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INTRODUCTION
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1.1 5-HYDROXYTRYPTAMINE

5-Hydroxytryptamine (5-HT; serotonin) is a naturally occurring indolealkylamine

synthesised from the essential amino acid L-tryptophan. It possesses wide and

varied biological activities and has been implicated in a number of physiological

functions and pathological conditions.

1.1.1 History

For almost eighty years before 5-HT was identified as a distinct chemical substance,

it has been known that a vasoconstrictor material appears in serum when blood is

allowed to clot. This serum vasoconstrictor was given various names including

'vaso-constrictines', 'adrenalinahnliche Substanz', 'vasoconstrictor principle or

substance', 'spatgiff, 'vaso-tonin', 'thrombocytin' or 'thrombotonin' [1,2]. In 1948,

Irvine Page's group at the Cleveland Clinic Foundation, U.S.A., isolated the active

substance in pure crystalline form from beef serum and called it serotonin to denote

its origin in serum and its ability to increase tone in blood vessels [3,4], Shortly

afterwards, the active moiety was tentatively identified as 5-HT [5], In 1951,

Hamlin and Fisher synthesised 5-HT and this was shown to be chemically and

pharmacologically identical to the naturally occurring compound [6],

Independently, in the 1930s, Vittorio Erspamer and his co-workers in Italy

started their investigation with the purpose of extracting, characterising and

isolating the substance which imparts peculiar histochemical properties to the

enterochromaffin (argentaffin) cells of the gastrointestinal mucosa [1], Their

experiments led them to discover the existence of a smooth muscle stimulant in the

intestinal mucosa, and later in other tissues, which they termed enteramine. By the

late 1940s, Erspamer has shown that it is present in many tissues of vertebrates and

invertebrates and suggested that it is an indolealkylamine. In 1952, Erspamer and

Asero isolated enteramine from the posterior salivary gland of the octopus (Octopus
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vulgaris) and the skin of the Sicilian amphibian (Discoglossus pictus), and

identified enteramine as 5-HT [1,7,8].

So by the early 1950s, both serotonin and enteramine were identified with 5-HT

and with each other. 5-HT was subsequently found to come from many sources

other than the blood or the gastrointestinal tract and to have a variety of effects.

Neither serotonin nor enteramine is, therefore, an appropriate name and it has been

suggested that these names should be abandoned in favour of 5-HT [9],

1.1.2 Chemistry

5-HT (C10Hi2N2O) is the best known representative of the indolealkylamines, a

group of natural and synthetic compounds which has as common basic structure an

indole nucleus linked to an alkyl chain in position 3 of the heterocyclic ring (Figure

1-1). Its systematic chemical name is 3-(2-aminoethyl)-indol-5-ol and it has a

molecular weight (MW) of 176.2. It does not possess any asymmetric carbon atoms

and is, therefore, optically inactive. 5-HT is usually extracted or prepared as the

creatinine sulphate salt. It is also available as the salts of other acids such as the

hydrochloride, maleate and oxalate. It is easily oxidised in air, developing a brown-

violet colour, particularly at alkaline pH.

Figure 1-1. Structure of 5-hydroxytryptamine.

1.1.3 Source and Distribution

5-HT is widely distributed in nature occurring in vertebrates, in invertebrates such
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as tunicates, molluscs, arthropods and coelenterates, and in a variety of plants. It is

present in numerous stings and venoms including those of the common stinging

nettle, wasp and scorpion. Some edible fruits, in particular walnuts, plantains,

bananas and pineapples, contain significant amounts of 5-HT and their ingestion

may lead to an increase in the urinary excretion of 5-hydroxy-3-indoleacetic acid

(5-HIAA), the main excretory product of 5-HT metabolism [10].

5-HT occurs in highest concentrations in the gastrointestinal tract, platelets,

pineal gland and brain in the body. About 90% of all the 5-HT in the adult human

body is found in the enterochromaffin cells of the gastrointestinal tract, particularly

in the duodenum (3.7 pig g"'of tissue) and ileum (2.9 jig g"1) [11,12], 5-HT is

synthesised in situ from L-tryptophan in these enterochromaffin cells and the amine

is stored in large, electron dense neuro-secretin-like granules [13], Such 5-HT

containing enterochromaffin cells also appear to be present in other body tissues

such as the pancreas, lung, thymus, thyroid and urogenital tract [14],

Most of the 5-HT in blood is present in a functionally inactive form, stored in

electron dense 500-1500 A granules in platelets at a concentration of about 5.2 x 105
molecules per platelet in man [15], It is generally believed that platelets lack the

enzymes required for the synthesis of 5-HT [16-18] but others have suggested that

low level activities of the enzymes may be present [19]. The platelets derive their

5-HT content primarily from the plasma by means of an active uptake mechanism.

Most of it is thought to originate in the enterochromaffin cells of the gastrointestinal

mucosa during the passage of platelets through the intestinal blood vessels, where

they encounter relatively high concentrations of 5-HT released into the circulation

by the enterochromaffin cells [10]. This hypothesis is supported by the observation

that there was more than 90% decrease of platelet 5-HT in a patient with an almost

complete resection of the intestinal tract [20]. The absorption capacity of platelets

for 5-HT is not saturated under normal conditions. In one study, the maximum
g

uptake of 5-HT by human platelets was found to range from 180 to 960 ng per 10

4



8
platelets, the normal content being 10-90 ng per 10 platelets [21]. 5-HT which

escapes the high affinity uptake system of the platelets is metabolised by

monoamine oxidase type A (MAO-A), particularly in the liver, or taken up into

endothelial cells, especially in the lungs, followed by rapid oxidative deamination of

the amine by MAO-A. These processes lead to very low concentrations of 'free'

5-HT in plasma, with estimates ranging from 3 to 20 ng ml"1 [22], and will tend to

limit any increase in the level of free 5-HT in the blood which may occur in the

carcinoid syndrome [23], Unambiguous data regarding the level of free 5-HT in

plasma is difficult to obtain because of the well-known extreme fragility of platelets

and it has even been suggested that there may be no free 5-HT in plasma, since any

measured 5-HT may be derived from disintegrated platelets during sample

collection and/or processing. However, if we accept that the 5-HT in platelets has

its origin in the enterochromaffin cells of the gastrointestinal tract, some 5-HT,

though perhaps only a very small amount, must circulate free in plasma since the

exchange of 5-HT between platelets and enterochromaffin cells can only occur

through the mediation of plasma. In addition, 5-HT released following damage or

lysis of the platelets is of necessity set free and must enter the plasma for at least a

short time. The 5-HT in platelets is more strongly bound or more slowly utilised

than that in the enterochromaffin cells since the half-life is about 2.2-3.6 days in

platelets compared to about 7-12 h in the gastrointestinal tract in man. It appears

that the platelets only lose their 5-HT when disintegrating [10,24,25].

The brain synthesises its own 5-HT from L-tryptophan entering through the

blood-brain barrier using the transport system for large neutral amino acids and is

not dependent upon peripheral 5-HT synthesis [26-28], 5-HT is formed and stored

in the vesicles of the so-called tryptaminergic neurones in the central nervous

system. High concentrations of 5-HT are found in the thalamus, hypothalamus,

midbrain and pineal gland. The turnover rate of 5-HT in the central nervous system

is high, the half-life of cerebral 5-HT being estimated as not longer than 10-20 min
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[10,29]. There is some evidence that circulating 5-HT may enter the brain contrary

to the generally held view that it does not penetrate the blood-brain barrier [30],

5-HT has been detected in a number of other tissues including the enteric

plexuses, heart, lung, spleen, liver, kidney, thyroid and blood vessels [10,29].

1.1.4 Biochemical Pathways of 5-HT

1.1.4.1 Biosynthesis of 5-HT

The first step in the biosynthesis of 5-HT, represented schematically in Figure 1-2,

is the hydroxylation at the C5 position of the indole ring of L-tryptophan to form

5-hydroxy-L-tryptophan (L-5-HTP). The L-5-HTP thus formed is decarboxylated

to 5-HT by the enzyme aromatic L-amino acid decarboxylase [31].

L-tryptophan is a true essential amino acid and is not synthesised by mammalian

cells. The dietary consumption of L-tryptophan is usually less than 1-2 g per day

and normally only 1-2% of it is utilised for the daily synthesis of about 5-10 mg of

5-HT in man [24,32]. The intestinal tract is the most important site quantitatively

for 5-HT synthesis. The conversion of L-tryptophan to L-5-HTP represents only a

minor pathway in the overall mammalian metabolism of L-tryptophan. Most

ingested L-tryptophan is metabolised via the kynurenine pathway [33] (Figure 1-3).

The 5-hydroxylation pathway may, however, assume a major role in patients with

malignant carcinoid tumours in whom as much as 60% of a daily intake of 500 mg

of L-tryptophan may be converted to 5-hydroxyindoles, whereas only about 1% is

metabolised by this route in normal individuals [34],

Tryptophan 5-hydroxylase

Tryptophan 5-hydroxylase [systematic name: L-tryptophan, tetrahydrobiopterin:

oxygen oxidoreductase (5-hydroxylating); EC 1.14.16.4] catalyses the

hydroxylation of L-tryptophan in the C5 position to form L-5-HTP. It is

stereospecific for L-tryptophan and requires molecular oxygen and reduced
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Figure 1-2. 5-HT metabolism.
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Figure 1-3. Major metabolic pathways of L-tryptophan degradation in man.
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pteridine as cofactors. The reaction is represented by the equation:

L-Tryptophan + tetrahydrobiopterin + 02

= 5-hydroxy-L-tryptophan + dihydrobiopterin + H20

This hydroxylation is the rate limiting step in the biosynthesis of 5-HT from

L-tryptophan [31]. Under normal conditions, the enzyme is not fully saturated with

the substrate and the rate of synthesis of 5-HT is dependent upon the availability of

free L-tryptophan. Tryptophan 5-hydroxylase has been detected in the intestinal

mucosa, brain, pineal gland, kidney, liver, mouse mast cells and carcinoid tumour

cells. No tryptophan 5-hydroxylase activity was detected in platelets [18] but other

investigations indicated the presence of low level of enzyme activity [19]. There

was no tryptophan 5-hydroxylase activity in the heart, aorta or adrenal gland in the

rat [35] but it was demonstrated to be present in the frog adrenal gland [36].

Aromatic L-amino acid decarboxylase

Aromatic L-amino acid decarboxylase (LAAD) [aromatic-L-amino-acid carboxy¬

lase; EC 4.1.1.28], previously also known as hydroxytryptophan decarboxylase or

dopa decarboxylase, catalyses the decarboxylation of L-5-HTP and L-dopa (L-3,4-

dihydroxyphenylalanine) to 5-HT and dopamine (3,4-dihydroxyphenylethylamine)

respectively [31]. It requires pyridoxal phosphate as a coenzyme. LAAD also

catalyses the decarboxylation of the L-isomers of other aromatic amino acids

including tyrosine to tyramine, phenylalanine to phenylethylamine, and tryptophan

to tryptamine in different species. The enzyme prepared from the human kidney,

however, appears to decarboxylate only L-dopa and L-5-HTP [37], The reaction

can be represented by the general formula:

r-ch(nh3+)-coo" -> r-ch2-n+h3 + co2

LAAD is widely distributed throughout mammalian tissues, occurring most

abundantly in the kidney, liver, gastrointestinal tract, adrenal gland and brain

[31,38,39]. Spleen, bone marrow and blood platelets possess little or no activity.

Within the cell, the enzyme is localised mainly in the cytosol, although some
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activity may be associated with particulate fractions. In LAAD deficiency, an

inborn error of metabolism that affects both dopamine and 5-HT biosynthesis, there

are increases in the concentrations of L-dopa and 5-HTP in urine, plasma and

cerebrospinal fluid, together with low levels of catecholamines in plasma and 5-HT

in whole blood [40].

There was, and still remains, some controversy as to the homogeneity of the

decarboxylase(s) and whether one single or two separate decarboxylases catalyse

the decarboxylation of L-dopa to dopamine and that of L-5-HTP to 5-HT [41], It

was originally considered that decarboxylation of L-dopa and L-5-HTP occurs

under the influence of two distinct enzymes [16]. These were given separate code

numbers by the Enzyme Commission and were known as dopa decarboxylase [EC

4.1.1.26] and 5-hydroxytryptophan decarboxylase [4.1.1.28] respectively. Later

work, however, concluded that a single enzyme acts on both substrates [42-44] and

that dopa decarboxylase and 5-HTP decarboxylase are one and the same enzyme

which the IUPAC Commission on Biomedical Nomenclature in 1972 named as

aromatic L-amino acid decarboxylase [EC 4.1.1.28]. There is still some doubt as to

the strength of the evidence for a single enzyme capable of decarboxylating both

substrates. The optimal pH and temperature conditions as well as the kinetic

parameters are different for the decarboxylation of L-dopa to dopamine and that of

L-5-HTP to 5-HT. These two activities exhibit different responses to changes in the

levels of substrates, pyridoxal phosphate and the presence of reducing substances.

There is also regional variation in the distribution of these two activities [39,45].

On the other hand, however, dopa and 5-HTP decarboxylase activities from a

number of tissues of various species were immunologically indistinguishable and

were inhibited to the same extent by a mono-specific antiserum to hog kidney

decarboxylase supporting the concept of a 'single enzyme' hypothesis [44], A

monoclonal antibody directed against the aromatic LAAD from rat kidney also

revealed that the enzymes from the striatum, adrenal medulla, pineal gland, liver
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and kidney were indistinguishable with respect to immunological cross-reactivity

and molecular size [46]. Furthermore, when the expression vector containing the

full-length cDNA of human LAAD was transfected in COS cells, the expressed

enzyme was found to decarboxylate both L-dopa and L-5-HTP [47], Strong

support, therefore, exists for the concept of a single aromatic LAAD but there may

also be non-uniform local regulatory mechanisms governing the differential

synthesis of catecholamines and indoleamines throughout mammalian tissues [41].

1.1.4.2 Metabolism of 5-HT

The principal metabolic pathway of 5-HT, endogenous or ingested, is oxidative

deamination by MAO-A to form 5-hydroxyindoleacetaldehyde (Figure 1-2). This is

promptly degraded, mainly by further oxidation by the enzyme aldehyde

dehydrogenase to produce 5-HIAA, the major catabolic and excretory product of

5-HT metabolism. 5-Hydroxyindoleacetaldehyde can also be reduced to the

alcohol, 5-hydroxytryptophol (5-HTOL), in a reaction catalysed by alcohol

dehydrogenase. Under normal conditions, this pathway is less important than the

oxidation to 5-HIAA. Other minor metabolic pathways for 5-HT include

conjugation with sulphate or glucuronide, A-acetylation, O-methylation and

iV-methylation. 5-HIAA and 5-HTOL may also be conjugated or converted

metabolically to the 5-methoxy derivatives. About 2 to 8 mg of 5-HIAA is excreted

daily in the urine by the normal adult, along with much smaller amounts of other

metabolites, as result of the metabolism of endogenous 5-HT [31].

Monoamine oxidase

Monoamine oxidase (MAO) [amine: oxygen oxidoreductase (deaminating) (flavin

containing); EC 1.4.3.4] inactivates 5-HT to 5-hydroxyindoleacetaldehyde. It also

catalyses the oxidative deamination of other biogenic amines, such as dopamine,

adrenaline, noradrenaline, tyramine, phenylethylamine and tryptamine, to yield the

corresponding aldehyde which is further converted enzymatically to the
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corresponding acid or alcohol by aldehyde dehydrogenase or reductase respectively.

The reaction catalysed by MAO is of the general form:

R-CH2-NH2 + 02 + H20 = RCHO + NH3 + H202

MAO is localised to the outer membrane of the mitochondrion. Its activity can

be attributed to the effects of two structurally, immunologically and genetically

distinct forms of MAO, designated type A and type B [31,48-50]. MAO-A is

sensitive to inhibition by clorgyline and the B form is sensitive to inhibition by

deprenyl. Both isoforms are widely distributed and are found in high concentrations

in the liver, kidney, adrenal gland, heart, brain and intestines in man. MAO is

absent (or present in very low concentrations) in blood plasma and erythrocytes, and

human platelets contain MAO-B only. The human placenta is a rich source of

MAO-A. MAO may play a protective role by oxidising amines in blood or

preventing their entry into the circulation. MAO-A is localised both intra- and

extraneuronally and prefers as substrates the hydroxylated amines such as 5-HT,

noradrenaline and adrenaline. MAO-B, which is predominantly if not exclusively

localised extraneuronally, preferentially deaminates non-hydroxylated amines such

as phenylethylamine and benzylamine. Dopamine and tyramine are readily

oxidised by both MAO-A and MAO-B. 5-HT may be metabolised to 5-HIAA by

amine oxidases other than MAO-A [51]. It is of interest that patients suffering from

Norrie disease with a deletion of the X-chromosomal region containing the MAO-A

and MAO-B genes have essentially normal urinary levels of 5-HIAA [52], Later

studies showed that they possess normal plasma amine oxidase activity [53].

Aldehyde dehydrogenase

Aldehyde dehydrogenase [aldehyde: NAD+ oxidoreductase; EC 1.2.1.3] is the

enzyme responsible for the oxidation of 5-hydroxyindoleacetaldehyde to 5-HIAA.

This enzyme is able to oxidise a variety of aliphatic and aromatic aldehydes to the

corresponding carboxylic acids. Nicotinamide adenine dinucleotide (NAD+) is a

better cofactor than nicotinamide adenine dinucleotide phosphate (NADP ), and the
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reaction can be represented by the following equation:

Aldehyde + NAD+ + H20 = acid + NADH

The enzyme is present in many body tissues including liver, adrenal gland,

intestine, kidney, ovary, uterus, testis, seminal vesicles, bladder, adipose tissue,

heart, lung, brain, spleen, skeletal muscle and brain, with the highest activity in liver

and kidney [31].

Alcohol dehydrogenase

Alcohol dehydrogenase [alcohol: NAD+ oxidoreductase, EC 1.1.1.1], also known as

aldehyde reductase, catalyses the reduction of 5-hydroxyindoleacetaldehyde to

5-HTOL which is excreted in the urine, free or as a conjugate. The enzyme is

capable of catalysing both the oxidation of alcohols to aldehydes and ketones, and

the reduction of these carbonyl compounds to the corresponding alcohols. The

coenzymes for these oxidation and reduction reactions are NAD+ and NADH

respectively. NADP+ and NADPH can also function as coenzymes.

Alcohol + NAD+ = aldehyde or ketone + NADH

Alcohol dehydrogenase has a wide tissue distribution and is typically found in

the soluble fractions of tissue homogenates. It is present in especially high

concentrations in the liver and brain. Although under normal conditions, the

reduction of 5-hydroxyindoleacetaldehyde to 5-HTOL is less important than its

oxidation to 5-HIAA, 5-HTOL has been detected in peripheral tissues and brain.

Ingestion of ethanol diverts 5-hydroxyindoleacetaldehyde from the predominantly

oxidative route of 5-HIAA formation to the reductive pathway resulting in a

decrease in urinary excretion of 5-HIAA and a corresponding increase in excretion

of 5-HTOL. This has been attributed to an increase in NADH/NAD+ ratio resulting

from ethanol metabolism [31].

Sulphation and glucuronidation

Two conjugation reactions have been observed in the metabolism of 5-HT. One

involves the transfer of sulphate from 3'-phosphoadenosine-5'-phosphosulphate to
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5-HT to produce 5-HT-O-sulphate. This reaction is catalysed by the enzyme phenol

sulphotransferase [3'-phosphoadenylylsulphate: phenol sulphotransferase; EC

2.8.2.1] which is present in many mammalian tissues including liver, kidney, lung,

brain, gastrointestinal tract, heart and spleen. O-Sulphation of 5-HT results in a loss

of biological activity; however, in many tissues, aryl sulphatase enzymes can

hydrolyse 5-HT-O-sulphate and regenerate free 5-HT [31].

The other conjugation pathway involves conjugation of 5-HT with uridine

diphosphoglucuronic acid (UDP glucuronic acid) to produce 5-HT-O-glucuronide in

a reaction catalysed by UDP glucuronyltransferase [UDPglucuronate [3-D-

glucuronosyltransferase (accepto-unspecific); EC 2.4.1.17]. This enzyme is widely

distributed in mammals, being found primarily in liver, kidney, gastrointestinal

tract, epidermis and urinary tract. The liver has the highest activity and is the major

site of glucuronidation of 5-HT but glucuronidation can occur elsewhere including

within the kidney. This could have physiological importance as the kidney might

be able to partially compensate in those states in which there is impaired hepatic

glucuronidation. In the presence ofMAO inhibitors, 5-HIAA excretion is decreased

while excretion of 5-HT-O-glucuronide and 5-HT-O-sulphate rises thus

compensating for the blocked pathway. Conversely, there is an increase in 5-HIAA

excretion after administration of 5-HT when formation of the glucuronide is

inhibited by sodium-o-aminobenzoate [31,54,55],

N-acetylation, O-methylation, N-methylation

A-acetylation of 5-HT is the first step in the biosynthesis of melatonin in the pineal

gland (Figure 1-2). This involves the transfer of an acetyl group from acetyl-CoA

to 5-HT producing TV-acetyl-5-HT and is catalysed by arylamine acetyltransferase

[acetyl-CoA: arylamine A-acetyltransferase; EC 2.3.1.5], The activity of this

enzyme regulates the diurnal rhythm of the synthesis of melatonin. A-acetylation of

5-HT has also been described in the liver and brain. A-acetyl-5-HT is converted to

melatonin in the pineal gland via the O-methylation of the 5-hydroxyindole moiety.
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This reaction is catalysed by hydroxyindole-O-methyltransferase [S-Adenosyl-L-

methionine: A-acetylserotonin O-methyltransferase; EC 2.1.1.4] and uses

S-adenosylmethionine as the methyl donor. 5-HT itself can be 0-methylated in the

brain resulting in the formation of 5-methoxytryptamine. A-methylation of 5-HT

has also been reported in the brain and lung [31].

1.1.5 5-HT Receptors

The existence of pharmacologically distinct types of 5-HT receptors was first

demonstrated by Gaddum and Picarelli in 1957 [56], They identified two types of

5-HT receptors in the guinea pig ileum, the 'D' receptor mediating contraction by a

direct action on smooth muscle which was blocked by dibenzyline (former name for

phenoxybenzamine), and the 'M' receptor mediating depolarisation of cholinergic

myenteric neurones which was blocked by morphine. In 1979, Peroutka and Snyder

[57] classified the 5-HT receptors on the basis of radioligand-binding studies in

brain tissue. The sites labelled by [ H]5-HT were designated as 5-HT, receptors

and those labelled by [ H]spiperone were called 5-HT2 receptors. In 1986, Bradley

et al. [58] proposed that there are three main groups of 5-HT receptors, namely

5-HTrlike, 5-HT2 and 5-HT3 receptors, each recognising different synthetic ligands

that act as either agonists or antagonists. The 5-HTrlike receptors were defined by

their susceptibility to antagonism by methiothepin and/or methysergide, and potent

agonism by 5-carboxamidotryptamine (5-CT). Their scheme integrated Gaddum

and Picarelli's D (5-HT2) and M (5-HT3) classification based on functional studies

with that of Peroutka and Snyder's 5-HTj and 5-HT2 classification based on

radioligand-binding studies (Figure 1-4). Since then, a large amount of information

has been generated, particularly by the molecular biologists, and further receptors

have been identified. These developments have prompted a review of the

classification of 5-HT receptors [59-61J.

The current classification (proposed in 1994) reflecting an international view
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supported by the Serotonin Club Receptor Nomenclature Committee which reports

to the International Union of Pharmacology Committee for Receptor Nomenclature

is shown in Figure 1-4 and Table 1-1 [60,61]. It is based on three main criteria:

operational data derived from quantification of the functional activities of selective

agonists/antagonists and from radioligand-binding studies; the transduction

mechanism to which the receptor is coupled; and the structural data of the receptor

i.e. the nucleotide sequence of the receptor gene and the amino acids of the

corresponding receptor protein. A receptor is only fully characterised if

1948 5-Hydroxytryptamine

1957

1979

1986

5-HT

5-HT,-like

'D' Receptor

(Dibenzyline)

5-HT2

5-HT2

'M' Receptor

(Morphine)

5-HT,

1994 5-HT Receptor Family

5-HT, 5-HT2 5-HT3 5-HT4 5-ht5 5-ht6 5-ht7

5-ht5A, 5-ht5B

5-HT2A, 5-HT2B, 5-HT2C

5-HT,a, 5-HT1b, 5-HT,d, 5-ht1E, 5-ht,F, 5-HTi.,ike

Figure 1-4. A history of the classification of 5-HT receptors.

16



Table 1-1. Serotonin receptor subtypes.

Receptor
Type Subtype

Distribution Effector
pathways

Some responses and comments

5-HT, 5-HT,a Mainly CNS, limbic system i cAMP,
(i.e. hippocampus, septum, K+ channel
amygdaloid), raphe nuclei,
neocortex, hypothalamus,
and substantia geiatinosa of
spinal cord.

5-HT1B CNS, particularly in 4- cAMP
substantia nigra, basal
ganglia, dorsal subiculum,
superior colliculi, and some
peripheral nerves. Found in
rodents only.

5-HT,d Mainly CNS, particularly in 1 cAMP
substantia nigra, basal
ganglia, superior colliculus,
hippocampus, raphe, cortex.
Cerebral blood vessels.

5-htm Only CNS, generally in 4- cAMP
brain regions similar to
those for 5-HTm

5-ht1F Receptor mRNA identified
in brain (hippocampus,
dorsal raphe, striatum,
cortex, thalamus,
hypothalmus), mesentery,
uterus.

icAMP

Neuronal hyperpolarisation. Possible roles
in regulation of emotion, mood and
behaviour, modulation of activity of
tryptaminergic neurones, regulation of
functions of hypothalamus, proprioception,
and integrative functions of neocortex.
Reduction in heart rate and blood pressure.

Rodent equivalent of 5-HT,Db receptor.
5-HT autoreceptor in brain. Control release
of other neurotransmitters such as

acetylcholine and glutamate. Inhibition of
noradrenaline release. May mediate
behaviour and locomotion.

Contraction of some blood vessels. 5-HT

autoreceptor. Modulate release of
neurotransmitters such as acetylcholine and
glutamate. Mediate the endothelium-
dependent relaxation in pig coronary artery.
May mediate behaviour and locomotion.

Functions not known

Functions not known

5-HT,-
like

5-HT, 5-HT,

Intracranial arteries, carotid
arteriovenous anastomotic
vessels. Some peripheral
blood vessels contain 5-

HT,-like receptors either
exclusively e.g. dog and
rabbit saphenous vein,
guinea pig iliac artery, and
rabbit renal artery, or in
addition to 5-HT, receptors
e.g. human coronary artery.

Vascular, bronchial, uterine,
urinary, and gastrointestinal
smooth muscles, platelets,
CNS particularly in
neocortex, claustrum,
olfactory nuclei, basal
ganglia.

Smooth muscle contraction, inhibition of
noradrenaline release from sympathetic
nerves, inhibition of 5-HT and glutamate
release. Not definitively characterised but
may be 5-HT1D, 5-ht1F, or other
recombinant receptor.

1IP3 Contraction of various smooth muscles,
platelet aggregation, increased capillary
permeability, amplify effects of other
vasoconstrictors, some behavioural effects
in rodents, neuroendocrine functions such
as release of p-endorphin, corticosterone,
luteinizing hormone in rats, prolactin in
rhesus monkeys, adrenaline in dogs.
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Table 1-1. Continued.

Receptor Distribution Effector Some responses and comments
Type Subtype pathways

5-HT2 5-HT2B ? mainly peripheral.
Receptor mRNA found in
gastric fundus, gut, heart,
kidney, lung, and to less
extent in brain.

Tip3 Rat stomach fundic muscle contraction

5-HT2C Choroid plexus, globus
pallidus, substantia nigra

Tip3 Possible roles in locomotion, feeding, CSF
production, adrenocorticotrophic hormone
release, migraine, obsessive compulsive
disorders, anxiety.

5-HT, Peripheral (autonomic,
nociceptive sensory, and
enteric) and central
neurones (dorso-vagal
complex, spinal trigeminal
nucleus, nucleus tractus
solitarius, area postrema,
substantia gelatinosa,
cortex, limbic system)

Na+ & K+
cation
channel

Neuronal depolarisation. Involved in von
Bezold-Jarisch-like reflex and other
cardiovascular reflexes elicited by
pulmonary and carotid body chemoreceptors,
emesis associated with chemotherapy and
radiotherapy, control of intestinal tone and
secretion, modulation of visceral pain in gut,
dermal pain & flare response, vasodilatation,
possible roles in psychosis, anxiety,
cognition, rewarding and withdrawal effects
from drugs of abuse, and eating disorders.

5-HT4 Gastrointestinal tract

(myenteric neurones,
smooth muscle, secretory
cells), CNS (especially
cortex, olfactory tubercles,
nucleus accumbens, corpus
striatum, globus pallidum,
substantia nigra, colliculus,
hippocampus), heart,
urinary bladder.

f cAMP Activation of acetylcholine release in gut,
gastrokinetic action and peristaltic reflex,
intestinal secretion, myocardial (atrial)
stimulation. Possible roles in affective

disorders, psychoses, motor co-ordination,
arousal and visual perception, learning and
memory. Steroid secretion from
adrenocortical cells.

5-ht5 5-ht5A
5-ht5B

5-ht5A receptor mRNA
found in cortex,

hippocampus, habenula,
olfactory bulb, cerebellum.
5-ht5B receptor mRNA
found in habenula,
hippocampus.

Unknown Functions in intact tissues not known

Ux i Receptor mRNA localised
in striatum, olfactory
tubercle, cortex,
hippocampus.

t cAMP Functions in intact tissues not known

5-ht7 Receptor mRNA localised
in hypothalamus, thalamus,
forebrain, cerebellum, heart
& intestine

TcAMP Functions in intact tissues not known
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comprehensive information on its operational pharmacology, transduction

mechanism and receptor structure is available. The present classification recognises

the existence of at least three, but possibly up to seven, classes or groups of 5-HT

receptors. They comprise the 5-HTb 5-HT2 and 5-HT3 classes, as well as the

'uncloned' 5-HT4 receptor. The 5-hts, 5-ht6 and 5-ht7 receptor genes are cloned but

the receptors have yet to be fully characterised operationally and transductionally in

intact tissues, and as such their appellations are considered provisional. The 5-HTb

5-HT2 and 5-ht5 classes are further subdivided. Lower case letters are used to

denote recombinant receptors to distinguish them from native receptors identified in

whole tissues. The distribution and possible functional responses of these receptors

are shown in Table 1-1 and examples of agonists and antagonists at the different

receptors are given in Table 1-2. Relatively few agonists or antagonists interact

selectively with only one type of 5-HT receptor.

5-HT! receptors occur mainly in the brain (Table 1-1). The 5-HT1A, 5-HT1B,

5-HT1D, 5-ht1E and 5-ht,F receptors have all been cloned and shown to share a high

degree of homology (> 60% in the transmembrane domains) and to have intronless

genes in the coding sequence region. They share a common transduction system in

being negatively coupled to adenylate cyclase, presumably via a common or similar

G-protein link, and their neuronal effects are predominantly inhibitory. The 5-HT1A

subtype may be important in the brain in relation to mood and behaviour. 5-HT1A

agonists, especially those considered as partial agonists, such as buspirone,

gepirone, ipsapirone or tandospirone, have anxiolytic effects in animal models of

anxiety, and buspirone, for instance, is used in the treatment of anxiety. A number

of 5-HT]A agonists, e.g. 8-OH-DPAT, flesinoxan, urapidil and 5-methyl-urapidil,

reduce blood pressure and heart rate by activation of central 5-HT1A receptors. The

5-HT1D receptor subtype in the cerebral blood vessels is thought to be important in

migraine and is the target for the anti-migraine drug, sumatriptan. Two human

5-HTid receptors have been demonstrated, designated 5-HT,Do and 5-HT1Dp, the
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Table 1-2. Examples of 5-HT agonists and antagonists (see Appendix 1 for glossary of drug
names and abbreviations).

Receptor
Type Subtype

Agonists Antagonists

5-HT, 5-HT1A DP-5-CT, 5-CT, 5-Methyl-urapidil, 8-OH-
DPAT, RU 24969, Flesinoxan, Ipsapirone,
Buspirone, Gepirone, MDL 72832,
Urapidil.

SDZ 216525, NAN 190, MDL 73005,
5-F-OH-DPAT, Cyanopindolol, Pindolol,
Methiothepin, Metergoline, WAY
100135, BMY 7378, Spiperone,
Propranolol.

5-HT1b RU 24969, 5-CT, CP 93129, CGS 12066,
Ergotamine

Cyanopindoloi, Methiothepin, SDZ
21009, Pindolol, Metergoline.

5-HT1d L 694247, 5-CT, Sumatriptan, Ergotamine. GR 127935, Methiothepin, Metergoline

5-ht1E 5-HT None (Methiothepin - weak)

5-ht1F 5-HT None (Methiothepin - weak)

5-HT2

5-HT ,-
like

5-HT2A

Sumatriptan, 5-CT

DOI. a-Methyl-5-HT, quipazine, MK 212,
LSD (CNS)

Methiothepin

Pirenperone, Ketanserin, Ritanserin,
Cinanserin, Spiperone, Mesulergine,
Metergoline, Mianserin, Cyproheptadine,
LY 53857, ICI 169369, Pizotifen, LSD
(peripheral), Methysergide.

5-HT2B oc-methyl-5-HT, DOI SB 200646, LY 53857

5-HT2C a-Methyl-5-HT, DOI, mCPP, TFMPP, MK
212, LSD

Metergoline, Mesulergine, Ritanserin, LY
53857, Methiothepin, Cyproheptadine,
SB 200646, ICI 169369, Mianserin,
Methysergide

5-HT3 2-Methyl-5-HT, m-Chlorophenyl-
biguanide, Phenylbiguanide

Tropisetron, Zacopride, Granisetron,
MDL 72222, Ondansetron,
Metoclopramide

5-HT4 5-MeOT, a-methyl-5-HT, Benzamides
(Cisapride, Renzapride, Zacopride,
Metoclopramide), Benzimidazolones
(BIMU1, BIMU8).

SB 204070, SB 207710, GR 113808, RS
23597190, SDZ 205557, DAU 6285,
Tropisetron (weak)

5-ht5 5-HT Methiothepin

5-htg 5-HT Methiothepin

5-ht7 5-HT Methiothepin
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latter having very close homology to, and reflecting the distribution and function of,

the 5-HT1B receptor found in the rodent. The '5-HTlc receptor', which does not act

via cAMP, is now declared non-existent, having been assigned to the 5-HT2 class

and renamed as 5-HT2C (see below). The 5-ht1E and 5-ht1F (previously 5-HT1E(i or

5-HT6) receptors are classified as 5-HT, receptor subtypes on the basis of their

amino acid homology and their negative coupling to adenylate cyclase in cell lines.

However, these receptors are operationally different from other 5-HT, receptors

because 5-CT has little or no affinity or agonist activity at these sites. Similarly,

methiothepin displays low affinity and, where tested, low antagonist potency at

these receptors. The 5-HTrlike appellation is now used to denote a group of 5-HT,

receptor subtypes that have not yet been fully characterised and positively equated

with any of the recognised 5-HT, subtypes. Some have been characterised solely

using operational studies. They can be clearly distinguished from the 5-HT1A-,

5-HT1B- and 5-HT2C- (previously 5-HTlc) binding sites but it is not always easy to

distinguish them from 5-HT1D-binding sites particularly in peripheral tissues such as

the blood vessels. There is a 5-HT,-like sumatriptan-sensitive receptor that

mediates vascular smooth muscle contraction and is negatively coupled to adenylate

cyclase which has close similarities but is not identical to the 5-HT1D receptor

subtype in its pharmacological responses. There are no completely selective

agonists or antagonists for 5-ht1E, 5-ht1F, and 5-HT,-like receptors.

Three 5-HT2 receptor subtypes are currently recognised, namely 5-HT2A, 5-HT2B

and 5-HT2C, the 5-HT2A subtype being functionally the most important (Table 1-1).

Each has been cloned and shown to be a G-protein-linked single protein molecule of

similar size and close homology. They are coupled to phospholipase C which

catalyses phosphatidylinositol hydrolysis resulting in formation of diacylglycerol

(DAG) and inositol (l,4,5)-triphosphate (IP3), a major calcium-releasing messenger.

Their stimulation in vascular and other smooth muscles, therefore, results in an

2+
increase in intracellular Ca . The operational characteristics of the three subtypes
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are also very similar. The historical 5-HT2 receptor ('classical' 5-HT2 or Gaddum's

D receptor) is now called 5-HT2A. It is widely distributed in peripheral tissues and

mediates the contraction of a variety of smooth muscles and the aggregation of

platelets (Table 1-1). It is also found centrally and may mediate some of the

behavioural effects of agents such as LSD. The cloned 5-HT2B receptor (previously

termed 5-HT2F) is the receptor that mediates the contractile action of 5-HT in the rat

isolated fundus. The 5-HT2C receptor is a new appellation for the 5-HTlc receptor.

It has been reassigned as 5-HT2 receptor subtype because of its close structural

homology to 5-HT2 receptor together with a shared second messenger transduction

system and very similar operational characteristics. Knowledge of the functional

role of 5-HT2C receptors is limited by the lack of truly selective 5-HT2C receptor

agonists and antagonists. It would not be surprising if some of the effects attributed

to 5-HT2A receptor activation were indeed mediated by 5-HT2C receptors or vice

versa given the very close structural and pharmacological similarities between the

5-HT2A and 5-HT2C receptors.

The 5-HT3 (Gaddum's M receptors) receptors are associated exclusively with

peripheral and central neurones. They are structurally intrinsic to membrane cation

channels, and do not involve any G-protein or second messengers in their

transduction mechanism. They mediate the neuronal depolarising actions of 5-HT

and exert a strong excitatory action. They are involved in many of the neuronal

reflex effects of 5-HT in the periphery and have a variety of other possible functions

(Table 1-1). The 5-HT3 receptors in the gastrointestinal tract and brain stem are

thought to be involved in the emesis reflex. Cytotoxic drugs and radiotherapy are

believed to cause nausea and vomiting by stimulating the release of 5-HT from

enterochromaffin cells of the intestine. The released 5-HT activates 5-HT3

receptors on vagal afferent neurones and impulses are sent to the emesis centre in

the brain stem. 5-HT3 antagonists, such as ondansetron and granisetron, have been

developed as antiemetic drugs especially for use in chemotherapy and radiotherapy
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induced emesis and they exert their therapeutic effect by blocking 5-HT3 receptors

in the peripheral vagal site and in the central emetic system. At high doses, the anti¬

emetic activity of metoclopramide is also mediated by 5-HT3 antagonism, rather

than by dopamine D2 receptor antagonism noted at low doses.

5-HT4 receptors have been identified in a variety of tissues (Table 1-1), including

the brain and the gastrointestinal tract. It is positively linked to adenylate cyclase.

Its definitive characterisation awaits the cloning of the receptor gene. Two putative

mouse and rat 5-ht5 receptor genes have been cloned and the recombinant receptors

called 5-ht5A and 5-ht5B. Their structural data suggest that they are quite distinct

from other known mammalian 5-HT receptor types. Their function and

transductional characteristics are unknown. Similarly, there are insufficient data for

the full characterisation of the recently cloned 5-ht6 and 5-ht7 receptors which are

linked positively to adenylate cyclase. In addition to the 5-HT receptors mentioned

above, there are a number of functional receptors for 5-HT that do not fulfil the

criteria for admission into any of the receptor types described and are 'orphans' of

the present classification scheme. These include the 5-HT receptor mediating

smooth muscle relaxation which is positively linked to adenylate cyclase

(previously referred to as 5-HTplike) and the 5-HT receptor on vascular

endothelium mediating release of an endothelium derived relaxing factor which has

been shown to be nitric oxide in some tissues [60],

1.1.6 Actions of 5-HT

Administration of 5-HT to an intact animal or isolated preparation produces a wide

spectrum of responses that are complicated by the species, the physiological state,

or the integrity of the preparation. The main actions of 5-HT are described below.

Cardiovascular System

Blood vessels. 5-HT can directly stimulate or relax vascular smooth muscles, act on

vascular endothelial cells to release nitric oxide, and influence the release of
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noradrenaline from sympathetic nerve terminals. The overall response in a vascular

bed depends on the relative contribution by each of these responses.

5-HT usually produces contraction of most large blood vessels, both arteries and

veins, and venules although their sensitivity varies greatly [60,62,63]. The

pulmonary, splanchnic, renal and cerebral vascular beds are particularly affected.

This effect is due to a direct action on vascular smooth muscles following activation

of 5-HT2A receptors. In some blood vessels, such as the cranial vessels, the 5-HT-

induced vasoconstriction may be mediated by 5-HT1D or 5-HTrlike receptors. Low

concentrations of 5-HT, with little or no direct contractile action, may also amplify

the vasoconstrictor responses to other vasoactive agents such as angiotensin II and

noradrenaline, an effect which is probably mediated by 5-HT2A receptors.

5-HT can elicit vasodilatation via several mechanisms [60,62,64], It has a direct

relaxant effect on vascular smooth muscles in some blood vessels; it can stimulate

endothelial cells to release nitric oxide; and it acts presynaptically at sympathetic

nerve terminals to inhibit the release of noradrenaline in response to nerve

stimulation, thus promoting a reduction in vascular tone. The 5-HT receptors at

these three morphological sites have previously been thought to be, and classified

as, of the '5-HTrlike' type, but are 'orphans' of the present classification scheme of

5-HT receptors [60], The 5-HT receptor mediating the direct vasorelaxant effect of

5-HT on vascular smooth muscle, for instance, is positively linked to adenylate

cyclase, and it has been recommended that it should no longer be classified within

the 5-HT, group of receptors which are all negatively coupled to adenylate cyclase.

Similarly, the endothelial 5-HT receptor involved in the release of nitric oxide does

not entirely match with any of the 5-HT receptor types in the present classification

scheme although it shares some similarities with 5-HT1D and the 5-HT2 receptor

class. It has been suggested that the vasorelaxant action of 5-HT may also be

mediated by the release of other vasodilators such as prostacyclin. Infusion of 5-HT

in low doses into the human brachial artery stimulates 5-HT3 receptors to increase
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forearm blood flow, but at high doses stimulates 5-HT2A receptors to produce

vasoconstriction [65,66].

In the microcirculation, the dilatation of arterioles, together with constriction of

venules, produce an increase in capillary pressure and escape of fluid from the

capillaries. In addition, 5-HT may have a direct effect on capillary permeability, an

effect probably mediated by 5-HT2A receptors [60],

Heart. 5-HT increases the rate and force of contraction of the isolated animal and

human atria by stimulating 5-HT4 receptors [60,67], These receptors are not found

in the human ventricular muscle. The cardio-stimulatory effect of 5-HT may also

be partly caused by a 5-HT3 receptor-mediated release of noradrenaline from the

postganglionic cardiac sympathetic nerves or by a 5-HT2A receptor-mediated release

of catecholamines from the adrenal medulla. These indirect sympathomimetic

effects are displayed by 5-HT at higher doses in contrast to its prejunctional

inhibitory effect of noradrenaline release at sympathetic nerve terminals. The

inotropic and chronotropic effects of 5-HT are of doubtful clinical significance and

the effects of 5-HT on the heart in situ do not generally reflect a direct action on

myocardial cells but are rather largely mediated indirectly through reflexes.

Stimulation of 5-HT3 receptors on the afferent vagal nerve endings in the heart, for

instance, initiates a von Bezold-Jarisch-like reflex which is characterised by

increased activity of the vagal efferent cholinergic neurones, leading to bradycardia

and hypotension. 5-HT can also act on the carotid body chemoreceptors and the

pulmonary J receptors to elicit cardiovascular reflexes, again mediated by 5-HT3

receptors [60,67,68]. Intracoronary infusion of 5-HT dilates the normal coronary

arteries but reduces coronary blood flow in patients with coronary atherosclerotic

lesions presumably because the damaged endothelium is unable to synthesise or

release adequate amounts of nitric oxide [69].

Blood pressure. The effect of 5-HT on blood pressure is variable and depends on

the species, dose and route of administration, the initial level of blood pressure, and
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the conditions under which the observations are made. A triphasic blood pressure

response may be observed following intravenous 5-HT in conscious or

anaesthetised animals. There is an initial brief profound fall in blood pressure

caused by a decrease in heart rate and consequently cardiac output. This von

Bezold-Jarisch-like reflex is initiated by stimulation of 5-HT3 receptors on afferent

cardiac vagal nerve endings leading to the activation of vagal efferent cholinergic

neurones. The initial hypotensive phase is followed by a short-lived rise in blood

pressure which is mainly due to direct vasoconstrictor effects mediated by 5-HT2A

receptors on the vasculature although, at least in the dog, adrenal release of

catecholamines may also participate in this effect. The third phase is a longer-

lasting hypotension attributed to vasodilatation in vessels supplying skeletal muscle.

This depressor phase is not affected by selective 5-HT2 or 5-HT3 receptor

antagonists and probably involves an action on the previously termed 5-HT!-like

receptors. A variety of blood pressure responses have been reported after

intravenous administration of 5-HT in man including a triphasic blood pressure

response as above, a biphasic response with a fall followed by a rise in blood

pressure or vice versa, a pure pressor or depressor response, and no significant

changes in blood pressure. 5-HT1A receptor agonists, such as flesinoxan and

urapidil, induce a centrally mediated decrease in blood pressure and heart rate by a

combined inhibition of sympathetic tone and increase in vagal tone [60,63,67,70],

Platelets. 5-HT causes alteration in shape and reversible aggregation of human

platelets by activating surface membrane 5-HT2A receptors. This response is not

normally followed by release of 5-HT stored in the platelets but, in the presence of

low concentrations of other platelet proaggregators, 5-HT can produce maximal

activation of platelets. 5-HT potentiates platelet aggregation induced by adenosine

diphosphate (ADP), collagen and noradrenaline. It also enhances the secretion of

a-granule constituents and liberation of arachidonate induced by collagen, and the

secretion of dense granules induced by thrombin. During the platelet adhesion-
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aggregation reaction at sites of vascular injury, 5-HT is released from the platelets

along with ADP, thromboxane A2 and other mediators. Acting in concert with

thromboxane A2, it can amplify the platelet aggregation reaction and speed clot

formation. Since the vascular endothelial cells may be damaged at the site of injury,

5-HT can also act directly on vascular smooth muscles to cause vasoconstriction

thereby aiding haemostasis [60,71,72],

Respiratory System

5-HT causes a marked contraction of the trachea in the guinea pig but not in the rat.

It induces pulmonary vascular and airway constriction by stimulating 5-HT2A

receptors in different animal species. It does not produce pronounced broncho-

constriction in asthmatic patients, and ketanserin has no effect on exercise-induced

asthma suggesting that 5-HT is not an important mediator in human asthma [73].

Bronchoconstriction occurs in some patients with the carcinoid syndrome and is

thought to be due to elevated levels of the amine [74] although bradykinin and

substance P may also be implicated [23]. 5-HT may also cause hyperventilation as

a result of stimulation of the carotid body arterial chemoreceptors or pulmonary J

receptors, and 5-HT3 receptors are involved in these responses [67,68],

Gastrointestinal Tract

5-HT causes contraction of gastrointestinal smooth muscles, increasing tone and

motility thus facilitating peristalsis, and it has been proposed that it may play a role

in the control of gastrointestinal motility. The 5-HT-induced contraction is partly

due to a direct stimulant effect of 5-HT2A receptors on the smooth muscle cells and

partly due to an indirect excitatory effect of 5-HT mediated via 5-HT3 receptors on

ganglion cells located in the enteric nervous system causing the postganglionic

neurones to release acetylcholine [73], Activation of 5-HT4 receptors also enhances

the release of acetylcholine and there is evidence that 5-HT4 receptor may also

mediate intestinal secretions and the peristaltic reflex [60], Increased pressure

within the intestine may initiate the latter by releasing 5-HT from the
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enterochromaffin cells. The intravenous administration of 5-HT, or its precursor,

5-HTP, produces intestinal colic and evacuation of the bowels in man [75,76], and

diarrhoea is a prominent feature of the carcinoid syndrome [74], 5-HT may also

exert an inhibitory effect on the intestinal smooth muscle [73].

Genito-urinary System

The effect of 5-HT on ureteric contraction differs among species [55,77]. 5-HT was

reported to cause contraction of the perfused in situ dog ureter with an intact blood

supply but not in the isolated dog ureter. It contracted the ureter of the pig and the

rabbit but had no effect on ureteric contraction in the cat. Studies also demonstrated

that 5-HT has a stimulatory effect on the bladder in some animal species and man

[70,73]. It produces an initial rapid contraction of the detrusor muscle of the

bladder, possibly mediated by 5-HT3 receptors, followed by a more prolonged tonic

contraction, due to 5-HT2 receptor-mediated direct stimulation of the smooth

muscle of the bladder. 5-HT contracts the uterus by stimulating 5-HT2A receptors

and may also cause contraction of the vas deferens. The effects of 5-HT on renal

haemodynamics, electrolytes and water excretion are covered later (see section 1.2).

Nervous System

Nerve endings. 5-HT may stimulate or inhibit neurones, depending on the site and

type of receptor involved. It is a potent stimulant of nociceptive and itch nerve

endings. It evokes pain when injected into the skin or applied to a blister base and

is responsible for some of the symptoms caused by insect and plant stings. These

responses are due to activation of 5-HT3 receptors on sensory neurones leading to

their depolarisation. Stimulation of 5-HT3 receptors on afferent vagal nerve endings

in the heart evokes the Bezold-Jarisch-like reflex. 5-HT may exert an inhibitory

effect on the release of noradrenaline from adrenergic nerve terminals [60,67,68],

Central nervous system. Besides its role as a neurotransmitter, HT is thought to be

implicated in a number of functions which include regulation of behaviour, mood

and emotion, sleep, feeding, sensory pathways, and various autonomic and
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endocrine functions (Table 1-1). These effects are mediated by different receptor

types but in many instances the specific receptor involved is still unclear. Drugs

that selectively inhibit reuptake of 5-HT, such as fluoxetine and paroxetine, are used

as antidepressants, and buspirone, a 5-HT1A receptor agonist, is effective in treating

anxiety. The 5-HT3 receptor antagonists, such as ondansetron, are also effective in

animal models of anxiety [60].

Endocrine System

Anterior pituitary hormones. 5-HT stimulates prolactin secretion and appears to

participate in the regulation of prolactin surges such as occur during suckling in

lactating animals. The 5-hydroxytryptaminergic neurones involved seem to project

from the dorsal raphe nucleus to medial basal hypothalamus. 5-HT induces the

release of growth hormone and an increase in basal growth hormone secretion

occurred after administration of the 5-HT precursors, tryptophan and 5-HTP, in man

although this was not consistently observed in all studies. The data regarding the

effects of 5-HT on thyroid stimulating hormone (TSH) release are conflicting. Most

reports suggest an inhibitory role of 5-HT in the regulation of TSH but there may

also be an opposite stimulatory system at a different site in the brain. Similarly,

5-HT has been reported to both stimulate and inhibit ACTH secretion but the

majority of studies with 5-HT agonists and antagonists or 5-HTP favour a

stimulatory action of 5-HT on ACTH secretion [78].

Vasopressin. 5-HT may stimulate the release of arginine vasopressin (AVP) since

5-HT precursors, 5-HT reuptake inhibitors such as fluoxetine [79], 5-HT releasing

agents like /?-chloroamphetamine [80,81], and 5-HT receptor agonists such as

TFMPP, quipazine, MK 212, mCPP [80-84] all increase AVP concentrations in the

rat. It is debatable whether this response is due to activation of 5-HT2A or 5-HT2C

receptors since compounds claimed to be selective for 5-HT2A receptor also show

some affinity for 5-HT2C receptor and vice versa. The available evidence suggests

that AVP release is more likely to be mediated by 5-HT2C than 5-HT2A receptors
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since MK 212, TFMPP, mCPP have a higher affinity for 5-HT2C than for 5-HT2A

receptors [60,85], and the antagonist LY 53857 which blocks the AVP releasing

effects ofMK 212, quipazine and mCPP also has a higher affinity for 5-HT2c than

5-HT2A sites [81,83,84], In addition, the 5-HT2 agonist DOI that has a higher

affinity for 5-HT2A binding sites than MK 212, quipazine, TFMPP or mCPP, did not

increase plasma AVP concentrations, and ketanserin, a 5-FIT2 receptor antagonist

with selectivity for 5-HT2A over 5-HT2C receptor, did not antagonise the vasopressin

response to mCPP [84], The location of the neuroanatomical site(s) of the target

5-HT receptors is not known but anatomical lesions of 5-hydroxytryptaminergic

pathways between the hindbrain and the hypothalamus prevented AVP release

induced by 5-HT agonist or releasing agents in rats [81].

Renin. 5-HT has no effect on release of renin from the rat kidney in vitro [86],

Intramuscular or subcutaneous 5-HT increased plasma renin activity (PRA) in vivo

in the rat [87,88], An increase in renin secretion was also observed after infusion of

5-HT into the renal artery of the denervated kidney of the anaesthetised dog [89],

This response was suppressed by methysergide and ketanserin suggesting

involvement of 5-HT2 receptor. In contrast, an earlier study reported no increase in

renin release after infusion of 5-HT into the renal artery of anaesthetised dog whose

renal nerves were left intact [90] and no rise in PRA was observed after intravenous

infusion of 5-HT in man [91], Zimmermann and Ganong [92] showed that the

5-HT precursors, L-tryptophan and 5-HTP, which penetrate the blood-brain barrier

to increase brain 5-HT, increased PRA without a concomitant increase in

sympathetic output in the dog whose renal perfusion pressure was kept constant.

This response was inhibited by the 5-HT antagonist metergoline. The rise in PRA

was reduced or abolished when both peripheral and central TAAD activities were

inhibited by high dose benserazide, but was not blocked, and was even possibly

enhanced, when only peripheral LAAD activities were inhibited by carbidopa.

Renal denervation blocked the increase in PRA produced by L-tryptophan. Their
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observations suggest that the 5-HT precursors act on the central nervous system to

produce an increase in renin secretion via the renal nerves. L-5-HTP also increased

PRA in the rat [88,93,94], but unlike the situation in the dog, peripheral LAAD

inhibition blocked the increase induced by L-5-HTP suggesting that L-5-HTP must

be converted to 5-HT peripherally to increase PRA [88], It is not known if changes

in renal haemodynamics may have contributed to these results. Tryptophan also

increased PRA in humans [95] but no increase was observed after administration of

L-5-HTP [96,97]. The 5-HT2 receptor agonists, quipazine, MK 212 and DOI, were

shown to increase PRA in the rat [80,84,98,99], These agents probably act on either

5-HT2A or 5-HT2C receptors within the central nervous system to increase renin

secretion from the kidney [60,85], Others have, however, suggested that some of

the 5-HT agonists like quipazine increased renin release as a result of alterations in

renal haemodynamics since quipazine reduced renal blood flow and its

intracerebroventricular administration did not increase PRA in the rat [83],

Aldosterone. 5-HT is a potent stimulator of aldosterone secretion from the human

and rat adrenal zona glomerulosa cells in vitro and this release is inhibited by

methysergide and ketanserin indicating involvement of the 5-HT2 class of receptors,

possibly the 5-HT2A receptor [96,100-102], More recent in vitro experiments with

frog and human adrenocortical cells, however, suggest that the stimulatory effect of

5-HT on aldosterone production is mediated by activation of 5-HT4 receptor

[103,104], L-5-HTP has also been reported to increase aldosterone secretion in

vitro [101] but this response was not observed by others [96], Intravenous infusion

of 5-HT increases plasma aldosterone without a concomitant increase in PRA or

Cortisol in man [91], A similar response is observed after administration of

zacopride, a 5-HT4 receptor agonist, in subjects pretreated with dexamethasone

suggesting involvement of 5-HT4 receptor [104], A rise in aldosterone secretion

also occurs after administration of the 5-HT precursors, tryptophan [95] and L-5-

HTP [96,97,105], In subjects pretreated with dexamethasone, it was shown that the
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aldosterone release induced by L-5-HTP is not mediated by changes in ACTH,

PRA, potassium, or sodium concentrations [96,97], This response is enhanced by

peripheral LAAD inhibition and is thought to be mediated within the central

nervous system but the mechanism or site of stimulation is unknown [96],

Ketanserin and methysergide are without effect on L-5-HTP-induced aldosterone

secretion in vivo [105],

Other hormones. 5-HT may affect the secretion of other endocrine hormones

including insulin, glucagon and progesterone. It may also modify exocrine

secretory activity such as inhibition of gastric acid secretion induced by histamine

or pentagastrin, and stimulation of pepsin, intestinal fluid or mucus secretion [106],

1.1.7 5-HT and Diseases

Carcinoid Syndrome

Carcinoid syndrome is a clinical state associated with malignant tumours of the

enterochromaffin cells, arising most commonly in the small intestine. It typically

occurs after hepatic metastasis is present, in part because of the liver's capacity to

inactivate 5-HT or other substances released into the portal circulation. The rare

carcinoid tumours that arise from extraportal sites, such as ovaries and thyroid

gland, release their secretory products directly into the systemic circulation and can

cause the carcinoid syndrome before metastasising. The clinical features include

cutaneous flushing, facial telangiectasia, diarrhoea, abdominal pain, bronchospasm,

fibrotic valvular lesions of the heart and peripheral oedema. The carcinoid tumours

may synthesise and secrete, usually sporadically, large amounts of 5-HT. With

massive tumours, 50% or more of dietary tryptophan may be diverted to 5-HT

production in the tumour and niacin synthesis may be inadequate resulting in

pellagra [23,74,107,108],

The whole blood and platelet concentrations of 5-HT are frequently raised in

carcinoid syndrome. 5-HT levels in platelet-poor plasma have also been reported to
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be elevated but these values may be unreliable since the platelet-poor fraction may

contain mainly 5-HT from platelets disintegrated during centrifugation or from

platelets aggregating during withdrawal of the sample [109-111], The daily urinary

excretion of 5-HIAA is raised to as much as 350 mg thus providing a reliable

diagnostic test for the syndrome. Urinary 5-HT excretion is usually less than 1% of

the urinary 5-HIAA level. Other metabolites that may be found in the urine in

increased amounts include TV-acetyl-5-HT, 5-HT-O-glucuronide, 5-HIAA-O-

sulphate, indoleacetic acid, and 5-HTP [107,111],

Carcinoid syndrome has been regarded as a naturally occurring model of 5-HT

excess and can provide useful information regarding the pharmacological responses

of the human subject to large amounts of 5-HT. However, a variety of other

biologically active substances, such as substance P, histamine, bradykinin and

prostaglandins, are also secreted by the tumours, and the changes seen in carcinoid

patients must therefore be interpreted with caution. 5-HT contributes to the

development of diarrhoea, bronchoconstriction, oedema and fibrosis.

Vasodilatation and flushing, on the other hand, may be primarily due to release of

substance P and the formation of kinins [74]. The 5-HT2 receptor antagonists

methysergide, cyproheptadine, and ketanserin are effective in controlling diarrhoea

and other gastrointestinal symptoms. They do not improve flushing although there

is evidence from a few studies that ketanserin may be of benefit in some patients.

The selective 5-HT3 receptor antagonist, ondansetron, was reported to produce a

dramatic improvement in diarrhoea, flushing, vomiting and appetite in a patient

with the carcinoid syndrome [112]. A number of other treatments have been

employed in patients with inoperable carcinoid tumours including

/7-chlorophenylalanine, an inhibitor of tryptophan 5-hydroxylase, to reduce 5-HT

synthesis, and the use of somatostatin or one of its longer acting analogues which

suppresses hormone secretion from various neuroendocrine, including carcinoid,

cells [23,74,107,108],
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Migraine

The cause of migraine is not well understood but a number of observations suggest

that 5-HT is implicated in its pathogenesis. There is an increase in the urinary

excretion of 5-HIAA following a migrainous attack. The blood and platelet

concentrations of 5-HT fall during the attack as a result of depletion of platelet

5-HT. The 5-HT released from platelets and possibly other tissues may be

responsible for triggering the vascular events, production of inflammatory

mediators, and stimulation of nociceptive afferents that occur in migraine. Further

evidence for a role of 5-HT in migraine is provided by the response to agents which

interact with 5-HT. Agents that release 5-HT like reserpine or inhibit its uptake

such as zimelidine may trigger migraine-like headaches. The 5-HT2 receptor

antagonists, such as methysergide, pizotifen and cyproheptadine, have been used for

the prophylaxis of migraine. Their precise mechanism of action is unknown but it

has been suggested that 5-HT2A/2c receptor activation is an initiating event in

migraine, and their antagonism therefore prevents the onset of migraine. The

(3-adrenoceptor antagonist, propranolol, used in migraine prophylaxis also

demonstrates 5-HT! and 5-HT2 antagonist activities. Ergotamine and sumatriptan,

which are used in the treatment of acute migraine attacks, have 5-HT1D or 5-HTr

like receptor agonist activity and the effectiveness of these drugs may be related to

their vasoconstrictor effects on the cephalic blood vessels which become dilated

during a migraine attack [113,114],

Hypertension

Several observations suggest that 5-HT, besides many other factors, may play a role

in the development and/or maintenance of hypertension. The sensitivity of various

vascular preparations to the vasoconstrictor effect of 5-HT is enhanced in animal

models of hypertension compared with normotensive animals, and the contractile

response to 5-HT in the mesenteric or renal vasculature is greater than those due to

other vasoconstrictors such as noradrenaline or angiotensin II. In addition, there is a
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delay in the development of tachyphylaxis to 5-HT in hypertensive compared with

normotensive animals [115-117], A reduction in platelet uptake of 5-HT, an

increase in the aggregability of platelets and a reduced pulmonary clearance of

5-HT have been reported in human and animal hypertension [114,117,118], These

may contribute to increased availability of free 5-HT at the level of the resistance

vessels where it may cause vasoconstriction by a direct action on the vascular

smooth muscles or by potentiating the actions of other vasoactive agonists. In

addition, impaired endothelial function, with decreased release of nitric oxide, may

occur in hypertension and this may enhance the vasoconstrictor response to 5-HT

[119], The renal actions of 5-HT may also contribute to the pathogenesis of

hypertension. 5-HT has been reported to decrease renal blood flow, glomerular

fdtration rate, sodium and water excretion (see section 1.2), and a sustained

reduction in renal excretory capacity could contribute to the development and

maintenance of hypertension [120]. In addition to the enhanced renal vascular

response to 5-HT mentioned earlier, there is evidence that the urinary excretion of

5-HT in hypertensive subjects is higher than in normotensives and this may reflect

overproduction of renal 5-HT [121], This contention is supported by the finding

that the renal content of 5-HT is higher in hypertensive than normotensive rats

[122], The observation that ketanserin, a 5-HT2 receptor antagonist, is a

hypotensive agent in several species including hypertensive humans has been taken

as further proof that 5-HT receptors may participate in hypertension [117]. Central

5-HT1A receptors may also be involved in the regulation of blood pressure since

5-HT1A receptor agonists, such as 8-OH-DPAT, urapidil and flesinoxan, reduce

blood pressure and heart rate in hypertensive animals and man. These effects

appear to be due to a reduction in sympathetic outflow and an increase in cardiac

vagal activity following activation of central 5-HT1A receptors [67,123,124],

However, a number of observations equally argue against a role of 5-HT in

hypertension. Experimental hypertension is associated with increased reactivity to a
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number of vasoactive agents and not just to 5-HT. There is a marked variability in

the responsiveness to 5-HT between different vascular preparations and some

studies showed no selective increase in sensitivity to 5-HT in the isolated renal

arteries or hindquarter vascular bed compared with normotensive control rats [124-

126], Consistent changes in circulating 5-HT levels have not been demonstrated in

hypertension. While some studies have reported a reduction in platelet uptake and

content of 5-HT [127-129], others have reported that platelet 5-HT levels are normal

[118,127,130], Some studies have demonstrated an increase in the circulating level

of free 5-HT [118] but this is still rather low and may be subthreshold in producing

vasoconstriction. In any case, it is unclear whether elevated plasma levels of 5-HT

would cause hypertension, and it is worth noting that carcinoid syndrome is only

rarely associated with hypertension [23,131]. Not all studies are in agreement

regarding the effects of 5-HT on renal haemodynamics, sodium and water excretion

(see section 1.2). It is also now accepted that the antihypertensive activity of

ketanserin cannot be explained solely by its 5-HT2 receptor blockade [67,124], It

possesses other properties including a!-adrenoceptor blocking activity which may

contribute to its hypotensive action, and other 5-HT2 receptor antagonists, like

ritanserin and LY 53587, which lack oq-adrenoceptor antagonist activity do not

lower blood pressure. It is also unclear whether derangement of central 5-HT

function play a role in hypertension. Intracisternal administration of 5,6-

dihydroxytryptamine, a depletor of central 5-HT, prevented or reversed the

neurogenic hypertension induced by sino-aortic baroreceptor denervation in the

rabbit, but depletion of central 5-HT failed to alter blood pressure in other

experimental models of hypertension [132],

Other Pathological Processes

5-HT has been implicated as a possible mediator in a variety of other conditions

besides those mentioned above, including depression, Raynaud's phenomenon,

pulmonary hypertension, peripheral vascular disease, coronary spasm, pre-
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eclampsia and eclampsia [114]. It is involved in the serotonin syndrome which

consists of behavioural, neuromuscular and autonomic changes, typically resulting

from combining 5-HT agents with MAO inhibitors, and is believed to arise from

hyperstimulation of brainstem and spinal cord 5-HT1A receptors [133]. The

potential role of 5-HT in the pathophysiology of some renal conditions is discussed

in section 1.2.7.

