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Abstract 

Asynchronous circuits, in comparison with synchronous circuits, have the potential to offer 

power and speed advantages combined with improved design reuse and composition. Con-

tinual improvements in fabrication technology increase die sizes and decrease device sizes, 

increasing the difficulty of clock distribution and timing validation in synchronous designs. As 

a consequence there has been a resurgence of interest in asynchronous circuits and design meth-

ods. This work examines aspects of asynchronous micropipeline controller design, verification 

and application. 

A micropipeline controller circuit is presented and compared with other controller circuits. A 

method for modelling asynchronous circuits using process algebra at an individual gate level 

is examined and used to verify the controller circuit. Two applications in the context of the 

discrete cosine transform (DCT) are then explored. 

The first application is an area and power efficient circuit for bit serialisation and matrix trans-

position. This can be used either to embed a synchronous bit-serial processing core into a 

bit-parallel environment or to perform matrix transposition as part of a DCT. Key elements 

are modelled using process algebra. The second application is an initial attempt at an asyn-

chronous application specific processor which is used to implement the DCT, and is intended 

to be extendible to other signal transforms. 

The presented micropipeline controller was found to be superior to other controllers for linear 

micropipelines, which are key parts in the applications studied. The modelling method used 

has been found suitable for the verification of manually designed gate-level circuits. Finally 

the applications have illustrated that the use of asynchronous methods makes new or simpler 

architectures possible. 
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Chapter 1 
Introduction 

Asynchronous circuits, circuits without clocks, have recently been attracting renewed interest 

as the problems of clock distribution, timing and high power consumption are becoming more 

commonplace with increasing size, speed, complexity of design and demand for mobile and 

low power products. 

Asynchronous circuits are not new. Early work, on asynchronous sequential circuits and timing 

models, was performed by Huffman [1, 21, Muller [3,4] and later by Hollaar [5]. Since the late 

1980's and the Turing award winning paper by Ivan Sutherland [6] there has been an increas-

ing amount of interest in asynchronous design. An overview of more recent work and design 

methodologies can be found in [7]. Currently there are over sixty groups involved, see [8] for 

comprehensive details. 

Potentially, asynchronous circuits have the capability to be more modular, power efficient, faster 

and less dependent on technology changes than synchronous circuits. 

This thesis examines aspects of asynchronous micropipeline controller design and verification, 

with applications oriented around a common signal processing algorithm, the Discrete Cosine 

Transform (DCT). Micropipeline circuits are introduced by Sutherland [6] and is the design 

methodology used by Amulet [9], an asynchronous implementation of the ARM processor. 

1.1 Motivation, aims and chronological order of work 

Initially this project started with a review of implementations of the DCT. The motivation for 

this was to learn about the algorithmic and circuit design techniques used in VLSI implementa-

tion of a common signal processing algorithm. One of the circuit techniques found was that of 

complementary pass-transistor logic [10], an alternative to standard CMOS logic gates. At the 

same time asynchronous design looked a promising method for reducing power consumption. 

The decision was made to pursue an objective of using a combination of pass-transistor logic 
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and asynchronous circuits to produce a new DCT circuit as an example application, thereby 

combining a mixture of low-level and higher level design techniques. 

The micropipeline style of asynchronous design was chosen, partly because it is simple (with 

blocks of combinatorial logic between pipeline stages equivalent to combinatorial logic be-

tween synchronous registers) and partly because it is well known. 

After examination of existing micropipeline controller circuits, a new micropipeline controller 

circuit was developed. Although pass-transistor style logic was found to be useful in the im-

plementation it seemed of secondary importance to the circuit itself and the modelling of the 

circuit. The new circuit was later found to have been previously discovered, but not formally 

published and was without a quantitative comparison. 

The new circuit needed to be verified and it was decided to use the CCS [11] (Calculus of 

Communicating systems) process algebra because expertise was available locally. Initially in-

tended simply to verify the circuit, this work expanded as subtle issues in the modelling of 

asynchronous circuits emerged. 

In addition to the original application idea of a DCT, a new application, ideally suited to the 

developed micropipeline controller was devised. This application, the conversion of bit-parallel 

to bit-serial data, for example for a bit-serial DCT, again required verification using process 

algebra to ensure key parts behaved as expected. Later, independent literature, using a similar 

method to perform matrix transposition as part of a DCT, was found and the circuit architecture 

revised. 

Finally, in keeping with the original project aims whilst there was remaining time, initial work 

on the design of an asynchronous application specific processor, with emphasis on the DCT, 

was performed. 

1.2 Structure 

Chapter 2 provides background information on asynchronous circuits and summarises the dif-

ferences from synchronous circuits. The timing models used in later chapters are informally 

defined. The chapter then focuses on communicating data with micropipelines, the design 

methodology used in later chapters. Finally, the important difference between verification and 

simulation is stated and a method commonly used in the specification of micropipeline circuits 



Introduction 

is introduced. 

Chapter 3 introduces the concept of the micropipeline latch controller. Focusing on circuit 

level implementations, existing latch controllers using the two-phase and four-phase protocol 

are reviewed. A simplified twophase latch controller circuit is then developed, quantitatively 

compared with the existing circuits and shown to be favourable in certain situations. 

Chapter 4 provides a short tutorial on how to model circuits using CCS. Initially believed to 

be a straightforward application of CCS to verify the simplified latch controller circuit, issues 

concerning interference between successive transitions on a wire and isochronic forks arose 

and are discussed. The latch controller circuits from Chapter 3 are revisited with a focus on 

verification, including the verification of the simplified latch controller. 

Two example applications originally intended to be suitable for the latch controller circuit are 

then discussed. The example applications are both oriented around the Discrete Cosine Trans-

form (DCT), an operation commonly used in digital video compression. 

Chapter 5 discusses the first application, a two-dimensional structure based upon micropipelines, 

suitable for performing conversion between bit-parallel and bit-serial data, or for matrix trans-

position. The use of a micropipeline based structure results in a large power and an area saving 

compared to the equivalent synchronous structure. Two variations of the architecture are dis-

cussed and key aspects are modelled using the method from Chapter 2. 

Chapter 6 reviews recent synchronous implementations of the Dcl'. Although this work is self-

contained, from the review an algorithm is selected for use with initial work on the second 

application, an asynchronous application specific processor (ASP) for signal transforms, devel-

oped in Chapter 7. 

Finally Chapter 8 provides a summary of the work, identifying the achievements made and 

discusses limitations and potential for future work. 

91 



Chapter 2 
Asynchronous circuits and 

micropipelines 

This chapter provides basic background information on asynchronous circuits with a focus on 

micropipelines, the design methodology used in later chapters. 

2.1 Introduction 

In a circuit, composed from sub-circuits, information is communicated via one or more signals 

from a sender sub-circuit to a receiver sub-circuit. In a digital circuit these signals are discrete 

sampled values (typically binary). 

A typical digital sub-circuit repeats the following steps: 

Receive some input, 

spend some time processing, during which the sub-circuit is unable to receive further 

input (and often such that further input may result in incorrect behaviour), 

produce some output, 

become ready to receive input. 

The majority of digital circuits require reliable communication, such that information is not lost, 

corrupted or duplicated. Synchronisation between senders and receivers is needed to ensure 

that, 

. the sender produces output only when the receiver has read and has finished with the 

sender's previous output, 

. the receiver knows when the sender has produced new output. 

4 
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Figure 2.1: Synchronous pipeline 

Design approaches to achieve reliable communication between sub-circuits can be divided into 

two categories: synchronous and asynchronous. Synchronous circuits are controlled by a global 

clock. All sub-circuits operate in lock-step regulated by this clock, thus providing the synchro-

nisation needed between each sender and receiver. Each sub-circuit generates output and reads 

new input upon a change in the global clock (typically the rising edge). A typical example is 

the simple linear pipeline is shown in Figure 2.1. Upon every clock cycle each item of data 

is processed and moved one place to the right. Changes in the global clock must occur at (or 

at least at a sufficient approximation to) the same time everywhere in the circuit, otherwise it 

is possible for a receiver to read data either before the corresponding sender has sent data, or 

during a transient period when the data signals are changing. The majority of digital VLSI 

design [12] is based upon this framework. 

Asynchronous circuits do not operate in lockstep and do not require a global clock. Instead 

the synchronisation between a sender and receiver takes place using local handshaking. Here 

a protocol is used such that the sender has a means of informing the receiver "here is some 

data" and the receiver had a means of acknowledging "ready for more data". Such protocols 

are discussed later in section 2.4. 

2.2 Asynchronous advantages 

Asynchronous circuits are not new, some early computers (1960s) were asynchronous. Syn-

chronous design emerged as a way of making the design process easier. However, with a rapid 

increase in circuit complexity and size, various problems with large synchronous designs are 

starting to emerge. Potential commonly cited benefits [7] of asynchronous systems include: 

Simple module interfaces: The interfaces between sub-circuits are simplified. Complex tim- 

5 
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ing constraints underlying synchronous systems (for example, setup time and hold time) 

are no longer required. This eases specification, allows increased design reuse, eases 

porting to other process technologies and aids synthesis from high level languages. 

Low power: By their nature most asynchronous circuits only consume power when perform-

ing useful work. By comparison the global clock present in synchronous designs runs 

continuously, is the most rapidly changing signal present and is distributed across a large 

area. This is undesirable for low power operation, although disabling the clock to idle 

subsystems (clock gating) can help overcome this. 

No clock skew: Clock distribution problems, in particular that of clock skew, where changes 

in the clock signal do not arrive simultaneously at all destinations, are avoided. 

Average case performance: In a synchronous system the maximum clock frequency is cho-

sen such that the slowest sub-circuit operates correctly under the worst case conditions 

of high temperature, low power supply voltage and worst case fabrication parameters. 

Many types of asynchronous circuits do not need this (usually large) safety margin and 

can deliver average case rather than worst case performance. For example, decreasing 

the supply voltage (within limit) decreases the rate of computation, rather than causing 

erroneous operation. 

Fewer global timing issues: For a specified minimum data processing rate, in a synchronous 

system all sub-circuits must be suitably optimised such that the clock rate can be high 

enough to support this minimum data rate. In an asynchronous system only the parts 

used frequently need to be optimised and less design time can be spent on rarely used 

features. 

Electromagnetic compatibility: In a synchronous system most of the activity happens around 

clock edges, as a result power consumption tends to occur in bursts of high peak current 

with a low current between bursts. This results in a large amount of noise at the clock 

frequency and its harmonics. Asynchronous circuits may exhibit a 'smoother' consump-

tion of power, the resulting noise is much more well spread throughout the frequency 

spectrum at a lower power level without large narrow-band peaks [13]. 

The design of ad hoc synchronous circuits is straightforward, the designer uses combinatorial 

logic to implement the desired function, registers to hold the results and by making the clock 

period long enough the problems of hazards, races and other dynamic behaviours are avoided. 
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Simulation can then be used to exercise the circuit under 'sufficiently many' input conditions. 

In comparison, asynchronous circuits are harder to design and generally require the application 

of formal design and verification techniques (introduced later in section 2.7). Asynchronous 

circuits may be harder to test [14], as both logical and delay faults must be tested for. 

Asynchronous circuits typically incur both speed and area overhead due to local handshaking, 

although the impact of this depends on the 'granularity'. Finally, it is possible to combine 

asynchronous and synchronous design, through a scheme known as globally asynchronous lo-

cal synchronous [15, 161. Here many of the advantages of synchronous design (for example 

ease of design and low overhead) and the advantages of asynchronous design (for example 

reusable modules) are combined. 

2.3 Timing models 

Various timing models are used in the design of asynchronous circuits [17]. Definitions of 

common models are given here. An overview of timing models and where they are used with 

an emphasis on asynchronous design methodologies can be found in [7]. 

Bounded delay model: In a bounded delay model both wire delays and gate delays have upper 

and usually also lower bounds. 

Speed independent model: In a speed independent model wire delays are assumed to be neg-

ligible (small enough to make no difference to circuit behaviour) compared to gate delays. 

The gate delays are unbounded, such that a delay may be of any size, or vary whilst the 

circuit is active. 

Delay insensitive model: A circuit is delay insensitive if an arbitrary unbounded delay can be 

inserted anywhere in the circuit, at any time, even whilst the circuit is active and the 

circuit will continue to operate correctly. Because a delay insensitive circuit is free of 

timing assumptions circuit correctness is independent of layout and transistor sizing. 

Isochronic fork: This is a fork in a wire such that the delay from the single source to both 

destinations is identical under all operating conditions. In a real circuit this additionally 

means that the circuits at both destinations must use the same voltages in the decision be-

tween a logic low and logic high. In practice it is impossible to make an isochronic fork, 

7 
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but usually a close approximation is suitable and achievable within a localised circuit 

area. 

Quasi-delay insensitive A quasi-delay insensitive circuit is a delay insensitive circuit but with 

the concession that some forks may be isochronic. For all practical purposes quasi-delay 

insensitive circuits and speed independent circuits are identical and circuits expressed in 

one delay model can be expressed in the other [7]. 

2.4 Protocols and Micropipelines 

There are two main approaches to the communication of data between a sender and receiver, 

delay insensitive handshaking (using a dual rail encoding) and the bundled data interface. 

2.4.1 Dual rail encoding 

To communicate binary data bits in a fully delay insensitive manner, two binary signal wires 

are required per data bit. Typically a 0 binary digit is transmitted as 01 and a 1 as 10. Between 

digits a 00 spacer is inserted. The receiver knows that a multi-bit datum has arrived when after 

receiving a spacer one wire out of each pair of signals has changed. A single acknowledgement 

wire is used by the receiver to acknowledge receipt of new input. 

2.4.2 Bundled data interface 

The bundled data interface [6] is depicted in Figure 2.2. Here a single request wire is used 

to tell the receiver the sender has sent new data. The data must reach the receiver before the 

request, in order that the receiver is at no risk of reading the data wires too soon. This scheme 

is called the bundled data interface because the data wires and the request wire are considered 

a bundle, the timing of which must be preserved during routing. 

2.4.3 Two-phase and four-phase 

Two possible protocols exist for use with the bundled data interface, the two-phase protocol [6] 

and the four-phase protocol [ 1 8]. 

The two-phase protocol uses transition signalling. Here both rising and falling edges of a 

F:' 
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request 

data 

sender ____________ receiver 

Figure 2.2: Bundled data interface 

data 

reques 

acknowl 

Figure 2.3: Two phase protocol 

signal are semantically equivalent and are called events. Figure 2.3 shows two items of data 

being transferred using the two-phase protocol. Such a scheme is conceptually simple. 

In the four-phase protocol only one edge (rising or falling) is significant and the other is needed 

to reset the signal ready for another significant edge. Compared to the two phase protocol twice 

as many request and acknowledge signal transitions are needed to transfer the same amount 

of data. Figure 2.4 shows one version of the four-phase protocol, in which rising edges are 

significant for both handshake signals. 

data 

reques! 

acknowli 

Figure 2.4: Four phase protocol 
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request 	 request 
nfl rout 	 nin rout 	 nfl 

data 	I 	 I 	data 

acknowledge 	 acknowledge 
am aout 	 am aout 	 ain aou 

Figure 2.5: Micropipeline FIFO 

2.4.4 Micropipeline FIFO 

Multiple sub-circuits, each of which act both as a sender and a receiver (with synchronisations 

between inputs and outputs), communicating using the bundled data interface can be combined 

to form a micropipeline [6]. The micropipeline is the asynchronous equivalent of the syn-

chronous pipeline. A simple linear first-in first-out (FIFO) queue is shown in Figure 2.5. There 

is no global clock signal to regulate the flow of data; instead local handshake signals are used. 

Each pipeline stage can request that the next stage accept new data and can acknowledge re-

ceipt of data from the previous stage. Each stage can act as soon as its immediate environment 

permits. Note that the conventional labelling of handshake signals uses 'in' to indicate signals 

on the data input interface and 'out' to indicate signals on the data output interface, irrespective 

of whether the signals are physical inputs or outputs. 

An important feature of micropipelines is their elasticity. This means that the number of data 

items in the micropipeline can vary over time. With the addition of other synchronising circuit 

elements [6] (for example, Call, Select and Arbiter) more complex structures involving forking, 

combining and feedback paths are possible. 

2.5 Event based logic 

With conventional logic the building blocks are NOT, AND, OR and XOR. When the logical 

state of wires is unimportant and instead transitions are used, a different set of primitives is 

useful. Two common ones are XOR and the Muller C-element [6], shown in Figure 2.6. XOR 

acts as the OR for events, and the C-element as the AND for events. Additionally one other 

primitive is used later, the Toggle element [6]. A Toggle element has one input and two outputs 

dot and blank. Both outputs are initialised low. Upon each input event an event is generated 

on one output, alternating between outputs, starting with the dot output. 
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"y=(aorb) and not (a and b)" 

a , )_ Y "if a is equal to b then y becomes a 
b 	 else y retains its value" 

blank 
input 	 "for every input event output an event 

0 	dot  alternating between dot and blank" I— 

Figure 2.6: XOR, Muller C-element and Toggle 

Figure 2.7: Example of asymmetric C-clement 

More complex versions of the C-element are possible, known as Asymmetric C-elements [ 1 8]. 

An example is shown in Figure 2.7. For the output y to become high b must be high, indicated 

by the '+' symbol, b can not be used to stop the output becoming low. For the output to become 

low c must be low, indicated by the '-' symbol, c can not be used to stop the output becoming 

high. Input a is a 'normal' input, except that its logic value is inverted. Any combination of 

'-' and inversion is permissible. Such asymmetric C-elements are no longer purely event 

based and are often used with the four-phase protocol where rising and falling edges are not 

equivalent. 

2.6 Completion detection 

One of the advantages of asynchronous design is that the time taken to complete an operation 

can depend on the operands. For example, in a binary adder some additions may take longer 

than others. By comparison, in a synchronous system, the clock period must be long enough 

such that there is always time for the worst case addition. This raises the question of how to 

know when an operation is complete. 
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Figure 2.8: Micropipeline with data processing logic 

The simple FIFO shown previously in Figure 2.5 can be expanded to explicitly show data pro-

cessing logic inserted between stages which store data, see Figure 2.8. The issue of completion 

detection is to decide when the data processing logic has finished and permit the corresponding 

request event to reach the next stage. Three main methods are outlined here: 

Delay matching: Here a delay equal to the worst case processing time is inserted into the 

request signal. Whilst conceptually simple and allowing 'conventional' combinatorial 

logic to be used for the data processing, each operation will effectively require the worst 

case delay. Careful simulation is needed (like that in a synchronous design) to ensure the 

delay is worst case and not shorter. 

Detection logic: For some processing operations a side effect might be to indicate a result is 

available. Usually though it is necessary to use extra logic or dual rail encoding as a 

means of knowing when the output is ready. Hazard free logic is required to ensure a 

false 'finished' signal is not generated. Extra circuitry is required, but with the advantage 

of not requiring simulation to obtain the correct delays. Another variation is to use the 

input data to select one of several matched delays. 

Current sensing: With static CMOS combinatorial logic, after an input change and before the 

circuit has settled with new output, a pulse of current somewhat larger than the leakage 

current is drawn from the supply. It is possible to insert circuitry to measure this current 

and indicate when the combinatorial logic has settled [19]. However, certain pathological 

input changes may result in current changes too small to detect and the detection circuitry 

may have a significant standby power consumption. 
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2.7 Verification 

It is important to know that a circuit has been designed correctly. For synchronous circuits sim-

ulation is often sufficient to test a design; with asynchronous circuits the more formal approach 

of verification is generally needed. 

Asynchronous circuits are free from discrete timing intervals, hence traditional discrete event 

simulation may only test a small fraction of the possible behaviour. The test space of an asyn-

chronous circuit involves not only the (already potentially large) space of input stimuli and 

circuit states, but also many possibilities of wire and gate delays. 

For example, it is impossible show using simulation that a circuit is capable of deadlock, unless 

the simulation is performed with the conditions required for deadlock. This would require the 

designer to know those conditions in advance, or be lucky. It follows that, to be certain the 

example circuit is not capable of deadlock, all possible conditions must be simulated. This 

is generally intractable, even for small circuits and the designer must resort to more formal 

methods to reason about circuit behaviour. 

There are two approaches, which are often combined, to solving this problem: 

Synthesis: A method of specifying designs is used such that only designs which do not have 

certain undesirable properties can be specified. The design is then (automatically) syn-

thesised from this specification. 

Verification The designer starts with an ad hoc design and uses a formal verification method 

to check the design is equivalent to some (simple and known to be correct) specification. 

Many formal synthesis and verification methods exist, although there is lack of tool support for 

many methods; for example [7, 20, 21] provide a good introduction. The circuits discussed in 

later chapters were designed 'by hand' and verified using Milner's Calculus of Communicating 

Systems (CCS) [11]. The motivations for this choice and the verification method are discussed 

in Chapter 4. 
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Figure 2.9: Example Signal Transition Graph 

2.8 Specification 

To verify a circuit, or to synthesise it, it is necessary to start with a specification. One method 

(which is used later) of specifying the behaviour of a circuit is to use a Signal Transition Graph 

(STG). In particular the STGIMG form [20, section 15.6] is introduced here. 

An example STG is shown in Figure 2.9. The label A corresponds to "signal A going high" and 

A to "signal A going low", likewise for B and C. Initially tokens are placed where marked with 

a dot. Initially A+  is free to happen as there is one token on both of its input arcs. Informally, 

when a signal transition occurs one token is removed from each input arc and one token is added 

to each output arc. More than one token can be placed on an arc. (Note the overloading of the 

terms 'input' and 'output'. A,B and C could be circuit inputs, outputs or a mixture.) Following 

this rule, once A+  occurs,  B+  and  C  can occur in either order or at the same time, however, 

A cannot occur until both B+  and  C  have occurred. Likewise A+  cannot occur again until B 

and C have occurred. 

2.9 Summary 

In this chapter the concept of and motivation for asynchronous circuits, in particular that of mi-

cropipelines have been introduced. Timing models and a commonly used specification method 

have been described along with the motivation for verification instead of simulation. 
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Chapter 3 
Micropipeline latch controllers 

This chapter is concerned with how data is stored in a micropipeline stage. Firstly existing cir-

cuits, to control the storage of data with latches, are introduced; then a new  circuit is presented 

and compared with the existing circuits. This chapter focuses on circuit level details, later in 

Chapter 4 the same circuits are revisited with a focus on formal verification. 

3.1 Introduction 

In [6] Sutherland describes an event controlled latch, which behaves like a level-sensitive latch, 

except that it is controlled by two inputs, capture and pass, which respond to events rather than 

logic levels. Sutherland also explains how a two-phase micropipeline can be constructed, where 

each stage is composed of an event controlled latch and a C-element. The event controlled 

latch is conceptually 'clean', as all control signals are event based, however, compared to a 

simple level-sensitive latch [12, Section 5.5.2], there is a large amount of circuitry per data-bit. 

It is therefore desirable, especially for wide data paths, to use instead a multi-bit data latch 

consisting of many level-sensitive latches controlled by a single enable signal. This requires a 

latch controller circuit to control the data latch and the local handshake signals [18]. Another 

method is to use edge-triggered registers, however, this would require increased circuitry (and 

hence area and power) per data bit. 

Figure 3.1 shows a single stage. The data latch enable signal en is routed through the latch to 

produce en', indicating when the data latch has completed an operation. The latch controller 

may present a two-phase or a four-phase interface. Notionally the latch controller is delay 

insensitive; in practice the latch controller may have internal timing assumptions. This is an 

'Acknowledgement is due to Mark Josephs for pointing out, subsequent to this work being performed, that the 
simplified latch controller circuit has been previously discussed at a workshop by himself [22] and by I.W. Jones 
in 1994 at a special session at the First International Symposium on Advanced Research in Asynchronous Circuits 
and Systems in Utah. However, neither presentations appear in published proceedings or contain a quantitative 
comparison. 
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acceptable concession provided that such assumptions are strictly internal to the latch controller 

and can not be exposed by the surrounding circuitry. 

nfl 	_ rout 
— 1 	G) 

I.c= 
100 
I — - Cc  I 

aini - C aout 
—1 0 an  

en 
en' 

data 

Figure 3.1: Single pipeline stage with latch controller 

In principle, the two-phase protocol should be faster and use less power than the four-phase 

protocol, as there is no time wasted on return-to-zero transitions and only one transition (rather 

than two) per signal per datum is needed. However, in practice circuits designed to use the two-

phase protocol are often more complex; transistors are level controlled not event controlled. 

Latch controllers are a good example of this additional complexity and this provided the mo-

tivation to produce a two-phase latch controller which is superior or at least on a par with the 

four-phase controllers. 

