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Abstract  
 

Atherosclerosis and plaque rupture are widely known as multifactorial problems. To 

isolate the significance of wall shear stress in these problems, the work of this thesis 

explores the hypothesis that the frequency composition of the wall shear stress signal 

is associated with the different plaque compositions and disease characteristics in 

animal models of atherosclerosis.  

In this thesis, a lattice Boltzmann simulation tool was developed to test the hypothesis 

with the basic functionality of an existing code being enhanced for blood flow 

simulation and wall shear stress calculation. The wall shear stress signals computed 

from the simulation tool were analysed in terms of the frequency composition to 

recover the harmonic amplitude and phase information. This information was then 

used in comparing the different animal models. 

Compared to the healthy, non-diseased vessel, disease models are known to result in a 

decrease in the time-averaged wall shear stress from the reduction in blood flow rate 

and local complex flow patterns. Further to this, the simulation of these models showed 

a decrease in the first harmonic amplitude along the length of the vessel. This is a key 

result of this thesis as the decreased first harmonic amplitude is associated with an 

increase in the expression of adhesion molecules and proinflammatory factors in 

endothelial cells. The uniformity in wall shear stress in regions of different plaque 

type, however, suggests the dominance of circumferential stretch effects over wall 

shear stress effects in the disease process.  

Blood flow simulations in the mouse, rabbit and human vessels were also performed 

to deduce scaling relationships of the zeroth and first harmonic amplitudes between 

mammals. The body mass exponent of the first harmonic amplitude was found to be 

higher than that of the zeroth harmonic amplitude. This suggests an increased 

significance of the first harmonic component in the wall shear stress signal relative to 

the zeroth harmonic amplitude in larger mammals. The absence of plaque rupture in 

the atherosclerotic minipig, however, also suggests the dominance of genomic effects 

over wall shear stress effects in the disease process.  
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A key issue in atherosclerosis research is the absence of plaque rupture in the mouse 

model. The apparent dominance of circumferential stretch and genomic differences 

shown here suggests that the wall shear stress alone cannot explain the lack of plaque 

rupture in atherosclerotic mice. How these differences affect plaque composition 

would be key in understanding the absence of plaque rupture in mouse models and 

how studies in mice can be applied to benefit human treatments.
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Lay abstract  
 

Atherosclerosis is the leading cause of death in the Western world causing patients to 

suffer from major events like the heart attack and stroke. The disease is characterised 

by the build-up of a fatty deposit in the walls of blood vessels with a cap of fibrous 

material. This called structure is called a “plaque”. Heart attack and stroke events are 

caused by a break in the plaque’s fibrous cap, causing a clot in the blood vessel. An 

interesting observation is the high probability of some plaques to rupture while others 

seem more stable and resistant. Considering the mechanics of the plaque, it is clear 

that the probability of cap disruption is dependent on the plaque’s composition and 

structure. The key issue in atherosclerosis research is that there is still no clear 

understanding of the conditions that lead to each type of plaque composition and 

structure.  

Plaque formation commonly occurs at sites of vessel branching and curvature, 

suggesting ‘disturbed’ blood flow to play a role in the disease. This is also clear from 

the changes to the function of cells lining the blood vessel walls in response to a force 

acting on the vessel wall generated by blood flow. This force is known as the wall 

shear stress and is commonly analysed in terms of its time-averaged value with its time 

variation being neglected. The time variation is created by the contraction of the heart 

and was recently shown to be relevant in how the fatty deposit is formed which could 

be important in the structure and composition of the complete plaque. This thesis 

explores the hypothesis that the features of the wall shear stress time variation are 

associated to the different plaque types. 

Atherosclerosis has previously been induced in mice where devices have been placed 

around the blood vessel to create regions of disturbed blood flow. In this thesis, the 

time variation of wall shear stress was calculated by simulating blood flow under these 

disturbed flow conditions. Compared to models of the healthy, non-diseased vessel, 

the simulation of the different mouse models showed decreases in both the time-

average and time-varying components of the wall shear stress, properties that are 

known to result in fat deposition and plaque formation. A key finding of these 



viii 

 

simulations is that plaque formation was suggested to also be a result of mechanical 

and biological factors and not only the blood flow.  

Simulations in the vessels of the mouse, rabbit and human showed the ratio of the time-

variation to time-average to become larger with increasing animal size. This suggests 

that the time variation becomes more important in the wall shear stress of larger 

animals. Simulation results also showed the importance of the time-variation to further 

increase when looking at a specific region between animals with increasing size.  

This study found that, in addition to the decreased time-average, disease models show 

a decreased time-varying wall shear stress when compared to the healthy, non-diseased 

vessel. The nature of this relationship between the time-average and time-varying 

components also changes between species, suggesting differences in how the fatty 

deposit is formed between species.  

Animal models are used extensively in atherosclerosis research but still present 

difficulties when the information gained is applied to benefit human treatment. Plaques 

in mice, for example, do not show the rupture event that is seen in humans. This is true 

even in mouse plaques with similar composition to those that would cause rupture in 

the human. Understanding why the mouse plaque does not rupture is a key challenge 

in atherosclerosis research and, while the work of this thesis studies the blood flow as 

an explanation of this difference, future work should focus on the complete image of 

the disease including mechanical stresses on the cells and biological differences in cell 

response.
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Chapter 1 

Introduction 

 

 

1. Introduction 
 

In 2016, cardiovascular disease was identified as the cause of 17.9 million deaths 

worldwide with heart attacks and strokes contributing to 85% of these deaths (WHO, 

2017). The underlying pathology in these clinical events is called atherosclerosis with 

its name having origins in Greek, meaning “hard gruel”. Due to the high risk of death 

associated with atherosclerosis, an understanding of the disease mechanisms is keenly 

sought in order to devise new approaches in prevention, diagnosis and treatment.  

Atherosclerosis is characterised by the formation of a fatty lesion, termed “plaque”, in 

the intimal layer of blood vessels. Studies into the localisation of these plaques in the 

arterial network have shown a clear predilection for lesion development at branch 

ostia, bifurcation, and curvature, to suggest the role of blood flow dynamics in the 

disease process (VanderLaan et al., 2004). By considering the action of blood flow 

over the vessel wall, the wall shear stress has been implicated in lesion formation with 

many studies working to characterise the relationship between this force and the 

response of cells lining the vessel wall (Chiu and Chien, 2011). An interesting, yet 

somewhat unexplored finding is the differential response of the cells to details of the 

wall shear stress time-variation (Himburg et al., 2007; Feaver et al., 2013). This thesis, 

as a whole, works to clarify the significance of this time-variation in regions coincident 

with plaque formation in animal models of atherosclerosis. 

The current chapter presents the motivation for this thesis and the necessary 

background in pathology along with its relation to wall shear stress. This chapter will 

first consider atherosclerosis, describing its sequential progression from the initial 

“fatty streak” to the advanced plaque. Next, the current understanding of wall shear 

stress will be discussed in terms of its role in plaque formation, progression and 

rupture. Finally, this introduction will present the hypothesis and aims of the PhD.   
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1.1  Atherosclerosis 
 

Atherosclerosis is a progressive inflammatory disease characterised by the 

accumulation of lipid-laden foam cells in the intimal layer of a blood vessel. This 

describes one of three layers in the blood vessel: the intima, media and adventitia. The 

intima is the innermost layer and comprises a single layer of endothelial cells with an 

underlying basement membrane. The middle layer, or media, consists of smooth 

muscle cells (SMCs), circumferentially layered elastin sheets and collagen fibres. The 

adventitia, consisting mainly of collagen, is the outermost layer. Together, the 

adventitia and media form the major structural component of the blood vessel, each 

varying in thickness and composition according to the vessel’s function and location. 

The endothelial cells of the intima form the flow-sensing component of the blood 

vessel, with complex roles in the regulation of vascular tone, permeability, 

inflammation and haemostasis. 

Atherosclerosis develops over several decades in humans, with lesions progressing 

through a number of stages (Lusis, 2000; Weissberg, 2000). The development of the 

lesion through its main types is shown in Figure 1.1. Lesion predilection sites initially 

show adaptive intimal thickening with outward remodelling (Figure 1.1A), such that 

the vessel lumen is preserved (Stary et al., 1992). The initial lipid deposit is formed by 

the infiltration of low-density lipoproteins (LDLs) into the subendothelial space (Getz, 

1990).  
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Figure 1.1. Lesion classification system introduced in Virmani et al. (2000) 

and the proposed sequence of development (Bentzon et al., 2014). Movat 

pentachrome stain of histological samples and schematic drawings show 

plaque characteristics in each lesion type. A, Adaptive intimal thickening by 

smooth muscle cell accumulation in the vessel intima. B, Foam cell 

accumulation showing the intimal xanthoma lesion. C, Accumulation of 

extracellular lipid pools. D, Fibroatheroma and necrotic core. Intraplaque 

neovascularisation is also shown with microvessels developing into the plaque 

from the vessel adventitial layer. E. Fibrocalcific plaque. Figure is taken from 

Bentzon et al. (2014) with permission.  

 

The accumulation and oxidation of LDLs triggers an inflammatory response, with the 

recruitment of monocytes caused by release of cytokines and proinflammatory 

mediators (Quinn et al., 1987). Increases in the expression of proinflammatory 

molecules result in the adhesion of blood-borne monocytes to the endothelial layer and 

their extravasation into the subendothelial space (Poole and Florey, 1958). The 

monocytes then differentiate to macrophages and, following the uptake of oxidised 

LDLs, become foam cells (Figure 1.1B). Foam cell-derived vesicles also promote the 

migration of smooth muscle cells (SMCs) from the media into the subendothelial space 

(Niu et al., 2016), where the now-intimal SMCs take on a foam cell-like appearance 

by oxidised-lipoprotein internalisation. Extracellular lipid pools may also accumulate 

in this region without gross disruption of the intimal surface (Figure 1.1C). The 
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persistent stimulation of this inflammatory process leads to the accumulation of these 

foam cells and lipid-laden SMCs, presenting itself as a “fatty streak” on the intimal 

surface (Ross, 1993). This is the first macroscopically visible type of lesion in the 

American Heart Association (AHA) classification scheme (Stary et al., 1994).  

At this stage, intimal SMCs proliferate and secrete extracellular matrix (ECM) 

proteins. Studies have shown the ECM to aid in lipid retention (Schwenke and Carew, 

1989a, 1989b), potentially having a role in the site selectivity of plaque formation 

(Cunningham and Gotlieb, 2004). The continued entry and retention of lipids into the 

intimal layer results in the formation of the atheroma; the first in the advanced lesion 

class of the AHA scheme (Stary et al., 1995). Lesion sites also show the 

disorganisation of intimal SMCs with an accumulation of extracellular lipid particles. 

The lesion at the atheroma stage still shows minimal infringement into the vessel 

lumen with the tissue lying between the lipid core and the endothelial surface largely 

resembling that of the healthy, non-diseased vessel (Stary et al., 1995). Further 

progression involves the accumulation of collagen in this space. The vessel lumen is 

preserved by the outward remodelling process, even in the presence of a large 

neointimal thickening (Glagov et al., 1987). The resulting lesions are known as 

fibroatheromas (Figure 1.1D) with subclassifications being defined based on their 

composition and structure. The fibrocalcific plaque shown in Figure 1.1E is an 

example of this subclassification.  

Macrophage cell death results in the formation of the soft, thrombogenic necrotic core 

and the further recruitment of inflammatory cells (Virmani et al., 2006). Advanced 

lesions may also show calcifications and intraplaque neovascularisation with thin-

walled microvessels developing into the plaque from the vessel’s adventitial layer 

(Chistiakov et al., 2015). Rupture of these microvessels, termed as an intraplaque 

haemorrhage, contributes to further deposition of extracellular lipids from the lysed 

red blood cells.  

Plaque rupture leads to exposure of the underlying thrombogenic material, resulting in 

the formation of the occlusive thrombosis. This is a catastrophic event in disease-

progression and is the cause of acute clinical events in the human. A major determinant 

of this rupture is the cap stress. Tensile stresses on the plaque cap lead to rupture of 
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the fibrous material only if in excess of the cap’s strength. The thin-cap fibroatheroma 

(TCFA) subclassification is, therefore, of particular importance in human disease 

considering the reduced cap strength associated with a large necrotic core and thin 

fibrous cap (Virmani et al., 2000; Slager et al., 2005a, 2005b; Schwartz et al., 2007; 

Finn et al., 2010; Bentzon et al., 2014). 

 

1.2  Wall shear stress and atherosclerosis  
 

Given the site-specificity of lesion formation, blood flow dynamics have long been 

implicated in atherosclerosis. The wall shear stress (WSS) has received considerable 

attention in this respect, with it being one of two main forces acting on the vessel 

endothelium (Hoskins and Hardman, 2009). The WSS is given by the tangential 

component of fluid stress while the other main force, pressure, is described by the 

normal component. A detailed introduction into the WSS is provided in Section 2.2. 

While high WSS was initially thought to be atherogenic through endothelial damage 

(Fry, 1969), the localisation of lesions in post mortem human aortas showed sites of 

lesion formation to be coincident with regions of low WSS (Caro et al., 1971). 

Analysis of near-wall flows in vessel models later demonstrated the oscillatory nature 

of WSS in regions coincident with disease (Ku et al., 1985). These key studies resulted 

in the widespread use of the low and oscillatory shear stress theory in disease 

localisation. Despite its popularity, a systematic review of the literature showed a large 

number of papers failing to support this theory (Peiffer et al., 2013a). This is discussed 

further in Section 2.3, along with several other metrics that have been proposed in the 

literature to relate the WSS to lesion formation.  

While the details of the WSS-plaque localisation relationship are not fully understood, 

it is clear that the pattern of WSS is key in regulating the endothelial response. Davies 

(1995), Malek et al. (1999), Cunningham and Gotlieb (2004) and Chiu and Chien 

(2011) provide excellent reviews of this field. Slager et al. (2005a, 2005b) also discuss 

the role of WSS in the generation and destabilisation of plaques, citing the activity of 

macrophages in the degradation of the fibrous cap (Lendon et al., 1991). Intrusion of 

the plaque into the vessel lumen also leads to the disruption of blood flow and varying 

WSS distributions over the plaque cap. High shear stresses are found at the point of 
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maximum stenosis while low shear stresses occur in the downstream region. The low 

shear stresses in this region further contribute to plaque growth by the mechanisms 

discussed in the above-mentioned review papers. Growth of the necrotic core and 

degradation of the fibrous cap leads to the formation of the TCFA plaque. While the 

WSS has shown significance in the activity of SMCs (Chiu et al., 2004a), control of 

vascular relaxation (Rubanyi et al., 1986) and changes to the endothelial cell 

cytoskeleton (Davies, 1995; Noria et al., 2004), the major point of relevance to this 

PhD is the role of WSS in inflammation.  

A key marker of inflammation is the expression of NF-κB, a proinflammatory 

transcription factor. Antibody staining of the atherosclerosis-prone mouse aorta found 

upregulation of NF-κB in regions coincident with lesion formation, suggesting active 

inflammation to occur in these regions (Hajra et al., 2000). The WSS also influences 

adhesion molecule expression on the surface of endothelial cells (Chiu et al., 2004b), 

with low and oscillatory shear stresses being associated with the increased adhesion 

and extravasation of inflammatory molecules (Cunningham and Gotlieb, 2004). A 

finding of great importance to this PhD is the differential expression of these 

inflammatory markers with variation of the WSS frequency composition, considered 

now as a time-varying signal (Himburg et al., 2007; Feaver et al., 2013). Feaver et al. 

(2013), in particular, demonstrated a decrease in the expression of NF-κB with 

increasing zeroth and first harmonic amplitudes. This forms an important result as it 

establishes a sensitivity of endothelial cells to details of the WSS beyond the categories 

of “low” and “oscillatory”. The frequency composition of the WSS signal is also a 

fairly unexplored topic, presenting an interesting avenue for research. 

The initiating event in atherogenesis is also not fully understood. While this event is 

not of particular relevance to this PhD, it still warrants a clear discussion in order to 

develop a broader understanding of the disease. The current leading theory in the 

atherosclerosis community is the “response to injury” hypothesis summarised by Ross 

et al. (1977). The initiating mechanism of atherogenesis in this theory was considered 

to be endothelial denudation or damage. Findings of an intact endothelium over an 

atheroma-type lesion (Stary et al., 1995), however, suggested the absence of damage 

at lesion sites. Revisions of the theory now suggest endothelial dysfunction to be the 

key initiating factor (Ross, 1993).  
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Endothelial dysfunction may be attributed to a number of causes including 

hypercholesterolaemia, diabetes mellitus, cigarette smoking, genetic predisposition 

and other environmental factors. These factors, however, are systemic and fail to 

account for the local nature of lesion formation. The relationship between WSS and 

atherogenesis has received much attention because of this, showing flow-dependent 

local increases in LDL residence times (Himburg et al., 2004) and inflammatory 

response (Davies, 1995; Malek et al., 1999; Cunningham and Gotlieb, 2004; Chiu and 

Chien, 2011). The “response to retention” theory, on the other hand, proposes the local 

nature of lesion formation to be attributed to LDL retention (Williams and Tabas, 

1995). Mechanisms of retention include the trapping by the ECM (Schwenke and 

Carew, 1989a, 1989b; Cunningham and Gotlieb, 2004) and ingestion by macrophages. 

The extravasation of inflammatory molecules into the intimal layer is, therefore, key 

in retention as it is the initiating event in SMC migration and ECM production. As the 

distribution and organisation of the endothelial layer is a regulator of vascular 

permeability and extravasation, the site-specificity of atherosclerosis can also be seen 

in the change of shape and alignment of endothelial cells in regions of low and 

oscillatory WSS (Davies, 1995).  

 

1.3  Animal models in atherosclerosis  
 

Plaque rupture and the occlusive thrombosis are seen as the key causes of clinical 

events in humans (Chen et al., 2013). There is, however, an inherent difficulty in 

studying plaque rupture in humans, the most significant being that the pathology 

becomes apparent only in targeted diagnostic procedures or after the clinical event. 

Rupture also occurs in a stochastic manner, making it difficult to identify a sequence 

of events leading to cap disruption (Cullen et al., 2003). A good animal model of 

plaque rupture is, therefore, required to develop an understanding of these 

mechanisms.  

Following the works of Ignatowski in 1908, animal models have found use in the 

design and testing of novel treatments for application to human disease (Daugherty et 

al., 2009; Konstantinov and Jankovic, 2013). The popularity of animal models is 

largely due to their low cost in maintenance, ease in genetic manipulation and the rapid 
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disease progression. Atherosclerosis-prone mouse models, for example, have been 

shown to develop complex lesions after 10 weeks on a high-fat diet, with 3% of mice 

showing signs of plaque rupture (Calara et al., 2001). A key issue in atherosclerotic 

mice is the rarity of these plaque rupture events (Zhou et al., 2001; Schwartz et al., 

2007; Finn et al., 2010; Bentzon and Falk, 2010; Bentzon et al., 2014). This rarity is 

also seen in large animal models of disease (Getz and Reardon, 2012; Shim et al., 

2016; Veseli et al., 2017). An inability to study plaque rupture in animal models 

presents a large barrier to the current knowledge as it is the most critical event in 

human disease.  

In a study of particular importance to this PhD, Cheng et al. (2006) showed a 

dependence of the plaque composition on the pattern of wall shear stress in the mouse 

(Figure 1.2). The authors used the placement of a perivascular tapering cast to create 

distinct regions of high, low, and oscillatory WSS along the length of the mouse carotid 

artery. Nine weeks after cast placement, fibroatheroma plaques were found in regions 

coincident with low and oscillatory shear stress, with the high shear stress region being 

well-protected against lesion formation. A key finding of this study was the 

localisation of a plaque resembling the TCFA to the region of low shear stress while 

the oscillatory stress region downstream of the cast showed a stable-looking plaque 

type with a thick fibrous cap and high infiltration of SMCs. However, when 

considering the mechanical interference, altered circumferential stresses and 

inflammatory responses (Tropea et al., 2000; Tanaka et al., 2003) caused by cast 

placement, there is dispute about the significance of differences in WSS pattern to the 

resulting plaque composition. A clear statement of the WSS’s importance relative to 

these effects is currently missing.  
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(a) 

 

(b) 

 

Figure 1.2. Analysis of the stress and plaque types in the mouse 

perivascular cast model of Cheng et al. (2006). (a) Schematic representation 

of the shear stress patterns induced by the perivascular cast. Placement of the 

cast creates a constrictive effect on the vessel, decreasing the flow rate. This 

leads to a region of low shear stress upstream of the cast. The tapering of the 

cast produces a gradually increasing shear stress along the length of the cast, 

creating a high shear stress region. The pulsatile nature of blood flow and the 

fluid velocity at the downstream end of the cast creates a region of oscillatory 

shear stress. The magnitude and direction of wall shear stress are indicated with 

the size and direction of the arrows in each region. The terms “high”, “low” 

and “oscillatory” are all referred to in comparison with the control vessel. (b) 

Histology samples were taken from the carotid arteries of apolipoprotein E 

deficient mice 9 weeks after cast placement. Plaques resembling the human 

thin-cap fibroatheroma lesions were induced in the region of low shear stress 

with a lipid-rich core and a thin overlying fibrous cap. The high shear stress 

region was shown to be well-protected against plaque formation, similar to the 

control vessel model. A stable-looking plaque type was found in the oscillatory 

stress region downstream of the cast with a thick fibrous cap and high 

infiltration of smooth muscle cells. Figure taken from Cheng et al. (2006) with 

permission. 

 

The ideal animal model of atherosclerosis is one in which the insights gained from the 

animal studies are translatable to human disease, showing histological similarity and 

the same response to treatment (Cullen et al., 2003). Considering the importance of 

the WSS in lesion formation and progression (Section 1.2), the ideal animal model 
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would, therefore, also bear similarities to humans in terms of the haemodynamic 

environment and in the endothelial response to this environment. Given the difference 

in vessel size and heart rate, however, differences in the vessel haemodynamics are 

expected between the animals (Weinberg and Ethier, 2007; Suo et al., 2007; Cheng et 

al., 2007; Dawson, 2014).  

In order to assess the scalability of insights gained from the animal model, a detailed 

view of the haemodynamic environment is required. From a fluid dynamics point of 

view, the haemodynamic environment is sensitive to the flow dimensionless numbers 

and the waveform of pressure. A clear statement of relationship between these 

parameters is important in assessing the similarity of the haemodynamic environment 

between the species.  

 

1.4  Hypothesis and aims 
 

The overarching aim of this work is to further the understanding of atherosclerosis and 

to clarify the significance of blood flow dynamics in plaque formation, progression 

and rupture. A number of mouse models exist in the literature in which the common 

carotid artery has been surgically manipulated, producing atherosclerotic plaques with 

region-specific composition. The simulations performed in this PhD will, therefore, 

focus on the wall shear stress signals coincident with each of these regions. This thesis 

addresses the hypothesis that the frequency composition of the wall shear stress signal 

is associated to the different plaque compositions and disease characteristics in animal 

models of atherosclerosis. 

The following aims were set out to test the hypothesis:  

1) Are differences in the wall shear stress frequency composition present across 

different surgically-manipulated mouse models of atherosclerosis?  

 

2) Are the differences in wall shear stress seen between the regions of the 

perivascular tapering cast mouse model dependent on the input waveforms of 

pressure? 
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3) Are the differences in wall shear stress seen between the regions of the 

perivascular tapering cast mouse model dependent on the flow dimensionless 

numbers? 

 

4) Are there differences in the wall shear stress frequency composition in the 

arteries of different mammals?  

 

1.5  Thesis outline 
 

This thesis has been divided into three parts. The first part, presented in Chapters 2, 3 

and 4, will deal with the implementation and verification of the numerical method 

required to address the research aims set out above. Chapter 2 introduces the necessary 

background needed to understand the modelling choices made in this thesis. Chapters 

3 and 4 then deal with the implementation and verification of the numerical method. 

The 3D lattice Boltzmann (LB) implementation is introduced in Chapter 3. It should 

be noted that the implementation details described in Chapter 3 are the result of the 

works of Krüger (2012). Chapter 4 details the implementation and verification of the 

modules necessary for simulations specific to blood flow in the animal carotid artery. 

These additional modules were built on top of the Krüger (2012) LB implementation 

as a part of this thesis.  

The second part of the thesis, given in Chapters 5, 6 and 7, addresses the research aims 

through the simulation of blood flow in the vessels of interest. Research aim 1 is 

addressed in Chapter 5 in which the wall shear stress signal is analysed in surgically-

manipulated mouse models. The implementation of these models is verified against 

experimentally derived quantities present in the literature. A comparison of the wall 

shear stress between regions coincident with different plaque characteristics is also 

presented and discussed. Chapter 6 addresses aims 2 and 3 by simulation of the 

perivascular cast model with varying input boundary conditions. It should be noted 

that Chapter 6 provides an exploration into the effects of varying pressure waveform 

and dimensionless parameters rather than presenting flow cases relevant to any 

specific animal or biological mechanism causing the variation of these parameters. 

Chapter 7 addresses aim 4 by simulation of the control vessel in five different 
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mammals. Novel findings into the difference between species are presented and 

discussed.  

The third, and final, part of this thesis is given in Chapter 8 and presents a discussion 

of the information gained from this body of work and its relevance to the 

atherosclerosis community. 
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Chapter 2 

Theoretical background 

 

 

2. Theoretical background 
 

The localisation and progression of atherosclerosis is dependent on the interaction 

between local mechanical forces and local biological processes (Slager et al., 2005; 

Chatzizisis et al., 2007; Koskinas et al., 2010; Wentzel et al., 2012). For this reason, 

the focus of this thesis will be to analyse the local haemodynamics in regions of disease 

formation. The current chapter presents the necessary background required for this 

analysis by establishing how the flow field can be studied in terms relevant to 

inflammation and atherogenesis. 

Analysis of the flow field requires the development of a numerical tool that is capable 

of calculating and visualising fluid flow in a geometry of interest. Fluid flow is 

described by the Navier-Stokes equations as presented in Section 2.1. By studying the 

flow field, wall shear stress and atherosclerosis flow metrics can also be computed. 

Section 2.2 deals with the calculation of the wall shear stress with its interpretation 

with respect to atherosclerosis being discussed in Section 2.3. Section 2.4 will 

introduce the Fourier series as a method of quantitively and qualitatively comparing 

waveforms of wall shear stress. Section 2.5 presents a discussion of the potential 

relevance of the wall shear stress frequency composition and comments on the 

suitability of the analysis method for multidirectional flow. 

With blood being a suspension of deformable cells, the shear thinning nature of the 

fluid must also be considered to retrieve an accurate representation of the flow field. 

This behaviour and the effective viscosity model are discussed in Section 2.6. 

Also, due to the proximity of the vessels of interest to the heart, flow is largely 

dominated by pulsatile effects and must be modelled as such (Gabriel et al., 2017). 

This creates a time-varying flow profile which is dependent on several parameters 

relevant to the network structure of the vascular system. To recover an accurate 
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representation of the flow field, the time-varying flow profile must also be calculated 

and implemented properly as “boundary conditions” for the Navier-Stokes equations. 

The importance of these boundary conditions is discussed further in Section 2.1, and 

the method used to obtain the flow profiles is also presented in Section 2.7. 

 

2.1  Governing equations 
 

Given the relationship between the wall shear stress and atherosclerosis initiation and 

progression, the accurate calculation of the wall shear stress magnitude and direction 

is key to this simulation study. As introduced in Chapter 1, the wall shear stress (WSS) 

is proportional to the near-wall velocity gradient, meaning that an accurate 

representation of the fluid flow is critical. This can be achieved numerically by solving 

the Navier-Stokes equations to obtain the velocity field in the fluid domain.  

Formulated by G.G. Stokes and M. Navier in the early 19th century, the Navier-Stokes 

(NS) equations are still the most important equations in fluid mechanics. This set of 

equations is derived from the principle of momentum conservation and is solved 

together with the continuity equation to describe fluid motion. The continuity equation 

also represents a key principle in fluid mechanics, the conservation of mass. 

By introducing the concept of a finite control volume within a volume of fluid, the 

continuity and NS equations can be derived. Thinking of fluid motion into and out of 

the control volume, the mass moving through each of the faces can be evaluated. As 

mass cannot be created or destroyed, the change of mass in the volume must be equal 

to the mass fluxes into and out of the system. This principle is expressed as the 

continuity equation:  

 𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝒖) = 0 (2.1) 

 

where 𝜌 and 𝒖 are the fluid density and velocity, respectively. The time is given by 𝑡.  

The Navier-Stokes equations can be derived by thinking of the rate of momentum 

moving through each of the faces in the control volume. Now considering Newton’s 

second law of motion, the rate of change of momentum is equal to the sum of the forces 

applied to the control volume (2.2). The resulting set of equations describe the balance 
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of inertial, pressure, viscous and external force components applied to the fluid. Each 

of these components are given sequentially in the lines of equation (2.2). From this 

derivation process, it is clear that the NS equations describe the conservation of 

momentum within the control volume.  

 
𝜌 (

𝜕𝒖

𝜕𝑡
+ 𝒖. ∇𝒖)

=  −∇𝑝

+  ∇. (𝜇(∇𝒖 + (∇𝒖)𝑇) −  𝜆(∇. 𝒖)𝐈)

+ 𝑭 

(2.2) 

 

where 𝒖 is the velocity, 𝑝 is the pressure, 𝜌 is the fluid density and 𝜇 is the dynamic 

viscosity. 𝜆 is a viscosity term related to the bulk viscosity in compressible fluids. 𝑭 is 

an external force applied to the fluid system such as gravity.  

Assuming incompressibility, the fluid density is taken to be constant and the bulk 

viscosity term is set to zero. This assumption results in the divergence-free form of the 

continuity equation (2.3) and the well-known incompressible Navier-Stokes equations: 

 ∇. 𝒖 =  0 (2.3) 
 

 
𝜌

𝜕𝒖

𝜕𝑡
=  −∇𝑝 +  ∇. (𝜇∇. 𝒖) + 𝑭 (2.4) 

 

Boundary conditions 

From a mathematical point of view, it is known that partial differential equations such 

as (2.3) and (2.4) cannot be uniquely determined unless adequate initial and boundary 

conditions are described. These conditions take the form of mathematical statements 

and are imposed on a system to identify a solution specific to the fluid flow problem 

from all possible solutions. From a physical perspective, the boundary conditions also 

describe the process by which the theory approaches the real-world application 

through a series of assumptions and idealisations. The conditions are imposed on the 

fluid boundaries in order to specify some of these assumptions in a simulation domain.  

The importance of accurately describing the boundary conditions can be highlighted 

using the ‘no-slip’ condition, for example. The no-slip condition describes the 
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assumption that, at a boundary between a fluid and a solid, the fluid velocity is the 

same as the velocity of the solid. While there are a few exceptions to this condition in 

nature and industry (Neto et al., 2005), the no-slip condition holds true in many 

physical cases and is relevant for all simulations performed in this thesis.  

Another important type of boundary condition is the description of pressure and/or 

flow at the inlet and outlet boundaries of the fluid domain. An arbitrary definition of 

the inlet and outlet conditions may lead to situations where all physical phenomena 

relevant to the study are missed. Imposing steady flow in atherosclerosis studies for 

example would fail to capture any fluctuations in wall shear stress caused by the 

pulsatile nature of blood flow. Hardman et al. (2013) also show the importance of 

specifying the velocity inlet at higher levels of flow complexity. Description of the 

inlet boundary using the Womersley analytical solution and multidirectional velocity 

vectors showed significant differences in flow helicity in simulations of the abdominal 

aortic aneurysm with the multidirectional velocity inlet being assumed as the optimal 

solution (Hardman et al., 2013). These fluctuations have all been shown to be 

important in determining the endothelial response and are therefore key to any 

simulations performed as part of this thesis.  

A key part of this discussion is also how flow is imposed in the simulation domain. 

The choice here is whether to implement a constant pressure difference or a constant 

flow rate across the system and this is highly dependent on the simulation case. 

Simulations of arterial blood flow for example are subject to pressure losses through 

vessel elasticity. This means that the prescription of pressure boundary conditions in a 

rigid vessel model is not representative of the physical case. Idealisations in geometry, 

such as those employed in this thesis however, render these boundary condition errors 

negligible. A key benefit of using pressure boundary conditions in the lattice 

Boltzmann simulations performed here is the ease with which flow is imposed as a 

body force. For this reason, the remainder of this thesis will use pressure boundary 

conditions to describe fluid flow.  

The current chapter provides only the necessary background required for this thesis. 

The study of fluid mechanics is a well-established field providing a number of 

excellent textbooks; some of which are Batchelor (2000), Landau and Lifshitz (1987) 
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and Munson et al. (2010). A more detailed review of the literature can be found in 

these books. 

 

2.2  Wall shear stress 
 

With the flow field represented by the NS equations, the desired parameters can now 

be introduced. Arguably the most important parameters in a fluid dynamics study of 

atherosclerosis are those derived from the traction vector, such as the WSS. The effects 

of the WSS on endothelial cells and the resulting atherogenic or atheroprotective 

responses have been presented in Chapter 1. Given its importance throughout this 

thesis, the current section will provide a complete discussion of the WSS. 

The stress tensor 𝜎𝛼𝛽 can be illustrated by thinking of the fluid control volume in 

Figure 2.1. The index notation is used here to identify each component of the stress 

tensor with 𝛼 giving the direction of the unit vector normal to the surface and 𝛽 giving 

the direction of the stress component. The tensor consists of the normal and tangential 

(or shear) stress represented by 𝛼 = 𝛽 and 𝛼 ≠ 𝛽, respectively.  