1.1.8 Drugs Affecting 5-HT Function

A summary listing of the major classes of drugs that influence 5-HT systems is

shown in Table 1-3 [134], A number of these drugs have been or are currently used

as therapeutic agents. 5-HT per se has no clinical application as a drug but its

precursors, L-tryptophan and L-5-HTP, have been used as antidepressants. Para-

chlorophenylalanine (Fenclonine) is a potent inhibitor of tryptophan 5-hydroxylase

and has been used to reduce 5-HT synthesis in patients with inoperable carcinoid

tumours. Buspirone, a partial agonist at 5-HT1A receptors, is licensed as a non-

benzodiazepine anxiolytic. Sumatriptan, a 5-HT1D/5-HTrlike agonist, is effective

in the treatment of acute migraine, and other 5-HT antagonists, such as

methysergide and pizotifen, are used in its prophylaxis. The 5-HT3 receptor

antagonists, ondansetron and granisetron, are anti-emetic drugs used particularly for

the treatment or prevention of nausea and vomiting associated with cancer

chemotherapy or radiotherapy. Several compounds release 5-HT selectively from

nerve terminals. The appetite suppressants fenfluramine and dexfenfluramine are

such substances, but it is not clear whether this action is involved in their effect on

appetite. Fenfluramine also reduces reuptake by blocking 5-HT transfer [135]. The

selective serotonin reuptake inhibitors (SSRI), such as fluoxetine and paroxetine,

specifically inhibit the reuptake of 5-HT by neurones and are effective

antidepressants. Tricyclic antidepressants also impair neuronal reuptake of 5-HT.

Some of the 'recreational' drugs interact with 5-HT. Lysergic acid diethylamide
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(LSD), which among many actions is a partial agonist at brain 5-HT2 receptors, is a

hallucinogen [136], Methylenedioxymethamphetamine (MDMA, "ecstasy"),

releases 5-HT from nerve terminals. In large doses, it produces long-term 5-HT

depletion and is possibly damaging to 5-HT neurones.

Table 1-3. Drugs affecting 5-HT function.

Site/locus ofaction Mechanism ofaction Drug

Synthesis

Storage

Precursors of 5-HT

Inhibition of tryptophan 5-hydroxylase

Inhibition of LAAD

Inhibition of storage, release and

depletion
Release of 5-HT

Receptor interaction Agonist

Antagonist

Reuptake mechanism Specific 5-HT reuptake inhibition

Non-specific 5-HT reuptake inhibition

Metabolism

Neurotoxin

Non-selective irreversible MAO

inhibition

Irreversible MAO-A inhibition

Reversible MAO-A inhibition

Irreversible MAO-B inhibition

Reversible MAO-B inhibition

Specific damage to 5-HT neurones

L-tryptophan, L-5-HTP

/i-Chlorophenylalanine,

DL-6-Flurotryptophan,

/?-Chloroamphetamine

Carbidopa, Benserazide,

a-Methyl-dopa

Reserpine, Tetrabenazine

Fenfluramine, Dexfenfluramine,

MDMA, />-Chloroamphetamine
See Table 1-2

See Table 1-2

Fluvoxamine, Fluoxetine,

Paroxetine, Sertraline

Amitriptyline, Imipramine,

Chlorimipramine, Fenfluramine,

Dexfenfluramine

Iproniazid, Isocarboxazid,

Phenelzine, Pargyline,

Tranylcypromine

Clorgyline
Meclobemide

Selegiline

Lazabemide

5.6-Dihydroxytryptamine,

5.7-Dihydroxytryptamine
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1.2 5-HYDROXYTRYPTAMINE AND THE KIDNEY

Exogenous 5-HT may affect renal haemodynamics and function. These responses

may, however, be heterogeneous and differ not only between species but also within

animals of the same species depending on the experimental conditions. In addition,

there is evidence that 5-HT may be produced locally within the kidney. The

physiological role of 5-HT in the kidney and its pathological importance in renal

disorders remain unclear.

1.2.1 Renal Metabolism of 5-HT

The pathways for 5-HT synthesis from L-tryptophan was outlined in Figure 1-2.

L-Tryptophan is hydroxylated by tryptophan 5-hydroxylase to form L-5-HTP. This

is followed by decarboxylation of L-5-HTP by aromatic LAAD to produce 5-HT.

The latter is primarily inactivated by MAO-A to 5-hydroxyindoleacetaldehyde

which is rapidly converted by aldehyde dehydrogenase to 5-HIAA, the major

catabolic and excretory product of 5-HT metabolism [31],

Both the enzymes required for the synthesis of 5-HT from L-tryptophan are

present in the mammalian kidney. Cooper and Melcer [137] first demonstrated the

presence of tryptophan 5-hydroxylase activity in the rat and guinea pig kidney, and

this was found to be 25% of the activity in the small intestine. The presence of

tryptophan 5-hydroxylase activity in kidney homogenates of the rat has been

confirmed by others, and the renal tryptophan 5-hydroxylase activity was reported

to be equivalent to, or greater than, that found in the brain stem [35,138], The

tryptophan 5-hydroxylase activity in the rat kidney appeared to be localised in the

cortex, specifically in a subfraction highly enriched in proximal tubules. There was

practically no activity in the glomeruli and medulla. Surgical denervation or

treatment with the neurotoxin 5,7-dihydroxytryptamine failed to alter enzymatic

activity suggesting that renal tryptophan 5-hydroxylase is not localised in
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5-hydroxytryptaminergic nerve terminals. P-Chlorophenylalanine, an inhibitor of

tryptophan 5-hydroxylase, produced a marked and proportionate fall in both renal

cortical tryptophan 5-hydroxylase activity and urinary 5-HT excretion in the

absence of significant changes in blood 5-HT levels in the rat suggesting that

L-tryptophan is the precursor for renal 5-HT. Sole et al. [35] also found significant

tryptophan 5-hydroxylase activity in the three human cadaveric kidneys that they

examined. The enzyme was more uniformly distributed across the kidney in man

than in the rat, being present in both the cortex and medulla. No measurable

tryptophan 5-hydroxylase activity was present in the small intrarenal arteries.

LAAD is present in high concentrations in the mammalian kidney [31]. The

relative tissue activities of this enzyme were found to be liver 100, kidney 31, lung

15, heart 7, and brain 5 in the human adult [139], Its ability to decarboxylate L-5-

HTP was first described in dog and guinea pig renal tissue homogenates [16,140].

It is located primarily within the proximal tubular cells of the renal cortex [35,141-

143] and its activity is higher in the proximal convoluted tubules than in the

proximal straight tubules [142,143], LAAD is also present in the glomeruli, renal

medulla and within autonomic nerve cells. Its activity in the glomeruli is 16-fold

lower than in the proximal tubules in the rat [35], Highly purified glomeruli

without arterioles or tubules obtained from rat kidney homogenates did not,

however, produce dopamine from L-dopa suggesting the absence of significant

LAAD activity in the glomeruli [141], This contradicts an earlier report of

synthesis of dopamine from L-dopa by isolated rat glomeruli [144].

The degrading enzyme MAO is also present abundantly in the mammalian

kidney [31,49,145,146]. Histochemically, it was initially found to be localised

almost exclusively in the renal cortex, particularly in the proximal tubules, with

little activity in the medulla. No enzyme activity was demonstrable within the

glomeruli of the guinea pig and cat kidney [145,146]. Later studies identified MAO

in both the cortex and medulla of the cat and rat kidney [147,148], Both isoforms
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of MAO are present in the human kidney. Fernandes and Soares-da-Silva [148J

found that MAO-A activity was similar in the cortex and medulla whereas MAO-B

activity was higher in the cortex than in the medulla. They observed a similar

pattern of distribution ofMAO-A and MAO-B in the rat kidney. MAO-A, however,

appeared to be the predominant form ofMAO in the rat renal cortex in contrast to

the human renal cortex which contained approximately equal amounts of the two

forms of MAO. Lewinsohn et al. [49], on the other hand, showed that MAO-A was

also the predominant form of the enzyme in the renal cortex of the human adult

kidney whereas MAO-B activity was slightly higher than MAO-A activity in the

foetal and neonate kidney. In contrast with that described for the human and rat

kidney, MAO-B was found to be the predominant form ofMAO in the renal cortex

of the dog [149] and cat [147], Selective inhibition of MAO-A by Ro 41-1049 in

the rat produced a three-fold increase in urinary excretion of 5-HT and a 14-25%

reduction in urinary 5-HIAA. It increased urinary dopamine by about 23% and

reduced urinary DOPAC (3,4-dihydroxyphenylacetic acid; dopacetic acid) by 37-

54%. Administration of the MAO-B inhibitor Ro 19-6327 did not change urinary

excretion of 5-HT, 5-HIAA, dopamine and DOPAC. Urinary sodium or potassium

excretion was unaffected by either inhibitor [150].

In addition to oxidative catabolism, the kidney has the capacity to metabolise and

conjugate 5-HT to form sulphate and glucuronide metabolites [31,55]. 5-HT

appears in the urine along with 5-HIAA and other metabolites. The daily urinary

excretion of free 5-HT in normal human subjects was found to range from 31 to 296

pg with a mean value of 131 pg in one study [151].

1.2.2 Effect of Administration of 5-HT or its Precursors on Blood and Urinary

Levels of 5-HT and its Metabolites

5-HT. The subcutaneous or intraperitoneal injection of 5-HT increased serum,

plasma and platelet 5-HT levels in the rat [152]. 5-HT (1 mg kg ' i-P-) produced an
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eight-fold increase in urinary 5-HT excretion and a six-fold increase in 5-HIAA

excretion in the rat [153]. About 0.6% of 5-HT administered intraperitoneally was

excreted unchanged and 25-35% of the injected 5-HT was recovered as free and

conjugated 5-HIAA in the rat [111]. Following intravenous 5-HT (1-10 mg kg"1),
0.6-1.5% of the injected 5-HT was excreted as 5-HT and about 25% as 5-HIAA.

The excretion of 5-HIAA was higher after subcutaneous than intravenous

administration of 5-HT [154], The urinary recovery of subcutaneously injected

5-HT as 5-HIAA decreased from 46% to 27% with increasing dose of 5-HT (1-15

mg kg"1); this may be due to 5-HT-induced dose-dependent reductions in glomerular

filtration [152], Others reported that the urinary recovery of unchanged 5-HT was

negligible after subcutaneous injection of 5-HT [155]. Intravenous administration

of 5-HT increased whole blood and plasma 5-HT concentrations [156] and the

urinary excretion of 5-HIAA in the dog but had little, if any, effect on the levels of

free 5-HT in the urine [157], About 25-40% of 5-HT injected intravenously was

excreted as 5-HIAA [157,158]. In addition to increasing 5-HIAA excretion, 5-HT

has been reported to enhance the excretion of glucuronide and sulphate conjugated

metabolites of 5-HT, 5-HIAA and 5-HTOL in varying amounts depending on the

animal species [111,159,160]. In rabbits and rats, 5-HT was excreted mainly as

5-HIAA and the glucuronides of 5-HT, 5-HTOL and 5-HIAA whereas in cats the

corresponding O-sulphates were the major metabolites.

In man, the intravenous infusion of 5-HT (2.2-8.7 pg kg"1 min"1) produced only a

small increase in 5-HT level in platelet-rich plasma, approximating 2% of the

infused amount [161]. The oral or intravenous administration of 5-HT produced no

significant increase in urinary excretion of free 5-HT but a marked increase in the

excretion of 5-HIAA and 5-HT conjugates [151,161,162], The percentage of the

5-HT dose recovered in urine as 5-HIAA ranged between 65-92% after intravenous

5-HT [161,162] and 52-70% after oral 5-HT [151]. In the carcinoid syndrome,

platelet 5-HT levels are usually elevated [110,111] but metabolites of 5-HT such as
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5-HIAA generally increase many more times in the urine than does 5-HT itself

[151]. Endogenous or exogenous 5-HT presented to the bloodstream may be either

rapidly sequestered in platelets or efficiently metabolised in either the hepatic or

pulmonary circulation. Very little free 5-HT may, therefore, be available for

filtration at the renal glomerulus or secretion by the renal tubules and this may

explain the failure to produce a substantial increase of 5-HT in the urine.

Tryptophan. The oral feeding of large amounts of L-tryptophan (14.7 or 24.7

mmol) in dogs produced a slight but variable increase in urinary 5-HIAA suggesting

that hydroxylation of L-tryptophan may proceed at a maximal rate even at normal

intakes of the amino acid [157]. Increased plasma levels of 5-HT and 5-HIAA

levels were, however, observed after intraperitoneal injection of L-tryptophan (10-

100 mg kg"1) [163]. Oral administration ofmore than 50 mg kg"1 of L-tryptophan in

rats produced an increase in urinary excretion of 5-HIAA and this was greater than

after its subcutaneous or intraperitoneal administration [164], The main site of

hydroxylation of L-tryptophan is believed to be in the gastrointestinal mucosa [165]

and this probably explains the greater increase in urinary 5-HIAA obtained after

oral L-tryptophan. In contrast, D-tryptophan produced no increase in urinary

5-HIAA excretion [164]. Intravenous infusion of L-tryptophan (75 (ig min"1)
produced no changes in plasma or urinary levels of 5-HTP or 5-HT in the rat [166],

Yuwiler and his colleagues [167] reported an increase in whole blood 5-HT after

single oral doses of 50 and 100 mg kg"1 of L-tryptophan in normal man. They also

observed an increase in 5-HT measured in platelet-poor plasma after 100 mg kg"1
load of L-tryptophan. Benedict and his co-workers [168] administered placebo or

1 g of L-tryptophan with the three main meals for 3 days. The mean total plasma

tryptophan level 60-90 min after the last dose of L-tryptophan was 130 pmol 1"'
compared to a value of 51 |imol l"1 after placebo but there was no increase in

platelet 5-HT concentration. Similarly, Sole and his colleagues [35] found no

changes in the concentrations of 5-HT in blood or platelet-poor plasma after 3 g of
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L-tryptophan. There was, however, a five-fold increase in the urinary excretion of

5-HT over the 6 h period following administration of L-tryptophan which is

indicative of renal synthesis of 5-HT. A rise in urinary excretion of 5-HT was

reported after a single oral 2 g load of L-tryptophan [121,169] and an increase in

5-HIAA excretion after oral administration of 5 g of L-tryptophan [170]. Other

investigators, however, reported that acute (25, 50 or 100 mg kg"1) or chronic (50

mg kg"1 twice daily for 7 days) oral intake of L-tryptophan produced only small or

negligible changes in urinary L-tryptophan and 5-HIAA excretion but increased

urinary kynurenine and indoleacetic acid excretion [171-174],

5-HTP. Administration of DL-5-HTP increased plasma and whole blood 5-HT

concentrations and the urinary excretion of 5-HTP, 5-HT and 5-HIAA in the dog

[157.175], Following its intravenous administration, 20% of the given dose was

excreted as 5-HT and 30% as 5-HIAA, calculated on the basis that only the

L-isomer was metabolised [157], Large amounts of 5-HTP was detected in urine

which was thought to be mostly due to unmetabolised D-isomer. Parenteral

administration of DL-5-HTP in the rat increased blood concentrations and the renal

content of 5-HT [153,155,162], It also increased the urinary excretion of 5-HTP,

5-HT, 5-HIAA, and the glucuronide and sulphate conjugates of 5-HT and 5-HIAA

[111.176], Intravenous infusion of L-5-HTP produced marked increases in plasma

levels of 5-HTP and urinary excretion of 5-HT and 5-HTP without significant

increases in plasma 5-HT [166], The elevation in urinary level of 5-HT after

intraperitoneal DL-5-HTP was more marked than that after administration of 5-HT

itself [155,176], Similarly, Airaksinen and Uuspaa [153] observed that

intraperitoneal administration of 0.05-50 mg kg"1 of DL-5-HTP in rats produced a

10- to 5000-fold increase in urinary excretion of 5-HT representing 38.6% of the

infused dose of L-5-HTP, whereas 5-HT (1 mg kg"1 i.p.) increased urinary 5-HT

eight-fold and this represented only 0.6% of the given dose of 5-HT.

Davidson et al. [162] first reported that intravenous infusion of 50 mg of DL-5-
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HTP over 1 h in two human subjects resulted in a marked increase in urinary

excretion of 5-HT and 5-HIAA for 8 h. The percentages of the administered dose of

5-HTP represented by urinary 5-HT in the two subjects were 4 and 7% respectively.

There was no detectable increase in urinary 5-HT following administration of 10 mg

of 5-HT base itself The average percentages of intravenously infused DL-5-HTP,

5-HT and 5-HIAA excreted as 5-HIAA over a 10 h period were 28%, 77% and 55%

respectively. Brengelmann et al. [177] also reported the presence of large amounts

of 5-HT and 5-HIAA in urine after intravenous injection of 25 mg of DL-5-HTP in

healthy volunteers. In addition, they observed a significant increase of 5-HTP in

urine which they presumed was, to a large extent, due to the unchanged D-isomer.

Oates and Sjoerdsma [178] administered L- or DL-5-HTP intravenously over 90 to

150 min in 2 subjects with hypertension. About 70% of the dose of the L-isomer

was recovered in the urine as the sum of 5-HTP, 5-HT and 5-HIAA. The relative

ratio of these three metabolites were approximately 0.15: 0.25: 0.60 respectively.

1.2.3 Evidence of 5-HT Synthesis in the Kidney

The origin of the 5-HT in normal urine is not entirely clear. A first possibility is

that urinary 5-HT originates from plasma 5-HT either by glomerular filtration or

tubular secretion. The second possibility is that at least part of the 5-HT in urine is

contributed directly by kidney metabolism. Rodnight [169] reported that the 24 h

urinary excretion of 5-HT in 12 normal human subjects ranged from 60 to 150 |ig.

In view of the very low level of free 5-HT in plasma, he suggested that either the

renal clearance of 5-HT is high or that platelet-bound 5-HT is released into plasma

at or near the sites of urine formation. He also raised the possibility that the 5-HT

in the urine may in part be due to the renal synthesis of 5-HT.

The presence of tryptophan 5-hydroxylase and aromatic LAAD within the kidney

suggests that the kidney may indeed be a site of 5-HT production. There is little

doubt from both in vitro and in vivo studies that renal LAAD is able to
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decarboxylate L-5-HTP to 5-HT. Conversion of L-5-HTP to 5-HT occurs readily in

renal tissue homogenates from different mammalian species [16,39,42,140],

Histofluorescence studies using renal cortex slices showed that the synthesis of

5-HT from L-5-HTP occurred in the proximal convoluted tubules [142], Incubation

of isolated proximal convoluted tubules with increasing concentrations of L-5-HTP

results in a dose-dependent formation of 5-HT [179,180], When the rat kidneys

were perfused in situ, addition of DL-5-HTP to the Locke's solution was followed

by abundant appearance of 5-HT in the filtrate collected from the bladder and also

in the perfusate from the inferior vena cava [153], Similarly, Stier et al. [181]

demonstrated that infusion of L-5-HTP into the renal artery of the isolated rat

kidney resulted in the appearance of 5-HT in the urinary and venous effluents. The

kidneys were perfused with Krebs-Henseleit solution to ensure that any direct

intrarenal formation of 5-HT from L-5-HTP was independent of other tissues or

blood elements. Infusion of the D-isomer, on the other hand, produced only a

minimal increase in 5-HT output relative to that obtained after L-5-HTP consistent

with stereospecific formation of 5-HT from its amino acid precursor L-5-HTP.

There is also indirect evidence from in vivo animal studies that the kidney is

capable of 5-HT synthesis from L-5-HTP. A consistent observation in experimental

animals is that the urinary excretion of 5-HT increases following parenteral

administration of L-5-HTP or DL-5-HTP {see section 1.2.2). The rise in urinary

5-HT excretion was found to be much higher than after administration of 5-HT

itself in the rat [153,155,176]. Although uptake of 5-HT by platelets or its

extrarenal metabolism may partly account for the lower urinary 5-HT levels

observed after administration of 5-HT [176], further evidence indicates that

intrarenal formation of 5-HT from L-5-HTP may be largely responsible for the

higher urinary levels of 5-HT that occurred after administration of 5-HTP. The

renal content of 5-HT increased ten-fold within an hour of DL-5-HTP

administration [153], In addition, blood 5-HT concentration in the renal vein was
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elevated and higher than that in the abdominal aorta. The blood 5-HT level was

also higher in the renal vein than in the abdominal aorta even before DL-5-HTP

injection. These data suggest that the kidney is able to convert 5-HTP to 5-HT

which it transfers to the blood and urine, and that intrarenal synthesis of 5-HT also

appears to take place physiologically [153], Further support for in vivo formation of

5-HT from L-5-HTP by the rat kidney is provided by the work of Stier and Itskovitz

[166]. They observed that urinary excretion of 5-HT increased markedly without

concomitant increases in plasma 5-HT after infusion of L-5-HTP and that more than

20% of the administered L-5-HTP was recovered in the urine as 5-HT. In contrast,

there were large increases in plasma levels of 5-HTP with only relatively small

increases in urinary 5-HTP. Both in vivo and in vitro animal studies, therefore,

show that the kidney can synthesise 5-HT from L-5-HTP.

Urinary excretion of 5-HT also increased markedly following intravenous

administration of DL- or L-5-HTP in man whereas little increase in urinary 5-HT

excretion occurred after administration of 5-HT [162; see section 1.2.2). These

observations would be consistent with the proposition that 5-HT is also produced in

the human kidney and that locally synthesised 5-HT is less accessible to the

catabolising enzymes than infused 5-HT. However, plasma 5-HT was not measured

in any of these studies and the contribution of extrarenal formation of 5-HT to the

elevated urinary 5-HT excretion cannot therefore be assessed.

The evidence for intrarenal formation of 5-HT from its original precursor

L-tryptophan is not so clear-cut. Homogenates prepared from kidneys of dogs and

guinea pigs yielded 5-HT when incubated aerobically with DL-5-HTP but not with

L-tryptophan [140]. Sole and his colleagues [35] demonstrated the accumulation of

significant quantities of 5-HT in both the perfusate and urine of isolated rat kidneys

perfused with a solution containing L-tryptophan, but free of 5-HTP, 5-HT and

other amines, thus demonstrating the capacity of the whole kidney to synthesise

5-HT from L-tryptophan. On the other hand, Stier & Itskovitz [166] failed to
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demonstrate increases in blood and urinary levels of 5-HTP or 5-HT during

intravenous infusion of L-tryptophan in the rat in vivo. This contrasted with

increases in urinary 5-HT excretion following infusion of L-5-HTP under the same

experimental conditions. Their observations, which are at variance with data

obtained in the isolated perfused kidneys, suggest that, for some reason,

L-tryptophan transported by the kidney was not available to renal tryptophan

5-hydroxylase and that renal conversion of L-tryptophan to L-5-HTP and 5-HT was

not very efficient in vivo. L-tryptophan loading increased urinary excretion of 5-HT

in vivo in man (see section 1.2.2). This occurred without increases in 5-HT levels

measured in blood or platelet-poor plasma [35] but other studies demonstrated an

increase in 5-HT levels in whole blood and platelet-poor plasma after administration

of L-tryptophan [167] making it difficult to assess the relative contribution of extra-

and intrarenal synthesis of 5-HT to the increased urinary 5-HT excretion. Studies

have, therefore, yielded inconsistent results regarding the renal formation of 5-HT

from L-tryptophan. It is possible that 5-HT is formed from L-5-HTP but not

L-tryptophan in the kidney. This would require the presence of L-5-HTP in the

circulating blood. Plasma levels of L-5-HTP are, however, low in vivo but this is in

part due to significant peripheral decarboxylation since carbidopa increases plasma

5-HTP levels several-fold in man [182,183],

1.2.4 Renal 5-HT Stores

The presence of 5-HT in the mammalian kidney was recognised soon after the

amine was identified and characterised. There is, however, a wide variation in the

reported levels of 5-HT in whole mammalian kidney tissue, from as low as 0.018

/Jg g"1 tissue weight in the dog kidney up to 1.3 |ig g"1 in the mouse kidney [29].

Several factors other than species differences account for the disparity of 5-HT

levels and widely differing values were reported within the same species. In many

of the early studies, the chosen assay was unable to distinguish 5-HT from other
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indolealkylamines or products converted to 5-HT during the extraction procedure.

The methods of tissue preparation may also suffer from significant contamination

by platelets or mast cells which contain significant amounts of 5-HT. Fischer and

Aprison [184] reported that the mean levels of 5-HTP and 5-HT in the rat kidney

were 4.9 pmol g"1 (22.3 ng g4) and 1.2 pmol g4 (6.8 ng g4) tissue weight

respectively. A more recent study using a highly specific assay for 5-HT combined

with a careful flushing of the kidney and stripping of the renal capsule to minimise

contamination by platelets or mast cells also demonstrated that the rat kidney

contains relatively little 5-HT [35]. The 5-HT 'stores' in the medulla (21 ng g4)
exceeded those in the cortex (7 ng g4) but they were uncertain whether the three¬

fold increase in medullary, as compared to cortical, 5-HT represents an actual

heterogeneity in 5-HT distribution or a flushing artefact. The origin of 5-HT in the

normal kidney is unclear. The blood platelets may be an important source of 5-HT

in the kidney, especially in diseases characterised by intravascular coagulation, and

there is also evidence that the kidney itselfmay be capable of synthesising 5-HT.

1.2.5 Renal Handling and Excretion of 5-HT, its Precursors and its Derivatives

Tryptophan. Tryptophan is partially bound to plasma proteins. It is filtered at the

glomerulus and is both secreted and reabsorbed in the renal tubules [185-187], Its

stereoisomers are transported in a specific fashion in the mammalian kidney.

L-Tryptophan was rapidly taken up by isolated rabbit renal tubules against a

concentration gradient whereas its enantiomer, D-tryptophan, was not [185], In vivo

clearance and stop-flow experiments in the dog, and microperfusion studies in the

rat revealed that L-tryptophan is both reabsorbed and secreted by the proximal

tubule, with the reabsorptive process predominating [185,186], The active proximal

tubular reabsorption of L-tryptophan appears to operate via a stereospecific

transport mechanism since D-tryptophan was reabsorbed to a minimal degree in the

proximal tubule. The process also displays a high degree of structural specificity
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since other tryptophan derivatives, like N-acety 1 -L-tryptophan. DL-5-HTP and

5-HT, were not reabsorbed to any extent by the proximal tubule [185,186],

Microperfusion studies in the rat showed that the proximal tubular reabsorption of

L-tryptophan exhibits saturation kinetics and a tubular transport maximum (Tm) for

L-tryptophan occurred at a luminal (perfusate) concentration of 8 mM [186], The

reabsorptive process was competitively inhibited by L-phenylalanine suggesting

that these amino acids share a common transport mechanism located in the proximal

tubule [185,186], It was unaffected by the metabolic inhibitors sodium azide and

2,4-dinitrophenol suggesting that the lumen-to-tubular cell transport mechanism for

L-tryptophan does not require energy obtained through oxidative phosphorylation

[185,186], Probenecid, a potent blocker of the anionic secretory pathway, inhibited

the tubular secretion of L-tryptophan showing that the latter is secreted in the

proximal tubule by this pathway. It was without effect on the tubular reabsorption

of L-tryptophan indicating that this process is not mediated by an organic acid

transport mechanism [185],

D-tryptophan is handled by the kidney in a different fashion from L-tryptophan.

In contradistinction to the bidirectional flux of L-tryptophan, D-tryptophan was

primarily secreted and not reabsorbed in the proximal tubule to any significant

degree [185-187], Its proximal tubular secretion was probenecid sensitive and

D-tryptophan, like L-tryptophan, is therefore secreted by an anionic secretory

system [185,187], Clearance studies showed that it undergoes net renal tubular

reabsorption in the rat [187] in contrast to the observation of net tubular secretion in

the dog [185] and chick [188], Using micropuncture technique, D-tryptophan was

found to be secreted in the proximal convoluted tubule but reabsorbed from a more

distal segment of the nephron in the rat [187], Its reabsorption was uninfluenced by

luminal fluid pH [187], D-tryptophan is apparently not utilised by humans to

support nitrogen balance [189] and a considerable portion was found in the urine

after its ingestion in man [190],
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5-HTP. There is less information regarding the renal handling and transport of

5-HTP. Studies of uptake of [l4C]DL-5-HTP showed that 5-HTP was taken up by

the kidneys and other tissues which have significant LAAD activity [191]. 5-HTP

was shown to be taken up by the separated rat renal tubules by a saturable transport

system [192], Administration of L-5-HTP to rats in vivo increased plasma levels of

5-HTP but little appeared in the urine and the authors suggested that L-5-HTP may

be efficiently reabsorbed by the kidney [166], Microperfusion studies in the rat

showed that DL-5-HTP, unlike L-tryptophan, was not reabsorbed by the proximal

tubule [186], but it is possible that L-5-HTP is reabsorbed more distally.

5-HT. 5-HT is filtered at the glomerulus and secreted by the tubules. Clearance

studies in the renal portal circulation of the chicken, and microperfusion and

micropuncture studies in the rat showed that it is actively secreted by the proximal

renal tubules in the rat and chicken kidney [187,193,194], It is not reabsorbed

anywhere along the mammalian nephron to any significant degree as would be

expected since it is lipid insoluble [186,187,194], The tubular secretion of 5-HT

was inhibited by mepiperphenidol and quinine, both blockers of the organic cation

transport system, suggesting that 5-HT is mainly secreted by the ordinary organic

base transport system [194], This is also supported by data showing that this process

was inhibited by tolazoline, brom cresol green, and cyanine dye #863 which cause

tubular inhibition of base transport [195], Probenecid either had no effect [195] or

only partially inhibited the secretion of 5-HT unlike its action on the transport of

tryptophan or 5-HIAA [187,194]. Reserpine, despite its effect on platelets, did not

inhibit the renal tubular secretion of 5-HT [193,195], An early report suggested that

5-HT excretion was higher in acid urine in rat [176], However, subsequent studies

showed that the excretion of 5-HT is unaffected by urinary pH [187,194,195],

These data are consistent with the lipid insolubility of 5-HT and suggest that non-

ionic diffusion mechanisms play no role in its excretion.

5-HIAA. 5-HIAA is excreted by the kidney by glomerular filtration and active



tubular secretion [110,187,194,196], Micropuncture studies in the rat demonstrated

active secretion of 5-HIAA in both the proximal tubules and the more distal

portions of the nephron. Microperfusion studies showed that it undergoes slight

reabsorption from the proximal tubular fluid but this does not appear to be

quantitatively important. Probenecid blocked the tubular secretion of 5-HIAA at all

nephron levels implying that 5-HIAA, like tryptophan, is actively secreted in the

renal tubules by the organic anionic transport system [187], Similar observations

were made in other species [194], and administration of probenecid to patients with

the carcinoid syndrome was followed by a decrease in the urinary excretion of

5-HIAA and an increase in the plasma level of 5-HIAA [110,196],

The intrarenal site of this transport system has been established in the chicken.

Probenecid completely blocked the active tubular secretion of intravenously infused

labelled [l4C]5-HIAA in the chicken but had no effect on the excretion of

[ H]5-HIAA produced intracellularly within the kidney from simultaneously

infused [ H]5-HT [194], Similarly, novobiocin, an inhibitor of /?ur<2-aminohippuric

acid (PAH) transport, completely blocked the excretion of intravenously infused

[14C]5-HIAA in the chicken, but this drug did not block the excretion of
3 • • 3
[ H]5-HIAA produced intrarenally from intravenously administered [ H]5-HT

[197]. PAH is transported by the organic anion transport system and these

observations, interpreted more broadly, indicate that novobiocin blocks the anionic

secretory system that handles exogenously administered PAH or 5-HIAA thus

providing further support for the probenecid data. Novobiocin had no effect on the

transport of 5-HT or its metabolism to 5-HIAA. The absence of an effect of

probenecid or novobiocin on the excretion of 5-HIAA produced within the renal

tubular cell indicates that the probenecid- or novobiocin-sensitive anionic secretory

step is located at the peritubular, and not the luminal, side of the cell [194,197].

There was no significant change in urinary 5-HIAA excretion with varying

urinary pH in man [198], Reabsorption of 5-HIAA was, however, observed to be
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greater at pH 5 than at pH 7 in microperfusion experiments in the rat [187],

1.2.6 Effects of 5-HT on Renal Blood Flow and GFR

The effect of 5-HT on the renal circulation is variable depending on the animal

species studied, as well as the dose and route of administration, with investigators

reporting no change, an increase, a decrease, and even bi- or multiphasic changes in

renal blood flow. The renal vasculature of the rat appears to be more sensitive than

that of the rabbit, guinea pig or dog [55,70,199-201], The injection of 5-HT directly

into the renal artery of the isolated perfused rat kidney increased the renal vascular

resistance and reduced renal blood flow even after denervation suggesting that its

effect was not dependent on intact renal nerves [116,202], This response was

inhibited by ketanserin, a 5-HT2A receptor antagonist [181,203], 5-HT reduced

renal blood flow and GFR in vivo in the rat independent of whether it was

administered by the intravenous, subcutaneous or intraperitoneal route [55,70,204-

206], The vasoconstriction may be preceded by an initial vasodilatation [207], The

reduction in GFR in well-hydrated rats undergoing mannitol diuresis was

independent of changes in systemic blood pressure [206], 5-HT-induced renal

ischaemia occurred primarily in the outer cortex and morphological lesions similar

to renal cortical or tubular necrosis have been reported following acute and chronic

dosing with 5-HT [205,206,208-210], 5-HT, 5-CT (5-HT, receptor agonist) and

8-OH-DPAT (selective 5-HT1A receptor agonist) caused vasodilatation in the

isolated rat kidney preconstricted with noradrenaline and pretreated with 5-HT2 and

5-HT3 receptor antagonists. This response was antagonised by the selective 5-HT1A

receptor antagonist BMY 7378 and attenuated by the nitric oxide synthase inhibitor

nitro-L-arginine (L-NNA) suggesting the existence of 5-HT1A-mediated

endothelium-dependent renal dilatation [211].

5-HT has a variable effect on the renal circulation of the dog. Most studies

suggested that 5-HT administered intravenously in high doses, e.g. as a single
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injection of 10-20 |LLg kg"1 [212] or as an infusion of 15-20 pg kg"1 min"1 [213],

caused vasoconstriction resulting in an increase in renal vascular resistance and a

reduction in renal blood flow and GFR [70,201], This was associated with shunting

of blood from the renal cortex to the medulla [212,214], Similar observations were

made after administration of 5-HT into the aorta [215,216] or directly into the renal

artery [214,217-219], and the increase in renal vascular resistance could be reversed

by the 5-HT receptor antagonist methysergide [215], The effect of 5-HT on renal

haemodynamics may be modulated by renal innervation and catecholamines [201],

The vasoconstrictor response to 5-HT was increased after denervation by cord

section [220] and was converted to a vasodilator response when the renal

sympathetic nerves were stimulated [218], It has also been observed that the

vasoconstrictor effect of 5-HT was blocked by the non-selective a-blocker

phenoxybenzamine [219]; however, an earlier study showed that the increased renal

vascular resistance was not inhibited by phentolamine, another non-selective

a-blocker [217], In contradistinction from the above studies, other investigators

have reported that the intravenous infusion of 5-HT caused an increase in renal

plasma flow with or without a reduction in GFR [221-223], There are also a

number of studies which showed no change in renal blood flow or GFR following

infusion of 5-HT, particularly when the administered dose was less than 5 Jig kg"1
min"1 [221,224] although similar observations were also made in some studies when

the infusion rate was 5-10 pg kg"1 min"1 [213,222], Others have also reported that

no change in renal blood flow occurred after infusion of 5-HT into the renal artery

[90], Blackshear et al. [225], using an electromagnetic flowmeter to measure renal

blood flow, observed that infusion of 5-HT into the renal artery of the anaesthetised

dog produced an initial sharp decrease in blood flow followed by a gradual increase

at 3 to 6 min. Prostaglandin synthetase inhibition by indomethacin abolished the

vasodilator response, resulting in a sustained reduction in blood flow which was

abolished by ketanserin, suggesting that the vasoconstrictor response was mediated
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by an action on the 5-HT2A receptor. The complex non-specific 5-HT receptor

antagonist methysergide inhibited the increase in renal blood flow induced by

ketanserin in indomethacin-treated dogs. It was suggested that the vasodilatation

may be mediated by a 5-HT, receptor. Neither ketanserin nor methysergide affected

renal blood flow when administered in the absence of indomethacin, and none of

these agents affected the initial transient vasoconstrictor response. Shoji et al. [226]

also reported a biphasic response of renal blood flow to an infusion of 5-HT into the

renal artery of the denervated dog kidney. They however observed that the initial

transient vasoconstrictor phase was abolished by methysergide but not by ketanserin

and that the subsequent vasodilatation was abolished by infusion of either

ketanserin or methysergide. They suggested that 5-HT-induced vasoconstriction

was mediated via a 5-HT, receptor and vasodilatation was mediated by a 5-HT2

receptor. Their findings are not consistent with those of Blackshear et al. [225] but

there were differences in experimental conditions between the two studies. More

recently, Cambridge et al. [227] observed that 5-HT, sumatriptan (5-HT1D or 5-HT,-

like agonist) and 5-CT reduced renal blood flow in dogs, which were pretreated

with ketanserin and MDL 72222 to block 5-HT2 and 5-HT3 receptors respectively.

The 5-CT-induced vasoconstriction was attenuated by the 5-HT, receptor antagonist

methiothepin. They suggested that vasoconstrictor responses to tryptamine

analogues in the renal vasculature were mediated by 5-HT,D or 5-HT,-like

receptors. The renal vasoconstrictor responses to sumatriptan and 5-CT, but not that

due to angiotensin II, were significantly augmented by the nitric oxide synthase

inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), suggesting the existence of

endothelial 5-HT,-like receptors coupled to the endogenous vasodilator, nitric

oxide, in the canine renal vasculature [228],

Administration of 5-HT subcutaneously [200], intravenously [205,229,230] or

into the renal artery [231] reduced renal blood flow in the rabbit. Absence of an

effect was, however, reported after injection of 5-HT into the aorta just above the
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origins of the renal arteries [199], The reduction in blood flow in the renal artery

was antagonised by ketanserin indicating that it was mediated by 5-HT2A receptor

[230,231], Dilatation of the renal resistance vascular bed was observed after

administration of 5-CT, a 5-HT[ receptor agonist, suggesting that 5-HT-induced

vasodilatation may be mediated by a 5-HTj receptor [230], Tadipatri et al. [232]

concluded from their experiments with the rabbit isolated renal artery that 5-HT

receptors mediating vasodilatation were not present in the smooth muscle or

endothelium of the rabbit renal artery and may be predominantly located on

arterioles. The receptor mediating 5-HT-induced vasoconstriction of the renal

artery was not of 5-HT2, 5-HT3 or 5-HT4 receptor type. It was also not of the

5-HT1A, 5-HT2b or 5-HT1D receptor subtypes and it was felt that the

pharmacological properties of this receptor most closely resemble those described

for the heterogeneous 5-HTplike category.

The effect of 5-HT upon renal blood flow or GFR is even more difficult to

evaluate in man. There are fewer studies and they have yielded contradictory

results. Two normal human subjects given 5-HT intravenously at 10-20 fig kg"1
min"1 showed a decrease in both renal plasma flow and GFR [233]. Bojs [161] also

reported parallel reductions in renal plasma flow and GFR when 5-HT was infused

at a rate of 4.3 fig kg"' min"1 in normal subjects. The changes were, however, small

and only slightly exceeded the variations in renal plasma flow and GFR observed

during the control periods. In addition, there were no significant changes in renal

plasma flow and GFR compared to the control periods when the infusion rate of

5-HT was increased stepwise to 6.5 and 7.8 fig kg"1 min"1 suggesting an adaptation

of these responses to the infusion of 5-HT. Bojs concluded from his studies that

5-HT has a negligible effect on renal plasma flow and GFR in normal man. In

hypertensive patients, the intravenous injection of a single 1 mg dose of 5-HT was

reported to produce a 30% reduction in renal plasma flow rates for 15 to 45 min but

GFR was not necessarily reduced [234], In a further report, involving a larger
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number of hypertensive subjects, Hollander and his colleagues [235] reported that

the intravenous injection of 1 mg of 5-HT resulted in a mean reduction in renal

plasma flow rates of 12% and GFR of 9%. These effects were unrelated to changes

in systemic blood pressure. At variance with the above results, however, are those

of other investigators who found no changes in renal plasma flow and GFR, or a

reduction in GFR without any change in renal plasma flow [55,70], The role of

5-HT in regulating renal blood flow in man therefore remains unclear given the

inconsistent changes in renal haemodynamics that have been reported.

1.2.7 Effects of 5-HT on Electrolyte and Water Excretion

The most precise data regarding the effects of 5-HT on sodium and water excretion

were obtained in the rat and dog, while less evidence is available in man. 5-HT,

administered to rats intravenously, subcutaneously or intraperitoneally, reduced

urinary flow rate, especially in well-hydrated animals [70,204,206,208,236-238],

The subcutaneous route was more effective than the intravenous or intraperitoneal

route in producing this effect whereas 5-HT had no antidiuretic effect when given

orally [70,154,204], A simultaneous decrease in GFR and PAH clearance occurred

in most instances and it has been suggested that 5-HT-induced antidiuresis is due

primarily (and essentially) to a reduction in GFR brought about by constriction of

the afferent glomerular blood vessels [204,206], The percentage reduction in urine

output was, however, greater than that in GFR and even more than that in renal

plasma flow indicating that a higher percentage of the glomerular filtrate was

reabsorbed by the tubules. In addition, a sustained antidiuresis occurred despite the

prevention of a significant decrease in GFR by subcutaneously administered

dibenamine [237], These observations suggest the possibility of some direct or

indirect effect of 5-HT on the tubular epithelium to increase water reabsorption

separate from its effect on GFR. Others however argued that a satisfactory

explanation of these observations may still be based on the theory that 5-HT-
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induced redistribution of blood flow from the superficial cortex to the

juxtamedullary area may allow the deep juxtamedullary nephrons with long loops of

Henle to reabsorb more salt and water than the superficial cortical nephrons with

short loops thus reducing urinary sodium and chloride excretion and urine output

[70,239,240],

It has been suggested by some investigators that the antidiuretic effect produced

by 5-HT could be partly due to the release of the antidiuretic hormone, AVP,

perhaps induced by the pain stimulating effect of injected 5-HT [221,241],

However, an antidiuresis was also observed when 5-HT was administered

subcutaneously at sufficiently low doses to avoid painful stimuli that might release

AVP [237], In addition, a reduction in chloride excretion accompanied the decrease

in urine output after 5-HT administration in contrast to the antidiuresis induced by

AVP which was accompanied by an increase in urinary chloride excretion [236],

Furthermore, the antidiuretic effect of 5-HT was observed in hypophysectomized

rats [242], and drugs with 5-HT antagonist activities inhibited or diminished 5-HT-

induced antidiuresis but had no effect upon the antidiuresis which followed release

of endogenous AVP or administration of exogenous AVP [238,243], These

observations suggest that the antidiuretic effect of 5-HT is unlikely to be due to the

release of endogenous AVP although the latter may contribute to antidiuresis in

certain situations. 5-HT directly stimulates the adrenal gland to release aldosterone

[100,244], Aldosterone release does not, however, seem to account for the

antidiuresis seen in the rat, since free water clearance should rise if the antidiuresis

is primarily due to increased mineralocorticoid action whereas urine osmolality

usually increases after 5-HT. Aldosterone secretion might account partially for the

decrease in sodium excretion, but no firm data for potassium excretion in the rat are

available to evaluate this possibility.

The dog, like the rat, is able to respond in certain experimental situations to 5-HT

administration with a reduction in urinary volume. However, it requires higher
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doses of 5-HT to exhibit this response. The minimum effective antidiuretic dose of

5-HT by single intravenous injection varies from 10 to 20 pg kg"1 [212] and by

intravenous infusion from 3 to 10 pig kg"1 min"1 [222-224], The subcutaneous and

intramuscular routes are less effective [212,245]. The antidiuresis may be

associated with reduction in GFR and/or renal plasma flow [212,214], A number of

studies, however, showed that 5-HT can reduce urinary volume in the absence of a

change in GFR in the dog [213,222,245], In one of these, 5-HT infused

intravenously at 10 |Ltg kg"1 min"1 markedly decreased urine output in the absence of

any changes in GFR or blood pressure and with only an insignificant increase in

renal plasma flow [222], There was an increase in the ratio of the concentration of

inulin in the urine to that in plasma and a decrease in the ratio of urine volume to

inulin clearance. These observations strongly suggest an increase in the tubular

reabsorption of water. At higher infusion doses, a further decrease in urinary

volume occurred which was now associated with a decrease in GFR and an increase

in renal plasma flow. Very similar results have been reported by other investigators

after either intravenous injection of 5-HT [245] or infusion of 5-HT [213] although

in the latter study a decrease in renal plasma flow occurred at higher doses.

In contrast to the above observations, there are studies which failed to show a

consistent antidiuresis with 5-HT [212,221]. In one study, 5-HT administered

directly into the renal artery of either normal or denervated kidneys increased renal

vascular resistance but did not affect urinary flow rate [217], In another study,

infusion of 5-HT into the renal artery of the denervated dog kidney increased urine

flow and sodium excretion [226], There was, however, a brief reduction followed

by a more prolonged increase renal blood flow [226], Pretreatment with ketanserin

inhibited the increase in renal blood flow and changed the diuresis and natriuresis

induced by 5-HT into antidiuresis and antinatriuresis, without any effect on GFR.

Methysergide abolished the haemodynamic, diuretic and natriuretic responses to

infusion of 5-HT. The authors suggested that 5-HT exerted its antidiuretic and
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natriuretic actions via a 5-HT, receptor but that the renal haemodynamic changes

induced by 5-HT may overcome these responses and produced the observed diuresis

and natriuresis. It has also been suggested that the antidiuresis which may follow

systemic administration of 5-HT does not result from a direct effect of 5-HT since it

has frequently been noted that subcutaneous, intramuscular or intravenous 5-HT

produced maximal antidiuresis when associated with manifestations of pain,

respiratory distress, peripheral vascular changes or hypotension. Antidiuresis may,

therefore, have been simply the result of hypotension or a reduction in perfusion

pressure. Ureteric spasm has also been suggested as a possible cause of the

antidiuresis [246]. As in the rat, antidiuresis did not appear to be mediated by

release of AVP since the antidiuretic effect of 5-HT was not accompanied by any

increase in chloride excretion and could also be demonstrated in

hypophysectomized dogs [247].

The decrease in urinary volume that follows intravenous administration of 5-HT

in the dog is usually accompanied by a decrease in the absolute and fractional

excretion of sodium [213,223,224], The reduction in sodium excretion may occur

in the absence of renal haemodynamic changes and changes in filtered load of

sodium at low doses of 5-HT. It may also occur when urinary flow is unaltered.

The sodium-retaining effect of 5-HT was completely abolished after adrenalectomy

raising the possibility that this action of 5-HT may be mediated through the adrenal

gland. It is possible, however, that the increase in sodium excretion which

commonly takes place after adrenalectomy was able to obscure the 5-HT effect

quantitatively and the 5-HT-induced reduction in sodium excretion was just not

measurable [248], An effect produced during the first 30 min after 5-HT

administration would seem too rapid for an effect on aldosterone synthesis or

release and, in addition, there was no change in urinary potassium excretion. 5-HT

had no effect on tubular reabsorption of electrolytes and water during mannitol

diuresis in the dog [221], The results in relation to the effect of 5-HT on urinary
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potassium excretion is conflicting with some studies reporting a reduction [224] and

others demonstrating no effect [213,221], Similarly, a few studies suggested a

reduction in chloride excretion [224] while others showed no effect [221],

In man, Hulet and Perera [249] demonstrated that the intravenous infusion of 1-2

mg of 5-HT base over one hour reduced sodium and chloride excretion but no

consistent trends were noted in either urine or potassium output. Sinclair [76]

showed that when doses of 4-8 mg of 5-HT were given by slow intravenous

injection to normal subjects at the same time as a rapid intravenous infusion of 850

ml of isotonic dextrose (to induce maximal water diuresis), the duration of the

diuretic response tended to be reduced. However, no antidiuretic effect was

observed in the absence of water loading. Schneckloth et al. [233] observed a fall

in urine and sodium output together with an increase in urinary potassium excretion

in two normal human subjects given 5-HT intravenously at 10-20 pg kg"1 min"1.
Renal plasma flow and GFR also decreased. Bojs [161] found that decreased renal

sodium excretion was the most prominent finding during intravenous infusion of

5-HT at a dose of 4.3-8.7 pg kg"1 min"1 in normal man. This was independent of the

effect on water handling or changes in systemic and renal haemodynamics. There

was often a good dose response relationship and the average decrease in sodium

excretion at the highest 5-HT dose was 63%. The reduction in sodium excretion

was rapid in onset (within 10 min) and reversal (within 20 min), making it most

unlikely that this response was mediated through the liberation of humoral agents.

A reduction in sodium excretion was also observed in patients with bilateral

adrenalectomy (for Cushing's disease) and in individuals with complete

hypophysectomy indicating that adrenocortical or pituitary factors are unlikely to be

involved in this response. Bojs's observations support the view that 5-HT-induced

sodium retention was mainly a direct effect of 5-HT on tubular cells resulting in

augmented tubular sodium reabsorption, although decreased tubular sodium load

may sometimes be a contributing factor when a fall in GFR was observed. The fall
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in chloride excretion and osmolar clearance during 5-HT infusion was similar to the

decrease in sodium excretion suggesting that these changes may be secondary to the

5-HT effect on sodium excretion. Renal potassium excretion was not affected by

infusion of 5-HT. The influence of 5-HT on water excretion was variable but

antidiuresis was often observed when the initial urine flow was high, a situation

consistent with low AVP activity. 5-HT had no antidiuretic effect when attempts

were made to inhibit liberation of the antidiuretic hormone by rapid infusion of

hypotonic glucose in water. It is therefore possible that a mechanism similar to

release of AVP may operate during 5-HT infusion and be responsible for the

antidiuresis. However, antidiuresis was also observed in a hypophysectomized

patient with diabetes insipidus indicating that 5-HT does not act through liberation

ofAVP. The mechanism of the antidiuretic action of 5-HT remains unclear.

There are a few other studies in normal man, in addition to those quoted above,

which demonstrated a reduction in urine output or sodium excretion after

intravenous or intramuscular administration of 5-HT but a small number of

experiments have also reported that 5-HT has little or no effect upon urinary

volume. However, some of the negative results cannot be taken into consideration

because of unsuitable experimental protocol such as determination of urine volume

and composition only at the end of a 24 h observation period. These studies,

published in non-English literature, are detailed in the reviews by Garattini and

Valzelli [77], Erspamer [70] and Adler [55],

A reduction in urine output of about 40% was reported in hypertensive patients

after an intravenous injection of 1 mg of 5-HT [235], This occurred not only in

those with side effects but also in those with no symptoms and the changes in urine

volume were not consistently related to changes in systemic blood pressure or GFR.

In those subjects with disturbing side effects (75% cases had mild to severe

symptoms), emotional factors might have operated to cause an antidiuresis. There

was a mean reduction in renal plasma flow rates of 12% and GFR of 9%, together
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with a reduction in urinary excretion of sodium (17%) and potassium (14%). They

argued that since these measurements generally changed in the same direction as

urine flow, they might not have been due to actual reductions in haemodynamic

function or electrolyte excretion but to inadequate washout of 'dead space'

consequent to the reduction in urine flow. However, in some cases, the reductions

in these functions appeared to be real, since they occurred without any reduction in

urine flow. Periodic oliguria has also been reported in some cases of carcinoid

syndrome but it is not known whether these episodes are associated with episodic

increases in circulating 5-HT [76,109],

1.2.8 Effects of 5-HT Precursors on Renal Functions

Tryptophan. L-Tryptophan, in oral doses of 200 mg kg"1 or more, caused a dose-

dependent reduction in urine output in well-hydrated rats. This may be a

consequence of its conversion to 5-HT in the gastrointestinal mucosa (as well as

intrarenally) since oral administration was more effective than subcutaneous or

intraperitoneal administration in achieving this effect [164], In contrast,

D-tryptophan, in oral doses up to 1000 mg kg"1, was ineffective. In another study,

intraperitoneal injection of L-tryptophan (500 mg kg"1) in rats produced a reduction

in urinary sodium excretion and a slight increase in potassium elimination without

changes in GFR and water excretion [250]. On the other hand, others have reported

that intravenous infusion of L-tryptophan produced no significant changes in renal

plasma flow, GFR, urine flow or sodium excretion in the rat [166]. Administration

of L-tryptophan produced renovasoconstriction, a reduction in GFR and

antinatriuresis in the rabbit concomitant with an increase in urinary 5-HT excretion

[251]. Carbidopa abolished the changes in renal plasma flow, GFR and urinary

5-HT excretion induced by L-tryptophan and increased urinary sodium excretion.

Ketanserin prevented the decreases in renal plasma flow, GFR and sodium excretion

induced by L-tryptophan. These results suggest that antinatriuresis was mediated
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by 5-HT2A receptor in the kidney and that increased central 5-HT production

induced a natriuresis. A single oral load of 2 g of L-tryptophan produced reductions

in both renal plasma flow and GFR with no change in filtration fraction in man

[121]. These changes were accompanied by reduced urine output and fractional

excretion of potassium, and an increased fractional excretion of sodium. Plasma

concentrations of vasopressin increased slightly after L-tryptophan suggesting that

the antidiuresis may be partly mediated by release of vasopressin. There were no

changes in blood pressure, PRA or plasma aldosterone concentrations. Reductions

in renal plasma flow, GFR and urinary flow rates after administration of

L-tryptophan in man have also been reported by others [252,253],

5-HTP. Infusion of L-5-HTP, but not D-5-HTP, increased renal vascular resistance

in the isolated perfused rat kidneys. This response was inhibited by carbidopa and

the 5-HT2a receptor antagonist ketanserin [181]. 5-HTP, in parenteral (s.c. or i.p.)

doses of 20 mg kg"1 or more, reduced urine output in vivo in well-hydrated rats

probably secondary to its conversion to 5-HT within the kidney. The oral route was

less effective than the subcutaneous or intraperitoneal route in achieving this effect.

The antidiuretic effect of 5-HTP was at least 200 times less potent than that

following 5-HT administration possibly because intrarenally produced 5-HT

produced less vasoconstriction of the afferent glomerular arteries than exogenous

5-HT [155]. Intravenous infusion of L-5-HTP in rats reduced renal plasma flow,

GFR, urine flow and sodium excretion without affecting mean arterial pressure

[166]. These changes were reversed by carbidopa. Similarly, carbidopa was

reported to reverse the reduced renal blood flow and increased renal vascular

resistance induced by intravenous and intraarterial bolus injections of 5-HTP [254],

1.2.9 5-HT receptors in the Kidney

Little information is available on the nature, distribution and functional significance

of 5-HT receptors in the kidney. 5-HT was shown to exert a dose-dependent
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stimulatory effect on cAMP accumulation in isolated rat glomeruli [255], This

increase in cAMP was blocked by the 5-HT2 antagonists methysergide, cinanserine

[255] and ketanserin [256]. 5-HT elicited a smaller increase in cAMP levels in

tubular fragments derived from diverse nephron segments in the renal cortex and

had no effect on cAMP accumulation in tissue slices from the renal medulla or

papilla [255]. Immunohistochemical and radioligand binding studies showed the

presence of 5-HT1A receptors on the basolateral surfaces of the medullary and

cortical thick ascending limbs, distal convoluted tubules, connecting tubule cells,

and principal cells of the initial collecting tubule in the human and rat kidney.

There was an absence of immunostaining in the glomeruli, proximal tubules, thin

limbs of Henle, collecting ducts, inner medulla and blood vessels. The specific

localisation of 5-HT1A receptors suggests that they may play a role in the regulation

of salt and water transport in mammalian kidney [257], Ligand autoradiography

demonstrated 5-HT1B receptors negatively coupled to adenylate cyclase in the outer

stripe of the mouse, but not the rat, renal medulla [258], 5-HT,-like receptors were

identified in the isolated perfused rat kidney which inhibited the release of

noradrenaline induced by stimulation of the sympathetic nerves to the kidney [259],

5-HT receptors have also been demonstrated in renal cell lines. 5-HT1B receptors

negatively coupled to adenylate cyclase are present in the opossum kidney (OK) cell

line which retains several properties of the renal proximal tubule epithelium [260-

262], 5-HT, receptors that activate inward rectifier K+ channels and inhibit cAMP

accumulation were identified on Madin Darby Canine Kidney (MDCK) cells, a

permanent cell line displaying many properties of the distal tubule [263,264]. 5-HT

activates phospholipase C and protein kinase C, and stimulates mitogenesis in rat

glomerular mesangial cells probably through 5-HT2 receptors [265,266]. It has also

been shown to be the major serum factor that induces phospholipase C-mediated

hydrolysis of phosphoinositides in normal rat kidney (NRK) cells [2671.
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1.2.10 Potential Role of 5-HT in Renal Pathophysiology

As discussed previously, 5-HT may affect renal function and there is evidence that

it may be synthesised within the kidney. The function of locally produced 5-HT is

unclear but it has been speculated that 5-HT may act as a counterregulatory

paracrine substance to dopamine in the regulation of renal haemodynamics, sodium

and water excretion [35,268]. Its renal actions may contribute to the pathogenesis

of hypertension (see section 1.1.7), and it has been suggested that 5-HT may also

play a pathophysiological role in some renal conditions [55].

Glomerulonephritis. A variety of glomerulonephritides are characterised by

increased capillary permeability and are mediated by immunological mechanisms.

There is evidence that 5-HT or platelets may be involved in mediating this form of

renal injury. 5-HT can increase the permeability of blood vessels to colloidal and

macromolecular materials in various vascular beds including glomerular capillaries

[269-271] and enhance the deposition of antigen-antibody immune complexes in

blood vessels [272], Furthermore, immune complexes can induce the aggregation

of platelets and the liberation of 5-HT and other amines [273]. Released 5-HT may

then act directly to increase the permeability of the vascular endothelium and allow

penetration of the immune complexes into the subepithelial and mesangial areas

where further damage may ensue. Studies in animal models of glomerulonephritis

suggest that 5-HT may influence the deposition of immune complexes in glomeruli

in the course of immune-mediated glomerulonephritis. Renal lesions in

experimental acute and chronic serum sickness models of glomerulonephritis in the

rabbit worsened after the administration of 5-HT. In contrast, treatment with the

5-HT receptor antagonist methysergide, the vasoamine depletor reserpine, the

tryptophan 5-hydroxylase inhibitor /?-chlorphenylalanine, or depletion of platelets

by anti-platelet globulin reduced the severity of the glomerular lesions [272,274],

The 5-HT receptor antagonists, cyproheptadine and methysergide, have also been

reported to reduce the deposition of immune complexes within the glomerulus and
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proteinuria in autologous immune complex (Heymann) nephritis in the rat, a

condition which is very similar to idiopathic membranous glomerulonephritis in

man [275,276]. Proliferation of glomerular mesangial cells may be a feature of

progressive glomerular diseases and 5-HT has been shown to stimulate proliferation

of cultured mesangial cells [265], Abnormal metabolism of 5-HT has been

observed in patients with those forms of idiopathic glomerulonephritis that

generally progress to renal failure, but not in those with more benign glomerular

pathology [277,278]. These patients have low platelet 5-HT levels and elevated

plasma 5-HT concentrations. These changes have been ascribed to in vivo

activation of platelets by immune complexes (or other immunological mechanisms),

and it been suggested that platelet activation and release of 5-HT may play a role in

glomerulonephritis [277-279], Antiplatelet drugs have also been tried in various

forms of glomerular disease with variable efficacy [279].

There are however a number of observations which are in conflict with a

proposed role of 5-HT in the pathogenesis of glomerulonephritis. In contrast to the

above cited studies, several investigators have found that 5-HT antagonists and

vasoactive amine depletors like reserpine did not influence the glomerular

deposition of immune complexes or proteinuria in various models of experimentally

induced immune complex glomerulonephritis [280-283], 5-HT receptor antagonists

also failed to inhibit the development of the morphological lesions and proteinuria

in animal model of antiglomerular basement membrane antibody-induced nephritis

[272,284], In addition, many of the studies arguing for a role of 5-HT do not

distinguish between a role for 5-HT, histamine, or other amines. The 5-HT receptor

antagonists methysergide and cyproheptadine, for example, have other actions

including inhibition of histamine release making it difficult to state conclusively

that the reduction in immune complex deposition is solely attributable to their anti-

5-HT action [272,285], Moreover, the effect of 5-HT on glomerular capillary

permeability is not firmly established. There is evidence that 5-HT increases the
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leakage of macromolecular particles through venules rather than through the

arteriolar or capillary wall [286], Furthermore, 5-HT administered intravenously,

directly into the renal artery, or into the kidney, failed to cause vascular leakage of

circulating carbon particles into the renal parenchyma [287]. The role of 5-HT in

modulating immune-mediated renal injury therefore remains unclear.