3.2 Standard two-phase latch controller 

Figure 3.2 [18, Figure 10] shows what will be referred to from now on as the standard two-

phase latch controller. The C-element is used to block requests on nfl whilst there is data 

stored in the data latch. The XOR detects if there has been a request passed by the C-element 

which has not been acknowledged by the following micropipeline stage, if so the data latch 

is instructed to capture the data (the data latch is transparent when en is high). The Toggle 

detects when the data latch has completed an operation. Both the Toggle and the C-element 

are initialised (reset signal not shown) after power-up. In [18] this controller is shown to be 

unfavourable compared to a four-phase latch controller. 

A brief clarification about the positioning of the data latch should be made at this point. In 
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..-rout-ff 

nfl am 

rout 

Figure 3.2: Standard two-phase latch controller 

Figure 3.1 the data latch is shown 'in' the signal path, with output en' a delayed copy of input 

en. The literature makes the assumption with the en signal that all the delay is present in gates 

and the wire delay is negligible, this corresponds to the speed independent timing model. In 

Figure 3.2 only the en signal is shown, the delay is moved into the inverter-buffer driving en. 

It is also assumed that when en changes the data latch acts no later than the Toggle. This 

assumption is not needed in the circuit of Figure 3. 1, as en' is defined to change only when the 

data latch has completed an operation. Additionally, when the stage captures data it is assumed 

that the data will have propagated through the latch no later than when an event on rout is 

produced; this can be considered a data bundling constraint. The assumptions surrounding en 

are not considered here further, the reader who dislikes these assumptions can use the method 

of Figure 3.1 and accept a small loss in performance. For the remainder of this work, circuit 

diagrams use the convention of showing only the en signal. Signal transition diagrams show 

actions cap (capture) and pass to indicate the data latch changing to opaque and transparent 

states, irrespective of the logical value of en required to make the data latch transparent. 

The standard latch controller, at the hierarchical level shown in Figure 3.2, is delay-insensitive. 

A variant of the circuit, known as fast-forward involves using the rout-f f output instead of 

rout where rout-f f is produced in advance of the data latch capturing data. Two assumptions 

are made. The first assumption is that the data will have propagated through the transparent 

data latch, before rin propagates through the C-element to rout-f f. The second assumption 

is that the right-hand environment does not respond to the rout-f f by producing an aout 

before the latch controller is ready to accept it—an aout occuring too soon would interfere 

with the request travelling through the XOR gate. In practice these assumptions are often 

reasonable to make, especially if the right-hand environment is another similar latch controller, 

or, particularly in the case of the second assumption, if data-processing logic (and hence a delay 
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on rout) is inserted before the following stage. The use of fast-forward can lead to a significant 

speed increase. 

The specification for a two-phase latch controller (without fast-forward) is given in Figure 3.3. 

The STG could be simplified to show only events, rather than distinguishing positive and nega-

tive transitions. However, it is shown this way for consistency with the four-phase STGs shown 

later and to include the exact initial conditions. 

S 

r- rin+ 	 rout+ 

caps 	I I ain+ 	pass aout+ 

H 
1 	nfl- 	pass 	rout - 

\*, / I 
I 	cap 

am- 	 aout- 

Figure 3.3: Two-phase specification 

3.3 Four-phase latch controllers 

The four-phase latch controllers discussed here all use the 'normal' variation of the four-phase 

protocol, where rising edges are significant for both request and acknowledge signals. Other 

controllers [23] may use other variations of the protocol and are intended for use where dynamic 

logic requiring pre-charge is inserted between micropipeline stages. Excluding these, there are 

four four-phase controllers for use with level-sensitive latches. These circuits are designed with 

the speed-independent timing model. 

Simple four-phase latch controller The simple four-phase latch controller [24, Figure 6] (shown 

also in Figure 3.4) is composed from only a C-element and buffer. However, due to un-

wanted synchronisations between the input and output interfaces, a micropipeline based 

on this controller does not permit adjacent stages to hold data simultaneously. This is 

inefficient and, as in the literature, this controller is not considered here further. 

Buggy semi-decoupled four-phase latch controller This controller [18, Figure 12] removes 
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rin 	 am 

en 

aout 	Y rout 

Figure 3.4: Simple four-phase latch controller 

some, but not all, of the unwanted synchronisations present in the simple controller. 

The term semi-decoupled is used as there is still some unwanted coupling (synchronisa-

tion) between the input and output interfaces. This circuit was later shown to be non-

persistent [24], however under realistic real-world conditions it is quite usable. For this 

reason and to distinguish it from the following variant this circuit is referred to here as 

the buggy semi-decoupled four-phase latch controller. The circuit, shown in Figure 3.5, 

is simplified by showing naout, nain and nen, the logical negations of aout, ain and 

en. The timing assumption causing the non-persistency is discussed later in Chapter 4. 

nfl 	 nain 

WROM  P_ ME - 

+c 

naout 	T rout 

Figure 3.5: Buggy semi-decoupled four-phase latch controller 

Fixed semi-decoupled four-phase latch controller In [24] another semi-decoupled controller 

is presented, shown here in Figure 3.6. This circuit, synthesised from an STG spec-

ification, is almost identical to the 'buggy' circuit except that it does not exhibit the 

non-persistent behaviour and is slightly slower. The circuit is referred to here as the 

fixed semi-decoupled four-phase latch controller. The STG specification is shown in 

Figure 3.7 with the internal signals removed and with the actions cap and pass added. 

The arcs aout+ -* ain and rin -* rout represent the unwanted synchronisations 

making this controller semi-decoupled. 
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Figure 3.6: Fixed semi-decoupled four-phase latch controller 
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Figure 3.7: Semi-decoupled four-phase specification 

Fully-decoupled four-phase latch controller Also in [24] afully-decoupled four-phase latch 

controller is presented (shown here in Figure 3.8); it is fully-decoupled as there exist 

no unwanted synchronisations between the input and output interfaces. This lack of 

coupling is desirable to maximise throughput when processing logic is inserted between 

stages [24]. This circuit is not examined further, except as part of the performance com-

parison in section 3.5. The STG specification for a fully-decoupled four-phase controller 

is shown in Figure 3.9. It is equivalent to one half of the two-phase STG with the addition 

of return-to-zero actions. 

Both semi-decoupled four-phase controllers are similar to the fast-forward two-phase con-

troller, in that the data latch buffer delay is not present in the generation of rout but is for 

am. For the STG specifications given here, the data latch is assumed to be in both the path 

from nfl to rout and from rin to am. This can be achieved by placing the data latch in 
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Figure 3.8: Fully-decoupled four-phase latch controller 

'series' with the output of the 3-input C-element, as shown for the buggy semi-decoupled con-

troller in Figure 3.10, corresponding to the model of Figure 3.1. Finally it should be noted that 

two-phase latch controllers, are by the definition of the two-phase protocol, fully-decoupled. 

3.4 New two-phase latch controller 

In this section a simplified two-phase latch controller is presented. This circuit has less overhead 

than the standard two-phase controller, whilst still using simple transparent latches in the data 

path. The first circuit uses the undesirable method of delay matching, the second version, which 

is verified later in Chapter 4, does not. 

3.4.1 Latch controller with delay matching 

For the standard two-phase latch controller shown in Figure 3.2, an event on rin causes an 

event on ain and rout, once the data latch has captured data. An event on aout causes an 

event on the feedback path Y, once the data latch has returned to being transparent. Therefore, 

ain and rout can be generated by delaying nfl, and Y can be generated by delaying aout. 
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Figure 3.9: Fully-decoupled four-phase specification 

Figure 3.10: Buggy semi-decoupled four-phase latch controller without fast-forward 

This arrangement is shown in Figure 3.11. Delay Dl ensures all data latch bits are transparent 

for the minimum time required to capture new data, delay D2 ensures an acknowledgement and 

request are not sent before the data has been captured. 

Separate delays for ain and rout may be used. For example, if the data latch passes the data 

an appreciable time before the data is captured, a shorter delay may be used to generate rout 

than for am. A fast-forward version can be obtained by taking rout from the input of D2, in 

which case the assumptions given toward the end of section 3.2 must be made. 

Both Dl and D2 can be removed to give a similar micropipeline to that used by Yun et a! [25], 

in which both rout and ain are generated early. Similar timing assumptions to those made by 

Yun would be required, with the additional constraint that the data latch must be transparent for 

a setup time between captures. 
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Figure 3.11: Delay matching two-phase latch controller 

Although the circuit of Figure 3.11 can be implemented, careful simulation to find the correct 

delays is required and, if the load on en is large, a long chain of inverters may be required to 

produce each delay. 

3.4.2 Simplified two-phase latch controller 

In Figure 3.11 the purpose of Di is to delay priming of the C-element in order to delay further 

requests on nfl until en is high. Likewise the purpose of D2 is to delay generation of rout and 

ain until en is low. The circuit shown in Figure 3.12 achieves this behaviour by using level-

sensitive latches Li and 12 to block or pass events. The C-element becomes redundant and 

is removed. A latch acts as an AND between a transition sensitive signal and a level sensitive 

signal. Latch Li blocks events on rin until the data latch is able to capture new data. Latch L2 

delays generation of events on rout and ain until the data latch has captured the new data. 

Figure 3.12: Simplified two-phase latch controller 
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The circuit operates as follows: initially all signals except en are low, Li and the data latch are 

transparent and L2 is opaque. An event on nfl will pass through Li and the XOR causing en 

to become low and the data latch and Li to capture. L2 will then become transparent allowing 

the event to proceed to rout and am. A further event on nfl would be blocked by U. An 

event on aout will now cause en to become high, the data latch to become transparent, L2 to 

capture and Li to pass a blocked or future event on rin. 

It is assumed that Li and L2 operate at the same time, i.e. that there is an isochronic fork 

from en to Li and L2. In practice isochronic forks can be difficult to implement and so it 

is possible for Li and L2 to be transparent at the same time. In the first case, if Li is late 

capturing, the event passed by L2 to ain could result in an event on rin whilst Li is still 

transparent. However, this path involves the aout to rout delay of the previous stage, which 

is an acceptable safety margin. In the second case, if L2 is late capturing, an event on rin 

may pass directly through Li and L2. This race hazard does not involve an external path but is 

similar to one found in many synchronous designs where flip-flops are built from two latches, 

including the implementation of the toggle element (for example that in [25]). 

A possible implementation is shown in Fig. 3.13. Inverter BO provides the buffering to drive 

the multi-bit data latch. Latches Li and L2 are constructed from a pass-transistor and two 

inverters [18, Figure 5] (using a weak inverter with resistive elements as feedback to keep 

state). These latches invert the data. At initialisation, the output of Li is set high and the output 

of L2 is set low. The complementary signals required to drive the pass-transistors are explicitly 

shown and inverter B4 is shared. Inverter B4 is required, rather than taking the output of the 

XOR, to ensure both of the latch control signals are subject to delay in charging and discharging 

the en signal. 

For a fair comparison with the four-phase controllers it is necessary to construct the fast-forward 

version. This requires inverter B2 to obtain the correct polarity for rout-f f. Since B2 is there-

fore required anyway, an efficient complementary pass-transistor XOR gate is used, requiring 

Bi to generate the complement of the other input. 

To counter the race hazard (the second case described above) the input to 12 is obtained via B3 

and not directly from Li. It is intended that the delay through B2 and B3 be larger than delay 

between Li acting and 12 acting. Note that passing request events from rin to ain and rout 

via B2 and B3 does not change the critical path as events will be delayed by L2 until the data 
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latch has captured. 

It should be noted that the use of complementary logic signals in this way increases the number 

of timing assumptions present—it is assumed that the inverter delays present in generating 

the complements are negligible. The diagram of Figure 3.13 could be drawn not to show the 

complements, for example by generating them 'inside' the latch and XOR components. In 

hindsight rout-f f as shown should probably not be shared with the XOR input as external 

loading could affect internal circuit behaviour. An alternative and perhaps more robust approach 

would be to use a standard CMOS XOR gate. Finally the use of standard circuit elements may 

ease implementation using a standard cell library which does not contain the 'non-standard' 

C-element. 

nfl 	 r0 rout -ff 	 am 

rE' 

B1 ..>O—  I 	 en 

aout 
	 rout 

Figure 3.13: Simplified two-phase latch controller: possible implementation 

Yun et al. [25] discuss a strategy for increasing speed using double-edge triggered flip-flops, one 

for each data bit. The control circuit is then only a C-element and buffer giving a much shorter 

cycle time than both the standard two-phase controller and four-phase controllers. However, 

this is at the expense of increased power dissipation and area due to the complex flip-flop 

circuit required per data bit. Their speedup is also partly due to additional timing assumptions. 

3.5 Comparison 

To quantitatively evaluate the simplified latch controller in comparison with other latch con- 

trollers, transistor net-lists of a six stage FIFO were created for simulation using SPICE with 
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Circuit I tr count I  energy (pJ) cycle time (ns) energy-delay 

Simplified 2-ph FF (Fig. 3.13) 29 (4) 12.6(1.00) 4.17(l.00) (1.00) 
Standard 2-ph FF(Fig. 3.2) 48(2) 14.1 (1.12) 4.92(l.18) (1.32) 
Semi-dec. 4-ph ([18, Fig. 12]) 18 (4) 13.0 (1.03) 4.99(t.20) (1.23) 
Fully-dec. 4-ph ([24, Fig. 13]) 42 (8) 17.8(l.41) 5.54(l.33) (1.88) 
Simplified 2-ph (Fig. 3.13) 29 (4) 12.8(l.02) 5.63(l.35) (1.37) 
Standard 2-ph (Fig. 3.2) 48 (2) 14.2(l.13) 6.46 (l.55) (1.75) 

Table 3.1: Results of comparison 

E52 5V 0.7pm parameters. All transistors were sized to give minimum area except for de-

vices used as resistive elements. Each circuit is connected into a test framework where the left 

and right-hand environments supply and read data as fast as the pipeline will allow, so that the 

pipeline determines the speed. 

This method of measuring the speed corresponds to the method used in [24] rather than in [18] 

in which individual timings (for example nfl to rout delay) are summed to give an overall 

cycle time. It was found the later approach lead to a significant error if the timings were always 

measured at the fifty percent of full voltage swing point, rather than taking into account the 

exact voltage at which the logic starts to switch. 

Capacitive loading is placed on en to simulate a 32-bit single-phase latch [18, Figure 9]. 

The two-phase circuits with the toggle element employ the improved toggle circuit given in 

[25]. The four-phase circuits compared are the buggy semi-decoupled controller and the fully-

decoupled controller. The simple four-phase controller is not included, as it does not allow 

adjacent stages to simultaneously hold data and such a comparison would be unfair. 

Table 3.1 lists the results. The cycle time was measured as the delay between requests from one 

stage to another and was confirmed to be the same between all pairs of adjacent stages. The 

values shown are for a single pipeline stage, normalised values are shown in parentheses. The 

transistor count excludes devices used as resistive elements in the weak inverters in the latch 

and C-element implementations (these are shown in parentheses). 'FF' indicates a fast-forward 

version. 

The four-phase circuits generate rout excluding the data latch buffer delay time, so they should 

be compared with the fast-forward two-phase circuits. The results indicate that the simplified 

two-phase circuit is faster, smaller and consumes less power than the standard two-phase circuit 
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and compares favourably with the four-phase circuits. This comparison is valid for simple 

linear micropipelines, however, such an analysis for general micropipelined systems would 

need to take into account the efficiency of other primitive elements such as those mentioned in 

section 2.4.4. In Chapter 5 a circuit for which the simplified controller is ideal is presented. 

3.6 Summary 

In this chapter latch controllers have been introduced. A new latch controller circuit has been 

presented and shown to compare very favourably with previous latch controllers and to be 

superior when used in appropriate circumstances. 
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Chapter 4 
Asynchronous circuit modelling with 

ccs 

This chapter describes a method of modelling asynchronous circuits using process algebra, this 

method is then used to verify some of the circuits discussed previously in Chapter 3. The aim of 

this modelling is to verify that circuits behave as specified and do this without unknown timing 

assumptions. 

4.1 Introduction 

Milner's Calculus of Communicating Systems (CCS) [11], a process algebra, provides a formal 

semantic basis for reasoning about concurrent systems. CCS was chosen in preference to other 

methods because of former experience with it and that tool support and expertise are available 

locally. 

4.2 Relation to previous work 

Initially the intention was to verify the simplified two-phase latch controller (section 3.4.2) and 

it was believed that this would be a straightforward application of CCS. However, various non-

trivial aspects soon emerged, such as those of quenching and the implementation of isochronic 

forks (these are discussed later). The first two modelling styles (sections 4.4.2 and 4.4.3) were 

developed before investigating the literature. It was encouraging to find that the second of these 

styles (section 4.4.3) had been used before [26, 27]. The modelling method was then extended 

(sections 4.4.4 and 4.4.5) and when this work was submitted to the UK Asynchronous Forum 

(see Appendix D) literature was found [28] which discusses essentially the same extension as 

given in section 4.4.4. To date it would seem that the modelling style of section 4.4.5 is unique 

in that the strategy to allow quenching behaviour to occur has not been used before. 
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An alternative approach involving process algebra is the Rainbow system [29].  Rainbow promises 

support for modelling asynchronous circuits at a variety of levels, for example with a low level 

hardware description language, at an algorithm control-flow level or with temporal logic. The 

system is built on a formal basis using a process algebra called APA. This gives a sound foun-

dation on which support for analysis, simulation, verification and synthesis should be possible. 

At the time of the modelling work discussed here, Rainbow did not offer verification. Rainbow 

is intended for the design of systems built from modules communicating with the bundled data 

interface, rather than for the design of gate level circuits. One key feature is that, for simulation, 

data values as well as control signals can be manipulated. 

Another process algebra approach designed for asynchronous circuits is described in [30], but 

no tool support is available for this, and automated model checking was desirable. This ap-

proach does however lead to more concise models for components, as properties such as all 

possible orders of actions do not need to be specified and isochronic forks are less 'messy'. 

Initially the idea of specifying all behaviours was preferred, at the risk of missing some out, 

instead of specifying some at the risk of including implicit unwanted behaviours. 

A different approach to verification is to use Petri nets. For example one property verifiable 

with this technique is that of persistency; checking that when a signal has made a transition 

it cannot make a further transition until all signal transitions depending on this transition have 

occurred. This corresponds to the concept of an event 'catching up' with another event resulting 

in quenching (see section 4.4.5). The compositional approach of CCS was preferred to the Petri 

net approaches which tend to flatten the circuit structure. Also for large circuits the Petri net 

graphs become complex and lose their intuitive graphical appeal. However, it should be noted 

that recent Petri net approaches [31] look suitable for the tool support of modelling circuits 

with large state spaces; an intractable state space is easy to achieve with CCS. Since both Petri 

nets and CCS are both essentially ways of describing a labelled transition system, it would 

be reasonable to speculate that equivalent 'tricks' could by employed in CCS by algebraic 

manipulation. 

The most notable difference is that these other approaches consider the behaviour of a signal 

'catching up' with another as an error. The method discussed in section 4.4.5 allows this to 

happen, provided that the circuit model still satisfies the specification it is compared with. 
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4.3 CCS overview 

Systems described in CCS consist of processes composed using the basic constructors provided 

by CCS, for example those of non-deterministic choice and parallel composition. A process can 

perform actions to evolve into a new process, possibly involving communication with another 

process. An informal description of the syntax of processes is given below. 

Prefix: If P is a process, then a.P is a process that can perform an a action, evolving into P. 

Actions fall into three categories: input actions, for example a, output actions, for exam-

ple a, and a distinguished action, r, that represents the silent action, an action produced 

by a communication internal to a process. 

def Definition: If Q is a process and P = Q, then P is a process that can only behave in exactly 

the same fashion as Q. This constructor must be used to create recursive definitions. 

Summation/Choice: If P and Q are processes, then P+ Q is a process that non-deterministically 

chooses to behave like either P or Q. 

Composition: If P and Q are processes, then P IQ is a process that can behave like P and 

Q, acting independently of each other, or which can evolve further by a communication 

between P and Q if they possess complementary input and output ports. This means 

that if P can perform the input action a, and Q can perform the output action a, P I Q 
can perform either a, a, or the silent action r resulting from an internal communication 

between processes P and Q. 

Restriction: If P is a process and L is a set of actions (excluding the silent action r), then 

P\L is the process that can behave exactly the same as P, except that it cannot perform 

any actions contained in L. Restriction is used with composition to force synchronisation 

on input and output actions. For example by extending the composition example above 

to give (P IQ) \a, processes P can only perform input action a when Q also performs 

output action a, together these are observed as a T action. 

Relabeling: If P is a process and a and b are actions, then P[b/a] is the process that behaves 

exactly the same as P except that if P can perform a or a then P [b/a] can perform b or b 

respectively. This is useful when several copies of the same process with differing action 

names are required. 
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It is possible to compute the state space for a process. This can be thought of as a number of 

states interconnected by transitions, a labelled transition system. Each state corresponds to a 

process and transitions between processes are labelled with actions. For example the recursive 

process P a.b.P has two states and two transitions. 

With the CCS outlined above it possible to describe systems, however further support is re-

quired to reason about these systems, for example to ask "Can action a ever happen?". In fact 

for the circuits verified here, it is usually not necessary to ask such questions as the verification 

is performed by testing the equivalence between a model of the circuit and a specification. How-

ever, during development of the models it was useful to ask such questions, and when the circuit 

and specification are not equivalent a method is required to state distinguishing behaviours. 

Hennessy-Milner logic [32] and its temporal extension, the modal mu-calculus [33] are modal 

logics which can be used to express properties of labelled transition systems. The full syntax 

is not given here, but informal definitions of parts of the logic used later are introduced when 

needed. 

Tool support exists in the form of the Edinburgh Concurrency Workbench (CWB) [34]. The 

CWB computes the state space for a CCS process, and provides support for: determining the 

equivalence of processes, automatically generating logical formulae which distinguish pro-

cesses, interactively simulating a process, analysing the state space and allowing properties 

of a process to be checked using Hennessy-Milner logic and the modal mu-calculus. 

The most commonly used feature of the CWB was the ability to test for observational equiva-

lence [11]. Informally, two processes are observationally equivalent if they can not be distin-

guished by an observer with which the processes interact. Specifically silent r actions are not 

included, this means that it is possible to show that a circuit model is equivalent to a specifica-

tion without the r actions 'getting in the way'. 

4.4 Modelling circuits with CCS and the CWB 

During the development of the modelling method several issues relating to the choice of CCS 

to model asynchronous circuits were observed: 

Suitability: Circuits are composed from sub-circuits, the compositionality of CCS means this 
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structure is captured in the model. CCS has no notion of explicit timing delays, this 

can be thought of as inserting arbitrary but finite delays between actions. This property 

combined with non-deterministic choice is ideal for testing for delay insensitivity. 

Accuracy: All models abstract from the real circuit implementation. For simple circuit el-

ements such as XOR it is easy to see the correctness of the model. For more complex 

elements, such as the C-element, some care is needed. It would be possible to use CCS to 

model circuits at a transistor switching level (simple on-off behaviour), but in this work 

only logic gate level modelling was performed. 

Clarity: CCS allows the specification of structured, clear and concise models. However as 

will be seen later some of this clarity and much conciseness is lost when isochronic forks 

are added to the model. 

Next some basic assumptions are given and then the modelling method is developed; the inten-

tion is that models of circuits are to be compared, using observational equivalence, to a simple 

and therefore 'correct by inspection' specification. Initially only simple circuit elements, fo-

cusing on XOR, are considered. CCS circuit models for commonly used elements are given 

later in section 4.5. 

4.4.1 Assumptions 

The following assumptions are made. 

The environment (circuitry connected to the circuit being verified) is assumed to operate 

correctly. 

Gates are modelled as digital devices using two logic levels, as with traditional discrete 

event simulators. Communication between gates is assumed to be reliable. If needed the 

modelling method could be extended to support more than two logic levels, for example 

weak and strong, but this would increase the state space of the models considerably. 

It is assumed all gates are initialised into a known state after power-on. For state keeping 

gates, for example latches, an explicit reset signal is required. This reset mechanism is 

not modelled. 
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No assumptions about the delays in gates or wires are made; all delays are unbounded 

but finite. 

For the latch controller circuits studied the circuit model described in section 3.2, Fig-

ure 3.1 where the data latch is in the signal path is used. Additionally all data bundling 

constraints are assumed. Likewise verification does not include the assumptions involved 

in the fast-forward variation (section 3.2). 

4.4.2 Modelling with logic levels 

The first method captures the logic value (high or low) of signals, much like that in discrete 

event simulation. The CCS model for an XOR gate with two inputs in 1 , in2  and output out 

is given below. The subscripted numbers in the process names refer to the logic levels of the 

inputs. The action names indicate input and output 'values'. Processes X0R 1 0, X0R 01  etc are 

defined in a similar manner. 