 

Figure 2.1 Fluid control volume and stress components acting on the 

surfaces. The stresses acting on the surfaces of the control volume can be 

represented by the stress tensor 𝜎𝛼𝛽 where 𝛼, 𝛽 = 1, 2, 3. Normal stress 

components of 𝜎𝛼𝛽 are given by 𝛼 = 𝛽 while the tangential stress components 

are given by 𝛼 ≠ 𝛽.  
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Initially considering a fluid at rest, only the normal stress components have a non-zero 

value as there is no shearing motion of the fluid. In this case, the stress tensor is given 

by equation (2.5) where 𝑝 is the local fluid pressure and 𝛿𝛼𝛽 is the Kronecker delta 

function (𝛿𝛼𝛽 = 1 for 𝛼 = 𝛽 and 𝛿𝛼𝛽 = 0 for 𝛼 ≠ 𝛽). 

 𝜎𝛼𝛽 = −𝛿𝛼𝛽𝑝 (2.5) 

 

Next, imagining a fluid domain to be composed of several thin layers of fluid, fluid 

flow requires that these layers move over one another. With this shearing motion, the 

fluid viscosity becomes important due to intermolecular forces between the fluid 

layers. The fluid viscosity 𝜇 describes the resistance to shearing motion. The deviatoric 

(or viscous) stress tensor 𝜎′𝛼𝛽 is a result of these intermolecular forces and describes 

the shearing stress required to create motion in the fluid domain. The total stress, given 

by equation (2.6), can now be described using the normal and tangential stress 

components.  Also, following the conservation of angular momentum, the tensor is 

symmetrical about the diagonal, that is 𝜎𝛼𝛽 =  𝜎𝛽𝛼. 

 𝜎𝛼𝛽 = −𝛿𝛼𝛽𝑝 +  𝜎′𝛼𝛽 (2.6) 
 

Considering the definition of the deviatoric stress tensor, it is clear that the tensor is 

related to the deformation of a fluid control volume. This deformation is expressed as 

the strain rate tensor 𝑆𝛼𝛽 and is given by equation (2.7). The strain rate tensor is then 

related to the deviatoric stress tensor by equation (2.8). 

 

 
𝑆𝛼𝛽 =  

1

2
(

𝜕𝑢𝛼

𝜕𝑥𝛽
+

𝜕𝑢𝛽

𝜕𝑥𝛼
) (2.7) 

 

 𝜎′𝛼𝛽 = 2𝜇𝑆𝛼𝛽 (2.8) 
 

 

The traction vector is the sum of the tangential (shear stress on wall) and normal 

components (pressure on wall) of the stress. This is calculated as the projection of the 

deviatoric stress tensor onto the wall normal vector 𝑛𝛽 (2.9). The vector’s tangential 

component 𝜏𝛼 can then be computed by removing the normal component of the 
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traction vector (2.10). The wall shear stress 𝜏𝑊 is taken as the magnitude of the 

tangential traction vector (2.11).  

 𝑡𝛼 =  𝜎′𝛼𝛽 . 𝑛𝛽 (2.9) 
 

 𝜏𝛼 =  𝑡𝛼 − (𝑡𝛽 . 𝑛𝛽). 𝑛𝛼 (2.10) 
 

 𝜏𝑊 =  |𝜏𝛼| (2.11) 
 

 

2.3  Localisation metrics  
 

With the traction vector and wall shear stress calculated from the flow field, it then 

becomes necessary to present these quantities in terms relevant to atherosclerosis. A 

number of flow metrics have been defined by correlating the distribution of 

atherosclerotic plaques to predictions of wall shear stress from the flow field. These 

metrics are heavily used in the literature to visualise regions of the arterial network 

that may be vulnerable to plaque formation through fluid dynamics studies.  

While it is known that the wall shear stress influences the location of plaque 

development (Davies, 1995; Malek et al., 1999; Cunningham and Gotlieb, 2004; Chiu 

and Chien, 2011), a deeper understanding of the relationship between disease and the 

spatio-temporal variations of the stress is not known. Identification of regions of 

interest would allow a detailed analysis to be performed only in these regions, reducing 

the computational expense associated with post-processing.  

Time-averaged wall shear stress (TAWSS)  

Based on the observation of a high occurrence of plaque formation in regions of wall 

curvature and branching flows, Caro et al. (1971) proposed that low WSS are pro-

atherogenic with physiological WSS being protective. Based on this observation, Caro 

et al. (1971) proposed the time-averaged wall shear stress metric: 

 
TAWSS =  

1

𝑇
∫ |𝜏𝛼|

𝑇

0

𝑑𝑡 (2.12) 
 

where 𝑇 is the pulse period. Thresholds were defined based on the formation of 

atherosclerotic plaques and the wall shear stresses computed in these regions. These 
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thresholds are used to identify TAWSS values below which flow is deemed to be pro-

atherogenic. Normal values in the healthy human arterial system are 1.0 – 1.5 Pa 

(Malek et al., 1999; Peiffer et al., 2013a) while pro-atherogenic regions show TAWSS 

values less than 0.5 Pa (Cunningham and Gotlieb, 2004). Recent studies have also 

emphasised the importance of high WSS (> 3 Pa) in atherogenesis (Dolan et al., 2013; 

Eshtehardi et al., 2017).  

Oscillatory shear index (OSI) 

The oscillatory shear index (OSI) was introduced to quantify a change in flow direction 

using the axial component of the tangential traction vector (Ku et al., 1985). An 

important note here is that the circumferential component of the traction vector is often 

neglected.  

 

OSI =
1

2
(1 −  

|∫ 𝜏𝛼
𝑇

0
𝑑𝑡|

∫ |𝜏𝛼|
𝑇

0
𝑑𝑡

) (2.13) 

 

Equation (2.13) shows that a non-zero value of the OSI is only obtained in regions of 

flow reversal. The parameter varies between 0.5 in highly oscillatory flows and 0 in 

flows where the stress vector is collinear with the time-averaged shear stress (2.12). 

Considering the denominator in equation (2.13), it can be seen that there is a strong 

relationship between the oscillatory and low shear stress theories.  

Residence time  

Himburg et al. (2004) proposed the relative residence time (RRT) metric as a physical 

interpretation of the OSI. By considering the radial displacement of a near-wall tracer 

particle away from the vessel wall, the RRT quantifies the time spent by the particle 

within some small distance from the wall at a given location (2.14). An increased 

residence time would allow the particle a greater amount of time to migrate across the 

wall. This is then linked to the progression of atherosclerosis by likening the tracer 

particle to an inflammatory species. The RRT metric has also been verified through 

Lagrangian particle tracking methods based on the velocity field (Basciano et al., 

2011). 

 RRT ~ [(1 − 2OSI)TAWSS]−1 (2.14) 
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From this equation, it can be seen that regions of the vessel presenting highly 

recirculatory flow and stagnation are expected to return elevated values of RRT. This 

concept can be visualised by considering flow driven with a sinusoidal pressure 

gradient with net flow equal to zero. The axial component of the fluid velocity vector 

would vary sinusoidally, reversing the flow direction and causing a tracer particle to 

have a net movement of zero in the radial and axial directions. Thinking of the near-

wall shear forces, the magnitude of the tangential traction vector would also vary 

sinusoidally with an OSI value of 0.5. Now considering equation (2.14), this results in 

an infinite RRT value. A high value of the RRT can also be obtained in regions of low, 

unidirectional traction vector which may occur as a result of a lower flow rate.  

Multi-directional wall shear stress 

When considering physiological geometries and flows, it becomes obvious that flow 

is multidirectional; that is, the fluid velocity is variable in all vector components. This 

would also mean that the tangential traction vector is multidirectional, varying in the 

axial and circumferential directions on the wall surface. McMillan (1985) proposed 

these multidirectional flows to be atherogenic with Potter et al. (2012) supporting this 

theory by the analysis of endothelial cells under swirling flow conditions. Following 

from the varying plaque distributions with age (Sinzinger et al., 1980; Weinberg, 

2002), Peiffer et al. (2012) proposed that these differences were caused by the varying 

persistence of multidirectional flows in the aortic arch.  

With the OSI metric only quantifying the degree of oscillation in the axial direction, 

the transverse WSS (transWSS) metric was then proposed to account for the 

multidirectionality of the traction vector (Peiffer et al., 2013b). The transWSS metric 

describes the time-average of the traction vector components normal to its time-

averaged direction: 

 

transWSS =
1

𝑇
∫ | 𝜏 . (𝑛⃗⃗  ×

∫ 𝜏
𝑇

0
𝑑𝑡

|∫ 𝜏
𝑇

0
𝑑𝑡|

 )  |
𝑇

0

 𝑑𝑡 (2.15) 

 

where 𝑛⃗⃗ is the vector normal to the geometry surface. The Weinberg group have shown 

good alignment between lesion prevalence and transWSS in immature and mature 

rabbits around intercostal branch ostia (Peiffer et al., 2013b; Mohamied et al., 2015). 
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The capture of information between the TAWSS, OSI and transWSS metrics is 

highlighted in Figure 2.2. 

 

Figure 2.2. The different flow environments over the endothelial cell 

(circle) typical of a region of disturbed flow and the resulting TAWSS, OSI 

and transWSS values. Each arrow indicates the magnitude and direction of 

the tangential traction vector at different points in time over the pulse period. 

The figure highlights the loss of information in the different metrics as 

multidirectional flows are not captured by the TAWSS and OSI. Redrawn from 

Mohamied et al. (2015) with permission.  
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Metric validity  

Until recently, the TAWSS and OSI metrics had been regarded as the standard for the 

definition of development-prone sites in atherosclerosis. A comprehensive review 

performed by Peiffer et al. (2013a) identified that despite many authors following the 

low/oscillatory shear theory, there is little evidence to support this theory. In fact, the 

point-to-point comparison of shear stress maps and plaque location failed to prove this 

theory (Steinman et al., 2002; Wentzel et al., 2005; Gijsen et al., 2007). A study into 

the accuracy of prediction showed the TAWSS to accurately identify the largest 

number of plaques among several flow metrics but to also produce the greatest number 

of false positive results with the greatest percentage accuracy being given by the OSI 

and RRT metrics (Knight et al., 2010).  

With many flow metrics present in the literature, simulation studies have also been 

used to compare the regions indicated as vulnerable to plaque development, showing 

some metrics to be numerically equivalent (Lee et al., 2009). Several other metrics 

have been proposed including the calculation of spatial, temporal and angular gradients 

of the tangential traction vector (Ojha, 1994; Lei et al., 1996). Another interesting 

metric is the determination of regions in which the frequency spectrum of the wall 

shear stress is dominated by the higher harmonics (Himburg and Friedman, 2006).  

 

2.4  Fourier series analysis 
 

As discussed in Chapter 1, experimental studies of fluid flow over cultured endothelial 

cells have shown a dependence of the inflammatory response on the particular 

frequency composition of the wall shear stress (Himburg et al., 2007; Feaver et al., 

2013; Sei et al., 2017). Following this and the pulsatile nature of blood, it becomes 

necessary to consider the wall shear stress as a time-varying waveform rather than the 

time-averaged measures used in the literature. The current section will introduce the 

Fourier series as a method of analysing the time-varying waveforms of wall shear 

stress. The mathematical tool is used throughout this thesis as a method of comparing 

wall shear stress waveforms in different models of disease and forms a key component 

of the analysis method.  
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The method relies on the property that any periodic function can be expressed in terms 

of a linear combination of sine and cosine functions: 

 𝑓(𝑡) =  𝑎0 +  ∑ (𝑎𝑛 cos(𝜔𝑛𝑡) +  𝑏𝑛 sin(𝜔𝑛 𝑡))

𝑛=∞

 (2.16) 

 

where a periodic function 𝑓(𝑡) is represented as a Fourier series in terms of 

coefficients, 𝑎𝑛 and 𝑏𝑛, and the harmonic identity 𝑛. The angular frequency is given 

by 𝜔𝑛 = 𝑛𝜔0, where 𝜔0 =  2𝜋
𝑇⁄  is the fundamental frequency.   

Figure 2.3 shows the approximation of a square wave to achieve a greater degree of 

accuracy by considering an increasing number of Fourier coefficients. Following 

Euler’s formula, the function can also be expressed as an exponential function with 

complex Fourier coefficients 𝑐𝑛: 

 
𝑓(𝑡) = ∑ 𝑐𝑛𝑒𝑖𝜔𝑛𝑡

∞

𝑛=−∞

 (2.17) 

 

The key purpose of the method is the mapping of a time-dependent function into the 

frequency domain using the magnitudes and phase angles of the complex Fourier 

coefficients (Figure 2.4). Physically, the magnitude indicates the strength of the 

individual frequency components contributing to the waveform while the phase 

represents the delay of each frequency component in the time domain (2.18). These 

values can then be used to quantitively compare different waveforms.  

 𝑐𝑛 =  |𝑐𝑛|𝑒𝑖𝜙𝑛  (2.18) 
 

From the definition given in (2.17) and the derivation of the coefficients, it can be seen 

that the zeroth harmonic returns the time-average value of the waveform while the first 

harmonic represents the component with frequency equal to the measurement period. 

This is also known as the fundamental frequency and in the case of blood flow, is equal 

to the pulse frequency. The Python numpy.fft package was used throughout this thesis 

to obtain the Fourier coefficients 𝑐𝑛.  
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Figure 2.3. Illustration of the Fourier transform of a square waveform 

considering the increasing number of harmonic components. An increasing 

degree of accuracy is shown in the approximation of f(t) with an increasing 

number of harmonic components considered in the Fourier series. 

Mathematically, the approximation of the curve tends to the true curve as the 

number of harmonic components tends to infinity.  

(a) 

 

(b) 

 

Figure 2.4. Fourier representation of a square waveform function. The 

Fourier (a) amplitudes and (b) phases are given as a function of the harmonic 

frequencies.  
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2.5  Considerations in Fourier analysis of the wall shear stress signal  
 

 

2.5.1 Multidirectional flow and frequency analysis 
 

Fluid flow in the physiological situation is largely multidirectional as a result of the 

tortuosity and bifurcations present in the vascular network and the twisting motion of 

the heart in muscle contraction. McMillan (1985) provides an excellent description of 

the complex features seen in blood flow. The significance of multidirectional flow 

features has also been demonstrated in the predisposition for lesions to develop around 

the rabbit intercostal branch ostia (Sinzinger et al., 1980; Weinberg, 2002; Peiffer et 

al., 2012, 2013; Mohamied et al., 2015), and the shape and alignment of endothelial 

cells (Potter et al., 2012). Frequency-based WSS studies, however, commonly neglect 

the circumferential terms and assume a purely axial flow case for the ease of signal 

comparison (Gelfand et al., 2006; Himburg et al., 2007; Feaver et al., 2013). The 

responses characterised in these studies are then not representative of the cell responses 

present in the physical case. 

Given the assumption of purely axial flow, the tangential traction vector, 𝜏, contains 

only one non-zero quantity in the axial component. Multidirectional flows, however, 

are defined by non-zero quantities in the axial and circumferential components of 𝜏. A 

concern then comes from the inability of frequency spectrum analysis to visualise the 

signals in an effective and intuitive manner. The following section suggests approaches 

to deal with the issues raised here.  

The multidirectional nature of flow must first be quantified. The transWSS metric 

(2.15) may be applied for this purpose. This metric describes the time-average of the 

traction vector components normal to its time-averaged direction. The definition of the 

“axial” and “circumferential” directions is also complicated by the multidirectional 

nature of flow in that the direction of 𝜏 changes as a function of time. For this purpose, 

the modified traction scalar, 𝜏∗(𝑡), is proposed here where the time varying traction 

vector is projected onto the time-averaged direction 𝜏̂:   

 𝜏∗(𝑡) =  𝜏(𝑡) .  𝜏̂ ,  (2.19) 
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where  

 
𝜏̂ ∶=

∫ 𝜏
𝑇

0
𝑑𝑡

|∫ 𝜏
𝑇

0
𝑑𝑡|

 (2.20) 

 

Low values of the transWSS indicate flow in which the contributions of 

multidirectional components are minimal. Frequency decomposition may be 

performed on the modified traction vector in this case. In high transWSS flows, a 

frequency-based analysis method would be largely invalid. A full characterisation of 

the signal would require a frequency-based analysis of the axial and circumferential 

components of 𝜏. A frequency-based analysis of the modified traction vector may also 

be performed with the acknowledgement of its invalidity in regions of local high 

transWSS. 

2.5.2 Frequency analysis and normalisation procedures  
 

It is important to note that the frequency composition plots shown throughout this PhD 

have been normalised with respect to the first harmonic amplitude. The normalisation 

procedure was used to allow a qualitative comparison between the waveforms 

computed in different regions. Elevations of a particular harmonic amplitude with 

respect to the entire spectrum are used to assess differences in the time varying signal. 

It is, therefore, only relevant to consider the elevations with respect to the entire 

spectrum and not the values of each amplitude. 

2.5.3 Wall shear stress frequency composition and endothelial cells 
 

As discussed in Chapter 1, the work of Feaver et al. (2013) is of great importance to 

this PhD. The authors were the first to show a “dose-dependent” response of NF-κB 

activity to the zeroth and first harmonic amplitudes of the WSS signal. Interestingly, 

the rate of decrease of NF-κB activity was greater with increase of the first harmonic 

amplitude when compared to the rate of decrease with increasing zeroth harmonic 

amplitude. This suggests that the first harmonic amplitude has a greater influence on 

vascular inflammation than the zeroth harmonic amplitude. Since this study, however, 

the frequency composition of the WSS signal has not received attention.  
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Considering the WSS signal in the time domain, in the human, the first harmonic 

amplitude describes the fluctuation seen on the timescale of 0.8 s. The temporal 

sensitivity of porcine, bovine and human endothelial cells is given in similar timescales 

with the earliest detectable response, the activation of ion channels, occurring within 

seconds of a fluid stress stimulus. The temporal sensitivity of endothelial cells in these 

large animal models is reviewed in Davies (1995). Fluctuations of the wall shear stress 

at the higher harmonic frequencies, however, occur on shorter timescales and so, may 

not be relevant to signalling mechanisms that happen on the scale of seconds. This 

raises the question of the relevant timescales in endothelial activity.  

An important, yet undiscussed, observation from the work of Feaver et al. (2013) is 

the lack of a statistically significant change in NF-κB activity with mutation of the 

higher harmonic amplitudes (n > 1). This suggests that the particular amplitudes of the 

higher harmonic components are not relevant to the cell’s inflammatory response. NF-

κB activity did, however, show sensitivity to the presence of these higher harmonic 

components with an approximately four-fold increase relative to steady flow controls. 

An interesting result of the Himburg et al. (2007) study, with regard to the temporal 

sensitivity, is the lack of statistical significance of endothelial cell alignment in 

response to variations in the WSS frequency. Cell alignment also shows a lack of 

significance when comparing pulsatile and steady flows. This suggests that cell 

alignment only depends on the time-averaged WSS signal, in contrast to the frequency-

dependent response of NF-κB activity.  

Another key result from Himburg et al. (2007), with regard to the harmonic amplitude, 

is the downregulation of the proinflammatory molecule, vascular cell adhesion 

molecule-1 (VCAM-1), in response to a 1 Hz signal whereas the 2 Hz signal resulted 

in its upregulation. Considering the dose-dependent change of NF-κB activity with the 

first harmonic amplitude (Feaver et al., 2013), the shift towards the proinflammatory 

state may be due to the deletion of the 1 Hz frequency component. The 1 Hz frequency 

component discussed in Himburg et al. (2007) is approximately equivalent to the first 

harmonic component in Feaver et al. (2013). The 2 Hz frequency component then 

correlates to the higher harmonic content given in Feaver et al. (2013). This analysis 

supports the conclusion of Feaver et al. (2013) where an increasing first harmonic 

amplitude is atheroprotective. 
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It should be noted that the frequency of pulsation also varies between mammals. This 

is clear from allometric scaling laws (Dawson, 2014; Weinberg and Ethier, 2007) with 

the human pulse duration being six times greater than that of the mouse. The pulse 

duration in porcine, bovine and human models are fairly similar. The difference in 

timescales of pulsatility may then indicate differences in the temporal sensitivity of the 

animal endothelial cells to a mechanical stimulus. This hypothesis is also suggested by 

the timescales of recovery in the mouse and human in response to vascular injury 

models (Seok et al., 2013). 

 

2.6  Non-Newtonian fluid  
 

Blood is a non-Newtonian fluid with shear thinning properties. This viscous behaviour 

arises as a result of red blood cell (RBC)  migration, deformation and cell alignment 

(Galdi, 2008; Robertson et al., 2008; Toksvang and Berg, 2013). The shear-dependent 

viscosity can be recovered in simulation studies either by the modelling of a particulate 

suspension or with the use of effective models to estimate the fluid viscosity. 

Considering the high computational expense and complexity of simulating particle 

motion and deformation in arterial flows, it is often impractical to simulate blood as a 

dense suspension. Effective viscosity models on the other hand, can be implemented 

with relative ease and at low computational expense. Viscosity models commonly take 

the form of a power law relationship expressing the viscosity as a function of the shear 

rate. Fit parameters are then used to match the viscous behaviour to physiological data. 

Phillips and Roberts (2011) provide an excellent review on the different viscosity 

models available in the literature and their implementation in the lattice Boltzmann 

framework. The implementation procedure will be discussed in Section 4.3.  
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Figure 2.5. Experimental measurement of the relative viscosity as a 

function of the shear rate for human blood. The shear thinning behaviour of 

blood is demonstrated by the decrease in viscosity with increasing shear rate. 

Taken from Chien (1970) with permission. 

 

Due to the high shear rates present in the majority of arterial vessels, the shear thinning 

nature of blood is often neglected. This allows blood to be modelled as a Newtonian 

fluid with a constant viscosity (Quarteroni et al., 2000). The assumption is commonly 

justified by the Newtonian plateau at shear rates greater than 100 s-1 (Figure 2.5). With 

arterial shear rates commonly exceeding this shear rate threshold, the fraction of fluid 

flow experiencing the shear thinning effects is thought to be negligible.  

By defining an importance factor parameter using the ratio of apparent viscosity to 

Newtonian viscosity, Johnston et al. (2006) have supported this constant viscosity 

assumption by showing significance of the viscosity model at the wall only for a small 

part of the cardiac cycle. Little difference was also shown in the wall shear stress 

distribution over the length of the artery model. Boyd and Buick (2007) have also 

supported this assumption for the simulation of a 2D stenosed carotid artery with 

similar findings in the significance of the viscosity model. 

In opposition to this theory, several simulation studies have shown significant 

differences between the Newtonian and non-Newtonian fluids in both the flow field 

and shear stress (Gijsen et al., 1999a, 1999b; Artoli and Sequeira, 2006; Wang and 
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Bernsdorf, 2009). Boyd et al. (2007) have also shown a dependence of the velocity 

field and shear stress on the particular choice of viscosity model. Interestingly, 

Johnston et al. (2004) have shown consistency in the waveform of spatial variation 

between viscosity models but with differences in the magnitude along the length of the 

geometry. These differences were found to vanish with increasing inlet velocity as 

expected considering the increased shear rates. Given the conflict in the validity of the 

constant viscosity assumption and the importance of the wall shear stress in this study, 

blood must be modelled as a non-Newtonian fluid with the choice of an adequate 

viscosity model. 

The Carreau-Yasuda (CY) model, equation (2.21), has been chosen in particular as it 

shows a continuous profile over a range of shear rates. Popular models such as the 

Casson model, on the other hand, require a viscosity threshold to be applied as an upper 

bound as the viscosity at low shear rates tends to infinity. The generalised power law 

model was also seen as a potential choice for the fluid viscosity model. However, 

negligible differences in the wall shear stress along the length of artery models were 

found in Johnston et al. (2004) while requiring the control of additional parameters 

and a more complex implementation. 

 𝜇 −  𝜇∞

𝜇0 − 𝜇∞
=  [1 + (𝜆𝛾̇)𝑎]−𝑚

𝑎⁄  (2.21) 

 
 

where the fluid viscosity 𝜇 is calculated from the shear rate 𝛾̇. 𝜇∞ and 𝜇0 describe the 

high and low shear rate limits of the viscosity. The characteristic time constant 𝜆 and 

parameters 𝑚 and 𝑎 are computed empirically to describe the transition region between 

𝜇0 and 𝜇∞. The shear rate at which the transition occurs is given by the characteristic 

time constant while the fit parameters, 𝑚 and 𝑎, determine the slope of the transition. 

 

2.7  1D model  
 

The Navier-Stokes equations, described in Section 2.1, can be solved numerically to 

compute the flow and pressure fields in the fluid domain. The flow field can then be 

used to compute the tangential traction vector, a parameter of particular importance in 

this thesis. As discussed in Section 2.2, the accurate calculation of the traction vector 
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relies on a physiological representation of the flow field. This is entirely dependent on 

the specification of physiological boundary conditions, namely those at the inlet and 

outlet boundaries of the simulation domain. This is the reasoning behind a key problem 

in the simulation of blood flow. 

As a simple illustration of the importance of accurate boundary conditions on the flow 

field, consider the flow fields resulting from pulsatile and steady flow conditions. 

Oscillatory components of velocity are absent in the steady flow case leading to a 

largely different flow field. From this example, it is obvious that the time-variation of 

blood flow due to the phases of heart contraction must be modelled accurately. In a 

complex network such as the human arterial system, the vessel geometry and 

mechanical properties must also be considered. Vessel elasticity, tortuosity, tapering 

and bifurcation cause the nature of time-variation to also be spatially dependent, 

changing along the length of a single vessel. These factors significantly complicate the 

approximation of inlet and outlet boundary conditions and also require an adequate 

modelling process (Ku, 1997).  

The effects of geometrical and mechanical properties of the arterial vasculature can be 

captured by the 3D modelling of the entire network with an elastic vessel model. 

However, considering the high computational expense and complexity associated with 

the 3D simulation of the entire vascular network, it is often impractical to perform this 

type of calculation. Alternatively, a multiscale model describing lower-dimension 

representation of flow distribution in the vascular network can be used to provide 

information for the 3D simulation in a region of interest (Figure 2.6). The multiscale 

approach provides a computationally cheaper alternative, fully resolving details of the 

flow field only in the region of interest while computing time-varying waveforms of 

pressure and flow in the whole vascular network at a lower computational cost.  
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Figure 2.6. Multiscale representation of the arterial network focussing on 

a 3D model of the carotid bifurcation. Pressure and flow waveforms are 

recovered from a 1D model of the simplified arterial network with terminal 

vessels ending in a 0D representation of the downstream capillary and venous 

networks. The 0D models are characterised by the standard two-element 

Windkessel model with the compliance and peripheral resistance properties of 

the downstream vessels given by capacitance C and resistance R, respectively.  

 

Following the discussion above, the key boundary conditions to be applied at the inlet 

and outlet boundaries of the simulation domain are waveforms of pressure and flow 

rate. This information can be computed with the use of relatively simple 1D models. 

Among the 1D models, the transmission line model has received particular attention 

because of its simplicity in implementation and low computational cost (Avolio, 1980; 

Stergiopulos et al., 1992; John, 2004; de Sá Ferreira et al., 2009; He et al., 2012; 

Lazovic et al., 2015).  

The transmission line model is based on the comparison of the structure and properties 

of a vessel segment to a section of compliant tubing. This can then be modelled, by 
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analogy, as a segment of the electrical transmission line where the system is defined 

by the vessel propagation constant and impedances, both of which are derived from 

vessel and flow properties. Further details of the compliant tubing analogy and the 

transmission line models can be found in Avolio (1980), Formaggia and Veneziani 

(2003) and John (2004).  

An important note here is that the electrical transmission line analogy can only be 

applied to the linearised one-dimensional form of the Navier-Stokes equations (John, 

2004; Shi et al., 2011). This means that the convective acceleration term, 𝒖. ∇𝒖 must 

be negligible which is likely to not be the case in the arterial network considering the 

time-varying profile of pressure and the geometric features of the network. A 

‘modelling assumption’ will be applied here as the transmission line approach has been 

employed successfully in several arterial stenosis studies with correlation in the 

pressure and flow waveforms between studies (Karamanoglu et al., 1995; John, 2004; 

Liang et al., 2009; Stroev et al., 2005; Xiao et al., 2016). A linear description of the 

system also means that computations can be performed in the frequency domain and 

allows a comparison to be easily drawn between the inputs and outputs of any 3D 

simulations. 

The key outputs of the model are the vessel impedances and transfer functions. The 

vessel impedance describes the ratio of pressure drop to flow rate and considers the 

elastic energy of the vessel walls as well as the viscous resistance of the fluid while 

the transfer function relates the proximal and distal pressure waveforms in each vessel 

(van de Vosse and Stergiopulos, 2011). Each parameter is a property of the vessel and 

flow parameters and so describes the propagation of the pressure and flow through the 

entire arterial network.  

Another key parameter in the description of elastic vessels is the pulse wave velocity 

(PWV). This parameter gives the velocity of pressure waves travelling through the 

vascular network and is used in clinical settings as an indicator of vessel stiffness. The 

pulse wave velocity can also be used in the computation of the vessel impedances and 

transfer functions in the transmission line model.  

In a network of vessel segments connected in series, the transfer function in a vessel 

of interest is computed as the product of all transfer functions in the series between it 
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and the source. The product is then related to the outlet pressure of that vessel. The 

overall transfer function for the right common carotid artery for example, is computed 

as the product of the transfer functions of the ascending aorta, the brachiocephalic 

artery and the common carotid artery. Using the source of the arterial system as the 

pressure output from the left ventricle, the outlet pressure in the right common carotid 

artery can then be computed. The details of how the input impedance and transfer 

functions are computed are given in Stroev et al. (2005).  

Implementation of the 1D model also requires the choice of arterial map to represent 

the vascular network. The importance of the cerebral vasculature was shown in 

Reymond et al. (2009) indicating flow reversal in the common carotid artery in the 

absence of an adequate cerebral tree model. Several arterial maps for the human 

vasculature have been based on the original data of  Noordergraaf et al. (1963) with 

modifications later being made to deal with the non-physiological wave reflections in 

the upper limbs and head (Westerhof and Noordergraaf, 1970; Avolio, 1980). 

Additional models representing the heart and coronary arteries have also been included 

in the literature which will not be considered here as their contributions to model 

flexibility are not relevant to this study (Reymond et al., 2009). 

 

2.8  Summary 
 

This chapter presented the theoretical background required for this thesis. In summary, 

the analysis of blood flow with relevance to atherosclerosis requires the calculation of 

the wall shear stress. From the definition of the wall shear stress, it is clear that this 

parameter depends on an accurate description of blood and the flow field. Chapter 3 

presents the base implementation of the flow solver while Chapter 4 deals with the 

implementation and verification of all additional modules required in simulating blood 

flow.  

The points of key relevance in this thesis are the wall shear stress and the analysis of 

its frequency composition. These concepts are introduced here in Sections 2.2 and 2.4, 

respectively. The calculation of the wall shear stress is given in Section 4.2 along with 

an analysis of its limitations. 
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Chapter 3 

Fluid solver: Lattice Boltzmann method 

 

 

3. Fluid solver: Lattice Boltzmann method  
 

Chapter 1 discusses the importance of the wall shear stress in atherosclerosis. The need 

for a solution to the Navier-Stokes equations then becomes apparent when considering 

the wall shear stress calculation introduced in Section 2.2. As analytical solutions do 

not exist for the non-trivial flow cases, the Navier-Stokes equations must be solved 

numerically. The lattice Boltzmann method is discussed in Section 3.1 as a method of 

approximating a solution to the Navier-Stokes equations. The flow field is computed 

in this way for analysis of the local haemodynamics relevant to atherosclerosis studies. 

The boundary conditions used to describe the no-slip condition at the geometry walls 

and the periodic boundaries at the inlet and outlet are also discussed in Section 3.2. It 

should be noted that all implementation details presented in this chapter are the  result 

of the works of Krüger (2012). 

 

3.1  The lattice Boltzmann method  
 

Due to the complexity of the Navier-Stokes (NS) equations (Section 2.1), analytical 

solutions exist only for a few simple cases, steady pipe flows for example. Non-trivial 

flow cases, such as those with complicated wall geometries and time-dependent flow 

conditions, require the use of numerical methods to approximate a solution to the NS 

equations (Landau and Lifshitz, 1987; Batchelor, 2000; Munson et al., 2010). 

Conventional NS-based methods compute the flow field at the macroscopic scale to 

recover pressure and velocity in the fluid domain. This pressure and velocity 

information can also be recovered by solving the flow field at smaller scales by 

considering the momentum and interaction of the fluid particles in a “bottom-up” 

approach to fluid modelling (Latt, 2007). One such approach is the use of the lattice 
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Boltzmann method (LBM) to describe the distribution of fluid particles, thereby 

approximating a solution to the NS equations (Succi, 2001; Krüger et al., 2017).  

3.1.1 Overview 
 

The following section aims only to provide the reader with a functional understanding 

of the LBM and the information necessary for this thesis. The key note in the lattice 

Boltzmann equation is that the macroscopic behaviour described by the NS equations 

can be recovered through the definition of the equilibrium distribution (Succi, 2001). 

For further reading, Krüger et al. (2017) provide an excellent account of the history 

and derivation of the LBM along with the additional considerations needed for its 

implementation.  

The key parameter in the lattice Boltzmann equation (3.1) is the particle distribution 

function 𝑓𝑖, also known as the particle population. The quantity represents the density 

of particles moving with a lattice velocity 𝒄𝑖 at position 𝒙 and time 𝑡 in a regular grid 

of lattice nodes.  