Renal failure. 5-HT decreases renal blood flow and can induce acute tubular or

cortical necrosis, especially when given in large doses [205,208-210,288-290], The

reduced cortical blood flow with shunting of blood to the medullary region and the

morphological lesions induced by 5-HT in the rat kidney show similarities to those

described in acute renal failure in man or experimental animals [208,291-294], In

addition, conditions that predispose to acute renal failure in man potentiate the

action of 5-HT upon the animal kidney. Thus, the severity of the renal lesions was

reduced in saline-loaded rats but increased if the animals were sodium-deplete, sick

or had previously been traumatised [290]. Furthermore, frusemide-induced diuresis,

which is often employed to prevent acute tubular necrosis in patients, lowers renal

5-HT content in rat [295]. Counter to these results supporting an involvement of

5-HT in acute renal failure, are the observations that dogs which developed oliguria

after burning of the skin showed a decrease, not an increase, in renal 5-HT content

[296], and a thiazide diuretic, which was shown to lower 5-HT in the rat kidney

[295], was without effect against 5-HT-induced renal lesions in this species [209],

In addition, very large pharmacological doses of 5-HT were used in experimental

animals to produce renal failure and necrosis, and it is debatable whether

comparable levels occur in vivo in the human kidney. Despite the circumstantial

evidence mentioned earlier, it thus appears unlikely that 5-HT, functioning alone,

participates in the production of acute renal failure in man. The possibility remains

that it may act synergistically with other agents [55,209,288]. It is also conceivable

that release of 5-HT intrarenally by damaged platelets could lead to high

concentrations of 5-HT and a local pathological effect.
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Abnormalities in 5-HT metabolism have been reported in experimental animals

and man with chronic renal failure. The renal content and blood levels of 5-HT

were found to be elevated in proportion to the extent of azotaemia in rats with

experimentally-induced nephritis. There was also an inverse correlation between

renal 5-HT content and urinary sodium excretion suggesting a possible role for

5-HT in sodium retention in this model of renal failure [297], The uptake of 5-HT

by human platelets was reduced in patients with renal failure of diverse aetiology

[298] providing one possible mechanism for the reduced platelet and elevated

plasma 5-HT levels observed in patients with severe uraemia [130,278,299].

Sebekova et al. [300], on the other hand, found that platelet 5-HT as well as plasma

5-HT levels were significantly higher in patients with decreased renal function than

in controls. Urinary excretion of 5-HT was reduced, possibly reflecting decreased

synthesis in the residual renal parenchyma while 5-HIAA excretion was normal.

They suggested that the accumulation of 5-HT in the circulation could contribute to

platelet hyperaggregation and/or consumption hypocoagulation, maintenance of

hypertension, and the acceleration of atherosclerosis. The uptake of 5-HT by

platelets in vitro has also been shown to vary inversely with pH [301] and acidosis

occurs in renal failure. The activity of MAO enzyme has been reported to be

increased in platelet-rich plasma in patients with chronic renal failure and reduced

in the kidney of chronically uraemic rats, and it has been suggested that the

increased enzyme activity in platelets may contribute to their reduced content of

5-HT [299], Human platelets, however, contain MAO-B only and 5-HT is

preferentially deaminated by MAO-A [50], Urea also inhibited the MAO prepared

from rabbit renal tissue homogenates in vitro, but the depressant action was less

evident at higher concentrations [302], The pathophysiological significance of

disturbed 5-HT metabolism to the uraemic state is not known and it remains unclear

whether the described abnormalities in platelet or plasma 5-HT levels contribute to,

or result from, impaired renal and platelet function.

69



1.3. CONCEPT OF THE RENAL PRODRUG

The term prodrug, which was first used by Albert in 1958 [303], describes a

pharmacologically inactive chemical derivative of a drug molecule that requires

enzymatic or non-enzymatic transformation within the body in order to release the

active drug and elicit a pharmacological effect [304], Albert defined drug as 'any

biologically active substance' [303]. A molecule with optimal structural

configuration and physicochemical properties for evoking the desired therapeutic

response at its target site does not necessarily possess the best molecular form and

properties for its delivery to the site of ultimate action. Only a small fraction of the

administered dose usually reaches the target area and, since most agents interact

with non-target tissues as well, an inefficient delivery system may result in

undesirable side effects. Prodrugs have been used to 'target' drugs to a particular

organ or tissue with the hope that such site-specific drug delivery would optimise

therapy and minimise toxicity. For this to be achieved, the prodrug must be readily

transported to the site of action, where it must be selectively cleaved and

transformed to the active drug relative to its conversion at other sites, and the active

drug must be retained by the tissue at the target site [305]. Site-specific prodrug

activation makes use of some specific property at the target site such as different pFI

or high activity of certain enzymes relative to non-target tissues.

Site-specific drug release exploiting the high activity of one, or more than one,

enzyme at the target site to activate a prodrug has been used to produce selective

delivery of the active parent drug to the kidney. This concept of a renal prodrug

was first developed by Biel et al. [306]. They showed that the aminoacyl derivative

of dopamine, A-L-isoleucyl-dopamine, produced a selective increase in renal blood

flow with only minimal systemic haemodynamic effects in the dog and monkey.

The basis of the relative selectivity was the conversion to dopamine by the enzyme

aminoacylarylamidase [EC 3.4.11.14] which is abundant in the kidney. This
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enzyme is, however, ubiquitous and others have reported elevated plasma levels of

free dopamine and no real separation of the renal and systemic haemodynamic

effects [307],

y-Glutamyltransferase (yGT) [systematic name: (5-L-glutamyl)-peptide: amino-

acid 5-glutamyltransferase; EC 2.3.2.2], also known as glutamyl transpeptidase, is

an enzyme which is present in relatively high concentration in the kidney [308,309].

If the enzyme activity in the human kidney is given an arbitrary activity of 100, then

the relative activities in other tissues would be: pancreas 8.3, liver 3.9, spleen 1.5,

intestine 0.95, brain 0.5, lung 0.31, skeletal muscle 0.067, and heart 0.045 [308].

This membrane-bound enzyme is heavily concentrated in the brush border of the

proximal tubules in animals [309-312] and man [310,313], and its activity is higher

in the proximal straight tubules than in the proximal convoluted tubules [314-316].

It is orientated in the brush border membrane so as to react with substrates present

in the extracellular milieu [317], A small but significant portion of the total yGT

activity in the kidney is present at the antiluminal border (basolateral side) of the

proximal tubular cells [312], in association with the peritubular microvasculature

[316,318,319] and/or basolateral membrane of the tubular cells [320], Low activity

of the enzyme has also been localised in the loop of Henle, distal tubule, collecting

tubule and in the glomeruli [314,315,318], yGT catalyses the transfer of the

y-glutamyl moiety from a peptide or amino acid to another peptide, amino acid or

water, e.g.:

y-L-glutamyl peptide + an amino acid = peptide + y-L-glutamyl amino acid

or y-glutamyl amino acid! + amino acid2 = y-glutamyl amino acid2 + amino acid!

or y-glutamyl amino acid + H20 = glutamate + amino acid

yGT is one of the key enzymes of the y-glutamyl cycle, a metabolic pathway that

accounts for the enzymatic synthesis and degradation of glutathione (y-L-glutamyl-

L-cysteinylglycine) [321-323], It is capable of utilising both glutathione and

glutamine as the natural y-glutamyl donor. The high concentration of the enzyme at
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the proximal tubule suggests that it may have an important physiological role in

amino acid handling, glutathione transport and metabolism, and renal

ammoniagenesis [316].

The presence of relatively high concentration of yGT in the proximal tubules

suggests that y-glutamyl derivatives of compounds containing an amino function

may be selectively cleaved, thus releasing the active agent locally. Studies by

Orlowski and Wilk [324,325] demonstrated that the kidney is indeed highly active

in the uptake and metabolism of y-glutamyl derivatives of amino acids and peptides.

Intraperitoneal injection of the dipeptide y-L-glutamyl-L-2-aminobutyrate in the

mouse led to a marked accumulation in the kidney of free L-2-aminobutyrate

together with glutamate, glutamine and aspartate derived from the y-glutamyl

moiety indicating that the renal uptake of the y-glutamyl derivative was

accompanied by hydrolysis of the peptide to its component amino acids by yGT.

The level of L-2-aminobutyrate in the kidney was three times higher than that

achieved after administration of an equimolar dose of free L-2-aminobutyrate.

Similarly, administration of other y-glutamyl derivatives, including glutathione, y-L-

glutamylglycylglycine, y-L-glutamyl-L-phenylalanine and y-L-glutamylmethionine,

was followed by a marked increase in the concentration of aspartate, glutamate and

glutamine in the kidney together with the amino acid(s) (cysteine, glycine,

phenylalanine or methionine) constituting the other part of the molecule.

The enzyme y-glutamylcyclotransferase [(5-L-glutamyl)-L-amino-acid 5-

glutamyltransferase (cyclizing); EC 2.3.2.4] can also degrade y-glutamyl amino

acids producing the corresponding free amino acid and pyrrolidone carboxylate

(5-oxo-L-proline) [323,326,327]. It shows little activity towards y-glutamyl

derivatives of aromatic and branched chain amino acids. It also requires the

presence of an unsubstituted free carboxyl group in the amino acid participating in

the y-glutamyl linkage [326,328]. y-L-Glutamyl-L-2-aminobutyrate, unlike

glutathione and other y-glutamyl dipeptides, is a substrate for this enzyme
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[324,326,328]. An increase in the renal concentration of pyrrolidone carboxylate

was observed after administration of y-L-glutamyl-L-2-aminobutyrate suggesting

that a significant amount of the y-glutamyl peptide was degraded through the action

of y-glutamylcyclotransferase [324], This reaction can only take place

intracellularly since the enzyme is associated with the soluble cytoplasmic fraction

of kidney proteins and this provides indirect evidence that glutamyl derivatives can

enter the proximal tubular cells in an intact form. Injection of a tracer dose of

y-L-[l4C]glutamyl-L-2-aminobutyrate resulted in an accumulation of the isotope in

kidney glutamate, glutamine and aspartate [325], Although part of the dipeptide

was degraded to its constituent amino acids, a significant proportion of

y-L-[14C]glutamyl-L-2-aminobutyrate was directly incorporated into kidney

ophthalmic acid (y-L-glutamyl-L-2-aminobutyrylglycine), an analogue of

glutathione, providing additional evidence that the y-glutamyl derivative can enter

into the kidney in an intact form.

The selective accumulation and metabolism of y-glutamyl derivatives of amino

acids and peptides in the kidney suggest that the y-glutamyl group can provide a

convenient carrier for directing compounds containing an amino group into kidney

metabolism [324], These observations prompted Wilk and co-workers [329] to

explore the possibility of using y-glutamyl derivatives of pharmacologically active

agents as kidney-specific prodrugs. They postulated that the active agent would be

released from its inactive y-glutamyl derivative within the kidney by renal yGT thus

yielding organ specificity and absence of systemic effects. They tested the

possibility of using the y-glutamyl derivative of L-dopa as a kidney-specific

dopamine prodrug. They demonstrated that intraperitoneal administration of

y-L-glutamyl-L-3,4-dihydroxyphenylalanine (y-L-glutamyl-L-dopa; gludopa) to

mice led to a selective generation of dopamine in the kidney via the sequential

actions of two enzymes which are highly active in the kidney. yGT catalysed the

cleavage of the y-glutamyl linkage, and the resulting L-dopa was decarboxylated to
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dopamine by renal LAAD.
yGT

y-L-Glutamyl-L-dopa > L-dopa + L-glutamate

LAAD

L-Dopa ► dopamine + C02
It is likely that L-dopa was released from the prodrug in the proximal tubules,

and possibly the loop of Henle, which are the main sites of yGT location. The

presence of yGT on both the luminal and antiluminal membranes suggests that

uptake of gludopa into proximal tubular cells can occur after filtration from the

tubular lumen and/or from the renal circulation. The enzyme may function both as

carrier and hydrolytic unit so that free L-dopa is liberated into the proximal tubular

cells. L-dopa will then be available for conversion to dopamine under the action of

LAAD which is also present in high concentrations in proximal tubular cells [143],

Tissues other than the kidney showed only low levels of dopamine, and it is

noteworthy that the second highest concentration of dopamine was found in the

duodenum-pancreas consistent with the previous finding that the pancreas is the

second richest site of yGT activity [308]. The dopamine level in the kidney after

gludopa was almost five-fold greater than that produced by an equimolar dose of

L-dopa. The administration of L-dopa also resulted in a more uniform distribution

of dopamine among the organs examined. Thus, the ratio of dopamine

concentration in the kidney to that in the heart was 25.8 after gludopa but was only

4.3 after L-dopa. Dopamine, selectively generated in the kidney after

administration of gludopa, increased renal plasma flow while minimally affecting

non-target sites as was demonstrated by no change in systemic blood pressure. The

minimum dose required to produce renal vasodilatation was also shown to be lower

for gludopa than L-dopa. It was suggested that y-glutamyl derivatives of certain

drugs may be useful as kidney specific prodrugs [329],

Further evidence that gludopa is a kidney-specific prodrug in the rat was

provided by Cummings et al. [330] who showed that the concentration of dopamine

in the kidney was 31-fold higher than that in the liver after intravenous
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administration of gludopa. Wang et al. [331] showed that urinary dopamine

increased 1200-fold and 7800-fold, without significant changes in plasma

dopamine, after gludopa administration at doses of 25 pg kg"1 min"1 and 100 pg kg"1
min"1 respectively in the conscious rabbit. Gludopa elicited significant increases in

urine flow, urinary sodium excretion and renal blood flow, and these renal effects

occurred without alterations in blood pressure, heart rate and hindlimb blood flow.

In contrast, however, Drieman et al. [332] reported that gludopa increased blood

flow in the hindlimb and mesentery to the same extent as in the renal vascular bed

in the anaesthetised rat.

Barthelmebs et al. [333] showed that the addition of gludopa to the perfusate in

the isolated perfused rat kidney led to release of dopamine both into urine and

perfusate. Dopamine released into the renal venous effluent could be considered as

released from the basolateral side of the proximal tubular cells whereas dopamine

released into urine could be considered as a release from the luminal side. In their

experiments with filtering and non-filtering isolated kidneys, they demonstrated that

glomerular filtration and access to yGT on the brush border membrane of the

proximal tubular cells were required for maximal conversion rate of gludopa to

dopamine and that gludopa was metabolised with a greater yield via the luminal

approach to the enzymatic system. Inhibition of yGT by AT-125 (L-a-amino-3-

chloro-4,5-dihydro-5-isoxazoleacetic acid) inhibited the synthesis of dopamine by

80% and reduced gludopa-induced renal vasodilatation indicating that yGT

intervened in the metabolism and vascular action of gludopa. yGT, rather than

LAAD, was also shown to be the first enzymatic pathway in the synthesis of

dopamine from gludopa since y-glutamyl dopamine did not accumulate in the

presence of AT-125. The study by Cummings et al. [330], however, showed that

gludopamine was detected in urine in the rat, but not in man, after administration of

gludopa suggesting that gludopa could act as a substrate for LAAD in this species.

Worth and colleagues [334] infused gludopa in normal volunteers at doses of
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12.5 and 100 jag kg"1 min"1 for 2 h and showed that it increased renal plasma flow

with a small increase in GFR and a reduction in filtration fraction, and was

natriuretic. At the higher dose, there was a small reduction in diastolic blood

pressure and a small, non-significant, increase in pulse rate. However, at the low

dose, it was devoid of effects on systemic haemodynamics suggesting that the renal

dopaminergic effects resulted from a local action of gludopa. The effectiveness of

gludopa as a renal prodrug with relative renal specificity was demonstrated by the

280-fold and 2500-fold increases in urine dopamine excretion at low and high

doses, whereas plasma dopamine rose to only 4 and 25 times the baseline levels

respectively. Filtered dopamine contributed only 0.04% and 0.1% respectively to

urinary free dopamine excretion during low and high dose gludopa infusion

indicating that urinary dopamine was largely derived from renal transformation of

L-dopa. The increase in plasma dopamine during low and high doses was believed

to be caused either by a 'spill-over' from the kidney or extrarenal transformation of

gludopa to dopamine. Studies with this relatively renally selective dopaminergic

prodrug proved extremely valuable in understanding the dopamine paracrine system

in the kidney in man [334-342].

Kyncl et al. [307] investigated the potential of the y-L-glutamyl derivative of

dopamine as a renal dopamine prodrug in the dog. y-L-Glutamyl dopamine differs

from y-L-glutamyl-L-dopa in requiring only yGT for its activation. Oral

administration of this compound produced significant levels of the intact amide in

the plasma with almost no elevation in plasma levels of free dopamine and

dopamine sulphate. There were, however, marked increases in urinary dopamine

and dopamine sulphate. In contrast, an equimolar oral dose of dopamine increased

the plasma concentrations of free and conjugated dopamine but most of the

dopamine was excreted as dopamine sulphate and urinary excretion of dopamine

was almost thirty-fold lower than that produced after administration of the glutamyl

derivative. The biologically inactive y-L-glutamyl dopamine appeared to circulate
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in the blood as a depot from which dopamine was slowly released on passage

through the kidney. The selective generation of the active dopamine in the kidney

caused a sustained increase in renal blood flow. The dopamine was then rapidly

metabolised and excreted into the urine without re-entering the systemic circulation

in a high enough concentration to produce adrenergic stimulation of the heart or

affect systemic blood pressure. Wilk et al. [343] compared the renal and

cardiovascular effects of y-L-glutamyl derivatives of L-dopa and dopamine, and

found that gludopa was a more potent renal vasodilator and elicited a less

pronounced pressor response than y-L-glutamyl dopamine. The greater renal

selectivity and activity of gludopa may be related to a greater affinity of this

compound for yGT [344] and/or the involvement of a second enzyme (LAAD)

[333],

Orlowski et al. [345] attempted to extend the prodrug approach to achieve kidney

specificity for other drugs. They studied whether y-L-glutamyl and various A-acyl-

y-L-glutamyl derivatives of sulphamethoxazole could be used as kidney-selective

prodrugs of sulphamethoxazole. Intraperitoneal administration of y-L-glutamyl

sulphamethoxazole led to some preferential accumulation of the sulphonamide in

the mouse kidney but the concentration was no greater than that achieved after

administration of the free sulphamethoxazole and relatively high concentrations of

sulphamethoxazole were also found in other tissues. The lack of kidney selectivity

was apparently due to the rapid cleavage of the y-glutamyl derivatives even in

tissues with a low yGT activity. High kidney-selective accumulation of

sulphamethoxazole was observed after incorporating an A-acetyl, A-butyryl or

A-chloroacetyl group on the y-glutamyl prodrug. It was thought that acylase

[A-acyl-L-amino-acid aminohydrolase; EC 3.5.1.14], which is present in high

concentrations in the kidney, hydrolysed the acyl group, and that this was followed

by removal of the y-glutamyl group by yGT thus releasing sulphamethoxazole. The

renal selectivity of these A-acyl-y-glutamyl prodrugs was attributed to the combined
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action of these two enzymatic processes.

The above explanation for the renal selectivity of A-acyl-y-glutamyl prodrugs

was disputed by Drieman and co-workers [346,347], They argued that the

localisation of the active site of yGT on the extracellular side of the brush border

and basolateral membranes [317] makes it unlikely that conversion of the prodrug

by this enzyme can generate high intracellular concentrations of the active drug.

The cytosolic enzyme y-glutamylcyclotransferase, another enzyme of the y-glutamyl

cycle, is also able to hydrolyse y-glutamyl compounds [323,326,327], and they

suggested that the combination of this enzyme, rather than yGT, with acylase is

responsible for the intracellular conversion of A-acy 1 -y-glutamy 1 prodrugs.

Drieman and colleagues also suggested that an active transport or carrier system is

required to get the prodrugs into the proximal tubular cells since anionic compounds

do not diffuse easily across biological membranes. They studied the processes

underlying the renal selectivity of the vasodilator prodrug CGP 22979 (A-acetyl-L-

glutamic acid-A'-[A -(5-«-butyl-2-pyridyl)hydrazide]), the A-acetyl-y-L-glutamyl

derivative of the hydralazine-like vasodilator CGP 18137 (5-«-butyl,2-

hydrazinopyridine) in the rat. They found that inhibition of yGT by AT-125 did not

lower the kidney concentrations of CGP 18137 suggesting that yGT was not the

enzyme involved in the conversion of CGP 22979 to CGP 18137 or the renal

accumulation of CGP 18137. yGT may be partly responsible for the renal

haemodynamic responses to CGP 22979 since AT-125 caused a decrease in the

renal response to the prodrug. The transport processes involved in the renal

selectivity of CGP 22979 were investigated by pretreating the animals with the

anion transport inhibitor probenecid, the y-glutamyl transport inhibitor buthionine

sulphoximine, and glutathione which has been shown to reduce renal uptake of

y-glutamyl cysteine. All three compounds reduced the renal accumulation of CGP

18137 produced by CGP 22979 and attenuated the renal response to the prodrug.

These results showed that carrier-mediated transport of the prodrug into the renal
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tubular cells, followed by its intracellular conversion to the active drug, were the

main determinants of the kidney selectivity of this prodrug. The authors suggested

that CGP 22979 is partly taken up by the proximal tubular cells through the

basolateral membrane, possibly via a sodium-dependent system or by the anion

transport system. Once it is intracellular, CGP 22979 is converted to CGP 18137 by

y-glutamylcyclotransferase with or without prior deacetylation by acylase. Drieman

et al. [347] also found that the renal accumulation of sulphamethoxazole after

yV-acetyl-y-L-glutamyl sulphamethoxazole was inhibited by probenecid and

buthionine but was unaffected by AT-125. These results again support their

hypothesis than an active or facilitated transport of the prodrug followed by

intracellular conversion are responsible for the kidney selective delivery of

sulphamethoxazole. Like Orlowski et al. [345], they found that y-L-glutamyl

sulphamethoxazole lacked renal selectivity. They argued that sulphamethoxazole is

a polar drug and does not easily cross biological membrane. Sulphamethoxazole

resulting from hydrolysis of filtered y-glutamyl sulphamethoxazole by yGT at the

brush border membrane will be excreted into the urine while sulphamethoxazole

released by yGT at the basolateral membrane will enter the blood stream rather than

into the tubular cells. The latter is equivalent to an intraarterial infusion of

sulphamethoxazole and results in no selectivity for the kidney because of the low

extraction rate of sulphamethoxazole in the kidney. They suggested that the

difference in renal selectivity between y-glutamyl and A-acetyl-y-L-glutamyl

sulphamethoxazole lies in the site of conversion to the active drug; extracellularly

by yGT for y-L-glutamyl sulphamethoxazole and intracellularly in the case of

A-acetv1-y-L-glutamyI sulphamethoxazole.

A number of other y-L-glutamyl or N-acy 1-y-L-g 1utamy 1 compounds have been

designed and tested for as kidney selective prodrugs including y-L-glutamyl-XAC

(xanthine amine congener) as a kidney-selective adenosine receptor antagonist

[348], and SC-47792 (A-acetyl-y-glutamyl fusaric acid hydrazide) as a dopamine-p-
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hydroxylase inhibitor [349], These studies and those cited previously suggest that

the y-L-glutamyl or /V-acyl-y-L-glutamyl prodrug derivatives of a variety of drugs

may be of benefit if it is a desired objective to restrict the drug action to the kidney

or urinary tract. The activation of these prodrugs appears to be quite different.

JV-Acetyl-y-L-glutamyl prodrug is delivered to the kidney via the plasma. A part is

filtered by glomerular filtration and excreted into the urine or possibly taken up via

the brush border membrane. Another part can be taken up via the basolateral

membrane. Once intracellularly, prodrug is converted to drug by y-glutamylcyclo-

transferase and acylase. The active drug can be retained by kidney cells,

metabolised, excreted into the urine or into the blood. The A-acetyl-y-glutamyl

prodrugs may, therefore, be particularly useful for the intracellular delivery of drugs

with an intracellular site of action in the kidney. y-L-Glutamyl compounds, on the

other hand, are converted extracellularly by yGT, either at the basolateral side or at

the luminal side of the renal tubular cells. This implies that they are not suited for

intracellular delivery of an active drug, and the only application can be for drugs

acting in the renal tubular lumen unless other features are present, such as is the

case with y-L-glutamyl-L-dopa where the enzyme LAAD is also involved in its

activation [329],

A prerequisite for the applicability of a y-glutamyl derivative of a given drug as a

kidney selective prodrug is that it can function as a substrate for yGT. y-Glutamyl

amide bonds are not invariably cleaved by yGT [350]. The y-glutamyl derivatives

of adamantanine, 4-aminobutyric acid, L-thiazolidine-4-carboxylic acid, 1-amino-

cyclopentanecarboxylic acid, for instance, were not readily hydrolyzed by yGT

[351,352]. Similarly, not all A-acetyl-y-I.-glutamyl compounds were found to be

kidney selective prodrugs. Drieman et al. [353] utilised an in vitro system to screen

seven prodrugs for their potential renal selectivity. They found that the A-acetyl-y-

L-glutamyl derivatives of yara-nitroaniline, aminophenyl acetic acid,

sulphamethoxazole, sulphadimethoxine, propranolol and metoprolol were
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accumulated in rat kidney slices by a probenecid-sensitive carrier. The derivatives

of ywra-nitroaniline, aminophenyl acetic acid and sulphamethoxazole were also

accumulated via a buthionine sulphoxine-sensitive process. The difference in

transport inhibition by probenecid and buthionine sulphoxine suggests that at least

two carriers are involved in the transport of the prodrugs. The accumulation of the

N-acety 1 -y-L-g 1utamyI 4'-aminoantipyrine was not affected by either probenecid or

buthionine sulphoxine. Unlike all other prodrugs, those of 4'-aminoantipyrine and

propranolol were not, or only to a very limited extent, converted to the parent

compounds by kidney homogenates. The derivatives of para-nitroaniline and

aminophenyl acetic acid were selectively accumulated by the kidney in vivo

whereas vV-acetyl-y-L-glutamyl propranolol was not. The authors found that the

main factors determining the selectivity of A-acetyl-y-L-glutamyl prodrugs are: the

transport into the kidney, the conversion rate, the residence time of the prodrug in

the kidney, and the presence or absence of competition for uptake and conversation

by other tissues such as liver. ./V-acetyl-y-L-glutamyl-4'-aminowarfarin was also

found to lack renal selectivity [354], The y-L-glutamyl or jV-acyl-y-L-glutamyl

prodrug approach therefore offers the possibility of delivering drugs selectively to

the kidney but is not universally applicable.
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1.4 OBJECTIVES OF THESIS

The data regarding the effects of 5-HT on urinary sodium and water excretion in

man are at variance. Most studies suggested that it reduced both urine output and

sodium excretion. These responses were inconsistently related to changes in the

renal circulation, and it is unclear whether they were due to changes in renal

haemodynamics or increased tubular reabsorption (see sections 1.2.6 and 1.2.7).

The studies in man largely focused on the pharmacological reactions to

intravenous administration of 5-HT. Exogenous 5-HT reaching the kidney first

comes into contact with the arterioles and only subsequently with the capillaries and

other structures. It may reduce blood flow through the afferent glomerular arterioles

as a result of its vasoconstrictor action and this may obscure any tubular effect. It is

also difficult to evaluate from systemic infusion studies whether the observed

effects of 5-HT on the kidney are solely due to its direct effects on the renal

vasculature or tubules since 5-HT has a wide spectrum of actions in the body (see

section 1.1.6). The renal responses to infusion of 5-HT may be largely modified by

and/or possibly be due to the confounding influences produced by effects in other

tissues by the amine. Thus, in addition to affecting systemic blood pressure, 5-HT

may stimulate the release of aldosterone by a direct action on the adrenal cortex or

it may release renin as result of alterations in systemic or renal haemodynamics.

These extrarenal effects of 5-HT may secondarily alter renal functions and need to

be taken into consideration when interpreting the observed renal effects of 5-HT.

The dose of 5-HT that can be given intravenously in man is also limited by

unpleasant adverse effects such as chest tightness, flushing, heaviness and tingling

in the extremities, thrombosis or pain along the course of the infused vein, cough,

dyspnoea, headache, abdominal pain, nausea, increased bowel or bladder activity

[76,161,235,355]. These symptoms may interfere with the assessment of the

antidiuretic activity of 5-HT in man since any painful or unpleasant stimulus may
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produce a powerful antidiuresis [356,357].

Investigations of the renal effects of 5-HT in the intact organism may also be

limited by the rapid uptake of 5-HT into platelets or its conversion to inactive

metabolites in the pulmonary and hepatic circulation. 5-HT was found to be a more

effective antidiuretic when the injection was made into the cubital vein rather than

into the malleolar vein in the dog because of the shorter path, and hence time taken,

to reach the kidney. In addition, if blood was first withdrawn into the syringe

containing 5-HT and immediately reinjected, no antidiuresis was observed because

the amount of free 5-HT was reduced [358]. It is thus conceivable that the kidney

may indeed be highly sensitive to 5-HT but that, following its intravenous

administration, it is so rapidly removed from the circulation that it may not reach

the renal tissues in an adequate concentration to produce effects, and increasing the

dose to achieve an effective renal concentration may merely increase the

confounding influences resulting from its extrarenal effects. Studies in animals may

be designed to provide information regarding the local renal effects of 5-HT but one

needs to be careful in applying the findings obtained in animals to man because of

the differences in the pattern of distribution, metabolism and actions of 5-HT

between species (see section 1.2).

In considering the actions of 5-HT on the kidney, it is also important to

distinguish between the effects of the extrarenal 5-HT delivered via the renal arterial

blood and the effects of 5-HT generated in situ in renal tissue since there is evidence

that the kidney is capable of producing and degrading 5-HT (see section 1.2.3).

Plasma levels of free 5-HT are relatively low except in certain pathological

conditions and the 5-HT content in renal tissue is due to either active extraction of

5-HT from perfusing blood and/or due to intrarenal synthesis. It can therefore be

argued that in studies in which 5-HT is infused into the systemic circulation or even

into renal artery, the observed effects are more likely to be pharmacological and not

similar to the physiological or pathophysiological situations in vivo.
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Administration of 5-HT precursors which are selectively converted to 5-HT

within the kidney may allow the renal effects of 5-HT to be assessed separately

from any systemic effects caused by intravenous infusion of 5-HT. Intrarenal

synthesis of 5-HT has been demonstrated in rats given L-5-HTP [166,181,268] but

administration of DL- or L-5-HTP is associated with adverse gastrointestinal and

other effects in man [162,359-362], and this may limit the dose of 5-HTP than can

be given. Furthermore, unlike 5-HT, L-5-HTP readily crosses the blood-brain

barrier enhancing synthesis of 5-HT in the brain [156,175,362,363] and central

5-HT may stimulate the release of renin, aldosterone, Cortisol and vasopressin

making it difficult to interpret the renal effects of locally produced 5-HT (see

section 1.1.6).

The y-glutamyl prodrug approach to targeting drugs to the kidneys offers the

possibility of delivering drugs selectively to the kidney with little or no systemic

effects {see section 1.3). Gludopa (y-L-glutamyl-L-dopa), the glutamyl derivative

of L-dopa, is a renal dopamine prodrug which is sequentially converted in the

kidney by yGT to L-dopa and decarboxylated by LAAD to dopamine. This prodrug

has allowed the renal effects of dopamine to be explored in man [334-342], The

glutamyl derivative of L-5-HTP, y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-

HTP), may similarly be converted intrarenally to 5-HTP and then decarboxylated to

5-HT. This compound would allow, in theory, the manipulation of renal 5-HT

production and permit the in vivo renal effects of 5-HT in man to be assessed with

less interference from the effects on other systems produced by administration of

5-HT or L-5-HTP. The glutamyl derivative of L-tryptophan, y-L-glutamyl-L-

tryptophan (glu-TRP), may be another renally selective 5-HT precursor. The

y-glutamyl bond may be cleaved to release L-tryptophan which could then be

sequentially hydroxylated by tryptophan 5-hydroxylase in the kidney to L-5-HTP

and then further metabolised by decarboxylation to 5-HT.
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The objectives of this thesis were:

1. To investigate the potential of y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-

HTP) as a renally selective 5-HT precursor and compare its effects with those of

5 -hydroxy-L-tryptophan (L-5 -HTP).

2. To investigate if the effects observed with glu-5-HTP are due to its intrarenal

transformation to 5-HT.

3. To investigate whether y-L-glutamyl-L-tryptophan (glu-TRP) increases renal

5-HT production.

4. To investigate any possible interaction between 5-HT and dopamine delivered to

the kidney by glu-5-HTP and gludopa respectively.

5. To investigate whether frusemide-induced diuresis, which has been shown to

increase urinary dopamine excretion, affects 5-HT excretion.
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CHAPTER TWO

METHODOLOGY
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2.1 Subjects Studied

The studies reported in this thesis were performed in male volunteers, aged 18 to 45

years, recruited by advertisements in the local press. They were all in good health

as judged by medical history, physical examination, 12-lead electrocardiogram,

urinalysis, full blood count, serum electrolytes, creatinine and liver function tests.

They also underwent screening tests, after counselling, for the presence of hepatitis

B surface antigen, antibody to hepatitis B core antigen, and antibody to human

immunodeficiency virus. They were within 15% of their ideal body weight. None

were on regular drug treatment and they avoided medication of any kind for at least

2 weeks before the start of a study and until its completion. Individuals who

smoked more than 15 cigarettes daily were excluded from the studies.

2.2 Ethical Considerations

The studies were approved by the Lothian Research Ethics Committee, Lothian

Health Board, Edinburgh, and written informed consent was obtained from all the

volunteers prior to their taking part.

2.3 Drugs and other Chemicals

y-L-Glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP; C16H]9N306; FW 349.3). This

dipeptide was supplied by Aalto Bio Reagents Ltd (Rathfarnham, Dublin, Republic

of Ireland). The peptide content of the preparation, as determined by the nitrogen

content, was 95%, the balance being counter ions (e.g. acetate salts) and water

carried over from freeze-drying. The peptide purity, determined by thin layer

chromatography (TLC) and high performance liquid chromatography (HPLC), was

greater than 99%. A stock solution of glu-5-HTP (5 mg ml"1) was made up, sterile

and pyrogen free, in 0.9% w/v sodium chloride (NaCl) solution by the Pharmacy

Department at Edinburgh Royal Infirmary and stored in glass ampoules at -40° C.
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y-L-Glutamyl-L-tryptophan (glu-TRP; C16H19N305; FW 333.3). Glu-TRP was

purchased from Sigma Chemical Co. Ltd (Poole, Dorset, U.K.). The preparation

contained 97% pure peptide. The peptide purity was greater than 97% as

determined by TLC. Glu-TRP was prepared for use in 0.9% NaCl by the Pharmacy

Department at Edinburgh Royal Infirmary and aliquots of the solution (5 mg ml"1)
were stored in glass vials at -40° C.

y-L-Glutamyl-L-3,4-dihydroxyphenylalanine (gludopa; C14H18N207; FW 326.3).

Gludopa was supplied by Aalto Bio Reagents Ltd (Dublin, Republic of Ireland). Its

peptide content was 95% and the peptide purity, determined by TLC and FIPLC,

was greater than 99%. It was prepared in 0.9% NaCl by the Pharmacy Department

at Edinburgh Royal Infirmary and stored in vials (10 mg ml"1) at -40° C.
5-Hydroxy-L-tryptophan (L-5-HTP; C11H12N203; FW 220.2). L-5-HTP was

purchased from Sigma Chemical Co. Ltd (Poole, U.K.). It was dissolved in 0.9%

NaCl and packed in ampoules (lOmgmf1) by the Pharmacy Department at

Edinburgh Royal Infirmary. These were stored at -40° C.

Carbidopa. This was obtained from Merck Sharp and Dohme Ltd (Hoddesdon,

Herts, U.K.). Capsules containing 50 mg of carbidopa and matched lactose placebo

capsules were made up by the Pharmacy Department at Edinburgh Royal Infirmary.

Frusemide (Lasix®). Ampoules of this drug (10 mg ml"1) were obtained from

Hoechst UK Ltd (Hounslow, Middlesex, U.K.).

Polyfructosan (Inutesf). Ampoules of polyfructosan (5 g in 20 ml) were

purchased from Laevosan-Gesellschaft (Linz, Austria).

Para-aminohippurate sodium. Vials ofpara-am inohippurate sodium (PAH; 2 g in

10 ml) were obtained from Merck Sharp & Dohme Ltd (Hoddesdon, U.K.).

Slow sodium. Slow sodium tablets (NaCl 600 mg; -10 mmol each of Na+ and CI")

were purchased from CIBA Laboratories (Horsham, West Sussex, U.K.).

Sodium chloride (saline; 0.9% w/v) solution. 500 and 1000 ml packs of 0.9%

NaCl (9 g T ; =150 mmol each of Na+ and CI" per litre) were obtained from Baxter
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Healthcare Ltd (Thetford, Norfolk, U.K.); 10 and 20 ml vials (Mini-Plasco) were

obtained from B. Braun Medical Ltd (Aylesbury, Bucks, U.K.).

2.4 Experimental Protocol

All the studies were of a randomised, placebo-controlled (except for the study

described in Chapter 5), cross-over study design in which each subject received all

test medications. The study days were usually separated by at least 7 days to ensure

that there was little chance of carry-over effects of treatments and to allow for re-

equilibration of salt balance. The basic experimental protocol, except for the study

reported in Chapter 9, is outlined in Figure 2-1. Specific details of each study are

given in the individual experimental chapters.

The subjects refrained from alcohol for 24 h, abstained from xanthine-containing

drinks (tea, coffee, chocolate, coke) from 18.00h, and fasted from 22.00 h the

evening before each study day. Smoking was prohibited during the study days. For

some of the studies, the subjects were given general dietary advice to avoid large

changes in their salt intake in an attempt to reduce the variability in their salt status

between study days. The help of Ms. E. Sloan, dietitian, in compiling the dietary

regimes is gratefully acknowledged.

The subjects arrived at the clinical investigation unit at about 08.00 h on each

study day, having drunk 250 or 500 ml of tap water one hour previously. An

intravenous cannula (18 G Venflon8', BOC Ohmeda AB, Helsingborg, Sweden) was

inserted into a large vein in each forearm, one for administration of infusions and

the other in the contralateral arm for blood sampling. In the studies in which ERPF

and GFR were estimated, priming doses of PAH (0.5 g) and polyfructosan (Inutest;

3.5 g) were added to 0.9% NaCl solution to make up a total volume of 40 ml and

infused over 8 min using a Perfusor VI infusion pump (B. Braun, Melsungen AG,

Germany). This was followed by a maintenance infusion of PAH (3.75 g F1) and
polyfructosan (4.5 g F1) in 0.9% NaCl solution at a constant rate of 5 ml min"1 using
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a volumetric infusion pump (IMED 960; IMED Ltd, Abingdon, Oxon, U.K.)

throughout the experiment. In other studies, saline alone was administered at a rate

of 10 ml kg"1 h"1 (Chapter 3) or 5 ml min"1 (Chapters 5 and 7). After a three hour

run-in period, the subjects received the test infusion(s) (glu-5-HTP, glu-TRP,

gludopa or L-5-HTP, each made up to a total volume of 30 ml with saline) at a rate

of 0.5 ml min"1 for one hour. Placebo was 30 ml of saline alone. These infusions

were administered by Braun Perfusor VI infusion pumps. In addition to the saline

given intravenously, the subjects drank 150 or 200 ml of water half-hourly (except

for the study described in Chapter 3). These measures were used to promote an

adequate urine flow and to facilitate complete bladder emptying. The subjects

remained supine or semi-recumbent throughout each experimental day except when

they stood up to micturate. Objective recordings of blood pressure and pulse were

made at regular intervals using a Dinamap oscillometric semi-automated recorder

(Critikon, Inc., Tampa, FL, U.S.A.) with the subject in the supine position. Mean

arterial blood pressure (MAP) was calculated as the sum of diastolic blood pressure

plus one third of the pulse pressure.

1 ▼ v 1 1 ! ! 1 i 1 ! 1 v V Blood sampling

1 I I I I I I I I : Urine collection

j -j pAH/Polyfructosan

2 11 ! Saline infusion

1 HZ 1 Water half-hourly

I I I 1 1 1 i
0 1 2 3 4 5 6 7

Time (h)

Figure 2-1. Outline of experimental protocol.

Blood sampling. Blood samples were always taken before the subject rose to pass

urine. They were collected into lithium heparin tubes (10 ml) for measurement of
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plasma sodium, potassium, PAH, polyfructosan, glu-TRP and tryptophan; and into

plain tubes (5 ml) for serum growth hormone. Plasma and serum were separated

after centrifugation at 1500 g and stored at -40° C. Venous blood samples (5 ml)

for determination of PRA were taken after the subjects had been supine for at least

20 min [364,365]. They were transferred into chilled glass tubes containing

100 pi of a 5% w/v ethylenediaminetetra-acetic acid (EDTA) disodium salt as

anticoagulant and kept on ice to minimise angiotensin I production in the samples.

These were immediately centrifuged for 20 min at 1500 g and 4° C to minimise the

cryoactivation of prorenin [366]. For the same reason, the supernatant plasma was

promptly withdrawn and stored at -40° C until assayed. These plasma samples were

also used for the measurement of plasma aldosterone. Venous blood samples for

measurement of 5-HT and 5-HTP in platelet-rich plasma (PRP) were gently

withdrawn via a 16 G Venflon cannula into a 10-ml plastic syringe without using a

tourniquet. Each blood sample (9 ml) was dispensed into a plain polystyrene plastic

tube containing 1 ml of an acid-citrate-dextrose anticoagulant mixture which

consisted of citric acid (8 g f1), trisodium citrate (22 g l"1) and glucose (20 g f1)
[367], After gentle mixing by tube inversion, the citrated whole blood was

centrifuged at low speed (120 g) for 20 min at room temperature. The upper two-

third of the supernatant (i.e. PRP) was carefully removed with a disposable transfer

pipette and stored at -40° C in a sealed polystyrene tube until analysis.

Urine collection. Accurately timed urine collections of about 30 min duration were

made before, during and after the test infusions. Urine volumes were recorded and

aliquots stored in sterile 25-ml Universal containers at -40° C for determination of

sodium, potassium, PAH, polyfructosan, 5-HTP, glu-TRP and tryptophan. Urine

samples (20 ml) for measurement of 5-HT, 5-HIAA, dopa, dopamine and DOPAC

were transferred into Universal containers containing 0.2 ml of 5 M hydrochloric

acid (HC1) as an antioxidant [368], The pH of each sample was measured to ensure

that it was less than 3 and further HC1 was added if required.
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2.5 Analytical Methods

2.5.1 Measurement ofUrinary Dopa, Dopamine and DOPAC

L-Dopa, dopamine, DOPAC and the internal standard epinine were adsorbed from

urine onto active aluminium oxide at pH 8.5. This procedure is based on the

original use of aluminium oxide as an extractant by Anton and Sayre [369,370].

Following washing of the oxide with deionised water, the metabolites were eluted

with 2% perchloric acid and measured by HPLC with electrochemical detection.

Reagents

EDTA (0.5 M). This was prepared by dissolving 186 g of EDTA disodium salt

(Na2EDTA.2H20) in 1 litre ofwater.

Tris buffer (pH 11.0, 0.5 M). 12.114 g of tris(hydroxymethyl)aminomethane was

dissolved in 200 ml ofwater.

Perchloric acid (2%). 16.67 ml of 60% perchloric acid was made up to 500 ml

volume with water.

HCl (0.01 Mand 1 M). These were obtained by diluting 5 M HCl with water.

Aluminium oxide active acidic, Brockmann grade 1. Aluminium oxide (500 g)

was activated by heating at 200° C for 2 h after which it was stored at 100° C.

Stock L-dopa, dopamine and DOPAC standards (1 mg ml'1). These stock

solutions were obtained by dissolving L-dopa, dopamine hydrochloride and

DOPAC in 1 M HCl and stored in aliquots at -40° C.

Working L-dopa standards (40, 80, 120, 160 and 200 ng ml'1). The stock L-dopa

standard was diluted 1:50 with water and the resulting solution further diluted 1:100

with 0.01 M HCl to produce a concentration of 200 ng ml"1 of L-dopa. L-dopa was

then prepared over a concentration range of 40, 80, 120, 160 and 200 ng ml"1 in

20 ml volumes by adding 16, 12, 8, 4 and 0 ml ofwater to 4, 8, 12, 16 and 20 ml of

the 200 ng ml"1 solution of L-dopa respectively.

Combined working dopamine and DOPAC standards (40, 80, 120, 160 and 200
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ng ml"'). The stock dopamine and DOPAC standards were each diluted 1:25 with

water and the resulting solutions further diluted 1 TOO with 0.01 M HC1 to produce a

concentration of 400 ng ml"1 of dopamine and DOPAC. 50 ml aliquots of these

solutions were mixed together to produce a solution containing 200 ng ml"1 of

dopamine and DOPAC. Dopamine and DOPAC were then prepared over a

concentration range of 40, 80, 120, 160 and 200 ng ml"1 in 20 ml volumes by adding

16, 12, 8, 4 and 0 ml of water to 4, 8, 12, 16 and 20 ml of the 200 ng ml"1
dopamine/DOPAC solution respectively.

Stock epinine internal standard (1 mg ml'1). 50 mg of epinine hydrochloride was

dissolved in 50 ml of 1 M HC1 and stored in 1.1 ml aliquots at -40° C.

Working epinine internal standard (2 figmlThe stock internal standard was

diluted 1:10 with water and the resulting solution further diluted 1:50 with 0.01 of

1 M HC1 to produce a final epinine concentration of 2 pg ml"1.
Mobile phase usedfor HPLC. The HPLC solvent (pH 5.2) consisted of citric acid

monohydrate (5.75 g), sodium acetate trihydrate (6.80 g), sodium hydroxide

(2.40 g), 1-octanesulphonic acid sodium salt (0.10 g), acetic acid (1.05 ml) and

EDTA disodium salt (0.10 g) made up to 1 litre with deionised water. Methanol 4%

(v/v) was added. The solvent was filtered through a 0.22 pm membrane (Durapore,

Division of Millipore, Milford, MA, U.S.A.) and degassed using helium for 3 min

before use. The 1-octanesulphonic acid was incorporated as an ion-pairing reagent.

Sources of reagents. EDTA disodium salt, tris(hydroxymethyl)aminomethane,

perchloric acid 60%, 5 M HC1 solution, citric acid monohydrate, sodium acetate

trihydrate, sodium hydroxide pellets, 1-octanesulphonic acid sodium salt, acetic

acid (glacial), methanol (all chemicals being of analytical reagent grade) and

aluminium oxide active acidic (Brockmann grade 1) were obtained from BDH

Laboratory Supplies (Poole, Dorset, U.K.). L-Dopa (L-3,4-dihydroxyphenyl-

alanine; L-3-hydroxytyrosine; FW 197.2), dopamine hydrochloride (3,4-

dihydroxyphenethylamine; 3-hydroxytyramine; FW 189.6), DOPAC (3,4-
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dihydroxyphenylacetic acid; FW 168.1), and epinine hydrochloride (TV-methyl-

dopamine, deoxyepinephrine) were obtained from Sigma Chemical Co. Ltd (Poole,

U.K.) Deionised water (Elgastat Spectrum Water Purification System, The Elga

Group, Bucks, U.K.) was used to make up the solutions and dilutions for all the

assays described in this thesis unless stated otherwise.

Method

Aliquots (0.5 g) of activated aluminium oxide were weighed into sufficient 10-ml

tubes to cover the number of samples and standards to be extracted. The alumina

aliquots were washed with 5 ml of 0.5 M EDTA for 10 min at room temperature on

a Rollamixer (Denley Spiramix, Sussex, U.K.). The tubes were centrifuged and the

supernatants were aspirated to waste.

5 ml aliquots of test urine samples (1:200 dilution with water may be required for

urine collected after infusion of gludopa) or standard solutions (40, 80, 120, 160 and

200 ng ml"1) of L-dopa, dopamine and DOPAC were added to the washed alumina

followed by 0.5 ml of the internal standard (epinine, 2 pg ml"1). The pH of all the

urine and standard samples was raised to 8.5, the optimum for adsorption of the

metabolites to alumina, by dropwise addition of 0.5 M Tris buffer. The change in

pH was measured with a PHM 61 Laboratory pH meter with GK2321C combined

electrode (Radiometer Ltd, Crawley, West Sussex, U.K.). The tubes were

'Rollamixed' for 40 min at room temperature to allow adsorption of L-dopa,

dopamine, DOPAC and epinine. They were centrifuged at 1000 g for 5 min to

deposit the alumina and the supernatants were removed by suction. The alumina

deposits were washed twice with water to maximise removal of unadsorbed

metabolites, each time siphoning off the supernatants after centrifugation. After the

final wash, the supernatants were withdrawn as completely as possible and 2 ml of

2% perchloric acid was added to each of the alumina deposits. The tubes were

shaken vigorously for 10 min at room temperature using a mechanical shaker to

facilitate elution of L-dopa, dopamine, DOPAC and epinine into the acid phase.
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They were then centrifuged at 1000 g for 5 min and the supernatants filtered

through 0.2 pm Porex filters (Porex Medical, Fairburn, GA, U.S.A.). The filtered

eluates were then ready for quantitation of dopa, dopamine and DOPAC by HPLC

and electrochemical detection.

Analytical system

Each assay run consisted of test samples, standards and a quality control sample.

These samples were loaded onto an automated sample processor (Waters Intelligent

Sample Processor WISP 71OB, Waters, Division of Millipore, Milford, MA,

U.S.A.) and the instrument was programmed to inject 20 pi aliquots of the sample

eluates, prepared as outlined above, at 15 min intervals into the mobile phase

delivered at a flow-rate of 1 ml min"1 by a Beckman Altex solvent metering pump

(Model 11 OA, Altex Scientific Inc., Berkeley, CA, U.S.A.). The solvent passed

through a Waters 2 pm metal frit filter and a precolumn (Waters Guard-Pak

precolumn insert Novo-Pak C18) before reaching the reversed-phase

chromatography analytical column. This was a Waters Nova-Pak C18 Radial-Pak

cartridge, 100 x 5 mm (i.d.), packed with 4 pm spherical C18 bonded silica-based

materials, and the cartridge was housed in a Waters RCM (Radial Compression

Module) 8x10 cartridge holder.

The effluent was fed to a Waters M460 electrochemical (EC) detector which

contained a 30 pi flow cell and a glassy carbon working electrode with a

silver/silver chloride (Ag/AgCl) reference electrode. The potential of the working

electrode was set at +0.8 V versus the Ag/AgCl reference electrode since this was

found to give the optimum conditions for the detection of dopa, dopamine and

DOPAC when the instrument was set in the oxidative mode with background

current of approximately 0.5 mA. This potential forces the oxidation of ortho-

dihydroxyl groups to yield the corresponding ortho-quinone. The electrons

generated in this reaction pass into the electrode and the resulting current is

measured as each oxidizable analyte passes the electrode. The amplitude of the
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current is thus proportional to the quantity of metabolite passing through the cell.

The signals from the EC detector were analysed by a computing integrator

(Shimadzu C-R3A Chromatopac, Shimadzu Corporation, Kyoto, Japan) which

indicated retention time of each peak detected and also calculated the area under

each peak. A representative chromatogram obtained from a urine sample collected

after infusion of gludopa is shown in Figure 2-2.

oj in
in
OJ CO

Figure 2-2. Chromatogram obtained from a urine sample collected after infusion of gludopa.
The peaks are: A = dopa; B = DOPAC; C = dopamine; D = epinine (internal standard).
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The dopa, dopamine, DOPAC and internal standard (epinine) peaks were

identified by their relative retention times. The integrated area of each standard

dopa, dopamine and DOPAC peak was divided by the area of the internal standard

in the same sample. Standard plots of the ratios of peak areas versus the

corresponding 40, 80, 120, 160 and 200 ng ml"1 concentrations of the standards

were constructed to verify linearity of the relationship and goodness of fit for each

metabolite. Linear regression analysis was then performed on the ratios against the

standard concentrations, and the concentrations of dopa, dopamine and DOPAC in

the test and quality control samples were derived from the corresponding regression

line by computation. Urinary dopa, dopamine and DOPAC concentrations were

converted and expressed in nmol 1"'. The intra-and inter-assay coefficients of

variation were 2.9% and 3.7% for dopa; 1.0 % and 2.2 % for dopamine; 2.5 % and

2.5 % for DOPAC. The values of the lower limit of detection of the assays were 25,

26 and 30 nmol 1"1 for dopa, dopamine and DOPAC respectively.

2.5.2 Measurement ofUrinary 5-HT

5-HT in urine was measured by an 'in-house' modification of the method described

by Jouve et al. [371], It was selectively adsorbed onto Amberlite CG-50, a weakly

acidic cation exchange resin, and eluted into ammonium acetate prior to its

measurement by HPLC and spectrofluorometric detection. This eliminated the

significant quantities of other fluorescent amines in urine such as tyrosine,

phenylalanine, tryptophan and dopamine. Aco-methyl-5-hydroxytryptamine

(A-methyl-5-HT) oxalate was used as the internal standard.

Reagents

Amberlite CG-50 (weakly acidic cationic exchanger, carboxylie acid active group,

100-200 wet mesh, H ionic form). This cation exchange resin was washed and

equilibrated with 0.1 M HC1 prior to storage as follows: 250 g of amberlite was

sprinkled into 2 litres of water and dispersed by magnetic stirring. This was then
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transferred to a 5-litre Buchner clarifying funnel and the water was allowed to pass

through the resin to waste. The resin was washed sequentially with 5 litres of 4 M

HC1 followed by 5 litres of water; 5 litres of 2 M NaOH followed by 5 litres of

water; and 5 litres of 4 M HC1 followed by 5 litres of water. The resin was finally

equilibrated with 5-10 litres of 0.1 M HC1. It was removed from the Buchner funnel

into a 5-litre beaker and 0.1 M HC1 added so that the resin sediment occupied

approximately 20% of the total volume. The final suspension was mixed vigorously

to maintain homogeneity, dispensed into 1-litre glass bottles, and stored at 4° C.

Phosphate buffer (0.2 M, pH 8.0). The buffer was prepared by mixing 53 ml of

0.2 M sodium dihydrogen phosphate solution with 947 ml of 0.2 M disodium

hydrogen phosphate solution. The 0.2 M sodium dihydrogen phosphate solution

was made up by dissolving 1.87 g of sodium dihydrogen orthophosphate dihydrate

(NaH2P04.2H20) in 60 ml of water, and the 0.2 M disodium hydrogen phosphate

was obtained by dissolving 28.39 g disodium hydrogen orthophosphate anhydrous

(Na2HP04) in 1 litre ofwater.

Ammonium acetate (0.05 M, pH 5.0). 3.85 g of ammonium acetate was dissolved

in 1 litre ofwater and the pH adjusted to 5.0 by addition of acetic acid.

Ammonium acetate (3 M, pH 5.0). 231 g of ammonium acetate was dissolved in

1 litre ofwater and the pH adjusted to 5.0 by addition of acetic acid.

Sodium hydroxide (1 M and 2 M). The 2 M solution was prepared by dissolving

80 g of sodium hydroxide (NaOH) pellets per litre of water. This was diluted with

an equal volume ofwater to give 1 M NaOH solution.

HCl (4M, 1 M and 0.1 M). These were prepared by diluting 5 M HCl with water.

Stock 5-HT standard (1 mg ml'1). 20 mg of 5-hydroxytryptamine hydrochloride

was dissolved in 20 ml of 1 M HCl and stored in 1.1 ml aliquots at -40° C.

Working 5-HT standards (50, 100, 150, 200 and 250 ng ml A). The stock 5-HT

standard solution was diluted 1:40 with water and the resulting solution further

diluted 1:100 to produce a solution containing 250 ng ml"1 of 5-HT. 5-HT
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hydrochloride was then prepared over a concentration range of 50, 100, 150, 200

and 250 ng ml"1 in 10 ml volumes by adding 8, 6, 4, 2 and 0 ml of water to 2, 4, 6, 8

and 10 ml of the 250 ng ml"1 5-HT solution respectively.

Stock N-methyl-5-HT internal standard (100 jug ml '1). 10 mg of iVco-methyl-5-

hydroxytryptamine oxalate was dissolved in 100 ml of 1 M HC1 and stored in

aliquots of 1.1 ml at -40° C.

Working lS-methyl-5-HT interna! standard (4 jug mlThis was prepared by

diluting the stock solution 1:25 with water.

Mobile phase used for HPLC. 4 litres of 0.1 M sodium acetate was prepared by

adding 54.43 g of sodium acetate trihydrate to 4 litres of water. 5 litres of 0.1 M

citric acid was prepared by dissolving 105 g of citric acid monohydrate powder in

5 litres of water. The 0.1 M citric acid was added to the 0.1 M sodium acetate

solution until the pH was 3.5. Methanol 4% (v/v) was added. The solvent was

filtered through a 0.22 (tm Durapore membrane and degassed using helium for

3 min prior to use.

Sources of reagents. 5 M HC1 solution, sodium hydroxide pellets, sodium

dihydrogen orthophosphate dihydrate, disodium hydrogen orthophosphate

anhydrous, ammonium acetate, acetic acid, sodium acetate trihydrate, citric acid

monohydrate and methanol (all chemicals being of 'analaR' grade) were obtained

from BDH Laboratory Supplies (Poole, U.K.). Amberlite CG-50, 5-hydroxy-

tryptamine hydrochloride and Ako-methyl-5-hydroxytryptamine oxalate were

obtained from Sigma Chemical Co. Ltd (Poole, U.K.).

Method

Sufficient Poly-Prep columns (4 cm x 0.8 cm i.d., with a 10-ml integral reservoir)

(Bio-Rad Laboratories Ltd, Hemel Hempstead, Herts, U.K.) were set out to receive

the test urine samples and standard solutions of 5-HT. 3 ml of washed Amberlite

CG-50 resin, which was kept dispersed in 0.1 M HC1 acid by magnetic stirring, was

added to each column and the acid was allowed to elute to waste. Phosphate buffer
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(10 ml) was added to each column and allowed to elute to waste. The columns were

then ready to receive the standard and test urine samples.

Aliquots (2 ml) of test urine samples (diluted as necessary) and standard

solutions of 5-HT were transferred into a series of 5-ml tubes. The pH of each urine

sample was raised to pH 8.0 by dropwise addition of 1 M NaOH. To each tube

were then added 0.2 ml of the phosphate buffer and 0.2 ml of the internal standard

(M-methyl-5-HT, 4 pg ml"1). All the urine and standard samples were pipetted onto

the prepared Bio-Rad columns and the effluents allowed to run to waste. The

columns were sequentially washed with 5 ml of 0.05 M ammonium acetate,

followed by 0.5 ml of 3 M ammonium acetate, each time allowing the effluents to

run to waste. The columns were then inserted into 10-ml tubes and 3 ml of 3 M

ammonium acetate was added to each column. The eluates were collected and

vortex-mixed prior to analysis by HPLC with fluorometric detection.

Analytical system

HPLC was performed with a Beckman Altex solvent metering pump (Model 11 OA)

delivering the mobile phase at 1 ml min"1, an automatic sample injection module

(Waters 712 WISP) programmed to inject 20 pi aliquots of samples at 20 min

intervals, and a Waters Nova-Pak C18 Radial-Pak cartridge, 100 x 5 mm (i.d.),

packed with 4 pm spherical C18 bonded silica-based materials and held under radial

compression in a Waters RCM 8x10 cartridge holder. The column packing was

protected by an inline Waters 2 pm metal frit filter and by a precolumn (Waters

Guard-Pak precolumn insert Novo-Pak C18). The eluate from the analytical column

passed through the flow cell of a Perkin-Elmer LS-5 luminescence spectrometer

(Perkin-Elmer Ltd, Beaconsfield, Bucks, U.K.). The excitation wavelength was set

at 284 nm and the emission wavelength at 314 nm. The excitation slit was 15 mm

and the emission slit was 20 mm. The signals produced were fed to a Shimadzu

C-R3A computing integrator. A representative chromatogram obtained from a

urine sample collected after infusion of glu-5-HTP is shown in Figure 2-3.
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The integrated area of the 5-HT peak obtained from each standard 5-HT solution

and test urine sample was divided by the area of the internal standard in the same

sample. The concentrations of the unknown test and quality control samples were

calculated as described in section 2.5.1. The lower limit of detection of the assay

for 5-HT was 45 nmol 1" , and the intra- and inter-assay coefficients of variation

were 5.6% and 11.6% respectively.
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Figure 2-3. Chromatogram obtained from a urine sample collected after infusion of glu-5-
HTP. The peaks are: A = 5-HT; B = A-methyl-5-HT (internal standard).

101



2.5.3 Measurement ofUrinary 5-HTP

5-HTP in urine was measured by HPLC with spectrofluorometric detection. This

was performed after simple dilution of the urine sample without the need for prior

extraction because of the very high urinary 5-HTP concentrations following

infusion of glu-5-HTP or L-5-HTP.

Reagents

HCl (1 M). 5 M HC1 was diluted 1:5 with water.

Stock L-5-HTP standard (1 mg ml''). 20 mg of L-5-HTP was dissolved in 20 ml

of 1 M HCl. It was stored in 1.1 ml aliquots at -40° C.

Working L-5-HTP standards (20, 40, 60, 80 and 100 ng ml''). The stock L-5-

HTP standard was diluted 1:100 with water and the resulting solution further diluted

1:100 to produce a solution containing 100 ng ml"1 of L-5-HTP. L-5-HTP was then

prepared over a concentration range of 20, 40, 60, 80 and 100 ng ml"1 in 2.0 ml

volumes by adding 1.6, 1.2, 0.8, 0.4 and 0 ml of water to 0.4, 0.8, 1.2, 1.6 and 2.0

ml of the 100 ng ml"1 L-5-HTP solution respectively.

Working epinine internal standard (10 jug ml'1). The working internal standard

was obtained as described in section 2.5.1.

Mobile phase used for HPLC. 4 litres of 0.1 M sodium acetate was prepared by

adding 54.4 g of sodium acetate trihydrate to 4 litres ofwater. The pH was adjusted

to pH 3.5 by addition of 0.1 M citric acid (105 g of citric acid monohydrate powder

to 5 litres of water). 1-Octanesulphonic acid (100 mg I" ) and methanol (4%) was

added, and the mixture degassed using helium prior to use.

Sources of reagents. These were as described in sections 2.3, 2.5.1 and 2.5.2.