X0R00
def   - in1hi.X0R10 

• in1 lo.X0R00 

• in2hi.XOR 01  

• in2 lo.X0R00 

• out lo.X0R0 0  etc 

The XOR process has four states, corresponding to the possible input combinations. There are 

disadvantages to this method. The model can always accept input and offer output even though 

no change in signal level occurs, this is meaningless in circuit terms and not intuitive. This may 

also be undesirable for analysis as it is always possible for the model to exhibit activity (for 

example silent 'r transitions) even though the circuit is in a stable state awaiting further input. 

Finally, the gate is modelled at an unnecessary level of detail resulting in a larger than necessary 

state space. 

4.4.3 Modelling with events 

Instead of modelling logic levels it is possible to model events, abstracting from the actual logic 

levels. XOR becomes: 
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XOR V  in1  .iiE.XOR + in2 .ü.XOR 

This XOR process has two states, one state which allows an input action on either input and the 

other which offers an output action. This model is an improvement, actions only occur when 

signals change and fewer states are required. There is no loss of generality by modelling events 

instead of logic levels, when modelling gates where the initial state of the inputs are important 

(for example an AND gate), it is only necessary to arrange the internal states of the model 

appropriately. 

However, there is a flaw with this modelling style. Consider XOR, once the action corre-

sponding to an event on one input has occurred, it is impossible for the other input action to 

occur until the output action occurs; the model blocks further inputs until an output occurs. 

This is not a property true of real circuits which can always receive input, even if such input 

causes undesirable behaviour. This is a significant flaw—the model cannot spot delay sensitive 

behaviour. 

For example, consider the 'transition detector' circuit shown in Figure 4.1. The intention is 

that, when an event occurs on one of the XOR inputs, an event occurs on the output of the 

XOR clocking the '1' into the double-edge triggered flip-flop (DET-FF). In the model this 

circuit could be verified as correct by testing the property that any input event to the XOR must 

eventually lead to an event on the DET-FF output. However, in the real circuit, it is possible 

for a second input event to arrive at the XOR before the XOR has produced output. Such a 

second event may cancel the due change in output, or it may not, this is a race condition. This 

behaviour is not captured by the model as all events input to the XOR must be propagated to 

the XOR output. 

LL 	 Y 

X, 
 

Figure 4.1: Transition detector 

This modelling style is suitable for the verification of circuits provided it is known in advance 
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that they do not exhibit delay sensitive behaviour, for example a circuit composed properly 

from modules communicating with a two-phase bundled data interface. This is the modelling 

style used by [26]. TO observe delay sensitive behaviour it is necessary to ensure that inputs to 

a circuit can not be blocked. The next two modelling styles overcome this. 

4.4.4 Overcoming blocking with wires 

In this style 'wires' are added between gates. The obvious definition of a wire might be: 

def i 
Wire = n.out. Wire 

The wire process acts as a one place buffer, however this does not solve the problem, it merely 

postpones it. Whereas before only one input event to the XOR gate was required to block 

further input, an XOR followed by Wire requires two input events for blocking to occur. A 

delay insensitive circuit should not permit circumstances in which one event might 'catch up' 

and interfere with another. Therefore one solution to the blocking problem is to consider the 

circuit in error if an event is blocked. The model can then be tested by using the CWB to check 

if any of the states in the model satisfy the mu-calculus formula for "eventually, an error may 

occur". This can be achieved with the following definition for Wire: 

i 
def 	 , 

Wire = n. Wire 

Wire' 	Wire + in.Error 
def 

Error = error. Error 

Whilst this modelling style would work, there is a penalty of increased state space as each wire 

now has three states. In particular the majority of states in the model may only be reached once 

a single wire has entered its error state. An alternative approach would be to build the error 

state into the gates, avoiding the need for wires, but this still increases the state space and does 

not aid clarity. The final modelling method, discussed next, does not add to the state space. 

4.4.5 Final modelling method 

This approach directly models the possibility that a gate which has been excited by an input 

event may return to an unexcited state via a further quenching input action. XOR becomes: 

(see also Appendix A.1). 
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XOR " ifli.XORe + in2.XORe 
ef 

XORe 	in 1XOR + in2.XOR + 11.XOR 

Like the original event based model (section 4.4.3) only two states are required. This method 

takes the approach that quenching can occur, and is not an error, provided that the circuit be-

haviour still satisfies the specification. In fact it is no longer possible to detect quenching. 

The disadvantage to this approach is that the definitions of gates lose some clarity, especially 

when synchronisation mechanisms are added to permit isochronic forks, as shall be seen later. 

However this approach was found to work well in practice. 

4.5 CCS models of common circuit elements 

The CCS models for the basic circuit elements used in two-phase and four-phase latch con-

trollers are given here, except for XOR which was given in section 4.4.5. This is followed by a 

simple example to illustrate composition. 

The C-element, toggle and latch models assume delay-insensitivity even though the imple-

mentations may contain timing assumptions. These timing assumptions are either completely 

internal, or are the result of an internal fork for a feedback path required to keep state. In the 

later case, it is possible to change the inputs before the feedback path has settled resulting in 

incorrect operation. In practice these assumptions are reasonable as they are very localised, 

and the internal feedback path delay is very short. This is an example of 'hierarchical' delay-

insensitivity where the circuit is being tested for delay-insensitivity given the assumption that 

its building blocks are delay insensitive. 

4.5.1 C-element 

C
def  = ini . çj + 	in2.C2 

C., 
def = 	inj .0 + 	in2.Ce  

,-, def  = 	1-fli.Ce + 	in2.0 

G 
def = 	in 1 .C2 + 	in2 .C1  + 

To model a C-element for which one input is inverted, for example that used in the standard 

two-phase latch controller, a different starting state is used, for example C1  instead of C. 

Asymmetric C-elements are created in a similar manner, see Appendix A.2. 
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4.5.2 Toggle 

The toggle element is specified below. 

Toggle W 	+ in. Toggle) 
def 

Toggle2 = in. (blank. Toggle + in. Toggle2 ) 

4.5.3 Latch 

A simple transparent latch: the latch can be enabled allowing events to pass from input to 

output, or disabled such that output events are not possible. Note that when disabled, internal 

state changes must still take place upon input events in order to know if an output needs to be 

offered upon re-enabling (the output need not necessarily occur, for example if a quenching 

enable or input event occurs). The Latch process below is initially enabled (transparent). 

def 
Latch = Latch-En 

	

Latch-En 	in.Latch-En, + enable. Latch -Dis 
def Latch-En e  = in.Latch-En + enable.Latch-Dis + i.Latch-En 

	

Latch-Dis 	in.Latch-Dis e  + enable.Latch-En 

	

Latch-Dise 	in.Latch-Dis + enable. Latch -En, 

4.5.4 Data latch 

In checking the correctness of a latch controller it is useful to know when the multi-bit data latch 

captures data. The simple definition below, which generates an observable capture action, 

can be used to achieve this. The release action is optional and can be left out, or ignored. 

In verifying that a latch controller is suitable for use in a micropipeline it is not necessary to 

know when the data latches are transparent as the transparent state serves no useful purpose 

(except when using the fast-forward variant). It is however essential to check that the latch 

controller has captured the data before sending an ain event to the previous stage. There is no 

need to explicitly permit quenching on the input. The Datalatch process cannot block its input 

provided that the output is connected to an input of another process which permits quenching 

and that no synchronisations with the capture or release actions are made. 

Datalatch def  = in. capture. out. in.release.iThDatalatch 
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4.5.5 Forks 

Most circuits contain at least one fork. In modelling terms this represents an event which needs 

to be propagated to more than one destination. In a delay insensitive circuit the events may be 

propagated to the outputs in either order: a non-deterministic fork. Furthermore, a quenching 

input event can occur before or after the previous input event has reached one destination. For 

example an input event may have reached one destination, a second input event then occurs, 

resulting in no events reaching the second - destination; this may result in a second event reaching 

the first destination. The full version, as given below, of this fork must be used; the optimised 

version [27], in which the output events occur in a deterministic order, cannot be used, as the 

circuits discussed later do not fall into the class of circuits for which this optimisation is valid. 

def 
Fork = ifl.FOrke  

def Fork, = 	iiti.FOrk2e + ii.Fork ie  + in.Fork 
def Forkie 	i.Fork + in.Fork2 
def 

Fork2e  = 	i.Fork + in.Forki e  

Isochronic forks can not be implemented as a separate circuit element like the non-deterministic 

fork above. Instead it is necessary to use synchronisation between internal state changes in the 

gates at each destination of a non-deterministic fork. The circuit level parallel to this is that not 

only should the wire delay to each destination of the isochronic fork be the same, the gates at 

the destination should switch at the same voltage levels. 

Unfortunately this synchronisation adds to the complexity and doubles the state space of such 

gates. Consider the isochronic fork present in the simplified latch controller circuit from sec-

tion 3.4.2. Here both latches must operate at the same time. This is modelled by each latch 

having a set of 'mirror' states which are entered upon an enable action in which a further 

enable action is not possible but the latches behaviour with regard to which other actions are 

permitted is unchanged. To allow a change in this behaviour, the other latch must supply a syn-

chronising action. In this way it appears as if both latches are enabled or disabled at the same 

time, without affecting the need to allow quenching. The resulting code for the latch can be 

found in Appendix A.3. One noteworthy point is that the generation of the additional CCS code 

is methodical and could probably be automated, though the clarity of the model is lost. This 

is especially noticeable for the isochronic fork required between two asymmetric three-input 

C-elements in the four-phase latch controllers. 
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4.5.6 Composition example 

This example illustrates XOR (from 4.4.5) driving a datalatch. The resulting model has input 

actions in 1 , in2  and output action 6i1. Relabeling is used to 'connect' the XOR to the data 

latch and restriction is used to ensure that the two processes communicate to produce a silent T 

action, that is to say the w action is not externally observable. 

Example 
def 

 = (XOR[w/out]IDatalatch[w/in])\{w} 

4.6 Verification of latch controllers 

This section discusses the verification of two and four-phase latch controllers using CCS and 

the relation of the CCS specifications to the STG specifications given in Chapter 3. 

The CCS model of each latch controller circuit is verified by placing it in a correctly operating 

environment to simulate the previous and next stages in a micropipeline. The environment, 

see Appendix A.4, is modelled by two processes: Env-L which is always able to supply new 

data and Env-R which is always able to receive data. Observable actions rin, ain, rout, aout 

are used to observe changes in the handshake signals to the latch controller and the observable 

action capture indicates when the latch controller instructs the multi-bit data latch to capture 

data. The environment processes for two-phase and four-phase circuits are identical. This is 

because the environment for a four-phase circuit, when modelled using events, performs the 

same sequence of actions, but at twice the rate as for a two-phase circuit to process the same 

number of items of data. 

The verification, in particular claims to delay insensitivity with allowance for isochronic forks, 

is subject to the assumptions stated previously in sections 4.4.1 and 4.5. 

4.6.1 Standard two-phase controller 

A CCS model, given in Appendix A.6, of the standard two-phase latch controller (introduced 

in section 3.2) was constructed and shown to be observationally equivalent to the specification 

below (also given in Appendix A.5). This is consistent with the accepted fact that this circuit is 

delay insensitive. 
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Spec TwoPhase-L 
def  = nfl. sync. capture. sync.i.Spec TwoPhase-L 
def 

Spec TwoPhase-R = sync. sync. rout. aout. Spec TwoPhase-R 
def 

Spec TwoPhase = (Spec TwoPhase-LI Spec TwoPhase-R)\{ sync} 

4.6.2 Simplified two-phase controller 

The CCS model, given in Appendix A.7, of the simplified two-phase latch controller (see sec-

tion 3.4.2) was also shown to be observationally equivalent to Spec TwoPhase given above. 

This verifies that, assuming the isochronic fork discussed in section 3.4.2, the simplified con-

troller is equivalent to the two-phase specification, and therefore is equivalent to the standard 

two-phase latch controller. 

A version of the model without the isochronic fork was also produced. For this the CWB 

produces a distinguishing formula. The formula given below is satisfied by Spec TwoPhase but 

not by the circuit model. 

((nin)) [[capture]] ((ii)) ((rin)) ((rout)) [[aout]] [[iIi]] f  

At this point an informal explanation of part of the Hennessy-Milner logic is needed: If a 

process P satisfies the formula ((a)) 0 (pronounced 'diamond ') then there exists a process Q 

which satisfies 7 such that P can become Q by some sequence of actions which consists of a 

only once and an arbitrary but finite (and possibly zero) number of -r actions. If a process P 

satisfies the formula [[a]] 0 (pronounced 'box q') thenfor all processes Q which can be reached 

from P via some sequence of actions which consist of a only once and an arbitrary but finite 

(and possible zero) number of -r actions, all Q must satisfy 0. All processes satisfy tt and no 

process satisfies ff. 

Consider the above formula, with reference to Figure 3.12 the following sequence of events 

is possible. An rin arrives from the previous micropipeline stage and propagates through 

transparent latch Li and the XOR resulting in a capture action. The signals continue to 

propagate such that Li becomes opaque and L2 transparent. The latch controller produces am 

and the previous stage responds to produce a second rin. The latch controller also produces 

an rout. The next micropipeline stage responds to the rout by producing aout, which will 

eventually cause Li to become transparent and L2 to become opaque. However, if Li becomes 

transparent whilst L2 is still transparent (the fork is not isochronic), then the waiting nfl can 
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pass through Li and L2 to produce an ain. The specification can not produce this ain without 

first producing capture. This corresponds to the formula above. The formula in fact states a 

stronger version of this because of the 'boxed' actions. 

4.6.3 Equivalence to two-phase STG specification 

Using a simple tool constructed to compute the state space of an STG and convert this to a CCS 

process description, the two-phase STG specification (see Figure 3.3) was converted to CCS 

and shown to be observationally equivalent to Spec TwoPhase. This acts as an extra check that 

the specification is correct. Appendix A.8 lists the conversion tool input and output. 

4.6.4 Buggy four-phase latch controller 

To test the CCS modelling technique, an attempt to confirm the existence of a timing assumption 

in the buggy semi-decoupled four-phase latch controller (see Figure 3.10) was made. The CCS 

model of this controller was tested against a four phase CCS specification converted from the 

STG of Figure 3.7. The CCS model assumes that the fork from aout to the two C-elements is 

isochronic. In [24] all forks are assumed isochronic as the circuit is speed independent but this 

is unnecessary. When tested for observational equivalence the distinguishing formula below is 

produced, this formula is satisfied by the specification but not by the circuit model. 

((rin))((capture)) [[Ii]] [[rout]] ((aout))((rin)) [[Ii]] ((rin)) [[capture]] f  

This expresses that the circuit model can perform the following sequence of actions (with ref-

erence to Figure 3.10). 

An nfl arrives from the previous micropipeline stage resulting in a capture action and 

the event propagates through the three-input C-element leading to an ain event. 

The latch controller circuit continues to propagate the effect of the nfl, which causes 

an rout to be sent to the next stage. The next stage acknowledges this by generating an 

aout event. 

Since the previous stage's rin has been acknowledged by the circuit with an ain, the 

previous stage can and does produce another nfl (the high-to-low reset). 
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Next the circuit acknowledges the high-to-low nfl with an ain. This implies the nfl 

must have propagated through the three-input C-element. Therefore, both the event prop-

agating round the fork from the rout event and the event propagating along the fork 

caused by the aout event have reached the 'negative' inputs of the three-input C-element. 

Because the circuit has acknowledged the high-to-low reset, the previous stage can and 

does produce another rin event (indicating new data). 

At this point a problem exists. The circuit should not allow this nin event to propagate because 

the effects of the previous high-to-low reset transition may not yet have propagated fully. How-

ever, two of the three inputs to the C-element cannot prevent propagation of a rising transition 

on nfl. This leads to possible interference (a high catching up with a low) on the wire leading 

to the two-input C-element. The specification does not allow the final nfl to propagate through 

the three-input C-element. This non-persistent behaviour is stated in [24]; the confirmation of 

this provided some reassurance in the correctness of the CCS modelling method. 

4.6.5 Fixed four-phase latch controller 

Additionally a CCS model of the fixed semi-decoupled four-phase latch controller (section 3.3) 

was tested for observational equivalence with a CCS specification obtained from the STG of 

Figure 3.9. The same fork as in the previous section is assumed isochronic, but other forks are 

not. The circuit model and specification were found to be observationally equivalent. 

4.7 Evaluation 

The method is well suited to the verification of delay insensitive circuits, but as discussed earlier 

the clarity and conciseness of CCS is lost with the addition of isochronic forks. CCS would not 

therefore be well suited for verifying speed independent circuits. For larger or unconstrained 

circuits (for example a latch controller without a constraining environment) the state space 

'explosion' is likely to make verification with the CWB prohibitive. It should be noted that this 

is a limitation of using the CWB to check properties not a limitation of CCS itself. Despite these 

problems, the tool support is very good and CCS and the associated logic are quick to learn and 

apply. Overall the CCS modelling method was found to be appropriate for the complexity and 

size of the circuits verified. 
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With the other modelling techniques discussed earlier (section 4.2) quenching is not permitted, 

and such interference between signals is unconditionally considered an error. In this technique 

quenching is allowed to occur, provided that this behaviour does not affect the circuit correct-

ness when the circuit model is compared to a specification. To date evidence has not been 

encountered which suggests this reasoning is flawed. An example circuit, in which quenching 

can occur during correct operation, has not been found, without the example circuit containing 

redundant circuitry (which is removable at no loss to correction operation). From this it is pos-

sible to speculate that such a circuit may not exist. However, allowing quenching to occur is 

useful; it reduces the state space of a model and seems more 'natural', in that the circuit can do 

whatever it wishes internally, provided its externally observable behaviour is correct. 

4.8 Summary 

This chapter has introduced a method of modelling asynchronous circuits using the CCS pro-

cess algebra. During the development of the final method several approaches were tried. In all 

of the approaches a circuit can be informally mapped to CCS as detailed below, and the CWB 

used to check properties of the model. 

• Each circuit element is modelled with a corresponding CCS process. 

• CCS input and output actions are used to represent the transmission of events from one 

circuit element to another. 

• CCS parallel composition with restriction is used to 'connect' the models of circuit ele-

ments together. This can be done in either a hierarchical or linear fashion to reflect the 

modularity of the circuit. Once models of basic circuit elements have been designed the 

composition is straightforward. 

• Processes acting as specifications are used to model the environment surrounding the 

circuit. 

• Observational equivalence is used to compare a model against a specification. 

Modelling with logic levels: Signals were modelled as the communication of high and low 

logic levels. This was found to be undesirable as the model can always exhibit activity 

(even whilst the circuit can not) and an unnecessary level of detail is involved. 
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Modelling with events: Events (transitions) are modelled instead of logic levels. This reduces 

the state space and the model only exhibits activity when the corresponding circuit does. 

By arranging the initial state appropriately there is no loss of generality. However, with-

out further development there is a flaw, gate inputs in the model can block (prevent further 

input changes temporarily) whereas gate inputs in a real circuit can not. Such blocking 

is undesirable when testing for delay insensitivity. 

Modelling with events and wires: A 'wire' process is placed between gates. The wire enters 

an error state to indicate when an event is about to be blocked by the gate following the 

fire. This increases the state space in the model and so the next method is preferred. 

Modelling with events and quenching: With this style the process representing each gate never 

blocks its inputs. It permits quenching, where one input event can cancel a previous in-

put event without an output event from the gate. This method differs from others in the 

literature in that quenching is permitted, provided that the externally observable interface 

is still equivalent to the specification. As an optimisation, quenching does not need to be 

permitted on a gate input when it is known that it will not occur, for example in the case 

of an input from a correctly behaving environment. 

The modelling method has been successfully applied to the following circuits. The first two - 

confirm existing known facts as a means of testing the method in practice, and the second two 

involve the verification of new circuit structures. 

. Standard two-phase latch controller 

• Buggy (and fixed) four-phase latch controller 

• Simplified two-phase latch controller 

• Circuits for full- and empty-detection of pipelines and multi-state FIFO's (see Chapter 5). 

In theory the CCS technique could be applied to any complexity of circuit, but in practice 

the use of the CWB limits this to small or well constrained circuits which are close to being 

fully-delay insensitive. The circuits modelled in Chapter 5 demonstrate a possible method of 

including timing assumptions in the model, but at the expense of clarity and conciseness. In 

practice the tool support is good and the method was found to work well for the circuits studied 

and is expected to perform well for other circuits of similar complexity. 
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Chapter 5 
Two-dimensional micropipelines 

In this chapter the linear micropipeline structure, introduced in Chapter 2, is developed into a 

two-dimensional structure which can perform matrix transposition or convert between word-

serial bit-parallel data and word-parallel bit-serial data. The circuit structure is an ideal appli-

cation of the simplified latch controller developed in Chapter 3. The CCS modelling style from 

Chapter 4 is used to check properties of the circuit. Two ways of capturing timing assumptions 

within this modelling style are used, one a direct CCS approach involving examination of the 

state space, the other, somewhat simpler, involving STG specifications. 

Two variants of the circuit are discussed, termed Method I and Method II. Method I was devel-

oped for parallel-serial conversion, prior to knowledge of independent work for matrix trans-

position by Tierno and Kudva [35]. Method II was developed upon re-examination of the 

circuit after reading the work by Tiemo and Kudva. Both methods can be applied to either 

matrix transposition or parallel-serial conversion. Method I is modelled using the direct CCS 

approach, Method II is modelled using the STG based approach. Although not performed, it 

should be possible to model both circuit variants with either modelling method. A review of 

the two circuit variants and the work by Tierno and Kudva is presented. 

Matrix transposition is similar in operation to that of parallel-serial conversion (each bit of data 

is replaced with a word of data). Matrix transposition is commonly used in the calculation of 

the 2-D DCT, see Chapter 6. This chapter focuses on the task of bit-parallel word-serial to 

bit-serial word-parallel conversion, but the methods apply to both the reverse conversion and 

matrix transposition. 

5.1 Motivation and application 

Figure 5.1 shows a typical setup for parallel to serial and serial to parallel conversion, where a 

bit-serial core is required to interface with a bit-parallel environment. Block I performs word- 

serial bit-parallel (n words of width w bits) to word-parallel bit-serial conversion, block 0 the 
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reverse. An example application might be a bit-serial DCT, such as one based upon the Arai 

algorithm discussed in Chapter 6. 

data in 	 data out 

Figure 5.1: Bit-serial core in a bit-parallel environment 

Typically a two-dimensional array of synchronous registers performs the conversion. This ap-

proach has several disadvantages: 

. The two-dimensional array of edge-triggered registers requires a large area and consumes 

significant power. 

The input and output interfaces must both be synchronous (and with the bit-serial core). 

. The data input and output rates are not constant, a burst of input and output is followed 

by a burst of processing. 

Many DCT implementations use a DRAM block, with address counters, to perform matrix 

transposition, thus avoiding the large area of a two-dimensional array of registers. The DRAM 

method is slower because only one word of data can be accessed at a time, but some improve-

ment can be made by using a dual-port DRAM with concurrent read and write access. For 

parallel to serial conversion the DRAM method would involve reading and writing one bit at a 

time and would hence be too slow. 
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5.2 Architecture 

5.2.1 Concept 

An alternative scheme is shown in Figure 5.2. The parallel to serial conversion block is based on 

two micropipelines, a vertical pipeline IV for reading the bit-parallel input data and a horizontal 

pipeline I  for providing bit-serial output. The data is kept in a two-dimensional array of level-

sensitive latches IA. Each latch cell in the array can be supplied with data from the cell to the 

left (except those in the left hand column) or from the cell above. 

The optional column of latches IX may be used to sign extend the bit-serial output concurrently 

with new data entering IV. The optional linear micropipeline buffer lB buffers the input, per-

mitting a constant data input rate. The data processing core remains synchronous, the clock 

for which is generated by global control circuitry coordinating the operation of all the blocks 

shown in Figure 5.2. 

The serial to parallel conversion block has a similar structure, with horizontal pipeline OH to 

read bit-serial data from the core processor and vertical pipeline OV to supply bit-parallel out-

put. The optional linear micropipeline buffer OB permits a constant data output rate. Circuits 

II and 01 allow the handshake signals at the top of the vertical pipelines to be 'isolated' from 

the buffers; wide pass-transistors are suitable for this. 

Pipeline IV should have an even number of stages if lB is used, otherwise the handshake signals 

between IV and lB will be out of phase if the two pipelines are isolated, IV is reset and then IV 

and I  are reconnected. A similar argument holds for OV and OB. 

Pipelines IH and OV produce an empty signal which indicates when there is no data held in the 

pipeline, likewise pipelines IV and OH produce a full signal which indicates when the pipeline 

is full and, in the case of Method I, there is a request waiting at the input of the pipeline. 

