµ2n · · · γµ1 |i] (3.74)

– Odd case:

〈i|γµ1 · · · γµ2n+1 |j] = 〈j|γµ2n+1 · · · γµ1 |i] (3.75)

[i|γµ1 · · · γµ2n+1 |j〉 = [j|γµ2n+1 · · · γµ1 |i〉 (3.76)
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3.4.1.3 Massless Gauge Bosons

We can also cast massless gauge boson polarization vectors in terms of massless helicity spinors

as in reference [54]. Again, one needs to define a reference momentum q. The definition is

ε±µ = ±〈q
∓|γµ|k∓〉√
2〈q∓|k±〉

(3.77)

which gives

ε+
µ (k, q) =

〈q|γµ|k]√
2〈qk〉

(3.78)

ε−µ (k, q) =
[q|γµ|k〉√

2[kq]
(3.79)

and the complex conjugation (for outgoing particles) gives

(ε+
µ (k, q))∗ =

[q|γµ|k〉√
2[kq]

(3.80)

(ε−µ (k, q))∗ =
〈q|γµ|k]√

2〈qk〉
(3.81)

i.e. complex conjugation reverses the helicity. Since /k|k±〉 = 0 the polarisation vector is

transverse to our momentum vector, independent of our choice of reference vector q :

ε±(k, q) · k = 0. (3.82)

The polarisation vectors are also orthonormal: |ε|2 = ε+ · (ε+)∗ = −1 and ε+ · (ε−)∗ = 0

(by charge conjugation and Fierz rearrangement). Finally, the completeness relation for the

polarisation vectors gives:

∑
λ=±1

ελµ(k, q)(ελν (k, q))∗ = −gµν +
qµkν + qνkµ

k · q . (3.83)

which is the same as that for a light-like gauge. There are only two physical polarisations and

the polarisation sum is gauge dependent. We have chosen the gauge here qµε
µ(k) = 0 where

qµ is a light-like four vector. In the case of the massive spinors the reference vector had the

physical significance of defining a frame to allow a definition of helicity; the polarisation vector

is constructed such that a shift in the reference vector q is equivalent to a gauge transformation.

We can see this by considering the difference between two polarisation vectors at two different
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reference vectors q and q
′
,

∆ε+µ = ε+µ (k, q
′
)− ε+µ (k, q) =

〈q′ |γµ|k]√
2〈q′k〉

− 〈q|γµ|k]√
2〈qk〉

= −
(
〈q′ |γµ|k]〈kq〉+ 〈q|γµ|k]〈kq′〉√

2〈q′k〉〈qk〉

)
= −

√
2〈q′q〉

〈q′k〉〈qk〉k
µ, (3.84)

and noting that the shift in reference momentum induces a shift in polarisation vector

proportional to kµ.

3.4.1.4 Massive Gauge bosons

We can extend our formalism to include massive gauge bosons also, where k2 = m2. The three

conditions we need to satisfy in the massive case are as follows [56]:

• transversality

kµε±µ (k) = 0 (3.85)

• orthonormality

ελ1(k) · (ελ2(k))∗ = −δλ1λ2
(3.86)

• completeness

∑
λ=−1,0,+1

ελµ(k)(ελν (k))∗ = −gµν +
kµkν
m2

. (3.87)

Again we can use the light cone splitting, where we define a new massless vector k
′

in terms

of our massive vector k and a lightlike reference vector q:

kµ = k′
µ

+
m2
I

2k′ · q q
µ (3.88)

k
′2 = q2 = 0.

We can choose two of the polarisation vectors to be the same as the massless case

ε+
µ (k, q, k

′
) =
〈q|γµ|k

′
]√

2〈qk′〉
(3.89)

ε−µ (k, q, k
′
) =

[q|γµ|k
′〉√

2[k′q]
. (3.90)
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and then the third polarisation vector is

ε0
µ(k, q, k

′
) =

1

m

(
k
′

µ −
m2

2k′ · q qµ
)

=
1

m
(2k

′

µ − kµ) (3.91)

=
1

m

(
k
′

µ −
m2

[qk′ ]〈k′q〉qµ
)
.

3.4.2 Chisholm Identities

In the previous section we have constructed a formalism in which massive fermions and boson

can be written in terms of massless helicity spinors. In the following section we described how

any amplitude can be reduced to products of spinors 〈ij〉 and [ij] to be evaluated numerically.

After we rewrite the massive spinors and vector boson polarisation vectors in terms of

massless helicity spinors as explained above our expression consists of Dirac matrices sandwiched

between two spinor lines. These Dirac matrices can be contracted with a vector (e.g. /p) or

with another Dirac matrix either in the same spinor chain or in another. Whilst, in principle,

this could be completed numerically, it is much more efficient to algebraically reduce these

expressions. To this end we can repeatedly apply the Chisholm identities [1]. In what follows

we let Γ stand for a string of Dirac matrices with an odd number of elements and therefore Γγρ

is an even string. We have the following two contraction identities

γµΓγµ = −2
←−
Γ (3.92)

γµΓγργµ = 2(γρΓ +
←−
Γ γρ)

with
←−
Γ labels the reverse sequence of Dirac matrices in Γ. We can convert any spinor line into

a trace using the following procedure:

〈i| · · · |j〉 = 〈i| · · · |j〉 [jp]〈pq〉[qi]
[jp]〈pq〉[qi] (3.93a)

=
tr
{

Π−/ki · · · /kj/p/q
}

[j|/p/q|i]
.

Likewise we derive

[i| · · · |j] =
tr
{

Π+/ki · · · /kj/p/q
}

〈j|/p/q|i〉
(3.93b)

〈i| · · · |j] =
tr
{

Π−/ki · · · /kj/p
}

〈j|/p|i]
(3.93c)

[i| · · · |j〉 =
tr
{

Π+/ki · · · /kj/p
}

[j|/p|i〉
. (3.93d)
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The Chisholm identity is

tr
{
γµ1 · · · γ2m+1γρ

}
γρ = 2(γµ1 · · · γ2m+1 + γ2m+1 · · · γµ1). (3.94)

The application of these identities to spinor chains yields:

〈i|ΓγµΓ
′ |j〉γµ = 2Γ

′ |j〉〈i|Γ− 2
←−
Γ |i〉〈j|←−Γ ′ (3.95a)

[i|ΓγµΓ
′ |j]γµ = 2Γ

′ |j][i|Γ− 2
←−
Γ |i][j|←−Γ ′ (3.95b)

〈i|ΓγµΓ
′ |j]γµ = 2Γ

′ |j][i|Γ + 2
←−
Γ |i][j|←−Γ ′ (3.95c)

[i|ΓγµΓ
′ |j〉γµ = 2Γ

′ |j〉[i|Γ− 2
←−
Γ |i]〈j|←−Γ ′ . (3.95d)

where Γ and Γ
′

represent a string of either an odd or an even number of Dirac matrices. These

are simply derived using (3.93a). These identities are only valid when the left hand side is non-

zero (for example in (3.95a) if Γ
′
γµΓ

′
is an odd number then this is zero). So in implementing

these identities one must count the number of Dirac matrices lying between the spinors.

Repeated application of (3.95) and (3.92) ensures that any amplitude (with no free Lorentz

indices) can be reduced to spinor products which is ideal for a numerical implementation.

3.5 Majorana Fermions

Majorana fermions arise in supersymmetric extensions to the Standard Model. For example,

the supersymmetric partner of the gluon is the gluino and has the kinetic term (we drop color

indices)

Lgluino ⊃
1

2
¯̃giγµ∂

µg̃. (3.96)

In supersymmetric theories, SUSY treats left and right handed particles separately. For

example, a quark has two superpartners: the left and right handed squarks. On the contrary

if one tries to write down a supersymmetric partner for the gluon (the gluino) one arrives at a

Weyl fermion. It for this reason that the “natural” representation for supersymmetric fermions

is Weyl fermions. To write the gluino as a Dirac fermion one is forced to write it as a Majorana

fermion. The same can be said when we write down the supersymmetric partners of any of the

bosons in our theory: the supersymmetric partners of the Z , A and Higgs bosons that combine

to form the Neutralinos.

A Majorana fermion is it own anti-particle i.e. it is invariant under charge conjugation:

ψ̃M = Cψ̄TM = ψM . (3.97)

The charge-conjugation matrix has the properties:

C† = C−1, CT = −C, CΓTi C
−1 = ηiΓi (3.98)
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with

ηi =

{
+1 for Γi = 1, γ5, γµγ5

−1 for Γi = γµ.
(3.99)

Because the Majorana fermion is its own anti-particle then it follows that any vertex

involving them must violate fermion number flow; the fermion flow in the Feynman diagram

is ill-defined. A consistent way of dealing with this was proposed in [57]. There are two

drawbacks with this approach; charge conjugation matrices are explicitly introduced into the

Feynman rules and the relative sign of the Feynman graphs needs to be determined from the

original Wick contractions i.e. one has to take a step back from the Feynman rules.

We follow the approach in [58] which has been implemented in [59]. Dirac fermions have an

arrow denoting the fermion number flow, and Majorana fermions do not have an arrow. The

idea is that we place all fermions (Majorana or not) on an equal footing by realizing that each

vertex can be written in one of two equivalent ways: one in which the fermion flow follows the

fermion number flow, and the other “flipped” vertex, where the fermion flows in the opposite

direction. In our implementation we impose a fermion flow on the vertex and “flip” the vertices

and spinors where necessary; we follow the imposed fermion flow and when the “flipped” version

of the vertex is encountered we simply apply the flipping rules. For our purposes, the number

of flipping rules required is quite small. Explicitly they are

(γµ)
′

= −γµ
(Π±)

′
= Π±

(3.100)

and for the spinors

|p〉′ = 〈p|
|p]′ = [p|.

(3.101)

This leads to the following rule for the fermionic propagator:

S
′
(p) =

1

−/p−m
= S(−p). (3.102)

Another appealing feature of this method is that the relative sign between graphs can be

determined directly from our Feynman graphs without reverting back to the original Wick

contractions. To compute a consistent relative sign of Feynman graphs each graph must be

multiplied by (−1)P+L where

• P : the parity of the permutation of external spinors with respect to some reference order,

• L : the number of closed fermion loops.

This sign is determined after the flipping rules are applied.

3.5.1 Working with Majorana Spinors

We provide some examples to illustrate the points above [1].
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3.5.1.1 Charge Conjugation of a Vector Current

We illustrate our approach through the following simple example. The vector current,

〈p+|γµ|q+〉, satisfies the charge conjugation relation

〈p+|γµ|q+〉 = 〈q−|γµ|p−〉, (3.103)

which we can show explicitly using charge conjugation relations. This charge conjugation

operation is equivalent to us reversing the fermion flow arrow. Therefore we can use

Equations (3.100) to show this equivalence holds:

〈p+|γµ|q+〉 = [p|µ|q〉 → (−1)P 〈q|γµ′ |p] = (−1)P (−1)〈q|γµ|p] (3.104)

= 〈q|γµ|p] = 〈q−|γµ|p−〉 (3.105)

where we have used (3.99) and (3.101) and we have defined our reference order as (p, q) giving

(−1)P = −1. This result is true for both Dirac and Majorana fermions.

3.5.1.2 Majorana Exchange

f(p1)

f(p2) V (p4)

V (p3)

χ(p)

Figure 3.9: The process (ff → V V ) mediated by the exchange of a Majorana fermion (χ) as
discussed in the example. The left hand figure shows the original diagram; the middle figure
shows the first choice of fermion orientation; and the figure on the right shows the second choice
of orientation.

We now consider two Dirac fermions scattering to two vector bosons via a t-channel

Majorana fermion exchange. There are two equivalent orientations to choose from as shown in

Figure 3.9. We write our amplitude as

A = Aµνε∗µ(p3)ε∗µ(p4). (3.106)

Our first choice of orientation gives

Aµν1 = 〈p1|(γµ)
′
S(p)γν |p2〉 (3.107)

and the second orientation gives

Aµν2 = (−1)〈p2|(γν)
′
S(−p)γµ|p1〉 (3.108)
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where we have chosen the reference order (p1, p2). Applying our flipping rules to Equa-

tion (3.107) gives the result:

Aµν
′

1 = (−1)P 〈p2|(γν)
′
S(−p)γµ|p1〉 = Aµν2 . (3.109)

Therefore the amplitude is independent of the original choice of fermion orientation.

3.6 Tests of Implementation

As a test of our implementation of the spinor helicity formalism and of the treatment of

Majorana fermions we checked against the software program MadGraph [3] at tree level for

a variety of processes. We performed a sweep in the phase space of the outgoing particles.

We found agreement in every test within machine precision. We plot two of our results in

Figure 3.10 for 2→ 3 processes where we can see the variation of the tree level matrix element

squared against the polar angle of the first outgoing particle. The first result for gg → ũLũ
†
LZ

shows that the relative sign has been handled correctly and also our implementation for the

massive gauge boson Z is correctly handled. For the process uū → χ0
1χ

0
1g we see that our

massive Majorana fermions χ1 have been treated correctly and also the relative sign between

graphs has been computed correctly.

3.7 Regularisation Scheme

We are interested in the virtual contribution in a NLO calculation. These contributions involve

an integral over the unresolved loop momenta that can be divergent in both the infrared and

the ultraviolet. One must regulate this divergence to obtain a useful result by choosing a

regularisation scheme [11]. Dimensional regularisation is the regularisation of loop integrals

by continuing the loop momenta into n = 4 − 2ε dimensions. Once we have dealt with

this loop integral we are left with a certain amount of freedom in how we treat the other

objects (gamma matrices, momentum, polarisation vectors) and this freedom has been explored

extensively in the literature. We summarize the main choices here: they are conventional

dimensional regularisation (CDR), the ’t Hooft-Veltman convention (HV) and dimensional

reduction (DRED). We outline the choices we can make below.

• Dirac Algebra:

We can choose to extend this to n dimensions or to leave it in 4-dimensions.

• Momenta:

The internal momenta must be n dimensional. However, we can choose to retain

the external momenta in the physical 4 dimensional space or extend it also to the n

dimensional space. Extending it to n dimensions occurs in the (CDR) scheme and is

generally out of favour as keeping it in 4 dimensions can simplify final expressions.
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Figure 3.10: Comparison of our implementation of flipping rules in our MSSM model file with
the implementation in MadGraph [3] for the processes gg → ũLũ

†
LZ and uū→ χ0

1χ
0
1g. We see

that we have agreement throughout phase-space.

• Vector Boson polarisations:

Corresponding to our choice of dimension of external momenta the number of external

gluon polarisations is either 2 or n−2 = 2−2ε. The number of internal gluon polarisations

is chosen to be either n− 2 or kept fixed as 2.

• Quark Helicities:

We choose the number of massless quark helicities as 2.

We summarize the choice of the three different schemes in the table 3.1.
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Scheme CDR HV DRED
Dirac algebra γµ = γ̂µ + γ̄µ γµ = γ̂µ + γ̄µ γµ = γ̂µ

γ5 (3.119) (3.120) (3.119)

internal momenta n (k = k̂ + k̄) n (k = k̂ + k̄) n (k = k̂ + k̄)
external momenta n (p = p̂+ p̄) 4 (p = p̂) 4 (p = p̂)
Number of internal gluons n− 2 n− 2 2
Number of external gluons n− 2 2 2
Number of internal quarks 2 2 2
Number of external quarks 2 2 2

Table 3.1: Summary of the different choices of dimensions for objects in different dimensional
regularisation schemes. We note that the common feature is the regulation of the loop integral
by extending the dimension to n = 4− 2ε.

3.7.1 The ’t Hooft Veltman Scheme

In our calculation we use the ’t Hooft Veltman scheme (HV) [11]. In this scheme the Dirac

algebra is extended to n dimensions. In this section we describe how we handle the extra

dimensional pieces in the numerator algebra and how we extend γ5 to n dimensions. It has

been shown that, using this scheme, one can derive the axial anomaly in an unambiguous

manner at the two loop level [60].

3.7.1.1 Dimension splitting

We split our n dimensional metric tensor g into two non-overlapping parts

gµν = ĝµν + ḡµν . (3.110)

with the 4 dimensional metric ĝ and the n− 4 dimensional metric ḡ. Our spinor helicity results

in Section 3.4 now hold for the metric ĝ. We have the following rules:

ĝµµ ≡ ĝµνgνµ = 4 (3.111)

ḡµµ ≡ ḡµνgνµ = n− 4 (3.112)

ḡµν ĝνρ = 0. (3.113)

One can visualise the splitting easily if one thinks of the metric as a matrix in block diagonal

form. We have

gµν →
(
ĝµν 0

0 ḡµν

)
. (3.114)

A typical expression in HV contains a combination of two metrics we need a method to

disentangle the two parts. We start from the identity

tr{I} tr
{
γ̂α1 · · · γ̂αp γ̄β1 · · · γ̄βq

}
= tr{γ̂α1 · · · γ̂αp} tr

{
γ̄β1 · · · γ̄βq

}
(3.115)
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a proof of which is given in [61]. We split all γ matrices in our expression and commute them

to opposite ends of the spinor chain using the following rule:

{γ̂µ, γ̄ν} = 0 (3.116)

i.e.

{γ̂µ, γ̄ν} = ĝµαḡνβ{γα, γβ} = ĝµαḡνβ2gαβ = ĝµαḡ
αν = 0. (3.117)

We have already described how to deal with the 4 dimensional pieces; for the n− 4 part we can

use the following reduction formula [1]:

tr
{
γ̄β1 · · · γ̄βn

}
=

n∑
i=2

(−1)iḡβ1βi tr
{
γ̄β2 · · · γ̄βi−1 γ̄βi+1 · · · γ̄βn

}
. (3.118)

3.7.1.2 Dealing with γ5

In chiral theories, one also needs to extend our definition of, what is essentially a four

dimensional object, γ5 to n dimensions. The näıve way of doing this

{γµ, γ5} = 0 ∀µ (3.119)

leads to ambiguities beyond tree level [11]. If, however, we adopt the following prescription for

γ5:

{γµ, γ5} = 0 µ ∈ {0, 1, 2, 3} (3.120)

[γµ, γ5] = 0 otherwise

where the γ5 is essentially living in a 4 dimensional subspace we can avoid these ambiguities.

In our dimensional splitting notation the above condition reads

[γ5, γ̄
µ] = 0 (3.121)

i.e. γ5 is kept in 4 dimensions allowing us to write down an explicit expression for γ5 in terms

of our four dimensional Dirac matrices:

γ5 =
i

4!
εµνγδγ̂

µγ̂ν γ̂γ γ̂δ. (3.122)

Therefore, when γ5 is present in an expression it is shuffled to the four dimensional trace part

of (3.115) using the relations (3.120).

