
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



 

 

 

 

Prevention and reversal of thymus involution 
mediated by the transcription factor Foxn1 

 
 

Nicholas Bredenkamp 

 
 
 
 
 
 
 
 
 

Thesis presented for the degree of the Doctor of Philosophy 

The University of Edinburgh 

2011 



 1 

 
Declaration 
 

 

 

 

 

The work presented in this thesis is my own, except where otherwise stated. 

 

 

 
Nicholas Bredenkamp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Acknowledgements  
 

I am grateful to Clare Blackburn for allowing me the opportunity to undertake a PhD project 

in her lab, for the substantial support and guidance she provided, and for the intellectual 

flexibility that she allowed me throughout the project. I am also grateful to the Darwin Trust 

of Edinburgh for their financial support. I owe many thanks to all the members of the 

Blackburn laboratory, including Frances and Diana for their generous help in the lab, and 

Craig, Alison, Alistair, Michelle, Xin, Terri, Tanya and Christele for help and advice with 

experimental techniques and constructive discussions (scientific or otherwise). Thanks also 

to Andrew Smith for help with molecular cloning techniques, and to Nancy Manley for 

providing reagents. The experiments performed in this thesis would not have been possible 

were it not for Carol Manson and the Animal Unit staff that provided excellent animal care 

and performed the required experimental procedures expertly. Thanks also to the Tissue 

Culture Facility staff, Jan Ure and the Transgenic Service Facility for help with transgenic 

mouse generation, and Simon Monard and Jan Vrana for help with cell sorting.  

 

I would also like to thank my family for their continued support throughout my studies. 

Lastly, I owe my deepest gratitude to Sarah Lea for her endless encouragement, patience and 

sense of perspective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Abstract  
 

Central to the age-associated decrease in immune system function, characterised by the 

increase in the frequency and severity of infections and autoimmune diseases, is the decrease 

in production of naïve T cells by the thymus. This results from the targeted degeneration or 

involution of the thymus with age. One of the principal causes of involution is the loss of 

organisation and functionality of the thymic epithelium, which confers the primary function 

of the organ via interactive regulation of T cell development. Although the mechanisms that 

govern the deterioration of the thymic epithelium are poorly understood, a number of recent 

reports indicate that the transcription factor, Foxn1, is required to maintain this compartment 

in the postnatal thymus.  
 

Thus, the first aim of this study was to precisely profile Foxn1 expression levels in aging 

postnatal thymic epithelial cells. The second aim was to investigate the effects of up-

regulating Foxn1 in the aging thymus, which was achieved using a novel, regulatable Foxn1 

mouse model generated during this study. 

 

In this study I show that Foxn1 is expressed at different levels in different postnatal thymic 

epithelial cell (TEC) sub-populations suggesting a dosage-dependent mode of action for 

Foxn1. Additionally, using two experimental approaches, I show that Foxn1 expression 

decreases with age in TECs, supporting the current data that implicate the loss of Foxn1 as a 

potential cause of thymus involution. Next, I generated a tissue-specific, regulatable Foxn1 

mouse model that allowed me to modulate Foxn1 expression in the postnatal thymus. Firstly, 

using this model, I show that thymus involution can be prevented by the up-regulation and 

maintenance of Foxn1 expression from the onset of involution. Thymi that up-regulated 

Foxn1 were overtly larger and exhibited greater cellularity in both the thymocyte and 

epithelial compartments compared to age matched controls. Additionally, the larger TEC 

compartment contained a higher proportion of functional and proliferating TECs that up-

regulated a panel of genes involved in TEC development and function. Next, I show that 

Foxn1 up-regulation in aged, involuted thymi is sufficient to partially reverse involution, as 

shown by an increase in TEC organisation and intrathymic T cell numbers. While other 

strategies that promote thymic rebound or reversal have been reported, including cytokine 

treatment or sex steroid ablation, these approaches are complicated by side effects and 

toxicity. Hence, I propose a novel model for immune reconstitution through the regulation of 

Foxn1 expression in the postnatal thymus. 
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Chapter 1: Introduction 
 

 
1.1 The thymus 
The thymus is an organ that is an essential component of the adaptive immune system in 

vertebrates (Bajoghli et al., 2009; Bajoghli et al., 2010); in humans and rodents the thymus is 

situated in superior mediastinum just above the heart. The primary function of the thymus is 

to regulate the development of self-restricted, self-tolerant naïve T (thymus) cells that are 

exported from the organ, and function as a fundamental component of the adaptive immune 

system (Miller, 1961). Athymia in a variety of human disorders or rodent experimental 

models results in severe or complete immunodeficiency (Flanagan, 1966; Kirkpatrick and 

DiGeorge, 1968).  

 

The thymus is a complex structure composed of a highly organised epithelial network, 

developing thymocytes, non-epithelial stromal elements, non-T cell lineage hematopoietic 

cells (HCs) and a rich vasculature network (Boyd et al., 1993; Kendall, 1991). 

Histologically, the thymus can be subdivided into three main areas, the medulla, the cortex 

and the subcapsular region (Figure 1.1a). The thymus is encapsulated by layers of connective 

tissue that penetrate the organ, as trabeculae, from the outer cortex to the cortico-medullary 

junction (CMJ), providing a structural link to the inner medulla (Boyd et al., 1993). 

Importantly, these trabeculae are well vascularised and form the foundation of the extensive 

vascular network that is required for hematopoietic cell traffic to and from the thymus (Boyd 

et al., 1993). Immediately lining the subcapsule and trabeculae is the first layer of 

epithelium, thus creating the barrier between the external and internal thymic 

microenvironments (Boyd et al., 1993). The encapsulated stromal compartment constitutes a 

fraction of the total cellularity of the thymus but it is highly heterogeneous and contains 

numerous cell types including epithelial cells, fibroblasts, macrophages and dendritic cells 

(Boyd et al., 1993; Gray et al., 2002). This stromal complexity is reflective of the array of 

functions required to support proper thymocyte differentiation in the thymus (Figure 1.1b). 
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Figure 1.1 Morphology of the postnatal thymus. 
(a) Hematoxylin staining reveals the general organisation of the paediatric human thymus, 
composed of the inner medulla and outer cortex regions (M. Ritter, Imperial College 
London). (b) Composition of the postnatal thymus, showing the relationship between the 
epithelium and developing thymocytes (Blackburn and Manley, 2004). 
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1.1.1 Thymic epithelial cells 
The stroma constitutes a small fraction of total thymus cellularity, approximately 1-2%, of 

which the epithelium constitutes a further fraction (Gray et al, 2006 and see Chapter 3). It is 

the thymic epithelial cells (TECs) – broadly subdivided into medullary and cortical TECs 

(mTECs and cTECs) – that confer the primary function of the thymus via progressive, 

interactive mediation of thymocyte development (Boyd et al., 1993). The three-dimensional 

organisation of the thymic epithelium in a reticular network is distinct from other epithelia 

that are normally organised as layers on a basal membrane (van Ewijk et al., 1999).   

 

Initial studies identified six major epithelial cell subtypes in the human thymus based on 

ultrastructural morphology and lucency (van de Wijngaert et al., 1984) (Table 1.1). Broadly, 

these different subtypes were located at the subcapsule/perivascular, cortical and medullary 

regions. Numerous studies further expanded on these findings through the use of monoclonal 

antibody panels and various cytokeratin proteins as a means of identifying various TEC sub-

populations (Godfrey et al., 1990; Nicolas et al., 1985; Van Vliet et al., 1985). The studies 

were aggregated into a phenotypic classification system for TEC subtypes in humans and 

rodents, called clusters of thymic epithelial staining (CTES) (Kampinga et al., 1989) (Table 

1.2). Together, these data establish that the thymus is composed of regionalised epithelial 

cell subtypes that are morphologically and phenotypically distinct, an essential arrangement 

that allows the progressive regulation of thymocyte development. 

 

Table 1.1 Morphological classifications of human epithelial subtypes 

Designation Characteristic Location 

Type 1 Subcapsular-perivascular Subcapsular, surrounding capillaries in 

cortex and CMJ 

Type 2 Pale Outer cortex 

Type 3 Intermediate Mid/deep cortex 

Type 4 Dark Deep cortex 

Type 5 Undifferentiated Medullary  

Type 6 Large-medullary Medullary, adjacent or part of Hassall’s 

corpuscles* 

* Small clusters of keratinised mTECs; found commonly in human thymi and rarely in mouse thymi 
(Hassall, 1849) 
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Table 1.2 Phenotypic classifications of human and rodent epithelial subtypes 

CTES group Specificity 

I Pan epithelial 

II Subcapsule/perivascular 

III Cortex 

IV Medulla 

V Hassall’s corpuscles 

VI Type 1 epithelium* 

XX Miscellaneous 

*Epithelial cells that layer the subcapsule and trabeculae 
 

 

1.1.2 Non-epilethial components 
A variety of non-epithelial cell types are important for thymus function and architecture, 

including cells derived from the neural crest (NC) and bone marrow (BM). Dendritic cells 

(DCs) constitute about 2.5% of total stromal cellularity and are scattered throughout the 

thymus although they are particularly concentrated at the CMJ and in the medulla (Ardavin, 

1997; Boyd et al., 1993; Gray et al., 2002). All DCs express high levels of MHC class II and 

are classified into two populations based on their developmental pattern (Ardavin et al., 

1993; Donskoy and Goldschneider, 2003). One population develops in phase with T cells, 

including gated arrival in the thymus, and other develops in a manner that is unrelated to T 

cell developmental kinetics (Donskoy and Goldschneider, 2003). DCs fulfil an important 

role, through their location in the thymus and their ability to present antigens, in the negative 

selection of thymocytes (Ardavin, 1997). A further hematopoietic cell population in the 

thymus is the myeloid-derived macrophages, which constitute less than 1% of the stroma 

(Gray et al., 2002). Thymic macrophages are morphologically and phenotypically 

heterogeneous and are most commonly found in the cortex (Boyd et al., 1993). These 

cortical macrophages are characterised by a large cytoplasmic volume and numerous 

lysosomes that contain the remnants of phagocytosed thymocytes, indicative of their role in 

the removal of apoptosed thymocytes from the thymic microenvironment (Duijvestijn and 

Hoefsmit, 1981). Lastly, the thymic stroma contains populations of fibroblasts that secrete 

extracellular matrix (ECM) complexes, including collagens and glycoproteins which are 

important for thymocyte differentiation and migration; although TECs also contribute to this 

microenvironment as they too secrete ECM complexes (Boyd et al., 1993; Savino et al., 

1993). 
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Non-stromal elements also contribute to the architectural integrity and functionality of the 

thymus. The thymus contains an extensive vascular network: arteries enter the thymus 

through the capsule and trabeculae and then enter the stromal microenvironment at the CMJ, 

before branching into arterioles and capillaries that extend into the cortex towards the 

subcapsular region, and finally drain in post-capillary venules in the medulla and at the CMJ 

(Boyd et al., 1993; Kato and Schoefl, 1989). This vascular network is fundamental to thymus 

function as it provides the means for hematopoietic precursor cell (HPC) entrance into, and 

naïve T cell exit from the thymus. Another important component of the thymus is the NC-

derived mesenchymal cells, which form the thymic capsule and invaginations within the lobe 

that surround blood vessels (Le Douarin and Jotereau, 1975). These cells are required for 

thymus development via epithelial-mesenchymal interactions (Auerbach, 1960; Suniara et 

al., 2000) and also persist in the adult thymus (Foster et al., 2008; Muller et al., 2008). 

During development these mesenchymal cells produce mitogenic, soluble growth factors 

required by the epithelium (Revest et al., 2001). These NCCs are also a source of  precursors 

for pericytes in the thymus, which offer support to the thymic blood vessels (Foster et al., 

2008). Thus, the thymus consists of an array of non-epithelial cellular components that fulfil 

a range of functions within the organ. 

 

1.2 T cell development 
Hematopoietic precursor cells colonise at the thymus from the vasculature and undergo an 

ordered, developmental progression into naïve T cells that are eventually exported from the 

thymus to function in the adaptive immune system. Thymocyte development proceeds in an 

phenotypically progressive manner, mediated by the thymic stroma in spatially distinct 

microenvironments (Petrie and Zuniga-Pflucker, 2007; Takahama, 2006).    

 

1.2.1 HPCs and seeding of the postnatal thymus 
There is no resident HSC population in the thymus, and thus the thymus is seeded with HPCs 

that originate in the bone marrow and enter via the vasculature at the cortico-medullary 

junction (Kyewski, 1987; Ushiki, 1986). The precise identity and functional characteristics 

of earliest intrathymic progenitor cells remains controversial, in particular the breadth of  

lymphoid and myeloid potential in these cells (Petrie and Kincade, 2005). This is perpetuated 

by differences in lineage potential results obtained from in vitro and in vivo approaches 

(Ehrlich et al., 2011). Various studies have established that the earliest intrathymic 

progenitors are multi-potent and are able to give rise to T cells, B cells, natural killer (NK) T 

cells, dendritic cells and myeloid lineage cells (Allman et al., 2003; Bell and Bhandoola, 
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2008; Porritt et al., 2004; Wada et al., 2008; Wu et al., 1991). It is also possible that the 

thymus is seeded by different progenitor populations with different phenotypic and 

functional properties. 

 

The seeding of the postnatal thymus is a non-continuous process (Foss et al., 2001). Mice of 

various ages and, age-matched mice with synchronised intrathymic gating were 

intravenously injected with allogenic bone marrow cells and assayed for thymic chimerism. 

The contribution of the allogenic cells within the thymus allowed a model of the kinetics of 

thymocyte gating to be proposed. Thymocyte importation into the thymus was controlled by 

repeating cycles of temporally exclusive receptive (open gate), and longer refractive (closed 

gate) periods. It is proposed that saturation of the niches for the earliest intrathymic 

progenitor cells is the primary contributing factor for the importation gate closing (Foss et 

al., 2001). 

 

1.2.2 Intrathymic T cell development  
Hematopoietic precursors homing to the thymus are not yet committed to the T cell lineage 

and do not express the CD4 or CD8 co-receptors which characterise most peripheral T cells, 

and hence are termed double negative (DN) cells (Godfrey et al., 1993; Porritt et al., 2004). 

Ordered intrathymic differentiation of these cells results in the simultaneous acquisition of 

CD4 and CD8, termed double positive (DP) cells and subsequently the loss of either CD4 or 

CD8 to generate single positive (SP) cells. Finally, SP cells undergo a process of functional 

maturation before emigration to the periphery (Fowlkes et al., 1985). This DN-DP-SP 

differentiation sequence is stringently regulated and occurs in distinct stromal 

microenvironments (Petrie and Zuniga-Pflucker, 2007). DN precursors can further be 

subdivided into four functionally distinct subsets based on their expression of CD44 and 

CD25 (Godfrey et al., 1993). A schematic representation of the intrathymic developmental 

progression of T cells in the thymus is shown in Figure 1.2. 
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Figure 1.2 Schematic representation of intrathymic T cell development.  
Hematopoietic precursor cells undergo a well-defined development process to MHC-
restricted, self-tolerant naïve T cells. DC – dendritic cell, NK – natural killer T cell. 
 
 
 

Once homed to the thymus, immature DN1 cells, characterised by CD44+ and c-kit+ 

expression, remain in the cortex immediately adjacent to medulla and proliferate extensively 

(Godfrey et al., 1993; Lind et al., 2001; Shortman et al., 1990). These cells are not yet 

committed to the T cell lineage and have the potential to differentiate into B cells, T cells, 

DCs, NK cells and myeloid cells (Allman et al., 2003; Bell and Bhandoola, 2008; Porritt et 

al., 2004; Wada et al., 2008). The factors that mediate precursor cell homing and 

colonisation are complex, and include stromal cell-produced integrin ligands (such as 

laminin and fibronectin), P-selectin (endothelium produced) and various chemokines (such 

as CXCL12, CCL19, CCL21 and CCL25); while proliferation is proposed to be mediated by 

kit ligand (stem cell factor, SCF) (Petrie and Zuniga-Pflucker, 2007).  

 

DN1 cells then migrate to the inner cortex to become DN2 cells, which maintain CD44 and 

c-kit expression but also up-regulate CD25 (CD25+CD44+) (Godfrey et al., 1993). This 

marks the onset of lineage commitment as recombination activating gene (RAG) expression 

is up-regulated and the first T cell receptor (TCR) rearrangements occur (TCRγ and TCRδ) 

(Capone et al., 1998; Wilson et al., 1994). However, DN2 cells still exhibit some degree of 

non-T cell lineage potential, including NK cell and DC potential (Lucas et al., 1998; Schmitt 

et al., 2004a). Notch signalling is crucial for T cell commitment in the DN1-DN2 transition; 

abrogation of the Notch ligand, Delta-like 4 (Dll4) in the epithelium results in a complete 
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block in normal T cell development at the DN1 stage and a corresponding  accumulation of 

intrathymic B cells (Koch et al., 2008; Schmitt et al., 2004a). Accordingly, Dll4 is expressed 

by the majority of cTECs (approximately 85%) (Koch et al., 2008). Additionally, 

interleukin-7 (IL-7) and SCF are required for DN2 thymocyte proliferation (Godfrey et al., 

1992; Moore and Zlotnik, 1995). 

 

Progression to DN3 is marked by down-regulation of CD44 and c-kit and up-regulation of 

CD24 and occurs as the cells migrate through the outer cortex towards the subcapsular zone 

(Godfrey et al., 1993; Petrie and Zuniga-Pflucker, 2007). At this stage, the commitment to 

the T cell lineage is complete as DN3 cells undergo widespread TCRβ and TCRγ 

rearrangement (Godfrey et al., 1993); mice deficient for RAG-1 exhibit a severe block at the 

DN3 stage (Mombaerts et al., 1992b). At this stage, thymocytes can be selected into one of 

two developmental pathways: those that undergo successful γδ chain rearrangement become 

γδT cells, whereas those that successfully rearrange the TCRβ chain are selected to develop 

into αβT cells (Bluestone et al., 1987). Stromal produced factors that are important at this 

stage are CCL25, which may play a role in the polarised migration of thymocytes, and IL-7 

which is required for thymocyte survival (Benz et al., 2004; Uehara et al., 2006). 

 

The final transition in the DN population, to DN4, occurs in the subcapsular zone and is 

characterised by the loss of CD25 (CD44-CD25-) and the onset of TCRα gene rearrangement 

(Godfrey et al., 1993); the progression from DN3 to DN4 is termed the β selection 

checkpoint. Successful rearrangement of the TCRβ chain results in the formation of a pre-

Tα/TCRβ complex which is expressed by the precursors of αβT cells (Mombaerts et al., 

1992a). Pre-TCR signalling is important for the survival and differentiation of developing 

thymocytes, and also prevents the rearrangement of the second TCRβ allele (Aifantis et al., 

1997). Survival of thymocytes here is mediated by Notch signalling as conditional 

inactivation of Notch1 results in a maturational arrest at the DN3 stage (Wolfer et al., 2002). 