 𝑓𝑖(𝒙 + 𝒄𝑖Δ𝑡, 𝑡 +  Δ𝑡)  −  𝑓𝑖(𝒙, 𝑡) =  Ω𝑖(𝒙, 𝑡) + 𝑓𝑖
𝐹(𝒙, 𝑡)Δ𝑡 (3.1) 

 

where Δ𝑡 represents the discrete time step and 𝑓𝑖
𝐹 is used to add external forces such 

as gravity. The equation describes the collision of particle distributions according to 

the collision operator Ω𝑖. The post-collision distributions are then streamed from the 

lattice node at position 𝒙 to the nearest neighbour 𝒙 + 𝒄𝑖Δ𝑡 along the lattice velocity 

𝒄𝑖. These velocities are determined by the choice of lattice structure. The structure is 

defined by the lattice directions q in a d-dimensional space with notation DdQq. A 

sketch of the D3Q19 lattice is shown in Figure 3.1 with its lattice velocities given by:  

𝒄𝑖 =  (
0
0
0

  |  
1 −1 0
0 0 1
0 0 0

    
0 0 0

−1 0 0
0 1 −1

  |  
1 −1 −1
0 0 −1
1 −1 0

    
1 −1 1
1 0 0
0 1 −1

    
1 −1 0

−1 1 −1
0 0 1

    
0 0 0
1 −1 1

−1 −1 1
)

Δ𝑥

Δ𝑡
. 

  (3.2) 
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Figure 3.1. D3Q19 lattice for the lattice Boltzmann method. The zero 

velocity 𝒄0 = 𝟎 is not shown.  

 

The Bhatnagar-Gross-Krook (BGK) collision operator was employed in this 

implementation to compute the relaxation of populations towards the equilibrium 

distribution:  

 
Ω𝑖(𝒙, 𝑡) =  −

Δ𝑡

𝜏
[𝑓𝑖(𝒙, 𝑡) −  𝑓𝑖

𝑒𝑞(𝒙, 𝑡)] (3.3) 
 

where 𝜏 is the relaxation time. Considering the BGK collision operator, the external 

forcing term is given by: 

 
𝑓𝑖

𝐹(𝒙, 𝑡) = (1 −
1

2𝜏
) 𝑤𝑖 (

𝒄𝑖 − 𝒖

𝑐𝑠
2

+
𝒄𝑖 . 𝒖

𝑐𝑠
4

) . 𝒇 (3.4) 

 

with 𝒇 equal to the body force density. The equilibrium distribution is computed from:  

 
𝑓𝑖

𝑒𝑞 =  𝑤𝑖𝜌 (1 +  
𝒄𝑖 . 𝒖

𝑐𝑠
2

+
(𝒄𝑖 . 𝒖)2

2𝑐𝑠
4

 −  
𝒖. 𝒖

2𝑐𝑠
2

) (3.5) 

 

with 𝑐𝑠 being the speed of sound of the model and 𝑤𝑖 describing the lattice weights, 

both chosen from the particular lattice structure. The D3Q19 lattice structure was 

employed here because of its stability in the simulation of 3D geometries. From this 

structure, the speed of sound is 𝑐𝑠 =  √1 3⁄ Δ𝑥 Δ𝑡⁄  and lattice weights are defined as 

y

x

z
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𝑤0 = 1/3, 𝑤1−6 = 1/18 and 𝑤7−18 = 1/36. 𝜌 and 𝒖 describe the macroscopic density 

and velocity respectively. 

Considering the definition of the particle populations, the macroscopic variables of 

density and momentum density are computed locally from  

 𝜌 =  ∑ 𝑓𝑖

𝑖=0

 (3.6) 
 

and  

 
𝜌𝒖 =  ∑ 𝑓𝑖

𝑖=0

𝒄𝑖 +  
Δ𝑡

2
𝒇 (3.7) 

 

respectively where 𝒇 is equal to the body force density.  

As a result of the BGK collision operator, the viscosity derived from the LBM is given 

by the relaxation time as  

 
𝜇 =  𝑐𝑠

2𝜌 (𝜏 −  
1

2
) Δ𝑡. (3.8) 

 

The deviatoric stress tensor 𝜎′𝛼𝛽 is also computed from  

 
𝜎′𝛼𝛽 =  (1 −

1

2𝜏
) ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑓𝑖

𝑛𝑒𝑞

𝒊

 (3.9) 

 

where 𝑓𝑖
𝑛𝑒𝑞 = 𝑓𝑖 − 𝑓𝑖

𝑒𝑞
 is the non-equilibrium distribution function representing the 

deviation of the distribution function from its equilibrium state. The calculation of this 

tensor forms a key part of this thesis as it is used to calculate the traction vector and 

wall shear stresses (Section 2.2).   

The pressure and density in the LBM are related through the equation of state for an 

ideal gas: 

 𝑝′∗ =  𝑐𝑠
2𝜌′∗ (3.10) 

 

where 𝑝′∗ is the deviation from the reference pressure 𝑝0
∗ in a system and 𝜌′∗ is the 

deviation from the average density 𝜌0
∗. Parameters given in lattice units are indicated 

by the asterisk (*). A key note in the NS equations is that only pressure gradient is 
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relevant, rather than a total pressure. This means that the LB density also considers 

only the deviation from its average.  

3.1.2 Model implementation 
 

The implementation of the lattice Boltzmann equation requires the initialisation of all 

related parameters. The populations were initialised to the equilibrium distributions 

computed from 𝜌∗ = 1 and velocity 𝒖 = 0. A unit conversion step was also performed 

as part of the initialisation process where physical parameters were scaled to the 

simulation domain so that the time step Δ𝑡 and lattice size Δ𝑥 are both equal to one. 

The conversion process is described thoroughly in Krüger et al. (2017) where all 

conversion factors are derived in terms of the density, length and time scale conversion 

factors.  

Considering the physical interpretation of the lattice Boltzmann equation, the collision 

and propagation operations were performed in two steps:  

 
𝑓𝑖

∗(𝒙, 𝑡) =  𝑓𝑖(𝒙, 𝑡) −
1

𝜏
[𝑓𝑖(𝒙, 𝑡) −  𝑓𝑖

𝑒𝑞(𝒙, 𝑡)]  + 𝑓𝑖
𝐹(𝒙, 𝑡)Δ𝑡 (3.11) 

 

and  

 𝑓𝑖(𝒙 + 𝒄𝑖Δ𝑡, 𝑡 +  Δ𝑡) =  𝑓𝑖
∗(𝒙, 𝑡) (3.12) 

 

where 𝑓𝑖
∗ denotes the post-collision state of the distribution function. 

Following initialisation, the computational procedure is given by:  

1. Populations were propagated to neighbouring lattice sites along the lattice 

velocities using equation (3.12).  

2. Boundary conditions were applied to compute unknown populations 

(discussed in Section 3.2). 

3. Macroscopic quantities of density and velocity were computed at each lattice 

node from equation (3.6) and equation (3.7). 

4. The deviatoric stress tensor was computed according to equation (3.9) 

5. The relaxation of populations towards the equilibrium state was performed 

through particle collision equation (3.11).  

6. Advance to the next time step 𝑡 +  Δ𝑡 where the process was repeated.  
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In steady flow simulations, the computational procedure was terminated according to 

the convergence of the velocity profile to a steady state. The convergence of velocity 

profiles at times 𝑡 and 𝑡 + 𝑇 was determined where the time interval 𝑇 was set 

according to the simulation case. The convergence criterion 𝜖 was determined as:  

 
𝜖 =  

1

𝑁

∑ ‖𝑢𝑥(𝒙, 𝑡 + 𝑇) − 𝑢𝑥(𝒙, 𝑡)‖𝑁

∑ ‖𝑢𝑥(𝒙, 𝑡)‖𝑁
 (3.13) 

 

where 𝑁 is the number of fluid lattice sites and 𝑢𝑥 indicates the axial component of 

velocity. Convergence of the velocity to a quasi-steady solution in the pulsatile flow 

cases was assessed by setting the time interval 𝑇 equal to the pulse period.  

3.1.3 Model verification 
 

The computational procedure given in Section 3.1.2 was adopted from the work of 

Krüger (2012) and describes the base implementation of the lattice Boltzmann 

equation. In addition to the verification studies performed in Krüger et al. (2009) and 

Krüger (2012), several simulations have been performed as part of this thesis to verify 

the functionality of the implementation. Comparison of the fluid velocity and stress 

profiles showed excellent agreement between the analytical solutions and steady pipe 

flow simulation results. The L2 error norm was computed to be less than 2% in a range 

of simulations with varying radii and relaxation parameters. The error term was 

computed from: 

 

L2 error norm =  √
∑(PS − PA )2 

∑(PA)2
 (3.14) 

 

where P is the parameter of interest in the error calculation, velocity in this case, and 

the subscripts S and A represent the simulation and analytical results, respectively.  

The implementation was also verified in the case of Womersley flow against the 

analytical solution obtained from Nash et al. (2014). Comparison of the fluid velocity 

profiles at several points in time showed excellent agreement between the analytical 

solution and simulation results with an L2 error norm of less than 2% (Figure 3.2). 
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Figure 3.2. Verification of the lattice Boltzmann implementation in 

Womersley flow. A sinusoidal pressure gradient was imposed as a body force 

with Reynolds and Womersley numbers equal to 135 and 5.94, respectively. 

Comparisons of the lattice Boltzmann simulation results and the analytical 

solution are shown at different points in time, t, over the pulse period, T. The 

analytical solutions are shown in solid black lines. Excellent agreement is 

shown between the simulation results and the analytical solution. 

 

3.1.4 Model discussion 
 

Over the last two decades, LBM has shown increasing popularity in the simulation of 

biological flows ( ’Connor et al., 2016). The method is effective in these applications 

considering the simplicity of its numerical procedure. This is clear from the description 

given in Section 3.1.2 where the implementation of the LB equation is straightforward, 

consisting entirely of simple arithmetic calculations (Chen and Doolen, 1998; Aidun 

and Clausen, 2010). The relatively “challenging” computation of the method lies in 

the collision step. This, however, is local and requires no information from 

neighbouring lattice sites. The only non-local aspect of the method, propagation, is 

linear and is computationally simple. The simplicity and local nature of the procedure 

is a major advantage of the lattice Boltzmann method and forms the basis for its use in 

this thesis.  

Relative to computational fluid dynamics (CFD) approaches, the lattice Boltzmann 

method holds a number of advantages. One such advantage is that there is no need for 
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potentially expensive meshing processes. The simulation domain is, instead, 

discretised according to the lattice resolution Δ𝑥. A feature of key importance in 

haemodynamic studies, as in this thesis, is the ease with which the deviatoric stress 

tensor is computed (3.9). In comparison, conventional CFD methods use an expensive 

process of computing velocity gradients to calculate components of the stress tensor. 

The fluid pressure can also be recovered from the density field using the equation of 

state (3.10). This avoids the need to solve the Poisson equation, a numerically 

challenging computation in conventional CFD methods (Chen and Doolen, 1998).  

The lattice Boltzmann method, however, requires great care in the selection of 

parameters. Compressibility errors emerging from the Chapman-Enskog multiscale 

analysis are minimised by control of the fluid velocity, for example. The Chapman-

Enskog analysis is used to recover the weakly compressible NS equations from the LB 

equation (Krüger et al., 2017). As the error terms are a function of the numerical Mach 

number, all parameters used in the simulations of this thesis were chosen such that the 

fluid velocity did not exceed 0.07. With the specification of the flow dimensionless 

numbers and lattice resolution, the simulation timestep is also fixed through this Mach 

number criteria.  

Considering the geometries simulated here, the D2Q9 axisymmetric lattice Boltzmann 

scheme could be used as an alternative method. Compared to the D3Q19 lattice 

structure employed in this thesis, implementation of the axisymmetric model would 

greatly reduce the number of computations and improve the computational efficiency. 

This is clear from the reduction of the computational domain by a factor of two 

diameters and the decrease in the number of lattice velocities. Details of the 

implementation are discussed in Li et al. (2010). The 3D lattice structure was used in 

this thesis to maintain versatility of the model for any future studies where the 

geometries are not axisymmetric. An important note is that the errors emerging in the 

treatment of solid boundaries are relevant in both models discussed here (Sections 

3.2.3 and 4.2).  

This base implementation forms a key component of the thesis as it allows the 

simulation of fluid flow as a straightforward numerical procedure. The remainder of 
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the chapter will deal with the implementation of the boundary conditions required to 

accurately specify the simulation case. 

 

3.2  Boundary conditions  
 

As discussed in Section 2.1, boundary conditions form a key component of all fluid 

dynamics studies. The importance of the boundary conditions and their accurate 

specification in a simulation study cannot be stressed enough as they are critical in 

making the solution of the NS equations specific to each modelling case. The 

specification of inlet and outlet boundary conditions, for example, could mean the 

difference between the steady and pulsatile flow cases, producing largely different 

results in the temporal variation of wall shear stress. The following section will deal 

with the implementation of these boundary conditions in the lattice Boltzmann 

framework.  

3.2.1 Boundary conditions in LBM 
 

In conventional fluid dynamics methods, boundary conditions are applied as pressure 

and velocity conditions at the boundaries of the simulation domain. However, as 

described in Section 3.1, the LBM operates in terms of the particle populations rather 

than the macroscopic values of pressure and velocity. This means that the boundary 

conditions must be prescribed in terms of the particle populations in order to recover 

the desired macroscopic flow conditions.  

The propagation step, shown equation (3.12), involves the streaming of particle 

populations to neighbouring lattice sites along the lattice velocities. Considering this 

definition and Figure 3.3, the populations streaming into the fluid domain from 

boundary nodes are unknown and therefore must be constructed from certain 

assumptions. Given the importance of the boundary conditions to simulation accuracy 

and stability, the construction of the unknown populations has received great attention 

in the lattice Boltzmann community with a large number of potential treatments being 

proposed. Aidun and Clausen (2010) and Krüger et al. (2017) provide excellent 

reviews of several boundary conditions commonly used in the LBM. A key 

requirement of the boundary condition is that the desired macroscopic quantities must 

be recovered from the known and constructed particle populations (Latt et al., 2008).  
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Figure 3.3. Illustration of a simple lattice structure showing the known 

(solid arrows) and unknown populations (dotted arrows) in the 

propagation step. The boundary (dashed line) separates the solid (grey) and 

fluid (white) regions. A D2Q9 lattice is shown here to demonstrate that some 

populations streaming into the fluid nodes (white circles) from solid nodes 

(black circles) are unknown. Boundary conditions in the LBM must construct 

these unknown populations from the known information to recover the 

macroscopic variables at the boundary.  

 

3.2.2 Model implementation  
 

Simulation of fluid flow was performed with the use of solid, periodic and open 

boundary condition implementations.  

Solid boundary conditions 

The no-slip boundary condition present at the solid-fluid interfaces was implemented 

in all simulations using the standard bounceback scheme. Populations streaming to a 

solid node were ‘bounced back’ to the node of origin with the opposite lattice velocity 

(Ginzbourg and Adler, 1994; Ladd, 1994). This implementation was achieved through: 

 𝑓𝑖̅(𝒙, 𝑡 +  ∆𝑡) = 𝑓𝑖
∗(𝒙, 𝑡)  (3.15) 

 

where 𝑓𝑖̅ refers to the population with lattice velocity 𝒄𝑖̅ =  −𝒄𝑖 (Figure 3.4). Given the 

simplicity of its implementation, the standard bounceback scheme has become the 

most popular treatment for solid-fluid interfaces in the lattice Boltzmann community 

with second-order accuracy being achieved when taking the position of the solid-fluid 

interface to be located half-way between the solid and fluid nodes (He et al., 1997; 

Aidun and Clausen, 2010; Krüger et al., 2017). The scheme was implemented as part 

of Krüger (2012) and has been verified over a number of simulations and studies. A 

key result of the bounceback scheme is the approximation of the curved and inclined 

boundaries to a staircase geometry (Figure 3.5).  
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 (a) 𝑡    (b)  𝑡 +  ∆𝑡/2   (c) 𝑡 +  ∆𝑡 

     

Figure 3.4. Time evolution of the half-way bounceback approach. The 

boundary (dashed line) separates the solid (grey) and fluid (white) regions. The 

physical no-slip interface is located half way between the fluid nodes (white 

circles) and solid nodes (black circles) in this approach. (a) At time 𝑡, the post-

collision population 𝑓𝑖
∗ streams from position 𝒙 to the solid node 𝒙 + 𝒄𝑖Δ𝑡. (b) 

Bounceback is then applied where the population is ‘bounced back’ with the 

opposite lattice velocity. (c) This is then assigned to population 𝑓𝑖̅ at time 𝑡 +
 ∆𝑡 and position 𝒙. In this way, all unknown particle populations at the wall-

adjacent node can be constructed from known populations.  

 

  

Figure 3.5. Staircase approximation of a curved boundary in the half-way 

bounceback treatment. The lattice discretisation is shown by the dotted lines 

with lattice nodes represented as circles. The solid region in the physical space 

(grey area) is approximated to a staircase boundary (solid black lines) in the 

lattice domain separating the solid lattice sites (black circles) from fluid lattice 

sites (white circles).  

  

Periodic boundary conditions  

The periodic boundary condition was employed in simulation cases where the inflow 

and outflow conditions could be assumed to be the same at the inlet and outlet 

boundaries. With this treatment, post-collision populations leaving the fluid domain at 

the outlet nodes, 𝒙 + 𝑳, were streamed back to the inlet nodes, 𝒙, to create the 
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impression of an infinitely large fluid domain along the axes of periodicity. The 

periodic boundary condition is given by: 

 𝑓𝑖
∗(𝒙, 𝑡) = 𝑓𝑖

∗(𝒙 + 𝑳, 𝑡) (3.16) 
 

where 𝑳 is the domain size. A simple pipe flow was implemented by setting the axis 

of periodicity to be only along the axial direction of the pipe. Fluid flow is driven by 

a body force term implemented in the collision process, given by equation (3.11). The 

use of periodic boundary conditions was validated in all simulations by comparing the 

wall shear stress signal upstream and downstream of the geometric manipulations.  

3.2.3 Model discussion  
 

The specification of the no-slip boundary condition was implemented at all solid-fluid 

interfaces through the use of the standard bounceback scheme. A known artefact of 

this method is the approximation of the curved and inclined boundaries to a staircase 

structure, reducing the accuracy of the solution in the region near the wall. The effect 

of this approximation on the wall shear stress calculation is discussed further in Section 

4.2.  

Extensions to the standard bounceback approach have been proposed as a way of 

reducing the staircase effects by the interpolation of particle populations (Bouzidi et 

al., 2001; Lallemand and Luo, 2003) and grid refinement in regions where the 

solutions are expected to change (Filippova and Hanel, 1998). While these proposed 

extensions show second-order accuracy of the solution, the error caused by the 

staircase approximation is negligible when considering the errors introduced by 

geometry simplification and the profiles of pressure and velocity imposed at the inlet 

and outlet. The errors associated with the staircase approximation were accepted when 

also considering the significant effort required in reformulating the solid boundary 

treatment method. 
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Chapter 4 

Additional models in simulating blood flow 

 

 

4. Additional models in simulating blood flow 
 

Following the discussion in Chapter 1, it is clear that the wall shear stress plays an 

important role in the localisation and progression of atherosclerosis. The current 

chapter therefore aims to develop a numerical tool that is capable of simulating the 

local haemodynamics in different animal models of atherosclerosis. Using the 

theoretical background laid out in Chapter 2 and the base lattice Boltzmann method 

discussed in Chapter 3, the current chapter deals with the implementation and 

verification of the additional modules required in the analysis of blood flow and 

calculation of the wall shear stresses.  

This chapter details the work performed as part of this thesis including the 

implementation of an open boundary condition scheme, prescribed at the inlet and 

outlet. Section 4.1 deals with the specification of this boundary condition with respect 

to the numerical method. Their implementation in the lattice Boltzmann scheme forms 

an important task in this thesis given the relationship to simulation stability and 

accuracy (Succi, 2001; Krüger et al., 2017).  

Section 4.2 presents the development and verification of the wall shear stress 

computation along with the analysis of errors resulting from the wall boundary 

treatment. Following the discussion in Section 2.6, the shear-thinning nature of blood 

was also modelled to recover an accurate representation of blood flow. The Carreau-

Yasuda model was implemented in Section 4.3 alongside its numerical solution and a 

robust and efficient method of computing the viscosity from the fluid stress. Again, 

returning to the importance of the boundary conditions, the flow and pressure 

prescribed at the inlet and outlet must be accurate and faithful to the physical case in 

order to recover physiologically relevant information. Section 4.4 deals with the 

implementation and verification of a 1D model for this purpose. Finally, Section 4.5 
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discusses the relevant flow dimensionless numbers and the concept of dynamic 

similarity between simulations and the physical case for simulation validity. 

 

4.1  Open boundaries  
 

As discussed in Section 3.2, the periodic boundary condition is employed in the 

majority of simulations in this thesis considering its efficient implementation and 

operation. An open boundary treatment is however, required where the assumption of 

periodic boundaries could not be justified. In this case, the inlet and outlet boundaries 

were implemented using the regularisation method (Latt et al., 2008). While the 

specification of any general open boundary condition is discussed in Latt et al. (2008) 

and Krüger et al. (2017), a detailed methodology is also provided here given its 

importance in the lattice Boltzmann scheme.  

4.1.1 Model implementation 
 

Considering that the implementation of both the density and velocity at the open 

boundary leads to the mathematical over-specification of the problem, it is only 

possible to specify either the density or velocity (Krüger et al., 2017). The value of 

density was imposed at the inlet and outlet to prescribe a desired pressure drop over 

the length of the geometry. The imposed density was used along with the known 

populations and moments of 𝑓𝑖 (equations 3.6 and 3.7) to compute the fluid velocity at 

the boundary. Considering the inlet boundary shown in Figure 4.1, the moments of 𝑓𝑖 

were rewritten in terms of the known 𝑓+, unknown 𝑓− and tangential or zero 

populations 𝑓0:  

 𝜌 =  𝑓+ +  𝑓− + 𝑓0 (4.1) 
 

  

 𝜌𝑢𝑥 =  𝑓− − 𝑓+. (4.2) 
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Figure 4.1. Illustration of the inlet nodes indicating the unknown 𝒇− 

(dotted arrows), known 𝑓+, and tangential or zero populations 𝑓0 (solid 

arrows) at the open boundary nodes (green circles). The imposed 

macroscopic quantity (density, in this case) is used with 𝑓+, 𝑓0 and the moments 

of 𝑓𝑖 to compute velocity on the boundary.  

 

The 𝑥-component of velocity at the inlet was given by: 

 
𝑢𝑥 = 1 −  

1

𝜌
(𝑓0 + 2𝑓+). (4.3) 

 

Considering the greater number of unknown populations at the corner nodes, a zeroth-

order extrapolation scheme was used to compute the velocity term at these sites. The 

velocity vector was taken to be equal to that of the neighbouring fluid node in the 

direction normal to the boundary vector. 

The imposed density and computed velocity values were then used to calculate the 

equilibrium distribution at the open boundaries from equation (3.5). The bounceback 

of non-equilibrium components (Zou and He, 1997) was used to compute all unknown 

populations according to:   

 𝑓𝑖 =  𝑓𝑖
𝑒𝑞 + (𝑓𝑖̅ − 𝑓𝑖̅

𝑒𝑞 ) (4.4) 
 

where the unknown populations 𝑓𝑖 were calculated from the known populations 𝑓𝑖̅ and 

equilibrium distributions. The first-order momentum flux tensor 𝜫(𝟏) was then 

computed from the non-equilibrium components of the populations on the boundary 

node as:  

 𝜫(𝟏) =  ∑ 𝒄𝑖𝒄𝑖𝑓𝑖
𝑛𝑒𝑞

𝑖 . (4.5) 
 

All pre-collision particle populations on the open boundary were then recomputed 

from the regularisation method using:  
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 𝑓𝑖(𝒙, 𝑡) =  𝑓𝑖
𝑒𝑞(𝜌, 𝒖) +

𝑤𝑖

2𝑐𝑠
4

𝑸𝑖: 𝜫(1) (4.6) 
 

where 𝑸𝑖 =  𝒄𝒊𝒄𝒊 −  𝑐𝑠
2𝑰. A key note in this method is that all populations were 

overwritten according to the regularisation method, simplifying its implementation in 

the lattice Boltzmann method. Collision was also performed at all non-solid lattice 

sites, including at the open boundaries.  

4.1.2 Verification  
 

The implementation of the regularisation boundary condition was verified by 

comparison with the analytical solution of flow in a simple pipe. A parabolic curve 

was fit to the simulation velocity profile at the axial midpoint. Verification was 

performed by comparing the coefficient of the quadratic term in the fit curve to the 

analytical solution showing a good agreement with less than 3% deviation over a range 

of simulation cases. As a result of the corner node treatment method, a non-zero radial 

velocity component was also observed in the near-wall regions close to the inlet and 

outlet boundaries. The magnitudes of these radial velocity components were found to 

be negligible at less than 0.1% of the axial velocity component. An approximate 

continuity in the stress profile at the inlet and outlet nodes and the bulk fluid nodes 

also indicated the correct approximation of the non-equilibrium component of particle 

populations.  

The regularisation method was also verified in Womersley flow by comparing the 

velocity profile at the axial centre to the analytical solution. As mentioned in Nash et 

al. (2014), simulation results showed good agreement with the analytical solution 

when allowing for the time taken for the propagation of the pressure wave to the site 

of velocity output.  

4.1.3 Model discussion 
 

The regularisation method was implemented only for the tandem stenosis geometry of 

Chen et al. (2013) where the use of periodic boundary conditions was not possible. 

The use of periodic boundaries at the inlet and outlet was preferred as it provides a 

relatively cheap solution in terms of computational effort. This is clear when 

considering the simplicity of operation. The regularisation method was successfully 
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implemented and verified in the case of steady and Womersley flows in a simple pipe 

geometry by imposing profiles of density at the inlet and outlet. 

 

4.2  Wall shear stress  
 

The Lattice Boltzmann method is able to describe the flow field by approximating a 

solution to the Navier-Stokes equations. Conventional fluid dynamics techniques 

calculate the deviatoric stress tensor from the flow field by computing the strain rate 

tensor from gradients of the fluid velocity. This process can be computationally 

demanding as it employs a finite difference method at each position and time. An 

advantage of the lattice Boltzmann method is that the deviatoric stress tensor 𝜎′𝛼𝛽 can 

be computed locally from the non-equilibrium components of the distribution 

functions (3.9). The traction vector and all subsequent parameters can then be 

computed from this tensor using the methods detailed in Sections 2.2, 2.3 and 2.4. 

4.2.1 Wall normal vectors  
 

The challenge in calculating the wall shear stress (WSS) is that both the boundary 

location and wall normal vector must be known. As discussed in Section 3.2, the half-

way bounceback approach approximates curved and inclined geometries to a staircase 

structure with the solid-fluid boundary located half-way between the solid node and 

its neighbouring fluid node (Figure 3.5). This approach complicates the determination 

of normal vectors as the geometry is seen only as voxel data and no additional 

information about the true normal vector is known. As the half-way bounceback 

implementation is used throughout this thesis, approximation of the wall normal vector 

forms a key component of WSS computation.  

To solve the problem of wall normal approximation, lattice Boltzmann studies have 

attempted to quantify the vector using flow (Stahl et al., 2010), geometry (Matyka et 

al., 2013) and imaging based methods (Hyväluoma et al., 2017). Considering the 

accuracy and ease of implementation associated with each of these methods, the 

approach given by Matyka et al. (2013) was implemented here to approximate the wall 

normal vector.  
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(a)        (b) 

 

Figure 4.2. Illustration of the local averaging method for the computation 

of the wall normal vector n (Matyka et al., 2013). Boundary nodes are 

identified as lattice nodes with at least one lattice velocity streaming across a 

physical boundary to a solid node. The staircase normal vectors (short arrows) 

were defined on the boundary half way between the lattice nodes (solid black 

lines). (a) An averaging sphere is drawn around the boundary node of interest. 

(b) The weighted average of the staircase normal vectors is computed to 

estimate the wall normal vector (long arrow) at each boundary node to 

characterise the wall surface.  

 

Matyka et al. (2013) proposed to compute the wall normal by averaging the normal 

vectors created by the staircase structure in the neighbouring region. Fluid nodes 

neighbouring the staircase boundary were redefined as boundary nodes with staircase 

normal vectors defined on the staircase structure to point into the fluid domain. The 

weighted average of the staircase normal vectors within a spherical radius of the node 

was computed as the wall normal vector 𝒏 (Figure 4.2). This average was calculated 

according to equation (4.7) where 𝑊𝑖 indicates the weighting function and 𝒃𝑖 indicates 

the staircase normal vector of the 𝑖-th boundary face.  

 

𝒏 =  (∑ 𝑊𝑖

𝑖

)

−1

∑ 𝑊𝑖𝒃𝑖

𝑖

 (4.7) 

 

The weighting function was computed as 𝑊𝑖 =
1

1+ 𝑑𝑖
 where 𝑑𝑖 is the distance between 

the node of interest and the boundary between lattice nodes. It is important to note that 
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the boundary is located half way between lattice nodes and that this shift is also 

considered in the calculation of the distance in the weighting function (Figure 4.2). 

The approach was tested in the case of a simple pipe by varying the radius of the 

averaging sphere. The maximum deviation from the analytical normal was used to 

verify the implementation against results provided in Matyka et al. (2013). The 

fluctuations in angular deviation at points around the circumference is clearly a result 

of the variation in the staircase arrangement and the property of the analytical normal 

vectors in a circular cross section to be mirror symmetric about a point on the 

circumference (Figure 4.3). A zero deviation was found at ±45 deg as the staircase 

normal vectors also show this mirror symmetry property about the node of interest. 

The points of maximum deviation on the other hand, were found adjacent to ±45 deg 

as the symmetry property is weakest in the neighbouring staircase normal vectors and 

so the computed wall normal is strongly biased towards a certain direction.  

  

Figure 4.3. Deviation of the computed wall normal from the analytical 

value at points around the circumference of the geometry. Angular 

deviation was computed in a simple pipe geometry of radius 25 lattice nodes. 

The wall normal vector was computed using the Matyka et al (2013) approach 

with an averaging sphere radius of 5 lattice nodes. The maximum angle 

deviation matches that of results reported in Matyka et al (2013).  
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4.2.2 Wall shear stress  
 

Before moving into the discussion of the WSS and its errors, it should be noted that 

the computed stress is not evaluated directly on the solid-fluid boundary. Rather, it is 

calculated at the wall-adjacent fluid node which lies approximately one-half lattice site 

away from the boundary as the deviatoric stress tensor is only available at fluid sites. 

The ‘one-half’ lattice site difference arises from the halfway bounceback method 

discussed in Section 3.2. This is a property common to all lattice Boltzmann 

simulations considering halfway bounceback and so the computed value shall be 

referred to from this point onwards as the WSS. The analytical solutions of WSS have 

also been computed to account for this effect. 

Considering the analytical solution of the Navier Stokes equations in a simple pipe 

geometry, the fluid stress is expected to be a function only of the radius and pressure 

gradient. This leads to a constant value of WSS at all points on the circumference in a 

pipe geometry. Similarly to Hyväluoma et al. (2017) however, the WSS obtained from 

equation (2.11) shows significant fluctuations at points around the circumference. 

Simulations performed in this thesis also found negligible differences in the 

comparison of WSS computed from the Matyka et al. (2013) and analytical wall 

normal vectors. This suggests that the wall normal approximation is irrelevant in the 

fluctuation of WSS. The distribution of the fluid stress tensor along the radius also 

found deviation from the analytical solution only in the near-wall region. This 

indicates that it is the effects of the staircase geometry on the flow field that are being 

reflected in the deviatoric stress tensor and therefore, in the WSS distribution.  

To study the staircase effects on the WSS, the tangential traction vectors were replaced 

with those computed using a local averaging scheme similar to that of the wall normal 

calculation. The approach of local WSS averaging has previously been used in Matyka 

et al. (2013) and Hyväluoma et al. (2017). The resulting distribution of WSS around 

the circumference shows a decrease in fluctuation when increasing the averaging 

sphere radius (Figure 4.4).  
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Figure 4.4. Wall shear stress plotted as a function of the angular position 

with different local averaging schemes. The wall shear stress was computed 

as the magnitude of the tangential traction vector in a simple pipe geometry of 

25 lattice unit radius. Increasing the sphere radius, r, in the local averaging 

scheme shows a decrease in the fluctuation of the wall shear stress value. The 

decrease in fluctuation is due to the averaging out of fluctuation of raw wall 

shear stress values (r = 0). The L2 error norms for the different averaging sphere 

radii are shown in Figure 4.5. 

  

The L2 error norm was defined according to equation (4.8) and considers the analytical 

solution with the one-half lattice site factor mentioned above.  

 

L2 error norm =  √
∑(WSSS − WSSA )2 

∑(WSSA)2
 (4.8) 

 

where the subscripts S and A indicate the simulation and analytical values, 

respectively. The error decreases with an increasing averaging sphere radius and tends 

towards the error computed from the circumferential average (Figure 4.5). A key note 

here is that the L2 error tends towards a non-zero value with increasing averaging 

sphere radius. This shows that the analytical solution of WSS is not perfectly recovered 

with the averaging methods, both local and circumferential.  
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Figure 4.5. Effect of increasing averaging radius, r, on the L2 error norm 

of wall shear stress (WSS). A decreasing L2 norm was found with an 

increasing radius of the averaging sphere. The L2 norm tends towards the value 

computed for the circumferential average which is also non-zero. This suggests 

that the staircase effects on wall shear stress cannot be completely removed by 

an averaging method.  

 

 

Figure 4.6. Effect of increasing pipe diameter, and therefore resolution, on 

the L2 error norm of the circumferentially averaged wall shear stress 

(WSS). Simulations of a simple pipe geometry were performed with Re = 10 

and 𝜏 = 0.8 at different resolutions. Flattening of the error curve with increasing 

resolution shows a zeroth order convergence and that the staircase 

approximation is always significant in wall shear stress calculation for the 

considered geometries.  
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(a)           (b) 

 

(c)           (d) 

 

Figure 4.7. Distributions of normalised deviation from the analytical 

solution of wall shear stress (WSS) with increasing pipe diameter, D. 