3.7.2 Regularisation scheme dependence

The regularisation scheme we choose can respect or break the symmetry of the Lagrangian

and it is highly desirable to retain the symmetries of a Lagrangian at the one-loop level. For
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example regularisation using a cut-off regulator breaks the gauge invariance of the photon as

the one-loop correction introduces a “mass” for the photon and dimensional regularisation is

preferred as it respects gauge invariance. In supersymmetric theories dimensional regularisation

does not respect the supersymmetric transformations. We can see this as follows: the simplest

supersymmetric Lagrangian is given by

L = −1

4
GµνGµν +

i

2
λ̄γµ∂µλ+

1

2
D2. (3.123)

A necessary condition for supersymmetry is the equality of bosonic and fermionic degrees of

freedom. In dimensional regularisation we have that the gauge field has (n − 2) degrees of

freedom, whereas the fermion (here λ is a Majorana fermion) has 2 degrees of freedom. Therefore

we expect supersymmetric relations not to hold away from n = 4. We explicitly show that the

SUSY Yang-Mills Lagrangian is invariant in 4-dimensions in Appendix B and this is broken

when we move to generic n dimensions by the Siegel ambiguity [62]. Dimensional reduction

does respect supersymmetry as the gauge fields have 2 degrees of freedom.

There can be finite differences between the two schemes in one-loop calculations resulting

from the treatment of the metric tensor associated with the gauge field [63]. In dimensional

regularisation these are extended to n = 4 − 2ε dimensions which can result in ε in the

numerator. These ε terms can hit a ε pole when multiplied by a divergent loop integral. In

dimensional reduction these terms are not present therefore we have a finite difference between

the two schemes. We can restore supersymmetry at the one-loop level by including these finite

differences in the dimensional regularisation result.

3.7.3 Examples

We give a couple of examples of the differences between results from the HV and DRED

regularisation schemes.

3.7.4 Boson quark quark vertex

The tree level coupling for this vertex is ieγµ. We consider the correction with one virtual

gluon. For the massless quark case we get the result

ū(p3)Γµu(p2) = f1(s)ū(p3)(ieγµ)u(p2) (3.124)

where rΓ is defined in Section D.1.6. Our result is

f1(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε(
− 2

ε2
− 3

ε
+ π2 − 8

)
. (3.125)

The dimensional reduction result is

f1(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε(
− 2

ε2
− 3

ε
+ π2 − 8 + 1

)
. (3.126)
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3.7.5 Chiral Coupling

If we have a chiral coupling the situation is a little different. If our tree level coupling is

parameterized as

iγµ (gLΠ− + gRΠ+) (3.127)

then our vertex correction can be written as

ū(p3)Γµu(p1) = ū(p3)iγµ (f1(s)Π− + f2(s)Π+)u(p1) (3.128)

which gives (upon expansion)

f1(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε [
gL

(
− 2

ε2
− 3

ε
+ π2 − 6

)
− 2gR

]
(3.129)

f2(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε [
gR

(
− 2

ε2
− 3

ε
+ π2 − 6

)
− 2gL

]
. (3.130)

The dimensional reduction results are similar but we now have

f1(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε [
gL

(
− 2

ε2
− 3

ε
+ π2 − 6

)
− 2gR + gR

]
(3.131)

f2(s) = rΓ
CFαs

4π

(
4πµ2

s

)ε [
gR

(
− 2

ε2
− 3

ε
+ π2 − 6

)
− 2gL + gL

]
. (3.132)
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Chapter 4

Loop Integrals

4.1 Reduction Scheme

The virtual part of a NLO calculation will contain an integral over the unresolved loop momenta.

As we explained in the previous chapter these integrals can lead to divergences either in the

infrared or collinear region (IR) or in the ultraviolet region (UV). These divergences mean that a

purely numerical evaluation of the integral is not possible. We regularise our divergent integrals

by letting n = 4 − 2ε and our final results appear as a Laurent series in ε. Schematically we

have

AV =
A

ε2
+
B

ε
+ C +Dε+O(ε2) (4.1)

where the first term is present only when we have a infrared and collinear singularity and the

second term can be of IR or UV origin. In general the coefficients of the series will depend on

the kinematic variables present in the process.

Loop integrals can have a non-trivial numerator structure and their calculation can be

lengthy. In this section we outline a reduction scheme for loop integrals that can be implemented

in an automated way.

4.1.1 Overview

We consider one-loop N -point diagrams. They are expressed as integrals in momentum space

either with powers of the loop momentum in the numerator (tensor integral) or without (scalar

integral). Our strategy is to reduce any integral appearing to a basis set of master integrals

that can be computed once and for all. In our case (at one-loop) the number of such integrals

is manageable. Other techniques such as the method of integration by parts [64] can also be

used.

The traditional method of tensor reduction was introduced in [65] where all tensor integrals

are reduced to scalar integrals (we call this basis SI). This method leads to numerical instabilities

due to the appearance of Gram determinants in the denominator of intermediate expressions
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that can become small in certain kinematic regions. This is an artificial reduction scheme

dependent issue. One could avoid this by cancelling the Gram determinants between certain

classes of diagrams (an approach followed in [66]). However, we aim for a completely automated

approach that avoids intermediate steps such as these.

The final integral basis is not unique. We therefore choose a different basis that avoids

these inverse Gram determinants. There exists a trade-off in any reduction scheme between

the simplicity of the objects at the end of the reduction and the number of terms introduced

in order to arrive at these objects. In our calculation we follow the reduction scheme laid out

in [67] and implemented in the program [68, 2]. Our choice of the end point of our reduction

is listed in Table 4.1 and we call it the Golem Basis (GB). The integrals in GB can have

Feynman parameters in the numerator and we label the N -point, n dimensional integral as InN .

We can write any N -point amplitude as a linear combination of the integrals in GB without

encountering any inverse Gram determinants.

Basis Integral UV divergent IR divergent

In+2
4 no no
In+4
4 yes no
In3 no yes
In+2
3 yes no
In2 yes no

Table 4.1: Basis integrals of our reduction scheme. All integrals here can have Feynman
parameters in the numerator. An N -point integral in n dimensions is written as InN .

We can further reduce this basis to SI (with no Feynman parameters in the numerator). It

is at this step that one cannot avoid introducing inverse Gram determinants. A reduction to

the purely scalar integrals would be desirable as their computation would be the quickest but

we arrive at the same numerical problem as mentioned above. Therefore our approach reduces

GB to SI only if the Gram determinant is not dangerous. If this is not the case then a direct

numerical evaluation of GB is completed.

4.1.2 Form Factor Representation

The general one-loop N -point tensor integral of rank r in n dimensions can be written as

In,µ1,···µr
N (a1, a2, · · · , ar) =

∫
dnk

iπ
n
2

qµ1
a1 · · · qµrar

(q2
1 −m2

1 + iδ) · · · (q2
N −m2

N + iδ)
. (4.2)

where N labels the number of propagators. The propagators have the momenta qi = k + ri

where ri is a combination of external momenta. ri is defined such that pi = ri − ri−1 and

r0 = rN . Momentum conservation leads to the constraint

N∑
i=1

pi = 0 (4.3)
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4.1. Reduction Scheme

Figure 4.1: Generic N -point loop graph. The momentum in the loop is defined as qi where i
labels the propagator and qi = k + ri where k is the loop momentum and ri is a combination
of the incoming, external momenta.

(all the external momenta are defined as incoming) giving qi = pi + qi−1(q0 = qN ). Therefore

we choose one of the vectors ri to be zero. Common choices are rN = 0 or r1 = 0.

Our choice in (4.2) in terms of combination of momentum vectors qi = k + ri can be

contrasted to the conventional expression for a tensor integral written as

In,µ1,···µr
N (N, · · · , N) =

∫
dnk

iπ
n
2

kµ1 · · · kµr
(q2

1 −m2
1 + iδ) · · · (q2

N −m2
N + iδ)

. (4.4)

The conventional representation is simply a special case of our general representation (4.2)

where we set rN = 0 and the momenta in the numerator are all set to qN = k. If one

carries out a reduction procedure starting from this form one obtains integrals that are not of

a standard type, so a shift operation k → k + rj is necessary to remap to the standard from.

For a rank r integral the shift operation gives rise to 2r terms. Our representation (4.2) is

manifestly translation invariant thus avoiding such a proliferation of terms. We wish to also

define a translation invariant form factor representation for (4.2). To this end we define the

shift invariant vector ∆ij where

∆µ
ij = rµi − rµj = qµi − qµj . (4.5)

We express tensor integrals in terms of these Lorentz tensors and the set of form factors:

AN,rl1,···lr , B
N,r
l1,···lr , C

N,r
l1,···lr .

Our tensor definition is as follows, where S stands for the kinematic configuration of the
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integral:

In, µ1...µr
N (a1, . . . , ar; S) =∑

j1···jr∈S

[
∆·j1· · · ·∆·jr·

]{µ1···µr}
{a1···ar}

AN,rj1...,jr
(S)

+
∑

j1···jr−2∈S

[
g··∆·j1· · · ·∆·jr−2·

]{µ1···µr}

{a1···ar}
BN,rj1...,jr−2

(S)

+
∑

j1···jr−4∈S

[
g··g··∆·j1· · · ·∆·jr−4·

]{µ1···µr}

{a1···ar}
CN,rj1...,jr−4

(S). (4.6)

The distribution of the r Lorentz indices µi and the momentum labels ai is best demonstrated

through examples:

InN (S) = AN,0(S) (4.7)

In,µ1

N (a1;S) =
∑
l∈S

∆µ1

l a1
AN,1l (S) (4.8)

In,µ1µ2

N (a1, a2;S) =
∑

l1,l2∈S

∆µ1

l1 a1
∆µ2

l2 a2
AN,2l1 l2

(S) + gµ1 µ2 BN,2(S) (4.9)

In,µ1µ2µ3

N (a1, a2, a3;S) =
∑

l1,l2,l3∈S

∆µ1

l1 a1
∆µ2

l2 a2
∆µ3

l3 a3
AN,3l1l2l3

(S)

+
∑
l∈S

(
gµ1µ2 ∆µ3

l a3
+ gµ1µ3 ∆µ2

l a2
+ gµ2µ3 ∆µ1

l a1

)
BN,3l (S) (4.10)

In,µ1µ2µ3µ4

N (a1, a2, a3, a4;S) =
∑

l1...l4∈S

∆µ1

l1 a1
∆µ2

l2 a2
∆µ3

l3 a3
∆µ4

l4 a4
AN,4l1l2l3l4

(S)

+
∑

l1,l2∈S

(
gµ1µ2 ∆µ3

l1 a3
∆µ4

l2 a4
+ gµ1µ3 ∆µ2

l1 a2
∆µ4

l2 a4
+ gµ1µ4 ∆µ2

l1 a2
∆µ3

l2 a3

+gµ2µ3 ∆µ1

l1 a1
∆µ4

l2 a4
+ gµ2µ4 ∆µ1

l1 a1
∆µ3

l2 a3
+ gµ3µ4 ∆µ1

l1 a1
∆µ2

l2 a2

)
BN,4l1l2

(S)

+ (gµ1µ2 gµ3µ4 + gµ1µ3 gµ2µ4 + gµ2µ3 gµ1µ4) CN,4(S). (4.11)

We can see that these form factors are shift-invariant by setting all the aj = N and rN = 0 to

obtain the conventional representation. The set of form factors can be written in terms of GB

as we shall explain shortly. If the phase space point is not dangerous we can iteratively reduce

GB to SI; we can express the form factors in terms of SI but at the expense of introducing

inverse Gram determinants.
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4.1. Reduction Scheme

4.1.3 Tensor Reduction

In this section we derive a result that shows us that we can express a tensor integral in terms

of higher order scalar integrals. This is a crucial result for us as it relates tensor integrals with

the GB integrals. Therefore it holds the key to writing down our set of form factors in terms

of GB. After completing the square in the denominator of our integral as demonstrated in

Appendix C.1 any odd power of loop momenta in the numerator causes the integral to vanish

after integration. Therefore we can express the numerator as follows:

lµ1 · · · lµ2m = A[g·· · · · g··]µ1···µ2m(l2)m. (4.12)

where [g·· · · · g··]µ1···µ2m is the sum of all distinct distributions of indices overs the metric tensors.

There are m metric tensors in each product in the sum. And there are (2m− 1)!! products in

each sum. That is, the number of distinct ways of grouping 2m objects into pairs is (2m− 1)×
(2m− 3)× · · · × 1. Due to symmetry each product has the same coefficient A.

A is the number of ways of contracting the indices for each product of metrics where gµµ = n.

There are m metrics, therefore the first line can either close a metric or join to one of the 2(m−1)

metrics. Likewise, the second metric can close a metric or join to one of the 2(m− 2) metrics

left. This continues until there is no other metrics to join and the only possibility is to join it

to itself (for the mth iteration). So we get

A =
1∏m

k=1(n+ 2(k − 1))
. (4.13)

A simple example of this would be when we have two metrics, and the result is

kµkνkρkσ =
k4

n(n+ 2)
(gµνgρσ + gµρgνσ + gµσgνσ) (4.14)

which we can verify by contracting with gµνgρσ. We rewrite

m∏
k=1

(n+ 2(k − 1)) =
2mΓ(m+ n

2 )

Γ(n2 )
(4.15)

which is easily proven by induction. Therefore our final result is

kµ1 · · · kµ2m =
Γ(n2 )

2mΓ(m+ n
2 )

[g·· · · · g··]µ1···µ2m(k2)m. (4.16)

We can therefore strip away the Lorentz indices according to the following formula:∫
dnk

iπ
n
2

kµ1 · · · kµ2m

(k2 −R2)N
= (−1)N [g·· · · · g··]µ1···µ2m

(
−1

2

)m
Γ(N − (n+ 2m)/2)

Γ(N)

(
R2
)−N+(n+2m)/2

.

(4.17)

We can see that the inclusion of powers of k on the numerator allow us to rewrite our tensor
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integral in terms of scalar integrals of shifted dimension i.e. if we have 2m powers of the loop

momentum in the numerator the corresponding scalar integral (once we have stripped away the

Lorentz indices) can be recast as a n+ 2m dimensional integral. We can derive a similar result

for our general tensor integral (4.2) except the difference lies in the treatment of the numerator.

Firstly, we parameterize the integral in the same way. We obtain a symmetric denominator

using the steps as before. To this end, we recall that we needed to shift the loop momentum a

finite amount k = l −Q. This has an effect on the numerator giving:

Iµ1···µr
N = Γ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
i=1

zi)×

×
∫

dnl

iπ
n
2

[
l2 −R2 + iδ

]−N
(l −Q)µ1(l −Q)µ2 · · · (l −Q)µr . (4.18)

Again, we must see how the tensor structure can be written. We have

N µ1···µr = (l −Q)µ1(l −Q)µ2 · · · (l −Q)µr

=

r∑
k=0

[l· · · · l·︸ ︷︷ ︸
k

Q· · · ·Q·︸ ︷︷ ︸
r−k

]µ1···µr . (4.19)

There are

(
r

k

)
ways of distributing the indices for each term in the sum. All these

distributions are included and represented by the dots in the expression. If k is odd then the

integral above vanishes so we rewrite k = 2m. Therefore, as before, there are (2m − 1)!! ways

of writing the l tensor in terms of metric tensors. The Q vector is simply the sum Qµ = zir
µ
i so

N µ1···µr =

br/2c∑
m=0

[l· · · · l·︸ ︷︷ ︸
2m

Q· · · ·Q·︸ ︷︷ ︸
r−2m

]µ1···µr (4.20)

=

br/2c∑
m=0

(l2)m
Γ(n2 )

2mΓ(m+ n
2 )

N∑
j1,···jr−2m=1

[
zj1 · · · , zjr−2m

] g·· · · · g··︸ ︷︷ ︸
m

rj1 · · · rjr−2m

µ1···µr

and br/2c is the nearest integer less or equal to r/2.

Using (4.17) we can rewrite this in terms of fundamental scalar integrals with Feynman

parameters in the numerator:

Iµ1···µr
N =

[r/2]∑
m=0

(
−1

2

)m N−1∑
j1,··· ,jr−2m=1

[g·· · · · g··r·j1 · · · r·jr−2m]µ1···µrIn+2m
N (j1, · · · , jr−2m). (4.21)

where

InN (j1, · · · , jp) = (−1)NΓ(N − n

2
)

∫ N∏
i=1

dziδ(1−
N∑
l=1

zl)zj1 · · · zjp
(
R2
)n/2−N

. (4.22)
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This is a key result. We are now able to write down our form factors in terms of GB e.g. for

the 3-point case we have:

A3,0(S) = In3 (S)

A3,1
l (S) = −In3 (l;S)

B3,2(S) = −1

2
In+2
3 (S) (4.23)

A3,2
l1,l2

(S) = In3 (l1, l2;S)

B3,3
l =

1

2
In+2
3 (l;S)

A3,3
l1,l2,l3

(S) = −In3 (l1, l2, l3, S).

In Section 4.1.4 we outline how one can further reduce these expression i.e. express our GB in

terms of SI.

4.1.4 Subtraction for Scalar Integrals

We shall show here that we can rewrite our previous integrals in terms of integrals with N ≤ 4.

The idea is that we can split the integral into an infrared finite part, Ifin, and a possibly infrared

divergent part, Ired. We introduce a linear combination of propagators into the numerator with

coefficients bl and look to cancel them:

InN = Ired + Ifin =

∫
dnk

iπ
n
2

∑N
l=1 bl(q

2
l −m2

l )∏N
l=1(q2

l −m2
l + iδ)

+

∫
dnk

iπ
n
2

[
1−∑N

l=1 bl(q
2
l −m2

l )
]

∏N
l=1(q2

l −m2
l + iδ)

. (4.24)

We carry out the usual Feynman parameterization and momentum shift to give

Ifin = Γ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
i=1

zi)

∫
dnl

iπ
n
2

[
1−∑N

l=1 bl(q̃
2
l −m2

l )
]

[l2 −R2]N
(4.25)

where we have shifted the loop momenta appearing in the q vector:

q̃l = rl + l −
N∑
k=1

rkzk = l +

N∑
k=1

(δlk − zk)rk. (4.26)

We use the result for the shifted momenta:

q̃2
j = l2 +

(
N∑
i=1

zi(rj − ri)
)2

+ 2l ·
(

N∑
i=1

zi(rj − ri)
)

= l2 +

N∑
i=1

ziSij +m2
j +R2 + 2l ·

(
N∑
i=1

zi(rj − ri)
)

(4.27)
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where we have used the useful identity

(
N∑
i=1

zi(rj − ri)
)2

=

N∑
i=1

ziSij +m2
j +R2. (4.28)

Now we can rewrite the square bracket as

−(l2 +R2)

N∑
j=1

bj +

N∑
j=1

zj(1− (S · b)j) + odd in l. (4.29)

So if we can solve, for b,

(S · b)j = 1, j = 1, . . . , N (4.30)

then our equation simplifies to give

Ifin = −Γ(N)

(
N∑
l=1

bl

)∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
j=1

zl)

∫
dnl

iπ
n
2

l2 +R2

(l2 −R2)N
. (4.31)

Using (C.39) we obtain the following result

Ifin = −
(

N∑
l=1

bl

)
(N − n− 1)In+2

N . (4.32)

Therefore if det S 6= 0 then we can decompose any N -point scalar integral as

InN =

N∑
j=1

bjI
D
N−1(S\{j})− (N − n− 1)BIn+2

N (4.33)

bj =

N∑
i=1

S−1
ij , B =

N∑
j=1

bj . (4.34)

where S\{j} represents a diagram with the j propagator pinched.