Each pipeline has a reset input, for all pipelines except I  and OV this would reset the pipeline 

into an empty state; the reset inputs to IH and OV reset the pipelines to a full state where 

each stage is initialised holding data. The reset input follows a lower bounded delay model, 

upon issuing a reset a lower bounded amount of time must pass before the reset input can be 

removed and the pipeline used. A global control circuit, not shown in the diagram, is required 

to coordinate the activity of the various circuit blocks. 
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data in 
	

data out 

Figure 5.2: Parallel-to-serial, processing core and serial-to-parallel 

This scheme has several advantages when compared to the synchronous shift-register approach: 

. The use of transparent latches leads to an area and power saving. 

The input and output interfaces are asynchronous. 

The input and output data rates may be constant, provided suitable buffer sizes at the top 

of each converter block are chosen. 

In principle, the input and output interfaces are asynchronous; for applications where the sur-

rounding environment is synchronous this is likely to be a disadvantage. Since the data pro-

cessing time is constant, it may be reasonable to assume a bounded-delay model for the input 

and output interfaces. The simulations required to ensure this assumption are likely to be made 

easier by the fact that the blocks are composed from regular cells. This is to say that, for each 

request to input data (by providing an event to nfl on IB) there will be a bounded delay be-

fore the ain from lB occurs. The worst case for this delay can be found by simulation, in a 

manner similar to that used to find the maximum clock frequency for the synchronous equiva-

lent. Hence the ain from lB can be ignored (unconnected) and the nin to lB treated as an input 

clock. Care is needed to ensure that I  is large enough to allow a continuous constant frequency 

input clock, or a scheme of stopping and starting input would be needed. A similar argument 

holds for the output interface, where aout from OB would be used as an output clock. 
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Again a similar arrangement can be used for the reading of data from IH by the core and for 

the writing of data to OH from the core. The highest core clock frequency is limmited by 

the slowest of the worst case response times of IH to aout and OH to rin. Alternatively and 

perhaps preferably because it involves fewer timing assumptions, rout from IH and ain from 

OH may be used to control the generation of each clock cycle. 

Note that rout from IV and ain to OV are unconnected and that aout to IV and nfl to OV 

are kept at logic zero. These interfaces are referred to from now on as a left and right hand null 

environment. 

5.2.2 Operation 

Typical operation of the system in Figure 5.2 is summarised below. The overall operation 

appears complex because there is much concurrent activity, the description below lists one 

possible sequence of operation. 

IH and OV are initialised to be full and IV and OH are initialised to be empty. OV 

is isolated from OB. Additionally if this is the first cycle of operation, lB and OB are 

initialised empty. 

Data flows into lB and from there into IV. Concurrently, the previous output (if not the 

first cycle) from the bit-serial core which is held in OV flows into OB and is output. 

Because lB and OB are elastic micropipelines data can continue to arrive into lB and 

leave OB. 

When IV is full and OV is empty, the handshake signals between lB and IV are isolated 

and the core clock is started. Data is read from IH, processed and written into OR 

The clock driving the aout input to IH is stopped whilst the core continues to process 

and read sign extended bits. 

Once the core has read enough sign extended bits, IH can be reinitialised to be full, IV 

reinitialised empty and new data permitted to flow from lB into IV. Concurrently data 

is permitted to leave OV and enter OB. If IX is used then IV can be reinitialised and 

reconnected to I  before all the sign extended bits have been read. 

Once OV is empty and IV is full a new cycle of processing starts. 

BE 
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Two-dimensional micropipelines 

5.2.3 Two-dimensional micropipeline 

The circuit for a two-dimensional micropipeline, equivalent to the parallel to serial converter 

(blocks IV, IH, IA) is shown in Figure 5.3. Note that reset circuitry and the sign-extender IX is 

not shown. Blocks FD and ED detect when IV is full (full-detection) and IH is empty (empty-

detection). Two variants of the circuits for full- and empty-detection are discussed later. 

ain rin 	
l•S4S 

IH 	

LIIIIIi 
Figure 5.3: Two-dimensional micropipeline 

An alternative to using empty-detection in block IH is to connect an inverter between ain and 

nfl of the left most stage such that the horizontal pipeline always stays full. The number of 

items of data read from IH would then need to be counted, this might be an existing function 

of the processing core. This avoids having to reset IH to be full for each cycle of operation. 

However, the reset circuitry would still be needed to ensure correct operation after power on. 
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An alternative approach to full- and empty-detection would be to use a counter to count the 

number of events requesting input, or requesting output. This is, however, a somewhat less 

elegant and more expensive approach. A counter would need to be placed between the buffering 

pipelines and the vertical pipelines. Since the complexity of a counter is much higher than one 

of the pipeline stages, it would seem reasonable to assume that the highest data rate would be 

restricted by the counter rather than by the pipeline. 

It should be noted that the simplified two-phase latch controller, from section 3.4.2, is the ideal 

choice of latch controller, because it is used here in a simple linear pipeline (see section 3.5). 

5.3 Method I - circuit 

Although the circuits for full- and empty-detection are dissimilar for this method, they are 

grouped together here as they were developed at the same time and the same modelling style is 

used (see section 5.4) to verify both circuits. 

5.3.1 Full detection 

Full-detection is concerned with deciding when an initially empty micropipeline has become 

full and can not hold any more data. A single pipeline stage can not 'know' when the whole 

pipeline is full, this is because all valid circuit states, for a single stage, can occur during nor -

mal operation before the pipeline is full. A simple way to implement full-detection might be 

to define the pipeline to be full when all stages are holding data (occupied) and hence no data 

latches are transparent. However, consider an arbitrary length pipeline with a right hand null 

environment, into which one item of data is inserted into the left hand side. It is possible, al-

though unlikely for a non-trivial number of stages, that each stage will capture data and produce 

an rout to the next stage until the data reaches the right most stage. No stage has yet acknowl-

edged receipt of data to the stage to the left. There is only one item of data in the pipeline, yet 

each stage in the pipeline is occupied and so the pipeline, by the current definition, is full. A 

similar argument can be made for any number of data items being inserted into the pipeline. A 

more sophisticated mechanism is needed and one such mechanism is introduced next. 

The simplified two-phase latch controller with circuitry to detect request-pending is shown in 

Figure 5.4. Note that the right most stage in the pipeline which will be connected to a right 
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hand null environment may be simplified. 

1 

It 

) 

Figure 5.4: Two-phase latch controller with request-pending 

The output rp (request-pending) is high when the pipeline stage is occupied and there is a 

request waiting on nfl. The XOR gate X2 is used to detect that there is a request event waiting 

on nfl which cannot pass through Li. The XOR output may, however, also glitch high if Li is 

transparent as a request event passes through Li. To counteract this glitch Al is used to ensure 

that not only is there a request waiting, but the stage is occupied. It is not possible for an event 

to pass through Li and cause a glitch in the XOR output whilst the stage is occupied, because 

Li would not be transparent. Nor is it possible for such a glitch to occur between the data latch 

becoming occupied and Li being disabled. This is because such a request on nfl can only 

occur in response to an ain and this ain cannot occur until Li and L2 have acted at the same 

time (by definition of the isochronic fork to the enable inputs of Li and L2). It is possible to 

replace X2 with an inverter and AND gate to give a smaller implementation, as the actual logic 

values at the two sides of Li at the time of a request-pending are known and alternate between 

even and odd stages. 

The circuitry, to detect request-pending, does not interfere with the normal latch controller 

operation, because it acts strictly as an 'observer'. A consequence of this is that the request-

pending circuitry is not delay insensitive. For example, suppose the latch controller reaches a 

state where the request-pending signal should change from logic low to high. This change could 

occur after an arbitrary delay after the latch controller reaches this state. This potential change 

could, but not necessarily, be quenched if the latch controller subsequently changed state such 
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that the request-pending signal should return low. Likewise for an initial change from logic 

high to logic low. 

For a single stage pipeline, with a right hand null environment, the stage will indicate that there 

is a request-pending (rp high) upon the second nfl. Since there is only one stage this request-

pending signal is directly used to indicate the pipeline is full. Note that the single stage pipeline 

is only defined to be full when the second, unable to be processed, nfl is received. 

For n stages (n an integer> 1) the circuit shown in Figure 5.5 is used. The signal full1 is the 

AND of full 1 _ 1  and the request-pending signal rp j . The right most stage is connected to a 

null environment and full 1  is simply rp1 . 

	

nin rout 	P Irin rout! ------- ,.-lrjn rout 
not connected 

n 	I 	I 	n-i 	I 	I 	1 

ain aoutluu 	lain aout 	 ain aouti-uu 	0 
rp 	I 	I 	rp 	 rp 	I 

full 	
full1 

Figure 5.5: Micropipeline with request-pending full-detection 

For the correct detection of a full pipeline, the indication of full must eventually occur if the 

pipeline is full and there is a request waiting at the pipeline input. This indication of full must 

never occur erroneously, even momentarily, before then. 

Whilst data is being passed from left to right through the pipeline it is possible a stage i may set 

rpj high and then low again. This can occur if stage i - 1 has not yet acknowledged a request 

from stage i and stage i receives a request from stage i + 1. This will not matter, provided stage 

i cancels rp j  before there exists the possibility for full1_ 1  to occur, if not then full 1  could 

be generated erroneously. 

Therefore without any timing assumptions it is clear that the circuit will not work correctly. 

Consider this scenario with an n stage pipeline: All the stages to the right of stage n are 

occupied, stage n is occupied with the same data as stage n - 1, as stage n - 1 has not yet 

acknowledged to stage n and there are n - 1 pieces of data in the pipeline. Stage n receives the 

nth request from the left hand environment and signals rp. Stage n - 1 then acknowledges to 
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stage n, but rp does not yet become low. Stage n sends a request to stage n - 1, the stages 

to the right of stage n can now correctly signal full_ 1  which, combined with the still high 

rp, will produce full. This is incorrect, fUlln  should not be produced until the (n + 1)th 

request is received from the left hand environment, rPn  is still free to become low and when it 

does full will also return low. 

Note that this sequence of events also demonstrates that the possibility of using just the data 

latch enable signal without X2 in stage n, with an aim to signalling full after n requests from 

the left hand environment, will not work correctly either. It is therefore necessary to have n + 1 

requests before full is produced. 

The behaviour of each stage i assumes that the full-1 signal is generated correctly without 

glitches, therefore stage i must ensure that full 1  is generated correctly. As shown above, 

without timing assumptions, full 1  may be generated erroneously. In the example scenario 

above, this error occurs because a stage i is allowed to keep rpj  high whilst generating a 

request to stage i - 1. If the assumption is made that, by the time stage i can generate an rout, 

rpj has returned low (unless there really is a request-pending and it is not the case that rpj is 

high because it has not returned low yet) then the problem is avoided. 

Restating the above assumption, for a single pipeline stage, rp must become low before the 

stage produces an rout in response to the waiting nfl when aout is received. The aout will 

cause the data latch to become transparent and will indicate to Al that rp should become low. 

Once the data latch is transparent Li will also become transparent, indicating to X2 that rp 

should become low and the data latch will then capture again, possibly quenching the previous 

change to the inverted input of Al. If the delay through X2 and Al is less than the delay 

through Xi and the data latch and the delay for L2 to act, then rp will become low before rout 

is produced. Driving the data latch involves a large load, and so this assumption would seem 

reasonable. Furthermore, if X2 is replaced by an inverter and AND, with a shorter delay than 

an XOR, this is in favour of the assumption. Finally, what correct operation really assumes, 

is that rp is low before the stage to the right is able to act on rout and produce a full signal. 

There will be a delay, in addition to the margin of safety already attained, in the stage to the 

right acting on rout. This delay is comparable to the delay in rp becoming low as the same 

circuit arrangement is involved. 

However, making this assumption does not imply that there is not another sequence of events 
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by which the circuit can produce an erroneous full signal. To be sure of this it is necessary 

to consider all possible states the circuit can be in and to check that the final full signal is 

only generated once. This should be immediately before the pipeline deadlocks when it cannot 

accept more input and after the correct number of requests have arrived from the left hand 

environment. To examine this state space the modelling method from Chapter 4 is used; this is 

discussed in section 5.4.3. 

5.3.2 Empty detection 

Empty-detection is concerned with deciding when an initially full micropipeline (but with-

out a request waiting at the input) has emptied such that no more data can be read from the 

pipeline. Compared to full-detection, detecting that the pipeline is empty is more straightfor-

ward. Whereas for full-detection all stages can be occupied even if the pipeline contains only 

one distinct item of data, a pipeline for which all stages are unoccupied (and hence transparent) 

cannot contain any data and is therefore empty. The simplified two-phase latch controller with 

an em output (empty signal, or more accurately, unoccupied signal) is shown in Figure 5.6. 

am 

rout 

Figure 5.6: Two-phase latch controller with 'empty' output 

An n stage pipeline is shown in Figure 5.7. The AND of the em signals from stage i and the 

empty signal empty1_ 1  forms the empty signal empty 1, empty 1  is simply em1 . As with full-

detection, the circuitry to detect the empty condition does not interfere with normal operation 

and is therefore not delay insensitive. The empty signal should become high if and only if all 

the stages are unoccupied. 

Without any timing assumptions the circuit will not work correctly. The scenario with an n 

stage pipeline is as follows: All pipeline stages are unoccupied except the right most two stages 
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Figure 5.7: Micropipeline with em empty-detection 

n and n - 1. The right hand environment delivers an aout to stage n. Stage n signals it is 

unoccupied by making em high. Stage n responds to the waiting request from stage n - 1 and 

captures new data, however it does not yet return em to low (for example a long wire delay). 

Stage n then acknowledges to stage n - 1 which can then signal empty,,—,, this combines with 

the high em to give a high on empty, even though there is one item of data still in stage ri. 

Eventually em will go low and empty will return low. 

To avoid this problem, the assumption is needed that em has returned low, before stage n 

acknowledges receipt of the waiting request to stage n - 1. This assumption on its own is 

somewhat 'tight'. Within a single stage em would be required to become low before an ain is 

produced. This involves a race between the latch enable to L2 permitting the ain to occur and 

the same latch enable signal reaching the AND gate connected to em. This is the assumption 

that will be made for the purposes of verification later as the assumption is localised to a single 

pipeline stage. In practice, however, stage n - 1 will take some time to respond to the am, as 

an event on aout must pass through Xl and the data latch before being able to influence em 

and hence empty_i. 

Again, making this assumption does not imply that there is not another sequence of events by 

which the circuit can produce an erroneous empty signal. Once again, verification using formal 

methods is used to test this; this is discussed in section 5.4.4. 
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5.4 Method I - modelling 

In this section CCS is used to verify the mechanisms described earlier for full- and empty-

detection. The term 'the timing assumption' refers interchangeably to the timing assumption 

described in section 5.3.1 for full-detection or in section 5.3.2 for empty-detection. 

5.4.1 Overview 

The method used to confirm the correct operation of full- and empty-detection involves the cre-

ation of a model for a single pipeline stage. Several of these pipeline stages are then combined 

and composed with a model of a suitable 'chain' of AND gates. The resulting composition is 

tested against a simple specification which is 'correct by inspection'. 

Three approaches were identified for how to model a pipeline stage consisting of a simplified 

two-phase latch controller and full- or empty-detection circuitry. 

Model the circuit at a gate level by composing a CCS process from processes describing 

each circuit element. 

Extend the specification for a two-phase latch controller (Spec TwoPhase from sec-

tion 4.6. 1) to include rp or em actions. 

Create a new 'high-level' model of a pipeline stage including request-pending or unoc-

cupied detection. 

The first approach suffers from two drawbacks. The first, a potential problem, is state space. 

Several new circuit nodes have been introduced with the circuitry to generate rp. In particular 

these nodes are not synchronised with the original latch controller circuitry giving rise to a 

larger state space. The generation of em is simpler. However, in both cases the correctness of 

the original latch controller circuit would be re-verified, this is unnecessary as the additional 

circuitry does not synchronise with and hence can not interfere with the latch controller part 

(assuming an absence of implementation issues such as fan-out). The second drawback is 

that for both full- and empty-detection it would be hard to incorporate the timing assumption 

without 'hacking-on' some CCS to ensure the assumption is maintained throughout all possible 

states in the model. 
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The second approach would seem the most attractive. In this the specification of a two-phase 

latch controller operating in a correct environment would be extended to include the generation 

of rp and em actions. The specification Spec TwoPhase is composed from two processes, one 

which models the left-hand (input) interface of a pipeline stage and another which models the 

right-hand (output) interface. These left and right-hand processes synchronise in a straight-

forward manner corresponding to the capturing of data. This synchronisation does not vary 

depending on if there is a waiting request or not. Generating rp and em actions involves a 

more complex synchronisation between left and right-hand sides if the timing assumption (for 

example relating rout and rp) is to be met. To state when rp or em may change and when they 

must change by, requires an examination of the state space for a pipeline stage. This leads to 

the third approach. 

The third approach is to examine the state space for a standard two-phase pipeline stage (a 

stage without full- or empty-detection) operating in a correct environment and annotate this to 

indicate when rp or em may change and must change by. Furthermore, the timing assumption 

only involves ensuring that rp or em are at a logic low (rather than high as well) by a particular 

time. The pipeline stage is modelled as two processes, one which is derived directly from the 

state space of Spec TwoPhase and one, discussed next, which aids with the modelling of the 

timing assumption. 

5.4.2 Modelling the timing assumption 

The process EL, given below and in Appendix A.9, can be thought of as a set-reset flip-flop 

which converts events into a logic level. Upon a lo action the output, represented by action 

can be thought of as becoming or remaining at logic low, and likewise hi for logic high. 

Note that the output is still modelled using the event based modelling method discussed in 

section 4.4.3. The action losync is to provide a synchronisation which can only happen when 

the output state is a logic low. 

EL def  
 = EL0 

def EL0 = 1o.EL0 + hi.ELo + losync.EL0 
def 

EL0 e  = 1o.EL0 + hi.EL0e  + i.EL1  
def 

EL1 = 1O.EL1 e  + hi.EL1 

ELie 
de f 

1O.EL 1e  + hi.EL1  + i.EL0 
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In use EL is composed with another process, P. representing a latch controller and the compo-

sition is restricted with the set {lo, hi, losync}. EL always accepts hi and 10 actions allowing 

P to freely request that the output may become high or low regardless of the current state of 

the output. Action losync may only occur when the output is low and is going to remain low 

until a hi occurs. Process EL hence supplies an output which when requested to change can 

change 'at any time' thereafter, but with the feature of P being able to block until the output is 

low and will remain low until otherwise requested. This blocking of P removes the states from 

the model for which the timing assumption is not met. 

5.4.3 Full-detection 

To model full-detection a model of a single pipeline stage including request-pending is created, 

and then several instances of this are composed with a model of the AND gate chain to form a 

pipeline with full-detection. 

5.4.3.1 Single stage model 

The model of a single pipeline stage, see Figure 5.8, is intended to be equivalent to the circuit 

shown in Figure 5.4. In this model the output of the inverting buffer following Xl passes 

through the data latch (see discussion in section 3.2 about positioning of the data latch), into a 

non-isochronic fork to the request-pending detection circuitry and the isochronic fork between 

Li and L2. 

Figure 5.8 shows the state space of process LCU, a two-phase latch controller which is initially 

unoccupied of data. The CWB code for L C U can be found in Appendix A. 10. To create L C U 

the process Spec TwoPhase was minimised with the CWB "mm" command and re-entered by 

hand to have simple state names. To guard against errors being introduced LCU was then 

checked for observational equivalence to Spec TwoPhase. 

By inspection, there are two places in the state graph where request-pending (rp) can change 

to logic high, after an nfl event when in state LCU4  or LCU6 . Note that LCU1  is a state in 

which an nfl has occurred, either the nfl has just arrived from the left hand environment (edge 

from LGU to LCU1 ), or there was a nfl waiting (edge from LCU8  to LCU1 ). Both LCU4  

and LCU6  are states in which a previous nfl has already occurred (causing the stage to become 

occupied) but an aout (causing the stage to become unoccupied) has not yet occurred. There 

59 



Two-dimensional micropipelines 

are two places, rather than one, because of the different possible orders in which rout, hij and 

nfl may occur. To indicate that rp may become high a hi action is inserted after the riri in 

both places and LCU is composed with EL as described in section 5.4.2. The addition of hi, 

and losync described below, are shown in the state diagram of the new process LCUrp in 

Figure 5.9. The CWB code for LCUrp is given in Appendix A.10. 

Again by inspection, there is one place where rp can change to logic low. When in state LCU8 

there is a request-pending condition and upon the aout which must follow, the latch controller 

will return to being unoccupied and hence rp can be cleared. A 1—o action is inserted after the 

aout. 

To meet the timing assumption rp must change to logic low before rout can occur when in 

state LCU2  and LCU4 . This is done by the insertion of a losync action which can not occur 

unless rp is low and will remain low until a hi action. The existing definition of LCU2  is: 

LCU2 lef   = rout.LCU3  + Ti.LCU4 . 

The obvious way to add losync is to change this definition to become: 

LCU2 def   = losync.rout.LCU3  +hiii.LCU4 . 

However, there is a problem with this. Provided rp is low, or can become low and will remain 

low, losync can freely occur (see discussion below). This losync is observable as a r action 

from the composition LCUIEL. This r action can 'just occur' and after doing so the choice 

between rout and a—in is restricted to just rout. This means that the internal communication 

to ensure rp is low would be able to restrict the state space representing the latch controller 

operation. What is needed is a way to express the property that rout can occur only after 

losync has occurred, but that if losync does occur the hiui choice is still available, as if the 

lo sync had not occurred. This can be done by using the definition below, a similar arrangement 

is used for extending the definition of LCU. 

LCU2 	1osync.(rout.LCU3  +hii.LCU4) +hii.LCU4. 

The addition of both lo and hi actions does not influence the latch controller operation, this is 

because EL always permits the complementary lo and hi actions to occur. 
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The losync synchronisation removes states from the model which correspond to circumstances 

when the timing assumption is not met. Assuming that the single stage model, LCUrp, is 

correct enough such that the losync synchronisation can not occur following a El (which 

would result in deadlock and hence be detected) losync may freely occur once the rp output 

is at logic low. This freedom is ensured because the rp output is 'connected to' an AND 

gate process (part of the full-detection circuit outside the pipeline stage) which always permits 

input events (in order to permit quenching) and hence the AND gate can not block rp and in 

turn block the latch controller operation. For this reason in the LCUrp process losync can 

be treated as a free to occur r action when in state LCUrp2  or LCUrp4 , as was assumed 

previously. 

In summary, the use of EL and losync provides a way of ensuring that the input to the AND 

gate driven by rp has become low before particular states in the latch controller can occur 

(hence modelling the timing assumption) and without the additional circuitry restricting opera-

tion of the latch controller. 

The LCUrp process does not always accept input events nfl and aout, hence breaking the 

requirement from Chapter 4 that circuit inputs should not block. However, this does not matter 

here, as it is already known that the latch controller implements the two-phase protocol cor-

rectly. The controller hence provides a correct left and right-hand environment for adjacent 

stages and therefore can not produce output events which would cause quenching on the inputs 

of adjacent stages. 

The final model of a pipeline stage LCURP is composed from LCUrp and EL: 

LCURP
def   = (LCUrpIEL[rp/out])\{lo, hi, losync} 

To confirm that LCURP still operates correctly as a latch controller, LCURP[r/rp] was tested 

and found observationally equivalent to Spec TwoPhase. This confirms that the addition of 10, 

hi and losync does not interfere with correct operation of the latch controller, provided that 

the rp output is not blocked, that is to say that the i action is free to occur. Note that this test 

does not confirm that the generation of rp is correct. 

To test that rp generation is correct a single stage pipeline connected to a right hand null 

environment was modelled and shown to be equivalent to the specification: 
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Sin gleStageSpec L
ef

riniI.rin.?.O 

Whilst this shows that i correctly occurs when the single stage pipeline is full, it does not 

confirm that the correct timing assumption is being modelled. Modelling with multiple pipeline 

stages can not test this either. It is possible for an error introduced during the construction of 

the LCURP process to model a more restrictive timing assumption than the one intended and 

the model would still confirm correct circuit behaviour. In a previous attempt, prior to use of 

the EL process, the state space of LCU was extended by hand directly to give the LCURP 

process. Due to the many orderings in which signal changes may occur this manual method is 

error prone and the first attempt implemented a more restricted version of the timing assumption 

than was necessary. The use of the EL process was then chosen as a way to simplify this. 

5.4.3.2 Multiple stages 

To test that full-detection operates correctly, several pipeline stages are modelled along with 

a chain of AND gates and a right hand null environment as shown in Figure 5.5. This was 

performed for two, three, four and five pipeline stages. Appendix A.!! contains the CWB code 

for a three stage pipeline. The three stage pipeline was shown to be observationally equivalent 

to the specification: 

ThreeStageSpec def 
 rin.ain.rin.ain.rin..rin.f.O 

Whilst this verifies full-detection for the number of stages tested, strictly speaking it does not 

show that it will work for an arbitrary number of stages, however likely or 'obvious'. Such a 

check can not be performed with the CWB as the CWB expands the state space of the model 

and so it must be of limited size. 