Simulations of a simple pipe geometry were performed with Re = 10 and 𝜏 = 

0.8 at pipe diameters (a) 10, (b) 30, (c) 50 and (d) 100 and therefore, at different 

resolutions. Subscripts S and A indicate simulation and analytical results of 

wall shear stress, respectively. No averaging scheme was employed for the wall 

shear stress calculation. Increasing resolution shows an initial shift in the 

concentration of deviations towards the lower magnitudes before reaching a 

stable distribution. These properties are reflected in the decrease and 

subsequent flattening of the L2 error norm with increasing pipe diameter 

(Figure 4.6).   

 

The WSS error convergence was assessed in a simple pipe geometry with fixed 

Reynolds number and relaxation parameter (Re = 10 and 𝜏 = 0.8). The channel 

diameter was increased to simulate an increasing resolution and showed a decrease 

and subsequent flattening of the error. This indicates a zeroth order convergence of the 

WSS (Figure 4.6). Referring again to Figure 4.5, it is clear that the magnitude of the 

zeroth order term is dependent on the choice of WSS averaging method with the errors 
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shown in Figure 4.6 being computed from the circumferential average. To understand 

the behaviour of the WSS error, the distribution of normalised deviations was studied 

at points around the circumference with no averaging scheme (Figure 4.7). The 

decrease in the L2 error norm is reflected in the initial shift of the distribution of 

normalised deviations towards the lower magnitudes. Stability of the distributions at 

diameters greater than 30 lattice sites also captures the flattening of the L2 error norm. 

This flattening behaviour and absence of any convergence was also observed in 

Hyväluoma et al. (2017) with the simulation of a 3D simple pipe geometry.  

Kang and Dun (2014) however, show a first order rate of convergence in WSS with 

increasing resolution for a 2D Poiseuille flow. Here, the assumption of Poiseuille flow 

in an aligned channel removes any staircase approximation in the geometry. This 

reduces the observed error to be a factor only of the distance between the physical wall 

and the wall-adjacent lattice node which clearly reduces with first order rate. It then 

follows that the convergence of WSS is also first order.  

Hyväluoma et al. (2017) wrongly attribute the first order convergence behaviour in 

Kang and Dun (2014) to the use of interpolation-based boundary conditions but the 

simulations in question use a standard bounceback approach. Instead, the lack of 

convergence shown in Figure 4.6 and Hyväluoma et al. (2017) appears to be purely a 

result of the staircase approximation. Supporting this observation, Kang and Dun 

(2014) also show a slight flattening behaviour of the WSS convergence in inclined 

channel simulations where the staircase approximation again becomes relevant. The 

lesser degree of flattening in Kang and Dun (2014) may be attributed to the difference 

in arrangement of the staircase between the 2D inclined channel and the 3D pipes 

simulated here.  

4.2.3 Model discussion 
 

The implementation of the normal vector and WSS calculations was verified against 

the literature and analytical solutions in a simple pipe geometry. Analysis of the 

deviatoric stress tensor in the pipe radius was performed showing the fluctuations in 

WSS to be a result of the staircase approximation at the solid-fluid boundary. This 

staircase approximation was also found to lead to a zeroth order error term that persists 

with increasing resolution. Reduction of this error term was achieved through a WSS 
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averaging scheme. While local averaging methods are recommended for the 

simulation of complex geometries, the circumferential averaging method will be used 

in all subsequent calculations considering the axial symmetry of the simulated 

geometries and the minimal value of error recovered in these cases. 

The zeroth order convergence of the bounceback scheme in the simple pipe geometry 

suggests that the standard bounceback is limited in its use in WSS studies. As 

mentioned in Section 3.2.3, the interpolated bounceback scheme, discussed in Bouzidi 

et al. (2001), is known to remove the staircase effects and improve simulation 

accuracy. When considering the velocity error residuals in Poiseuille flow, Nash et al. 

(2014) showed the interpolated bounceback scheme to produce second-order 

convergence while the standard bounceback implementation gives first-order. 

Womersley flow simulations also showed a reduction in velocity error residuals with 

the implementation of the interpolated bounceback scheme (Nash et al., 2014). The 

errors caused by the staircase effects are accepted considering their small magnitudes 

and the other, more significant errors introduced in the modelling process such as the 

geometry simplification. The effects of the geometry simplification are most apparent 

in the simulations of Chapter 5. 

 

4.3 Non-Newtonian fluid  
 

Following the discussion in Section 2.6, it is clear that blood must be modelled as a 

non-Newtonian fluid with the appropriate shear thinning properties. The Carreau-

Yasuda model was implemented for this purpose to compute the viscosity as a function 

of shear rate. The lattice Boltzmann method again proves advantageous over 

conventional computational fluid dynamics techniques because of the ease with which 

this shear rate is computed. Similar to the deviatoric stress tensor discussed in Section 

4.2, the shear rate calculation is also entirely local allowing the viscosity to be easily 

set at each lattice site (Krüger et al., 2009).  

4.3.1 Model implementation 
 

An implicit relationship between shear rate and viscosity in the Carreau-Yasuda model 

(2.21) becomes apparent when considering the viscosity model and Newton’s law:  
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 𝜇 −  𝜇∞

𝜇0 − 𝜇∞
=  [1 + (𝜆 (

𝜎

𝜇
))

𝑎

]

−𝑚
𝑎⁄

 (4.9) 

 

where the fluid viscosity 𝜇 is expressed in terms of the stress magnitude 𝜎 and itself 

through the shear rate. 𝜇0 and 𝜇∞ are the asymptotic limits of the viscosity model, 𝜆 is 

the characteristic time constant and 𝑚 and 𝑎 are model parameters describing the 

transition region between 𝜇0 and 𝜇∞. The Carreau-Yasuda model Newton iterator (CY 

iterator) was implemented to solve this shear rate-viscosity implicit relationship (4.9) 

from the fluid stress as in Wang and Bernsdorf (2009). The iterative process was 

terminated when the viscosity had converged within a margin of 10-6. This 

implementation was initially found to be well-suited for this application as 

convergence of the local viscosity occurred within 3 iterations at all lattice sites in the 

test simulation cases.  

Initially, the viscosity model was implemented in the lattice Boltzmann method using 

the stress tensor computed as part of the wall shear stress calculation. By expressing 

the viscosity model in terms of the fluid stress, a local viscosity was computed by the 

CY iterator. The computed viscosity was then implemented in the lattice Boltzmann 

scheme by changing the value of a local relaxation according to equation (3.8). As 

with any general viscosity model, its implementation in the lattice Boltzmann method 

is complicated by an implicit relationship between the stress tensor and fluid viscosity. 

The implicit relationship is clear from equation (3.8) and  

 
𝜏 =  

𝜇(𝜎(𝜏))

𝜌𝑐𝑠
2

+  
1

2
  (4.10) 

 

where the functions 𝜎(𝜏) and 𝜇(𝜎) are given by equation (3.9) in the lattice Boltzmann 

formulation and the general viscosity model, respectively. In simulation cases with a 

slow time-evolution of the relaxation parameter, the stress tensor can be computed 

from the relaxation parameter of the previous time step (Phillips and Roberts, 2011).  

The initial approach was found to be unsuitable for parameter sets with increasing 

difference between the asymptotic limits of the viscosity range. A more robust solution 

is the application of a Newton iterator to solve the implicit relationship given by 

equation (4.10). A Python script, specific to the Carreau-Yasuda model, was developed 
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for this purpose. The script exploits the magnitude of the first-order momentum flux 

tensor 𝛱(1) as this value is independent of the relaxation parameter and can be easily 

computed as part of the simulation:  

 
𝛱(1) =  |∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑓𝑖

𝑛𝑒𝑞

𝑖

| . (4.11) 

 

For clarity, a breakdown of the script is provided here using only a single value of the 

momentum flux where, in reality, the script inputs a range of values for the momentum 

flux. The script works on the basis of a Newton iterator for the Carreau Yasuda model 

within a Newton iterator for the relaxation parameter. The algorithm is given by: 

1) Set a value for the momentum flux and an initial guess of the relaxation 

parameter. 

2) In the relaxation parameter Newton iterator (RP iterator), compute the stress 

magnitude using equation (3.9) and the values of momentum flux and initial 

guess relaxation parameter. 

3) Within the relaxation parameter iterator, compute the viscosity from the stress 

magnitude using the CY iterator. Given that the CY iterator is within the RP 

iterator, only one iteration needs to be performed. 

4) In the RP iterator, compute the relaxation parameter from equation (3.8). 

5) Compute the next approximation of the relaxation parameter. The iterative 

process was terminated when the solution had converged within a margin of 

10-6. 
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The iterative process was performed for momentum flux values ranging from 10-10 to 

1 on a logscale with 100 data points to provide a full range of viscosities. The script 

was verified by comparing the viscosity profile output from the Python script with 

some initial guess of the viscosity to the profile computed directly from the Carreau-

Yasuda model with a range of stress values (Figure 4.8). The iterative process was 

well-suited to this application with the speed of relaxation parameter convergence 

being dependent on the viscosity model parameters and the range of momentum flux 

values. It should be noted that a converged solution was not achieved for parameter 

sets with 𝑚 > 0.8. The values of 𝑚 relevant to this PhD, however, do not exceed this 

criterion.  

The viscosities determined from this script were then read at initialisation of the lattice 

Boltzmann implementation and, within the simulation at each time step and position, 

a computed value of the momentum flux was used to calculate a corresponding 

viscosity. A linear interpolation scheme was used to interpolate between the values of 

the momentum flux output from the Python script.  

 

Figure 4.8. Verification of the Python script for the Newton iterator in 

relaxation parameter over a range of input values of the first-order 

momentum flux magnitude 𝜫(𝟏). The viscosity model is solved from an 

initial guess of the relaxation parameter and a range of values of the momentum 

flux of non-equilibrium components using the mouse Carreau-Yasuda model 

parameter set. Excellent agreement was found from a comparison of the 

viscosities computed from the Newton iterator and those output directly from 

the Carreau-Yasuda model. All parameters are provided in lattice units. 
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4.3.2 Verification  
 

The viscosity model implementation was tested in the case of steady flow in a simple 

pipe geometry. Considering that the Carreau-Yasuda model does not have an analytical 

solution, a numerical integration step was performed. For this purpose, a Python script 

was developed using the numerical integration tool in the SciPy library. Numerical 

integration was used on equation (4.12) to compute the fluid velocity, viscosity and 

local shear rate for verification against the lattice Boltzmann simulation results.  

 𝑟

2

𝑑𝑃

𝑑𝑥
=  (𝜇∞ + (𝜇0 − 𝜇∞) [1 + (𝜆

𝑑𝑢

𝑑𝑟
)

𝑎

]

−𝑚
𝑎⁄

)
𝑑𝑢

𝑑𝑟
 (4.12) 

 

where 
𝑑𝑃

𝑑𝑥
 is the pressure gradient, 𝑢 is the fluid velocity and 𝑟 is the distance to the 

centre of the pipe. Boundary conditions for the numerical integration step were 

obtained from the velocity and shear rate at the wall. The velocity at the wall was taken 

as zero by considering the no-slip condition and the wall shear rate was computed from 

the fluid viscosity at the wall, calculated using an implementation of the Newton 

iterator with the analytical solution of wall shear stress.  

Simulations and numerical integration calculations were performed at different shear 

rate numbers by using the characteristic time constants to vary the range of viscosities 

experienced in the fluid. The shear rate number is introduced in Section 4.5. The L2 

error norm was computed from the velocity profiles showing an error of less than 3% 

over a number of tested parameter sets. This suggests the accurate implementation of 

the viscosity model in the lattice Boltzmann method.  

4.3.3 Validation of the Newtonian viscosity assumption 
 

Comparing the analytical solution of Newtonian flow with the numerical solutions of 

the mouse and human Carreau-Yasuda viscosity models showed importance of the 

viscosity assumption only in the velocity profile (Figure 4.9). Viscosity model 

parameters in the mouse and human are presented in Table 4.1. A comparison of the 

near-wall velocities showed the wall shear rates to be largely similar, suggesting 

minimal effect of the Newtonian viscosity assumption on the WSS. This finding 

proves that the Newtonian viscosity assumption is valid for the purpose of WSS 

calculation in simulations of steady flow in a straight pipe geometry of constant radius. 
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The effects of the viscosity model assumption in constriction geometries and pulsatile 

flows are still not clear.  

Table 4.1. Carreau-Yasuda viscosity model parameters for the mouse and 

human. The mouse viscosity parameters were obtained from Bernabeu et al. (2014) 

in which a least square regression fit was performed on mouse viscosity data provided  

in Vogel et al. (2003) and Windberger et al. (2003). The human viscosity parameters 

were obtained from Boyd et al. (2007) and Bernabeu et al. (2013).  

Animal 𝜇0 [mPa.s] 𝜇∞ [mPa.s] 𝜆 [s] 𝑚 𝑎 

 

mouse 

 

14.5 

 

3.265 

 

0.1839 

 

0.5864 

 

2.707 

human 160 3.5 8.2 0.7872 0.64 

 

 

Figure 4.9. Significance of the viscosity model assumptions in the simple 

pipe. Analytical solutions of the Newtonian fluid were compared with the 

numerical solutions of the Carreau-Yasuda viscosity model with mouse and 

human parameters.  
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4.3.4 Model discussion 
 

The Carreau-Yasuda viscosity model was implemented in the lattice Boltzmann 

method in order to accurately model blood as a non-Newtonian fluid. Benchmarks 

against a numerical solution were used to verify this implementation showing the 

accurate calculation of velocity, viscosity and shear rate. Surprisingly, it appears that 

a numerical solution for the Carreau-Yasuda model has not been previously shown in 

the literature with the majority of benchmark tests only being shown against simpler 

power law viscosity models. The numerical solution computed in this thesis shows that 

the Newtonian viscosity assumption is entirely valid for the calculation of WSS in 

steady pipe flows. 

 

4.4  1D model  
 

In order to recover a physiological representation of flow field, the boundary 

conditions imposed on the system must describe the physical situation. As discussed 

in Section 3.2, these boundary conditions are given in the form of pressures and/or 

flow rates at the open boundaries. A 1D model becomes necessary here as the 

computation of these waveforms in a higher-dimension model, 3D for example, would 

prove impractical considering its high computational effort. Experimental 

measurement of the pressure is also not favoured because of its invasive nature. 

Following from Section 2.7, the waveforms can be recovered using the 1D 

transmission line model of a healthy vascular network.  

A successful implementation of the model was not achieved in this PhD. The following 

section discusses the model implementation and an investigation into the possible 

sources of error.  

4.4.1 Model implementation 
 

The implementation and verification of the model was performed in the human 

vasculature as waveforms of pressure and flow are available at several points along 

the vascular network from the literature (Liang et al., 2009; Reymond et al., 2009; He 

et al., 2012). Following the successful implementation of the human model, the mouse 

arterial network and model parameters can be adapted from Aslanidou et al. (2016). 
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Model input  

As the transmission line model operates in the frequency domain, the input for the 

model was taken as the Fourier series representation of the time-varying flow 

waveform. The waveform was taken from John (2004). All unsteady flow 

computations used only the first eight harmonic components of the waveform as the 

accuracy of approximation showed negligible difference when further increasing the 

number of harmonic components (Nichols et al., 1998; Artoli et al., 2002).  

Vascular network model 

The human arterial map of this implementation is based on the works by Avolio 

(1980). As discussed in Section 2.7, the arterial map is based on the original 

physiological data of Noordergraaf et al. (1963) with modifications later being made 

by Westerhof et al. (1969) and Avolio (1980) to deal with non-physiological wave 

reflections in the upper limbs and head.  Reymond et al. (2009) also consider the 

Avolio (1980) network to provide the sufficient level of detail in the cerebral 

circulation for the recovery of physiological waveforms of pressure and flow. All 

vessel parameters in the human vasculature were adapted from Avolio (1980), Liu et 

al. (1989) and Reymond et al. (2009).  

Computational procedure 

A Python script was developed to operate on the human arterial network. The 

vasculature was implemented as a list of dictionaries with each item in the list 

containing information about a vessel. The branching structure was established by 

creating a list within each item to give the identity of vessels immediately downstream. 

Each vessel was also assigned a generation number containing the number of vessels 

between it and the source. Following the backwards algorithm of Avolio (1980) and 

Stroev et al. (2005), the Python script worked backwards in the generation number to 

characterise each vessel in terms of the impedance and transfer function as introduced 

in Section 2.7.  

The terminal impedances at the peripheral vessels were first computed using the three-

element Windkessel model (Westerhof et al., 1971). Vessel impedances were 

calculated in the branch immediately upstream using the properties of the electrical 
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transmission line as in Stroev et al. (2005). The impedance of vessels where branching 

occurred was computed by summing the impedances of the downstream vessels in 

parallel. Once all vessel impedances were known, the transfer functions were 

computed at all points in the arterial tree. The transfer functions were used to relate 

the pressure waveform between the upstream and downstream end in each vessel. With 

this, the pressure waveform at all vessels was recovered by multiplying the transfer 

functions of the upstream vessels in series. The input impedances were then used to 

relate the pressure and flow waveforms.  

The computation was performed for each harmonic frequency with the zeroth 

harmonic being approximated by an infinitesimally small constant as in He et al. 

(2012). Frequencies are given by 𝑛𝜔𝑓 where 𝜔𝑓 is the fundamental frequency and 𝑛 

is  . ,  ,  , …,   with the zeroth component being approximated to  . . The value of 

infinitesimal constant was chosen here to recover a physiological value of the zeroth 

component of the impedance spectrum. 

4.4.2 Verification 
 

The accuracy of the Python implementation was initially assessed in terms of its ability 

to recover key characteristics of the impedance spectrum in the ascending aorta. These 

characteristics are given as the steep fall in modulus from the zeroth harmonic to a 

minimum at 3 Hz and a maximum at 7.5 Hz. The phase waveform is also expected to 

show a negative value at the lower frequencies with a change of sign at 3 Hz and 

fluctuation about zero radians at the higher frequencies (Avolio, 1980). Simulations 

performed with the pulse wave velocity (PWV) computed from the empirical fit 

relationship (Reymond et al., 2009) were able to crudely match these characteristics 

with the minimum modulus occurring at approximately 3 Hz and maximum at 6 Hz. 

The key characteristics of the phase waveform were also recovered from the Python 

script using an empirical fit PWV (Figure 4.10). Studying the literature models in 

terms of the frequency of minimum and maximum also suggests an accurate 

implementation of the Python script as similar frequencies are reported with the 

different arterial networks and algorithms (Avolio, 1980; John, 2004; He et al., 2012). 

A comparison of these literature impedance spectra are provided in He et al. (2012).  
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A more detailed comparison of the modulus and phase waveforms with the literature 

models, however, suggests the inaccurate implementation of the 1D model in the 

Python script (Figure 4.10). As the impedance spectrum of John (2004) most explicitly 

captures the key characteristics, its modulus and phase components are shown in all 

impedance plots as a benchmark spectrum for the Python implementation. The most 

notable difference in the impedance spectrum is the difference in modulus at the 2-6 

Hz frequency range. With its relationship to the pressure and flow waveforms, the 

input impedance forms a key parameter in the 1D model and must therefore be 

computed accurately, consistent with the literature and the physiological data. 

 

Figure 4.10. Comparison of the impedance spectrum (a) modulus and (b) 

phase in the ascending aorta computed from the Python implementation 

and the forward algorithm of John (2004). The pulse wave velocity was 

computed using the empirical fit relation proposed in (Reymond et al., 2009). 

While the key characteristics of impedance are well-recovered, the difference 

in magnitudes of the modulus at higher frequencies suggest the inaccurate 

implementation of the Python script. John (2004) impedance spectrum data 

was extracted from John (2004) with permission using a plot digitiser tool 

available at https://automeris.io/WebPlotDigitizer/.  

  

https://automeris.io/WebPlotDigitizer/
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4.4.3 Model sensitivity analysis 
 

To understand the possible causes of difference in the impedance spectra, the 

modelling choices were examined in greater detail. A sensitivity to modelling choices 

has already been demonstrated in the literature as a simplified arterial network (He et 

al., 2012) shows differences in the phase components when compared to complete 

cerebral vasculature models (Avolio, 1980; John, 2004). Again, the reader is referred 

to He et al. (2012) for this comparison of spectra as it is not reproduced here. The 

difference in phase between the studies could be illustrative of the results of non-

physiological wave reflections seen in the models with an inadequate cerebral 

vasculature model (Westerhof et al., 1969; Avolio, 1980). 

As clear from the model implementation and its definition, the PWV is a key parameter 

in calculating the vessel impedance. The initial Python implementation used the PWV 

values computed from an empirical fit proposed by Reymond et al. (2009) as a similar 

model would need to be applied in the case of the mouse vasculature (Aslanidou et al., 

2016). The empirical fit of Reymond et al. (2009) works on an inverse relationship 

with the lumen diameter and was obtained using a fit algorithm of literature data. 

Alternatively, the PWV values can be computed from the Moens-Korteweg equation 

using vessel properties such as the wall thickness, stiffness and lumen radius. An 

assumption commonly used  in the Moens-Korteweg equation is the approximation of 

the Young’s modulus of the central, limb and peripheral vessels to  . ,  .  and  .  

MPa, respectively (Avolio, 1980; John, 2004; He et al., 2012). While the Moens-

Korteweg implementation of PWV shows the same inverse relationship with lumen 

diameter as the empirical fit, relatively large differences between the two 

implementations are found at the smaller vessels in the peripheral vasculature (Figure 

4.11).  
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Figure 4.11. Pulse wave velocities (PWV) in the vessels of the arterial 

network. The empirical fit PWV was computed as a function of the mean 

lumen diameter in Reymond et al. (2009) to fit experimental data provided in 

the literature. The Moens-Korteweg PWV was computed using the fluid 

density and vessel radius, stiffness and wall thickness given in Avolio (1980).  

 

As expected from the impedance spectrum, the pressure waveforms computed from 

the Python script also show a sensitivity to the PWV models with a difference of 

approximately 18 mmHg in the time-averaged component as well as differences in the 

amplitudes of each frequency component (Figure 4.13).  

Considering the better degree of approximation obtained from the Moens-Korteweg 

PWV at the lower frequencies and its wide use in transmission line models, all 

following impedance calculations are performed using this calculation method. The 

pressure waveform computed from the Moens-Korteweg PWV still suggests the effect 

of an inaccurate implementation in the Python model ranging between 80 and 140 

mmHg. The presence of these deviations from the physiological waveform suggests 

the effect of modelling choices to be elsewhere in the Python implementation.  
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Figure 4.12. Impedance spectrum (a) modulus and (b) phase in the 

ascending aorta using the empirical fit PWV and Moens-Korteweg PWV. 

The difference in impedance between the PWV models shows a sensitivity to 

the model choices. Comparing the Moens-Korteweg PWV and John (2004) 

spectra, a factor of more than 2 difference at 5 Hz also suggests the effect of 

modelling choices elsewhere in the implementation of the Moens-Korteweg 

PWV model. John (2004) impedance spectrum data was extracted from John 

(2004) with permission using a plot digitiser tool available at 

https://automeris.io/WebPlotDigitizer/. 

 

 

Figure 4.13. Time-varying pressure computed in the ascending aorta from 

the Python implementation using the empirical fit PWV and Moens-

Korteweg PWV. The pressure waveform is calculated from the input 

impedance and the time-varying flow taken from John (2004). The different 

models of PWV show large differences in the resulting pressure waveform with 

a visible difference in the mean pressure and amplitude. The difference in mean 

pressure between the two implementations was approximately 18 mmHg.  

 

https://automeris.io/WebPlotDigitizer/
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Comparing the impedance moduli computed from the Liu et al. (1989) and Reymond 

et al. (2009) Windkessel models, a sensitivity to the treatment of peripheral vessels is 

shown with the most significant differences at 1.25 Hz and 3.75 Hz (Figure 4.14). Both 

implementations use a three-element Windkessel model with terminal resistance and 

capacitance. The Windkessel models of the Liu et al. (1989) study were designed to 

represent all upper and lower extremities in a T-tube model of the vasculature while 

the Reymond et al. (2009) study represents each terminal vessel with its own 

Windkessel model. The small differences in impedance at the higher harmonics despite 

the difference in the scale of represented vessels suggests that the choice of Windkessel 

parameters was not the cause of the significant errors shown in Figure 4.12 and Figure 

4.13. The differences in the impedance modulus at 1.25 Hz and 3.75 Hz are reflected 

in the time-varying pressure waveform with a difference of approximately 25 mmHg 

in the peak pressure (Figure 4.15). 
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Figure 4.14. Impedance spectrum (a) modulus and (b) phase in the 

ascending aorta computed using the Windkessel parameters of Liu et al. 

(1989) and Reymond et al. (2009). Liu et al. (1989) use the Windkessel 

models to represent all upper and lower extremities in a T-tube model of the 

human vasculature while Reymond et al. (2009) represent each terminal vessel 

with its own Windkessel model. The most significant deviation between the 

two implementations occurs at 3.75 Hz with all other frequency components 

showing reasonable similarity. John (2004) impedance spectrum data was 

extracted from John (2004) with permission using a plot digitiser tool available 

at https://automeris.io/WebPlotDigitizer/. 

 

 

Figure 4.15. Time-varying pressure computed in the ascending aorta from 

the Python implementation using the Windkessel parameters of Liu et al. 

(1989) and Reymond et al. (2009). The sensitivity of the 1D model is shown 

in a difference of 25 mmHg in the peak pressure over a pulse period.  

  

https://automeris.io/WebPlotDigitizer/
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(a) 

 

(b) 

 

Figure 4.16. Comparison of the transfer function computed from the 

source to the (a) carotid and (b) tibial artery in the Python script and Xiao 

et al. (2016). The modulus (left) and phase (right) components of the transfer 

functions were computed using the Moens-Korteweg PWV and Reymond et 

al. (2009) Windkessel models at the peripheral vasculature. The trend of 

increasing phase delay with the distance from the heart is accurately recovered 

but the differences in the modulus waveform suggests the inaccurate 

implementation of the Python script. Xiao et al. (2012) transfer function data 

was extracted from Xiao et al. (2012) with permission using a plot digitiser 

tool available at https://automeris.io/WebPlotDigitizer/. 

 

As an additional test of the Python implementation, a comparison of the transfer 

functions computed at the carotid and tibial arteries was also performed with those 

provided in the literature (de Sá Ferreira et al., 2009; Huanguang Xiao et al., 2016). 

Considering the elasticity of the vessels, the phase delay of the harmonic components 

is expected to increase with the distance from the source. While this property is 

https://automeris.io/WebPlotDigitizer/


77 

 

recovered from the Python script, the waveform of modulus components suggests 

inaccurate implementation (Figure 4.16). The flow waveforms computed at each 

vessel are also presented in Reymond et al. (2009) for further verification.  

4.4.4 Model discussion  
 

A 1D transmission line model was implemented as a Python script to compute 

waveforms of pressure and flow for use as the boundary conditions of the lattice 

Boltzmann simulation. The Python model, while recovering the fundamental 

characteristics of the impedance spectrum, was unable to match the impedance 

modulus of the physiological spectrum and forward algorithm of John (2004). The 

modelling sensitivity study showed the impedance computed in the ascending aorta to 

be dependent on the pulse wave velocity and the treatment of the peripheral vessels. 

Variation of these parameters was also not able to accurately recover the physical 

characteristics of the healthy vasculature.  

In addition to the sensitivity of the computed parameters to modelling choices, the 

possibility of a coding error in the Python implementation also exists. The presence of 

a coding error is suggested by the inability to recover the physical characteristics of 

the healthy vasculature with the variation of the parameters of the sensitivity study. 

Considering the complexity of the transmission line model and the arterial network, a 

substantial effort is required to identify the cause of this error. Due to the time 

limitations of the thesis, the cause of error will not be explored any further. Rather, it 

is suggested that the forward algorithm of John (2004) is employed where the zeroth, 

first and higher harmonic components of the impedance are treated separately.  

It should be noted that, while this task will not be explored further in this study, the 

recovery of realistic pressure and flow waveforms is a key part of all blood flow 

simulation studies. Instead, the simulations of this thesis will impose a physiological 

waveform in the carotid artery measured in a healthy subject (Chapter 5) and explore 

the effect of the different boundary conditions on the wall shear stress (Chapter 6).  

 

 

 

 



78 

 

4.5  Dimensionless numbers  
 

A key consideration in the unit conversion process, discussed in Section 3.1, is that 

dynamic similarity between the simulation and physical systems must be maintained 

by matching the relevant dimensionless numbers. The characteristics of blood flow in 

the arteries can be described entirely by the Reynolds number, Womersley number and 

Dean number (Ku, 1997). Following the geometry simplification, secondary flows are 

also neglected in the simulations performed in this thesis. As such, fluid flow is 

described only through the Reynolds number Re and Womersley number 𝛼. The shear 

rate number 𝑁𝛾̇ is also presented here given its relevance in non-Newtonian fluid 

flows.  

The Reynolds number describes the ratio of inertial to viscous forces and is defined by  

 
Re =  

𝑢𝐷

𝜐
 (4.13) 

where 𝑢 is the peak axial velocity, 𝐷 is the pipe diameter and 𝜐 is the kinematic 

viscosity.  

The Womersley number is the ratio of pulsatile to viscous forces and is given by  

 
𝛼 =  

𝐷

2
√

𝜔

𝜈
 (4.14) 

 

where 𝜔 = 2𝜋𝑓 =  
2𝜋

𝑇
 is the angular frequency computed in terms of the frequency 𝑓 

and pulse period 𝑇.  

The shear rate number is a dimensionless number defined to indicate the importance 

of the shear thinning behaviour of the fluid (Gijsen et al., 1999a). The parameter is 

expressed in terms of a characteristic shear rate 𝛾̇𝑐 and 𝜆 is the characteristic time 

constant of the Carreau-Yasuda model (2.21):  

 
𝑁𝛾̇ =

𝛾̇𝑐

(1/𝜆)
 (4.15) 

 

The characteristic shear rate is taken as the wall shear rate 𝛾̇𝑊 computed from the wall 

shear stress 𝜎𝑤 and the Carreau-Yasuda viscosity limit 𝜇∞ 
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 𝛾̇𝑤 =  𝜎𝑤/𝜇∞ (4.16) 
 

Considering the Carreau-Yasuda model, the characteristic time constant defines the 

shear rate at the transition between the high and low viscosity limits. The physical 

interpretation of the shear rate number can then be thought of as the ratio of the peak 

shear rate 𝛾̇𝑤 and the shear rate at the viscosity transition region. With this, the shear 

rate number indicates ‘how much’ of the viscosity transition is seen by the fluid. From 

this definition, it is clear that high shear rate number flows behave largely as a 

Newtonian fluid with viscosity 𝜇 =  𝜇∞. Low shear rate number flows also behave as 

a Newtonian fluid with viscosity 𝜇 =  𝜇0 while the non-Newtonian behaviour of the 

fluid is shown at intermediate shear rate numbers.  

The parameters relevant to flow in the mouse and human common carotid arteries are 

given here as an example. Vessel radii for the mouse and human common carotid 

arteries were taken as 0.245 mm (Aslanidou et al., 2016) and 3 mm (Reymond et al., 

2009), respectively. The viscosity parameters were taken at the lower asymptotic limit 

of the Carreau-Yasuda viscosity model as 3.265 mPa.s (Vogel et al., 2003; Windberger 

et al., 2003; Bernabeu et al., 2014) and 3.5 mPa.s (Bernabeu et al., 2013; Boyd et al., 

2007) for the mouse and human. The peak systolic velocity was estimated as 0.7 ms-1 

in the human (Harloff et al., 2013; Pomella et al., 2017). The same velocity was 

assumed in the mouse given the consistency expected from allometric scaling laws 

(Weinberg and Ethier, 2007) and experimental measurements (Khir et al., 2001; Lacy 

et al., 2001). The mouse and human heart rates were taken as 480 (Aslanidou et al., 

2016) and 75 (Reymond et al., 2009) beats per minute. The Reynolds number in the 

mouse and human are computed from these parameters as 105 and 1200, respectively. 

The Womersley numbers are also computed from these parameters as 0.96 and 4.94, 

respectively. 

 

4.6  Conclusions 
 

This chapter describes the development, implementation and verification of the 

additional models required in the study of blood flow with relevance to atherosclerosis. 

With this, it is possible to compute the local haemodynamic forces in different vessel 

geometries for the comparison of the WSS signal between disease models, and also 
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between species. Using this simulation tool, the haemodynamic conditions in regions 

coincident with different plaque types are induced can be studied for the differences 

in wall shear stress at plaque initialisation. Following the discussion presented in 

Chapter 1, the WSS signal is investigated here as an explanation of the differences in 

plaque characteristics found between species models of atherosclerosis.  

Using the base lattice Boltzmann method of Krüger (2012), additional modules were 

developed as part of this thesis to accurately represent blood as a non-Newtonian fluid, 

compute the wall shear stress from the flow field, and to calculate and implement 

physiological flow conditions in the simulation geometry. Comparison of the module 

outputs to the literature, analytical and numerical solutions showed the accurate 

implementation of the wall shear stress and viscosity model while the 1D model was 

unable to recover the required flow conditions.  

Numerical solutions of the Carreau-Yasuda viscosity model showed the Newtonian 

viscosity assumption to be valid in assessing the WSS in steady pipe flows. 

Considering the local variations in shear rate in regions of bifurcation and constriction, 

however, the validity of this Newtonian viscosity assumption is still not clear. 