4.1.4.1 The Gram matrix

We have the relation

N∑
j=1

bj det S = (−1)N+1 det G (4.35)
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where det G is the Gram matrix Gij = 2ri · rj . We can construct the matrices S and G from

4-dimensional external momenta and they have the following properties:

det G = 0 for N ≥ 6 (4.36)

det S = 0 for N ≥ 7. (4.37)

The first relation, (4.36), is an important result and implies that the coefficient
∑N
j=1 bj = 0 for

all integrals with N ≥ 6. This implies that the second integral in (4.33) vanishes and we can

always write these integrals as combinations of lower point integrals. So the N -point integral

can be written as a sum of the N −1-point integrals and this can be continued recursively until

N = 5. Then the procedure above is followed. But for N = 5 our Ifin coefficient N − n− 1 is

of order ε which multiplies the convergent integral In+2
N . For our applications (and all one-loop

calculations) this term can be dropped and we can write a scalar pentagon in terms of the sum

of the five boxes that result from pinching the five different propagators.

So to summarize, using the procedure above any arbitrary scalar N -point function can

be algebraically reduced to 3-point functions and (n + 2) dimensional 4-point functions. The

infrared poles lie in the 3-point functions and are naturally separated from the rest of the

functions.

4.1.4.2 The case det S = 0

If detS = 0 then (4.30) cannot be solved and a different procedure based on the pseudo-

inverse must be pursued. The details are in [67]. The conclusion is that one can find the

solution b for arbitrary N . However, numerical instabilities may still occur in special momentum

configurations. Unlike, traditional methods where the instabilities are an artifact of the tensor

reduction scheme (vanishing Gram determinants in the reduction of tensor integrals) these

singularities are due to physical singularities including soft/collinear or threshold singularities.

4.1.5 Subtraction for Tensor integrals

We now carry out the same argument as before but for the class of tensor integrals. Again,

we look to split an arbitrary N -point, rank r, tensor integral into two pieces: an infrared finite

and an infrared divergent part. The infrared divergent point will be an N − 1-point integral,

like in the previous case and will also be of rank r− 1. We begin with our definition of a tensor
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integral from (4.4)

In,µ1,···µr
N =

∫
dnk

iπ
n
2

kµ1 · · · kµr
(q2

1 −m2
1 + iδ) · · · (q2

N −m2
N + iδ)

= Iµ1,···µr
fin

+ Iµ1,···µr
red

=

∫
dnk

iπ
n
2

[
kµ1 +

∑N
j=1 C

µ
j (q2

j −m2
j )
]
kµ2 · · · kµr

(q2
1 −m2

1 + iδ) · · · (q2
N −m2

N + iδ)
(4.38)

−
∫

dnk

iπ
n
2

∑N
j=1 C

µ
j (q2

j −m2
j )k

µ2 · · · kµr
(q2

1 −m2
1 + iδ) · · · (q2

N −m2
N + iδ)

.

We follow the usual procedure of shifting k in order to symmetrize the denominator. This shifts

the numerator also and, using (4.27), we can write the term in square brackets as:

Aµ = kµ1 +

N∑
j=1

Cµj (q2
j −m2

j ) = lµ −
N∑
i=1

zir
µ
i +

N∑
j=1

Cµj (q̃2
j −m2

j )

= lµ + (l2 +R2)

N∑
j=1

Cµj +

N∑
i=1

zi


N∑
j=1

Cµj [Sij + 2l · (rj − ri)]− rµi

 . (4.39)

In analogy to the scalar condition, (4.30), if we can solve for Cµ

N∑
j=1

SijC
µ
j = rµi (4.40)

then the terms in Aµ are either proportional to l or R2. If (4.40) is satisfied then we can write

Aµ as

Aµ = lν

gµν + 2

N∑
j=1

Cµj (rj − ra)ν + 2

N∑
i=1

zi

N∑
j=1

Cµj (ra − ri)ν
+ (l2 +R2)

N∑
j=1

Cµj . (4.41)

In the previous step we have introduced an arbitrary vector ra in order to split the sum over

the Feynman parameters. Plugging this into our expression we get two integrals that can be

related to higher dimensional scalar integrals using (4.21). In fact, to get the explicit form, one

needs to slightly modify the derivation as we shift only r− 1 k vectors in the numerator in the

same way. The resultant integral Ifin is infrared finite and therefore we separated our rank r,

N -point tensor integral into an infrared finite part and a rank r−1, N−1-point tensor integral.

Like the scalar case, if detS = 0, one can still find solutions based on the pseudo-inverse

approach. In fact one can make a stronger statement, and say that for N ≥ 6 all integrals can

be reduced iteratively to 5-point integrals.
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4.2. Evaluation of 3-point functions

4.1.6 Landau conditions

The conditions for an integral to contain an infrared singularity were first written down by

Landau [69]. The Landau equations take the form [70] in the representation (C.2):

N∑
i=1

qizi = 0 for all i or (4.42)

zi(q
2
i −m2

i ) = 0 for all i.

The first condition corresponds to the sum of all the momentum as we traverse around the

loop; if this vanishes we can visualise the loop vanishing to a point. The second condition

corresponds to (if all the Feynman parameters are non-zero) all the internal propagators being

on-shell simultaneously. This is known as a leading singularity and corresponds to a kinematic

point which is either a physical threshold or an anomalous threshold. If the conditions are

satisfied by one of the Feynman parameters being zero we have a lower-order singularity, so

called because one would obtain the same singularity if the corresponding internal propagator

was contracted to a point; the vanishing of its corresponding z effectively removes the propagator

from the graph.

We can also consider the Landau singularities after the integration of the loop momenta has

been carried out. Because the k integral has been carried out the condition is now:

F = 0. (4.43)

where as before F = ziSijzj . This leads to the Landau conditions

zi = 0 or (4.44)

∂F
∂zi

= 0 for all i.

Since F is a homogeneous function of zi we have (due to Euler’s theorem)

∑
i

zi
∂F
∂zi
∝ F (4.45)

hence (4.43) is satisfied when the other two conditions are. The first condition ∂F
∂zi

= 0

corresponds to the leading singularities above. For NLO calculations we are interested in soft

and collinear singularities when external virtualities and internal masses have fixed values. We

start from these conditions when looking at the infrared divergent triangle integrals.

4.2 Evaluation of 3-point functions

If det S is zero we saw that we run into problems in our reduction reduction to GB. All

the infrared divergences are isolated to the triangle functions in GB with or without Feynman

parameters in the numerator. In this section we evaluate the necessary infrared divergent scalar
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1

2 3

p2 p1

p3

Figure 4.2: The kinematic setup for our triangle integrals.

triangle integrals in n dimensions. We define the scalar N -point integral to be

InN =

∫
dnk

iπn/2
1∏N

i=1(q2
i −m2

i + iδ)
(4.46)

in n dimensions. Graphically, the kinematics are set up as in Figure 4.2. with propagator

momenta

q1 = k − p1

q2 = k − p1 − p2

q3 = k

and the propagator masses are labelled as m2
1, m2

2 and m2
3 as shown in the diagram. We use

the following Mandelstam variables:

si = pi · pi.

Here we are interested in 3-point integrals. The n dimensional integral is written as

In3 (s1, s2, s3,m
2
1,m

2
2,m

2
3) = (4.47)

− Γ(3− n/2)

∫
dx1 dx2 dx3δ(1− x1 − x2 − x3)F−3+n/2

F = (−s1)x3x1 + (−s2)x1x2 + (−s3)x2x3 +

3∑
j=1

m2
jxj − iδ

The definition above relates to the Veltman-Passarino convention as follows [65] :

In3 = (s1, s2, s3,m
2
1,m

2
2,m

2
3) = C0(s1, s2, s3,m

2
3,m

2
1,m

2
2) (4.48)

We will present results for the following integrals sorted with respect to the number of

internal masses present (as seen in Figure 4.3):
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4.2. Evaluation of 3-point functions

• Triangles with no internal mass

– 4.2.1.1 In3 (s1, 0, 0, 0, 0, 0)

– 4.2.1.2 In3 (s1, s2, 0, 0, 0, 0)

– 4.2.1.3 In3 (s1, s1, 0, 0, 0, 0)

• Triangles with one internal mass

– 4.2.2.1 In3 (s1, s2, 0,m
2
1, 0, 0)

– 4.2.2.2 In3 (m2
1, s2, 0,m

2
1, 0, 0)

– 4.2.2.3 In3 (s1, s1, 0,m
2
1, 0, 0)

– 4.2.2.4 In3 (m2
1,m

2
1, 0,m

2
1, 0, 0)

• Triangles with two internal masses

– 4.2.3.1 In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0)

– 4.2.3.2 In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0)

These results were checked against the program [71].

4.2.1 Triangles with no internal mass

4.2.1.1 The integral In3 (s1, 0, 0, 0, 0, 0)

Kinematics are setup as in Figure 4.3(a):

s1 6= 0, s2 = s3 = m2
j = 0

In3 (s1, 0, 0, 0, 0, 0) = µ−2εµ2εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

1

ε2
(−s1 − iδ)−ε

s1
(4.49)

= µ−2εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

1

s1

(
1

ε2
− 1

ε
log

(−s1 − iδ
µ2

)
+

1

2
log2

(−s1 − iδ
µ2

))
+O(ε).

4.2.1.2 The integral In3 (s1, s2, 0, 0, 0, 0)

Kinematics are setup as in Figure 4.3(b):

s1 6= 0, s2 6= 0, s3 = m2
j = 0.
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1

2 3

p2 p1

p3

(a) In3 (s1, 0, 0, 0, 0, 0)

1

2 3

p2 p1

p3

(b) In3 (s1, s2, 0, 0, 0, 0)

1

2 3

p2 p1

p3

(c) In3 (s1, s1, 0, 0, 0, 0)

1

2 3

p2 p1

p3

(d) In3 (s1, s2, 0,m2
1, 0, 0)

1

2 3

p2 p1

p3

(e) In3 (m2
1, s2, 0,m

2
1, 0, 0)

1

2 3

p2 p1

p3

(f) In3 (s1, s1, 0,m2
1, 0, 0)

1

2 3

p2 p1

p3

(g) In3 (m2
1,m

2
1, 0,m

2
1, 0, 0)

1

2 3

p2 p1

p3

(h) In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0)

1

2 3

p2 p1

p3

(i) In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0)

Figure 4.3: The set of infrared divergent integrals.

In3 (s1, s2, 0, 0, 0, 0) = µ−2εµ2εΓ(1 + ε)

ε2
Γ(1− ε)2

Γ(1− 2ε)

1

s1 − s2

[
(−s1 − iδ)−ε − (−s2 − iδ)−ε

]
(4.50)

= µ−2εΓ(1 + ε)

ε2
Γ(1− ε)2

Γ(1− 2ε)

1

s1 − s2

[(−s1 − iδ
µ2

)−ε
−
(−s2 − iδ

µ2

)−ε]

4.2.1.3 The integral In3 (s1, s1, 0, 0, 0, 0)

Kinematics are setup as in Figure 4.3(c):

s1 = s2 6= 0, s3 = m2
j = 0.
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4.2. Evaluation of 3-point functions

In3 (s1, s1, 0, 0, 0, 0) = µ−2εµ2εΓ(1 + ε)

ε

Γ(1− ε)2

Γ(1− 2ε)
(−s1 − iδ)−1−ε (4.51)

= µ−2εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

1

s1

(
−1

ε
+ log

(−s1 − iδ
µ2

))
+O(ε).

We see that the ε pole structure of In3 (s1, s2, 0, 0, 0, 0) changes in the limit s2 → s1. This limit

does not commute with the ε expansion.
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4.2.2 Triangles with one internal mass

4.2.2.1 The integral In3 (s1, s2, 0,m
2
1, 0, 0)

Kinematics are setup as in Figure 4.3(d):

s1 6= 0, s2 6= 0,m2
1 6= 0, s3 = m2

2 = m2
3 = 0.

In3 (s1, s2, 0,m
2
1, 0, 0) =µ−2εΓ(1 + ε)

s1 − s2

[(
1

ε
− log

(
m2

1 − iδ
µ2

))
log

(−s2 +m2
1 − iδ

−s1 +m2
1 − iδ

)
(4.52)

− log2

(−s2 +m2
1 − iδ

m2
1

)
+ log2

(−s1 +m2
1 − iδ

m2
1

)
+Li2

(
s1 + iδ

m2
1

)
− Li2

(
s2 + iδ

m2
1

)]
+O(ε).

In this formula, a complex mass with negative imaginary part may be used. In the limit m2
1 → 0

we find the result of In3 (s1, s2, 0, 0, 0, 0) given above. The results for the real and imaginary

parts are plotted in Figure 4.4.

ε−2 ε−1 ε0

s1 s2 m2
1 Re Im Re Im Re Im

11.0 7.0 5.0 0.00000000 0.00000000 -0.27465307 0.00000000 0.27532857 -1.37070786
7.0 3.0 5.0 0.00000000 0.00000000 0.00000000 0.78539816 -2.06952942 0.43952121
7.0 -3.0 5.0 0.00000000 0.00000000 0.13862944 0.31415927 -0.86348936 0.17580848
3.0 -3.0 5.0 0.00000000 0.00000000 0.23104906 0.00000000 -0.05946265 0.00000000
-3.0 -5.0 5.0 0.00000000 0.00000000 0.11157178 0.00000000 -0.16216272 0.00000000

Table 4.2: Kinematic points for In3 (s1, s2, 0,m
2
1, 0, 0).
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Figure 4.4: Graphs of the real part (left) and imaginary part (right) of the ε0 term of
In3 (s1, s2, 0,m

2
1, 0, 0) against s2 with fixed m2

1 = 5.0 and s1 = −5.0.

4.2.2.2 The integral In3 (m2
1, s2, 0,m

2
1, 0, 0)

Kinematics are setup as in Figure 4.3(e):

s1 = m2
1 6= 0, s2 6= 0, s3 = m2

2 = m2
3 = 0

In3 (m2
1, s2, 0,m

2
1, 0, 0) (4.53)

= µ−2ε Γ(1 + ε)

(−s2 +m2
1)

[
− 1

2ε2
+

1

ε

{
log

(−s2 +m2
1 − iδ

µ2

)
− 1

2
log

(
m2

1 − iδ
µ2

)}
+

1

2

{
2 log

( −s2 − iδ
−s2 +m2

1 − iδ

)
log

(−s2 +m2
1 − iδ

m2
1 − iδ

)
+
π2

3

− 2Li2

(
m2

1 − iδ
−s2 +m2

1 − iδ

)
− log2

(−s2 +m2
1 − iδ

µ2

)
+

1

2
log2

(
m2

1 − iδ
µ2

)}]
+O(ε).

We see that the ε pole structure of In3 (s1, s2, 0,m
2
1, 0, 0) changes in the limit s1 → m2

1. This

limit does not commute with the ε expansion. In this formula, a complex mass with negative

imaginary part may be used. To compare to [71] we must consider the factor

Γ(1− ε)2

Γ(1− 2ε)
= 1− π2

6
ε2 +O(ε3) (4.54)
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that does not appear in our definition of our integral. This factor combines with the double

pole in ε to give an extra finite contribution to the result. This factor is not in added to the

results below. The results for the real and imaginary parts are plotted in Figure 4.5.

ε−2 ε−1 ε0

s2 m2
1 Re Im Re Im Re Im

7.0 5.0 0.25000000 0.00000000 0.05578589 1.57079633 -3.76904155 0.87904242
3.0 5.0 -0.25000000 0.00000000 -0.05578589 -0.00000000 -0.37001728 -0.00000000
-3.0 5.0 -0.06250000 0.00000000 0.15934032 -0.00000000 -0.13710131 0.00000000

Table 4.3: Kinematic points for In3 (m2
1, s2, 0,m

2
1, 0, 0)
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R
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)
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3)

–4 –2 2 4 6 8 10
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Figure 4.5: Graphs of the real part (left) and imaginary part (right) of the ε0 term of
In3 (m2

1, s2, 0,m
2
1, 0, 0) against s2 with fixed m2

1 = 5.0 and s1 = −5.0.
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4.2. Evaluation of 3-point functions

4.2.2.3 The integral In3 (s1, s1, 0,m
2
1, 0, 0)

Kinematics are setup as in Figure 4.3(f):

s1 = s2 6= 0, s3 = m2
2 = m2

3 = 0.

In3 (s1, s1, 0,m
2
1, 0, 0) (4.55)

= µ−2εµ2ε Γ(1 + ε)

(−s1 +m2
1)

[
1

ε
(−s1 +m2

1 − iδ)−ε −
m2

1

s1
log

(−s1 +m2
1 − iδ

m2
1 − iδ

)]
= µ−2ε Γ(1 + ε)

(−s1 +m2
1)

[
1

ε
− log

(−s1 +m2
1 − iδ

µ2

)
− m2

1

s1
log

(−s1 +m2
1 − iδ

m2
1 − iδ

)]
+O(ε).

We see that the ε pole structure of In3 (s1, s2, 0,m
2
1, 0, 0) changes in the limit s2 → s1. In this

formula, a complex mass with negative imaginary part may be used. The results for the real

and imaginary parts are plotted in Figure 4.6.

ε−2 ε−1 ε0

s1 m2
1 Re Im Re Im Re Im

7.0 5.0 0.00000000 0.00000000 -0.50000000 0.00000000 0.01932690 -2.69279370
3.0 5.0 0.00000000 0.00000000 0.50000000 0.00000000 0.41700202 0.00000000
-3.0 5.0 0.00000000 0.00000000 0.12500000 0.00000000 -0.16201277 0.00000000

Table 4.4: Kinematic points for In3 (s1, s1, 0,m
2
1, 0, 0).
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Figure 4.6: Graphs of the real part (left) and imaginary part (right) of the ε0 term of
In3 (s1, s1, 0,m

2
1, 0, 0) against s1 with fixed m2

1 = 5.0.

4.2.2.4 The integral In3 (m2
1,m

2
1, 0,m

2
1, 0, 0)

Kinematics are setup as in Figure 4.3(g):

s1 = s2 = m2
1 6= 0, s3 = m2

2 = m2
3 = 0

In3 (m2
1,m

2
1, 0,m

2
1, 0, 0) = µ−2εµ2εΓ(1 + ε)

2ε

1

(m2
1)1+ε

(
1

−1− 2ε

)
(4.56)

= µ−2εΓ(1 + ε)

(
µ2

m2
1

)ε
1

m2
1

(
− 1

2ε
+ 1 +O(ε)

)
= µ−2εΓ(1 + ε)

m2
1

(
− 1

2ε
− 1

2
log

(
µ2

m2
1

)
+ 1

)
+O(ε).

We evaluate for one positive m2
1 = 5.0 and obtain the result −0.10000000 1

ε + 0.36094380.
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4.2. Evaluation of 3-point functions

4.2.3 Triangles with two internal masses

4.2.3.1 The integral In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0)

Kinematics are setup as in Figure 4.3(h):

s2 6= 0, s1 = m2
1 6= 0, s3 = m2

2 6= 0, m2
3 = 0.

