
Micropipeline controller design and
verification with applications

in signal processing

George Taylor

FAA :LA=

0
VI

1.

C,

-
') I N -13 LA

in

_(•

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.

September 1998

Abstract

Asynchronous circuits, in comparison with synchronous circuits, have the potential to offer

power and speed advantages combined with improved design reuse and composition. Con-

tinual improvements in fabrication technology increase die sizes and decrease device sizes,

increasing the difficulty of clock distribution and timing validation in synchronous designs. As

a consequence there has been a resurgence of interest in asynchronous circuits and design meth-

ods. This work examines aspects of asynchronous micropipeline controller design, verification

and application.

A micropipeline controller circuit is presented and compared with other controller circuits. A

method for modelling asynchronous circuits using process algebra at an individual gate level

is examined and used to verify the controller circuit. Two applications in the context of the

discrete cosine transform (DCT) are then explored.

The first application is an area and power efficient circuit for bit serialisation and matrix trans-

position. This can be used either to embed a synchronous bit-serial processing core into a

bit-parallel environment or to perform matrix transposition as part of a DCT. Key elements

are modelled using process algebra. The second application is an initial attempt at an asyn-

chronous application specific processor which is used to implement the DCT, and is intended

to be extendible to other signal transforms.

The presented micropipeline controller was found to be superior to other controllers for linear

micropipelines, which are key parts in the applications studied. The modelling method used

has been found suitable for the verification of manually designed gate-level circuits. Finally

the applications have illustrated that the use of asynchronous methods makes new or simpler

architectures possible.

Declaration of Originality

I hereby declare that the research recorded in this thesis (excluding the exception stated below)

and the thesis itself, is the original and sole work performed by myself while studying in the

Department of Electronic and Electrical Engineering at The University of Edinburgh.

The research recorded in Chapter 4, Asynchronous circuit modelling with CCS, was performed

jointly by myself and Graham Clark from the Department of Computer Science at The Univer-

sity of Edinburgh.

George Taylor

111

Acknowledgements

I would like to thank Gerard Blair and David Renshaw for their supervision and conversation.

I would also like to thank all the Signals and Systems office members for interesting and fun

times both in and out of the office. Special acknowledgement is due to Rudy and Sarat for their

discussions, daily humour and advice on preparing a thesis.

I acknowledge EPSRC, award number 95305666, for funding this work.

IV

Contents

Declaration of Originality 	 iii
Acknowledgementsiv
Contents . v
List of figuresix
List of tablesxi

1 Introduction 	 1
1.1 Motivation, aims and chronological order of work1

	

1.2 	Structure2

2 Asynchronous circuits and micropipelines 	 4

	

2.1 	Introduction4

	

2.2 	Asynchronous advantages 5

	

2.3 	Timing models 7

	

2.4 	Protocols and Micropipelines8
2.4.1 	Dual rail encoding 8
2.4.2 	Bundled data interface8
2.4.3 	Two-phase and four-phase8
2.4.4 	Micropipeline FIFO 10

	

2.5 	Event based logic10

	

2.6 	Completion detection11

	

2.7 	Verification 13

	

2.8 	Specification 14

	

2.9 	Summary 14

3 Micropipeline latch controllers 	 15

	

3.1 	Introduction15

	

3.2 	Standard two-phase latch controller16

	

3.3 	Four-phase latch controllers18

	

3.4 	New two-phase latch controller21
3.4.1 	Latch controller with delay matching21
3.4.2 	Simplified two-phase latch controller23

	

3.5 	Comparison25

	

3.6 	Summary 27

4 Asynchronous circuit modelling with CCS 	 28

	

4.1 	Introduction28

	

4.2 	Relation to previous work28

	

4.3 	CCS overview30
4.4 Modelling circuits with CCS and the CWB31

4.4.1 	Assumptions32
4.4.2 	Modelling with logic levels33
4.4.3 	Modelling with events33

V

Contents

4.4.4 	Overcoming blocking with wires 35
4.4.5 	Final modelling method 35

4.5 CCS models of common circuit elements 36
4.5.1 	C-element 36
4.5.2 	Toggle 37
4.5.3 	Latch 37
4.5.4 	Data latch 37
4.5.5 	Forks 38
4.5.6 	Composition example 39

4.6 Verification of latch controllers 39
4.6.1 	Standard two-phase controller 39
4.6.2 	Simplified two-phase controller 40
4.6.3 	Equivalence to two-phase STG specification 41
4.6.4 	Buggy four-phase latch controller 41
4.6.5 	Fixed four-phase latch controller 42

4.7 Evaluation 42
4.8 Summary 43

5 Two-dimensional micropipelines 	 45
5.1 Motivation and application 45
5.2 Architecture 47

5.2.1 	Concept 47
5.2.2 	Operation 49
5.2.3 	Two-dimensional micropipeline 50

5.3 Method I - circuit 51
5.3.1 	Full detection 51
5.3.2 	Empty detection 55

5.4 Method I - modelling 57
5.4.1 	Overview 57
5.4.2 	Modelling the timing assumption 58
5.4.3 	Full-detection 59
5.4.4 	Empty-detection 63

5.5 Method II - circuit 68
5.5.1 	Full detection 68
5.5.2 	Empty detection 69

5.6 Method II— modelling 70
5.7 Review 72

5.7.1 	Comparison with synchronous equivalent 72
5.7.2 	Comparison between Method I and Method II 72
5.7.3 	Comparison with previous work 73
5.7.4 	Modelling method 73

5.8 Conclusion 74

6 Review of discrete cosine transform VLSI accelerators 	 75

	

6.1 	Introduction75

	

6.2 	Overview 75
6.3 The 2-D Discrete Cosine Transform76

vi

Contents

6.4 	Some DCT algorithms 77
6.4.1 	Algorithm by Chen et a! 77
6.4.2 	Algorithm by Arai et el 79
6.4.3 	Algorithm by Chang and Wang 80
6.4.4 	Algorithm by Liu and Chiu 81
6.4.5 	Algorithm by Hsia et a! 82
6.4.6 	Possible developments 83

6.5 	Multiplier architectures 84
6.6 	Implementations 86

6.6.1 	1-D based designs 86
6.6.2 	Direct 2-D 89

6.7 	Comparison and conclusions 91

7 An asynchronous discrete cosine transform 	 95
7.1 Introduction 95
7.2 Previous asynchronous DCT work 95
7.3 Application specific processors 96
7.4 Architecture 96

7.4.1 	Overview 96
7.4.2 	Control logic 98
7.4.3 	Adder and multiplier 100
7.4.4 	DCT Algorithm 101
7.4.5 	Fixed point arithmetic 101
7.4.6 	Extensions and application to other algorithms 102

7.5 Simulation 103
7.6 Review 103
7.7 Conclusion 105

8 Conclusions and discussion 	 106

	

8.1 	Summary and review106

	

8.2 	Future work109

	

8.3 	Discussion110

A CWB code for models and specifications 	 113
A.1 Basic circuit elements 113
A.2 Muller C-elements 114
A.3 Latches with isochronic fork 114
A.4 Environments 115
A.5 Two phase specification 116
A.6 Standard two-phase latch controller 116
A.7 Simplified two-phase latch controller 116
A.8 STG to CCS conversion 117
A.9 Additional specifications and environments 117
A.10 Two-phase latch controller with reqeust pending 118
A. 11 Full-detection (Method I) 119
A. 12 Empty detection (Method I) 119

vii

Contents

B Discrete Cosine Transform Coefficients 	 121

C Asynchronous discrete cosine transform 	 122
C. 1 	C model of algorithm122
C.2 Behavioural model of multiplier124

D List of publications 	 125

References 	 126

VI"

List of figures

2.1 Synchronous pipeline 5
2.2 Bundled data interface 9
2.3 Two phase protocol 9
2.4 Four phase protocol 9
2.5 Micropipeline FIFO 10
2.6 XOR, Muller C-element and Toggle 11
2.7 Example of asymmetric C-clement 11
2.8 Micropipeline with data processing logic 12
2.9 Example Signal Transition Graph 14

3.1 Single pipeline stage with latch controller 16
3.2 Standard two-phase latch controller 17
3.3 Two-phase specification 18
3.4 Simple four-phase latch controller 19
3.5 Buggy semi-decoupled four-phase latch controller 19
3.6 Fixed semi-decoupled four-phase latch controller 20
3.7 Semi-decoupled four-phase specification 20
3.8 Fully-decoupled four-phase latch controller 21
3.9 Fully-decoupled four-phase specification 22
3.10 Buggy semi-decoupled four-phase latch controller without fast-forward 	. 22
3.11 Delay matching two-phase latch controller 23
3.12 Simplified two-phase latch controller 23
3.13 Simplified two-phase latch controller: possible implementation 25

4.1 	Transition detector 34

5.1 Bit-serial core in a bit-parallel environment 46
5.2 Parallel-to-serial, processing core and serial-to-parallel 48
5.3 Two-dimensional micropipeline 50
5.4 Two-phase latch controller with request-pending 52
5.5 Micropipeline with request-pending full-detection 53
5.6 Two-phase latch controller with 'empty' output 55
5.7 Micropipeline with em empty-detection 56
5.8 State space of initially unoccupied latch controller 64
5.9 Modified LCU process 65
5.10 Initially occupied latch controller 66
5.11 Modifed LCO process 67
5.12 Micropipeline with full-detection 68
5.13 Micropipeline with empty-detection 69
5.14 STG of two-phase latch controller with f signal 70
5.15 Single pipeline stage with separate f and rout signals 70
5.16 STG of two-phase latch controller with e signal 71

ix

List of figures

5.17 Single pipeline stage with separate e and aout signals71

6.1 Row-column decomposition 77
6.2 The algorithm by Chen et a! 79
6.3 Forward algorithm by Arai et a! 80
6.4 DCT lattice by Liu and Chiu 82
6.5 Forward algorithm by Loeffler et a! 83
6.6 Multiply accumulate by Madisetti and Willson 86
6.7 Multiplexed 1-D DCT by Madisetti and Willson 87
6.8 1-D DCT by Kovac and Ranganathan 88
6.9 First two stages of array for N = 4 by Chang and Wang 90
6.10 Implementation area scaled to 0.8i process 93
6.11 Pixel rate (no scaling) 94

7.1 Asynchronous ASP architecture for DCT98
7.2 	Modified Arai DCT algorithm101

x

List of tables

3.1 	Results of comparison26

B.! DCT multiplier coefficients121

xi

Chapter 1
Introduction

Asynchronous circuits, circuits without clocks, have recently been attracting renewed interest

as the problems of clock distribution, timing and high power consumption are becoming more

commonplace with increasing size, speed, complexity of design and demand for mobile and

low power products.

Asynchronous circuits are not new. Early work, on asynchronous sequential circuits and timing

models, was performed by Huffman [1, 21, Muller [3,4] and later by Hollaar [5]. Since the late

1980's and the Turing award winning paper by Ivan Sutherland [6] there has been an increas-

ing amount of interest in asynchronous design. An overview of more recent work and design

methodologies can be found in [7]. Currently there are over sixty groups involved, see [8] for

comprehensive details.

Potentially, asynchronous circuits have the capability to be more modular, power efficient, faster

and less dependent on technology changes than synchronous circuits.

This thesis examines aspects of asynchronous micropipeline controller design and verification,

with applications oriented around a common signal processing algorithm, the Discrete Cosine

Transform (DCT). Micropipeline circuits are introduced by Sutherland [6] and is the design

methodology used by Amulet [9], an asynchronous implementation of the ARM processor.

1.1 Motivation, aims and chronological order of work

Initially this project started with a review of implementations of the DCT. The motivation for

this was to learn about the algorithmic and circuit design techniques used in VLSI implementa-

tion of a common signal processing algorithm. One of the circuit techniques found was that of

complementary pass-transistor logic [10], an alternative to standard CMOS logic gates. At the

same time asynchronous design looked a promising method for reducing power consumption.

The decision was made to pursue an objective of using a combination of pass-transistor logic

Introduction

and asynchronous circuits to produce a new DCT circuit as an example application, thereby

combining a mixture of low-level and higher level design techniques.

The micropipeline style of asynchronous design was chosen, partly because it is simple (with

blocks of combinatorial logic between pipeline stages equivalent to combinatorial logic be-

tween synchronous registers) and partly because it is well known.

After examination of existing micropipeline controller circuits, a new micropipeline controller

circuit was developed. Although pass-transistor style logic was found to be useful in the im-

plementation it seemed of secondary importance to the circuit itself and the modelling of the

circuit. The new circuit was later found to have been previously discovered, but not formally

published and was without a quantitative comparison.

The new circuit needed to be verified and it was decided to use the CCS [11] (Calculus of

Communicating systems) process algebra because expertise was available locally. Initially in-

tended simply to verify the circuit, this work expanded as subtle issues in the modelling of

asynchronous circuits emerged.

In addition to the original application idea of a DCT, a new application, ideally suited to the

developed micropipeline controller was devised. This application, the conversion of bit-parallel

to bit-serial data, for example for a bit-serial DCT, again required verification using process

algebra to ensure key parts behaved as expected. Later, independent literature, using a similar

method to perform matrix transposition as part of a DCT, was found and the circuit architecture

revised.

Finally, in keeping with the original project aims whilst there was remaining time, initial work

on the design of an asynchronous application specific processor, with emphasis on the DCT,

was performed.

1.2 Structure

Chapter 2 provides background information on asynchronous circuits and summarises the dif-

ferences from synchronous circuits. The timing models used in later chapters are informally

defined. The chapter then focuses on communicating data with micropipelines, the design

methodology used in later chapters. Finally, the important difference between verification and

simulation is stated and a method commonly used in the specification of micropipeline circuits

Introduction

is introduced.

Chapter 3 introduces the concept of the micropipeline latch controller. Focusing on circuit

level implementations, existing latch controllers using the two-phase and four-phase protocol

are reviewed. A simplified twophase latch controller circuit is then developed, quantitatively

compared with the existing circuits and shown to be favourable in certain situations.

Chapter 4 provides a short tutorial on how to model circuits using CCS. Initially believed to

be a straightforward application of CCS to verify the simplified latch controller circuit, issues

concerning interference between successive transitions on a wire and isochronic forks arose

and are discussed. The latch controller circuits from Chapter 3 are revisited with a focus on

verification, including the verification of the simplified latch controller.

Two example applications originally intended to be suitable for the latch controller circuit are

then discussed. The example applications are both oriented around the Discrete Cosine Trans-

form (DCT), an operation commonly used in digital video compression.

Chapter 5 discusses the first application, a two-dimensional structure based upon micropipelines,

suitable for performing conversion between bit-parallel and bit-serial data, or for matrix trans-

position. The use of a micropipeline based structure results in a large power and an area saving

compared to the equivalent synchronous structure. Two variations of the architecture are dis-

cussed and key aspects are modelled using the method from Chapter 2.

Chapter 6 reviews recent synchronous implementations of the Dcl'. Although this work is self-

contained, from the review an algorithm is selected for use with initial work on the second

application, an asynchronous application specific processor (ASP) for signal transforms, devel-

oped in Chapter 7.

Finally Chapter 8 provides a summary of the work, identifying the achievements made and

discusses limitations and potential for future work.

91

Chapter 2
Asynchronous circuits and

micropipelines

This chapter provides basic background information on asynchronous circuits with a focus on

micropipelines, the design methodology used in later chapters.

2.1 Introduction

In a circuit, composed from sub-circuits, information is communicated via one or more signals

from a sender sub-circuit to a receiver sub-circuit. In a digital circuit these signals are discrete

sampled values (typically binary).

A typical digital sub-circuit repeats the following steps:

Receive some input,

spend some time processing, during which the sub-circuit is unable to receive further

input (and often such that further input may result in incorrect behaviour),

produce some output,

become ready to receive input.

The majority of digital circuits require reliable communication, such that information is not lost,

corrupted or duplicated. Synchronisation between senders and receivers is needed to ensure

that,

. the sender produces output only when the receiver has read and has finished with the

sender's previous output,

. the receiver knows when the sender has produced new output.

4

Asynchronous circuits and micropipelines

Figure 2.1: Synchronous pipeline

Design approaches to achieve reliable communication between sub-circuits can be divided into

two categories: synchronous and asynchronous. Synchronous circuits are controlled by a global

clock. All sub-circuits operate in lock-step regulated by this clock, thus providing the synchro-

nisation needed between each sender and receiver. Each sub-circuit generates output and reads

new input upon a change in the global clock (typically the rising edge). A typical example is

the simple linear pipeline is shown in Figure 2.1. Upon every clock cycle each item of data

is processed and moved one place to the right. Changes in the global clock must occur at (or

at least at a sufficient approximation to) the same time everywhere in the circuit, otherwise it

is possible for a receiver to read data either before the corresponding sender has sent data, or

during a transient period when the data signals are changing. The majority of digital VLSI

design [12] is based upon this framework.

Asynchronous circuits do not operate in lockstep and do not require a global clock. Instead

the synchronisation between a sender and receiver takes place using local handshaking. Here

a protocol is used such that the sender has a means of informing the receiver "here is some

data" and the receiver had a means of acknowledging "ready for more data". Such protocols

are discussed later in section 2.4.

2.2 Asynchronous advantages

Asynchronous circuits are not new, some early computers (1960s) were asynchronous. Syn-

chronous design emerged as a way of making the design process easier. However, with a rapid

increase in circuit complexity and size, various problems with large synchronous designs are

starting to emerge. Potential commonly cited benefits [7] of asynchronous systems include:

Simple module interfaces: The interfaces between sub-circuits are simplified. Complex tim-

5

Asynchronous circuits and micropipelines

ing constraints underlying synchronous systems (for example, setup time and hold time)

are no longer required. This eases specification, allows increased design reuse, eases

porting to other process technologies and aids synthesis from high level languages.

Low power: By their nature most asynchronous circuits only consume power when perform-

ing useful work. By comparison the global clock present in synchronous designs runs

continuously, is the most rapidly changing signal present and is distributed across a large

area. This is undesirable for low power operation, although disabling the clock to idle

subsystems (clock gating) can help overcome this.

No clock skew: Clock distribution problems, in particular that of clock skew, where changes

in the clock signal do not arrive simultaneously at all destinations, are avoided.

Average case performance: In a synchronous system the maximum clock frequency is cho-

sen such that the slowest sub-circuit operates correctly under the worst case conditions

of high temperature, low power supply voltage and worst case fabrication parameters.

Many types of asynchronous circuits do not need this (usually large) safety margin and

can deliver average case rather than worst case performance. For example, decreasing

the supply voltage (within limit) decreases the rate of computation, rather than causing

erroneous operation.

Fewer global timing issues: For a specified minimum data processing rate, in a synchronous

system all sub-circuits must be suitably optimised such that the clock rate can be high

enough to support this minimum data rate. In an asynchronous system only the parts

used frequently need to be optimised and less design time can be spent on rarely used

features.

Electromagnetic compatibility: In a synchronous system most of the activity happens around

clock edges, as a result power consumption tends to occur in bursts of high peak current

with a low current between bursts. This results in a large amount of noise at the clock

frequency and its harmonics. Asynchronous circuits may exhibit a 'smoother' consump-

tion of power, the resulting noise is much more well spread throughout the frequency

spectrum at a lower power level without large narrow-band peaks [13].

The design of ad hoc synchronous circuits is straightforward, the designer uses combinatorial

logic to implement the desired function, registers to hold the results and by making the clock

period long enough the problems of hazards, races and other dynamic behaviours are avoided.

Asynchronous circuits and micropipelines

Simulation can then be used to exercise the circuit under 'sufficiently many' input conditions.

In comparison, asynchronous circuits are harder to design and generally require the application

of formal design and verification techniques (introduced later in section 2.7). Asynchronous

circuits may be harder to test [14], as both logical and delay faults must be tested for.

Asynchronous circuits typically incur both speed and area overhead due to local handshaking,

although the impact of this depends on the 'granularity'. Finally, it is possible to combine

asynchronous and synchronous design, through a scheme known as globally asynchronous lo-

cal synchronous [15, 161. Here many of the advantages of synchronous design (for example

ease of design and low overhead) and the advantages of asynchronous design (for example

reusable modules) are combined.

2.3 Timing models

Various timing models are used in the design of asynchronous circuits [17]. Definitions of

common models are given here. An overview of timing models and where they are used with

an emphasis on asynchronous design methodologies can be found in [7].

Bounded delay model: In a bounded delay model both wire delays and gate delays have upper

and usually also lower bounds.

Speed independent model: In a speed independent model wire delays are assumed to be neg-

ligible (small enough to make no difference to circuit behaviour) compared to gate delays.

The gate delays are unbounded, such that a delay may be of any size, or vary whilst the

circuit is active.

Delay insensitive model: A circuit is delay insensitive if an arbitrary unbounded delay can be

inserted anywhere in the circuit, at any time, even whilst the circuit is active and the

circuit will continue to operate correctly. Because a delay insensitive circuit is free of

timing assumptions circuit correctness is independent of layout and transistor sizing.

Isochronic fork: This is a fork in a wire such that the delay from the single source to both

destinations is identical under all operating conditions. In a real circuit this additionally

means that the circuits at both destinations must use the same voltages in the decision be-

tween a logic low and logic high. In practice it is impossible to make an isochronic fork,

7

Asynchronous circuits and micropipelines

but usually a close approximation is suitable and achievable within a localised circuit

area.

Quasi-delay insensitive A quasi-delay insensitive circuit is a delay insensitive circuit but with

the concession that some forks may be isochronic. For all practical purposes quasi-delay

insensitive circuits and speed independent circuits are identical and circuits expressed in

one delay model can be expressed in the other [7].

2.4 Protocols and Micropipelines

There are two main approaches to the communication of data between a sender and receiver,

delay insensitive handshaking (using a dual rail encoding) and the bundled data interface.

2.4.1 Dual rail encoding

To communicate binary data bits in a fully delay insensitive manner, two binary signal wires

are required per data bit. Typically a 0 binary digit is transmitted as 01 and a 1 as 10. Between

digits a 00 spacer is inserted. The receiver knows that a multi-bit datum has arrived when after

receiving a spacer one wire out of each pair of signals has changed. A single acknowledgement

wire is used by the receiver to acknowledge receipt of new input.

2.4.2 Bundled data interface

The bundled data interface [6] is depicted in Figure 2.2. Here a single request wire is used

to tell the receiver the sender has sent new data. The data must reach the receiver before the

request, in order that the receiver is at no risk of reading the data wires too soon. This scheme

is called the bundled data interface because the data wires and the request wire are considered

a bundle, the timing of which must be preserved during routing.

2.4.3 Two-phase and four-phase

Two possible protocols exist for use with the bundled data interface, the two-phase protocol [6]

and the four-phase protocol [1 8].

The two-phase protocol uses transition signalling. Here both rising and falling edges of a

F:'

Asynchronous circuits and micropipelines

request

data

sender ____________ receiver

Figure 2.2: Bundled data interface

data

reques

acknowl

Figure 2.3: Two phase protocol

signal are semantically equivalent and are called events. Figure 2.3 shows two items of data

being transferred using the two-phase protocol. Such a scheme is conceptually simple.

In the four-phase protocol only one edge (rising or falling) is significant and the other is needed

to reset the signal ready for another significant edge. Compared to the two phase protocol twice

as many request and acknowledge signal transitions are needed to transfer the same amount

of data. Figure 2.4 shows one version of the four-phase protocol, in which rising edges are

significant for both handshake signals.

data

reques!

acknowli

Figure 2.4: Four phase protocol

Asynchronous circuits and micropipelines

request 	 request
nfl rout 	 nin rout 	 nfl

data 	I 	 I 	data

acknowledge 	 acknowledge
am aout 	 am aout 	 ain aou

Figure 2.5: Micropipeline FIFO

2.4.4 Micropipeline FIFO

Multiple sub-circuits, each of which act both as a sender and a receiver (with synchronisations

between inputs and outputs), communicating using the bundled data interface can be combined

to form a micropipeline [6]. The micropipeline is the asynchronous equivalent of the syn-

chronous pipeline. A simple linear first-in first-out (FIFO) queue is shown in Figure 2.5. There

is no global clock signal to regulate the flow of data; instead local handshake signals are used.

Each pipeline stage can request that the next stage accept new data and can acknowledge re-

ceipt of data from the previous stage. Each stage can act as soon as its immediate environment

permits. Note that the conventional labelling of handshake signals uses 'in' to indicate signals

on the data input interface and 'out' to indicate signals on the data output interface, irrespective

of whether the signals are physical inputs or outputs.

An important feature of micropipelines is their elasticity. This means that the number of data

items in the micropipeline can vary over time. With the addition of other synchronising circuit

elements [6] (for example, Call, Select and Arbiter) more complex structures involving forking,

combining and feedback paths are possible.

2.5 Event based logic

With conventional logic the building blocks are NOT, AND, OR and XOR. When the logical

state of wires is unimportant and instead transitions are used, a different set of primitives is

useful. Two common ones are XOR and the Muller C-element [6], shown in Figure 2.6. XOR

acts as the OR for events, and the C-element as the AND for events. Additionally one other

primitive is used later, the Toggle element [6]. A Toggle element has one input and two outputs

dot and blank. Both outputs are initialised low. Upon each input event an event is generated

on one output, alternating between outputs, starting with the dot output.

10

Asynchronous circuits and micropipelines

b

:1:)_

"y=(aorb) and not (a and b)"

a ,)_ Y "if a is equal to b then y becomes a
b 	 else y retains its value"

blank
input 	 "for every input event output an event

0 	dot alternating between dot and blank" I—

Figure 2.6: XOR, Muller C-element and Toggle

Figure 2.7: Example of asymmetric C-clement

More complex versions of the C-element are possible, known as Asymmetric C-elements [1 8].

An example is shown in Figure 2.7. For the output y to become high b must be high, indicated

by the '+' symbol, b can not be used to stop the output becoming low. For the output to become

low c must be low, indicated by the '-' symbol, c can not be used to stop the output becoming

high. Input a is a 'normal' input, except that its logic value is inverted. Any combination of

'-' and inversion is permissible. Such asymmetric C-elements are no longer purely event

based and are often used with the four-phase protocol where rising and falling edges are not

equivalent.

2.6 Completion detection

One of the advantages of asynchronous design is that the time taken to complete an operation

can depend on the operands. For example, in a binary adder some additions may take longer

than others. By comparison, in a synchronous system, the clock period must be long enough

such that there is always time for the worst case addition. This raises the question of how to

know when an operation is complete.

11

Asynchronous circuits and micropipelines

Figure 2.8: Micropipeline with data processing logic

The simple FIFO shown previously in Figure 2.5 can be expanded to explicitly show data pro-

cessing logic inserted between stages which store data, see Figure 2.8. The issue of completion

detection is to decide when the data processing logic has finished and permit the corresponding

request event to reach the next stage. Three main methods are outlined here:

Delay matching: Here a delay equal to the worst case processing time is inserted into the

request signal. Whilst conceptually simple and allowing 'conventional' combinatorial

logic to be used for the data processing, each operation will effectively require the worst

case delay. Careful simulation is needed (like that in a synchronous design) to ensure the

delay is worst case and not shorter.

Detection logic: For some processing operations a side effect might be to indicate a result is

available. Usually though it is necessary to use extra logic or dual rail encoding as a

means of knowing when the output is ready. Hazard free logic is required to ensure a

false 'finished' signal is not generated. Extra circuitry is required, but with the advantage

of not requiring simulation to obtain the correct delays. Another variation is to use the

input data to select one of several matched delays.

Current sensing: With static CMOS combinatorial logic, after an input change and before the

circuit has settled with new output, a pulse of current somewhat larger than the leakage

current is drawn from the supply. It is possible to insert circuitry to measure this current

and indicate when the combinatorial logic has settled [19]. However, certain pathological

input changes may result in current changes too small to detect and the detection circuitry

may have a significant standby power consumption.