Simulations of the tapering perivascular cast and tandem stenosis geometry performed 

in Chapter 5 will, therefore, use the Carreau-Yasuda viscosity model. Following the 

discussion in Chapter 1, it is clear that the time-varying components of the WSS signal 

holds importance in the inflammatory response of endothelial cells and atherosclerosis. 

The effect of the viscosity model assumption with a pulsatile flow waveform is, 

therefore, characterised in Chapter 7.  

A key note in the wall shear stress calculation is the zeroth order error term resulting 

from the solid boundary treatment method. As discussed in Sections 3.2 and 4.2, these 

errors are considered to be negligible when accounting for the required idealisation of 

disease model geometries. Also, due to inaccuracies in the flow conditions recovered 

from the 1D model, the waveforms of pressure will be approximated from the healthy 

vessels in the following chapters. An exploration of the effects of the flow conditions 

will also be performed by approximating the pressure waveform to a simple sinusoidal 

profile (Chapter 6).
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Chapter 5 

Perivascular device models of atherosclerosis 

 

 

5. Perivascular device models of atherosclerosis 

Abstract 
 

The wall shear stress has been shown to be a key regulator of endothelial activity 

(Malek et al., 1999; Cunningham and Gotlieb, 2004; Davies, 2009; Chiu and Chien, 

2011) with the expression of inflammatory markers in human and porcine endothelial 

cells also showing sensitivity to the wall shear stress frequency composition (Himburg 

et al., 2007; Feaver et al., 2013). An understanding of the local haemodynamic 

environment is, therefore, needed as the probability of cap disruption is dependent on 

the plaque compositions resulting from the inflammatory response (Virmani et al., 

2000; Slager et al., 2005a, 2005b; Schwartz et al., 2007; Bentzon et al., 2014). The 

current chapter explores the hypothesis that the different plaque compositions shown 

in mouse models of atherosclerosis occur in regions experiencing different frequency 

compositions of the wall shear stress signal.  

Simulations were performed here in geometries approximating the mouse models of 

Cheng et al. (2006), Chen et al. (2013) and Mohri et al. (2014) considering the variety 

of plaque compositions found in the different regions of each model. Cheng et al. 

(2006), for example, induced the formation of plaques resembling the human thin-cap 

fibroatheroma and the highly-cellular stable-looking plaque while Chen et al. (2013) 

showed the development of plaques with intraplaque haemorrhage, rupture and 

luminal thrombosis. Wall shear stress signals computed from the simulations were 

analysed in terms of their frequency compositions and showed variation of the phase 

of the first harmonic component along the length of all geometries. A key result of this 

study is the decrease in the wall shear stress signal zeroth and first harmonic 

amplitudes of all mouse models relative to the control vessel simulations. While the 

modulus components of the higher harmonics (n > 1) were similar between regions 

showing thin-cap fibroatheromas in the Cheng et al. (2006) and Chen et al. (2013) 
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models, consistency in the higher harmonics along the Chen et al. (2013) ligation 

geometry suggests this to not be the sole factor with relevance to plaque composition. 

Correlations in the moduli of the frequency components were also not found when 

comparing the signals in regions showing a stable-looking plaque composition from 

the Cheng et al. (2006) and Chen et al. (2013) models. This suggests a lack of 

comparability between the models.  

The key result of this simulation study is the lack of comparability between the Cheng 

et al. (2006) and Chen et al. (2013) mouse models. Despite the similarities in mouse 

genetic background, varied plaque compositions were found between the studies. This 

conclusion then highlights the significance of mechanical differences between the 

models.  

 

5.1  Introduction 
 

A number of disease models have been studied in the literature in which the flow 

velocities have been manipulated with the use of perivascular devices and ligations. 

Manipulation of the vessels was performed to achieve controlled patterns of wall shear 

stress (WSS) and mechanical stress and showed a dependence of the plaque 

composition on the nature of these patterns. Winkel et al. (2015) provide an excellent 

review of these devices along with descriptions of the resulting vessel pathologies.  

By placing a tapering perivascular cast around the mouse carotid artery, Cheng et al. 

(2006) induced the formation of plaques resembling the lipid-rich thin-cap 

fibroatheroma (TCFA) in regions upstream of the cast while stable-looking plaques 

were found in the downstream region. These regions coincide with areas of low shear 

stress and oscillatory shear stress, respectively. The haemodynamic conditions and the 

resulting plaque compositions shown in Cheng et al. (2006) have been reproduced in 

several studies; both by the Krams research group (Cheng et al., 2007; Segers et al., 

2011; Harrison et al., 2013; Mohri et al., 2014; Pfenniger et al., 2012, 2015; 

Seneviratne et al., 2015; Pedrigi et al., 2016) and others (Wenning et al., 2014; Fraga-

Silva et al., 2015).  
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The localisation of vulnerable-looking and stable-looking plaques shown in Cheng et 

al. (2006) has also been reiterated by the quantification of macromolecule uptake as a 

marker of lipid deposition: with a higher uptake in the region immediately upstream 

of the cast edge compared to the disease site downstream of the cast (Mohri et al., 

2014). Interestingly, Mohri et al. (2014) also show that reversal of the cast direction 

produced no statistically significant difference between the uptake peaks at either end 

of the cast. The tandem stenosis model of Chen et al. (2013) also produced different 

plaque compositions in each region of the vessel including a plaque showing disruption 

of the fibrous cap. Other regions of the vessel showed plaques with compositions 

resembling the TCFA and the stable, highly cellular plaque. Reduction of the flow 

velocity in the partial ligation model also resulted in large complex plaques along the 

length of the carotid artery (Nam et al., 2009).  

The models mentioned above have previously been analysed in terms of the time-

averaged WSS showing the coincidence of plaques to regions of low and oscillatory 

shear stress (Section 2.3). There is, however, a loss of information in the time-

averaging process of the current metrics. This loss of information may be reflected in 

the occurrence of different plaque types in the regions of the vessel showing similar 

values in the time-averaged metrics. While capturing all temporal and spatial details 

of the WSS waveform, the frequency composition of the WSS signal has also shown 

significance to inflammatory markers expressed on the endothelial surface (Himburg 

et al., 2007; Feaver et al., 2013). 

Hypothesis and aims:  

Considering the role of the inflammatory process in disease development and plaque 

composition, the current chapter explores the hypothesis that plaques resembling the 

human TCFA and stable-looking compositions are shown in mouse models of 

atherosclerosis in regions experiencing different time-varying waveforms of the WSS 

signal.  
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Figure 5.1. Approximations of the (a) Cheng et al. (2006), (b) Mohri et al. 

(2014) and (c) Chen et al. (2013) common carotid arteries. The flow 

direction is from left to right. The tapering casts of the Cheng et al. (2006) and 

Mohri et al. (2014) studies reduce the diameter to half of that of the uncasted 

vessel segments over the length of one vessel diameter. The ligatures of the 

Chen et al. (2013) have diameters equal to a third of the non-ligated vessel.  

 

The hypothesis was addressed in terms of the following aims:  

1) Are there similarities/differences in the stress waveform between regions 

showing different plaque compositions in each model?  

2) Are there similarities/differences in the stress waveform between regions 

showing similar plaque composition between models?  

 

5.2  Methods  
 

To better understand the local haemodynamics in regions with different plaque 

compositions, simulations have been performed in geometries approximating the 

mouse carotid artery with a perivascular cast device placed in the conventional (Cheng 

et al., 2006) and the reversed directions (Mohri et al., 2014). Simulations were also 

performed in an approximation of the mouse carotid artery with a tandem stenosis by 

ligation placement (Chen et al., 2013). The geometries are shown in Figure 5.1. 

5.2.1 Simulation setup 
<< 

All simulations were performed in 3D using the D3Q19 lattice structure (Section 3.1). 

The dimensionless numbers governing fluid flow were set using the physiological 

conditions in the mouse carotid artery. The calculation of the Reynolds and Womersley 
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numbers is given in Section 4.5. The Reynolds and Womersley numbers were equal to 

105 and 0.96, respectively. The system size was chosen following a mesh 

independence study (Section 5.3.1) such that the vessel radius was represented by 20 

lattice nodes. This gives a lattice resolution of Δx = 12.25 μm. The asymptotic lower 

limit of the lattice Boltzmann relaxation parameter was set to 𝜏∞ = 0.575. The 

dimensionless numbers were then used to compute a simulation time step of Δt = 1.15 

μs. The lattice resolution and relaxation parameter lower limit were chosen such that 

the peak axial velocity in a simple pipe geometry would not exceed 0.07. These 

considerations were made in order to minimise error terms created in recovering the 

Navier Stokes equations from the lattice Boltzmann equation (Section 3.1.4).  

The parameters of the mouse Carreau Yasuda viscosity model (2.21) were obtained 

from Bernabeu et al. (2014) where a least squares regression fit was performed on 

mouse viscosity data provided in Vogel et al. (2003) and Windberger et al. (2003). 

These parameters are given as follows:  

𝜇0 = 14.49 mPas, 𝜇∞ = 3.265 mPas, 𝜆 = 0.1839 s, 𝑚 = 0.5864, 𝑎 = 2.707. 

Following unit conversion, the lattice Boltzmann relaxation parameter was set 

according to the effective viscosity model to range between 0.59 < 𝜏 < 0.90. Viscosity 

model parameters were fed into the Python script discussed in Section 4.4 to compute 

values of the local viscosity as a function of the first-order momentum flux tensor.  

The no-slip boundary condition was specified in all simulations using the standard 

bounceback approach at the geometry walls (Section 3.2). Simulations of the 

perivascular cast models in Cheng et al. (2006) and Mohri et al. (2014) were performed 

with the use of periodic boundaries at the inlet and outlet alongside a body force term 

imposed at all lattice sites. Simulation of the tandem ligation model, on the other hand, 

was performed using the regularisation scheme discussed in Section 4.1 with the 

density deviation term 𝜌′. The inlet and outlet density conditions were verified when 

considering the negligible increase in total system mass over the simulation (Krüger 

et al., 2009).  

Periodic boundary conditions were not employed in the tandem ligation model as the 

distance between the ligations is greater than the flow development length. The use of 
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a body force term in this case would recover all flow features before reaching the distal 

ligation in the geometry, “hiding” any flow effects caused by the proximal ligation. 

Inlet and outlet boundary conditions are, therefore, more representative of flow 

behaviour in the tandem ligation model than simulations with periodic boundary 

conditions.  

The pressure waveform measured in the healthy mouse carotid artery was extracted 

from Artoli and Sequeira (2006) using the plot digitizer function available online at 

https://automeris.io/WebPlotDigitizer/. A curve-fitting method was used to obtain the 

waveform in terms of a Fourier series in the first eight harmonics. Higher harmonic 

components were omitted because of their minimal contribution to the accuracy of 

approximation. The Fourier series was then implemented as the body force term or 

density fluctuation in the periodic or regularisation schemes, respectively.  

5.2.2 Simulations performed  

The control vessel was simulated as a straight pipe geometry with constant radius. 

Simulations were also performed in the conventional (Figure 5.1a) and reversed 

(Figure 5.1b) orientations of the perivascular cast device approximating the geometry 

to a tapering diameter over the length of the cast, with the remaining length being 

modelled as a straight pipe with constant diameter. The cast length was taken to be 

equal to one diameter while tapering to a cross-sectional area of 25% of the control 

vessel. The simulation of the conventional and reversed cast directions was achieved 

by reversing the direction of the body force term. Simulations were also performed at 

a number of lattice sizes as part of a mesh independence study.  

The tandem stenosis geometry (Figure 5.1c) was studied by approximating the 

geometry to a straight channel with sinusoidal constrictions at the positions of ligation. 

The wavelength of the constriction profile was set to one diameter while reducing the 

cross-sectional area to 11% of the control vessel at the profile peak. As mentioned 

above, all simulations were performed with dimensionless numbers approximating the 

flow conditions in the healthy mouse carotid artery. The flow direction is shown in all 

results from left to right with model geometries placed in the figure inset where 

necessary. 

https://automeris.io/WebPlotDigitizer/
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As discussed in Section 3.1, simulations were terminated once the velocity profile 

measured at the geometry axial centre had converged to the profiles measured in the 

previous pulse period using equation (3.14). The convergence criteria for this 

termination event was set to 10-5. Once the criteria had been satisfied, the simulation 

would run for one more pulse period to compute and write all desired observables. 

Frequency analysis of the wall shear stress signal was performed on the axial 

component of the circumferentially averaged traction vector (Section 2.4).  

 

5.3  Results 
 

The regions of each mouse model of atherosclerosis were analysed in terms of the 

circumferentially-averaged traction vector, both in relation to the time-averaged shear 

metrics and to its instantaneous value over the pulse period. A comparison of the 

frequency composition of the instantaneous values was also performed to identify any 

potential correlations between the time-varying nature of the wall shear stress and the 

plaque composition found in the region.  

5.3.1 Mesh independence 

A mesh independence study was performed here to identify the optimal lattice 

resolution for further simulations. Here, the term “optimal” refers to the balance of 

accuracy and computational time. The mesh resolution was improved in order to 

minimise discretisation errors and increase simulation accuracy. The distance between 

the downstream cast end and the point of peak OSI was monitored in simulations to 

show mesh independence at a lattice resolution of Δx = 12.25 μm (Figure 5.2). This 

resolution was used in all simulations of the current chapter.  
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Figure 5.2. Mesh independence study using the distance from cast end to 

the position of the peak oscillatory shear index (OSI) value. Simulations 

were performed in the conventional direction perivascular cast geometry with 

a range of lattice resolutions showing convergence of the solution at R / 𝚫𝐱 = 

20.  

 

5.3.2 Localisation metrics  

Control vessel  

The time-averaged wall shear stress (TAWSS) in the control vessel was computed as 

15.76 Pa, matching values measured experimentally in Cheng et al. (2006) in the 

contralateral carotid artery. Following expectations, near-zero values of the oscillatory 

shear index (OSI) and relative residence time (RRT) were also found in the control 

vessel. For comparison with the literature, the Reynolds number is computed here in 

terms of the mean axial velocity at peak systole. A Reynolds number of 51 was 

approximated from the cross-sectionally averaged velocity field. The velocity field 

was assessed at the peak inflow velocity at t/T = 0.38 where t is the simulation time 

and T is the period length. Pedrigi et al. (2016) report a Reynolds number of 40. The 

small difference in the simulation and literature Reynolds numbers may be attributed 

to variability between animals. The approximate agreement found between the 

Reynolds number and wall shear stress and their values reported in Pedrigi et al. (2016) 

and Cheng et al. (2006) respectively then suggests the accurate implementation of the 

simulation model.  
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Conventional direction perivascular cast 

The results discussed here were computed for a Reynolds number of 28 following the 

same procedure as in the control vessel. The regions of high, low and oscillatory shear 

stress identified in Cheng et al. (2006) are evident from the TAWSS and oscillatory 

shear index (OSI) plots (Figure 5.3). It should be noted that the peak value of OSI is 

due to the near-zero wall shear stress at the cast end and is considered to be an artefact 

of the geometry idealisation at the sharp downstream cast boundary. The peak RRT at 

the cast end is also attributed to this OSI value given equation (2.14).  

The lowered Reynolds number in comparison with the control vessel indicates a 

reduced flow rate as suggested in Cheng et al. (    ). Following this, a “low” shear 

stress region was observed upstream of the tapering cast with the TAWSS computed 

here as 9.18 Pa. This also compares favourably with the value of 10 Pa reported from 

the Doppler ultrasound measurements of Cheng et al. (2006). Constriction of the vessel 

to a diameter half of that of the control vessel leads to fluid acceleration along the 

length of the cast in a “high” shear stress region. Simulations performed here show an 

approximately five-fold increase in the TAWSS over the length of the constriction. 

Fluid acceleration at the downstream end of the cast seen in the velocity field results 

in flow separation immediately downstream of the device (Figure 5.4). The separation 

and recirculation in the downstream region lead to low TAWSS with negative values 

of the velocity vector axial component along with negative values of the traction vector 

axial component. The region downstream of the cast is classified as the “oscillatory” 

shear stress region. The change of direction of the traction vector axial component 

during the pulse period occurs only at the point of peak OSI found at the end of the 

recirculation region. Flow then reverts to the direction of the imposed body force. 

Given the simplicity of the profiles of TAWSS and OSI and the definition of the metric 

(2.14), the RRT simply mirrors the features of the OSI.  

As a method of standardising the length of the recirculation region, the flow behaviour 

is quantified by the distance between the downstream cast end and the point of peak 

OSI. The length of this region was computed as 0.282 mm in the conventional direction 

tapering cast geometry. 
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Figure 5.3. Distribution of the (a) time-averaged wall shear stress 

(TAWSS), (b) oscillatory shear index (OSI) and (c) relative residence time 

(RRT) metrics in the (d) conventional direction perivascular cast 

geometry. The flow direction is given from left to right. The TAWSS 

computed in the control vessel is   .   Pa. The regions of “high”, “low” and 

“oscillatory” shear stress can be identified from the shown metrics. Cheng et 

al. (2006) discuss the occurrence of the vulnerable-looking and stable plaque 

types in the low and oscillatory shear regions along with the absence of plaque 

formation in the high shear region suggesting a dependence of plaque 

composition on the pattern of fluid shear stress.  
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Figure 5.4. Time evolution of the velocity field along a segment of the 

conventional direction perivascular cast with the solid line indicating the 

axial position of the peak OSI. Flow direction is from left to right. Velocity 

streamlines are shown at t/T = 0.00, 0.20, 0.38, 0.6, 0.8 (descending figures) 

where t is the simulation time and T is the period length. The peak OSI indicates 

the position at which the traction vector changes direction over the pulse period 

with flow reverting to the direction of the imposed body force after this point. 

The distance from the downstream cast end to the point of peak OSI was 

computed as 0.282 mm.  
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Reversed direction perivascular cast 

The results discussed here were computed from the velocity field for a Reynolds 

number of 29. Consistency between the simulation Reynolds numbers of the reversed 

and conventional direction tapering casts is due to the geometries have the same 

diameter constriction. This means that flow in the geometry experience the same flow 

resistance. The distributions of the time-averaged metrics are shown in Figure 5.5. The 

lower Reynolds number compared to the control vessel again indicates a low flow rate 

as a result of the constriction and results in a low TAWSS value. The TAWSS 

upstream of the region of cast placement was computed as 9.38 Pa compared to 15.76 

Pa computed in the control vessel. Fluid acceleration due to the constriction results in 

elevated shear stress at the entrance region of the cast with a seven-fold increase in the 

TAWSS. The time-averaged value then stabilises quickly after the downstream cast 

end as the velocity field also recovers to the pre-constriction state. The peak OSI and 

RRT values are considered to be artefacts of the geometry idealisation as they occur 

at the sharp boundary of the cast. It is then clear that there is no “oscillatory” shear 

stress region considering the low values of OSI (Figure 5.5). This can be seen from the 

velocity field as fluid flow remains attached to the wall and there is no change of 

direction of the velocity vector along the length of the geometry (Figure 5.6). The 

absence of a recirculation region forms a key result of the simulation as it suggests an 

entirely different flow behaviour than in the conventional direction tapering cast 

model.  

The decrease in TAWSS immediately upstream of the cast device is also a result of 

the geometry idealisation at the sharp upstream cast boundary shown by the absence 

of this feature in the Mohri et al. (2014) CFD study. The magnitudes of peak wall shear 

stress in the Mohri et al. (2014) CFD study of the conventional and reversed directions, 

however, suggest an incorrect methodology in their study with values in excess of 250 

Pa. Theoretical predictions of the wall shear stress in a 50% diameter constriction 

suggest an eight-fold increase in the wall shear stress where Mohri et al. (2014) show 

a 25-fold increase.  
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Figure 5.5. Distribution of the (a) time-averaged wall shear stress 

(TAWSS), (b) oscillatory shear index (OSI) and (c) relative residence time 

(RRT) metrics in the (d) reversed direction perivascular cast geometry. 

The flow direction is given from left to right. The time-averaged wall shear 

stress (TAWSS) computed in the control vessel is 15.76 Pa. The peak OSI 

value again occurs at the sharp cast boundary as a result of the geometry 

idealisation and so is neglected. The  SI plot then shows no “oscillatory” 

region as seen in the conventional direction cast geometry. Mohri et al. (2014) 

showed no significant relationship between macromolecule uptake and the 

regions of the vessel.  
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Figure 5.6. Time evolution of the velocity field along a segment of the 

reversed direction perivascular cast. Flow direction is from left to right. 

Velocity streamlines are shown at t/T = 0.00, 0.20, 0.38, 0.6, 0.8 (descending 

figures) where t is the simulation time and T is the period length. The 

streamlines show an acceleration phase at the cast throat and no region of flow 

separation as expected of the geometry.  
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Tandem stenosis 

The Reynolds number computed from the velocity field in the tandem stenosis 

geometry is 8. This indicates a significant resistance to flow when compared to the 

Reynolds number of the control vessel and may be attributed to the vessel ligation to 

a diameter one-third of that of the control vessel in two locations along the geometry. 

The pressure drop across the ligations is also greater than that across the tapered cast 

geometry, explaining the smaller Reynolds number. The wall shear stress was 

computed in the non-ligated regions as 2.56 Pa with an approximately twenty-fold 

increase in magnitude occurring at the peak constriction (Figure 5.7). Drops in the 

TAWSS were found in the regions immediately upstream and downstream of the 

constriction profiles. Considering the magnitude of the wall shear stresses reported in 

Chen et al. (2013) and those known to occur in the healthy mouse vessel, the CFD 

simulations performed in the Chen et al. (2013) study are also assumed to be incorrect 

reporting a peak wall shear stress at systole of 1 Pa at the ligation throat.   

The axial component of the traction vector showed a small region of recirculation 

downstream of each ligature. This was reflected in the velocity field taken at peak 

inflow velocity (Figure 5.8). The peaks in OSI and RRT found immediately upstream 

of each ligation were attributed to fluctuations in the circumferential components of 

the tangential traction vector and the low TAWSS (Figure 5.7). The flow field around 

each ligation was identical. This suggests that periodic boundary conditions may have 

been used in this simulation rather than the regularisation scheme.  
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Figure 5.7. Distribution of the (a) time-averaged wall shear stress 

(TAWSS), (b) oscillatory shear index (OSI) and (c) relative residence time 

(RRT) metrics in the (d) tandem stenosis geometry. The flow direction is 

given from left to right. The time-averaged wall shear stress (TAWSS) 

computed in the control vessel is 15.76 Pa. Very low values of the TAWSS 

were found in the non-ligated regions of 2.56 Pa. Chen et al. (2013) 

demonstrated the occurrence of various plaque types in these regions including 

a plaque showing disruption of the fibrous cap.  
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Figure 5.8. Time evolution of the velocity field along a segment of the 

tandem ligation geometry. Flow direction is from left to right. Velocity 

streamlines are shown at t/T = 0.00, 0.20, 0.38, 0.6, 0.8 (descending figures) 

where t is the simulation time and T is the period length. The vectors suggest 

fluid acceleration at the point of maximum ligation and a small region of 

recirculation immediately downstream. The flow field is shown only around 

the proximal ligation as the velocity profile in regions downstream of the 

proximal and distal ligations were identical.  
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5.3.3 Frequency composition  

A key note in the following results is that only the axial component of the traction 

vector was studied in terms of its frequency composition. This analysis is valid here 

for the simulated geometries considering the axial symmetry property and purely axial 

direction of the inflow driving force terms. The analysis of the traction vector axial 

component and omission of its circumferential component will be discussed further in 

Section 2.4. The reader is also referred to Section 2.4 for a description of the Fourier 

transform amplitudes and phases. 

Control vessel 

As expected from the geometry, the frequency composition of the wall shear stress 

signal was constant along the length of the control vessel. Variation of the wall shear 

stress signal is shown in Figure 5.9 with the first harmonic amplitude equal to 2.47 Pa. 

A key note in the wall shear stress signal is also that its normalised frequency content 

is largely similar to that of the input pressure waveform.  

  

Figure 5.9. Time varying waveform of wall shear stress (WSS) over a 

single cardiac cycle computed from control vessel simulations. The 

waveform was normalised in time t over the period T. Negligible differences 

were found between the normalised frequency content of the input pressure and 

output wall shear stress signals. 
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Conventional direction perivascular cast 

The distribution of the first harmonic amplitude (Figure 5.10) shows a largely similar 

behaviour to that of the TAWSS (Figure 5.3). The amplitude of the first harmonic in 

the upstream region was computed as 1.21 Pa also showing an approximately seven-

fold increase to the peak value along the length of the cast. The axial position of 3.5 

mm shows the recovery of the wall shear stress zeroth (equivalent to the TAWSS) and 

first harmonic components to values present in the low shear region.  

The phase component immediately downstream of the cast indicates a negative value 

of the first harmonic amplitude with a phase difference of  𝜋 when compared to the 

upstream region. The negative value of the first harmonic amplitude can be made clear 

when thinking of the sin(x) and -sin(x) curves also showing a phase difference of 𝜋.  

The frequency composition of the wall shear stress shows similar higher harmonic 

amplitudes (n > 1) in the control vessel and in the high and low shear regions in the 

conventional direction cast geometry (Figure 5.11). Differences in the waveform are 

then characterised only by differences in the zeroth (Figure 5.3) and first harmonics 

(Figure 5.10). This can be visualised by thinking of variations in the zeroth harmonic 

as the application of a translation operation to the waveform and variations in the first 

harmonic, as the application of a magnification operation. The high and low shear 

region waveforms can then be obtained by applying these operations to the control 

vessel waveform when moving along the high and low shear regions in the 

perivascular cast geometry.  
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Figure 5.10. Distribution of the first harmonic (a) amplitude and (b) phase 

of the wall shear stress signal along the length of the (c) tapering 

perivascular cast geometry. The flow direction is given from left to right. The 

first harmonic amplitude computed in the control vessel is 2.47 Pa. Flow 

separation is marked by the difference in phase of the first harmonic. The 

amplitude distribution shows largely similar patterns to the zeroth harmonic 

(Figure 5.3). 

 

The oscillatory signal given in Figure 5.11 was chosen as a representative waveform 

of the oscillatory region. All waveforms of the oscillatory region showed a notable 

difference in the third harmonic of the wall shear stress signal. With this and the 

TAWSS and first harmonic distributions, the key differences between the low and 

oscillatory shear regions occur in the zeroth, first and third harmonic components of 

the wall shear stress signal.  
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Figure 5.11. Frequency composition of the wall shear stress signal at axial 

positions along the perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control vessel. Axial positions, x, were chosen in 

the geometry to lie in the low, high and oscillatory shear regions. The 

waveforms of the oscillatory signal are highly variable and so a position was 

chosen here simply to highlight the difference in waveform from the control, 

low and high signals. The compositions of the control, low and high waveforms 

were largely similar. Comparison with the oscillatory waveform shows notable 

differences in the second and third harmonics. 

 

Reversed direction perivascular cast 

The magnitude of the first harmonic amplitude was computed as 1.26 Pa in the regions 

proximal and distal to the cast, as in the conventional direction geometry. The first 

harmonic amplitude was increased almost ten-fold at the cast throat due to fluid 

acceleration similar to the TAWSS distribution.  
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Figure 5.12. Distribution of the first harmonic (a) amplitude and (b) phase 

of the wall shear stress signal along the length of the (c) reversed direction 

perivascular cast. The flow direction is given from left to right. The first 

harmonic amplitude computed in the control vessel is 2.47 Pa. The constant 

value in the phase component shows no separation/reversal of the traction 

vector component as shown in Figure 5.6. The amplitude distribution shows 

similar distribution to the zeroth harmonic (Figure 5.5). 

 

Mohri et al. (2014) show macromolecule uptake to be relevant only at axial positions 

within 0.5 mm from the upstream and downstream bounds of the perivascular device. 

Analysis of the traction vector in the upstream region however, would be significantly 

affected by the geometry idealisation at the sharp boundary shown in Figure 5.6. The 

geometry approximation at the downstream cast end is considered to be reasonable 

due to the gradual change in diameter over the geometry length. The frequency 

composition of the waveforms computed in these regions are largely similar with 

minute difference in the third harmonic amplitude.  
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Figure 5.13. Frequency composition of the wall shear stress signal in the 

upstream and downstream regions of the reversed perivascular cast 

geometry. The waveforms were normalised by the respective first harmonic 

amplitudes and shown with the wall shear stress signal of the control vessel. 

Axial positions, x, were chosen such that the waveforms were representative of 

the region. Largely similar waveforms were computed in the control vessel and 

upstream and downstream regions of the cast geometry with small differences 

in the third harmonic amplitude.  

 

Tandem stenosis 

As in the perivascular cast simulations, the distribution of the first harmonic amplitude 

(Figure 5.14) was largely similar to that of the TAWSS (Figure 5.7). This is clear from 

the peaks of the first harmonic amplitude at points of maximum constriction, showing 

an approximately 25-fold increase in amplitude from the non-ligated regions. The 

magnitude of the first harmonic amplitude was computed as 0.32 Pa in the non-ligated 

regions. As with the zeroth harmonic amplitude, drops in the amplitude were found in 

the regions immediately upstream and downstream of the constriction profiles. 

Changes in the phase component of the signal were found in the region immediately 

downstream of each constriction profile. The change of phase indicates the change of 

direction of the traction vector axial component as in the conventional direction 

tapering cast simulations. The small decrease in the phase in non-ligated regions was 

a result of the regularisation boundary condition as a phase delay is created from the 

propagation of velocity information along the geometry.  
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Figure 5.14. Distribution of the first harmonic (a) amplitude and (b) phase 

of the wall shear stress signal along the length of the (c) tandem stenosis 

geometry. The flow direction is given from left to right. The first harmonic 

amplitude computed in the control vessel is 2.47 Pa. The first harmonic 

amplitude in non-ligated vessel segments was computed as 0.32 Pa.  

 

A key result of the frequency analysis in the tandem stenosis geometry is the 

consistency of the waveform composition along the length of the geometry (Figure 

5.15). The vessel segments identified in Chen et al. (2013) showed differences from 

the control vessel signal only in the zeroth and first harmonic amplitudes with no 

differences in signal between the segments.  
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Figure 5.15. Frequency composition of the wall shear stress signal at points 

along the tandem stenosis geometry. The waveforms were normalised by the 

respective first harmonic amplitudes and shown with the wall shear stress 

signal of the control vessel. Wall shear stress signals were analysed at various 

axial positions, x, from vessel segments identified in Chen et al. (2013). 

Largely consistent profiles of wall shear stress were found at all axial positions 

within the geometry also showing similarity with the control vessel signal.  

 

5.4  Discussion  
 

The current chapter explores the hypothesis that plaques resembling the human TCFA 

and stable-looking compositions are observed in regions experiencing different local 

haemodynamic conditions in the atheroprone mouse. A key note throughout this PhD 

is that the frequency composition of the wall shear stress details all spatial and 

temporal characteristics of the signal in its most raw form. The information is given as 

a time-varying signal, devoid of any time-averaging steps used in the commonly 

applied shear metrics. This allows for a thorough comparison of the wall shear signal 

without any loss of information. The importance of the signal’s frequency composition 

has also been demonstrated through the differential expression of several 

inflammatory markers under the variation of the zeroth and first harmonic components 

in Himburg et al. (2007) and Feaver et al. (2013). The reader is referred to Section 2.4 

for a description of the frequency domain analysis and the interpretation of the 

harmonic amplitude and phase. 
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It is known that the placement of perivascular devices diminishes the value of the 

zeroth harmonic (TAWSS) compared to the control vessel signal. Further to this, 

simulations performed in this chapter also indicate the reduced value of the first 

harmonic amplitude relative to the control vessel signal. Feaver et al. (2013) 

demonstrate the sensitivity of endothelial cells to the zeroth and first harmonic 

amplitudes through the expression of NF-κB, a proinflammatory transcription factor. 

Increasing zeroth and first harmonic amplitudes were shown to decrease the expression 

of this pathway, shifting the endothelial cells towards the atheroprotective state. 

Following this, the low zeroth and first harmonic amplitudes form a key result of this 

chapter as plaque formation was found to occur in all regions coincident with these 

wall shear stresses. 

In a study of particular importance to this PhD, Cheng et al. (2006) proposed the 

dependence of plaque composition on the pattern of wall shear stress. Stable plaque 

types were found to occur in the oscillatory shear stress region while the TCFA plaque 

developed in the low shear stress region. Cheng et al. (2006) define oscillatory shear 

stress simply using the bidirectional nature of the traction vector with no further 

analysis of the wall shear stress signal, while the low shear stress region is defined by 

the upstream reduction of blood flow due to the tapering geometry. As mentioned 

above, simulations performed in this chapter show decreased values of the zeroth and 

first harmonic amplitudes, compared with the control vessel, in both regions. 

Additionally, the zeroth and first harmonic amplitudes were found to be lower 

throughout the oscillatory region relative to the low shear stress region. Signals 

normalised with respect to the first harmonic also show an increased contribution of 

the third harmonic amplitude in the oscillatory signal relative to the low shear stress 

signal. This suggests the amplitude of the zeroth, first and third harmonic amplitudes 

to be important to plaque composition as opposed to the simple low or oscillatory 

classifications of Cheng et al. (2006).   
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In addition to the amplitude differences discussed above, simulations showed a first 

harmonic phase difference between the low and oscillatory shear stress regions in the 

perivascular cast model. The imposed body force is related to the vessel 

circumferential strain by thinking of the vessel dilation caused by propagation of the 

blood pressure waveform. The phase difference in the wall shear stress signal then 

suggests an out-of-phase relationship between wall shear stress and circumferential 

strain. This stress phase angle has previously been noted in CFD studies of the stenosed 

coronary artery with the expression of NF-κB being increased in regions coincident 

with an out-of-phase WSS-strain relationship (Torii et al., 2009; Amaya et al., 2015).  