Method

0.1 ml of the working epinine internal standard (10 (ig ml"1) was added to 2 ml

aliquots of test urine samples and standard L-5-HTP solutions (20 ,40, 60, 80 and

100 ng ml"1). The urine samples obtained after infusion of glu-5-HTP or L-5-HTP
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were diluted 1:250 and 1:500 with water prior to addition of epinine. 5-HTP was

then measured by HPLC with spectrofluorometric detection using the same system

as that described for measurement of 5-HT (see section 2.5.2). The fluorescence

measurements were taken at 284 nm for excitation and 355 nm for emission. A

representative chromatogram obtained from a urine sample collected after infusion

of glu-5-HTP is shown in Figure 2-4. The limit of detection of the assay was 45

nmol T1, and the intra- and inter-assay coefficients of variation were 5.5% and 6.5%

respectively.
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Figure 2-4. Chromatogram obtained from a urine sample collected after infusion of glu-5-
HTP. The peaks are: A = 5-HTP; B = epinine (internal standard).
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2.5.4 Measurement of 5-HTP and 5-HT in Platelet-Rich Plasma

5-HTP and 5-HT in PRP were assayed, after deproteinisation with perchloric acid

containing L-cysteine, by HPLC with electrochemical detection using jV-methyl-5-

HT as the internal standard. These assays were kindly performed by Ms. N.J.T.

Burns and Dr. B.C. Williams of the Department of Medicine, Western General

Hospital, Edinburgh.

Reagents

Perchloric acid (15%) containing L-cysteine (2 mM, 242.4 mg I'1).
Perchloric acid (1.5%) containing L-cysteine (0.2 mM).

Stock L-5-HTP, 5-HT and N-methyl-5-HT standards (10 juM). These stock

solutions were prepared by dissolving L-5-HTP (2.20 mg f1), 5-hydroxytryptamine
creatinine sulphate (3.87 mg F1) and Ako-methyl-5-hydroxytryptamine oxalate (2.80

mg I"1) in a solution of perchloric acid (1.5%) and cysteine (0.2 mM).

Combined working L-5-HTP, 5-HT and N-methyl-5-HT standards (1 juM each).

The stock solutions were diluted with 1.5% perchloric acid containing 0.2 mM

L-cysteine to produce the combined working standards.

Mobile phase used for HPLC. The HPLC solvent (pH 4.8) contained the

following: 0.1 M phosphate buffer (15.6 g 1"' of NaH2P04.2H20), 1 mM of EDTA

(372 mg T1 of Na2EDTA.2H20), 25 mg l"1 of 1-octanesulphonic acid and 5% v/v

methanol. The solution was dissolved in double distilled water, filtered under

vacuum using 0.45 pm filter and degassed at room temperature before use.

Sources of reagents. L-5-HTP, 5-hydroxytryptamine creatinine sulphate, Nco-

methyl-5-hydroxytryptamine oxalate, L-cysteine free base and EDTA disodium salt

were obtained from Sigma Chemical Co. Ltd (Poole, U.K.); sodium dihydrogen

orthophosphate dihydrate (NaH2P04.2H20) from BDH Laboratory Supplies (Poole,

U.K.); 1-octanesulphonic acid sodium salt from FSA laboratory supplies (Fisons

Scientific Apparatus, Loughborough, Leicester, U.K.); methanol and double

distilled water, both HPLC grade, from Rathburn Chemicals Ltd (Walkerburn,
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Peeble, U.K.); and perchloric acid (72%) from May and Baker Laboratory

Chemicals (Dagenham, Essex, U.K.).

Method

Samples of PRP were thawed at room temperature and 400 pi aliquots removed.

Each aliquot was spiked with 50 pi of 10 pM 7V-methyl-5-HT (internal standard)

and the protein was precipitated by addition of 50 pi of a solution of 15% perchloric

acid containing 2 mM L-cysteine. The samples were vortexed, left at 4° C for 15

min to allow complete precipitation of protein, and then centrifuged at 10,000 g and

4° C for 15 min. The supernatants were removed and stored in polypropylene tubes

at 4° C, for not more than 24 h, until assayed for 5-HTP and 5-HT by HPLC and

electrochemical detection.

Analytical system

The HPLC system consisted of a Waters 510 pump, an U6K injector, a Waters

150 x 3.9 (i.d.) mm pBondapak C18 reversed-phase analytical column (Waters

Associates, Division of Millipore, Milford, MA, U.S.A.), a BAS LC-4A EC

detector with a single glassy carbon electrode (Bioanalytical Systems, West

Lafayette, NJ, U.S.A.) and a Waters Data Module. Before injecting the samples, the

instrument was equilibrated by injection of 25 pi of the standard mixture containing

1 pM of L-5-HTP, 5-HT and the internal standard A-methyl-5-HT thus obtaining an

elution profile. The standard mixture was then injected repeatedly at intervals

throughout the day to check the consistency of retention time for each compound.

A 25 pi extract from each sample was injected for HPLC measurement of all

relevant compounds. The flow rate of the mobile phase was 2 ml min"1. The

detector potential was set at +0.6 V with 10 nA full scale deflection. Total elution

time for all compounds was 40 min. The heights of the peaks in the standard or test

samples were divided by the peak height of the internal standard in the same

sample. The concentrations of 5-HTP and 5-HT in the test samples were derived by

comparing the ratios of peak heights obtained in the test samples with
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corresponding values obtained with the standard mixture containing 1 pM of each

compound. The intra- and inter-assay coefficients of variation were: 0.6% and 5.6%

respectively for L-5-HTP; 1.2% and 5.7% respectively for 5-HT.

2.5.5 Measurement ofUrinary 5-HIAA

Urinary 5-HIAA was measured using the modified colorimetric method described

by Goldenberg [372], 5-HIAA, other phenolic acids and drug metabolites are

extracted into diethyl ether from acidified urine. Sodium chloride is added to

saturation to promote quantitative transfer of 5-HIAA into the ether phase. The

5-HIAA is then back-extracted into a phosphate buffer (0.1 M, pH 7.0) and reacted

with 1 -nitroso-2-naphthol in the presence of nitrous acid at 37° C to form a violet

colour [373], Phosphate buffer at pH 7 is chosen for efficient extraction of 5-HIAA

since this improves with increasing pH reaching a maximum at about pH 6.8 and

5 HIAA becomes progressively more unstable at higher pH values [374], In

addition, urinary phenols lacking an acid group are not ionised at pH 7 and remain

behind in the ether layer, thereby providing a relatively 'clean' 5-HIAA extract. An

intense blue chromophore is formed upon subsequent addition of 2-mercaptoethanol

and the intensity of the colour is proportional to the 5-HIAA concentration.

Extraneous colours, caused by reactive phenols and indoleacetic acid, are removed

by treatment with the mercaptoethanol and extraction into ethyl acetate. The

absorbance maximum of the remaining blue solution occurs at 645 nm. Beer's law

is not obeyed through a suitable range of 5-HIAA concentrations at this wavelength

and a more useful linear range is obtained at 590 nm.

Reagents

HCl (1 M). This was prepared as described in section 2.5.3.

Phosphate buffer (0.1 M, pH 7.0). 5 . 18 g of potassium dihydrogen orthophosphate

(KH2P04) and 8.80 g of disodium hydrogen orthophosphate anhydrous (Na2HP04)

106



were dissolved in water and made up to a final volume of 1 litre.

1-Nitroso-2-naphthol (11.5 mM; 2 g I '1). 200 mg of l-nitroso-2-naphthol was

dissolved in ethanol to a final volume of 100 ml and stored in a dark bottle at 4° C.

Sodium nitrite solution (0.36 M; 25 g I'1). This was prepared by dissolving 2.5 g

of sodium nitrite in water to make up a final volume of 100 ml.

Nitrous acid (0.014 M). This was prepared immediately before use by adding 1 M

HC1 to 1 ml of sodium nitrite solution (25 g f1) to make up a final volume of 25 ml.

2-Mercaptoethanol (3.58 M). This was prepared in a fume hood by diluting 25 ml

of 2-mercaptoethanol (14.3 M) with water to a final volume of 100 ml. It was

stored in the hood in a dark-brown bottle at room temperature.

Thiourea (0.013 M, 1 g I'). 1 g of thiourea was dissolved in water and the final

volume adjusted to 1 litre.

Stock 5-HIAA standard (250 mg I'1). 25 mg of 5-HIAA was dissolved in 100 ml

of 1 M HC1, and stored in a dark-brown glass bottle at 4° C.

Working 5-HIAA standards (2, 6, 8 and 10 mg l'1). This was prepared by diluting

4 ml of the stock standard to 100 ml with aqueous thiourea (1 g f'). The

preparation is stable for 2 weeks when stored at 4° C in an amber-coloured bottle.

5-HIAA was then prepared over a concentration range of 2, 4, 6, 8 and 10 mg 1" in

5 ml volumes by adding 4, 3, 2, 1 and 0 ml of thiourea to 1, 2, 3, 4 and 5 ml of the

working 5-HIAA standard (10 mg f1) respectively.
Diethyl ether.

Sodium chloride dry powder.

Ethyl acetate (0.9 g ml'1).
Sources of reagents. Potassium dihydrogen orthophosphate, disodium hydrogen

orthophosphate anhydrous, 5 M HC1, sodium nitrite, diethyl ether, sodium chloride,

ethyl acetate and ethanol, all of analytical reagent grade, were obtained from BDH

Laboratory Supplies (Poole, U.K.). l-Nitroso-2-naphthol, 2-mercaptoethanol,

thiourea and 5-HIAA were purchased from Sigma Chemical Co. Ltd, U.K.
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Method

Sodium chloride (~ 1.6 g), 2 ml of 1 M HC1 and 10 ml of diethyl ether were added

to 2 ml of deionised water (blank), test urine and standard samples in 25-ml glass

stoppered Quickfit tubes (Mackay & Lynn, Edinburgh, U.K.). The tubes were

capped, shaken mechanically in a horizontal position for 5 min at room temperature,

and then centrifuged at 500 g for 3 min. 8 ml aliquots of the upper ether phase were

transferred to a set of 10-ml Quickfit tubes and 1.6 ml of phosphate buffer was

added. After shaking for 5 min at room temperature and centrifugation at 500 g for

3 min, the upper ether layer was aspirated to waste. 0.8 ml of the lower aqueous

layer was transferred to a third set of tubes (care being taken not to carry over any

ether), and 0.2 ml of l-nitroso-2-naphthol reagent and 0.4 ml of the nitrous acid

solution were added to each tube. All tubes were vortex-mixed and incubated in a

water bath at 37° C for 5 min. 80 pi of 2-mercaptoethanol solution was then added.

The tubes were vortexed and placed in a boiling bath for a further 5 min. At the end

of the incubation period, 2 ml of ethyl acetate was added. Following vortex-mixing,

the tubes were centrifuged at 500 g to separate the layers. The upper ethyl acetate

layers were aspirated off and discarded. The lower aqueous layers were transferred

to cuvettes and the absorbance of the standards and unknowns read against the water

blank at 590 nm in an automatic recording spectrophotometer (Philips PU8720,

Philips (Pye-Unicam) Ltd, Cambridge, U.K.). Standard responses were constructed

automatically and the unknown responses read from these. A quality control

sample of urine was incorporated into each run and any sample with a 5-HIAA level

greater than 10 mg f1 (52 pmol f1) was re-assayed after dilution of the urine. The

lower limit of detection of the assay for 5-HIAA was 5.2 pmol f1. The intra- and

inter-coefficients of variation were 4.5% and 7.3% respectively.

2.5.6 Measurement of Glu-TRP in Plasma and Urine

Glu-TRP was assayed both in plasma, after deproteinisation with perchloric acid,
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and in urine by HPLC and spectrofluorometric detection.

Reagents

Glu-TRP standards (250, 500, 750 and 1000 ng ml'1). Glu-TRP solution (5 mg

ml"1) was diluted 1:100 and the resulting solution further diluted 1:50 with water to

produce a solution containing 1 p,g ml"1 of glu-TRP. Glu-TRP was then prepared

over a concentration range of 250, 500, 750 and 1000 ng ml"1 in 2 ml volumes by

adding 1.5, 1.0, 0.5 and 0 ml of water to 0.5, 1.0, 1.5 and 2 ml of the 1 |ig ml"1 glu-

TRP solution respectively.

Mobile phase used for HPLC. The solvent consisted of 0.1 M sodium acetate

(13.6 g l"1 of sodium acetate trihydrate) whose pH was adjusted to 3.3 by addition of

0.1 M citric acid (21 g l"1 of citric acid monohydrate). 1-Octanesulphonic acid (100

mg l"1) and methanol (10%) were added and the mixture was degassed using helium.

Sources of reagents. These were as described in sections 2.3, 2.5.1 and 2.5.2..

Method

0.5 ml of 6% perchloric acid was added to 0.5 ml aliquots of test plasma samples.

The mixtures were vortexed for 30 s and left to stand for 5 min at room temperature

to precipitate the proteins. The supernatants were removed after centrifugation at

1500 g for 10 min. Glu-TRP was then measured by HPLC with spectrofluorometric

detection at excitation and emission wavelengths of 280 and 336 nm respectively

using the same system as that used for measurement of 5-HT (see section 2.5.2).

The solvent stream was delivered at 1 ml min"1 and 20 (il aliquots of the prepared

samples were injected into it at 20 min intervals. A standard plot of the ratios of

peak areas versus the corresponding 250, 500, 750 and 1000 ng ml"1 concentrations

of the standards was constructed to verify linearity of the relationship and goodness

of fit. Linear regression analysis was performed on the peak areas against the

standard concentrations, and the concentrations of glu-TRP were derived from the

regression line by computation. A representative chromatogram obtained from

plasma after infusion of glu-TRP is shown in Figure 2-5. All the plasma samples
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after infusion of glu-TRP were assayed during one batch run and the intra-assay

coefficient of variation was 4.1%. The lower limit of detection of the assay was 50

nmol l"1. Glu-TRP was undetectable in urine using the present assay.
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Figure 2-5. Chromatogram obtained from a plasma sample collected after infusion of glu-TRP.
Peak A = glu-TRP.

2.5.7 Measurement of Tryptophan in Plasma and Urine

Tryptophan was assayed both in plasma (after deproteinisation with perchloric acid)

and in urine by HPLC and spectrofluorometric detection using O-methyl-L-tyrosine

as the internal standard.
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Reagents

HCl (0.1 M and 1 M). These were prepared by diluting 5 M HC1 with water.

Stock L-tryptophan standard (1 mg ml'1). 20 mg of L-tryptophan was dissolved in

20 ml of 1 M HCl and stored in 1.1 ml aliquots at -40° C.

Working L-tryptophan standards (40, 80, 120, 160 and 200 ng ml'1). The stock

L-tryptophan standard was diluted 1:100 and the resulting solution further diluted

1:50 with 0.1 M HCl to produce a solution containing 200 ng ml"1 of L-tryptophan.
L-tryptophan was then prepared over a concentration range of 40, 80, 120, 160 and

200 ng ml"1 in 1 ml volumes by adding 0.8, 0.6, 0.4, 0.2 and 0 ml of water to 0.2,

0.4, 0.6, 0.8 and 1.0 ml of the 200 ng ml"1 L-tryptophan solution respectively.

Stock O-methyl-L-tyrosine internal standard (1 mg ml'1). 50 mg of Omethyl-L-

tyrosine was dissolved in 50 ml of 1 M HCl and stored in 1.1 ml aliquots at -40° C.

Working O-methyl-L-tyrosine interna! standard (20 pg ml''). The stock internal

standard was diluted 1:50 with water to produce a final concentration of 20 pg ml"1.
Mobile phase used for HPLC. The solvent consisted of 0.1 M sodium acetate

(13.6 g 1"' of sodium acetate trihydrate) whose pH was adjusted to pH 3.3 by

addition of 0.1 M citric acid (21 g l"1 of citric acid monohydrate). Methanol (10%)

was added and the mixture was degassed using helium prior to use.

Sources of reagents. These were as described in section 4.5.2. L-tryptophan

(ChH12N202, FW 204.2) and O-methyl-L-tyrosine free base (4-methoxy-L-

phenylalanine) were purchased from Sigma Chemical Co. Ltd (Poole, U.K.).

Method

0.5 ml of 6% perchloric acid was added to 0.5 ml aliquots of test plasma samples.

The mixtures were vortexed for 30 s and left to stand for 5 min at room temperature

to precipitate the proteins. After centrifugation at 1500 g for 10 min, 0.1 ml of the

supernatants were removed and added to 4.9 ml of water (i.e. diluted 1:50). Urine

samples were diluted 1:50 with water. 0.1 ml of the internal standard (20 pg ml"1),
was then added to 1 ml aliquots of the diluted protein-free plasma supernatants,
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diluted urine samples and standard solutions of L-tryptophan (40, 80, 120, 160 and

200 ng ml"1). Tryptophan was then measured by HPLC with spectrofluorometric

detection at excitation and emission wavelengths of 280 and 336 nm respectively

using the same system as that used for measurement of 5-HT (see section 2.5.2).

The solvent stream was delivered at 1 ml min"1 and 40 pi aliquots of the prepared

samples were injected into it at 15 min intervals. The intra- and inter-assay

coefficients of variation were 3.8% and 4.6% respectively. A representative

chromatogram obtained from a urine sample collected after infusion of glu-TRP is

shown in Figure 2-6.
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Figure 2-6. Chromatogram obtained from a urine sample collected after infusion of glu-TRP.
The peaks are: A = O-methyl-L-tyrosine (internal standard); B = tryptophan.
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2.5.8 Measurement of Polyfructosan in Plasma and Urine

Polyfructosan (Inutest) was measured using a modification of the method of Bacon

and Bell [375J. Inulin, after hydrolysis with concentrated HC1 at 80° C, generates a

red colour when reacted with resorcinol. Ferric chloride (FeCl3) was added to

stabilise the colour. The intensity of the red colour is proportional to the inulin

concentration and was estimated spectrophotometrically by absorbance at 480 nm.

Reagents

HCI/FeCl3 solution. 7.5 mg of FeCl3 was dissolved in 1 litre of concentrated HC1.

Resorcinol reagent (1.5 g I'1). Resorcinol was dissolved in ethanol.

Perchloric acid (3% and 6%). Perchloric acid (60%) was diluted 1:10 and 1:20

with water to produce 6% and 3% perchloric acid respectively.

Stock Inutest standard (250 mg ml'1). This was obtained from the manufacturer.

Working Inutest standards (100, 200, 300, 400 and 500 jug ml ~1). The stock

Inutest standard was diluted 1:500 to produce a concentration of 500 pg ml"1 of

Inutest. Inutest was then prepared over a concentration range of 100, 200, 300, 400

and 500 pg ml"1 in 0.5 ml volumes by adding 0.4, 0.3, 0.2, 0.1 and 0 ml of water to

0.1, 0.2, 0.3, 0.4 and 0.5 ml of the 500 pg ml"1 Inutest solution.

Sources of reagents. Ferric chloride anhydrous and resorcinol (1,3-benzenediol)

were obtained from Sigma Chemical Co. Ltd (Poole, U.K.). The other reagents

were obtained as described in sections 2.3, 2.5.1 and 2.5.5.

Method

0.5 ml of 6% perchloric acid was added to 0.5 ml aliquots of test plasma samples.

The mixtures were vortexed for 30 s and left to stand at room temperature for 5 min

to precipitate the proteins. After centrifugation at 1500 g for 10 min, 0.5 ml of the

supernatants were transferred to glass stoppered Quickfit tubes. 0.5 ml of 6%

perchloric acid was also added to 0.5 ml of the standard solutions of Inutest (100,

200, 300, 400 and 500 pg ml"1), and 0.5 ml aliquots of the resulting solutions
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transferred to Quickfit tubes. Urine samples were diluted 1:20 with 3% perchloric

acid by adding 0.1 ml of urine to 1.9 ml of 3% perchloric acid, and 0.5 ml aliquots

of the diluted urine samples transferred to Quickfit tubes. 3 ml of resorcinol reagent

and 3 ml of HCl/FeCl3 solution were then added to each tube containing standard

Inutest solutions, plasma supernatants or diluted urine samples. The tubes were

vortex-mixed and incubated in a water bath at 80° C for 40 min. At the end of this

period, the tubes were removed, cooled in tap water, and the extinction read against

the blank at 480 nm in a spectrophotometer (Philips PU8720). The standard

response was constructed automatically and plotted together with the test results of

the unknown samples on a Philips S200 GP printer/plotter. The red colour

developed is stable for 1 h and all samples were read within that time. The intra-

and inter-assay coefficients of variation were 3.4% and 7.2% respectively for

plasma samples, and 3.8% and 7.7% respectively for those from urine.

2.5.9 Measurement ofPflra-Aminohippuric acid in Plasma and Urine

PAH was assayed in deproteinised plasma and in urine by HPLC and spectrofluoro-

metric detection using 3,4-dihydroxybenzylamine (DHBA) as the internal standard.

Reagents

Perchloric acid (6%). 60% perchloric acid was diluted 1:10 with water.

Stock PAH standard (1 mg ml '). This was prepared by diluting PAH solution

(200 mg ml"1) 1:200 with 1 M HC1 and 1.1 ml aliquots frozen at -40° C.

Working urine PAH standards (125, 250, 500, 750 and 1000 ng ml'1). The stock

PAH standard was diluted 1:1000 with water to give a solution containing 1 pg ml"1
of PAH. PAH was then prepared over a concentration range of 125, 250, 500, 750

and 1000 ng ml"1 in 2 ml volumes by adding 1.75, 1.5, 1.0, 0.5 and 0 ml of water to

0.25, 0.5, 1.0, 1.5 and 2.0 ml of the 1 (ig ml"1 PAH solution respectively.

Working plasma PAH standards (8, 16, 24, 32 and 40 jug ml'1). The stock PAH

standard was diluted 1:25 with PAH-free pooled plasma to produce a plasma
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solution containing 40 pg ml"1 of PAH. Standard plasma PAH concentrations of 8,

16, 24, 32 and 40 pg ml"1 in 0.5 ml volumes were then prepared by adding 0.4, 0.3,

0.2, 0.1 and 0 ml of pooled normal plasma to 0.1, 0.2, 0.3, 0.4 and 0.5 ml of the 40

fig ml"1 plasma PAH solution respectively.

Stock DHBA internal standard (1 mg ml'1). 50 mg of 3,4-dihydroxybenzylamine

hydrobromide was dissolved in 50 ml of 1 M HC1. It was stored in 1.1 ml aliquots

(urine internal standard) and 3 ml aliquots (plasma internal standard) at -40° C.

Working urine DHBA internal standard (40 figmlThe stock DHBA standard

solution was diluted 1:25 with water.

Working plasma DHBA internal standard (800 fig mlThis was obtained by

adding 2 parts ofwater to 8 parts of the stock plasma DHBA solution.

Mobile phase used for HPLC. The HPLC solvent is similar to that used for

measurement of urinary L-5-HTP (see section 2.5.3) and consisted of 0.1 M citrate

acetate buffer (pH 3.5), 100 mg 1"' 1-octanesulphonic acid and 4% v/v methanol.

Sources of reagents. 3,4-Dihydroxybenzylamine hydrobromide was obtained from

Sigma Chemicals Co. Ltd (Poole, U.K.). The sources of other reagents were given

in sections 2.3 and 2.5.1.

Method

0.1 ml of the plasma DHBA internal standard (800 fig ml"1) was added to 0.5 ml

aliquots of the test plasma samples and standard plasma PAH solutions (8, 16, 24,

32 and 40 pg ml"1), followed by 0.5 ml of 6% perchloric acid. The mixtures were

vortexed for 30 s, left to stand for 5 min at room temperature, and centrifuged at

1000 g for 10 min to deposit the proteins. The supernatants were removed and

diluted 1:40 with water. Urine samples were diluted 1:4000 by adding 19.9 ml of

water to 0.1 ml of urine and diluting 0.1 ml of the resulting solution with 1.9 ml of

water. 0.1 ml of the urine DHBA internal standard (40 pg ml"1) was then added to

2 ml aliquots of the diluted urine and the range of urine PAH standards.

Standard and test samples were measured by HPLC with fluorometric detection
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using the same system as that used for measurement of urinary 5-HT (see section

2.5.2). The mobile phase was delivered at 1 ml min"1, the injection volume was set

at 20 pi, and fluorometric detection was performed with excitation and emission

wavelengths set at 280 and 360 nm respectively. A representative chromatogram

obtained from a plasma sample is shown in Figure 2-7. The intra- and inter-assay

coefficients of variation were 2.8% and 4.0% respectively for plasma PAH, and

3.8% and 7.7% respectively for urinary PAH.
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Figure 2-7. Chromatogram obtained from a plasma sample. The peaks are: A = PAH; B = 3,4-
dihydroxybenzylamine (DHBA; internal standard).
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2.5.10 Measurement of Plasma Renin Activity

Renin is a proteolytic enzyme produced by the juxtaglomerular cells of the kidney.

In man, it cleaves on the Leul0-Val" peptide bond of angiotensinogen (Asp-Arg-

Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-R), an a2 macroglobulin synthesised

in the liver, to produce the decapeptide angiotensin I (ANG I; Asp-Arg-Val-Tyr-Ile-

His-Pro-Phe-His-Leu). Angiotensin converting enzyme (ACE) cleaves two

additional amino acids (His-Leu) at the carboxyl end of ANG I to produce the

biologically active octapeptide angiotensin II (ANG II; Asp-Arg-Val-Tyr-Ile-His-

Pro-Phe). ANG II is rapidly broken down to smaller peptides including angiotensin

III (ANG III; Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) by angiotensinases.

Incubation of plasma at 37° C in the presence of powerful inhibitors of ACE and

angiotensinases allows the generation of ANG I but prevents its further degradation.

EDTA and 8-hydroxyquinoline inhibit ACE and angiotensinase A, both of which
2+

are Ca dependent; phenylmethylsulphonyl fluoride inhibits angiotensinase B; and

dimercaprol, a metal chelator, is used to augment the action of EDTA and

8-hydroxyquinoline. The reaction is arrested after one hour by sudden cooling to

4° C. Generated ANG I is measured by radioimmunoassay (RIA) and PRA is

expressed in ng of ANG I produced per ml of plasma per hour. The RIA is based
175

on the competition of radioiodinated ANG I ([ I ]ANG I) and unlabelled ANG I for

binding to the limited amount of antibody binding sites in a fixed amount of

antiserum. As the quantity of ANG I in plasma or standard samples increases, the
125

ability of the antibody to bind [ IJANG I decreases. Our 'in-house' method used

for determination of PRA is based on that developed by Haber et al. [364].

Plasma samples were stored at -40 °C and assayed on ice (4° C) since prorenin

can be activated to renin by exposure to temperatures between -5° C and +4° C

[366], Lysozyme is present in the buffer systems to prevent bacterial proliferation

as they are a potent source of peptidases.
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Reagents

Phosphate buffer (1 M, pH 5.3). 15.6 g of sodium dihydrogen orthophosphate

dihydrate (NaH2P04.2H20) was dissolved in 75 ml of water and the pH raised to

5.3 by addition of 1 M NaOH (40 g f1). The final volume was adjusted to 100 ml

with water and 200 mg ofEDTA disodium salt added.

Tris acetate buffer (0.1 M, pH 7.4). 6.05 g of tris(hydroxymethyl)aminomethane

was dissolved in 480 ml of water. The pH was adjusted to 7.4 with acetic acid and

the solution made up to a final volume of 500 ml with water. It was stored at 4° C.

Tris acetate buffer (0.1 M, pH 7.4) containing 0.5% BSA. This was prepared by

dissolving 2 g of bovine serum albumin (BSA) in 500 ml of Tris acetate buffer.

Tris acetate buffer (0.1 M, pH 7.4) containing 0.5% BSA and 0.1% lysozyme

chloride. This was obtained by dissolving 200 mg of lysozyme chloride in 200 ml

of the above Tris acetate buffer containing 0.5% BSA for 1 h at room temperature.

Tris acetate buffer (0.1 M, pH 7.4) containing 0.25% BSA. Tris acetate buffer

containing 0.5% BSA was diluted with an equal volume of Tris acetate buffer.

Dextran-coated charcoal. Dextran (100 mg) was dissolved in 50 ml of Tris acetate

buffer (pH 7.4) kept on ice. When the dextran was in solution (~ 5 min), 900 mg of

charcoal was sprinkled into the solution and mixed by magnetic stirring for 45 min.

Phenylmethylsulphonyl fluoride 5% in ethanol. This was prepared by dissolving

100 mg of phenylmethylsulphonyl fluoride in 2 ml of ethanol. It was stored in a

glass vessel at 4° C and renewed 3 monthly.

Dimercaprol (1 M). This was prepared by adding 0.2 ml of dimercaprol (1.25 g

ml"1) to 1.8 ml of ethanol. It was stored in glass at 4° C and renewed monthly.

8-Hydroxyquinoline. A saturated solution of 8-hydroxyquinoline free base in

ethanol was prepared. It was stored at 4° C and renewed 3 monthly.

Protease inhibitor mix. The inhibitor mix consisted of phenylmethylsulphonyl

fluoride 5% in ethanol (2 parts), dimercaprol 1 M solution in ethanol (1 part) and

8-hydroxyquinoline saturated solution in ethanol (one part).
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Angiotensin I. ANG I (9 pg) was dissolved in 1 ml of water and 0.1 ml aliquots

containing 900 ng of ANG I transferred to separate tubes. Each 900 ng aliquot was

diluted to 20 ml with Tris acetate buffer containing 0.5% BSA and stored in 1 ml

volumes (45 ng ml"1) at -40° C. 45 ng of ANG I was further diluted with Tris

acetate buffer containing 0.25% BSA to give a final volume of 25 ml. This working

standard ANG I solution (180 pg 100 pT1) was stored in 0.8 ml aliquots at -40° C.

It was double diluted using Tris acetate buffer containing 0.25% BSA to give a

range ofANG I concentrations of 180, 90, 45, 22.5, 11.3 and 5.6 pg 100 pi"1.
f251]angiotensin I. ANG I labelled with iodine125 ([125I]ANG I; 1.25 pCi) was

dissolved in 2 ml of Tris acetate buffer containing 0.25% BSA, followed by a 1:200

dilution to give the requisite amount of counts of 1500-2000 per 200 pi per minute.

Antibody to angiotensin I. This was prepared for use as a 1:20,000 dilution in Tris

acetate buffer containing 0.25% BSA to give 50% binding to [12;>I]ANG I.

Sources of reagents. Sodium dihydrogen orthophosphate dihydrate, sodium

hydroxide pellets, EDTA disodium salt, tris(hydroxymethyl)aminomethane, acetic

acid 'glacial', ethanol (all chemicals being of analytical reagent grade) and charcoal

('Norit GSX') were obtained from BDH Laboratory Supplies (Poole, U.K.). Bovine

serum albumin (RIA grade, fraction V powder, 96-99% albumin), lysozyme

chloride, dextran (average MW 77,800), phenylmethylsulphonyl fluoride,

dimercaprol (2,3-dimercaptopropanol; BAL; British anti-lewisite; 1.25 g ml"1), and
8-hydroxyquinoline (free base) were purchased from Sigma Chemical Co. Ltd

(Poole, U.K.). Standard ANG I (9 pg per ampoule) was obtained from the National

Institute of Biological Standards and Control (Potters Bar, Herts, U.K.).

| i2:4]ANG I (1.25 pCi per ampoule) was supplied by CIS UK Ltd (High Wycombe,

Bucks, U.K.). Antibody to ANG I was raised in rabbit and kindly provided by the

late Dr. Prank Goodwin (London Hospital Medical College, U.K.).

Method

Plasma samples were allowed to thaw at room temperature and kept at 4° C on ice.
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The phosphate buffer (40 pi) was added to duplicate 200 pi aliquots of plasma

samples followed by the inhibitor mix (10 pi). After thorough mixing, the samples

were incubated at 37° C for exactly 1 h in a shaking water bath to allow generation

of ANG I by the action of renin on angiotensinogen. The samples were then placed

on an ice-tray and 1 ml of water kept at 4° C was added to arrest the generation of

ANG I. Plasma dilution at this stage was 1:6.25.

To 100 pi volumes of these plasma samples or standard solutions of unlabelled

ANG I (5.6, 11.3, 22.5, 45, 90 and 180 pg 100 pi"1) were added 400 pi of Tris

acetate buffer containing 0.5% BSA and 0.1% lysozyme chloride, 200 pi of

[12?I] ANG I, and 200 pi of antibody. 200 pi of plasma and 300 pi of Tris acetate

buffer containing 0.5% BSA and 0.1% lysozyme chloride were used if PRA was

expected to be low. Test plasma samples and standards were prepared in duplicate.
125

In addition, tubes were prepared containing only 200 pi of [ I]ANG I to give total
125

counts; antibody, [ "I]ANG I and buffer to assess the efficiency of binding of
125
[ "I]ANG I to antibody and to provide the zero point on the standard curve; and

125
two extra tubes contained only buffer and [ I]ANG I to assess the efficiency of

125
charcoal to adsorb free [ " I]ANG I and as a background check for how much non-

angiotensin antibody was present. All the tubes were covered and incubated at 4° C

for 24 h to allow any binding of labelled and unlabelled ANG I to the antibody to

reach equilibrium. Dextran-coated charcoal (0.5 ml) was then added to each tube,

except for the 'total count' tubes. Free ANG I will bind to dextran-coated charcoal

whereas the antibody-bound ANG I will not. After mixing and standing for 5 min

at 4° C, all tubes were centrifuged at 1500 g and 4° C for 15 min. The supernatants

containing antibody-bound ANG I were carefully decanted into a fresh set of tubes.

The radioactivity of the antigen/antibody complex was counted for 1 min using

an automated gamma counter (LKB-Wallac 1275 Mini Gamma, Selsdon, Surrey,

U.K.). The 'antibody-bound counts' of the samples were expressed as a percentage

of total counts. A standard curve can be obtained by plotting these values against
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the standard ANG I concentrations and the concentrations of test samples could be

determined from the curve. This was performed automatically through a RIA spline

incorporated with the gamma counter. Results of paired test samples were averaged

within the spline and the concentrations, derived from the standard plot, were

printed on a FACIT 4510 serial matrix printer (LKB-Wallac). The values in pg

100 (if1 were multiplied by a factor of 6.25 to take account of the plasma dilution

and by a factor of 0.01 to express PRA as ng of ANG I generated per ml of plasma

per h. The lower detection limit of the assay was 0.35 ng ANG I mf1 h"1, and the

intra- and inter-assay coefficients of variation were 5.2% and 8.6% respectively.

2.5.11 Measurement of Plasma Aldosterone

Plasma aldosterone was measured by a single antibody solid-phase RIA without an

extraction step using a commercially available kit ('Coat-A-Count Aldosterone',

Diagnostics Products Corporation, Los Angeles, CA, U.S.A.).

All samples were analysed in duplicate. Aliquots (200 p.1) of undiluted test

plasma samples or standard concentrations of aldosterone (0, 25, 50, 100, 200, 600

and 1200 pg mf1) were added to polypropylene tubes coated with antibody to
125

aldosterone, followed by 1 ml of radioactive [ IJaldosterone. Controls for non¬

specific binding and total counts were incorporated. After gentle mixing, the tubes

were incubated at 37° C for 3 h during which aldosterone in plasma or standard
125

samples competed with [ IJaldosterone for antibody binding sites. The

supernatants were then decanted and the radioactivity of the antigen/antibody

complexes retained in the tubes was measured using an automated gamma counter

(LKB-Wallac 1282 Compugamma) which incorporated a RIA spline. A standard

curve was automatically constructed and the sample concentration derived from it

as described in section 2.5.10 for measurement of PRA. The lower detection limit

of the assay was 10 pg ml"1, and the intra- and inter-assay coefficients of variation

were 5.0% and 7.0% respectively.
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2.5.12 Measurement of Serum Growth Hormone

Serum human growth hormone (hGH) was measured by an immunoradiometric

assay (IRMA) using a commercially available kit (ELSA-HGH, CIS UK Ltd, High

Wycombe, U.K.). The IRMA is based on two mouse monoclonal anti-hGH

antibodies raised against sterically remote sites on the hGH molecule. The first

non-labelled antibody is bound to a polystyrene fin located in the tube. The hGH in

standard or serum samples is allowed to bind to this antibody. Following addition
125

of the second T-radiolabelled anti-hGH antibody, the hGH is 'sandwiched'

between the two types of antibodies. The amount of bound radio-labelled antibody

is directly proportional to the concentration of hGH.

50 pi aliquots of test serum and standard concentrations of hGH (0, 0.2, 2, 10, 25

and 50ngmf') were added to the tubes provided, followed by 300 pi of

radiolabeled antibody against hGH. Each tube was incubated at room temperature

for 2 h, decanted and then washed three times with 3 ml of 'Tween 20' to remove

any unbound label. The radioactivity was measured using a gamma counter (LKB-

Wallac 1275 Mini Gamma). The concentrations of hGH in the test samples were

determined from the standard plot constructed using the values obtained with

standard concentrations of hGH. The intra- and inter-assay coefficients of variation

of the assay were 2.8% and 4.0% respectively.

2.5.13 Measurement of Sodium and Potassium in Plasma and Urine

Sodium and potassium were measured by ion-selective electrode potentiometry

using a dedicated analyser (Radiometer KNA-1 sodium-potassium analyser,

Crawley, West Sussex, U.K.). This instrument measures sodium and potassium

simultaneously by using K+ and Na+ ion-selective electrodes with a potassium

chloride reference source. An automatic two point calibration for both electrolytes

was initially performed using standard electrolyte concentrations, setting sodium

measurements between 40 and 152 mmol f1, and potassium measurements between
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4 and 80 mmol l"1. Quality control plasma and urine samples containing low and

high levels of the electrolytes were analysed to ensure that the results were within

the stated ranges before running the test plasma and urine samples. The urine

samples were diluted 1:3 before analysis with a Radiometer diluent as this helped to

stabilise pH and ionic strength. The initial calibration was repeated after every 5

samples. Results in mmol f1 were printed automatically by a Radiometer PRS 12

printer. The intra- and inter-assay coefficients of variation were 1.0% and 1.1%

respectively for both sodium and potassium.

2.6 Calculation of Renal Clearance

Clearance is defined as the virtual volume of plasma from which a given substance

is completely removed per unit time [376-378]. Renal clearance is derived by

dividing total urinary excretion by the plasma concentration during the collection

interval, i.e. C = UV/P, where C is the clearance in units of ml of plasma cleared of

the substance per minute, U and P are the concentrations of the substance in urine

and plasma respectively, and V is the urine flow rate in ml min"1. An alternative

formula is C = Ae/AUC, where Ae is the amount of the substance excreted in the

urine and AUC is the area under the plasma concentration versus time curve during

the clearance period. If a substance is not affected by the renal tubules, the amount

found in urine will equal the amount filtered by the glomerulus per minute. Inulin,

a polymer of fructose derived from plant tubers (MW ~ 5,200), is not excreted or

reabsorbed by the tubules and is cleared from plasma exclusively by glomerular

filtration. Its renal clearance or that of the related substance polyfructosan (a

polymer of fructose derived from algae; MW ~ 3,000) is used as a measure of GFR.

The clearance of a substance completely reabsorbed by tubules, e.g. glucose, is zero.

In general, substances having clearances less than that of inulin undergo filtration

and net tubular reabsorption, and those with clearances greater than that of inulin

undergo filtration and net tubular secretion. PAH is almost completely extracted
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from blood in one passage through the kidney and its clearance is used as a measure

of renal plasma flow. The proportion ofPAH in renal arterial blood excreted during

a single passage through the kidney (extraction ratio) varies between species, and is

between 90 and 95% in normal humans. The incomplete extraction is mainly due to

shunting of blood through the inert perirenal fat and capsule, and recirculation of

this small proportion of PAH makes the measured clearance a slight underestimate

of the true renal plasma flow. This systematic source of error is acknowledged by

using the term effective or estimated renal plasma flow (ERPF).

Effective renal plasma flow. ERPF was estimated by calculating the renal

clearance of PAH (CPAH) and the value was adjusted to a body surface area of 1.73

m . The body surface area for an individual was calculated using the formula given

by Dubois and Dubois [379], A = W0 425 x H0'725 x 71.84/10000 where A is surface

area in m , W is weight in kg, and H is height in cm.

Glomerular filtration rate. GFR was estimated by calculating the renal clearance

of polyfructosan (Inutest) (CIn) and corrected to a body surface area of 1.73 m .

Filtration fraction (FF). FF was calculated as (CIn/CPAH) x 100%.

Fractional clearance. The fractional clearance of a substance was defined as

(Clearance/GFR) xl00%. Thus, the fractional excretion of sodium, FENa, was

calculated as renal clearance of sodium divided by GFR (CIn) and expressed as a

percentage. FENa represents the percentage of the filtered sodium which is excreted

in the urine and allows for changes in the filtered load of sodium.

2.7 Statistical Analysis

Descriptive statistics. Mean and standard deviation (SD) values were used to

summarise the data unless otherwise stated. The latter usually follow a 'normal' or

'Gaussian' distribution and the normality of the data can be checked using the

Shapiro-Wilk W test. Coefficient of variation is calculated by (SD/mean) x 100%.

Student's paired t test. This test was used where the data consist of two
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measurements made on each of a number of subjects either before and after

treatment or receiving each of two experimental conditions. The 95% confidence

interval of the difference between the means (95% CIdiff) indicates the range of

possible values within which the true difference is likely to lie. The P value was

corrected for multiple comparisons by the Bonferroni method and the associated

99% CIdiff values quoted where appropriate. Non-parametrically distributed data

were log-transformed before analysis.

Two-way analysis of variance. Two-way analysis of variance (ANOVA) was

performed to identify simultaneously the component of total variance due to

subjects and treatments. It was used in preference to Student's paired t test where a

comparison between more than two treatments or time points of the same treatment

was to be made at least in the preliminary analysis.

Repeated Measures ANOVA. The variables measured serially on the different

experimental days were analysed by three-way repeated measures ANOVA giving

the effects of subjects, type of infusion (treatment), time, and the interaction of

treatment and time. This procedure allows for the non-independence of successive

data points in experiments involving repeated measurements on a subject on one

occasion, or on more than one occasion after different treatments. When inequality

of variances between data sets was detected, the number of degrees of freedom for

the F-ratio was adjusted using the Huynh-Feldt epsilon [380]. If there was a

significant overall treatment or treatment x time interaction difference between the

types of infusion, follow-up paired comparison between the different infusion

regimens were made to determine where the differences lie, with correction of the P

value by the Bonferroni method to allow for multiple comparisons and protect

against a type 1 error.

All the statistical analyses in this thesis were performed using SPSS/PC+ 5.0

statistical software package (SPSS Inc, Chicago, IL, U.S.A.), and effects were

considered to be statistically significant when P values were less than 0.05.
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CHAPTER THREE

A PRELIMINARY COMPARISON OF 5-HYDROXY-L-TRYPTOPHAN

AND y-L-GLUTAMYL-5-HYDROXY-L-TRYPTOPHAN
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3.1 Introduction

Parenteral administration of 5-HT has been employed to investigate the renal

actions of 5-HT in man. Variable results have been reported but most studies have

suggested that 5-HT produces a fall in renal blood flow, GFR, urine output and

sodium excretion [55,70,77; see sections 1.2.6 and 1.2.7). 5-HT, however, has a

wide spectrum of actions in the body and the renal responses to infusion of

pharmacological doses of 5-HT may be largely modified by, or may possibly be due

to, confounding influences produced by effects in other tissues arising from an

increase in circulating amine. In addition, peripherally administered 5-HT may be

taken up avidly into platelets and/or efficiently metabolised in the pulmonary and

hepatic circulation [1,35,176]; it may, therefore, not reach the kidney in

concentrations adequate to produce demonstrable effects.

Administration of 5-HT precursors which are selectively converted to 5-HT

within the kidney may allow the renal actions of 5-HT to be assessed separately

from any systemic effects resulting from intravenous infusion of 5-HT. It has been

demonstrated in rats that 5-HT is formed intrarenally from its immediate precursor

L-5-HTP, under the action of renal LAAD, and that the amine reduces renal blood

flow, urine output and sodium excretion [153,166,181,254,268], Administration of

L-5-HTP is, however, associated with adverse gastrointestinal and other effects in

man and this may limit the dose of L-5-HTP that can be given [162,359-362],

Furthermore, unlike 5-HT, it readily crosses the blood-brain barrier enhancing

synthesis of 5-HT in the brain [156,175,362,363], and may exert central effects.

The y-glutamyl prodrug approach to targeting drugs to the kidney offers the

possibility of delivering drugs selectively to the kidney with little or no systemic

effects [324,325,329; see section 1.3). Previous work has shown that gludopa, the

glutamyl derivative of L-dopa, is a renal dopamine prodrug which is sequentially

converted in the kidney by yGT to L-dopa and decarboxylated by LAAD to

dopamine (Figure 3-1) [329-331,333,334,341], This prodrug has allowed the renal
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effects of dopamine to be explored in vivo in man [334-342], In an analogous way,

y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP), the glutamyl derivative of L-5-

HTP, may be a putative 5-HT renal prodrug, which is converted intrarenally by yGT

to L-5-HTP and then decarboxylated by LAAD to 5-HT (Figure 3-1). Our

hypothesis was that glu-5-HTP may be a more renally selective 5-HT prodrug than

L-5-HTP and that it may enable the renal actions of 5-HT to be assessed with less

confounding extrarenal effects.

This small preliminary study compared the effects of intravenous infusions of

equimolar amounts of glu-5-HTP and L-5-HTP with infusion of saline (placebo) in

normal man. We were interested in observing changes in urinary excretion of

5-HTP, 5-HT, 5-HIAA, sodium, PRA and plasma aldosterone concentrations, as

well as the tolerability of the two compounds.

3.2 Methods

Five healthy male volunteers, aged 22 to 32 years (mean 28 years) and weighing

61.5 to 99.5 kg (mean 71.3 kg), took part in this randomised, placebo-controlled,

cross-over study. They each attended on 3 separate days, at least 1 week apart.

They refrained from alcohol for 24 h, abstained from xanthine-containing drinks

from 18.00 h, and fasted from 22.00 h the evening before each study day. They

continued with their usual diet. They arrived at the clinical investigation unit at

about 08.15 h having drunk 250 ml of tap water 1 h previously. They received

intravenous 0.9% NaCl at a rate of 10 ml kg"1 h"1 for 6 h to increase urinary sodium

excretion. After a 3 h run-in period (time = 3 h), an equimolar amount (45 nmol

kg"1 min"1) of L-5-HTP (10 pg kg"1 min"1) or glu-5-HTP (16.6 pg kg"1 min"1) in
0.9% NaCl was administered intravenously for 1 h. Placebo was saline alone at

0.5 ml min"1. The subjects remained supine or semi-recumbent throughout the

study except when standing up to pass urine. Accurately timed consecutive urine

collections of about 30 min duration were made during the last half hour of the run-
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in phase (period 2.5-3.0 h), during the administration of the test infusions (period

3.0-3.5 h and period 3.5-4.0 h), and for 2 h after the completion of the infusions

(period 4.0-4.5 h to period 5.5-6.0 h). Urine volumes were recorded and aliquots

removed and stored at -40°C for analysis of sodium, 5-HTP, 5-HT and 5-HIAA.

Venous blood samples for estimation of PRA and aldosterone were taken at 2, 3,

3.5, 4, 5 and 6 h. Pulse rate and blood pressure were measured using a Dinamap

semi-automated recorder with the subject in a supine position. Recordings were

made half-hourly during the first 3 h, every 5 min during the test infusion, every

15 min for the next hour, and half-hourly afterwards. The average values for each

30 min period were calculated and used in the analysis. PRA, plasma aldosterone

concentrations, and urinary sodium, 5-HTP, 5-HT and 5-HIAA concentrations were

measured as described in section 2.5. Glu-5-HTP and L-5-HTP were prepared for

use in 0.9% saline with 0.5% human albumin as a carrier. Blood was taken before

and after the study for measurements of renal and liver functions (creatinine,

electrolytes, bilirubin, alanine transaminase, yGT, alkaline phosphatase) and

haematological indices (Hb, differential leucocyte count, platelets).

Results are given as means ± SD. Differences in the cumulative urinary

metabolite data following L-5-HTP and glu-5-HTP were compared by Student's

t test for paired observations and the 95% CIdiff of the means quoted. The urinary

sodium, pulse rate, blood pressure and aldosterone data between the 3 treatment

days were compared by repeated measures ANOVA for overall statistical

significance. Values of P < 0.05 were considered statistically significant.

130



3.3 Results

Urinary excretion rates of 5-HTP, 5-HT and 5-HIAA for each 30 min period are

shown in Table 3-1 and Figure 3-2. 5-HTP was not detectable in the urine during

infusion with saline alone. Marked increases in urine 5-HTP occurred after infusion

of both L-5-HTP and glu-5-HTP. The 5-HTP excretion was higher for all collection

periods after infusion of glu-5-HTP when compared with L-5-HTP, and the 3-6 h

cumulative urinary excretion of 5-HTP after administration of glu-5-HTP was 2.9

times that after glu-5-HTP infusion (P < 0.001) (Table 3-2). The mean urinary

excretion rate of 5-HT was <0.4 nmol min"1 during the baseline period (2.5-3.0 h)

on the 3 experimental days and did not change during infusion of placebo. It

increased to a peak value of 293 ± 32 nmol min"1 after administration of L-5-HTP

and 215 ± 17 nmol min"1 following infusion of glu-5-HTP. The 3-6 h cumulative

5-HT excretion after L-5-HTP infusion was not significantly different from that

after glu-5-HTP (95% CIdiff: -1.9 to 7.2 jamol). Urinary 5-HIAA excretion

increased after both compounds when compared with placebo infusion. The 3-6 h

cumulative excretion of 5-HIAA after L-5-HTP infusion was greater than that after

glu-5-HTP (P < 0.05). During the 3-6 h collection period, 41 ± 2% (on a molar

basis) of the infused dose of L-5-HTP and 52 ± 8% of administered glu-5-HTP were

recovered in the urine as the sum of 5-HTP, 5-HT and 5-HIAA (Table 3-3).

The urinary sodium excretion rates prior to infusion of placebo, L-5-HTP and

glu-5-HTP were 275 ± 115, 210 ± 68 and 280 ± 105 pmol min"1 respectively (Table

3-1). The post-infusion sodium excretion rates are presented in Figure 3-3 as

changes from baseline (period 2.5-3.0 h) to allow for the lower baseline values on

the L-5-HTP infusion day. Urinary sodium excretion increased progressively

throughout all clearance periods in response to infusion of saline on the placebo

day. Glu-5-HTP significantly attenuated the increase in sodium excretion when

compared with placebo (P < 0.001) whereas L-5-HTP caused a reduction in mean

urinary sodium output which was not statistically significant. The 3-6 h cumulative
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natriuresis values after infusion of placebo, L-5-HTP and glu-5-HTP were 65.0 ±

19.1, 47.4 ± 16.9 and 46.5 ±16.1 mmol respectively. The corresponding changes in

cumulative sodium excretion, relative to the baseline excretion rates, on the 3

experimental days were +15.5 ± 6.5, +9.7 ± 14.1 and -3.8 ± 6.6 mmol. Cumulative

natriuresis was reduced by 5.7 ± 11.9 mmol (95% CIdiff: -9.0 to 20.5 mmol; P =

0.3) after L-5-HTP infusion and by 19.3 ± 6.2 mmol (95% CIdiff: 11.5 to 27.0 mmol;

P < 0.005) after glu-5-HTP when compared with placebo infusion.

Plasma aldosterone was significantly increased by L-5-HTP infusion (P < 0.05)

but not after glu-5-HTP (Figure 3-4). PRA was undetectable (< 0.35 ng ANG I

ml"1 h"1) in two subjects on all three study days. In the other three subjects, PRA

declined from 1.00 ± 0.49 ng ANG I ml"1 h"1 at baseline to 0.68 ± 0.28 ng ANG I

ml"1 h"1 at the end of placebo infusion and 0.61 ± 0.22 ng ANG I ml"1 h"1 one hour

later. Equivalent values were 1.21 ± 0.34, 0.91 ± 0.34 and 0.70 ± 0.34 ng ANG I

ml"1 h"1 on the L-5-HTP day, and 1.16 ± 0.20, 0.66 ± 0.22 and 0.48 ± 0.19 ng ANG I

ml"1 h"1 on the glu-5-HTP day. Statistical analysis was deemed inappropriate due to

the small number of subjects with detectable PRA values.

Two subjects complained of nausea at the end of L-5-HTP infusion but none had

any adverse reactions with glu-5-HTP. There were no significant changes in pulse

rate or blood pressure throughout the study (Table 3-4). No significant changes in

measurements of liver and renal functions or haematological indices and no

untoward effects were observed at 1 week after the end of the study.
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Table 3-1. Mean (SD) urinary excretion rates of 5-HTP, 5-HT, 5-HIAA and sodium for each
30 min period before (period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after
(period 4.0-4.5 h to period 5.5-6.0 h) infusion of placebo, L-5-HTP and glu-5-HTP (n = 5). A
value of 0 is entered when 5-HTP was below the limit of detection of the assay.

2.5-3.0 3.0-3.5 3.5-4.0

Time (h)
4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

5-HTP excretion (nmol min')
Placebo 0 0 0 0 0 0 0

L-5-HTP 0 129.4 185.8 113.2 75.6 38.3 29.9

(42.5) (59.0) (28.1) (37.9) (12.3) (11.9)
Glu-5-HTP 0 240.5 512.4 396.6 241.8 144.3 95.0

(37.9) (65.6) (86.4) (16.2) (8.1) (11.0)

5-HT excretion (nmol min')
Placebo 0.4 0.4 0.4 0.4 0.4 0.3 0.3

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
L-5-HTP 0.3 200.3 293.2 184.9 119.3 60.8 42.4

(0.1) (89.3) (31.9) (23.5) (63.5) (27.0) (22.3)
Glu-5-HTP 0.4 68.3 196.4 215.3 150.3 96.5 65.6

(0.2) (23.6) (68.9) (17.4) (22.4) (11.9) (13.4)

5-HIAA excretion (nmol min')
Placebo 17.8 18.0 18.4 18.8 16.8 15.9 15.8

(5.2) (4.4) (6.9) (5.0) (5.3) (6.2) (6.0)
L-5-HTP 14.2 149.2 295.1 299.4 248.5 159.0 118.5

(4.9) (62.8) (103.9) (45.8) (57.2) (30.3) (41.3)
Glu-5-HTP 17.8 81.1 167.8 208.2 182.2 154.3 122.4

(6.6) (62.3) (42.2) (37.5) (28.2) (31.5) (16.5)

Sodium excretion (flmol min')
Placebo 275.1 310.7 332.8 357.1 365.8 381.5 413.5

(115.4) (123.2) (119.8) (107.0) (105.1) (85.2) (111.1)
L-5-HTP 209.6 219.2 230.9 235.1 251.5 289.4 302.0

(67.5) (71.7) (69.9) (79.2) (99.6) (127.7) (134.8)
Glu-5-HTP 279.6 296.3 253.4 238.6 232.7 270.0 275.4

(104.5) (105.5) (62.9) (55.9) (66.6) (133.4) (147.7)

Table 3-2. The 3-6 h cumulative excretion values (|imol) of 5-HTP, 5-HT and 5-HIAA after
administration of placebo, L-5-HTP and glu-5-HTP. Values shown are means ± SD (n = 5).

Placebo

Infusion
L-5-HTP Glu-5-HTP

L-5-HTP vs glu-5-HTP
95% CIdiff; P value

5-HTP 0 17.1 ±5.1 50.0 ±4.4 27.9 to 38.0; P< 0.001

5-HT 0.06 ±0.01 26.9 ±6.2 24.2 ±3.1 -1.9 to 7.2; P = 0.19

5-HIAA 3.1 ±0.8 38.1 ±8.8 27.6 ±3.2 1.4 to 19.7; P< 0.05

133



Table 3-3. Percentage urinary recoveries (%) of infused L-5-HTP and glu-5-HTP as 5-HTP,
5-HT and 5-HIAA. Values shown are means ± SD (n = 5).

Infusion L-5-HTP vs glu-5-HTP
L-5-HTP Glu-5-HTP 95% CIdiff; P value

5-HTP 8.8 ±1.6 26.5 ±4.9 12.1 to 23.3; P< 0.001

5-HT 13.9 + 0.6 12.6 ± 1.3 -0.5 to 2.9; P = 0.12

5-HIAA 18.1 ±2.9 12.9 ±2.2 1.5 to 9.0; P< 0.05

Total 40.8 ± 1.9 52.0 ±7.6 1.6 to 20.9; P< 0.05

Table 3-4. Mean (SD) pulse rate and blood pressure values before (period 2.5-3.0 h), during
(period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period 5.5-6.0 h) infusion
of placebo, L-5-HTP and glu-5-HTP (n = 5).

2.5-3.0 3.0-3.5 3.5-4.0

Time (h)
4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Placebo infusion
Pulse rate 55.2 54.5 54.8 53.5 55.1 54.4 55.0

(beats min"') (9.1) (8.4) (8.0) (8.9) (9.2) (9.6) (9.9)
Systolic blood 117.8 116.4 117.1 116.1 115.1 120.8 122.4

pressure (mmHg) (14.7) (11.6) (12.6) (11.4) (10.9) (13.1) (16.5)
Diastolic blood 71.0 68.9 69.2 70.0 70.9 71.2 73.4

pressure (mmHg) (12.0) (9.9) (11.6) (11.1) (11.9) (11.1) (13.4)

L-5-HTP infusion
Pulse rate 53.4 53.1 54.4 53.4 52.0 52.6 53.2

(beats min" ) (6.7) (6.5) (9.0) (7.5) (6.4) (7.2) (8.7)
Systolic blood 114.2 110.7 115.8 116.3 116.2 116.4 116.2

pressure (mmHg) (5.8) (7.3) (8.4) (10.5) (8.4) (6.4) (6.4)
Diastolic blood 67.8 68.6 69.4 70.0 69.0 68.4 72.4

pressure (mmHg) (8.6) (7.8) (7.8) (8.2) (7.3) (6.5) (7.7)

Glu-5-HTP infusion
Pulse rate 53.0 52.3 52.6 53.5 52.2 52.4 51.6

(beats min" ) (10.0) (7.7) (7.3) (9.8) (7.8) (7.0) (7.1)
Systolic blood 116.2 114.1 113.9 112.9 114.3 116.8 119.0

pressure (mmHg) (12.1) (11.9) (10.6) (8.7) (9.4) (10.6) (14.3)
Diastolic blood 69.4 66.4 70.2 65.3 70.6 70.0 71.2

pressure (mmHg) (12.2) (6.5) (7.2) (8.0) (9.4) (9.3) (8.8)
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Figure 3-2. Urinary excretion rates of 5-HTP, 5-HT and 5-HIAA before (period 2.5-3.0 h),
during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period 5.5-6.0 h)
infusion of placebo (•), L-5-HTP (A) and glu-5-HTP (■). Values shown are means ± SD
(n = 5).
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Figure 3-3. Changes (A) in urinary excretion of sodium from baseline (period 2.5-3.0 h)
following infusion of placebo (•), L-5-HTP (a) and glu-5-HTP (■). Values shown are means ±
SD (n = 5).

CJ)
Q_

CD
C
O

CD

CO
O
T3

ro

<o

E
CO

_CD
Q.

300

250

Infusion

Q- 200

150

100

50

0 L
2.5

_L _L

3.5 4 4.5

Time (h)

5.5

Figure 3-4. Plasma aldosterone concentration following infusion of placebo (•), L-5-HTP (a)
and glu-5-HTP (■). Values shown are means ± SD (n = 5).
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3.4 Discussion

Urinary excretion of 5-HT increased markedly during and after infusion of L-5-HTP

and glu-5-HTP. This finding suggests that 5-HT was synthesised in the human

kidney from both putative 5-HT renal prodrugs since extrarenal production of 5-HT

cannot account completely for the high urinary levels of 5-HT. 5-HT produced

extrarenally and presented to the blood stream would be rapidly deaminated by

MAO-A in the pulmonary and hepatic circulation or sequestered into platelets

leaving little free 5-HT available for filtration at the renal glomerulus or secretion

by the tubules [1,35,176], The theory that circulating 5-HT would be rapidly

destroyed is supported by previous observations that intravenous administration of

5-HT resulted in only a small increase in blood 5-HT concentration (equivalent to

approximately 2% of the infused amount) and had virtually no effect on the level of

free 5-HT in urine [161,162], Moreover in the carcinoid syndrome, where there is

an increase in circulating 5-HT, urinary 5-HT excretion is usually less than 1% of

5-HIAA excretion [107],

Urine 5-HTP levels were higher after the administration of glu-5-HTP than with

L-5-HTP. This indicates that the amount of L-5-HTP delivered to the kidney for

renal decarboxylation was greater following the infusion of glu-5-HTP and is in

keeping with it being relatively more selective for the kidney than L-5-HTP.

Cumulative urinary 5-HT excretion was not significantly different between L-5-

HTP and glu-5-HTP infusions. Urinary 5-HIAA excretion was higher after infusion

of L-5-HTP than with glu-5-HTP. These urinary metabolite data would be

consistent with the greater extrarenal metabolism of L-5-HTP than glu-5-HTP and

with the hypothesis that glu-5-HTP was less accessible to extrarenal catabolic

enzymes. About 41% of the infused L-5-HTP was recovered in the urine as the sum

of 5-HTP, 5-HT and 5-HIAA during the three hour collection period in this study

whereas the recovery of the three measured metabolites averaged 52% after glu-5-

HTP. The quantitative difference indicates that the two compounds are handled
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differently in the body and is consistent with greater delivery of the glutamyl

compound to the kidney. The lower recovery value with L-5-HTP may be due to

uptake of L-5-HTP or its metabolites into other body compartments such as the

brain or circulating platelets. It is also possible that more of the L-5-HTP than glu-

5-HTP was converted to products which were not measured in this study (e.g.

sulphate and glucuronide conjugates).

Glu-5-HTP significantly attenuated urinary excretion of sodium. Mean urinary

excretion of sodium after L-5-HTP infusion was lower than that after placebo

infusion but the difference was not statistically significant. The failure to

demonstrate a significant antinatriuresis with L-5-HTP in this study may, however,

be due to a type 2 error because of the small number of subjects investigated. The

greater antinatriuretic effect produced by the glutamyl derivative suggests that 5-HT

generated intrarenally, following administration of this dipeptide, is more effective

despite the similar increments in mean cumulative 5-HT excretion produced by L-5-

HTP and glu-5-HTP. The retention of sodium, presumably mediated by local

intrarenal synthesis 5-HT, may be a consequence of a reduction in renal blood flow,

a fall in GFR or an increased tubular reabsorption of sodium. These questions are

addressed in the next study (see Chapter 4).