12

Asynchronous circuits and micropipelines

2.7 Verification

It is important to know that a circuit has been designed correctly. For synchronous circuits sim-

ulation is often sufficient to test a design; with asynchronous circuits the more formal approach

of verification is generally needed.

Asynchronous circuits are free from discrete timing intervals, hence traditional discrete event

simulation may only test a small fraction of the possible behaviour. The test space of an asyn-

chronous circuit involves not only the (already potentially large) space of input stimuli and

circuit states, but also many possibilities of wire and gate delays.

For example, it is impossible show using simulation that a circuit is capable of deadlock, unless

the simulation is performed with the conditions required for deadlock. This would require the

designer to know those conditions in advance, or be lucky. It follows that, to be certain the

example circuit is not capable of deadlock, all possible conditions must be simulated. This

is generally intractable, even for small circuits and the designer must resort to more formal

methods to reason about circuit behaviour.

There are two approaches, which are often combined, to solving this problem:

Synthesis: A method of specifying designs is used such that only designs which do not have

certain undesirable properties can be specified. The design is then (automatically) syn-

thesised from this specification.

Verification The designer starts with an ad hoc design and uses a formal verification method

to check the design is equivalent to some (simple and known to be correct) specification.

Many formal synthesis and verification methods exist, although there is lack of tool support for

many methods; for example [7, 20, 21] provide a good introduction. The circuits discussed in

later chapters were designed 'by hand' and verified using Milner's Calculus of Communicating

Systems (CCS) [11]. The motivations for this choice and the verification method are discussed

in Chapter 4.

13

Asynchronous circuits and micropipelines

A+

/\
B+ /C+

A-

B-

Figure 2.9: Example Signal Transition Graph

2.8 Specification

To verify a circuit, or to synthesise it, it is necessary to start with a specification. One method

(which is used later) of specifying the behaviour of a circuit is to use a Signal Transition Graph

(STG). In particular the STGIMG form [20, section 15.6] is introduced here.

An example STG is shown in Figure 2.9. The label A corresponds to "signal A going high" and

A to "signal A going low", likewise for B and C. Initially tokens are placed where marked with

a dot. Initially A+ is free to happen as there is one token on both of its input arcs. Informally,

when a signal transition occurs one token is removed from each input arc and one token is added

to each output arc. More than one token can be placed on an arc. (Note the overloading of the

terms 'input' and 'output'. A,B and C could be circuit inputs, outputs or a mixture.) Following

this rule, once A+ occurs, B+ and C can occur in either order or at the same time, however,

A cannot occur until both B+ and C have occurred. Likewise A+ cannot occur again until B

and C have occurred.

2.9 Summary

In this chapter the concept of and motivation for asynchronous circuits, in particular that of mi-

cropipelines have been introduced. Timing models and a commonly used specification method

have been described along with the motivation for verification instead of simulation.

14

Chapter 3
Micropipeline latch controllers

This chapter is concerned with how data is stored in a micropipeline stage. Firstly existing cir-

cuits, to control the storage of data with latches, are introduced; then a new circuit is presented

and compared with the existing circuits. This chapter focuses on circuit level details, later in

Chapter 4 the same circuits are revisited with a focus on formal verification.

3.1 Introduction

In [6] Sutherland describes an event controlled latch, which behaves like a level-sensitive latch,

except that it is controlled by two inputs, capture and pass, which respond to events rather than

logic levels. Sutherland also explains how a two-phase micropipeline can be constructed, where

each stage is composed of an event controlled latch and a C-element. The event controlled

latch is conceptually 'clean', as all control signals are event based, however, compared to a

simple level-sensitive latch [12, Section 5.5.2], there is a large amount of circuitry per data-bit.

It is therefore desirable, especially for wide data paths, to use instead a multi-bit data latch

consisting of many level-sensitive latches controlled by a single enable signal. This requires a

latch controller circuit to control the data latch and the local handshake signals [18]. Another

method is to use edge-triggered registers, however, this would require increased circuitry (and

hence area and power) per data bit.

Figure 3.1 shows a single stage. The data latch enable signal en is routed through the latch to

produce en', indicating when the data latch has completed an operation. The latch controller

may present a two-phase or a four-phase interface. Notionally the latch controller is delay

insensitive; in practice the latch controller may have internal timing assumptions. This is an

'Acknowledgement is due to Mark Josephs for pointing out, subsequent to this work being performed, that the
simplified latch controller circuit has been previously discussed at a workshop by himself [22] and by I.W. Jones
in 1994 at a special session at the First International Symposium on Advanced Research in Asynchronous Circuits
and Systems in Utah. However, neither presentations appear in published proceedings or contain a quantitative
comparison.

15

Micropipeline latch controllers

acceptable concession provided that such assumptions are strictly internal to the latch controller

and can not be exposed by the surrounding circuitry.

nfl 	_ rout
— 1 	G)

I.c=
100
I — - Cc I

aini - C aout
—1 0 an

en
en'

data

Figure 3.1: Single pipeline stage with latch controller

In principle, the two-phase protocol should be faster and use less power than the four-phase

protocol, as there is no time wasted on return-to-zero transitions and only one transition (rather

than two) per signal per datum is needed. However, in practice circuits designed to use the two-

phase protocol are often more complex; transistors are level controlled not event controlled.

Latch controllers are a good example of this additional complexity and this provided the mo-

tivation to produce a two-phase latch controller which is superior or at least on a par with the

four-phase controllers.

3.2 Standard two-phase latch controller

Figure 3.2 [18, Figure 10] shows what will be referred to from now on as the standard two-

phase latch controller. The C-element is used to block requests on nfl whilst there is data

stored in the data latch. The XOR detects if there has been a request passed by the C-element

which has not been acknowledged by the following micropipeline stage, if so the data latch

is instructed to capture the data (the data latch is transparent when en is high). The Toggle

detects when the data latch has completed an operation. Both the Toggle and the C-element

are initialised (reset signal not shown) after power-up. In [18] this controller is shown to be

unfavourable compared to a four-phase latch controller.

A brief clarification about the positioning of the data latch should be made at this point. In

Micropipeline latch controllers

..-rout-ff

nfl am

rout

Figure 3.2: Standard two-phase latch controller

Figure 3.1 the data latch is shown 'in' the signal path, with output en' a delayed copy of input

en. The literature makes the assumption with the en signal that all the delay is present in gates

and the wire delay is negligible, this corresponds to the speed independent timing model. In

Figure 3.2 only the en signal is shown, the delay is moved into the inverter-buffer driving en.

It is also assumed that when en changes the data latch acts no later than the Toggle. This

assumption is not needed in the circuit of Figure 3. 1, as en' is defined to change only when the

data latch has completed an operation. Additionally, when the stage captures data it is assumed

that the data will have propagated through the latch no later than when an event on rout is

produced; this can be considered a data bundling constraint. The assumptions surrounding en

are not considered here further, the reader who dislikes these assumptions can use the method

of Figure 3.1 and accept a small loss in performance. For the remainder of this work, circuit

diagrams use the convention of showing only the en signal. Signal transition diagrams show

actions cap (capture) and pass to indicate the data latch changing to opaque and transparent

states, irrespective of the logical value of en required to make the data latch transparent.

The standard latch controller, at the hierarchical level shown in Figure 3.2, is delay-insensitive.

A variant of the circuit, known as fast-forward involves using the rout-f f output instead of

rout where rout-f f is produced in advance of the data latch capturing data. Two assumptions

are made. The first assumption is that the data will have propagated through the transparent

data latch, before rin propagates through the C-element to rout-f f. The second assumption

is that the right-hand environment does not respond to the rout-f f by producing an aout

before the latch controller is ready to accept it—an aout occuring too soon would interfere

with the request travelling through the XOR gate. In practice these assumptions are often

reasonable to make, especially if the right-hand environment is another similar latch controller,

or, particularly in the case of the second assumption, if data-processing logic (and hence a delay

17

Micropipeline latch controllers

on rout) is inserted before the following stage. The use of fast-forward can lead to a significant

speed increase.

The specification for a two-phase latch controller (without fast-forward) is given in Figure 3.3.

The STG could be simplified to show only events, rather than distinguishing positive and nega-

tive transitions. However, it is shown this way for consistency with the four-phase STGs shown

later and to include the exact initial conditions.

S

r- rin+ 	 rout+

caps 	I I ain+ 	pass aout+

H
1 	nfl- 	pass 	rout -

*, / I
I 	cap

am- 	 aout-

Figure 3.3: Two-phase specification

3.3 Four-phase latch controllers

The four-phase latch controllers discussed here all use the 'normal' variation of the four-phase

protocol, where rising edges are significant for both request and acknowledge signals. Other

controllers [23] may use other variations of the protocol and are intended for use where dynamic

logic requiring pre-charge is inserted between micropipeline stages. Excluding these, there are

four four-phase controllers for use with level-sensitive latches. These circuits are designed with

the speed-independent timing model.

Simple four-phase latch controller The simple four-phase latch controller [24, Figure 6] (shown

also in Figure 3.4) is composed from only a C-element and buffer. However, due to un-

wanted synchronisations between the input and output interfaces, a micropipeline based

on this controller does not permit adjacent stages to hold data simultaneously. This is

inefficient and, as in the literature, this controller is not considered here further.

Buggy semi-decoupled four-phase latch controller This controller [18, Figure 12] removes

18

Micropipeline latch controllers

rin 	 am

en

aout 	Y rout

Figure 3.4: Simple four-phase latch controller

some, but not all, of the unwanted synchronisations present in the simple controller.

The term semi-decoupled is used as there is still some unwanted coupling (synchronisa-

tion) between the input and output interfaces. This circuit was later shown to be non-

persistent [24], however under realistic real-world conditions it is quite usable. For this

reason and to distinguish it from the following variant this circuit is referred to here as

the buggy semi-decoupled four-phase latch controller. The circuit, shown in Figure 3.5,

is simplified by showing naout, nain and nen, the logical negations of aout, ain and

en. The timing assumption causing the non-persistency is discussed later in Chapter 4.

nfl 	 nain

WROM P_ ME -

+c

naout 	T rout

Figure 3.5: Buggy semi-decoupled four-phase latch controller

Fixed semi-decoupled four-phase latch controller In [24] another semi-decoupled controller

is presented, shown here in Figure 3.6. This circuit, synthesised from an STG spec-

ification, is almost identical to the 'buggy' circuit except that it does not exhibit the

non-persistent behaviour and is slightly slower. The circuit is referred to here as the

fixed semi-decoupled four-phase latch controller. The STG specification is shown in

Figure 3.7 with the internal signals removed and with the actions cap and pass added.

The arcs aout+ -* ain and rin -* rout represent the unwanted synchronisations

making this controller semi-decoupled.

19

Micropipeline latch controllers

nfl 	 nain

__
nen ne

rout

Figure 3.6: Fixed semi-decoupled four-phase latch controller

	

- rin+ 	rout+

cap

	

ain+ 	aout+

	

nfl- 	I 	rout-

ptss I

	

am- 	aout-

Figure 3.7: Semi-decoupled four-phase specification

Fully-decoupled four-phase latch controller Also in [24] afully-decoupled four-phase latch

controller is presented (shown here in Figure 3.8); it is fully-decoupled as there exist

no unwanted synchronisations between the input and output interfaces. This lack of

coupling is desirable to maximise throughput when processing logic is inserted between

stages [24]. This circuit is not examined further, except as part of the performance com-

parison in section 3.5. The STG specification for a fully-decoupled four-phase controller

is shown in Figure 3.9. It is equivalent to one half of the two-phase STG with the addition

of return-to-zero actions.

Both semi-decoupled four-phase controllers are similar to the fast-forward two-phase con-

troller, in that the data latch buffer delay is not present in the generation of rout but is for

am. For the STG specifications given here, the data latch is assumed to be in both the path

from nfl to rout and from rin to am. This can be achieved by placing the data latch in

20

Micropipeline latch controllers

Figure 3.8: Fully-decoupled four-phase latch controller

'series' with the output of the 3-input C-element, as shown for the buggy semi-decoupled con-

troller in Figure 3.10, corresponding to the model of Figure 3.1. Finally it should be noted that

two-phase latch controllers, are by the definition of the two-phase protocol, fully-decoupled.

3.4 New two-phase latch controller

In this section a simplified two-phase latch controller is presented. This circuit has less overhead

than the standard two-phase controller, whilst still using simple transparent latches in the data

path. The first circuit uses the undesirable method of delay matching, the second version, which

is verified later in Chapter 4, does not.

3.4.1 Latch controller with delay matching

For the standard two-phase latch controller shown in Figure 3.2, an event on rin causes an

event on ain and rout, once the data latch has captured data. An event on aout causes an

event on the feedback path Y, once the data latch has returned to being transparent. Therefore,

ain and rout can be generated by delaying nfl, and Y can be generated by delaying aout.

21

Micropipeline latch controllers

rin+ 	rout+

cap

ain+ 	aout+

nfl- 	rout-

$
pass

$
am- 	aout-

Figure 3.9: Fully-decoupled four-phase specification

Figure 3.10: Buggy semi-decoupled four-phase latch controller without fast-forward

This arrangement is shown in Figure 3.11. Delay Dl ensures all data latch bits are transparent

for the minimum time required to capture new data, delay D2 ensures an acknowledgement and

request are not sent before the data has been captured.

Separate delays for ain and rout may be used. For example, if the data latch passes the data

an appreciable time before the data is captured, a shorter delay may be used to generate rout

than for am. A fast-forward version can be obtained by taking rout from the input of D2, in

which case the assumptions given toward the end of section 3.2 must be made.

Both Dl and D2 can be removed to give a similar micropipeline to that used by Yun et a! [25],

in which both rout and ain are generated early. Similar timing assumptions to those made by

Yun would be required, with the additional constraint that the data latch must be transparent for

a setup time between captures.

22

Micropipeline latch controllers

nfl
	 am

C 	

jen
rout

aout

Figure 3.11: Delay matching two-phase latch controller

Although the circuit of Figure 3.11 can be implemented, careful simulation to find the correct

delays is required and, if the load on en is large, a long chain of inverters may be required to

produce each delay.

3.4.2 Simplified two-phase latch controller

In Figure 3.11 the purpose of Di is to delay priming of the C-element in order to delay further

requests on nfl until en is high. Likewise the purpose of D2 is to delay generation of rout and

ain until en is low. The circuit shown in Figure 3.12 achieves this behaviour by using level-

sensitive latches Li and 12 to block or pass events. The C-element becomes redundant and

is removed. A latch acts as an AND between a transition sensitive signal and a level sensitive

signal. Latch Li blocks events on rin until the data latch is able to capture new data. Latch L2

delays generation of events on rout and ain until the data latch has captured the new data.

Figure 3.12: Simplified two-phase latch controller

23

Micropipeline latch controllers

The circuit operates as follows: initially all signals except en are low, Li and the data latch are

transparent and L2 is opaque. An event on nfl will pass through Li and the XOR causing en

to become low and the data latch and Li to capture. L2 will then become transparent allowing

the event to proceed to rout and am. A further event on nfl would be blocked by U. An

event on aout will now cause en to become high, the data latch to become transparent, L2 to

capture and Li to pass a blocked or future event on rin.

It is assumed that Li and L2 operate at the same time, i.e. that there is an isochronic fork

from en to Li and L2. In practice isochronic forks can be difficult to implement and so it

is possible for Li and L2 to be transparent at the same time. In the first case, if Li is late

capturing, the event passed by L2 to ain could result in an event on rin whilst Li is still

transparent. However, this path involves the aout to rout delay of the previous stage, which

is an acceptable safety margin. In the second case, if L2 is late capturing, an event on rin

may pass directly through Li and L2. This race hazard does not involve an external path but is

similar to one found in many synchronous designs where flip-flops are built from two latches,

including the implementation of the toggle element (for example that in [25]).

A possible implementation is shown in Fig. 3.13. Inverter BO provides the buffering to drive

the multi-bit data latch. Latches Li and L2 are constructed from a pass-transistor and two

inverters [18, Figure 5] (using a weak inverter with resistive elements as feedback to keep

state). These latches invert the data. At initialisation, the output of Li is set high and the output

of L2 is set low. The complementary signals required to drive the pass-transistors are explicitly

shown and inverter B4 is shared. Inverter B4 is required, rather than taking the output of the

XOR, to ensure both of the latch control signals are subject to delay in charging and discharging

the en signal.

For a fair comparison with the four-phase controllers it is necessary to construct the fast-forward

version. This requires inverter B2 to obtain the correct polarity for rout-f f. Since B2 is there-

fore required anyway, an efficient complementary pass-transistor XOR gate is used, requiring

Bi to generate the complement of the other input.

To counter the race hazard (the second case described above) the input to 12 is obtained via B3

and not directly from Li. It is intended that the delay through B2 and B3 be larger than delay

between Li acting and 12 acting. Note that passing request events from rin to ain and rout

via B2 and B3 does not change the critical path as events will be delayed by L2 until the data

24

Micropipeline latch controllers

latch has captured.

It should be noted that the use of complementary logic signals in this way increases the number

of timing assumptions present—it is assumed that the inverter delays present in generating

the complements are negligible. The diagram of Figure 3.13 could be drawn not to show the

complements, for example by generating them 'inside' the latch and XOR components. In

hindsight rout-f f as shown should probably not be shared with the XOR input as external

loading could affect internal circuit behaviour. An alternative and perhaps more robust approach

would be to use a standard CMOS XOR gate. Finally the use of standard circuit elements may

ease implementation using a standard cell library which does not contain the 'non-standard'

C-element.

nfl 	 r0 rout -ff 	 am

rE'

B1 ..>O— I 	 en

aout
	 rout

Figure 3.13: Simplified two-phase latch controller: possible implementation

Yun et al. [25] discuss a strategy for increasing speed using double-edge triggered flip-flops, one

for each data bit. The control circuit is then only a C-element and buffer giving a much shorter

cycle time than both the standard two-phase controller and four-phase controllers. However,

this is at the expense of increased power dissipation and area due to the complex flip-flop

circuit required per data bit. Their speedup is also partly due to additional timing assumptions.

3.5 Comparison

To quantitatively evaluate the simplified latch controller in comparison with other latch con-

trollers, transistor net-lists of a six stage FIFO were created for simulation using SPICE with

25

Micropipeline latch controllers

Circuit I tr count I energy (pJ) cycle time (ns) energy-delay

Simplified 2-ph FF (Fig. 3.13) 29 (4) 12.6(1.00) 4.17(l.00) (1.00)
Standard 2-ph FF(Fig. 3.2) 48(2) 14.1 (1.12) 4.92(l.18) (1.32)
Semi-dec. 4-ph ([18, Fig. 12]) 18 (4) 13.0 (1.03) 4.99(t.20) (1.23)
Fully-dec. 4-ph ([24, Fig. 13]) 42 (8) 17.8(l.41) 5.54(l.33) (1.88)
Simplified 2-ph (Fig. 3.13) 29 (4) 12.8(l.02) 5.63(l.35) (1.37)
Standard 2-ph (Fig. 3.2) 48 (2) 14.2(l.13) 6.46 (l.55) (1.75)

Table 3.1: Results of comparison

E52 5V 0.7pm parameters. All transistors were sized to give minimum area except for de-

vices used as resistive elements. Each circuit is connected into a test framework where the left

and right-hand environments supply and read data as fast as the pipeline will allow, so that the

pipeline determines the speed.

This method of measuring the speed corresponds to the method used in [24] rather than in [18]

in which individual timings (for example nfl to rout delay) are summed to give an overall

cycle time. It was found the later approach lead to a significant error if the timings were always

measured at the fifty percent of full voltage swing point, rather than taking into account the

exact voltage at which the logic starts to switch.

Capacitive loading is placed on en to simulate a 32-bit single-phase latch [18, Figure 9].

The two-phase circuits with the toggle element employ the improved toggle circuit given in

[25]. The four-phase circuits compared are the buggy semi-decoupled controller and the fully-

decoupled controller. The simple four-phase controller is not included, as it does not allow

adjacent stages to simultaneously hold data and such a comparison would be unfair.

Table 3.1 lists the results. The cycle time was measured as the delay between requests from one

stage to another and was confirmed to be the same between all pairs of adjacent stages. The

values shown are for a single pipeline stage, normalised values are shown in parentheses. The

transistor count excludes devices used as resistive elements in the weak inverters in the latch

and C-element implementations (these are shown in parentheses). 'FF' indicates a fast-forward

version.

The four-phase circuits generate rout excluding the data latch buffer delay time, so they should

be compared with the fast-forward two-phase circuits. The results indicate that the simplified

two-phase circuit is faster, smaller and consumes less power than the standard two-phase circuit

26

Micropipeline latch controllers

and compares favourably with the four-phase circuits. This comparison is valid for simple

linear micropipelines, however, such an analysis for general micropipelined systems would

need to take into account the efficiency of other primitive elements such as those mentioned in

section 2.4.4. In Chapter 5 a circuit for which the simplified controller is ideal is presented.

3.6 Summary

In this chapter latch controllers have been introduced. A new latch controller circuit has been

presented and shown to compare very favourably with previous latch controllers and to be

superior when used in appropriate circumstances.

27

Chapter 4
Asynchronous circuit modelling with

ccs

This chapter describes a method of modelling asynchronous circuits using process algebra, this

method is then used to verify some of the circuits discussed previously in Chapter 3. The aim of

this modelling is to verify that circuits behave as specified and do this without unknown timing

assumptions.

4.1 Introduction

Milner's Calculus of Communicating Systems (CCS) [11], a process algebra, provides a formal

semantic basis for reasoning about concurrent systems. CCS was chosen in preference to other

methods because of former experience with it and that tool support and expertise are available

locally.

4.2 Relation to previous work

Initially the intention was to verify the simplified two-phase latch controller (section 3.4.2) and

it was believed that this would be a straightforward application of CCS. However, various non-

trivial aspects soon emerged, such as those of quenching and the implementation of isochronic

forks (these are discussed later). The first two modelling styles (sections 4.4.2 and 4.4.3) were

developed before investigating the literature. It was encouraging to find that the second of these

styles (section 4.4.3) had been used before [26, 27]. The modelling method was then extended

(sections 4.4.4 and 4.4.5) and when this work was submitted to the UK Asynchronous Forum

(see Appendix D) literature was found [28] which discusses essentially the same extension as

given in section 4.4.4. To date it would seem that the modelling style of section 4.4.5 is unique

in that the strategy to allow quenching behaviour to occur has not been used before.

28

Asynchronous circuit modelling with CCS

An alternative approach involving process algebra is the Rainbow system [29]. Rainbow promises

support for modelling asynchronous circuits at a variety of levels, for example with a low level

hardware description language, at an algorithm control-flow level or with temporal logic. The

system is built on a formal basis using a process algebra called APA. This gives a sound foun-

dation on which support for analysis, simulation, verification and synthesis should be possible.

At the time of the modelling work discussed here, Rainbow did not offer verification. Rainbow

is intended for the design of systems built from modules communicating with the bundled data

interface, rather than for the design of gate level circuits. One key feature is that, for simulation,

data values as well as control signals can be manipulated.

Another process algebra approach designed for asynchronous circuits is described in [30], but

no tool support is available for this, and automated model checking was desirable. This ap-

proach does however lead to more concise models for components, as properties such as all

possible orders of actions do not need to be specified and isochronic forks are less 'messy'.

Initially the idea of specifying all behaviours was preferred, at the risk of missing some out,

instead of specifying some at the risk of including implicit unwanted behaviours.

A different approach to verification is to use Petri nets. For example one property verifiable

with this technique is that of persistency; checking that when a signal has made a transition

it cannot make a further transition until all signal transitions depending on this transition have

occurred. This corresponds to the concept of an event 'catching up' with another event resulting

in quenching (see section 4.4.5). The compositional approach of CCS was preferred to the Petri

net approaches which tend to flatten the circuit structure. Also for large circuits the Petri net

graphs become complex and lose their intuitive graphical appeal. However, it should be noted

that recent Petri net approaches [31] look suitable for the tool support of modelling circuits

with large state spaces; an intractable state space is easy to achieve with CCS. Since both Petri

nets and CCS are both essentially ways of describing a labelled transition system, it would

be reasonable to speculate that equivalent 'tricks' could by employed in CCS by algebraic

manipulation.

The most notable difference is that these other approaches consider the behaviour of a signal

'catching up' with another as an error. The method discussed in section 4.4.5 allows this to

happen, provided that the circuit model still satisfies the specification it is compared with.

Asynchronous circuit modelling with CCS

4.3 CCS overview

Systems described in CCS consist of processes composed using the basic constructors provided

by CCS, for example those of non-deterministic choice and parallel composition. A process can

perform actions to evolve into a new process, possibly involving communication with another

process. An informal description of the syntax of processes is given below.

Prefix: If P is a process, then a.P is a process that can perform an a action, evolving into P.

Actions fall into three categories: input actions, for example a, output actions, for exam-

ple a, and a distinguished action, r, that represents the silent action, an action produced

by a communication internal to a process.

def Definition: If Q is a process and P = Q, then P is a process that can only behave in exactly

the same fashion as Q. This constructor must be used to create recursive definitions.

Summation/Choice: If P and Q are processes, then P+ Q is a process that non-deterministically

chooses to behave like either P or Q.

Composition: If P and Q are processes, then P IQ is a process that can behave like P and

Q, acting independently of each other, or which can evolve further by a communication

between P and Q if they possess complementary input and output ports. This means

that if P can perform the input action a, and Q can perform the output action a, P I Q
can perform either a, a, or the silent action r resulting from an internal communication

between processes P and Q.

Restriction: If P is a process and L is a set of actions (excluding the silent action r), then

P\L is the process that can behave exactly the same as P, except that it cannot perform

any actions contained in L. Restriction is used with composition to force synchronisation

on input and output actions. For example by extending the composition example above

to give (P IQ) \a, processes P can only perform input action a when Q also performs

output action a, together these are observed as a T action.

Relabeling: If P is a process and a and b are actions, then P[b/a] is the process that behaves

exactly the same as P except that if P can perform a or a then P [b/a] can perform b or b

respectively. This is useful when several copies of the same process with differing action

names are required.

30

Asynchronous circuit modelling with CCS

It is possible to compute the state space for a process. This can be thought of as a number of

states interconnected by transitions, a labelled transition system. Each state corresponds to a

process and transitions between processes are labelled with actions. For example the recursive

process P a.b.P has two states and two transitions.

With the CCS outlined above it possible to describe systems, however further support is re-

quired to reason about these systems, for example to ask "Can action a ever happen?". In fact

for the circuits verified here, it is usually not necessary to ask such questions as the verification

is performed by testing the equivalence between a model of the circuit and a specification. How-

ever, during development of the models it was useful to ask such questions, and when the circuit

and specification are not equivalent a method is required to state distinguishing behaviours.

Hennessy-Milner logic [32] and its temporal extension, the modal mu-calculus [33] are modal

logics which can be used to express properties of labelled transition systems. The full syntax

is not given here, but informal definitions of parts of the logic used later are introduced when

needed.

Tool support exists in the form of the Edinburgh Concurrency Workbench (CWB) [34]. The

CWB computes the state space for a CCS process, and provides support for: determining the

equivalence of processes, automatically generating logical formulae which distinguish pro-

cesses, interactively simulating a process, analysing the state space and allowing properties

of a process to be checked using Hennessy-Milner logic and the modal mu-calculus.

The most commonly used feature of the CWB was the ability to test for observational equiva-

lence [11]. Informally, two processes are observationally equivalent if they can not be distin-

guished by an observer with which the processes interact. Specifically silent r actions are not

included, this means that it is possible to show that a circuit model is equivalent to a specifica-

tion without the r actions 'getting in the way'.

4.4 Modelling circuits with CCS and the CWB

During the development of the modelling method several issues relating to the choice of CCS

to model asynchronous circuits were observed:

Suitability: Circuits are composed from sub-circuits, the compositionality of CCS means this

31

Asynchronous circuit modelling with CCS

structure is captured in the model. CCS has no notion of explicit timing delays, this

can be thought of as inserting arbitrary but finite delays between actions. This property

combined with non-deterministic choice is ideal for testing for delay insensitivity.