5.4.3.3 Request-pending with only XOR 

A further optimisation which could be tested is to remove the AND gate Al from the request-

pending detection circuit leaving just X2. This was found (using the CWB) not to work cor -

rectly for even a two stage pipeline. The pipeline is capable of erroneously indicating it is 

full because each stage can signal request-pending as a request is passing across latch Li and 

these signals combine in the AND gates to produce a glitch on the full output. If further 
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timing assumptions were introduced it would be possible to remove Al but this has not been 

investigated. It was decided that the circuit with Al provided a good balance between circuit 

complexity and timing assumptions. On a similar note, it might be possible to create a circuit 

which does not have the timing assumption, for which the latch controller operation is influ-

enced by the request-pending detection. However, this would probably require an isochronic 

fork between the pipeline stage and the AND gate chain in order to 'know' when the AND gate 

input is low and would probably incur additional circuitry. 

5.4.4 Empty-detection 

Modelling and verification of the empty-detection circuitry, from Figure 5.7, is performed in 

an identical manner as with full-detection. The main difference is that the pipeline must be 

initialised to be full, but without a waiting request on the left most pipeline stage. Two single 

stage pipeline models are hence required, one for the left most stage in the pipeline and one for 

the other stages, differing only in initial state. As with full-detection the EL process is used to 

supply the em output and similar care is required with the insertion of losync actions. 

Figure 5.10 shows the state space of process LCO, an initially occupied latch controller with 

a request waiting from the stage to the left. By inspection the positions where I, 1i1 and 

losync should be inserted are found. After an aout is received the latch controller becomes 

unoccupied and so em should go high, therefore after each aout a iF1 action is inserted. The 

timing assumption states that em should be low before a in occurs, provided the stage really is 

occupied rather than the ain is just slow in occurring. Therefore losync is inserted before the 

Ii from state LCO 2  and LC04 . The state space for the resulting process LCOem is shown 

in Figure 5.11. 

The final model of a single stage, LCOEM, is composed from LCOem and EL and was tested 

for observational equivalence with Spec TwoPhaseFull (Spec TwoPhase with a different initial 

state). The CWB code for this and the other processes involved in empty-detection is given in 

Appendix A.12. In a similar manner to full-detection, empty-detection was tested for one to 

five pipeline stages. The three stage pipeline was shown to be observationally equivalent to the 

specification: 

ThreeStageSpec 
def  = aout. rout. aout. rout. aout.empty.0 
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Figure 5.8: State space of initially unoccupied latch controller 
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5.5 Method II— circuit 

This section describes a second method of full- and empty-detection. The circuits for full- and 

empty-detection are similar in structure and involve a simple function of the handshake signals 

between pipeline stages. Unlike Method I, for this method any two-phase latch controller circuit 

may be used without modification. Additionally a four-phase version should be possible. 

5.5.1 Full detection 

Figure 5.12 shows an n (n even) stage micropipeline with full-detection. Initially the pipeline 

is empty and all rout, f and full signals are 0. Once the pipeline is full alternate rout signals 

will alternate between 0 and 1 and full will change to 1. A chain of AND gates (with an 

inverter on every second stage) is used to detect when the pipeline is full. 

Figure 5.12: Micropipeline with full-detection 

As before it is essential that fulln  does not glitch high. Consider this scenario for an even 

number of stages n: (i) Assume the stages to the right of stage n - 1 are full and stages n 

and n - 1 are empty so that full-2 is high and ring, rout, ring_,, rout_i are low. (ii) 

ring  goes high. (iii) rout becomes high. (iv) rin_1 goes high but f does not change and 

remains low. (v) rout_ 1  goes high, permitting fi  and hence full_ 1  to become high. At 

this point it is possible, albeit unlikely, for full to become high. f n  may then go high and 

fUlln returns low. 

To avoid this problem the assumption that f 1  changes before stage i - 1 responds to rout 1  

is made. This assumption is valid because before stage i - 1 can respond to rout, it must 

capture data, which involves a large delay (due to the high capacitance of the row latch enable 

line) compared to the propagation of f 1  plus the internal response of the AND gate (plus the 
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inverter delay on every second stage). This assumption is a little strict; the assumption need 

be enforced on only either rising or falling edges of f i  depending on whether i is even or odd. 

However, more importantly the assumption restricts all activity in stage i - 1 to occur (for 

example the generation of ain1 _ 1  and rin_ 2 ) after f 1  has changed. 

Assuming (for only one edge) that f 1  must change before f_ 1 , unless f 1  changes back again 

first, should be sufficient. However, the simpler (and still valid as argued above) assumption 

that f 1  changes before rout 1  influences the next pipeline stage is simpler to model, as this 

assumption can be incorporated into a model of just one pipeline stage, without additional 

synchronisation between pipeline stages. Again verification is required to check that this timing 

assumption is sufficient; this is discussed in section 5.6. 

5.5.2 Empty detection 

Empty-detection is performed in a similar manner to full-detection, as shown for an even num-

ber of stages n in Figure 5.13. For an even number of stages the aout signals from each stage 

are combined with a chain of AND gates to form empty, for an odd number of stages a chain 

of OR gates is used and the final output inverted. This is because the waiting request (which 

will be a 0 or 1 depending on whether the number of stages is even or odd) present at the left 

hand input will determine the value of all the aout signals once the pipeline is empty. This 

corresponds to the left most column of latches in Figure 5.3 and is the reason for the left most 

OR/AND gate being connected to am 1  (aouto ). This is equivalent to the special left hand 

stage used in the Method I model. 

nfl rout 	-- - 

not connected 	 - - 

exrty1  - 

Figure 5.13: Micropipeline with empty-detection 

Using a similar analysis to that for full-detection, it is assumed that e 1  changes before am 1  can 
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change and thus influence stage i — 1 and in turn e 1 _ 1 . This assumption is valid, as the response 

to am 1  by stage i - 1 involves the long delay changing a column latch enable line, compared 

to the short delay on e 1 . As with full-detection again the assumption is over strict and the more 

relaxed version involving e 1  and e 1 _ 1  (defined in a similar manner to that for full-detection) 

should be sufficient. 

5.6 Method II- modelling 

The simple assumptions from sections 5.5.1 and 5.5.2 can be easily formalised by the addition 

of arcs to the STG for a two-phase latch controller (originally shown in Chapter 2, Figure 3.3). 

The STG for a two-phase latch controller with the addition of the f signal is shown in Fig-

ure 5.14. The addition of arcs capture —* f and f —* rout correspond to the assumption 

made in section 5.5.1. The STG corresponds to the circuit for a single stage shown in Fig-

ure 5.15, note carefully the new position of the rout label. Events rather than separate low and 

high transitions are modelled. The inverter present at every second stage is modelled by setting 

the appropriate initial condition of the AND gate input. 

nfl 	 rout 
. NI 
I 	capture 
I 	/.\ 
l 	I 	pass 	S 

\ P 
ain 	 aout 

Figure 5.14: STG of two-phase latch controller with f signal 

f 

nfl 
rout 

ain aout 

Figure 5.15: Single pipeline stage with separate f and rout signals 

In a similar manner a two-phase latch controller with the e signal is modelled using the STG 

shown in Figure 5.16. The addition of arcs aout — e and e -+ ain correspond to the assump- 
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tion made in section 5.5.2, the corresponding single stage circuit is shown in Figure 5.17. 

rin 	 rout 

1\ 	
capture 	I 

/ \ I  pass 

am _ 
	

_ aout 

Figure 5.16: STG of Iwo-phase latch controller with e signal 

nfl rout 

ain 	I 	a  

e 

Figure 5.17: Single pipeline stage with separate e and aout signals 

To form the overall circuit model first the STG for a single stage was converted to a CCS 

description (see section 4.6.3). A multiple stage model was then composed and this in turn 

composed with a model of the chain of AND or OR gates. The resulting process was then 

tested for observational equivalence ti a simple specification process using the CWB. 

The specifications for three siage pipelines with full-detection and empty-detection are shown 

below. FuliSpec is mere complex than EmptySpec, as full can be generated before the final 

ain and the left hand environment may also generate an additional nfl. 

Full  Lef 
 full.ain.rin.O + ain.(full.rin.O + rin.full.0) 

def 
FuliSpec 	= rin.iIi.rin.i.rin.Full 

def 
EmptySpec = aout. rout. aout. rout. aout. rout. aout.empty.O 

This has verified that, using only one simple assumption in the control circuitry, full- and empty-

detection work for a few pipeline stages. Note that the delays in each OR/AND gate in the full-

and empty-detection are unbounded. However, as with Method I, only a limited number of 

stages can be tested using the CWB; up to five stages have been tested. 
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5.7 Review 

5.7.1 Comparison with synchronous equivalent 

When compared to a fully synchronous version an area saving should be possible due to the use 

of latches instead of registers. The overhead of the micropipeline latch controllers is small; one 

latch controller is needed for each row and each column. For comparison of power consumption 

the following points can be observed, all of which suggest a significant power saving over the 

synchronous version. 

• The number of data copy operations, where a latch is loaded with new data, in the syn-

chronous version is double that of the micropipeline version. This is because registers, 

composed from two latches, are used. 

• The load per bit on the clock signal in the synchronous version may be twice that of 

the load per bit on the latch enable signal in the micropipeline version (again because 

registers instead of latches are used). 

• The number of latch enable transitions to fill or empty an n stage micropipeline is 

>T0' 2i + 1, which is half that of the number of clock transitions, 2n2 , required to 

fill or empty the synchronous equivalent (assuming single-edge sensitive registers). 

The work by Tierno and Kudva [35] also offers a comparison in favour of the micropipeline ver-

sion, although they compare asynchronous bit-parallel matrix transposition with synchronous 

bit-serial matrix transposition. 

5.7.2 Comparison between Method I and Method II 

For full-detection, Method II involves less circuitry and does not require modification of the 

latch controller. For empty-detection Method I and Method II involve the same amount of 

circuitry, but Method II might be preferable for layout reasons because it does not require 

access to the latch enable signals. 
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5.7.3 Comparison with previous work 

Tiemo and Kudva [35] present both two- and four-phase matrix transposition architectures. The 

two-phase method uses two latches per data bit, with alternating latches used for the two phases 

in the two-phase protocol, permitting continuous data flow. Completion detection is used to 

avoid delay matching the switch between row and column modes of operation. However, this is 

all at the expense of control circuitry, including counters to decide when the rows and columns 

are full or empty. 

Their four-phase method is similar to Method H. Each pipeline stage outputs 'empty' and 'full' 

signals and these are combined with a single multi-input AND gate. A timing assumption 

similar to one made in Method II is made in the generation of these signals and in their delivery 

to the AND gate. One difference is that Method II uses a chain of gates rather than a single gate 

and so the timing assumption remains localised. This arrangement should also be faster, due to 

both the simple CMOS gate implementation and because the full or empty signal propagates in 

the direction in which the pipeline is filling or emptying. 

A further difference is that their four-phase method assumes a square matrix and uses a sin-

gle 1-D micropipeline, multiplexed between rows and columns. Switching between rows and 

columns is a bounded-delay operation which is assumed to happen between clock edges of 

the synchronous input and output clock. This bounded-delay is likely to be of similar magni-

tude to the reset delay needed in both Method I and H. Finally, to permit continuous operation, 

rather than add elastic buffers, two four-phase transpose circuits are used in a double-buffering 

arrangement. These approaches could also be applied to Method I and II. 

5.7.4 Modelling method 

The way Method II was modelled is somewhat simpler than the approach used for Method I. 

This is because specifying the circuit behaviour with additional timing assumptions was simpler 

using an STG than extending a fiat state-space model. However, the use of the EL process in 

section 5.4.2 is an approach which could be applied to circuits for which the STG specification 

is too large to be manageable, for example a circuit composed from many sub-circuits, provided 

that it is sufficiently clear where the synchronising I, iiII and losync actions should be placed. 

Although the verification of the circuits shows that the circuits work without unknown timing 

assumptions for a small number of pipeline stages, tests with the CWB can not show the result 
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for an arbitrary, but finite, number of stages. The recursive nature of the definition of the 

full-and empty-detection circuits suggest that an inductive proof should be possible. Such an 

inductive proof would take the form of assuming correct behaviour for n stages and showing 

that an n + 1 stage model must be correct if an n stage one is. A base case can then be 

tested using the CWB. The CCS composition of an n stage model, a single pipeline stage, the 

corresponding AND/OR gate and a suitable environment is not small and an initial uncompleted 

but time-consuming attempt suggests that such a proof would be laborious. One could say 

it seems 'obvious' the result must hold for n stages, but this is not proof. Additionally the 

more relaxed timing assumptions for both Method I and II could be modelled. However, given 

the existing timing assumptions have been argued to be safe, the extra modelling would seem 

unnecessary. Finally the timing assumptions made and the modelling performed does not rule 

out the possibility of using a fast-forward version (see Chapter 2) of the latch controller to 

improve performance. 

5.8 Conclusion 

This chapter has presented an architecture for performing parallel-serial conversion or matrix 

transposition. By using a two-dimensional micropipeline like structure with level sensitive 

latches instead of edge sensitive registers both area and power can be saved. Key features of the 

architecture operation, namely full- and empty-detection, have been verified using extensions to 

the modelling method from Chapter 4. Future work could involve circuit level simulations and 

layout to confirm area and power saving, a comparison of speed with the synchronous version 

and an inductive proof to extend the verification to an arbitrary number of pipeline stages. 
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Chapter 6 
Review of discrete cosine transform 

VLSI accelerators 

6.1 Introduction 

As an introduction to the discrete cosine transform (DCT), prior to the discussion of an asyn-

chronous implementation in Chapter 7, this chapter provides a review of VLSI implementations 

of the DCT in which the distinct roles of algorithmic and multiplier design are identified and 

key circuit and logic innovations are highlighted. To select from the large number of DCT 

implementations in existence, only implementations which offer reasonable performance and 

for which fabricated implementations and quantitative results have been reported are studied. 

In general these implementations are aimed at high performance applications, but a few lower 

performance implementations (notably the bit-serial based ones) are included for completeness. 

All of the implementations reviewed in this chapter are synchronous. 

6.2 Overview 

The DCT forms a key role in several image compression standards including JPEG [36] for 

still picture compression, ITU-T H.261 [37] and H263 for teleconferencing, and ISO MPEG-i 

and MPEG-2 [38] for audio-visual compression and communication. Because of the existence 

of these standards, new consumer markets are emerging including digital direct satellite televi-

sion broadcasting, high definition television (HDTV), digital video disc (DVD) and multimedia 

personal computers. All of these standards use an 8x8 two-dimensional (2-D) DCT which has 

therefore become the focus for VLSI implementation. 

The 2-D DCT can be described as a transform from a 2-D matrix of pixels to a 2-D matrix of 

'spatial frequency information'. The DCT is used for image compression because the trans-

formed matrix contains many small or zero entries. Further the response of the human eye is 

frequency dependent and this can be exploited by weighting the transform results according to 
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the ability of the human eye to perceive them. For transmission the resulting matrix is quantised 

(commonly resulting in many zero values) and encoded using run-length and Huffman encod-

ing to remove sequences of zeros. By changing the amount of quantisation, image quality and 

bit rate can be traded which thus enables a controllable loss of the perceived image quality. 

In this chapter several recent VLSI implementations are reported since they illustrate many 

different algorithmic and architectural decisions. For many applications such as HDTV, the 

receiver is the cost critical component and so implementations for the inverse DCT (IDCT) 

are described in some cases without the corresponding forward DCT. There are three factors 

which differentiate these designs: the underlying DCT algorithm, the digital architecture for 

multiplication and specific circuit and logic techniques. 

6.3 The 2-D Discrete Cosine Transform 

For an input matrix x(rn, n) and an output matrix z(k, 1) with {O < m, n, k, 1 < N} the 

forward N x N 2-D DCT is defined as 

N-i N-i 

z(k, I) = a(k)a(l) x(m, n) 	
(2m + 1)irk 	(2n + 1)71

cos 	 (6.1) 
2N 	2N 

m=0 n=0 

and the inverse N x N 2-D DCT as 

2 
N-1 N-1 

x(m, n) = 	a(k)cE(I)z(k, 1) 	
(2m + 1)ith 	(2n + 1)irl 

cos 	 (6.2) 
k=0 1=0 	

2N 	2N 

wherea(0) = Vi and a(k) = 1 for kO. 

A naïve implementation of (6.1) or (6.2) requires N4  multiplications. However, by noting that 

each cosine part only varies with one of the summations, the transform can be calculated by a 

row-column decomposition with only 2N 3  multiplications; 21V multiplications per input pixel. 

The DCT and IDCT become: 

Z=AXAT 	 (6.3) 

X = ATZA 	 (64) 
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X 	1-D 	 transpose 	 1-D 

DCTIIDCT 	buffer 	DCTIIDCT 

Figure 6.1: Row-column decomposition 

where X is the source pixel (time domain) data, Z the DCT output coefficients (frequency 

domain) and A is an orthogonal matrix defined as: 

a(u,v) = 	a(n)cos (2v+1)u (6.5) 
2N 

This row-column decomposition is equivalent to a 1 -D DCTJIDCT followed by transposition 

and a second 1-D DCTIIDCT, as shown in Figure 6.1. 

Direct two-dimensional methods are also possible with alternative optimisations, these are dis-

cussed later. 

6.4 Some DCT algorithms 

In this section two 8-point 1-D algorithms for the row-column decomposition and two direct 

8x8 2-D approaches are considered. 

6.4.1 Algorithm by Chen et al 

Matrix A for the 8-point DCT can be written as: 
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The multiplier coefficients a-g are listed in Appendix B. 

The symmetry in this matrix can be exploited and the 1-D DCT rearranged to give: 

YO d 	d 	d 	d xo+x7 

1/2 = b 	f 	-f 	—b x1+x6 

d —d —d 	d x2+x5 

Y6 f 	—b 	b 	-f x3+x4 

1/1 a 	c 	e 	g x0—x7 

- c 	—g 	—a 	—e X1 - X6 

Y5 e 	—a 	g 	C 

g 	—e 	c 	—a x3—x4 

The (N x N) multiplication matrix has been replaced by two (N12) x (N12) matrices, which 

can be computed in parallel, as can the sums and differences forming the vectors on the right-

hand side of (6.7). 

The implementations by Madisetti and Willson [39], Uramoto et al [40],  Matsui et a! [41] and 

Jang et al [42] are based upon this decomposition which requires 32 multiplications. However, 

Madisetti and Willson observe that the first part of (6.7) only involves multiplication by three 

rather than four different constants and so reduce the number of multiplications to 28. 

The frequently referenced algorithm by Chen et al [43] is also derived from (6.7) but only 

requires 16 multiplications with 2 multiplications on the critical path. The data-flow graph for 

Chen's algorithm is shown in Figure 6.2. To compute the IDCT, the role of the inputs and 

outputs are reversed. 

If Chen's algorithm is directly implemented in 4 clock cycles, one for each stage in the data-flow 

graph, each cycle requires at most 8 additions and at most 8 multiplications. The implemen-

tation used by Madisetti and Willson also takes 4 cycles and requires 8 additions per cycle, 

but only 7 multiplications per cycle are needed (although it is 7 in every cycle); additionally, 1 

adder and 1 subtractor are needed to prepare the right-hand side sums and differences. 

(6.7) 
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Figure 6.2: The algorithm by Chen et al 

6.4.2 Algorithm by Arai et al 

Although the minimum number of multiplications for the 8-point 1-D DCT algorithm is 11 

[44], the algorithm by Arai et a! [45] requires only 5. This is possible because the outputs are 

scaled: to obtain the true DCT value each output requires a further multiplication. However, in 

many systems this can be incorporated into multiplication coefficients used in the subsequent 

stage, for instance the perceptual weights in the video encoding algorithm. This type of algo-

rithm is known as a scaled-DCT. If the two-dimensional transform is produced by row-column 

decomposition, then the scaling for both layers of one-dimensional transforms can be combined 

and performed after the second layer. This algorithm forms the basis of the asynchronous DCT 

discussed in Chapter 7. 

As can be seen from Figure 6.3, the Arai algorithm also has the useful properties that the 

5 multiplications can be performed in parallel and that no path through the data-flow graph 

includes more than one multiplication. Details of the inverse transform may be found in [ 45]. 

The Arai algorithm provides a good basis for a low cost scaled-DCT of other orders since it 

views the scaled N-point DCT as the real part of a 2N-point discrete Fourier transform, which 

can be effectively implemented using fast DFT algorithms based upon cyclic-convolutions and 

Winograd's algorithm. Such solutions will display the same basic structure as the 8-point data- 
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Figure 6.3: Forward algorithm by Arai et al 

flow graph. 

6.4.3 Algorithm by Chang and Wang 

Chang and Wang [46] describe an algorithm which performs a direct 2-D transform using row-

column decomposition within a systolic array. The N x N 2-D DCT in (6.3) is split by applying 

row-column decomposition into two steps of calculation, with intermediate result Y. Denoting 

cij= cos from (6.5), and neglecting the scale factor, the matrix multiplications can be 

written as: 

Ykn = E X inn Ckm 	 (6.8) 
m=O 

Zkl = 	Yk n C1 	 (6.9) 

(6.10) 

By using the symmetries of the cosine function, and assuming that N is even, they define 

Umn  = X mn  + (_1) k X(N_ l _m )n 	 (6.11) 

Wo 
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and 

Vk = Ykn + (-1) 1 Yk(N_ 1 _n ). 	 (6.12) 

to give: 

N12-1 

Ykn = i UmnCkm. 	 (6.13) 
m=O 

N/2-1 

Zk1 = 	VCI 	 (6.14) 

The algorithm is implemented as a systolic array in four stages corresponding to (6.11), (6.13), 

(6.12), (6.14). This requires a total of 64 multipliers for an 8x8-pt DCT. 

6.4.4 Algorithm by Liu and Chiu 

A different approach, taken by Liu and Chiu [47-49], is to calculate a running (or recursive) 

DCT in which the values of the DCT are updated with each new sample. Given a sequence of 

input data a 1 -D DCT of the last N input values is output. Each DCT utilises the previous DCT 

result, the next DCT is obtained by adding the difference between it and the previous DCT. The 

discrete sine transform (DST) is needed in this calculation of the DCT and hence both DST and 

DCT outputs are available. 

The 1-D DCT for the sequential input starting at x(t) and ending with x(t + N - 1) is: 

t+N-1 	
ir[2(n - t) + 1]k 

X(k,t) 
= La(k) 	

x(n)cos 	
2N 	

(6.15) 
n=t 

for k = 0, ..., N - 1 and a(k) is as before. Liu and Chiu then derive a recursive expression for 

the DCT X and DST X to give: 

X(k, t + 1) = {X(k, 1) + [—x(t) + (_ l)kx(t  + N)] cos 7rk  I cos 
irk 

 

irk 	irk 

	

+ {X 5  (k, t) + [—x(t) + (_l)'x(t + N)] sin 	sin 	(6.16) 

where k 	0; k = 0 is a special case. X, (k, t + 1) is calculated in a similar manner, the first 
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Figure 6.4: DCT lattice by Liu and Chiu 

cosine and sine term in each half of (6.16) are swapped. X, (k, t + 1) and X, (k, t + 1) are 

obtained from X, (k, t) and X, (k, t) by subtracting the effect of x(t) and adding the effect of 

x(t + N). This is called the time recursive DCT. 

The lattice structure to compute x, (k) for k = 1, ..., N - 1 is shown in Figure 6.4 for a block 

size of 1; Cn = cos(irkri/2N) and Sri = sin(7rkn/2N). A parallel array of this lattice is used 

to generate all N DCT outputs in parallel (with a special reduced form for k = 0). 

The 2-D version is achieved using a circular shift register between two 1-D DCTs and N-length 

delays in each of the second layer filters. These together replace the usual transposition RAM 

and networks. An implementation is provided by Snnivasan and Liu [50, 51]. Aburdene et a! 

[52] describe a similar time recursive approach for a 1-D DCT based on Clenshaw's recurrence 

formula [53]. 

6.4.5 Algorithm by Hsia et al 

In [54] Hsia et al present an algorithm to calculate the 2-D IDCT directly by skipping non-zero 

coefficients. The algorithm may be understood by considering the symmetries of the matrix 

formed by the product of the two cosines in (6.2). For each value of (k, 1), the matrix can be 
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Figure 6.5: Forward algorithm by Loeffler et al 

divided into 4 quadrants where the values of each are either the same as, the negative of, or 

a reordering of values of the first quadrant. Furthermore, the values of the first 4x4 quadrant 

can be calculated from the sum and difference of just four multiplications. Thus for each non-

zero input (DCT coefficient) to the IDCT, there are four multiplications, various additions and 

negations. 