In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0) = (4.57)

µ−2ε Γ(1 + ε)

2(−s2)(u+ − u−)

[
1

ε

[
log

(
u+

−u−

)
− log

(
u+ − 1

1− u−

)]
− log

(
1− u−
u+ − 1

)
log

(
m2

1 − iδ
µ2

)
− log

(
u+

−u−

)
log

(
m2

2 − iδ
µ2

)
+2 log(u+ − u−) [log(u+ − 1)− log(u+)]

−1

2
log2(−u−) +

1

2
log2(u+) +

1

2
log2(1− u−)− 1

2
log2(u+ − 1)

+ log(u+) log(−u−)− log(u+ − 1) log(1− u−)

−2Li2

(
u+ − 1

u+ − u−

)
+ 2Li2

(
u+

u+ − u−

)]
+O(ε)

where the following quantities are defined

u± =
1

−2s2
(−s2 +m2

2 −m2
1 ± β)

β =
√
λ(s2,m2

1,m
2
2) + iδ sgn(s2)

and also in this case the relations s2u+u− = m2
2 − iδ and s2(u+ − 1)(u− − 1) = m2

1 − iδ have

been used. Note that in the Euclidean region s2 < 0 we have u+ > 1 and u− < 0 and the iδ

can be omitted. The results for this graph are plotted in Figure 4.7. The representation found

here is more compact than the one found in [71] (there are only two dilogarithms) and is valid

for abitrary values of s2.

ε−2 ε−1 ε0

s2 m2
1 m2

2 Re Im Re Im Re Im

25.0 9.0 3.0 0.00000000 0.00000000 -0.08890625 0.40223972 -0.94912920 -0.35879704
10.0 9.0 3.0 0.00000000 0.00000000 0.13503949 0.00000000 -0.16794830 -0.00000000
1.0 9.0 3.0 0.00000000 0.00000000 0.09439224 0.00000000 -0.15265716 -0.00000000
-5.0 9.0 3.0 0.00000000 0.00000000 0.07991448 0.00000000 -0.14241331 -0.00000000

Table 4.5: Kinematic points for In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0).
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Figure 4.7: Graphs of the real part (left) and imaginary part (right) of the ε0 term of
In3 (m2

1, s2,m
2
2,m

2
1,m

2
2, 0) against s2 with fixed m2

1 = 9.0 and m2
2 = 3.0.
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4.3. Evaluation of 2-point functions

4.2.3.2 The integral In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0)

Kinematics are setup as in Figure 4.3(i):

s2 6= 0, s1 = s3 = m2
1 = m2

2 6= 0, m2
3 = 0.

We can safely take the limit of the above result m2
2 → m2

1 without changing the pole

structure. No new singularities arise. In this limit our variables relate to each other as follows

1− u− = u+

u+ − 1 = −u−

Now

u± =
1

2

1±
√

1− 4(m2
1 − iδ)
s1



In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0) = (4.58)

µ−2ε Γ(1 + ε)

2(−s2)(u+ − u−)

[
2

ε
log

(
u+

−u−

)
−2 log

(
u+

−u−

)(
log

(
m2

1 − iδ
µ2

)
+ log(u+ − u−)

)
− log2(−u−) + log2(u+)− 2Li2

( −u−
u+ − u−

)
+ 2Li2

(
u+

u+ − u−

)]
+O(ε)

The results for this graph are plotted in Figure 4.8

ε−2 ε−1 ε0

s2 m2
1 Re Im Re Im Re Im

25.0 5.0 0.00000000 0.00000000 -0.08608179 0.28099259 -0.56766811 -0.45224013
13.0 5.0 0.00000000 0.00000000 0.19660467 0.00000000 -0.17380014 0.00000000
-5.0 5.0 0.00000000 0.00000000 0.08608179 0.00000000 -0.15125481 -0.00000000

Table 4.6: Kinematic points for In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0).

4.3 Evaluation of 2-point functions

We consider the analytic calculation of bubble integrals. Graphically, the kinematics are set up
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Figure 4.8: Graphs of the real part (left) and imaginary part (right) of the ε0 term of
In3 (m2

1, s2,m
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2
1, 0) against s2 with fixed m2

1 = 5.0.

p p

Figure 4.9: Kinematics for bubble integrals.

as in Figure 4.9. Propagator momenta are defined as:

q1 = k − p (4.59)

q2 = k (4.60)

and we have one Mandelstam variable:

s = p · p. (4.61)

The n-dimensional 2-point integral is written as:

In2 (s;m2
1,m

2
2) = Γ(2− n

2
)

∫ 1

0

dx [F ]
−2+n

2 (4.62)
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4.3. Evaluation of 2-point functions

where

F = (−s)xx̄+ xm2
1 + x̄m2

2 − iδ (4.63)

The definition above relates to the Veltman-Passarino convention as follows:

In3 = (s1,m
2
1,m

2
2) = B0(s1,m

2
2,m

2
1) (4.64)

Of course the scalar integral is symmetric in the two masses.

We will present results for the following integrals sorted with respect to the number of

internal masses present:

• Bubbles with no internal mass

– 4.3.1.1 In2 (s; 0, 0)

• Bubbles with one internal mass

– 4.3.2.1 In2 (s;m2, 0)

– 4.3.2.2 In2 (m2;m2, 0)

• Bubbles with two internal masses

– 4.3.3.1 In2 (s;m2
1,m

2
2)

– 4.3.3.3 In2 (s;m2,m2)

• Tadpole Integral

– 4.5.0.8 In1 (m2)

These results were checked against the program QCDloop [71] and we have plotted the

results here.

4.3.1 Bubbles with no internal mass

4.3.1.1 The integral In2 (s; 0, 0)

The kinematics are defined as follows:

s1 6= 0, m2
j = 0.

In2 (s; 0, 0) = µ−2εµ2ε rΓ

(−s)ε
1

ε

1

1− 2ε

= µ−2εrΓ

(
µ2

−s− iδ

)ε [
1

ε
+ 2

]
+O(ε) (4.65)

= µ−2εrΓ

(
1

ε
+ 2− log

(−s− iδ
µ2

))
+O(ε).
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ε−1 ε0

s m2
1 m2

2 Re Im Re Im

5.0 0.0 0.0 1.00000000 0.00000000 0.39056209 3.14159265

Table 4.7: Kinematic points for In2 (s; 0, 0).

The limit s → 0 does not commute with the expansion in ε. By definition In2 (0; 0, 0) = 0

because we have cancelling behaviour from the UV and IR poles. If we do distinguish between

the two different poles our result is

In2 (0; 0, 0) ∝ 1

εUV
− 1

εIR
. (4.66)

4.3.2 Bubbles with one internal mass

4.3.2.1 The integral In2 (s;m2, 0)

The kinematics are defined as:

s 6= 0, m2 6= 0.

In2 (s;m2, 0) = µ−2εµ2εΓ(1 + ε)(m2)−ε
[

1

ε
+ 2 +

m2 − s
s

log

(−s+m2 − iδ
m2 − iδ

)]
+O(ε) (4.67)

= µ−2εΓ(1 + ε)

[
1

ε
+ 2 +

m2 − s
s

log

(−s+m2 − iδ
m2 − iδ

)
− log

(
m2 − iδ
µ2

)]
+O(ε)

We plot the results in Figure 4.10.

ε−1 ε0

s m2
1 m2

2 Re Im Re Im

7.0 5.0 0.0 1.00000000 0.00000000 0.65235944 0.89759790
3.0 5.0 0.0 1.00000000 0.00000000 -0.22029840 -0.00000000
-3.0 5.0 0.0 1.00000000 0.00000000 -0.86278092 0.00000000

Table 4.8: Kinematic points for In2 (s;m2, 0).

4.3.2.2 The integral In2 (m2;m2, 0)

In2 (m2; 0,m2) = µ−2εµ2εΓ(1 + ε)(m2)−ε
[

1

ε
+ 2

]
+O(ε)

= µ−2εΓ(1 + ε)

[
1

ε
+ 2− log

(
m2 − iδ
µ2

)]
+O(ε) (4.68)
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Figure 4.10: Graphs of the real part (upper) and imaginary part (lower) of the ε0 term of
In2 (s;m2, 0) for my implementation (right) against [71] (left).

We can take the limit s→ m2 of In2 (s;m2, 0). The log term in the square brackets of equation

(4.67) is zero:

lim
s→m2

In2 (s;m2, 0) = µ−2εµ2εΓ(1 + ε)(m2)−ε
[

1

ε
+ 2

]
+O(ε)

= µ−2εΓ(1 + ε)

[
1

ε
+ 2− log

(
m2 − iδ
µ2

)]
+O(ε). (4.69)

We plot the result in Figure 4.11.

ε−1 ε0

s m2
1 m2

2 Re Im Re Im

5.0 5.0 0.0 1.00000000 0.00000000 0.39056209 0.00000000

Table 4.9: Kinematic points for In2 (m2;m2, 0).
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Figure 4.11: Graphs of the real part (upper) and imaginary part (lower) of the ε0 term of
In2 (m2;m2, 0) for my implementation (right) against [71] (left) where we vary s = m2.

.

4.3.2.3 The integral In2 (0;m2, 0)

The limit s → 0 of the integral In2 (s;m2, 0) commutes with the ε expansion. So we can take

the limit of the above integral or calculate it independently to obtain:

In2 (0; 0,m2) = µ−2εµ2εΓ(1 + ε)(m2)−ε
[

1

ε
+ 1

]
+O(ε)

= µ−2εΓ(1 + ε)

[
1

ε
+ 1− log

(
m2 − iδ
µ2

)]
+O(ε). (4.70)

In taking the limit of In2 (s;m2, 0) we use

lim
s→0

[
m2 − s
s

log

(−s+m2

m2

)]
= −1. (4.71)

We can also easily verify the relation:

In1 (m2) = m2In2 (0; 0,m2). (4.72)
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4.3. Evaluation of 2-point functions

4.3.3 Bubbles with two internal masses

4.3.3.1 The integral In2 (s,m2
1,m

2
2)

In2 (s;m2
1,m

2
2) = µ−2εµ2εΓ(1 + ε)

{
1

ε
− log[−(s− iδ)(x+ − 1)(1− x−)]− 2 (4.73)

−
[
x+ log

(
x+ − 1

x+

)
+ x− log

(
x− − 1

x−

)]}
+O(ε)

= µ−2εΓ(1 + ε)

{
1

ε
− log

[−(s− iδ)(x+ − 1)(1− x−)

µ2

]
− 2

−
[
x+ log

(
x+ − 1

x+

)
+ x− log

(
x− − 1

x−

)]}
+O(ε)

where we define

x± =
(s−m2

1 +m2
2)±

√
λ(s,m2

1,m
2
2) + iδ sgn(s)

2s
. (4.74)

We plot our results in Figure 4.12.

ε−1 ε0

s m2
1 m2

2 Re Im Re Im

25.0 9.0 3.0 1.00000000 0.00000000 0.00331684 0.98146492
10.0 9.0 3.0 1.00000000 0.00000000 -1.38191285 0.00000000
1.0 9.0 3.0 1.00000000 0.00000000 -1.71665616 0.00000000
-5.0 9.0 3.0 1.00000000 0.00000000 -1.88165529 -0.00000000

Table 4.10: Kinematic points for In2 (0;m2, 0).

4.3.3.2 The limit s→ 0

We have the result

lim
s→0

In2 (s;m2
1,m

2
2) = µ−2εµ2εΓ(1 + ε)

[
1

ε
+ 1− 1

m2
1 −m2

2

(
m2

1 log (m2
1 − iδ)−m2

2 log (m2
2 − iδ)

)]
= µ−2εΓ(1 + ε)

[
1

ε
+ 1 (4.75)

− 1

m2
1 −m2

2

(
m2

1 log
(m2

1 − iδ)
µ2

−m2
2 log

(m2
2 − iδ)
µ2

)]
+O(ε).

4.3.3.3 The integral In2 (s,m2,m2)

In2 (s;m2,m2) = µ−2εµ2εΓ(1 + ε)(m2)−ε
[

1

ε
+ 2 + β log

(−x−
x+

)]
+O(ε)

= µ−2εΓ(1 + ε)

[
1

ε
+ 2 + β log

(−x−
x+

)
− log

(
m2 − iδ
µ2

)]
+O(ε) (4.76)
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Figure 4.12: Graphs of the real part (upper) and imaginary part (lower) of the ε0 term of
In2 (s,m2

1,m
2
2) for my implementation (right) against [71] (left).

where

x± =
1

2
(1 + β) (4.77)

and

β =

√
1− 4m2

s
. (4.78)

The above result can be derived in the limit m2
1 → m2

2 of In2 (s;m2
1,m

2
2). Again, we have the

same problem in the limit s→ 0. The result in this limit is simply:

lim
s→0

In2 (s;m2,m2) = µ−2εΓ(1 + ε)

[
1

ε
− log

(
m2 − iδ
µ2

)]
+O(ε). (4.79)

We include this behaviour in our plot Figure 4.13.

4.4 Derivatives of Bubbles

For our renormalization condition we need to know the derivatives of some of the bubble

integrals. We need the following:
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4.4. Derivatives of Bubbles

ε−1 ε0

s m2
1 m2

2 Re Im Re Im

25.0 5.0 5.0 1.00000000 0.00000000 -0.03984685 1.40496295
13.0 5.0 5.0 1.00000000 0.00000000 -0.98567057 0.00000000
-5.0 5.0 5.0 1.00000000 0.00000000 -1.76148262 -0.00000000

Table 4.11: Kinematic points for In2 (s,m2,m2).
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Figure 4.13: Graphs of the real part (upper) and imaginary part (lower) of the ε0 term of
In2 (s,m2,m2) for my implementation (right) against [71] (left).

• Derivatives of Bubbles

– 4.4.0.4 In
′

2 (m2; 0,m2)

– 4.4.0.5 In
′

2 (0;m2,m2)

– 4.4.0.6 In
′

2 (0;m2, 0)

– 4.4.0.7 In
′

2 (0;m2
1,m

2
2)

where

In
′

2 (s;m2
1,m

2
2) =

∂In2 (s; 0,m2)

∂s
. (4.80)
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4.4.0.4 The integral In
′

2 (m2; 0,m2)

In
′

2 (m2; 0,m2) =
∂In2 (s; 0,m2)

∂s

∣∣∣∣
s=m2

. (4.81)

We use an important property of Feynman integrals that we can interchange the integral and

derivative give:

In
′

2 (m2; 0,m2) = Γ(ε)

∫
dx

(
∂

∂s
(−sxx̄+m2x̄− iδ)−ε

)
s=m2

= (−1)2εΓ(ε)

∫
dx(m2)−1−εxx̄−2ε−1. (4.82)

Our final result is

In
′

2 (m2; 0,m2) = Γ(1 + ε)(m2)−1−εB(2,−2ε)

= −µ−2εµ2εΓ(1 + ε)
(m2)−ε

m2

(
1

2ε
+ 1

)
+O(ε)

= −µ−2εΓ(1 + ε)
1

m2

[
1

2ε
+ 1− 1

2
log

(
m2 − iδ
µ2

)]
+O(ε) (4.83)

where B(α, β) is defined in (D.8).

4.4.0.5 The integral In
′

2 (0;m2,m2)

We need the integral

In
′

2 (0;m2,m2) = Γ(ε)

∫
dx

(
∂

∂s
(−sxx̄+m2x̄+m2x− iδ)−ε

)
s=0

= (−1)2εΓ(ε)

∫
dx(m2)−1−εxx̄. (4.84)

Our final result is therefore:

In
′

2 (0;m2,m2) = Γ(1 + ε)
(m2)−ε

6m2

= µ−2εΓ(1 + ε)
1

6m2
+O(ε). (4.85)

4.4.0.6 The integral In
′

2 (0;m2, 0)

The integral is

In
′

2 (0;m2, 0) = Γ(ε)

∫
dx

(
∂

∂s
(−sxx̄+m2x− iδ)−ε

)
s=0

= (−1)2εΓ(ε)

∫
dx(m2)−1−εx−εx̄ (4.86)

= (−1)2Γ(1 + ε)B(1− ε, 2).
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4.5. Tadpole Integral

Our final result is therefore:

In
′

2 (0;m2,m2) = Γ(1 + ε)
(m2)−ε

2m2
+O(ε)

= µ−2εΓ(1 + ε)
1

2m2
+O(ε). (4.87)

4.4.0.7 The integral In
′

2 (0;m2
1,m

2
2)

In
′

2 (0;m2
1,m

2
2) = µ−2εΓ(1 + ε)

1

2(m2
1 −m2

2)3

(
m4

1 −m4
2 − 2m2

1m
2
2 log

m2
1

m2
2

)
+O(ε). (4.88)

4.5 Tadpole Integral

4.5.0.8 The integral In1 (m2)

The one-point integral is defined as

In1 (m2) =

∫
dnk

iπ
n
2

1

k2 −m2 + iδ
(4.89)

with one internal mass. The integral is trivial as we have only one Feynman parameter, x, and

a delta function δ(1− x).

In1 (m2) =
Γ(1 + ε)

ε(1− ε)m
2(m2)−ε

= Γ(1 + ε)m2(m2)−ε
(

1

ε
+ 1

)
+O(ε2) (4.90)

= µ−2εΓ(1 + ε)m2

[
1

ε
+ 1− log

(
m2 − iδ
µ2

)]
+O(ε).

4.6 Evaluation of Three Point Tensor Integrals

As part of our analysis we also computed the form factors associated with the 3-point

tensor integrals for each kinematic configuration in Section 4.2. We get the following tensor

decomposition:

IN3 (S) =

∫
dnk

iπ
n
2

1

[(k + r1)2 −m2
1] [(k + r2)2 −m2

2] [(k + r3)2 −m2
3]

(4.91)

I3,µ
3 (S) =

∫
dnk

iπ
n
2

kµ

[(k + r1)2 −m2
1] [(k + r2)2 −m2

2] [(k + r3)2 −m2
3]

(4.92)

= rµ1A
3,1
1 (S) + rµ2A

3,1
2 (S) (4.93)

I3,µν
3 (S) =

∫
dnk

iπ
n
2

kµkν

[(k + r1)2 −m2
1] [(k + r2)2 −m2

2] [(k + r3)2 −m2
3]

(4.94)

= rµ1 r
ν
1A

3,2
1,1(S) + rµ1 r

ν
2A

3,2
1,2(S) + rµ2 r

ν
1A

3,2
2,1(S) + rµ2 r

ν
2A

3,2
2,2(S) + gµνB3,2(S) (4.95)
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and likewise for the rank three tensor.

We compared two implementations of the form factors. The first using the numerical

integrals in the GB and the second by reducing them further to SI. The relationship between

the two approaches is given by (4.23). We document one example of the reduction of GB to

scalar integrals, and give numerical results for the rest. The two results agreed for all points

tested. Where a numerical integration was used the agreement was limited by the accuracy

specified by the integrator.

4.6.1 Explicit results for In3 (s1, s2, 0;m
2
1, 0, 0)

We present the results for the rank one and two tensor integral with the above kinematics.