Accuracy: All models abstract from the real circuit implementation. For simple circuit el-

ements such as XOR it is easy to see the correctness of the model. For more complex

elements, such as the C-element, some care is needed. It would be possible to use CCS to

model circuits at a transistor switching level (simple on-off behaviour), but in this work

only logic gate level modelling was performed.

Clarity: CCS allows the specification of structured, clear and concise models. However as

will be seen later some of this clarity and much conciseness is lost when isochronic forks

are added to the model.

Next some basic assumptions are given and then the modelling method is developed; the inten-

tion is that models of circuits are to be compared, using observational equivalence, to a simple

and therefore 'correct by inspection' specification. Initially only simple circuit elements, fo-

cusing on XOR, are considered. CCS circuit models for commonly used elements are given

later in section 4.5.

4.4.1 Assumptions

The following assumptions are made.

The environment (circuitry connected to the circuit being verified) is assumed to operate

correctly.

Gates are modelled as digital devices using two logic levels, as with traditional discrete

event simulators. Communication between gates is assumed to be reliable. If needed the

modelling method could be extended to support more than two logic levels, for example

weak and strong, but this would increase the state space of the models considerably.

It is assumed all gates are initialised into a known state after power-on. For state keeping

gates, for example latches, an explicit reset signal is required. This reset mechanism is

not modelled.

32

Asynchronous circuit modelling with CCS

No assumptions about the delays in gates or wires are made; all delays are unbounded

but finite.

For the latch controller circuits studied the circuit model described in section 3.2, Fig-

ure 3.1 where the data latch is in the signal path is used. Additionally all data bundling

constraints are assumed. Likewise verification does not include the assumptions involved

in the fast-forward variation (section 3.2).

4.4.2 Modelling with logic levels

The first method captures the logic value (high or low) of signals, much like that in discrete

event simulation. The CCS model for an XOR gate with two inputs in 1 , in2 and output out

is given below. The subscripted numbers in the process names refer to the logic levels of the

inputs. The action names indicate input and output 'values'. Processes X0R 1 0, X0R 01 etc are

defined in a similar manner.

X0R00
def - in1hi.X0R10

• in1 lo.X0R00

• in2hi.XOR 01

• in2 lo.X0R00

• out lo.X0R0 0 etc

The XOR process has four states, corresponding to the possible input combinations. There are

disadvantages to this method. The model can always accept input and offer output even though

no change in signal level occurs, this is meaningless in circuit terms and not intuitive. This may

also be undesirable for analysis as it is always possible for the model to exhibit activity (for

example silent 'r transitions) even though the circuit is in a stable state awaiting further input.

Finally, the gate is modelled at an unnecessary level of detail resulting in a larger than necessary

state space.

4.4.3 Modelling with events

Instead of modelling logic levels it is possible to model events, abstracting from the actual logic

levels. XOR becomes:

33

Asynchronous circuit modelling with CCS

XOR V in1 .iiE.XOR + in2 .ü.XOR

This XOR process has two states, one state which allows an input action on either input and the

other which offers an output action. This model is an improvement, actions only occur when

signals change and fewer states are required. There is no loss of generality by modelling events

instead of logic levels, when modelling gates where the initial state of the inputs are important

(for example an AND gate), it is only necessary to arrange the internal states of the model

appropriately.

However, there is a flaw with this modelling style. Consider XOR, once the action corre-

sponding to an event on one input has occurred, it is impossible for the other input action to

occur until the output action occurs; the model blocks further inputs until an output occurs.

This is not a property true of real circuits which can always receive input, even if such input

causes undesirable behaviour. This is a significant flaw—the model cannot spot delay sensitive

behaviour.

For example, consider the 'transition detector' circuit shown in Figure 4.1. The intention is

that, when an event occurs on one of the XOR inputs, an event occurs on the output of the

XOR clocking the '1' into the double-edge triggered flip-flop (DET-FF). In the model this

circuit could be verified as correct by testing the property that any input event to the XOR must

eventually lead to an event on the DET-FF output. However, in the real circuit, it is possible

for a second input event to arrive at the XOR before the XOR has produced output. Such a

second event may cancel the due change in output, or it may not, this is a race condition. This

behaviour is not captured by the model as all events input to the XOR must be propagated to

the XOR output.

LL 	 Y

X,

Figure 4.1: Transition detector

This modelling style is suitable for the verification of circuits provided it is known in advance

34

Asynchronous circuit modelling with CCS

that they do not exhibit delay sensitive behaviour, for example a circuit composed properly

from modules communicating with a two-phase bundled data interface. This is the modelling

style used by [26]. TO observe delay sensitive behaviour it is necessary to ensure that inputs to

a circuit can not be blocked. The next two modelling styles overcome this.

4.4.4 Overcoming blocking with wires

In this style 'wires' are added between gates. The obvious definition of a wire might be:

def i
Wire = n.out. Wire

The wire process acts as a one place buffer, however this does not solve the problem, it merely

postpones it. Whereas before only one input event to the XOR gate was required to block

further input, an XOR followed by Wire requires two input events for blocking to occur. A

delay insensitive circuit should not permit circumstances in which one event might 'catch up'

and interfere with another. Therefore one solution to the blocking problem is to consider the

circuit in error if an event is blocked. The model can then be tested by using the CWB to check

if any of the states in the model satisfy the mu-calculus formula for "eventually, an error may

occur". This can be achieved with the following definition for Wire:

i
def 	 ,

Wire = n. Wire

Wire' 	Wire + in.Error
def

Error = error. Error

Whilst this modelling style would work, there is a penalty of increased state space as each wire

now has three states. In particular the majority of states in the model may only be reached once

a single wire has entered its error state. An alternative approach would be to build the error

state into the gates, avoiding the need for wires, but this still increases the state space and does

not aid clarity. The final modelling method, discussed next, does not add to the state space.

4.4.5 Final modelling method

This approach directly models the possibility that a gate which has been excited by an input

event may return to an unexcited state via a further quenching input action. XOR becomes:

(see also Appendix A.1).

35

Asynchronous circuit modelling with CCS

XOR " ifli.XORe + in2.XORe
ef

XORe 	in 1XOR + in2.XOR + 11.XOR

Like the original event based model (section 4.4.3) only two states are required. This method

takes the approach that quenching can occur, and is not an error, provided that the circuit be-

haviour still satisfies the specification. In fact it is no longer possible to detect quenching.

The disadvantage to this approach is that the definitions of gates lose some clarity, especially

when synchronisation mechanisms are added to permit isochronic forks, as shall be seen later.

However this approach was found to work well in practice.

4.5 CCS models of common circuit elements

The CCS models for the basic circuit elements used in two-phase and four-phase latch con-

trollers are given here, except for XOR which was given in section 4.4.5. This is followed by a

simple example to illustrate composition.

The C-element, toggle and latch models assume delay-insensitivity even though the imple-

mentations may contain timing assumptions. These timing assumptions are either completely

internal, or are the result of an internal fork for a feedback path required to keep state. In the

later case, it is possible to change the inputs before the feedback path has settled resulting in

incorrect operation. In practice these assumptions are reasonable as they are very localised,

and the internal feedback path delay is very short. This is an example of 'hierarchical' delay-

insensitivity where the circuit is being tested for delay-insensitivity given the assumption that

its building blocks are delay insensitive.

4.5.1 C-element

C
def = ini . çj + 	in2.C2

C.,
def = 	inj .0 + 	in2.Ce

,-, def = 	1-fli.Ce + 	in2.0

G
def = 	in 1 .C2 + 	in2 .C1 +

To model a C-element for which one input is inverted, for example that used in the standard

two-phase latch controller, a different starting state is used, for example C1 instead of C.

Asymmetric C-elements are created in a similar manner, see Appendix A.2.

36

Asynchronous circuit modelling with CCS

4.5.2 Toggle

The toggle element is specified below.

Toggle W 	+ in. Toggle)
def

Toggle2 = in. (blank. Toggle + in. Toggle2)

4.5.3 Latch

A simple transparent latch: the latch can be enabled allowing events to pass from input to

output, or disabled such that output events are not possible. Note that when disabled, internal

state changes must still take place upon input events in order to know if an output needs to be

offered upon re-enabling (the output need not necessarily occur, for example if a quenching

enable or input event occurs). The Latch process below is initially enabled (transparent).

def
Latch = Latch-En

	

Latch-En 	in.Latch-En, + enable. Latch -Dis
def Latch-En e = in.Latch-En + enable.Latch-Dis + i.Latch-En

	

Latch-Dis 	in.Latch-Dis e + enable.Latch-En

	

Latch-Dise 	in.Latch-Dis + enable. Latch -En,

4.5.4 Data latch

In checking the correctness of a latch controller it is useful to know when the multi-bit data latch

captures data. The simple definition below, which generates an observable capture action,

can be used to achieve this. The release action is optional and can be left out, or ignored.

In verifying that a latch controller is suitable for use in a micropipeline it is not necessary to

know when the data latches are transparent as the transparent state serves no useful purpose

(except when using the fast-forward variant). It is however essential to check that the latch

controller has captured the data before sending an ain event to the previous stage. There is no

need to explicitly permit quenching on the input. The Datalatch process cannot block its input

provided that the output is connected to an input of another process which permits quenching

and that no synchronisations with the capture or release actions are made.

Datalatch def = in. capture. out. in.release.iThDatalatch

37

Asynchronous circuit modelling with CCS

4.5.5 Forks

Most circuits contain at least one fork. In modelling terms this represents an event which needs

to be propagated to more than one destination. In a delay insensitive circuit the events may be

propagated to the outputs in either order: a non-deterministic fork. Furthermore, a quenching

input event can occur before or after the previous input event has reached one destination. For

example an input event may have reached one destination, a second input event then occurs,

resulting in no events reaching the second - destination; this may result in a second event reaching

the first destination. The full version, as given below, of this fork must be used; the optimised

version [27], in which the output events occur in a deterministic order, cannot be used, as the

circuits discussed later do not fall into the class of circuits for which this optimisation is valid.

def
Fork = ifl.FOrke

def Fork, = 	iiti.FOrk2e + ii.Fork ie + in.Fork
def Forkie 	i.Fork + in.Fork2
def

Fork2e = 	i.Fork + in.Forki e

Isochronic forks can not be implemented as a separate circuit element like the non-deterministic

fork above. Instead it is necessary to use synchronisation between internal state changes in the

gates at each destination of a non-deterministic fork. The circuit level parallel to this is that not

only should the wire delay to each destination of the isochronic fork be the same, the gates at

the destination should switch at the same voltage levels.

Unfortunately this synchronisation adds to the complexity and doubles the state space of such

gates. Consider the isochronic fork present in the simplified latch controller circuit from sec-

tion 3.4.2. Here both latches must operate at the same time. This is modelled by each latch

having a set of 'mirror' states which are entered upon an enable action in which a further

enable action is not possible but the latches behaviour with regard to which other actions are

permitted is unchanged. To allow a change in this behaviour, the other latch must supply a syn-

chronising action. In this way it appears as if both latches are enabled or disabled at the same

time, without affecting the need to allow quenching. The resulting code for the latch can be

found in Appendix A.3. One noteworthy point is that the generation of the additional CCS code

is methodical and could probably be automated, though the clarity of the model is lost. This

is especially noticeable for the isochronic fork required between two asymmetric three-input

C-elements in the four-phase latch controllers.

38

Asynchronous circuit modelling with CCS

4.5.6 Composition example

This example illustrates XOR (from 4.4.5) driving a datalatch. The resulting model has input

actions in 1 , in2 and output action 6i1. Relabeling is used to 'connect' the XOR to the data

latch and restriction is used to ensure that the two processes communicate to produce a silent T

action, that is to say the w action is not externally observable.

Example
def

 = (XOR[w/out]IDatalatch[w/in])\{w}

4.6 Verification of latch controllers

This section discusses the verification of two and four-phase latch controllers using CCS and

the relation of the CCS specifications to the STG specifications given in Chapter 3.

The CCS model of each latch controller circuit is verified by placing it in a correctly operating

environment to simulate the previous and next stages in a micropipeline. The environment,

see Appendix A.4, is modelled by two processes: Env-L which is always able to supply new

data and Env-R which is always able to receive data. Observable actions rin, ain, rout, aout

are used to observe changes in the handshake signals to the latch controller and the observable

action capture indicates when the latch controller instructs the multi-bit data latch to capture

data. The environment processes for two-phase and four-phase circuits are identical. This is

because the environment for a four-phase circuit, when modelled using events, performs the

same sequence of actions, but at twice the rate as for a two-phase circuit to process the same

number of items of data.

The verification, in particular claims to delay insensitivity with allowance for isochronic forks,

is subject to the assumptions stated previously in sections 4.4.1 and 4.5.

4.6.1 Standard two-phase controller

A CCS model, given in Appendix A.6, of the standard two-phase latch controller (introduced

in section 3.2) was constructed and shown to be observationally equivalent to the specification

below (also given in Appendix A.5). This is consistent with the accepted fact that this circuit is

delay insensitive.

39

Asynchronous circuit modelling with CCS

Spec TwoPhase-L
def = nfl. sync. capture. sync.i.Spec TwoPhase-L
def

Spec TwoPhase-R = sync. sync. rout. aout. Spec TwoPhase-R
def

Spec TwoPhase = (Spec TwoPhase-LI Spec TwoPhase-R)\{ sync}

4.6.2 Simplified two-phase controller

The CCS model, given in Appendix A.7, of the simplified two-phase latch controller (see sec-

tion 3.4.2) was also shown to be observationally equivalent to Spec TwoPhase given above.

This verifies that, assuming the isochronic fork discussed in section 3.4.2, the simplified con-

troller is equivalent to the two-phase specification, and therefore is equivalent to the standard

two-phase latch controller.

A version of the model without the isochronic fork was also produced. For this the CWB

produces a distinguishing formula. The formula given below is satisfied by Spec TwoPhase but

not by the circuit model.

((nin)) [[capture]] ((ii)) ((rin)) ((rout)) [[aout]] [[iIi]] f

At this point an informal explanation of part of the Hennessy-Milner logic is needed: If a

process P satisfies the formula ((a)) 0 (pronounced 'diamond ') then there exists a process Q

which satisfies 7 such that P can become Q by some sequence of actions which consists of a

only once and an arbitrary but finite (and possibly zero) number of -r actions. If a process P

satisfies the formula [[a]] 0 (pronounced 'box q') thenfor all processes Q which can be reached

from P via some sequence of actions which consist of a only once and an arbitrary but finite

(and possible zero) number of -r actions, all Q must satisfy 0. All processes satisfy tt and no

process satisfies ff.

Consider the above formula, with reference to Figure 3.12 the following sequence of events

is possible. An rin arrives from the previous micropipeline stage and propagates through

transparent latch Li and the XOR resulting in a capture action. The signals continue to

propagate such that Li becomes opaque and L2 transparent. The latch controller produces am

and the previous stage responds to produce a second rin. The latch controller also produces

an rout. The next micropipeline stage responds to the rout by producing aout, which will

eventually cause Li to become transparent and L2 to become opaque. However, if Li becomes

transparent whilst L2 is still transparent (the fork is not isochronic), then the waiting nfl can

40

Asynchronous circuit modelling with CCS

pass through Li and L2 to produce an ain. The specification can not produce this ain without

first producing capture. This corresponds to the formula above. The formula in fact states a

stronger version of this because of the 'boxed' actions.

4.6.3 Equivalence to two-phase STG specification

Using a simple tool constructed to compute the state space of an STG and convert this to a CCS

process description, the two-phase STG specification (see Figure 3.3) was converted to CCS

and shown to be observationally equivalent to Spec TwoPhase. This acts as an extra check that

the specification is correct. Appendix A.8 lists the conversion tool input and output.

4.6.4 Buggy four-phase latch controller

To test the CCS modelling technique, an attempt to confirm the existence of a timing assumption

in the buggy semi-decoupled four-phase latch controller (see Figure 3.10) was made. The CCS

model of this controller was tested against a four phase CCS specification converted from the

STG of Figure 3.7. The CCS model assumes that the fork from aout to the two C-elements is

isochronic. In [24] all forks are assumed isochronic as the circuit is speed independent but this

is unnecessary. When tested for observational equivalence the distinguishing formula below is

produced, this formula is satisfied by the specification but not by the circuit model.

((rin))((capture)) [[Ii]] [[rout]] ((aout))((rin)) [[Ii]] ((rin)) [[capture]] f

This expresses that the circuit model can perform the following sequence of actions (with ref-

erence to Figure 3.10).

An nfl arrives from the previous micropipeline stage resulting in a capture action and

the event propagates through the three-input C-element leading to an ain event.

The latch controller circuit continues to propagate the effect of the nfl, which causes

an rout to be sent to the next stage. The next stage acknowledges this by generating an

aout event.

Since the previous stage's rin has been acknowledged by the circuit with an ain, the

previous stage can and does produce another nfl (the high-to-low reset).

41

Asynchronous circuit modelling with CCS

Next the circuit acknowledges the high-to-low nfl with an ain. This implies the nfl

must have propagated through the three-input C-element. Therefore, both the event prop-

agating round the fork from the rout event and the event propagating along the fork

caused by the aout event have reached the 'negative' inputs of the three-input C-element.

Because the circuit has acknowledged the high-to-low reset, the previous stage can and

does produce another rin event (indicating new data).

At this point a problem exists. The circuit should not allow this nin event to propagate because

the effects of the previous high-to-low reset transition may not yet have propagated fully. How-

ever, two of the three inputs to the C-element cannot prevent propagation of a rising transition

on nfl. This leads to possible interference (a high catching up with a low) on the wire leading

to the two-input C-element. The specification does not allow the final nfl to propagate through

the three-input C-element. This non-persistent behaviour is stated in [24]; the confirmation of

this provided some reassurance in the correctness of the CCS modelling method.

4.6.5 Fixed four-phase latch controller

Additionally a CCS model of the fixed semi-decoupled four-phase latch controller (section 3.3)

was tested for observational equivalence with a CCS specification obtained from the STG of

Figure 3.9. The same fork as in the previous section is assumed isochronic, but other forks are

not. The circuit model and specification were found to be observationally equivalent.

4.7 Evaluation

The method is well suited to the verification of delay insensitive circuits, but as discussed earlier

the clarity and conciseness of CCS is lost with the addition of isochronic forks. CCS would not

therefore be well suited for verifying speed independent circuits. For larger or unconstrained

circuits (for example a latch controller without a constraining environment) the state space

'explosion' is likely to make verification with the CWB prohibitive. It should be noted that this

is a limitation of using the CWB to check properties not a limitation of CCS itself. Despite these

problems, the tool support is very good and CCS and the associated logic are quick to learn and

apply. Overall the CCS modelling method was found to be appropriate for the complexity and

size of the circuits verified.

42

Asynchronous circuit modelling with CCS

With the other modelling techniques discussed earlier (section 4.2) quenching is not permitted,

and such interference between signals is unconditionally considered an error. In this technique

quenching is allowed to occur, provided that this behaviour does not affect the circuit correct-

ness when the circuit model is compared to a specification. To date evidence has not been

encountered which suggests this reasoning is flawed. An example circuit, in which quenching

can occur during correct operation, has not been found, without the example circuit containing

redundant circuitry (which is removable at no loss to correction operation). From this it is pos-

sible to speculate that such a circuit may not exist. However, allowing quenching to occur is

useful; it reduces the state space of a model and seems more 'natural', in that the circuit can do

whatever it wishes internally, provided its externally observable behaviour is correct.

4.8 Summary

This chapter has introduced a method of modelling asynchronous circuits using the CCS pro-

cess algebra. During the development of the final method several approaches were tried. In all

of the approaches a circuit can be informally mapped to CCS as detailed below, and the CWB

used to check properties of the model.

• Each circuit element is modelled with a corresponding CCS process.

• CCS input and output actions are used to represent the transmission of events from one

circuit element to another.

• CCS parallel composition with restriction is used to 'connect' the models of circuit ele-

ments together. This can be done in either a hierarchical or linear fashion to reflect the

modularity of the circuit. Once models of basic circuit elements have been designed the

composition is straightforward.

• Processes acting as specifications are used to model the environment surrounding the

circuit.

• Observational equivalence is used to compare a model against a specification.

Modelling with logic levels: Signals were modelled as the communication of high and low

logic levels. This was found to be undesirable as the model can always exhibit activity

(even whilst the circuit can not) and an unnecessary level of detail is involved.

43

Asynchronous circuit modelling with CCS

Modelling with events: Events (transitions) are modelled instead of logic levels. This reduces

the state space and the model only exhibits activity when the corresponding circuit does.

By arranging the initial state appropriately there is no loss of generality. However, with-

out further development there is a flaw, gate inputs in the model can block (prevent further

input changes temporarily) whereas gate inputs in a real circuit can not. Such blocking

is undesirable when testing for delay insensitivity.

Modelling with events and wires: A 'wire' process is placed between gates. The wire enters

an error state to indicate when an event is about to be blocked by the gate following the

fire. This increases the state space in the model and so the next method is preferred.

Modelling with events and quenching: With this style the process representing each gate never

blocks its inputs. It permits quenching, where one input event can cancel a previous in-

put event without an output event from the gate. This method differs from others in the

literature in that quenching is permitted, provided that the externally observable interface

is still equivalent to the specification. As an optimisation, quenching does not need to be

permitted on a gate input when it is known that it will not occur, for example in the case

of an input from a correctly behaving environment.

The modelling method has been successfully applied to the following circuits. The first two -

confirm existing known facts as a means of testing the method in practice, and the second two

involve the verification of new circuit structures.

. Standard two-phase latch controller

• Buggy (and fixed) four-phase latch controller

• Simplified two-phase latch controller

• Circuits for full- and empty-detection of pipelines and multi-state FIFO's (see Chapter 5).

In theory the CCS technique could be applied to any complexity of circuit, but in practice

the use of the CWB limits this to small or well constrained circuits which are close to being

fully-delay insensitive. The circuits modelled in Chapter 5 demonstrate a possible method of

including timing assumptions in the model, but at the expense of clarity and conciseness. In

practice the tool support is good and the method was found to work well for the circuits studied

and is expected to perform well for other circuits of similar complexity.

44

Chapter 5
Two-dimensional micropipelines

In this chapter the linear micropipeline structure, introduced in Chapter 2, is developed into a

two-dimensional structure which can perform matrix transposition or convert between word-

serial bit-parallel data and word-parallel bit-serial data. The circuit structure is an ideal appli-

cation of the simplified latch controller developed in Chapter 3. The CCS modelling style from

Chapter 4 is used to check properties of the circuit. Two ways of capturing timing assumptions

within this modelling style are used, one a direct CCS approach involving examination of the

state space, the other, somewhat simpler, involving STG specifications.

Two variants of the circuit are discussed, termed Method I and Method II. Method I was devel-

oped for parallel-serial conversion, prior to knowledge of independent work for matrix trans-

position by Tierno and Kudva [35]. Method II was developed upon re-examination of the

circuit after reading the work by Tiemo and Kudva. Both methods can be applied to either

matrix transposition or parallel-serial conversion. Method I is modelled using the direct CCS

approach, Method II is modelled using the STG based approach. Although not performed, it

should be possible to model both circuit variants with either modelling method. A review of

the two circuit variants and the work by Tierno and Kudva is presented.

Matrix transposition is similar in operation to that of parallel-serial conversion (each bit of data

is replaced with a word of data). Matrix transposition is commonly used in the calculation of

the 2-D DCT, see Chapter 6. This chapter focuses on the task of bit-parallel word-serial to

bit-serial word-parallel conversion, but the methods apply to both the reverse conversion and

matrix transposition.

5.1 Motivation and application

Figure 5.1 shows a typical setup for parallel to serial and serial to parallel conversion, where a

bit-serial core is required to interface with a bit-parallel environment. Block I performs word-

serial bit-parallel (n words of width w bits) to word-parallel bit-serial conversion, block 0 the

45

Two-dimensional micropipelines

reverse. An example application might be a bit-serial DCT, such as one based upon the Arai

algorithm discussed in Chapter 6.

data in 	 data out

Figure 5.1: Bit-serial core in a bit-parallel environment

Typically a two-dimensional array of synchronous registers performs the conversion. This ap-

proach has several disadvantages:

. The two-dimensional array of edge-triggered registers requires a large area and consumes

significant power.

The input and output interfaces must both be synchronous (and with the bit-serial core).

. The data input and output rates are not constant, a burst of input and output is followed

by a burst of processing.

Many DCT implementations use a DRAM block, with address counters, to perform matrix

transposition, thus avoiding the large area of a two-dimensional array of registers. The DRAM

method is slower because only one word of data can be accessed at a time, but some improve-

ment can be made by using a dual-port DRAM with concurrent read and write access. For

parallel to serial conversion the DRAM method would involve reading and writing one bit at a

time and would hence be too slow.

46

Two-dimensional micropipelines

5.2 Architecture

5.2.1 Concept

An alternative scheme is shown in Figure 5.2. The parallel to serial conversion block is based on

two micropipelines, a vertical pipeline IV for reading the bit-parallel input data and a horizontal

pipeline I for providing bit-serial output. The data is kept in a two-dimensional array of level-

sensitive latches IA. Each latch cell in the array can be supplied with data from the cell to the

left (except those in the left hand column) or from the cell above.

The optional column of latches IX may be used to sign extend the bit-serial output concurrently

with new data entering IV. The optional linear micropipeline buffer lB buffers the input, per-

mitting a constant data input rate. The data processing core remains synchronous, the clock

for which is generated by global control circuitry coordinating the operation of all the blocks

shown in Figure 5.2.

The serial to parallel conversion block has a similar structure, with horizontal pipeline OH to

read bit-serial data from the core processor and vertical pipeline OV to supply bit-parallel out-

put. The optional linear micropipeline buffer OB permits a constant data output rate. Circuits

II and 01 allow the handshake signals at the top of the vertical pipelines to be 'isolated' from

the buffers; wide pass-transistors are suitable for this.

Pipeline IV should have an even number of stages if lB is used, otherwise the handshake signals

between IV and lB will be out of phase if the two pipelines are isolated, IV is reset and then IV

and I are reconnected. A similar argument holds for OV and OB.

Pipelines IH and OV produce an empty signal which indicates when there is no data held in the

pipeline, likewise pipelines IV and OH produce a full signal which indicates when the pipeline

is full and, in the case of Method I, there is a request waiting at the input of the pipeline.

Each pipeline has a reset input, for all pipelines except I and OV this would reset the pipeline

into an empty state; the reset inputs to IH and OV reset the pipelines to a full state where

each stage is initialised holding data. The reset input follows a lower bounded delay model,

upon issuing a reset a lower bounded amount of time must pass before the reset input can be

removed and the pipeline used. A global control circuit, not shown in the diagram, is required

to coordinate the activity of the various circuit blocks.

47

Two-dimensional micropipelines

data in
	

data out

Figure 5.2: Parallel-to-serial, processing core and serial-to-parallel

This scheme has several advantages when compared to the synchronous shift-register approach:

. The use of transparent latches leads to an area and power saving.

The input and output interfaces are asynchronous.

The input and output data rates may be constant, provided suitable buffer sizes at the top

of each converter block are chosen.

In principle, the input and output interfaces are asynchronous; for applications where the sur-

rounding environment is synchronous this is likely to be a disadvantage. Since the data pro-

cessing time is constant, it may be reasonable to assume a bounded-delay model for the input

and output interfaces. The simulations required to ensure this assumption are likely to be made

easier by the fact that the blocks are composed from regular cells. This is to say that, for each

request to input data (by providing an event to nfl on IB) there will be a bounded delay be-

fore the ain from lB occurs. The worst case for this delay can be found by simulation, in a

manner similar to that used to find the maximum clock frequency for the synchronous equiva-

lent. Hence the ain from lB can be ignored (unconnected) and the nin to lB treated as an input

clock. Care is needed to ensure that I is large enough to allow a continuous constant frequency

input clock, or a scheme of stopping and starting input would be needed. A similar argument

holds for the output interface, where aout from OB would be used as an output clock.