L-5-HTP increased plasma aldosterone levels without any concomitant rise in

PRA in keeping with previous studies in man that the release of aldosterone by L-5-

HTP is independent of activation of the renin-angiotensin system [96,97]. This

effect on aldosterone may be due to direct stimulation of the adrenal cortex [100-

104] and/or may be mediated by central 5-HT pathways as L-5-HTP can cross the

blood-brain barrier [96,97]. L-5-HTP also stimulates the release of other hormones

such as prolactin, ACTH and growth hormone, providing further evidence that it

can act centrally [78,361,381], In contrast, glu-5-HTP caused a small, non¬

significant and delayed increase in aldosterone level in keeping with its effects

being largely restricted to the kidney. The delayed rise in aldosterone concentration
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following glu-5-HTP may be due to the conversion of the glutamyl compound to

L-5-HTP or 5-HT in the kidney followed by recirculation of L-5-HTP or 5-HT. It is

also possible that there may be some 7GT [382] and LAAD activity in the adrenal

gland [31,39] and 5-HT produced locally could stimulate aldosterone release.

Release of aldosterone is unlikely to be responsible for the observed antinatriuresis

after glu-5-HTP as the glu-5-HTP induced rise in aldosterone occurred later than the

reduction in sodium output. In addition, no significant retention of sodium occurred

after L-5-HTP infusion despite the higher plasma aldosterone concentrations. L-5-

HTP has been reported to increase PRA in the dog and rat [88,92-94] but no

increase was observed after its administration in human subjects [96,97],

Suppression of renin, in the present study, often to levels not detectable by our

assay system, probably resulted from the sodium chloride infusion given to our

subjects. Both renin and aldosterone release are suppressed by oral [364,383,384]

and intravenous [385-390] sodium chloride loading. Expansion of extracellular

fluid volume by saline infusion produces greater suppression of renin and

aldosterone than equivalent expansion with non-saline containing solutions such as

dextran or glucose [390]. There is some evidence that the chloride ion may perhaps

be more important than sodium in mediating the renin response to saline infusion,

given that sodium bicarbonate and potassium bicarbonate failed to inhibit renin

release in the rat, in contrast to sodium and potassium chloride [391].

Two out of the five subjects complained of nausea at the end of L-5-HTP

infusion. This and other gastrointestinal symptoms such as abdominal pain,

vomiting and diarrhoea which have been reported by others following L-5-HTP

administration are probably mediated by enteric or central 5-HT3 receptors

[162,359-362], The dose of L-5-HTP used in our study was chosen in an attempt to

minimise adverse gastrointestinal and cardiovascular effects. Glu-5-HTP, in

equimolar amount, caused no adverse effects, providing further evidence that it is

more renally selective and has less systemic toxicity. There were no significant
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changes in pulse rate or blood pressure with either compound.

In conclusion, the results of this study indicate that 5-HT can be generated

intrarenally in man and that it is antinatriuretic. Glu-5-HTP appears to be more

selective for the kidney than 5-HTP and causes less systemic effects. This glutamyl

compound may allow the renal formation and effects of 5-HT to be evaluated in

man with little confounding extrarenal effects.
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CHAPTER FOUR

A COMPARISON OF THE RENAL AND NEUROENDOCRINE

EFFECTS OF 5-HYDROXY-L-TRYPTOPHAN AND

Y-L-GLUTAMYL-5-HYDROXY-L-TRYPTOPHAN
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4.1 Introduction

We demonstrated in the previous small study, involving 5 healthy volunteers, that

both L-5-HTP and its glutamyl derivative, glu-5-HTP, produced marked increases

in the urinary excretion of 5-HT consistent with intrarenal synthesis of 5-HT (see

Chapter 3). Glu-5-HTP was significantly antinatriuretic whereas L-5-HTP caused a

reduction in mean urinary sodium output which was not statistically significant. Our

data also suggested that the glutamyl compound has greater renal selectivity than

L-5-HTP. The present more extensive study, using a modified protocol, was

designed to investigate further the effects of intravenous infusions of equimolar

amounts of glu-5-HTP and L-5-HTP in normal man. In this study, we measured

several additional parameters. Effective renal plasma flow (ERPF), glomerular

filtration rate (GFR) and fractional excretion of sodium (FENa) were estimated in

order to elucidate the antinatriuretic actions of these 5-HT precursors. Urine

dopamine excretion was assessed since LAAD, the enzyme converting L-5-HTP to

5-HT, is also involved in the synthesis of dopamine from L-dopa [31,37,41-44], In

addition, we measured serum growth hormone concentration as a possible indicator

of the central effect of these two 5-HT precursors since previous studies

demonstrated that L-5-HTP causes release of growth hormone [361,381,392-396].

4.2 Methods

Nine healthy male volunteers, aged 21-30 years (mean 25.7 years) and weighing

63.4 to 96.9 kg (mean 71.2 kg), were each studied on 3 separate occasions (5-14

days between study days) in this randomised, placebo-controlled, cross-over study.

They refrained from alcohol for 24 h, abstained from xanthine-containing drinks

from 18.00 h, and fasted from 22.00 h the evening before each study day. They

were maintained on their normal diet but were advised to consume the same diet in

the 24 h before they attended. They arrived at the clinical investigation unit at about

08.00 h on each study day, having drunk 500 ml of tap water 1 h previously.

142



Priming doses of PAH (0.5 g) and polyfructosan (Inutest; 3.5 g), added to 0.9%

NaCl to make up a total volume of 40 ml, were infused over 8 min using a Braun

Perfusor VI infusion pump. This was followed by a maintenance infusion of PAH

(3.75 g P1) and polyfructosan (4.5 g f1) in saline at a constant rate of 5 ml min"1
using an IMED volumetric infusion pump throughout the experiment to allow

estimation of ERPF and GFR. After a 3 h run-in period, an intravenous infusion of

an equimolar amount (45 nmol kg"1 min"1) of L-5-HTP (10 pg kg"1 min"1) or glu-5-
HTP (16.6 pg kg"1 min"1) in saline made up to a total volume of 30 ml was

administered at 0.5 ml min"1 for 1 h. Placebo was 30 ml of saline alone. These were

administered in a single blind, randomised order. In addition to the saline

administered intravenously, the subjects drank 150 ml water half-hourly. These

measures were used to promote an adequate natriuresis and diuresis. The subjects

remained semi-recumbent or supine throughout the experiment except when

standing up to micturate.

Accurately timed consecutive urine collections of about 30 min duration were

made during the last hour of the run-in phase (period 2.0-2.5 h and period 2.5-

3.0 h), during the administration of the test infusions (period 3.0-3.5 h and period

3.5-4.0 h) and for 2 h afterwards (period 4.0-4.5 h to period 5.5-6.0 h). Urine

volumes were recorded and aliquots stored at -40°C for analysis of sodium,

potassium, PAH, polyfructosan, 5-HTP, 5-HT, 5-HIAA, dopamine and DOPAC.

Urine samples for 5-HT, 5-HIAA, dopamine and DOPAC were acidified (pH < 3)

with 5 M HC1 to prevent their oxidation. Venous blood samples were taken at 0, 2,

2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 h for measurement of plasma electrolytes, PAH and

polyfructosan; at 2, 3, 3.5, 4, 5 and 6 h for determination of PRA and plasma

aldosterone; and at 3, 4, 4.5 and 5 h for measurement of serum growth hormone.

Objective recordings of blood pressure and pulse rate were made in duplicate, with

the subject in the supine position, using a Dinamap semi-automated recorder every

half hour during the experiment except during and for one hour after the test
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infusions when they were measured every 15 min. The mean values for each half

hour period were calculated and used in the subsequent statistical analysis. Plasma

aldosterone, PRA, serum growth hormone, plasma and urinary sodium, potassium,

PAH and polyfructosan, and urinary 5-HTP, 5-HT, 5-HIAA, dopamine and DOPAC

were measured as described in section 2.5. Blood was taken before and after the

study for measurements of renal and liver functions (creatinine, electrolytes,

bilirubin, aspartate transaminase, yGT, alkaline phosphatase) and haematological

indices (Hb, differential leucocyte count, platelets).

Renal clearance was calculated using the standard formula UV/P, where U is the

urine concentration, V is the urine flow rate and P is the mean of the plasma levels

at the beginning and end of each clearance period (see section 2.6). ERPF and GFR

were estimated by calculating the renal clearances ofPAH (CPAH) and polyfructosan

(CIn) respectively. The filtration fraction (FF) was calculated as (CIn/CPAH) x 100%.

FENa was calculated as renal clearance of sodium divided by GFR (CIn) and

expressed as a percentage.

Results are given as means ± SD. The data between the 3 experimental days

were analysed by repeated measures ANOVA for overall statistical significance.

Two-way ANOVA was employed to identify any differences between treatments at

an individual time point. Differences in the cumulative urinary metabolite data

following L-5-HTP and glu-5-HTP were analysed by Student's t test for paired

observations. The growth hormone values were log transformed before analysis

because of the marked skewing of the data. Values of P < 0.05 were considered

statistically significant.
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4.3 Results

Figure 4-1 shows the urinary excretion rates of 5-HTP, 5-HT and 5-HIAA for each

30 min period. The exact values for each collection period are given in Table 4-1.

5-HTP, which was undetectable in the urine during infusion of saline alone,

increased markedly after administration of both L-5-HTP and glu-5-HTP. Urinary

excretion of 5-HTP after infusion of glu-5-HTP was higher than that following

L-5-HTP for all collection periods. Cumulative 5-HTP excretion over the 3 h

following the start of the glu-5-HTP infusion was 3.2 times that after L-5-HTP

infusion (P < 0.001) (Table 4-2). The mean urinary excretion rates of 5-HT prior to

infusion of placebo, L-5-HTP and glu-5-HTP were similar at 0.5 nmol min"1. There

was no significant change in 5-HT excretion after the infusion of placebo. 5-HT

excretion rose to a peak value of 349 ±117 nmol min"1 during administration of

L-5-HTP and 301 ±44 nmol min"1 after glu-5-HTP. The 3-6 h cumulative urinary

5-HT excretion after L-5-HTP infusion was not significantly different from that

following glu-5-HTP infusion. 5-HIAA was not detectable in the urine before

administration of the test infusions. Marked increases in urinary 5-HIAA occurred

after administration of L-5-HTP and glu-5-HTP. The 3-6 h cumulative 5-HIAA

excretion values were higher following administration of L-5-HTP than after glu-5-

HTP (P < 0.01). During the 3-6 h collection period, 47 ± 5% of infused L-5-HTP

and 66 ± 7% of glu-5-HTP were recovered in the urine as the sum of 5-HTP, 5-HT

and 5-HIAA (Table 4-3). Urinary dopamine and DOPAC excretion rates were

unaffected by L-5-HTP or glu-5-HTP when compared with placebo (Table 4-1).

The absolute and fractional excretion of sodium increased progressively on the

placebo day in response to infusion of saline (Table 4-1 and Figure 4-2). Both L-5-

HTP (P < 0.01) and glu-5-HTP (P < 0.005) significantly attenuated the increase in

sodium excretion when compared with placebo. FENa was likewise reduced by L-5-

HTP (P < 0.025) and glu-5-HTP (P < 0.005). The sodium excretion following L-5-

HTP infusion was not significantly different from that following glu-5-HTP. The
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3-6 h cumulative sodium excretion values after placebo, L-5-HTP and glu-5-HTP

administration were 65.3 ± 16.5, 51.1 ± 12.5, and 47.0 ± 13.3 mmol respectively.

The corresponding changes in cumulative sodium excretion, relative to the baseline

excretion rates, on the 3 experimental days were+18.0 ± 16.9,-10.0 ± 11.6 and

-2.0 ± 15.5 mmol. Cumulative natriuresis was reduced by 28.0 ± 24.8 mmol (95%

CIdiff: 8.9 to 47.0 mmol; P < 0.01) after L-5-HTP infusion and by 19.9 ± 13.9 mmol

(95% CIdiff: 9.3 to 30.6 mmol; P < 0.005) after glu-5-HTP when compared with

placebo infusion. Urinary excretion of potassium increased progressively on the

placebo day from 62.0 ± 35.5 |lmol min"1 during the 2.0-2.5 h period to 95.0 ± 32.0

|imol min"1 during the 5.5-6.0 h period (P < 0.01). Neither L-5-HTP nor glu-5-HTP

affected urinary potassium excretion when compared with placebo infusion (Figure

4-3 and Table 4-2). L-5-HTP, but not glu-5-HTP, significantly reduced urine output

(P < 0.01) when compared with placebo (Figure 4-4 and Table 4-2). The ERPF,

GFR and FF values were not significantly different between the 3 study days, but

there was a trend towards a fall in ERPF and GFR after infusion of L-5-HTP

(Figure 4-5 and Table 4-5).

Serial PRA and plasma aldosterone concentrations are shown in Figure 4-6.

Both L-5-HTP (P < 0.001) and glu-5-HTP (P < 0.05) significantly increased plasma

aldosterone when compared with placebo. The increase after glu-5-HTP was,

however, smaller (P < 0.005) and delayed when compared with L-5-HTP. PRA was

low at baseline and did not increase during infusion of either compound. Compared

with placebo, there was a significant increase in serum growth hormone

concentrations half an hour after the end of L-5-HTP infusion (P < 0.05) (Figure

4-6). There was a large intersubject variability in the growth hormone response to

L-5-E1TP. Although there was a significant response for the group in toto, a rise in

growth hormone concentration of > 5 ng ml"1 was present in only 4 subjects, all of

whom experienced nausea. Infusion of glu-5-FlTP caused no significant changes in

growth hormone levels.
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L-5-HTP, but not glu-5-HTP, significantly increased diastolic blood pressure

when compared with placebo (P < 0.05) (Figure 4-7). There were no significant

differences between treatments in systolic blood pressure (P = 0.08) or pulse rate.

Six out of the nine subjects complained of nausea at the end of L-5-HTP infusion

but only one experienced this effect with glu-5-HTP. No other adverse effect was

noted.

No significant changes in haematological indices, renal and liver functions, and

no untoward effects were present at 1 week after the end of the study.
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Table 4-1. Mean (SD) urinary excretion rates of 5-HTP, 5-HT, 5-HIAA, dopamine, DOPAC
and sodium for each 30 min period before (period 2.0-2.5 h and period 2.5-3.0 h), during
(period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period 5.5-6.0 h) infusion
of placebo, L-5-HTP and glu-5-HTP (n = 9). A value of 0 is entered when the measured
variable was below the limit of detection of the assay employed.

2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

5-HTP excretion (nmol min1)
Placebo 0 0 0 0 0 0 0 0

L-5-HTP 0 0 137.1 235.1 128.0 75.0 48.9 35.1

(32.6) (57.4) (33.7) (21.3) (10.3) (6.8)
Glu-5-HTP 0 0 284.9 672.4 579.9 310.0 218.7 160.9

(102.1) (296.7) (88.9) (52.2) (81.1) (108.0)

5-HT excretion (nmol min1)
Placebo 0.4 0.5 0.4 0.5 0.4 0.6 0.4 0.6

(0.2) (0.2) (0.2) (0.1) (0.1) (0.3) (0.2) (0.2)
L-5-HTP 0.5 0.5 181.3 349.0 202.1 129.9 73.5 50.0

(0.1) (0.2) (52.2) (117.2) (67.0) (38.4) (21.8) (15.9)
Glu-5-HTP 0.6 0.5 98.8 300.2 300.7 186.2 133.9 93.9

(0.2) (0.3) (48.9) (145.7) (44.2) (61.2) (77.7) (84.3)

5-HIAA excretion (nmol min
Placebo 0 0 0 0 0 0 0 0

L-5-HTP 0 0 139.0 316.9 297.6 226.2 167.8 126.7

(49.0) (76.9) (94.6) (40.8) (26.7) (23.5)
Glu-5-HTP 0 0 69.6 186.4 218.1 173.2 157.8 137.9

(40.7) (135.0) (75.9) (50.0) (38.6) (76.7)

Dopamine excretion (nmol min')
Placebo 1.6 1.6 1.7 1.6 1.5 1.8 1.5 2.0

(0.5) (0.6) (0.6) (0.5) (0.5) (0.9) (0.6) (1.1)
L-5-HTP 1.7 1.7 1.7 1.5 1.5 1.5 1.6 1.6

(0.4) (0.6) (0.5) (0.4) (0.6) (0.4) (0.5) (0.4)
Glu-5-HTP 1.7 1.6 1.7 1.8 2.0 1.8 1.7 2.0

(0.6) (0.5) (0.7) (0.7) (0.8) (0.8) (0.6) (1.4)

DOPAC excretion (nmol min
Placebo 3.2 3.5 3.3 3.2 3.1 3.6 3.1 3.6

(0.8) (1.3) (0.8) (0.9) (0.8) (1.6) (1.2) (1.4)
L-5-HTP 3.3 3.4 3.1 2.6 2.6 3.0 3.3 3.3

(0.9) (1.2) (0.7) (0.6) (0.9) (0.7) (1.2) (1.0)
Glu-5-HTP 3.4 3.3 3.5 3.7 3.7 3.6 3.3 4.4

(2.2) (1.4) (1.7) (2.0) (2.4) (2.5) (2.0) (4.5)

Table 4-2. The 3-6 h cumulative excretion values (|±mol) of 5-HTP, 5-HT and 5-HIAA after
administration of placebo, L-5-HTP and glu-5-HTP. Values shown are means ± SD (n = 9).

Infusion L-5-HTP v.v glu-5-HTP
Placebo L-5-HTP Glu-5-HTP 95% CIdiff; P value

5-HTP 0 21.0 ± 4.8 66.9 ± 14..7 37.5 to 54.4; P< 0.001

5-HT 0.09 ±0.03 31.4 ± 8.7 33.4 ±9.4 -3.9 to 7.9; P = 0.5

5-HIAA 0 38.8 ±6.6 28.0 ±5.8 3.6 to 17.9; P < 0.01
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Table 4-3. Percentage urinary recoveries (%) of infused L-5-HTP and glu-5-HTP as 5-HTP,
5-HT and 5-HIAA. Values shown are means ± SD (n = 9).

Infusion
L-5-HTP Glu-5-HTP

L-5-HTP vs glu-5-HTP
95% CIdiff; P value

5-HTP

5-HT

5-HIAA

Total

10.7 ±1.0

16.0 ±2.7

20.4 + 4.9

47.1 ±5.4

34.6 ±4.5

17.1 ±3.0

14.6 ± 3.1

66.3 ±7.3

20.6 to 27.1; P< 0.001

-2.1 to 4.5; P = 0.4

1.8 to 9.8; P< 0.01

11.7 to 26.7; P< 0.001

Table 4-4. Mean (SD) urinary excretion rates of sodium and potassium, FENa, and urine output
before (period 2.0-2.5 h and period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h)
and after (period 4.0-4.5 h to period 5.5-6.0 h) infusion of placebo, L-5-HTP and glu-5-HTP
(n = 9).

2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Sodium excretion (j.imol min1)
Placebo 254.1 263.0 296.1 298.6 320.9 415.1 369.1 475.5

(140.0) (129.7) (96.8) (116.1) (85.9) (146.2) (137.6) (195.9)
L-5-HTP 290.7 339.6 298.4 228.7 239.4 285.0 324.5 361.4

(89.4) (119.7) (81.2) (72.0) (77.1) (74.2) (93.9) (109.5)
Glu-5-HTP 257.0 271.7 276.2 235.2 238.6 236.0 263.5 313.0

(144.6) (134.1) (83.4) (85.0) (71.2) (82.0) (88.7) (117.3)

FENa (%)
Placebo 1.6 1.8 1.9 2.0 2.3 2.6 2.9 3.0

(0.7) (0.7) (0.5) (0.6) (0.8) (0.6) (0.8) (0.6)
L-5-HTP 2.1 2.3 2.2 1.8 2.0 2.1 2.5 2.6

(0.6) (0.7) (0.6) (0.6) (0.6) (0.6) (1.0) (1.0)
Glu-5-HTP 1.9 2.0 1.9 1.7 1.6 1.8 1.9 2.1

(1.2) (0.7) (0.5) (0.4) (0.4) (0.5) (0.6) (0.6)

Potassium excretion (fJ.mol min
Placebo 62.0 64.5 70.9 69.8 76.6 93.3 76.7 95.0

(35.5) (33.0) (29.7) (28.5) (25.0) (31.7) (22.6) (32.0)
L-5-HTP 62.5 75.9 74.4 69.9 66.0 82.3 95.5 95.0

(18.3) (25.7) (14.9) (17.2) (15.9) (14.4) (25.3) (22.8)
Glu-5-HTP 65.0 72.5 79.2 75.6 83.4 81.0 86.6 91.3

(19.0) (23.9) (24.6) (24.1) (26.6) (26.1) (27.1) (38.5)

Urine flow (ml min ■')
Placebo 7.9 6.5 7.6 6.8 6.8 7.8 6.3 7.8

(2.6) (1.9) (1.4) (0.4) (1.6) (3.3) (2.3) (3.8)
L-5-HTP 8.0 8.3 8.6 3.4 2.2 4.1 7.8 9.1

(2.9) (2.1) (1.8) (1.3) (0.9) (2.4) (2.8) (3.5)
Glu-5-HTP 6.1 7.4 8.0 6.5 5.7 5.2 6.4 7.3

(3.4) (2.9) (2.1) (2.4) (2.0) (1.8) (1.8) (3.0)
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Table 4-5. Mean (SD) ERPF, GFR and FF values before (period 2.0-2.5 h and period 2.5-
3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period 5.5-
6.0 h) infusion of placebo, L-5-HTP and glu-5-HTP (n = 9).

2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

ERPF (ml min
7
1.73 m2)

Placebo 556.9 535.0 561.8 528.3 557.9 541.8 506.3 563.5

(108.1) (125.9) (104.0) (128.7) (99.6) (116.0) (117.8) (107.5)
L-5-HTP 541.3 566.4 550.4 538.1 472.8 522.2 508.8 544.3

(124.4) (120.0) (118.5) (134.7) (99.3) (96.3) (85.7) (110.4)
Glu-5-HTP 499.6 480.1 545.9 494.5 508.0 513.3 509.2 576.1

(110.4) (89.2) (75.0) (33.2) (95.0) (120.0) (76.6) (145.1)

GFR (ml min' 1.73 m2)
Placebo 100.1 104.0 106.2 101.5 107.0 101.6 95.5 102.2

(19.1) (20.5) (18.1) (20.0) (22.2) (15.7) (19.9) (14.6)
L-5-HTP 97.4 97.1 93.4 88.7 83.7 90.8 94.3 98.0

(14.0) (8.7) (12.5) (11.9) (16.2) (19.0) (10.5) (12.2)
Glu-5-HTP 93.0 89.1 98.1 92.2 100.1 93.0 98.9 97.5

(12.7) (14.1) (23.2) (15.4) (14.7) (13.8) (17.6) (18.0)

FF(%)
Placebo 18.0 19.7 19.2 19.5 19.3 19.2 19.5 18.7

(1.4) (2.4) (3.1) (2.4) (3.1) (3.0) (4.5) (4.0)
L-5-HTP 18.8 17.6 17.5 17.1 18.3 17.7 18.8 18.5

(4.7) (3.0) (3.6) (3.4) (5.0) (4.2) (3.1) (3.7)
Glu-5-HTP 19.3 18.9 18.3 18.7 20.2 19.0 20.0 17.9

(4.5) (3.6) (5.1) (3.4) (4.6) (5.0) (5.2) (5.2)
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Table 4-6. Mean (SD) pulse rate and blood pressure values before (period 2.0-2.5 h and period
2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period
5.5-6.0 h) infusion of placebo, L-5-HTP and glu-5-HTP (n = 9).

2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Placebo infusion
Pulse rate 60.0 59.6 58.7 58.5 59.1 59.5 60.1 59.3

(beats min" ) (8.4) (8.0) (5.8) (6.7) (6.3) (7.1) (7.5) (7.2)
Systolic blood 117.4 116.3 115.4 115.2 115.7 118.2 120.1 121.0

pressure (mmHg) (10.2) (8.9) (8.1) (8.5) (7.0) (9.3) (8.7) (7.4)
Diastolic blood 64.1 64.8 62.0 62.2 62.4 64.3 65.8 66.3

pressure (mmHg) (10.4) (10.1) (8.8) (8.7) (8.3) (10.9) (9.6) (10.6)

L-S-HTP infusion
Pulse rate 58.1 58.1 59.5 61.0 57.9 57.1 56.4 59.0

(beats min"1) (8.8) (8.2) (7.8) (9.9) (8.4) (6.6) (7.7) (6.6)
Systolic blood 115.3 116.8 115.8 120.6 120.8 118.3 118.8 121.2

pressure (mmHg) (9.5) (12.0) (9.0) (10.2) (10.2) (11.4) (11.1) (11.7)
Diastolic blood 63.2 63.7 65.3 68.8 69.8 67.5 63.1 67.3

pressure (mmHg) (9.9) (8.6) (10.3) (10.1) (10.1) (10.3) (10.1) (9.6)

Glu-5-HTP infusion
Pulse rate 61.9 58.0 57.6 57.3 58.1 59.6 60.1 58.8

(beats min" ) (10.3) (8.4) (8.6) (9.0) (8.5) (5.9) (8.1) (6.8)
Systolic blood 118.9 118.9 114.6 115.4 118.1 119.4 122.9 120.3

pressure (mmHg) (9.7) (8.9) (9.4) (11.3) (10.6) (10.5) (11.1) (9.8)
Diastolic blood 63.6 62.9 61.9 62.1 63.2 63.9 64.6 63.8

pressure (mmHg) (9.9) (12.2) (HI) (11.6) (10.7) (10.4) (14.1) (11.0)
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Figure 4-1. Urinary excretion rates of 5-HTP, 5-HT and 5-HIAA before (period 2.0-2.5 h and
period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to
period 5.5-6.0 h) infusion of placebo (•), L-5-HTP (A) and glu-5-HTP (■). Values shown are
means ± SD (n = 9).
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Figure 4-2. Changes (A) in urinary excretion of sodium and FENa from baseline (period 2.5-3.0
h) following infusion of placebo (•), L-5-HTP (a) and glu-5-HTP (■). Values shown are
means ± SD (n = 9).
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Figure 4-3. Changes (A) in urinary excretion of potassium from baseline (period 2.5-3.0 h)
following infusion of placebo (•), L-5-HTP (a) and glu-5-HTP (■). Values shown are means ±
SD (n = 9).
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Figure 4-4. Changes (A) in urine output from baseline (period 2.5-3.0 h) following infusion of
placebo (•), L-5-HTP (a) and glu-5-HTP (■). Values shown are means ± SD (n = 9).
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Figure 4-5. Changes (A) in ERPF, GFR and FF from baseline (period 2.5-3.0 h) following
infusion of placebo (•), L-5-F1TP (A) and glu-5-HTP (■). Values shown are means ± SD
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Figure 4-6. Plasma aldosterone, PRA and serum growth hormone before, during and after
placebo (•), L-5-HTP (a) and glu-5-HTP (■). The loge (In) transformed growth hormone
values are plotted. Values shown are means ± SD (n = 9).
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Figure 4-7. Changes (A) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and
pulse rate after infusion of placebo (•), L-5-HTP (▲) and glu-5-HTP (■). Values shown are
means ± SD (n = 9).
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4.4 Discussion

The present study confirms our previous observations that both L-5-HTP and glu-5-

HTP markedly increase urinary 5-HT excretion. As was discussed in Chapter 3,

such high urinary levels of 5-HT can only be achieved by generation of 5-HT within

the kidney. Measurements of 5-HTP and 5-HT in the renal artery and vein, in

addition to urinary measurements, will be required to further support the conclusion

that 5-HT is synthesised intrarenally from these 5-HT precursors. It is difficult to

perform these investigations in healthy volunteers because of ethical considerations.

However, strong evidence to support the intrarenal formation of 5-HT from L-5-

HTP is available from experiments with the isolated perfused kidney in the rat

[181]. L-5-HTP is converted to 5-HT by renal LAAD. Glu-5-HTP is presumably

converted to 5-HT via the sequential catalytic actions of renal 7GT and LAAD

analogous to the conversion of gludopa to dopamine [329,333,334,341], Since both

7GT [309-320] and LAAD [35,141-143] are concentrated mainly in the proximal

renal tubules, our results would seem to indicate renal tubular formation of 5-HT

with its subsequent urinary excretion.

The cumulative urinary excretion of 5-HTP after administration of glu-5-HTP

was three times that after L-5-HTP infusion suggesting that the amount of L-5-HTP

available intrarenally for decarboxylation to 5-HT was greater following infusion of

glu-5-HTP. This would be consistent with glu-5-HTP being relatively more

selective for the kidney than L-5-HTP whereas relatively more of L-5-HTP may be

metabolised extrarenally. There were, however, no differences between the

cumulative 5-HT excretion values after L-5-HTP and glu-5-HTP. On a molar basis,

16% of the administered dose of L-5-HTP and 17% of glu-5-HTP were recovered in

the urine as 5-HT. The cumulative urinary outputs, measured as the sum of 5-HTP,

5-HT and 5-HIAA excreted during the 3-6 h collection period, were 47% and 66%

of the infused dose after L-5-HTP and glu-5-HTP respectively. The higher recovery

with glu-5-HTP again suggests greater delivery of the glutamyl compound to the
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kidney.

5-HT and dopamine are synthesised from their respective immediate precursors,

L-5-HTP and L-dopa, by a common enzyme, aromatic LAAD [31,37,41-44], In

addition, these biogenic amines are both metabolised by MAO to 5-HIAA and

DOPAC respectively [31,48,397]. It is, therefore, possible that administration of

L-5-HTP may alter the renal formation and/or excretion of dopamine or DOPAC.

Indeed, because 5-HT and dopamine could have opposite effects on renal

haemodynamics and function, it has been postulated that these biogenic amines may

be generated within the kidney under physiological conditions as reciprocal

regulators of renal haemodynamics and of salt and water excretion [35,268]. We

did not, however, observe any effect of L-5-HTP or glu-5-HTP on the urinary

excretion of dopamine or its major metabolite DOPAC in our study. The reason for

this is unknown but it would be of interest to infuse equimolar amounts of gludopa

and glu-5-HTP to investigate which prodrug is the preferred substrate for the renal

enzymes and what is the overall pharmacological effect {see Chapter 8).

Both L-5-HTP and glu-5-HTP significantly reduced urinary sodium excretion

and fractional excretion of sodium in the present study. In our previous study, a

statistically significant antinatriuretic effect was observed following administration

of glu-5-HTP, but not after 5-HTP {see Chapter 3). The mean urine excretion of

sodium after L-5-HTP was, however, lower than that following placebo. A type 2

error probably explains the failure to demonstrate a significant antinatriuresis after

L-5-HTP because only five subjects were studied. The reduction in urine excretion

of sodium in the present study occurred without significant alterations in ERPF,

GFR or FF suggesting that the antinatriuresis is mediated by a direct tubular action

of 5-HT formed within renal tubular cells by LAAD. There was a suggestion of a

fall in ERPF and GFR after L-5-HTP infusion in our study but the changes were

inconsistent and not statistically significant. It is possible that an infusion of L-5-

HTP for longer than one hour could produce a significant effect on renal
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haemodynamics. However, the absence of an effect on ERPF and GFR, particularly

by glu-5-HTP, may not be surprising given the likely tubular site of production of

5-HT. The lack of effect by L-5-HTP on renal haemodynamics in this study is in

contrast with studies which demonstrated decreases in ERPF and GFR in rats

treated with L-5-HTP [166,254,268]. It was suggested that glomerular LAAD,

though of low activity, formed 5-HT within the glomerulus, or that an intrarenal

transport system of 5-HT from a tubular site of formation to the blood vessels or

glomerulus could explain the observed haemodynamic effects [268].

There was a progressive increase in urinary potassium excretion during infusion

of saline on the placebo day. A mild kaliuresis with salt loading has been reported

by other workers [383,386,398] but a reduction in urinary potassium excretion has

also been observed [385], Potassium excretion is dependent partly on the rate of

sodium excretion as well as the level of aldosterone secretion [383], It was

demonstrated that significantly more potassium was excreted by normal subjects

when salt loading follows a period of salt restriction [398] even though the rate of

sodium excretion was lower in this situation presumably because of the higher level

of aldosterone. L-5-HTP and glu-5-HTP infusion had no effect on urinary excretion

of potassium when compared with placebo.

A significant reduction in urine flow rate was observed after L-5-HTP but not

after glu-5-HTP. There is evidence from animal studies that 5-HT acts within the

central nervous system to increase plasma vasopressin concentration [80,82,84],

The antidiuresis induced by L-5-HTP may therefore be due release of vasopressin

subsequent to an increase in brain 5-HT, since L-5-HTP readily crosses the blood-

brain barrier [156,175,362,363], whereas glu-5-HTP did not produce this effect

because its conversion to 5-HT occurs mainly in the kidney. An alternative

explanation is that the vasopressin release is due to the nausea produced by L-5-

HTP since nausea is a potent stimulus to secretion of vasopressin in man

[357,399-401],
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There was an early and significant increase in plasma aldosterone concentrations

without a concomitant increase in PRA following administration of L-5-HTP. This

is in agreement with observations by other investigators that the release of

aldosterone by 5-HTP does not depend on the activation of the renin-angiotensin

system in man [96,97], 5-HT has been shown to exert a direct stimulatory action on

adrenocortical cells through activation of 5-HT4 receptors in animals and man

[100,101,103,104], L-5-HTP may be converted to 5-HT by LAAD present in the

adrenal gland [31,36,39] and the release of aldosterone by L-5-HTP may, therefore,

be due to an effect of locally synthesised 5-HT on the adrenal cortex. Alternatively,

the L-5-HTP-evoked aldosterone secretion may be mediated by central 5-HT

pathways [96,97], Glu-5-HTP caused a smaller and delayed rise in aldosterone

level consistent with its effects being largely confined to the kidney. The delayed

rise in aldosterone concentration may be due to the renal formation of L-5-HTP

from glu-5-HTP and its subsequent recirculation. We cannot also exclude the

possibility that glu-5-HTP may be converted to L-5-HTP or 5-HT within the adrenal

gland. Aldosterone acts mainly at the cortical collecting tubule where it causes a

decrease in the excretion of sodium and an increase in excretion of potassium [402-

404], Water passively follows the aldosterone-mediated transport of sodium.

Following its intravenous infusion in man, there was a delay of 2 h before the effect

of aldosterone on the excretion of the electrolytes became apparent in one study and

the antinatriuresis and kaliuresis lasted 4-6 h after stopping the infusion [402],

Another study reported a latent period of 20-60 min after intravenous infusion of

aldosterone before there was any demonstrable reduction in sodium chloride

excretion [405], The peak effect occurred at 2 to 4 h, and the depressed sodium

chloride excretion lasted for as long as 6 to 8 h after the administration of

aldosterone. In the present study, the time course of the changes in sodium

excretion and the lack of effect on potassium excretion would, therefore, suggest

that the antinatriuretic response to L-5-HTP or glu-5-HTP infusion did not depend
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on the known action of aldosterone at the distal nephron [404],

Growth hormone concentrations were significantly increased after infusion of

L-5-HTP. This is presumably mediated by the conversion of L-5-HTP to 5-HT in

the central nervous system and is in agreement with studies by other workers which

demonstrated a rise in growth hormone following administration of L-5-HTP

[361,381,392-396] or L-tryptophan, the first substrate for 5-HT production

[396,406-411], However, discordant results have been obtained by other

investigators [406,412,413] and the role of 5-HT in the regulation of growth

hormone release remains unclear. It is possible that nausea may have been a factor

in the release of growth hormone secretion in our study since all four subjects who

experienced this side effect showed an increase in growth hormone concentration of

more than 5 ng ml" . Emesis may increase plasma concentrations of growth

hormone [399], On the other hand, an increase in growth hormone has been

reported in studies where only a minority of the subjects felt nauseated

[361,381,392,393,395,406,407], Glu-5-HTP had no effect on growth hormone

release in keeping with its conversion to 5-HT being limited largely to the kidney.

Six of the nine subjects experienced nausea at the end of L-5-HTP infusion. This

is a well-recognised adverse effect associated with DL- or L-5-HTP administration

[162,359-362], Glu-5-HTP, in equimolar amount, produced this symptom in only

one subject. In addition, glu-5-HTP did not affect blood pressure whereas L-5-HTP

caused a significant increase in diastolic blood pressure. This action of L-5-HTP is

contrary to the depressor effect observed in most animal species [414], However,

hypertension was observed in children with Down's syndrome given L-5-HTP

[4151. The low incidence of adverse effects and the lack of effect on blood pressure

provide further evidence that glu-5-HTP is more renally selective and has less

systemic toxicity than L-5-HTP.

In conclusion, the results of this study confirm that 5-HT can be generated

intrarenally from both 5-HT prodrugs in man. When 5-HT is generated, it produces
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an effect on tubular sodium reabsorption, independent of changes in ERPF or GFR,

resulting in sodium retention. The urinary metabolite data and reduced extrarenal

effects, as evidenced by changes in growth hormone and aldosterone release, blood

pressure and adverse effects, supports the hypothesis that glu-5-HTP is relatively

more selective for the kidney than 5-HTP. This relative selectivity is probably due

to the avid uptake and metabolism of glutamyl compounds by the kidney [324,329].

Whatever the mechanism involved, the use of glu-5-HTP should allow the effects

of increased renal synthesis of 5-HT to be studied with less confounding extrarenal

effects.

163



CHAPTER FIVE

BLOOD AND URINE 5-HYDROXYTRYPTOPHAN AND

5-HYDROXYTRYPTAMINE LEVELS

AFTER ADMINISTRATION OF 5-HYDROXY-L-TRYPTOPHAN AND

y-L-GLUTAMYL-5-HYDROXY-L-TRYPTOPHAN
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5.1 Introduction

The mammalian kidney contains all the major enzymes required for the synthesis of

5-HT from L-tryptophan, as well as those necessary for its degradation, suggesting

that it might have the capacity to synthesise and metabolise 5-HT locally (see

sections 2.2.1 and 2.2.3). Studies in rats demonstrated that 5-HT can indeed be

synthesised intrarenally and it has been suggested that urinary excretion of 5-HT

reflects renal production of 5-HT [35,166,181,268], We administered L-5-HTP and

its glutamyl derivative, glu-5-HTP, to healthy men in the previous two studies and

observed marked increases in the urinary excretion of 5-HT after both compounds

(see Chapters 3 and 4). We argued that such high urinary levels cannot be

accounted for solely by extrarenal production of 5-HT and can only be achieved by

generation of 5-HT within the kidney where it would be less accessible to the

effects of systemic degradative enzymes. The contribution of 5-HT produced

extrarenally to the elevated urinary 5-HT excretion cannot, however, be fully

assessed without knowledge of changes in 5-HT levels in the systemic circulation

(and ideally those in the renal artery) over the course of the experiment.

In the present study, we have estimated 5-HTP and 5-HT concentrations in

platelet-rich plasma (PRP), in addition to urinary 5-HTP and 5-HT excretion, after

infusion of equimolar amounts of both 5-HT precursors to further investigate our

proposition that the large increments in 5-HT excretion were principally due to

5-HT generated within the kidney. We chose to estimate the level of 5-HT in PRP

rather than platelet-poor (or -free) plasma because the well-known fragility of

platelets makes it difficult to ensure consistently that the 5-HT measured is not

derived from platelets disintegrating during sample collection and/or processing.

5-HT was measured in PRP in preference to whole blood because processing of

whole blood for measurement of 5-HT leads inevitably to disruption of red blood

cells with concomitant release of oxyhaemoglobin which results in oxidation of

5-HT [416],
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5.2 Methods

Six healthy male volunteers (age range 22-35 years) were studied on 2 separate

days, at least 1 week apart, in this randomised cross-over study. They refrained

from alcohol for 24 h, abstained from xanthine-containing drinks from 18.00 h, and

fasted from 22.00 h the evening before each study day. They were maintained on

their normal diet. The subjects attended the clinical investigation unit at 08.00 h

after drinking 500 ml of water 1 h previously. They received intravenous 0.9%

NaCl at 5 ml min"1 and drank 150 ml of water half-hourly over the next 6 h. They

emptied their bladders at time 2.5 h and serial urine collections of 30 min duration

were made thereafter. Half an hour later (time = 3 h), an equimolar dose (45 nmol

kg"1 min"1) of L-5-HTP (10 pg kg"1 min"1) or glu-5-HTP (16.6 pg kg"1 min"1) was
infused intravenously for 60 min. Venous blood samples were withdrawn gently,

without using a tourniquet to avoid platelet aggregation, via a 16 G Venflon cannula

before and every 30 min for 3 h after the start of the infusion. The blood sample

(9 ml) was dispensed into an acid-citrate-dextrose anticoagulant (1 ml) consisting of

citric acid (8 g l"1), trisodium citrate (22 g l"1) and glucose (20 g l"1) [367,417],

Following centrifugation at 120 g for 20 min at room temperature, the upper two

thirds of the supernatant (i.e. PRP) was harvested. An aliquot was removed for

platelet counting which was carried out on an electronic particle Coulter Counter

(Coulter Electronics, Inc., Hialeah, FL, U.S.A.) in the Department of Haematology,

Edinburgh Royal Infirmary, Edinburgh. The remaining PRP was stored at -40°C in

sealed polystyrene tubes until analysis for 5-HTP and 5-HT. The volume of each

urine collection was measured and aliquots stored at -40°C for analysis of 5-HTP

and 5-HT. The urine samples were acidified with 5 M HC1 to prevent their

oxidation. 5-HTP and 5-HT in PRP and in urine were assayed as described in

section 2.5. 'Platelet 5-HT' concentration, expressed in pmol of 5-HT per 10

platelets, was calculated by dividing the concentration of 5-HT in PRP by the

concentration of platelets [417],
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Results are expressed as means ± SD. The area under the plasma concentration

versus time curve (AUC) was calculated using the trapezoidal rule. The apparent

renal clearance of 5-HTP was estimated by dividing the amount of 5-HTP excreted

in urine by the corresponding area under the concentration vs time curve [376], The

data on the 2 experimental days were compared by Student's paired t test and

95% CIdiff between means quoted where appropriate. Repeated measures ANOVA

was used to identify any differences in the blood 5-HT levels between the two study

days. Differences were considered statistically significant when the P value was

less than 0.05.

5.3 Results

The 5-HTP concentrations in PRP and urinary excretion rates of 5-HTP on the 2

study days are shown in Figure 5-1. 5-HTP was undetectable in baseline PRP and

urine samples. The peak concentration (Cmax) of 5-HTP in PRP was 1365 ± 302

nmol l"1 and the AUC(3-6 h) was 1763 ± 250 nmol 1"' h after the administration of

L-5-HTP. The corresponding values after glu-5-HTP infusion were lower at 471 ±

95 nmol l"1 (95% CIdiff: 539 to 1249 nmol l"1; P < 0.005) and 934 ± 185 nmol F1 h

(95% CIdiff: 464 to 1193 nmol F1; P < 0.005). The 3-6 h cumulative urinary 5-HTP

excretion after glu-5-HTP (44.0 ± 8.6 pmol) was 2.5 times that occurring after L-5-

HTP infusion (17.6 ± 2.1 pmol; 95% CIdiff: 18.5 to 34.4 |Ltmol; P < 0.001). The

apparent renal clearance of 5-HTP during the 3-4 h period was higher after glu-5-

HTP (1357 ± 348 ml min"1) than after L-5-HTP (246 ± 56 ml min"1; 95% CIdiff: 734

to 1487 ml min"1; P < 0.001).

PRP 5-HT concentration was 812 ±218 nmol F1 before administration of L-5-

HTP and 769 ± 140 nmol 1"' before glu-5-PITP and did not change significantly

after administration of either compound (Figure 5-2). Expressing the 5-HT
g

measurements relative to the number of platelets in the PRP, as pmol per 10

platelets, to reflect 'platelet 5-HT' concentrations [417] did not alter this conclusion.
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There were, however, huge increases in urinary 5-HT excretion. Mean urinary

excretion rate of 5-HT, which was < 0.7 nmol min"1 before dosing, rose to a peak

value of 412 ± 92 nmol min"1 at the end of L-5-HTP infusion and 303 ± 29 nmol

min"1 after the administration of glu-5-HTP. The mean urinary excretion rates of

5-HT after administration of L-5-HTP were greater than those seen after glu-5-HTP

during the infusion of these compounds but less during the post-infusion phase. As

a result, the 3-6 h cumulative 5-HT excretion values after L-5-HTP and glu-5-HTP

were not significantly different at 37.4 ± 4.6 pmol and 32.0 ± 4.5 pmol respectively

(95% CIdiff: -0.6 to 11.5 (irnol).

Two subjects complained of nausea, and one of these two vomited, at the end of

L-5-HTP infusion. There were no ill-effects following glu-5-HTP infusion.
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Figure 5-1. 5-HTP concentrations in PRP and urinary excretion rates of 5-HTP before, during
and after infusion ofL-5-HTP (•) and glu-5-HTP (▲). Values shown are means ± SD (n = 6).
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are means ± SD (n = 6).
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5.4 Discussion

The platelets normally concentrate 5-HT released into blood from other tissues [15]

and in vitro studies have shown that, under normal conditions, the storage capacity

of platelets is not saturated [21,418]. The level of 5-HT in platelet (expressed as

8 1
pmol per 10 platelets) or in PRP (nmol f PRP) could, therefore, be used as an

indicator of circulating 5-HT. These two measurements are highly correlated and it

has been suggested that estimation of 5-HT in PRP is an equally accurate and

reliable index of variation in blood 5-HT level when compared with platelet 5-HT

concentration [417], In the present study, we have demonstrated that the marked

increases in urinary 5-HT excretion after both L-5-HTP and glu-5-HTP occurred

without concomitant increases in platelet or PRP 5-HT concentrations. Similarly,

intravenous infusion of L-5-HTP in the rat was reported to produce a large increase

in urinary 5-HT excretion without affecting plasma 5-HT levels [166], The present

findings provide additional evidence that urine 5-HT, after infusion of both 5-HT

precursors, was largely derived from intrarenal synthesis of 5-HT as we would have

expected an increase in circulating 5-HT levels, if 5-HT produced extrarenally

contributed significantly to the increased 5-HT excretion in urine. Although a

placebo day was not included in this study, we had shown previously that the saline

infusion and water loading employed in the protocol do not affect urinary 5-HTP or

5-HT excretion (see Chapter 4).

5-HTP, unlike 5-HT, does not appear to be concentrated in platelets and it has

been reported that the concentrations of 5-HTP in PRP after administration of L-5-

HTP were not significantly different from those measured in platelet-poor plasma

[419]. In the present study, 5-HTP in PRP increased as expected after

administration of T-5-HTP but an increase, although of a smaller magnitude, was

also observed after glu-5-HTP. This suggests that glu-5-HTP metabolism was not

completely confined to the kidney and that the delivery of 5-HTP via its glutamyl

derivative was, therefore, only relatively selective for the kidney. This finding
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would not be surprising since the enzyme yGT required for the conversion of glu-5-

HTP to L-5-HTP is also present in significant concentrations at sites other than the

kidney. Its concentration in the kidney is, however, considerably greater than

elsewhere [308,309] and it can be expected that L-5-HTP will be predominantly

released within this organ. This is supported by the observations that the peak level

of 5-HTP and the AUC of its concentration-time curve were lower than those

observed after administration of L-5-HTP. The amount of 5-HTP in urine after glu-

5-HTP was, however, higher than that seen after L-5-HTP. It was greater than can

be accounted for by the total clearance of 5-HTP from the plasma perfusing the

kidney providing strong support for the intrarenal synthesis of L-5-HTP from glu-5-

HTP and this is reflected by the high apparent renal clearance value of 5-HTP after

infusion of glu-5-HTP. L-5-HTP produced intrarenally from glu-5-HTP may be

excreted into the urine, converted to 5-HT or 5-HIAA, or reabsorbed into the

circulation. Recirculation of L-5-HTP produced in the kidney, in addition to

extrarenal transformation of glu-5-HTP to 5-HTP, could both contribute to the

increased levels of circulating 5-HTP following the administration of glu-5-HTP.

L-5-HTP is decarboxylated to 5-HT by aromatic LAAD. This enzyme is widely

distributed in the body with high activity in the kidney and liver [31,38,39,139],

Exogenous L-5-HTP, or L-5-HTP formed from glu-5-HTP, may, therefore, be

converted to 5-HT extrarenally. The absence of an increase in circulating 5-HT,

particularly after administration of L-5-HTP, suggests either that the assay we have

used was unable to detect any increase in 5-HT levels or that 5-HT produced

extrarenally was rapidly metabolised and cleared from the circulation [1,35,176].

The rapid uptake of L-5-HTP into other body compartments such as the brain may

also be a factor [175].

Gastrointestinal side effects observed after administration of L-5-HTP appear to

be related to the plasma 5-HTP concentrations [360,420,421]. In the present study,

two subjects developed nausea at the end of L-5-HTP infusion at the time when
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peak circulating levels of 5-HTP occurred. In contrast, peak circulating 5-HTP

levels were much lower after infusion of the glutamyl compound and no adverse

effects were observed.

The present study therefore provided further evidence that 5-HT is synthesised

intrarenally after administration of both L-5-HTP and glu-5-HTP in man. In

addition, the data supported the proposition that the glutamyl compound is better

tolerated and that it exhibits greater renal selectivity (see Chapters 3 and 4).
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CHAPTER SIX

THE ANTINATRIURETIC ACTION OF

Y-L-GLUTAMYL-5-HYDROXY-L-TRYPTOPHAN

IS DEPENDENT ON ITS DECARBOXYLATION TO

5-HYDROXYTRYPTAMINE
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6.1 Introduction

Carbidopa (MK 486; L-a-methyl-a-hydrazino-|3-(3,4-dihydroxyphenyl)-propionic

acid, also known as L-a-hydrazino-3,4-dihydroxy-a-methylhydrocinnamic acid)

inhibits the enzyme LAAD. It does not penetrate the blood-brain barrier even at
1 2

high dosage, in contrast to benserazide (Ro 4-4602; N -(DL-seryl)-A -

(2,3,4-trihydroxybenzyl)-hydrazine), another LAAD inhibitor [38,422-424].

Administration of carbidopa therefore results in selective extracerebral LAAD

inhibition. The drug is about 50% absorbed after oral administration in human

subjects. The plasma level reaches a maximum value within 4 h after dosing and its

plasma half-life is approximately 2 h [425], Its effectiveness as a decarboxylase

inhibitor can, however, persist for a longer period possibly as a result of formation

and accumulation of metabolites also capable of inhibiting the decarboxylase

enzyme or because of its retention in tissues [426], Plasma levels of endogenous

5-HTP may rise from less than 1 ng ml"1 to 5 ng ml"1 after administration of

carbidopa [183]. Pretreatment with carbidopa caused about a 5 to 15-fold increase

in the plasma concentration of 5-HTP obtained after oral administration of 100, 200

mg or 2 mg kg"1 of L-5-HTP [182,427] and reduced or prevented the accumulation

of 5-HT in plasma or serum [427-429], Carbidopa is usually prescribed in

combination with L-dopa for the treatment of Parkinson's disease to inhibit the

peripheral metabolism of L-dopa and enhance the ability of the ingested L-dopa to

cross the blood-brain barrier for central production of dopamine by LAAD [430].

As a result, a lower dose of L-dopa is required for therapeutic effects and this

reduces the incidence of peripheral adverse reactions.

In the previous studies, we demonstrated marked increases in the urinary

excretion of 5-HT, without concomitant changes in 5-HT concentrations in platelet-

rich plasma, after infusion of glu-5-HTP in keeping with intrarenal synthesis of

5-HT (see Chapters 3 to 5). Glu-5-HTP is presumably converted to L-5-HTP by

yGT and then decarboxylated by LAAD to 5-HT. This is analogous to the
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conversion of gludopa to L-dopa by yGT and then to dopamine by LAAD (see

section 1.3). Glu-5-HTP was found to be relatively more selective for the kidney

than L-5-HTP. It reduced urinary sodium excretion without significant alterations

in renal haemodynamics. This antinatriuresis probably resulted from an effect of

intrarenally generated 5-HT on the renal tubular reabsorption of sodium although

we could not exclude the possibility of an effect of the intact dipeptide or of the

intermediate metabolite L-5-HTP.

The present study was designed to investigate whether the extracerebral LAAD

inhibitor, carbidopa, blocks the formation of 5-HT from glu-5-HTP and interferes

with the actions of glu-5-HTP in normal volunteers.

6.2 Methods

Eight healthy male volunteers, aged 18-39 years (mean 28 years) and weighing

59.9-80.9 kg (mean 69.0 kg), took part in this randomised, single-blind, placebo-

controlled, within-subject cross-over study. Each subject attended on 4 separate

occasions, at least 1 week apart. They refrained from alcohol for 24 h, abstained

from caffeine-containing beverages from 18.00 h, and fasted from 22.00 h the

evening before each of the study days. They arrived at the clinical investigation

unit at about 08.00 h on each study day, having drunk 500 ml of tap water 1 h

previously. The subjects received an intravenous loading dose of 0.5 g of PAH and

3.5 g of polyfructosan (Inutest) at the start of the study (time = 0 h) followed by a

maintenance infusion ofPAH (3.75 g f1) and polyfructosan (4.5 g f1) in 0.9% NaCl

at a rate of 5 ml min"1 for the next 6 h. They emptied their bladders at 1.5 h and

accurately timed consecutive urine collections of about 30 min duration were made

thereafter until the end of the study. Two hours after the start of the study (time =

2 h), the subjects took either 100 mg of carbidopa or placebo orally. This was

followed 1 h later (time = 3 h) by a 60-min infusion of glu-5-HTP, made up to 30

ml with 0.9% saline, at a rate of 16.6 pg kg"1 min"1 or placebo (saline alone at 0.5 ml
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min"1). Each subject therefore received the following 4 combinations in a

randomised sequence: placebo + placebo; placebo + glu-5-HTP; carbidopa +

placebo; and carbidopa + glu-5-HTP. The subjects remained semi-recumbent or

supine throughout the experiment except when standing to pass urine and drank

150 ml of water every 30 min to promote an adequate diuresis. Blood pressure and

pulse rate were measured in duplicate, with the subject in the supine position, by a

semi-automated Dinamap recorder every half hour during the study.

Venous blood samples were collected at 30 min intervals for measurement of

plasma sodium, PAH and polyfructosan. Blood for determination of PRA and

plasma aldosterone were collected at 0.5, 2, 3, 3.5, 4, 5 and 6 h. The volume of

each urine collection was measured and aliquots stored at -40°C for analysis of

sodium, potassium, PAH, polyfructosan, 5-HTP, 5-HT, 5-HIAA and dopamine.

Urine samples for 5-HT, 5-HIAA and dopamine were acidified (pH < 3.0) with 5 M

HC1 to prevent their oxidation. The measurements of plasma aldosterone and PRA;

urinary potassium, PAH, 5-HTP, 5-HT, 5-HIAA and dopamine; plasma and urinary

sodium were described in section 2.5.

ERPF and GFR were estimated from the renal clearances of PAH (CPAH) and

polyfructosan (CIn) respectively using the standard formula UV/P, where U is the

urine concentration, V is the urine flow rate and P is the mean of the plasma levels

at the beginning and end of each clearance period. Fractional excretion of sodium

(FENa) was calculated as renal clearance of sodium divided by GFR (CIn) and

expressed as a percentage.

Results are expressed as means ± SD. The variables measured serially on the 4

experimental days were compared by repeated measures ANOVA, with the different

treatment regimens and time as the within-subject repeated measures. If there was

a significant overall difference between the 4 experimental days, follow-up paired

comparison between the treatment regimens were made to determine where the

differences lie, with correction of the P value by the Bonferroni method to allow for
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multiple comparisons and protect against a type 1 error. Two-way ANOVA was

employed to compare the cumulative data on the four study days. When significant

differences were found, relevant pairs of data were compared by Student's t-test for

paired observations. The P values were adjusted by the Bonferroni method and the

associated 99%, rather than 95%, confidence interval of difference (CIdiff) between

the means quoted where appropriate. A value of zero was assumed when a

measured variable was below the limit of detection of the assay technique used to

allow statistical comparisons to be made. Differences were considered to be

statistically significant when P values were less than 0.05.

6.3. Results

The urinary excretion rates of 5-HTP, 5-HT, 5-HIAA and dopamine for each 30 min

period and the 3-6 h cumulative excretion for the three metabolites on the four study

days are shown in Table 6-1 and Table 6-2 respectively. The urinary excretion of

5-HT was approximately 0.4 nmol min"1 at baseline (period 1.5-2.0 h). This rose to

a peak value of 278 ± 44 nmol min"1 after glu-5-HTP infusion but did not change

significantly after placebo infusion. The cumulative urinary 5-HT excretion over

the 3 h period after the start of glu-5-HTP infusion was 430-fold higher than that

after placebo infusion (32.4 ± 3.6 pmol vs- 75.6 ± 12.7 nmol; P < 0.001). Similarly,

5-HTP and 5-HIAA which were undetectable in urine during placebo infusion,

increased markedly after administration of glu-5-HTP. Carbidopa suppressed

urinary 5-HT and dopamine excretion to undetectable levels in all subjects during

placebo infusion. It markedly attenuated the increase in 5-HT excretion after glu-5-

HTP. Compared with placebo pretreatment, carbidopa reduced the 3-6 h

cumulative 5-HT excretion by 99% from 32.4 ±3.6 pmol to 0.3 ± 0.1 pmol (P <

0.001). The amount of infused glu-5-HTP recovered in the urine as 5-HT was 17.4

± 2.2% and this was reduced to 0.1 ± 0.1% after pretreatment with carbidopa (Table

6-3). Carbidopa increased the 3 h cumulative 5-HTP excretion by 60% from 45.6 ±
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10.9 pmol to 72.8 ± 14.8 pmol (P < 0.001) and reduced 5-HIAA excretion by 74%

from 30.8 ± 6.3 pmol to 7.9 ± 3.2 prnol (P < 0.001) (Table 6-2).

There was a steady increase in urinary sodium excretion from 278 ± 77 pmol

min"1 (1.5-2.0 h period) to 379 ± 144 pmol min~'(5.5-6.0 h period) during the

placebo day in response to infusion of saline (Table 6-4; Figure 6-1). Glu-5-HTP

produced a significant attenuation of sodium excretion when compared with placebo

infusion (P < 0.01). The 3-6 h cumulative sodium excretion values after placebo

and glu-5-FlTP administration were 63.3 ±19.1 and 45.9 ± 9.2 mmol respectively

(99% CIdiff: 2.0 to 32.8 mmol; P < 0.05). Pretreatment with carbidopa abolished the

antinatriuretic effect of glu-5-HTP. The 3-6 h cumulative sodium excretion when

the subjects received carbidopa and glu-5-HTP infusion was 63.5 ± 15.6 mmol

which is similar to that during placebo infusion only (99% CIdiff: -19.8 to 20.2

mmol). Carbidopa had no significant effect on cumulative sodium excretion during

placebo infusion (63.3 ± 5.2 mmol with carbidopa pretreatment vs 63.3 + 6.7 mmol

without carbidopa; 99% CIdiff: -10.6 to 10.6 mmol). The changes in cumulative

sodium excretion, relative to the respective pre-infusion (period 2.5-3.0 h) excretion

rates, on the 4 experimental days were: +7.6 ±5.3 mmol after placebo + placebo; -

10.3 ± 4.0 mmol after placebo + glu-5-HTP; +10.8 ± 7.3 mmol after carbidopa +

placebo; and +13.2 ± 16.7 mmol after carbidopa + glu-5-HTP. Analysis of the

cumulative sodium data using these values did not alter the conclusions reached.

There were no differences in urinary potassium excretion (Table 6-4; Figure 6-2)

and urine output (Table 6-4; Figure 6-3) between the 4 experimental days.

Glu-5-HTP significantly increased plasma aldosterone when compared with

placebo infusion (P < 0.001) (Figure 6-4). Pretreatment with carbidopa attenuated

the increase in plasma aldosterone concentrations produced by glu-5-HTP (P <

0.005). Carbidopa had no effect on the steady fall in plasma aldosterone

concentration during placebo infusion. PRA declined progressively in response to

saline loading during all experimental days (Figure 6-4).
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Repeated measures ANOVA revealed no significant differences in GFR values

between the 4 experimental days (Figure 6-5) although there appears to be a trend

towards a fall in GFR after infusion of glu-5-HTP. Similarly, ERPF (Figure 6-5),

blood pressure and pulse rate (Figure 6-6) did not differ between the four study

days. No side effects were reported or recorded.
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Table 6-1. Mean (SD) urinary excretion rates of 5-HTP, 5-HT, 5-HIAA and dopamine for each
30 min period on the 4 study days (n = 8). Carbidopa or placebo was given at 2 h and time 3-4
h represents the infusion (glu-5-HTP or placebo) period. A value of 0 is entered where a
variable was below the limit of detection of the assay used. * = dopamine was not detectable in
7 out of 8 subjects.

1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

5-HTP excretion (nmol min1)
Placebo + 0 0 0 0 0 0 0 0 0

placebo
Placebo + 0 0 0 232.6 436.5 368.9 246.9 149.8 84.3

glu-5-HTP (69.0) (132.3) (134.9) (55.8) (48.0) (23.6)
Carbidopa + 0 0 0 0 0 0 0 0 0

placebo
Carbidopa + 0 0 0 264.6 682.5 593.3 410.1 260.9 209.9

glu-5-HTP (71.1) (133.5) (173.7) (79.6) (85.4) (42.8)

5-HT excretion (nmol min1)
Placebo + 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5

placebo (0.2) (0.1) (0.1) (0.1) (0.1) (0.1) (0.0) (0.2) (0.1)
Placebo + 0.5 0.4 0.4 113.1 274.3 278.4 198.8 126.1 88.4

glu-5-HTP (0.1) (0.1) (0.0) (42.6) (51.5) (43.9) (41.7) (21.9) (11.2)
Carbidopa + 0.5 0.4 0.1 0 0 0 0 0 0

placebo (0.2) (0.1) (0.1)
Carbidopa + 0.4 0.3 0.2 0.6 2.0 2.6 2.2 1.7 1.5

glu-5-HTP (0.2) (0.2) (0.1) (0.4) (1.1) (1.6) (1.0) (0.7) (0.9)

5-HIAA excretion (nmolmin')
Placebo + 0 0 0 0 0 0 0 0 0

placebo
Placebo + 0 0 0 73.7 199.2 222.8 213.2 171.4 144.9

gIu-5-HTP (27.8) (100.9) (46.7) (46.2) (32.7) (27.2)
Carbidopa + 0 0 0 0 0 0 0 0 0

placebo
Carbidopa + 0 0 0 32.1 29.1 49.2 60.4 49.4 43.5

glu-5-HTP (35.3) (15.2) (21.1) (35.7) (21.3) (16.9)

Dopamine excretion (nmol mm )
Placebo + 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4

placebo (0.2) (0.3) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.2)
Placebo + 1.4 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.2

glu-5-HTP (0.2) (0.3) (0.2) (0.1) (0.2) (0.2) (0.4) (0.1) (0.1)
Carbidopa + 1.6 1.6 0.7 0.2 0.1 0 0 0 0

placebo (0.2) (0.4) (0.6) (0.3) (0.2)
Carbidopa + 1.6 1.6 0.9 0.2 0.3 0.3* 0.2* 0.2* 0.2*

glu-5-HTP (0.5) (0.3) (0.6) (0.5) (0.8) (0.7) (0.6) (0.6) (0.5)

181



Table 6-2. The 3-6 h cumulative excretion values (p.mol) of 5-HTP, 5-HT and 5-HIAA after
administration of placebo + placebo (P + P), placebo + glu-5-HTP (P + G), carbidopa + placebo
(C + P), and carbidopa + glu-5-HTP (C + G). Values shown are means ± SD (n = 9).