Using the notation of (4.23), we decompose the integrals as

In3 (1;S) =
1

(s1 − s2)

[
I2(s2;m2

1, 0)− In2 (s1;m2
1, 0)

]
(4.96)

In3 (2;S) =
1

s1 − s2

{
(s1 −m2

1)In3 (s1, s2, 0;m2
1, 0, 0) + In2 (s2;m2

1, 0) + In2 (s1;m2
1, 0)

}
(4.97)

and for the rank two case:

In3 (1, 1;S) =
1

(s1 − s2)

{[
m2

1 − s1

2s1

]
I2(s1;m2

1, 0) +

[
s2 −m2

1

2s2

]
I2(s2;m2

1, 0)

}
(4.98)

In3 (1, 2;S) =
1

(s1 − s2)2

{[
s1 −m2

1

2
+
s1 −m2

1

2
ε

]
I2(s1;m2

1, 0) (4.99)

+

[
s1s2 − s2m

2
1 + s1m

2
1

2s2
− m2

1 − s2

2
ε

]
I2(s2;m2

1, 0)

}
In3 (2, 2;S) =

−1

(s1 − s2)2

{[
3s1(s1 −m2

1)

(s1 − s2)
+

3s1(s1 −m2
1)

(s1 − s2)
ε

]
I2(s1;m2

1, 0)

+

[−s2
1m

2
1 − 3s2

1s2 + s3
2 + 4s1s2m

2
1 − 4s1s

2
2 + 3s2

2m
2
1

2(s1 − s2)s2
+
s1(m2

1 − s2)

s1 − s2
ε

]
I2(s2;m2

1, 0)

+
[
(s2

1 −m2
1)2
]
In3 (s1, s2, 0;m2

1, 0, 0)
}

(4.100)

where we have expanded the coefficients in ε. This is sufficient for these integrals because the

basis integrals are at most divergent to ∼ 1/ε. However, for other kinematic configurations there

may be a double pole so the ε2 terms must be included. The form factors that multiply the

metric tensors B3,2 can be related to scalar integrals in n+2 dimensions and are not calculated

here.

4.6.2 Numerical Results

We compute the numerical results for the kinematic regions that were in the previous section.

We present the results in Appendix F.
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Chapter 5

Neutralino Pair Production at

Next to Leading Order

5.1 Outline

As a test of our implementation we calculate the process pp → χ0
1χ

0
1 at Next to Leading

Order (NLO). This process is of phenomenological interest; in the MSSM, for large regions of

parameter space, the neutralino, χ0
1, is the lightest supersymmetric particle (LSP). Due to the

conservation of R-parity the LSP is the end product of any decay chain of a superpartner. The

Neutralino is a weakly interacting massive particle and provides a perfect candidate for cold

dark matter.

In this section we outline our renormalization procedure and then we go on to present the

details of our calculation.

5.2 Renormalization

To render our virtual matrix element finite in the ultraviolet limit we need to subtract the

ultraviolet divergences present in our virtual part of the amplitude. For neutralino pair

production we must calculate the quark and squark wavefunction renormalization constants

and the mass counterterm for the squark propagator. In this section we outline the results of

this renormalization procedure. For brevity we define the prefactor

P =
(4π)εαs

4π
(5.1)

which comes about naturally from our definitions of scalar integrals:

g2

∫
dnk

(2π)n
=

∫
dnk

iπ
n
2

iαs(4π)ε

(4π)
(5.2)
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Chapter 5. Neutralino Pair Production at Next to Leading Order

(a) (b)

Figure 5.1: Quark self energy contributions.

and
∫

dnk

iπ
n
2

is the prefactor of the scalar integrals we use. We drop the factor of i from our

definition of the self-energies, so that the self energy is real.

5.2.1 Self Energies

5.2.1.1 Quark Propagator

We use a covariant decomposition for the massless quark self energy

Σijqq̄(−p, p) = f(p2)/pδ
ij . (5.3)

which gives

f =
tr(Σqq̄/p)

4p2
. (5.4)

For Figure 5.1(a) we have the result

f5.1(a)(p
2)

P
= CF I

n
2 (s; 0, 0)(1−ε) (5.5)

where here including the red term gives the dimensional regularisation result (black only is the

dimensional reduction result) and for Figure 5.1(b)

f5.1(b)(p
2)

P
=

∑
q=qL,qR

CF
2

{
In2 (s;m2

q̃,m
2
g̃) +

m2
g̃ −m2

q̃

s

[
In2 (s;m2

q̃,m
2
g̃)− In2 (0;m2

q̃,m
2
g̃)
]}

. (5.6)

where we sum over the two intermediate squark states.

5.2.1.2 Squark Propagator

The decomposition of the squark self energy is simple. We obtain for the left handed squark:

Σφ = f. (5.7)
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(a) (b) (c)

(d)

Figure 5.2: Squark self energy contributions. Figure 5.2(c) is zero due to the massless gluon.

The results for diagrams 5.2(a) and 5.2(b) are

f5.2(a)/P = CF

{
(−2s−m2

q̃)I
n
2 (s; 0,m2

q̃)−m2
q̃

[
In2 (s; 0,m2

q̃)− In2 (0; 0,m2
q̃)
]

+
1

6
s− 1

2
m2
q̃

}
(5.8)

f5.2(b)/P = CF

{[
(3− ε)−

m2
g̃

s
(6− ε)

]
2s

3− 2ε
In2 (s;m2

g̃, 0) (5.9)

+

[
(3− ε) + ε

m2
g̃

s

]
2m2

g̃

3− 2ε

[
In2 (s; 0,m2

g̃)− In2 (0; 0,m2
g̃)
]}

= CF
{

2sIn2 (s;m2
g̃, 0)− 4m2

g̃I
n
2 (s;m2

g̃, 0) + 2m2
g̃

[
In2 (s; 0,m2

g̃)− In2 (0; 0,m2
g̃)
]

(5.10)

−2

3

(
3m2

g̃ − s
)}

where the red text corresponds to the extra terms in the dimensional reduction result (i.e. black

text only is the dimensional regularisation result). These arise from terms proportional to ε

multiplying a divergent integral.

Also we state the result for the second diagram but with an internal massive quark with

mass mq:

f5.2(a)′/P = CF

{
2

3− 2ε

[
s(3− ε)− 6m2

q̃ + (m2
q̃ −m2

g̃)ε
] [
In2 (s;m2

g̃,m
2
q̃)
]

(5.11)

+
2

3− 2ε

[
(3− ε)(m2

q̃ −m2
g̃) + ε

(m2
q̃ −m2

g̃)
2

s

] [
In2 (s;m2

g̃,m
2
q̃)− In2 (0;m2

g̃,m
2
q̃)
]

+4m2
g̃

[
3− ε
3− 2ε

]
In2 (0;m2

g̃, 0)

}
.

We also get a contribution from the diagram with the 4 squark interaction. The result is

f5.2(d)/P = CF I
n
2 (0; 0,m2

q̃)m
2
q̃. (5.12)

The color structure means that the diagram with an squark propagator of a different chirality
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to the legs is zero.

5.2.1.3 Mixed Squark Propagator

The squark propagator can also mix. This can come about through Figure 5.2(b). The result

is

f5.2(b),ij/P = CF

{
2ε(s− 3m2

g̃)

3− 2ε
In2 (s;m2

g̃, 0) +
2m2

g̃ε

3− 2ε

(
1 +

m2
g̃

s

)[
In2 (s; 0,m2

g̃)− In2 (0; 0,m2
g̃)
]}

(5.13)

or, equivalently,

f5.2(b),ij/P = CF

{
2(s−m2

g̃)
2ε

(3− 2ε)s
In2 (s;m2

g̃, 0)−
2(s+m2

g̃)m
2
g̃ε

(3− 2ε)s
In2 (0; 0,m2

g̃)

}
(5.14)

Comments:

• It is clear from looking at the diagram that the result should be proportional to ε as

the trace contains a term that looks like Π+(/k+ /p)Π+ which disappears in 4 dimensions.

However, in the ε dimensions it is non-vanishing. This is in contrast to the same flavour

mixing that contains Π−/qΠ−.

• Evaluated at a squark mass mq̃ we get a simple result because the expression is

proportional to ε:

Σ(m2
q̃) =

2

3
(m2

q̃ − 3m2
g̃). (5.15)

5.2.2 Renormalization Conditions

We choose to renormalize in the on-shell scheme.

5.2.2.1 Squark Renormalization

The squark’s renormalized self-energy is

ΣR(s,m2
q̃) = (s−m2

q̃) +A(s,m2
q̃) + δZq̃(s−m2

q̃)− δm2
q̃ (5.16)

and the renormalization condition is that the renormalized one-loop self energy is equal to the

bare propagator

lim
s→m2

q̃

ΣR(s,m2
q̃) = s−m2

q̃. (5.17)

We expand A:

f(s,m2
q̃) = A(m2

q̃,m
2
q̃) + (s−m2

q̃)A
′
(m2

q̃,m
2
q̃) +O(s−m2

q̃)
2 (5.18)
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and then (5.17) fixes our renormalization constants:

δZq̃ = −A′(m2
q̃,m

2
q̃) (5.19)

δm2
q̃ = A(m2

q̃,m
2
q̃). (5.20)

The function A is the unrenormalized one-loop self energy and is related to the previous section

by

A(s,m2
q̃) = Pf(s,m2

q̃). (5.21)

5.2.2.2 Explicit Results

5.2.2.3 Squark Mass Counterterm

For clarity the renormalization constants are presented for each diagram individually.

δm
2,(5.2(a))
q̃ = CF

[
−4m2

q̃I
n
2 (m2

q̃, 0,m
2
q̃) +m2

q̃I
n
2 (0, 0,m2

q̃)−
1

3
m2
q̃

]
(5.22)

δm
2,(5.2(b))
q̃ = CF

[
2(m2

q̃ −m2
g̃)I

n
2 (m2

q̃, 0,m
2
g̃)− 2m2

g̃I
n
2 (0, 0,m2

g̃) +

(
2

3
m2
q̃ − 2m2

g̃

)]
(5.23)

δm
2,(5.2(d))
q̃ = CF [m2

q̃I
n
2 (0, 0,m2

q̃)] (5.24)

(5.25)

Comments:

• Upon adding all contributions the pole term has a dependence on the gluino mass. The

squark mass dependence cancels between Figure 5.2(a) and Figure 5.2(d).

• As expected the extra finite dimensional regularisation terms comes solely from the gluon

contribution.

5.2.2.4 Squark Wave Function Renormalisation

δZ
(5.2(a))
q̃ = 4m2

q̃I
n′

2 (m2
q̃,m

2
q̃, 0) + 2In2 (m2

q̃,m
2
q̃, 0) (5.26)

δZ
(5.2(b))
q̃ = 2(m2

g̃ −m2
q̃)I

n′

2 (m2
q̃, 0,m

2
g̃)− 2In2 (m2

q̃, 0,m
2
g̃)−

2

3
(5.27)

δZ
(5.2(d))
q̃ = 0 (5.28)

Comments:

• There is no UV pole coming from the squark renormalization as we get a cancellation

between Figure 5.2(a) and Figure 5.2(b). However, as we use the on-shell scheme there is

a finite piece.

• Again, we have a finite, regularisation-dependent piece coming from Figure 5.2(b).
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• The first condition gives an infrared divergence in the derivative of the scalar bubble at

equal masses. In the paper [72] this exact is avoided by applying the renormalization

condition at and arbitrary scale s = µ2. Therefore we avoid introducing an infrared pole

here. We now proceed to outline the results at this new point.

5.2.2.5 µ result

We rewrite the above results at an arbitrary scale, µ:

δZq̃ = −Σ
′

q̃(µ
2). (5.29)

Therefore, our conditions are now:

δZ
(5.2(a))
q̃ = 2(µ2 +m2

q̃)I
n′

2 (µ2,m2
q̃, 0) + 2In2 (µ2,m2

q̃, 0)−1

6
(5.30)

δZ
(5.2(b))
q̃ = 2(m2

g̃ − µ2)In
′

2 (µ2, 0,m2
g̃)− 2In2 (µ2, 0,m2

g̃)−
2

3
(5.31)

δZ
(5.2(d))
q̃ = 0 (5.32)

and in our calculation we choose µ2 to be the renormalization scale. We avoid this problem for

the quarks, simply because we take the massless quark approximation.

5.2.3 Mixing Squark Renormalization

For the diagrams where the squarks are mixed we have the following renormalised self energy:

ΣRij(s,m
2
q̃) = Aij(s,m

2
q̃) +

1

2
(δZij(s) + δZji) s− (δm2

q̃)ij . (5.33)

The on-shell condition is therefore

δZij = 2
Σij(m

2
q̃i

)

m2
q̃i
−m2

q̃j

(5.34)

where

Σ
(5.2(b))
12 (m2

q̃) = −2m2
g̃ +

2

3
m2
q̃ = Σ21. (5.35)

5.2.3.1 Quark Renormalization

We write the renormalized quark self energy as (where the quark is massless)

ΣR(s) = /p+ /pA(s) + δZq/p. (5.36)

The renormalization condition is

lim
s→0

ΣR(s)u(p) = /pu(p) (5.37)
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1χ

0
1.

which is satisfied by

δZq = −A(0). (5.38)

5.2.3.2 Explicit Results

δZ(5.1(a)) = −CF In2 (0, 0, 0)(1− ε) (5.39)

δZ(5.1(b)) = −CF
2

∑
q=qL,qR

[
In2 (0,m2

q̃,m
2
g̃) + (m2

g̃ −m2
q̃)I

n′

2 (0,m2
q̃,m

2
g̃)
]
. (5.40)

5.2.4 Finite Squark Quark Neutralino Coupling

As explained in Section 3.7.2 dimensional regularisation does not respect supersymmetry. We

must compensate this scheme dependent breaking of supersymmetry by introducing a finite

counterterm for the quark-squark-neutralino coupling [73, 74]. We have the following shift for

the quark-squark-neutralino coupling:

g → g
(

1− αs
6π

)
. (5.41)

In our implementation we absorb this finite shift into the counter term for the squark propagator.

Each self energy must compensate for the shift in two couplings (one at either end of the

propagator) therefore we shift the squark wave function term by the following amount:

δZ → δZ − αs
4π

(
4

3

)
. (5.42)

For the relevant set of diagrams, as given in Figure 5.3, we plot in Figure 5.4 the ratio of

the dimensional regularisation result to the dimensional reduction results before and after the

finite term is included. We perform a scan over the outgoing polar angle of the first neutralino

and the plot is for one helicity configuration. We found the two results to agree after the finite

shift i.e. the sum of these diagrams is scheme independent only when the finite shift is included.

5.3 Results for pp→ χ0
1χ

0
1.

5.3.1 Comparison to the Literature

A calculation of neutralino pair production but with the e+e− initial state was presented in [75].

A calculation of neutralino pair production for the LHC was presented in [74]. Their results

give the total cross sections for various neutralino pair combinations and the corresponding

K-factors (the ratio of the NLO result to the LO result).
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Figure 5.3: The subset of diagrams corresponding to Figure 5.4.
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Figure 5.4: The ratio of the dimensional regularised and renormalised virtual matrix elements
squared to the corresponding dimensional reduction result is plotted here for the diagrams
in Figure 5.3 for one helicity configuration. The red result is before we include the finite
counterterm (5.42) and the green result after. We keep the energy and the azimuthal angle
constant but vary the polar angle θ of the first outgoing Neutralino. We see that the sum of
the diagrams is scheme independent after the inclusion of the finite shift.
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5.3. Results for pp→ χ0
1χ

0
1.

(a) Tree level diagrams for qq → χ0
1χ

0
1.

(b) Bubble diagrams for qq → χ0
1χ

0
1.

(c) Triangle diagrams for qq → χ0
1χ

0
1.

(d) Box diagrams for qq → χ0
1χ

0
1.

5.3.2 Details of our Calculation

The generic diagrams calculated are presented in Figure 5.5 using the Feynman rules defined

in Appendix A. The code used for the virtual part is outlined in Appendix E. For the infrared
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(e) Real emission diagrams for the channel qq → χ0
1χ

0
1 g.

(f) Real emission diagrams for the channel qg → χ0
1χ

0
1 q.

Figure 5.5: Diagrams for the process pp → χ0
1χ

0
1. They are drawn using the Feynman rules

defined in Appendix A.
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5.4. Details of Checks

subtraction terms [76] is used. This is based on the Catani-Seymour dipole subtraction method

[51] implemented in the MadGraph/MadEvent setup [3] incorporating the ideas in [77]. For the

real emission part MadGraph/MadEvent [3] is used. Our renormalization procedure is outlined

in Section 5.2; we use the on-shell scheme.

We work in the 5 flavour massless quark scheme q ∈ {u, d, s, t, b}. At the partonic level we

see flavour symmetry amongst the set of down type quarks and amongst the set of up type

quarks. We use the parton distibution set Martin-Stirling-Thorne-Watt Parton Distribution

Functions (MSTW08) [78].

For the SUSY parameters we use the modified benchmarks point SPS1amod suggested in

[79]. This is a modification of the benchmark point SPS1a first suggested in [41]. SPS1a has

lighter squarks than other benchmark points. The modification is the tuning of the SUSY

breaking parameter At ≡ −733 GeV such that the lightest Higgs boson’s mass lies above the

LEP exclusion bound at mh = 118 GeV. In this scenario χ0
1 is the lightest supersymmetric

particle. The SPS1amod scenario, due to its low squark masses should give an indication of the

upper bound on the result that will decrease with heavier sparticles. We calculate the run at

7 TeV centre of mass scale to correspond to the current running energy of the LHC.

5.4 Details of Checks

The following checks of the calculation were performed. As a preliminary check, the number of

diagrams was checked against the program [59]. Our results were checked robustly through two

methods. Firstly, our unrenormalized virtual matrix element, using traditional Feynman rule

based tensor reduction methods as outlined in this thesis, was compared to the unrenormalized

virtual matrix element generated using the unitarity methods outlined in [80, 81]. The diagrams

are generated using the same program [82] but with two different model files: one which was

made by hand and the other from an interface with [83]. These two results were compared for a

single phase space point for individual diagrams at one helicity and then the sum over diagrams

and helicities was compared. A second check was performed on the renormalized virtual matrix

element. After performing our renormalization procedure we are left with only infrared poles.

We checked that the coefficients of the IR poles cancelled with the poles coming from the dipole

subtraction terms. We found agreement to 10 decimal places on comparison of phase space

points.

5.5 Observables

We plot the mχ0
1χ

0
1

reconstructed mass differential distribution in Figure 5.6 and see that it

is not what one would näıvely expect at NLO. The NLO contribution is significantly larger

than the LO one and the scale variation is actually increased rather than reduced in moving

to NLO. The individual contributions to this graph are shown in Figure 5.7 and the dominant

contribution to the NLO cross section is the real emission part. Therefore we can understand

our original plot as follows: at NLO a new initial state qg(→ χ0
1χ

0
1q) opens up which is of
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leading order type and because of the gluon in the pdf this is dominating the real radiation

contribution as can be seen in Figure 5.8. Therefore we see large scale dependence in this result.