48

Two-dimensional micropipelines

Again a similar arrangement can be used for the reading of data from IH by the core and for

the writing of data to OH from the core. The highest core clock frequency is limmited by

the slowest of the worst case response times of IH to aout and OH to rin. Alternatively and

perhaps preferably because it involves fewer timing assumptions, rout from IH and ain from

OH may be used to control the generation of each clock cycle.

Note that rout from IV and ain to OV are unconnected and that aout to IV and nfl to OV

are kept at logic zero. These interfaces are referred to from now on as a left and right hand null

environment.

5.2.2 Operation

Typical operation of the system in Figure 5.2 is summarised below. The overall operation

appears complex because there is much concurrent activity, the description below lists one

possible sequence of operation.

IH and OV are initialised to be full and IV and OH are initialised to be empty. OV

is isolated from OB. Additionally if this is the first cycle of operation, lB and OB are

initialised empty.

Data flows into lB and from there into IV. Concurrently, the previous output (if not the

first cycle) from the bit-serial core which is held in OV flows into OB and is output.

Because lB and OB are elastic micropipelines data can continue to arrive into lB and

leave OB.

When IV is full and OV is empty, the handshake signals between lB and IV are isolated

and the core clock is started. Data is read from IH, processed and written into OR

The clock driving the aout input to IH is stopped whilst the core continues to process

and read sign extended bits.

Once the core has read enough sign extended bits, IH can be reinitialised to be full, IV

reinitialised empty and new data permitted to flow from lB into IV. Concurrently data

is permitted to leave OV and enter OB. If IX is used then IV can be reinitialised and

reconnected to I before all the sign extended bits have been read.

Once OV is empty and IV is full a new cycle of processing starts.

BE

full

FD

Iv out

Two-dimensional micropipelines

5.2.3 Two-dimensional micropipeline

The circuit for a two-dimensional micropipeline, equivalent to the parallel to serial converter

(blocks IV, IH, IA) is shown in Figure 5.3. Note that reset circuitry and the sign-extender IX is

not shown. Blocks FD and ED detect when IV is full (full-detection) and IH is empty (empty-

detection). Two variants of the circuits for full- and empty-detection are discussed later.

ain rin 	
l•S4S

IH 	

LIIIIIi
Figure 5.3: Two-dimensional micropipeline

An alternative to using empty-detection in block IH is to connect an inverter between ain and

nfl of the left most stage such that the horizontal pipeline always stays full. The number of

items of data read from IH would then need to be counted, this might be an existing function

of the processing core. This avoids having to reset IH to be full for each cycle of operation.

However, the reset circuitry would still be needed to ensure correct operation after power on.

50

Two-dimensional micropipelines

An alternative approach to full- and empty-detection would be to use a counter to count the

number of events requesting input, or requesting output. This is, however, a somewhat less

elegant and more expensive approach. A counter would need to be placed between the buffering

pipelines and the vertical pipelines. Since the complexity of a counter is much higher than one

of the pipeline stages, it would seem reasonable to assume that the highest data rate would be

restricted by the counter rather than by the pipeline.

It should be noted that the simplified two-phase latch controller, from section 3.4.2, is the ideal

choice of latch controller, because it is used here in a simple linear pipeline (see section 3.5).

5.3 Method I - circuit

Although the circuits for full- and empty-detection are dissimilar for this method, they are

grouped together here as they were developed at the same time and the same modelling style is

used (see section 5.4) to verify both circuits.

5.3.1 Full detection

Full-detection is concerned with deciding when an initially empty micropipeline has become

full and can not hold any more data. A single pipeline stage can not 'know' when the whole

pipeline is full, this is because all valid circuit states, for a single stage, can occur during nor -

mal operation before the pipeline is full. A simple way to implement full-detection might be

to define the pipeline to be full when all stages are holding data (occupied) and hence no data

latches are transparent. However, consider an arbitrary length pipeline with a right hand null

environment, into which one item of data is inserted into the left hand side. It is possible, al-

though unlikely for a non-trivial number of stages, that each stage will capture data and produce

an rout to the next stage until the data reaches the right most stage. No stage has yet acknowl-

edged receipt of data to the stage to the left. There is only one item of data in the pipeline, yet

each stage in the pipeline is occupied and so the pipeline, by the current definition, is full. A

similar argument can be made for any number of data items being inserted into the pipeline. A

more sophisticated mechanism is needed and one such mechanism is introduced next.

The simplified two-phase latch controller with circuitry to detect request-pending is shown in

Figure 5.4. Note that the right most stage in the pipeline which will be connected to a right

51

Two-dimensional micropipelines

hand null environment may be simplified.

1

It

)

Figure 5.4: Two-phase latch controller with request-pending

The output rp (request-pending) is high when the pipeline stage is occupied and there is a

request waiting on nfl. The XOR gate X2 is used to detect that there is a request event waiting

on nfl which cannot pass through Li. The XOR output may, however, also glitch high if Li is

transparent as a request event passes through Li. To counteract this glitch Al is used to ensure

that not only is there a request waiting, but the stage is occupied. It is not possible for an event

to pass through Li and cause a glitch in the XOR output whilst the stage is occupied, because

Li would not be transparent. Nor is it possible for such a glitch to occur between the data latch

becoming occupied and Li being disabled. This is because such a request on nfl can only

occur in response to an ain and this ain cannot occur until Li and L2 have acted at the same

time (by definition of the isochronic fork to the enable inputs of Li and L2). It is possible to

replace X2 with an inverter and AND gate to give a smaller implementation, as the actual logic

values at the two sides of Li at the time of a request-pending are known and alternate between

even and odd stages.

The circuitry, to detect request-pending, does not interfere with the normal latch controller

operation, because it acts strictly as an 'observer'. A consequence of this is that the request-

pending circuitry is not delay insensitive. For example, suppose the latch controller reaches a

state where the request-pending signal should change from logic low to high. This change could

occur after an arbitrary delay after the latch controller reaches this state. This potential change

could, but not necessarily, be quenched if the latch controller subsequently changed state such

52

Two-dimensional micropipelines

that the request-pending signal should return low. Likewise for an initial change from logic

high to logic low.

For a single stage pipeline, with a right hand null environment, the stage will indicate that there

is a request-pending (rp high) upon the second nfl. Since there is only one stage this request-

pending signal is directly used to indicate the pipeline is full. Note that the single stage pipeline

is only defined to be full when the second, unable to be processed, nfl is received.

For n stages (n an integer> 1) the circuit shown in Figure 5.5 is used. The signal full1 is the

AND of full 1 _ 1 and the request-pending signal rp j . The right most stage is connected to a

null environment and full 1 is simply rp1 .

	

nin rout 	P Irin rout! ------- ,.-lrjn rout
not connected

n 	I 	I 	n-i 	I 	I 	1

ain aoutluu 	lain aout 	 ain aouti-uu 	0
rp 	I 	I 	rp 	 rp 	I

full 	
full1

Figure 5.5: Micropipeline with request-pending full-detection

For the correct detection of a full pipeline, the indication of full must eventually occur if the

pipeline is full and there is a request waiting at the pipeline input. This indication of full must

never occur erroneously, even momentarily, before then.

Whilst data is being passed from left to right through the pipeline it is possible a stage i may set

rpj high and then low again. This can occur if stage i - 1 has not yet acknowledged a request

from stage i and stage i receives a request from stage i + 1. This will not matter, provided stage

i cancels rp j before there exists the possibility for full1_ 1 to occur, if not then full 1 could

be generated erroneously.

Therefore without any timing assumptions it is clear that the circuit will not work correctly.

Consider this scenario with an n stage pipeline: All the stages to the right of stage n are

occupied, stage n is occupied with the same data as stage n - 1, as stage n - 1 has not yet

acknowledged to stage n and there are n - 1 pieces of data in the pipeline. Stage n receives the

nth request from the left hand environment and signals rp. Stage n - 1 then acknowledges to

Two-dimensional micropipelines

stage n, but rp does not yet become low. Stage n sends a request to stage n - 1, the stages

to the right of stage n can now correctly signal full_ 1 which, combined with the still high

rp, will produce full. This is incorrect, fUlln should not be produced until the (n + 1)th

request is received from the left hand environment, rPn is still free to become low and when it

does full will also return low.

Note that this sequence of events also demonstrates that the possibility of using just the data

latch enable signal without X2 in stage n, with an aim to signalling full after n requests from

the left hand environment, will not work correctly either. It is therefore necessary to have n + 1

requests before full is produced.

The behaviour of each stage i assumes that the full-1 signal is generated correctly without

glitches, therefore stage i must ensure that full 1 is generated correctly. As shown above,

without timing assumptions, full 1 may be generated erroneously. In the example scenario

above, this error occurs because a stage i is allowed to keep rpj high whilst generating a

request to stage i - 1. If the assumption is made that, by the time stage i can generate an rout,

rpj has returned low (unless there really is a request-pending and it is not the case that rpj is

high because it has not returned low yet) then the problem is avoided.

Restating the above assumption, for a single pipeline stage, rp must become low before the

stage produces an rout in response to the waiting nfl when aout is received. The aout will

cause the data latch to become transparent and will indicate to Al that rp should become low.

Once the data latch is transparent Li will also become transparent, indicating to X2 that rp

should become low and the data latch will then capture again, possibly quenching the previous

change to the inverted input of Al. If the delay through X2 and Al is less than the delay

through Xi and the data latch and the delay for L2 to act, then rp will become low before rout

is produced. Driving the data latch involves a large load, and so this assumption would seem

reasonable. Furthermore, if X2 is replaced by an inverter and AND, with a shorter delay than

an XOR, this is in favour of the assumption. Finally, what correct operation really assumes,

is that rp is low before the stage to the right is able to act on rout and produce a full signal.

There will be a delay, in addition to the margin of safety already attained, in the stage to the

right acting on rout. This delay is comparable to the delay in rp becoming low as the same

circuit arrangement is involved.

However, making this assumption does not imply that there is not another sequence of events

54

Two-dimensional micropipelines

by which the circuit can produce an erroneous full signal. To be sure of this it is necessary

to consider all possible states the circuit can be in and to check that the final full signal is

only generated once. This should be immediately before the pipeline deadlocks when it cannot

accept more input and after the correct number of requests have arrived from the left hand

environment. To examine this state space the modelling method from Chapter 4 is used; this is

discussed in section 5.4.3.

5.3.2 Empty detection

Empty-detection is concerned with deciding when an initially full micropipeline (but with-

out a request waiting at the input) has emptied such that no more data can be read from the

pipeline. Compared to full-detection, detecting that the pipeline is empty is more straightfor-

ward. Whereas for full-detection all stages can be occupied even if the pipeline contains only

one distinct item of data, a pipeline for which all stages are unoccupied (and hence transparent)

cannot contain any data and is therefore empty. The simplified two-phase latch controller with

an em output (empty signal, or more accurately, unoccupied signal) is shown in Figure 5.6.

am

rout

Figure 5.6: Two-phase latch controller with 'empty' output

An n stage pipeline is shown in Figure 5.7. The AND of the em signals from stage i and the

empty signal empty1_ 1 forms the empty signal empty 1, empty 1 is simply em1 . As with full-

detection, the circuitry to detect the empty condition does not interfere with normal operation

and is therefore not delay insensitive. The empty signal should become high if and only if all

the stages are unoccupied.

Without any timing assumptions the circuit will not work correctly. The scenario with an n

stage pipeline is as follows: All pipeline stages are unoccupied except the right most two stages

55

Two-dimensional micropipelines

0 	nfl rout 1-----i nifl rout 	nfl rout

1 	I n-i
not connected

am 	

!t
em

lain aoutl_
em
_

	 i

empt; 	 emPtY_1 	
emPtyn

Figure 5.7: Micropipeline with em empty-detection

n and n - 1. The right hand environment delivers an aout to stage n. Stage n signals it is

unoccupied by making em high. Stage n responds to the waiting request from stage n - 1 and

captures new data, however it does not yet return em to low (for example a long wire delay).

Stage n then acknowledges to stage n - 1 which can then signal empty,,—,, this combines with

the high em to give a high on empty, even though there is one item of data still in stage ri.

Eventually em will go low and empty will return low.

To avoid this problem, the assumption is needed that em has returned low, before stage n

acknowledges receipt of the waiting request to stage n - 1. This assumption on its own is

somewhat 'tight'. Within a single stage em would be required to become low before an ain is

produced. This involves a race between the latch enable to L2 permitting the ain to occur and

the same latch enable signal reaching the AND gate connected to em. This is the assumption

that will be made for the purposes of verification later as the assumption is localised to a single

pipeline stage. In practice, however, stage n - 1 will take some time to respond to the am, as

an event on aout must pass through Xl and the data latch before being able to influence em

and hence empty_i.

Again, making this assumption does not imply that there is not another sequence of events by

which the circuit can produce an erroneous empty signal. Once again, verification using formal

methods is used to test this; this is discussed in section 5.4.4.

56

Two-dimensional micropipelines

5.4 Method I - modelling

In this section CCS is used to verify the mechanisms described earlier for full- and empty-

detection. The term 'the timing assumption' refers interchangeably to the timing assumption

described in section 5.3.1 for full-detection or in section 5.3.2 for empty-detection.

5.4.1 Overview

The method used to confirm the correct operation of full- and empty-detection involves the cre-

ation of a model for a single pipeline stage. Several of these pipeline stages are then combined

and composed with a model of a suitable 'chain' of AND gates. The resulting composition is

tested against a simple specification which is 'correct by inspection'.

Three approaches were identified for how to model a pipeline stage consisting of a simplified

two-phase latch controller and full- or empty-detection circuitry.

Model the circuit at a gate level by composing a CCS process from processes describing

each circuit element.

Extend the specification for a two-phase latch controller (Spec TwoPhase from sec-

tion 4.6. 1) to include rp or em actions.

Create a new 'high-level' model of a pipeline stage including request-pending or unoc-

cupied detection.

The first approach suffers from two drawbacks. The first, a potential problem, is state space.

Several new circuit nodes have been introduced with the circuitry to generate rp. In particular

these nodes are not synchronised with the original latch controller circuitry giving rise to a

larger state space. The generation of em is simpler. However, in both cases the correctness of

the original latch controller circuit would be re-verified, this is unnecessary as the additional

circuitry does not synchronise with and hence can not interfere with the latch controller part

(assuming an absence of implementation issues such as fan-out). The second drawback is

that for both full- and empty-detection it would be hard to incorporate the timing assumption

without 'hacking-on' some CCS to ensure the assumption is maintained throughout all possible

states in the model.

57

Two-dimensional micropipelines

The second approach would seem the most attractive. In this the specification of a two-phase

latch controller operating in a correct environment would be extended to include the generation

of rp and em actions. The specification Spec TwoPhase is composed from two processes, one

which models the left-hand (input) interface of a pipeline stage and another which models the

right-hand (output) interface. These left and right-hand processes synchronise in a straight-

forward manner corresponding to the capturing of data. This synchronisation does not vary

depending on if there is a waiting request or not. Generating rp and em actions involves a

more complex synchronisation between left and right-hand sides if the timing assumption (for

example relating rout and rp) is to be met. To state when rp or em may change and when they

must change by, requires an examination of the state space for a pipeline stage. This leads to

the third approach.

The third approach is to examine the state space for a standard two-phase pipeline stage (a

stage without full- or empty-detection) operating in a correct environment and annotate this to

indicate when rp or em may change and must change by. Furthermore, the timing assumption

only involves ensuring that rp or em are at a logic low (rather than high as well) by a particular

time. The pipeline stage is modelled as two processes, one which is derived directly from the

state space of Spec TwoPhase and one, discussed next, which aids with the modelling of the

timing assumption.

5.4.2 Modelling the timing assumption

The process EL, given below and in Appendix A.9, can be thought of as a set-reset flip-flop

which converts events into a logic level. Upon a lo action the output, represented by action

can be thought of as becoming or remaining at logic low, and likewise hi for logic high.

Note that the output is still modelled using the event based modelling method discussed in

section 4.4.3. The action losync is to provide a synchronisation which can only happen when

the output state is a logic low.

EL def
 = EL0

def EL0 = 1o.EL0 + hi.ELo + losync.EL0
def

EL0 e = 1o.EL0 + hi.EL0e + i.EL1
def

EL1 = 1O.EL1 e + hi.EL1

ELie
de f

1O.EL 1e + hi.EL1 + i.EL0

58

Two-dimensional micropipelines

In use EL is composed with another process, P. representing a latch controller and the compo-

sition is restricted with the set {lo, hi, losync}. EL always accepts hi and 10 actions allowing

P to freely request that the output may become high or low regardless of the current state of

the output. Action losync may only occur when the output is low and is going to remain low

until a hi occurs. Process EL hence supplies an output which when requested to change can

change 'at any time' thereafter, but with the feature of P being able to block until the output is

low and will remain low until otherwise requested. This blocking of P removes the states from

the model for which the timing assumption is not met.

5.4.3 Full-detection

To model full-detection a model of a single pipeline stage including request-pending is created,

and then several instances of this are composed with a model of the AND gate chain to form a

pipeline with full-detection.

5.4.3.1 Single stage model

The model of a single pipeline stage, see Figure 5.8, is intended to be equivalent to the circuit

shown in Figure 5.4. In this model the output of the inverting buffer following Xl passes

through the data latch (see discussion in section 3.2 about positioning of the data latch), into a

non-isochronic fork to the request-pending detection circuitry and the isochronic fork between

Li and L2.

Figure 5.8 shows the state space of process LCU, a two-phase latch controller which is initially

unoccupied of data. The CWB code for L C U can be found in Appendix A. 10. To create L C U

the process Spec TwoPhase was minimised with the CWB "mm" command and re-entered by

hand to have simple state names. To guard against errors being introduced LCU was then

checked for observational equivalence to Spec TwoPhase.

By inspection, there are two places in the state graph where request-pending (rp) can change

to logic high, after an nfl event when in state LCU4 or LCU6 . Note that LCU1 is a state in

which an nfl has occurred, either the nfl has just arrived from the left hand environment (edge

from LGU to LCU1), or there was a nfl waiting (edge from LCU8 to LCU1). Both LCU4

and LCU6 are states in which a previous nfl has already occurred (causing the stage to become

occupied) but an aout (causing the stage to become unoccupied) has not yet occurred. There

59

Two-dimensional micropipelines

are two places, rather than one, because of the different possible orders in which rout, hij and

nfl may occur. To indicate that rp may become high a hi action is inserted after the riri in

both places and LCU is composed with EL as described in section 5.4.2. The addition of hi,

and losync described below, are shown in the state diagram of the new process LCUrp in

Figure 5.9. The CWB code for LCUrp is given in Appendix A.10.

Again by inspection, there is one place where rp can change to logic low. When in state LCU8

there is a request-pending condition and upon the aout which must follow, the latch controller

will return to being unoccupied and hence rp can be cleared. A 1—o action is inserted after the

aout.

To meet the timing assumption rp must change to logic low before rout can occur when in

state LCU2 and LCU4 . This is done by the insertion of a losync action which can not occur

unless rp is low and will remain low until a hi action. The existing definition of LCU2 is:

LCU2 lef = rout.LCU3 + Ti.LCU4 .

The obvious way to add losync is to change this definition to become:

LCU2 def = losync.rout.LCU3 +hiii.LCU4 .

However, there is a problem with this. Provided rp is low, or can become low and will remain

low, losync can freely occur (see discussion below). This losync is observable as a r action

from the composition LCUIEL. This r action can 'just occur' and after doing so the choice

between rout and a—in is restricted to just rout. This means that the internal communication

to ensure rp is low would be able to restrict the state space representing the latch controller

operation. What is needed is a way to express the property that rout can occur only after

losync has occurred, but that if losync does occur the hiui choice is still available, as if the

lo sync had not occurred. This can be done by using the definition below, a similar arrangement

is used for extending the definition of LCU.

LCU2 	1osync.(rout.LCU3 +hii.LCU4) +hii.LCU4.

The addition of both lo and hi actions does not influence the latch controller operation, this is

because EL always permits the complementary lo and hi actions to occur.

MIII

Two-dimensional micropipelines

The losync synchronisation removes states from the model which correspond to circumstances

when the timing assumption is not met. Assuming that the single stage model, LCUrp, is

correct enough such that the losync synchronisation can not occur following a El (which

would result in deadlock and hence be detected) losync may freely occur once the rp output

is at logic low. This freedom is ensured because the rp output is 'connected to' an AND

gate process (part of the full-detection circuit outside the pipeline stage) which always permits

input events (in order to permit quenching) and hence the AND gate can not block rp and in

turn block the latch controller operation. For this reason in the LCUrp process losync can

be treated as a free to occur r action when in state LCUrp2 or LCUrp4 , as was assumed

previously.

In summary, the use of EL and losync provides a way of ensuring that the input to the AND

gate driven by rp has become low before particular states in the latch controller can occur

(hence modelling the timing assumption) and without the additional circuitry restricting opera-

tion of the latch controller.

The LCUrp process does not always accept input events nfl and aout, hence breaking the

requirement from Chapter 4 that circuit inputs should not block. However, this does not matter

here, as it is already known that the latch controller implements the two-phase protocol cor-

rectly. The controller hence provides a correct left and right-hand environment for adjacent

stages and therefore can not produce output events which would cause quenching on the inputs

of adjacent stages.

The final model of a pipeline stage LCURP is composed from LCUrp and EL:

LCURP
def = (LCUrpIEL[rp/out])\{lo, hi, losync}

To confirm that LCURP still operates correctly as a latch controller, LCURP[r/rp] was tested

and found observationally equivalent to Spec TwoPhase. This confirms that the addition of 10,

hi and losync does not interfere with correct operation of the latch controller, provided that

the rp output is not blocked, that is to say that the i action is free to occur. Note that this test

does not confirm that the generation of rp is correct.

To test that rp generation is correct a single stage pipeline connected to a right hand null

environment was modelled and shown to be equivalent to the specification:

61

Two-dimensional micropipelines

Sin gleStageSpec L
ef

riniI.rin.?.O

Whilst this shows that i correctly occurs when the single stage pipeline is full, it does not

confirm that the correct timing assumption is being modelled. Modelling with multiple pipeline

stages can not test this either. It is possible for an error introduced during the construction of

the LCURP process to model a more restrictive timing assumption than the one intended and

the model would still confirm correct circuit behaviour. In a previous attempt, prior to use of

the EL process, the state space of LCU was extended by hand directly to give the LCURP

process. Due to the many orderings in which signal changes may occur this manual method is

error prone and the first attempt implemented a more restricted version of the timing assumption

than was necessary. The use of the EL process was then chosen as a way to simplify this.

5.4.3.2 Multiple stages

To test that full-detection operates correctly, several pipeline stages are modelled along with

a chain of AND gates and a right hand null environment as shown in Figure 5.5. This was

performed for two, three, four and five pipeline stages. Appendix A.!! contains the CWB code

for a three stage pipeline. The three stage pipeline was shown to be observationally equivalent

to the specification:

ThreeStageSpec def
 rin.ain.rin.ain.rin..rin.f.O

Whilst this verifies full-detection for the number of stages tested, strictly speaking it does not

show that it will work for an arbitrary number of stages, however likely or 'obvious'. Such a

check can not be performed with the CWB as the CWB expands the state space of the model

and so it must be of limited size.

5.4.3.3 Request-pending with only XOR

A further optimisation which could be tested is to remove the AND gate Al from the request-

pending detection circuit leaving just X2. This was found (using the CWB) not to work cor -

rectly for even a two stage pipeline. The pipeline is capable of erroneously indicating it is

full because each stage can signal request-pending as a request is passing across latch Li and

these signals combine in the AND gates to produce a glitch on the full output. If further

Two-dimensional micropipelines

timing assumptions were introduced it would be possible to remove Al but this has not been

investigated. It was decided that the circuit with Al provided a good balance between circuit

complexity and timing assumptions. On a similar note, it might be possible to create a circuit

which does not have the timing assumption, for which the latch controller operation is influ-

enced by the request-pending detection. However, this would probably require an isochronic

fork between the pipeline stage and the AND gate chain in order to 'know' when the AND gate

input is low and would probably incur additional circuitry.

5.4.4 Empty-detection

Modelling and verification of the empty-detection circuitry, from Figure 5.7, is performed in

an identical manner as with full-detection. The main difference is that the pipeline must be

initialised to be full, but without a waiting request on the left most pipeline stage. Two single

stage pipeline models are hence required, one for the left most stage in the pipeline and one for

the other stages, differing only in initial state. As with full-detection the EL process is used to

supply the em output and similar care is required with the insertion of losync actions.

Figure 5.10 shows the state space of process LCO, an initially occupied latch controller with

a request waiting from the stage to the left. By inspection the positions where I, 1i1 and

losync should be inserted are found. After an aout is received the latch controller becomes

unoccupied and so em should go high, therefore after each aout a iF1 action is inserted. The

timing assumption states that em should be low before a in occurs, provided the stage really is

occupied rather than the ain is just slow in occurring. Therefore losync is inserted before the

Ii from state LCO 2 and LC04 . The state space for the resulting process LCOem is shown

in Figure 5.11.

The final model of a single stage, LCOEM, is composed from LCOem and EL and was tested

for observational equivalence with Spec TwoPhaseFull (Spec TwoPhase with a different initial

state). The CWB code for this and the other processes involved in empty-detection is given in

Appendix A.12. In a similar manner to full-detection, empty-detection was tested for one to

five pipeline stages. The three stage pipeline was shown to be observationally equivalent to the

specification:

ThreeStageSpec
def = aout. rout. aout. rout. aout.empty.0

63

Two-dimensional micropipelines

LCU

nfl

I LCU1 I

capture

/ NN

	

'rout
	

'a in

	

LCU3
	

LCU4

/\
	

/\
aout 	'am
	

'rout 	nfl

LCU5 	//cIILC U6 	LCU7

/
lain 	nfl 	'rout 	aout

0

	

4~~
>
	 aout

Figure 5.8: State space of initially unoccupied latch controller

r'AI

Two-dimensional micropipelines

On

capture

losync 	 'am

	

I ' tLCUrp3'amn.LCUrp4 I 	I

	

'rout 	 am

IP3I 	 L

- I
'am
	

aout 	 losync 	 rin

	

LCUnp5 	 vout.LCUrp6+rin.'hLLCUrp7 I
IN

	

'am 	 'rout 	nfl

LCUrpG 	 'hLLCUrP7 I

	

aout 	 nin 	 hi

F 	I-CtIt'PB 1 	I LCUfP7]

'hi 	 'rout

LCUrpS

T
'io.LCUrpI

Figure 5.9: Modified LCU process

65

Two-dimensional micropipelines

LCO

aout

I LCO1 I

capture

A LCO2

'rout 	 'am

I LCO4I 	ILCO3I

/\ 	/\
aout 	lain 	rout 	nfl

LC06 	LC07] 	LCO5

nfl 	lain 	aout 	'rout

0

nfl

Figure 5.10: Initially occupied latch controller

Two-dimensional micropipelines

aout

'hi

capture

I1ocosm2I

ILC0Cm2 I
, N

'rout 	 losync

I 	i 	onoitLco'mJ:'I

k 	'rout 	 'am

LCOern4 LCOem3 I

	

aout 	losync 	 'rout 	nfl

_ /
_____ (

LCOe.n5

N
aout 	'am 	 'rout

LCOOrnIF

'hi 	 aout

	

ILCOefn6I 	 Il'hELcOem8I

'am 	 'hi

rin

0)
0

>

nfl

Figure 5.11: Modijfed LCO process

67

full1

------- ø-Jrin rout_•
I 	not connected

ain aout 	0

Two-dimensional micropipelines

5.5 Method II— circuit

This section describes a second method of full- and empty-detection. The circuits for full- and

empty-detection are similar in structure and involve a simple function of the handshake signals

between pipeline stages. Unlike Method I, for this method any two-phase latch controller circuit

may be used without modification. Additionally a four-phase version should be possible.