6.4.6 Possible developments 

For the un-scaled DCT, the family of 11 multiplier algorithms given by Loeffler et al [55] seems 

attractive as does an alternative in the same paper which requires 12 multipliers (only one more 

than the minimum of 11) and 32 adders. The forward algorithm with 11 multipliers is shown 

in Figure 6.5. As with the Arai algorithm, this has the advantage that no path includes more 

than one multiplier and that all the multiplications can be performed in parallel. McGovern et 

al [56] propose a similar algorithm. 

83 



Review of discrete cosine transform VLSI accelerators 

A direct 2-D algorithm which has not yet been implemented in hardware, is a 2-D development 

of the Arai et al [45] scaled-DCT algorithm proposed by Feig and Winograd [57]. In this, 

the multiplications from the two stages of the row-column decomposition are combined. The 

result is a complete 8x8 2-D DCT with only 54 multiplications (with some shift operations for 

1/2) and only 7 distinct coefficients (combined with a further shift operation for an eighth). 

The latter property leads to either low multiplier coefficient storage requirements or a practical 

number of hardwired multipliers. Furthermore, the networks for additions are formed by the 

repeated application of only two sub-networks. The main disadvantage is that the algorithm 

requires two matrix transpositions. 

6.5 Multiplier architectures 

There are three main multiplier architectures: 

Combinatorial 

Combinatorial multipliers take an n bit word and multiply by an m bit word to give an n + in 

bit word. In many DCT implementations, purely combinatorial logic is used without pipelin-

ing. Such multipliers are typically implemented as a tree structure of adders and consume a 

large chip area, but are very fast. A variation is the hard-coded combinatorial multiplier which 

multiplies by a constant coefficient and therefore can be optimised for both area and speed. 

Distributed arithmetic 

Distributed arithmetic replaces combinatorial multipliers with a lookup table and accumulator. 

The computation of the vector product multiply-accumulation is broken down as follows: 

Given a multiplicand vector xk for k = 0,..., K and the constant multiplier coefficient vector 

ak for k = 0,..., K the vector product is 

V = 1: akXk- 	 (6.17) 
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If x, is in N bit two's complement fractional form, i.e. 

Xk = —bko + 	b2 
	

(6.18) 

where bk fl  represents the value, 0 or 1, of bit n of Xk then (6.17) can be computed as 

y = 	ak( — bko) + 	
1k=0

aiciicn] 2

k=O 	 n=1 
	 (6.19) 

The partial products {i 0  akbk fl ] are stored in a ROM and accumulated for each bit of the 

multiplicand. Distributed arithmetic leads to a smaller area than a combinatorial multiplier 

but only allows multiplication by a fixed set of coefficients. However, the coefficients are 

easier to program (by changing the ROM contents) than the corresponding set of hardwired 

combinatorial multipliers. 

Serial 

The bit-serial architectures balance the long processing time of each operation (only one-bit 

per clock cycle) by operating on several words in parallel. Thus the input is word-parallel (a 

row/column of 8 words) and bit-serial. A typical bit-serial system takes n + 1 cycles to add two 

n bit values and n + m cycles to multiply an n bit word by an m bit coefficient. As with the 

other multiplier designs a hard coded version can be made to multiply by a constant coefficient. 

Bit-serial systems can be made to operate at very high clock frequencies due to the small prop-

agation delays involved in the small blocks of combinatorial logic, however, this is not evident 

from the reported DCT designs to date. Bit-serial DCT implementations are simply a direct 

mapping of a data-flow graph. 

Conventional two's complement bit-serial multiplication progresses least significant bit first. 

It has a high latency since the more significant half of the product is only generated after the 

less significant half, which is generally discarded. On-line arithmetic avoids this delay by 

progressing most significant digit first and by using redundant number encoding. Bruguera 

and Lang [58] describe a DCT implementation using this technique, although no performance 

figures are given. 
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Figure 6.6:6.6: Multiply accumulate by Madisetti and Willson 

6.6 Implementations 

The following recent implementations were chosen to illustrate the use of specific logic and 

circuit techniques to enhance performance. 

6.6.1 1-D based designs 

Madisetti and Willson [39] implement the Chen based algorithm discussed in section 6.4.1. 

The 1-D DCT unit consists of 7 combinatorial multipliers, one for each of the matrix elements 

a,..., g as shown in Figure 6.6, and 8 combinatorial accumulators to sum the outputs. To min-

imise the critical path within the DCT unit, hardwired multipliers are used. These multiply by 

a constant coefficient which is fixed at design time leading to a faster and smaller module at 

the expense of programmability. Thus one multiplier is needed for each each unique multiplier 

coefficient. Each accumulator contains a multiplexer to select a particular multiplier output and 

logic to perform either addition or subtraction according to the sign of the coefficient. 

A 'data reorder unit' (not shown in Figure 6.6) prepares the sums and differences for the DCT, 

and reorders the data into even and odd inputs for the IDCT. The whole 1 -D DCT/IDCT takes 

4 clock cycles. Rather than use a second 1-D DCT unit, a single 1-D DCT unit is multiplexed 

between the input data and the output of the transpose buffer implemented by a 64 word DRAM 

(shown in Figure 6.7). However, since the single 8-pt transform requires only 4 clock cycles 

and each data point is processed in two transforms, the clock rate is actually equal to the data 

rate. 

With conventional two's complement representation an n bit fractional number f can be ex- 

y odd _0. 
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Figure 6.7: Multiplexed 1-D DCT by Madisetti and Willson 

pressed as 

f=_bo+>bk2_k 	bkE{O,1}. 	 (6.20) 

The multipliers store the coefficients using radix-2 signed digit representation in which an n bit 

fractional number can be expressed as 

I = > Sk 2 	8k E {-1,0,1}. 	 (6.21) 

This form of representation allows most numbers to be represented with fewer non-zero dig-

its than in two's-complement representation. Note that the multiplicand and the product use 

two's complement representation. In the hardwired implementation one adder (also capable of 

subtraction) is required per non-zero digit, thus giving a smaller implementation. Between 4 

and 6 adders are required for the constants a,..., g to give 12-bit accuracy. The products are 

accumulated in 22-bit wide carry-select adders. 

In total 7 multipliers and 8 accumulators are needed. Using 0.8pm CMOS the N = 8 im-

plementation by Madisetti and Willson has an area of 10mm 2 . A complete 2-D transform is 

computed every N 2  cycles and an input sample rate of 100MHz is possible. 

Kovac and Ranganathan [59] describe a JPEG encoder based on the algorithm by Arai et al 

(section 6.4.2) using row-column decomposition with two separate 1-D units. Although not 

designed for real time MPEG a 100M11z input pixel rate is possible. 

Each 1-D unit, shown in Figure 6.8, consists of 6 stages corresponding to the 6 columns of oper - 

ations shown in Figure 6.3. Each stage contains a pipeline register set (RS) and a combinatorial 

adder capable of negating the inputs, except for stage 4 which includes a single Wallace-Tree 
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Figure 6.8: i-D DCT by Kovac and Ran ganathan 

combinatorial multiplier. Each register set consists of two columns of 14-bit registers which act 

as data buffers. Data from the previous stage is written into the left column and, once complete 

is moved into the right column where it is loaded into the next stage. 

Uramoto et a! [40] implement the Chen based algorithm using distributed arithmetic with two 

separate l-D units. To halve the computation time the input values are processed in pairs so 

that two partial products are accumulated at a time; this requires a dual port ROM. Throughput 

is further enhanced by pipelining. 

By changing the ROM contents the same circuit can be used to calculate the DCT or the IDCT. 

Alternatively a ROM holding twice as many words can be employed and the appropriate half 

selected. Uramoto et al have developed a dual plane ROM' which holds two banks of values 

where only one bank can be accessed at a time. The dual plane ROM gives a 30% area saving 

and a speed increase: combined with carefully designed accumulators and routing a 100MHz 

input pixel rate is possible. 

Karathanasis [60] also proposes an algorithm for use with distributed arithmetic, simulated to 

M. 
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be capable of a IOOMIHz pixel rate, but with a smaller ROM requirement, only 10% of that 

needed in the implementation by Uramoto et al [40]. 

Matsui et el [41] give another implementation using the Chen based algorithm capable of a 

200MHz input pixel rate. Each of the two 1-D DCT units contain 8 distributed arithmetic 

multiply-accumulators. The key feature is the high-speed logic design based upon differential 

NMOS pass transistor logic [61]. Here a logic signal is transmitted as two complementary 

signals with sense-amplifiers to detect the differential voltage (as small as lOOmV) between the 

signals thus reducing the effect of parasitic capacitance. 

Masaki et a! [62] describe another distributed arithmetic implementation of the IDCT using the 

Chen algorithm with specific focus on producing a single chip MPEG decoder. A single 1-D 

IDCT unit with pipelined Wallace-Tree adders is multiplexed with the input coefficients and 

transpose buffer. A more sophisticated (more bits at a time) distributed arithmetic scheme is 

used resulting in a 200MHz pixel rate with only a 100MHz clock. 

For comparison two bit-serial implementations are mentioned. Cucchi and Fratti [63] imple-

ment the Chen algorithm with bit-serial arithmetic. Two bits are processed at a time so that the 

internal clock rate is equal to the input pixel rate (40MHz). McGovern et al [56] also use bit-

serial arithmetic for an algorithm similar to Loeffler et al [55] requiring the minimum number 

of adders and multipliers. Both of these implementations use 2 1-13 DCT units and a transpose 

buffer. 

6.6.2 Direct 2-D 

Hsia et al [54] implement the algorithm in section 6.4.5 using pipelined combinatorial multipli-

ers to decrease the critical path. A K-bit by K-bit multiplier is composed from a tree structure 

of four K/2-bit by K/2-bit multipliers, registers are inserted into the tree such that the critical 

path involves only a K-bit adder instead of a K-bit multiplier. A bank of 64 accumulators holds 

the current total for each of the IDCT output pixels. The implementation achieves an average 

pixel rate varying from 150MHz to a maximum of 400MHz as the compression ratio varies 

from 4 to 16. This corresponds to an average of 33% to 9% non-zero input coefficients. 

Another direct 2-13 architecture exploiting zero valued DCT coefficients to reduce power con- 

sumption is proposed by Xanthopoulos et at [64]. Further power reduction is achieved by 

connecting latches to the inputs of each adder to stop unwanted transitions passing through 
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Figure 6.9: First two stages of array for N = 4 by Chang and Wang 

the adder. Finally the supply voltage and clock frequency are lowered when there are fewer 

non-zero coefficients to be processed. 

A systolic array is a structure of identical cells with many local and few global interconnections. 

Such arrays are ideally suited to VLSI implementation due to good regularity, modularity and 

concurrency. The algorithm by Chang and Wang [46] is implemented using systolic structures. 

The structure to implement the first two stages, see section 6.4.3, is given here in Figure 6.9 for 

N = 4. In a similar way structures for the second and third stages can be created (as detailed 

in [46]). The IDCT can be implemented by simply inverting the order of the structures. 

The adders (16 bit) and multipliers (12 x 12 bit) are combinatorial; a total of N2  multipliers 

and N2  + 3N adders are required; a complete 2-D transform is computed every N cycles. 

The implementation for N = 8 reads the data in word-parallel bit-parallel format (8 words per 

clock cycle) and can support a pixel rate of over 320MHz—well in excess of current HDTV 

requirements. 

d-

Srinivasan and Liu [50,51] implement the 2-D lattice algorithm by Liu and Chiu [47-49] (sec-

tion 6.4.4) using distributed arithmetic multipliers. The partial product lookup ROM is ad- 
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dressed by a 12 bit word. This would give 4096 rows, to reduce area the ROM is split into two 

6 bit addressed 64 row RUMS. One RUM output is then shifted, sign extended and added to 

the other. Although only 32 multipliers are needed, the algorithm requires a large number of 

bit-parallel registers. 

6.7 Comparison and conclusions 

Figure 6.10 shows the area each implementation requires, scaled to a constant 0-8/-Lm process 

technology. The multiplier styles are combinatorial multiplier (CM), distributed arithmetic 

(DA) and bit-serial (BS). Also shown is the number of multipliers for the 8x8 transform. Fig-

ure 6.11 shows the pixel rate achievable of each implementation, along with the feature size in 

microns and whether the implementation is electrically switchable (E) between IDCT and DCT, 

IDCT only (I), DCT only (D), or both but not electrically switchable (13f1). The pixel rates are 

un-scaled due to the difficulties in scaling operation frequency with feature size (which may 

vary from constant to quadratic depending on which scaling model is used). For the implemen-

tation by Hsia et al [54] a pixel rate of 400M11z is assumed, this corresponds to the average 

number of non-zero coefficients in a typical MPEG sequence reported by both [54] and [64]. 

The direct 2-D implementations require a larger area, but deliver a considerably higher pixel 

rate, except the implementation by Srinivasan and Liu [50,51]. The relatively poor performance 

of Srinivasan and Liu's implementation may be due to the fact that the underlying algorithm 

was originally developed for overlapping blocks (a running DCT) for which a smaller imple-

mentation is attained. 

The bit-serial designs (Cucchi and Fratti [63], McGovern et a! [56]) perform badly, neither of 

them being fast enough to meet HDTV requirements, and the implementation by Cucchi and 

Fratti requires over twice the area of the other 1 -D with transpose implementations. 

The 1-D designs use either combinatorial multipliers or distributed arithmetic and all employ 

one of the algorithms from section 6.4.1. The design by Madisetti and Willson [39] achieves a 

small area by multiplexing a single 1-D DCT, however the design by Matsui et a! [41] achieves 

twice the pixel rate (200MHz) for a 30% increase in area, due to use of a novel sense-amplifier 

and pass-transistor logic. The Masaki et a! [62] implementation although also capable of 

200MHz is larger and performs the IDCT only. 
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Based upon this study the following guidelines for designers are concluded: Higher perfor-

mance 1-D implementations require multipliers which are either hardwired-combinatorial logic 

or sophisticated ROM architectures and/or circuit techniques for distributed arithmetic. How-

ever, high-speed circuit techniques for the multiplier/accumulator will be significant to perfor-

mance. If even higher throughput is required, then this may be traded-off against area with a 

full 2-D approach (which often, however, avoids the area cost of the transpose memory). In 

decoder only applications, for example digital TV receivers, IDCT algorithms which exploit 

zero coefficients would seem attractive. 
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Chapter 7 
An asynchronous discrete cosine 

transform 

7.1 Introduction 

This chapter discusses initial work on an asynchronous application specific processor (ASP) 

architecture intended for the computation of waveform transforms, with particular emphasis 

on the DCT. The DCT algorithm by Arai et a! [45],  discussed previously in section 6.4.2, is 

chosen as it only requires 5 multiplications (although the output values need to be scaled) and 

has a fairly regular structure. For example, the 'butterfly' operation permits a sequence of 

additions for which one operand remains constant between pairs of additions. Only the 1-D 

DCT has been implemented, to form a 2-D DCT two 1-D units and matrix transposition would 

be required. The flexibility offered by the programmable architecture enables the inverse DCT 

to be implemented and potentially other algorithms as well. The architecture uses a modest 

amount of circuitry, at the expense of performance. 

7.2 Previous asynchronous DCT work 

It would appear there are very few previous asynchronous DCT designs. The design by Stott 

et a! [65] and the design by Lipsher [66] are similar in architecture and are both based upon a 

micropipelined distributed arithmetic implementation of the the algorithm by Chen et a! [43] 

(see section 6.4.1). After the work discussed later in this chapter was performed, a further 

design by Smith et a! [67] was found. Their design is based upon building blocks constructed 

from threshold logic gates with hysteresis [68] and they have simulated a prototype (using 

a mapping from threshold logic to conventional logic) with FPGAs. Their design uses the 

DCT algorithm by Lee [69], which involves 13 multiplications and 29 additions. Compared 

to synchronous implementations all the asynchronous implementations are slow (10-30MIF{z 

pixel rate for 2-D DCT), however the authors of each design discuss various ways in which the 

performance can be vastly improved with the experience gained from the initial prototype. 
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A related paper, briefly mentioned in Chapter 6, is the synchronous IDCT processor by Xan-

thopoulos et al [64]. This design skips over zero coefficients (note this can only be done for 

the inverse transform). When there is less work to be done (more zero coefficients) the supply 

voltage and clock frequency are lowered to save power. An asynchronous version of this design 

would reduce the need for careful design and simulation to ensure suitable setup and hold times 

under the wide range of clock frequency and supply voltage. 

7.3 Application specific processors 

Application specific processors (ASP5) [70-72] attempt to combine the flexibility of a pro-

grammable general purpose processor with the high performance of a dedicated algorithm spe-

cific architecture. A large ASP might contain dedicated function blocks in addition to pro-

grammable control logic and local program storage. For example the MPEG encoder chip 

in [73] contains dedicated blocks to perform a DCT, IDCT, motion estimation and quantisation 

with a programmable processor module with down-loadable microcode to enable tailoring to 

the individual application. 

Asynchronous architectures may ease the modular design of application specific processors, 

the use of local handshake protocols and the subsequent ease of composition should enable 

functional blocks to be easily added to a base architecture. For example, in [13] a commercial 

asynchronous DSP processor is presented and compared to a synchronous equivalent. The use 

of asynchronous techniques was shown to give low-power, low noise emission properties and a 

highly configurable architecture to which additional functional units could be easily added. 

7.4 Architecture 

7.4.1 Overview 

The data-path of the proposed architecture is shown in Figure 7.1. From top to bottom the 

architecture can be divided into three main sections. The upper section takes data from either 

the external input or the lower section and passes it to one of four elastic FIFO queues or to 

the external output. Towards the right is a multiplier which multiplies the output of a queue 

with a selectable constant to give two outputs which are then summed to obtain the product. 

The lower section consists of an adder which reads data from either a pair of queues or the 
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multiplier. Multi-bit XOR gates (iv) to invert the adder inputs combined with a carry input 

to the adder permit subtraction and an elastic FIFO buffers the adder output. Both the external 

data input and data output can be buffered with FIFO queues. 

The four queues and the adder output FIFO are micropipeline circuits, the adder and multiplier 

are intended to use completion detection but delay matching is also possible. The multiplex-

ers and XOR inverters have a short (and probably data independent) delay and can be delay 

matched. It should be noted that the micropipeline handshake signals are not always connected 

to functional units as shown with the data path and many handshake signals are controlled 

directly by the control logic units. 

Input pixel data arrives at the top and data items are directed into the appropriate queues A-D. 

The control logic permits two methods of reading data from a queue: 

Read The current data output from the queue is read and an acknowledge signal is sent to the 

queue output and hence the item of data is removed from the queue. 

Copy The current data output from the queue is read but an acknowledge signal is not sent and 

so the item of data remains in the queue. 

In both cases the request output from the queue is used by the control logic to detect when new 

data is available. 

Three kinds of operation are possible on the data stored in the queues. 

Multiply A single item of data is read or copied from a queue and multiplied by a constant 

held within the multiplier unit. The two outputs of the multiplier are then summed to 

form the product. 

Add Two items of data are read or copied (or a combination of) from queues A and C, or from 

queues B and D and are added (or subtracted). 

Copy A single item of data is read or copied from a single queue and is added with zero (a 

hardwired input to the adder input multiplexers). 

In all three cases the result is available at the output of the adder. The result is then buffered 

by the adder output FIFO and is either an output result, or is an intermediate result which is 
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written back into one of the queues. Although not used in the DCT algorithm it is possible to 

transfer data directly from input to output without processing. 

input 

Figure 7.1: Asynchronous ASP architecture for DCT 

7.4.2 Control logic 

The control logic is split into three units, upper, lower and multiplier control logic. Each con- 

trol unit contains a ROM holding microcode like instructions. The functions performed by 
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each control unit are summarised below. The three control units operate independently and 

asynchronously with separate internal control ROMs and ROM address counters. In all three 

control units the ROM lookup time and ROM address counter could be delay-matched or com-

pletion detection could be used; for the purposes of simulation these parts were implemented 

as delay matched behavioural models. 

Upper control unit 

The upper control unit connects to the request and acknowledge signals from: the queue inputs, 

the external input, the external output and the output of the adder output FIFO. Additionally 

the upper control unit controls the 2:1 multiplexer to select between the adder output FIFO and 

the external input. Each operation cycle of the upper control unit transfers an item of data from 

either the adder output FIFO or the external input to either one queue or to the external output. 

The upper control ROM is a list of number pairs, indicating from which source data is read and 

to which destination data is written. Every time the destination acknowledges receipt of the 

data the next ROM entry is read, the appropriate source request is waited for (or the source may 

already be ready) and another item of data transferred. 

Lower control unit 

The lower control unit connects to the request and acknowledge signals from the queue outputs 

and the acknowledge output from the adder output FIFO. Both the adder and multiplier have 

a 'go' input to start an operation and a 'done' output to signal completion. The adder 'done' 

signal supplies requests to the input of the adder output FIFO. The remaining handshake signals 

are connected to the lower control unit. Additionally the lower control unit controls the mul-

tiplier input multiplexer, the adder input multiplexers, the XOR inverters and the adder carry 

input. Each operation cycle of the lower control unit performs one of the three operations, add, 

multiply or copy. 

This unit contains the most complex ROM and decoder. Several multi-bit fields are used to 

indicate from which queues data is to be read from and to control the multiplexers and logic 

surrounding the adder and multiplier. 
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Multiplier control unit 

The multiplier and multiplier control unit consist of a bit-parallel combinatorial multiplier, a 

ROM to hold the multiplier coefficients and a control ROM indicating which multiplier coeffi-

cient to use. A more efficient scheme might be to use just one ROM containing the (possibly 

duplicated) multiplier coefficients. Each operation cycle of the multiplier is to perform a single 

multiplication, note that a cycle only commences when requested by the lower control unit. 

7.4.3 Adder and multiplier 

Both the adder and multiplier are intended to be asynchronous with a 'go' signal, completion 

detection and a 'done' output signal. In the simulations performed both the adder and multiplier 

use delay matching rather than completion detection. 

The multiplier produces two outputs instead of the normal product, this is intended to allow 

the adder to be reused for multiplications, perhaps reducing the complexity of the multiplier 

depending on the circuit implementation. A possible algorithm for the multiplier, without com-

pletion detection, is given as a Venlog behavioural model in Appendix C.2. This corresponds 

to the multiplier described in [12, section 8.2.7.1]; the final summation required is performed 

by reusing the existing adder. Each cell in the two-dimensional array of cells forming the mul-

tiplier consists of a full-adder and multiplexer, which can both be efficiently implemented using 

pass-transistor logic [10]. 

The multiplier outputs are one bit wider than the rest of the data path, as a consequence the 

other inputs to the adder input multiplexers are extended by concatenating a 0 LSB bit (before 

optional inversion for subtraction). After addition a w + 2 bit result is produced, the top (carry 

Out) bit is removed as the choice of the number of bits before the binary point ensures the carry 

is never needed and the bottom bit, which is only non-zero in the case of a multiplication, is 

removed. 

The FIFO buffer at the adder output is required to avoid deadlock when a result from the lower 

section is to be written back into a queue which is already full. A two stage FIFO is required 

for the DCT algorithm as at the start of the algorithm two additions need to be performed and 

both results written into a queue which is still full. An alternative strategy would be to increase 

the length of some or all of the four queues. 
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7.4.4 DCT Algorithm 

The 1-D DCT algorithm by Arai et at [45] was modified to remove and reposition some sub-

tractions. The intention was to arrange that only one adder input require negation. However, the 

initial version of the microcode contained an error, which when corrected required both adder 

inputs to be capable of negation (though not both at the same time). This alteration would 

most likely be needed for other algorithms anyway. The modified Arai algorithm is shown in 

Figure 7.2. A C version of the algorithm, directly reflecting the data flow in the architecture, is 

given in Appendix C.1. 

Figure 7.2: Modified Arai DCT algorithm 

7.4.5 Fixed point arithmetic 

Throughout the system all data is encoded using two's complement fixed point representation. 

The main data path is w bits wide. Input pixel data (typically 12 bits) and output DCT coeffi-

cients (typically 9 bits) should be sign-extended and shifted accordingly, this can be done after 

the input FIFO and before the output FIFO buffers. The signal flow graph (Figure 7.2) can be 

divided into three sections: (i) stages (columns in the diagram) before the multiplications, (ii) 

the multiplication stage and (iii) the stages after multiplication. To avoid shifting operations 

to correct bit alignment and avoid overflow it is necessary to determine the range of values 

possible at each of the three stages. 