Additionally, CXCR4 is important at this stage as it up-regulates Bcl-2A1, which inhibits 

Caspase 3-mediated apoptosis, to promote thymocyte survival (Janas and Turner, 2010). 

Thymocytes begin to up-regulate CD4 and CD8 marking the start of the transition to the DP 

stage (Petrie et al., 1990). The successful rearrangement of the TCRα gene and the formation 

of TCRαβ heterodimers, through affinity competition, is crucial for subsequent thymocyte 

survival (Trop et al., 2000). 
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Thymocytes now migrate inwards from the capsule such that developing DP cells are found 

throughout the cortex (Petrie and Zuniga-Pflucker, 2007). During this period they undergo 

the process of positive selection, which removes clones carrying non-productively 

rearranged TCRα genes. Only DP thymocytes that have correctly rearranged their TCR 

chains and whose αβ TCRs have the ability to interact with sufficient affinity with self-MHC 

ligands, present on the surface of cortical stromal cells, survive. It is estimated that 95% of 

thymocytes die at this stage (Benoist and Mathis, 1989). Various intracellular signalling 

events are important for the survival of positively selected DP thymocytes, including the 

termination of RAG expression and the increase in Bcl-2, which protects the cells against 

apoptosis (Brandle et al., 1992; Linette et al., 1994). Next, thymocytes undergo the DP-SP 

transition; cells that bear MHC class I restricted αβTCRs retain CD8 expression, while cells 

that bear MHC class II restricted αβTCRs retain CD4 expression (Kaye et al., 1989; Teh et 

al., 1988). A number of models have been proposed to account for the divergence of the 

CD4/CD8 lineage, including stochastic, instructive and kinetic signalling models (Brugnera 

et al., 2000; Germain, 2002). In the stochastic and instructive models, CD4 or CD8 co-

receptors are either randomly or instructively repressed, respectively. In the kinetic 

signalling model, CD8 expression is terminated by default through up-regulation of IL-7R; if 

loss of CD8 signalling does not disrupt TCR signalling then the CD4 lineage is produced, 

however in contrast, if this does disrupt TCR signalling then CD4 is silenced and CD8 

expression is reinduced (Brugnera et al., 2000). At the molecular level, the zinc finger 

transcription factor, Th-POK, has been identified as necessary and sufficient for commitment 

to the CD4 lineage. A mutation in this gene caused a redirection of CD4 SP cells to the CD8 

lineage (He et al., 2005; Keefe et al., 1999). 

 

Next, SP thymocytes migrate into the medulla and undergo negative selection. Migration of 

positively selected thymocytes into the medulla is dependent on CCR7 (Ueno et al., 2004). 

Mice deficient for CCR7 or its stromal cell-produced ligands (CCL19 and CCL21) showed 

an accumulation of mature SP thymocytes in the cortex. The outer medulla and CMJ are rich 

in dendritic cells which play an important role in the induction of negative selection 

(Kyewski et al., 1986). Similar to positive selection, TCR and MHC molecular interactions 

are required to further develop the T cell repertoire. However, at this checkpoint SP clones 

whose TCR has a high affinity for self-MHC and peptide complexes in the thymus are 

deleted (Sprent et al., 1990). Representation of an immunological “self” is ensured by a 

mechanism in which DCs present a range of non-thymic, tissue-specific peptides to 

developing T cells, a process that is critical for the establishment of self tolerance (Kyewski 
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et al., 1986). These peripheral tissue-specific antigens are synthesised by a sub-population of 

medullary epithelial cells, partly under the control of the Autoimmune Regulator (Aire) 

transcription factor, and are supplied to DCs via cross-presentation (Anderson et al., 2002; 

Kyewski and Derbinski, 2004). Consequently, Aire deficient mice develop a defined profile 

of autoimmune disorders called polyendocrinopathy-candidiasis-ectodermal dystrophy 

(APECED) (Anderson et al., 2002). At this stage post-selection thymocytes are not yet 

functionally mature and undergo further processing events in the medulla, including 

crosstalk communication with the epithelium via the lymphotoxin-β receptor signalling 

pathway, before export to the periphery (Boehm et al., 2003). This extended period in the 

medulla is also important for the development of regulatory T (Treg) cells which mostly 

differentiate from CD4+ SP cells, and are defined by the expression of Foxp3 (Fontenot et 

al., 2005; Josefowicz and Rudensky, 2009). Thus, as described above, the self-MHC 

restricted, self-tolerant naïve T cell repertoire is established through progressive interactions 

with the thymic stromal in defined microenvironments.  

 
1.3 Thymus organogenesis 
1.3.1 Origin and regulation of early development 
The thymus develops from the endoderm of the third pharyngeal pouch, originating from a 

common primordium with the parathyroid gland (Gordon et al., 2001; Gordon et al., 2004). 

Correct early pouch formation, from E8 to E10.5, is dependent on T-box protein 1 (Tbx1). 

Mutations in Tbx1 result in thymic hypoplasia or athymia and a spectrum of cranio-facial 

abnormalities, which  are caused by the failed development of the second, third and fourth 

pharyngeal pouches (Jerome and Papaioannou, 2001). Fibroblast growth factor 8 (Fgf8) is 

also important for pouch formation as this growth factor is down-regulated in Tbx1 mutants 

and exhibits a mutant phenotype of disrupted pouch and thymus development (Abu-Issa et 

al., 2002).  

 

The antero-posterior identity of the third pharyngeal pouch is proposed to be set-up by a 

Hox-Pax-Eya-Six network of transcription factors (Xu et al., 2002) (Figure 1.3). Hoxa3 

mutants exhibit a developmental block at the stage of the formation of the common 

primordium and show a specific down-regulation of Paired box (Pax) 1 and 9 genes in third 

pharyngeal pouch (Manley and Capecchi, 1995). Furthermore, in Eya1 null mutant embryos, 

Hoxa3 and Pax1/9 expression was shown to be normal but Six1 expression was reduced in 

the third pouch endoderm (Xu et al., 2002). However, more recent data have shown that Six1 

and Eya1 expression in the pouches does not require Pax1 and Pax9 function, suggesting that 
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they may function independently or upstream of Pax1/Pax9 (Zou et al., 2006). Furthermore, 

Pax1 expression was shown to require Six1 and Eya1, while Tbx1 and Fgf8 expression was 

reduced in Eya1-/- mutants, indicating that Eya1 may act upstream of early events in the 

initiation of thymus organogenesis (Zou et al., 2006). The difficulty in interpreting these data 

may be due to the possible compounding effects of Eya1, which is expressed in the 

pharyngeal endoderm, ectoderm and neural crest cells between E9.5 and E10.5 (Xu et al., 

2002). Thus, while it is clear that these transcription factors all have roles in the determining 

the identity of the third pharyngeal pouch, a precise model for their interactions remains 

unclear. 

 

 

 
 
Figure 1.3 Molecular control of thymus and parathyroid organogenesis. 

 

 

Pax 1 and 9 are expressed in the pharyngeal endoderm from E9.5 (Peters et al., 1998; Wallin 

et al., 1996). While their transcriptional relationships with Eya and Six are unclear, it is 

evident that both Pax1 and Pax9 are required for TEC development and normal thymic 

function. Pax1 null thymi are hypoplastic, up to five-fold smaller than wildtype thymi, and 

exhibit altered distribution in the CD4/CD8 T cell populations (Wallin et al., 1996). The 

Pax9 null phenotype is more severe as null thymi form as ectopic rudiments in the larynx, 

are severely hypoplastic from E14.5 onwards and cannot support γδ T cell development 

(Hetzer-Egger et al., 2002). 
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The patterning of the common primordium into thymus and parathyroid compartments is 

initially evidenced by the parathyroid specific marker, Glial cells missing homologue 2 

(Gcm2). Gcm2 is expressed in the anterior domain of the third pouch endoderm at E10.5 and 

subsequently is restricted to dorsal and anterior domain of the common primordium, marking 

the parathyroid-fated cells (Gordon et al., 2001). At this stage, Rhox4 marks the ventral 

region of the pouch opposing Gcm2, although the functional significance of this is unclear 

(Morris et al., 2006). Later, the Forkhead box transcription factor, Foxn1 (discussed in detail 

below), which marks the prospective thymus domain, becomes expressed in the ventral 

region of the shared primordium at approximately E11.25 (Gordon et al., 2001). 

Additionally, opposing gradients of Sonic hedgehog (Shh) and Bone morphogenetic protein 

4 (BMP4) may be important for specification of parathyroid and thymus identity (Moore-

Scott and Manley, 2005) (Figure 1.3). 

 

Subsequent to the endoderm patterning, the organ primordia begin to form. During this 

process, interactions between the neural crest cells (NCCs), which migrate into the 

pharyngeal arches from around E9, and the cells in the primordia, play a crucial role in 

thymus organogenesis (Auerbach, 1960). The NCCs, which will eventually give rise to the 

intrathymic mesenchyme and the mesenchymal capsule surrounding the thymus (Foster et 

al., 2008; Muller et al., 2008), influence organogenesis at least in part, via soluble growth 

factor signaling. The growth factor Fgf10, expressed in the mesenchymal cells and its 

receptor FgfR2IIIb, expressed in the pharyngeal region and restricted to the thymic 

epithelium, have been shown to be required for thymus development after E12.5 (Revest et 

al., 2001). Concurrently, there is outgrowth of the primordium, detachment from the pharynx 

and surface ectoderm and separation of the thymic and parathyroid rudiments (Blackburn 

and Manley, 2004) (Figure 1.3).  

 

1.3.2 Foxn1 and thymus organogenesis 
Foxn1 is a member of the Forkhead box (Fox) transcription factor family, named for the 

involuted head phenotype observed in Drosophila melanogaster fork head gene mutants 

(Weigel et al., 1989). The unifying characteristic of this family of transcription factors is the 

highly conserved, ~100-residue Forkhead DNA-binding domain, comprised of three α-

helices, three β-sheets and 2 wings or loops (Clark et al., 1993; Hannenhalli and Kaestner, 

2009) (Figure 1.4a,b). There are over 40 Forkhead family members in mammals which have 

diverse biological functions including roles in organogenesis, cell cycle regulation, 

chromatin remodelling and tissue homeostasis.  
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Foxn1 is the gene mutated in the classical mouse nude phenotype which is characterised by 

athymia and hairlessness (Flanagan, 1966; Nehls et al., 1994); a point  mutation in Foxn1 

generates a similar phenotype in humans (Frank et al., 1999). Foxn1 is expressed in the 

ventral posterior region of the third pharyngeal pouch from approximately E11.25, as shown 

by in situ hybridization (Gordon et al., 2001), although Foxn1 transcripts can be detected by 

RT-PCR as early as E9-E10.5 (Balciunaite et al., 2002; Nehls et al., 1994). However, 

initiation of thymus organogenesis appears to proceed normally in Foxn1 null mice until 

E11.5, indicating that Foxn1 function is required only after this point (Nehls et al., 1996). 

Additionally, Foxn1 is expressed in the epidermis and hair follicles of the skin from E15.5 

(Lee et al., 1999). 

 

 

 

 
 
Figure 1.4 Forkhead box transcription factors. 
(a) The structure of the Forkhead DNA-binding domain complexed with DNA was first 
resolved for HNF-3γ (Foxa3) (Clark et al., 1993). H, α-helices; S, β-sheets; W, wings or 
loops. (b) Schematic representation of mouse Foxn1 protein, showing the in vitro-determined 
activation domain (Schuddekopf et al., 1996). 
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Following initiation of a high level of transcription, Foxn1 is essentially expressed in all 

embryonic TECs and is indispensably and cell autonomously required for TEC 

differentiation and function; Foxn1 null thymi completely fail to be colonised by 

hematopoietic cells (Blackburn et al., 1996; Flanagan, 1966; Gordon et al., 2007; Itoi et al., 

2001; Nehls et al., 1996). The Foxn1 null thymic rudiment consists of clusters and linear 

aggregates of TECs that appear to be trapped in an undifferentiated, progenitor cell-like state 

and express the progenitor cell marker, Plet-1 (Blackburn et al., 1996; Depreter et al., 2008). 

Mechanistically, it appears that Foxn1 regulates the allocation into and/or the maintenance of 

the differentiated, Plet-1- TEC compartment during early organogenesis (Nowell et al., under 

review). Furthermore, clonal reactivation of Foxn1 in postnatal null TECs resulted in the 

formation of functional thymic units that could support T cell development, substantiating 

the notion that TECs are maintained in a progenitor-like state in the absence of Foxn1 (Bleul 

et al., 2006). Interestingly, it appears that Foxn1 is not required for the initial divergence into 

the medullary TEC sub-lineage as Foxn1 null thymi contain Keratin 5hi/Claudin 4hi TEC 

clusters, which are the functionally determined precursors of the mTEC sub-lineage 

(Hamazaki et al., 2007; Nowell et al., under review). Taken together with the Bleul et al. 

findings, this suggests that a common thymic epithelial progenitor cell only persists in the 

postnatal Foxn1 null thymus. Collectively, these data establish that Foxn1 is critically 

required for proper TEC development from the thymic epithelial cell progenitor (TEPC) 

state. 

 

An allelic series, generated using wildtype, hypomorphic (Foxn1R) and null Foxn1 alleles, 

has revealed Foxn1 as a potential master regulator of the thymic epithelial lineage 

differentiation programme (Nowell et al., under review) (Figure 1.5). In this series, Foxn1 is 

expressed at precisely defined levels allowing its role in TEC development to be dissected in 

detail. Firstly, Foxn1 appears to regulate most stages of cTEC and mTEC lineage 

progression, as defined by the absence or acquisition of phenotypic and functional markers 

in TECs at different Foxn1 levels (Figure 1.5). Secondly, a host of important TEC genes 

show Foxn1 dependent expression profiles. These include Pax1, Pax9, FgfR2IIIb, Delta-like 

4 (Dll4, a Notch ligand that is non-redundantly required for T cell lineage commitment) 

(Koch et al., 2008) and the chemokine CCL25 (which regulates thymocyte colonization of 

the fetal thymus) (Liu et al., 2006). Thus, because Foxn1 regulates multiple aspects of TEC 

development, as opposed to a single trait, this suggests that it may function as a master 

regulator of TEC differentiation and function (Nowell et al., under review).  

 



 23 

 
Figure 1.5 Model of cellular hierarchies in Foxn1 lineage progression. 
(Nowell et al., under review) 
 

 

 

1.4 The postnatal thymus 
T cell development in the postnatal thymus is mediated by a microenvironment of dynamic 

stromal populations. In mice, total thymus cellularity increases by 20-fold to approximately 

2×108 cells from birth until 1 month old (Gray et al., 2006). This primarily represents an 

increase in the number of haematopoietic cells, but the absolute stromal cell number also 

increases in a broadly proportional manner. From 1 month to 3 months, there is a decrease of 

thymus cellularity and then stabilisation at approximately 1.2×108 cells. Following this the 

thymus gradually begins to degenerate from 3-4 months postnatally and thymic output is 

reduced, a process known as thymus involution (Manley et al., 2010). 

 
1.4.1 Foxn1 in the postnatal thymus 
The proportion of TECs that express Foxn1 in the postnatal thymus has been examined in a 

number of studies, with strikingly different results reported. An immunohistochemical assay 

with an α-Foxn1 antibody determined that 24% of TECs in 2-4 week old thymi expressed 
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Foxn1 (Itoi et al., 2007). In contrast, flow cytometric analysis of a Foxn1:eGFP reporter 

model, in which a ~30kb fragment upstream exon 2 was used to drive GFP expression, 

showed Foxn1 expression in over 90% of TECs in the 10 day old thymus (Corbeaux et al., 

2010). This discrepancy may be accounted for, at least in part, by the difference in sensitivity 

of detection between the two methods. Other factors that should be considered are the ability 

of the antibody or Foxn1:eGFP mouse line to faithfully detect or report Foxn1 expression 

respectively. These are worth considering as this was the first report that utilised this α-

Foxn1 antibody and, the Foxn1:eGFP reporter mice were generated by random insertion of 

the transgene into the genome which may result in integration-site specific effects on 

Foxn1:eGFP expression. 

 

Foxn1 expression in thymic epithelium has been shown to decrease with age, suggesting a 

possible link between Foxn1 and thymus involution. Foxn1 mRNA levels in wildtype mice 

were reduced by 3-fold and 16-fold at 7 and 12 months, respectively, compared to levels in 1 

month old mice (Ortman et al., 2002). However, because these analyses were performed on 

bulk thymic digests and not defined TEC populations, the actual fold changes are most likely 

inaccurate. Also, this approach cannot address changes in Foxn1 levels in specific TEC sub-

populations. 

 

Functionally, Foxn1 is required for proper terminal differentiation of  both cTECs and 

mTECs in the postnatal thymus (Nowell et al., under review). In Foxn1R/R mice, which are 

homozygous for the revertible hypomorphic Foxn1R allele, cTEC differentiation is severely 

blocked, as shown by a marked reduction in expression of the mature cTEC markers, CDR1 

and Ly51 (Nowell et al., under review). Additionally, the mature Aire+ mTEC lineage, which 

is important for self-tolerance induction, does not develop normally. Following reversion of 

the Foxn1R allele to the wildtype allele, these markers are rapidly (after 2 days) acquired, 

indicating that Foxn1 is required for terminal differentiation in TECs. 

 

The upstream regulation of Foxn1, in both the embryonic and postnatal contexts, is poorly 

understood. Wnt signalling has been shown to activate Foxn1 expression in in vitro reporter 

assays (Balciunaite et al., 2002). Additionally, a recent report has shown that Foxn1 may be 

regulated by Wnt signalling in the postnatal thymus (Osada et al., 2010). Disruption of Wnt 

signalling in the postnatal thymic epithelium, via up-regulation of the Wnt antagonist 

Dickkopf-related protein 1 (DKK1), resulted in reduced Foxn1 expression and disorganised 

TEC architecture. Furthermore, the TEC compartment and total thymus cellularity were also 
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reduced in size. Interestingly, Wnt4 expression is reported to decrease with age in the 

wildtype thymus (Kvell et al., 2010). However, a direct effect of Wnt signalling on Foxn1 

expression was not demonstrated in this report and, thus the effect observed may be 

secondary to other Wnt-induced effects in the epithelium.  