We also have a contribution from the initial state qg(→ χ0
1χ

0
1q) but this contribution is not as

large (the asymmetry between these two channels is due to the asymmetry of the anti-quark

and quark in the parton distribution function. We suppress this contribution by applying a jet

veto where we discard all events with pjetT > 20 GeV and η < 4.5. It is our intention to examine

only the radiative corrections to the original process, where the gluons that appear in the real

emission part are due to soft and collinear emission. The jet veto supresses contributions that

belong to the distinct process of neutralino pair plus one hard jet at leading order. The effect of

the jet veto on the real radiation contributions can be seen in Figure 5.9. This result is plotted

in Figure 5.10.
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Figure 5.6: Comparison of the NLO and LO mχ0
1χ

0
1

distributions for the process pp → χ0
1χ

0
1.

The band gives the dependence of the result on µ = µF = µR between µ0/2 and 2µ0. We
choose µ0 = mZ . The black line gives the bin error for the value at the central scale.
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Figure 5.7: Contributions to the NLO mχ0
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distributions for the process pp → χ0
1χ

0
1. We

choose µ = µF = µR = µ0 where µ0 = mZ .
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Figure 5.8: Contributions to the real emission differential cross section from the different
channels relating to the u quark. This is including the effect of the parton distribution functions.
We observe that the channel ug → χ0

1χ
0
1u is significantly larger than the others.
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Figure 5.9: Contributions to the real emission differential cross section from the different
channels relating to the u quark after the jet veto. This is including the effect of the parton
distribution functions. One can see that the contribution of the dominant channels are greatly
reduced when we impose the jet veto.
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Figure 5.10: Comparison of the NLO and LO mχ0
1χ
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distributions for the process pp → χ0
1χ
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with a jet veto on jets with pjetT > 20 GeV and η < 4.5. The band gives the dependence of the
result on µ = µF = µR between µ0/2 and 2µ0. We choose µ0 = mZ . The black line gives the
bin error for the value at the central scale.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

The Large Hadron Collider needs precise theoretical predictions; in perturbative QCD one

must work at least to Next to Leading Order. These calculations are typically long, with many

diagrams to be computed and are therefore error prone. Due to this we desire an automated

approach to these calculations and in this thesis we have outlined the necessary components

required to achieve this within the context of the Minimal Supersymmetric Standard Model.

We outlined the experimental status of searches for the Higgs boson and supersymmetry.

The Higgs boson’s allowed mass range is getting smaller as more data is collected at the LHC,

and it is only a matter of time before a definite statement about its existence can be made.

In contrast, the search for supersymmetry is looking pessimistic but such is the nature of the

theory that these searches merely exclude the allowed parameter space. In fact, the value of

exclusions for specific supersymmetry breaking scenarios is questionable; model independent

searches allow one to look for generic signals of SUSY and then afterwards the actual nature of

supersymmetry breaking can be examined.

We proceeded to describe the details of a NLO calculation. Initially, we looked at the

color structure of an amplitude and how this can be reduced in an algorithmic way. Next,

we discussed the spinor helicity formalism and how one can reduce any spinorial expression

to one that includes spinor products that can be computed numerically. A key feature of our

approach is that it can deal with diagrams with ill-defined fermion flow i.e. diagrams that

include Majorana fermions. It is therefore applicable to theories beyond the Standard Model,

specifically the MSSM.

This discussion led to another on regularisation scheme choice, where we described the

freedom one has in dimensional regularisation. We focused on the cases of ’t Hooft-Veltman

and dimensional reduction: the difference between the two lying in the treatment of internal

gauge bosons. This difference can lead to ε terms in the numerator algebra for diagrams where

gluons are involved in ’t Hooft-Veltman. Therefore, as we regularize our loop integral by

extending the integration dimension to n = 4− 2ε we are lead to finite differences between the
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two schemes.

We also examined the treatment of the loop integrals. The reduction of a tensor integral,

appearing in a virtual diagram, to a scalar integral basis can introduce artificial singularities at

certain kinematic points encoded in the determinant of the Gram matrix. This can ruin any

automated approach as we rely on the numerical cancellation of singularities between different

pieces of the amplitude. We discussed an approach that allows one to stop the reduction

process at an alternative basis of integrals that avoids this problem if the kinematic region is

dangerous. If not, then we can proceed with the reduction to scalar integrals. This approach

can handle massive or massless internal particles but the final integrals in the reduction basis

for the massive internal case had to be implemented. For the triangle integrals we have a set

of infrared divergent integrals that needed to be computed and tested. Our results for these

integrals were presented in a compact representation. Also, the corresponding tensor integrals,

and the form factor reduction was tested. The implementation of these diagrams was a crucial

step to allow our methods to be applied to processes beyond the Standard Model, such as the

MSSM.

Our final chapter focused on the application of our implementation to a physical process;

that of neutralino pair production at the LHC. We presented the full NLO results for this

process and examined the effect of a jet veto on the real radiation part. Our conclusion was

that a jet-veto was necessary to suppress the contributions from the real radiation part that are

of a different nature to the radiative corrections of the original process. With this suppression

we observed that the NLO calculation has reduced scale uncertainty. This NLO calculation has

allowed us to assess the estimate of the error in the leading order calculation and has resulted

in a more precise prediction.

6.2 Outlook

Our intention for the virtual matrix element code is to make it public and open source.

It is set to provide a key component of an all encompassing framework for the full NLO

calculation following the Binoth Les Houches accord [84]. This allows the interaction of the

different components of the NLO calculations (the real emission, subtraction terms, virtual and

renormalization). With the LHC now collecting data the time to complete precise calculations

for Standard Model and beyond the Standard Model processes must be shortened and an

agreement between all areas of the community can only facilitate this.

The next step for the application of these tools to the neutralino pair production result is to

investigate the process with an additional jet in the final state. We have already seen that we

have large enhancements at NLO for this channel and this process also provides a much clearer

signal of missing energy plus jet. Also, we are interested in examining the decay chain of χ0
1χ

0
2

where the second neutralino then decays to another neutralino plus a lepton. Again, because of

the lepton in the final state, this is experimentally much more interesting than just a missing

energy signal.
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Appendix A

Feynman Rules

A.1 Supersymmetric QCD

In this section we describe the supersymmetric extension to Quantum Chromodynamics (SUSY-

QCD) [85]. Here we write down the SUSY-QCD Lagrangian. The bare Lagrangian is

L = L0 + Lghost + Lsoft + Lgauge fix (A.1)

where

L0 = −1

4
(F aµν)2 +

1

2
¯̃gaiγ

µ(Dµ)abg̃b + q̄iγµDµq (A.2)

+ |Dµq̃L|2 + |Dµq̃R|2 −
g2

2

(
q̃†LT

aqL − q̃†RT aqR
)2

(A.3)

−
√

2g
(
q̃†L

¯̃gPLq + q̄PRg̃q̃L − q̃†R ¯̃gPRq − q̄PLg̃q̃R
)

(A.4)

−mq̄q −m2
(
|q̃L|2 + |q̃R|2

)
(A.5)

Lgauge fix = − 1

2ξ
(∂µG

µ
a)2 (A.6)

Lghost = −ūa∂µ (Dµ)
ab
ub. (A.7)

We have the definitions

Fµνa = ∂µGνa − ∂νGµa − gfabcGµbGνc (A.8)

and for the covariant derivative acting on fields in the fundamental representation:

Dµ = ∂µ + igT aGµa (A.9)
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and likewise for fields in the adjoint representation

Dµ,ab = ∂µδab + gfabcGµc. (A.10)

The Feynman rules for this theory are presented in Figure A.2, Figure A.3 and Figure A.4.

SUSY also mixes interactions of the weak gauge fields with the gluons. These interactions are

presented in Figure A.5.

A.2 Neutralino Sector

In this section we present the Feynman rules for the neutralino sector [17]. The rule for the

squark-squark-neutralino interaction is related to the quark-Z and quark-photon interactions.

Here, because we take the massless quark approximation, we omit any Higgsino contribution,

as all these coupling vanish in the massless quark limit. For the quark-Z boson interaction we

write the Feynman rule as

iγµ [gLΠ− + gRΠ+] (A.11)

giving our constants as

gfL = − e

swcw

(
T 3
f −Qfs2

w

)
(A.12)

gfR =
e

swcw

(
Qfs

2
w

)
. (A.13)

The Feynman rules for (charge flow from quark to squark) is

i
[
AfLΠ− +AfRΠ+

]
. (A.14)

where the constants are

AfL = −
√

2SKL
e

swcw

[
T 3
fNi2cw +Ni1sw

(
Qf − T f3

)]
(A.15)

AfR =
√

2SKR
e

swcw
[Ni1Qfsw] (A.16)

(for neutralino family i, squark family K and fermion flavour f). For the charge conjugated

vertex (flow opposite to above: squark to quark) we have

i
[
Af∗R Π− +Af∗L Π+

]
. (A.17)

In this final mixed Neutralino state the supersymmetric relation to the original coupling is lost.

We can retrieve the original form if we shift the mixing matrices from the wino bino mixing

matrices to the photino and zino matrcies. We use the the mixing relations (2.100) to obtain
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A.2. Neutralino Sector

α, a β, b

Gluon

a b

Gluino

i j

Quark

i,K j,K

Squark

µ ν

Z boson

Neutralino

Figure A.1: Diagrammatic representation of particles. The indices are as follows: a, b stand
for color indices in the adjoint representation and lowercase i, j represent color indices of the
fundamental representation. Any Greek letters stand for the usual Lorentz indices. K,M
represent the squark mass eigenstates which runs over 1 and 2 when we have squark mixing.
Otherwise, an explicit L or R is present to indicate the squark interaction eigenstate.
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c, γ, pc

b, β, pba, α, pa
(ig)(ifabc)

[
gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β

]

d, δ

c, γa, α

b, β

+(ig2)(ifeac)(ifebd)[g
αβgγδ − gαδgβγ ]

+(ig2)(ifead)(ifebc)[g
αβgγδ − gαγgβδ]

+(ig2)(ifeab)(ifecd)[g
αγgβδ − gαδgβγ ]

j

ia, α
−igγµT aij

c

b, poutα, a
−ig(ifabc)p

α
out

Figure A.2: QCD feynman rules.
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c

ba, α
ig(ifabc)γ

α

j, pin

i, pouta, α
−ig(pin − pout)αT aij

j,K

i
a

−i
√

2gT aij(Π+S
∗
KL −Π−S

∗
KR)

j

i,K
a

−i
√

2gT aij(Π−SKL −Π+SKR)

j

ia, α

b, β

ig2gαβ{T a, T b}ij

Figure A.3: Supersymmetric QCD feynman rules
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L, j

L, iL, k

L, l

−ig2
[
T aijT

a
kl + T ailT

a
kj

]

L, j

L, iR, k

R, l

+ig2
[
T aijT

a
lk

]

R, j

R, iR, k

R, l

−ig2
[
T aijT

a
kl + T ailT

a
kj

]

Figure A.4: Four scalar interactions in Supersymmetric QCD.

M, i

K, j
g, α, a

γ, β

2igsT
a
ijδkm (eQf )

M, i

K, j
g, α, a

Z, β

2igsT
a
ij

e
cwsw

(
T 3
f S
∗
kLSmL −Qfs2

wδkm

)

Figure A.5: Squark-Gauge boson-gluon vertices with squark mixing. We get off diagonal
contributions in the Z boson vertex.
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A.2. Neutralino Sector

{L,R}, i

{L,R}, jg, α, a

γ, β

2igsT
a
ijg

αβ
(
−gf{L,R},A

)

{L,R}, i

{L,R}, jg, α, a

Z, β

2igsT
a
ijg

αβ
(
−gf{L,R},A

)

Figure A.6: Squark-Gauge boson gluon vertices without squark mixing.

the following equivalent expressions:

AfL =
√

2SKL

(
N
′∗
i1 g

A
L +N

′∗
i2 g

Z
L

)
. (A.18)

and

AfR = −
√

2SKR

(
gARN

′

i1 + gZRN
′

i2

)
. (A.19)

In this basis we can see clearly the relation between the Standard Model coupling and the

SUSY coupling. The full Feynman rules are presented in Figure A.7. We need the following

two couplings also:

gχχZ,L = −i e

2cwsw

(
Ni3N

∗
j3 −Ni4N∗j4

)
(A.20)

gχχZ,R = i
e

2cwsw
(N∗i3Nj3 −N∗i4Nj4) . (A.21)

They are proportional to the higgsino mixing matrices. This is because we arrive at this

vertex through a SUSY transformation from the Higgs-Z vertex. That is, the coupling must be

Higgsino only. Because we make the approximation of massless quarks we omit the discussion

of the Higgs-squark-squark couplings as these vanish in this approximation.
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f

f,K
χ0i

i
[
AfLΠ− +AfRΠ+

]

f

f,K
χ0i

i
[
Af∗R Π− +Af∗L Π+

]

f

f
V

iγµ
[
gfL,V Π− + gfR,V Π+

]

χ0j

χ0i
Z

γµ [gχχZ,LΠ− + gχχZ,RΠ+]

M

KZ,µ
i
[
gfL,ZS

∗
KLSML + gfR,ZS

∗
KRSMR

]
(pK − pM )µ

M

Kγ, µ
iδKM (−eQf )(pK − pM )µ

Figure A.7: Neutralino Feynman Rules in wino bino basis. The constants are found in the main
text. We have dropped the color indices as all these interactions are diagonal in color space.
The indices we have are f for the flavour of the quark/squark and K for the generation of the
squark. The complex conjugate has an effect on the mixing matrices present in the couplings.
All momenta are incoming.
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Appendix B

Breaking SUSY by choice of

Regularisation Scheme

B.1 Verifying the invariance of the SUSY Yang Mills

Lagrangian

This is a non-trivial exercise in spinor algebra. We set the auxiliary fields to zero to make it

easier. Then we compute the variation of the two parts of the Lagrangian separately. The

Lagrangian is

L = −1

4
GaµνG

µνa︸ ︷︷ ︸
L1

+
i

2
λ̄a /D

ab
λb︸ ︷︷ ︸

L2

. (B.1)

where we have:

Dab
µ = δab∂µ − gfabcW c

µ (B.2)

Gaµν = ∂µW
a
ν − ∂νW a

µ + gfabcW b
µW

c
ν . (B.3)

Now we show that the above Lagrangian is invariant under the following supersymmetric

transformations:

δW a
µ = iε̄γµλ

a (B.4)

δλa =
1

2
Gaµνγ

µγν .
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Appendix A. Breaking SUSY by choice of Regularisation Scheme

B.1.1 L1

The gauge field kinetic term’s variation gives

δL1 = −1

2
Gaµν(δGµνa) (B.5)

= −1

2
Gaµν

(
2∂µδW νa + 2gfabcδWµbW νc

)
(B.6)

= −i(ε̄γν∂µλa)Gaµν − igGaµνfabc(ε̄γµλb)W νc (B.7)

where we have used the anti-symmetry of Gµν to simplify the expression, before plugging in

the SUSY transformations.

B.1.2 L2

We now look at the variation of the Majorana term. The quickest way to get to our result is

to show that

δL2 =
i

2

[
(δλ̄a) /D

ab
λb + λ̄a(δ /D

ab
)λb + λ̄a /D

ab
(δλb)

]
(B.8)

=
i

2

2(δλ̄a) /D
ab
λb︸ ︷︷ ︸

δL2a

+ λ̄a(δ /D)abλb︸ ︷︷ ︸
δL2b

 (B.9)

We consider each part in turn.

B.1.2.1 L2a

This piece gives the cancellation with the piece from δL1. The first term gives

2(δλ̄) /Dλ︸ ︷︷ ︸
δL2a

=
2

2
ε̄γνγµγρ

(
∂ρλ

a − gfabcλbW c
ρ

)
Gaµν . (B.10)

Using the following identity for the gamma matrices:

γαγβγγ = ĝαβ γ̂γ − ĝβγ γ̂α + ĝγαγ̂β − iγ5γδε
αβγδ + ḡαβ γ̂γ − ḡβγ γ̂α + ḡγαγ̂β . (B.11)

we can begin rewriting our expression. We have

2(δλ̄) /Dλ︸ ︷︷ ︸
δL2a

= ε̄
(
gνµγρ − γµgνρ + γνgµρ − iγ5γδε

νµρδ
) (
∂ρλ

a − gfabcλbW c
ρ

)
Gaµν . (B.12)

The first term vanishes due to the symmetric gµν hitting the anti-symmetric field strength

tensor. The final term also vanishes although this is far less obvious: we can rewrite it as

− iε̄γ5γδε
νµρδ

(
∂ρλ

a − ifabcλbW c
ρ

)
Gaµν (B.13)

= −iε̄γ5γδλ
a
[
−λa(δab∂ρ − ifabcW c

ρ )
]
Gbµν (B.14)
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B.1. Verifying the invariance of the SUSY Yang Mills Lagrangian

where we have used the usual integration by parts trick on the first term and on the second we

have used the antisymmetry of the tensor f . Now this is equal to

−2iε̄γ5γδλ
aDab

ρ G̃
bρδ (B.15)

where the dual field strength tensor is

G̃µν =
1

2
εµναβFαβ . (B.16)

A general result of Yang Mills theory is that the dual strength tensor has the equation of motion

(from the Bianchi identity)

Dν F̃µν = 0 (B.17)

therefore our final term here is zero. This only leaves the second and third terms. Our final

result is

δL2a = 2ε̄γν(∂µλa)Gaµν + 2gfabc(ε̄γµλb)W νcGaµν (B.18)

upon using the anti-symmetry properties of the field strength tensor. Recalling, that we took

out a factor of i/2 we see that this term alone cancels with that coming from δL1. This leaves

us with the inspection of δL2b.

B.1.2.2 L2b

Now we examine the part L2b. We see that this is equal to

λ̄a(δ /D
ab

)λb − gfabcλ̄aγµλbδW c
µ = −igfabc(λ̄aγµλb)(ε̄γµλc) (B.19)

This part is exactly zero, but to show this one has to use Fierz identities that only hold in 4

dimensions. We rewrite the expression in terms of Weyl spinors to get (we drop color indices)

ε̄γµλλ̄γµλ =
(
χαε ψ̄εα̇

)( 0 σµ

σ̄µ 0

)(
ψα

ψ̄α̇

)(
ψβ ψ̄β̇

)( 0 σµ

σ̄µ 0

)(
ψβ

ψ̄β̇

)
(B.20)

= (σ̄µ)α̇α(σ̄µ)β̇β
[
ψ̄εα̇ψ̄

β̇ψαψ
β − ψ̄εα̇ψ̄β̇ψαψβ − χβε ψαψ̄β̇ψ̄β̇ + χβε ψαψ̄

β̇ψ̄α̇

]
(B.21)

= 2
[
(ψ̄εψ̄)(ψψ)− (ψ̄εψ̄)(ψψ)− (χ̄εψ̄)(ψψ) + (χ̄εψ̄)(ψψ)

]
(B.22)

which is non-zero because the fields ψ have color indices. However, it is symmetric in at least

two of three of these color indices and it comes with the anti-symmetric tensor. Therefore this

is zero. In order to achieve this result we have used the Fierz identity which only holds in 4

dimensions. We expect to run into problems when we extend to dimensions that are not 4.