Input pixel data is in the range [-1, +1]. After a maximum of three additions the range is 

[-8, +81. The largest multiplier coefficient is approximately 1.3, which when rounded up to a 

power of two gives a data range after multiplication of [-16, +161. A further three additions 

101 



An asynchronous discrete cosine transform 

can then occur giving an output range of [-128, + 128]. Thus the input pixel data is represented 

with four digits before the binary point (4bpp) and the output DCT coefficients with 8bpp. To 

avoid shifting operations to re-scale values the multiplier coefficients are stored as 4bpp (4bpp 

multiplied by 4bpp produces 8bpp product). Values which are not multiplied in the flow graph 

are multiplied by one (under the 4bpp representation) to attain the correct bit position compared 

to the other signals. Three such multiplications are required, placed in the 1st, 2nd and 4th rows 

in the signal flow graph. 

7.4.6 Extensions and application to other algorithms 

Although the architecture is controlled by microcode ROMs, only the DCT has been imple-

mented. It should be possible, but has not been checked, to implement other waveform trans-

forms, perhaps with minor alterations. As the architecture stands only algorithms in which 

the control flow is not influenced by data values can be implemented because the three control 

units operate independently of the data values. Additionally the architecture currently does not 

provide a division operation and only supports a fixed precision. It is possible to implement 

the inverse DCT (also based upon the Arai algorithm) simply by modifying the control ROM 

contents. 

To implement other algorithms various design parameters may need to be adjusted, including: 

the length of the adder output FIFO, the length and number of queues, and the data path width. 

Additionally if a large number of multiplications are to be performed a FIFO placed between 

the multiplier and adder would increase concurrency, and a barrel shifter might be faster than 

multiplying by 'one' to scale values not being multiplied. A second input to the multiplier to 

permit one data value to be multiplied by another might also be desirable. 

Another extension would be to replace the control ROMs with RAM allowing the algorithm 

to be changed at run-time. A sufficient number of queues of suitable length for the 'largest' 

algorithm to be used would be required, however, because the queues are elastic, algorithms 

which do not need the full queue size would still run correctly. 

The microcode for the DCT was written by hand from examination of the signal flow graph. 

It should be possible to automate this process using a tree search type method, although the 

search space is likely to be quite large. 

Finally performance could be increased by extending the architecture to use multiple functional 
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units and permit concurrent writing and reading of the queues, however this would require a 

more sophisticated control mechanism. 

7.5 Simulation 

The architecture with the DCT algorithm was simulated in Verilog. A structural model com-

posed from behavioural models of the basic units was used to obtain a good compromise be-

tween a complete circuit description and a fast design and simulation time. The three control 

units, the adder and multiplier exist only as a behavioural model. In particular, details of how 

to implement the control units have not been examined; a behavioural model is suitable for 

experimenting with the architecture. Although simulated using the two-phase handshake pro-

tocol for simplicity, a four-phase protocol could also be used. The model is fully parameterised, 

allowing properties such as the number of queues, or the data path width to be changed easily. 

The simulation shows that the architecture works correctly for the delay parameters used in 

the simulation. Although from examination it would seem unlikely that other delay parameter 

values may result in failure, a more formal method of verification would be needed to guarantee 

this. 

A C program to model the algorithm using floating-point arithmetic was implemented as a 

reference. As an additional check the program computes the DCT using equation (6.1). The 

C program produces input vectors for the Venlog simulation and output vectors for compar-

ison with the simulation output. The simulation was tested for several input data sequences, 

including the 'DC input' case where all the input values are the same. 

7.6 Review 

Performance 

The implementation area should be small because only one adder and multiplier are used. The 

FIFO queues are built from transparent latches rather than registers, this should further reduce 

area and power consumption. However, because there is only a single adder, many operation 

cycles are needed (46 for the upper section with the DCT) and performance is slow. Multiple 

units could be used in parallel, for example sixteen DCT units and a matrix transposition unit to 

compute a complete 2-D DCT. However this would require sixteen bit-parallel combinatorial 
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multipliers. 

Experiments with real image data would need to be performed to assess how much performance 

gain could be obtained by using completion detection instead of delay matching for the adder 

and multiplier. The microcode algorithm used for the DCT was arranged to ensure that op-

erations such as A + B and A - B are adjacent, this may increase the benefit of completion 

detection and should reduce power consumption by avoiding unnecessary changes on one adder 

input. If little gain is achieved by the use of completion detection it is debatable if this style 

of DCT algorithm, involving a regular and constant load computation, could benefit from an 

asynchronous implementation. However, aside from data dependent processing delays an asyn-

chronous implementation does make elastic queues straightforward and permits asynchronous 

input and output interfaces which need not operate at a constant data rate. 

The architecture was simulated using the two-phase protocol for simplicity and ease of design. 

Although for best performance the linear FIFO queues should be two-phase (see Chapter 3), 

the four-phase protocol may be preferable when implementing the control circuitry. 

Timing assumptions 

Much use of delay matching is used, this has the disadvantage of delivering worst-case perfor -

mance and requiring careful device level simulation prior to producing a physical implementa-

tion. In particular the functions performed by the control circuitry include delay matching for 

the multiplexers. One alternative strategy would be to use dual-rail encoding in the data path, 

however, this would significantly add to the area and power consumption as the architecture is 

dominated by the data path. 

Correctness 

A side effect of the property that the control algorithm operates independently of the data is 

that it if formal verification were to be used, only the control functions need be verified without 

the problem of data dependencies leading to a large state space. Provided the control units are 

deadlock free, the only remaining feedback path (and hence a potential deadlock) is the transfer 

of data from the lower section back to the upper section. Deadlock as a consequence of this 

path, for example if the adder output FIFO is too short, would be observed during simulation. 
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7.7 Conclusion 

Initial work on a new ROM programmed architecture, with the potential for run-time recon-

figurability, has been presented. The architecture has been programmed to implement the l-D 

DCT and is potentially extendible to other waveform transforms. The architecture, with the 

DCT algorithm, has been successfully simulated using Verilog. Future work could include 

extensions to support other transforms, or to increase performance. 
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Chapter 8 
Conclusions and discussion 

In this thesis aspects of micropipeline controller design, verification and application have been 

examined. This final chapter summarises the work in earlier chapters. Achievements are iden-

tified and with the benefit of hindsight, limitations, potential for future work and more general 

issues are discussed. 

8.1 Summary and review 

Chapter 2 introduced asynchronous circuits and their differences from synchronous circuits, 

with focus on the micropipeline design style used in later chapters. 

In Chapter 3 micropipeline latch controllers were examined. From this study a new, inde-

pendently discovered, two-phase latch controller circuit was developed. SPICE simulations 

show that in comparison to existing two-phase latch controllers, the new circuit is faster, with 

a lower power consumption and fewer transistors. The new circuit has the same benefits when 

compared with the fully-decoupled four-phase controller of equivalent functionality. When 

compared with the semi-decoupled four-phase controller, the new circuit is faster, but at the 

expense of more transistors. 

However, the comparison results are only valid for a simple linear micropipeline, free from 

other asynchronous circuit elements required for forking and merging. These other elements 

are generally known to be faster and smaller when implemented using the four-phase protocol 

instead of the two-phase protocol, a fact confirmed by the predominance of four-phase circuitry 

in the asynchronous literature. It would seem therefore that the application of the new controller 

is limited; however, a suitable application is the two-dimensional micropipeline structure pre-

sented in Chapter 5. Although the two-phase protocol is aesthetically desirable, in general 

using the four-phase protocol requires less circuitry, a consequence of the fact that transistors 

are level-sensitive rather than edge-triggered. 

In Chapter 4 a method of modelling asynchronous circuits using CCS process algebra was 
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developed. Processes are used to represent circuit elements and the parallel composition and 

restricted synchronisation features of CCS used to connect elements. The same compositional 

approach can be used to combine modules within a larger circuit. The concurrency workbench 

(CWB) is used to check properties of the models, or to test for equivalence between a model 

of a circuit and a specification. Once a model of a module has been shown equivalent to a 

specification, the specification can be used in place of the more complex module model within 

a hierarchical composition. 

Initially believed to be a straightforward application of CCS, more involved issues soon became 

apparent, namely those of quenching and timing assumptions, in particular isochronic forks. At 

first, logic levels were modelled but then the more efficient scheme of modelling events was 

used. Two ways of permitting the detection of interference between signals were discussed, 

one involving wires with error states and the other where gate inputs permit quenching. The 

latter involves a smaller state space and was preferred. During this work previous literature 

using CCS was found and was found to be consistent with this work. This method has the 

unique property that the traditionally undesirable behaviour of quenching is permitted inside 

a circuit, provided that the externally observable behaviour is correct. This seemed a more 

natural way of modelling a circuit and helps to reduce the state space of the model. 

The modelling method was then applied to the verification of several circuits. To test the method 

in practice, the standard two-phase latch controller and semi-decoupled latch controllers from 

Chapter 2 were re-verified. In the case of the buggy semi-decouple four phase controller, a well 

known timing assumption was correctly exposed by the model. In Chapter 5 the method was 

successfully applied to the verification of empty- and full-detection circuitry for a micropipeline 

FIFO. Two approaches were tried, one a direct CCS approach and the other using a combination 

of STG specification and CCS verification. Both approaches were successful but the latter was 

found to be somewhat simpler. 

Isochronic forks were found to be both awkward to model and to give a large increase in state 

space, especially when used in conjunction with large circuit elements, for example the asym-

metric three input C-element. This suggests that, although suitable for the verification of quasi-

delay-insensitive circuits with a small number of isochronic forks, the method is perhaps not 

appropriate for the verification of the larger class of speed independent circuits. In practice 

the modelling method was found to be well suited to the verification of small gate-level hand-

designed circuits. 
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Next, two applications which are micropipeline intensive and hence potentially suitable for 

use with the simplified latch controller were studied. The first application has two uses in the 

implementation of the discrete cosine transform (DCT): (i) bit-parallel to bit-serial conversion 

for a bit-serial DCT, (ii) matrix transposition for a bit-parallel DCT. The second application is 

a fully asynchronous microcoded architecture, which was used to implement the DCT. 

In Chapter 5 a new two-dimensional micropipeline architecture was developed for converting 

between bit-parallel and bit-serial data. Independent work, which uses a similar architecture 

to perform matrix-transposition, was reviewed and the new architecture was further simplified. 

The architecture has the potential to offer area and significant power savings compared to the 

synchronous equivalent. 

Key aspects, namely those of full and empty detection, in both the complex and simple variants 

of the architecture, were modelled using the CCS method from Chapter 4, with enhancements 

to permit the incorporation of timing assumptions. Combined with the verification of the latch 

controllers, the modelling work has illustrated how verification rather than simulation, which 

does not test for timing assumptions, is important even for apparently simple circuits. 

Chapter 6 reviewed recent synchronous DCT implementations, highlighting the roles of algo-

rithmic and circuit design, with a quantitative comparison of implementation area and speed. 

From this review it was concluded that row-column decomposition methods require specific 

circuit techniques to achieve high performance and that higher performance may be obtained 

by the use of direct 2-D approaches at the expense of area. 

From the review of algorithms in Chapter 6 an algorithm with a low number of multiplications 

was chosen as an algorithm for use with the architecture described in Chapter 7. Compared to 

the number of synchronous implementations there are very few asynchronous DCT implemen-

tations, all of which have poor performance. 

Chapter 7 described initial work on an asynchronous application specific processor (ASP) ar-

chitecture, on which a DCT was implemented. The architecture exploits the elasticity of mi-

cropipeline FIFOs to store intermediate results during computation and is controlled by mi-

crocode RUMs, permitting the implementation of the inverse DCT or potentially other trans-

forms. Although, involving linear micropipeline FIFOs, the architecture might seem well suited 

to the simplified latch controller, it is likely that the control circuitry (only developed to a be-

havioural model) would be most efficiently implemented using four-phase circuitry due to the 
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reasons discussed earlier. 

8.2 Future work 

Several areas, directly related to the work discussed, in which future work is possible have been 

identified. 

• Although four-phase logic seems to dominate the asynchronous literature, there would 

appear to be little literature which performs an explicit comparison between two and 

four-phase circuits. Further work to compare the speed, power, area, complexity of tim-

ing constraints and ease of design of two- and four-phase circuits could be performed. 

The majority of existing literature is primarily concerned with maximum speed, different 

conclusions might be reached if speed were a secondary concern to minimising power 

consumption. 

• The CCS modelling method would benefit from state space reduction techniques to per-

mit faster modelling of larger circuits. 

• The methods of full- and empty-detection in the two-dimensional micropipeline archi-

tecture were only verified for a limited number of pipeline stages. A formal proof could 

be constructed to show the result holds for an arbitrary number of stages. 

• Layout could be performed for both the two-dimensional micropipeline and a synchronous 

equivalent. SPICE simulations with capacitance extraction could then be used to accu-

rately compare power and speed. 

• The review of DCT literature highlights some promising algorithms without implemen-

tations. For consumer video applications an inverse only DCT implementation, which 

exploits zero coefficients, of which there are few implementations, may offer advantages. 

• Much work is needed in the field of asynchronous DCT implementations if a performance 

comparable to synchronous implementations is to be achieved. 

• Reconfigurable or programmable application specific asynchronous circuits may have 

advantages over their synchronous counterparts. The use of completion detection and 

handshake protocols should permit good average case performance whilst avoiding tim-

ing validation issues. New reconfigurable and programmable architectures, previously 
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non-viable with a synchronous implementation, may be possible. This whole area de-

serves systematic investigation. 

8.3 Discussion 

This thesis has focused on specific aspects of micropipeline design and verification. On a 

broader scale the world-wide asynchronous community is performing research on both mi-

cropipelines and other asynchronous methodologies. 

The common criticisms are that compared to synchronous circuits, asynchronous circuits are: 

• hard to design, 

• hard to verify, 

• hard to test after manufacture, 

• slow. 

Purely synchronous circuits appear to be easy to design, the use of discrete time intervals re-

moves most of the need to worry about races and other hazards. However, clock distribution 

and skew is becoming an increasing problem as fabrication improvements push up die sizes and 

push down feature sizes. In practice, many synchronous circuits are not purely synchronous 

anyway, in addition inputs to a circuit are ultimately asynchronous. 

In a synchronous design a module interface may have many timing constraints, for example 

setup and hold times. This can make the independent development of modules difficult because 

the timing constraints of one module influence the design of another. This problem is amplified 

when modules which have been laid out (hard intellectual property blocks) are exchanged. This 

style of pre-designed module is likely to be used for high performance data path modules and 

the high speed leads to tight timing constraints. With most asynchronous interfaces there is a 

reasonable amount of delay insensitivity, leading to fewer timing constraints and less depen-

dence on the particular implementation or technology. This increased ease of composition from 

pre-designed modules should aid system design. 

A frequent aspect of synchronous circuit design involves simulation using back annotation with 

delays derived from the layout, for example to test the safety of timing assumptions. Several it- 
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erations of layout and simulation may be involved to meet timing requirements imposed by the 

circuit specification. Such simulations are usually repeated for a range of process parameters 

and operating conditions. Ideally a circuit would be fully delay insensitive, such that circuit 

correctness is independent of layout, technology and process parameters, operating tempera-

ture and voltage (within sensible limits) and the timing of signals supplied by the environment 

connected to the circuit. In practice useful asynchronous circuits involve timing assumptions 

and a compromise has to be made. 

For a moderately complex synchronous circuit it is straightforward to simulate a synchronous 

circuit using a discrete event simulator to test its behaviour, at least at an algorithmic level. 

For large circuits, for example a microprocessor, formal methods are often useful to assist with 

demonstrating correctness, but this is to test logical correctness assuming discrete time intervals 

(i.e. a clock), not correctness of the circuit under the non-deterministic choice resulting from 

arbitrary (though perhaps bounded) wire and gate delays. Modelling the latter tends to involve 

a larger state space, as all the 'intermediate' states of signal propagation are needed, not just 

the states due to state keeping registers. 

Formal methods for verification or synthesis are a critical part of asynchronous circuit design. 

Discrete event simulation involves particular delays being assigned to wires and gates which 

is not compatible with the ideal of delay insensitivity in an asynchronous circuit. In practice, 

simulation can be very helpful in the design of an asynchronous circuit, but it does not provide 

property checking, for example guarantee of freedom from deadlock. Formal methods are 

usually only appropriate to verify the control paths of a circuit, as the verification of data paths 

would involve an intractable state space. This is analogous to simulating the circuit for all 

possible data patterns. 

Asynchronous circuits may be hard to test after manufacture. It is not only necessary to test 

for behavioural errors, it is necessary to test for timing related errors [74]. A search of the 

asynchronous bibliography [75] suggests that further research in this area is required. 

It is widely viewed that the overhead of handshaking in an asynchronous circuit results in 

lower performance than that of the synchronous equivalent. However, asynchronous circuits 

permit data dependent processing times which may yield better average case performance even 

if worst case performance is not as good. In addition asynchronous circuits permit new ar-

chitectures for which synchronous versions may be impossible or inefficient. Other strategies 
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include globally-asynchronous locally-synchronous systems [761, permitting well established 

high performance synchronous design methods to be mixed with the compositional advantages 

of asynchronously communicating modules. However, synchronous designs still dominate in 

the high performance processor industry. Many (and arguably the majority of by number of 

units sold) VLSI products do not require the ultimate in high speed, for example devices present 

in personal digital assistants (PDAs), mobile telephones, automobiles and consumer electronic 

items. In these products the efficient use of battery power is more important and the reduced 

electromagnetic noise from asynchronous circuits may be an advantage. For non speed critical 

applications ease of design may be more important, and the avoidance of clock distribution and 

lengthy simulation to check timing would reduce design time and hence time to market. 

Although the majority of asynchronous interest has been (and still is) academic, commercial 

interest is on the increase and products are starting to be developed. Berke], working at Philips 

Research Laboratories, has developed a method of specification and synthesis, known as Tan-

gram [77],  which was subsequently used to design the error correction decoder for DCC play -

ers [78]. Theseus Logic have developed an asynchronous DCT [67] and Cogency Technology 

have produced an asynchronous DSP core [13]. Sun Microsystems have performed research 

on the counterfiow pipeline processor [79]. The Manchester based Amulet group are working 

on the third version of an asynchronous micropipelined implementation of the ARM proces-

sor [9]. Recent additions to this list are the New Media Processor [80] from Sharp and it is 

known that Intel is working on an asynchronous instruction decoder. Despite these examples, 

much more commercial interest and CAD support is required if asynchronous circuits are to 

regain a foothold in a world dominated by synchronous design. 

It is perhaps not hard to see why asynchronous design is not popular, synchronous design meth-

ods, simulation and tools are well established, the methods used in asynchronous circuit design 

and verification are still subject to much academic research. Much further work is needed 

toward making asynchronous circuits easier to implement and use. The majority of the litera-

ture discusses very specific aspects of asynchronous design rather than broader design issues. 

Compared to synchronous design there is a vast shortage of design experience. As discussed 

briefly above, asynchronous circuits may have a fair amount to offer designers, however, if 

asynchronous design to become common place, tried and tested design methodologies need to 

be established. 
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Appendix A 
CWB code for models and 

specifications 

A.1 Basic circuit elements 

* Xor 
* XOR/]POR gate 
* 	agent: Xor 
* 	input:in]., in2 
* 	Output: Out 

agent 	Xor 	= inl.Xor-e + in2.Xor-e; 
agent 	Xor-e = inl.Xor 	+ in2.Xor 	+ 'out.Xor; 

* Toggle 
* Toggle element 

agent: Toggle 
input: in 

* 	Output: dot, blank 

agent 	Toggle 	= in.('dot.Toggie-b + in.Toggle); 
agent 	Toggle-b = in.('blank.Toggle + in.Toggle-b); 

* And 
• Two-input AND gate. 
• 	agent: 	 And 
* 	ports: 	 inl,in2,out 

* Agent is labelled as And_<inl'-cin2'-sout> 
• And_000 is shortened to And, this saves need to 

use min to remove the extra state and keeps tidy names. 

agent And 	= inl.And_lOO + in2.And_010; 
agent And_lOO = inlAnd 	+ in2.And_110; 
agent And_OlO = inlAnd_hO • in2.And; 
agent And_hO = inl.And_OlO • in2.And_100 + 'out.And_lll; 
agent And-001 = inl.And_101 • in2.And_011 + 'out.And; 
agent And-101 = inl.And_OOl + in2.And_lll + 'out.And_lOO; 
agent And_Oil = inl.And_lll + in2.And_001 + 'out.And_OlO; 
agent And_ill = inlAnd_Oil + in2.And_101; 

* Fork 
Fork in wire, allows either output order, and quenching 

* 	agent: Pork 
* 	input: in 
* 	output: outh, out2 

agent 	Fork= in.Fork-e; 
agent 	Fork, = in.Fork 	+ 'outl.Fork-e2 * 'out2.Fork-el; 

agent 	Fork-el = 'outl.Fork + in.Fork-e2; 
agent 	Fork-e2 = 'out2.Pork + in.Fork-el; 

* Datat,atch 
* Simulated multibit data latch (without data) • used to produce 
* an observable capture action. Note quenching is not needed as 
• this is just a buffer. 
• 	agent: Datal.atch 
* 	input: enable 
• 	output: done 

agent Datatatch = enable.capture. 'done.enable. 'done.Datatatch; 
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A.2 Muller C-elements 

* Muller C-elements 

* Naming examples: 

• Cpbn 

* A a C-element with one input which can only make the output 
* go _Positive_, one input which is a 'normal' input (can make 
• the output go _Both_ positive and negative), and one input 
• which can only make the output go _Negative_. 

* Likewise the inputs are named p1, p2, bl, nl etc. 

• If an input is _Inverted_ (with a bubble) then the C-element 
• name would be like this (but the input names are unchanged) 

* 	Cpibn 

* 'Internal' agent names do not have inverted inputs marked (as they 
* are reused), and they have the current state of inputs and maybe 
• also the output in the name. For example, for Cpibn, an agent used 
• in its construction might be Cpbn-010-0, indicating p1=0. bl=l, 
* nl=0 and out=0. 

Standard 2-inj tut C-element 
* 	agent: 	Cbb 
* 	input: 	bl, b2 
* 	output: Out 

agent 	Cbb 
	= bl.Cbb-bl b2.Cbb-b2; 

agent 	Cbb-bl = bl.Cbb 	+ b2.Cbb-e; 
agent 	Cbb-b2 = bl.Cbb-e + b2.Cbb; 
agent 	Cbb-e 	= bl.Cbb-b2 + b2.Cbb-bl + 'out.Cbb; 

Standard 2-input C-element with bubble on one input 
* 	agent: Cbib 
* 	input: bl (inverted), b2 
* 	output: Out 
agent Chib 	= Cbb-bl; 

• Minimise to save one state 
min(Cbib, Cbib); 

* Asymmetric 2-input C-element, one both input and one + input 
agent: Cbp 

* 	input: bl,pl; 
• 	Output: out 

agent Cbp = Cbp-00-0 
agent Cbp-00-0 	 = bl.Cbp-10-0 	+ pl.Cbp-01-0; 
agent Cbp-10-0 	 = bl.Cbp-00-0 	+ pl.Cbp-11-l-e; 
agent Cbp-01-0 	 = bl.Cbp-11-1-e + pl.Cbp-00-0; 
agent Cbp-11-l-e 	= bl.Cbp-01-0 	+ pl.Cbp-10-0 	+ 'out.Cbp-11-l; 
agent Cbp-11-1 	 = bl.Cbp-01-0-e + pl.Cbp-10-1; 
agent Cbp-10-1 	 = bl.Cbp-00-0-e + pl.Cbp-11-1; 
agent Cbp-01-1 	 = bl.Cbp-11-1 	+ pl.Cbp-00-0-e; 
agent Cbp-01-0-e 	= bl.Cbp-11-1 	+ pl.Cbp-00-0-e + 'out.Cbp-01-O; 
agent Cbp-00-0-e 	= bl.Cbp-10-1 	+ pl.Cbp-01-0-e + 'out.Cbp-00-O; 

Asymmetric 2-input C-element, one both and one inverted + input 
* 	agent: Cbpi 
* 	input: bl, p1 (inverted); 
* 	output: Out 

agent Cbpi = Cbp-01-0; 

* Minimise to save one state 
min(Cbpi, Cbpi); 

The CWB code for other C-elements is constructed in a similar manner, and to amserve spare is not given here. 

A.3 Latches with isochronic fork 
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* Latch 
* pair of level sensitive latches, as used in the two-phase 
* controller without toggle. When composing LatchLl and 
• LatchL2 they must be made to synchronise on latchpairsync. 