 

1.4.2 Other genetic factors in the postnatal thymic epithelium 
The factors that regulate the cellular kinetics of the postnatal thymic epithelium are only 

poorly defined. This is partly due to the difficulty in interpreting postnatal phenotypes that 

are caused by perturbations in the thymic epithelium during organogenesis, and the lack of 

good genetic models that allow manipulation of the postnatal thymus. Ideally, experiments 

that aimed at investigating the effects of genetic modifications in the postnatal thymic 

epithelium would be designed such that the thymus was allowed to develop normally before 

perturbations were induced.  

 

The cytokine and growth factor-responsive protein Signal Transducer and Activator of 

Transcription 3 (Stat3) has been shown to play a role in maintenance of postnatal thymic 

cellularity (Sano et al., 2001). When Stat3 was deleted in TECs, postnatal thymus cellularity 

was reduced by three-fold from 5-7 weeks onwards. However, the TEC compartment 

appeared relatively unaltered and rather, it was an increase in T cell apoptosis that accounted 

for the reduced thymus cellularity. A number of genes have also been reported to regulate 

TEC proliferation in the postnatal thymus. Over-expression of a Cyclin D1 transgene under 

control of a Keratin 5 promoter, that is active in TECs, resulted in severe thymus hyperplasia 

from 6 weeks of age (Robles et al., 1996). In contrast, the absence of the Thymus, Brain and 

Testes-associated gene (Tbata) resulted in an increase in thymus cellularity from 5 months of 

age (Flomerfelt et al., 2010). This increase in thymocyte cellularity was driven by a larger 

and more proliferative TEC compartment, indicating that Tbata may have a suppressive 

effect on TEC proliferation. That the effect of modulating Cyclin D1 and Tbata was 

observed only during later postnatal stages (i.e. after the initial postnatal expansion in 

thymus cellularity) indicates that these genes may have role in maintaining the homeostatic 

thymic environment through mechanisms that regulate TECs.   

 

p63, a homolog of the tumour suppressor gene p53, is expressed in human and mouse 

postnatal thymic epithelium; the predominant isoform expressed by TECs is ΔNp63α 

(Chilosi et al., 2003; Senoo et al., 2007). p63 null thymi are hypoplastic, although the TECs 

proliferate, differentiate and support thymopoiesis as normal (Senoo et al., 2007). In vitro 
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assays, including clonal expansion and long term culture, indicated that p63 was essential for 

proliferative potential in TECs (Senoo et al., 2007). Lastly, while Pax1 and Pax9 genes are 

crucial for normal thymus organogenesis and are expressed in postnatal thymus – Pax1 in a 

subset of cTECs (Wallin et al., 1996) and Pax9 throughout the epithelium (Michelle Kelly, 

pers. comm.) – there are no reports investigating their function in the postnatal thymus. 

 
1.5 Thymus involution 
One of the most striking consequences of aging is the degeneration or involution of the 

thymus. This is broadly characterised by a reduction in thymus size and T cell development 

(thymopoiesis) and the consequent reduction in naïve T cell thymic emigrants (Sempowski 

et al., 2002). In humans, the intrathymic lymphoid compartment begins to decrease shortly 

after birth at around 3% per year until middle age and then at 1% per year for the remainder 

of life (Steinmann et al., 1985). During involution the non-stromal, non-thymopoietic 

perivascular regions expand, such that the functional compartment constitutes less than 10% 

of the total thymic tissue by 70 years of age (Steinmann et al., 1985). In mice, the thymus 

begins to involute from approximately 3 months of age. This is initially evidenced by one of 

the early hallmarks of involution, the disorganisation of the CMJ; this is followed by the 

gradual decrease in the number of intrathymic hematopoietic cells (Chen et al., 2009; Gray et 

al., 2006; Manley et al., 2010; Sempowski et al., 2002). Very old mice (18 month and older) 

have over ten-fold fewer thymocytes than young mice, and by this age the CMJ has 

completely disintegrated and the cortio-medullary architecture is essentially lost (Chen et al., 

2009; Sempowski et al., 2002) (Figure 1.6). 

 

The fundamental reason why the thymus involutes is not clear. Some argue that thymus 

involution represents the conservation and redirection of energy towards reproduction in 

later life, while some have suggested that it is required to allow peripheral selection of a 

well-adapted T cell repertoire (Dowling and Hodgkin, 2009; George and Ritter, 1996). 
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Figure 1.6 Age-associated thymic atrophy in mice.  
(a) Total thymocyte numbers decrease with age (Sempowski et al., 2002). (b) Hematoxylin 
and eosin staining shows that the architecture of the thymus degenerates with age, including 
the disintegration of the cortico-medullary junction (c – cortex, m – medulla) (N. Manley, 
University of Georgia).  
 

 

1.5.1 Mechanisms of thymus involution 
Puberty-associated hormonal changes have long been proposed as the principle instigator of 

thymus involution (Henderson, 1904). This has been substantiated by a host of studies that 

have investigated the effects of various hormones and hormone-altering procedures on 

thymus output (Hince et al., 2008). However, as described above, the human thymus reaches 

peak sizes soon after birth and begins to decrease in size long before the onset of puberty 

(Steinmann et al., 1985). In contrast, thymus involution broadly corresponds with puberty in 

mice (Gray et al., 2006). Thus, the puberty-involution relationship remains controversial 

(Montecino-Rodriquez et al., 2005). 

 

The underlying cellular mechanisms that drive thymus involution are poorly understood. 

While it is likely that age-related, functional defects in both the lymphoid and stromal 

compartments are causes of involution, it is unclear whether one compartment initially 

becomes defective and subsequently affects the functionality of the other. Several studies 

have investigated potential defects in the early hematopoietic precursor cells. The DN1 

progenitor cell population decreases in size with age, and some studies have suggested that 
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these cells also exhibit a reduction in developmental potential and proliferative capacity with 

age (Heng et al., 2005; Min et al., 2004). This was demonstrated by assaying the 

characteristics of early T lineage precursors (ETPs) isolated from young and old mice in in 

vitro thymus reconstitution assays (Min et al., 2004). In contrast, other studies have reported 

no defect in the ETP population in the aged thymus (Zhu et al., 2007). Here, grafted 

allogenic fetal thymic lobes in young and old mice showed no difference in DN1 population 

size and proportion or in any other T cell population, following colonization by host HPCs. 

Caveats exist in both sets of experiments; in the former, the properties of the isolated ETPs 

may have already been defined by the stroma, and in the latter, the embryonic stromal niche 

may initially affect ETP characteristics. Further experiments have shown that when aged 

mice were reconstituted with BM from young mice, the thymic architecture was not restored, 

whereas reconstitution of young mice with BM from old mice did not diminish thymopoiesis 

(Mackall et al., 1998). Collectively, these data indicate that defects in the stromal 

compartment are, at least in part, responsible for the age-related decrease in thymic output.  

 

The reduction in functionality of the stromal compartment with age is associated with an 

increase in adipose tissue in the perivascular, trabeculae and subcapsular regions of the 

thymus in mice and humans (Dixit, 2010; Flores et al., 1999). It is unclear whether thymic 

adipocytes arise as a consequence of thymic aging or are active instigators of the process. It 

has been proposed that adipocytes develop via an epithelial to mesenchymal transition 

(EMT) process (Dixit, 2010). Interestingly, cells identified as historically part of the Foxn1+ 

TEC lineage (using a Foxn1Cre × R26-floxedSTOP-LacZ mouse model) expressed an EMT 

marker in the aged thymus (Youm et al., 2009). However, the extent of EMT in the aging 

thymus was not quantified and a significant proportion of the EMT positive cells were not 

derived from the Foxn1+ epithelial lineage. Thus, while it appears that TECs do undergo 

EMT in the aging thymus, the extent and kinetics of this process remain unclear.  

 

1.5.2 Consequences of thymus involution  
A complex array of mechanisms underlie the decline in the adaptive immune system 

function with age, and collectively are termed immunosenescence (Gruver et al., 2007). A 

primary cause of immunosenescence is age-associated thymic atrophy and the concurrent 

reduction in naïve T cell output. Homeostasis of the naïve and memory T cell populations in 

the periphery is maintained by an intricate balance between proliferation and the influx of 

new naïve T cells (Tanchot et al., 2000). In the aged, this homeostatic relationship is 

perturbed and becomes skewed towards memory T cells with a decline in the frequency of 
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naïve T cells also observed (Schwab et al., 1997). Additionally, the TCR diversity of both 

naïve and memory populations declines with age (Arstila et al., 1999; Goronzy and Weyand, 

2005). 

 

These age-associated changes to the immune system result in increased susceptibility and 

severity of infections and diseases, including cancer, poor responses to vaccines, and 

increased autoimmunity. In addition, the cytoablative effects of chemotherapy and radiation 

conditioning treatment in adult bone marrow transplant patients, further reduce thymic 

function, and are compounded by the reduced recovery capacity in the aged. Following HSC 

transplantation in older patients, the peripheral T cell compartment reconstituted slowly, if at 

all, and to only 25% of the levels observed in younger patients (Hakim et al., 2005). 

Additionally, some severe infections, such as HIV, also comprise immune system 

functionality. Thus it would be clinically beneficial to be able to improve immune system 

function in these instances. One of the approaches aimed at preventing or improving 

immunodeficiency is the enhancement of thymus function and the increased production of 

naïve T cells. Various treatments that improve thymus function in mice and humans have 

been reported, and are discussed below. 

 

1.5.3 Models of immune reconstitution 
1.5.3.1 Sex steroid modulation 
The link between sex steroid levels and thymus involution and regeneration has long been 

proposed and has been extensively investigated (Henderson, 1904; Hince et al., 2008). Most 

compellingly, sex steroid ablation by chemical or physical castration in aged rodents results 

in extensive thymus regeneration (Fitzpatrick et al., 1985; Greenstein et al., 1987). Atrophic 

thymi from aged mice that were surgically castrated, regenerated to the size observed in 

juvenile mice (Gray et al., 2006; Heng et al., 2005; Sutherland et al., 2005). This was driven 

by proliferative expansion and architectural restoration of the TEC compartment, including 

increased expression of MHC Class II. Correspondingly, absolute TN cell and T cell 

numbers increased to juvenile levels and showed increased proliferation rates and normalised 

distribution (Heng et al., 2005; Sutherland et al., 2005). BMT experiments in androgen 

resistant transgenic mice have suggested that the stromal component of the thymus and not 

the thymocytes are the essential for this regeneration (Olsen et al., 2001). Importantly, the 

increase in thymus size following of sex steroid ablation is transient; following an initial 

increase in thymus cellularity in castrated young mice, thymus cellularity returned to levels 
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comparable with those observed in age-matched mice that were not castrated (Min et al., 

2006). 

 

Similarly, chemical castration in humans via luteinising hormone-releasing hormone 

(LHRH) antagonist treatment, resulted in an increase in peripheral naïve T cells (including 

CD4+ and CD8+ subsets) and 60 % of patients showed an increase in thymus function as 

assayed by peripheral T cell receptor excision circles (TREC) levels (Sutherland et al., 

2005). Similar results were observed following LHRH antagonist treatment prior to HSCT in 

humans (Sutherland et al., 2008). Taken together, these data establish sex steroid modulation 

as a potential approach for immune reconstitution, albeit in a transient manner. 

 

1.5.3.2 Keratinocyte growth factor 
Keratinocyte growth factor (KGF) or fibroblast growth factor 7 (Fgf7) is an epithelial 

mitogen produced by range of mesenchymal cells, including fibroblasts in the thymus (Finch 

and Rubin, 2004; Gray et al., 2007). KGF functions exclusively through the IIIb isoform of 

FgfR2 (FgfR2IIIb), which is expressed on TECs and is required during development for 

normal thymus organogenesis (Revest et al., 2001; Rossi et al., 2002). KGF-/- mice have no 

altered thymus phenotype, with normal thymopoesis and T cell numbers observed. However, 

KGF deficient thymi demonstrated an impaired recovery following sub-lethal irradiation 

(Alpdogan et al., 2006).  

 

Experiments designed to test the effect of systemic administration KGF on thymus size have 

demonstrated that, similar to castration, this treatment results in an increase in thymus size. 

In young mice, systemic KGF treatment enhanced total thymus cellularity with an increase 

in number observed for all major thymocyte populations (Rossi et al., 2007). In 15 month old 

mice, KGF treatment transiently increased total thymus cellularity to near 1 month old levels 

(Min et al., 2007). Re-organisation and an increase in IL-7 expression were observed in the 

TEC compartment. In 18 month old mice, KGF treatment resulted in a 3-fold increase in 

thymic cellularity which was significantly less than juvenile levels; however this probably 

represents the shorter time period between KGF treatment and analysis (14 days compared to 

1 month in Min et al., 2007) (Alpdogan et al., 2006). Currently, no published clinical studies 

exist for KGF treatment as an approach for immune reconstitution. However, other clinical 

data suggest that KGF is cytoprotective and it is currently used as a drug for oral mucositis  

prophylaxis in patients receiving myeloablative conditioning prior to HSCT (Radtke and 

Kolesar, 2005). 
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1.5.3.3 Interleukin-7 
Interleukin-7 (IL-7) is a cytokine that is produced by thymic and bone marrow stromal cells 

and is essential for both T and B cell development in mice (Sakata et al., 1990; Zamisch et 

al., 2005). Its receptor, IL-7R, is expressed by a range of cells in the immune system 

including thymocytes and developing B cells (Alpdogan and van den Brink, 2005). IL-7 and 

IL-7R knockout mice have drastically reduced thymic cellularity and impaired thymocyte 

development (Peschon et al., 1994; von Freeden-Jeffry et al., 1995). IL-7 promotes the 

survival of TN progenitor thymocytes and thymocytes undergoing transition through the β-

selection checkpoint to the CD4+CD8+ DP stage (Morrissey et al., 1994; Trigueros et al., 

2003). It also promotes the proliferation of intrathymic CD4+ and CD8+ SP T cells and the 

production of γδ T cells (Hare et al., 2000; Maki et al., 1996). Due to these effects of IL-7 on 

a number of thymocyte populations, it has been extensively investigated as an approach to 

immune reconstitution.  

 

Studies into the treatment of aged mice with IL-7, as a means of reversing thymus 

involution, have reported mixed success. While some reports observed an increase in TN 

thymocytes, others showed no increase in thymic output and thymus size following IL-7 

treatment (Andrew and Aspinall, 2001; Pido-Lopez et al., 2002; Sempowski et al., 2002). In 

contrast, IL-7 treatment in HSCT models has been used successfully to enhance T cell 

reconstitution (in young and old mice) through increased T cell development and 

homeostatic proliferation and decreased T cell apoptosis (Abdul-Hai et al., 1996; Alpdogan 

et al., 2003a; Bolotin et al., 1996; Mackall et al., 2001). However, one concern that has been 

raised is the magnifying effect of IL-7 on graft-versus-host disease in allogenic HSCT 

models (Sinha et al., 2002). Nonetheless, various human forms of IL-7 are currently in 

clinical trials aimed at enhancing immune reconstitution in various situations, including 

following bone marrow transplants and in HIV-infected patients (Cytheris). 

 

1.5.3.4 Growth Hormone 
Growth hormone (GH), predominantly produced in the anterior pituitary, acts on the immune 

system via stimulatory or direct effects on insulin-like growth factor 1 (IGF-1), production of 

which has been observed in TECs (Timsit et al., 1992; Welniak et al., 2002). In young mice, 

IGF-1 treatment increased thymopoiesis, including increased intrathymic and peripheral T 

cell numbers, via a proportional increase in TEC compartment size through the enhancement 

of TEC proliferation (Chu et al., 2008). Additionally, treatment of mice with GH and IGF-1 

following allogenic HSCT procedures in mice resulted in increased thymic cellularity and 
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peripheral T cells  (Alpdogan et al., 2003b; Chen et al., 2003). In a clinical study of GH 

treatment in HIV-infected adults, an in increase in thymic mass, thymic output (as measured 

by TREC) and circulating CD4+ T cells was observed. However, side effects of significant 

drug toxicity were also observed (Napolitano et al., 2008).  

 

1.5.3.5 In vitro T cell development 
One proposed approach to immune reconstitution is the generation of in vitro T cells for 

transplantation. Both thymic stromal elements and isolated fetal epithelial progenitor cells 

have the ability to support T cell differentiation in vitro reaggregated thymic organoids 

(Anderson et al., 1993; Sheridan, 2007). However, the application of these methods is 

limited due to the requirement of fresh thymus tissue. Another approach is the differentiation 

of T cells by stromal cell lines that express Delta-like 1 or 4 (OP9-Dll1 or OP9-Dll4 cells). 

In this Notch1-based culture system, murine and human hematopoietic and embryonic stem 

cells developed into T cells in the presence of various cytokines (La Motte-Mohs et al., 

2005; Schmitt et al., 2004b; Schmitt and Zuniga-Pflucker, 2002). Additionally, OP9-Dll1 

cells have been shown to facilitate the expansion of T cell progenitors from human umbilical 

cord blood HSCs, which when grafted into immunodeficient mice, were able to reconstitute 

the thymus (Awong et al., 2009). However, the in vitro facilitation of both the development 

of MHC classes I and II restricted thymocytes and the deletion of self-reactive thymocytes 

has yet to be achieved. 

 

1.5.3.6 Thymus transplantation 
Thymus transplantation has recently been developed as a treatment for patients with 

DiGeorge anomaly, which is characterised by congenital heart disease and severe hypoplasia 

or athymia (Kirkpatrick and DiGeorge, 1968). Cultured postnatal, allogenic thymus tissue 

was transplanted into the quadriceps muscles of DiGeorge patients and resulted in T cell 

reconstitution and function, with peripheral naïve T cells observed 3-5 months post-

transplantation (Markert et al., 2007; Markert et al., 2010). A 10-year follow up in these 

patients indicated that outcome was still positive. However, this approach is severely limited 

by fresh thymus tissue donation and is complicated by donor/recipient major 

histocompatibilily matching. 

 

As described above, numerous treatments, at various stages of development, are currently 

being pursued as potential clinical approaches to reconstitute the immune system. 
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1.5.4 Foxn1 and thymus involution 
A potential role for Foxn1 in postnatal thymus maintenance and involution has been 

highlighted in a number of recent reports. Firstly, a novel Foxn1 allele, Foxn1LacZ, where 

IRES-LacZ was inserted into the 3ʹUTR of Foxn1, exhibited a phenotype that mimicked 

early thymus involution, including premature thymic atrophy and a corresponding decrease 

in T cell output (Chen et al., 2009; Figure 1.7). In these mice, Foxn1 expression is 

prematurely down-regulated from 1 week postnatally such that Foxn1 is only expressed at 

20-30% of wildtype levels at 5 weeks of age. The reduction in Foxn1 expression in the 

Foxn1LacZ mice was proposed to be as a result of hypermethylation of the Foxn1 promoter 

caused by the insertion of the LacZ cDNA (Strathdee et al., 2008). This was confirmed in the 

study by the in vitro treatment of isolated Foxn1LacZ TECs with a demethylating agent, which 

restored Foxn1 expression to normal levels. 