The term fabcλ̄aγµλbδW c
µ and its non-zero value away from n = 4 is known as the Siegel

ambiguity [86, 62, 87]. This exact non-zero variation of the Lagrangian can lead to a discrepancy
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Appendix A. Breaking SUSY by choice of Regularisation Scheme

in the couplings that were equal at tree level. A simple example is that of the quark-gluon

coupling gs and the quark-gluino-squark coupling. The equality between the two is not preserved

when we use dimensional regularisation. To obtain equality at the one-loop level we have to

include finite counter terms in the renormalization constants.

B.2 Finite Scheme Dependent Differences

In this section we look at examples of how the scheme dependent finite difference comes about by

comparing dimensional regularisation and dimensional reduction. We look at two contributions

to the squark self-energy: the one coming from the gluon contribution and the one from the

gluino contribution.

B.2.1 Squark Self Energy

B.2.1.1 Gluon contribution

Consider the gluon loop contribution to the squark self energy. We have the following expression

(for simplicity we drop the color indices, any factors of i and the couplings)

Γ =

∫
dnk

iπ
n
2

1

(k + p)2 −m2
q̃

(k − 2p)α(k − 2p)β
−gαβ
k2

(B.23)

In dimensional regularisation everything (apart from the external momentum p) is continued to

n dimensions. In dimensional reduction, only the internal momentum k is. Therefore we have

ΓDRED =

∫
dnk

iπ
n
2

[
− i

(k + p)2 −m2
q̃

(k − 2p)α(k − 2p)β

]
ĝαβ
k2

(B.24)

ΓDREG =

∫
dnk

iπ
n
2

[
− i

(k + p)2 −m2
q̃

(k − 2p)α(k − 2p)β

]
ĝαβ + ḡαβ

k2
. (B.25)

We see that the difference is proportional to the term ĝαβ coming from the gluon propagator.

The tensor decomposition of the integral will give a term proportional to gαβ = ĝαβ + ḡαβ for

both cases. Therefore if we write ∆ as the difference between the DREG and the DRED

result we have

∆ = ΓDREG − ΓDRED = −
∫

dnk

iπ
n
2

k̄2

(k + p)2 −m2
q̃k

2
. (B.26)

as k̄ · p̂ = 0. We have shown that we can relate this k̄ integral to a higher dimensional one, and

our result for this part is∫
dnk

iπ
n
2

k̄2

(k + p)2 −m2
q̃)k

2
= +εIn+2

N (p2;m2
q̃, 0) (B.27)
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B.2. Finite Scheme Dependent Differences

where the higher dimensional integral is

In+2
N (s;m2, 0) = −Γ(1 + ε)

ε

(
−s

6
+
m2

2

)
. (B.28)

Therefore our finite difference is

∆ = −Γ(1 + ε)

(
s

6
− m2

2

)
(B.29)

B.2.1.2 Squark Gluino Loop

A careful examination of this diagram shows that there are no extra finite terms: this should be

expected there is no gluon involved. However, for illustrative purposes we look at it in detail.

The graph looks like (again we ignore the color factor and factors of i)

Γ =

∫
dnk

iπ
n
2

tr
{

Π+(/k +mg̃)Π−(/k + /p)
}

[k2 −m2
g̃][(k + p)2]

. (B.30)

We split k = k̂ + k̄ for the internal momentum, in both dimensional regularisation and

dimensional reduction. The term of interest (as it could possibly lead to a finite difference)

contains

tr{Π+/kΠ−/k} = tr
{

Π+(/̂k + /̄k)Π−(/̂k + /̄k)
}

(B.31)

= tr
{

Π+k̂k̂
}

(B.32)

as in the HV scheme we have Π+k̂ = k̂Π+. Therefore the trace is reduced to a four dimensional

trace. This occurs in both dimensional regularisation and dimensional reduction and we have

no extra ε pieces. Therefore the finite difference between the two schemes is zero.
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Appendix C

Loop Integrals

C.1 Derivation of loop integral formula

As explained in Section 4 in virtual calculations one has to perform an integral over the

unresolved momentum running in the loop. One can cast this integral into a general form

and arrive at a formula that relates the momentum integral in Minkowski space to a function

of kinematic variables and a possible integral over the Feynman parameters. Here we carry

out the procedure for the general N -point, n dimensional scalar case. To begin, we define the

general integral as:

InN =

∫
dnk

iπ
n
2

1∏N
j=1(q2

j −m2
j + iδ)

(C.1)

= Γ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)

∫
dnk

iπ
n
2

[
N∑
k=1

zk(q2
k −m2

k + iδ)

]−N
(C.2)

using standard Feynman parameterisation. The denominator is quadratic in the loop

momentum k. Our aim is to symmetrize the k integral. To this end, we rewrite the denominator

as follows:

N∑
k=1

zk(q2
k −m2

k) + iδ =

N∑
k=1

zk[(k + rk)2 −m2
k] + iδ (C.3)

=

N∑
k=1

zk
[
k2 + 2rk · k + r2

k −m2
k

]
+ iδ (C.4)

= k2 + 2k ·Q+

N∑
k=1

zk
(
r2
k −m2

k

)
+ iδ (C.5)

(C.6)
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Appendix A. Loop Integrals

where Qµ =
∑N
k=1 zkrk. We change variables here, letting k → k +Q =⇒ k = l −Q, then

k2 + 2k ·Q = l2 +Q2 − 2l ·Q+ 2l ·Q− 2Q2

= l2 −Q2

so our denominator is now:

l2 −Q2 +

N∑
k=1

zk(r2
k −m2

k) + iδ = l2 −R2 + iδ (C.7)

where

R2 = Q2 −
N∑
i=1

zi(r
2
i −m2

i ) (C.8)

=

N∑
i,j=1

zizjri · rj −
N∑

i,j=1

zi(r
2
i −m2

i )zj (C.9)

=

N∑
i,j=1

zizjri · rj −
1

2

N∑
i=1

zi(r
2
i −m2

i )

N∑
j=1

zj −
1

2

N∑
j=1

zj(r
2
j −m2

j )

N∑
i=1

zi (C.10)

= −1

2

N∑
i,j=1

zizj
(
r2
i + r2

j − 2ri · rj −m2
i −m2

j

)
(C.11)

= −1

2

N∑
i,j=1

zizjSij (C.12)

= −1

2
~z · S · ~z. (C.13)

We have used the definition of the kinematic or Cayley matrix Sij = (ri − rj)2 − m2
i − m2

j .

This encodes all the kinematics of the loop. We can now re-write our integral in the symmetric

form:

InN = Γ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)

∫
dnl

iπ
n
2

[
l2 −R2 + iδ

]−N
(C.14)

= Γ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)

∫
dnl

iπ
n
2

[
l2 +

1

2
z · S · z + iδ

]−N
. (C.15)

We are now in a position to carry out the k integral. We carry out the complex integral in the

l0 plane. In Euclidean space the poles occur at:

l20 = R2 + |~l|2 − iδ (C.16)
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C.1. Derivation of loop integral formula

we solve this, as δ is small:

√
x− ib =

√
x

(
1− ib

x

)
(C.17)

=
√
x

(
1− 1

2

ib

x

)
∼ √x− iδ (C.18)

giving

l0,± ' ±
√
R2 + |~l|2 ∓ iδ. (C.19)

C1

C2

Figure C.1: The location of poles and the contour integral in the l0 plane as described in (C.20).

In the complex l0 plane we see that the poles are shifted away from the real axis: for the

positive real part they are pushed into the fourth quadrant and the for the negative real part

they are pushed up in to the second quadrant. This is shown in Figure C.1. The Wick rotation

is carried out as follows: we analytically continue the variable l0 to the complex plane and close

the integration contour at infinity in the first and third quadrant. This integral has to vanish

as it contains no poles. Therefore we have∮
C

f(l20 − |~l|2) ≡ 0 (C.20)

=

∫ R

−R
dl0f(l20 − |~l|2) +

∫ −R
+R

dl0f(l20 − |~l|2) +

∫
C1

f(l20 − |~l|2) +

∫
C2

f(l20 − |~l|2).

(C.21)
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We can parameterise the curved part as:∫
C1

dl0f(l20 − |~l|2) = iR

∫ π
2

0

dθeiθf(R2 − |~l|2) (C.22)

(C.23)

giving ∣∣∣∣∫
C1

dl0f(R2 − |~l|2)

∣∣∣∣ = R
∣∣∣f(R2 − |~l|2)

∣∣∣ ∣∣∣∣∣i
∫ π

2

0

dθeiθ

∣∣∣∣∣ (C.24)

≤ R|f(R2 − |~l|2)| (C.25)

(actually the integral is i
∫ π/2

0
eiθ = −1 + eiπ/2). In practice the function f is of the form

∼ (k2)−n so for n ≥ 1, and in the limit R→∞ then the curved contribution to the integral is

zero i.e. (C.24) becomes ∣∣∣∣∫
C1

dl0f(R2 − |~l|2)

∣∣∣∣ ≤ R1−2k R→∞−−−−→ 0. (C.26)

Therefore (C.20) gives us∫ ∞
−∞

dl0f(l20 − |~l|2) = −
∫ −∞

+∞
dl0f(l20 − |~l|2) (C.27)

and we let l0 → il4 such that l2 → −l2E = −l24 − |~l|2. giving∫ ∞
−∞

dl0f(l20 − |~l|2) = −
∫ −∞

+∞
dl0f(l20 − |~l|2) = i

∫ ∞
−∞

dl4f(−l2E). (C.28)

This completes the Wick rotation. After this step our integral takes the form:

InN = i(−1)NΓ(N)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)

∫
dnlE

iπ
d
2

[
l2E +R2 − iδ

]−N
(C.29)

We finish off the momentum space integral by introducing polar-coordinates. We use:∫ +∞

−∞
dnlE =

∫ ∞
0

drrn−1

∫
dΩn−1 (C.30)

where

r =
√
l2E ,

∫
dΩn−1 = V (n) =

2π
n
2

Γ(n2 )
(C.31)
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where V (n) is the volume of the n-dimensional unit sphere. Thus,

InN = 2(−1)N
Γ(N)

Γ(n/2)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)

∫ ∞
0

drrn−1
[
r2 +R2 − iδ

]−N
. (C.32)

The iπn/2 in the definition of our integral has been cancelled by the i coming from the Wick

rotation and the πn/2 coming from the angular integration in the Euclidean momentum space.

We complete the r integral by substituting r2 = x, giving,:∫ ∞
0

drn−1 1

[r2 +R2 − iδ]N =
1

2

∫ ∞
0

dxx
n
2−1 1

[x+R2 − iδ]N (C.33)

=
[
R2 − iδ

]1−N−1+n
2

1

2

∫ ∞
0

y
n
2−1

(1 + y)N
(C.34)

=
1

2

[
R2 − iδ

]n
2−N B

(n
2
, N − n

2

)
(C.35)

=
1

2

[
R2 − iδ

]n
2−N Γ

(
n
2

)
Γ(N − n

2 )

Γ(N)
(C.36)

where we have used the definition of the beta function:

B(a, b) =

∫ ∞
0

dz
za−1

(1 + z)a+b
=

∫ 1

0

dyya−1(1− y)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
. (C.37)

The result for the loop integral is therefore:

InN = (−1)NΓ(N − n/2)

∫ ∞
0

N∏
i=1

dziδ(1−
N∑
l=1

zl)
[
R2 − iδ

]n
2−N (C.38)

C.1.0.3 General Formula

We can now write down a formula for the general integral:∫
dnl

iπ
n
2

(l2)r

(l2 −R2 + iδ)N
= (−1)N+r Γ(r + n

2 )Γ(N − r − n
2 )

Γ(n2 )Γ(N)

[
R2 − iδ

]r−N+n
2 . (C.39)

So the wick rotation had been performed (the left hand side is in Minkowski space) and also a

shift in k, kµ → kµ +Qµ = kµ +
∑N
i=1 zir

µ
i to get the quadratic form in the numerator.

C.2 Derivation in dimension splitting

After performing the dimension splitting as described in section 3.7 we arrive at integrals of

the form

In,α;µ1...µr
N (a1, . . . , ar;S) =

∫
dnk

iπ
n
2

(k
2
)αq̂µ1

a1 · · · q̂µrar∏N
j=1(q2

j −m2
j + iδ)

(C.40)
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where, as before, we distinguish the vectors living in the 4 dimensional sub space by a hat and

those in the (n− 4) space by a bar. Writing out the q vectors explicitly this becomes:

In,α;µ1...µr
N (a1, . . . , ar;S) =

∫
dnk

iπ
n
2

(k
2
)α
∏r
ν=1(k̂ + r̂av )µr∏N

j=1[(k + rj)2 −m2
j + iδ]

(C.41)

We apply the Feynman parameter formula

In,α;µ1...µr
N (a1, . . . , ar;S) = Γ(N)

∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
i=1

zi) (C.42)

∫
d4k̂

iπ2

dn−4k

π
n
2−2

(k
2
)α
∏r
ν=1(k̂ + r̂av )µr[∑N

k=1 zk(q2
k −m2

k + iδ)
]N (C.43)

before we shift the integration momentum by k → l = k+Q. Here Q =
∑N
k=1 zkrk and here Q

is a four dimensional object (it is made up of ri = r̂i as these are simply combinations of the

external momenta. Therefore this shift does not affect the k-integral in the (n - 4) subspace.

Using k = l −Q we obtain for the numerator:

k̂µ + r̂µa → l̂µ −
N∑
k=1

zkr̂k + r̂a = l̂ −
N∑
k=1

zk(r̂k − r̂a)µ, (C.44)

and the denominator changes as:

N∑
k=1

zk[(q2
k −m2

k) + iδ] =

N∑
k=1

q2
j +

N∑
j=1

zk(q̂2
k −m2

k) + iδ = k
2

+ l̂2 −R2 + iδ (C.45)

as qj = k and where R2 = 1
2z · S · s as before. It is important to note that we have defined

k
2

= −|k|2 i.e. it is negative. This is so that we have, above, k2 = k̂2
0 − |

~̂
k|2 − |k|2 = k̂2 + k

2
.

Therefore we arrive at the form:

In,α;µ1...µr
N (a1, . . . , ar;S) = Γ(N)

∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
i=1

zi) (C.46)

∫
d4 l̂

iπ2

dn−4k

π
n
2−2

(k
2
)α
∏r
ν=1

[
l̂µν −∑N

k=1 zk(r̂k − r̂av )µν
]

[
k

2
+ l̂2 + 1

2z · S · ziδ
]N . (C.47)

The above integral is symmetric in l̂ and therefore the tensor structure is always an even number

of powers in l̂. In fact, we can rewrite this as a sum of terms (l̂2)n where n is some positive
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C.2. Derivation in dimension splitting

integer. Our integral is therefore split into a sum of integrals with the form

Id,α,lN (l1, . . . , lr;S) = Γ(N)

∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
i=1

zi)

∫
d4 l̂

iπ2

dn−4k

π
n
2−2

(k
2
)α(k2)l

∏r
ν=1 z

lν
ν[

k
2

+ l̂2 + 1
2z · S · z + iδ

]N .
(C.48)

Therefore we start from (C.48) and obtain, after Wick rotation,

In,α,lN (l1, . . . , lr;S) = iΓ(N)(−1)l+α−N
∫ ∞

0

N∏
j=1

dzjδ(1−
N∑
i=1

zi) (C.49)

∫
d4 l̂E
iπ2

dn−4k

π
n
2−2

|k2|α(l̂2E)l
∏r
ν=1 z

lν
ν[

|k|2 + l̂2E − 1
2z · S · z − iδ

]N (C.50)

where we recall we have defined k
2

= −|k|2. We take a minus from the denominator, and from

l̂E and k. We wish to carry out the momentum integral. As the two integrals are now in same

sign metrics we can carry out the angular integral i.e.∫
d4 l̂E =

∫ ∞
0

drr3

∫
dΩ3 (C.51)∫

dn−4k =

∫ ∞
0

dqqn−5

∫
dΩn−5 (C.52)

(C.53)

where

r =
√
l2E , q =

√
|k|2 (C.54)

and

Ωn =
2π

n
2

Γ(n2 )
. (C.55)

With this change of variables we have:

In,α,lN (l1, . . . , lr;S) = Γ(N)(−1)l+α−N
∫ ∞

0

N∏
j=1

dzjδ(1−
N∑
i=1

zi) (C.56)

i2π2

iπ2

2π
n
2−2

π
n
2−2

1

Γ(n2 − 2)

∫ ∞
0

drr3

∫ ∞
0

dqqn−5 r2lq2α
∏N
ν=1 z

lν
v[

r2 + q2 − 1
2z · S · z − iδ

]N
(C.57)
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We extract the integral of interest:

I =

∫ ∞
0

drr3

∫ ∞
0

dqqn−5 r
2lq2α

∏N
ν=1 z

lν
v

[r2 + q2 +A]
N

(C.58)

where A = −1/2z · S · z. We rewrite this in terms of β functions. Firstly we consider the q

integral. We make a change of variables:

q = s
1
2 (r2 +A)

1
2 (C.59)

dq =
1

2
s−

1
2 ds(r2 +A)

1
2 (C.60)

gives us

I =

∫ ∞
0

dr
r3+2l

2
(r2 +A)

n
2−2+α−N

∫ ∞
0

ds
sn2− 3 + α

(1 + s)N
(C.61)

=

∫ ∞
0

dr
r3+2l

2
(r2 +A)

n
2−2+α−NB(

n

2
− 2 + α,N − n

2
+ 2− α). (C.62)

We now carry out the r integral by using the following change of variables:

r = t
1
2A

1
2 (C.63)

dr =
1

2
t−

1
2 dtA

1
2 (C.64)

which gives us

I =
1

4
B(

n

2
− 2 + α,N − n

2
+ 2− α)An/2+α−N+l

∫ ∞
0

dt
t1+l

(1 + t)2+N−α−n2
(C.65)

= B(
n

2
− 2 + α,N − n

2
+ 2− α)B(2 + l, 2 +N − α− n

2
− 2− l)An

2 +α−N+l. (C.66)

This formula becomes:

I =
1

4

(
−1

2
z · S · z

)n
2 +α−N+l Γ(n2 − 2 + α)Γ(N − n

2 + 2− α)

Γ(N)

Γ(l + 2)Γ(N − α− n
2 − l)

Γ(N + 2− α− n
2 )

(C.67)

=
1

4

(
−1

2
z · S · z

)n
2 +α−N+l Γ(N − α− n

2 − l)Γ(n2 − 2 + α)Γ(l + 2)

Γ(N)
(C.68)

therefore our final result looks likes:

In,α,lN (l1, . . . , lr;S) = (−1)N+α+lΓ(N − α− n
2 − l)Γ(n2 − 2 + α)Γ(l + 2)

Γ(n2 − 2)
(C.69)

∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
i=1

zi)

∏N
ν=1 z

lν
ν(

− 1
2z · S · z

)N−l−α−n2 . (C.70)
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The conclusion of this calculation is that we can rewrite our result as

In,α,lN (l1, . . . , lr;S) = (−1)α+lΓ(n2 − 2 + α)Γ(l + 2)

Γ(n2 − 2)
In+2α+2l
N (l1, . . . , lN ;S) (C.71)

where

InN (l1, . . . , lN ;S) = = (−1)NΓ(N − n

2
)

∫ ∞
0

N∏
j=1

dzjδ(1−
N∑
i=1

zi)

∏N
ν=1 z

lν
ν(

− 1
2z · S · z

)N−n2 . (C.72)

That is the integral has is rewritten as a higher dimensional integral. We note here that Γ(n2−2)

is of order ε. Therefore to give a contribution the integral must be divergent (for α > 0). And

because it is higher dimensional this divergence will always be of UV origin.