* the real definition 

agent Latch-EN-wait 	 = latchpairsync.Latch-DIS-sync 
+ in. Latch-c-wait; 

agent Latch-EN 	 = in.Latch-e 
+ enable. Latch-EN-wait; 

agent Latch-DIS-sync-wait 	= latchpairsync.Latch-EN 
+ in.Latch-DIS-outsync-wait; 

agent Latch-DIS-sync 	 = enable. Latch-DIS-sync-wait 
+ in.Latch-DIS-outsync; 

agent Latch-DIS-outsync-wait = latchpairsync.Latch-e 
+ in.Latch-DIS-sync-wait; 

agent Latch-OIS-outsync 	= enable. Latch-DIS-outsync-wait 
+ in.Latch-DIS-sync; 

agent Latch-c-wait 	 = latchpairsync.Latch-DIS-outsync 
• in.Latch-EN-wait 
• 'out.Latch-EN-wait; 

agent Latch-c 	 = 'out.Latch-EN 
• in.Latch-EN 
• enable.Latch-e-wait 

* Latch '11' (the one which nfl is connected to) 
* 	agent: LatchEd 

input; in. enable 
* 	Output: out 
* 	also: latchpairSynC 

agent Latchtl = Latch-EN; 

* Minimise to save one state 
min(LatchLl, LatchLl); 

Latch '12 (the one which drives rout and am) 
* 	agent: LatchL2 
* 	input: in, enable 

output: out 
• 	also: 	latchpairsync 

agent LatchL2 = Latch-DIS-sync ( 'latchpairsync/latchpairsyncj; 

* Minimise to save one state 
min(LatchL2, LatchL2); 

A.4 Environments 
Env'rwophaseL, Env'FwoPhaseR 

* A valid two-phase environment for a micropipeline to operate in. 
* The inputs (that is outputs from the micropipeline) allow quenching. 

* Example: 
* agent Implementation = ) Env'rwoPhaseL I Micropipeline  I EnvTwoPhaseR 
* 	 \ ENV'I'WOPHASESE'F; 

* 	agents: 	 Env'TwoPhaset, EnvTwoPhasefl 
* 	observable actions: 	 rin,ain,rout,aout 
* 	interface to micropipeline: 	rinp,ainp.routp.aoutp 

agent 	EnvTwoPhaseL 	= nfl. 'rinp.Env'PwoPhaseL-w; 
agent EnvTwophaSeL-w = ainp.('ain.Env'rwoPhaseL * ainp.EnvTwoPhaseL-w); 
agent EnvTwoPhaseR 	= routp.('rout.aout.'aoutp.EnvrwoPhaseR 

+ routp.EnvTwoPhaseR); 
set 	ENV'FWOPHASESE'P = { rinp, routp, amp, aoutp ); 

• EnvFourphaseL, EnvFourphaseR 
* A valid tour-phase environment for a micropipeline to operate in. 
• The inputs (that is outputs from the micropipeline) allow quenching. 

* Example: 
* agent Implementation = ( EnvFourPhaseL I Micropipeline  J EnvpourPhaseR 
* 	 \ ENVFOURPNASESET; 

* 	agents: 	 EnvpourPhaseL, EnvFourPhaSeR 
* 	observable actions: 	 rin.ain,rout.aout 
• 	interface to micropipeuine: 	rinp,ainp.routp.aoutp 

* Note this is correctly the same as EnvTwoPhase. 

agent 	EnvpourphaseL 	= nfl. 'rinp.EnvFourPhaseL-w; 
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agent EnvpourPhaset-w = ainp.('ain.EnvFourPhaset + ainp.EnvpourPhaset-w); 
agent EnvFourPhaseR 	= routp.('rout.aout.'aoutp.EnvFOurPhaseR 

+ routp.EnvFourPhaseR); 

set 	ENVFOURPHASESET = ( ring, routp, amp. aoutp ); 

A.5 Two phase specification 
* SpecTwOphase 
• A correct two phase latch controller operating in a valid 
• environment. 
* 	agent 	 SpecTwoPhase 

observable actions 	rin,ain,rout,aout,Capture 
* 	('capture' is to observe when the data latch captures new data) 

agent SpecTwoPhase-L = rin.sync.capture. 'sync. 'ain.SpecTwoPhase-L; 
agent SpecTwoPhase-R = 'sync.sync. 'rout.aout.SpecTwoPhase-R; 
agent SpecTwoPhase 	= ( SpecTwoPhase-L I SpecTwoPhase-R ) \ (sync); 

A.6 Standard two-phase latch controller 
* Build up the latch controller circuit. 
* Interface to Circuit' is rin,ain,rout,aout. 

• C-element 
agent 	Cl 	 = Cbib(cl/out,tiblank/bl,rin/b2); 

* xor 
agent 	Xi 	 = Xor(xl/out,cl/ini,aout/in2); 

* datalatch (On Output of xor) 
agent 	Dl 	 = Datatatchtdl/done,xl/enablei; 

* toggle (on output of data latch) 
agent 	Ti 	 = Toggie(tldot/dot, tlbiank/blank,dl/in); 

* forki from output of toggle to give ain and rout 
agent 	Fl 	 = Fork(ain/outl,rout/out2,tldot/in]; 

* whole circuit 
agent 	Circuit 	 = ( Cl I xl i Dl I Ti  I Fl 

\ (cl,xl,di,tldot,tiblank}; 

* rename ports on Circuit to be compatible with environment 
agent 	Circuit' 	 = Circuit(rinp/rin,routp/rout, 

ainp/ain,aoutp/aoutj; 

* attach Circuit' to environment 
agent 	Implementation 	 = ( EnvTwoPhaseL. I Circuit' I EnvTwoPhaseR 

ENVTWOPHASESET; 

* hopefully, this will be true 
eq(SpecTwoPhase. Implementation); 

A.7 Simplified two-phase latch controller 
• Build up the latch controller Circuit. 
• Interface to Circuit is rin,ain,rout,aout. 

• latch 11 
agent r,l = L,atchtl(ll/out,f21/enable,rin/inj; 

• fork from output of 11 to XOR and 12 
agent Fl = Fork(fll/outl.f12/out2.il/in); 

* xor 
agent Xl = XorIxl/out,fll/ini,aout/in2I; 

• dataiatch (on output of xor) 
agent Dl = Datatatch(dl/done.xl/enablel; 

• fork2 from output of dataiatch to 11 and 12 
agent P2 = Fork(f21/outi,f22/out2.dl/in]; 

* latch 12 
agent 1,2 = LatchL2(12/out,f22lenable.f12/in); 

* fork 3 from output of 12 to ain and rout 
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agent 	?3 	 = Fork[ain/outi,rout/out2,12/in]; 

* whole circuit 
agent 	Circuit 	 = I Li I Fl  I xl  I Di I F2 I L2 I F3 

\ (1l,fil,fl2,xi,di,f21, 
122,12 latchpairsync); 

* rename ports on circuit to be compatible with environment 
agent 	Circuit' 	 = Circuit(rinp/rin,routp/rout, 

amp/am, aoutp/aoutl; 

* attach Circuit' to environment 
agent 	Implementation 	= I Env'PwoPhaseL I Circuit' I Env'i'woPhaseR 

ENV'rSqOPHASESET; 

* hopefully, this will be true 
eq(Spec'I'woPhase, Implementation); 

The four-phase latch contsoller circuits are constructed inn similar manner. 

AS STG to CCS conversion 

STG input 
rin 
'rout 
• am 
aout 
capture 
END 
rin -> capture : 0 
capture -> lain 0 
'am -> nfl : 1 
capture -> 'rout : 0 
'rout -> aout 	0 
aout -, 'rout 	1 
aout -s capture : 1 

CCS output 
agent rwophase = TwoPhaseO; 
agent TwoPhase0 rin.TwoPhasel; 
agent TwoPhasel capture. TwoPhase2; 
agent TwoPhase2 
	

'ain.TwoPhase3 + 'rout.TwoPhase4; 
agent TwoPhase3 rin.TwoPhaseh + 'rout.Twophase6; 
agent PwoPhase4 
	'ain.TwoPhase6 + aout.TwoPhasel; 

agent TwoPhase5 
	

'rout. TwoPhaseB; 
agent TwoPhase6 rin.TwoPhase8 + aout.TwoPhase9; 
agent Twophase7 
	

'ain.TwoPhaselO; 
agent TwoPhase8 aout . TwoPhasel; 
agent TwoPhase9 rin.TwoPhasel; 
agent TwoPhaselO = rin.PwoPhasel; 

A.9 Additional specifications and environments 
* Event representation to level representation converter. 
* 	agent: EL 

input: lo,hi 
* 	Output: Out 
* 	also: 	losync 
• out is initially'low". Events on hi and 10 are used to 
* change the state of out, hi, 10, 'losync are always possible 
• from all states. Quenching of changes to Out by further input 
• can occur. 

• 'losync is used to synchronise with out being low, i.e. after 
* synchronisation with losync, out can not then occur until hi 
• occurs. Note that 'losync does not cause Out to go low. 
• 'losync cannot happen if the last input was a hi. 

agent 	El,0 = lo.ELO + hi.ELOe + 'losync.ELO; 
agent 	EL0e = lo.ELO * hi.ELOe + 'out.ELl; 
agent 	ELi = bELle + hi.EL1; 
agent 	EL1e = bELle + hi.EL1 + 'out.ELO; 
min (EL,ELO); 
* Restriction set for using with EL 
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set 	ELSET = ( 10, hi, losync ); 

* SpecTwoPhaseFull 
* A correct two phase latch controller operating in a valid 
environment. The latch controller starts off full and with 

* a request waiting on nfl. 

• 	agent: 	 SpecTwoPhaseFull 
• 	observable actions: 	nin,ain,rout,aout,capture 

('capture' is to observe when the data latch captures new data) 

agent SpecTwoPhaseFull-L = sync.capture. 'sync. 'ain.rin.SpecTwoPhaseFull-L; 
agent Spec'PwoPhaseFull-R = aout. 'sync.sync. 'rout.SpecTwoPhaseFull-R; 
agent SpecTwophaseFull 	= ( SpecTwoPhaseFull-L I SpecTwoehase?ull-R 

(sync); 
min(SpecTwoPhaseFull, SpecTwoPhaseFull); 

• SpecTwoPhaseFullteft 
• A correct two phase latch controller operating in a valid 
• environment. The latch controller starts off full but with no 
• request waiting on nfl. 
• 	agent: 	 SpecTwoPhaseFull 
• 	observable actions: 	nin,ain,rout,aout,capture 
• 	('capture' is to observe when the data latch captures new data) 

agent SpecTwoPhaseFullLeft = ( SpecTwoPhase-1 I SpecTwoPhaseFull-R 
(sync); 

min(SpecTwoehaseFullLeft, SpecTwoPhaseEullteft); 

Env'l'wOPhaseFullL, Env'rwoPhaseFullR 
* A valid two-phase environment for a micropipeline to operate in, 
* where the micropipeline starts off full. 
• The inputs (that is outputs from the micropipeline) allow quenching. 

* Example: 
• 	agent Implementation = ( EnvTwoPhaset I Micropipeline I EnvTwoPhaseR 

ENVSET; 

agents: 	 EnvTwoPhaset, Env'FwoPhaseR 
* 	observable actions: 	 rin,ain,rout,aout 
* 	interface to micropipeline: 	rinp,ainproutp,aoutp 

agent EnvTwoPhaseFullL 

agent EnvTwophasepullR 
agent Env'l'woPhaseFullR-w 

size (EnvTwoPhaserullt); 
size (EnvTwoPhaseFullR); 

amp. ('ain.rin. 'ninp.EnvpwoPhaseFullL 
+ ainp.EnvTwoPhaseFullL); 

aout. 'aoutp. Env'rwoPhasepullR-w; 
routp. ('rout.EnvTwophaseFullR 

+ routp.EnvTwoPhasepullR-w); 

* EnvNullt, EnvNullR 
* Null unconnected environments: 
* EnvNullL always accepts amp but never produces rinp, 
• 	 and produces error and deadlocks it more than one 
* 	 amp is received. 

EnvNullR always accepts routp but never produces aoutp. 
* 	 and produces error and deadlocks if more than 
• 	 one routp is received. 

* Example: 
agent Implementation = ( EnvNullL I Micropipeline ) 	EnvTwoPhaseR 

\ ENVSET; 

agents: 	 EnvNullL, EnvNullR 
* 	observable actions: 	 error 
• 	interface to micropipeline: 	ainp,routp 
agent 	EnvNullL 	= ainp.ainp.error.O; 
agent 	EnvNullR 	= routp.routp.error.O; 
size(EnvNullL); 
size(EnvNullR); 

A.10 Two-phase latch controller with reqeust pending 
*LCU 
* A correct two phase latch controller operating in a valid 
• environment. 
• 	agents: 	 LC* 

* 	observable actions: 	rin,ain,rout,aout,capture 
* 	equivalent to: 	 eq(LCU,SpecTwoPhase) is true 
agent LCU = rin,LCU1; 
agent LCU8 = aout.LCU1; 

118 



CWB code for models and specifications 

agent LCU5 = 'ain.LCiJ; 
agent LCU1 = capture.LCU2; 
agent LCU2 = 'ain.I,CU4 + 'rout.LCUl; 
agent LCU4 = rin.LCU7 + 'rout.LCU6; 
agent LCU3 = aout.LCU5 + 'ain.LCU6; 
agent LCU7 = 'rout .LCU8; 
agent LCU6 = aout.LCU + rin.LCU8; 

* LCURP 
* A correct two phase latch controller operating in a valid 
* environment with request pending (RP) added. 

Request pending corresponds to the circuit with XOR and AND. 

This is constructed with the aid of RI, from elements.cwb. 
* The stage graph for LCU above was plotted and extended by 
* hand to give agent LCUr9 below. LCURP is then formed from 
* I,CU and LCUrp. 

agents: 	 I,CU* 

observable actions: 	rin,ain,rout,aout,CaptUre,rp 
note: 	 modified from LCU by hand to add RP 

agent LCUrp = rin.LCUrpl; 
agent LCUrp8 = aout. 'lo.I,CiJrpl; 
agent I,CUrp5 = 'ain.LCUrp; 
agent tCUrpl = capture.LCUrp2; 
agent tCUrp2 = 'ain.I,CUrpd + losync. ('rout.LCUrp3 + 'ain.LCUrp4); 
agent LCUrp4 = rin.'hi.LCUrp7 + losync.('rout.LCUrP6 + rin.'hi.LCUrp7); 
agent LCUrp3 = aout.LCUrp5 • 'ain.LCUrp6; 
agent LCUrp7 = 'rout.LCTJrpS; 
agent tCIJrp6 = aout.LCUrp + nfl. 'hi.LCUrp8; 

agent LCURP = C LCUrp I EL[rp/out] ) \ ELSET; 
min(LCURP, LCURP); 

A.11 Full-detection (Method I) 
** First check what should be true is true in case of silly errors 
eq(SpecTwoPhase,LCU); 	 * should be true 
eq(SpecTwoPhase,LCURP(tau/rPfl; * should be true 

* * Test single stage 
agent Stagel 	= LCURP(niflp/nin,aiflp/aifl,routp/rout.aOUtP/aoUt, 

capture/capture, full/rpl; 
agent Circuit 	= ( EnvTwoPhaseL I Stagel  I EnvNullR C \ ENVSET; 

size (Circuit); 
min(Circuit,Circuit); 
agent SingleStageSpec = rin. 'ain.nin. • full.O; 
eq (SingleStageSpec , Circuit C tau/Capture)) 

Three stage pipeline, right most stage has null right hand environment 
agent Stagel 	= LCURPCninp/rin,ainp/ain,rl/rout,al/aoUt, 

capturel/capture, rpl/rp]; 
agent Stage2 	= LCURP(rl/rin,al/ain,r2/rout,a2/aout, 

capture2/capture, rp2/rpj; 
agent Stage3 	= LCURP(r2/rin,a2/ain,routp/rout,aOutp/aOut, 

capture3/capture, rp3/rpj; 
agent Fib 	 = ( Stagel I Stage2  I Stage) ) \ (rl.al.r2,a2); 

agent And-3-2 	= And(rp3/inl,rp2/ifl2,full-3-2/outl; 
agent And-3--1 	= C And-3-2 I And(rpl/inl.full-3-2/ifl2.full/outI 

\ (full-3-2); 
agent Pipeline 	=( Fifo I And-3-1 ) \ {rp3,rp2.rpl); 
agent Circuit 	= C EnvTwoPhaset I Pipeline I EnvNullR C \ RIP/SET; 
size (Circuit) 
mm (ThreeStageCircuit.Circuit); 
agent ThreeStageSpec = nfl. 'ain.nin. 'ain.rin. 'ain.nin. 'full.O; 
eq(ThreeStageSpec.Circuit(tau/CaPturel.taU/CaPture2. tau/capture3)); 

A.12 Empty detection (Method I) 
First check what should be true is true in case of silly errors 

eq(SpecTwoPhaseFull.LCO); 	 * should be true 
eqcSpecPwoPhaseFull,LCOE1I(tau/em1); 	 * should be true 
eq(SpecTwoPhaseFullLeft.LCOLEMItau/eml); 	* should be true 
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* * Test single stage 
agent Stagel 	= LCOLEI.1(rinp/rin,aiflP/aifl,rOUtP/rOUt,aOUtP/aOUt, 

capture/capture. empty/em); 
agent ircuit = C EnvNullt. I Stagel EnvTwoPhasepullR C \ ENVSET; 

size( 
C 
 ircuit) 

mm (Circuit. Circuit) 
agent SingleStageSpec = aout. empty.O; 
eq (SingleStageSpec, Circuit (tau/capture)); 

* 	Three stage pipeline 
agent Stagel = LCOL,EN(rinp/rin.ainp/ain.rl/rOut.al/aOUt, 

capturel/capture, emi/em]; 
agent Stage2 = LCOEI4(rl/rin,al/ain,r2/rout.a2/aoUt, 

capture2/capture em2/em); 
agent Stage3 = LCOSN[r2/rin,a2/ain,routp/rout,aOUtP/aOUt. 

capture3/capture, en'J/emj; 
agent Fifo = 	C 	Stagel 	I 	Stage2 	I 	Stage3 	C 	'. 	(rl,al,r2.a2); 
agent And-1-2 = And(eml/inl,em2/in2.empty-1-2lout); 
agent And-1-3 = C And-1-2 	I And(empty-1-2/inl,em3/in2, empty/out) 

' 	(empty-1-2); 
agent Pipeline = 	C Fifo 	I And-1-3 ) 	'. 	(eml,em2,em3); 
agent Circuit = C SnvNullL I Pipeline I EnvTwoPhaseFullR C \ ENVSET; 
size (Circuit); 
min(ThreeStageCircuit,CirCuit); 
agent ThreeStageSpec = aout. 'rout.aout. 'rout.aout. empty.O; 
eq(ThreeStageSpec,Circuit(tau/capturel.tau/CaptUre2.taU/capture3)) 
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Appendix B 
Discrete Cosine Transform Coefficients 

Table B. 1 gives the multiplier coefficients referred to in Chapter 6 and 7. Define c = cos n7r/16. 

a cl 0 v(c2 — c6) 

b C2 P v/-2-C6 

c C3 q 
d c4 r —c1+c3+c5—C7 

e c5 S c1+c3—c5+c7 

f c6 t Cl+C3+C5C7 

g C7 U C1+C3C5C7 

h c2+c6 V C3—C7 

C2C6 W C1+C3 

j 1/2C2 X C3+C5 

k 1/2C4 Y C3C5 

m 1/2C6  

Table B.!: DCT multiplier coefficients 
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Appendix C 
Asynchronous discrete cosine 

transform 

C.1 C model of algorithm 

II multiplier constants 
double multd=0.70710678118654752440, 

multi=0 .54119610014619698440, 
multh=1.30656296487637652786, 
multf=0 .38268343236508977173; 

II the queues 
Fifo<double> a(S); 
Fifo<double> b(5); 
Fifo<double> c(5); 
Fifo<double> d(5); 

II initial 
a.i(x[3] 
a.i (x[2] 
a.i(x[0] 

a.i(x[l]) 
b.i(x[4] 

b.i(x[5]) 
b.i(x[7]) 
b.i(x[6] 

in puts 
input->A 

I-  input->A 
II input->A 
I-  input->A 
II input->B 
II input->B 
/I input->B 

input - >B 

b.i( a.v() + b.v() ); II A+B->B 
d.i( a.v() - b.v() ); a.r(); b.r(); If A-B->D, ack A,B 

b.i( a.v() + b.v() ); If A+B->B 
c.i( a.v() - b.v() ); a.rO; b.r(); II A-B->C, ack A,B 

a.i( a.v() + b.v() ); II A+B->A 
c.i( a.v() - b.v() ); a.r(); b.r(); II A-B->C, ack A,B 

a.i( a.v() + b.v() ); II A+B->A 
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d.i( a.v() - b.v() ); a.r(); b.r(); II A-B->D, ack A,B 

a.i( a.v() + b.v() ); II A+B->A 
d.i( a.v() - b.v() ); a.r; b.rO; // A-B->D, ack A,B 

b.i( a.v() + b.v() ); II A-I-B->B; 

c.i( a.v() - b.v() ); a.rO; b.r(); II A-B->C, ack A,B 

a.i( a.v() 	+ b.vO; II A+B->A 
a.i( a.v() 	- b.vO; 	a.rU; 	b.r(); // A-B->A, ack A,B 

y[O] = a.v() *1; 	a.rO; II A*1_>output, ack A 
y[4] = a.v() *1 ; 	a.r(); II A*1_>output, ack A 

a.i( c.v() + d.v() ); d.rO; II C+D->A, ack D 
a.i( c.v() + d.v() ); c.rO; II C+D->A, ack C 

b.i( c.v() + d.v() ); d.r(); II C+D->B, ack D 
b.i( c.v() + 0 	); c.rO; II C+0->B, ack C 

c.i( c.v() + d.v() ); c.rO; II C+D->C, ack C 

c.i( c.vO*multd ); 	c.rO; II C*rnultd_>C, ack C 

d.i( d.v() *1  ); d.rO; II D*1_>D, ack D 

y[2] c.v() + d.v(); 	II C+D->output 
y[6]= d.v() - c.v(); c.r(); d.r(); II D-C->output, ack C,D 

c.i( a.vD*multi  ); 	II A*multi_>C 

c.i( b.vO*multh  ); II B*multh_>C 

d.i( a.v() - b.v() ); a.r; b.r; II A-B->D, ack A,B 

d.i( d.vO*multf ); 	d.rO; II D*multf_>D, ack D 

a.i( a.VO*multd); 	a.rO; II A*multd_>A, ack A 

a.i( c.v() + d.v() ); c.r(); II C+D->A, ack C 

d.i( c.v() + d.v() ); c.rO; d.rO; II C+D->D, ack C,D 

c.i( a.v() + b.v() ); II A+B->C 
b.i( b.v() - a.v() ); a.rO; b.rO; II B-A->B, ack A,B 

Y[51= a.v() + b.vO; 	II A+B->output 
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Y[31= a.v() - b.v(); a.r(); b.rO; II A-B-->output, ack A,B 

y[l]= c.v() + d.vO; II C+D->output 
Y[71= c.v() - d.vO; c.rO; drO; II C-D->output, ack C,D 

ii 

C.2 Behavioural model of multiplier 

1* Multiplier, two's complement inputs, add the 
• outputs together for two's complement value. 
• Note only the upper half of the result is produced and the 
• outputs are one bit wider than the inputs (and all bits need 
• to be added to get the correct product). 
*1 

module mult_mult(Sout,Cout,A,B); 

parameter 	bits=8; 
parameter 	w=bits-l; 

output [bits:0] 	Sout,Cout; 
input [w:0] 	 A,B; 

reg 	[bits:O] 	Sout,Cout; 
reg 	[w:O] 	 c,s; 

integer 	i, j ;  

always @(A or B) begin 
C=O; s=0; 
for (j = 0; j < w; j = j + 1) begin 

for (i = 0; i < w; i = i + 1) 
{c[i],s[i]} = c[i] + s[i+l] + ((A[j] == 1) ? B[i] : 0 ); 

{c[w] ,s[w] } = c[w] + S[w] + ( ( A[j] == 1) ? B[w] : 0 
end 
for (i = 0; i < w; i = i + 1) 

{c[i],s[i]} = c[i] + s[i+l] + ((A[w] == 1) ? !B[i] : 0 ); 
{c[w],s[w]} = c[w] + s[w] + ((A[w] == 1) ? !B[w] 	: 0 ); 

Cout = {c[w] , c[(w- l) :0], (A[w] == 1) ? l'bl : l'bO} 

Sout = {s[w], s}; 
end 

endmodul e 
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G. S. Taylor and G. M. Blair, "Two-dimensional micropipelines: for parallel to serial data 

conversion," in lEE Electronics Letters, vol. 34, pp. 158-159, January 1998. 

G. S. Taylor and G. M. Blair, "Reduced complexity two-phase micropipeline latch controller," 

to appear in IEEE Journal of Solid State Circuits, October 1998. 
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in ESSC!RC'97, PP. 304-307, September 1997. 
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