Treatment combination

P+P P+G C+P C+G

P + GvsC+G

99% CIdilf; P value
5-HTP 0 45.6 ±10.9 0 72.8 ±14.8 16.6 to 37.8; P< 0.001

5-HT 0.08 ±0.01 32.4 ±3.6 0 0.3 ±0.1 22.8 to 36.4; P< 0.001

5-HIAA 0 30.8 ±6.3 0 7.9 ±3.2 16.9 to 28.9; P< 0.001

Table 6-3. Percentage urinary recoveries (%) of infused glu-5-HTP as 5-HTP, 5-HT and
5-HIAA after pretreatment with placebo or carbidopa. Values shown are means ± SD (n = 8).

Placebo + Glu-5-HTP Carbidopa + Glu-5-HTP 99% CIdjjp P value
5-HTP 24.3 ±5.2 38.8 ±6.8 8.8 to 20.2; P< 0.001

5-HT 17.4 ±2.2 0.1 ±0.1 14.5 to 19.9; P< 0.001

5-HIAA 16.5 ±3.2 4.2 ± 1.6 9.0 to 15.6; P< 0.001

Total 58.1 ±6.5 43.1 ±7.5 9.1 to 20.9; P< 0.001
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Table 6-4. Mean (SD) urinary sodium excretion rates, urinary potassium excretion rates and
urine flow rates for each 30 min period on the 4 study days (n = 8). Carbidopa or placebo was
given at 2 h and time 3-4 h represents the infusion (glu-5-HTP or placebo) period.

1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5

Time (h)
3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Sodium excretion (nmol min1)
Placebo + 278.0 292.9 309.7 320.0 339.4 350.7 346.3 363.8 378.9

placebo (76.9) (101.2) (98.7) (122.0) (106.8) (138.0) (115.0) (140.8) (143.8)
Placebo + 280.0 308.7 312.5 276.4 257.8 216.2 235.3 266.0 277.9

glu-5-HTP (98.9) (112.1) (81.1) (60.0) (41.7) (48.4) (50.2) (76.6) (84.0)
Carbidopa + 293.5 304.8 291.9 303.0 324.2 336.2 370.0 382.7 394.5

placebo (90.7) (90.9) (85.8) (70.2) (66.5) (105.5) (84.9) (87.1) (99.8)
Carbidopa + 279.8 298.2 305.9 320.6 327.9 352.7 375.6 369.0 371.5

glu-5-HTP (117.3) (104.8) (91.0) (72.3) (71.3) (93.5) (96.8) (111.6) (102.3)

Potassium excretion (nmol min )
Placebo + 87.0 86.4 90.8 96.8 106.0 107.3 102.1 96.7 94.6

placebo (33.2) (36.2) (25.1) (36.4) (36.0) (33.9) (29.0) (20.0) (17.7)
Placebo + 100.9 105.0 108.2 113.5 118.1 114.9 126.4 126.2 120.1

glu-5-HTP (37.0) (39.7) (31.9) (24.7) (30.7) (22.0) (21.8) (28.9) (29.0)
Carbidopa + 104.1 102.8 102.6 107.5 110.6 107.2 109.7 107.1 103.6

placebo (36.7) (38.7) (39.1) (24.4) (23.6) (33.3) (16.9) (22.0) (26.8)
Carbidopa + 119.4 115.3 111.5 115.4 123.9 130.9 131.8 120.8 117.9

glu-5-HTP (67.4) (46.8) (38.9) (33.3) (33.9) (30.3) (31.6) (26.7) (20.5)

Urine flow (ml
• -t\

mm )
Placebo + 9.9 8.5 8.2 7.0 7.6 7.5 6.1 7.0 6.6

placebo (1.9) (3.4) (2.2) (2.9) (1.9) (2.7) (1.6) (2.9) (2.6)
Placebo + 9.6 10.0 8.3 7.9 7.2 5.1 5.4 6.6 6.3

glu-5-HTP (2.9) (2.8) (1.8) (1.1) (1.7) (1.3) (0.8) (1.7) (1.3)
Carbidopa + 9.3 9.4 6.7 6.4 7.4 7.0 6.0 6.9 7.4

placebo (2.6) (2.1) (2.8) (1.4) (1.1) (2.9) (1.9) (2.0) (1.3)
Carbidopa + 9.7 10.3 8.6 7.8 7.0 6.7 7.4 7.5 7.8

glu-5-HTP (2.8) (2.8) (4.0) (1.8) (2.1) (2.4) (2.1) (2.3) (1.1)
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Time (h)

Figure 6-1. Changes (A) in urinary excretion rates of sodium and FENa from the 1.5-2.0 h
period on the 4 study days: placebo + placebo (•); placebo + glu-5-HTP (a); carbidopa +
placebo (■); and carbidopa + gIu-5-HTP (t). Values shown are means ± SD (n = 8).
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Figure 6-2. Changes (A) in urinary excretion rates of potassium from the 1.5-2.0 h period on
the 4 study days: placebo + placebo (•); placebo + glu-5-HTP (a); carbidopa + placebo (■);
and carbidopa + glu-5-HTP (y). Values shown are means ± SD (n = 8).
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Figure 6-3. Changes (A) in urine output from the 1.5-2.0 h period on the 4 study days: placebo
+ placebo (•); placebo + glu-5-HTP (a); carbidopa + placebo (■); and carbidopa + glu-5-HTP
(y). Values shown are means ± SD (n = 8).
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Figure 6-4. Plasma aldosterone and PRA on the 4 study days: placebo + placebo (•); placebo
+ glu-5-HTP (a); carbidopa + placebo (■); and carbidopa + glu-5-HTP (▼). Values shown are
means ± SD (n = 8).
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Time (h)

Figure 6-5. ERPF and GFR values on the 4 study days: placebo + placebo (•); placebo + glu-
5-HTP (A); carbidopa + placebo (■); and carbidopa + glu-5-HTP (Y). Values shown are means
± SD (n = 8).
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Figure 6-6. Mean arterial blood pressure (MAP) and pulse rate on the 4 study days: placebo +
placebo (•); placebo + glu-5-HTP (A); carbidopa + placebo (■); and carbidopa + glu-5-HTP
(▼). Values shown are means ± SD (n = 8).
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6.4 Discussion

This study confirms our previous observations that glu-5-HTP markedly increases

urinary 5-HT excretion and causes retention of sodium without significant

alterations in renal haemodynamics in normal man (see Chapters 3-5). The prodrug

also increases plasma aldosterone levels but the time course of the changes in

sodium excretion and the lack of effect on urinary potassium excretion suggest that

the antinatriuresis occurs independently of the known actions of aldosterone. These

findings have already been discussed in the earlier chapters.

Urinary dopamine results mainly from dopamine synthesis in proximal tubular

cells by the renal decarboxylation of L-dopa present in circulating blood [431-436],

Similarly, it has been suggested that urinary 5-HT reflects intrarenal synthesis of

5-HT [35], In the present study, a single 100 mg dose of carbidopa, an extracerebral

TAAD inhibitor, suppressed dopamine and 5-HT excretion to below the levels of

detection indicating a very effective inhibition of renal LAAD. We did not observe

a significant effect of carbidopa on urinary sodium excretion during saline infusion

in agreement with most previous studies [437-440], A reduction in urinary sodium

excretion by carbidopa has, however, also been reported by other investigators and

this has been taken as evidence supporting a role for dopamine in regulating renal

sodium output [441,442], The differing results reported may depend on the salt

status of the individual subjects. Carbidopa substantially reduced the increment in

urinary 5-HT excretion that followed administration of glu-5-HTP. There was an

increase in urinary 5-HTP excretion and a reduction in 5-HIAA excretion. These

results are consistent with significant inhibition of renal LAAD although we cannot

establish (or exclude) a possible role for inhibition of other peripheral

decarboxylase enzymes. The lesser reduction in 5-HIAA than 5-HT excretion

suggests that there are body compartments where LAAD may still remain active and

be capable of 5-HT synthesis, despite carbidopa administration. The

decarboxylation of 5-HTP in the brain would be unaffected by the extracerebral
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inhibitor, carbidopa, resulting in uninterrupted formation of 5-HT and its

metabolism to 5-HIAA, producing a greater relative urinary excretion of 5-HIAA

than 5-HT [443]. Transamination of amino acids may also be increased as an

alternate pathway of metabolism following inhibition of decarboxylation, and this

would allow the continued formation and excretion of 5-HIAA [444-449],

Administration of glu-5-HTP produced a significant reduction in sodium

excretion when compared with placebo infusion, in agreement with our previous

studies (see Chapters 3 and 4). In the present investigation, carbidopa abolished the

antinatriuresis induced by glu-5-HTP coincident with the near suppression of 5-HT

synthesis. These observations are in keeping with our hypothesis that the sodium

retention following administration of glu-5-HTP results from the intrarenal

generation of 5-HT and is not due to an effect of the intact dipeptide or of the

intermediate metabolite L-5-HTP.

Glu-5-HTP increased plasma aldosterone levels, without a parallel increase in

PRA, suggesting that the release of aldosterone does not depend on the activation of

the renin-angiotensin system in man (see Chapters 3 and 4). It is possible that the

adrenal gland may possess yGT [382] and LAAD [31,39] activities. 5-HT could

then be produced locally and stimulate aldosterone release since 5-HT has been

shown to release aldosterone from the adrenal gland [100-104]. Alternatively,

L-5-HTP and 5-HT formed from glu-5-HTP in the kidney may recirculate and act

on the adrenal gland. L-5-HTP, unlike 5-HT, can cross the blood-brain barrier and

the release of aldosterone could, therefore, also be mediated by central 5-HT

pathways [96,97], Carbidopa does not penetrate the central nervous system to any

appreciable extent and would not be expected to inhibit conversion of L-5-HTP to

5-HT in the brain [38,422-424], It has been reported to increase plasma 5-HTP

following administration of L-5-HTP and to increase the stimulatory effect of L-5-

HTP on aldosterone suggesting that central 5-HT pathways are involved in the

stimulation of aldosterone induced by administration of 5-HTP [96,182]. In the
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present study, however, carbidopa attenuated the increase in aldosterone secretion

following glu-5-HTP. This finding suggests that release of aldosterone by

glu-5-HTP is predominantly a peripheral effect. A possible central effect of 5-HT

may, however, partly contribute to the failure of carbidopa to completely suppress

the aldosterone secretion induced by glu-5-HTP. In addition, carbidopa had

minimal inhibitory effect on the activity of LAAD in the adrenal gland of the rat

and guinea pig [429,450,451], and the presence of a blood-adrenal barrier,

analogous to the blood-brain barrier, has been suggested [451], L-5-HTP formed

from glu-5-HTP which has penetrated the adrenal gland may, therefore, be less

susceptible to the effect of carbidopa and its continued intra-adrenal conversion to

5-HT may thus stimulate aldosterone release. Carbidopa had no effect on the

progressive reduction in plasma aldosterone concentrations produced by infusion of

saline. This finding contradicts the observation made in the dog by McClanahan et

al. [452] that carbidopa prevented the suppression of plasma aldosterone levels

induced by saline infusion.

We conclude that the results of this work support the proposition that the effect

of glu-5-HTP on urinary excretion of sodium is caused by a direct tubular action of

5-HT formed within renal tubular cells by LAAD and is independent of any effect

on renal haemodynamics.

191



CHAPTER SEVEN

COMPARISON OF THE EFFECTS OF y-L-GLUTAMYL-L-TRYPTOPHAN

AND y-L-GLUTAMYL-5-HYDROXY-L-TRYPTOPHAN ON URINARY

EXCRETION OF 5-HYDROXYTRYPTAMINE AND SODIUM
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7.1 Introduction

The biosynthesis of 5-HT is a two-step process. L-tryptophan is first hydroxylated

by tryptophan 5-hydroxylase to L-5-HTP which is then decarboxylated by LAAD to

produce 5-HT. LAAD is present in high concentrations in the renal proximal

tubular cells [31,35,141-143]. Renal formation of 5-HT from its immediate amino

acid precursor L-5-HTP has been demonstrated in renal tissue homogenates

[16,39,42,140], in isolated proximal convoluted tubules [179,180] and in isolated

perfused rat kidneys [153,181.453]. Administration of L-5-HTP in vivo in the rat

[153,166,268,449] and man [162,177,178; Chapters 3-5] produces a marked

increase in the urinary excretion of 5-HT, consistent with intrarenal synthesis of

5-HT, and this is accompanied by a reduction in the urinary excretion of sodium

{see Chapters 3 and 4). Tryptophan 5-hydroxylase activity has also been identified

in the rat and human kidney [35,137,138], particularly in the proximal tubules of the

cortex [35], suggesting that the kidney might have the capacity to synthesise 5-HT

from its first precursor L-tryptophan. This enzyme is not fully saturated by its

substrate under normal conditions [31,454,455], and the administration of large

doses of L-tryptophan has been employed to investigate the synthesis, and

functional significance, of 5-HT in the kidney [35,121], Tryptophan 5-hydroxylase

is, however, present in many other tissues [137,138] and systemic administration of

L-tryptophan may, therefore, not be a particularly effective way to enhance the

intrarenal formation of 5-HT selectively. In addition, the renal actions of 5-HT

produced within the kidney may be modified by confounding extrarenal effects

consequent upon increased 5-HT synthesis in other organs (or tissues).

The kidney has a considerable capacity to accumulate, and metabolise,

y-glutamyl derivatives of amino acids and peptides [324,325,329] as a consequence

of the high activity of yGT present in the brush border of the renal proximal tubular

cells [308-316]. Administration of y-glutamyl derivatives of drugs offers the

possibility of delivering drugs selectively to the kidney. We have previously
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employed this approach and administered glu-5-HTP, the glutamyl derivative of

L-5-HTP, to increase the delivery of L-5-HTP to the kidney where it can be

decarboxylated to 5-HT {see Chapters 3-6). Glu-5-HTP produced a large increase

in urinary excretion of 5-HT, without a concomitant rise in 5-HT levels measured in

platelet-rich plasma, together with a reduction in excretion of sodium. These

observations are consistent with intrarenal synthesis of 5-HT following the

conversion of glu-5-HTP to L-5-HTP by yGT and the decarboxylation of L-5-HTP

by renal LAAD to 5-HT. The glutamyl derivative of L-tryptophan (y-L-glutamyl-L-

tryptophan; glu-TRP) may likewise selectively enhance the delivery of

L-tryptophan to the kidney where it can be hydroxylated by renal tryptophan

5-hydroxylase to L-5-HTP, followed by decarboxylation of L-5-HTP by renal

LAAD to 5-HT. This approach could provide an alternative strategy to

administration of glu-5-HTP to augmenting 5-HT synthesis in the kidney.

The study described in this chapter compared the relative effectiveness of

equimolar amounts of glu-TRP and glu-5-HTP in terms of their ability to act as

substrates for 5-HT synthesis and also in their actions on urinary sodium excretion.

7.2. Methods

Nine healthy male subjects, aged 19-38 years (mean 30.7 years) and weighing 53.2-

82.4 kg (mean 71.6 kg), were recruited to this randomised, single-blind, placebo-

controlled, cross-over study. Each subject attended on 3 separate days, at least

1 week apart. They refrained from alcohol for 24 h, abstained from xanthine-

containing drinks from 18.00 h, and fasted from 22.00 h the evening before each

study day. Salt intake was not strictly controlled but dietary advice was given to

avoid excess salt over the 36 h prior to each study day.

The subjects arrived at the clinical investigation unit at about 08.00 h having

drunk 500 ml of tap water one hour previously. They received intravenous 0.9%

NaCl at a constant rate of 5 ml min"1 for the next 7 h. After a 3 h run-in period
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(time = 3 h), an equimolar amount (45 nmol kg"1 min"1) of glu-5-HTP (16.6 jxg kg"1
min"1) or glu-5-TRP (15.5 jug kg"1 min"1) in 0.9% saline, made up to a total volume

of 30 ml, was infused intravenously at 0.5 ml min"1 for 1 h. Placebo was 30 ml of

saline alone. Accurately timed consecutive urine collections of about 30 min

duration were started half an hour before and continued until 3 h after the

completion of the infusion of the test compounds. In addition to the saline

administered intravenously, the subjects drank 200 ml of water half-hourly. These

measures were used to promote an adequate natriuresis and diuresis. The subjects

remained supine or semi-recumbent throughout the experiment except when

standing up to micturate.

The volume of each urine collection was recorded and aliquots stored at -40° C

for analysis of sodium, glu-TRP, tryptophan, 5-HTP, 5-HT and 5-HIAA. Venous

blood samples were collected at 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 and 7 h for

measurement of plasma glu-TRP, L-tryptophan and aldosterone. Plasma and

urinary glu-TRP and L-tryptophan; plasma aldosterone; and urinary 5-HTP, 5-HT

and 5-HIAA were analysed as described in section 2.5.

All results are expressed as means ± SD. Variables measured serially on the

three experimental days were analysed by three-way repeated measures ANOVA

giving the effect of subjects, treatment (type of infusion), time and the interaction of

treatment and time. The differences from baseline (preinfusion) values were used in

the analyses to allow for variable baseline values. The 3-7 h cumulative urinary

metabolite and sodium data following infusion of glu-5-HTP and glu-TRP were

compared with those following placebo by Student's t-test for paired observations

and the 95% CIdiff of the means presented where appropriate. Effects were

considered to be statistically significant when the P values were less than 0.05.
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7.3 Results

Table 7-1 shows the urinary excretion rates of tryptophan, 5-HTP, 5-HT, 5-HIAA

and sodium for each 30 min period before, during and after infusion of placebo, glu-

5-HTP and glu-TRP. Urinary excretion of 5-HTP, 5-HT and 5-HIAA increased

markedly after administration of glu-5-HTP. The 3-7 h cumulative 5-HT excretion

after infusion of glu-5-HTP was 34.8 ± 8.0 |imol compared to 0.10 ± 0.02 jimol

after placebo infusion (P < 0.001) and this increase in urinary 5-HT excretion

represented 18 ± 3% of the infused dose of glu-5-HTP (on a molar basis). At the

end of the study period, 64 ± 6% of infused glu-5-HTP was recovered in the urine

as the sum of 5-HTP, 5-HT and 5-HIAA.

In contrast, after infusion of glu-TRP, there were no increases in urinary

excretion of 5-HTP, 5-HT and 5-HIAA (Table 7-1). The urinary tryptophan

excretion data are presented (and analysed) as changes from baseline (2.5-3.0 h

period) (Figure 7-1) to allow for the different baseline excretion rates before

infusion of placebo and glu-TRP (Table 7-1). Mean urinary tryptophan excretion

values were slightly greater after infusion of glu-TRP than after placebo and there

was a significant treatment x time interaction (P < 0.05) in the urinary tryptophan

excretion rates after administration of glu-TRP when compared with placebo

infusion. Cumulative tryptophan excretion over the 4 h period was 17.7 ± 7.7 jimol

after infusion of glu-TRP and 13.4 ± 7.0 (tmol after placebo (95% CIdiff: 0.8 to 7.8

pmol; P < 0.05). The increase in tryptophan excretion represented less than 3% of

the infused dose of glu-TRP. If allowance is made for the different urinary

tryptophan excretion rates just before infusion, the mean cumulative urinary

tryptophan excretion after glu-TRP was only 1.8 pmol (95% CIdiff: -3.2 to 6.8 pmol;

P = 0.4) greater than after placebo infusion. There were no significant increases in

plasma tryptophan concentrations after glu-TRP compared with placebo. Plasma

glu-TRP reached a peak level at the end of glu-TRP infusion and declined with time

(Figure 7-1). Glu-TRP was undetectable in urine.

196



The urinary excretion of sodium increased progressively on the placebo day in

response to infusion of saline (Table 7-1; Figure 7-2) as has been seen in other

studies (see Chapters 3-6). Glu-5-HTP, but not glu-TRP, significantly attenuated

the increase in sodium excretion when compared with placebo (P < 0.001).

Cumulative urinary sodium excretion was reduced by 16.2 ± 7.9 mmol following

glu-5-HTP compared with placebo infusion (95% CIdiff: 10.1 to 22.3 mmol; P <

0.001). The cumulative sodium excretion after glu-TRP was not different from that

after placebo (95% CIdiff: -2.4 to 12.2 mmol; P = 0.2).

Glu-5-HTP produced a significant increase in plasma aldosterone concentration

when compared with placebo infusion (P < 0.01), whereas glu-TRP was without

effect (Figure 7-3). There were no significant changes in blood pressure or pulse

rate between the 3 study days (Figure 7-4), and there were no reported or observed

side effects from either dipeptide.
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Table 7-1. Mean (SD) urinary excretion rates of tryptophan, 5-HTP, 5-HT, 5-HIAA and
sodium before (period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4 h) and after (period
4.0-4.5 h to period 6.5-7.0 h) infusion of placebo, glu-5-HTP and glu-TRP (n = 9). A value of
0 is entered where a variable was below the limit of detection of the assay used.

2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5

Time (h)
4.5-5.0 5.0-5.5 5.5-6.0 6.0-6.5 6.5-7.0

Tryptophan excretion (nmol miri1)
Placebo 58 53 56 55 56 53 56 59 59

(29) (30) (33) (32) (30) (26) (31) (27) (30)
Glu-TRP 68 69 82 89 83 61 71 70 63

(40) (41) (51) (39) (36) (23) (35) (29) (26)

5-HTP excretion (nmolmin')
Placebo 0 0 0 0 0 0 0 0 0

Glu-5-HTP 0 204 473 416 235 146 85 64 49

(35) (56) (42) (74) (42) (16) (20) (13)
Glu-TRP 0 0 0 0 0 0 0 0 0

5-HT excretion (nmol min1)
Placebo 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
Glu-5-HTP 0.4 100 240 279 193 137 90 67 60

(0.1) (31) (50) (59) (43) (43) (29) (23) (23)
Glu-TRP 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.6

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.3) (0.2)

5-HIAA excretion (nmolmin')
Placebo 0 0 0 0 0 0 0 0 0

Glu-5-HTP 0 81 191 251 244 209 155 120 103

(83) (91) (57) (51) (66) (49) (38) (51)
Glu-TRP 0 0 0 0 0 0 0 0 0

Sodium excretion (pmolmin')
Placebo 261 279 290 296 295 315 340 346 343

(122) (138) (144) (162) (99) (147) (184) (164) (134)
Glu-5-HTP 277 272 230 216 241 270 268 282 308

(75) (105) (75) (61) (54) (88) (83) (83) (82)
Glu-TRP 270 297 310 353 362 331 338 370 377

(107) (122) (164) (158) (169) (130) (139) (121) (143)
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Figure 7-1. Plasma glu-TRP concentrations, plasma tryptophan concentrations, and changes
(A) in urinary excretion rates of tryptophan from baseline (period 2.5-3.0 h) after infusion of
placebo (•) and glu-TRP (A). Values shown are means ± SD (n = 9).
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Figure 7-2. Changes (A) in urinary excretion rates of sodium from baseline (period 2.5-3.0 h)
following infusion of placebo (•), glu-5-HTP (a) and glu-TRP (■). Values shown are means ±
SD (n = 9).
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Figure 7-3. Plasma aldosterone concentration before, during and after infusion of placebo (•),
glu-5-HTP (a) and glu-TRP (■). Values shown are means ± SD (n = 9).
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Figure 7-4. Mean arterial blood pressure (MAP) and pulse rate before, during and after
infusion of placebo (•), glu-5-HTP (A) and glu-TRP (■). Values shown are means ± SD
(n = 9).
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7.4 Discussion

Administration of glu-5-HTP was associated with increases in the urinary excretion

of 5-HTP, 5-HT and 5-HIAA together with a reduction in excretion of sodium in

agreement with our earlier studies (see Chapters 4-6). This sodium retaining effect

was previously shown to be dependent on the conversion of glu-5-HTP to 5-HT {see

Chapter 6). In contrast, infusion of an equimolar dose of glu-TRP did not increase

urinary excretion of 5-HTP, 5-HT or 5-HIAA, and it had no effect on urinary

sodium excretion. As the kidney is highly active in the uptake and metabolism of

y-glutamyl derivatives of amino acids and peptides [324,325,329], it would have

been expected that glu-TRP would be taken up actively by the proximal tubules in

an analogous manner to glu-5-HTP or gludopa [329-331,333,334,341]. It should be

readily converted by yGT to L-tryptophan thus releasing large amounts of the free

amino acid at the proximal tubules. L-tryptophan is known to be actively and

efficiently reabsorbed in the proximal tubules [185,186], and it should therefore be

available for the onward synthesis of 5-HT by the sequential actions of tryptophan

5-hydroxylase and LAAD present in the tubular cells. The absence of a rise in

urinary 5-HTP or 5-HT and of an effect on sodium excretion after glu-TRP infusion

in the present study suggests that there was no effective renal conversion of glu-

TRP to L-5-HTP and 5-HT.

We subsequently estimated plasma and urinary levels of glu-TRP and

L-tryptophan in view of the above findings to exclude the possibility that glu-TRP

may not have been metabolised and was excreted in an intact form. Plasma glu-

TRP reached a peak level at the end of glu-TRP infusion and then declined with

time but we were unable to detect glu-TRP in urine. There was a small increase in

urinary tryptophan excretion after administration of glu-TRP without concomitant

changes in plasma tryptophan concentrations. These additional observations

indicate that the glutamyl linkage of glu-TRP was cleaved by renal yGT but the

kidney was unable to utilise the L-tryptophan released from glu-TRP as a substrate
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for the synthesis of 5-HT. It appears that for some reason, the enzyme tryptophan

5-hydroxylase, which has been shown to be present in the human cadaveric kidney

[35], was not available to the L-tryptophan formed intrarenally from glu-TRP under

the conditions of the study. The increment in urinary L-tryptophan excretion

accounted for only 3%, at most, of the infused dose of glu-TRP. L-tryptophan, like

other essential amino acids, is rapidly and almost totally reabsorbed by the renal

tubules [185,186,456,457] and this may explain partly our failure to detect a more

substantial increase of tryptophan excretion in urine. The usual clearance of

L-tryptophan in the dog, for instance, was about 0.2 ml min"1 and the maximal

clearance attained was 0.47 ml min"1 when blood level increased 12-fold [456], In

man, the renal clearance of L-tryptophan after its oral administration (100 mg kg"1)
was reported to be 0.4-0.8% of the creatinine clearance value in one study [174],

The failure of plasma tryptophan concentrations to rise and the fact that there were

no significant increases in the urine of the metabolites of 5-HT suggests that much

of L-tryptophan released from glu-TRP was converted to products which were not

measured in this study. This would not be totally unexpected since L-tryptophan is

metabolised along a number of alternative metabolic pathways. Previous studies

have suggested that only approximately 1% of dietary tryptophan is normally

metabolised via the 5-HT pathway [33,458-460],

Tryptophan 5-hydroxylase activity was identified in the frog [36], but not in the

rat [35], adrenal gland, and the enzyme LAAD is known to be present in this organ

[31,36,39]. An increase in plasma aldosterone concentration has been demonstrated

in man following administration of the 5-HT precursors, L-tryptophan [95] and L-5-

HTP [96,97,105; see Chapters 3 and 4], The infusion of glu-5-HTP increased

plasma aldosterone levels in keeping with observations from our previous studies

(see Chapters 3, 4 and 6). This may be due to recirculation of L-5-HTP or 5-HT

produced within the kidney, acting on the adrenal gland, or to the conversion of glu-

5-HTP to 5-HT within this organ. Glu-TRP, unlike glu-5-HTP, exerted no effect on
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aldosterone release in the present study. This finding should be interpreted

cautiously but could indicate that there was no appreciable increase in 5-HT

concentration within the adrenal gland after the administration of this dipeptide.

The results of the present investigation are reminiscent of the study by Jeffrey et

al. [338] which showed that y-L-glutamyl-L-dopa (gludopa), but not y-L-glutamyl-

L-tyrosine, increased the urinary excretion of dopamine and sodium. The kidney

was unable to use L-tyrosine, released from its glutamyl precursor, for the synthesis

of dopamine and the study supported the contention that circulating L-dopa, rather

than L-tyrosine, is the main physiological source for the generation of renal and, in

turn, urinary dopamine. Similarly, it is conceivable that L-5-HTP, rather than

L-tryptophan, is the principal precursor of 5-HT formed locally in the kidney.

In conclusion, glu-TRP, unlike glu-5-HTP, was not converted to 5-HT

intrarenally and probably, as a result, had no effect on the urinary excretion of

sodium. Glu-5-HTP differs from glu-TRP only in the presence of an additional

hydroxyl group at the C5 position of the indole ring. This group would appear to be

important in the active uptake of the amine precursor by the renal tubules and its

subsequent conversion to 5-HT.
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CHAPTER EIGHT

THE RENAL METABOLISM AND EFFECTS OF SEPARATE AND

SIMULTANEOUS INFUSIONS OF THE GLUTAMYL DERIVATIVES OF

L-DOPA AND 5-HYDROXY-L-TRYPTOPHAN

IN SALT-REPLETE HEALTHY MAN
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8.1 Introduction

The same enzyme, aromatic LAAD, catalyses the decarboxylation of L-dopa and

L-5-HTP to produce dopamine and 5-HT respectively [31]. These biogenic amines

are both primarily metabolised by MAO. 5-HT is converted by MAO-A to

5-hydroxyindoleacetaldehyde which is promptly degraded to produce 5-HIAA.

Dopamine, on the other hand, is readily metabolised by both MAO-A and MAO-B

to form DOPAC. Both LAAD and MAO are present in high concentrations in the

mammalian kidney and there is evidence that dopamine [432-436] and 5-HT (see

section 1.2.3) can be synthesised intrarenally from their immediate precursors.

Increased renal dopamine production is associated with a natriuresis whereas

enhanced 5-HT synthesis is accompanied by a reduction in urinary sodium output.

Dopamine and 5-HT therefore share common synthetic and metabolic pathways but

have opposite effects on sodium excretion. It is possible that these amines are

generated within the kidney as reciprocal regulatory paracrine substances for the

local control of sodium excretion, and more, or less, dopamine and 5-HT are

synthesised depending on the need to excrete or conserve sodium [268,436]. This

proposition is supported by the observations that a reduction in 5-HT excretion

[461] and an increase in dopamine excretion [462-466] occur with salt-loading,

whereas a low sodium diet results in decreased urinary excretion of dopamine [467]

and an increased excretion of 5-HT [461] in man. An increased urinary excretion of

5-HT was, however, observed in rats which were fed on a high salt diet [469].

The kidney is highly active in the uptake and metabolism of y-glutamyl

derivatives of amino acids and peptides [324,329] as a result of the high activity of

yGT in the renal tissues, particularly in the proximal tubules [308-316], These

observations suggest that the y-glutamyl group may provide a convenient carrier for

directing compounds containing an amino group into kidney metabolism resulting

in relative renal selectivity and absence of systemic effects. Administration of

gludopa, the glutamyl derivative of L-dopa, has been employed to increase the
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delivery of L-dopa to the kidney for decarboxylation to dopamine [329,334-342].

We have applied a similar approach and administered glu-5-HTP, the glutamyl

derivative of L-5-HTP, to enhance the renal delivery of L-5-HTP and demonstrated

a marked increase in the renal synthesis of 5-HT (see Chapters 3-7). Renal yGT

catalyses the cleavage of the y-glutamyl linkage of these glutamyl compounds. The

resulting L-dopa and L-5-HTP are then decarboxylated to dopamine and 5-HT

respectively by LAAD which is also present in high concentrations in the proximal

tubules of the kidney [31,35,139,141-143], Administration of gludopa and glu-5-

HTP has the advantage that L-dopa and L-5-HTP are largely released within the

kidney thus allowing the renal effects of locally formed dopamine and 5-HT to be

studied with a minimum of confounding systemic effects whereas L-dopa and L-5-

HTP, infused intravenously, may exert systemic and confounding effects.

In the present study, we have infused equimolar doses of gludopa and glu-5-HTP

separately, and together, in salt-replete healthy male subjects to investigate whether

the administration of one amine precursor affects the metabolism of the other given

that similar enzymes are involved in the synthesis and degradation of dopamine and

5-HT. We were also interested as to whether dopamine or 5-HT is generated

preferentially and the overall effect on sodium excretion.
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8.2 Methods

Eight male subjects, aged 19-37 years (mean 27.9 years) and weighing 54.4-86.2 kg

(mean 70.3 kg), took part in this randomised, single-blind, placebo-controlled,

within-subject cross-over study. The subjects were each studied on 4 occasions,

separated by at least 10 days. They had been given dietary advice to avoid salty and

highly processed food and to avoid adding salt to their food over the 3 days before

each study day. During that period, they took 5 tablets of Slow Sodium 4 times

daily at 08.00 h, 12.00 h, 16.00 h and 20.00 h, giving a total of 200 mmol additional

sodium intake per day. These measures were taken in an attempt to ensure that the

subjects were salt-replete (or salt-loaded) and to reduce the variability in dietary

sodium intake between the study days. The subjects refrained from alcohol for 24

h, abstained from xanthine-containing drinks from 18.00 h, and fasted from 22.00 h

the evening before each study day.

They arrived at the clinical investigation unit at about 08.00 h having drunk

500 ml of tap water 1 h previously. They received loading doses of 0.5 g of PAH

and 3.5 g of polyfructosan (Inutest) intravenously at the start of the study (time =

Oh) followed by a maintenance infusion of PAH (3.75 g f1) and polyfructosan

(4.5 g f1) in 0.9% NaCl at a constant rate of 5 ml min"1 for the next 6 h to allow

estimation of ERPF and GFR. After a 3 h run-in period (time = 3 h), they received

placebo or gludopa from one infusion pump and placebo or glu-5-HTP from another

pump intravenously into the same arm. Equimolar amounts (54.4 nmol kg"1 min"1)
of gludopa (18.7 pg kg"1 min"1) and glu-5-HTP (20 pg kg"1 min"1) were given over

1 h. Each solution was made up to a total volume of 30 ml with saline and infused

at 0.5 ml min"1. Placebo was 30 ml of saline alone. Each subject therefore received

the following four combinations in a randomised sequence: placebo + placebo;

gludopa + placebo; placebo + glu-5-HTP; and gludopa + glu-5-HTP.

Accurately timed consecutive urine collections of about 30 min duration were

started half an hour before and continued for 3 h after the start of the infusion of the
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test compounds. In addition to the saline administered intravenously, the subjects

drank 200 ml of water half-hourly to promote an adequate urine flow. They

remained semi-recumbent or supine throughout the experiment except when

standing to micturate. The volume of each urine collection was recorded and

aliquots removed and stored at -40° C for analysis of sodium, potassium, PAH,

polyfructosan, dopa, dopamine, DOPAC, 5-HTP, 5-HT, and 5-HIAA. Urine

samples for dopamine, DOPAC, 5-HT and 5-HIAA were acidified (pH < 3.0) with

5 M HC1 acid to prevent their oxidation. Venous blood samples were collected at 0,

2.5, 3, 3.5, 4, 4.5, 5 and 6 h for measurement of plasma sodium, PAH, and

polyfructosan, and at 2, 3, 3.5, 4, 4.5, 5, 5.5 and 6 h for determination of PRA and

plasma aldosterone. Plasma was separated after centrifugation at 4° C and stored at

-40° C until analysis. Plasma aldosterone and PRA; plasma and urinary

electrolytes, PAH and polyfructosan; and urinary dopa, dopamine, DOPAC, 5-HTP,

5-HT and 5-HIAA were measured as described previously in section 2.5.

Renal clearance was calculated using the standard formula UV/P, where U is the

urine concentration, V is the urine flow rate and P is the mean of the plasma levels

at the beginning and end of each clearance period {see section 2.6). ERPF and GFR

were estimated by calculating the renal clearances of PAH (CPAH) and polyfructosan

(Cin) respectively and the values were corrected to a body surface area of 1.73 m2.
The filtration fraction (FF) was calculated as (CIn/CPAH) x 100%. Fractional

excretion of sodium (FENa) was calculated as renal clearance of sodium divided by

GFR (CIn) and expressed as a percentage.

All results are expressed as means ± SD. Variables measured serially on the 4

experimental days were compared by repeated measures ANOVA, with the different

treatment (infusion regimens) and time being the within-subject repeated measures.

If there was a significant overall difference between the four experimental days,

follow-up paired comparison between the infusion regimens were made to

determine where the differences lie, with correction of the P value by the Bonferroni
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method to allow for multiple comparisons and protect against a type 1 error. The

differences from baseline (preinfusion) values were used in the analyses to allow for

variable baseline values. Similarly, the changes in 3-6 h cumulative sodium,

potassium and urine output, relative to baseline excretion rates, were calculated and

used in the analysis rather than the absolute 3-6 h cumulative values to take into

account the differences in baseline excretion values between study days. The

cumulative data between the different treatment regimens were compared using

two-way ANOVA, followed by Student's t test for paired observations if ANOVA

revealed a significant overall difference. The P values were adjusted by the

Bonferroni method, and the associated 99%, rather than 95%, confidence interval of

the difference between the means (CIdiff) quoted where appropriate. Effects were

considered to be statistically significant when the P values were less than 0.05.
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8.3 Results

Urinary excretion ofdopa, dopamine and DOPAC

Table 8-1 shows the urinary excretion rates of dopa, dopamine and DOPAC for

each 30 min period before, during and after administration of the four infusion

regimens. Urinary dopamine excretion remained relatively constant during infusion

of saline on the placebo day. The administration of gludopa produced a marked

increase in the rate of dopamine excretion from a baseline value of 1.6 nmol min"1
during the preinfusion clearance period (2.5-3.0 h) to a peak value of 622 nmol

min"1 during the collection period (3.5-4.0 h) at the end of the infusion. The 3-6 h

cumulative dopamine excretion after gludopa was 215-fold higher than that

following placebo infusion only (Table 8-2). This increase in urinary dopamine

excretion represented 27 ± 7% of the infused dose of gludopa (on a molar basis)

(Table 8-3). Administration of gludopa also produced marked increases in the

urinary excretion rates of dopa and DOPAC. At the end of the study period, 54 ±

11% of infused gludopa was recovered in the urine as the sum of dopa, dopamine

and DOPAC. The urinary excretion values of these 3 metabolites following the

simultaneous infusion of gludopa and glu-5-HTP were not significantly different

from those observed after the infusion of gludopa alone (Tables 8-1 to 8-3). Thus,

the 3-6 h cumulative excretion of dopamine was 60.4 ± 11.3 ftmol after infusion of

gludopa and 61.8 ± 11.4 |imol after the combined infusion of the two dipeptides

(mean difference: 1.4; 99% CIdiff: -5.1 to 7.8 jamol). The administration of glu-5-

HTP alone was without effect on the urinary excretion of dopa, dopamine and

DOPAC when compared with infusion of placebo.

Urinary excretion of5-HTP, 5-HT and 5-HIAA

Table 8-4 shows the urinary excretion rates of 5-HTP, 5-HT and 5-HIAA on the 4

experimental days. Urinary 5-HT excretion rate increased markedly from 0.4 nmol

min"1 during the run-in period to a peak value of 291 nmol min"1 at the end of glu-5-

HTP infusion whereas it remained fairly constant on the placebo day. The 3-6 h
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cumulative 5-HT excretion after glu-5-HTP was about 430-fold higher than that

following placebo infusion (Table 8-2) and this increment in urinary 5-HT excretion

was equivalent to 15 ± 2% of the infused dose of glu-5-HTP (on a molar basis)

(Table 8-5). There were also marked increases in the urinary excretion rates of

5-HTP and 5-HIAA after the administration of glu-5-HTP. During the 3-6 h period,

56 ± 5% of the dose of glu-5-HTP infused was recovered in the urine as the sum of

5-HTP, 5-HT and 5-HIAA. The urinary excretion of these 3 metabolites following

the simultaneous infusion of gludopa and glu-5-HTP were not significantly different

from those measured after infusion of glu-5-HTP alone (Tables 8-2, 8-4, 8-5). The

3-6 h cumulative excretion of 5-HT, for instance, was 34.7 ± 9.0 jamol after glu-5-

HTP and 34.8 ± 7.4 pmol after the combined infusion (mean difference: 0.2; 99%

CIdiff: -7.3 to 7.6 pmol). The infusion of gludopa alone produced an increase in the

urinary excretion rate of 5-HT from an average baseline value of 0.5 nmol min"1 to a

mean peak value of 4.3 nmol min"1. The 3-6 h cumulative 5-HT excretion was 481

± 125 nmol after gludopa infusion and 81 ± 23 nmol after placebo (mean difference:

400; 99% CIdiff: 242 to 558 nmol; P < 0.001). The increase in 5-HT excretion

induced by gludopa occurred in every subject.

Urinary excretion ofsodium, potassium and water

Gludopa significantly increased urinary sodium excretion (P < 0.05) and FENa (P <

0.02) when compared with infusion of placebo only (Table 8-6; Figure 8-1). The

changes in the 3-6 h cumulative sodium excretion values, relative to the baseline

excretion rates (Table 8-7), after infusion of placebo and gludopa were +2.3 ± 15.6

and +36.1 ± 20.6 mmol respectively (mean difference: 33.8; 99% CIdiff: 1.4 to 66.1

mmol; P < 0.05). In contrast, the mean urinary excretory rates of sodium and FENa

values after glu-5-HTP infusion were lower than those observed on the placebo day

but the differences were not statistically significant (mean difference in cumulative

sodium excretion: -8.7; 99% CIdiff: -33.1 to 15.6 mmol). The simultaneous infusion

of gludopa and glu-5-HTP produced an increase in the urinary excretion of sodium
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and FENa when compared with administration of glu-5-HTP only (P < 0.05). The

changes in the 3-6 h cumulative sodium excretion relative to baseline values after

the combined infusion (gludopa + glu-5-HTP) and infusion of glu-5-HTP only were

+26.3 ± 22.4 mmol and -6.5 ± 16.5 mmol respectively (mean difference: 32.8; 99%

CIdiff: 0.3 to 65.2 mmol; P < 0.05). The mean urinary sodium excretion rates after

the combined infusion of gludopa and glu-5-HTP were greater than those measured

on placebo day but the differences were not statistically significant (mean difference

in cumulative sodium excretion: +24.0; 99% CIdiff: -4.6 to 52.6 mmol). The

changes in FENa values after the combined infusion of gludopa and glu-5-HTP,

however, nearly reached statistical significance (P = 0.06) when compared with

placebo infusion. The urinary sodium excretion rate and FENa values after the

concomitant infusion of gludopa and glu-5-HTP were not significantly different

from those observed on gludopa infusion day (mean difference in the cumulative

sodium excretion: -9.8; 99% CIdiff: -39.9 to 20.4 mmol).

The urinary excretion rate values of potassium were not significantly different

between the 4 experimental days (Table 8-6; Figure 8-2). Similarly, there were no

significant differences in the changes in cumulative potassium excretion between

the 4 infusion regimens (Table 8-7; F(3,21) = 0.27, P = 0.9). There was a trend

towards an increase in urine flow rate after infusion of gludopa and a reduction in

urine output after glu-5-FITP but these changes were not statistically significant

when compared with those observed after infusion of placebo (Table 8-6; Figure

8-3). There was, however, a significant treatment x time interaction (P < 0.02)

when the urine flow rate values after gludopa infusion were compared with those

after glu-5-HTP infusion. There were no significant differences in the changes in

cumulative urine output between the 4 study days (Table 8-7; F(3,21) = 0.97, P =

0.4). The variances of the changes in urine output on the 4 days were, however,

wide. The mean difference in cumulative urine output between gludopa infusion

and placebo infusion, for instance, was 180 ml (95% CIdjff: -330 to 690 ml).
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ERPF, GFR and FF

Glu-5-HTP produced a significant reduction in ERPF when compared with placebo

infusion (P < 0.02; Table 8-8; Figure 8-4). The changes in ERPF after infusion of

gludopa alone or after the combined infusion of gludopa and glu-5-HTP were not

significantly different from those measured on placebo day. There were no

significant differences in GFR or FF values between the 4 experimental days. There

was a trend towards a decrease in GFR after infusion of glu-5-HTP but this

reduction just failed to reach statistical significance when compared with placebo

(P = 0.08). As a result, the FF values after infusion of glu-5-ElTP, in contrast to the

ERPF values, were not significantly different from those observed after infusion of

placebo only.

Plasma aldosterone and PRA

Compared with infusion of placebo only, glu-5-HTP (P < 0.05) and the combined

infusion of gludopa and glu-5-HTP (P < 0.05) produced significant increases in

plasma aldosterone levels whereas infusion of gludopa alone was without effect

(Figure 8-5). The mean plasma aldosterone concentrations during the simultaneous

infusion of gludopa and glu-5-HTP appeared lower than those after infusion of glu-

5-HTP alone but the differences were not statistically significant. PRA was

suppressed to below the limit of detection of the assay (< 0.35 ng ANG I ml"' h"1)
on all 4 study days in 5 subjects and on 3 of the study days in another subject.

Statistical analysis was deemed inappropriate since only two subjects had detectable

PRA values on all 4 experimental days. The mean PRA values in these two

subjects are shown in Figure 8-6.

There were no differences in pulse rate and blood pressure between the 4 study

days (Figure 8-7). No adverse effects were reported during the study.
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Table 8-1. Mean (SD) urinary excretion rates of dopa, dopamine and DOPAC for each 30 min
period before (period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period
4.0-4.5 h to period 5.5-6.0 h) administration of the 4 infusion regimens (n = 8). A value of 0 is
entered when the measured variable was below the limit of detection of the assay employed.

Time (h)
2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Dopa excretion (nmol min1)
Placebo + 0 0 0 0 0 0 0

placebo
Gludopa + 0 160 436 314 163 92 53

placebo (43) (74) (64) (34) (37) (13)
Placebo + 0 0 0 0 0 0 0

glu-5-HTP
Gludopa + 0 143 343 309 159 86 49

glu-5-HTP (31) (72) (117) (86) (39) (21)

Dopamine excretion (nmol min')
Placebo + 1.6 1.7 1.7 1.5 1.5 1.6 1.5

placebo (0.5) (0.4) (0.4) (0.2) (0.3) (0.3) (0.2)
Gludopa + 1.6 272 622 533 274 179 120

placebo (0.4) (92) (129) (119) (48) (53) (13)
Placebo + 1.6 1.9 1.7 1.8 1.8 1.9 1.8

glu-5-HTP (0.3) (0.2) (0.3) (0.3) (0.3) (0.3) (0.3)
Gludopa + 1.6 262 597 566 312 194 124

glu-5-HTP (0.3) (67) (140) (109) (92) (51) (20)

DOPAC excretion (nmol min ■')
Placebo + 3.7 3.6 3.9 3.6 3.5 3.5 3.2

placebo (2.5) (2.0) (2.2) (1.4) (1.3) (1.0) (1.0)
Gludopa + 3.4 89 248 239 131 88 57

placebo (1.1) (20) (50) (47) (22) (31) (9)
Placebo + 2.9 2.9 3.1 3.3 3.3 3.0 2.8

glu-5-HTP (0.8) (1.0) (1.8) (1.4) (1.2) (0.7) (0.7)
Gludopa + 3.6 113 260 264 156 98 61

glu-5-HTP (1.7) (83) (60) (43) (40) (26) (14)

Table 8-2. The 3-6 h cumulative excretion values (pmol) of dopa, dopamine, DOPAC, 5-HTP,
5-HT and 5-HIAA on the 4 experimental days. A value of 0 is entered when the measured
variable was below the limit of detection of the assay employed. Values shown are means ± SD
(n = 8).

Infusion
Placebo+Placebo Gludopa+Placebo Placebo+Glu-5-HTP Gludopa+Glu-5-HTP

Dopa 0 36.89 + 3.76 0 32.76 + 9.32

Dopamine 0.28 + 0.04 60.39+ 11.30 0.32 + 0.04 61.75 + 11.36

DOPAC 0.64 + 0.26 25.69 + 4.42 0.55 + 0.20 28.61+6.01

5-HTP 0 0 58.62+ 11.95 62.64 + 6.65

5-HT 0.08 + 0.02 0.48 + 0.13 34.67 + 9.02 34.83 + 7.38

5-HIAA 0 0 34.83 + 5.33 35.16 + 4.64
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Table 8-3. Percentage urinary recoveries (%) of infused gludopa as dopa, dopamine and
DOPAC after infusion of gludopa alone and after the simultaneous infusion of gludopa and glu-
5-HTP. Values shown are means ± SD (n = 8). The 99% CI values of the differences between
the means of the 2 regimens are quoted.

Gludopa
Infusion

Gludopa + Glu-5-HTP 95% CI ofdifference

Dopa 16.2+1.9 14.3 ±3.6 -1.0 to 4.7

Dopamine 26.7 + 7.1 27.2 + 6.5 -2.3 to 1.4

DOPAC 11.1 ±2.4 12.2 + 1.7 -2.5 to 0.2

Total 54.0+10.7 53.6 + 8.8 -4.4 to 5.0

Table 8-4. Mean (SD) urinary excretion rates of 5-HTP, 5-HT and 5-HIAA for each 30 min
period before (period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period
4.0-4.5 h to period 5.5-6.0 h) administration of the 4 infusion regimens (n = 8). A value of 0 is
entered when the measured variable was below the limit of detection of the assay employed.

Time (h)
2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

5-HTP excretion (nmol min1)
Placebo + 0 0 0 0 0 0 0

placebo
Gludopa + 0 0 0 0 0 0 0

placebo
Placebo + 0 241 580 481 321 193 124

glu-5-HTP (54) (96) (70) (154) (96) (42)
Gludopa + 0 261 605 547 325 211 138

glu-5-HTP (73) (174) (57) (76) (70) (53)

5-HT excretion (nmolmin')
Placebo + 0.4 0.5 0.5 0.4 0.4 0.4 0.5

placebo (0.1) (0.2) (0.1) (0.1) (0.1) (0.2) (0.1)
Gludopa + '0.5 2.0 3.8 4.3 2.4 2.0 1.4

placebo (0.1) (0.7) (1.4) (1.3) (0.6) (0.5) (0.5)
Placebo + 0.4 98 291 291 221 152 101

glu-5-HTP (0.1) (28) (77) (75) (69) (64) (33)
Gludopa + 0.5 92 303 333 209 134 88

glu-5-HTP (0.1) (37) (64) (84) (67) (57) (37)

5-HIAA excretion (nmol min'1)
Placebo + 0 0 0 0 0 0 0

placebo
Gludopa + 0 0 0 0 0 0 0

placebo
Placebo + 0 75 210 242 253 201 180

glu-5-HTP (18) (65) (65) (50) (47) (37)
Gludopa + 0 92 208 255 248 204 169

glu-5-HTP (24) (64) (37) (37) (44) (47)
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Table 8-5. Percentage urinary recoveries (%) of infused glu-5-HTP as 5-HTP, 5-HT and
5-HIAA after infusion of glu-5-HTP alone and after the simultaneous infusion of gludopa and
glu-5-HTP. Values shown are means ± SD (n = 8). The 99% CI values of the differences
between the 2 regimens are quoted.

Infusion
Glu-5-HTP Gludopa + Glu-5-HTP 95% CI ofdifference

5-HTP 25.6 + 3.9 27.5 ±2.7 -4.8 to 1.0

5-HT 15.0 ±2.3 15.2 ±2.4 -2.3 to 1.9

5-HIAA 15.3 ±2.6 15.5 ±2.5 -2.1 to 1.8

Total 55.9 ±4.9 58.2 ±5.4 -5.7 to 1.1

Table 8-6. Mean (SD) sodium excretion rates, FENa, potassium excretion rates and urine flow
rates for each 30 min period before (period 2.5-3.0 h), during (period 3.0-3.5 h and period 3.5-
4.0 h) and after (period 4.0-4.5 h to period 5.5-6.0 h) administration of the 4 infusion regimens
(n = 8).

Time (h)
2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

Sodium excretion (pmol min')
Placebo + 389.2 373.9 392.9 425.1 418.2 409.8 390.8

placebo (132.0) (113.3) (122.5) (155.0) (109.7) (94.4) (87.0)
Gludopa + 397.2 475.0 663.3 725.3 593.9 577.8 547.1

placebo (153.6) (127.9) (194.7) (154.5) (125.5) (136.7) (116.7)
Placebo + 368.5 343.0 311.2 295.5 312.1 350.7 382.3

glu-5-HTP (95.5) (89.3) (67.1) (48.5) (69.5) (73.5) (89.4)
Gludopa + 405.2 478.9 557.7 650.3 588.3 558.7 480.1

glu-5-HTP (100.5) (90.6) (129.0) (219.5) (138.0) (138.1) (114.8)

FENa (%)
Placebo + 2.8 2.7 3.0 3.0 3.0 2.9 2.8

placebo (0.8) (0.8) (0.9) (0.7) (0.7) (0.6) (0.7)
Gludopa + 2.8 3.4 4.8 5.0 4.3 4.1 3.8

placebo (0.8) (1.0) (1.5) (1.2) (1.1) (1.0) (0.9)
Placebo + 2.6 2.4 2.2 2.4 2.4 2.6 2.8

glu-5-HTP (0.7) (0.5) (0.5) (0.5) (0.6) (0.7) (0.7)
Gludopa + 2.8 3.3 4.1 4.6 4.4 4.0 3.6

glu-5-HTP (0.7) (0.9) (1.3) (1.8) (1.5) (1-2) (1.0)

Potassium excretion (pmol
• -i i

min )
Placebo + 87.7 90.2 95.0 97.5 97.0 91.7 90.3

placebo (45.3) (33.5) (36.7) (42.3) (34.5) (25.8) (27.7)
Gludopa + 74.3 75.0 81.3 92.0 91.3 91.8 89.5

placebo (28.1) (25.3) (32.3) (30.8) (31.2) (27.5) (27.5)
Placebo + 76.4 83.5 90.3 82.7 87.0 88.6 82.8

glu-5-HTP (44.5) (37.7) (34.5) (34.5) (20.8) (16.1) (18.8)
Gludopa + 87.8 90.1 86.6 98.3 97.3 100.2 90.5

glu-5-HTP (31.5) (29.2) (26.7) (30.3) (18.0) (19.4) (24.1)

Urine output (ml min')
Placebo + 10.2 8.8 8.9 9.2 8.3 8.5 7.3

placebo (2.3) (2.0) (2.8) (3.1) (1.4) (2.0) (1.2)
Gludopa + 10.3 10.4 11.7 10.2 8.2 8.5 8.7

placebo (2.6) (2.4) (3.5) (1.3) (1.5) (2.7) (1.9)
Placebo + 9.4 8.2 8.3 5.5 5.5 8.0 8.6

glu-5-HTP (2.6) (2.6) (2.0) (2.2) (1.6) (2.3) (2.2)
Gludopa + 9.8 12.2 10.9 8.0 7.4 9.7 8.6

glu-5-HTP (2.1) (1.5) (3.5) (2.4) (2.6) (2.9) (1.9)
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Table 8-7. The 3-6 h cumulative sodium excretion (mmol), potassium excretion (mmol) and
urine output (ml) on the 4 experimental days, and the changes in these values relative to the
baseline excretion rates. Values shown are means ± SD (n = 8).

Placebo+Placebo
Infusion

Gludopa+Placebo Placebo+Glu-5-HTP Gludopa+Glu-5-HTP

Absolute cumulative excretion

Sodium 72.4+18.0

Potassium 16.9 + 5.6

Urine 1527 + 240

107.6 + 23.8

15.6 + 4.6

1737 + 257

59.9+11.1

15.4 + 4.5

1333 + 158

99.2 + 22.1

16.9 + 3.7

1706 + 226

Change in cumulative excretion from baseline
Sodium +2.30+ 15.6 +36.1 +20.6

Potassium +1.1+5.2 +2.2 + 5.5

Urine -301 +435 -121 +443

-6.5+16.5

+ 1.7 + 3.9

-354 + 421

+26.3 +22.4
+ 1.1+3.6

-60 ± 404

Table 8-8. Mean (SD) ERPF, GFR and FF values for each 30 min period before (period 2.5-
3.0 h), during (period 3.0-3.5 h and period 3.5-4.0 h) and after (period 4.0-4.5 h to period 5.5-
6.0 h) administration of the 4 infusion regimens (n = 8).

Time (h)
2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

ERPF (ml mini
■' 1.73m'2)

Placebo + 459.9 488.7 464.0 479.2 472.2 472.5 422.1

placebo (87.7) (129.8) (137.2) (97.4) (112.9) (127.7) (68.2)
Gludopa + 546.6 532.2 565.5 595.4 551.9 556.2 527.4

placebo (161.2) (91.3) (127.3) (132.2) (122.6) (138.6) (78.7)
Placebo + 537.0 534.4 516.0 456.3 500.6 488.8 471.6

glu-5-HTP (121.8) (134.7) (120.3) (66.1) (146.8) (102.2) (47.4)
Gludopa+ 512.7 526.6 480.8 517.5 510.5 496.9 503.4

glu-5-HTP (99.6) (109.1) (90.8) (96.8) (106.9) (94.6) (96.2)

GFR (ml min1 1.73m2)
Placebo + 95.1 96.0 91.2 94.6 96.5 98.3 94.4

placebo (9.0) (18.0) (20.8) (14.8) (17.2) (13.9) (5.3)
Gludopa + 96.6 95.0 94.5 99.1 95.1 96.2 100.5

placebo (16.8) (8.3) (7.0) (6.7) (6.3) (10.0) (9.3)
Placebo + 96.9 97.8 96.5 85.9 88.7 93.1 93.6

glu-5-HTP (7.4) (16.5) (11.8) (5.0) (11.6) (15.6) (8.2)
Gludopa+ 98.1 100.4 93.9 98.2 94.6 97.3 94.0

glu-5-HTP (8.9) (9.5) (5.7) (11.1) (11.0) (10.9) (6.1)

FF(%)
Placebo + 21.3 20.3 20.5 20.2 20.9 21.7 22.9

placebo (3.9) (4.1) (5.0) (4.1) (3.2) (4.4) (3.7)
Gludopa + 18.5 18.2 17.3 17.3 17.8 18.0 19.4

placebo (3.8) (2.2) (3.3) (3.4) (3.0) (3.5) (2.7)
Placebo + 18.7 18.8 19.3 19.2 18.6 19.3 20.1

glu-5-HTP (3.6) (3.3) (3.5) (2.8) (3.9) (2.7) (3.1)
Gludopa+ 19.6 19.5 20.2 19.3 19.0 19.9 19.1

glu-5-HTP (3.1) (2.9) (4.4) (2.4) (2.8) (2.3) (2.6)
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Figure 8-1. Changes (A) in urinary excretion rates of sodium and FENa from the baseline
period (2.5-3.0 h) following infusion of placebo + placebo (•); gludopa + placebo (■); placebo
+ glu-5-HTP (A); and gludopa + glu-5-HTP (Y). Values shown are means ± SD (n = 8).
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Figure 8-2. Changes (A) in urinary excretion rates of potassium from the baseline period (2.5-
3.0 h) following infusion of placebo + placebo (•); gludopa + placebo (■); placebo + glu-5-
HTP (a); and gludopa + glu-5-HTP (▼). Values shown are means ± SD (n = 8).
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Figure 8-3. Changes (A) in urine output from the baseline period (2.5-3.0 h) following infusion
of infusion of placebo + placebo (•); gludopa + placebo (■); placebo + glu-5-HTP (a); and
gludopa + glu-5-HTP (y). Values shown are means ± SD (n = 8).
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Figure 8-4. Changes (A) in ERPF, GFR and FF from the baseline period (2.5-3.0 h) following
infusion of placebo + placebo (•); gludopa + placebo (■); placebo + glu-5-FlTP (a); and
gludopa + glu-5-HTP (▼). Values shown are means ± SD (n = 8).
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Figure 8-5. Plasma aldosterone before, during and after infusion of placebo +
placebo (•); gludopa + placebo (■); placebo + glu-5-HTP (a); and gludopa + glu-5-HTP (▼).
Values shown are means ± SD (n = 8).

Figure 8-6. Mean PRA after infusion of placebo + placebo (•); gludopa + placebo (■); placebo
+ glu-5-HTP (a); and gludopa + glu-5-HTP (▼) in 2 subjects. No SD values are shown
because PRA was only detected in 2 subjects on all 4 days (see text).
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Figure 8-7. Mean arterial blood pressure (MAP) and pulse rate before, during and after
infusion of placebo + placebo (•); gludopa + placebo (■); placebo + glu-5-HTP (a); and
gludopa + glu-5-HTP (▼). Values shown are means ± SD (n = 8).
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8.4 Discussion

Administration of gludopa was associated with marked increases in the urinary

excretion of dopa, dopamine and DOPAC together with a rise in the urinary

excretion of sodium in agreement with published studies [334-341,468], A diuresis

as well as a small increase in both ERPF and GFR have also been reported

[334,335,340], In the present study, we were unable to demonstrate significant

differences in these variables between gludopa and placebo infusion days but the

highest mean urinary flow rates were observed on the day the subjects received

gludopa. The absence of an effect on renal haemodynamics may be partly due to

the shorter duration of gludopa infusion employed, and hence the total dose of

gludopa administered. In addition, our subjects were volume expanded and salt-

replete, and the renal vasculature may exhibit background vasodilatation in such

conditions making it more difficult to demonstrate an additional vasodilator effect

of dopamine.

The renal vasodilatation, natriuresis and diuresis produced by gludopa appears to

be mediated by locally generated dopamine activating dopamine-1 (DA!) receptors

[331,333,340,470], These receptors have been identified in several areas of the

kidney including arterioles, proximal convoluted tubules and cortical collecting

ducts [470-474], The evidence for the presence of DAj receptors in the glomeruli

has been controversial [470], The increased dopamine excretion after gludopa can

be observed in the isolated perfused rat kidney [333] and occurs with minimal

increases in circulating plasma dopamine levels when given in low doses in the rat

[331] and in man [334,475] indicating direct intrarenal synthesis of dopamine and

its subsequent excretion. The enhanced sodium excretion induced by gludopa is

mainly a result of the inhibitory effect of dopamine (probably formed within the

cells of the proximal tubules) upon the tubular reabsorption of this cation, since it

can occur in man without detectable changes in renal haemodynamics [336,341],

This is supported by observations in the isolated perfused rat kidney that dopamine -
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induced natriuresis and diuresis could persist even when renal blood flow, GFR and

perfusion pressure were kept constant [476]. In the present study, the increases in

FENa in the absence of significant changes in renal haemodynamics after infusion of

gludopa would also be in agreement with a tubular site (or sites) for the action of

dopamine. The latter may act by inhibiting Na+-K+-ATPase at the basolateral

membrane [477,478] as well as Na+-H+ antiport activity at the brush border

membrane in the proximal tubular segments [470,474,479], Dopamine may also

decrease sodium transport at more distal segments of the nephron [480] and it has

also been shown to antagonise both the effects of mineralocorticoids and the

hydrosmotic effect of vasopressin on the rabbit cortical collecting duct [481],

Glu-5-HTP produced marked increases in the urinary excretion of 5-HTP, 5-HT

and 5-HIAA. We have demonstrated these changes in our previous studies and

have shown that the marked increase in urine 5-HT excretion occurred without

concomitant increases in circulating 5-HT levels measured in platelet-rich plasma,

consistent with the proposition that it was primarily due to the intrarenal synthesis

of 5-HT {see Chapters 3-7). Glu-5-HTP was also shown to reduce urinary excretion

of sodium and FENa without affecting ERPF or GFR in the previous studies and this

sodium retaining effect was dependent on the conversion of glu-5-HTP to 5-HT. In

the present study, glu-5-HTP produced a significant reduction in ERPF and a trend

towards a fall in GFR. These effects may be due to the slightly higher dose of glu-

5-HTP employed in this study (20 vs 16.6 |lg kg"1 min"1). A trend towards a

reduction in GFR was also observed in an earlier study (see Chapter 6) and the

failure to demonstrate a significant effect on renal haemodynamics may be due to a

type 2 error.