5.5.1 Full detection

Figure 5.12 shows an n (n even) stage micropipeline with full-detection. Initially the pipeline

is empty and all rout, f and full signals are 0. Once the pipeline is full alternate rout signals

will alternate between 0 and 1 and full will change to 1. A chain of AND gates (with an

inverter on every second stage) is used to detect when the pipeline is full.

Figure 5.12: Micropipeline with full-detection

As before it is essential that fulln does not glitch high. Consider this scenario for an even

number of stages n: (i) Assume the stages to the right of stage n - 1 are full and stages n

and n - 1 are empty so that full-2 is high and ring, rout, ring_,, rout_i are low. (ii)

ring goes high. (iii) rout becomes high. (iv) rin_1 goes high but f does not change and

remains low. (v) rout_ 1 goes high, permitting fi and hence full_ 1 to become high. At

this point it is possible, albeit unlikely, for full to become high. f n may then go high and

fUlln returns low.

To avoid this problem the assumption that f 1 changes before stage i - 1 responds to rout 1

is made. This assumption is valid because before stage i - 1 can respond to rout, it must

capture data, which involves a large delay (due to the high capacitance of the row latch enable

line) compared to the propagation of f 1 plus the internal response of the AND gate (plus the

empty

Two-dimensional micropipelines

inverter delay on every second stage). This assumption is a little strict; the assumption need

be enforced on only either rising or falling edges of f i depending on whether i is even or odd.

However, more importantly the assumption restricts all activity in stage i - 1 to occur (for

example the generation of ain1 _ 1 and rin_ 2) after f 1 has changed.

Assuming (for only one edge) that f 1 must change before f_ 1 , unless f 1 changes back again

first, should be sufficient. However, the simpler (and still valid as argued above) assumption

that f 1 changes before rout 1 influences the next pipeline stage is simpler to model, as this

assumption can be incorporated into a model of just one pipeline stage, without additional

synchronisation between pipeline stages. Again verification is required to check that this timing

assumption is sufficient; this is discussed in section 5.6.

5.5.2 Empty detection

Empty-detection is performed in a similar manner to full-detection, as shown for an even num-

ber of stages n in Figure 5.13. For an even number of stages the aout signals from each stage

are combined with a chain of AND gates to form empty, for an odd number of stages a chain

of OR gates is used and the final output inverted. This is because the waiting request (which

will be a 0 or 1 depending on whether the number of stages is even or odd) present at the left

hand input will determine the value of all the aout signals once the pipeline is empty. This

corresponds to the left most column of latches in Figure 5.3 and is the reason for the left most

OR/AND gate being connected to am 1 (aouto). This is equivalent to the special left hand

stage used in the Method I model.

nfl rout 	-- -

not connected 	 - -

exrty1 -

Figure 5.13: Micropipeline with empty-detection

Using a similar analysis to that for full-detection, it is assumed that e 1 changes before am 1 can

RZ

Two-dimensional micropipelines

change and thus influence stage i — 1 and in turn e 1 _ 1 . This assumption is valid, as the response

to am 1 by stage i - 1 involves the long delay changing a column latch enable line, compared

to the short delay on e 1 . As with full-detection again the assumption is over strict and the more

relaxed version involving e 1 and e 1 _ 1 (defined in a similar manner to that for full-detection)

should be sufficient.

5.6 Method II- modelling

The simple assumptions from sections 5.5.1 and 5.5.2 can be easily formalised by the addition

of arcs to the STG for a two-phase latch controller (originally shown in Chapter 2, Figure 3.3).

The STG for a two-phase latch controller with the addition of the f signal is shown in Fig-

ure 5.14. The addition of arcs capture —* f and f —* rout correspond to the assumption

made in section 5.5.1. The STG corresponds to the circuit for a single stage shown in Fig-

ure 5.15, note carefully the new position of the rout label. Events rather than separate low and

high transitions are modelled. The inverter present at every second stage is modelled by setting

the appropriate initial condition of the AND gate input.

nfl 	 rout
. NI
I 	capture
I 	/.\
l 	I 	pass 	S

\ P
ain 	 aout

Figure 5.14: STG of two-phase latch controller with f signal

f

nfl
rout

ain aout

Figure 5.15: Single pipeline stage with separate f and rout signals

In a similar manner a two-phase latch controller with the e signal is modelled using the STG

shown in Figure 5.16. The addition of arcs aout — e and e -+ ain correspond to the assump-

70

Two-dimensional micropipelines

tion made in section 5.5.2, the corresponding single stage circuit is shown in Figure 5.17.

rin 	 rout

1\ 	
capture 	I

/ \ I pass

am _
	

_ aout

Figure 5.16: STG of Iwo-phase latch controller with e signal

nfl rout

ain 	I 	a

e

Figure 5.17: Single pipeline stage with separate e and aout signals

To form the overall circuit model first the STG for a single stage was converted to a CCS

description (see section 4.6.3). A multiple stage model was then composed and this in turn

composed with a model of the chain of AND or OR gates. The resulting process was then

tested for observational equivalence ti a simple specification process using the CWB.

The specifications for three siage pipelines with full-detection and empty-detection are shown

below. FuliSpec is mere complex than EmptySpec, as full can be generated before the final

ain and the left hand environment may also generate an additional nfl.

Full Lef
 full.ain.rin.O + ain.(full.rin.O + rin.full.0)

def
FuliSpec 	= rin.iIi.rin.i.rin.Full

def
EmptySpec = aout. rout. aout. rout. aout. rout. aout.empty.O

This has verified that, using only one simple assumption in the control circuitry, full- and empty-

detection work for a few pipeline stages. Note that the delays in each OR/AND gate in the full-

and empty-detection are unbounded. However, as with Method I, only a limited number of

stages can be tested using the CWB; up to five stages have been tested.

71

Two-dimensional micropipelines

5.7 Review

5.7.1 Comparison with synchronous equivalent

When compared to a fully synchronous version an area saving should be possible due to the use

of latches instead of registers. The overhead of the micropipeline latch controllers is small; one

latch controller is needed for each row and each column. For comparison of power consumption

the following points can be observed, all of which suggest a significant power saving over the

synchronous version.

• The number of data copy operations, where a latch is loaded with new data, in the syn-

chronous version is double that of the micropipeline version. This is because registers,

composed from two latches, are used.

• The load per bit on the clock signal in the synchronous version may be twice that of

the load per bit on the latch enable signal in the micropipeline version (again because

registers instead of latches are used).

• The number of latch enable transitions to fill or empty an n stage micropipeline is

>T0' 2i + 1, which is half that of the number of clock transitions, 2n2 , required to

fill or empty the synchronous equivalent (assuming single-edge sensitive registers).

The work by Tierno and Kudva [35] also offers a comparison in favour of the micropipeline ver-

sion, although they compare asynchronous bit-parallel matrix transposition with synchronous

bit-serial matrix transposition.

5.7.2 Comparison between Method I and Method II

For full-detection, Method II involves less circuitry and does not require modification of the

latch controller. For empty-detection Method I and Method II involve the same amount of

circuitry, but Method II might be preferable for layout reasons because it does not require

access to the latch enable signals.

72

Two-dimensional micropipelines

5.7.3 Comparison with previous work

Tiemo and Kudva [35] present both two- and four-phase matrix transposition architectures. The

two-phase method uses two latches per data bit, with alternating latches used for the two phases

in the two-phase protocol, permitting continuous data flow. Completion detection is used to

avoid delay matching the switch between row and column modes of operation. However, this is

all at the expense of control circuitry, including counters to decide when the rows and columns

are full or empty.

Their four-phase method is similar to Method H. Each pipeline stage outputs 'empty' and 'full'

signals and these are combined with a single multi-input AND gate. A timing assumption

similar to one made in Method II is made in the generation of these signals and in their delivery

to the AND gate. One difference is that Method II uses a chain of gates rather than a single gate

and so the timing assumption remains localised. This arrangement should also be faster, due to

both the simple CMOS gate implementation and because the full or empty signal propagates in

the direction in which the pipeline is filling or emptying.

A further difference is that their four-phase method assumes a square matrix and uses a sin-

gle 1-D micropipeline, multiplexed between rows and columns. Switching between rows and

columns is a bounded-delay operation which is assumed to happen between clock edges of

the synchronous input and output clock. This bounded-delay is likely to be of similar magni-

tude to the reset delay needed in both Method I and H. Finally, to permit continuous operation,

rather than add elastic buffers, two four-phase transpose circuits are used in a double-buffering

arrangement. These approaches could also be applied to Method I and II.

5.7.4 Modelling method

The way Method II was modelled is somewhat simpler than the approach used for Method I.

This is because specifying the circuit behaviour with additional timing assumptions was simpler

using an STG than extending a fiat state-space model. However, the use of the EL process in

section 5.4.2 is an approach which could be applied to circuits for which the STG specification

is too large to be manageable, for example a circuit composed from many sub-circuits, provided

that it is sufficiently clear where the synchronising I, iiII and losync actions should be placed.

Although the verification of the circuits shows that the circuits work without unknown timing

assumptions for a small number of pipeline stages, tests with the CWB can not show the result

73

Two-dimensional micropipelines

for an arbitrary, but finite, number of stages. The recursive nature of the definition of the

full-and empty-detection circuits suggest that an inductive proof should be possible. Such an

inductive proof would take the form of assuming correct behaviour for n stages and showing

that an n + 1 stage model must be correct if an n stage one is. A base case can then be

tested using the CWB. The CCS composition of an n stage model, a single pipeline stage, the

corresponding AND/OR gate and a suitable environment is not small and an initial uncompleted

but time-consuming attempt suggests that such a proof would be laborious. One could say

it seems 'obvious' the result must hold for n stages, but this is not proof. Additionally the

more relaxed timing assumptions for both Method I and II could be modelled. However, given

the existing timing assumptions have been argued to be safe, the extra modelling would seem

unnecessary. Finally the timing assumptions made and the modelling performed does not rule

out the possibility of using a fast-forward version (see Chapter 2) of the latch controller to

improve performance.

5.8 Conclusion

This chapter has presented an architecture for performing parallel-serial conversion or matrix

transposition. By using a two-dimensional micropipeline like structure with level sensitive

latches instead of edge sensitive registers both area and power can be saved. Key features of the

architecture operation, namely full- and empty-detection, have been verified using extensions to

the modelling method from Chapter 4. Future work could involve circuit level simulations and

layout to confirm area and power saving, a comparison of speed with the synchronous version

and an inductive proof to extend the verification to an arbitrary number of pipeline stages.

74

Chapter 6
Review of discrete cosine transform

VLSI accelerators

6.1 Introduction

As an introduction to the discrete cosine transform (DCT), prior to the discussion of an asyn-

chronous implementation in Chapter 7, this chapter provides a review of VLSI implementations

of the DCT in which the distinct roles of algorithmic and multiplier design are identified and

key circuit and logic innovations are highlighted. To select from the large number of DCT

implementations in existence, only implementations which offer reasonable performance and

for which fabricated implementations and quantitative results have been reported are studied.

In general these implementations are aimed at high performance applications, but a few lower

performance implementations (notably the bit-serial based ones) are included for completeness.

All of the implementations reviewed in this chapter are synchronous.

6.2 Overview

The DCT forms a key role in several image compression standards including JPEG [36] for

still picture compression, ITU-T H.261 [37] and H263 for teleconferencing, and ISO MPEG-i

and MPEG-2 [38] for audio-visual compression and communication. Because of the existence

of these standards, new consumer markets are emerging including digital direct satellite televi-

sion broadcasting, high definition television (HDTV), digital video disc (DVD) and multimedia

personal computers. All of these standards use an 8x8 two-dimensional (2-D) DCT which has

therefore become the focus for VLSI implementation.

The 2-D DCT can be described as a transform from a 2-D matrix of pixels to a 2-D matrix of

'spatial frequency information'. The DCT is used for image compression because the trans-

formed matrix contains many small or zero entries. Further the response of the human eye is

frequency dependent and this can be exploited by weighting the transform results according to

75

Review of discrete cosine transform VLSI accelerators

the ability of the human eye to perceive them. For transmission the resulting matrix is quantised

(commonly resulting in many zero values) and encoded using run-length and Huffman encod-

ing to remove sequences of zeros. By changing the amount of quantisation, image quality and

bit rate can be traded which thus enables a controllable loss of the perceived image quality.

In this chapter several recent VLSI implementations are reported since they illustrate many

different algorithmic and architectural decisions. For many applications such as HDTV, the

receiver is the cost critical component and so implementations for the inverse DCT (IDCT)

are described in some cases without the corresponding forward DCT. There are three factors

which differentiate these designs: the underlying DCT algorithm, the digital architecture for

multiplication and specific circuit and logic techniques.

6.3 The 2-D Discrete Cosine Transform

For an input matrix x(rn, n) and an output matrix z(k, 1) with {O < m, n, k, 1 < N} the

forward N x N 2-D DCT is defined as

N-i N-i

z(k, I) = a(k)a(l) x(m, n) 	
(2m + 1)irk 	(2n + 1)71

cos 	 (6.1)
2N 	2N

m=0 n=0

and the inverse N x N 2-D DCT as

2
N-1 N-1

x(m, n) = 	a(k)cE(I)z(k, 1) 	
(2m + 1)ith 	(2n + 1)irl

cos 	 (6.2)
k=0 1=0 	

2N 	2N

wherea(0) = Vi and a(k) = 1 for kO.

A naïve implementation of (6.1) or (6.2) requires N4 multiplications. However, by noting that

each cosine part only varies with one of the summations, the transform can be calculated by a

row-column decomposition with only 2N 3 multiplications; 21V multiplications per input pixel.

The DCT and IDCT become:

Z=AXAT 	 (6.3)

X = ATZA 	 (64)

76

d d d d d d d

a c e g —g —e —c —a

b f -f —b —b -f f b

C —g —a —e e a g —c

d —d —d d d —d —d d

e —a g c —c —g a —e

f —b b -f -f b —b f
g —e c —a a —c e —g

(6.6)

Review of discrete cosine transform VLSI accelerators

X 	1-D 	 transpose 	 1-D

DCTIIDCT 	buffer 	DCTIIDCT

Figure 6.1: Row-column decomposition

where X is the source pixel (time domain) data, Z the DCT output coefficients (frequency

domain) and A is an orthogonal matrix defined as:

a(u,v) = 	a(n)cos (2v+1)u (6.5)
2N

This row-column decomposition is equivalent to a 1 -D DCTJIDCT followed by transposition

and a second 1-D DCTIIDCT, as shown in Figure 6.1.

Direct two-dimensional methods are also possible with alternative optimisations, these are dis-

cussed later.

6.4 Some DCT algorithms

In this section two 8-point 1-D algorithms for the row-column decomposition and two direct

8x8 2-D approaches are considered.

6.4.1 Algorithm by Chen et al

Matrix A for the 8-point DCT can be written as:

77

Review of discrete cosine transform VLSI accelerators

The multiplier coefficients a-g are listed in Appendix B.

The symmetry in this matrix can be exploited and the 1-D DCT rearranged to give:

YO d 	d 	d 	d xo+x7

1/2 = b 	f 	-f 	—b x1+x6

d —d —d 	d x2+x5

Y6 f 	—b 	b 	-f x3+x4

1/1 a 	c 	e 	g x0—x7

- c 	—g 	—a 	—e X1 - X6

Y5 e 	—a 	g 	C

g 	—e 	c 	—a x3—x4

The (N x N) multiplication matrix has been replaced by two (N12) x (N12) matrices, which

can be computed in parallel, as can the sums and differences forming the vectors on the right-

hand side of (6.7).

The implementations by Madisetti and Willson [39], Uramoto et al [40], Matsui et a! [41] and

Jang et al [42] are based upon this decomposition which requires 32 multiplications. However,

Madisetti and Willson observe that the first part of (6.7) only involves multiplication by three

rather than four different constants and so reduce the number of multiplications to 28.

The frequently referenced algorithm by Chen et al [43] is also derived from (6.7) but only

requires 16 multiplications with 2 multiplications on the critical path. The data-flow graph for

Chen's algorithm is shown in Figure 6.2. To compute the IDCT, the role of the inputs and

outputs are reversed.

If Chen's algorithm is directly implemented in 4 clock cycles, one for each stage in the data-flow

graph, each cycle requires at most 8 additions and at most 8 multiplications. The implemen-

tation used by Madisetti and Willson also takes 4 cycles and requires 8 additions per cycle,

but only 7 multiplications per cycle are needed (although it is 7 in every cycle); additionally, 1

adder and 1 subtractor are needed to prepare the right-hand side sums and differences.

(6.7)

Review of discrete cosine transform VLSI accelerators

0

4

2

6

1

5

3

7

o subtraction

Figure 6.2: The algorithm by Chen et al

6.4.2 Algorithm by Arai et al

Although the minimum number of multiplications for the 8-point 1-D DCT algorithm is 11

[44], the algorithm by Arai et a! [45] requires only 5. This is possible because the outputs are

scaled: to obtain the true DCT value each output requires a further multiplication. However, in

many systems this can be incorporated into multiplication coefficients used in the subsequent

stage, for instance the perceptual weights in the video encoding algorithm. This type of algo-

rithm is known as a scaled-DCT. If the two-dimensional transform is produced by row-column

decomposition, then the scaling for both layers of one-dimensional transforms can be combined

and performed after the second layer. This algorithm forms the basis of the asynchronous DCT

discussed in Chapter 7.

As can be seen from Figure 6.3, the Arai algorithm also has the useful properties that the

5 multiplications can be performed in parallel and that no path through the data-flow graph

includes more than one multiplication. Details of the inverse transform may be found in [45].

The Arai algorithm provides a good basis for a low cost scaled-DCT of other orders since it

views the scaled N-point DCT as the real part of a 2N-point discrete Fourier transform, which

can be effectively implemented using fast DFT algorithms based upon cyclic-convolutions and

Winograd's algorithm. Such solutions will display the same basic structure as the 8-point data-

79

Review of discrete cosine transform VLSI accelerators

0

4

2

6

5

1

7

3

Figure 6.3: Forward algorithm by Arai et al

flow graph.

6.4.3 Algorithm by Chang and Wang

Chang and Wang [46] describe an algorithm which performs a direct 2-D transform using row-

column decomposition within a systolic array. The N x N 2-D DCT in (6.3) is split by applying

row-column decomposition into two steps of calculation, with intermediate result Y. Denoting

cij= cos from (6.5), and neglecting the scale factor, the matrix multiplications can be

written as:

Ykn = E X inn Ckm 	 (6.8)
m=O

Zkl = 	Yk n C1 	 (6.9)

(6.10)

By using the symmetries of the cosine function, and assuming that N is even, they define

Umn = X mn + (_1) k X(N_ l _m)n 	 (6.11)

Wo

Review of discrete cosine transform VLSI accelerators

and

Vk = Ykn + (-1) 1 Yk(N_ 1 _n). 	 (6.12)

to give:

N12-1

Ykn = i UmnCkm. 	 (6.13)
m=O

N/2-1

Zk1 = 	VCI 	 (6.14)

The algorithm is implemented as a systolic array in four stages corresponding to (6.11), (6.13),

(6.12), (6.14). This requires a total of 64 multipliers for an 8x8-pt DCT.

6.4.4 Algorithm by Liu and Chiu

A different approach, taken by Liu and Chiu [47-49], is to calculate a running (or recursive)

DCT in which the values of the DCT are updated with each new sample. Given a sequence of

input data a 1 -D DCT of the last N input values is output. Each DCT utilises the previous DCT

result, the next DCT is obtained by adding the difference between it and the previous DCT. The

discrete sine transform (DST) is needed in this calculation of the DCT and hence both DST and

DCT outputs are available.

The 1-D DCT for the sequential input starting at x(t) and ending with x(t + N - 1) is:

t+N-1 	
ir[2(n - t) + 1]k

X(k,t)
= La(k) 	

x(n)cos 	
2N 	

(6.15)
n=t

for k = 0, ..., N - 1 and a(k) is as before. Liu and Chiu then derive a recursive expression for

the DCT X and DST X to give:

X(k, t + 1) = {X(k, 1) + [—x(t) + (_ l)kx(t + N)] cos 7rk I cos
irk

irk 	irk

	

+ {X 5 (k, t) + [—x(t) + (_l)'x(t + N)] sin 	sin 	(6.16)

where k 	0; k = 0 is a special case. X, (k, t + 1) is calculated in a similar manner, the first

81

Review of discrete cosine transform VLSI accelerators

X

X c (k,t+1)

X s (k,t+1)

Figure 6.4: DCT lattice by Liu and Chiu

cosine and sine term in each half of (6.16) are swapped. X, (k, t + 1) and X, (k, t + 1) are

obtained from X, (k, t) and X, (k, t) by subtracting the effect of x(t) and adding the effect of

x(t + N). This is called the time recursive DCT.

The lattice structure to compute x, (k) for k = 1, ..., N - 1 is shown in Figure 6.4 for a block

size of 1; Cn = cos(irkri/2N) and Sri = sin(7rkn/2N). A parallel array of this lattice is used

to generate all N DCT outputs in parallel (with a special reduced form for k = 0).

The 2-D version is achieved using a circular shift register between two 1-D DCTs and N-length

delays in each of the second layer filters. These together replace the usual transposition RAM

and networks. An implementation is provided by Snnivasan and Liu [50, 51]. Aburdene et a!

[52] describe a similar time recursive approach for a 1-D DCT based on Clenshaw's recurrence

formula [53].

6.4.5 Algorithm by Hsia et al

In [54] Hsia et al present an algorithm to calculate the 2-D IDCT directly by skipping non-zero

coefficients. The algorithm may be understood by considering the symmetries of the matrix

formed by the product of the two cosines in (6.2). For each value of (k, 1), the matrix can be

82

0

4

2

6

7

5

3

1

Review of discrete cosine transform VLSI accelerators

Figure 6.5: Forward algorithm by Loeffler et al

divided into 4 quadrants where the values of each are either the same as, the negative of, or

a reordering of values of the first quadrant. Furthermore, the values of the first 4x4 quadrant

can be calculated from the sum and difference of just four multiplications. Thus for each non-

zero input (DCT coefficient) to the IDCT, there are four multiplications, various additions and

negations.

6.4.6 Possible developments

For the un-scaled DCT, the family of 11 multiplier algorithms given by Loeffler et al [55] seems

attractive as does an alternative in the same paper which requires 12 multipliers (only one more

than the minimum of 11) and 32 adders. The forward algorithm with 11 multipliers is shown

in Figure 6.5. As with the Arai algorithm, this has the advantage that no path includes more

than one multiplier and that all the multiplications can be performed in parallel. McGovern et

al [56] propose a similar algorithm.

83

Review of discrete cosine transform VLSI accelerators

A direct 2-D algorithm which has not yet been implemented in hardware, is a 2-D development

of the Arai et al [45] scaled-DCT algorithm proposed by Feig and Winograd [57]. In this,

the multiplications from the two stages of the row-column decomposition are combined. The

result is a complete 8x8 2-D DCT with only 54 multiplications (with some shift operations for

1/2) and only 7 distinct coefficients (combined with a further shift operation for an eighth).

The latter property leads to either low multiplier coefficient storage requirements or a practical

number of hardwired multipliers. Furthermore, the networks for additions are formed by the

repeated application of only two sub-networks. The main disadvantage is that the algorithm

requires two matrix transpositions.

6.5 Multiplier architectures

There are three main multiplier architectures:

Combinatorial

Combinatorial multipliers take an n bit word and multiply by an m bit word to give an n + in

bit word. In many DCT implementations, purely combinatorial logic is used without pipelin-

ing. Such multipliers are typically implemented as a tree structure of adders and consume a

large chip area, but are very fast. A variation is the hard-coded combinatorial multiplier which

multiplies by a constant coefficient and therefore can be optimised for both area and speed.

Distributed arithmetic

Distributed arithmetic replaces combinatorial multipliers with a lookup table and accumulator.

The computation of the vector product multiply-accumulation is broken down as follows:

Given a multiplicand vector xk for k = 0,..., K and the constant multiplier coefficient vector

ak for k = 0,..., K the vector product is

V = 1: akXk- 	 (6.17)

84

Review of discrete cosine transform VLSI accelerators

If x, is in N bit two's complement fractional form, i.e.

Xk = —bko + 	b2
	

(6.18)

where bk fl represents the value, 0 or 1, of bit n of Xk then (6.17) can be computed as

y = 	ak(— bko) + 	
1k=0

aiciicn] 2

k=O 	 n=1
	 (6.19)

The partial products {i 0 akbk fl] are stored in a ROM and accumulated for each bit of the

multiplicand. Distributed arithmetic leads to a smaller area than a combinatorial multiplier

but only allows multiplication by a fixed set of coefficients. However, the coefficients are

easier to program (by changing the ROM contents) than the corresponding set of hardwired

combinatorial multipliers.

Serial

The bit-serial architectures balance the long processing time of each operation (only one-bit

per clock cycle) by operating on several words in parallel. Thus the input is word-parallel (a

row/column of 8 words) and bit-serial. A typical bit-serial system takes n + 1 cycles to add two

n bit values and n + m cycles to multiply an n bit word by an m bit coefficient. As with the

other multiplier designs a hard coded version can be made to multiply by a constant coefficient.

Bit-serial systems can be made to operate at very high clock frequencies due to the small prop-

agation delays involved in the small blocks of combinatorial logic, however, this is not evident

from the reported DCT designs to date. Bit-serial DCT implementations are simply a direct

mapping of a data-flow graph.

Conventional two's complement bit-serial multiplication progresses least significant bit first.

It has a high latency since the more significant half of the product is only generated after the

less significant half, which is generally discarded. On-line arithmetic avoids this delay by

progressing most significant digit first and by using redundant number encoding. Bruguera

and Lang [58] describe a DCT implementation using this technique, although no performance

figures are given.

85

Review of discrete cosine transform VLSI accelerators

x

- III MOMM MEN IiI I Iih
Figure 6.6:6.6: Multiply accumulate by Madisetti and Willson

6.6 Implementations

The following recent implementations were chosen to illustrate the use of specific logic and

circuit techniques to enhance performance.

6.6.1 1-D based designs

Madisetti and Willson [39] implement the Chen based algorithm discussed in section 6.4.1.

The 1-D DCT unit consists of 7 combinatorial multipliers, one for each of the matrix elements

a,..., g as shown in Figure 6.6, and 8 combinatorial accumulators to sum the outputs. To min-

imise the critical path within the DCT unit, hardwired multipliers are used. These multiply by

a constant coefficient which is fixed at design time leading to a faster and smaller module at

the expense of programmability. Thus one multiplier is needed for each each unique multiplier

coefficient. Each accumulator contains a multiplexer to select a particular multiplier output and

logic to perform either addition or subtraction according to the sign of the coefficient.

A 'data reorder unit' (not shown in Figure 6.6) prepares the sums and differences for the DCT,

and reorders the data into even and odd inputs for the IDCT. The whole 1 -D DCT/IDCT takes

4 clock cycles. Rather than use a second 1-D DCT unit, a single 1-D DCT unit is multiplexed

between the input data and the output of the transpose buffer implemented by a 64 word DRAM

(shown in Figure 6.7). However, since the single 8-pt transform requires only 4 clock cycles

and each data point is processed in two transforms, the clock rate is actually equal to the data

rate.

With conventional two's complement representation an n bit fractional number f can be ex-

y odd _0.