A nice consistency check is the following: if we split our integral into two as above then∫
dnk

iπ
n
2

k2∑N
j=1(q2

j −m2
j ) + iδ)

=

∫
dnk

iπ
n
2

k̂2 + k̄2∑N
j=1(q2

j −m2
j ) + iδ)

(C.73)

= In,0,1N + In,1,0N (C.74)

= (−2 + ε)In+2
N (C.75)

and from (4.21) we have∫
dnk

iπ
n
2

k2∑N
j=1(q2

j −m2
j ) + iδ)

= gµνI
n,µν
N (C.76)

= gµν
[
−1

2
gµνIn+2

N

]
(C.77)

= (−2 + ε)In+2
N . (C.78)
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Appendix D

Miscellaneous comments

D.1 Loop Integral conventions

Here we make some comments on the Section 4.2.

D.1.1 The Integral
∫ 1

0
dz 1

z1+2ε

The following integral appears in our calculations. The limits of the integral must be considered

carefully.∫ 1

0

dz
1

z1+2ε
=

∫ 1

0

dz
d

dz

(
z−2ε

−2ε

)
= − 1

2ε
z−2ε

∣∣∣∣1
0

= − 1

2ε
e−2ε log z

∣∣∣∣1
0

= − 1

2ε
. (D.1)

The upper limit is clearly 1 (one can Taylor expand in epsilon). The lower limit is zero as ε is

negative. This result is simply a special case of the function (D.8).

D.1.2 Combining complex logarithms

When dealing with complex logarithms we can arrive at problems when manipulating them in

the usual way. The definition of the complex logarithm is log(z) = r + iθ. We remove any

ambiguity in the definition of the polar angle by introducing a branch cut along the negative

real axis. There is an obvious problem when we want to combine logarithms like log z+logw =

log(zw) as there is a danger that we may cross the branch cut. We can introduce an additional

function η such that

log(wz) = log(z) + log(w) + η(w, z) (D.2)

to take care when this occurs. Alternatively we can stick to the following rules:

log z + logw = log(zw) (D.3)
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if z,w have imaginary parts of different sign and

log z − logw = log
( z
w

)
(D.4)

if both have imaginary parts of the same sign.

D.1.3 Notes on the integral In3 (m
2
1, s2, 0,m

2
1, 0, 0)

For this integral we wish to take the limit of the integral In3 (s1, s2, 0,m
2
1, 0, 0) taking the first

leg on shell. Following the same procedure as that for the original integral we arrive at a result

that contains the terms log(−iδ). Naively we have the integral∫ 1

0

∫ 1

0

du dz
z

z1+εf(u, z)1+ε
=

∫ 1

0

∫ 1

0

du dz
1

z1+ε

(
z

f(u, z)1+ε
− 1

f(u, 1)1+ε

)
+

∫ 1

0

∫ 1

0

du dz
1

z1+ε

(
1

f(u, 1)1+ε

)
and then we expand the final integral in ε

1

f(u, 1)1+ε
=

1

f(u, 1)

[
1− ε log f(u, 1) +

ε2

2
log2 f(u, 1) +O(ε3)

]
. (D.5)

For our original integral this is valid as f(u, z) = (−s2u − s1u)z + m2
1 − iδ so f(u, 1) is well

defined. Taking the limit s1 → m2
1 we arrive at f(u, z) = −s2u + m2

1((1 − z) + zu) which

clearly diverges as z → 1 and u→ 0. Therefore f(u, 1) is ill defined over out integration region

and we cannot expand this function. This is an example of an overlapping divergence where

simple subtraction is actually not allowed. We conclude that putting this leg on shell changes

the pole structure of the integral. This overlapping singularity problem can be resolved by

re-parameterizing the Feynman integral. For this example this is possible by writing x1 = zu,

x2 = zu and x3 = z. Using this parametrisation the u and z integration factorises.

D.1.4 Functions arising in results

Here I present the definitions of some special functions arising in the following integrals.

Li2(z) = −
∫ z

0

dt
log(1− t)

t
(D.6)

and

Γ(z) =

∫ ∞
0

tz−1e−t dt. (D.7)

In the derivation of these results we also use the Euler-Beta function defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
(D.8)

and we use the property Γ(1 + x) = xΓ(x).
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D.1.5 Dilogarithm Identities

The following dilogarithm identities are used:

Li2(z) + Li2(1− z) =
π2

6
− log z log(1− z)

Li2(z) + Li2

(
1

z

)
= −π

2

6
− 1

2
log2(−z) , |z| > 0

D.1.6 rΓ

We define

rΓ =
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
. (D.9)

Several conventions exist for the representation of loop integrals. We can write

1

Γ(1− ε) = rΓ +O(ε3) (D.10)

=

(
1− π2

6
ε2
)

Γ(1 + ε) +O(ε3). (D.11)

transforming (3.124) to

f1(s) = Γ(1 + ε)
CFαs

4π

(
4πµ2

s

)ε(
− 2

ε2
− 3

ε
+

4π2

3
− 8

)
. (D.12)

D.1.7 s

Our scalar functions are made up of logarithms. We can extract the logarithmic contributions

by multiplying by (−s− iδ
−s− iδ

)ε
(D.13)

and expanding the numerator. The denominator gives (in the limit δ → 0)

(−s− iδ)−ε = (s)−εe−iπε (D.14)

= (s)−ε
[
1− iπε− π2

2
ε2 +O(ε2)

]
. (D.15)
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Appendix E

Outline of Code

E.1 Generation of the Virtual matrix elements

In this section we briefly outline the code we used in our calculation of the virtual matrix

elements. We work towards an automated approach. The code is part of Golem-2.0 [88, 89, 80,

81, 90] and full technical details will be found upon its public release. There are five distinct

tasks that need to be performed in the code (as outlined in Figure E.1) that are linked together

using a Python script [91]. These five components are:

• Generation of all diagrams, for the process specified by the user, by Qgraf [82].

• The translation of the diagrams to the computer algebra system Form [92] that is

processed such that all loop diagrams are written in the form factor representation.

• Numerator algebra performed by the Form library Spinney [1].

• The generation of source code for each diagram by Haggies [93].

• Fortran95 source code calls the Golem95 library [2] for the evaluation of the loop integrals.

The user needs to provide the process and helicities to be calculated and, optionally, any

user defined model files. There must be three of these model files; one in a format for Qgraf,

the second to be used by the Form program and another that contains the numerical values of

the parameters. This is provided in a Python file and written to a Fortran95 module.

Once the source code has been generated what remains is for the user to provide a momenta

configuration for a particular phase space point. Then the program will output three numbers

A,B,C such that:

|MV |2 =
αs
2π

(4π)ε

Γ(1− ε)

[
A

ε2
+
B

ε
+ C

]
. (E.1)

In our calculation the final matrix element module was embedded in the MadGraph/MadE-

vent framework [3] alonside the dipole subtraction terms [76] and the real emission terms. The

phase space integral was performed using MadEvent routines.
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Diagram

generation

Golem-2.0

(Python)

Feynman

rules

Topology Form

Factor

Numerator

Algebra

Code

Generation

(QGRAF) (Form/Spinney) (Haggies)

process.in

Input

Model

Files

matrix.f90

(Fortran95)
model model.hh model.py

(Fortran95)

golem95

Figure E.1: Schematic diagram of the code.

E.2 Majorana fermion issues

E.2.1 On the Relative Sign of Feynman Graphs

The flipping rules have been tested in the above framework. where the diagrams are generated

by Qgraf [82]. The relative sign calculated by Qgraf is incorrect when dealing with Majorana

fermions. Here, we present a method to calculate it. Firstly we calculate (−1)P using the

following code:� �
Function NCOrder ;

Id fDUMMY1?{UbarSpa , UbarSpb}(vDUMMY1?) =

NCOrder (vDUMMY1)∗fDUMMY1(vDUMMY1) ;

Id fDUMMY1?{USpa , USpb}(vDUMMY1?) =

fDUMMY1(vDUMMY1)∗NCOrder (vDUMMY1) ;

#cal l tHooftAlgebra

#cal l SpCol l ec t

ChainIn NCOrder ;

AntiSymmetrize NCOrder ;

Id NCOrder (? a l l ) = 1 ;� �
We multiply our diagram by a non-commuting function of the external momenta which

encodes the order of the spinors in the diagram. The arguments of this function are then

brought into Form’s natural ordering. The exchange of any two arguments gives a minus sign.

Secondly we must determine (−1)L with L being the number of close fermion loops. This

is easily calculated in the following code:
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� �
Id trL = (−1)∗ trL ;� �
Every closed spinor chain, corresponding to a closed fermion loop, contributes a minus sign.

E.2.1.1 Fixing Fermion Chain Order

The method we have described relies on being able to fix the fermion chain order. This is

achieved in the procedure RemoveNCContainer. In our code an incoming (outgoing) Majorana

fermion will initially be treated as in incoming (outgoing) Dirac fermion (as opposed to an

anti-fermion). When we join an incoming Majorana spinor with an incoming Dirac fermion or

an outgoing Dirac anti-fermion, one spinor will need to be flipped. The same applies when an

outgoing Majorana fermion is joined to an incoming anti-fermion or an outgoing fermion. As

an example we have an expression:� �
NCContainer ( UbarSpa ( k1 )∗Sm( i 1 )∗ ProjPlus ∗UbarSpa ( k2 ) )� �
which is transformed using RemoveNCContainer to� �
NCContainer ( UbarSpa ( k1 ) , Sm( i 1 ) , ProjPlus ,

SpFlip ( UbarSpa ( k2 ) ) )� �
and then using (3.101) we have the fermion chain:� �
UbarSpa ( k1 )∗Sm( i 1 )∗ ProjPlus ∗USpb( k2 ) .� �
E.2.2 Majorana Exchange

Corresponding to the section 3.5.1.2 In our code, part of the output is:� �
NCContainer (USpa( k1 )∗ SpFlip (Sm(mu)∗ ProjPlus )∗Sm( k4 )

∗Sm(nu)∗ ProjPlus ∗USpb( k2 ) )∗ inv ( es23 ) .� �
Upon applying the RemoveNCContainer routine we obtain the result� �
− UbarSpb ( k1 )∗ ProjPlus ∗Sm(mu)∗Sm( k4 )∗Sm(nu)

∗ProjMinus∗USpa( k2 )∗ inv ( es23 )� �
We have picked up a minus sign from the flipping of the γµ. What remains is to multiply by

(−1)P as explained previously.
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Appendix F

Numerical Results for Three

Point Tensor Integrals

We use the notation of (4.23) and present the numerical results for the kinematic regions

examined in Section 4.2.
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ε−2 ε−1 ε0

Re Im Re Im Re Im

s1 = 11.0 s2 = 7.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 0.090311368 -0.203999523

In3 (2) 0.000000000 0.000000000 -0.161979608 0.000000000 0.079370188 -0.709664941

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.016337073 -0.084779023

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.055394004 -0.072856972

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.024566588 -0.036379743

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.001385840 -0.027124241

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.037613279 -0.034693796

In3 (2, 2, 2) 0.000000000 0.000000000 -0.093620785 0.000000000 -0.026737434 -0.349955155

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.555245614 -1.060797519

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.102297860 -0.212300802

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.259263646 -0.402170488

s1 = 7.0 s2 = 3.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.218164460 -0.224399475

In3 (2) 0.000000000 0.000000000 0.250000000 0.392699082 -0.326263699 1.005158769

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.077492484 -0.032057068

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.098470383 -0.056099869

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.033853621 -0.006106108

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.021169072 -0.005342845

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.053855981 -0.018699956

In3 (2, 2, 2) 0.000000000 0.000000000 0.208333333 0.098174770 0.376231887 0.414914310

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.608015260 -0.224399475

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.017962058 -0.021371379

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.248135942 -0.037399913

s1 = 7.0 s2 = −3.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.151514036 -0.089759790

In3 (2) 0.000000000 0.000000000 0.127725887 0.062831853 -0.046856314 0.160825403

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.051804745 -0.012822827

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.044039486 -0.008975979

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.023802599 -0.002442443

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.010365796 -0.000854855

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.018218507 -0.001196797

In3 (2, 2, 2) 0.000000000 0.000000000 0.048442369 0.002513274 0.026748182 0.010621806

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.220123574 -0.089759790

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.068522272 -0.008548551

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.067047007 -0.005983986

s1 = 3.0 s2 = −3.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.107080421 0.000000000

In3 (2) 0.000000000 0.000000000 0.089650313 0.000000000 -0.016895515 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.034679585 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.030300067 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.017101918 0.000000000
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In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.007666957 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.013844277 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.037738924 0.000000000 0.006089093 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.038470882 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.126178492 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.017487304 0.000000000

s1 = −3.0 s2 = −5.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.066475675 0.000000000

In3 (2) 0.000000000 0.000000000 0.053712897 0.000000000 -0.048642293 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.024251840 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.020475060 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.012826746 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.005566093 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.009782234 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.026073025 0.000000000 -0.007329019 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.263768836 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.183898234 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.045062034 0.000000000

Table F.1: Kinematic points for In3 (s1, s2, 0,m
2
1, 0, 0).
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Appendix A. Numerical Results for Three Point Tensor Integrals

ε−2 ε−1 ε0

Re Im Re Im Re Im

m2
1 = 7.0 s2 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.130898676 -0.448798951

In3 (2) 0.000000000 0.000000000 -0.500000000 0.000000000 -0.980673100 -2.692793703

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.090128382 -0.064114136

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.024679044 -0.160285339

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.040976835 -0.012212216

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.019108753 -0.030530541

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.035561450 -0.076326352

In3 (2, 2, 2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.156682957 -0.714414656

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.826179720 -0.448798951

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.069623714 -0.042742757

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.370051655 -0.256456543

m2
1 = 3.0 s2 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.305430244 0.000000000

In3 (2) 0.000000000 0.000000000 0.500000000 0.000000000 1.417002020 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.064856585 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.087858537 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.026730407 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.016507317 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.042065041 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.166666667 0.000000000 0.350749183 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.389850800 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.033699598 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.182489020 0.000000000

m2
1 = −3.0 s2 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.156667876 0.000000000

In3 (2) 0.000000000 0.000000000 0.125000000 0.000000000 0.087987230 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.042223835 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.036110103 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.019509040 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.008640183 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.015433219 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.041666667 0.000000000 0.013280142 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.068609538 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.103058768 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.037687349 0.000000000

Table F.2: Kinematic points for In3 (m2
1, s2, 0,m

2
1, 0, 0).
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ε−2 ε−1 ε0

Re Im Re Im Re Im

s1 = 7.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 0.049358089 -0.320570679

In3 (2) 0.000000000 0.000000000 -0.250000000 0.000000000 -0.015015594 -1.186111512

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.057326260 -0.091591623

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.053342174 -0.114489528

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.040188455 -0.026169035

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.008568903 -0.032711294

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.041274051 -0.054518823

In3 (2, 2, 2) 0.000000000 0.000000000 -0.125000000 0.000000000 -0.065134423 -0.494921875

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.776821631 -0.769369629

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.107841221 -0.103803839

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.334490205 -0.332782895

s1 = 3.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.175717073 0.000000000

In3 (2) 0.000000000 0.000000000 0.250000000 0.000000000 0.296359546 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.049521951 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.063097561 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.022540921 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.013490515 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.033071364 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.125000000 0.000000000 0.204532077 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.214133727 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.066714232 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.140423979 0.000000000

s1 = −3.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.072220206 0.000000000

In3 (2) 0.000000000 0.000000000 0.062500000 0.000000000 -0.044896282 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.025920549 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.023149828 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.013565909 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.006177320 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.011315006 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.031250000 0.000000000 -0.002386973 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.220271286 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.172180233 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.024045526 0.000000000

Table F.3: Kinematic points for In3 (s1, s1, 0,m
2
1, 0, 0).
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Appendix A. Numerical Results for Three Point Tensor Integrals

ε−2 ε−1 ε0

Re Im Re Im Re Im

s2 = 25.0 m2
1 = 9.0 m2

2 = 3.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.761889398 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -1.264643179 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.161605287 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.219339412 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.051298500 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.056438358 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.089787916 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.185533535 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.416905166 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.011579149 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.155246517 0.000000000

s2 = 10.0 m2
1 = 9.0 m2

2 = 3.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.108946412 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.161132575 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.031277434 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.023195772 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.014112675 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.006738948 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.008724900 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.029522111 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.190956426 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.155669485 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.082745911 0.000000000

s2 = 1.0 m2
1 = 9.0 m2

2 = 3.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.077344936 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.111439547 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.023460935 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.015211534 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.011118615 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.004522008 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.005619015 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.021386478 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.358328079 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.204872812 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.145123685 0.000000000

s2 = −5.0 m2
1 = 9.0 m2

2 = 3.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.065950630 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.093878333 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.020494382 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.012480933 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.009915220 0.000000000
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In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.003747701 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.004572921 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.018399235 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.440827645 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.229523018 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.175473190 0.000000000

Table F.4: Kinematic points for In3 (m2
1, s2,m

2
2,m

2
1,m

2
2, 0).
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Appendix A. Numerical Results for Three Point Tensor Integrals

ε−2 ε−1 ε0

Re Im Re Im Re Im

s1 = 25.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 0.086081788 -0.280992589

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 0.086081788 -0.280992589

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 0.005824536 -0.084297777

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.037216358 -0.056198518

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.008522428 -0.037465679

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.012405453 -0.018732839

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 0.012405453 -0.018732839

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.008522428 -0.037465679

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.480076573 -0.702481473

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.104469969 -0.234160491

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 -0.104469969 -0.234160491

s1 = 10.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.196604666 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.196604666 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.061146692 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.037155641 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.028379248 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.012385214 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.012385214 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.028379248 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 -0.007164713 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.053167318 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.053167318 0.000000000

s1 = 1.0 m2
1 = 5.0

In3 (1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.086081788 0.000000000

In3 (2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.086081788 0.000000000

In3 (1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.029122682 0.000000000

In3 (1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.013918212 0.000000000

In3 (1, 1, 1) 0.000000000 0.000000000 0.000000000 0.000000000 -0.014775718 0.000000000

In3 (1, 1, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.004639404 0.000000000

In3 (1, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.004639404 0.000000000

In3 (2, 2, 2) 0.000000000 0.000000000 0.000000000 0.000000000 -0.014775718 0.000000000

In+2
3 0.000000000 0.000000000 -0.500000000 0.000000000 0.380741308 0.000000000

In+2
3 (1) 0.000000000 0.000000000 -0.166666667 0.000000000 0.182469325 0.000000000

In+2
3 (2) 0.000000000 0.000000000 -0.166666667 0.000000000 0.182469325 0.000000000

Table F.5: Kinematic points for In3 (m2
1, s2,m

2
1,m

2
1,m

2
1, 0).
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