 

The reduction in Foxn1 expression in postnatal Foxn1LacZ thymi led to an early decrease in 

the number of thymocytes compared to normal thymi. Additionally, there was deterioration 

of the TEC compartment, including the disintegration of the normal epithelial architecture, a 

reduction in the number of TECs and loss of mature medullary (UEA1hi) and functional 

(MHC Class IIhi) TEC subpopulations. Furthermore, there were fewer proliferating TECs in 

thymi Foxn1LacZ/LacZ thymi compared to controls. These data indicated for the first time that 

Foxn1 is required to maintain the postnatal thymic microenvironment. 

 

 

 
 
Figure 1.7 Foxn1 is required to maintain the postnatal thymic microenvironment. 
A Foxn1 allelic series, using wildtype (+), Foxn1LacZ (Z) and null (nu) alleles, demonstrated 
that Foxn1 is required to maintain the postnatal thymus in a dosage-dependent manner. (a) 
Whole thymic lobes from 5 week old mice. (b) Hematoxylin and eosin staining of 10 week old 
thymic lobes shows that Foxn1 is required to maintain the thymic architecture. Image from 
Chen et al., 2009. 
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Further studies have also examined the reduction or loss of Foxn1 expression in the postnatal 

thymic epithelium using different approaches. A phenotype of premature involution was also 

observed in a mouse model where the Foxn1 genomic locus was disrupted; here, loxP sites 

were introduced into exons 5 and 6 of Foxn1, rendering the locus susceptible to Cre-

mediated recombination (Cheng et al., 2010). A Tamoxifen inducible, ubiquitous CreERtm 

mouse strain was then utilized to disrupt the Foxn1 locus postnatally, which resulted in 

thymic atrophy and loss of TEC architecture. A caveat in this analysis is the inability to 

unequivocally distinguish between the effect of loss of Foxn1 and the general effect of 

ubiquitous Cre induction. Indeed, postnatal induction of ubiquitous Cre expression resulted 

in a host of defects in multiple haematopoietic lineages, including reduced proliferation, 

increased apoptosis and chromosomal abnormalities (Higashi et al., 2009). Most notably, 

significant thymus atrophy and defects in T cell distribution were also observed (Higashi et 

al., 2009). This is particularly noteworthy as data for CreER control mice treated with 

Tamoxifen, which would establish the general effect of ubiquitous Cre induction on the 

parameters measured, were not presented in this report.  

 

A further mouse model has been described in which Foxn1 positive TECs were ablated in 

the postnatal thymus, due to the expression of a toxic form of the Foxn1 protein that 

contained an N-terminal fusion of 82 glutamine residues (Corbeaux et al., 2010). 

Unsurprisingly, the loss of Foxn1 positive TEC lineage in the postnatal thymus resulted in 

decreased T cell output and epithelial disintegration. This analysis does not directly address 

the effect of the loss of Foxn1 expression in the postnatal thymus but rather the effect of the 

loss of Foxn1 positive TECs at a cellular level. Nonetheless, it confirms that the Foxn1+ TEC 

lineage is important for thymopoiesis in the postnatal thymus, although it cannot account for 

a role in thymopoiesis of a potential Foxn1- TEC lineage that may develop from the Foxn1+ 

lineage.  

 

Collectively, data from these three mouse models show that Foxn1 plays a role in the 

maintenance of the postnatal thymic microenvironment, and suggest that Foxn1 may be a 

primary target for thymic involution. 
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1.6 Aims 
The recent reports described above have shown that the premature loss of Foxn1 expression 

in the postnatal thymus results in a reduction in thymopoiesis. This suggests that Foxn1 may 

be a primary target of thymus involution. Thus, the initial aim of this work was to determine 

whether Foxn1 was differentially expressed in the postnatal thymic epithelium in the context 

of different involution states and different TEC subpopulations (Chapter 3). A further aim 

was to determine whether thymus involution could be delayed or prevented by up-regulation 

and maintenance of Foxn1 expression from the onset of involution (Chapter 5). The last aim 

was to determine whether increased Foxn1 expression in the aged, involuted thymus was 

able to induce a reversal of involution (Chapter 6). To modulate Foxn1 expression in this 

manner, I generated a conditional, regulatable Foxn1 mouse model which is described in 

Chapter 4. Thus, the overall aim of this thesis was to determine whether over-expression of 

Foxn1 was sufficient to prevent or reverse thymus involution as a novel approach to immune 

reconstitution. 
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Chapter 2: Materials and methods 
 

 
2.1 Mice 
All animal work was conducted according to UK Home Office guidelines, as established in 

the ANIMALS (SCIENTIFIC PROCEDURES) ACT 1986. For timed matings, noon of the 

day of the vaginal plug was taken as day 0.5 (E0.5). 

 

2.1.1 Mice strains 
2.1.1.1 Foxn1Cre 

Foxn1Cre mice were generated in the Manley laboratory at the University of Georgia, USA 

(Gordon et al., 2007). An IRES-Cre cassette was knocked-in to the 3ʹ UTR of Foxn1, 

generating a Foxn1-Cre bicistronic mRNA that was shown not to affect Foxn1 function. 

These mice have been backcrossed onto the C57BL/6 background for at least 5 generations 

and subsequently maintained via intercrossing. 

 

2.1.1.2 Tg(CAG-FLPe) 
Tg(CAG-FLPe) mice were generated by Andrew Smith at the University of Edinburgh by 

random insertion of a CAG-FLPe transgene into the genome (Wallace et al., 2007). These 

mice have been backcrossed onto the C57BL/6 background for at least 5 generations and 

subsequently maintained via intercrossing. 

 

2.1.1.3 Foxn1GFP 
Foxn1GFP mice were generated in the Blackburn laboratory at the University of Edinburgh. A 

splice acceptor-eGFP-polyA cassette was inserted into intron 2 (upstream of the first coding 

exon) of the Foxn1 locus such that GFP faithfully reports Foxn1 expression (Figure 2.1). 

These mice have been backcrossed onto the C57BL/6 background for 2 generations. 

 

 

 
Figure 2.1 Foxn1GFP allele. 
A splice acceptor (SA)-eGFP cassette was inserted into intron 2 of the Foxn1 genomic locus. 
E – exon, start – transcriptional start. 
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2.1.1.4 ROSA26CAG-STOP-Foxn1ERt2 
The generation of ROSA26CAG-STOP-Foxn1ERt2 mice are described in this thesis. These mice 

were backcrossed onto the C57BL/6 background for 2 generations. 

 
2.1.2 Tamoxifen treatment 
For short term experiments (two weeks or less) mice were treated with single or repeated 
intraperitoneal (IP) injections of tamoxifen (Sigma-Aldrich). Tamoxifen was dissolved in 

ethanol and diluted in a cremophor (Sigma-Aldrich)/PBS carrier. Repeated IP dose was 3mg 

every second day for 2 weeks. For long term experiments tamoxifen was delivered to mice in 

their drinking water. Tamoxifen citrate salt (Sigma-Aldrich) was prepared in ethanol and 

diluted in the drinking water to 0.05mg/ml. Tamoxifen/drinking water supply was changed 

weekly. Mice treated with tamoxifen citrate (at 0.1mg/ml) have been shown to be viable in 

long term experiments (up to 300 days) (Blyth et al., 2000). 

 

2.1.3 5-Bromo-2′-deoxyuridine (BrdU) treatment 
Mice were injected once intraperitoneally with 1mg of BrdU (BD Biosciences) and then 

BrdU was administered via drinking water for 3 days (0.5mg/ml). 

 

2.2 Molecular biology 
Basic molecular biology techniques were performed as described in (Sambrook and Russell, 

2001) 

 
2.2.1 Isolation of nucleic acids 
2.2.1.1 Plasmid DNA 
Small scale plasmid purification was performed using the QIAprep miniprep spin kit 

(Qiagen). Large scale plasmid purification was performed using the standard plasmid maxi 

kit (Qiagen). 

 

2.2.1.2 Genomic DNA 
ES cell DNA: lysis buffer (100mM Tris pH 8.5, 5mM EDTA, 0.2% SDS, 200mM NaCl, 

100µg/ml proteinase K) was added to confluent ES cells in 96-well plates and incubated 

overnight at 37oC. DNA was precipitated by centrifugation following the addition of an 

equal volume isopropanol, washed with 70% ethanol, and resuspended in TE buffer (pH 8). 

Mouse ear punch DNA: lysis buffer was added to ear punches and incubated overnight at 

56oC. Proteinase K was denatured by incubation at 95oC for 10 minutes and total cell lysate 
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was used in subsequent reactions. Mouse tail DNA: lysis buffer was added to tail bopsies and 

incubated at 56oC overnight. DNA was purified using conventional phenol extraction, 

precipitated using an equal volume of isopropanol, washed with 70% ethanol and 

resuspended in TE buffer. 

 

2.2.1.3 RNA 
RNA isolation was performed using the RNeasy mini kit (Qiagen). Tissue was homogenised 

by mechanical disruption with a syringe and needle; cells were homogenised by vortexing. 

DNase treatment was performed on the spin columns using RNase-free DNase (Qiagen). 

 

2.2.2 Molecular cloning 
2.2.2.1 Conventional cloning 
DNA plasmids were digested with the appropriate restriction enzymes and resolved by gel 

electrophoresis on 0.8-1% agarose gels. Relevant DNA fragments were excised and purified 

using the QIAquick gel extraction kit (Qiagen). Plasmids and inserts were ligated at ratios of 

1:1 to 1:5 using 1-2U of T4 DNA ligase (Roche) with an overnight incubation at 16oC.  

 

2.2.2.1.1 Oligonucleotide sequences 
New restriction sites were introduced into plasmids by ligation of annealed, complementary 

oligonucleotides that contained the required restriction site into the relevant plasmid. 

Sequences for these oligonucleotides are shown below. All oligonucleotides were 

synthesised by Sigma-Aldrich. 

 

 Oligonucleotide Sequence (5ʹ -3ʹ)  

IPC260-BbsI-a CGCAATCTCGAAGACTTGGCCCTAGACGGTGCA 

IPC260-BbsI-b CCGTCTAGGGCCAAGTCTTCGAGATTGCG 

ROSA26-1-PacI/MluI-a CTAGGCAGTCTTAATTAAGGACAGCCTGTAACCA 

CGCGTGGTTAC 

ROSA26-1-PacI/MluI-b CTAGGTAACCACGCGTGGTTACAGGCTGTCCTTAA 

TTAAGACTGC 

 

 



 39 

2.2.2.2 PCR cloning 
PCR products were resolved by gel electrophoresis and purified using the QIA quick gel 

extraction kit (Qiagen). Purified PCR products were cloned using the pGEM-T Easy plasmid 

according to the manufactures instructions (Promega). 

 

2.2.2.3 Transformation of chemically competent E. coli 
Subcloning-efficiency DH5α competent cells were used for routine cloning ligation 

reactions. One shot TOP10 competent cells were used for PCR product ligation reactions. 

Max efficiency Stbl2 competent cells were used to propagate the large, unstable plasmids. 

All cells were purchased from Invitrogen and used according to the manufacturer’s 

instructions. Transformation mixtures were plated onto agar plates containing the appropriate 

antibiotic selection. 

 

2.2.3 PCR 
2.2.3.1 PCR Primers 
The list below shows the primers used for genotyping, sequencing and PCR cloning, as 

described in the relevant sections herein. 

 

PCR primer Sequence (5ʹ - 3ʹ)  

CAG210R CGTAAATAGTCCACCCATTGACGTC 

CagIPC270 GTTCGGCTTCTGGCGTGTGA 

Cre145F GACCAGGTTCGTTCACTCATGG 

Cre817R CCTTAGCGCCGTAAATCAATCG 

FEIG1f TGGGCTCACCTCACTATCC 

FEIG1r  TGGGAAGAGTGGCTGGTGAC 

FEIG2f GGGAGCAGCTGAAGGATGAC 

FEIG2r GGCAACATGGAGGATGACG 

FEIG3f CGGTTCCGCATGATGAATC 

FEIG3r GACTTCAGGGTGCTGGACAG 

FEIG4f CGTCTGTAGCGACCCTTTGC 

FEIG4r CGCTTGAGGAGAGCCATTTG 

FEIG5f GGAGTACAAGGGCCGCAACT 

FEIG5ʹ r AAGTTAGCATGCTTGTTCTGTGG 

FRTf GCTGGTCGACGAAGTTCCTATAC 

ROSA3geno2-R CATTCTCAGTGGCTCAACAACACTTG 
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ROSAprmtr720F CCTAAAGAAGAGGCTGTGCTTTG 

ROSAseqF AGGGAGCTGCAGTGGAGTAG 

 
 
2.2.3.2 Conventional PCR 

Routine PCR was performed using Taq DNA polymerase according to the manufacturer’s 

instructions (Qiagen). PCR cloned products were amplified using Expand High 

Fidelity PCR System according to the manufacturer’s instructions (Roche). 

 

2.2.3.3 Genotyping PCR 
Genotyping of mice was performed on genomic DNA isolated from ear punch biopsies. R26-

CAG-Foxn1ER mice were genotyped using FEIG3f and FEIG4r primers with an expected 

product size of 897bp for transgenic mice. Foxn1Cre mice were genotyped using CRE145F 

and CRE817R with and expected product size of 403bp for transgenic mice. Targeted ES 

cell recombinants were genotyped as described in 4.3.2. 

 
2.2.3.4 Quantitative RT-PCR 

First strand cDNA was synthesised from up to 5µg of total RNA using oligo dT primer with 

Superscript II reverse transcriptase following the manufacturer’s instructions (Invitrogen).  

cDNA was diluted five-fold with PCR grade water and 2.5µl was added to the following 

reaction: 5µl of 2× Lightcycler 480 Probes Master, 0.05µl of each 10 µM primer, 0.1µl of 

100× UPL probe, PCR grade water to 10µl. Reactions were performed on a Roche 

LightCycler 480 instrument (384 System) using the standard run protocol. At least 3 

technical repeats were performed per sample and data were analysed using the LightCycler 

480 software (v1.5). Standard curves were established for each gene analysed using E14.5 

EpCAM+ TEC cDNA and a serial dilution series of 10, 10-1, 10-2, 10-3, 10-4 (where 10 

represents the undiluted cDNA sample).  

 

Primers for qRT-PCR were designed using the Universal Probe Library (UPL) Assay Design 

Software (Roche) and are listed below: 
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Primer Sequence (5ʹ -3ʹ)  UPL probe 

α-tubulin F CGGACCACTTCAAGGACTAAA 58 

α-tubulin R ATTGCCGATCTGGACACC  

EVA F TGTGCTTCCACTTCTCCTGA 100 

EVA R TCCACAGCTTCTGTAGGACAAA  

Foxn1 F TGACGGAGCACTTCCCTTAC 68 

Foxn1 R GACAGGTTATGGCGAACAGAA  

Dll4 F AGGTGCCACTTCGGTTACAC 106 

Dll4 R GGGAGAGCAAATGGCTGATA  

CCL25 F GAGTGCCACCCTAGGTCATC 9 

CCL25 R CCAGCTGGTGCTTACTCTGA  

Pax1 F CTCCGCACATTCAGTCAGC 105 

Pax1 R TCTTCCATCTTGGGGGAGTA  

Pax9 F AGCAGGAAGCCAAGTACGG 33 

Pax9 R TGGATGCTGAGACGAAACTG  

Foxn1-3ʹUTR F  CTTAAAGGTCAAAGAAGGAAAACACT 94 

Foxn1-3ʹUTR R  GGCTAACAAATAAGTTGGCTGAG  

Foxn1ER F AGGACTTCCCCGAGTACCAC 42 

Foxn1ER R CGTCCTCCACGTACCTCTTC  

 

 

2.2.4 DNA sequencing 

Sequencing reactions were performed on plasmid DNA. 250ng DNA template and 1µl of 

3.2µM sequencing primer were added together and the volume adjusted to 6µl with dH2O. 

BigDye sequencing, clean-up and capillary analysis reactions were performed on a Sanger 

ABI3730 instrument at the Genepool facility at the University of Edinburgh. Sequences were 

analysed with Chromas Lite (v2.01) and BioEdit (v7.0.5). 

 

2.2.5 Southern blotting 
The strategy used for Southern blotting analyses of targeted R26CAG-STOP-Foxn1ERt2 transgenic 

ES cell clones and mice is described in Figure 2.2. Genomic DNA was prepared as described 

and digested with EcoRI, EcoRV and PacI restriction enzymes for 5ʹ, 3 ʹ  and internal 
Southern probe assays, respectively. 
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Figure 2.2 Strategy for Southern blot analysis of transgenic R26CAG-STOP-Foxn1ERt2 ES cell 
clones and mice. 
The position of restriction enzyme sites and Southern blot hybridisation probes are shown for 
the wildtype and transgenic ROSA26 locus. EcoRI, EcoRV and PacI restriction enzyme 
digests were used for 5ʹ, 3 ʹ  and internal Southern blot analyses, respectively.   
 

 

 

2.2.5.1 Generation of Southern blotting probes by PCR 
Southern blot probes were generated by PCR using the primers listed below. The PCR 

reaction products were resolved by gel electrophoresis and purified using the QIAquick gel 

extraction kit (Qiagen). 25ng of probe was then radiolabelled with dCTP-32P using the 

Rediprime II kit (GE Healthcare), following the manufacturer’s instructions. The labelled 

probe was then separated from unincorporated nucleotides using the ProbeQuant G-50 micro 

columns (GE Healthcare).  

 

Probe PCR primer Sequence (5ʹ - 3ʹ)  

5ʹ  ROSA5ʹF  GGCCTCTCCTGAAAAGGGTA 

 ROSA5ʹR  GAGACTCACGCAGCCCTAGT 

3ʹ  ROSA3ʹF  CTGACTATGGTGCCAATGTGGATTC 

 ROSA3ʹR  CCCAAAGTGCCTGTCAGTCTTAGG 

Internal InternalF TGGTTGCCGAACAGGATGTTG 

 InternalR GATCTCCATTCGCCATTCAGG 
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2.2.5.2 Southern blot preparation 

80U of the appropriate restriction enzyme (as described in Figure 4.5) was added to 5-8µg of 

genomic DNA and incubated overnight at 37oC. The following day the reaction mixture was 

“spiked” with a further 40U of restriction enzyme and incubated for 2 hours at 37oC. 