The importance of differences in both the WSS signal and the out-of-phase stress-

strain relationship can be considered in terms of set-point theory where disturbance 

from homeostatic conditions results in vascular remodelling (Baeyens et al., 2015). In 

this light, placement of perivascular devices causes deviation from the WSS signal and 

stress-strain relationship “healthy” set points and leads to a pro-inflammatory state.  

An important observation from the Chen et al. (2013) study is the occurrence of both 

the TCFA and stable-looking plaque types in vessel segments experiencing the same 

TAWSS. Further to this, simulations performed in this chapter demonstrate a 

consistency of the signal frequency composition among all vessel segments. This 

finding then forms a key result of this chapter, indicating the effects of factors other 

than wall shear stress to contribute towards the plaque composition. One such factor 

is thought to be the circumferential tensile stress given the clear segmentation of the 

vessel into regions of distinct pressures (Figure 5.16). In support of this suggestion, 

the tensile stress is also a known contributor in atherosclerosis showing significance 

to cap disruption and plaque compositional changes (Slager et al., 2005; Akyildiz et 

al., 2014; Gijsen and Migliavacca, 2014). As mentioned above, the pressure is thought 

to correspond to the circumferential strain and tensile stress considering its relationship 

to vessel dilation. In addition to this segmentation of the vessel by tensile stress, each 

plaque type found in the tandem stenosis model is clearly localised to the regions of 

tensile stress. The geometry segmentation in tensile stress is also shown in Chen et al. 

(2013) through analysis of the blood pressure. 
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Figure 5.16. Pressure difference computed between the vessel inlet and 

outlet. The pressure difference is thought to correspond to the 

circumferential tensile stress considering its relationship to vessel dilation. 

Pressure drops are found at the ligation throats showing clear segmentation of 

the vessel to each region of circumferential tensile stress. The segmented 

regions also correspond to regions of different plaque type in the atheroprone 

mouse (Chen et al., 2013).  

 

A key result of the Mohri et al. (2014) study is the lack of statistical significance in 

macromolecule uptake between the regions upstream and downstream of the reversed 

cast model. Considering the direct relationships proposed between lipid uptake and 

TAWSS, it is expected that similar profiles of wall shear stress would result in regions 

of equal uptake (Olgac et al., 2009; Nouri et al., 2015). Consistency of the wall shear 

stress signal in these regions further suggests the effects of factors other than the wall 

shear stress with respect to macromolecule uptake.  A lack of statistical significance 

despite the pressure drop across the tapering cast also indicates at least one more factor 

with relevance to macromolecule uptake. The variation in vessel thickness and 

localisation of macromolecule uptake only at the cast boundaries may suggest the 

effect of mechanical interference from cast placement (Mohri et al., 2014). The 

resulting macromolecule uptake in the reversed cast model may then be the cumulative 

effect of these factors.  
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The TCFA plaque was found upstream of the tapering cast (Cheng et al., 2006) while 

Chen et al. (2013) show its development in the region between ligations. Again, 

simulations show both models to produce the plaque in a region of low TAWSS and 

first harmonic amplitude when compared to the control vessel. The zeroth and first 

harmonic amplitudes were however, lower in the tandem stenosis geometry. The 

higher harmonic amplitudes (n > 1) also show consistency in the waveform between 

models in the regions showing TCFA plaques (Figure 5.17a). The stable plaque, on 

the other hand, was found downstream of the tapering cast (Cheng et al., 2006) while 

Chen et al. (2013) show its development in the region downstream of both ligations. 

Simulations again show a lower zeroth and first harmonic amplitude in the regions of 

the stable plaque in the tandem stenosis model compared to the perivascular cast 

model. The details of the waveform shown in the higher harmonics (n > 1) were also 

different between the models (Figure 5.17b). The findings discussed here are 

summarised in Table 5.1. 

The occurrence of the stable plaque type in regions of different wall shear stress 

suggests the “cumulative effect” mentioned above. Also considering the different 

degrees of constriction between the Cheng et al. (2006) and Chen et al. (2013) models, 

different magnitudes of the pressure drop are expected between the models. The 

cumulative effect of mechanical constriction and alteration of the flow field then 

suggests a lack of comparability between the different atherosclerosis models.  
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Table 5.1. Summary of key findings in perivascular device simulations. Results of the perivascular device models are discussed relative 

to the control vessel simulations where the zeroth and first harmonic amplitudes were computed as 15.76 Pa and 2.47 Pa, respectively. 

Citation TCFA Cellular plaque Cap disruption 

(Cheng et al., 2006) • Reduced zeroth harmonic amplitude  

WSS[0] = 9.18 Pa 

• Reduced first harmonic amplitude  

WSS[1] = 1.21 Pa 

• Normalised higher harmonic content 

similar to control signal 

• First harmonic phase component is 

consistent with the control vessel 

• Reduced zeroth harmonic amplitude  

Variable in oscillatory stress region  

• Reduced first harmonic amplitude  

Variable in oscillatory stress region 

• Elevated third harmonic amplitude 

relative to control signal 

• Elevated first harmonic phase 

component relative to control vessel  

• Not found  

(Chen et al., 2013) • Reduced zeroth harmonic amplitude  

WSS[0] = 2.56 Pa 

• Reduced first harmonic amplitude  

WSS[1] = 0.32 Pa 

• Normalised higher harmonic content 

similar to control signal 

• Colocalised with region of moderate 

circumferential stretch 

• Reduced zeroth harmonic amplitude  

WSS[0] = 2.56 Pa 

• Reduced first harmonic amplitude  

WSS[1] = 0.32 Pa 

• Normalised higher harmonic content 

similar to control signal 

• Colocalised with region of minimum 

circumferential stretch 

• Reduced zeroth harmonic amplitude  

WSS[0] = 2.56 Pa 

• Reduced first harmonic amplitude  

WSS[1] = 0.32 Pa  

• Normalised higher harmonic content 

similar to control signal 

• Colocalised with region of peak 

circumferential stretch  
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 (a)            (b) 

 

Figure 5.17. Comparison of the frequency composition of the wall shear 

stress signals in regions showing the (a) thin-cap fibroatheroma and (b) 

stable-looking plaques. The zeroth and first harmonic amplitudes of the 

tandem stenosis model (Chen et al., 2013) were found to be lower than in the 

tapering cast model (Cheng et al., 2006). The higher harmonic amplitudes (n > 

1) show largely similar wall shear stress signals in the regions where 

vulnerable-looking plaques were formed. The frequency composition of the 

signal in regions where stable plaque types were different with the most 

apparent difference in the third harmonic amplitude. Differences are expected 

in the mechanical environment between the two models suggesting a lack of 

comparability.  

 

Study limitations 

The major limitation of this chapter and PhD is the approximation of model geometries 

to the idealised case. The importance of this approximation is seen across the fluid 

dynamics literature as the accuracy of the flow field is largely dependent on the 

accuracy of the geometry model. Approximations were made in terms of both the 

vessel axial symmetry and the perivascular cast boundaries. These assumptions were 

made considering the lack of accurate vessel geometry data and the simplicity in 

processing the frequency composition of the wall shear stress signal. 

The inaccuracy in the axial symmetry approximation is highlighted by Mohri et al. 

(2014) by defining the vessel asymmetry through a shape index. The index parameter 

shows significant deviation from the axially symmetrical cross-section along the 

length of the cast, most significantly at the cast throat. The cast boundary 

approximation is also clear when considering the upstream end of the reversed 
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direction perivascular cast with the sharp edge cast boundary. Comparison with the 

CFD study of Mohri et al. (2014) shows the effect of this approximation with the 

simulations performed here showing a non-physical drop in TAWSS. 

A 1D vascular network model coupled together with the disease model could be used 

to generate physiologically representative boundary conditions in each simulation 

case. The lack of a verified and complete 1D model (Section 4.4) therefore forms a 

key limitation of this chapter. This necessitates the approximation of the pressure 

waveform in disease models to that of the healthy mouse carotid artery. The impact of 

this approximation is explored in Chapter 6 with simulations aiming to characterise a 

relationship between the input pressure waveform and the computed wall shear stress 

signal.  

It should also be noted that the studied models may themselves be flawed in reporting 

differences in plaque composition as a result purely of the wall shear stress or 

mechanical effects. In reality, a number of processes may be relevant. The restriction 

of vessel motion or placement of the perivascular devices has been shown to produce 

atherogenic effects with the differing levels of inflammatory markers being dependent 

on the choice of perivascular device (Tropea et al., 2000; Tanaka et al., 2003). While 

the non-constrictive controls and sham-operated groups represent an excellent step in 

isolating the effects of each model, there is a great difficulty in decoupling all possible 

contributors of the disease. The discussion presented here aims to highlight the 

complexity of each atherosclerosis model and the implementation of vessel 

manipulation devices. Despite the numerous complicating factors, simulations 

performed here consistently demonstrate the plaque formation in regions of low zeroth 

and first harmonic amplitudes. 

 

5.5  Conclusions 
 

The numerical tool implemented and developed in Chapters 3 and 4 was applied to 

geometries approximating published mouse models of atherosclerosis. Surgical 

manipulations described in these mouse models cause local differences in the wall 

shear stress that have been shown to be important in the resulting plaque composition. 

Following from studies in the literature showing the dependence of inflammatory 
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markers on the frequency composition of the wall shear stress signal, simulations were 

performed here to test the hypothesis that different plaque compositions shown in the 

mouse models occur in regions experiencing different time-varying waveforms of the 

wall shear stress signal.  

The conclusions of this chapter are expressed in terms of the aims set out in the 

introduction:  

1) Are there similarities/differences in the stress waveform between regions 

showing different plaque compositions in each model? 

Differences were found in the frequency composition of the wall shear stress 

signal between regions showing the TCFA and stable plaque types in the 

conventional direction perivascular cast geometry. More specifically, the wall 

shear stress signal obtained from simulations showed differences in the zeroth, 

first and third harmonic amplitudes between the regions of different plaque 

composition. 

The tandem stenosis geometry, on the other hand, showed consistent profiles 

of wall shear stress in all regions. Each segment of this model showed different 

plaque types including the TCFA and stable-looking plaques. Characteristics 

of human disease were also observed in the region upstream of the ligations. 

The reversed direction perivascular cast also showed similar profiles in the wall 

shear stress signal at the upstream and downstream regions of the cast device 

where no statistically significant difference was found in the uptake of a 

labelled macromolecule.  

 

2) Are there similarities/differences in the stress waveform between regions 

showing similar plaque composition between models?  

The TCFA plaque type was found in the conventional direction perivascular 

cast (Cheng et al., 2006) and tandem stenosis (Chen et al., 2013) studies. 

Simulations found the higher harmonic components (n > 1) of the signal in 

these regions to be equal to that of the control vessel with differences only in 

the zeroth and first harmonic amplitude. It should be noted that the zeroth and 

first harmonic amplitudes of the vulnerable-looking plaque in the tandem 

stenosis geometry were lower than those of the perivascular cast geometry.  
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The stable plaque type was found in the conventional direction perivascular 

cast (Cheng et al., 2006) and tandem stenosis (Chen et al., 2013) studies. 

Referring again to the consistency of the wall shear stress signal along the 

length of the tandem stenosis geometry, differences were found in the 

frequency composition of the wall shear stress signal between regions showing 

the stable plaque type. 

 

From this chapter, it can be concluded that the wall shear stress alone, even in its most 

raw form of the time-varying profile, cannot be used to predict plaque compositions 

where mechanical effects such as the circumferential tensile stress are also relevant 

and variable. This is highlighted by the simulation of the tandem stenosis geometry 

where only the blood pressure was found to vary between vessel segments. Changes 

in blood pressure can be related to differences in the circumferential tensile stress on 

the vessel wall. Comparability between models may also be hindered by the difference 

in pressure drop along the perivascular device and the mechanical or inflammatory 

effects of the placement of the device itself.   

Considering the variability in mechanical and inflammatory effects between the 

different models, subsequent chapters aim to make this constant by studying only the 

conventional direction tapering cast geometry. With this, the mechanical effects of 

confinement can be considered to be constant. The wall shear stress is studied in this 

case with Chapter 6 dealing with the effects of the input pressure waveform and 

Chapter 7 looking at the effects of varying dimensionless numbers as would be found 

across different mammalian species.  
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Chapter 6 

Wall shear stress signal with varying boundary 

conditions 

 

 

6. Wall shear stress signal with varying boundary conditions 

Abstract  
 

Wall shear stress is a parameter of key interest in a number of fluid dynamics studies 

because of known relationships to endothelial activity and cardiovascular disease 

(Davies, 1995; Ku, 1997; Malek et al., 1999; Cunningham and Gotlieb, 2004; Chiu 

and Chien, 2011). The relevance of these studies, however, is highly dependent on the 

validity of the conditions applied at simulation boundaries. The effect of these flow 

conditions on the time-averaged wall shear stress has been explored in several 

simulation studies. The Womersley flow analytical solution also shows a dependence 

of fluid flow on the time variation of the input flow waveform. The time variation is 

of particular importance to this PhD considering the relevance of the wall shear stress 

frequency composition to the endothelial cell inflammatory response (Himburg et al., 

2007; Feaver et al., 2013). The frequency composition is also able to capture all spatial 

and temporal details of the wall shear stress signal. The current chapter, therefore, aims 

to explore the hypothesis that the wall shear stress frequency composition found in 

regions of the mouse perivascular cast model is dependent on the flow conditions 

applied at the simulation inlet and outlet boundaries. 

Simulations were performed in geometries approximating the Cheng et al. (2006) 

perivascular tapering cast with varying waveforms of the body force term and 

dimensionless numbers. The perivascular cast geometry was used to create three 

distinct regions of high, low and oscillatory wall shear stress patterns. A key result of 

the varying waveform study is the linear relationship between the first harmonic 

amplitudes of imposed body force and computed wall shear stress in all regions. The 

gradient of this linear relationship varied between each region. A quadratic relationship 
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was also found between the body force first harmonic amplitude and the wall shear 

stress second harmonic amplitude. These second harmonic amplitudes became 

noticeable only in the oscillatory region. A key result of the dimensionless numbers 

study is the approximate consistency of the wall shear stress higher harmonic terms (n 

> 1) in the high and low shear stress regions between all models. The distribution of 

the zeroth and first harmonic amplitudes were also found to vary between models with 

the length of the recirculation region increasing with the Reynolds and Womersley 

numbers.  

It should be noted that the studies performed here provide only an exploration into the 

effects of a varying body force term and dimensionless parameters rather than 

presenting flow cases relevant to any specific animal or biological mechanism that 

may cause the variation of these parameters. The simulations did not model the 

physical cases in the interest of lower computational cost. The findings of this study 

may, however, be extrapolated to animal models with variability of the body force 

waveforms being a result of vascular tone regulation ( ’Rourke and Yaginuma,     ; 

Nichols et al., 1998; Stroev et al., 2005) and arterial stiffening with aging (Mikael et 

al., 2017). The variability of dimensionless numbers can also be seen between 

mammals of different size (Weinberg and Ethier, 2007; Dawson, 2014). 

 

6.1  Introduction 
 

Flow dimensionless numbers are a key determinant of fluid flow. As discussed in 

Section 4.6, the Reynolds number describes the ratio of inertial to viscous forces and 

the Womersley number gives the ratio of pulsatile to viscous forces. The two 

dimensionless numbers given here are key in defining blood flow and are necessary in 

achieving dynamic similarity between the physical situation and any experiment or 

simulation. The significance of these parameters to the wall shear stress (WSS) has 

been shown throughout the literature in the development and transport of vortical 

structures in stenosis and aneurysm models (Buchanan et al., 2000; Banerjee et al., 

2012; Asgharzadeh and Borazjani, 2016).  

The applicability of simulations to the physical situation is also determined by the time 

variation of pulsatile effects (Gabriel et al., 2017). The time-varying nature of the flow 
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profile is created by the phases of heart contraction, and changes along the length of 

the arterial network as a result of vessel elasticity, bifurcations, tapering, and tortuosity 

(Ku, 1997). The importance of this flow rate time variation to the velocity profile and 

WSS is obvious from the analytical solution of the Womersley equation which was 

initially derived by Helps and McDonald (1954) and Womersley (1954).  

The analytical solution of the Womersley equation can be expressed in terms of the 

Fourier decomposition of the flow rate and the Reynolds and Womersley numbers 

(Salsac et al., 2006). This shows a clear dependence of the WSS time variation on 

these parameters. The accurate specification of these parameters is, therefore, key in 

the recovery of a physiologically relevant flow field and WSS. The analytical solution 

for WSS is given as a function of time 𝑡 by:  

 
WSS(𝑡) = Re (

𝐺0

2
+  ∑

𝐺𝑛

2

∞

𝑛=1

𝐹(𝛼𝑛)e−𝑖𝑛𝜔𝑡) (6.1) 

 

where 𝐺𝑛 are the Fourier coefficients of the pressure gradient and 𝑛 is the identity of 

the harmonic component. Re denotes the Reynolds number, 𝛼𝑛 = 𝑅√𝑛𝜔/𝜐 is the 

Womersley number relevant to each harmonic frequency component. 𝑅 is the pipe 

radius, 𝜔 is the frequency of oscillation and 𝜐 is the kinematic viscosity.  𝐹(𝛼𝑛) is the 

Womersley function and is given by:  

 𝐹(𝛼𝑛) =  
2

𝑖
3

2⁄ 𝛼𝑛

 
𝐽1(𝑖

3
2⁄ 𝛼𝑛)

𝐽0(𝑖
3

2⁄ 𝛼𝑛)
 (6.2) 

 

where 𝐽0 and 𝐽1 are the Bessel functions of first kind with order 0 and 1 respectively. 

The analytical solution was reproduced here from Salsac et al. (2006). Considering the 

importance of these parameters in obtaining a physiologically relevant WSS signal, an 

exploration of the flow field sensitivity to the flow rate signal and dimensionless 

numbers is required in geometries relevant to atherosclerosis. 
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Hypothesis and aims: 

The current chapter explores the hypothesis that the WSS frequency compositions 

found in the perivascular cast geometry are related to the flow conditions applied at 

the simulation boundaries. The work of this chapter is, in part, motivated by the lack 

of a functioning 1D model (Section 4.4). The lack of accurate boundary conditions 

necessitates an understanding of how the input boundary conditions are related to the 

output wall shear stress signal. The following aims were set out to address this 

hypothesis:  

1) Are the current atherosclerosis localisation metrics able to identify the 

differences in the waveform of wall shear stress with varying body force 

signal?  

2) Are the differences in wall shear stress signal shown between regions of the 

mouse perivascular model dependent on the imposed flow boundary 

conditions?  

 

6.2  Methods 
 

To better understand the physical effects relevant to fluid flow and their relationships 

with the WSS, a number of simulations were performed with varying input boundary 

conditions. Specifically, the effects of the body force term and dimensionless numbers 

were explored. The perivascular cast device of Cheng et al. (2006) was adopted in 

each simulation to create local variations in flow dynamics. It should be noted that the 

simulations performed in this chapter aim only to provide an exploration of the 

physical effects relevant to WSS and do not represent the flow cases of any specific 

animal model. The simulations did not model the physical situations in the interest of 

lower computational cost.   

6.2.1 Body force term 
 

A time-varying body force 𝑓𝑥(𝑡) was applied at all lattice sites using:  

 𝑓𝑥(𝑡) = 𝐹(1 +  𝐴 cos(𝜔𝑡)), (6.3) 
 

where the axial component of the body force is given by the time-averaged magnitude, 

𝐹, and oscillation amplitude, 𝐴. The body force was chosen to follow a simple cosine 
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function to develop an initial understanding of how the term is related to the WSS and 

how this relationship varies within the perivascular cast geometry.  

6.2.2 Obtaining dimensionless numbers  
 

Dimensionless numbers were computed from a model adapted from allometric scaling 

theory (Dawson, 2014). In mammals, allometric scaling laws are used to estimate 

haemodynamic parameters as a function of the animal body weight (Weinberg and 

Ethier, 2007). While this study does not concern physical animal models, hypothetical 

body masses were selected in order to obtain the dimensionless numbers from 

allometric scaling. The scaling laws are given in the form:  

 𝑃 = 𝑎𝑀𝑏 (6.4) 
 

where the parameter of interest 𝑃 varies with the body mass 𝑀 in a power law function 

with constant 𝑎 and body mass exponent 𝑏. This topic is discussed further in Chapter 

7.  

Body masses were chosen to be equally distributed on a logscale between 0.025 kg 

and 75 kg. The Reynolds numbers corresponding to these body masses were chosen to 

be 40 and 360. The Womersley numbers were also chosen as 0.8 and 4.2, respectively. 

The limits of the Reynolds and Womersley numbers were computed from the cross-

sectionally averaged velocity field in the mouse (Pedrigi et al., 2016) and human 

(Milner et al., 1998). These limits were chosen for the purpose of designing 

simulations with a relatively low computational cost. With the assumptions of body 

mass, Reynolds number and Womersley number, the constants and body mass 

exponents were found for the dimensionless numbers. The body mass exponents of the 

Reynolds number and Womersley number were computed as 0.27 and 0.21, 

respectively. The body masses relevant to each model were then used to estimate 

values of the Reynolds number and Womersley number in each simulation model 

(Table 6.1).  
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Table 6.1. Dimensionless numbers based on the allometric scaling laws discussed 

above. The Reynolds number, Re, and Womersley number, α, were computed as a 

function of a hypothetical body mass, M, for use in the dimensionless numbers study. 

Simulation name Body mass M [kg] Re α 

 

S1 

 

0.025 

 

40 

 

0.80 

S2 1 110 1.72 

S3 3.5 155 2.23 

S4 20 250 3.20 

S5 75 360 4.20 

 

6.2.3 Simulation setup 
 

The simulation setup was largely similar to that of Chapter 5 with key differences 

being in the choice of the body force term and simulation parameters. A Newtonian 

viscosity model was also implemented in all cases. The simulation relaxation 

parameter and pipe diameter were chosen to achieve a peak axial velocity less than 

0.07. This upper limit of peak axial velocity was used in order to minimise errors 

coming from the truncation of equilibrium populations (3.5).  

Solid boundaries were treated with the standard bounceback approach detailed in 

Section 3.2. The periodic boundary condition was employed at the inlet and outlet 

boundaries alongside the time-varying body force term applied at all lattice sites. The 

time-varying body force term was chosen according to the specific investigation with 

the effects of the body force term being studied using equation (6.3) and the 

dimensionless number studies using the pressure waveform measured in the healthy 

mouse carotid artery, taken from Artoli and Sequeira (2006).  This mouse pressure 

waveform was used in the latter study as the effects of varying dimensionless number 

on the higher harmonics would not be apparent if only studying the simple body force 

term of equation (6.3).  
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6.2.4 Simulations performed 
 

Many of the simulations were performed in geometries approximating the tapering 

cast model of Cheng et al. (2006) with the cast causing a constriction of the pipe 

diameter to half of that of the uncast regions. The cast length was taken to be equal to 

the pipe diameter. The tapering cast geometry was implemented to create regions of 

local flow dynamics that have been shown in Chapter 5 to produce variations in WSS 

over the length of the geometry. The studies of this chapter may be divided into two 

separate investigations; one looking at the effect of a varying body force term on the 

wall shear stress and the other looking at the effect of flow dimensionless numbers.  

Simulations performed to explore the effects of the body force term differed only in 

the choice of the 𝐴 parameter. The mean Reynolds and Womersley numbers were kept 

constant in these simulations at 40 and 0.8, respectively, through control of 𝐹 and 𝜔. 

The 𝐴 parameter was chosen to vary between 0.025 and 0.125 with an interval of 

0.025.  

The effects of the flow dimensionless numbers were investigated through variation of 

the Reynolds and Womersley numbers using the allometric scaling method discussed 

above. The simulated dimensionless numbers are presented in Table 6.1 and were 

specified through the choice of pipe diameter, fluid viscosity, peak axial velocity and 

period duration. The geometry axial length was varied in each simulation to ensure 

flow recovery downstream of the tapering cast, validating the use of periodic boundary 

conditions in each case (Section 3.2). Simulation results presented in the perivascular 

cast studies were normalised with respect to the values computed in the control 

geometry. This was modelled as a straight pipe with constant radius.  

As in Chapter 5, simulations were terminated once the velocity profile measured at the 

geometry axial centre had converged to the profile measured in the previous period 

(3.14). The convergence criteria for this termination event was set to 10-4. Once the 

criteria had been satisfied, the simulation would run for one more period to compute 

and write all desired observables. Frequency analysis of the WSS signal was 

performed on the axial component of the circumferentially averaged traction vector 

(Section 2.4).  

 



122 

 

 

6.3  Results 
 

The regions of each model were analysed in terms of the circumferentially-averaged 

traction vector, both in relation to the time-averaged shear metrics and its 

instantaneous value over the oscillation period. This analysis is valid here for the 

simulated geometries considering the axial symmetry property and purely axial 

direction of the body force terms. The frequency analysis to be discussed here also 

considers only the axial component of the tangential traction vector. A comparison of 

the frequency composition was performed to identify any potential relationships 

between the input flow conditions and the computed WSS signal in the regions of the 

perivascular cast model. The analysis of the traction vector axial component and 

omission of its circumferential component will be discussed further in Chapter 2.4. 

As the simulation cases do not relate to a physical case, no unit conversion was applied. 

The wall shear stresses were, instead, normalised with respect to the value computed 

in the control geometry. The relative residence time is not shown here considering the 

simple relationship between it and the oscillatory shear stress, as shown in the 

localisation metrics plots of Chapter 5.  

6.3.1 Varying body force signal 
 

Localisation metrics  

The definition of each metric as a time-average of the tangential traction vector 

suggests uniformity in their distributions across all input body force studies. This was 

shown in the lattice Boltzmann simulations with absolute consistency of the time-

averaged wall shear stress (TAWSS) metric in all regions of the geometry (Figure 6.1). 

The oscillatory shear index (OSI) and relative residence time (RRT) metrics showed 

minimal differences in the region downstream of the cast. This difference in OSI was 

attributed to minute fluctuations, of magnitude 10-19 lattice units, in the circumferential 

component of the traction vector. Given their small magnitudes, the fluctuations are 

considered to be an artefact of the numerical method. These fluctuations were found 

to be different between simulation cases, resulting in the varied OSI magnitudes. 

Differences in the RRT metric (not shown) are also clearly a result of these fluctuations 

when considering equation (2.14).  
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Figure 6.1. Distribution of the (a) normalised time-averaged wall shear 

stress (TAWSS) and (b) oscillatory shear index (OSI) in simulations of 

varying body force term in the (c) perivascular tapering cast geometry. 

The TAWSS was normalised against the value computed in the control 

geometry simulations (TAWSScontrol) showing a decreased TAWSS in the low 

shear stress region. The flow direction is from left to right and the vertical bold 

lines on the plot axes indicate the start and end positions of the tapering device. 

All body force simulations showed consistency in the time-averaged metrics 

and so are not reproduced. The TAWSS and OSI distributions are computed 

here for Re = 40 and α = 0.8.  
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Frequency composition 

Simulations showed consistency of the WSS first harmonic phase component between 

all body force studies. This result was expected as the phase information of the body 

force signal was also kept constant. The WSS harmonic amplitudes, on the other hand, 

varied between all simulations. Much of the discussion here neglects frequency 

components with magnitude less than 1% of the first harmonic amplitude. Following 

this filtering method, a comparison of the WSS signal in the different shear regions 

showed varying levels of complexity in the waveform. This “complexity” was 

characterised by the frequency composition of the WSS signal and the number of 

harmonics returned from the analysis. The WSS waveform in the high and low stress 

regions showed the same degree of complexity as the body force waveform in all 

simulated cases, with a non-zero value occurring only in the first harmonic amplitude. 

WSS signals with increased complexity were found in regions downstream of the peak 

OSI, showing an additional non-zero second harmonic amplitude.  

The key result of this study is the relationships found between the harmonic 

components of the signals in each region. Figure 6.2a shows the linear relationship of 

the first harmonic amplitudes of body force and WSS. A quadratic relationship was 

also drawn between the WSS second harmonic amplitude and the body force first 

harmonic amplitude (Figure 6.2b). The linear and quadratic functions relating input to 

output were found to be region-specific. The linear gradient was constant at axial 

positions across the low shear stress region and varied in the oscillatory shear stress 

region. The second derivative of the quadratic function also decreased with increasing 

distance from the peak OSI. Both relationships were supported by the intercept and 

vertex parameters of the linear and quadratic curves, respectively. The linear 

regression fit curve of the WSS first harmonic amplitude found a y-intercept of 

approximately zero. The vertex of the quadratic curve in the WSS second harmonic 

amplitude also occurred approximately at the xy intercept. This result was expected 

considering that the axis intercept relates to a body force first harmonic amplitude of 

zero. 
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Figure 6.2. (a) First and (b) second harmonic amplitudes of the wall shear 

stress (WSS) signal compared against the first harmonic amplitude of the 

body force signal A. Harmonic amplitudes were normalised against the time-

averaged wall shear stress (TAWSS). The key result of this study is shown by 

a least squares regression fit. Linear and quadratic relationships were found in 

the WSS first and second harmonic amplitudes, respectively. The gradient of 

the linear relationship was constant among axial positions in the low shear 

stress region and varied in the oscillatory region. The second derivative of the 

quadratic relationship varied among axial positions in the oscillatory region, 

decreasing in magnitude with increasing distance downstream of the cast. 

Simulations were performed with Re = 40, α = 0.8 and 𝐴 varying between 

0.025 and 0.125 with an interval of 0.025. 
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The occurrence of the non-zero second harmonic amplitudes was attributed to 

differences in the flow field caused by the geometry. This is clear from the Womersley 

flow analytical solution as the analytical WSS signal in a straight pipe is a function of 

the Fourier coefficients of the input pressure signal (Salsac et al., 2006). Fourier 

coefficients of the body force term higher than the first harmonic component are set to 

zero through equation 6.3. This means that the higher Fourier coefficients of the WSS 

signal are expected to be zero in the absence of the constriction.  

6.3.2 Varying flow dimensionless numbers 
 

Localisation metrics 

All simulation models showed placement of the perivascular cast to result in clear 

regions of low, high and oscillatory shear stress similar to the mouse model of Cheng 

et al. (2006). This is shown in the distribution of the TAWSS and OSI metrics for the 

S1, S2, S3, S4 and S5 models (Figure 6.3). The distribution of these regions is 

thoroughly discussed in Section 5.3 in the case of the mouse model with the aid of 

Figure 5.3 and Figure 5.4 and will not be repeated here.  

A key difference between the metrics in each model is the length between the 

downstream cast end and the position of peak OSI. This is indicative of the length of 

the oscillatory region and its increase is explained by the increasing Reynolds number. 

This increase in length is expected considering the increased significance of inertial 

effects in fluid flow. Relative to simulations in the control geometry, the TAWSS 

computed in the high shear stress region also showed an increase with increasing 

Reynolds and Womersley numbers between all dimensionless number simulations. 

This is seen as an effect of the Reynolds number as the difference in fluid inertia 

between the cast and control geometry simulations also increases with Reynolds 

number. The consistency found in the relative TAWSS in the low shear stress region 

is a result of the normalisation procedure with respect to the control geometry. The 

consistency of the decrease in TAWSS in this region suggests the flow reduction 

caused by the tapering cast to be constant regardless of changes to the flow 

dimensionless numbers.  
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Figure 6.3. Distributions of the (a) normalised time-averaged wall shear stress (TAWSS) and (b) oscillatory shear index (OSI) in the 

(c) different simulation cases. Simulation cases S1-S5 are shown left to right. The flow direction is from left to right and the vertical lines 

on the plot axes indicate the start and end positions of the tapering device. The TAWSS was normalised against the value computed in the 

control geometry simulations (TAWSScontrol). The flow dimensionless numbers are given in Table 6.1. The axial length of each geometry 

was controlled to allow a sufficient flow development length downstream of the tapering cast. 
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Frequency composition 

The distributions of the first harmonic amplitude and phase were computed along the 

length of the S1, S2, S3, S4 and S5 models (Figure 6.4). As with the localisation 

metrics presented above, the distribution of the first harmonic components also showed 

segmentation of the geometry into the low, high and oscillatory shear stress regions. 

A key note is that flow is shown to have recovered in all simulations with the first and 

second harmonic amplitudes recovering to the pre-constriction values before the 

geometry outlet (Figure 6.4 and Figure 6.5). The reader is referred to Section 2.4 for a 

description of the Fourier transform amplitudes and phases.  

A key difference between simulations was found in the first and second harmonic 

amplitudes downstream of the tapering cast. An increase in these harmonic amplitudes 

in the oscillatory region above that of the low shear stress region becomes apparent 

only with increasing Reynolds and Womersley numbers. This is an important result as 

it suggests an entirely different flow environment in the downstream region of models 

of larger Reynolds and Womersley numbers with magnitudes of flow reversal not seen 

in the other models. In addition to this, the length downstream of the cast end before 

recovery to the upstream value increased with increasing Reynolds and Womersley 

numbers.  

The rate of increase in first harmonic amplitude in the high shear stress showed an 

increase with larger Reynolds and Womersley numbers. This is thought to be a result 

of the same Reynolds number effects discussed with regard to the localisation metrics. 

Relative to the TAWSS, the first harmonic amplitude computed in the low shear stress 

region also showed a decrease with increasing Reynolds and Womersley numbers. 

This effect is due to the Womersley number increase and is explored further in Chapter 

7.  

The phase component was also shown to vary between simulations as a result of the 

Womersley number effects. This is most clearly seen in the low shear stress region. 