Review of discrete cosine transform VLSI accelerators

Figure 6.7: Multiplexed 1-D DCT by Madisetti and Willson

pressed as

f=_bo+>bk2_k 	bkE{O,1}. 	 (6.20)

The multipliers store the coefficients using radix-2 signed digit representation in which an n bit

fractional number can be expressed as

I = > Sk 2 	8k E {-1,0,1}. 	 (6.21)

This form of representation allows most numbers to be represented with fewer non-zero dig-

its than in two's-complement representation. Note that the multiplicand and the product use

two's complement representation. In the hardwired implementation one adder (also capable of

subtraction) is required per non-zero digit, thus giving a smaller implementation. Between 4

and 6 adders are required for the constants a,..., g to give 12-bit accuracy. The products are

accumulated in 22-bit wide carry-select adders.

In total 7 multipliers and 8 accumulators are needed. Using 0.8pm CMOS the N = 8 im-

plementation by Madisetti and Willson has an area of 10mm 2 . A complete 2-D transform is

computed every N 2 cycles and an input sample rate of 100MHz is possible.

Kovac and Ranganathan [59] describe a JPEG encoder based on the algorithm by Arai et al

(section 6.4.2) using row-column decomposition with two separate 1-D units. Although not

designed for real time MPEG a 100M11z input pixel rate is possible.

Each 1-D unit, shown in Figure 6.8, consists of 6 stages corresponding to the 6 columns of oper -

ations shown in Figure 6.3. Each stage contains a pipeline register set (RS) and a combinatorial

adder capable of negating the inputs, except for stage 4 which includes a single Wallace-Tree

87

Review of discrete cosine transform VLSI accelerators

RS-I 	RS-2 	RS-3 	RS-4 	RS-5 	RS-6

Figure 6.8: i-D DCT by Kovac and Ran ganathan

combinatorial multiplier. Each register set consists of two columns of 14-bit registers which act

as data buffers. Data from the previous stage is written into the left column and, once complete

is moved into the right column where it is loaded into the next stage.

Uramoto et a! [40] implement the Chen based algorithm using distributed arithmetic with two

separate l-D units. To halve the computation time the input values are processed in pairs so

that two partial products are accumulated at a time; this requires a dual port ROM. Throughput

is further enhanced by pipelining.

By changing the ROM contents the same circuit can be used to calculate the DCT or the IDCT.

Alternatively a ROM holding twice as many words can be employed and the appropriate half

selected. Uramoto et al have developed a dual plane ROM' which holds two banks of values

where only one bank can be accessed at a time. The dual plane ROM gives a 30% area saving

and a speed increase: combined with carefully designed accumulators and routing a 100MHz

input pixel rate is possible.

Karathanasis [60] also proposes an algorithm for use with distributed arithmetic, simulated to

M.

Review of discrete cosine transform VLSI accelerators

be capable of a IOOMIHz pixel rate, but with a smaller ROM requirement, only 10% of that

needed in the implementation by Uramoto et al [40].

Matsui et el [41] give another implementation using the Chen based algorithm capable of a

200MHz input pixel rate. Each of the two 1-D DCT units contain 8 distributed arithmetic

multiply-accumulators. The key feature is the high-speed logic design based upon differential

NMOS pass transistor logic [61]. Here a logic signal is transmitted as two complementary

signals with sense-amplifiers to detect the differential voltage (as small as lOOmV) between the

signals thus reducing the effect of parasitic capacitance.

Masaki et a! [62] describe another distributed arithmetic implementation of the IDCT using the

Chen algorithm with specific focus on producing a single chip MPEG decoder. A single 1-D

IDCT unit with pipelined Wallace-Tree adders is multiplexed with the input coefficients and

transpose buffer. A more sophisticated (more bits at a time) distributed arithmetic scheme is

used resulting in a 200MHz pixel rate with only a 100MHz clock.

For comparison two bit-serial implementations are mentioned. Cucchi and Fratti [63] imple-

ment the Chen algorithm with bit-serial arithmetic. Two bits are processed at a time so that the

internal clock rate is equal to the input pixel rate (40MHz). McGovern et al [56] also use bit-

serial arithmetic for an algorithm similar to Loeffler et al [55] requiring the minimum number

of adders and multipliers. Both of these implementations use 2 1-13 DCT units and a transpose

buffer.

6.6.2 Direct 2-D

Hsia et al [54] implement the algorithm in section 6.4.5 using pipelined combinatorial multipli-

ers to decrease the critical path. A K-bit by K-bit multiplier is composed from a tree structure

of four K/2-bit by K/2-bit multipliers, registers are inserted into the tree such that the critical

path involves only a K-bit adder instead of a K-bit multiplier. A bank of 64 accumulators holds

the current total for each of the IDCT output pixels. The implementation achieves an average

pixel rate varying from 150MHz to a maximum of 400MHz as the compression ratio varies

from 4 to 16. This corresponds to an average of 33% to 9% non-zero input coefficients.

Another direct 2-13 architecture exploiting zero valued DCT coefficients to reduce power con-

sumption is proposed by Xanthopoulos et at [64]. Further power reduction is achieved by

connecting latches to the inputs of each adder to stop unwanted transitions passing through

Review of discrete cosine transform VLSI accelerators

*12 *22

*02 *32 Xli *21

*01 *31 *13 *23

* 33 *03 *10 X20

*00 *30

Y02 y0 1 y03 y00

y 1 2 	Y ll 	Y 13 	Y10

Y22 y21 y23 y20

Y32 y3 1 y33 y30

U

Y y —' ---y+uc

Figure 6.9: First two stages of array for N = 4 by Chang and Wang

the adder. Finally the supply voltage and clock frequency are lowered when there are fewer

non-zero coefficients to be processed.

A systolic array is a structure of identical cells with many local and few global interconnections.

Such arrays are ideally suited to VLSI implementation due to good regularity, modularity and

concurrency. The algorithm by Chang and Wang [46] is implemented using systolic structures.

The structure to implement the first two stages, see section 6.4.3, is given here in Figure 6.9 for

N = 4. In a similar way structures for the second and third stages can be created (as detailed

in [46]). The IDCT can be implemented by simply inverting the order of the structures.

The adders (16 bit) and multipliers (12 x 12 bit) are combinatorial; a total of N2 multipliers

and N2 + 3N adders are required; a complete 2-D transform is computed every N cycles.

The implementation for N = 8 reads the data in word-parallel bit-parallel format (8 words per

clock cycle) and can support a pixel rate of over 320MHz—well in excess of current HDTV

requirements.

d-

Srinivasan and Liu [50,51] implement the 2-D lattice algorithm by Liu and Chiu [47-49] (sec-

tion 6.4.4) using distributed arithmetic multipliers. The partial product lookup ROM is ad-

0#1

Review of discrete cosine transform VLSI accelerators

dressed by a 12 bit word. This would give 4096 rows, to reduce area the ROM is split into two

6 bit addressed 64 row RUMS. One RUM output is then shifted, sign extended and added to

the other. Although only 32 multipliers are needed, the algorithm requires a large number of

bit-parallel registers.

6.7 Comparison and conclusions

Figure 6.10 shows the area each implementation requires, scaled to a constant 0-8/-Lm process

technology. The multiplier styles are combinatorial multiplier (CM), distributed arithmetic

(DA) and bit-serial (BS). Also shown is the number of multipliers for the 8x8 transform. Fig-

ure 6.11 shows the pixel rate achievable of each implementation, along with the feature size in

microns and whether the implementation is electrically switchable (E) between IDCT and DCT,

IDCT only (I), DCT only (D), or both but not electrically switchable (13f1). The pixel rates are

un-scaled due to the difficulties in scaling operation frequency with feature size (which may

vary from constant to quadratic depending on which scaling model is used). For the implemen-

tation by Hsia et al [54] a pixel rate of 400M11z is assumed, this corresponds to the average

number of non-zero coefficients in a typical MPEG sequence reported by both [54] and [64].

The direct 2-D implementations require a larger area, but deliver a considerably higher pixel

rate, except the implementation by Srinivasan and Liu [50,51]. The relatively poor performance

of Srinivasan and Liu's implementation may be due to the fact that the underlying algorithm

was originally developed for overlapping blocks (a running DCT) for which a smaller imple-

mentation is attained.

The bit-serial designs (Cucchi and Fratti [63], McGovern et a! [56]) perform badly, neither of

them being fast enough to meet HDTV requirements, and the implementation by Cucchi and

Fratti requires over twice the area of the other 1 -D with transpose implementations.

The 1-D designs use either combinatorial multipliers or distributed arithmetic and all employ

one of the algorithms from section 6.4.1. The design by Madisetti and Willson [39] achieves a

small area by multiplexing a single 1-D DCT, however the design by Matsui et a! [41] achieves

twice the pixel rate (200MHz) for a 30% increase in area, due to use of a novel sense-amplifier

and pass-transistor logic. The Masaki et a! [62] implementation although also capable of

200MHz is larger and performs the IDCT only.

91

Review of discrete cosine transform VLSI accelerators

Based upon this study the following guidelines for designers are concluded: Higher perfor-

mance 1-D implementations require multipliers which are either hardwired-combinatorial logic

or sophisticated ROM architectures and/or circuit techniques for distributed arithmetic. How-

ever, high-speed circuit techniques for the multiplier/accumulator will be significant to perfor-

mance. If even higher throughput is required, then this may be traded-off against area with a

full 2-D approach (which often, however, avoids the area cost of the transpose memory). In

decoder only applications, for example digital TV receivers, IDCT algorithms which exploit

zero coefficients would seem attractive.

92

Review of discrete cosine transform VLSI accelerators

Implementation Area
(and number of multioliers)

110

100

90

80

70

60

50

40

30

20

10

= =
E E

0 C1 Q C4

U 13 U

BS CM' CM

I
2-D from 1-D

II
direct 2-D

Figure 6.10: Implementation area scaled to 0.81t process

93

Review of discrete cosine transform VLSI accelerators

Pixel Rate
(and process feature size) 	0.6 4001 	 -

CM combinational multiplier
DA distributed arithmetic
BS bit-serial

300 E electrically switchable
I IDCT only
D DCT only

DII DCT or IDCT

E 	I

200 0.8 	0.6

E 	D E

100

1.0 	D

•1.0

-
E E . 	CIO

C14
0 -CS M

C) °

BS CM 1 CM

I
2-D from 1-D

II
direct 2-D

I

Figure 6.11: Pixel rate (no scaling)

D/I
0.8

E
1.2

94

Chapter 7
An asynchronous discrete cosine

transform

7.1 Introduction

This chapter discusses initial work on an asynchronous application specific processor (ASP)

architecture intended for the computation of waveform transforms, with particular emphasis

on the DCT. The DCT algorithm by Arai et a! [45], discussed previously in section 6.4.2, is

chosen as it only requires 5 multiplications (although the output values need to be scaled) and

has a fairly regular structure. For example, the 'butterfly' operation permits a sequence of

additions for which one operand remains constant between pairs of additions. Only the 1-D

DCT has been implemented, to form a 2-D DCT two 1-D units and matrix transposition would

be required. The flexibility offered by the programmable architecture enables the inverse DCT

to be implemented and potentially other algorithms as well. The architecture uses a modest

amount of circuitry, at the expense of performance.

7.2 Previous asynchronous DCT work

It would appear there are very few previous asynchronous DCT designs. The design by Stott

et a! [65] and the design by Lipsher [66] are similar in architecture and are both based upon a

micropipelined distributed arithmetic implementation of the the algorithm by Chen et a! [43]

(see section 6.4.1). After the work discussed later in this chapter was performed, a further

design by Smith et a! [67] was found. Their design is based upon building blocks constructed

from threshold logic gates with hysteresis [68] and they have simulated a prototype (using

a mapping from threshold logic to conventional logic) with FPGAs. Their design uses the

DCT algorithm by Lee [69], which involves 13 multiplications and 29 additions. Compared

to synchronous implementations all the asynchronous implementations are slow (10-30MIF{z

pixel rate for 2-D DCT), however the authors of each design discuss various ways in which the

performance can be vastly improved with the experience gained from the initial prototype.

95

An asynchronous discrete cosine transform

A related paper, briefly mentioned in Chapter 6, is the synchronous IDCT processor by Xan-

thopoulos et al [64]. This design skips over zero coefficients (note this can only be done for

the inverse transform). When there is less work to be done (more zero coefficients) the supply

voltage and clock frequency are lowered to save power. An asynchronous version of this design

would reduce the need for careful design and simulation to ensure suitable setup and hold times

under the wide range of clock frequency and supply voltage.

7.3 Application specific processors

Application specific processors (ASP5) [70-72] attempt to combine the flexibility of a pro-

grammable general purpose processor with the high performance of a dedicated algorithm spe-

cific architecture. A large ASP might contain dedicated function blocks in addition to pro-

grammable control logic and local program storage. For example the MPEG encoder chip

in [73] contains dedicated blocks to perform a DCT, IDCT, motion estimation and quantisation

with a programmable processor module with down-loadable microcode to enable tailoring to

the individual application.

Asynchronous architectures may ease the modular design of application specific processors,

the use of local handshake protocols and the subsequent ease of composition should enable

functional blocks to be easily added to a base architecture. For example, in [13] a commercial

asynchronous DSP processor is presented and compared to a synchronous equivalent. The use

of asynchronous techniques was shown to give low-power, low noise emission properties and a

highly configurable architecture to which additional functional units could be easily added.

7.4 Architecture

7.4.1 Overview

The data-path of the proposed architecture is shown in Figure 7.1. From top to bottom the

architecture can be divided into three main sections. The upper section takes data from either

the external input or the lower section and passes it to one of four elastic FIFO queues or to

the external output. Towards the right is a multiplier which multiplies the output of a queue

with a selectable constant to give two outputs which are then summed to obtain the product.

The lower section consists of an adder which reads data from either a pair of queues or the

96

An asynchronous discrete cosine transform

multiplier. Multi-bit XOR gates (iv) to invert the adder inputs combined with a carry input

to the adder permit subtraction and an elastic FIFO buffers the adder output. Both the external

data input and data output can be buffered with FIFO queues.

The four queues and the adder output FIFO are micropipeline circuits, the adder and multiplier

are intended to use completion detection but delay matching is also possible. The multiplex-

ers and XOR inverters have a short (and probably data independent) delay and can be delay

matched. It should be noted that the micropipeline handshake signals are not always connected

to functional units as shown with the data path and many handshake signals are controlled

directly by the control logic units.

Input pixel data arrives at the top and data items are directed into the appropriate queues A-D.

The control logic permits two methods of reading data from a queue:

Read The current data output from the queue is read and an acknowledge signal is sent to the

queue output and hence the item of data is removed from the queue.

Copy The current data output from the queue is read but an acknowledge signal is not sent and

so the item of data remains in the queue.

In both cases the request output from the queue is used by the control logic to detect when new

data is available.

Three kinds of operation are possible on the data stored in the queues.

Multiply A single item of data is read or copied from a queue and multiplied by a constant

held within the multiplier unit. The two outputs of the multiplier are then summed to

form the product.

Add Two items of data are read or copied (or a combination of) from queues A and C, or from

queues B and D and are added (or subtracted).

Copy A single item of data is read or copied from a single queue and is added with zero (a

hardwired input to the adder input multiplexers).

In all three cases the result is available at the output of the adder. The result is then buffered

by the adder output FIFO and is either an output result, or is an intermediate result which is

97

An asynchronous discrete cosine transform

written back into one of the queues. Although not used in the DCT algorithm it is possible to

transfer data directly from input to output without processing.

input

Figure 7.1: Asynchronous ASP architecture for DCT

7.4.2 Control logic

The control logic is split into three units, upper, lower and multiplier control logic. Each con-

trol unit contains a ROM holding microcode like instructions. The functions performed by

An asynchronous discrete cosine transform

each control unit are summarised below. The three control units operate independently and

asynchronously with separate internal control ROMs and ROM address counters. In all three

control units the ROM lookup time and ROM address counter could be delay-matched or com-

pletion detection could be used; for the purposes of simulation these parts were implemented

as delay matched behavioural models.

Upper control unit

The upper control unit connects to the request and acknowledge signals from: the queue inputs,

the external input, the external output and the output of the adder output FIFO. Additionally

the upper control unit controls the 2:1 multiplexer to select between the adder output FIFO and

the external input. Each operation cycle of the upper control unit transfers an item of data from

either the adder output FIFO or the external input to either one queue or to the external output.

The upper control ROM is a list of number pairs, indicating from which source data is read and

to which destination data is written. Every time the destination acknowledges receipt of the

data the next ROM entry is read, the appropriate source request is waited for (or the source may

already be ready) and another item of data transferred.

Lower control unit

The lower control unit connects to the request and acknowledge signals from the queue outputs

and the acknowledge output from the adder output FIFO. Both the adder and multiplier have

a 'go' input to start an operation and a 'done' output to signal completion. The adder 'done'

signal supplies requests to the input of the adder output FIFO. The remaining handshake signals

are connected to the lower control unit. Additionally the lower control unit controls the mul-

tiplier input multiplexer, the adder input multiplexers, the XOR inverters and the adder carry

input. Each operation cycle of the lower control unit performs one of the three operations, add,

multiply or copy.

This unit contains the most complex ROM and decoder. Several multi-bit fields are used to

indicate from which queues data is to be read from and to control the multiplexers and logic

surrounding the adder and multiplier.

An asynchronous discrete cosine transform

Multiplier control unit

The multiplier and multiplier control unit consist of a bit-parallel combinatorial multiplier, a

ROM to hold the multiplier coefficients and a control ROM indicating which multiplier coeffi-

cient to use. A more efficient scheme might be to use just one ROM containing the (possibly

duplicated) multiplier coefficients. Each operation cycle of the multiplier is to perform a single

multiplication, note that a cycle only commences when requested by the lower control unit.

7.4.3 Adder and multiplier

Both the adder and multiplier are intended to be asynchronous with a 'go' signal, completion

detection and a 'done' output signal. In the simulations performed both the adder and multiplier

use delay matching rather than completion detection.

The multiplier produces two outputs instead of the normal product, this is intended to allow

the adder to be reused for multiplications, perhaps reducing the complexity of the multiplier

depending on the circuit implementation. A possible algorithm for the multiplier, without com-

pletion detection, is given as a Venlog behavioural model in Appendix C.2. This corresponds

to the multiplier described in [12, section 8.2.7.1]; the final summation required is performed

by reusing the existing adder. Each cell in the two-dimensional array of cells forming the mul-

tiplier consists of a full-adder and multiplexer, which can both be efficiently implemented using

pass-transistor logic [10].

The multiplier outputs are one bit wider than the rest of the data path, as a consequence the

other inputs to the adder input multiplexers are extended by concatenating a 0 LSB bit (before

optional inversion for subtraction). After addition a w + 2 bit result is produced, the top (carry

Out) bit is removed as the choice of the number of bits before the binary point ensures the carry

is never needed and the bottom bit, which is only non-zero in the case of a multiplication, is

removed.

The FIFO buffer at the adder output is required to avoid deadlock when a result from the lower

section is to be written back into a queue which is already full. A two stage FIFO is required

for the DCT algorithm as at the start of the algorithm two additions need to be performed and

both results written into a queue which is still full. An alternative strategy would be to increase

the length of some or all of the four queues.

100

0

1

2

3

4

5

6

7

0

4

2

6

5

1

7

3

An asynchronous discrete cosine transform

7.4.4 DCT Algorithm

The 1-D DCT algorithm by Arai et at [45] was modified to remove and reposition some sub-

tractions. The intention was to arrange that only one adder input require negation. However, the

initial version of the microcode contained an error, which when corrected required both adder

inputs to be capable of negation (though not both at the same time). This alteration would

most likely be needed for other algorithms anyway. The modified Arai algorithm is shown in

Figure 7.2. A C version of the algorithm, directly reflecting the data flow in the architecture, is

given in Appendix C.1.

Figure 7.2: Modified Arai DCT algorithm

7.4.5 Fixed point arithmetic

Throughout the system all data is encoded using two's complement fixed point representation.

The main data path is w bits wide. Input pixel data (typically 12 bits) and output DCT coeffi-

cients (typically 9 bits) should be sign-extended and shifted accordingly, this can be done after

the input FIFO and before the output FIFO buffers. The signal flow graph (Figure 7.2) can be

divided into three sections: (i) stages (columns in the diagram) before the multiplications, (ii)

the multiplication stage and (iii) the stages after multiplication. To avoid shifting operations

to correct bit alignment and avoid overflow it is necessary to determine the range of values

possible at each of the three stages.

Input pixel data is in the range [-1, +1]. After a maximum of three additions the range is

[-8, +81. The largest multiplier coefficient is approximately 1.3, which when rounded up to a

power of two gives a data range after multiplication of [-16, +161. A further three additions

101

An asynchronous discrete cosine transform

can then occur giving an output range of [-128, + 128]. Thus the input pixel data is represented

with four digits before the binary point (4bpp) and the output DCT coefficients with 8bpp. To

avoid shifting operations to re-scale values the multiplier coefficients are stored as 4bpp (4bpp

multiplied by 4bpp produces 8bpp product). Values which are not multiplied in the flow graph

are multiplied by one (under the 4bpp representation) to attain the correct bit position compared

to the other signals. Three such multiplications are required, placed in the 1st, 2nd and 4th rows

in the signal flow graph.

7.4.6 Extensions and application to other algorithms

Although the architecture is controlled by microcode ROMs, only the DCT has been imple-

mented. It should be possible, but has not been checked, to implement other waveform trans-

forms, perhaps with minor alterations. As the architecture stands only algorithms in which

the control flow is not influenced by data values can be implemented because the three control

units operate independently of the data values. Additionally the architecture currently does not

provide a division operation and only supports a fixed precision. It is possible to implement

the inverse DCT (also based upon the Arai algorithm) simply by modifying the control ROM

contents.

To implement other algorithms various design parameters may need to be adjusted, including:

the length of the adder output FIFO, the length and number of queues, and the data path width.

Additionally if a large number of multiplications are to be performed a FIFO placed between

the multiplier and adder would increase concurrency, and a barrel shifter might be faster than

multiplying by 'one' to scale values not being multiplied. A second input to the multiplier to

permit one data value to be multiplied by another might also be desirable.

Another extension would be to replace the control ROMs with RAM allowing the algorithm

to be changed at run-time. A sufficient number of queues of suitable length for the 'largest'

algorithm to be used would be required, however, because the queues are elastic, algorithms

which do not need the full queue size would still run correctly.

The microcode for the DCT was written by hand from examination of the signal flow graph.

It should be possible to automate this process using a tree search type method, although the

search space is likely to be quite large.

Finally performance could be increased by extending the architecture to use multiple functional

102

An asynchronous discrete cosine transform

units and permit concurrent writing and reading of the queues, however this would require a

more sophisticated control mechanism.

7.5 Simulation

The architecture with the DCT algorithm was simulated in Verilog. A structural model com-

posed from behavioural models of the basic units was used to obtain a good compromise be-

tween a complete circuit description and a fast design and simulation time. The three control

units, the adder and multiplier exist only as a behavioural model. In particular, details of how

to implement the control units have not been examined; a behavioural model is suitable for

experimenting with the architecture. Although simulated using the two-phase handshake pro-

tocol for simplicity, a four-phase protocol could also be used. The model is fully parameterised,

allowing properties such as the number of queues, or the data path width to be changed easily.

The simulation shows that the architecture works correctly for the delay parameters used in

the simulation. Although from examination it would seem unlikely that other delay parameter

values may result in failure, a more formal method of verification would be needed to guarantee

this.

A C program to model the algorithm using floating-point arithmetic was implemented as a

reference. As an additional check the program computes the DCT using equation (6.1). The

C program produces input vectors for the Venlog simulation and output vectors for compar-

ison with the simulation output. The simulation was tested for several input data sequences,

including the 'DC input' case where all the input values are the same.

7.6 Review

Performance

The implementation area should be small because only one adder and multiplier are used. The

FIFO queues are built from transparent latches rather than registers, this should further reduce

area and power consumption. However, because there is only a single adder, many operation

cycles are needed (46 for the upper section with the DCT) and performance is slow. Multiple

units could be used in parallel, for example sixteen DCT units and a matrix transposition unit to

compute a complete 2-D DCT. However this would require sixteen bit-parallel combinatorial

103

An asynchronous discrete cosine transform

multipliers.

Experiments with real image data would need to be performed to assess how much performance

gain could be obtained by using completion detection instead of delay matching for the adder

and multiplier. The microcode algorithm used for the DCT was arranged to ensure that op-

erations such as A + B and A - B are adjacent, this may increase the benefit of completion

detection and should reduce power consumption by avoiding unnecessary changes on one adder

input. If little gain is achieved by the use of completion detection it is debatable if this style

of DCT algorithm, involving a regular and constant load computation, could benefit from an

asynchronous implementation. However, aside from data dependent processing delays an asyn-

chronous implementation does make elastic queues straightforward and permits asynchronous

input and output interfaces which need not operate at a constant data rate.

The architecture was simulated using the two-phase protocol for simplicity and ease of design.

Although for best performance the linear FIFO queues should be two-phase (see Chapter 3),

the four-phase protocol may be preferable when implementing the control circuitry.

Timing assumptions

Much use of delay matching is used, this has the disadvantage of delivering worst-case perfor -

mance and requiring careful device level simulation prior to producing a physical implementa-

tion. In particular the functions performed by the control circuitry include delay matching for

the multiplexers. One alternative strategy would be to use dual-rail encoding in the data path,

however, this would significantly add to the area and power consumption as the architecture is

dominated by the data path.

Correctness

A side effect of the property that the control algorithm operates independently of the data is

that it if formal verification were to be used, only the control functions need be verified without

the problem of data dependencies leading to a large state space. Provided the control units are

deadlock free, the only remaining feedback path (and hence a potential deadlock) is the transfer

of data from the lower section back to the upper section. Deadlock as a consequence of this

path, for example if the adder output FIFO is too short, would be observed during simulation.

An asynchronous discrete cosine transform

7.7 Conclusion

Initial work on a new ROM programmed architecture, with the potential for run-time recon-

figurability, has been presented. The architecture has been programmed to implement the l-D

DCT and is potentially extendible to other waveform transforms. The architecture, with the

DCT algorithm, has been successfully simulated using Verilog. Future work could include

extensions to support other transforms, or to increase performance.

105

Chapter 8
Conclusions and discussion

In this thesis aspects of micropipeline controller design, verification and application have been

examined. This final chapter summarises the work in earlier chapters. Achievements are iden-

tified and with the benefit of hindsight, limitations, potential for future work and more general

issues are discussed.

8.1 Summary and review

Chapter 2 introduced asynchronous circuits and their differences from synchronous circuits,

with focus on the micropipeline design style used in later chapters.

In Chapter 3 micropipeline latch controllers were examined. From this study a new, inde-

pendently discovered, two-phase latch controller circuit was developed. SPICE simulations

show that in comparison to existing two-phase latch controllers, the new circuit is faster, with

a lower power consumption and fewer transistors. The new circuit has the same benefits when

compared with the fully-decoupled four-phase controller of equivalent functionality. When

compared with the semi-decoupled four-phase controller, the new circuit is faster, but at the

expense of more transistors.

However, the comparison results are only valid for a simple linear micropipeline, free from

other asynchronous circuit elements required for forking and merging. These other elements

are generally known to be faster and smaller when implemented using the four-phase protocol

instead of the two-phase protocol, a fact confirmed by the predominance of four-phase circuitry

in the asynchronous literature. It would seem therefore that the application of the new controller

is limited; however, a suitable application is the two-dimensional micropipeline structure pre-

sented in Chapter 5. Although the two-phase protocol is aesthetically desirable, in general

using the four-phase protocol requires less circuitry, a consequence of the fact that transistors

are level-sensitive rather than edge-triggered.

In Chapter 4 a method of modelling asynchronous circuits using CCS process algebra was

106

Conclusions and discussion

developed. Processes are used to represent circuit elements and the parallel composition and

restricted synchronisation features of CCS used to connect elements. The same compositional

approach can be used to combine modules within a larger circuit. The concurrency workbench

(CWB) is used to check properties of the models, or to test for equivalence between a model

of a circuit and a specification. Once a model of a module has been shown equivalent to a

specification, the specification can be used in place of the more complex module model within

a hierarchical composition.