Restricted genomic DNA was resolved on 0.8% agarose gel overnight. The gel was then 

soaked for 20 minutes in depurination buffer (0.25M HCl), washed with water, soaked for 2× 

20 minutes in denaturation buffer (1.5M NaCl, 0.5M NaOH), washed with water, and lastly 

soaked for 2× 20 minutes in neutralization buffer (1.5M NaCl, 0.5M Tris, pH7). The DNA 

was then transferred onto an Amersham Hybond-N nylon membrane (GE Healthcare) using 

conventional capillary action protocols and immobilised by baking the membrane for 1 hour 

at 120oC. 

 

2.2.5.3 Southern blot hybridisation 
Hybridisations were performed using Amersham Rapid-hyb buffer (GE Healthcare) in 

Techne hybridisation bottles rotating in a Techne HB-1 oven. All steps were carried out at 

65oC. Southern blots were pre-hybridised in Rapid-hyb buffer for 15 minutes, then 25ng of 

labelled probe was added and allowed to hybridise for 2 hours. Blots were than washed for 

2× 15 minutes in 2× SSC, 0.1% SDS and 2× 15 minutes in 1× SSC, 0.1% SDS. Blots were 

then wrapped in Saran wrap and exposed to autoradiographic film at -80oC for 1 day to 3 

weeks. 

 

2.2.6 Western blotting 
Sample processing. Whole thymic lobes were dissociated using the ProteoExtract tissue 

dissociation buffer kit (Calbiochem) according to the manufacturer’s instructions. 

Cytoplasmic and nuclear protein fractions were extracted using a nuclear extract kit (Active 

Motif) following the manufacturer’s instructions for tissue extraction. Protein samples were 

quantified following a 1:200 dilution in Bio-Rad protein assay dye and a spectrophotometric 

absorbance assay at 595nm. A standard curve derived from a series of BSA protein standard 

concentrations (halving dilutions from 1mg/ml to 0.05mg/ml) was used to determine sample 

concentration from absorbance read-outs. 

 

Electrophoresis and transfer. 6mg of cytoplasmic protein sample or 3mg of nuclear protein 

sample were added to 5µl sample loading buffer (50 mM Tris pH 6.8, 2% SDS, 10% 

Glycerol, 1% β-Mercaptoethanol, 12.5 mM EDTA , 0.02 % Bromophenol Blue) and the 

volume was adjusted to 20µl with water. Protein samples and a SeeBlue Plus2 pre-stained 
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standard were run on a NuPAGE 4-12% Bis-Tris gel in NuPAGE MOPS SDS running buffer 

using an XCell SureLock electrophoresis unit (all Invitrogen). Separated protein samples 

were transferred onto PVDF membrane (Roche) in transfer buffer (25mM Tris, 190mM 

glycine, 20% methanol (v/v)) using an XCell SureLock unit. 

 

Detection. Membranes were blocked overnight at 4oC in 10% skim milk (Marvel) in PBS-

Tween 20 (0.05%). Primary incubation was performed for 2 hours at room temperature using 

α-Foxn1 (G20, Goat IgG, 1:500, Santa Cruz Biotechnology) in 5% skim milk/PBS Tween 

20. Membranes were then washed for 4× 10 minutes and incubated for 1 hour at room 

temperature with a rabbit anti-goat IgG-HRP conjugated secondary antibody (Sigma-

Aldrich, 1:20000). Membranes were washed for 4× 10 minutes and then signal was detected 

using ECL Plus kit (GE Healthcare) following the manufacturer’s instructions. Blots were 

then wrapped in Saran wrap and exposed to autoradiographic film for 10 seconds to 5 

minutes. For loading control analyses blots were stripped in stripping buffer (25mM glycine 

pH 2, 2% SDS) for 30 minutes at room temperature. Blots were then processed as described 

above using an anti-α-tubulin (B-7, Mouse IgG2a, 1:3000, Santa Cruz Biotechnology) 

primary antibody and a sheep anti-mouse IgG-HRP conjugated secondary antibody (GE 

Healthcare, 1:5000).  

 

2.2.7 Luciferase assay 
The wildtype and mutated Foxn1 minimal responsive reporter cassettes, detailed in Figure 

4.7a (obtained from Dr. David Prowse, Queen Mary University of London) were stably 

transfected into COS-7 cells using Lipofectamine 2000 (Invitrogen) following the 

manufacturer’s instructions. CAG-Empty, CAG-Foxn1 and CAG-Foxn1ER were transiently 

transfected into COS7-WT-FRE-luc and COS7-Mut-FRE-luc cells using Lipofectamine 

2000. Cells were cultured for 48 hours with or without 4-hydroxytamoxifen (1µM) and 

assayed for luciferase expression using a Luciferase Assay System (Promega) according to 

the manufacturer’s instructions and analysed on a Mediators PhL Luminometer (ImmTech). 

 
2.3 Immunohistochemistry 
2.3.1 Sample processing and staining 
Freshly dissected tissues were embedded in OCT compound (Agar Scientific), snap frozen 

on dry ice and stored at -80oC. Sections were cut from frozen tissue blocks at 8µm, collected 

on poly-L-lysine coated glass slides (VWR International) and stored at -80oC. Frozen 

sections were equilibrated to room temperature (RT) and then fixed in acetone (-20oC) for 2 
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minutes or in 4% PFA (Sigma-Aldrich) for 5 minutes at room temperature. Sections were 

then air dried and rinsed in PBS. Blocking was performed with 1-5% serum (secondary 

antibody host species) in PBS-Tween 20 (0.05%) for at least 30 minutes. Primary antibodies 

were diluted at the appropriate concentration in the blocking solution and incubated on the 

sections at room temperature for 1 hour. Sections were then washed for 3× 5 minutes in 

PBS-Tween 20 and incubated with the appropriately diluted secondary antibody at room 

temperature for 1 hour. Next, sections were washed for 2× 5 minutes, incubated with DAPI 

(4',6-Diamidino-2-phenylindole, 5µg/ml) for 2 minutes and washed for 5 minutes. Sections 

were then air-dried and mounted using Vectashield (Vector Laboratories). Staining was 

analyzed using a Leica AOBS confocal microscope. 

 

In some instances, immunohistochemistry with α-Foxn1 (Section 4.4.3) was performed using 

the tyramide signal amplification kit (Invitrogen) following the manufacturer’s instructions. 

 

2.3.2 Cytospin preparation 

Approximately 1000-5000 cells were resuspended in 100µl of PBS and loaded into a 

cytospin chamber attached to a poly-L-lysine coated slide (VWR International) and a filter 

card (ThermoFisher Scientific). Chambers were centrifuged at 500rpm (Cytospin 3, 

Shandon) for 5 minutes at room temperature. Slides were removed from the chamber, air-

dried and fixed in acetone (-20oC) for 2 minutes. Following fixation slides were air-dried for 

5 minutes and stored at -80oC until required.  

 

2.3.3 Antibodies 
The antibodies used for immunohistochemistry are listed below: 

 

Antibody Clone Isotype Source Working conc. 

Pancytokeratin Polyclonal Rabbit IgG DAKO 17µg/ml 

Cytokeratin 5 AF138 Rabbit IgG Covance 2.5µg/ml 

Cytokeratin 8 Troma 1 Rat IgG2a DSHB Hybridoma stock 

(1:5) 

Cytokeratin 14 AF64 Rabbit IgG Covance 2.5µg/ml 

CDR1 CDR1 Rat IgG2a Gift from B. 

Kyewski 

Hybridoma stock 

(1:10) 

ERα (HC-20) Polyclonal Rabbit IgG Santa Cruz 0.4-10µg/ml 
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Foxn1 (G-20) Polyclonal Goat IgG Santa Cruz 4µg/ml 

p63 4A4 Mouse IgG2a Millipore 4µg/ml 

ΔNp63 (N-16) Polyclonal Goat IgG Santa Cruz 2µg/ml 

 

Additionally, the biotin conjugated lectin, Ulex Europaeus Agglutinin 1 (UEA1) (Vector 

laboratories) was also utilised in fluorescence assays. For detection of primary antibodies the 

following secondary antibodies were used: donkey anti-goat IgG-Alexa488, goat anti-rat 

IgG-Alexa488, donkey anti-goat IgG-Alexa647, donkey anti-rabbit IgG-Alexa647, goat anti-

rabbit IgG-Alexa647, goat anti-mouse IgG2a-Alexa647 and streptavidin-Alexa488 (all 

Molecular Probes, all used at 2 µg/ml). The following isotype controls were used: rat IgG2a, 

rabbit IgG, mouse IgG2a (BD Pharmingen) and goat IgG (Santa Cruz Biotechnology). 

 

2.4 Flow cytometry 
2.4.1 Cell preparation 
Embryonic thymus dissociation. Dissected thymi were dissociated at 37oC for 1 hour in an 

enzyme mix solution (2mg/ml Hyaluronidase (Sigma-Alrich), 0.7mg/ml Collagenase, 

0.05mg/ml DNase (all Roche) in PBS).  

Postnatal thymus dissociation. Dissected thymi were finely minced with scissors and 

dissociated at 37oC for 3× 15 minute with 1.25mg/ml Collagenase and 0.05mg/ml DNase in 

RPMI-1640 (following each 15 minute digestion the dissociated cells were removed and 

fresh enzyme solution was added). A final digest of remaining cell fragments was performed 

at 37oC for 30-45 minutes with 1.25mg/ml Collagenase/Dispase (Roche) and 0.05mg/ml 

DNase in RPMI-1640 (Gray et al., 2008). 

 

2.4.1.1 Postnatal TEC enrichment  
Magnetic enrichment. Total postnatal thymic cell suspensions were incubated with α-CD45 

labelled microbeads (Miltenyi Biotech) following the manufacturer’s instructions (5µl of 

microbeads per 107 cells) (Gray et al., 2008). The cell suspension was then run on an 

AutoMACS (Miltenyi Biotech) using the DepleteS programme. CD45+ cells recovered were 

rerun on the machine to recover any remaining unlabelled cells. CD45- fractions were pooled 

and collected by centrifugation  

Density gradient enrichment. Percoll media (GE Healthcare) was used to create a density 

gradient for enrichment of TECs by centrifugation (Derbinski et al., 2008). Thymic cell 

suspensions (<109 cells) in 2.41ml of RPMI-1640 where added to 3.59ml of Percoll solution 

(density ρ=1.07) in a 50ml Falcon tube. Two further 6ml layers, ρ=1.045 layer (3.69ml 
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RPMI-1640 and 2.31ml Percoll) and ρ=1.0 layer (6ml RPMI-1640) were overlayed to create 

the density gradient. Tubes were centrifuged at 3500×g at 4oC for 30 minutes. Enriched 

TECs were recovered from the upper interphase. 

 

2.4.2 Cell staining 
Cells were washed with cell wash/staining buffer (5% foetal calf serum in PBS). Cells were 

counted using a Neubauer hemocytometer; an average of 3 technical count repeats were used 

to determine the cell number for each sample. For thymocyte or enriched CD45- fraction 

analyses, 1×106 cells were incubated with primary antibody for 15 minutes at 4oC. For flow 

cytometric analyses of TECs from unenriched thymic digests, 1×107 cells with incubated 

with primary antibody for 15 minutes at 4oC. Next, cells were washed and incubated with 

secondary antibodies when necessary. Following this, cells were washed again and 

resuspended in 0.2-1ml for flow cytometric analysis. Dead cells were excluding based on 

DAPI staining (1µg/ml). Intracellular analyses for BrdU incorporation were performed using 

an APC BrdU flow kit (BD Bioscience) according to the manufacturer’s instructions. 

 

2.4.3 Antibodies 

The following conjugated antibodies were used for flow cytometry assays: 
 
Ab. Clone Isotype Conjugate Source Conc.  

EpCAM G8.8 Rat IgG2a FITC, PE, APC Biolegend 2µg/ml 

Ly51 6C3 Rat IgG2a Biotin Biolegend 5µg/ml 

MHC II 

 

M5/ 

114.15.2 

Rat IgG2b PE BD Pharmingen 1µg/ml 

CD3 145-

2C11 

Hamster IgG1 FITC BD Pharmingen 2.5µg/ml 

CD4 H129.19 Rat IgG2a FITC, PE, 

PerCP/Cy5.5 

BD Pharmingen 2.5µg/ml 

CD8 53-6.7 Rat IgG2a FITC, PerCP/Cy5.5 BD Pharmingen 2.5µg/ml 

CD11b M1/70 Rat IgG2b FITC BD Pharmingen 2.5µg/ml 

CD11c HL3 Hamster IgG1 FITC, PerCP/Cy5.5 BD Pharmingen 2.5µg/ml 

CD19 1D3 Rat IgG2a FITC BD Pharmingen 2.5µg/ml 

CD31 390 Rat IgG2a FITC BD Pharmingen 2.5µg/ml 

CD25 3C7 Rat IgG2b PE eBioscience 1µg/ml 
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CD44 1M7 Rat IgG2b APC eBioscience 2µg/ml 

CD45 30-F11 Rat IgG2b APC, PerCP/Cy5.5 BD Pharmingen 2.5µg/ml 

NK1.1 PK136 Mouse IgG2a FITC BD Pharmingen 2.5µg/ml 

Gr-1 RB6-8C5 Rat IgG2b FITC BD Pharmingen 2.5µg/ml 

Ter119 Ter119 Rat IgG2b APC, PerCP/Cy5.5 BD Pharmingen 1µg/ml 

 

Additionally, UEA1-biotin lectin (Vector laboratories) was utilised in flow cytometric assays 

(5µg/ml).  Secondary detection of biotin conjugated primary antibodies was performed using 

streptavidin-APC or PE/Cy7 (BD Pharmingem, 4µg/ml). The relevant directly conjugated 

isotype control antibodies were used for all experiments (all BD Pharmingen). 

 

2.4.4 Flow cytometry instruments 
Cells were analysed on a BD Bioscience LSR Fortessa SORP instrument. Cell sorting was 

performed by Jan Vrana or Simon Monard on a BD Bioscience Aria II or a Beckman Coulter 

MoFlo MLS instrument at the Institute for Stem Cell Research. Laser wavelength 

specifications for these instruments are as follows: 405nm (V), 488nm (B), 561nm (YG) and 

640nm (R). The following laser and filter combinations were used to detect the following 

fluorochromes: DAPI – V450/50, FITC – B530/30, PerCPCy5.5 – B695/40, PE – YG582/15, 

PECy7 – YG780/60, and APC – R670/30. Flow cytometric data collected were analysed 

using FlowJo analysis software.  

 
2.5 Cell culture 
Cells were thawed, passaged, expanded and frozen using standard tissue culture techniques 

in sterile laminar flow hoods. ES cells were maintained in 1× Glasgow minimum essential 

medium (GMEM) (Invitrogen) containing: 10% foetal calf serum, 1× nonessential amino 

acids, 4mM glutamine, 2mM sodium pyruvate, 0.1mM 2-mercaptoethanol, 1× leukaemia 

inhibitory factor (LIF). COS-7 cells were maintained in the same media without LIF.  

 
2.5.1 ES cell electroporation and isolation of targeted clones 

For gene targeting experiments, 100µg of XhoI linearised R26-CAG-STOP-Foxn1ER 

targeting vector was added to a cell suspension of E14Tg2A ES cells. Cells were 

electroporated at 0.8kV, 3µF in a BioRad GenePulser. Cells were left to recover for 10 

minutes and the plated in 100mm tissue culture dishes at densities of 5×106, 1×106 and 1×105 

cells per plate. G418 selection medium (200µg/ml) was applied to the cells for 7 days until 
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G418 resistant colonies appeared. A non-transfected control was used to monitor the 

duration of complete cell death in G418 sensitive colonies. G418 resistant colonies were 

picked into 96-well plates using a pipette and yellow tip. Once confluent potential clones 

were replica plated into 96-well plates, one plate was frozen and the other was used for 

isolation of genomic DNA.  

 

2.5.2 Karyotyping and transgenic mouse generation 
Correctly targeted ES cell clones were karyotyped by Jonathan Rans (Tissue Culture Service, 

Institute for Stem Cell Research, University of Edinburgh). Blastocyst injection and transfer 

were performed by the Transgenic Service Facility (Institute for Stem Cell Research, 

University of Edinburgh). 

 

2.6 Statistical analyses 
Statistical analyses were performed using the one-way ANOVA test (two tailed), as 

appropriate for normally distributed data (normal distribution was tested using Chi2 goodness 

of fit), using OpenEpi software (Dean and Sullivan, 2010). The α level is taken as 0.05. 

Deviation values shown are standard errors throughout. The number of biological and 

technical repeats is indicated for each experiment. 
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Chapter 3: Transcriptional profile of Foxn1 in the thymic 
epithelium 
 
 
3.1 Introduction 
Mice homozygous for the hypomorphic Foxn1 allele, Foxn1R,  display a block in postnatal 

TEC terminal differentiation, which is more severe in cTECs than mTECs (Nowell et al., 

under review). This suggests differential dosage requirements for Foxn1 in cTEC and mTEC 

lineage progression, specifically that a higher level of Foxn1 is required in cTECs than in 

mTECs to permit proper terminal differentiation. Additionally, Foxn1 is required to maintain 

the postnatal thymus in a dosage specific manner (Chen et al., 2009). Published data for 

Foxn1 transcript expression levels in the postnatal thymus shows that there is a decline of 

Foxn1 with age, with an approximate 16-fold reduction at 12 months compared to 1 month 

(Ortman et al., 2002). However, these data were obtained from bulk thymic lobe digests and, 

thus differential effects of thymic involution on populations such as thymocytes, non-

epithelial stroma and vasculature may have distorted the results.  

 

In this chapter I test the hypothesis that Foxn1 is differentially expressed in the two major 

TEC compartments in wildtype mice by quantifying Foxn1 transcript levels in postnatal 

cTECs and mTECs. I then extend these data and relate them to the previous finding of 

Ortman et al. by determining Foxn1 transcript levels in defined TEC populations from aged 

mice. Additionally, I use a recently generated Foxn1 allele (where GFP reports Foxn1 

expression) to examine the proportion of TECs that express Foxn1 in the postnatal thymus. 

Thus, the overall aim of this chapter is to better understand the dynamics of Foxn1 

expression in the postnatal thymus, with respect to the major TEC subpopulations and 

normal aging. 

 

3.2 Results 
3.2.1 Isolation of defined TEC subpopulations 
I initially analysed Foxn1 transcript levels in the thymic epithelium of 4-8 week old mice. 

During this window, the thymus is relatively homeostatic, as it is no longer increasing in 

total cell number but has not yet begun to involute (Gray et al., 2006) . In order to obtain 

purified TEC subpopulations for subsequent analyses, I used established protocols for flow 

cytometric isolation of TECs (Derbinski et al., 2008; Gray et al., 2008). 
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The percentage of stromal cells (including TECs) in the postnatal thymus is approximately 1-

2% of the total cellularity, with the remainder being hematopoietic cells  (Gray et al., 2006). 