When considering the phase between models, it is important to note the periodicity of 

the phase component meaning the equivalence of values at -𝜋 and 𝜋. This periodicity 

is also clearly seen in the sudden change in the phase component along the length of 

the cast in the S3 model (Figure 6.4b).  
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Figure 6.4. Distribution of the first harmonic (a) amplitude and (b) phase of the wall shear stress signal along the length of the in the 

(c) different simulation cases. Simulation cases S1-S5 are shown left to right. The flow direction is from left to right and the vertical lines 

on the plot axes indicate the start and end positions of the tapering device. The first harmonic amplitude was normalised against the value 

computed in the control geometry simulations. The flow dimensionless numbers are given in Table 6.1. 
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Figure 6.5. Distribution of the second harmonic (a) amplitude and (b) phase of the wall shear stress signal along the length of the (c) 

S5 perivascular cast geometry. The flow direction is from left to right and the vertical bold lines on the plot axes indicate the start and end 

positions of the tapering device. The first harmonic amplitude was normalised against the value computed in the control geometry simulations. 

The flow dimensionless numbers are given in Table 6.1. 
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The frequency composition of the WSS signals were computed in the S1 (Figure 6.6), 

S2 (Figure 6.7), S3 (Figure 6.8), S4 (Figure 6.9) and S5 (Figure 6.10) models. While 

the harmonic amplitudes varied throughout the oscillatory region, the figures presented 

here are illustrative of the typical differences in amplitude between the high, low, 

control and oscillatory shear stress regions.  

An important finding of the mouse perivascular cast geometry is the similarity in 

higher harmonic amplitudes (n > 1) in the high, low and control signals. Differences 

between the signals in the mouse geometry were shown only in the distributions of the 

zeroth and first harmonic amplitudes. In this regard, the key result of the dimensionless 

number simulations is the increasing second harmonic amplitude with increasing 

Reynolds and Womersley numbers in the oscillatory region. Considering the physical 

interpretation of the zeroth and first harmonic amplitudes, the similarity in the higher 

harmonics means that the signals in the low and high WSS regions differ only by the 

translation and magnification operations due to the variation of the zeroth and first 

harmonic amplitudes respectively. Differences in the second harmonic amplitude in 

the oscillatory region represents further variation in WSS signal. 

 

Figure 6.6. Frequency composition of the wall shear stress signal at axial 

positions along the S1 perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control geometry. Axial positions were chosen 

in the geometry to lie in the low, high and oscillatory shear regions.  
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Figure 6.7. Frequency composition of the wall shear stress signal at axial 

positions along the S2 perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control geometry. Axial positions were chosen 

in the geometry to lie in the low, high and oscillatory shear regions. 

 

 

Figure 6.8. Frequency composition of the wall shear stress signal at axial 

positions along the S3 perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control geometry. Axial positions were chosen 

in the geometry to lie in the low, high and oscillatory shear regions. 
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Figure 6.9. Frequency composition of the wall shear stress signal at axial 

positions along the S4 perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control geometry. Axial positions were chosen 

in the geometry to lie in the low, high and oscillatory shear regions. 

  

 

Figure 6.10. Frequency composition of the wall shear stress signal at axial 

positions along the S5 perivascular cast geometry. The waveforms were 

normalised by the respective first harmonic amplitudes and shown with the 

wall shear stress signal of the control geometry. Axial positions were chosen 

in the geometry to lie in the low, high and oscillatory shear regions. 
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6.4  Discussion 
 

The definition of flow conditions at the simulation boundaries forms a significant 

challenge in fluid dynamics studies. The current chapter, therefore, works to clarify 

the effect of varying body force signals and dimensionless numbers on the WSS signal 

computed in the regions of the perivascular cast model approximated from Cheng et 

al. (2006). 

A key result of this work is the appearance of clear scaling laws relating the 

components of the input and output waveforms. Simulations studying the effects of 

varying body force used a signal consisting only of the first harmonic. The computed 

WSS signals showed linear relationships between the first harmonic amplitudes of the 

body force and WSS signals. The gradients of these linear relationships were found to 

be region-specific in the perivascular cast geometry with approximate consistency 

throughout the low shear stress region and variation in the oscillatory shear stress 

region.  

The analytical Womersley solution predicts the linear relationship for frequency 

components present in the input signal in a simple pipe. The relationship predicted by 

the analytical solution is, however, proportional only to the Reynolds and Womersley 

numbers (equation 6.1). The variation of the linear gradient and appearance of the 

higher harmonic terms in the oscillatory region suggests the effect of the constriction 

geometry. The gradients of the higher harmonic terms are also a function of position 

in the oscillatory region, decreasing with increasing distance from the cast end.  These 

findings are attributed to the flow acceleration and WSS oscillation caused by the 

geometry taper and pulsatile flow nature.  

The appearance of frequency components not present in the input is a common 

phenomenon throughout fluid dynamics studies of turbulent and transitional flows. 

The von Kármán vortex street is an example of this where the steady flow of a fluid 

around an obstacle can lead to oscillating flow structures downstream of the obstacle. 

This is an effect of the Reynolds number as inertial effects cause separation of the fluid 

from the rear-end of the obstacle and the oscillatory shedding of vortices from the top 

and bottom end of the obstacle. The oscillatory properties of the vortex street are also 

dependent on the Reynolds number. 



135 

 

Simulations investigating the effects of the body force signal were performed at 

Reynolds and Womersley numbers equal to 40 and 0.8 respectively. An additional 

simulation (S1) was performed at the same dimensionless numbers using the pressure 

waveform measured in the healthy mouse carotid artery (Artoli and Sequeira, 2006). 

As in the mouse simulations of Chapter 5, comparison of the WSS frequency 

composition between the control and oscillatory regions in this simulation showed 

elevation of the third harmonic amplitude. Elevations in the second harmonic 

amplitude was also suggested from simulations with higher dimensionless numbers. 

The consistency in elevation of the higher harmonic components in the oscillatory 

region suggests the extension of scaling relationships to complex waveforms.  

Another key result of this chapter is the change in distribution of the zeroth, first and 

second harmonic amplitudes with increasing Reynolds and Womersley numbers. 

Comparison of the higher harmonic amplitudes between simulations in each region, 

however, showed consistency. This suggests the particular WSS frequency 

composition to be a function, mainly, of the geometry when normalised by the first 

harmonic amplitude. The differences in the amplitudes of the frequency composition 

are also suggested to be a function of the Reynolds and Womersley numbers.  

Extrapolation to animal models  

A key note throughout this chapter is that the simulations are not representative of any 

specific animal model or any biological mechanism that may lead to an altered arterial 

flow rate waveform. The simulations were not performed in animal models of the 

perivascular cast because of the large computational times needed. Taking the human 

common carotid artery as an example, blood flow is defined by a Reynolds number of 

1200 and Womersley number of 4.494. The accurate use of periodic boundary 

conditions also requires a sufficient development length downstream of the cast. 

Following the numerical study of Durst et al. (2005), this would result in a geometry 

axial length of approximately 850 diameters. Simulation of the human perivascular 

cast geometry is, therefore, impractical. This forms a major limitation of this chapter 

as a comparison of the WSS signals in the perivascular cast model of large animals 

would provide a deeper understanding of blood flow haemodynamics in the animals. 

The potential need for this work is discussed in Chapter 7. The results of this chapter 
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can, however, be extrapolated to animal models as variation of the body force 

waveform may be seen from changes to the pulse wave velocity (PWV) discussed in 

Section 4.4.  

With increased PWV, the forward-travelling pressure waves are propagated faster. 

These waves are reflected back sooner and alter the arterial pressure waveform by 

combination with the forward-travelling waves of the following pulse period 

( ’Rourke and Yaginuma,     ; Nichols et al., 1998; van de Vosse and Stergiopulos, 

2011; Pereira et al., 2015). The remainder of this discussion will deal with the possible 

biological mechanisms leading to altered PWV and arterial pressure waveforms in 

animal models of atherosclerosis.  

In order to study the mechanisms relevant to the development and progression of the 

atherosclerotic plaque, a number of methods have been proposed to induce disease in 

the mouse model. Table 6.2 provides a list of mouse models with their expected effects 

on the PWV. These include the manipulation of the mouse genetic background (Veseli 

et al., 2017) and the placement of a perivascular device to manipulate fluid flow 

(Winkel et al., 2015). Arterial stiffness has also shown a relationship with vascular 

aging, with differences in structural composition between young and elderly vessels 

(Mikael et al., 2017). These models are expected to produce varying effects on the 

vessel properties and, based on the theories of pulse wave propagation and wave 

reflection discussed above, will lead to different time-varying waveforms of flow and 

pressure.  

Feaver et al. (2013) have shown a sensitivity of endothelial cells to the zeroth and first 

harmonic amplitudes through the activity of various inflammatory markers including 

NF-κB, a pro-inflammatory transcription factor. Increases in Reynolds and Womersley 

numbers are also seen in mammals with increasing body size according to allometric 

scaling (Weinberg and Ethier, 2007; Dawson, 2014). Taken together with the work of 

Feaver et al. (2013), the results of this chapter clearly highlight the role of 

dimensionless numbers in the localisation of inflammation. This is shown when 

considering the effect of dimensionless numbers on vessel haemodynamics and the 

predilection sites common in each animal model. Compared to the human, small 

animal models show differences in plaque localisation with a lack of coronary lesions 
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in the mouse (Nakashima et al., 1994; Hu et al., 2005) and only modest plaque 

formations in the rabbit abdominal aorta (Fan and Watanabe, 2000). The 

hypercholesterolaemic pig, on the other hand, shows similar predilection sites to the 

human with lesions forming in the abdominal aorta and proximal segments of the 

coronary arteries (Hamamdzic and Wilensky, 2013; Al-Mashhadi et al., 2018). 

Differences in vascular tone are also regulated through the action of the endothelial 

and vascular smooth muscle cells, involving the complex action and interaction of the 

cells and several vasoactive components (Cunningham and Gotlieb, 2004; Sandoo et 

al., 2010; Mallat et al., 2017). A special mention is made of the use of angiotensin II 

because of its function in the Cheng et al. (2006) study. Here, infusion of angiotensin 

II resulted in an increased occurrence of intraplaque haemorrhages compared to the 

control group in regions upstream of the perivascular cuff. The infusion was used to 

test the hypothesis that increased blood pressure shifts the plaque type towards a more-

vulnerable composition. However, in addition to the increased average blood pressure, 

the change in vascular tone would also result in differences in the time-varying 

waveforms of pressure and flow, as explained by the pulse wave velocity. It should be 

noted that vasoactive substances such as angiotensin II do not only affect vascular tone 

and pressure waveforms but also play complex roles in the inflammatory process 

(Schmidt-Ott et al., 2000; Cunningham and Gotlieb, 2004). It remains possible that 

the shift towards the vulnerable plaque composition seen in Cheng et al. (2006) is 

largely a result of these changes to the inflammatory process.  
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Table 6.2. Mouse models of atherosclerosis and implications in terms of PWV. 

Citation Mechanism Comments Implications for PWV 

(Cheng et al., 2006) Tapering cast placed 

around the carotid 

artery 

Oscillatory shear stress region downstream of 

cast with development of a stable-looking 

plaque. Low shear stress region upstream of the 

cast with development of a vulnerable-looking 

plaque.  

Reduction in cross-sectional area 

(Mohri et al., 2014) leads to an 

increased PWV 

Changes in wave reflection properties 

at the site of cast placement  

(Cheng et al., 2006) Angiotensin 

infusion 

Shifts plaque to a more vulnerable state with 

increased number of intraplaque haemorrhages 

Vasoconstriction as a method of 

regulating flow rate leads to increased 

PWV 

(Chen et al., 2013) Tandem ligation Ruptured, vulnerable-looking and stable plaque 

types were described in the different regions of 

the carotid artery model.  

Reduction in cross-sectional area leads 

to an increased PWV 

Changes in wave reflection properties 

at the site of ligation  

(Calara et al., 2001) Ageing Observed plaque rupture and coronary 

thrombosis in long-term HFD study.  

Changes in vessel composition with 

ageing process resulting in increased 

vessel stiffness 

(Van der Donckt et 

al., 2015) 

Elastin 

fragmentation 

Spontaneous plaque rupture with several 

disease characteristics resembling human 

lesions.  

Changes in vessel composition leading 

to decreased vessel stiffness 
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6.5  Conclusions 
 

The numerical tool developed and implemented in Chapters 3 and 4 was applied to the 

perivascular cast geometry approximated from Cheng et al. (2006). The effect of 

boundary conditions on the WSS was explored through the simulation of varying body 

force signals and the dimensionless numbers governing pulsatile flow. The body force 

was modelled as a varying first harmonic amplitude with fixed Reynolds and 

Womersley numbers. The dimensionless numbers study varied the Reynolds and 

Womersley numbers while keeping the time-variation of the body force signal 

constant. The WSS was analysed in terms of its frequency composition considering its 

ability to capture all spatial and temporal details of the WSS signal.  

The conclusions of this chapter are expressed in terms of the aims set out in the 

introduction:  

1) Are the current atherosclerosis localisation metrics able to identify the 

differences in the waveform of wall shear stress with varying body force 

signal?  

The time-averaged WSS metrics showed zero sensitivity to the body force 

signal. Minute fluctuations in the OSI and RRT metrics found at the point of 

peak OSI were attributed to negligible numerical errors in the simulation.  

 

2) Are the differences in wall shear stress signal shown between regions of the 

mouse perivascular model dependent on the imposed flow boundary 

conditions?  

The wall shear stress signal computed in the perivascular cast geometry 

showed a dependence on both the frequency composition of the imposed body 

force signal and the dimensionless numbers. This dependence is shown in the 

analytical Womersley solution for pulsatile flow in a straight pipe geometry. 

Further to this, clear region-specific scaling laws were computed in the 

perivascular cast model approximated from Cheng et al. (2006) with linear 

scaling of the first harmonic amplitudes of the body force and WSS signals. A 

quadratic scaling was also found between the first harmonic amplitude of the 
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body force signal and a WSS second harmonic amplitude emerging in the 

oscillatory region downstream of the cast.  

Extension of the body force signal to the arterial pressure waveform measured 

in the mouse carotid artery (Artoli and Sequeira, 2006) showed elevations in 

the higher harmonic composition (n > 1) of WSS between the regions. This 

suggests the extension of this scaling law between the lower and higher 

harmonic components. The presence and extrapolation of these scaling laws 

means that the WSS signals can be predicted for specific geometries.  

 

Considering the results discussed here, an interesting experiment would be to study 

the effects of the vessel haemodynamics on the endothelial cells of different animals. 

This study could be performed in a hypothetical environment where the cardiac output 

of different animals could be controlled at will. In this way, mammalian endothelial 

cells could be exposed to signals of varying zeroth and first harmonic amplitudes. 

Exposing the human arterial network to the vessel haemodynamics of mice, for 

example, could be used to verify the predilection sites of atherosclerosis.  

From this chapter, it can be concluded that the WSS signal shows a region-specific 

dependence on the input body force signal and dimensionless numbers. The most 

apparent relationship between the dimensionless numbers and WSS distribution is the 

elongation of the recirculation region with increasing inertial effects. The increasing 

Womersley number also resulted in a phase delay between the body force and WSS 

signals. While the simulations do not represent any animal model or biological 

mechanism, the findings discussed here can be extrapolated to animal models as the 

increase in Reynolds and Womersley numbers is shown by allometric scaling methods. 

Chapter 7 discusses the significance of these relationships in animal models. 
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Chapter 7 

Wall shear stress in the arteries of mammals 

 

 

7. Wall shear stress in the arteries of mammals 

Abstract  
 

Considering the role of haemodynamics in plaque formation, progression, and rupture 

(Cunningham and Gotlieb, 2004; Slager et al., 2005a, 2005b; Cheng et al., 2006; 

Davies, 2009; Chiu and Chien, 2011), a complete analysis of the wall shear stress is 

essential in understanding the rupture event in humans and the absence thereof in mice 

(Zhou et al., 2001; Schwartz et al., 2007). Following allometric scaling laws, the 

difference in body mass between the mouse and human is expected to cause 

differences in the wall shear stress time-variation as a result of large differences in the 

dimensionless numbers governing fluid flow. The inflammatory response of human 

and porcine endothelial cells has also shown a sensitivity to the time-variation of the 

wall shear stress signal (Himburg et al., 2007; Feaver et al., 2013). The current chapter, 

therefore, aims to explore the hypothesis that the difference in animal size across 

mammals is related to the frequency composition of the time-varying wall shear stress.  

In the present work, simulations were performed in a straight vessel segment 

approximating the healthy common carotid artery of several different species. The 

mouse, rabbit and human models were chosen alongside hypothetical animal1 and 

animal2 models such that the body masses were equally distributed on a logscale 

between the mouse and human. The dimensionless numbers and simulation parameters 

relevant to each animal were approximated from allometric scaling laws (Dawson, 

2014). The wall shear stress signal was analysed in terms of its frequency composition 

and showed a decrease of the zeroth and first harmonic amplitudes with increasing 

animal body size. A key result of this study is the difference in scaling relationships 

computed in the zeroth and first harmonic amplitudes. This showed decreasing 

significance of the time-varying component in the signal with increasing animal body 
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size. The shear-thinning nature of blood, simulated with the Carreau-Yasuda viscosity 

model, also showed negligible significance in this relationship. Assumptions made of 

the fluid viscosity affected only the peak systolic velocity.  

Using the computed allometric scaling laws, estimation of the wall shear stress signal 

in the minipig suggests consistency with the signal found in the human. The scaling 

laws computed here show the zeroth and first harmonic amplitudes to be almost equal 

between the two species. The rare occurrence of plaque rupture in atherosclerotic 

minipigs despite haemodynamic similarities with humans, suggests the influence of 

factors other than wall shear stress in plaque rupture. This conclusion then highlights 

the significance of genomic or circumferential stretch differences between the species. 

The effects of these genomic or circumferential stretch differences may also be 

relevant in the absence of plaque rupture in the atherosclerotic mouse.  

 

7.1  Introduction 
 

Since the early 1900s, animal models have been studied extensively in order to 

formulate an understanding of atherosclerosis and its underlying mechanisms 

(Konstantinov and Jankovic, 2013). A wealth of knowledge has been gained from 

these studies with novel treatments being devised and tested for application in human 

disease. The popularity of animal models comes from the ability to control key disease 

risk factors such as diet, genetic susceptibility and environmental contributors 

(Daugherty, 2002; Lee et al., 2017). Mice do not develop atherosclerotic lesions, even 

when fed a high-fat diet (Paigen et al., 1987). Following the availability of genetically-

altered mice with a greater susceptibility to lesion development, however, the number 

of publications in the field of murine atherosclerosis has seen a remarkable increase 

(Daugherty et al., 2009). Veseli et al. (2017) provide an excellent review of mouse 

models of atherosclerosis, nicely summarising methods of disease induction and the 

resulting plaque characteristics. Getz and Reardon (2012) and Shim et al. (2016) also 

provide excellent reviews of large animal models of atherosclerosis, detailing their 

advantages and limitations.  

Hypercholesterolaemia can be induced in the mouse by the knockout of genes affecting 

cholesterol homeostasis and endocytosis of the cholesterol-rich low-density 
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lipoprotein (LDL). Deficiency of the Apolipoprotein E (ApoE) glycoprotein or LDL 

receptor by gene knockout is commonly employed in mice to cause significant changes 

in the plasma lipid profile (Piedrahita et al., 1992; Plump et al., 1992; Ishibashi et al., 

1993, 1994). This effect triggers lipid accumulation in the arterial wall. leading to 

chronic inflammatory repair processes consistent with the “response to injury” 

hypothesis presented in Ross (1993). Arterial inflammation and lipid accumulation in 

the mouse creates lesions with several similarities to human atherosclerosis; most 

importantly, in the sequential progression from xanthoma to the advanced lesion 

(Nakashima et al., 1994).  

The occlusive thrombosis is seen as the cause of clinical events in the human and so is 

key in creating a complete animal model (Chen et al., 2013). The absence of plaque 

rupture and thrombosis, therefore, forms a major limitation of murine models of 

atherosclerosis (Zhou et al., 2001; Schwartz et al., 2007; Bentzon and Falk, 2010; Finn 

et al., 2010; Bentzon et al., 2014). It is important to note that the work in this PhD will 

adhere to the terminology defined in Schwartz et al. (2007) in which plaque rupture 

refers only to situations where disruption of the fibrous cap leads to exposure of the 

necrotic core. The superimposed thrombosis then forms from the exposure of 

thrombogenic material in the necrotic core to blood flow. A matter of particular interest 

to this PhD is the absence of rupture and occlusive thrombosis in mice, even in lesions 

resembling the rupture-prone thin-cap fibroatheroma (TCFA) seen in humans.  

Computational fluid dynamics studies and allometric scaling arguments have shown 

the magnitudes of the time-averaged wall shear stress (TAWSS) to be twenty-times 

higher in the mouse than in the human (Greve et al., 2006; Suo et al., 2007; Weinberg 

and Ethier, 2007; Cheng et al., 2007). This is an interesting observation as, despite the 

differences in TAWSS magnitude, the vascular networks of mice still show 

localisation of plaques to regions predicted by relatively low and oscillatory shear 

stress (Suo et al., 2007). Given the difference in vessel size and heart rate with animal 

size, the Reynolds and Womersley numbers that are key in defining fluid flow are also 

expected to vary greatly between animals (Suo et al., 2007; Weinberg and Ethier, 

2007; Trachet et al., 2009). Variability in the blood aggregation properties and 

flexibility of red blood cells also causes differences in blood viscosity between species 

(Windberger et al., 2003; Windberger and Baskurt, 2007). A change to the frequency 
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composition of the wall shear stress (WSS) signal then becomes clear when 

considering fluid flow to be more inertial and pulsatile in larger animals. The 

differences in WSS signal frequency composition between animals presents an 

interesting research topic given their importance to the expression of inflammatory 

markers (Himburg et al., 2007; Feaver et al., 2013). 

Hypothesis and aims:  

The current chapter explores the hypothesis that the difference in animal size across 

mammals is related to the frequency composition of the time-varying wall shear stress. 

The following aims were set out to test the hypothesis:  

1) Are there similarities/differences in the frequency composition in the control 

vessel of animals of different body size?  

2) Is the viscosity model relevant to the computed wall shear stress signals in the 

common carotid artery?  

 

7.2  Methods  
 

To better understand the local haemodynamics in the arteries of mammals, simulations 

were performed in straight pipe segments approximating the healthy common carotid 

artery in five different animal models. The dimensionless numbers defining the flow 

conditions in each animal model were approximated from the animal body weight 

using allometric scaling laws (Dawson, 2014). Viscosity model parameters were also 

approximated from the animal body weight using an assumed linear scaling 

relationship. 

7.2.1 Allometric scaling  
 

Between mammals, variation of haemodynamic parameters has previously been 

shown to occur in relation to the animal body mass through allometric scaling. A key 

result of this scaling theory is the idea that the cardiovascular system of all mammals 

follows the same general “design” (West et al., 1999; Dawson, 2014). The design 

appears to be optimized to account, most importantly, for the animal’s body size. From 

an engineering perspective, an increasing body size demands a larger heart as a greater 

volume of blood needs to be pumped a greater distance to reach the organs. In larger 
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mammals, the greater heart size means an increased blood volume in the ventricles and 

so, a greater amount of time is required in each contraction to clear the fluid. This is 

reflected in the decreasing heart rate with increasing body size. The larger body sizes 

also demand greater vessel lengths. From the Hagen-Poiseuille equation, the greater 

vessel lengths result in an increased vascular resistance. Again, considering the Hagen-

Poiseuille equation, the vessel radius can be used as a mechanism of regulating this 

undesirable increase in vascular resistance.  

The logic-based arguments presented here were shown experimentally to follow 

scaling laws in the cardiac mass (Prothero, 1979), heart rate (Westerhof, 1994) and 

vessel diameter (Holt et al., 1981). An interesting result is that the scaling relationships 

also satisfy the metabolic demands of the animal through the heart rate parameter 

(Schmidt-Nielsen, 1984; Westerhof and Elzinga, 1993) while maintaining a 

turbulence-free environment through regulation of the Reynolds number. 

Combinations of the base parameters discussed here are used in allometric scaling 

arguments to determine the relationships between several other parameters and the 

body mass  (Weinberg and Ethier, 2007).  

Measurements of haemodynamic parameters, such as the WSS, can then be 

extrapolated between animals of different species without the need for invasive 

measurements (Greve et al., 2006; Weinberg and Ethier, 2007). These relationships 

are defined through allometric scaling laws:  

 𝑓 = 𝑎𝑐𝑀𝑏 (7.1) 
 

where the parameter of interest 𝑓 is given in terms of the animal body mass 𝑀, the 

body mass exponent 𝑏 and a constant 𝑎𝑐.  

The allometric scaling laws were employed here to estimate values of the 

dimensionless numbers relevant to each animal model. As discussed in Section 4.5, 

the dimensionless numbers form a key set of parameters in simulation studies as they 

govern the nature of fluid flow. Dynamic similarity between simulations and the 

physical case is also necessary to ensure that simulations are representative of flow in 

the arteries.  
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Five simulation cases were used with animal body masses chosen to be equally 

distributed on a logscale between the mouse and human parameters (Table 6.1). These 

simulation cases include the mouse, rabbit and human and hypothetical animal models 

termed “animal ” and “animal ”. All values relevant to the mouse and human were 

computed from physical parameters obtained from the literature. The Reynolds and 

Womersley numbers were computed in Section 4.5 and used to calculate the constants 

and body mass exponents for the dimensionless numbers. The body mass exponents 

of the Reynolds number and Womersley number were computed as 0.30 and 0.19 

respectively. The body masses of the animals were then used to estimate values of the 

Reynolds number and Womersley number for use in each simulation model.  

Scaling arguments commonly assume a constant viscosity model by considering the 

high shear rate numbers present in the aorta (Section 4.5). Given the uncertainty in the 

literature regarding the validity of a constant viscosity assumption (Section 2.5), the 

simulations performed here will employ the Carreau-Yasuda viscosity model 

(equation 2.17). A comparison of model parameters between the mouse and human, 

however, shows differences in the asymptotic limits of each viscosity model. This is 

explained by the varying aggregation and flexibility properties between the mouse and 

human red blood cells (Amin and Sirs, 1985; Windberger et al., 2003; Windberger and 

Baskurt, 2007). While the low shear rate viscosity data provided Windberger and 

Baskurt (2007) showed no correlation with animal body mass, a linear scaling law was 

applied here in order to estimate the viscosity model parameters. Each parameter of 

the Carreau-Yasuda viscosity model was estimated by linear interpolation between the 

mouse (Vogel et al., 2003; Windberger et al., 2003) and human (Boyd et al., 2007; 

Bernabeu et al., 2013) parameter sets. The resulting viscosity-shear rate relationships 

are shown in Figure 7.1 with the parameters being presented in physical units in Table 

7.2. 
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Table 7.1. Dimensionless numbers based on the allometric scaling laws discussed 

above. The Reynolds number, Re, and Womersley number, α, were approximated 

from the allometric scaling laws using the animal body mass M. Simulation parameters 

of spatial, Δx, and temporal, Δt, resolution were computed according to the 

dimensionless numbers. Hypothetical animal models, animal1 and animal2, were 

created to achieve equal distribution of animal body masses between the mouse and 

human on a logscale.  

Animal Body mass M [kg] Re α Δx [mm] Δt [μs] 

 

mouse 

 

0.025 

 

105 

 

0.96 
 

0.01225 

 

1.15 

animal1 1 323 1.96 0.0311 2.87 

rabbit 3.5 472 2.49 0.0329 3.17 

animal2 20 803 3.48 0.331 2.84 

human 75 1200 4.49 0.025 2.50 

 

Table 7.2. Viscosity model parameters based on the allometric scaling laws 

discussed above. A linear interpolation between literature-based values of the mouse 

and human viscosity models was performed by body mass to obtain viscosity 

parameters. A description of viscosity model parameters is given in Section 2.5. 

Hypothetical animal models, animal1 and animal2, were created to achieve equal 

distribution of animal body masses between the mouse and human on a logscale. 

Animal Body mass M 

[kg] 

𝜇0 

[mPa.s] 

𝜇∞ 

[mPa.s] 

𝜆 [s] 𝑚 𝑎 

 

mouse 

 

0.025 

 

14.5 

 

3.265 

 

0.1839 

 

0.5864 

 

2.707 

animal1 1 16.4 3.268 0.2881 0.5890 2.680 

rabbit 3.5 21.2 3.276 0.5554 0.5957 2.611 

animal2 20 53.3 3.328 2.320 0.6399 2.156 

human 75 160 3.5 8.2 0.7872 0.64 
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Figure 7.1. Viscosity model parameters were estimated using an assumed 

linear scaling law between the mouse and human parameters. The body 

mass, M, was used in a linear interpolation for values of each viscosity model 

parameter in the Carreau-Yasuda viscosity model.   

 

7.2.2 Simulation setup  
 

The simulation setup was largely similar to that used in Chapter 5 with key differences 

being the choice of parameters. Models were defined according to each animal body 

mass with the dimensionless numbers calculated from the allometric scaling 

relationships discussed above. The lattice resolution and lower limit of the relaxation 

parameter were then chosen such that the peak axial velocity in a simple pipe geometry 

would not exceed 0.07 in lattice units. These considerations were made in order to 

minimise errors resulting from the truncation of equilibrium populations (equation 

3.5). The resulting parameter sets are given in Table 6.1. 

Viscosity model parameters were computed in physical units using the scaling 

relationship as described above (Table 7.2). Following the unit conversion step, 

viscosity model parameters were obtained in lattice units for use in the simulation. The 

viscosity model parameters were then fed into the Python script discussed in Section 

4.3 to compute values of the local viscosity as a function of the first-order momentum 

flux tensor.  
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Solid boundaries were treated with the standard bounceback approach detailed in 

Section 3.2. The periodic boundary condition was employed at the inlet and outlet 

boundaries alongside a time-varying body force term applied at all lattice sites. The 

frequency composition of the body force term was obtained from a curve-fitting 

method using the normalised pressure profile measured in the healthy mouse carotid 

artery (Artoli and Sequeira, 2006). Consistency of the pressure waveform was assumed 

across all models given the similarity of flow and pressure waveforms in the ascending 

aorta of different animals (Noordergraaf et al., 1979). The body force term was 

obtained by multiplying the frequency composition with a body force amplitude 

derived from the Newtonian assumption and the analytical solution of velocity.  

7.2.3 Simulations performed  
 

All simulations were performed in the straight pipe geometry with constant radius.  

Preliminary simulations were performed to study the effects of an increasing 

Womersley number on the WSS signal. A sinusoidal body force term was 

implemented with each simulation having a different period of oscillation to model 

flows with varying Womersley number.  

Simulations were performed with the Newtonian and non-Newtonian viscosity models 

in each animal model. The dimensionless numbers were varied to capture features of 

blood flow relevant to the common carotid artery.  

As in Chapter 5, simulations were terminated once the velocity profile measured at the 

geometry axial centre had converged with the profiles measured in the previous pulse 

period (equation 3.14). The convergence criterion for this termination event was set to 

10-5. Once the criterion had been satisfied, the simulation would run for one more pulse 

period to compute and write all desired observables. Frequency analysis of the WSS 

signal was performed on the axial component of the circumferentially averaged 

traction vector (Section 2.4).   
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7.3  Results  
 

Each animal model was analysed in terms of the circumferentially-averaged traction 

vector, both in relation to the time-averaged shear metrics and its instantaneous value 

over the pulse period. A comparison of the frequency composition of the instantaneous 

values was also performed to identify any potential differences in the time-varying 

nature of the WSS between the animal models of disease. The reader is referred to 

Section 2.4 for an overview of the Fourier series amplitude and phase components.  

7.3.1 Effects of increasing Womersley number  
 

Preliminary simulations into the effects of the Womersley number on the flow field 

were performed in a simple pipe geometry. Control of the Womersley number was 

achieved through variation of the pulse period T with a sinusoidal body force profile. 

A known result of the increasing Womersley number is the phase lag between the WSS 

and body force signals. This result is clear from the definition of the Womersley 

number (4.14) as increasing frequencies of pulsation mean shorter times for the 

development of the parabolic velocity profile. Further to this, the simulations 

performed here also showed a decrease in the first harmonic amplitude in the WSS 

signal with increasing Womersley number (Figure 7.2). The effect can also be 

explained by the decreased period of oscillation preventing the full development of the 

parabolic velocity profile. The decreased first harmonic amplitude is then clear from 

the reduction in wall shear rate. 
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 (a) 

 

(b) 

 

Figure 7.2. First harmonic (a) amplitude and (b) phase of the wall shear 

stress signal computed in preliminary studies into the effect of the 

Womersley number. A sinusoidal body force was simulated in a simple pipe 

of constant radius. The Womersley number 𝛼 was varied through control of 

pulse period T. Increasing the Womersley number resulted in a decrease of first 

harmonic amplitude with an increasing phase delay between the body force 

signal and the resulting wall shear stress signal. 
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7.3.2 Peak systolic velocity 
 

The allometric scaling arguments of Schmidt-Nielsen (1984) and Weinberg and Ethier 

(2007) show consistency of the peak systolic velocity among all mammals. This was 

found in experimental measurements taken in the mouse and human aortas in Lacy et 

al. (2001) and Khir et al. (2001), respectively. Simulations performed in this study 

also support the allometric scaling argument with a near-zero body mass exponent. 

The computed velocities were also approximately constant around 0.7 ms-1 (Figure 

7.3), showing good agreement with the velocities measured in the literature.  

As with the steady flow simulations shown in Figure 4.9, the use of the Carreau-

Yasuda viscosity model showed an approximately 10% decrease in peak velocity 

relative to the Newtonian viscosity assumption. This result was consistent across all 

animals. The near-zero body mass exponent was also found with the Newtonian 

viscosity assumption suggesting the use of a constant viscosity approximation to be 

valid in pulsatile flow through a simple pipe geometry.  