Initially believed to be a straightforward application of CCS, more involved issues soon became

apparent, namely those of quenching and timing assumptions, in particular isochronic forks. At

first, logic levels were modelled but then the more efficient scheme of modelling events was

used. Two ways of permitting the detection of interference between signals were discussed,

one involving wires with error states and the other where gate inputs permit quenching. The

latter involves a smaller state space and was preferred. During this work previous literature

using CCS was found and was found to be consistent with this work. This method has the

unique property that the traditionally undesirable behaviour of quenching is permitted inside

a circuit, provided that the externally observable behaviour is correct. This seemed a more

natural way of modelling a circuit and helps to reduce the state space of the model.

The modelling method was then applied to the verification of several circuits. To test the method

in practice, the standard two-phase latch controller and semi-decoupled latch controllers from

Chapter 2 were re-verified. In the case of the buggy semi-decouple four phase controller, a well

known timing assumption was correctly exposed by the model. In Chapter 5 the method was

successfully applied to the verification of empty- and full-detection circuitry for a micropipeline

FIFO. Two approaches were tried, one a direct CCS approach and the other using a combination

of STG specification and CCS verification. Both approaches were successful but the latter was

found to be somewhat simpler.

Isochronic forks were found to be both awkward to model and to give a large increase in state

space, especially when used in conjunction with large circuit elements, for example the asym-

metric three input C-element. This suggests that, although suitable for the verification of quasi-

delay-insensitive circuits with a small number of isochronic forks, the method is perhaps not

appropriate for the verification of the larger class of speed independent circuits. In practice

the modelling method was found to be well suited to the verification of small gate-level hand-

designed circuits.

107

Conclusions and discussion

Next, two applications which are micropipeline intensive and hence potentially suitable for

use with the simplified latch controller were studied. The first application has two uses in the

implementation of the discrete cosine transform (DCT): (i) bit-parallel to bit-serial conversion

for a bit-serial DCT, (ii) matrix transposition for a bit-parallel DCT. The second application is

a fully asynchronous microcoded architecture, which was used to implement the DCT.

In Chapter 5 a new two-dimensional micropipeline architecture was developed for converting

between bit-parallel and bit-serial data. Independent work, which uses a similar architecture

to perform matrix-transposition, was reviewed and the new architecture was further simplified.

The architecture has the potential to offer area and significant power savings compared to the

synchronous equivalent.

Key aspects, namely those of full and empty detection, in both the complex and simple variants

of the architecture, were modelled using the CCS method from Chapter 4, with enhancements

to permit the incorporation of timing assumptions. Combined with the verification of the latch

controllers, the modelling work has illustrated how verification rather than simulation, which

does not test for timing assumptions, is important even for apparently simple circuits.

Chapter 6 reviewed recent synchronous DCT implementations, highlighting the roles of algo-

rithmic and circuit design, with a quantitative comparison of implementation area and speed.

From this review it was concluded that row-column decomposition methods require specific

circuit techniques to achieve high performance and that higher performance may be obtained

by the use of direct 2-D approaches at the expense of area.

From the review of algorithms in Chapter 6 an algorithm with a low number of multiplications

was chosen as an algorithm for use with the architecture described in Chapter 7. Compared to

the number of synchronous implementations there are very few asynchronous DCT implemen-

tations, all of which have poor performance.

Chapter 7 described initial work on an asynchronous application specific processor (ASP) ar-

chitecture, on which a DCT was implemented. The architecture exploits the elasticity of mi-

cropipeline FIFOs to store intermediate results during computation and is controlled by mi-

crocode RUMs, permitting the implementation of the inverse DCT or potentially other trans-

forms. Although, involving linear micropipeline FIFOs, the architecture might seem well suited

to the simplified latch controller, it is likely that the control circuitry (only developed to a be-

havioural model) would be most efficiently implemented using four-phase circuitry due to the

108

Conclusions and discussion

reasons discussed earlier.

8.2 Future work

Several areas, directly related to the work discussed, in which future work is possible have been

identified.

• Although four-phase logic seems to dominate the asynchronous literature, there would

appear to be little literature which performs an explicit comparison between two and

four-phase circuits. Further work to compare the speed, power, area, complexity of tim-

ing constraints and ease of design of two- and four-phase circuits could be performed.

The majority of existing literature is primarily concerned with maximum speed, different

conclusions might be reached if speed were a secondary concern to minimising power

consumption.

• The CCS modelling method would benefit from state space reduction techniques to per-

mit faster modelling of larger circuits.

• The methods of full- and empty-detection in the two-dimensional micropipeline archi-

tecture were only verified for a limited number of pipeline stages. A formal proof could

be constructed to show the result holds for an arbitrary number of stages.

• Layout could be performed for both the two-dimensional micropipeline and a synchronous

equivalent. SPICE simulations with capacitance extraction could then be used to accu-

rately compare power and speed.

• The review of DCT literature highlights some promising algorithms without implemen-

tations. For consumer video applications an inverse only DCT implementation, which

exploits zero coefficients, of which there are few implementations, may offer advantages.

• Much work is needed in the field of asynchronous DCT implementations if a performance

comparable to synchronous implementations is to be achieved.

• Reconfigurable or programmable application specific asynchronous circuits may have

advantages over their synchronous counterparts. The use of completion detection and

handshake protocols should permit good average case performance whilst avoiding tim-

ing validation issues. New reconfigurable and programmable architectures, previously

109

Conclusions and discussion

non-viable with a synchronous implementation, may be possible. This whole area de-

serves systematic investigation.

8.3 Discussion

This thesis has focused on specific aspects of micropipeline design and verification. On a

broader scale the world-wide asynchronous community is performing research on both mi-

cropipelines and other asynchronous methodologies.

The common criticisms are that compared to synchronous circuits, asynchronous circuits are:

• hard to design,

• hard to verify,

• hard to test after manufacture,

• slow.

Purely synchronous circuits appear to be easy to design, the use of discrete time intervals re-

moves most of the need to worry about races and other hazards. However, clock distribution

and skew is becoming an increasing problem as fabrication improvements push up die sizes and

push down feature sizes. In practice, many synchronous circuits are not purely synchronous

anyway, in addition inputs to a circuit are ultimately asynchronous.

In a synchronous design a module interface may have many timing constraints, for example

setup and hold times. This can make the independent development of modules difficult because

the timing constraints of one module influence the design of another. This problem is amplified

when modules which have been laid out (hard intellectual property blocks) are exchanged. This

style of pre-designed module is likely to be used for high performance data path modules and

the high speed leads to tight timing constraints. With most asynchronous interfaces there is a

reasonable amount of delay insensitivity, leading to fewer timing constraints and less depen-

dence on the particular implementation or technology. This increased ease of composition from

pre-designed modules should aid system design.

A frequent aspect of synchronous circuit design involves simulation using back annotation with

delays derived from the layout, for example to test the safety of timing assumptions. Several it-

110

Conclusions and discussion

erations of layout and simulation may be involved to meet timing requirements imposed by the

circuit specification. Such simulations are usually repeated for a range of process parameters

and operating conditions. Ideally a circuit would be fully delay insensitive, such that circuit

correctness is independent of layout, technology and process parameters, operating tempera-

ture and voltage (within sensible limits) and the timing of signals supplied by the environment

connected to the circuit. In practice useful asynchronous circuits involve timing assumptions

and a compromise has to be made.

For a moderately complex synchronous circuit it is straightforward to simulate a synchronous

circuit using a discrete event simulator to test its behaviour, at least at an algorithmic level.

For large circuits, for example a microprocessor, formal methods are often useful to assist with

demonstrating correctness, but this is to test logical correctness assuming discrete time intervals

(i.e. a clock), not correctness of the circuit under the non-deterministic choice resulting from

arbitrary (though perhaps bounded) wire and gate delays. Modelling the latter tends to involve

a larger state space, as all the 'intermediate' states of signal propagation are needed, not just

the states due to state keeping registers.

Formal methods for verification or synthesis are a critical part of asynchronous circuit design.

Discrete event simulation involves particular delays being assigned to wires and gates which

is not compatible with the ideal of delay insensitivity in an asynchronous circuit. In practice,

simulation can be very helpful in the design of an asynchronous circuit, but it does not provide

property checking, for example guarantee of freedom from deadlock. Formal methods are

usually only appropriate to verify the control paths of a circuit, as the verification of data paths

would involve an intractable state space. This is analogous to simulating the circuit for all

possible data patterns.

Asynchronous circuits may be hard to test after manufacture. It is not only necessary to test

for behavioural errors, it is necessary to test for timing related errors [74]. A search of the

asynchronous bibliography [75] suggests that further research in this area is required.

It is widely viewed that the overhead of handshaking in an asynchronous circuit results in

lower performance than that of the synchronous equivalent. However, asynchronous circuits

permit data dependent processing times which may yield better average case performance even

if worst case performance is not as good. In addition asynchronous circuits permit new ar-

chitectures for which synchronous versions may be impossible or inefficient. Other strategies

111

Conclusions and discussion

include globally-asynchronous locally-synchronous systems [761, permitting well established

high performance synchronous design methods to be mixed with the compositional advantages

of asynchronously communicating modules. However, synchronous designs still dominate in

the high performance processor industry. Many (and arguably the majority of by number of

units sold) VLSI products do not require the ultimate in high speed, for example devices present

in personal digital assistants (PDAs), mobile telephones, automobiles and consumer electronic

items. In these products the efficient use of battery power is more important and the reduced

electromagnetic noise from asynchronous circuits may be an advantage. For non speed critical

applications ease of design may be more important, and the avoidance of clock distribution and

lengthy simulation to check timing would reduce design time and hence time to market.

Although the majority of asynchronous interest has been (and still is) academic, commercial

interest is on the increase and products are starting to be developed. Berke], working at Philips

Research Laboratories, has developed a method of specification and synthesis, known as Tan-

gram [77], which was subsequently used to design the error correction decoder for DCC play -

ers [78]. Theseus Logic have developed an asynchronous DCT [67] and Cogency Technology

have produced an asynchronous DSP core [13]. Sun Microsystems have performed research

on the counterfiow pipeline processor [79]. The Manchester based Amulet group are working

on the third version of an asynchronous micropipelined implementation of the ARM proces-

sor [9]. Recent additions to this list are the New Media Processor [80] from Sharp and it is

known that Intel is working on an asynchronous instruction decoder. Despite these examples,

much more commercial interest and CAD support is required if asynchronous circuits are to

regain a foothold in a world dominated by synchronous design.

It is perhaps not hard to see why asynchronous design is not popular, synchronous design meth-

ods, simulation and tools are well established, the methods used in asynchronous circuit design

and verification are still subject to much academic research. Much further work is needed

toward making asynchronous circuits easier to implement and use. The majority of the litera-

ture discusses very specific aspects of asynchronous design rather than broader design issues.

Compared to synchronous design there is a vast shortage of design experience. As discussed

briefly above, asynchronous circuits may have a fair amount to offer designers, however, if

asynchronous design to become common place, tried and tested design methodologies need to

be established.

112

Appendix A
CWB code for models and

specifications

A.1 Basic circuit elements

* Xor
* XOR/]POR gate
* 	agent: Xor
* 	input:in]., in2
* 	Output: Out

agent 	Xor 	= inl.Xor-e + in2.Xor-e;
agent 	Xor-e = inl.Xor 	+ in2.Xor 	+ 'out.Xor;

* Toggle
* Toggle element

agent: Toggle
input: in

* 	Output: dot, blank

agent 	Toggle 	= in.('dot.Toggie-b + in.Toggle);
agent 	Toggle-b = in.('blank.Toggle + in.Toggle-b);

* And
• Two-input AND gate.
• 	agent: 	 And
* 	ports: 	 inl,in2,out

* Agent is labelled as And_<inl'-cin2'-sout>
• And_000 is shortened to And, this saves need to

use min to remove the extra state and keeps tidy names.

agent And 	= inl.And_lOO + in2.And_010;
agent And_lOO = inlAnd 	+ in2.And_110;
agent And_OlO = inlAnd_hO • in2.And;
agent And_hO = inl.And_OlO • in2.And_100 + 'out.And_lll;
agent And-001 = inl.And_101 • in2.And_011 + 'out.And;
agent And-101 = inl.And_OOl + in2.And_lll + 'out.And_lOO;
agent And_Oil = inl.And_lll + in2.And_001 + 'out.And_OlO;
agent And_ill = inlAnd_Oil + in2.And_101;

* Fork
Fork in wire, allows either output order, and quenching

* 	agent: Pork
* 	input: in
* 	output: outh, out2

agent 	Fork= in.Fork-e;
agent 	Fork, = in.Fork 	+ 'outl.Fork-e2 * 'out2.Fork-el;

agent 	Fork-el = 'outl.Fork + in.Fork-e2;
agent 	Fork-e2 = 'out2.Pork + in.Fork-el;

* Datat,atch
* Simulated multibit data latch (without data) • used to produce
* an observable capture action. Note quenching is not needed as
• this is just a buffer.
• 	agent: Datal.atch
* 	input: enable
• 	output: done

agent Datatatch = enable.capture. 'done.enable. 'done.Datatatch;

113

CWB code for models and specifications

A.2 Muller C-elements

* Muller C-elements

* Naming examples:

• Cpbn

* A a C-element with one input which can only make the output
* go _Positive_, one input which is a 'normal' input (can make
• the output go _Both_ positive and negative), and one input
• which can only make the output go _Negative_.

* Likewise the inputs are named p1, p2, bl, nl etc.

• If an input is _Inverted_ (with a bubble) then the C-element
• name would be like this (but the input names are unchanged)

* 	Cpibn

* 'Internal' agent names do not have inverted inputs marked (as they
* are reused), and they have the current state of inputs and maybe
• also the output in the name. For example, for Cpibn, an agent used
• in its construction might be Cpbn-010-0, indicating p1=0. bl=l,
* nl=0 and out=0.

Standard 2-inj tut C-element
* 	agent: 	Cbb
* 	input: 	bl, b2
* 	output: Out

agent 	Cbb
	= bl.Cbb-bl b2.Cbb-b2;

agent 	Cbb-bl = bl.Cbb 	+ b2.Cbb-e;
agent 	Cbb-b2 = bl.Cbb-e + b2.Cbb;
agent 	Cbb-e 	= bl.Cbb-b2 + b2.Cbb-bl + 'out.Cbb;

Standard 2-input C-element with bubble on one input
* 	agent: Cbib
* 	input: bl (inverted), b2
* 	output: Out
agent Chib 	= Cbb-bl;

• Minimise to save one state
min(Cbib, Cbib);

* Asymmetric 2-input C-element, one both input and one + input
agent: Cbp

* 	input: bl,pl;
• 	Output: out

agent Cbp = Cbp-00-0
agent Cbp-00-0 	 = bl.Cbp-10-0 	+ pl.Cbp-01-0;
agent Cbp-10-0 	 = bl.Cbp-00-0 	+ pl.Cbp-11-l-e;
agent Cbp-01-0 	 = bl.Cbp-11-1-e + pl.Cbp-00-0;
agent Cbp-11-l-e 	= bl.Cbp-01-0 	+ pl.Cbp-10-0 	+ 'out.Cbp-11-l;
agent Cbp-11-1 	 = bl.Cbp-01-0-e + pl.Cbp-10-1;
agent Cbp-10-1 	 = bl.Cbp-00-0-e + pl.Cbp-11-1;
agent Cbp-01-1 	 = bl.Cbp-11-1 	+ pl.Cbp-00-0-e;
agent Cbp-01-0-e 	= bl.Cbp-11-1 	+ pl.Cbp-00-0-e + 'out.Cbp-01-O;
agent Cbp-00-0-e 	= bl.Cbp-10-1 	+ pl.Cbp-01-0-e + 'out.Cbp-00-O;

Asymmetric 2-input C-element, one both and one inverted + input
* 	agent: Cbpi
* 	input: bl, p1 (inverted);
* 	output: Out

agent Cbpi = Cbp-01-0;

* Minimise to save one state
min(Cbpi, Cbpi);

The CWB code for other C-elements is constructed in a similar manner, and to amserve spare is not given here.

A.3 Latches with isochronic fork

114

CWB code for models and specifications

* Latch
* pair of level sensitive latches, as used in the two-phase
* controller without toggle. When composing LatchLl and
• LatchL2 they must be made to synchronise on latchpairsync.

* the real definition

agent Latch-EN-wait 	 = latchpairsync.Latch-DIS-sync
+ in. Latch-c-wait;

agent Latch-EN 	 = in.Latch-e
+ enable. Latch-EN-wait;

agent Latch-DIS-sync-wait 	= latchpairsync.Latch-EN
+ in.Latch-DIS-outsync-wait;

agent Latch-DIS-sync 	 = enable. Latch-DIS-sync-wait
+ in.Latch-DIS-outsync;

agent Latch-DIS-outsync-wait = latchpairsync.Latch-e
+ in.Latch-DIS-sync-wait;

agent Latch-OIS-outsync 	= enable. Latch-DIS-outsync-wait
+ in.Latch-DIS-sync;

agent Latch-c-wait 	 = latchpairsync.Latch-DIS-outsync
• in.Latch-EN-wait
• 'out.Latch-EN-wait;

agent Latch-c 	 = 'out.Latch-EN
• in.Latch-EN
• enable.Latch-e-wait

* Latch '11' (the one which nfl is connected to)
* 	agent: LatchEd

input; in. enable
* 	Output: out
* 	also: latchpairSynC

agent Latchtl = Latch-EN;

* Minimise to save one state
min(LatchLl, LatchLl);

Latch '12 (the one which drives rout and am)
* 	agent: LatchL2
* 	input: in, enable

output: out
• 	also: 	latchpairsync

agent LatchL2 = Latch-DIS-sync ('latchpairsync/latchpairsyncj;

* Minimise to save one state
min(LatchL2, LatchL2);

A.4 Environments
Env'rwophaseL, Env'FwoPhaseR

* A valid two-phase environment for a micropipeline to operate in.
* The inputs (that is outputs from the micropipeline) allow quenching.

* Example:
* agent Implementation =) Env'rwoPhaseL I Micropipeline I EnvTwoPhaseR
* 	 \ ENV'I'WOPHASESE'F;

* 	agents: 	 Env'TwoPhaset, EnvTwoPhasefl
* 	observable actions: 	 rin,ain,rout,aout
* 	interface to micropipeline: 	rinp,ainp.routp.aoutp

agent 	EnvTwoPhaseL 	= nfl. 'rinp.Env'PwoPhaseL-w;
agent EnvTwophaSeL-w = ainp.('ain.Env'rwoPhaseL * ainp.EnvTwoPhaseL-w);
agent EnvTwoPhaseR 	= routp.('rout.aout.'aoutp.EnvrwoPhaseR

+ routp.EnvTwoPhaseR);
set 	ENV'FWOPHASESE'P = { rinp, routp, amp, aoutp);

• EnvFourphaseL, EnvFourphaseR
* A valid tour-phase environment for a micropipeline to operate in.
• The inputs (that is outputs from the micropipeline) allow quenching.

* Example:
* agent Implementation = (EnvFourPhaseL I Micropipeline J EnvpourPhaseR
* 	 \ ENVFOURPNASESET;

* 	agents: 	 EnvpourPhaseL, EnvFourPhaSeR
* 	observable actions: 	 rin.ain,rout.aout
• 	interface to micropipeuine: 	rinp,ainp.routp.aoutp

* Note this is correctly the same as EnvTwoPhase.

agent 	EnvpourphaseL 	= nfl. 'rinp.EnvFourPhaseL-w;

115

CWB code for models and specifications

agent EnvpourPhaset-w = ainp.('ain.EnvFourPhaset + ainp.EnvpourPhaset-w);
agent EnvFourPhaseR 	= routp.('rout.aout.'aoutp.EnvFOurPhaseR

+ routp.EnvFourPhaseR);

set 	ENVFOURPHASESET = (ring, routp, amp. aoutp);

A.5 Two phase specification
* SpecTwOphase
• A correct two phase latch controller operating in a valid
• environment.
* 	agent 	 SpecTwoPhase

observable actions 	rin,ain,rout,aout,Capture
* 	('capture' is to observe when the data latch captures new data)

agent SpecTwoPhase-L = rin.sync.capture. 'sync. 'ain.SpecTwoPhase-L;
agent SpecTwoPhase-R = 'sync.sync. 'rout.aout.SpecTwoPhase-R;
agent SpecTwoPhase 	= (SpecTwoPhase-L I SpecTwoPhase-R) \ (sync);

A.6 Standard two-phase latch controller
* Build up the latch controller circuit.
* Interface to Circuit' is rin,ain,rout,aout.

• C-element
agent 	Cl 	 = Cbib(cl/out,tiblank/bl,rin/b2);

* xor
agent 	Xi 	 = Xor(xl/out,cl/ini,aout/in2);

* datalatch (On Output of xor)
agent 	Dl 	 = Datatatchtdl/done,xl/enablei;

* toggle (on output of data latch)
agent 	Ti 	 = Toggie(tldot/dot, tlbiank/blank,dl/in);

* forki from output of toggle to give ain and rout
agent 	Fl 	 = Fork(ain/outl,rout/out2,tldot/in];

* whole circuit
agent 	Circuit 	 = (Cl I xl i Dl I Ti I Fl

\ (cl,xl,di,tldot,tiblank};

* rename ports on Circuit to be compatible with environment
agent 	Circuit' 	 = Circuit(rinp/rin,routp/rout,

ainp/ain,aoutp/aoutj;

* attach Circuit' to environment
agent 	Implementation 	 = (EnvTwoPhaseL. I Circuit' I EnvTwoPhaseR

ENVTWOPHASESET;

* hopefully, this will be true
eq(SpecTwoPhase. Implementation);

A.7 Simplified two-phase latch controller
• Build up the latch controller Circuit.
• Interface to Circuit is rin,ain,rout,aout.

• latch 11
agent r,l = L,atchtl(ll/out,f21/enable,rin/inj;

• fork from output of 11 to XOR and 12
agent Fl = Fork(fll/outl.f12/out2.il/in);

* xor
agent Xl = XorIxl/out,fll/ini,aout/in2I;

• dataiatch (on output of xor)
agent Dl = Datatatch(dl/done.xl/enablel;

• fork2 from output of dataiatch to 11 and 12
agent P2 = Fork(f21/outi,f22/out2.dl/in];

* latch 12
agent 1,2 = LatchL2(12/out,f22lenable.f12/in);

* fork 3 from output of 12 to ain and rout

116

CWB code for models and specifications

agent 	?3 	 = Fork[ain/outi,rout/out2,12/in];

* whole circuit
agent 	Circuit 	 = I Li I Fl I xl I Di I F2 I L2 I F3

\ (1l,fil,fl2,xi,di,f21,
122,12 latchpairsync);

* rename ports on circuit to be compatible with environment
agent 	Circuit' 	 = Circuit(rinp/rin,routp/rout,

amp/am, aoutp/aoutl;

* attach Circuit' to environment
agent 	Implementation 	= I Env'PwoPhaseL I Circuit' I Env'i'woPhaseR

ENV'rSqOPHASESET;

* hopefully, this will be true
eq(Spec'I'woPhase, Implementation);

The four-phase latch contsoller circuits are constructed inn similar manner.

AS STG to CCS conversion

STG input
rin
'rout
• am
aout
capture
END
rin -> capture : 0
capture -> lain 0
'am -> nfl : 1
capture -> 'rout : 0
'rout -> aout 	0
aout -, 'rout 	1
aout -s capture : 1

CCS output
agent rwophase = TwoPhaseO;
agent TwoPhase0 rin.TwoPhasel;
agent TwoPhasel capture. TwoPhase2;
agent TwoPhase2
	

'ain.TwoPhase3 + 'rout.TwoPhase4;
agent TwoPhase3 rin.TwoPhaseh + 'rout.Twophase6;
agent PwoPhase4
	'ain.TwoPhase6 + aout.TwoPhasel;

agent TwoPhase5
	

'rout. TwoPhaseB;
agent TwoPhase6 rin.TwoPhase8 + aout.TwoPhase9;
agent Twophase7
	

'ain.TwoPhaselO;
agent TwoPhase8 aout . TwoPhasel;
agent TwoPhase9 rin.TwoPhasel;
agent TwoPhaselO = rin.PwoPhasel;

A.9 Additional specifications and environments
* Event representation to level representation converter.
* 	agent: EL

input: lo,hi
* 	Output: Out
* 	also: 	losync
• out is initially'low". Events on hi and 10 are used to
* change the state of out, hi, 10, 'losync are always possible
• from all states. Quenching of changes to Out by further input
• can occur.

• 'losync is used to synchronise with out being low, i.e. after
* synchronisation with losync, out can not then occur until hi
• occurs. Note that 'losync does not cause Out to go low.
• 'losync cannot happen if the last input was a hi.

agent 	El,0 = lo.ELO + hi.ELOe + 'losync.ELO;
agent 	EL0e = lo.ELO * hi.ELOe + 'out.ELl;
agent 	ELi = bELle + hi.EL1;
agent 	EL1e = bELle + hi.EL1 + 'out.ELO;
min (EL,ELO);
* Restriction set for using with EL

117

CWB code for models and specifications

set 	ELSET = (10, hi, losync);

* SpecTwoPhaseFull
* A correct two phase latch controller operating in a valid
environment. The latch controller starts off full and with

* a request waiting on nfl.

• 	agent: 	 SpecTwoPhaseFull
• 	observable actions: 	nin,ain,rout,aout,capture

('capture' is to observe when the data latch captures new data)

agent SpecTwoPhaseFull-L = sync.capture. 'sync. 'ain.rin.SpecTwoPhaseFull-L;
agent Spec'PwoPhaseFull-R = aout. 'sync.sync. 'rout.SpecTwoPhaseFull-R;
agent SpecTwophaseFull 	= (SpecTwoPhaseFull-L I SpecTwoehase?ull-R

(sync);
min(SpecTwoPhaseFull, SpecTwoPhaseFull);

• SpecTwoPhaseFullteft
• A correct two phase latch controller operating in a valid
• environment. The latch controller starts off full but with no
• request waiting on nfl.
• 	agent: 	 SpecTwoPhaseFull
• 	observable actions: 	nin,ain,rout,aout,capture
• 	('capture' is to observe when the data latch captures new data)

agent SpecTwoPhaseFullLeft = (SpecTwoPhase-1 I SpecTwoPhaseFull-R
(sync);

min(SpecTwoehaseFullLeft, SpecTwoPhaseEullteft);

Env'l'wOPhaseFullL, Env'rwoPhaseFullR
* A valid two-phase environment for a micropipeline to operate in,
* where the micropipeline starts off full.
• The inputs (that is outputs from the micropipeline) allow quenching.

* Example:
• 	agent Implementation = (EnvTwoPhaset I Micropipeline I EnvTwoPhaseR

ENVSET;

agents: 	 EnvTwoPhaset, Env'FwoPhaseR
* 	observable actions: 	 rin,ain,rout,aout
* 	interface to micropipeline: 	rinp,ainproutp,aoutp

agent EnvTwoPhaseFullL

agent EnvTwophasepullR
agent Env'l'woPhaseFullR-w

size (EnvTwoPhaserullt);
size (EnvTwoPhaseFullR);

amp. ('ain.rin. 'ninp.EnvpwoPhaseFullL
+ ainp.EnvTwoPhaseFullL);

aout. 'aoutp. Env'rwoPhasepullR-w;
routp. ('rout.EnvTwophaseFullR

+ routp.EnvTwoPhasepullR-w);

* EnvNullt, EnvNullR
* Null unconnected environments:
* EnvNullL always accepts amp but never produces rinp,
• 	 and produces error and deadlocks it more than one
* 	 amp is received.