The most efficient manner by which to isolate postnatal TECs is thus to initially deplete 

single cell suspensions of total thymic cells of CD45+ cells. This has been achieved by either 

centrifugation of total thymic digests over a discontinuous density gradient (Derbinski et al., 

2008) or depletion of magnetically labelled CD45 cells (Gray et al., 2008). In the 

experiments performed here I have used both techniques; Figure 3.1a,b show representative 

plots of thymi cell suspensions from 4-8 week old thymi before and after CD45 depletion. 

 

The CD45- cellular component in 4-8 week old postnatal thymi is approximately 2.5% of 

total cellularity (Figure 3.1a,b), which is comparable to 2-7.5% observed in Gray et al., 

2008). After CD45 depletion, the CD45- component is enriched to 60-80% of the total cells, 

of which approximately half are TECs, as defined by staining for the epithelial cell adhesion 

molecule, EpCAM (Farr et al., 1991) (Figure 3.1b,c). The epithelium can be phenotypically 

separated into cTEC and mTEC fractions using the antibody Ly51, which reacts with a cell 

surface glycoprotein on cTECs (Adkins et al., 1988) (Figure 3.1d); thus, cTECs are defined 

as EpCAM+Ly51+ and mTECs as EpCAM+Ly51-. TECs can be further characterised by their 

expression of the functional marker, MHC class II (MHCII), which is essential for T cell 

development (Figure 3.1d). MHC class IIlo and MHC class IIhi expression profiles define 

immature and mature TEC subpopulations, respectively (Gray et al., 2006). Of note is that 

MHC class II expression  on TECs decreases with age and is absent on cTECs in the 

Foxn1R/R hypomorphic thymus (Gray et al., 2006; Nowell et al., under review) indicating that 

it is directly or indirectly regulated by Foxn1. 

 

To verify the accuracy of the TEC isolation procedure, I immunostained cytospun, sorted 

cells with epithelial sub-compartment specific antibodies. Representative images show that 

almost all cells isolated as mTECs (phenotype: EpCAM+, Ly51-) expressed the medullary 

marker, Keratin 5 (K5) (Figure 3.1e). Similarly, all cTECs (phenotype: EpCAM+, Ly51+) 

expressed the cortical marker CDR1 (Rouse et al., 1988) (Figure 3.1e). The validity of all 

immunostaining signals were confirmed by comparison against the corresponding isotype 

antibody controls (Figure 3.1e). These results confirm that the procedure used to isolate 

TECs is robust and specific. 
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Figure 3.1 Robust isolation of TECs from postnatal mice thymi. 
Representative plots from a procedure for TEC isolation from postnatal mice thymi using  
(a, b) CD45- cells make up a small proportion of total postnatal thymus cellularity, such that 
CD45+ cells need to initially be depleted, to make flow cytometric isolation of TECs efficient. 
In the representative example shown, CD45 cells were labelled and magnetically depleted.  
(c) Approximately half of the post-CD45 depletion fraction is TECs, as marked by EpCAM. 
(d) The epithelial component can then by phenotypically divided into mTECs (Ly51-) and 
cTECs (Ly51+) that express high or low levels of the functional molecule MHC class II.  
(e) Isolated TECs were verified by immunocytochemistry. Almost all isolated mTECs 
(EpCAM+ Ly51-) express the medulla specific keratin, Keratin 5 (K5), while all cTECs 
(EpCAM+ Ly51+) express the cortex specific marker, CDR1. All signals were determined as 
above isotype (IC) controls. Images show single optical sections. Scale bar represents 
100µm. 
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3.2.2 Foxn1 is differentially expressed in the major TEC compartments 
To test whether Foxn1 was expressed at different levels in different TEC subpopulations, 

quantitative real-time (qRT) PCR was used to analyse Foxn1 transcript levels in the isolated 

TEC subsets. Foxn1 levels were normalised to α-tubulin expression, which has been 

determined as the optimal reference gene for TEC gene expression analysis (Nowell et al., 

under review). Initially, total cortex and medullary subsets were compared from wildtype 4-8 

week old mice. Foxn1 was expressed at approximately twice the level in cTECs as in 

mTECs (Figure 3.2a). A caveat of this qRT-PCR analysis is that more cTECs than mTECs 

may express Foxn1, while Foxn1-positive cells express comparable levels of Foxn1 across 

the two compartments.  

 

To address this potential caveat, I utilised the Foxn1GFP/+ mice to obtain a direct read-out of 

Foxn1 expression in homeostatic, 8 week old TECs (Figure 3.2b). Foxn1GFP is a newly 

generated Foxn1 reporter strain in which GFP is knocked into the Foxn1 locus (see Materials 

and Methods 2.1.1.3). Three Foxn1 expression states were evident by GFP levels: 

negative/low, intermediate and high (neg/lo, int, hi). The precise classification of the 

Foxn1neg/lo population as either negative or low may be restricted by the detection limits of 

analysis method used (flow cytometry). Indeed, the observed distribution of the GFPneg/lo 

population suggested that this population may be GFPlo rather than GFPneg, as it did not align 

precisely with the wildtype, GFPneg population (Figure 3.2b).  

 

The Foxn1lo proportions in each subpopulation were comparable (cTECs, 10%; mTECs, 

12%), indicating that the differential mRNA expression observed above probably stems 

primarily from differences in the Foxn1int/hi populations across the two compartments (Figure 

3.2b). Indeed, the medullary compartment contained a higher proportion of Foxn1int TECs 

(cTECs, 19%; mTECs, 24%) and a lower proportion of Foxn1hi (cTECs, 71%; mTECs, 64%) 

than the cortical compartment (Figure 3.2b).  

 

Thus, a combination of the direct read-out of Foxn1 expression levels, using the Foxn1GFP/+ 

allele, and quantification of Foxn1 transcript by qRT-PCR, showed that Foxn1 is expressed 

at a higher level in cTECs compared to mTECs. This most likely reflects a higher proportion 

of Foxn1hi TECs in the cortex than the medulla rather than a higher Foxn1 expression level 

on a per cell basis. 
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Figure 3.2 Foxn1 is differentially expressed in major TEC subpopulations. 
(a) Foxn1 transcript levels were quantified by qRT-PCR in mTEC and cTEC populations 
(EpCAM+Ly51- and EpCAM+Ly51+, respectively) isolated by flow cytometry from at least 3 
pooled thymi. Foxn1 is expressed at higher levels in cTECs compared to mTECs (n=3, 
p=0.009). (b) Flow cytometric analysis, without thymocyte depletion, was performed on 8 
week old Foxn1GFP/+ thymi where total TECs were analysed using EpCAM and Ly51 after 
gating on CD45- and Ter119- cells. Histogram shows GFP expression profile for cTECs 
(Ly51+, red line) and mTECs (Ly51-, blue line). Data shown are from 3 pooled mice (n=1). (c) 
Foxn1 transcript levels were quantified by qRT-PCR for MHC class II high and low 
subpopulations in the cortex and medulla. Foxn1 is expressed at higher levels in 
cTEC/MHCIIhi compared to mTEC/MHCIIhi populations (p=0.001) and at higher levels within 
the cortical and medullary MHCIIhi populations compared to the MHCIIlo populations 
(p=0.0004 and p=0.037, respectively). Foxn1 is expressed at similar levels in the 
cTEC/MHCIIlo and mTEC/MHCIIlo populations (all n=4). (d) Analysis of Foxn1 levels in 
embryonic day 13.5 (E13.5) TECs suggested that Foxn1 may be expressed at higher levels 
in mature TECs (MHCII+) and cTECs (CD205+) compared to the relevant negative 
populations, however, these differences were not significant (n=3, p=0.064 and p=0.28, 
respectively). 
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Next, I quantified Foxn1 mRNA levels in different mTEC and cTEC subpopulations. All 

cortical and medullary postnatal TECs express MHC class II as a function of their role in 

mediating selection of the TCR repertoire of thymocytes (Figure 3.1d) (Gray et al., 2006; 

Shakib et al., 2009; Surh et al., 1992). MHC class II expression on TECs can be used as a 

marker for immature (low) and mature, functional (high) TECs. This is supported by, among 

other data, the superior in vitro T cell-stimulatory capacity of MHCIIhi compared to MHCIIlo 

mTECs and, the preferential loss of MHCIIhi TECs during thymus involution (Gray et al., 

2006). Thus, I quantified Foxn1 transcript levels in MHC class II high and low populations 

in the cortex and medulla. 

 

Foxn1 expression in MHCIIhi populations in the cortex and medulla, showed a similar trend 

to total populations, with Foxn1 being expressed at approximately double the level in the 

cTEC/MHCIIhi than the mTEC/MHCIIhi populations (Figure 3.2c). However, Foxn1 was 

expressed at similar levels in the cortical and medullary MHCIIlo populations. Within each of 

the major compartments, Foxn1 was expressed at higher levels in the MHCIIhi populations 

than the MHCIIlo populations, and was approximately 3-fold and 2-fold higher in the 

MHCIIhi cTECs and mTECs than the MHCIIlo cTECs and mTECs, respectively. These data 

confirm the differential expression of Foxn1 in cTECs and mTECS and also show that 

Foxn1 is expressed at higher levels in mature TEC populations in the two main 

compartments. 

 

To test if this differential expression of Foxn1 was established during thymus organogenesis, 

I analyzed Foxn1 expression in the equivalent embryonic TEC subpopulations. Prominent 

mature (MHCII+) and cortical/medullary (CD205+/-) TEC populations emerge at embryonic 

day 13.5 (E13.5) (Nowell et al., under review; Shakib et al., 2009). MHCII+/MHCII- and 

CD205+/CD205- TEC populations were isolated by flow cytometry and analyzed for Foxn1 

mRNA levels by qRT-PCR. As in the postnatal thymus, Foxn1 mRNA was detected at 

higher levels in mature than in immature TECs and at slightly higher levels in cTECs 

compared to mTECs (Figure 3.2d). However, these differences only approached significance 

for the MHCII+ and MHCII- populations (p=0.064) and were not significant for CD205+ and 

CD205- populations (p=0.28) (both n=3). Thus, while there was some evidence for higher 

Foxn1 expression levels in cortical E13.5 TECs, these differences were not determined to be 

significant. 
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3.2.3 Foxn1 expression decreases with age in the thymic epithelium 
To date, Foxn1 expression has not been accurately quantified in aged postnatal TECs. 

However, because premature down-regulation of Foxn1 in postnatal TECs results in an early 

thymus involution phenotype (Chen et al., 2009), it was important to determine if involution 

in wildtype mice correlated with a decrease in Foxn1 expression. Thus, I analyzed Foxn1 

transcript levels in isolated TECs, and used the Foxn1GFP mouse model to track Foxn1 

expression in TECs in aging mice. 

 

At 12 months of age total thymus cellularity has decreased drastically compared to that in 4 

week old mice (5×107 and 2×108 cells, respectively; Gray et al., 2006). This reduction in total 

cellularity is possibly driven by a reduction in the size of the stromal compartment with age 

(defined as CD45- cells; 4 weeks, 5×105 cells and 12 months, 2×105 cells; Gray et al., 2006). 

To determine how Foxn1 expression levels in TECs varies with age I isolated TECs from 4 

week and 12 month mice and compared Foxn1 mRNA levels in cortical and medullary 

populations by qRT-PCR. Foxn1 mRNA was expression was approximately 10-fold lower in 

the medullary compartment and 12-fold lower in the cortical compartment, at 12 months 

than at 4 weeks of age (Figure 3.3a). At 12 months the difference in Foxn1 levels between 

cTECs and mTECs was not as pronounced as at 4 weeks, with the expression of Foxn1 at 

two thirds the level in mTECs compared to cTECs (although these differences were not 

significant, p=0.11). These data show, for the first time, the accurate quantification of Foxn1 

in aged TECs with a greater than 10-fold reduction in mRNA expression at 12 months 

compared to 4 weeks. 

 

In addition to Foxn1 message quantification, I utilised the Foxn1GFP allele to track Foxn1 

expression in aging TECs. For this analysis I compared the GFP expression profiles of total 

TECs from 3, 6 and 12 month old Foxn1GFP/+ mice by flow cytometry. The majority of TECs 

from 3 month old Foxn1GFP/+ thymi expressed Foxn1 at high levels (76%), while the 

remainder expressed Foxn1 at low or intermediate levels (10% and 14%, respectively; Figure 

3.3b,c). Notably, the proportion of the Foxn1hi TECs decreased by 20% in 6 month old thymi 

to constitute 56% of total TECs. The reduction of the Foxn1hi population corresponded with 

an approximate doubling in Foxn1lo and Foxn1int TEC proportions at 6 months (to 20% and 

24%, respectively; Figure 3.3b,c). At 12 months the Foxn1hi TEC population had decreased 

even further, to levels that were 60% and 85% of those observed at 3 months and 6 months, 

respectively (Figure 3.3b,c). The proportion of Foxn1lo TECs increased from 3 to 6 months 

but thereafter remained similar while the proportion of Foxn1int TECs increased  
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Figure 3.3 Foxn1 expression decreases with age in the thymic epithelium. 
(a) Foxn1 transcript levels were quantified by qRT-PCR in flow cytometrically isolated mTEC 
and cTEC populations (EpCAM+Ly51- and EpCAM+Ly51+, respectively) at 4 weeks and 12 
months of age. Foxn1 is expressed at higher levels at 4 weeks than at 12 months (n=2, 
p<0.001). (b) Flow cytometric analyses of EpCAM+ TECs after gating on CD45-Ter119- cells. 
WT and Foxn1GFP/+ TECs were analyzed for GFP expression and showed that Foxn1 
expression decreased from 3 months to 6 months to 12 months. Plots show analysis of 3 
pooled mice (n=1). Histogram shows GFP profile of EpCAM+ TECs from WT and 3, 6 and 12 
month old Foxn1GFP/+ old mice (c) Graphical representation of data shown in (b), showing 
low, intermediate and high GFP expression level proportions in total TECs at 3, 6 and 12 
months. 
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progressively with age. Thus, through the combination of Foxn1 mRNA quantification in 

defined aging TEC populations, and direct analysis of Foxn1 expression levels in total aging 

TECs, I have shown, in the most accurate manner to date, that Foxn1 expression 

progressively decreases with age in the thymic epithelium.   

 

3.3 Discussion 
Here, I show that Foxn1 is differentially expressed among the major TEC compartments in 

the homeostatic postnatal thymus, with approximately double the level of transcript detected 

in cTECs compared to mTECs. Additionally, analysis of the Foxn1GFP allele showed that at 2 

months of age, a higher proportion of Foxn1hi TECs is found in the cortex than in the 

medulla. Previous observations show that TECs that express only ~15% of wildtype levels of 

Foxn1 mRNA, exhibit a partial block in cTEC and mTEC differentiation (Nowell et al., 

under review). In these mice, the effect on cTEC differentiation is more pronounced, 

suggesting that normal cTEC development may require higher levels of Foxn1 than in 

mTECs. Data presented here, showing higher Foxn1 mRNA levels in wildtype cTECs than 

in mTECs, support this hypothesis.  

 

The biological significance of different Foxn1 expression levels in different TEC 

compartments is unclear. Foxn1 up-regulation may, for example, be required in cTECs to 

promote progression to a more mature state, or increased Foxn1 levels may be required in 

matured cTECs in order to maintain this population. A relationship between Foxn1 levels 

and the maturity state of the TEC is evident when comparing Foxn1 levels in high and low 

MHC class II populations. There is no difference in Foxn1 expression between the MHCIIlo 

population in the cortex and medulla, but Foxn1 is up-regulated in MHCIIhi populations, 

suggesting that it may be important for entry into or maintenance of differentiated TECs. 

Thus, up-regulation of Foxn1 levels may be important for maturation of TECs within the 

cortex and the medulla, with a further requirement of higher levels of expression in the 

cortex.  

 

It may be that the differences in Foxn1 expression between the cortex and medulla are 

indicative of different modes of action. Analysis of the allelic series of Foxn1 shows that 

there are two gene expression response patterns in embryonic TECs: one titrates with Foxn1 

and the other is a binary response, where even at very low levels of Foxn1, responsive genes 

are expressed at wildtype levels (Nowell et al., under review). This mechanism may also 

operate in the wildtype postnatal situation; for example, Foxn1 may regulate a binary 
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response programme in mTECs but needs to be expressed at higher levels in cTECs, where 

its functionality is dependent on reaching a critical expression level. Or it might be possible 

that mTECs depend less on genes which require high levels of Foxn1 to activate them.  

Furthermore, different mechanistic actions may explain the response programmes; for 

example Foxn1 protein may need to be present at high concentration if it functions by 

binding to a co-factor with a low binding affinity, or conversely, only at low levels if it 

functions as a transcription factor that binds to a small number of regulatory sites, or visa 

versa. Thus, in the one instance Foxn1 is limiting and in the other, it is not. 

 

It should be noted that a caveat of the data presented and conclusions discussed here, is that 

Foxn1 was only quantified at the transcriptional level. Thus, any regulation of Foxn1 

expression by post-translation modification cannot be accounted for here. However, no 

evidence for post-translational modification of Foxn1 has been detected to date and, 

furthermore, data from our lab show that Foxn1 protein tracks with mRNA expression levels 

(Nowell et al., under review). 

 

Lastly, I accurately quantified the down-regulation of Foxn1 transcript expression in 

wildtype TECs with age. Recent reports have shown that a postnatal decrease in Foxn1 

expression is associated with accelerated thymic involution in several mouse models (Chen 

et al., 2009; Cheng et al., 2010; Corbeaux et al., 2010; Sun et al., 2010). While one report 

attempts to quantify Foxn1 in aging wildtype TECs, the experimental approach adopted was 

sub-optimal as Foxn1 expression was not quantified in pure TEC populations (Ortman et al., 

2002). Here, I show that Foxn1 is indeed down-regulated in wildtype, aged TECs, by 

approximately 10-fold at 12 months compared to 2 months. Additionally, I tracked the 

Foxn1 expression profile in aging TECs using a Foxn1GFP reporter mouse model. The TEC 

compartment in thymi at the onset of involution (3 months old) was comprised mainly (over 

75%) of TECs that expressed high levels of Foxn1. In the aging TEC compartment (6 

months and 12 months old), this proportion decreased significantly with an increase in 

Foxn1 low and intermediate populations observed. These data clearly show that Foxn1 

expression decreases in aging wildtype TECs, providing support for its role in the 

maintenance of the postnatal thymus. 
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Chapter 4: Generation of a conditional, inducible Foxn1 
mouse model 
 
 
4.1 Introduction 
A number of recent studies have revealed the dosage-dependent mode of action of Foxn1 in 

the postnatal thymic epithelium. Firstly, Foxn1 mRNA is expressed at different levels in 

different wildtype TEC subpopulations, suggesting that the level of Foxn1 is important for 

the development and function of different TEC sub-populations (Chapter 3). Additionally, a 

Foxn1 allelic series – generated using null, hypomorphic (Foxn1R) and wildtype alleles – 

demonstrated different roles for Foxn1 dependent on its expression levels (Nowell et al., 

under review). These roles include regulation of exit from a TEC progenitor state and entry 

into the cortical and medullary differentiation programmes, and roles in postnatal maturation 

of TECs. Lastly, a number of recent reports indicate that Foxn1 is required for maintenance 

of postnatal TECs and thymic homeostasis (Chen et al., 2009; Cheng et al., 2010; Corbeaux 

et al., 2010; Sun et al., 2010). Mice in these studies, where different approaches were used to 

prematurely reduce or stop Foxn1 expression in postnatal TECs, had consistent thymic 

phenotypes of early TEC architecture degeneration and reduced T cell output. Collectively, 

these studies establish the importance of Foxn1 dosage in TEC development and 

maintenance.  