 

Table 7.3. Allometric scaling parameters for the peak systolic velocity computed 

using the Newtonian and Carreau-Yasuda viscosity models. Viscosity model 

parameters were obtained assuming a linear interpolation of viscosity model 

parameters between those available in the literature for the mouse and human. 

Simulation Reynolds and Womersley numbers were obtained from allometric scaling 

laws derived from the values computed for the mouse and human. Consistency of the 

body mass exponents with both the Newtonian and non-Newtonian viscosities suggest 

that blood can be modelled as a Newtonian fluid. 

 
 

𝑎𝑐  

 

𝑏 
 

R2 

 

Newtonian 

 

0.6927 

 

-0.03 

 

0.95 

Non-Newtonian 0.7853 -0.019 0.94 
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Figure 7.3. Allometric relationship of animal body mass with the peak 

systolic velocity computed from the Carreau-Yasuda viscosity model. The 

body mass exponent was computed from simulation results as b = -0.03 with 

R2 = 0.95. Simulations were performed in the control vessel with the Reynolds 

and Womersley numbers computed through allometric scaling laws and the 

viscosity model parameters being estimated from a linear scaling relationship. 

The small body mass exponent and approximate consistency of the velocity 

around 0.7 ms-1 indicate simulation validity.  

 

7.3.3 Time-averaged wall shear stress  
 

The body mass exponent of the time-averaged wall shear stress (TAWSS) computed 

from the allometric scaling arguments is -0.375 (Weinberg and Ethier, 2007). Greve 

et al. (2006) show strong agreement with these results from magnetic resonance 

imaging data in the mouse, rat, dog and human. The body mass exponent of the 

TAWSS computed from simulations performed here was -0.3 (Figure 7.4 and Table 

7.4). The slight difference in value is attributed to the difference in the body mass 

exponent of the Reynolds and Womersley numbers between allometric scaling 

arguments and those used in the simulations performed here. The exponents used here 

were interpolated from the Reynolds and Womersley numbers computed in the mouse 

and human carotid arteries in Section 4.5. The viscosity model showed negligible 

effect on the TAWSS with the same body mass exponents being computed from 

Newtonian and Carreau-Yasuda models.  
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From a physical perspective, the decrease in TAWSS with increasing animal size 

shown in Figure 7.4 is entirely expected. This is most clear if looking at the Newtonian 

viscosity assumption where there is a constant peak velocity across mammals. A 

constant peak velocity while increasing the vessel radius results in decreased 

magnitudes in the shear rate profiles. Following from the definition of the WSS (2.8), 

the lower shear rates result in lower shear stresses.  

 

Table 7.4. Allometric scaling parameters for the time-averaged wall shear stress 

computed using the Newtonian and Carreau-Yasuda viscosity models. Viscosity 

model parameters were obtained assuming a linear interpolation of viscosity model 

parameters between those available in the literature for the mouse and human. 

Simulation Reynolds and Womersley numbers were obtained from allometric scaling 

laws derived from the values computed for the mouse and human. 

 
 

𝑎𝑐  

 

𝑏 
 

R2 

 

Newtonian 

 

5.1637 

 

-0.3 

 

1 

Non-Newtonian 5.1392 -0.3 1 

 

 

Figure 7.4. Allometric relationship of animal body mass with the time-

averaged wall shear stress (TAWSS) computed from the Carreau-Yasuda 

viscosity model. The body mass exponent was computed from simulation 

results as b = -0.3 with R2 = 1. Simulations were performed in the control vessel 

with the Reynolds and Womersley numbers computed through allometric 

scaling laws and the viscosity model parameters being estimated from a linear 

scaling relationship.  
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7.3.4 Frequency composition 
 

The body mass exponent of the first harmonic amplitude was computed from the 

simulations performed here as -0.41 (Figure 7.5 and Table 7.5). This forms a key result 

of the control vessel simulations as the body mass exponents of the zeroth (TAWSS) 

and first harmonic amplitudes are different. The difference in body mass exponents 

shows that, relative to the TAWSS values in each animal, the first harmonic amplitude 

decreases in significance in the WSS signal with increasing animal size. This is clear 

from the ratios of first harmonic amplitude and TAWSS values taken at specific body 

masses. Simulations into the effects of increasing Womersley number (Section 7.3.1) 

also support this difference as the purely sinusoidal body force resulted in a 

consistently near-zero TAWSS while showing a decreasing first harmonic amplitude 

(Figure 7.2).  

The difference in body mass exponents is in agreement with the allometric scaling 

arguments of Weinberg and Ethier (2007). The body mass exponent of the temporal 

gradient of WSS was computed in Weinberg and Ethier (2007) as -0.625 as the ratio 

of the TAWSS and pulse period body mass exponents. The temporal gradient of WSS 

is defined as the rate of change of WSS from minimum to maximum within a pulse 

period. In comparison with the allometric scaling arguments of other parameters, the 

argument for the temporal gradient serves as a weak approximation for the body mass 

exponent. This is acknowledged in Weinberg and Ethier (2007) as the temporal 

gradient of shear stress varies non-linearly with the Womersley number.  

Normalisation of the signals with respect to the first harmonic amplitude showed 

consistency of the higher frequency components between all animals. This forms 

another key result of the study as it shows the body mass exponent of the first harmonic 

amplitude to be equal to that of all harmonic components, and therefore, also to the 

temporal gradient. The difference between the body mass exponent presented in 

Weinberg and Ethier (2007) and that computed here may be explained by the 

Womersley number effect discussed above and the difference in dimensionless 

number body mass exponents discussed in Section 7.3.3. 

As in Figure 7.2, the first harmonic phase becomes increasingly negative with 

increasing body mass. This is attributed to the increasing Womersley number and 
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shows an increasing time delay between the body force and WSS signals. The first 

harmonic phase also showed negligible difference between the Newtonian and non-

Newtonian viscosity models.  

Interestingly, following a comparison of the allometric scaling parameters (Table 7.5), 

the viscosity model was also found to be insignificant in the first harmonic amplitude 

calculation. This suggests the near-wall shear rate to not be affected by the shear-

thinning nature of blood.  

Table 7.5. Allometric scaling parameters for the first harmonic amplitude 

computed using the Newtonian and Carreau-Yasuda viscosity models. Viscosity 

model parameters were obtained assuming a linear interpolation of viscosity model 

parameters between those available in the literature for the mouse and human. 

Simulation Reynolds and Womersley numbers were obtained from allometric scaling 

laws derived from the values computed for the mouse and human. 

 
 

𝑎𝑐  

 

𝑏 
 

R2 

 

Newtonian 

 

0.6168 

 

-0.408 

 

0.99 

Non-Newtonian 0.6069 -0.410 0.99 

 

 

Figure 7.5. Allometric relationship of animal body mass with the first 

harmonic amplitude computed from the Carreau-Yasuda viscosity model. 

The body mass exponent was computed from simulation results as b = -0.408 

with R2 = 0.99. Simulations were performed in the control vessel with the 

Reynolds and Womersley numbers computed through allometric scaling laws 

and the viscosity model parameters being estimated from a linear scaling 

relationship. 
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7.4  Discussion 
 

The current chapter explores the hypothesis that body size in mammals is related to 

the frequency composition of the WSS signal. A key issue in atherosclerosis research 

is the rarity of plaque rupture and thrombosis in animal models of the disease, limiting 

studies into plaque instability. The differences in these plaque characteristics are 

explored here in terms of the wall shear stress signal given its role in the inflammatory 

response of endothelial cells (Himburg et al., 2007; Feaver et al., 2013).  

Further to the allometric scaling of the TAWSS (Greve et al., 2006; Weinberg and 

Ethier, 2007), simulations performed in the control vessels also showed an allometric 

scaling relationship of the first harmonic amplitude. This forms an interesting result of 

this chapter as the relative difference between the scales indicates decreasing 

significance of the time-varying component in the WSS signal. While this result is also 

suggested by the allometric scaling arguments of Weinberg and Ethier, (2007), the 

body mass exponents computed in the present study also account for the non-linear 

scaling of shear rates with the Womersley number. As the signal was computed in the 

control vessel model, the simulations performed here represent the WSS in a healthy, 

non-diseased vessel. The importance of this decreasing significance to the endothelial 

response, however, is unknown and presents an interesting avenue for future work. 

The approximate consistency of the body mass exponents between the Newtonian and 

non-Newtonian viscosity models showed the constant viscosity assumption to be valid 

in simulating blood flow in straight channels. The effect of the viscosity model was 

only shown in the peak axial velocity and shows negligible importance in the study of 

WSS. This finding is also supported considering the high shear rate numbers (Section 

4.6) of 1050 and 3827 computed in the mouse and human, respectively.  

A key result of the scaling laws presented in this chapter is the similarities in the zeroth 

and first harmonic amplitudes between those computed in the human and estimated in 

the minipig model. The body mass of the minipig was taken to be 50 kg. Simulations 

in the control models also suggest consistency in the higher harmonics (n > 1) between 

the two species. From this, the WSS signals can be considered to be equal between the 

minipig and human. A potential future study is the comparison of the inflammatory 

response of these animals in an in vitro application of the “healthy” WSS waveform. 
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A clear effect of genomic differences between species would be shown if the 

endothelial response of the minipig and human cells were different under an 

approximately identical WSS waveform. The genomic differences would then provide 

an explanation for the lack of fatal rupture in the minipig (Getz and Reardon, 2012; 

Shim et al., 2016; Veseli et al., 2017), and by extension, in the atherosclerotic mouse.  

A recent finding of great interest in this discussion is the localisation of vulnerable-

looking plaques to regions of low and oscillatory shear stress in the minipig 

(Hoogendoorn et al., 2018) and human (Timmins et al., 2017) coronary arteries. 

Simulations preformed in Hoogendoorn et al. (2018) showed regions of low and 

oscillatory WSS to coincide with regions of highly-vulnerable plaques with signs of 

intraplaque haemorrhage, calcification and previous non-fatal plaque rupture. A 

similar pattern of disease progression was found in the human coronary arteries with 

plaques shifting to a more vulnerable-looking composition in regions of low and 

oscillatory shear stress (Timmins et al., 2017). The significance of this result is clear 

when considering the reversal of this localisation pattern in the mouse perivascular 

cast model of Cheng et al. (2006). This pattern reversal is currently believed to be due 

to the mechanical interference caused by cast placement. An alternative explanation 

based on the findings of this thesis, however, is the effect of the decreased significance 

of the time-varying component in the minipig and human compared to the mouse.  

Plaque rupture in the literature  

An observation from the literature is the lack of extensive intraplaque 

neovascularisation in the atherosclerotic mouse model (Getz and Reardon, 2012; 

Veseli et al., 2017). Formation of the thin-walled microvessels leads to the 

extravasation of red blood cells and intraplaque haemorrhage (Chistiakov et al., 2015). 

The cholesterol released from RBC phagocytosis also leads to the formation of 

cholesterol crystals in the plaque core (Kolodgie et al., 2003) while the released 

haemoglobin creates a stronger oxidative environment (Potor et al., 2013). These 

factors all contribute greatly to plaque instability (Virmani et al., 2005). When 

considering plaque hypoxia to be a driving factor in intraplaque neovascularisation 

(Sluimer et al., 2009), it is clear that plaque size is a key regulator of this mechanism. 

As the plaque size is limited by the vessel size, it then follows that neovascularisation 
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is governed by the animal vessel size, thereby providing an explanation of the lack of 

neovessel formation in the mouse and rabbit. It should be noted, however, that the 

atherosclerotic minipig model also rarely shows plaque rupture (Getz and Reardon, 

2012; Shim et al., 2016; Veseli et al., 2017).  

The occurrence of plaque rupture and thrombosis has also been debated in the 

literature. Bond and Jackson (2011) argue that absence of the thrombosis in mouse 

models does not definitively prove the absence of its formation, but instead, may be 

due to the clearance of the thrombosis by pressure perfusion or fibrinolytic processes. 

Despite this argument, the current consensus is that plaque rupture and thrombosis are 

extremely rare in mice. The advanced plaque characteristics and rupture have, 

however, been triggered by mechanical injury (Sasaki et al., 2006), increased 

circumferential stress (Chen et al., 2013) and genetic manipulation further to the ApoE 

knockout (Gough et al., 2006; Van der Donckt et al., 2015). Gough et al. (2006) and 

Van der Donckt et al. (2015) achieve plaque rupture by overexpression of matrix 

metalloprotease-9 and mutation of the fibrillin-1 gene, respectively. These 

mechanisms result in elastin degradation in the extracellular matrix and cause rupture 

by thinning of the fibrous cap. The applicability of these mechanisms to human 

atherosclerosis is currently unclear.  

Study limitations 

The major limitation of the current study is the assumption of fully-developed flow in 

the animal carotid arteries. Blood flow in the carotid arteries is known to be largely 

multidirectional with circumferential components of velocity arising from the 

curvature of the aortic arch and the twisting of the left ventricle in contraction 

(McMillan, 1985). This multidirectional flow behaviour results in axial and 

circumferential components of the tangential traction vector. The interpretation of this 

information in the frequency domain requires further work, as discussed in Section 

2.5.  

The high Reynolds number and branching from the aortic arch also causes a skewing 

of the carotid artery velocity profile (Ford et al., 2008). In a comparison of inlet flow 

boundary conditions, Hardman et al. (2013) showed a great sensitivity to the 

assumption of fully-developed flow with the skewed velocity profiles producing more 
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complex flow streamlines when compared to the Womersley solution velocity profiles. 

Despite this sensitivity, the assumption of fully-developed flow was made given the 

absence of the complete three-component velocity inlet data and the complexity 

associated with WSS signal analysis.  

While the absolute values of the zeroth and first harmonic amplitudes may be affected 

by the multidirectional nature of flow, the result of a decreasing zeroth and first 

harmonic amplitude with increasing animal size is expected to remain valid. The 

decrease is explained by the increasing radius and consistency of the peak systolic 

velocity between animals which causes the decrease of near-wall shear rates. It then 

follows that the result of the decreasing significance of the time-varying components 

in the WSS signal is also valid. 

The approximation of viscosity model parameters from a linear interpolation forms a 

limitation of this study. This assumption was made necessary by a lack of Carreau-

Yasuda viscosity model data in the rabbit and hypothetical animal models. A change 

in the properties of the viscosity transition were also expected between the animals 

given the difference found between the mouse and human parameter sets. The choice 

of parameters, however, was found to be irrelevant in the simulation of a pipe segment 

as the viscosity model showed negligible effects on the computed WSS.  

 

7.5  Conclusions 
 

The numerical tool developed and implemented in Chapters 3 and 4 was applied to 

several animals to identify any differences in the local haemodynamics between the 

mouse and human. The different animal models were specified through the choice of 

dimensionless numbers obtained from allometric scaling laws. The “healthy” non-

diseased vessels were modelled as a pipe segment of constant radius and the effect of 

the non-Newtonian viscosity model was investigated. Given the importance of the 

WSS time-variation in the inflammatory response, simulations were performed here 

to test the hypothesis that the signal’s frequency composition is related to the animal’s 

body size.   
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The conclusions of this chapter are expressed in terms of the aims set out in the 

introduction:  

1) Are there similarities/differences in the frequency composition in the control 

vessel of animals of different body size?  

The WSS signals computed in the control vessels of animals of increasing body 

size show clear differences in the frequency composition. 

In addition to known differences in the TAWSS, simulations performed here 

also showed a decrease in the first harmonic amplitude with increasing animal 

body size. An allometric scaling law was computed from this decrease with a 

body mass exponent different to that of the exponent computed for the 

TAWSS. The difference in exponent shows the time-varying nature of the 

signal to become more pronounced in the waveform of larger animals. 

 

2) Is the viscosity model relevant to the computed wall shear stress signals in the 

common carotid artery?  

Negligible differences were found in the zeroth and first harmonic amplitudes 

between the Carreau-Yasuda and Newtonian viscosity models. Negligible 

differences were also found in the first harmonic phase components between 

the viscosity models.  

A 10% decrease in the peak systolic velocity was found in the Carreau-Yasuda 

simulations of all animals relative to the Newtonian assumption, similar to that 

of the steady flow numerical solutions (Figure 4.9).  

For the purposes of atherosclerosis studies in a straight vessel segment, the use 

of a constant viscosity assumption was found to be valid.  

 

From this chapter, it can be concluded that the frequency composition of the WSS 

signal is dependent on the animal body size. An interesting note here is that the time-

variance of the signal becomes more significant with increasing animal size. While the 

frequency component amplitudes are expected to vary within each animal (Cheng et 

al., 2007a), the result is expected to be relevant throughout the arterial network of the 

animal. An exploration of this decreasing significance on the inflammatory response 
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of different animals would be key in furthering an understanding of the differences 

between species.  

A key conclusion of this study is also the apparent significance of genomic and 

circumferential stretch differences in plaque rupture between the species. The scaling 

laws computed here show consistency of the local haemodynamics between the human 

and minipig models. The rare occurrence of plaque rupture in the atherosclerotic 

minipig despite this similarity in WSS then suggests the influence of factors other than 

the WSS in plaque rupture. The known genomic and circumferential stretch 

differences between the animal species may provide an explanation here to the lack of 

plaque rupture in animal models. 
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Chapter 8 

Conclusions 

 

 

8. Conclusions 
 

The current chapter presents the conclusions of this PhD. An overview of the key 

motivations is, first, provided in Section 8.1 to orientate the reader. Section 8.2 then 

discusses the conclusions with regard to specific aims and their relevance to the 

scalability of mouse and human atherosclerosis. The future directions emerging from 

this PhD and the simulation technical details are given in Sections 8.3 and 8.4 

respectively. Finally, the key findings of the study are summarised in Section 8.5.  

 

8.1  Summary of key motivations 
 

Atherosclerosis is an inflammatory condition by which lipid-laden foam cells 

accumulate in the intimal layer of a blood vessel (Lusis, 2000; Weissberg, 2000). The 

infiltration of low-density lipoproteins into the subendothelial space serves as a 

stimulus for blood-borne monocyte extravasation (Poole and Florey, 1958). 

Differentiation of the monocytes into macrophages causes migration of smooth muscle 

cells into the intimal layer (Niu et al., 2016). Uptake of the lipoproteins by 

macrophages and the now-intimal smooth muscle cells leads to the growth of an 

intimal lipid deposit. This inflammatory process, under persistent stimulus, results in 

the formation of the atherosclerotic plaque (Ross, 1993).  

Rupture of the atherosclerotic plaque leads to exposure of the underlying 

thrombogenic material and the formation of an occlusive thrombosis. This is a key 

cause of clinical events in the human. The rarity of plaque rupture and thrombosis, 

therefore, is a major limitation of atherosclerotic mouse models (Zhou et al., 2001; 

Schwartz et al., 2007; Bentzon and Falk, 2010; Finn et al., 2010; Bentzon et al., 2014). 

Given the popularity of murine models in atherosclerosis research, an explanation for 

the lack of rupture in the atherosclerosis-prone mouse is keenly sought in order to 
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gauge the applicability of insights gained from the mouse to human disease. Future 

treatments may also benefit from this explanation as it clarifies which components of 

cell function need to be controlled in order to induce a situation similar to that seen in 

the mouse where the heart attack and stroke are extremely rare. This need for 

understanding serves as the key motivation for this PhD.  

Plaque formation has shown a clear predilection for vessel segments coincident with 

low and oscillatory wall shear stress (Caro et al., 1971; Ku et al., 1985; Himburg et 

al., 2004). Endothelial cells lining the vessel wall have also shown a shift towards the 

proinflammatory state in response to these wall shear stresses. Davies (1995), Malek 

et al. (1999), Cunningham and Gotlieb (2004) and Chiu and Chien (2011) provide 

excellent reviews of this field. In a study of particular importance to this PhD, Cheng 

et al. (2006) found the composition of the atherosclerotic plaque to be dependent upon 

the pattern of wall shear stress in atherosclerosis-prone mice. Plaque composition is of 

key relevance to this work as it determines the stress threshold beyond which plaque 

rupture occurs (Virmani et al., 2000; Slager et al., 2005a, 2005b; Schwartz et al., 2007; 

Finn et al., 2010; Bentzon et al., 2014). The work of this PhD, therefore, explores the 

vessel haemodynamics in mice and humans as a potential explanation for the lack of 

plaque rupture in atherosclerotic mice. Interestingly, Himburg et al. (2007) and Feaver 

et al. (2013) demonstrated a sensitivity in the expression of inflammatory markers to 

the frequency composition of the wall shear stress, now considered as a time-varying 

signal. This PhD addressed the hypothesis that the frequency composition of the wall 

shear stress signal is associated to the different plaque compositions and disease 

characteristics in animal models of atherosclerosis.  

 

8.2  Conclusions with respect to individual aims 
  

A number of aims were set out in the introduction in order to test this hypothesis. The 

conclusions of this PhD are expressed in terms of these aims:  

1) Are differences in the wall shear stress frequency composition present across 

different surgically manipulated mouse models of atherosclerosis?  

Simulations performed in Chapter 5 showed that the use of surgical 

manipulations in published mouse models of atherosclerosis created clear 
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reductions in the zeroth and first harmonic amplitudes along the length of the 

manipulated vessel. A proinflammatory condition was also suggested by the 

out-of-phase stress-strain relationship found in the simulations (Qiu and 

Tarbell, 2000; Torii et al., 2009; Amaya et al., 2015; Sinha et al., 2016).  

Regions coincident with plaques resembling the human thin-cap fibroatheroma 

or the stable-looking cellular plaque in the Cheng et al. (2006) study showed 

different frequency compositions with elevation of the third harmonic 

amplitude in the region showing the cellular plaque type. Simulation of the 

Chen et al. (2013) tandem ligation, however, showed consistency of the signal 

among the regions coincident with different plaque compositions. The 

contrasting findings between the two studies may be explained by the different 

mechanical stresses induced by each surgical manipulation. The mechanical 

stresses discussed here refer to constraint effects and the circumferential stretch 

induced by the pressure waveform. The regions of the different plaque 

compositions also showed a clear segmentation according to the vessel 

mechanical stresses.  

The present work highlights the importance of mechanical stresses in plaque 

composition and is a key result of this study. Differences in the mechanical 

stresses mean that there is a lack of comparability between the various 

published models of surgical manipulation in mouse atherosclerosis.  

Relevance to the comparison of human and murine atherosclerosis: 

The dependence of plaque characteristics on the mechanical stresses arising 

from surgical manipulation is shown in the present work. The perivascular 

device also causes a mechanical constraint on the vessel wall and induces a 

proinflammatory response (Tanaka et al., 2003). Considering the absence of 

surgical manipulation in human atherosclerosis, it then follows that there is an 

entirely different mechanical and inflammatory environment in the mouse and 

human. This suggests a poor scalability of the insights gained from surgically 

manipulated models of murine atherosclerosis to the human disease. 

An interesting observation from the literature is the opposite localisation 

pattern in minipig (Hoogendoorn et al., 2018) and human (Timmins et al., 

2017) coronary arteries to that found in the surgically manipulated mouse 
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model (Cheng et al., 2006). The minipig and human coronary arteries were 

devoid of any manipulation and showed localisation of the thin-cap 

fibroatheroma and stable-looking plaque type to regions of oscillatory shear 

stress and low shear stress, respectively. The opposite pattern of localisation is 

found in the mouse tapering cast model of Cheng et al. (2006). The conclusion 

drawn from the present work is supported by this finding as the opposite 

localisation pattern suggests the effect of differences in the mechanical 

environment between surgically manipulated and unmanipulated vessels. 

Genomic differences between the species may also play a role in the opposite 

localisation pattern.  

 

2) Are the differences in wall shear stress seen between the regions of the 

perivascular tapering cast mouse model dependent on the input waveforms of 

pressure? 

Simulation of simple pressure waveforms in the tapering cast geometry 

(Chapter 6) showed clear region-specific scaling relationships between the 

frequency compositions of pressure and wall shear stress signals.  

The imposed body force waveform consisted of a single harmonic component. 

Linear relationships were found between the first harmonic amplitudes of the 

wall shear stress signal and the imposed body force waveform. A second 

harmonic component was found in the oscillatory region with its amplitude 

given by a quadratic relationship with the body force first harmonic amplitude. 

Emergence of the second harmonic amplitude in the oscillatory shear stress 

region from a simple body force signal input provides a basis for differences 

in the higher harmonics seen with the complex waveforms measured in the 

healthy carotid artery.  

The presence of these clear scaling relationships means that the wall shear 

stress signals may be predictable from the input body force waveform for 

certain geometries without the need for simulation. Sensitivity of the wall shear 

stress frequency composition to vascular tone and vessel diameter can also be 

implied considering the expected changes in arterial pressure waveform and 

the scaling relationships derived from the simulations. 
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Relevance to the comparison of human and murine atherosclerosis:  

The simulations performed in this work only provide an exploration of the 

effects of varying body force terms on the wall shear stress signal rather than 

representing flow cases in any specific animal. These findings can, however, 

be extrapolated to animal studies when considering the changes expected in 

arterial pressure waveform with the different vessel diameters and vascular 

tone between models.  

As the common carotid artery diameter in the human is approximately 12 times 

greater than that of the mouse, differences in the arterial pressure waveform 

are expected between the mouse and human. Considering the scaling 

relationships found in this study, it then follows that the wall shear stress 

frequency composition is different between the mouse and human. This 

suggests a poor scalability of the insights gained from murine models of 

atherosclerosis to the human disease. 

 

3) Are the differences in wall shear stress seen between the regions of the 

perivascular tapering cast mouse model dependent on the flow dimensionless 

numbers? 

The distribution of the first harmonic amplitude indicated entirely different 

flow environments in the regions downstream of the cast between simulations 

with increasing Reynolds and Womersley numbers (Chapter 6). The wall shear 

stress higher harmonic components (n > 1) showed an approximate region-

specific consistency between simulations when normalised against the first 

harmonic amplitude.  

Relevance to the comparison of human and murine atherosclerosis:  

The simulations performed as part of this study did not represent any specific 

animal model. The emergence of a varied first harmonic amplitude distribution 

may, however, be extrapolated to animal models when thinking of the increase 

in the dimensionless numbers with increasing animal body mass.  

A comparison of the dimensionless numbers between the mouse and human 

shows a factor of 10 difference in Reynolds number and a factor of 5 difference 

in the Womersley number. The increasing dimensionless parameters then 
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indicate differences in vessel haemodynamics between the mouse and human. 

This suggests a poor scalability of insights gained from murine atherosclerosis 

to the human disease.  

 

4) Are there differences in the wall shear stress frequency composition in the 

arteries of different mammals?  

The wall shear stress signals computed in different mammals showed reduction 

of the zeroth and first harmonic amplitudes with increasing animal body mass 

(Chapter 7).  

A key finding of this work was the difference in the rate of change of the zeroth 

and first harmonic amplitudes. This showed the time-varying component of the 

signal to decrease in significance with respect to the time-averaged component 

with an increasing animal body mass. The wall shear stress higher harmonic 

components (n > 1) were largely similar between animal models when 

normalised against the first harmonic amplitude. The increasing Womersley 

number, with animal body mass, also resulted in an increased phase difference 

between the pressure and wall shear stress signals.   

The results were shown in simulations of a control geometry segment and 

represent blood flow in the disease-free common carotid artery of an animal. 

This shows the “healthy” wall shear stress signal to be different between 

mammals of different body size.  

Relevance to the comparison of human and murine atherosclerosis:  

A key result of this study is the allometric scaling laws defined for the wall 

shear stress signal computed in the mammals. Estimation of the wall shear 

stress signal in the atherosclerotic minipig suggests consistency in the signal 

between the minipig and human models. The rarity of plaque rupture in the 

minipig then suggests the effect of a parameter other than the vessel 

haemodynamics in atherosclerosis and plaque rupture. This conclusion 

highlights the significance of mechanical or genomic differences between the 

species. It then follows that there is poor scalability of the insights gained from 

the atherosclerotic mouse to the human disease.   
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8.3  Future directions 
 

A number of open questions have been developed as a result of this PhD. Points 1-3 

indicate fundamental questions that would further the understanding of the differences 

in murine and human atherosclerosis. Points 4 and 5 refer to the more technical aspects 

of the simulation tool and are required for a more accurate simulation of the flow field 

in the mouse and human models. 

1) Are the endothelial cell responses to circumferential strain consistent between 

the different models of surgically manipulated blood vessel in the 

atherosclerosis-prone mouse?  

The results of Chapter 5 showed similarity in the local haemodynamic 

waveforms between regions coincident with different plaque compositions in 

the tandem stenosis geometry of Chen et al. (2013). The pressure drop across 

the geometry suggests differences in the circumferential strain between regions 

of the model. A characterisation of the endothelial responses to the 

circumferential strain may provide an insight into the significance of 

mechanical differences between regions showing different plaque 

compositions.  

 

2) Are the endothelial cell responses consistent between mammals under their 

respective “healthy” wall shear stress signals?  

The findings of Chapter 7 showed differences in the vessel haemodynamics 

between the mouse and the human. The frequency analysis performed in this 

PhD provides a full characterisation of the temporal variation of the wall shear 

stress in a straight, non-diseased vessel. A clear effect of the genomic 

differences between species would be shown if the responses of endothelial 

cells to their respective “healthy” wall shear stress signals were different.  

A number of studies exist in the literature in which the inflammatory behaviour 

of cultured endothelial cells is characterised in response to steady, pulsatile or 

oscillatory flows. The nature of pulsatility, however, does not mirror that seen 

in the vessels of the animal from which the cell was derived. The mouse 

endothelial cells are commonly exposed to time-averaged wall shear stress 
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values found in the human, for example. These studies have been reviewed in 

Davies (1995) and Chiu and Chien (2011).  

The Blackman group provided a number of studies in which the responses of 

human umbilical vein endothelial cells to human atheroprotective wall shear 

stress signals were characterised using a cone-and-plate flow device 

(Blackman et al., 2002; Feaver et al., 2013). The extension of the present work 

may take a similar form to that of the Blackman studies using the full 

characterisation of the healthy wall shear stress signals computed here on cell 

cultures from the respective animal. 

 

3) Are there similarities/differences in the temporal response to a mechanical 

stimulus between murine and human endothelial cells?  

The activation of potassium ion channels is taken as the initiation of signalling 

and is the fastest detectable response in large animal endothelial cells. This 

occurs on the timescale of seconds. The temporal sensitivity of bovine, porcine 

and human endothelial cells have been reviewed in Davies (1995). Considering 

the difference in timescales between the mouse and human pulse period, the 

temporal sensitivity of murine endothelial cells may differ from that of the 

large animal models. A key difference in disease progression between the 

atherosclerosis-prone mouse and human is also the timescale within which 

lesions form. An understanding of the temporal sensitivity of murine 

endothelial cells may provide insights into this difference in disease 

progression timescale.  

 

4) Implementation of the verified 1D transmission line model 

A key component of furthering the simulation tool is the implementation of 

physiologically relevant boundary conditions. This would require a verified 

implementation of the 1D transmission line model discussed in Sections 2.7 

and 4.4. The model would provide the flow and pressure waveforms relevant 

to a vessel in the healthy vascular network.  
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5) Can the arterial pressure waveforms in different surgically manipulated vessel 

models be approximated from the healthy carotid artery in the mouse?  

Constriction of the vessel by surgical manipulation leads to increases in 

vascular resistance. Alteration of the arterial pressure waveform is also 

expected due to wave reflections at the constriction ( ’Rourke and Yaginuma, 

1984; Nichols et al., 1998; van de Vosse and Stergiopulos, 2011; Pereira et al., 

2015). Additional models are required to recover boundary conditions relevant 

to flow through the surgically manipulated geometries.  

Li (2006) described the use of a 1D circuit to represent a stenosis in an 

implementation of the transmission line model. An iterative tuning method was 

applied together with 3D simulations to calculate parameters of the 1D circuit 

to model the properties of the stenosis in terms of resistance, capacitance and 

inductance. The 1D circuit parameters were applied to the transmission line 

model to recover waveforms of pressure and flow to account for the stenosis. 

A similar method may be applied to the simulations performed in this PhD to 

recover boundary conditions for use at the inlet and outlet for each model.  

 

8.4  Technical specifications 
 

A key point of discussion in any fluid dynamics study is the computational effort 

required in simulation. This is quantified in terms of the computational time and was 

computed as 4 hours in the mouse tapering cast simulations and 9 days in the human 

control vessel simulations. All simulations were performed on a single processor of an 

Intel Core i7-4790 desktop machine. The computer was equipped with 15.6 GB of 

RAM and eight cores running at 3.6 GHz.  

 

8.5  Key findings 
 

A major question in the atherosclerosis community is the scalability of insights gained 

from atherosclerotic mouse models to the human disease considering the rarity of 

plaque rupture in atherosclerosis-prone mice. In this regard, the key finding of this 

PhD is the difference in vessel haemodynamics between the mouse and human. 

Consistency of the wall shear stress signal between that computed in the human and 
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estimated in the atherosclerotic minipig, however, suggest the dominance of factors 

other than wall shear stress in plaque rupture. The simulations performed here support 

this conclusion as a dependence of plaque composition is shown in response to 

circumferential stretch. The significance of the genomic differences between the 

species is also highlighted through the simulation of various animal models.  

To conclude, the scalability of insights gained from the murine studies to human 

disease is limited on three counts: the differences in vessel haemodynamics, the 

sensitivity of plaque composition to circumferential stretch, and genomic differences 

between the species. This thesis works to isolate the significance of haemodynamics 

in this multifactorial problem and shows no evidence to suggest that the wall shear 

stress alone can explain the lack of plaque rupture in atherosclerotic mice. A complete 

picture of atherosclerosis and plaque rupture cannot be achieved without an 

understanding of all factors involved, both individually and cumulatively. 
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