The absence of a significant antinatriuretic effect following glu-5-HTP in the

present investigation is at variance with our previous results {see Chapters 3 to 7).

The mean urinary sodium excretion rates after glu-5-HTP were, however, lower

than those observed on the placebo day and a type 2 error may account for the
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failure to observe a significant effect. In addition, the sodium excretion values

during the baseline periods were much higher than in previous studies, and the

antinatriuretic action of 5-HT may be less easily demonstrable in this state. It is

also possible that increased salt intake may have led to a down-regulation of the

tubular 5-HT receptors in an attempt to facilitate renal sodium excretion. The

changes in urinary excretion of potassium and urine output after infusion of glu-5-

HTP were not significantly different from those observed after infusion of placebo

alone, in agreement with observations from our previous studies (see Chapters

4 and 6).

The release of dopamine or 5-HT from the glutamyl compounds results from the

sequential enzymatic actions of yGT and LAAD. The activity of yGT in

mammalian tissues is at its highest in the kidney [308,309], This membrane-bound

glycoprotein is heavily concentrated on the brush border of the proximal tubular

cells [309-316] but it is also found at the antiluminal border of these tubules in

lesser concentration [312,316,318-320]. At these sites, the enzyme is orientated in

the membranes so as to react with substrates present in the extracellular milieu

[317], yGT will cleave the y-glutamyl moieties of gludopa and glu-5-HTP releasing

the free amino acid precursors, L-dopa and 5-HTP respectively, in relatively high

quantities on both sides of the proximal tubular cells for subsequent

decarboxylation. The enzyme has a tremendous capacity to metabolise y-glutamyl

compounds as has been shown by the very low recovery of unmetabolised gludopa

in the urine (less than 1%) following its intravenous infusion in man [468,475],

Administration of the two glutamyl compounds therefore offers the possibility of

investigating whether there is competition between L-dopa and 5-HTP for renal

LAAD in vivo in man. This cytosolic enzyme is present in high concentrations

within the cells of the proximal tubules [31,35,141-143]. The locally released

L-dopa and L-5-HTP can enter these cells from the basolateral and luminal sides to

be decarboxylated by LAAD to produce dopamine and 5-HT respectively
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[142,179,180,192,432,482]. These two amino acids could compete with each other

for the enzyme and there is evidence that 5-HTP inhibits the decarboxylation of

L-dopa [37,483]. In addition, experiments performed in isolated intact proximal

convoluted tubules of the rat suggest that the precursors share the same transporter

for entry into the renal tubular cells and L-dopa was shown to exert inhibition of a

competitive type on the tubular uptake of L-5-HTP [180], The formed amines may

then compete for deamination by MAO-A as well as for secretion or transport out of

the cells.

In the present study, the urinary excretion values of dopa, dopamine, and

DOPAC following the simultaneous infusion of equimolar amounts of gludopa and

glu-5-HTP were not significantly different from those observed after the infusion of

gludopa only. Similarly, the urinary levels of 5-HTP, 5-HT and 5-HIAA following

the coinfusion were similar to those measured after the administration of glu-5-HTP

alone. These observations would suggest that, under the conditions of our study,

there was no competition between the two compounds for the renal enzymes or

transporters. These systems may, however, not be readily susceptible to saturation

at the substrate load that we supplied. This may explain the failure to demonstrate

an inhibition of synthesis of either amine. That enzyme saturation may not occur at

the doses employed in this study is supported by a previous report which

demonstrated that the mean percentage conversion of administered gludopa to urine

free dopamine did not fall when the dose of gludopa was increased from 12.5 to 100

|LLg kg"1 min"1 [334], An alternative explanation is that the prodrugs are metabolised

in different compartments within the renal tubular cells and this will need to be

investigated by experiments in the animal. The amount of dopamine produced, as

measured in the urine, was approximately 75% greater than the quantity of urinary

5-HT generated following infusion of equimolar amounts of the two glutamyl

compounds. This suggests that LAAD in the kidney preferentially decarboxylates

L-dopa and is consistent with previous in vivo and in vitro studies in the rat

227



demonstrating that L-dopa is the preferred substrate for renal LAAD [46,453].

Itskovitz et al. [268] also reported that comparatively more dopamine than 5-HT

was excreted when L-5-HTP and L-dopa were infused together into the renal artery

of the rat. In addition, there was no evidence from the study by Itskovitz et al. that

L-dopa acted as a competitive inhibitor and diminished the renal synthesis of 5-HT

during the combined infusion of L-5-HTP and L-dopa.

There was an unexpected rise in urinary 5-HT excretion after infusion of

gludopa. We did not however observe an effect on 5-HIAA excretion but this may

be due to the failure of our spectrophotometric assay to detect low concentrations of

5-HIAA. In contrast, glu-5-HTP infusion had no effect on dopamine excretion

consistent with our previous finding (see Chapter 4). The reason for the increased

5-HT excretion is unclear. It may result from displacement of endogenous renal

5-HT by dopamine derived from gludopa analogous to the situation in the brain of

the rat where administration of L-dopa leads to cerebral accumulation of dopamine,

together with a reduction of cerebral 5-HT, probably caused by a release or

displacement (or both) of endogenous 5-HT from its storage sites by the large

excess of dopamine [484-488]. Similarly, in vitro studies using the rat brain slices

suggested that dopamine may be released from vesicle storage sites by 5-HT

derived from decarboxylation of 5-HTP in catecholaminergic neurones [489,490],

We did not, however, observe an effect of glu-5-HTP on urinary dopamine

excretion in the present study. The increased 5-HT excretion after gludopa may

also be related to the natriuresis induced by gludopa, perhaps as a renal response to

the need to conserve sodium. It is also possible that it is merely a flow-dependent

phenomenon and represents a wash-out of pre-formed 5-HT from the tubular lumen

related to the increased urinary flow rate induced by gludopa. Interestingly, an

increase in 5-HT excretion has been reported during frusemide-induced diuresis in

rats and this was associated with a reduction in renal 5-HT content [295], However,

although the urinary flow rate values tended to be higher on gludopa infusion day,
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they were not significantly different from those measured following infusion of

placebo only in the present study.

Renal dopamine is believed to be formed in the proximal tubular cells by the

action of LAAD on L-dopa derived from the circulation [432,433,435,436,466], It

has been suggested that locally produced dopamine may act as an endogenous

natriuretic factor in the kidney and that it may have a physiological role in the

regulation of sodium excretion [434-436,441,491,492]. This is supported by the

close correlation between the concentration of sodium and that of dopamine in urine

[493]; the increased urinary excretion of dopa and dopamine with salt loading in

laboratory animals [143,494-496] and humans [462-467]; the attenuation by

carbidopa [452,497] and by dopamine antagonists [498,499] of the natriuresis

produced by saline infusion; and the observation that carbidopa inhibited renal

dopamine production and reduced sodium excretion in man [441,500]. Dopamine

may act either as a paracrine or an autocrine substance since it is synthesised within

(or in close proximity to) cells which are endowed with dopamine receptors

[436,470,491,492,501]. Renal 5-HT may play an antagonistic role to the natriuretic

dopamine by reducing urinary sodium excretion [268].

Gludopa has been shown to increase urinary sodium excretion [334-342] whereas

glu-5-HTP has the opposite effect (see Chapters 3-7). In the present study, the

overall pharmacological effect of infusing gludopa and glu-5-HTP simultaneously

was towards increased sodium excretion. This suggests that, under the conditions

of the study, the natriuretic effect of intrarenally generated dopamine was more

potent than the sodium retaining action of 5-HT. This may be due to the greater

amount of dopamine than 5-HT synthesised after infusion of equimolar amounts of

the two glutamyl derivatives. It is of interest in this respect that studies have shown

that the rate of uptake of L-dopa and formation of dopamine by renal cortical slices

varied with the concentration of sodium in the incubation medium [502-504], In

addition, the natriuretic effect of dopamine has been shown to be more evident with
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salt loading or extracellular fluid volume expansion [492,505], Whether this is as a

result of a volume-induced up-regulation of DA] receptors or an increased

efficiency of coupling to signal transduction is unclear. There may also be down-

regulation of the 5-HT receptors, as we suggested earlier, since we were unable to

demonstrate the sodium retaining effect of glu-5-HTP, when infused alone, in

contrast to our previous studies {see Chapters 3 to 7). This may explain why there

was no significant blunting of the natriuretic effect of gludopa by the concomitant

administration of glu-5-HTP. It would be of great interest to repeat this study in

salt-depleted individuals to see if the sodium intake did have an effect on the

sensitivity to the antinatriuretic action of 5-HT and whether there would be any

alteration in the relative amounts of dopamine and 5-HT excreted. It is of interest to

note that urinary excretion rates of dopa and dopamine after infusion of L-dopa was

reported to be higher following dietary salt loading in man [466].

Glu-5-HTP increased plasma aldosterone concentrations without affecting PRA

consistent with our previous observations {see Chapters 4, 6 and 7). The

aldosterone release may be due to recirculation of intrarenally produced L-5-HTP or

5-HT acting on the adrenal gland, formation of 5-HT from glu-5-HTP within the

adrenal gland, or a central effect of glu-5-HTP. Dopamine, in contrast to 5-HT, has

been shown to exert a tonic inhibitory influence on aldosterone secretion [506-510],

an effect which is mediated via adrenal DA2 dopamine receptors [511,512], A

study using isolated bovine adrenal cells suggested a direct inhibitory role of

dopamine on the late phase of aldosterone synthesis [513]. We investigated the

effect of gludopa on aldosterone release as it is possible that L-dopa or dopamine,

formed intrarenally from gludopa, may recirculate to act on the adrenal gland or that

dopamine may be produced within the adrenal gland from its glutamyl prodrug.

Gludopa had no effect on plasma aldosterone levels nor did it significantly alter the

release of aldosterone induced by glu-5-HTP although there was a tendency for the

plasma aldosterone concentrations to be lower (Figure 8-5).
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There is evidence from in vitro and in vivo studies in animals that exogenous

dopamine stimulates renin secretion or release by acting on DA! receptors [470,514-

520] but a lack of effect of the amine has also been reported [476], Similarly,

studies in man demonstrated that an intravenous infusion of dopamine increased

plasma renin activity [521,522] but this effect was not observed by other

investigators [523], In contrast, dopamine synthesised intrarenally following

administration of L-dopa [524] or gludopa [334-340] was previously found to lower

plasma renin activity in our laboratory. The exact mechanism underlying gludopa-

induced renin suppression is unclear but it has been suggested that it may reflect

either a response to the increased tubular sodium load at the macula densa or a

direct inhibitory effect of dopamine at the juxtaglomerular cells. In the present

study, PRA was suppressed throughout the experiment in the majority of subjects

probably as a result of the salt loading protocol employed [364,383-390] and we

were unable to demonstrate any additional effect of gludopa on PRA.

In conclusion, the present study in salt-replete (or -loaded) subjects has

demonstrated that dopamine was the preferred amine to be synthesised. The overall

effect on sodium excretion was to produce a natriuresis with these equimolar

pharmacological doses of gludopa and glu-5-HTP when they were administered

simultaneously. It is not clear whether similar effects would be observed under

physiological conditions. It is of interest, however, to note that reciprocal changes

in urinary excretion of endogenous dopamine and 5-HT have been shown to occur

in man when salt intake is altered [461-467], The present experiment should be

repeated in man under conditions of sodium deprivation to ascertain whether

opposite results would be obtained. It would also be valuable to repeat both sets of

experiments under metabolic balance conditions where compliance with dietary

sodium (and potassium) intakes could be assured and isocaloric conditions

maintained, since mineral and calorie status could well affect the results of sensitive

investigations such as these.
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CHAPTER NINE

EFFECTS OF FRUSEMIDE ON THE URINARY EXCRETION OF

DOPAMINE AND 5-HYDROXYTRYPTAMINE
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9.1 Introduction

Frusemide (4-chloro-A-furfuryl-5-sulphamoyl-anthranilic acid), a potent loop

diuretic [525], has been reported to increase the urinary excretion of dopamine in

man [526-530] and in the rat [531-533]. The renal responses following frusemide

of natriuresis, kaliuresis and diuresis in the anaesthetised rat were reduced by the

non-selective dopamine antagonist haloperidol and by the DA, receptor antagonist

SCH 23390, but not by ±sulpiride, a preferential DA2 receptor antagonist, indicating

that endogenous dopamine may contribute to the sodium, potassium and water

excretion produced by the loop diuretic, possibly through an effect on tubular DA,

dopaminergic receptors [532], Pretreatment with intravenous benserazide (25 mg

kg '), an LAAD inhibitor, resulted in a marked inhibition of the rise in urine

dopamine after frusemide and this was associated with at least 60% reduction in

frusemide-induced diuresis, natriuresis and kaliuresis [533], The increase of

dopamine in urine following frusemide appeared, therefore, to be an effect on recent

synthesis, rather than being a release from renal stores. These findings suggest that

the effects of frusemide described above may be partially dependent on endogenous

dopamine. Benserazide reduced frusemide excretion in urine during the period of

maximal diuretic response by 60%, whereas infusion of L-dopa, the immediate

precursor of dopamine, increased its excretion by 62%, and it is possible that

endogenous dopamine may also facilitate the transport of frusemide to its luminal

site of action [525,533]. In contradistinction to these observations in the rat, Jeffrey

et al. [529] had demonstrated in healthy human subjects that a single oral 100 mg

dose of carbidopa, another LAAD inhibitor, lowered urinary dopamine to

undetectable levels but had no effect on the natriuretic response to frusemide.

These studies, however, did not consider the possible effect of frusemide or LAAD

inhibition on urinary 5-HT production which may influence sodium excretion.

There is evidence that 5-HT, like dopamine, is synthesised within the kidney and

previous studies described in this thesis {see Chapters 3,4,6,7,8) together with other
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published work in the rat [166,268,] suggest that intrarenally generated 5-HT has an

opposite effect to dopamine on urinary sodium excretion. In man, a single oral 100

mg dose of carbidopa reduced not only the urinary excretion of dopamine [529], but

also that of 5-HT, to undetectable levels {see Chapter 6). We also demonstrated an

increase in urinary 5-HT excretion when the kidney was primed to increase

dopamine synthesis by administration of gludopa, a renal dopamine prodrug {see

Chapter 8). In addition, the diuretics, frusemide, chlorothiazide and mersalyl, have

been shown to increase the urinary excretion of 5-HT and to simultaneously

decrease the renal content of 5-HT in the rat [295,534], In rats treated with

1.32 mg kg"1 of frusemide intramuscularly, the concentration of 5-HT in the urine at

the time of maximal diuresis was 576 times the value in untreated animals. The

elevation in urine 5-HT occurred not only during the period of maximum diuresis

but continued for a longer time. The cumulative 5-HT excretion over an 8 h time

interval was 1000 times that in control rats. There have been no reports on the

effect of frusemide on urinary 5-HT excretion in man.

The present study examined the effects of acute intravenous administration of

frusemide on the urinary excretion of both dopamine and 5-HT in man.

9.2 Methods

Eight healthy male subjects, aged 20-41 years (mean 31.6 years), attended on 2

separate occasions, at least 1 week apart, in this randomised, open, placebo-

controlled, cross-over study. They were given general dietary advice to avoid

excessive intake of dietary salt over the 36 h prior to each study day. They refrained

from alcohol for 24 h, abstained from caffeine-containing beverages from 18.00 h,

and fasted from 22.00 h the evening before each of the study days. They reported to

the clinical investigation unit at about 08.00 h, having drunk 200 ml of tap water

one hour previously. They emptied their bladder on arrival and drank a further 200

ml ofwater. This was followed by 200 ml ofwater every half hour for the next 7 h.
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They emptied their bladder after an hour and the urine collected during this period

was taken as representing the baseline urine collection. The subjects then received

either 40 mg of frusemide (Lasix®; 10 mg ml"1), made up to a total volume of 30 ml

with 0.9% NaCl, or placebo (30 ml of saline only) (time = 0 h). These solutions

were infused intravenously over 10 min using a Braun Perfusor VI infusion pump.

The subjects emptied their bladder at hourly intervals over the next 6 h. Any urine

passed before the end of an hour period was summated. In four subjects, accurately

timed urine collections were made at 20 min intervals during the first hour after

frusemide administration. The subjects remained semi-recumbent or supine

throughout the experiment except for rising to pass urine. The volume of each urine

collection was measured and aliquots stored at -40°C for analysis of sodium,

potassium, dopamine and 5-HT. Urine samples for dopamine and 5-HT were

acidified (pH < 3.0) with 5 M HC1 to prevent their oxidation. The concentrations of

sodium, potassium, dopamine and 5-HT in urine were determined as described in

section 2.5.

All results are expressed as mean ± SD. The urinary dopamine and 5-HT data on

the two experimental days were compared by repeated measures ANOVA for

overall statistical significance. The urinary excretion rates during the first hour on

the two study days were compared by Student's t test for paired observations.

Differences were considered to be statistically significant when the P value was less

than 0.05.
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9.3 Results

Frusemide produced the expected natriuresis, kaliuresis and diuresis (Figure 9-1).

The sodium excretion during the first hour after frusemide administration was 13

times that after placebo infusion. The potassium excretion during the first hour was

2.7 times and the urine output 8.4 times the corresponding values after placebo

infusion. The urinary excretion of sodium, potassium, and water remained elevated

during the second hour but tended to be lower afterwards.

Compared with placebo, frusemide produced a significant increase in the urinary

excretion of dopamine (P < 0.001). The baseline dopamine excretion on the

placebo day (1.34 ± 0.30 nmol min"1) was not significantly different from that on

the frusemide day (1.39 ± 0.34 nmol min"1). The urinary dopamine excretion during

the first hour after frusemide administration (1.81 ± 0.25 nmol min"1) was, however,
significantly higher than that observed after placebo (1.10 ± 0.37 nmol min"1;
95% CIdiff: 0.51 to 0.91 nmol min"1; P < 0.01). The increased dopamine excretion

and the natriuretic, kaliuretic and diuretic responses evoked by frusemide were

maximal during the 20-40 min period in the 4 subjects in whom urine collections

were made at 20 min intervals during the first hour (Figure 9-3).

The 5-HT excretion values before infusion of placebo and frusemide were not

significantly different at 0.42 ±0.14 nmol min"1 and 0.45 ±0.13 nmol min"1. The

urinary 5-HT excretion rate decreased during the first hour after placebo and then

remained relatively constant. Similarly, there was an initial drop in 5-HT excretion

rate after frusemide. There were no significant differences between the changes of

5-HT excretion from baseline on the two study days at corresponding time periods.

The 6 h cumulative 5-HT excretion after frusemide was 112.5 ± 12.8 nmol and

126.2 ± 13.0 nmol after placebo (95% CIdiff: -1.9 to 29.2 nmol).
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9.4 Discussion

In the present study, frusemide produced the expected diuresis, natriuresis and

kaliuresis [525]. It increased urinary dopamine excretion as reported by other

investigators in previous studies [526-530]. At variance with these results is the

study of Okaniwa et al. [535] which reported that frusemide reduced dopamine

excretion in healthy female human subjects. Increased urinary excretion of

dopamine has also been observed in man after administration of torasemide, a

similar loop diuretic [528], and also after hydrochlorothiazide and triamterene in the

conscious rat [531]. In contrast, spironolactone had no effect on dopamine

excretion in man [527]. Studies with the LAAD inhibitor carbidopa showed that

release of renal dopamine does not contribute to the natriuretic effect of frusemide

in man, and Jeffrey et al. [529] concluded that the enhanced excretion must be

regarded as an epiphenomenon. Different findings were, however, observed in the

rat pretreated with benserazide [533], The reason for the discrepancy between rat

and man is unexplained.

There was an initial lowering of urinary 5-HT excretion after both frusemide and

placebo in the present study. The reason for this is unclear but it may be that the

subjects had not yet achieved a steady state, and a longer run-in phase would have

been more appropriate. Nevertheless, there was no significant difference in the

urinary 5-HT excretion on the two experimental days and there was certainly no

suggestion of a rise after frusemide. The absence of an effect of frusemide on

urinary 5-HT excretion in man in the present study contradicts studies in rats which

demonstrated marked increases in the urinary excretion of 5-HT after the

administration of frusemide, hydrochlorothiazide and mersalyl [295,534],

In the previous study {see Chapter 8), an increase in urinary 5-HT excretion was

observed after infusion of gludopa. The reason for this was not clear. We

mentioned that one possible explanation was that it could be a flow-dependent

'wash-out' phenomenon of preformed 5-HT from the tubular lumen resulting from
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the diuresis caused by gludopa. The absence of a rise in urinary 5-HT excretion

during the marked diuresis induced by frusemide could be cautiously taken as

providing evidence that this was unlikely to be the case.

In conclusion, the present study demonstrated that frusemide increased urinary

dopamine excretion, but for only a short period, and had no effect on 5-HT

excretion in man. It is most unlikely, therefore, in man that either amine contributes

materially to an increase in sodium output, or alternatively acts to limit the

natriuresis produced by frusemide.
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CHAPTER TEN

FINAL DISCUSSION AND CONCLUSIONS
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The concept of drug targeting to the kidney via y-glutamyl prodrugs is based on the

work of Orlowski and Wilk [324], They demonstrated that the kidney is highly

active in the uptake and metabolism of y-glutamyl derivatives of amino acids and

peptides. This property is probably related to the high activity of yGT in the renal

proximal tubular cells [308-316]. Their observations prompted them to examine the

possibility of using y-glutamyl derivatives of pharmacologically active agents as

kidney specific prodrugs [329]. Their work and that of others demonstrated that

gludopa, the glutamyl derivative of L-dopa, produces a relatively selective

generation of dopamine in the kidney via the sequential actions of renal yGT and

LAAD [329-331,333,334; see section 1.3]. It was suggested that the y-glutamyl

group can provide a convenient carrier for directing compounds containing an

amino group into kidney metabolism and that the y-glutamyl derivatives of certain

drugs may be useful as kidney specific prodrugs [329],

In the work described in this thesis, I have employed the y-glutamyl prodrug

approach to targeting drugs to the kidney in an attempt to explore the renal

formation and actions of 5-HT in man. There is little information in this area in

man, and species differences in the pattern of distribution, metabolism and actions

of 5-HT mean that one has to be cautious when applying the findings obtained in

one animal species to another and to man (see section 1.2). Previous human studies

on the renal effects of 5-HT focused largely on the pharmacological reactions to

intravenous administration of the amine and these produced variable results (see

sections 1.2.6 and 1.2.7). Most studies suggested that 5-HT reduced both sodium

and water excretion but these responses were not consistently related to changes in

the renal circulation. It was unclear, therefore, whether the observed changes were

related to alterations in renal haemodynamics, redistribution of intrarenal blood

flow or an action on tubular transport. 5-HT also has a wide spectrum of actions in

the body and its extrarenal effects may secondarily alter renal function.

Furthermore, there is evidence in the rat that the kidney, in addition to being a target
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influenced by 5-HT, is itself capable of locally producing and degrading 5-HT

[35,153,166,181,268; see section 1.2.3], Indeed, 5-HT access to its target receptors

may be more dependent upon its local metabolism (synthesis and catabolism), and

its delivery through the circulation may play only a minor role in its effects on

target tissues in the kidney. It can be argued that the systemic administration of

5-HT does not reproduce the normal pattern of 5-HT synthesis in the kidney and its

effects may differ from those following endogenous intrarenal 5-HT generation.

Systemic infusion studies to a large extent represent the effect of 5-HT on the renal

vasculature since exogenous 5-HT reaches the renal arterioles before the tubular

structures and its effects on the vasculature may obscure any effects on specific

segments of the nephron. The proximal tubule appears to be the main site for 5-HT

production in the kidney [35,142,179,180,192] and it is conceivable that it may

produce local concentrations of the amine sufficiently high to directly alter tubular

reabsorption of sodium or water without affecting the vascular system or 'spilling

over' into the systemic circulation. The actions of endogenous renal 5-HT may,

therefore, be better investigated using strategies which stimulate renal 5-HT

synthesis since this may be more relevant to the physiological situation in vivo.

The y-glutamyl prodrug approach to targeting the kidney offers the possibility of

achieving this and thereby controlling the extraneous influences that may

complicate the interpretation of the local renal actions of 5-HT. We postulated that

glu-5-HTP, the glutamyl derivative of L-5-HTP, could be a relatively selective

5-HT prodrug for the kidney in the same way that gludopa is a renally selective

dopamine prodrug [329-331,334,341,343], and that it would be converted to 5-HT

via the sequential actions of the same enzymes involved in the formation of

dopamine from gludopa, i.e. yGT and LAAD. We compared glu-5-HTP with L-5-

HTP, the immediate precursor of 5-HT, which has been shown to increase intrarenal

formation of 5-HT in the rat (see Chapters 3 and 4). We demonstrated marked

increases in the urinary excretion of 5-HT after both compounds and we argued that
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these largely resulted from intrarenal generation of 5-HT. There was a reduction in

urinary excretion of sodium after both compounds and a reduction in urine output

after L-5-HTP. These changes occurred without significant alterations in ERPF or

GFR suggesting a predominantly tubular effect of intrarenally generated 5-HT on

sodium reabsorption although we could not exclude (or establish) the possibility of

an intrarenal redistribution in blood flow partially accounting for the result. The

absence of an effect on ERPF and GFR may not be surprising given the likely

tubular site of production of 5-HT. There was, however, a trend towards a reduction

in GFR in some studies (see Chapters 6 and 8) and it is possible that a significant

effect would be observed with a higher dose (or longer infusion) of glu-5-HTP or

with studying a larger number of subjects. A significant reduction of ERPF was

observed in the study described in Chapter 8 when a slightly higher dose (20 vs 16.6

pg kg"1 min"1 for 1 h) of glu-5-HT was infused in salt-replete individuals. Increases

in plasma aldosterone concentrations, without changes in PRA, occurred after

infusion of both glu-5-HTP and L-5-HTP but the rise in aldosterone levels was

smaller after glu-5-HTP (see Chapters 3 and 4). The time course of the changes in

plasma aldosterone and lack of effect on potassium excretion argued against the

antinatriuresis being due primarily to an effect of aldosterone. The aldosterone

response may be mediated by an effect within the central nervous system or by a

peripheral effect of 5-HT directly on the adrenal gland. The urinary metabolite data

and reduced extrarenal effects, as evidenced by changes in growth hormone and

aldosterone release, blood pressure and incidence of adverse effects, supported the

hypothesis that glu-5-HTP is relatively more selective for the kidney than L-5-HTP.

We then measured the circulating levels of 5-HT and 5-HTP in platelet-rich

plasma (PRP) after infusion of L-5-HTP and glu-5-HTP (see Chapter 5). We

showed that the marked increases in urinary 5-HT after both compounds occurred

without significant increases in the concentrations of 5-HT in PRP providing

supporting evidence that 5-HT was produced intrarenally. There was the expected
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increase in 5-HTP in PRP after L-5-HTP but an increase was also observed after

glu-5-HTP. This suggests that glu-5-HTP metabolism was not completely confined

to the kidney and that the delivery of 5-HTP via its glutamyl derivative was not

entirely selective for the kidney. This finding is not unexpected since yGT is present

at extrarenal sites. Its activity is, however, highest in the renal tissue [308,309] and

it can be assumed that 5-HTP will be predominantly released in the kidney. This is

supported by the observations that the peak level of 5-HTP and the AUC of its

concentration-time curve following glu-5-HTP infusion were lower than those after

administration of L-5-HTP. Gastrointestinal side effects after L-5-HTP appear to be

related to plasma 5-HTP concentrations [360,421] and the absence of such adverse

effects after infusion glu-5-HTP (except in one subject) may be related to the lower

circulating levels of 5-HTP after administration of this dipeptide. The amount of

5-HTP in urine after glu-5-HTP was, however, higher than that after L-5-HTP

infusion. It was greater than can be accounted for by the total clearance of 5-HTP

from the plasma perfusing the kidney providing strong support for the intrarenal

synthesis of L-5-HTP from glu-5-HTP. L-5-HTP produced intrarenally may be

excreted into urine, converted to 5-HT or 5-HIAA, or reabsorbed into the

recirculation. Recirculation of renally produced L-5-HTP, in addition to L-5-HTP

formed outside the kidney, may be responsible for the rise in circulating 5-HTP

after administration of glu-5-HTP. Exogenous L-5-HTP, or L-5-HTP formed from

glu-5-HTP, may be converted to 5-HT extrarenally. The absence of a rise in the

concentration of 5-HT in PRP suggests that the assay used was unable to detect this

increase in 5-HT or that any 5-HT produced was rapidly metabolised.

The sodium retention following the infusion of glu-5-HTP was most likely due to

an effect of 5-HT on the renal tubules. We could not, however, exclude from the

earlier studies (see Chapters 3 and 4) the possibility of the antinatriuresis being due

to an effect of the intact amide or of the intermediate metabolite L-5-HTP. We

therefore studied the effect of the peripheral LAAD inhibitor carbidopa on the renal
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metabolism and actions of glu-5-HTP (see Chapter 6). Pretreatment with carbidopa

produced a 99% reduction in urinary 5-HT after glu-5-HTP and an abolition of its

antinatriuretic effect. This indicates that the 5-HT prodrug (or L-5-HTP) has no

effect per se and requires conversion to 5-HT to exert its antinatriuretic action. The

reduction in glu-5-HTP-induced aldosterone release by carbidopa would also

suggest that the aldosterone response is predominantly mediated by a peripheral

effect of 5-HT on the adrenal gland.

We attempted to apply the glutamyl prodrug approach to increase the delivery of

L-tryptophan to the kidney by administration of glu-TRP, the glutamyl derivative of

L-tryptophan (see Chapter 7). This compound is structurally very similar to glu-5-

HTP and differs from it in the presence of one hydroxyl group in the C5 position of

the indole ring. Tryptophan 5-hydroxylase has been localised in the proximal

tubules suggesting that the kidney has the capacity to synthesise 5-HT from its first

precursor L-tryptophan [35]. Given that the kidney is highly active in the uptake

and metabolism of y-glutamyl derivatives of amino acids or peptides [324,329], it

would have been expected that glu-TRP would be taken up by these tubules in a

way similar to glu-5-HTP or gludopa [329-331,333,334,341], It should be readily

converted by yGT to L-tryptophan thus increasing delivery of L-tryptophan to the

proximal tubular cells and be available for hydroxylation by tryptophan

5-hydroxylase to L-5-HTP, followed by decarboxylation by LAAD to produce

5-HT. Glu-TRP, in contrast to glu-5-HTP, failed to increase urinary 5-HTP or 5-HT

and to reduce sodium excretion. The small rise in urinary tryptophan and the

undetectable levels of glu-TRP in urine, in contrast to measurable levels of glu-TRP

in plasma which declined with time, suggests that glu-TRP was cleaved by yGT to

L-tryptophan. L-tryptophan has been shown to be reabsorbed efficiently by the

proximal tubules [185,186,456,457] and would, therefore, be available in the cells

for the onward synthesis of 5-HT. The absence of a rise in urinary 5-HTP or 5-HT

suggests an absence of significant tryptophan 5-hydroxylase activity or that the
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L-tryptophan formed from glu-TRP cannot gain access to the enzyme compartment.

It is also possible that L-tryptophan was metabolised via other metabolic pathways

[33,458-460], L-tryptophan, like other essential amino acids, has a low renal

clearance value, being efficiently reabsorbed in the renal tubules, and this may

explain the low levels of urinary tryptophan [174,456,457]. The results of this

study are reminiscent of a previous study in our department which showed that the

glutamyl derivative of L-tyrosine, y-L-glutamyl-L-tyrosine, unlike gludopa, failed

to increase urinary dopamine, again demonstrating the importance of the additional

hydroxyl group on the amine precursor [338], That study suggested that the kidney

is unable to utilise L-tyrosine as a source for urine dopamine and provided evidence

that circulating L-dopa is the main physiological source for generation of urine

dopamine. A parallel may be drawn between our study and that of Jeffrey and

colleagues [338]. It may be inferred cautiously perhaps that L-5-HTP, and not

L-tryptophan, is the predominant source of urinary 5-HT in the same way that

circulating L-dopa rather than L-tyrosine is the source of renal dopamine. The

absence of an increase in renal 5-HT production after infusion of glu-TRP suggests

that this glutamyl compound, unlike glu-5-HTP, is unsuitable for the study of renal

actions and formation of 5-HT.

The enzyme LAAD catalyses the decarboxylation of L-dopa and L-5-HTP to

dopamine and 5-HT respectively [31,37,41-47]. These biogenic amines are both

metabolised by MAO [31,48-50]. Increased renal dopamine synthesis causes

sodium excretion whereas 5-HT synthesis results in the opposite effect, and it has

been suggested that dopamine and 5-HT may be generated within the kidney as

reciprocal regulatory substances in the local control of sodium excretion [268].

There is also evidence that L-dopa and L-5-HTP share the same transporter for entry

into the renal tubular cells [180], We have administered equimolar amounts of

gludopa and glu-5-HTP to increase the delivery of L-dopa and L-5-HTP

respectively to the kidney in salt-replete individuals to investigate whether the
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administration of one amine precursor affect the other amine synthesis and whether

dopamine or 5-HT is preferentially generated (see Chapter 8). We demonstrated

that relatively more dopamine than 5-HT was synthesised and that the natriuretic

effect of dopamine was more potent than the sodium retaining action of 5-HT under

the conditions of this study. Comparison of the urinary metabolite data after the

separate and concomitant infusion of the two compounds provided no evidence of

competitive inhibition of synthesis of either amine. Glu-5-HTP failed to reduce

sodium excretion in this study at variance with all the previous studies. A type 2

error may account for this unusual result. However, the study was conducted in

salt-replete individuals. It is possible that the antinatriuretic action of 5-HT is less

easily demonstrable in this state or that the increased salt intake may have led to a

down-regulation of the tubular 5-HT receptors in order to facilitate sodium

excretion. The study will need to be repeated in salt-restricted or -depleted subjects

to establish whether the sodium intake did indeed influence the antinatriuretic action

of 5-HT and the relative amounts of dopamine and 5-HT produced. We detected an

unexpected increase in urinary 5-HT excretion after infusion of gludopa, but

dopamine excretion was not affected by administration of glu-5-HTP. The reason

for the finding following gludopa infusion was unclear. Possible explanations

include a displacement of endogenous renal 5-HT by dopamine; a compensatory

response to the induced natriuresis; or a flow-dependent 'washout' of preformed

5-HT from the tubular lumen resulting from gludopa-induced diuresis. However,

gludopa failed to produce a significant increase in urine output when compared with

placebo infusion in this particular study, in contrast to the increased diuresis

reported in a previous investigation [334], This observation and the absence of an

increase in urinary 5-HT excretion during the marked diuresis induced by frusemide

{see Chapter 9) could be cautiously taken as evidence that 'washout' is unlikely to

be the explanation for the increased 5-HT excretion that occurred after

administration of gludopa.
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Frusemide increases the urinary excretion of dopamine in man [526-530] but its

effect on 5-FIT excretion has not been studied. In the rat, frusemide has been

reported to increase urinary 5-HT excretion and, at the same time, to decrease the

renal content of 5-HT [295,534], We were able to confirm the effect of frusemide

on dopamine excretion but were unable to demonstrate an effect of the loop diuretic

on 5-HT excretion in man (see Chapter 9), thus contradicting the reported findings

in the rat. The disparity in results may reflect species differences in 5-HT response

to diuretics and we could study a higher dose of frusemide. Both studies which

reported an effect of diuretics on 5-HT excretion in the rat came from the same

laboratory [295,534], and it would also be of interest to see if similar results can be

produced by other investigators.

Our series of studies suggest that glu-5-HTP could be a valuable experimental

tool for manipulating renal 5-HT production and exploring the renal formation and

effects of 5-HT in man in the same way that gludopa was useful for investigating

the role of renal dopamine [334-342], Much can be studied in this field using this

prodrug. When 5-HT is generated, it acts on the renal tubules to reduce sodium

excretion. The tubular site involved is, however, unknown and it will be of interest

to explore this. Lithium clearance technique, for instance, can be used as a marker

of proximal tubular function [536]. Various 5-HT receptors have been identified in

the mammalian kidney [257,258] and in renal cell lines [260-265]. There is little

information on the type of 5-HT receptors mediating the antinatriuretic action of

5-HT and this could be investigated in man by studying the effects of selective

5-HT receptor antagonists on the antinatriuretic action of glu-5-HTP. Although the

antinatriuretic effect on 5-HT may be due to a direct effect of 5-HT on the renal

tubules, our studies do not rule out the participation of other modulators of renal

function secondary to increased 5-HT production. The interactions of 5-HT with

other systems, such as the renin-angiotensin, kinin-kallikrein, atrial natriuretic

peptide or prostaglandin, would be worthy of pursuit. Altered activity of these
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systems may modulate the actions of 5-HT, and simultaneous inhibition of their

production may, for example, help to unmask any other effect of the amine. There

is evidence suggesting that 5-HT is not a specific substrate for MAO-A but is

deaminated by both forms of MAO in the pig and rat liver [537-539] and in the rat

brain [540], Whether this is the case in the human kidney can be investigated with

relative safety using the new reversible MAO-A and MAO-B inhibitors and

studying their effects on the catabolism of 5-HT produced intrarenally from glu-5-

HTP. These questions can be answered to a large extent from in vivo studies in man

using glu-5-HTP. Animal and in vitro studies will be required to localise the sites

of 5-HT production and destruction in the kidney together with the cell types

bearing the 5-HT receptors involved in the antinatriuretic action of 5-HT. It will

also be of interest to investigate the production of 5-HT in pathological states

affecting the kidney since there is some evidence that 5-HT may play a

pathophysiological role in conditions such as hypertension, glomerulonephritis or

renal failure (see sections 1.1.7 and 1.2.10).

There is little doubt from our work that 5-HT produced intrarenally is capable of

reducing sodium excretion in man. Whether renal biosynthesis of 5-HT constitutes

an intrarenal control mechanism of sodium excretion under physiological

circumstances, however, remains to be established. The possibility is raised that

endogenous renal 5-HT may act as a paracrine or autocrine substance in the control

of sodium excretion in a way analogous to that demonstrated for renal dopamine.

The observation that 5-HT excretion may vary with salt intake supports a role for

5-HT as physiological regulator of sodium excretion [461].

In conclusion, the glutamyl prodrug approach to renal drug targeting has been

applied to 5-HT with positive results in man. Our work suggests that glu-5-HTP

will prove a useful pharmacological experimental tool for the study of the formation

and function of 5-HT in the human kidney.
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5-CT 5-Carboxamidotryptamine
5-CT 5-Carboxamidotryptamine
5-HIAA 5-Hydroxy-3-indoleacetic acid
5-HT 5-Hydroxytryptamine (serotonin)
5-HTOL 5-Hydroxytryptophol
5-HTP 5-Hydroxytryptophan
5-MeOT 5-Methoxytryptamine
8-OH-DPAT 8-Hydroxy-2-(di-«-propylamino)tetralin
CIdiff Confidence interval of the difference between the means

ACE Angiotensin converting enzyme

ACTH Adrenocorticotrophic hormone
ADP Adenosine diphosphate
ANG I Angiotensin I
ANG II Angiotensin II
ANOVA Analysis of variance
AVP Arginine vasopressin
BMY 7378 8-[2-[4-(2-Methoxyphenyl)-l-piperazinyl]ethyl]-8-azaspiro[4.5]-

decane-7,9-dione
BSA Bovine serum albumin

cAMP Adenosine 3':5'-cyclic phosphate
cDNA Complementary DNA (deoxyribonucleic acid)
CGS 12066 7-Trifluoromethyl-4-(4-methyl-l-piperazinyl)-pyrrolo

[l,2-a]quinoxaline
CIn Renal clearance of polyfructosan (Inutest)
CNS Central nervous system
CP 93,129 3-(l,2,5,6-Tetrahydropyrid-4-yl)pyrrolo[3,2-Z?]pyrid-5-one
CPAH Renal clearance ofPAH
DAG Diacylglycerol
DAU 6285 Endo-6-methoxy-8-methyl-8-azabicyclo[3.2.1]oct-3-yl-2,3-

dihydro-2-oxo-1H-benzimidazole-1 -carboxylate
DBP Diastolic blood pressure

DHBA 3,4-Dihydroxybenzylamine
DOI l-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane
DOPAC 3,4-Dihydroxyphenylacetic acid (dopacetic acid)
Dopamine 3,4-Dihydroxyphenylethylamine
DP-5-CT Dipropyl-5-carboxamidotryptamine
EDTA Ethylenediaminetetra-acetic acid
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ERPF Effective renal plasma flow
FENa Fractional excretion of sodium
FF Filtration fraction

FW Formula weight
GFR Glomerular filtration rate

Glu-5-HTP y-L-Glutamyl-5-hydroxy-L-tryptophan
Glu-TRP y-L-Glutamyl-L-tryptophan
Gludopa y-L-Glutamy l-L-3,4-dihydroxypheny lalanine
GR 113808 [l-[2-(Methylsulphonyl)amino]ethyl]-4-piperidinyl]methyl

1 -methyl-1 H-indole-3-carboxylate
GR 127935 N-[4-Methoxy-3-(4-methyl-l-piperazinyl)phenyl]-2'-methyl-4'-(5-

methyl-1,2,4-oxadiazol-3 -yl) [1,1 -bipheny1] -4-carboxamide
HC1 Hydrochloric acid
hGH Human growth hormone
HPLC High performance liquid chromatography
ICI 169369 2-(2-Dimethylaminoethylthio)-3-phenylquinoline
i.m. Intramuscular

i.p. Intraperitoneal
IP3 Inositol (1,4,5)-triphosphate
IRMA Immunoradiometric assay

i.v. Intravenous

L 694247 2-[5-[3-(4-Methylsulphonylamino)benzyl-l,2,4-oxadiazol-5-yl]-
1H-indole-3 -yl]ethy lamine

L-Dopa L-3,4-Dihydroxyphenylalanine
LAAD L-Amino acid decarboxylase
LSD (+)-Lysergic acid diethylamide
LY 53857 4-Isopropyl-7-methyl-9-(2-hydroxy-1 -methylpropoxycarbonyl)-

4,6,6A,7,8,9,10,10A-octahydroindolo[4,3-FG]quinolone
MAO Monoamine oxidase

MAP Mean arterial blood pressure

mCPP 1 -(3-Chlorophenyl)piperazine
MDL 72222 laH,3a,5aH-Tropan-3-yl-3,5-dichlorobenzoate
MDL 72832 8-(4-[l,4-Benzodioxan-2-ylmethylamino]butyl)-8-

azaspiro[4,5]decane-7,9-dione
MDMA Methylenedioxymethamphetamine ('ecstasy')
MK 212 6-Chloro-2-( 1 -piperaziny l)pyrazine
mRNA Messenger RNA (ribonucleic acid)
MW Molecular weight
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n Number of subjects
NaCl Sodium chloride (saline)
NAD+ Nicotinamide adenine dinucleotide

NADP+ Nicotinamide adenine dinucleotide phosphate
NAN 190 1 -(2-Methoxyphenyl)-4-[4-(2-phthalimmido)butyl]piperazine
NaOH Sodium hydroxide
PAH Pura-aminohippurate
PRA Plasma renin activity
PRP Platelet-rich plasma
RIA Radioimmunoassay
RS 23597-190 3-(Piperidin-l-yl)propyl 2-methoxy-4-amino-5-chlorobenzoate
RU 24969 5-Methoxy-3(l,2,3,6-tetrahydro-4-pyridinyl)-lH-indole
SB 200646 N-(l-Mehtyl-5-indolyl)-N-(3-pyridyl)urea
SB 204070 (1 -Butyl-4-piperidinylmethyl)-8-amino-7-chloro-1,4-benzodioxan-

5-carboxylate
SBP Systolic blood pressure

SD Standard deviation

SDZ 205557 2-Methoxy-4-amino-5-chlorobenzoic acid 2-(diethylamino)ethyl
estRer

SDZ 21009 4(3-Terbutylamino-2-hydroxypropoxy)indol-2-carbonic acid-
isopropylester

SDZ 216525 Methyl-4(4-[4-(l,l,3-trioxo-2H-l,2-benziosothiazol-2-yl)butyl]-l-
piperazinyl) 1H-indole-2-carboxylate

SSRI Selective serotonin reuptake inhibitors
TFMPP N-(3-Trifluoromethyl-phenyl)piperazine
TLC Thin layer chromatography
Tris Tris(hydroxymethyl)aminomethane
TSH Thyroid stimulating hormone
v/v Volume (of solute) per volume (of solvent)
w/v Weight (of solute) per volume (of solvent)
WAY 100135 N-tert-butyl-3-(4-[2-methoxyphenyl]piperazin-l-yl)-2-

phenylpropanamide
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A comparison of the effects of two putative 5-hydroxytryptamine
renal prodrugs in normal man

T. C. LI KAM WA, S. FREESTONE, R. R. SAMSON, N. R. JOHNSTON & M. R. LEE
Clinical Pharmacology Unit, Department of Medicine, The Royal Infirmary, Edinburgh, EH3 9YW

1 The effects of 1 h intravenous infusions of equimolar amounts of two putative 5-
hydroxytryptamine (5-HT) renal prodrugs, 5-hydroxy-L-tryptophan (5-HTP, 10 |xg
kg-1 min-1) and y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP, 16.6 |xg kg-1
min-1) were examined in five healthy male volunteers in a randomised, placebo-
controlled, cross-over study.

2 Both compounds increased urinary excretion of 5-HT and there was greater extra¬
renal formation of 5-HT following 5-HTP administration than after glu-5-HTP.

3 Glu-5-HTP was significantly antinatriuretic. 5-HTP reduced mean urinary sodium
excretion but this effect was not statistically significant.

4 5-HTP, but not glu-5-HTP, significantly increased plasma aldosterone. There was no
increase in plasma renin activity with either compound.

5 There were no significant changes in pulse rate or blood pressure. Two subjects
complained of nausea at the end of 5-HTP infusion but none had any adverse reactions
with glu-5-HTP.

6 The results of this study suggest that both prodrugs generate 5-HT in man and that
glu-5-HTP is antinatriuretic. The glutamyl derivative may have greater renal specificity
than 5-HTP and, as a result, causes less systemic side effects.

Keywords 5-hydroxytryptamine 5-hydroxy-L-tryptophan
y-L-glutamyl-5-hydroxy-L-tryptophan kidney sodium excretion renin
aldosterone

Introduction

The mammalian kidney is rich in each of the enzymes
required for the synthesis of 5-hydroxytryptamine (5-
HT; serotonin) from its essential amino-acid precursor
L-tryptophan as well as those necessary for its degradation
[I]. It has been demonstrated in rats that 5-HT is formed
from its immediate precursor, 5-hydroxy-L-tryptophan
(5-HTP), under the action of renal aromatic L-amino
acid decarboxylase (LAAD) and the amine reduces
renal blood flow, urine output and sodium excretion
[2-4], y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP)
may be another putative 5-HT prodrug, sequentially
converted by y-glutamyl transferase (yGT) to 5-HTP
and then decarboxylated by LAAD to 5-HT. Given the
high activities of both yGT and LAAD in the renal
tissues [1,5], the conversion of glu-5-HTP to 5-HT should
be relatively specific for the kidney, more so than with

5-HTP, and increase local production of 5-HT in the
kidney. This is analogous to the conversion of y-L-
glutamyl-L-dopa to L-dopa by yGT and then to
dopamine by LAAD thus increasing endogenous renal
production of dopamine [6,7]. Administration of a
relatively renally selective 5-HT prodrug may enable the
renal effects of 5-HT to be assessed with less interference
from the effects on other systems that could be produced
by an increase in circulating 5-HT.
The present study compared the effects of intravenous

infusions of equimolar amounts of glu-5-HTP and 5-
HTP with infusion of saline (placebo) in normal man.
We were interested in observing changes in urinary
excretion of sodium, 5-HTP, 5-HT and 5-hydroxyindole
acetic acid (5-HIAA), plasma renin activity (PRA) and
plasma aldosterone.

Correspondence: Dr T. C. Li Kam Wa, Clinical Pharmacology Unit, Department of Medicine, The Royal Infirmary, Edinburgh, EH3
9YW
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Methods

Five healthy male volunteers, aged 22 to 32 years (mean
28 years) and weighing 61.5 to 99.5 kg (mean 71.3 kg),
took part in this randomised, placebo-controlled, cross¬
over study. They were normal on clinical examination
and none had laboratory evidence of hepatic, renal or
haematological abnormality. They were on no medica¬
tion for at least 2 weeks before the start of the study and
no drugs apart from the study medications were allowed
during the experimental period. They refrained from
alcohol for 24 h before each study day. The study was
approved by the Medical and Clinical Oncology Ethics
of Medical Research sub-committee, Lothian Health
Board, and written informed consent was obtained from
all participants.
Each subject attended on 3 separate days, at least 1

week apart, following an overnight fast. They reported
at about 08.15 h having drunk 250 ml of tap water 1 h
previously. They received intravenous 0.9% (w/v)
sodium chloride (150 mmol l"1; saline) at a rate of 10 ml
kg-1 h"1 for 6 h to increase urine sodium excretion.
After a 3 h run-in period, 5-HTP (10 pg kg-1 min"1) or
glu-5-HTP (16.6 pg kg-1 min"1) in 0.9% saline or
placebo (saline alone at 0.5 ml min"1) was administered
intravenously for 1 h. The subjects remained semi-
recumbent throughout the study except when standing
up to pass urine. Accurately timed consecutive urine
collections of about 30 min duration were made during
the last half-hour of the run-in phase (period 0), during
the administration of the test medications (periods 1 and
2) and for 2 h after the completion of the infusion
(periods 3 to 6). Urine volumes were recorded and
aliquots removed and stored at -40° C for analysis of
sodium, 5-HTP, 5-HT and 5-HIAA. Venous blood
samples for estimation of PRA and aldosterone were
taken just before and at 0.5, 1, 2 and 3 h after the start
of the infusion of the test medications. The samples were
collected into pre-cooled tubes containing sodium ethyl-
enediamine tetra-acetate and kept on ice. Plasma was
separated after centrifugation at 4° C and stored at
—40° C until analysis. Pulse rate and blood pressure
were measured at regular intervals using a Dinamap
semi-automated recorder (Critikon, Inc., Tampa,
Florida, USA) and the average values for each 30 min
period calculated.
Glu-5-HTP was supplied by Aalto Bio Reagents Ltd,

Dublin, Eire, and the preparation contained 95% pure
peptide. 5-HTP was obtained from Sigma Chemical Co.
Ltd, Poole, UK. Both were prepared for use in 0.9%
saline with 0.5% human albumin as a carrier.

Analysis of blood and urine samples

PRA was measured by radioimmunoassay of angiotensin
I (AI) generated under standard conditions [8], The
intra- and inter-assay coefficients of variation were 4%
and 6% respectively. Plasma aldosterone was measured
using radioimmunoassay kits ('Coat-a-count', Diagnostic
Products Corporation, Abingdon, UK). Intra- and
inter-assay coefficients of variation were 5% and 7%
respectively. Urine sodium concentrations were
measured by ion-selective electrode (Radiometer

KNA1 Analyser). Urine 5-HT was measured using a
modification of the method of Jouve et al. [9]. Following
extraction from urine onto Amberlite CG-50 (BDH),
the 5-HT waseluted into 3m ammonium acetate, pH 5.0.
iV-omega-methyl-5-hydroxytryptamine oxalate was
used as an internal standard. The intra- and inter-assay
coefficients of variation were 5.6% and 11.6% respect¬
ively. Measurement was by h.p.l.c. and spectrofluori-
metric detection. Urinary 5-HTP was measured by
h.p.l.c. and spectrofluorimetric analysis following
dilution of the sample with deionised water. Intra- and
inter-assay coefficients of variation were 5.5% and 6.5%
respectively. Urinary 5-HIAA was measured using the
method of Goldenberg [10]. The final extract was
measured by spectrophotometry at 590 nM. Intra- and
inter-assay coefficients of variation were 4.5% and 7.3%
respectively.

Statistical analysis

Results are given as means ± s.d. unless otherwise
stated. Differences in the cumulative urinary metabolite
data following 5-HTP and glu-5-HTP were analysed by
Student's r-test for paired observations. The urinary
sodium, pulse rate, blood pressure and aldosterone data
between the 3 treatment days were compared by repeated
measures analysis of variance for overall statistical
significance and two-way analysis of variance was used
to compare the plasma aldosterone values at each time
point. Values of P < 0.05 were considered statistically
significant.

Results

Urinary excretion rates of 5-HTP, 5-HT and 5-HIAA
for each 30 min period are shown in Figure 1. 5-HTP was
not detectable in the urine during infusion with saline
alone. Marked increases in urine 5-HTP occurred after
infusion of either 5-HTP or glu-5-HTP. The 5-HTP
excretion was higher for all collection periods after
infusion of glu-5-HTP when compared with 5-HTP and
the cumulative excretion values over the 3 h following
the start of the infusion were 17.1 ±5.5 pmol after 5-
HTP and 50.0 ± 4.4 |xmol after glu-5-HTP (P < 0.001).
The urinary excretion rate of 5-HT was < 0.4 nmol
min-1 during infusion of placebo. This increased to a
peak value of 293 ± 32 nmol min"1 after administration
of 5-HTP and 215 ± 17 nmol min"1 after glu-5-HTP.
Cumulative urinary 5-HT excretion values were 0.06 ±
0.01, 26.9 ± 6.2 and 24.2 ±3.1 p-mol for the 3 h after
the start of infusion of placebo, 5-HTP and glu-5-HTP
respectively; the difference between 5-HTP and glu-5-
HTP was not significant. 5-HIAA excretion increased
after both compounds and the increment was 43%
greater following 5-HTP than after glu-5-HTP (P <
0.05). The cumulative 5-HIAA excretion values were
3.1 ± 0.8, 38.1 ± 8.8 and 27.6 ± 3.2 pmol for placebo,
5-HTP and glu-5-HTP respectively. At the end of the
3 h study period, 41 ± 2% (on a molar basis) of admini-
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Figure 1 Urine 5-HTP, 5-HT and 5-HIAA excretion rates
before (period 0), during (periods 1 and 2) and after (periods
3 to 6) infusion of placebo (saline) (o), 5-HTP (•) and glu-5-
HTP (A). Values shown are means ± s.e. mean (n = 5).

stered 5-HTP and 52 ± 8% of glu-5-HTP were recovered
in the urine as the sum of 5-HTP, 5-HT and 5-HIAA.
The percentage amounts of infused dose excreted as 5-
HTP, 5-HT and 5-HIAA were 9 ± 2%, 14 ± 1% and 18
± 3% respectively after 5-HTP administration, and 26
± 5%, 13 ± 1% and 13 ± 2% respectively after glu-5-
HTP.
The urinary sodium excretion rates prior to admini¬

stration of placebo, 5-HTP and glu-5-HTP were 275 ±
115, 210 ± 68 and 280 ± 105 pmol min-1 respectively.
The sodium excretion values are presented as changes
from baseline (period 0) to allow for the lower baseline
values prior to infusion of 5-HTP (Figure 2). Urinary
sodium excretion increased progressively throughout all
clearance periods in response to infusion of saline on the
placebo day and the cumulative natriuresis during the
3 h after the start of the placebo infusion was 65.0 ± 19.1
mmol. Glu-5-HTP significantly attenuated the increase
in sodium excretion when compared with placebo (P <
0.001) whereas 5-HTP caused a reduction in mean
urinary sodium output which was not statistically signifi¬
cant. Cumulative natriuresis was reduced by 19.3 ± 6.2
mmol after glu-5-HTP and by 5.7 ± 11.9 mmol after 5-
HTP when compared to placebo infusion.
Plasma aldosterone was significantly increased by 5-

HTP infusion (P < 0.05) but not after glu-5-HTP (Figure
3). PRA was undetectable (< 0.35 ng AI ml-1 h_1) in
two subjects on all 3 study days. In the other three
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Figure 2 Changes in urinary sodium excretion from baseline
(period 0) during (periods 1 and 2) and after (periods 3 to 6)
infusion of placebo (o), 5-HTP (•) and glu-5-HTP (A). Values
shown are means ± s.e. mean (n = 5).

250

03

_Q-
<13
C
o

200

150

o

2
TO

100

E 50

Q_

Infusion

0.0 0.5 1.0 1.5 2.0

Time (h)
2.5 3.0

Figure 3 Plasma aldosterone concentration following
infusion ofplacebo (saline) (o), 5-HTP (•) and glu-5-HTP (A).
Values shown are means ± s.e. mean (n = 5). * = P < 0.05 vs
placebo and glu-5-HTP.

subjects, PRA declined from 1.00 ± 0.49 ng AI ml-1
h_1 at baseline to 0.68 ± 0.28 ng AI ml-1 h_1 at the
end of placebo infusion and 0.61 ± 0.22 ng AI ml-1
h"1 1 h later. Equivalent values were 1.21 ± 0.34,
0.91 ± 0.34 and 0.70 ± 0.34 ng AI ml-1 h-1 on the
5-HTP day, and 1.16 ± 0.20, 0.66 ± 0.22 and 0.48 ±
0.19 ng AI ml-1 h_1 on the glu-5-HTP day. Statistical
analysis was deemed inappropriate due to the small
number of subjects with detectable PRA values.
Two subjects complained of nausea at the end of 5-

HTP infusion but none had any adverse reactions with
glu-5-HTP. There were no significant changes in pulse
rate or blood pressure throughout the studies (Table 1).