 

In order to address this function of Foxn1 further, I generated a transgenic mouse model 

which permitted tissue specific, regulatable expression of Foxn1. In this model, a Tamoxifen 

inducible form of Foxn1 (Foxn1ERt2) is expressed within the ROSA26 locus under control 

of the CAG compound promoter.  To add tissue specificity of expression to this system I 

placed a floxed MAZ stop cassette (Ashfield et al., 1994) between the promoter and the 

Foxn1 cDNA. Additionally, IRES-GFP was placed downstream of Foxn1 to report 

expression. This generates a Foxn1ERt2-GFP bicistronic mRNA upon transcription following 

tissue-specific, Cre-mediated excision of the stop cassette (Figure 4.1). The Foxn1ERt2 

fusion protein produced from this mRNA is then maintained in the cytoplasm until treatment 

with Tamoxifen, whereupon it is released from the cell membrane and translocates to the 

nucleus. Thus, in this model Foxn1 expression is conditional and regulatable by Tamoxifen 

treatment. 
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Figure 4.1 The R26-CAG-STOP-Foxn1ERt2 transgene. A targeting cassette designed to 
permit tissue specific, regulatable expression of Foxn1 was generated as shown here. 
Mouse Foxn1 was fused to the mutated Tamoxifen responsive ligand binding domain of the 
estrogen receptor (ERt2) and placed under control of the compound CAG promoter. A floxed 
MAZ transcriptional STOP cassette and IRES-GFP component were included to permit Cre-
mediated induction and to report transgene expression, respectively. This cassette was 
inserted into a vector containing 5ʹ (1.1kb) and 3 ʹ (4.2kb) homology arms (Soriano, 1999). 
The cassette was then inserted into the ROSA26 locus by homologous recombination in ES 
cells.  
 
 
 
4.2 Evaluation of experimental approach 
Initially, two possible Foxn1 regulatable systems were evaluated: (1) Rosa26CAG-STOP-Foxn1ER, 

as described above and, (2) a doxycycline (Dox) regulatable Tet-On system (Gossen et al., 

1995). In the latter system, Foxn1 would be placed under control of a Dox-responsive 

regulatory element, such that Dox treatment would induce Foxn1 expression via a 

transactivator (rtTA). I chose not to develop this system as it had been reported at the time 

that Dox-dependent induction of gene expression in the thymus was poor compared to other 

tissues (Hochedlinger et al., 2005). Furthermore, it is well established that ER fusion proteins 

are titratable (Hayashi and McMahon, 2002), which would permit Tamoxifen-dosage 

dependent induction of Foxn1ER, if required. Additionally, a functional Foxn1ER fusion 

protein had previously been described and characterised which, at least at the outset, abated 

concerns that ER might alter or inhibit Foxn1 function (Janes et al., 2004). Lastly, reagents 

were available to me that would permit Foxn1ER expression all TECs in Rosa26CAG-STOP-

Foxn1ER mice (i.e. Foxn1Cre mice, Gordon et al., 2007) while similar reagents did not existed 

for the Tet-On system (e.g. Foxn1rtTA). Thus, I chose to generate the Rosa26CAG-STOP-Foxn1ER 

mouse model for conditional, regulatable Foxn1 expression. 

 

 

 

 

CAG promoter STOP Foxn1ERt2 GFP IRES pA 

ROSA26 
locus 

  loxP            loxP 
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4.3 Generation of R26-CAG-STOP-Foxn1ER transgenic mouse line 
4.3.1 Targeting vector construction 
The targeting vector was assembled from four components: (1) the Foxn1ERt2-IRES-GFP 

component, (2) the CAG promoter and loxP-flanked MAZ transcriptional stop cassette 

(Ashfield et al., 1994), (3) a frt-flanked neomycin cassette for positive selection, and (4) the 

host pROSA26-1 vector containing the ROSA26 homology arms (Friedrich and Soriano, 

1991; Soriano, 1999). 

 

4.3.1.1 Foxn1ERt2-IRES-GFP construction 
Firstly, the full length mouse Foxn1 cDNA was fused in-frame to a mutated ligand binding 

domain of the human estrogen receptor (ERt2) (Feil et al., 1997) with a glycine-rich linker 

(GGAGSGDP) (Zeisig et al., 2004). Mouse Foxn1 cDNA (in pBlueScript, obtained from 

Professor Nancy Manley, University of Georgia, USA) was amplified by PCR, with a sense 

primer that spanned the start codon and an anti-sense primer that spanned the stop codon. 

The anti-sense primer contained a non-homologous tail made up of part of the linker 

sequence, which incorporated a BamHI restriction site and also introduced a single 

nucleotide mutation such that the stop codon of Foxn1 subsequently coded for the first 

glycine of the linker. This Foxn1 fragment was then cloned into cloned into pGEMT-Easy 

(Figure 4.2a). Similarly, ERt2 was amplified from a Cre-ERt2 plasmid with a sense primer 

that contained the remainder of the linker sequence/BamHI restriction site and an anti-sense 

primer that contained a BstEII restriction site, and sub-cloned in pGEMT-Easy (Figure 4.2b). 

The Foxn1 and ERt2 components were excised from pGEMT-Easy by Not1/BamHI and 

BamHI/BstEII restriction digests, respectively. These two fragments, together with an IRES-

hrGFP-polyA component (humanised renilla form (hr) of GFP, excised from pIRES-hrGFP-

1a (Stratagene) with BstEII and MluI (Figure 4.2c)) were ligated into the NotI and MluI sites 

of the pSP72 vector (Promega), in a four-way, directional, sticky-ended reaction, generating 

the pSP72-Foxn1ERt2-IRES-GFP construct (Figure 4.2d). The ligation mix was transformed 

into DH5α E. coli competent cells and clones were positively selected using ampicillin 

resistance. Plasmids were extracted from positively selected clones and sequenced to 

confirm identity. Both strands of the Foxn1ERt2-IRES-GFP insertion (FEIG) were sequenced 

using overlapping primer sets (Figure 4.2e) and confirmed to be correct. 
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Figure 4.2 Construction of the Foxn1ERt2-IRES-hrGFP cassette. 
(a, b) Foxn1 cDNA (blue) and ERt2 (yellow) were amplified by PCR using primers (arrows) 
that contained restriction sites and linker (grey) sequences as indicated, and were cloned 
into the pGEM-T Easy vector (Promega). (c) An IRES-hrGFP-pA (humanised renilla GFP) 
(green) component was excised from the pIRES-hrGFP-1 vector (Stratagene). (d) The three 
components were ligated into a host pSP72 vector (Promega) and clones recovered after 
transformation and positive selection were sequenced through both strands using primers 
(arrows), as indicated (e).  
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4.3.1.2 CAG-floxed STOP construction 
The next major component of the targeting vector that was constructed was the CAG-floxed 

STOP and the selection cassette. A vector containing the CAG compound promoter and a 

floxed MAZ transcriptional stop component was utilised as the host vector for this 

construction step (obtained from Professor Ian Chambers, Institute for Stem Cell Research, 

University of Edinburgh) (Figure 4.3a). An unwanted IRES/Puro fragment was removed by 

HindIII/ClaI digestion and vector was religated. Next, the vector was digested with AleI and 

PstI and ligated with complementary-ended, annealed oligonucleotides that contained a BbsI 

restricted site (Figure 4.3b). The BbsI recognition sequence (GAAGACNN˅NNNN) was 
manipulated such that the overhang generated was 5ʹ -GGCC and complementary to the 

NotI-generated overhang, which was used in the next construction steps (Figure 4.4). Next, a 

unique PmeI site between the first loxP site and the stop cassette was used to insert the 

frt/PGK-neoR/frt selection cassette (obtained from Dr Andrew Smith, Institute for Stem Cell 

Research, University of Edinburgh) by blunt-end ligation (Figure 4.3c). The selection 

cassette is composted of a neomycin resistance (neoR) gene driven by a PGK promoter and 

is frt-site flanked, allowing downstream excision of the cassette using FLPe mediated 

recombination. 

 

4.3.1.3 Final targeting vector assembly 
The pROSA26-1 targeting vector (obtained from Professor Phillipe Soriano, Mount Sinai 

School of Medicine) (Soriano, 1999) – which contains a 1.1kb 5ʹ homology arm and a 
4.2kb 3ʹ homology arm, separated by a unique XbaI cloning site – was used to target the 

CAG-STOP-Foxn1ER transgene to the ROSA26 locus. Firstly, the single XbaI cloning site 

was manipulated to include two further unique restriction sites. Annealed oligonucleotides 

with XbaI overhangs, that contained PacI and MluI restriction sites, were introduced into the 

ROSA26-1 vector by ligation into the XbaI cloning site. Next, a three-way ligation reaction 

was used to construct the final targeting vector from the following components: (1) the 9.8kb 

pROSA26-1 host vector, digested with PacI and MluI, (2) the 6.3kb CAG-frt/neoR/frt-floxed 

STOP component, excised with PvuI and BbsI (Figure 4.3c), and (3) the 3.7kb Foxn1ER-

IRES-GFP, excised with NotI and MluI (Figure 4.2e) (Figure 4.4). PacI and PvuI digested 

ends are compatible, while the BbsI-generated overhang was designed to be complementary 

to the NotI-generated overhang, thus generating a directional, three-way, sticky-ended 

ligation reaction. The final vector was verified by restriction enzyme digestion and 

sequenced using FEIG (Figure 4.2e), CagIPC270, ROSAseqF and FRTf primers (primer 

details are shown in Section 2.2.3.1). 
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Figure 4.3 Construction of CAG-frt/neoR/frt-floxed STOP component. 
(a) A vector, pIC260, that contained the CAG compound promoter (grey) and a loxP-flanked 
(black arrows) MAZ STOP cassette (red) was digested with HindIII and ClaI to remove the 
unwanted IRES-Puro component (white). (b) A BbsI site, required for subsequent sub-
cloning steps, was inserted between AleI and PstI sites, using complementary annealed 
oligonucleotides. (c) Lastly, a frt-flanked PGK promoter/neomycin resistance (neoR) cassette 
(yellow) was inserted into a PmeI site, generating the final CAG-frt/neoR/frt-floxed STOP 
vector. 
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Figure 4.4 Assembly of the final pR26-CAG-STOP-Foxn1ER targeting vector 
(a) The final targeting vector was assembled by ligation of the CAG-floxed STOP (from 
Figure 4.3) and Foxn1ER-IRES-GFP components (from Figure 4.2) into the pROSA26-1 
vector (Soriano, 1999) (b). 
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4.3.2 ES cell targeting, selection and screening 
The pR26-CAG-STOP-Foxn1ER targeting vector was linearised at the unique XhoI site 

(Figure 4.4), precipitated and electroporated into E14Tg2a mouse ES cells as described in 

Materials and Methods (Section 2.5.1). Cell colonies resistant to G418 treatment after 7 days 

were picked into 96 well plates and screened for homologous recombination at the ROSA26 

locus. Initially, 5ʹ PCR was used to screen potential recombinants, w ith an expected PCR 

product of 1.4kb in recombinants (Figure 4.5a, b) (Primers: ROSAprmtr720F and 

CAG210R). This identified 18 positive clones in the first 48 clones analyzed, which gave a 

recombination rate of 38% in G418 resistant clones – which falls within the rate of 25-50% 

reported by the Soriano lab (Soriano, 1999). Next, 3ʹ PCR was used to confirm the correct 
integration of the full targeting vector in the 5ʹ PCR -positive clones. All except one of the 

clones were positive by 3ʹ PCR as indicated by a 4.9kb PCR product (Figure 4.5c) 
(Primers: FEIG5f and ROSA3geno2-R).  

 

Of the 17 positive recombinant ES cell clones that successfully recovered from storage, 3 

were selected to generate the R26-CAG-STOP-Foxn1ER mouse line. Southern blotting was 

used to confirm homologous recombination in the 3 selected positive ES cell clones (A12, 

C1 and D9) using 5ʹ, 3 ʹ  and internal probes (Figure 4.5a). For the 5ʹ Southern blot 
analysis, genomic DNA was digested with EcoRI and probed with a 5ʹ probe which yielded 
a 15.6kb wildtype ROSA26 locus fragment and a 5.8kb transgenic ROSA26 locus fragment 

(Figure 4.5d). Similarly, an EcoRV restriction digestion and 3ʹ probe detection, yielded an 
11.5kb wildtype fragment and a 14.3kb transgenic fragment (Figure 4.5e). Further, PacI sites 

on either side of the targeted, transgenic locus generated a single 18.6kb fragment, indicating 

the single, site-specific integration of the CAG-STOP-Foxn1ER transgene (Figure 4.5f). 

Lastly, the karyotypes of selected ES cells recombinants, A12, C1 and D9, were tested and 

were found to be normal (Jonathan Rans, Tissue Culture Service, Institute of Stem Cell 

Research, University of Edinburgh). 
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Figure 4.5 Verification of R26-CAG-STOP-Foxn1ER ES cell clones by PCR and 
Southern blotting.  
(a) The strategy used for PCR and Southern blot screening of potential R26-CAG-STOP-
Foxn1ER ES cell clones is illustrated. The CAG-STOP-Foxn1ER transgene (thick black line) 
is shown targeted to the ROSA26 locus (thin black line), with the 5ʹ and 3 ʹ  homology 
(hom.) regions for homologous recombination also shown. Positions of Southern blot probes 
and restriction sites (colour matched) and PCR primers (arrows) are indicated. (b, c) 5ʹ 
PCR was initially used to identify positive recombinants by a 1.4kb PCR product (labeled 
lanes); which were confirmed by 3ʹ PCR and a 4.9kb product  (M , DNA ladder marker with 
relevant band size labeled; -, negative control). Three clones, A12, C1 and D9, were 
selected to generate the mouse line and were confirmed as correctly targeted by Southern 
blotting. (d) Genomic DNA from A12, C1 and D9 ES cell clones was digested with EcoRI and 
probed with a 5ʹ probe (red), generating transgenic and wildtype (WT) restriction fragments . 
(e, f) Similarly, genomic DNA digestions with EcoRV and PacI, were probed with a 3ʹ probe 
(blue) and internal probe (grey), respectively, revealing wildtype and transgenic restriction 
fragments. 
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4.3.3 Generation of R26-CAG-STOP-Foxn1ER transgenic mice 
Cells from the three selected CAG-STOP-Foxn1ER ES cell clones (A12, C1, D9) were used 

to generate transgenic mouse lines by conventional blastocyst injection protocols (performed 

by the Transgenic Service Facility, Institute for Stem Cell Research, University of 

Edinburgh). All ES cell clones generated chimeric mice with the transgene transmitted to the 

germline, as initially tracked by coat colour. Potential R26-CAG-STOP-Foxn1ER mice 

(generated from ES cell clones C1 and D9) were confirmed by Southern blotting, using the 

same strategies outlined above (Figure 4.6). Next, the frt-flanked, neomycinR cassette used 

for ES cell clone selection was removed by FLPe recombination by breeding R26-CAG-

STOP-Foxn1ER mice with ubiquitous FLPe expressing mouse strain (Figure 4.6; obtained 

from Dr Andrew Smith, Institute for Stem Cell Research, University of Edinburgh). 

Collectively, these data describe the generation and verification of the R26-CAG-STOP-

Foxn1ER mouse line. 

 

4.4 Preliminary characterisation of R26-CAG-STOP-Foxn1ER mice 
4.4.1 The Foxn1ERt2 fusion protein is transcriptionally active and Tamoxifen 
responsive in vitro 
Before the transgenic mouse line was generated, the transcriptional activity of the Foxn1ERt2 

fusion protein was investigated, as the direct fusion of ERt2 to the carboxy (C)-terminal of 

Foxn1 could result in impaired or blocked functionality of the Foxn1 protein. Two reports 

were important in this regard. Firstly, I chose to fuse ERt2 to Foxn1 via a linker that has 

shown to produce a functional protein when ERTM was fused to the C-terminal of the 

transcription factor MLL (Zeisig et al., 2004). Secondly, a Foxn1ER fusion protein has 

previously been generated and expressed in keratinocytes (Janes et al., 2004). Here, the 

authors showed the Foxn1ER fusion protein was functional, and developed a system to test 

the transcriptional activity of Foxn1ER compared to Foxn1. Thus, the system from Janes et 

al. was used to test the activity of the Foxn1ERt2 fusion protein that was generated here. In 

this reporter system, the core binding sites required for Foxn1 binding (Schlake et al., 1997) 

were placed upstream of a luciferase gene, such that luciferase transcription is regulated by 

Foxn1 (Figure 4.7a). Thus, the transcriptional activity of Foxn1 and Foxn1ER can be 

compared by co-expressing either with the luciferase response element and determining 

luciferase levels. The specificity of the binding sites for Foxn1 in this system was confirmed 

by a control element that contained mutated binding sites (Figure 4.7a).  
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Figure 4.6 Confirmation of R26-CAG-STOP-Foxn1ER transgenic mouse line by 
Southern blotting. 
The R26-CAG-STOP-Foxn1ER mouse line was generated from 2 separate ES cell clones, 
C1 and D9. The correct genetic identity of the mice generated from these clones was 
confirmed by 5ʹ, 3 ʹ  and internal Southern blotting, using the strategies outline d in Figure 
4.5. These mice were then crossed with FLPe expressing mice to remove the selectable 
marker from the transgene by FLPe-mediated recombination; this was confirmed by the 
14.6kb restriction fragment observed on probing with the internal probe (+FLPe panel). 
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Figure 4.7 The Foxn1ER fusion protein is transcriptionally active.  
(a) Wildtype and mutated Foxn1 transcriptional response elements upstream of a luciferase 
reporter were stably transfected into COS-7 cells. (b) Empty, Foxn1 or Foxn1ER vectors (all 
under control of the CAG promoter) were transfected into these cells and then assayed for 
luciferase expression. Luciferase expression was not detected for the mutated response 
element (grey) under any condition. Foxn1 and Foxn1ER induced luciferase at a similar level 
for the wildtype response element (black), indicating a comparable transcription activity. 
Foxn1ER was also regulatable by 4-hydroxy-tamoxifen (4-OHT). Data represent 2 biological 
repeats. (c) Transfection efficiency was controlled by quantification of Foxn1 mRNA 
expression in transfected cells by qRT-PCR. Data represents average of 2 biological repeats 
(with 3 technical repeats each). 
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Therefore to test the transcriptional activity of the Foxn1ER fusion protein generated here, I 

transfected cells that contained the wildtype and mutated Foxn1 response element reporter 

with Foxn1 and Foxn1ER plasmids and assayed for luciferase expression. Foxn1 and 

Foxn1ER were found to have comparable transcriptional activity, with a slightly lower, but 

insignificant, luciferase induction for Foxn1ER compared to Foxn1 (Figure 4.7b,c). 