EnvNullR always accepts routp but never produces aoutp.
* 	 and produces error and deadlocks if more than
• 	 one routp is received.

* Example:
agent Implementation = (EnvNullL I Micropipeline) 	EnvTwoPhaseR

\ ENVSET;

agents: 	 EnvNullL, EnvNullR
* 	observable actions: 	 error
• 	interface to micropipeline: 	ainp,routp
agent 	EnvNullL 	= ainp.ainp.error.O;
agent 	EnvNullR 	= routp.routp.error.O;
size(EnvNullL);
size(EnvNullR);

A.10 Two-phase latch controller with reqeust pending
*LCU
* A correct two phase latch controller operating in a valid
• environment.
• 	agents: 	 LC*

* 	observable actions: 	rin,ain,rout,aout,capture
* 	equivalent to: 	 eq(LCU,SpecTwoPhase) is true
agent LCU = rin,LCU1;
agent LCU8 = aout.LCU1;

118

CWB code for models and specifications

agent LCU5 = 'ain.LCiJ;
agent LCU1 = capture.LCU2;
agent LCU2 = 'ain.I,CU4 + 'rout.LCUl;
agent LCU4 = rin.LCU7 + 'rout.LCU6;
agent LCU3 = aout.LCU5 + 'ain.LCU6;
agent LCU7 = 'rout .LCU8;
agent LCU6 = aout.LCU + rin.LCU8;

* LCURP
* A correct two phase latch controller operating in a valid
* environment with request pending (RP) added.

Request pending corresponds to the circuit with XOR and AND.

This is constructed with the aid of RI, from elements.cwb.
* The stage graph for LCU above was plotted and extended by
* hand to give agent LCUr9 below. LCURP is then formed from
* I,CU and LCUrp.

agents: 	 I,CU*

observable actions: 	rin,ain,rout,aout,CaptUre,rp
note: 	 modified from LCU by hand to add RP

agent LCUrp = rin.LCUrpl;
agent LCUrp8 = aout. 'lo.I,CiJrpl;
agent I,CUrp5 = 'ain.LCUrp;
agent tCUrpl = capture.LCUrp2;
agent tCUrp2 = 'ain.I,CUrpd + losync. ('rout.LCUrp3 + 'ain.LCUrp4);
agent LCUrp4 = rin.'hi.LCUrp7 + losync.('rout.LCUrP6 + rin.'hi.LCUrp7);
agent LCUrp3 = aout.LCUrp5 • 'ain.LCUrp6;
agent LCUrp7 = 'rout.LCTJrpS;
agent tCIJrp6 = aout.LCUrp + nfl. 'hi.LCUrp8;

agent LCURP = C LCUrp I EL[rp/out]) \ ELSET;
min(LCURP, LCURP);

A.11 Full-detection (Method I)
** First check what should be true is true in case of silly errors
eq(SpecTwoPhase,LCU); 	 * should be true
eq(SpecTwoPhase,LCURP(tau/rPfl; * should be true

* * Test single stage
agent Stagel 	= LCURP(niflp/nin,aiflp/aifl,routp/rout.aOUtP/aoUt,

capture/capture, full/rpl;
agent Circuit 	= (EnvTwoPhaseL I Stagel I EnvNullR C \ ENVSET;

size (Circuit);
min(Circuit,Circuit);
agent SingleStageSpec = rin. 'ain.nin. • full.O;
eq (SingleStageSpec , Circuit C tau/Capture))

Three stage pipeline, right most stage has null right hand environment
agent Stagel 	= LCURPCninp/rin,ainp/ain,rl/rout,al/aoUt,

capturel/capture, rpl/rp];
agent Stage2 	= LCURP(rl/rin,al/ain,r2/rout,a2/aout,

capture2/capture, rp2/rpj;
agent Stage3 	= LCURP(r2/rin,a2/ain,routp/rout,aOutp/aOut,

capture3/capture, rp3/rpj;
agent Fib 	 = (Stagel I Stage2 I Stage)) \ (rl.al.r2,a2);

agent And-3-2 	= And(rp3/inl,rp2/ifl2,full-3-2/outl;
agent And-3--1 	= C And-3-2 I And(rpl/inl.full-3-2/ifl2.full/outI

\ (full-3-2);
agent Pipeline 	=(Fifo I And-3-1) \ {rp3,rp2.rpl);
agent Circuit 	= C EnvTwoPhaset I Pipeline I EnvNullR C \ RIP/SET;
size (Circuit)
mm (ThreeStageCircuit.Circuit);
agent ThreeStageSpec = nfl. 'ain.nin. 'ain.rin. 'ain.nin. 'full.O;
eq(ThreeStageSpec.Circuit(tau/CaPturel.taU/CaPture2. tau/capture3));

A.12 Empty detection (Method I)
First check what should be true is true in case of silly errors

eq(SpecTwoPhaseFull.LCO); 	 * should be true
eqcSpecPwoPhaseFull,LCOE1I(tau/em1); 	 * should be true
eq(SpecTwoPhaseFullLeft.LCOLEMItau/eml); 	* should be true

119

CWB code for models and specifications

* * Test single stage
agent Stagel 	= LCOLEI.1(rinp/rin,aiflP/aifl,rOUtP/rOUt,aOUtP/aOUt,

capture/capture. empty/em);
agent ircuit = C EnvNullt. I Stagel EnvTwoPhasepullR C \ ENVSET;

size(
C
 ircuit)

mm (Circuit. Circuit)
agent SingleStageSpec = aout. empty.O;
eq (SingleStageSpec, Circuit (tau/capture));

* 	Three stage pipeline
agent Stagel = LCOL,EN(rinp/rin.ainp/ain.rl/rOut.al/aOUt,

capturel/capture, emi/em];
agent Stage2 = LCOEI4(rl/rin,al/ain,r2/rout.a2/aoUt,

capture2/capture em2/em);
agent Stage3 = LCOSN[r2/rin,a2/ain,routp/rout,aOUtP/aOUt.

capture3/capture, en'J/emj;
agent Fifo = 	C 	Stagel 	I 	Stage2 	I 	Stage3 	C 	'. 	(rl,al,r2.a2);
agent And-1-2 = And(eml/inl,em2/in2.empty-1-2lout);
agent And-1-3 = C And-1-2 	I And(empty-1-2/inl,em3/in2, empty/out)

' 	(empty-1-2);
agent Pipeline = 	C Fifo 	I And-1-3) 	'. 	(eml,em2,em3);
agent Circuit = C SnvNullL I Pipeline I EnvTwoPhaseFullR C \ ENVSET;
size (Circuit);
min(ThreeStageCircuit,CirCuit);
agent ThreeStageSpec = aout. 'rout.aout. 'rout.aout. empty.O;
eq(ThreeStageSpec,Circuit(tau/capturel.tau/CaptUre2.taU/capture3))

120

Appendix B
Discrete Cosine Transform Coefficients

Table B. 1 gives the multiplier coefficients referred to in Chapter 6 and 7. Define c = cos n7r/16.

a cl 0 v(c2 — c6)

b C2 P v/-2-C6

c C3 q
d c4 r —c1+c3+c5—C7

e c5 S c1+c3—c5+c7

f c6 t Cl+C3+C5C7

g C7 U C1+C3C5C7

h c2+c6 V C3—C7

C2C6 W C1+C3

j 1/2C2 X C3+C5

k 1/2C4 Y C3C5

m 1/2C6

Table B.!: DCT multiplier coefficients

121

Appendix C
Asynchronous discrete cosine

transform

C.1 C model of algorithm

II multiplier constants
double multd=0.70710678118654752440,

multi=0 .54119610014619698440,
multh=1.30656296487637652786,
multf=0 .38268343236508977173;

II the queues
Fifo<double> a(S);
Fifo<double> b(5);
Fifo<double> c(5);
Fifo<double> d(5);

II initial
a.i(x[3]
a.i (x[2]
a.i(x[0]

a.i(x[l])
b.i(x[4]

b.i(x[5])
b.i(x[7])
b.i(x[6]

in puts
input->A

I- input->A
II input->A
I- input->A
II input->B
II input->B
/I input->B

input - >B

b.i(a.v() + b.v()); II A+B->B
d.i(a.v() - b.v()); a.r(); b.r(); If A-B->D, ack A,B

b.i(a.v() + b.v()); If A+B->B
c.i(a.v() - b.v()); a.rO; b.r(); II A-B->C, ack A,B

a.i(a.v() + b.v()); II A+B->A
c.i(a.v() - b.v()); a.r(); b.r(); II A-B->C, ack A,B

a.i(a.v() + b.v()); II A+B->A

122

Asynchronous discrete cosine transform

d.i(a.v() - b.v()); a.r(); b.r(); II A-B->D, ack A,B

a.i(a.v() + b.v()); II A+B->A
d.i(a.v() - b.v()); a.r; b.rO; // A-B->D, ack A,B

b.i(a.v() + b.v()); II A-I-B->B;

c.i(a.v() - b.v()); a.rO; b.r(); II A-B->C, ack A,B

a.i(a.v() 	+ b.vO; II A+B->A
a.i(a.v() 	- b.vO; 	a.rU; 	b.r(); // A-B->A, ack A,B

y[O] = a.v() *1; 	a.rO; II A*1_>output, ack A
y[4] = a.v() *1 ; 	a.r(); II A*1_>output, ack A

a.i(c.v() + d.v()); d.rO; II C+D->A, ack D
a.i(c.v() + d.v()); c.rO; II C+D->A, ack C

b.i(c.v() + d.v()); d.r(); II C+D->B, ack D
b.i(c.v() + 0); c.rO; II C+0->B, ack C

c.i(c.v() + d.v()); c.rO; II C+D->C, ack C

c.i(c.vO*multd); 	c.rO; II C*rnultd_>C, ack C

d.i(d.v() *1); d.rO; II D*1_>D, ack D

y[2] c.v() + d.v(); 	II C+D->output
y[6]= d.v() - c.v(); c.r(); d.r(); II D-C->output, ack C,D

c.i(a.vD*multi); 	II A*multi_>C

c.i(b.vO*multh); II B*multh_>C

d.i(a.v() - b.v()); a.r; b.r; II A-B->D, ack A,B

d.i(d.vO*multf); 	d.rO; II D*multf_>D, ack D

a.i(a.VO*multd); 	a.rO; II A*multd_>A, ack A

a.i(c.v() + d.v()); c.r(); II C+D->A, ack C

d.i(c.v() + d.v()); c.rO; d.rO; II C+D->D, ack C,D

c.i(a.v() + b.v()); II A+B->C
b.i(b.v() - a.v()); a.rO; b.rO; II B-A->B, ack A,B

Y[51= a.v() + b.vO; 	II A+B->output

123

Asynchronous discrete cosine transform

Y[31= a.v() - b.v(); a.r(); b.rO; II A-B-->output, ack A,B

y[l]= c.v() + d.vO; II C+D->output
Y[71= c.v() - d.vO; c.rO; drO; II C-D->output, ack C,D

ii

C.2 Behavioural model of multiplier

1* Multiplier, two's complement inputs, add the
• outputs together for two's complement value.
• Note only the upper half of the result is produced and the
• outputs are one bit wider than the inputs (and all bits need
• to be added to get the correct product).
*1

module mult_mult(Sout,Cout,A,B);

parameter 	bits=8;
parameter 	w=bits-l;

output [bits:0] 	Sout,Cout;
input [w:0] 	 A,B;

reg 	[bits:O] 	Sout,Cout;
reg 	[w:O] 	 c,s;

integer 	i, j ;

always @(A or B) begin
C=O; s=0;
for (j = 0; j < w; j = j + 1) begin

for (i = 0; i < w; i = i + 1)
{c[i],s[i]} = c[i] + s[i+l] + ((A[j] == 1) ? B[i] : 0);

{c[w] ,s[w] } = c[w] + S[w] + ((A[j] == 1) ? B[w] : 0
end
for (i = 0; i < w; i = i + 1)

{c[i],s[i]} = c[i] + s[i+l] + ((A[w] == 1) ? !B[i] : 0);
{c[w],s[w]} = c[w] + s[w] + ((A[w] == 1) ? !B[w] 	: 0);

Cout = {c[w] , c[(w- l) :0], (A[w] == 1) ? l'bl : l'bO}

Sout = {s[w], s};
end

endmodul e

124

Appendix D
List of publications

G. S. Taylor and G. M. Blair, "Design for the discrete cosine transform in VLSI," in lEE Proc

- Comp and Dig Tech, vol. 145, PP. 127-133, March 1998.

G. S. Taylor and G. M. Blair, "Two-dimensional micropipelines: for parallel to serial data

conversion," in lEE Electronics Letters, vol. 34, pp. 158-159, January 1998.

G. S. Taylor and G. M. Blair, "Reduced complexity two-phase micropipeline latch controller,"

to appear in IEEE Journal of Solid State Circuits, October 1998.

G. S. Taylor and G. M. Blair, "Reduced complexity two-phase micropipeline latch controller,"

in ESSC!RC'97, PP. 304-307, September 1997.

G. Taylor, G. Clark, and G. M. Blair, "Application of CCS to verify a simplified two-phase

micropipeline latch controller," in 2nd UK Asynchronous Forum, Newcastle, July 1997.

G. Taylor, G. M. Blair, and D. Renshaw "Two-dimensional micropipelines for parallel-serial

conversion and matrix transposition," in 4th UK Asynchronous Forum, University of London,

July 1998.

G. Clark and G. S. Taylor, "The verification of asynchronous circuits using CCS," Tech. Rep.

ECS—LFCS-97-369, Laboratory for Foundations of Computer Science, Department of Com-

puter Science, University of Edinburgh, Oct. 1997.

125

References

D. Huffman, "The synthesis of sequential switching circuits," in IRE Transactions on
Electronic Computers, vol. 257, pp. 161-190, 1954.

D. Huffman, "The synthesis of sequential switching circuits," in IRE Transactions on
Electronic Computers, vol. 257, pp. 275-303, 1954.

D. E. Muller and W. S. Bartky, "A theory of asynchronous circuits," in Proceedings of an
International Symposium on the Theory of Switching, pp. 204-243, Harvard University
Press, Apr. 1959.

D. E. Muller, "Asynchronous logics and application to information processing," in Sympo-
sium on the Application of Switching Theory to Space Technology, pp. 289-297, Stanford
University Press, 1962.

L. Hollaar, "Direct implementation of asynchronous control units," in IEEE Transactions
on Computers, vol. C-31, pp. 1133-1141, 1982.

I. E. Sutherland, "Micropipelines," in Communications of the ACM, vol. 32, pp. 720-738,
June 1989.

S. Hauck, "Asynchronous design methodologies: an overview," in Proceedings of the

IEEE, vol. 83, pp. 67-93, January 1995.

"http: //www.cs .man.ac.uk/amulet/async/async_community.html .".

S. B. Furber, J. D. Garside, and D. A. Gilbert, "AMULET3: A high-performance self-
timed ARM microprocessor," in Proc. International Conf. Computer Design (ICCD), Oct.
1998.

K. Yano, Y. Sasaki, K. Rikino, and K. Seki, "Top-down pass-transistor logic design," in
IEEE Journal of Solid-State Circuits, vol. 31, pp. 792-803, June 1996.

R. Milner, Communication and Concurrency. International Series in Computer Science,
Prentice Hall, 2nd ed., 1989.

N. H. Weste and K. Eshraghian, Principles of CMOS VLSI Design - A Systems Perspec-
tive. Addison-Wesley, 2nd ed., 1993.

N. Paver, P. Day, C. Farnsworth, D. Jackson, W. Lien, and J. Liu, "A low-power, low
noise, configurable self-timed DSP," in Proceedings Fourth international Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp. 32-42, March 1998.

H. Hulgaard, S. Burns, and G. Borriello, "Testing asynchronous circuits: a survey," in
Integration, the VLSljournal, vol. 19, pp. 111-131, January 1995.

D. Bormann and P. Cheung, "Asynchronous wrapper for heterogeneous systems," in Pro-
ceedings International Conference on Computer Design, pp. 307-314, October 1997.

126

References

G. Blair, "Self-generating clocks using an augmented distribution network' in Proc. lEE
Circuits, Devices and Systems, vol. 144, pp. 219-222, August 1997.

C. L. Seitz, "System timing," in Introduction to VLSI Systems (C. A. Mead and L. A.
Conway, eds.), ch. 7, Addison-Wesley, 1980.

P. Day and J. V. Woods, "Investigation into micropipeline latch styles:' in IEEE Transac-

tions on VLSI Systems, vol. 3, pp. 264-272, June 1995.

M. E. Dean, D. L. Dill, and M. Horowitz, "Self-timed logic using current-sensing comple-
tion detection (CSCD)," in Journal of VLSI Signal Processing, vol. 7, pp. 7-16, February

1994.

J. A. Brzozowski and C.-J. H. Seger, Asynchronous circuits. Monographs in Computer
Science, Springer-Verlag, 1994.

M. A. Kishinevskii, Concurrent hardware: the theory and practice of self-timed design.

Wiley, 1994.

M. B. Josephs, "Event register specification and decomposition," in AMULET] modelling
workshop, Windermere, July 1994.

S. B. Furber and J. Liu, "Dynamic logic in four-phase micropipelines," in Proceed-
ings.Second International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pp. 11-16, March 1996.

S. B. Furber and P. Day, "Four-phase micropipeline latch control circuits," in IEEE Trans-
actions on VLSI Systems, vol. 4, pp. 247-253, June 1996.

K. Y. Yun, P. A. Beerel, and J. Arceo, "High-performance two-phase micropipeline build-
ing blocks: double edge-triggered latches and burst-mode select an toggle circuits," in
lEE Proceedings Circuits, Devices and Systems, vol. 143, pp. 282-288, October 1996.

Y. Liu, AMULET]: Specification and Verification in CCS. PhD thesis, Department of
Computer Science, Calgary, Alberta, 1995.

C. Tofts, Y. Liu, and G. Birtwistle, "State space reduction for asynchronous mi-
cropipelines," in BCS-FACS Northern Formal Methods Workshop, 1996.

G. Gopalakrishnan, "Asynchronous circuit verification using trace theory and CCS," June
1995.

H. Barringer, D. Fellows, G. Gough, and A. Williams, "Abstract modelling of asyn-
chronous micropipeline systems using Rainbow," in CHDL'97, April 1997.

M. B. Josephs, "Receptive process theory," in Acta Informatica 29, 17-31, Springer-
Verlag, 1992.

A. Semenov and A. Yakovlev, "Partial order approach to design, verification and syn-
thesis of asynchronous circuits," in 1st UK Asynchronous Forum, Edinburgh, pp. 47-50,
December 1996.

127

References

M. Hennessy and R. Milner, "On observing nondeterminism and concurrency," in Pro-

ceedings 7th ICALP, Noordwijkerhout (J. W. de Bakker and J. van Leeuwen, eds.), vol. 85

of Lecture Notes in Computer Science, pp. 299-309, Springer-Verlag, July 1980.

D. Kozen, "Results on the propositional mu-calculus," Theoretical Computer Science,
vol. 27, pp. 333-354, 1983.

F. Moller and P. Stevens, The Edinburgh Concurrency Workbench (Version 7). Dept. of
Computer Science, University of Edinburgh.

J. Tiemo and P. Kudva, "Asynchronous transpose-matrix architectures' in Proceed-
ings International Conference on Computer Design VLSI in Computers and Processors,
pp. 423-428, October 1997.

G. K. Wallace, "The JPEG still picture compression standard," in Communications of the

ACM, vol. 34, pp. 31-44, April 1991.

"CCITT Recommendation H.261," 1990.

D. L. Gall, "MPEG: a video compression standard for multimedia applications," in Com-
munications of the ACM, vol. 34, pp. 46-58, April 1991.

A. Madisetti and A. N. Willson, "A 100MHz 2-D 8x8 DCTIIDCT processor for HDTV
applications," in lEE Transactions on Circuits and Systems for Video Technology, vol. 5,
pp. 158-165, April 1995.

S.Uramoto, Y.Inoue, A.Takabatake, J.Takeda, Y.Yamashita, H.Terane and M.Yoshimoto,
"A 100-MHz 2-D discrete cosine transform core processor," in IEEE Journal of Solid
State Circuits, vol. 27, pp. 492-499, April 1992.

M. Matsui, Y. Uetani, L. Kim, T. Nagamatsu, Y. Watanabe, A. Chiba, K. Matsuda, and
T. Sakuri, "A 200MiHz 13mm2 2-D DCT macrocell using sense-amplifying pipeline flip-
flop scheme," in IEEE Journal of Solid State Circuits, vol. 29, pp. 1482-1490, December
1994.

Y. Jang, J. Kao, J. Yang, and P. Huang, "A 0.81.1 100-MHz 2-D DCT core processor," in
IEEE Transactions on Consumer Electronics, vol. 40, pp. 703-709, August 1994.

W. Chen, C. H. Smith, and S. Fralick, "A fast computation algorithm for the discrete
cosine transform," in IEEE Transactions on Communications, vol. 25, pp. 1004-1009,
September 1977.

P. Duhamel and H. H'Mida, "New 272 DCT algorithms suitable for VLSI implementa-
tion," in Proceedings IEEE international Conference on Acoustics, Speech and Signal
Processing, pp. 1805-1808, April 1987.

Y. Arai, T. Agui, and M. Nakajima, "A fast DCT-SQ scheme for images," in The Transac-
tions of the IEICE, vol. E71, pp. 1095-1097, November 1988.

Y. T. Chang and C. L. Wang, "New systolic array implementation of the 2-D discrete
cosine transform and its inverse," in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 5, pp. 150-157, April 1995.

128

References

K. Ray-Liu and C. T. Chiu, "Unified parallel lattice structures for time-recursive dis-
crete cosine/sine/hartley transforms," in IEEE Transactions on Signal Processing, vol. 41,
pp. 1357-1377, March 1993.

C. T. Chiu and K. Ray-Liu, "Real-time parallel and fully pipelined two-dimensional DCT
lattice structures with application to HDTV systems," in IEEE Transactions on Circuits
and Systems for Video Techonology, vol. 2, pp. 25-37, March 1992.

C. T. Chiu and K. Ray-Liu, "Real-time recursive two-dimensional DCT for HDTV sys-
tems," in ICASSP-92: IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 3, pp. 205-208, March 1992.

V. Srinivasan and K. Ray-Liu, "VLSI design of high-speed time-recursive 2-D DCTIIDCT
processor for video applications," in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, pp. 87-96, February 1996.

V. Srinivasan and K. Ray-Liu, "Full custom VLSI implementation of high-speed 2-D
DCTIIDCT chip," in IEEE Proceedings ICIP-94, vol. 3, pp. 606-610, November 1994.

M. F. Aburdene, J. Zheng, and R. J. Kozick, "Computation of discrete cosine transform
using Clenshaw's recurrence formula," in IEEE Signal Processing Letters, vol. 2, pp. 155-
156, August 1995.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C: The Art
of Scientific Computing. UK: Cambridge University Press, 2nd ed., 1992.

S. C. Hsia, B. D. Liu, J. F. Yang, and B. L. Bai, "VLSI implementation of parallel
coefficient-by-coefficient two-dimensional JDCT processor," in IEEE Transactions On
Circuits and Systems for Video Technology, vol. 5, pp. 396-406, October 1995.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz, "Practical fast 1-D DCT algorithms with
11 multiplications," in Proceedings of ICASSP, pp. 988-991, 1989.

F. A. McGovern, R. F. Woods, and M. Yan, "Novel VLSI implementation of (8x8) point
2-D DCT," in Electronics Letters, vol. 30, pp. 624-626, April 1994.

E. Feig and S. Winograd, "Fast algorithms for the discrete cosine transform," in IEEE
Transactions on Signal Processing, vol. 40, pp. 2174-2193, September 1992.

J. Bruguera and T. Lang, "2-D DCT using on-line arithmetic," in IEEE Internation Con-
ference on Acoustics, Speech and Signal Processing, pp. 3275-3278, 1995.

M. Kovac and N. Ranganathan, "JAGUAR: a fully pipelined VLSI architecture for JPEG
image compression standard," in Proceedings of the IEEE, vol. 83, pp. 247-257, February
1995.

H. C. Karathanasis, "A low ROM distributed arithmetic implementation of the for -
ward/inverse DCTIDST using rotations," in IEEE Transactions on Consumer Electronics,
vol. 41, pp. 263-272, May 1995.

J. Pasternak and A. Shubat, "CMOS differential pass-transistor logic design," in IEEE
Journal of Solid-State Circuits, vol. 22, pp. 216-222, April 1987.

129

References

T. Masaki, Y. Morimoto, T. Onoye, and I. Shirakawa, "VLSI implementation of inverse
discrete cosine transformer and motion compensator for MPEG2 HDTV video decoding,"
in IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, pp. 387-395,

October 1995.

S. Cucchi and M. Fratti, "A novel architecture for VLSI implementation of the 2-D
DCTIIDCT," in IEEE, vol. V, pp. 693-696, 1992.

T. Xanthopoulos, A.P.Chandrakasan, C.G.Sodini, and W.J.Dally, "A data-driven [DCT
architecture for low power video applications," in ESSCIRC'96, September 1996.

B. Stott, D. Johnson, and V. Akella, "Asynchronous 2-D discrete cosine transform core
processor," in International Conference on Computer Design, pp. 380-385, 1995.

J. Lipsher, "The asynchronous discrete cosine transform core," Master's thesis, Dept. of
Electrical and Computer Eng., UC Davis, 1994.

R. Smith, K. Fant, D. Parker, R. Stephani, and C. Wang, "An asynchronous 2-1) discrete
cosine transform chip," in Proceedings Fourth International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pp. 224-233, April 1998.

K. Fant and S. Brandt, "NULL Convention Logic: a complete and consistent logic
for asynchronous digital circuit synthesis," in International Conference on Application-
Specific Systems, Architectures and Processors, pp. 261-273, 1996.

G. Lee, "A new algorithm to computer the discrete cosine transform," in IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. 32, pp. 1243-1245, December 1984.

K. Martin, "Application-specific processor brings high performance to DSP," in Computer

Design, vol. 25, pp. 30-32, August 1986.

M. Edwards, "Software acceleration using coprocessors: is it worth the effort?," in Pro-
ceedings of the Fifth international Workshop on Hardware/Software Codesign, pp. 135-

139, 1997.

E. Kappos and D. Kinniment, "Application-specific processor architectures for embedded
control: case studies," in Microprocessors-and-microsystems, vol. 20, pp. 225-232, June

1996.

A. van der Werf, F. Bruls, R. Kleihorst, E. Waterlander, M. Verstraelen, and T. Friedrich,
"I.McIC: A single-chip MPEG-2 video encoder for storage," in IEEE Journal of Solid-

State Circuits, vol. 32, pp. 1817-1823, November 1997.

0. Petlin and S. Furber, "Asynchronous four-phase and two-phase circuits: testing and
design for testability," in 1st UK Asynchronous Forum, Edinburgh, pp. 13-18, December

1996.

"http: //www.cs .man.ac.uk/amulet/bibliography/bibsearch .
html."

D. S. Bormann and P. Y. K. Cheung, "Asynchronous wrapper for heterogeneous systems,"
in Proceedings. International Conference on Computer Design. VLSI in Computers and
Processors, pp. 307-314, 1997.

130

References

K. v. Berkel, Handshake Circuits: an Asynchronous Architecture for VLSI Programming,

vol. 5 of International Series on Parallel Computation. Cambridge University Press, 1993.

K. v. Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and F. Schalij, "A fully -
asynchronous low-power error corrector for the DCC player," IEEE Journal of Solid-State

Circuits, vol. 29, pp. 1429-1439, Dec. 1994.

R. Sproull, I. Sutherland, and C. Molnar, "The counterfiow pipeline processor architec-
ture," in IEEE Design and Test of Computers, vol. 11, pp. 48-59, Fall 1994.

[80]"http://www.sharp.co.jp/sc/gaiyou/news-e/9710.htm .".

131