Discussion

There is evidence from studies in rats that 5-HT can be
formed within the kidney and that urinary excretion of
5-HT reflects renal production of 5-HT [2,3,11,12]. The
results of the present study are consistent with the
hypothesis that 5-HT can be synthesised in the human
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Table 1 Pulse rate and blood pressure values before (period 0), during (periods 1
and 2) and after (periods 3 to 6) infusion of placebo, 5-HTP and glu-5-HTP. Values
shown are means ± s.d. (n = 5)

0 1
Period

2 3 4 5 6

Placebo infusion
Pulse rate 55.2 54.5 54.8 53.5 55.1 54.4 55.0

(beats min"1) ±9.1 ±8.4 ±8.0 ±8.9 ±9.2 ±9.6 ±9.9

Systolic blood 117.8 116.4 117.1 116.1 115.1 120.8 122.4

pressure (mm Hg) ±14.7 ±11.6 ±12.6 ±11.4 ±10.9 ±13.1 ±16.5

Diastolic blood 71.0 68.9 69.2 70.0 70.9 71.2 73.4

pressure (mm Hg) ±12.0 ±9.9 ±11.6 ±11.1 ±11.9 ±11.1 ±13.4

5-HTP infusion
Pulse rate 53.4 53.1 54.4 53.4 52.0 52.6 53.2

(beats min"1) ±6.7 ±6.5 ±9.0 ±7.5 ±6.4 ±7.2 ±8.7

Systolic blood 114.2 110.7 115.8 116.3 116.2 116.4 116.2

pressure (mm Hg) ±5.8 ±7.3 ±8.4 ±10.5 ±8.4 ±6.4 ±6.4

Diastolic blood 67.8 68.6 69.4 70.0 69.0 68.4 72.4

pressure (mm Hg) ±8.6 ±7.8 ±7.8 ±8.2 ±7.3 ±6.5 ±7.7

Glu-5-HTP infusion
Pulse rate 53.0 52.3 52.6 53.5 52.2 52.4 51.6

(beats min"1) ±10.0 ±7.7 ±7.3 ±9.8 ±7.8 ±7.0 ±7.1

Systolic blood 116.2 114.1 113.9 112.9 114.3 116.8 119.0

pressure (mm Hg) ±12.1 ±11.9 ±10.6 ±8.7 ±9.4 ±10.6 ±14.3

Diastolic blood 69.4 66.4 70.2 65.3 70.6 70.0 71.2

pressure (mm Hg) ±12.2 ±6.5 ±7.2 ±8.0 ±9.4 ±9.3 ±8.8

kidney. Both putative 5-HT prodrugs produced a marked
increase in urine 5-HT excretion. Such levels can only
be achieved by generation of 5-HT within the kidney
where it would be less accessible to the effects of systemic
catabolising enzymes. Any 5-HT produced extrarenally
and presented to the blood stream, would be deaminated
efficiently by monoamine oxidase (MAO) in the hepatic
and pulmonary circulations, or rapidly sequestered into
platelets leaving little available for filtration at the renal
glomerulus. That circulating 5-HT would be rapidly
destroyed is supported by observations that intravenous
administration of 5-HT produced only a small increase
in blood 5-HT concentration, approximately 2% of the
infused amount [13]. Parenteral 5-HT had virtually no
effects on the levels of free 5-HT in urine but markedly
increased the excretion of 5-HIAA and 5-HT conjugates
[13,14]. Furthermore, in the carcinoid syndrome, urine
5-HT excretion is usually less than 1% of 5-HIAA [15].
Urine 5-HTP levels were higher after the administration

of glu-5-HTP than with 5-HTP, in our study, suggesting
that the amount of 5-HTP presented to the kidney for
direct renal decarboxylation is greater following the
infusion of glu-5-HTP. Cumulative urinary 5-HT ex¬
cretion increased by an average of 450-fold with 5-HTP
and 400-fold with the glu-5-HTP. If more 5-HT is
excreted by the kidney, one would expect that less is
available for conversion to 5-HIAA. The urinary 5-
HIAA excretion was however higher after 5-HTP than
with glu-5-HTP. These observations suggest greater
extrarenal formation and metabolism of 5-HT after 5-
HTP administration than after glu-5-HTP. About 41%
of the infused 5-HTP was recovered in the urine as the
sum of 5-HTP, 5-HT and 5-HIAA during the 3 h obser¬

vation period in this study whereas the recovery of the
three measured metabolites averaged 52% after glu-5-
HTP. The quantitative difference indicates that the two
compounds are handled differently in the body and is
consistent with greater delivery of the glutamyl com¬
pound to the kidney. The lower recovery value with 5-
HTP may be due to uptake of 5-HTP or its metabolites
into other body compartments such as the brain or
circulating platelets. It is also possible that more of the
5-HTP than glu-5-HTP was converted to products which
were not measured in this study (e.g. sulphate and
glucuronide conjugates).
Glu-5-HTP significantly attenuated urine excretion of

sodium. Mean urine excretion of sodium was lower after
5-HTP compared with placebo but the difference was
not statistically significant (Figure 2). The failure to
demonstrate a significant antinatriuresis with 5-HTP in
this study may however be due to a type 2 error because
of the small number of subjects investigated. The anti¬
natriuresis is presumably mediated by locally synthesized
5-HT, and the greater antinatriuretic effect produced by
the glutamyl derivative suggests that 5-HT generated
intrarenally, following administration of the dipeptide,
is more effective despite the greater increase in mean
cumulative 5-HT excretion produced by 5-HTP admini¬
stration. The antinatriuresis may be a consequence of a
reduction in renal blood flow, a fall in glomerular filtra¬
tion rate or an increased tubular reabsorption of sodium.
These questions will be addressed in a future study.
5-HTP caused a significant and prompt increase in

aldosterone levels without any increase in PRA in keep¬
ing with previous studies in man that the release of
aldosterone by 5-HTP is independent of activation of
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the renin angiotensin system [16,17]. This effect on
aldosterone may be due to direct stimulation of the
adrenal cortex [18] or may be mediated by central 5-HT
pathways as 5-HTP can cross the blood brain barrier
[16]. 5-HTP also stimulates the release of other hormones
such as prolactin, ACTH, growth hormone and Cortisol,
providing further evidence that it can act centrally [19,20],
In contrast, glu-5-HTP caused a small, non-significant
delayed rise in aldosterone level in keeping with its
effects being largely restricted to the kidney. The delayed
rise in aldosterone concentration following glu-5-HTP
may be due to conversion in the kidney and recirculation
of 5-HTP. Release of aldosterone is unlikely to be
responsible for the observed antinatriuresis after glu-5-
HTP as the rise in aldosterone occurred later. Suppression
of PRA, often to undetectable levels, in the present study
probably resulted from the sodium chloride infusion
employed in this protocol.
Two out of the five subjects complained of nausea at

the end of 5-HTP infusion. This and other gastrointestinal

symptoms such as abdominal pain, vomiting and diar¬
rhoea which have been reported with 5-HTP administra¬
tion are probably mediated by the enteric or central
5-HT receptors [20-22], The dose of 5-HTP used in our
study was chosen in an attempt to minimise adverse
gastrointestinal and cardiovascular effects. Glu-5-HTP,
in equimolar amount, caused no adverse effects, provid¬
ing further evidence that it is more renally specific and
has less systemic toxicity. There were no significant
changes in pulse rate or blood pressure with either
compound.
In conclusion, the results of this study indicate that 5-

HT can be generated intrarenally in man and that it is
antinatriuretic. Glu-5-HTP appears to be more specific
for the kidney than 5-HTP. This compound may allow
the effects of increased renal synthesis of 5-HT to be
evaluated without confounding extrarenal effects. It
could provide a valuable pharmacological research tool
for the investigation of the renal formation and effects
of 5-HT in man.
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1. The effects of 1 h intravenous infusions of equi-
molar amounts (45nmolmin_1 kg-1) of two putative
5-hydroxytryptamine renal prodrugs, 5-hydroxy-L-
tryptophan and y-L-glutamyl-5-hydroxy-L-tryptophan,
were investigated in a randomized, placebo-controlled,
cross-over study in nine healthy male subjects.
2. Cumulative urinary 5-hydroxytryptamine excretion
over the 3h observation period rose by about 370-fold
after 5-hydroxy-L-tryptophan and 390-fold after y-L-
glutamyl-5-hydroxy-L-tryptophan when compared
with placebo infusion. Urinary 5-hydroxy-L-trypto¬
phan excretion was three times higher after admin¬
istration of y-L-glutamyl-5-hydroxy-L-tryptophan
than after 5-hydroxy-L-tryptophan infusion. Urinary
5-hydroxyindole-3-acetic acid excretion after 5-hy¬
droxy-L-tryptophan infusion was significantly greater
than that after y-L-glutamyl-5-hydroxy-L-tryptophan
administration. Urinary dopamine excretion was not
affected by either compound when compared with
placebo.
3. 5-Hydroxy-L-tryptophan significantly reduced
urine flow rate and urinary sodium excretion. y-L-
Glutamyl-5-hydroxy-L-tryptophan was antinatriuretic
but did not affect urine output. These changes
occurred without significant alterations in effective
renal plasma flow and glomerular filtration rate.
4. Both 5-hydroxy-L-tryptophan and y-L-glutamyl-5-
hydroxy-L-tryptophan significantly increased plasma
aldosterone concentration without a concomitant rise
in plasma renin activity. The increase after y-L-
glutamyl-5-hydroxy-L-tryptophan was smaller and de¬
layed. 5-Hydroxy-L-tryptophan, but not y-glutamyl-5-
hydroxy-L-tryptophan, increased serum growth hor¬
mone concentration.
5. There was a significant increase in diastolic blood
pressure after 5-hydroxy-L-tryptophan administration,
but not after y-L-glutamyl-5-hydroxy-L-tryptophan.
6. These results show that both prodrugs generate 5-
hydroxytryptamine. The antinatriuresis after both
compounds is presumably mediated by intrarenally
generated 5-hydroxytryptamine and this appears to
be predominantly a tubular effect. The urinary meta¬

bolite data and greater extrarenal effects produced by
5-hydroxy-L-tryptophan indicate that the glutamyl
derivative is relatively more selective for the kidney
than 5-hydroxy-L-tryptophan.

INTRODUCTION

Parenteral administration in man of 5-hydroxy¬
tryptamine (5-HT; serotonin) has been reported in
most studies to cause reductions in renal blood
flow, glomerular filtration rate (GFR), urine output
and sodium excretion [1, 2]. 5-HT, however, has a
wide spectrum of actions in the body and the renal
responses to infusion of pharmacological doses of 5-
HT may be largely modified by and/or possibly be
due to the confounding influences produced by
effects in other tissues arising from an increase in
the circulating amine. In addition, peripherally ad¬
ministered 5-HT may be taken up avidly into
platelets and/or efficiently metabolized in the pul¬
monary and hepatic circulations [3, 4], It may,
therefore, not reach the renal tissues in an adequate
concentration to produce effects. Administration of
5-HT precursors which are selectively converted to
5-HT within the kidney may allow an assessment of
the renal effects to be assessed separately from any
systemic effects caused by the increase in circulating
amine that follows the infusion of 5-HT itself.
Aromatic L-amino acid decarboxylase (LAAD; EC
4.1.1.28), the enzyme responsible for conversion of 5-
hydroxy-L-tryptophan (5-HTP) to 5-HT, is present
in large amounts in renal proximal tubular cells [5].
Intrarenal synthesis of 5-HT has been demonstrated
in rats given 5-HTP, and this was accompanied by
a reduction in renal blood flow, antidiuresis and
antinatriuresis [6-9]. Administration of 5-HTP is,
however, associated with adverse gastrointestinal
effects in man and this may limit the dose of 5-HTP
that can be given [10, 11]. Furthermore, unlike 5-
HT, it crosses the blood-brain barrier enhancing
synthesis of 5-HT in the brain [12-14], and may
therefore exert central effects.

Key words: aldosterone, growth hormone, y-l-glutamyl-S-hydroxy-L-tryptophan, 5-hydroxytryptamine, 5-hydroxy-L-tryptophan, kidney, renal sodium excretion, renin.
Abbreviations: ANG I, angiotensin I; C|n, clearance of polyfructosan; CPAH, clearance of p-aminohippurate; L-dopa, L-3,4-dihydroxyphenylalanine; DOPAC, 3:4-dihydroxyphenyl-
acetic acid; ERPF, effective renal plasma flow; FENl, fractional excretion of sodium; FF, filtration fraction; GFR, glomerular filtration rate; glu-dopa, y-L-glutamyl-3,4-dihydroxyphenyl
alanine; Glu-5-HTP, y-L-glutamyl-5-hydroxy-L-tryptophan; y-GT, y-glutamyltransferase; 5-HIAA, 5-hydroxyindole-3-acetic acid; 5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxy-
L-tryptophan; LAAD, L-amino acid decarboxylase; PAH, p-aminohippurate; PRA, plasma renin activity.
Correspondence: Dr T. C. Li Kam Wa, Clinical Pharmacology Unit, Department of Medicine, Royal Infirmary, Edinburgh EH3 9YW, U.K.
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The kidney is highly active in the uptake and
metabolism of y-glutamyl derivatives of amino acids
due to the high relative activity of y-glutamyltrans-
ferase (y-GT; EC 2.3.2.2) in the renal tissues [15,
16]. Extensive previous work in our department has
shown that gludopa (y-L-glutamyl-L-3,4-dihydroxy-
phenylalanine) is a renal dopamine prodrug which is
sequentially converted in the kidney by y-GT to L-
dopa (L-3,4-dihydroxyphenylalanine) and de-
carboxylated by LAAD to dopamine [17, 18], y-L-
glutamyl-5-hydroxyl-L-tryptophan (glu-5-HTP) is a
glutamyl derivative of 5-HTP, which, in an analo¬
gous way, is converted intrarenally to 5-HTP and
then decarboxylated to 5-HT [19]. Our hypothesis
was that glu-5-HTP may be a relatively more
renally selective 5-HT prodrug than 5-HTP, and
this may enable the renal actions of 5-HT to be
studied with less confounding extrarenal effects. We
previously demonstrated in a small study that both
5-HTP and glu-5-HTP produce marked increases in
urinary excretion of 5-HT and that glu-5-HTP is
significantly antinatriuretic [19]. Our data also sug¬
gested that the glutamyl compound has greater
renal selectivity than 5-HTP.
The present, more extensive, study, using a modi¬

fied protocol, was designed to investigate further the
effects of intravenous infusions of equimolar
amounts of glu-5-HTP and 5-HTP in normal man.
In this study, we measured several additional para¬
meters. Effective renal plasma flow (ERPF), GFR
and fractional excretion of sodium (FENa) were
estimated in order to elucidate the antinatriuretic
actions of these compounds. Urinary dopamine ex¬
cretion was assessed, since LAAD, the enzyme con¬
verting 5-HTP to 5-HT, is also involved in the
synthesis of dopamine from L-dopa [20]. In addi¬
tion, we measured serum growth hormone con¬
centration as a possible index of the central effect of
these two compounds, since previous studies
demonstrated that 5-HTP causes release of growth
hormone [21-23].

METHODS

Subjects
Nine healthy male subjects, aged 21-30 years

(mean 25.7 years) and weighing 63.4-96.9 kg (mean
71.2 kg), were studied. All had normal medical
examination, ECG, complete blood count, serum
urea, creatinine, electrolyte concentrations and liver
function tests. They were on no medication for at
least 2 weeks before the start of the study. They
refrained from alcohol for 24 h, abstained from
xanthine-containing drinks from 18.00 hours, and
fasted from 22.00 hours the evening before each
study day. Smoking was prohibited on the day of
the study. Subjects were maintained on their normal
diet, but were advised to consume the same diet in
the 24 h before each study day. Written informed

consent was obtained from all participants, and the
study protocol was approved by the Medical and
Clinical Oncology Ethics of Medical Research Sub¬
committee of Lothian Health Board.

Study protocol
Each subject was studied on three separate

occasions (5-14 days between study days) and
received infusions of placebo, 5-HTP and glu-5-
HTP in a single-blind, randomized order. They
arrived at the clinical investigation unit at about
08.00 hours on each study day, having drunk 500 ml
of tap water 1 h previously. An indwelling intrave¬
nous plastic cannula was inserted in each antecubi-
tal fossa for blood sampling and administration of
infusions. Priming doses of p-aminohippurate-
sodium (PAH; 0.5 g) and polyfructosan (Inutest;
3.5 g) added to saline (150mmol/l NaCl) to make up
a total volume of 40 ml were infused over 8min
using a Perfusor VI infusion pump (B. Braun,
Melsungen AG, Germany). This was followed by a
maintenance infusion of PAH (3.75 g/1) and poly¬
fructosan (4.5 g/1) in saline at a constant rate of
5ml/min using a volumetric infusion pump (IMED
960; IMED Ltd, Abingdon, Oxon, U.K.) throughout
the experiment to allow estimation of ERPF and
GFR. After a 3h run-in period, an intravenous
infusion of an equimolar amount (45nmolmin_1
kg-1) of 5-HTP (10/rgmin-1 kg-1) or glu-5-HTP
(16.6pgmin_1 kg"1) in saline made up to a total
volume of 30ml was administered at 0.5ml/min for
1 h. Placebo was 30 ml of saline alone. In addition
to the saline administered intravenously, the sub¬
jects drank 150 ml of water half-hourly. These mea¬
sures were used to promote an adequate natriuresis
and diuresis. The subjects remained semi-recumbent
throughout the experiment except when standing up
to micturate.
Accurately timed consecutive urine collections of

about 30min duration were made during the last
hour of the run-in phase (periods 1 and 2), during
the administration of the test medications (periods 3
and 4) and for 2h after the end of their infusions
(periods 5-8). Urine volumes were recorded and
aliquots were removed and stored at — 40°C for
determination of sodium, potassium, PAH, poly¬
fructosan, 5-HTP, 5-HT, 5-hydroxyindole-3-acetic
acid (5-HIAA), dopamine and 3,4-dihydroxy-
phenylacetic acid (DOPAC). Urine samples for
measurement of 5-HT, 5-HIAA, dopamine and
DOPAC were acidified (5mol/l HC1) to prevent
their oxidation. Venous blood samples were collect¬
ed into lithium heparin tubes for measurement of
plasma electrolytes, PAH and polyfructosan, and
into plain tubes for serum growth hormone. Blood
for determination of plasma renin activity (PRA)
and aldosterone was immediately transferred into
chilled glass tubes containing EDTA (sodium salt)
and kept on ice. Plasma and serum were separated
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after centrifugation at 4°C and were stored at
— 40°C until analysis.
Objective recordings of blood pressure and pulse

rate were made in duplicate using a Dinamap semi-
automated recorder (Critikon, Inc., Tampa, FL,
U.S.A.) every half hour during the experiment
except during and for 1 h after the infusion of the
test medications, when they were measured every
15min. The mean values for each half-hour period
were calculated and used in subsequent statistical
analysis.
Glu-5-HTP was supplied by Aalto Bio Reagents

Ltd, Dublin, Republic of Ireland, and the prep¬
aration contained 95% pure peptide. 5-HTP was
obtained from Sigma Chemical Co. Ltd, Poole,
Dorset, U.K. Both were prepared for use in 0.9%
NaCl by the Edinburgh Royal Infirmary Pharmacy
and were stored in vials at — 40°C.

Analytical methods
Plasma aldosterone concentration was measured

by radioimmunoassay with a commercially available
kit ('Coat-a-count', Diagnostic Products Ltd,
Caernarfon, Gwynedd, U.K.). Intra- and inter-assay
coefficients of variation were 5.0% and 7.0%, re-
pectively. PRA was measured by radioimmunoassay
of angiotensin I (ANG I) generated under standard
conditions [24], The intra- and inter-assay coeffi¬
cients of variation were 5.2% and 8.6%, respectively.
Growth hormone was measured using an im-
munoradiometric kit (ELSA-HGH; CIS UK Ltd,
High Wycombe, Bucks, U.K.) with intra- and inter-
assay coefficients of variation of 2.8% and 4.0%,
respectively. Sodium and potassium were measured
by an ion-selective electrode analyser (Radiometer
KNA1). PAH was measured in protein-free super-
nate, after precipitation with perchloric acid, by
h.p.l.c. and spectrofiuorimetric detection. Intra- and
inter-assay coefficients of variation were 2.8% and
4.0%, respectively, for plasma, and 3.8% and 7.7%,
respectively, for urinary PAH. Deproteinized plasma
and urine polyfructosan were measured by spectro¬
photometry at 480 nm after generation of chromo-
gen by resorcinol in acid. Intra- and inter-assay
coefficients of variation were 3.4% and 7.2%, respec¬
tively, for plasma polyfructosan, and 3.8% and 7.7%,
respectively, for urinary polyfructosan.
Urinary 5-HT was measured using a modification

of the method of Jouve et al. [25], 5-HIAA by the
method of Goldenberg [26] and 5-HTP as des¬
cribed previously [19]. Dopamine and DOPAC
were extracted from urine at pH 8.5 on to alumina
previously washed with EDTA [27] and eluted into
0.2mol/l perchloric acid. They were measured using
h.p.l.c. and electrochemical detection using N-
methyldopamine as internal standard. Intra- and
inter-assay coefficients of variation for dopamine
were 1.0% and 2.2%, respectively, and those for
DOPAC were 2.5% and 2.5%, respectively.

Calculations and statistical evaluation

Renal clearance was calculated using the standard
formula UV/P, where U is the urinary con¬
centration, V is the urine flow rate and P is the
mean of the plasma levels at the beginning and end
of each clearance period. ERPF and GFR were
estimated by measuring the renal clearances of PAH
(CPAH) and polyfructosan (Cln), respectively. All
values for ERPF and GFR were corrected to a

body surface area of 1.73 m2. The filtration fraction
(FF) was calculated as (Cln/CPAH) x 100%. FENa was
calculated as renal clearance of sodium divided by
GFR (CIn) and expressed as a percentage.
Results are given as means+ SD, except for the

Figures where means+ SEM are shown. The data
between the three experimental days were analysed
by repeated measures analysis of variance for over¬
all statistical significance. When inequality of vari¬
ances between data sets was detected, the F-ratio
was corrected using the Greenhouse-Geiser epsilon
to give a more conservative significance level. Two-
way analysis of variance was employed to identify
any differences between treatments at an individual
time point. Differences in the cumulative urinary
metabolite data after 5-HTP and glu-5-HTP were
analysed by Student's t-test for paired observations.
The growth hormone values were log-transformed
before analysis because of the marked skewing of
the data. Values of P<0.05 were considered statisti¬
cally significant. SPSS/PC + 4.0 statistical software
package (SPSS Inc, Chicago, IL, U.S.A.) was
employed for all statistical analyses.

RESULTS

Fig. 1 shows the urinary excretion rates of 5-
HTP, 5-HT and 5-HIAA for each 30min period. 5-
HTP, which was undetectable in the urine during
infusion of saline alone, increased markedly after
administration of both 5-HTP and glu-HTP. Excre¬
tion of 5-HTP after infusion of glu-5-HTP was
higher than that after 5-HTP for all collection
periods. Cumulative 5-HTP excretion values over
the 3 h after the start of the infusion were

21.0 + 4.8 /rmol after 5-HTP and 66.9+14.1 /zmol
after glu-5-HTP (PcO.001). The mean urinary
excretion rates of 5-HT before infusion of placebo,
5-HTP and glu-5-HTP were similar at 0.5 nmol/min.
5-HT excretion rose to a peak value of
349+117 nmol/min during administration of 5-HTP
and 301 +44nmol/min after glu-5-HTP. There was
no significant change in 5-HT excretion after the
infusion of placebo. The 3h cumulative urinary 5-
HT excretion rose 367-fold after 5-HTP
(31.4+ 8.7/rmol) and 390-fold after glu-5-HTP
(33.4 + 9.4 /xmol) when compared with placebo infu¬
sion (85.6 + 26.2 nmol). There was no significant
difference between the cumulative 5-HT excretion
after 5-HTP and glu-5-HTP. 5-HIAA was not detec¬
table in the urine before infusion of the test medica-
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Fig. I. Urinary 5-HTP, 5-HT and 5-HIAA excretion rates before
(periods I and 2), during (periods 3 and 4) and after (periods 5—8)
infusion of placebo (O). 5-HTP (0) and glu-5-HTP (A). Values
shown are means+ SEM (n = 9). Urinary 5-HTP was below the detection
limit of the assay on the placebo day and before infusion of 5-HTP and
glu-5-HTP.

tions. Marked increases in urinary 5-HIAA occurred
after administration of 5-HTP and glu-5-HTP. The
cumulative 5-HIAA excretion values were higher
after administration of 5-HTP (38.8 +6.6/imol) than
after glu-5-HTP (28.0+ 5.8 /imol; P<0.01). At the
end of the 3h study period, 47 + 5% of infused 5-
HTP and 66 + 7% of glu-5-HTP were recovered in
the urine as the sum of 5-HTP, 5-HT and 5-HIAA.
The urinary excretion of 5-HTP, 5-HT and 5-HIAA
was 11 + 1%, 16 + 3% and 20 + 5%, respectively, of
the infused dose of 5-HTP. The corresponding
values were 35 + 5%, 17 + 3% and 15 + 3% after glu-
5-HTP administration. Urinary dopamine and
DOPAC excretion rates were unaffected by 5-HTP
or glu-5-HTP when compared with placebo (Fig. 2).
Mean urinary sodium excretion rates during the

baseline period just before placebo, 5-HTP or glu-5-
HTP infusion were not significantly different at
263+130, 323+100 and 272 +134 /xmol/min, re¬
spectively (Fig. 3). The absolute excretion of sodium
and FENa increased progressively on the placebo
day throughout all clearance periods in response to
infusion of saline. Both 5-HTP (P<0.01) and glu-5-
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Fig. 2. Urinary dopamine and DOPAC excretion rates before (per¬
iods I and 2), during (periods 3 and 4) and after (periods 5-8)
infusion of placebo (0)> 5-HTP (9) and glu-5-HTP (A). Values
shown are means+ SEM (n = 9).

HTP (P< 0.005) significantly attenuated the increase
in sodium excretion when compared with placebo.
FENa was likewise reduced by 5-HTP (P< 0.025)
and glu-5-HTP (P< 0.005) (Table 1). The sodium
excretion after 5-HTP infusion was not significantly
different from that after glu-5-HTP. The 3'n cumu¬
lative sodium excretion values after placebo, 5-HTP
and glu-5-HTP administration were 65.3+16.5,
51.1 + 12.5 and 47.0+13.3mmol, respectively. There
was a significant reduction in urine output after 5-
HTP administration (P<0.01) but not after glu-5-
HTP. There were no significant changes in potas¬
sium excretion after 5-HTP or glu-5-HTP when
compared with placebo (Fig. 3). Both compounds
had no significant effects on ERPF, GFR or FF
(Fig. 4), although the mean GFR was lower during
and immediately after 5-HTP infusion.
Serial PRA and plasma aldosterone concentration

are shown in Fig. 5. Both 5-HTP (P < 0.001) and
glu-5-HTP (P<0.05) significantly increased plasma
aldosterone concentration when compared with
placebo. The increase after glu-5-HTP was, however,
smaller (P< 0.005) and delayed when compared with
5-HTP. PRA was low at baseline and did not

increase during infusion of either compound. Com¬
pared with placebo, there was a significant increase
in serum growth hormone concentrations half an
hour after the end of 5-HTP infusion (P<0.05) (Fig.
5). There was a large inter-subject variability in the
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Period

Fig. 3. Urine flow (V), sodium output {UNlV) and potassium out¬
put (UK V) before (periods I and 2), during (periods 3 and 4) and
after (periods S-8) infusion of placebo (O). 5-HTP (•) and
glu-5-HTP (A). Values shown are means + SEM (n = 9).

Table I. FENl before (periods I and 2), during (periods 3 and 4) and
after (periods 5-8) infusion of placebo, 5-HTP and glu-S-HTP. Values
shown are means+ SD (n = 9).

FENi (*>
Period Placebo 5-HTP Glu-5-HTP

1 1.6 + 0.7 2.1+0.6 1.9+1.2
1.8 + 0.7 2.3 + 0.7 2.0+0.7
1.9 + 0.5 2.2 + 0.6 1.9 + 0.5
2.0 + 0.6 1.8 + 0.6 1.7 + 0.4
2.3 + 0.8 2.0 + 0.6 1.6 + 0.4
2.6 + 0.6 2.1+0.6 1.8 + 0.5
2.9 + 0.8 2.5+1.0 1.9 + 0.6

8 3.0 + 0.6 2.6+1.0 2.1 ±0.6

growth hormone response to 5-HTP. Although
there was a significant response for the group in
toto, a rise in serum growth hormone concentration
of > 5 ng/ml was present in only four subjects, all of
whom experienced nausea. Infusion of glu-5-HTP
caused no significant changes in serum growth
hormone levels.

5-HTP, but not glu-5-HTP, significantly increased
diastolic blood pressure when compared with
placebo (P<0.05) (Fig. 6). There were no signifi¬
cant differences between treatments in systolic blood

placebo (O). 5-HTP (•) and glu-5-HTP (A). Values shown are
means+ SEM (n = 9).

pressure (0.05<P<0.1) or pulse rate. Six out of the
nine subjects complained of nausea at the end of 5-
HTP infusion, but only one experienced this effect
with glu-5-HTP. No other adverse effect was noted.

DISCUSSION

Urinary excretion of 5-HT increased markedly
during and after infusion of its precursors 5-HTP
and glu-5-HTP. This suggests that biosynthesis of 5-
HT can occur in the human kidney since extrarenal
production of 5-HT cannot account completely for
the high urinary levels of 5-HT observed in this
study. 5-HT produced extrarenally and presented to
the blood stream would be rapidly deaminated by
monoamine oxidase in the pulmonary and hepatic
circulations or sequestered into platelets, leaving
little available for filtration at the renal glomerulus
[3, 4, 28], The theory that circulating 5-HT would
be rapidly destroyed is supported by previous ob¬
servations that intravenous administration of 5-HT
resulted in only a small increase in blood 5-HT
concentration and had virtually no effect on the
level of free 5-HT in urine [10, 29], Moreover, in
the carcinoid syndrome, where there is an increase
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Fig. 5. Plasma aldosterone concentration, PRA and serum growth
hormone concentration before, during and after infusion of placebo
(O). 5-HTP (•) and glu-5-HTP (A)- Values shown are means + SEM
("= ')•

in circulating 5-HT, urinary 5-HT excretion is
usually less than 1% of 5-HIAA excretion [30].
Measurements of 5-HTP and 5-HT in the renal

artery and vein, in addition to urinary measure¬
ments, will be required to further support the
conclusion that 5-HT is generated intrarenally from
its precursors. It is difficult to perform these investi¬
gations in healthy subjects because of ethical con¬
siderations. However, such evidence supporting
intrarenal formation of 5-HT from 5-HTP is avail¬
able from experiments with isolated perfused rat
kidneys [6], Since y-GT and LAAD are con¬
centrated mainly in the renal tubules [5, 28, 31], our
results would seem to indicate renal tubular forma¬
tion of 5-HT with subsequent urinary excretion.
LAAD also converts L-dopa to dopamine [20], In
addition, both 5-HT and dopamine are metabolized
by monoamine oxidase to 5-HIAA and DOPAC,
respectively [2, 32]. It is therefore possible that
administration of 5-HTP may alter the renal forma¬
tion and/or excretion of dopamine or DOPAC.
Indeed, because 5-HT and dopamine could have
opposite effects on renal haemodynamics and func¬
tion, it has been postulated that these biogenic

Period

Fig. 6. Systolic (SBP) and diastolic (DBP) blood pressure and pulse
rate in nine healthy subjects receiving infusions of placebo (0)>
5-HTP (#) and glu-5-HTP (A)- Values shown are means + SEM.

amines may be generated within the kidney under
physiological conditions as reciprocal regulators of
renal haemodynamics and of salt and water ex¬
cretion [8, 28]. We did not observe any effect of 5-
HTP or glu-5-HTP on urinary excretion of dopa¬
mine or its major metabolite DOPAC in our study.
The reason for this is unknown, but it would be of
interest to infuse equimolar amounts of gludopa and
glu-5-HTP to investigate which prodrug is the pre¬
ferred substrate for the renal enzymes and what is
the overall pharmacological effect.
Cumulative urinary excretion of 5-HTP was three

times higher after administration of glu-5-HTP than
after 5-HTP. This indicates that the amount of 5-
HTP delivered to the kidney was greater after
infusion of glu-5-HTP and is in keeping with it
being relatively more selective for the kidney than 5-
HTP. Cumulative urinary 5-HT excretion was not
significantly different between 5-HTP and glu-5-
HTP infusions. On a molar basis, 16% of the
administered dose of 5-HTP and 17% of glu-5-HTP
were recovered in the urine as 5-HT. The urinary
recoveries, measured as the sum of 5-HTP, 5-HT
and 5-HIAA excreted during the 3h observation
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period, were 47% and 66% of the infused dose after
5-HTP and glu-5-HTP, respectively. The higher
recovery with glu-5-HTP again suggested greater
delivery of the glutamyl compound to the kidney.
Both 5-HTP and glu-5-HTP significantly reduced

urinary sodium excretion in the present study. In
our previous study, a statistically significant antina-
triuretic effect was observed after administration of
glu-5-HTP, but not after 5-HTP [19]. The mean
urinary excretion of sodium after 5-HTP was, how¬
ever, lower than that after placebo. A Type 2 error
probably explains the failure to demonstrate a signi¬
ficant antinatriuresis after 5-HTP because only five
subjects were studied. The reduction in urinary
excretion of sodium in the present study occurred
without significant alteration in ERPF, GFR or FF,
suggesting that the antinatriuresis is mediated by a
direct tubular action of 5-HT formed within renal
tubular cells by LAAD. The proposition that the
retention of sodium results from generation of 5-HT
is supported by our observation that carbidopa, a
peripheral LAAD inhibitor, markedly reduces the
excretion of 5-HT in urine and abolishes the anti-
natriuretic effect of glu-5-HTP (T. C. Li Kam Wa et
al. unpublished work). There was a suggestion of a
slight reduction in GFR after 5-HTP in our study,
but this effect was inconsistent and not statistically
significant. It is possible that an infusion of 5-HTP
longer than 1 h could produce a significant effect on
GFR. However, the absence of an effect on ERPF
and GFR may not be surprising given the tubular
site of production of 5-HT. The lack of effect by 5-
HTP on renal haemodynamics in this study is in
contrast with studies which demonstrated decreases
in ERPF and GFR in rats treated with 5-HTP [7—
9]. It was suggested that glomerular LAAD activity,
although of small degree, formed 5-HT within the
glomerulus or that an intrarenal transport system of
5-HT from a tubular site of formation to the blood
vessels or glomerulus could explain the observed
haemodynamic effects [8],
A significant reduction in urine flow rate was

observed after 5-HTP but not after glu-5-HTP. This
may be due to release of vasopressin. There is
evidence from animal studies that 5-HT acts within
the central nervous system to increase plasma vaso¬
pressin concentration [33-35], The antidiuresis in¬
duced by 5-HTP may therefore be due to release of
vasopressin subsequent to an increase in brain 5-
HT, whereas glu-5-HTP did not produce this effect
because its conversion to 5-HT occurs mainly in the
kidney. An alternative explanation is that the vaso¬
pressin release is due to the nausea produced by 5-
HTP, since nausea is a potent stimulus to secretion
of vasopressin in man [36-38].
There was an early and significant increase in

plasma aldosterone concentrations without a conco¬
mitant increase in PRA after administration of 5-
HTP. This is in agreement with observations by
other investigators that the release of aldosterone by
5-HTP does not depend on the activation of the

renin-angiotensin system in man [39, 40]. The
release of aldosterone may be due to a direct effect
on the adrenal cortex [41, 42] and/or be mediated
by central 5-HT pathways [39, 40]. Glu-5-HTP
caused a smaller and delayed rise in plasma aldo¬
sterone level, consistent with its effects being largely
confined to the kidney. The delayed rise in plasma
aldosterone concentration may be due to the renal
formation of 5-HTP from glu-5-HTP and its sub¬
sequent recirculation. It is also possible that there
may be some y-GT and LAAD activity in the
adrenal gland [43] and 5-HT produced locally
could stimulate aldosterone release. The time course

of the changes in sodium excretion [44] and the
lack of effect on potassium excretion suggest that
the antinatriuretic response to 5-HTP or glu-5-HTP
infusion did not depend on the known action of
aldosterone on the distal convoluted tubule of the
kidney.
Serum growth hormone concentrations were sig¬

nificantly increased after infusion of 5-HTP. This is
presumably mediated by the conversion of 5-HTP
to 5-HT in the central nervous system and is in
agreement with studies by other workers which
demonstrated a rise in growth hormone after ad¬
ministration of 5-HTP [21-23, 45, 46] or L-
tryptophan, the initial precursor of 5-HT [47, 48],
However, variable results were obtained by other
investigators [47, 49, 50] and the role of 5-HT in
the regulation of growth hormone release remains
unclear. It is possible that nausea may be a factor in
the release of growth hormone secretion in our
study, since all four subjects who showed a rise of
more than 5 ng/ml experienced this side effect. Eme-
sis may increase plasma concentrations of growth
hormone [36], On the other hand, an increase in
growth hormone has been reported in studies where
only a minority of the subjects felt nauseated [21-
23, 45-48]. Glu-5-HTP had no effect on growth
hormone release in keeping with its conversion to 5-
HT being largely limited to the kidney.

Six of the nine subjects experienced nausea at the
end of 5-HTP infusion. This is a well-recognized
adverse effect associated with 5-HTP administration

[10, 11], Glu-5-HTP, in equimolar amount, caused
this reaction in only one subject. In addition, glu-5-
HTP did not affect blood pressure, whereas 5-HTP
caused a significant increase in diastolic blood pres¬
sure after 5-HTP. The low incidence of adverse
effects and the lack of effect on blood pressure
provide further evidence that glu-5-HTP is more
renally selective and has less systemic toxicity.
In conclusion, the results of this study indicate

that 5-HT can be generated intrarenally from both
putative 5-HT prodrugs in man. When 5-HT is
generated, it produces an effect on tubular sodium
reabsorption, independent of changes in ERPF or
GFR, resulting in sodium retention. The urinary
metabolite data and reduced extrarenal effects, as
evidenced by changes in growth hormone and
aldosterone release, blood pressure and adverse
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effects, supports the hypothesis that glu-5-HTP is
relatively more selective for the kidney than 5-HTP.
This relative selectivity is probably due to the avid
uptake and metabolism of glutamyl compounds by
the kidney [15, 16], but further work will be
required to elucidate the mechanism. Whatever the
mechanism involved, the use of glu-5-HTP should
allow the effects of increased renal synthesis of 5-HT
to be studied with less confounding extrarenal
effects.
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The antinatriuretic action of y-L-glutamyl-5-hydroxy-L-
tryptophan is dependent on its decarboxylation to
5-hydroxytryptamine in normal man

T. C. LI KAM WA, S. FREESTONE, R. R. SAMSON, N. R. JOHNSTON & M. R. LEE
Clinical Pharmacology Unit, Department of" Medicine, University of Edinburgh, The Royal
Infirmary, Edinburgh EH3 9YW

1 The effects of inhibition of peripheral aromatic L-amino acid decarboxylase during
infusion of the relatively renally selective 5-hydroxytryptamine (5-HT) prodrug,
y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP), were examined in eight
healthy male subjects in a randomised, placebo-controlled, cross-over study.

2 Each subject received oral carbidopa (100 mg) or placebo followed, 1 h later, by a
60 min intravenous infusion of glu-5-HTP (16.6 jig kg-1 mirr1) or placebo.

3 After administration of glu-5-HTP, cumulative urinary excretion of 5-HT was 430-
fold greater than that after placebo, and was associated with a period of sodium
retention.

4 Pretreatment with carbidopa substantially attenuated the increase in 5-HT excre¬
tion after glu-5-HTP and abolished its antinatriuretic effect.

5 These results are in keeping with the proposition that the antinatriuretic action of
glu-5-HTP is dependent on its decarboxylation to 5-HT.

Keywords 5-hydroxytryptamine y-L-glutamyl-5-hydroxy-L-tryptophan carbidopa
kidney sodium excretion aldosterone

Introduction

The first step in the biosynthesis of 5-hydroxytrypta¬
mine (5-HT; serotonin) involves the hydroxylation of
the essential amino acid L-tryptophan to 5-hydroxy-
tryptophan (5-HTP) by the enzyme tryptophan-5-
hydroxylase. 5-HTP is decarboxylated by aromatic
L-amino acid decarboxylase (LAAD) to 5-HT. The
latter is degraded primarily by monoamine oxidase to
produce 5-hydroxyindoleacetic acid (5-HIAA) which
is the major catabolic and excretory product of 5-HT
metabolism. All these enzymes are present in renal
tissue, suggesting that the kidney might have the
capacity to synthesise and degrade 5-HT locally
[1, 2], The enzyme y-glutamyl transferase (yGT) is
also present in high concentrations and the kidney
is highly active in the uptake and metabolism of
y-glutamyl derivatives of amino acids [3, 4], We
previously demonstrated marked increases in urinary
5-HT excretion after infusion of the 5-HT prodrug,
y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP), in

keeping with intrarenal synthesis of 5-HT following
the conversion of glu-5-HTP to 5-HTP by yGT and
its subsequent decarboxylation by renal LAAD to
5-HT [5, 6]. Glu-5-HTP was relatively more selective
for the kidney than 5-HTP. It reduced urinary sodium
excretion without significant alterations in renal
haemodynamics and this was due, presumably, to
intrarenally generated 5-HT.
The present study was designed to investigate

whether carbidopa, a peripheral inhibitor of LAAD
(7], blocks the formation of 5-HT from glu-5-HTP
and interferes with the actions of glu-5-HTP in
normal volunteers.

Methods

Eight male volunteers, age range 18-39 years (mean
28 years) and weighing 59.9-80.9 kg (mean 69.0 kg),

Correspondence: Dr T.C. Li Kam Wa, Clinical Pharmacology Unit. Department of Medicine. University of Edinburgh. The Royal
Infirmary, Edinburgh EH3 9YW
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gave informed written consent to take part in this ran¬
domised, single-blind, placebo-controlled, within-
subject cross-over study which was approved by the
Healthy Volunteer Studies Ethics of Medical
Research Sub-Committee, Lothian Health Board.
They were all healthy as judged by medical history
and physical examination, ECG, urinalysis, full blood
count and biochemical blood analyses. They
abstained from medications from at least 2 weeks
before the start of the study and until its completion.

Each subject attended on four separate occasions,
at least 1 week apart. They refrained from alcohol
for 24 h, abstained from caffeine-containing bever¬
ages from 18.00 h, and fasted from 22.00 h the
evening before each of the study days. They arrived
at the clinical investigation unit at about 08.00 h on
each study day, having drunk 500 ml tap water 1 h
previously. A cannula was inserted into a vein in each
antecubital fossa for blood sampling and administra¬
tion of infusions. The subjects received an intra¬
venous loading dose of 0.5 g p-aminohippurate
sodium (PAH; Merck Sharp & Dohme, PA, USA) and
3.5 g polyfructosan (Inutest; Laevosan-Gesellschaft,
Linz, Austria) at the start of the study (time 0 h) fol¬
lowed by a maintenance infusion of PAH (3.75 g I"1)
and polyfructosan (4.5 g I"1) in 0.9% sodium chloride
(saline; 150 mmol 1"') at a rate of 5 ml min-1 for the
next 6 h. They emptied their bladders at 1.5 h and
accurately timed consecutive urine collections of
about 30 min duration were made thereafter until the
end of the study. Two hours after the start of the
study, the subjects took either 100 mg carbidopa
(Merck Sharp & Dohme Ltd, Hoddesdon, UK) or
placebo orally. This was followed 1 h later by a 60
min infusion of glu-5-HTP (Aalto Bio Reagents Ltd,
Dublin, Eire), made up to 30 ml with 0.9% saline, at
a rate of 16.6 pg kg-1 min 1 or placebo (saline alone
at 0.5 ml min-1). Each subject therefore received the
following four combinations in a randomised
sequence; placebo + placebo; placebo + glu-5-HTP;
carbidopa + placebo; and carbidopa + glu-5-HTP. The
subjects remained supine throughout the experiment
except when standing to pass urine and drank 150 ml
water every 30 min to promote an adequate diuresis.
Blood pressure and pulse rate were measured in
duplicate by a semi-automated recorder (Dinamap;
Critikon Inc., Tampa, FL, USA) every 0.5 h during
the study.

Venous blood samples were collected into lithium
heparin tubes at 30 min intervals for measurement of
plasma PAH and polyfructosan. Blood for determina¬
tion of plasma renin activity (PRA) and aldosterone
were collected at 0.5, 2, 3, 3.5, 4, 5 and 6 h into
precooled glass tubes containing sodium ethylenedi-
amine tetra-acetate and kept on ice. Plasma was sepa¬
rated after centrifugation at 4° C and stored at
-40° C until analysis. The volume of each urine
collection was measured and aliquots removed and
stored at -40° C for analysis of sodium, PAH,
polyfructosan, 5-HTP, 5-HT, 5-HIAA and dopamine.
Urine samples for 5-HT, 5-HIAA and dopamine were
acidified (pH < 3.0) with 5m hydrochloric acid to
prevent their oxidation.

Blood and urine analyses

Sodium was measured by an ion-selective electrode
analyser (Radiometer KNA1). Plasma aldosterone
concentrations were measured by radioimmunoassay
with a commercially available kit ('Coat-a-count',
Diagnostic Products Ltd. Caernarfon, Gwynedd, UK)
with intra- and inter-assay coefficients of variation of
5% and 7% respectively. PRA was measured by
radioimmunoassay of angiotensin I generated under
standard conditions [8 J. The intra- and inter-
assay coefficients of variation were 5% and 9%
respectively. PAH, 5-HTP, 5-HT and dopamine were
measured by h.p.l.c. and polyfructosan and 5-HIAA
by spectrophotometry as described previously [5, 6].
The values of the lower limit of detection of
the assays for 5-HTP, 5-HT. 5-HIAA and dopamine
were 45 nmol l_l, 45 nmol l-1, 5.2 pmol l-1, and
26 nmol l-1 respectively.

Data analysis

Effective renal plasma flow (ERPF) and glomerular
filtration rate (GFR) were estimated from the renal
clearances of PAH (Cpah) and polyfructosan (Cin)
respectively using the standard formula UV/P, where
U is the urine concentration, V is the urine flow rate
and P is the mean of the plasma concentrations at the
beginning and end of each clearance period.

Results are expressed as means ± s.d. except for
the figures where the mean ± s.e. mean values are
shown. Statistical comparisons of the parameters
measured serially on the four experimental days were
made by repeated measures analysis of variance for
overall statistical significance with the pretreatment
values included as covariates. Two-way ANOVA
was employed to identify any differences between
the 3-6 h cumulative data on the 4 days. When
significant differences were found, relevent pairs of
data were compared by Student's Mest for paired
observations with Bonferroni correction for multiple
comparisons. A value of zero was assumed when the
measured variable was below the limit of detection of
the assay technique used to allow statistical compar¬
isons to be made. Differences were considered to be

statistically significant when the P value was less
than 0.05. SPSS/PC + 4.0 statistical software package
(SPSS Inc. Chicago, Illinois, USA) was employed for
all statistical analyses.

Results

The urinary excretion rates of 5-HTP, 5-HT, 5-HIAA
and dopamine for each 30 min period on the 4 study
days are shown in Table 1. The urinary excretion of
5-HT was about 0.4 nmol min-1 at baseline. This rose

to a peak value of 278 ± 44 nmol min-1 after glu-5-
HTP infusion but did not change significantly after
placebo infusion. The cumulative urinary 5-HT excre¬
tion over the 3 h period after the start of glu-5-HTP
infusion was 430-fold higher than that after placebo
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Table 1 Mean (s.d.) urinary 5-HTP, 5-HT, 5-HIAA and dopamine excretion rates for each 0.5 h period on the 4 study
days (n = 8). Carbidopa or placebo was given at 2 h and time 3-4 h represents the infusion (glu-5-HTP or placebo)
period. * = dopamine was not detectable in seven subjects

Time (h)
1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

5-HTP excretion (nmol min '')
Placebo + 0 0 0 0 0 0 0 0 0

placebo
Placebo + 0 0 0 232.6 436.5 368.9 246.9 149.8 84.3

glu-5-HTP (69.0) (132.3) (134.9) (55.8) (48.0) (23.6)
Carbidopa + 0 0 0 0 0 0 0 0 0

placebo
Carbidopa + 0 0 0 264.6 682.5 593.3 410.1 260.9 209.9

glu-5-HTP (71.1) (133.5) (173.7) (79.6) (85.4) (42.8)

5-HT excretion (nmol min ')
Placebo + 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5

placebo (0.2) (0.1) (0.1) (0.1) (0.1) (0.1) (0.0) (0.2) (0.1)
Placebo + 0.5 0.4 0.4 113.1 274.3 278.4 198.8 126.1 88.4

glu-5-HTP (0.1) (0.1) (0.0) (42.6) (51.5) (43.9) (41.7) (21.9) (11.2)
Carbidopa + 0.5 0.4 0.1 0 0 0 0 0 0

placebo (0.2) (0.1) (0.1)
Carbidopa + 0.4 0.3 0.2 0.6 2.0 2.6 2.2 1.7 1.5

glu-5-HTP (0.2) (0.2) (0.1) (0.4) (1.1) (1.6) (1.0) (0.7) (0.9)

5-HIAA excretion (nmol min'
Placebo + 0 0 0 0 0 0 0 0 0

placebo
Placebo + 0 0 0 73.7 199.2 222.8 213.2 171.4 144.9

glu-5-HTP (27.8) (100.9) (46.7) (46.2) (32.7) (27.2)
Carbidopa + 0 0 0 0 0 0 0 0 0

placebo
Carbidopa + 0 0 0 32.1 29.1 49.2 60.4 49.4 43.5

glu-5-HTP (35.3) (15.2) (21.1) (35.7) (21.3) (16.9)

Dopamine excretion (nmol min 1)
Placebo + 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4

placebo (0.2) (0.3) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.2)
Placebo + 1.4 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.2

glu-5-HTP (0.2) (0.3) (0.2) (0.1) (0.2) (0.2) (0.4) (0.1) (0.1)
Carbidopa + 1.6 1.6 0.7 0.2 0.1 0 0 0 0

placebo (0.2) (0.4) (0.6) (0.3) (0.2)
Carbidopa + 1.6 1.6 0.9 0.2 0.3 0.3* 0.2* 0.2* 0.2*

glu-5-HTP (0.5) (0.3) (0.6) (0.5) (0.8) (0.7) (0.6) (0.6) (0.5)

infusion (32.4 ± 3.6 pmol vs 75.6 ± 12.7 nmol; P <
0.001). Similarly, 5-HTP and 5-HIAA which were
undetectable in urine during placebo infusion,
increased markedly after administration of glu-5-
HTP. Carbidopa suppressed urinary 5-HT and
dopamine excretion to undetectable levels in all sub¬
jects during placebo infusion. It markedly attenuated
the increase in 5-HT excretion after glu-5-HTP. Com¬
pared with placebo pretreatment, carbidopa reduced
the 3 h cumulative 5-HT excretion by 99% from 32.4
± 3.6 |imol to 0.3 ± 0.1 pmol (P < 0.001). It
increased the 3 h cumulative 5-HTP excretion by
60% from 45.6 ± 10.9 pmol to 72.8 ± 14.8 pmol
(P < 0.001) and reduced 5-HIAA excretion by 74%
from 30.8 ± 6.3 pmol to 7.9 ± 3.2 pmol (P < 0.001).
There was a steady increase in urinary sodium

excretion from 278 ± 77 pmol min-1 (1.5-2.0 h
period) to 379 ± 144 pmol min-1 (5.5-6.0 h period)
during the placebo day in response to infusion of
saline (Figure 1). Glu-5-HTP produced a significant
attenuation of sodium excretion when compared with

placebo infusion (P < 0.01). The 3 h cumulative
sodium excretion values after placebo and glu-5-HTP
administration were 63.3 ±19.1 and 45.9 ± 9.2 mmol

respectively (P < 0.05). Pretreatment with carbidopa
abolished the antinatriuretic effect of glu-5-HTP. The
3 h cumulative sodium excretion when the subjects
received carbidopa and glu-5-HTP infusion was 63.5
± 15.6 mmol which is similar to that during placebo
infusion only. Carbidopa had no significant effect on
cumulative sodium excretion during placebo infusion
(63.3 ± 5.2 mmol).
Glu-5-HTP significantly increased plasma aldos¬

terone when compared with placebo infusion (P <
0.001) (Figure 2). Pretreatment with carbidopa atten¬
uated the increase in plasma aldosterone concentra¬
tions produced by glu-5-HTP (P < 0.005). Carbidopa
had no effect on the steady fall in plasma aldosterone
concentration during placebo infusion. PRA declined
progressively in response to saline loading during all
experimental days (Figure 2).
GFR, ERPF, blood pressure and pulse rate were not
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Figure 1 Sodium output (UnuV) on the 4 study days:
placebo + placebo (•); placebo + glu-5-HTP (A);
carbidopa + placebo (■): and carbidopa + glu-5-HTP (Y).
Values shown are means ± s.e. mean (n = 8).
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Figure 2 Plasma aldosterone concentrations and PRA
on the 4 study days: placebo + placebo (•): placebo + glu-
5-HTP (A): carbidopa + placebo (■); and carbidopa + glu-
5-HTP (Y). Values shown are means ± s.e. mean (n = 8).

significantly different between the 4 study days (data
available from authors on request). No side effects
were reported or recorded.

Discussion

This study confirms our previous observations that
glu-5-HTP markedly increases urinary 5-HT excre¬
tion and causes retention of sodium without
significant alterations in renal haemodynamics in nor¬

mal man [5, 6J. The prodrug also increases aldos¬
terone production as previously reported but the time
course of the changes in sodium excretion and the
lack of effect on urinary potassium excretion suggest
that the antinatriuresis occurs independently of the
known actions of aldosterone [6, 9]. Both the
enzymes required for 5-HT synthesis from glu-5-
HTP, yGT and LAAD, are highly concentrated in the
proximal tubular cells of the kidney [3, 10] and the
high urinary levels of 5-HT would indicate that 5-HT
is probably formed in the renal tubules and then
excreted. That 5-HT is produced intrarenally is fur¬
ther supported by our recently reported findings that
the marked increases in urinary excretion of 5-HT
occur without significant changes in circulating 5-HT
[11]-
Urinary dopamine results mainly from dopamine

synthesis in proximal tubular cells by the renal decar¬
boxylation of L-dopa [12]. Similarly, it has been sug¬
gested that urinary 5-HT reflects intrarenal synthesis
of 5-HT [2], In the present study, a single 100 mg
dose of carbidopa, an extracerebral LAAD inhibitor,
suppressed dopamine and 5-HT excretion to below
the levels of detection of the assays indicating effec¬
tive inhibition of renal LAAD. We did not observe a

significant effect of carbidopa on urinary sodium
excretion during saline infusion in agreement with
most previous studies [13-15]. Carbidopa substan¬
tially reduced the increment in urinary 5-HT excre¬
tion that followed administration of glu-5-HTP. There
was an increase in urinary 5-HTP excretion and a
reduction in 5-H1AA excretion. These results are

consistent with significant inhibition of renal LAAD.
The lesser reduction in 5-HIAA excretion suggests
that there are body compartments, for example the
brain, where LAAD may still remain active and be
capable of 5-HT synthesis, despite carbidopa admin¬
istration. Carbidopa abolishes the antinatriuresis
induced by glu-5-HTP coincident with the near sup¬
pression of 5-HT synthesis, in keeping with the
hypothesis that the sodium retention results from
intrarenal generation of 5-HT.
Glu-5-HTP increased aldosterone production, with¬

out a concomitant increase in PRA, indicating that
the release of aldosterone does not depend on the
activation of the renin angiotensin system in man [5,
6]. Similar observations have been reported after 5-
HTP administration although the rise in aldosterone
occurs earlier and is of a greater magnitude [5, 6, 16,
17], It is possible that the adrenal gland may possess
yGT and LAAD activity [18], 5-HT could then be
produced locally and stimulate aldosterone release
since 5-HT has been shown to release aldosterone
from the adrenal gland [19, 20], Alternatively, 5-HTP
and 5-HT formed from glu-5-HTP in the kidney may
recirculate and act on the adrenal gland. 5-HTP,
unlike 5-HT, can cross the blood-brain barrier and the
release of aldosterone could, therefore, also be medi¬
ated by central 5-HT pathways [16, 17]. Carbidopa
does not penetrate the central nervous system to any
appreciable extent and would not be expected to
inhibit conversion of 5-HTP to 5-HT in the brain. It
has been reported to increase plasma 5-HTP follow-
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ing administration of 5-HTP and to increase the
stimulatory effect of 5-HTP on aldosterone suggest¬
ing that central 5-HT pathways are involved in the
stimulation of aldosterone induced by administration
of 5-HTP [17, 21]. In the present study, however,
carbidopa attenuated the increase in aldosterone
secretion following glu-5-HTP. This finding suggests
that release of aldosterone by glu-5-HTP is pre¬
dominantly a peripheral effect.

We conclude that the results of this work support
the proposition that the effect of glu-5-HTP on

urinary excretion of sodium is caused by a direct
tubular action of 5-HT formed within renal tubular
cells by LAAD and is independent of any effect on
renal haemodynamics. 5-HT may act as a counter-
regulatory paracrine substance to dopamine in the
local control of sodium handling in the kidney.
It remains to be determined how the balance between
5-HT and dopamine is regulated [22] and whether
this is important in the pathogenesis of conditions in
which alteration in renal sodium handling may be
important such as essential hypertension.
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Blood and urine 5-hydroxytryptophan and
5-hydroxytryptamine levels after administration of two
5-hydroxytryptamine precursors in normal man

T. C. LI KAM WA, N. J. T. BURNS1, B. C. WILLIAMS1, S. FREESTONE & M. R. LEE
Clinical Pharmacology Unit, Department of Medicine, Royal Infirmary, Edinburgh EH3 9YW and 'Department of
Medicine, Western General Hospital, Edinburgh EH4 2XU

Six healthy male subjects received equimolar amounts of two 5-hydroxytryptamine
(5-HT) precursors, 5-hydroxy-L-tryptophan (5-HTP) and y-L-glutamyl-5-hydroxy-L-
tryptophan (glu-5-HTP), on two occasions in a randomised cross-over study. There
were marked increases in urinary 5-HTP and 5-HT excretion after infusion of both
compounds. Mean urinary excretion rate of 5-HT, which was < 0.7 nmol min"1 before
dosing, rose to a peak value of 412 ± 92 nmol min-1 at the end of 5-HTP infusion and
303 ± 29 nmol min-1 after administration of glu-5-HTP. This occurred without
significant changes in blood 5-HT levels measured in platelet-rich plasma. These
findings provide further evidence that the increase in urine 5-HT after administration
of both 5-HT precursors is largely due to 5-HT synthesised within the kidney.

Keywords 5-hydroxytryptamine 5-hydroxytryptophan y-L-glutamyl-5-hydroxy-L-tryptophan
kidney

Introduction

The mammalian kidney contains all the major
enzymes required for the synthesis and degradation of
5-hydroxytryptamine (5-HT) [1,2]. Intrarenal synthe¬
sis of 5-HT occurs in rats given its immediate precur¬
sor, 5-hydroxytryptophan (5-HTP), and it has been
suggested that 5-HT may act as a counterregu-
latory paracrine substance to dopamine in the local
regulation of sodium excretion [2-4], We previously
administered 5-HTP and its glutamyl derivative,
y-L-glutamyl-5-hydroxy-L-tryptophan (glu-5-HTP), in
healthy men and demonstrated a marked increase in
urinary 5-HT excretion after both compounds [5,6].
We argued that this large increment in 5-HT excretion
cannot be explained by extrarenal production of 5-HT
and that it is principally due to intrarenally generated
5-HT. In the present study, we have estimated 5-HTP
and 5-HT concentrations in platelet-rich plasma
(PRP), in addition to urinary 5-HTP and 5-HT excre¬
tion, after infusion of equimolar amounts of both 5-
HT precursors to investigate our hypothesis further.
We chose to measure 5-HT in PRP rather than whole
blood since processing of whole blood for 5-HT
assay inevitably leads to disruption of red blood cells
with release of oxyhaemoglobin resulting in oxidation
of 5-HT [7],

Methods

Six healthy male volunteers (age range 22-35 years)
gave informed written consent to be studied on two
separate days, at least 1 week apart, in this
randomised cross-over study which was approved by
the Lothian Ethics of Medical Research Committee.

They abstained from alcohol for 24 h and fasted from
22.00 h the evening before each study day. They
attended the clinical investigation unit at 08.00 h
after drinking 500 ml of water 1 h previously. The
subjects received intravenous 0.9% saline at 5 ml
min-1 and drank 150 ml of water half-hourly over the
next 6 h. They emptied their bladders at 2 h and
serial urine collections of 30 min duration were made
thereafter. One hour later, an equimolar dose of
5-HTP (10 (ig kg-1 min"1) or glu-5-HTP (16.6 ]fg
kg-1 min-1) was infused intravenously for 60 min.
Venous blood samples were collected via a 16 G can¬
nula before and every 30 min for 3 h after the start of
the infusion. The blood sample (9 ml) was dispensed
into an acid-citrate-dextrose anticoagulant (1 ml) con¬
sisting of citric acid (8 g 1" ), trisodium citrate (22 g
l-1) and glucose (20 g l-1) [8], The citrated whole
blood was centrifuged at 120 g for 20 min at room
temperature and the upper two-thirds of the super¬
natant (PRP) were harvested and stored at -40° C in a
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sealed polystyrene tube until analysis. The volume of
each urine collection was measured and aliquots
stored at -40° C for analysis of 5-HTP and 5-HT. The
urine samples were acidified with 5 m hydrochloric
acid to prevent their oxidation. PRP 5-HTP and 5-HT
were assayed by h.p.l.c. (Waters Associates, Millford,
UK) after deproteinisation with perchloric acid (15%)
containing cysteine (2 mm) using /V-methylserotonin
as the internal standard [8]. The electrochemical
detector operated at a potential of 0.6 V and a
sensitivity of 10 nA. The mobile phase (flow rate
2 ml min"1) consisted of phosphate buffer (0.1m)
containing EDTA (1 m), octane sulphonic acid
(25 mg U1) and methanol (5%). Urine 5-HTP and
5-HT were measured by h.p.l.c. as described previ¬
ously [5]. Glu-5-HTP was supplied by Aalto Bio
Reagents Ltd, Dublin, Eire, and 5-HTP was obtained
from Sigma Chemical Co. Ltd, Poole, UK.
Results are expressed as means ± s.d. The area

under the plasma concentration-time curve (AUC)
was calculated using the trapezoidal rule. The appar¬
ent renal clearance of 5-HTP was estimated by divid¬
ing the amount of 5-HTP excreted in urine by the
corresponding area under the concentration-time
curve. The data on the 2 experimental days were
compared by Student's paired /-test and 95%
confidence intervals (CI) of the differences between
means quoted where appropriate. Differences were
considered statistically significant when the P value
was less than 0.05.
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Figure 1 5-HTP concentrations in PRP and urinary 5-
HTP excretion rates before, during and after infusion of
5-HTP (•) and glu-5-HTP (A). Values shown are means
± s.d. (n - 6).

Results

The 5-HTP concentrations in PRP and urinary excre¬
tion rates of 5-HTP on the two study days are shown
in Figure 1. 5-HTP was undetectable in baseline PRP
and urine samples. CmQY for 5-HTP in PRP was 1365

* max

± 302 nmoi 1 and AUC(0-3 h) was 1763 ± 250
nmol l_l h after administration of 5-HTP. The corre¬

sponding values after glu-5-HTP infusion were lower
at 471 ± 95 nmol l"1 (95% CI of the difference: 539
to 1249, P < 0.005) and 934 ± 185 nmol U1 h (95%
CI of the difference: 464 to 1193, P < 0.005). The 3 h
cumulative 5-HTP excretion was 2.5 times greater
after glu-5-HTP (44.0 ± 8.6 (tmol) than after 5-HTP
infusion (17.6 ± 2.1 pmol; 95% CI of the difference:
18.5 to 34.4, P < 0.001). The apparent renal clearance
of 5-HTP over the first hour was higher after glu-5-
HTP (1357 ± 348 ml min"1) than after 5-HTP (246 ±
56 ml min-1; 95% CI of the difference: 734 to 1487,
P < 0.001).

PRP 5-HT concentration was 812 ± 218 nmol U1
before administration of 5-HTP and 769 ± 140
nmol 1~ before glu-5-HTP and did not change
significantly after administration of either compound
(Figure 2). There were, however, huge increases in
urinary 5-HT excretion. Mean urinary excretion rate
of 5-HT, which was < 0.7 nmol min"1 before dosing,
rose to a peak value of 412 ± 92 nmol min"1 at the
end of 5-HTP infusion and 303 ± 29 nmol min"1 after
administration of glu-5-HTP. The 3 h cumulative
5-HT excretion values after 5-HTP and glu-5-HTP

Infusion

Time (h)

Figure 2 5-HT concentrations in PRP and urinary 5-HT
excretion rates before, during and after infusion of 5-HTP
(•) and glu-5-HTP (A). Values shown are means ± s.d.
(n = 6).
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were not significantly different at 37.4 ± 4.6 pmol
and 32.0 ± 4.5 pmol respectively (95% CI of the
difference: -0.6 to 11.5).
Two subjects complained of nausea, and one of

these two vomited, at the end of 5-HTP infusion.
There were no ill-effects following glu-5-HTP
infusion.

Discussion

The present study confirms our previous observations
that both 5-HTP and glu-5-HTP markedly increase
urinary 5-HT excretion [5,6], In addition, we have
now shown that this occurs without concomitant

changes in circulating 5-HT levels. These findings
support our hypothesis that urine 5-HT, after infusion
of both 5-HT precursors, is largely derived from
intrarenal synthesis of 5-HT. Although a placebo day
was not included in this study, we previously showed
that the saline infusion and water loading employed
in the protocol do not affect urinary 5-HTP or 5-HT
excretion [5, 6, 91.
The high renal clearance value of 5-HTP observed

after administration of glu-5-HTP suggests that urine
5-HTP after glu-5-HTP is also predominantly pro¬
duced intrarenally. The rise in circulating 5-HTP is
probably caused both by its formation within the kid¬
ney (followed by recirculation) and extrarenal trans¬

formation of glu-5-HTP to 5-HTP since the enzyme
y-glutamyl transferase required for the conversion of
glu-5-HTP to 5-HTP is widely distributed in the body
although its concentration in renal tissue is consider¬
ably greater than elsewhere [10]. Gastrointestinal
side effects after administration of 5-HTP appear to
be related to the plasma 5-HTP concentrations
[11, 12]. In the present study, two subjects developed
nausea at the end of 5-HTP infusion at the time when

peak circulating levels occurred. In contrast, peak
circulating 5-HTP levels were much lower after
infusion of the glutamyl compound and no adverse
effects were observed. 5-HTP is decarboxylated to
5-HT by aromatic L-amino acid decarboxylase. This
enzyme has a ubiquitous distribution with high
activity in the kidney and liver [13]. The absence of
an increase in circulating 5-HT, particularly after
administration of 5-HTP, suggests that 5-HT, if
produced extrarenally, is rapidly metabolised and
cleared from the circulation.
This study therefore provides further evidence that

5-HT is synthesised intrarenally after administration
of both 5-HTP and glu-5-HTP in man. Definitive
proof of this will require estimations of 5-HTP and 5-
HT in the renal artery and vein, in addition to urinary
measurements. The glutamyl compound exhibits
greater renal selectivity and is better tolerated [6]. It
could be used as a valuable pharmacological research
compound for the investigation of the renal formation
and effects of 5-HT in man.
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