Importantly, the mutated binding sites showed no response to Foxn1 or Foxn1ER, showing 

similar luciferase induction levels to the empty vector controls. Additionally, the Tamoxifen-

mediated regulation of Foxn1ER could be tested in vitro using this system. In the absence of 

Tamoxifen, the Foxn1ER protein was maintained in the cytoplasm and thus could not bind to 

and activate the luciferase response element, confirmed by near background luciferase levels 

for this experimental condition (Figure 4.7b,c). However, upon addition of 4-hydroxy-

tamoxifen (4-OHT), luciferase expression increased, indicating that Foxn1ER is responsive 

to Tamoxifen. Thus, the Foxn1ERt2 fusion protein generated here is transcriptionally active 

and is efficiently regulated by Tamoxifen. 

 
4.4.2 Foxn1ER-IRES-GFP is expressed after Cre mediated excision of the 
STOP cassette in CAG-STOP-Foxn1ER mice 
The floxed STOP cassette in the R26-CAG-STOP-Foxn1ER mice line permits tissue specific 

expression of Foxn1ER by crossing these mice with relevant Cre-expressing mouse strains. 

In order to express Foxn1ER in TECs the newly generated R26-CAG-STOP-Foxn1ER mice 

were crossed with a Foxn1Cre mouse strain. This Foxn1 allele has an IRES-Cre component 

targeted to the 3ʹ UTR of Foxn1, such that Cre is expressed from a Foxn1-IRES-Cre 

biscistronic mRNA that is faithfully transcribed from the Foxn1 locus (Gordon et al., 2007).  

 

In Foxn1Cre/+;CAG-STOP-Foxn1ER mice (called Foxn1Cre/+;CAG-Foxn1ER), the stop 

cassette should be excised in cells that express Foxn1. To investigate the efficiency of this 

Cre-mediated recombination, GFP expression (translated from the Foxn1ER-IRES-GFP 

biscistronic mRNA) was examined in E12.5 EpCAM+ TECs; most, if not all, TECs express 

Foxn1 at E12.5 (Gordon et al., 2007; Nehls et al., 1996). In E12.5 Foxn1Cre/+;CAG-Foxn1ER 

TECs over 95% of the cells expressed GFP. In contrast, no GFP expression was detected in 

TECs from wildtype and Cre negative controls, indicating that Foxn1ER-IRES-GFP 

transcription is effectively blocked by the STOP cassette and that Cre activity efficiently 

excised the STOP cassette from the CAG-STOP-Foxn1ER transgene (Figure 4.8a). 

Furthermore, GFP was detected in approximately 90% of TECs at 8 months, representing 

current and historical Foxn1 expression/Cre activity in these TECs (Figure 4.8b). 
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Figure 4.8 Foxn1ER is expressed following Cre-mediated excision of the STOP 
cassette in TECs. 
(a) R26-CAG-STOP-Foxn1ER mice were crossed with Foxn1Cre/+ mice to test the efficiency 
of Cre-mediated excision of the STOP cassette in the thymic epithelium. This was assayed 
by flow cytometric analysis of GFP expression (translated from the Foxn1ER-IRES-GFP 
mRNA) in EpCAM+ TECs. E12.5 TECs from CAG-STOP-Foxn1ER mice (no Cre, black line) 
have an indistinguishable GFP profile to wildtype TECs (grey line). Conversely, almost all 
Foxn1Cre/+;CAG-Foxn1ER TECs express GFP (red line) following excision of the STOP 
cassette. Histograms show data from at least two pooled samples (b) Similarly, almost all 8 
month Foxn1Cre/+;CAG-Foxn1ER TECs express GFP (red line) while wildtype TECs show no 
GFP expression (grey line). (c) Foxn1-IRES-GFP mRNA levels were quantified, normalised 
to α-tubulin, by qRT-PCR on bulk embryonic tissues. Foxn1Cre/+;CAG-Foxn1ER thymi and 
skin express Foxn1-CAG-Foxn1ER at high levels, demonstrating the Foxn1Cre activity in 
these tissues, while little, if any, Foxn1-IRES-GFP mRNA is detected in the liver of 
Foxn1Cre/+;CAG-Foxn1ER mice and in the thymi of R26-CAG-STOP-Foxn1ER (without Cre). 
(d) Total Foxn1 mRNA levels (endogenous and Foxn1ER mRNA) were also quantified in 
TECs populations. Postnatal Foxn1Cre/+; CAG-Foxn1ER TECs express Foxn1 at significantly 
higher levels than wildtype embryonic and postnatal TECs. Data for qRT-PCR represent 3 or 
more biological repeats. 
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Thus, Foxn1-IRES-GFP is expressed in almost all embryonic and postnatal TECs in 

Foxn1Cre/+;CAG-Foxn1ER mice. 

 

Next, Foxn1ER and total Foxn1 (Foxn1ER and endogenous Foxn1) mRNA levels were 

investigated to quantify background (e.g. caused by a transcriptional leak through the STOP 

cassette) and total Foxn1 levels (after STOP cassette excision) as well as the specificity of 

Foxn1Cre activity. Firstly, qRT-PCR analysis, using primers that specifically detect the 

Foxn1ER-IRES-GFP mRNA, showed that this transcript was expressed at significant levels 

in the thymus and skin at E15.5 in Foxn1Cre/+;CAG-Foxn1ER mice, in line with Foxn1 

expression in these tissues at this age (Figure 4.8c) (Gordon et al., 2007; Lee et al., 1999). 

That no expression of Foxn1ER-IRES-GFP was detected in a tissue where Foxn1 is not 

expressed (liver), demonstrated the specificity of the Cre activity (Figure 4.8c). Additionally, 

there was little, if any, Foxn1ER-IRES-GFP mRNA in Cre negative thymi where the STOP 

cassette remained in tact (Figure 4.8c). Lastly, the Foxn1 levels were quantified in postnatal 

TEC. The total Foxn1 mRNA expression level in 6 month old Foxn1Cre/+;CAG-Foxn1ER 

TECs was greater than 10-fold higher compared to Foxn1Cre/+ and Cre negative (CAG-

STOP-Foxn1ER) controls (Figure 4.8d). These data establish that Foxn1Cre efficiently 

induces Foxn1ER-IRES-GFP expression in TECs following Cre-mediated excision of the 

transcriptional STOP cassette in the CAG-STOP-Foxn1ER transgene.  

 

4.4.3 Foxn1ER is regulatable by Tamoxifen treatment in vivo 
While the above data confirm that Foxn1ER expression is effectively induced following 

Foxn1Cre-mediated excision of the STOP cassette, it cannot address the localization of the 

Foxn1ER protein (and thus the corresponding ability of Foxn1ER to perform its function). 

The ER component of Foxn1ER should maintain the protein in the cytoplasm in the absence 

of Tamoxifen, while the protein should translocate into the nucleus after Tamoxifen 

treatment. 

 

Foxn1 immunohistochemistry was initially used to investigate whether or not a change in 

localization of Foxn1ER could be detected following Tamoxifen treatment. Although this 

method cannot differentiate between endogenous Foxn1 and Foxn1ER, Foxn1 protein was 

clearly detected in the cytoplasm of E15.5 Foxn1Cre/+;CAG-Foxn1ER TECs in the absence of 

Tamoxifen (Figure 4.9a). In comparison, Foxn1 in the wildtype thymus was exclusively 

nuclear (Figure 4.9a). After Tamoxifen treatment (a single 1.5mg dose at E14.5) most Foxn1 

protein in Foxn1Cre/+;CAG-Foxn1ER TECs was nuclear, suggesting that the cytoplasmic 
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Foxn1ER had translocated into the nucleus (Figure 4.9a). A similar scenario was observed in 

the postnatal thymus. In Foxn1Cre/+;CAG-Foxn1ER mice that had not been treated with 

Tamoxifen, some Foxn1 protein was detected in the cytoplasm of TECs while following 

Tamoxifen treatment (a single 2mg dose and next day analysis) Foxn1 protein was 

predominantly nuclear (Figure 4.9b). An antibody against the ER region of Foxn1ER was 

also utilised in an attempt to track Foxn1ER translocation; however this method was not 

successful. Thus, by tracking total Foxn1 protein localization in the presence and absence of 

Tamoxifen, it appears that Foxn1ER is regulatable by Tamoxifen. 

 

Also, while this method could be used to compare Foxn1 levels in wildtype and 

Foxn1Cre/+;CAG-Foxn1ER TECs, it should be noted that Foxn1 immunohistochemistry was 

performed here using an amplification protocol, such any Foxn1-positive signal is saturated 

meaning that linear expression relationships between samples is probably lost.  

 

To definitively track Foxn1ER translocation following Tamoxifen treatment Western blot 

analysis of nuclear and cytoplasmic protein extracts from embryonic thymi was performed, 

as this permits distinction between the endogenous Foxn1 protein (~68kD) and the larger 

Foxn1ER protein (~95kD; ER is approximately 30kD). Foxn1ER was detected in the 

cytoplasm of Foxn1Cre/+;CAG-Foxn1ER TECs in the absence of Tamoxifen at a level that 

was markedly reduced following Tamoxifen treatment (Figure 4.9c) – indicating that the 

Foxn1ER protein is regulatable by Tamoxifen. Correspondingly, increased Tamoxifen 

dosage (0.5mg and 2.5mg) resulted in increased Foxn1ER in the nuclear fraction – indicating 

that Foxn1ER was regulated by Tamoxifen in a titratable manner (Figure 4.9c). In the 

absence of Tamoxifen, some Foxn1ER is detectable in the nucleus, indicating that there may 

be some background induction of Foxn1ER. However, this may also be as a result of 

contaminating cytoplasmic protein in the nuclear fraction. Thus, the data presented in Figure 

4.9 verify that Foxn1ER is regulatable by Tamoxifen in vivo. 
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Figure 4.9 Foxn1ER is regulatable by Tamoxifen in vivo.  
(a) Foxn1 localization was analysed in E15.5 wildtype and Foxn1Cre/+;CAG-Foxn1ER thymic 
lobes in the presence and absence of Tamoxifen by immunohistochemistry. Pregnant female 
mice were treated with 1.5mg Tamoxifen or carrier only at E14.5 and the embryos were 
analysed at E15.5. In wildtype mice, Foxn1 expression was exclusively nuclear, however in 
Foxn1Cre/+; CAG-Foxn1ER thymi (-Tamoxifen), Foxn1 is detectable in the cytoplasm, which 
probably represents Foxn1ER expression. After Tamoxifen treatment, Foxn1 expression is 
primarily nuclear, indicating that Foxn1ER is Tamoxifen responsive. (b) A similar scenario 
was observed in the postnatal thymus following a single 2mg dose of Tamoxifen and Foxn1 
immunohistochemical analysis the following day. Scale bars represent 50µm. (c) To 
distinguish between endogenous Foxn1 and Foxn1ER  Western blot analyses with α-Foxn1 
(G-20) was performed on cytoplasmic and nuclear protein fractions from E14.5 thymi lobes 
after various single dose Tamoxifen treatments at E13.5. 6mg or 3mg of protein were loaded 
for cytoplasmic or nuclear fractions, respectively. Foxn1ER shows a dosage dependent 
response to Tamoxifen (n=2). 
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4.5 Concluding remarks 
This chapter details the generation of a transgenic mouse model that permits tissue specific, 

regulatable expression of Foxn1. By crossing these R26-CAG-STOP-Foxn1ER mice with 

Foxn1Cre mice, it was shown that Foxn1ER expression is efficiently induced in the thymic 

epithelium. Further, Foxn1ER functionality is regulatable by Tamoxifen which results in 

nuclear translocation of the fusion protein. Collectively, these data describe the generation 

and preliminary validation of the Foxn1Cre/+;CAG-Foxn1ER mouse line, which allows the 

effects of regulated Foxn1 expression in TECs to be investigated.  
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Chapter 5: Maintained expression of Foxn1 prevents thymus 
involution 
 
 
5.1 Introduction 
Thymus involution is characterised by a series of stereotypical morphological and cellular 

changes. After a postnatal period of thymus expansion and homeostasis (until approximately 

3-4 months), the thymus begins to decrease in size and exhibit early signs of involution, 

including disorganisation of the cortico-medullary junction (CMJ) and a reduction in MHC 

Class II and UEA1 expression (Gray et al., 2006; Manley et al., 2010). These changes 

correlate with a decrease in Foxn1 expression: in 6 and 12 month old thymi, there are a 

higher proportion of Foxn1lo and Foxn1int TECs than in 3 month thymi (Figure 3.3). 

Additionally, premature down-regulation or loss of Foxn1 expression in the postnatal thymus 

results in an early involution and decrease in thymic output (Chen et al., 2009; Cheng et al., 

2010; Corbeaux et al., 2010; Sun et al., 2010). Collectively, these observations suggest that 

down-regulation of Foxn1 may play a role, primary or otherwise, in the involution of the 

thymus. 

 

To probe this notion, I used the R26-CAG-STOP-Foxn1ER mouse model to over-express 

Foxn1 at the onset of involution (3-4 months postnatally) for a prolonged period of time (3 

months) and investigated whether this delayed or prevented thymus involution. Therefore, 

while Foxn1 expression naturally decreases with age, this model allowed Foxn1 expression 

to be maintained at higher levels relative to wildtype from the onset of involution. R26-

CAG-STOP-Foxn1ER mice were crossed with Foxn1Cre mice, such that Foxn1ER was 

expressed only in TECs and some keratinocytes; then, 3-4 month old CAG-

Foxn1ER;Foxn1Cre mice were treated with Tamoxifen to induce Foxn1ER activity. The 

thymi from these mice and littermate controls were compared and analysed with regard to 

conventional involution hallmarks, including T cell number and composition and TEC 

phenotypes. Thus, in this Chapter I test the hypothesis that maintained expression of Foxn1 

from the onset of involution is able to delay or prevent thymic involution. 
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5.2. Experimental strategy and preliminary validation 
5.2.1 Experimental mice 
R26CAG-Foxn1ER/+;Foxn1Cre/+ mice treated with Tamoxifen (called CAG-Foxn1ER +Tam 

hereafter) were the experimental mice. CAG-Foxn1ER +Tam mice were 3-4 months old 

mice that were treated with Tamoxifen for 3 months and then analysed. 

 

5.2.2 Control mice 
Three control conditions were analysed as described below: 

R26+/+;Foxn1Cre/+ mice treated with carrier only (called Cre control –Tam hereafter). 

Cre control –Tam mice were 3-4 months old mice that were treated with carrier only for 3 

months and then analysed; these mice established the normal characteristics of thymus 

involution in my hands. Additionally, 3-4 month old Cre control –Tam mice were also 

analysed, where available, as the t=0 control. 

R26+/+;Foxn1Cre/+ mice treated with Tamoxifen (called Cre control +Tam hereafter) 

Cre control +Tam mice were 3-4 months old mice that were treated with Tamoxifen for 3 

months and then analysed; these mice established the effects of Tamoxifen on thymus 

involution. 

R26CAG-Foxn1ER/+;Foxn1Cre/+ mice treated with carrier only (called CAG-Foxn1ER –Tam 

hereafter). CAG-Foxn1ER –Tam mice were 3-4 months old mice that were treated with 

Tamoxifen for 3 months and then analysed; these mice were used to determine if the 

background induction of Foxn1ER in the absence of Tamoxifen was significant. 

 

5.2.3 Foxn1 mRNA levels in experimental and control mice 
To confirm that Foxn1 was over-expressed in CAG-Foxn1ER TECs compared to Cre control 

TECs, total Foxn1 mRNA levels (endogenous and transgenic) were quantified by qRT-PCR. 

Relative to 3-4 month Cre control mice –Tam mice, 6-7 month old Cre control +/-Tam mice 

expressed approximately half of the level of Foxn1 mRNA in their thymi, while, CAG-

Foxn1ER +/-Tam 6-7 month expressed greater than 6-fold more Foxn1 mRNA (Figure 5.1a). 

This establishes that CAG-Foxn1ER thymi significantly over-express Foxn1, relative to t=0 

and age-matched Cre control thymi. The specificity and efficiency of Cre-mediated deletion 

of the STOP cassette in the CAG-STOP-Foxn1ER transgene is described in Figure 4.8. 

 
5.2.4 Hair phenotype 
A hair pigment phenotype was consistently observed in 6-7 month old CAG-Foxn1ER mice 

that had been treated with Tamoxifen for 3 months. The ventral hair pigment of black-haired, 
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3-4 month old CAG-Foxn1ER mice changed to a light brown colour following 3 months of 

Tamoxifen administration (Figure 5.1b). No hair pigment changes were observed in Cre 

control +/-Tam and CAG-Foxn1ER –Tam mice. 

 

This phenotype is particularly interesting as ectopic expression of Foxn1 in the mouse skin 

epidermis induced pigmentation through the recruitment of melanocytes (Weiner et al., 

2007). Additionally, Foxn1 is normally expressed in the precursor cells of the hair cortex, 

which are the target cells of melanocytes in the hair follicle, with Foxn1 null mice exhibiting 

a lack of pigmentation in their hair cortex regions (Lee et al., 1999; Weiner et al., 2007). 

Thus, the macroscopic phenotype observed here is consistent with a proposed role for Foxn1 

in hair pigmentation, and provides a preliminary indication that the experimental approach 

adopted here is valid.     

 

 
Figure 5.1 Preliminary validation of the experimental system. 
(a) Foxn1 mRNA expression levels were quantified by qRT-PCR in thymocyte-depleted bulk 
thymic digests from Cre control and CAG-Foxn1ER mice. Foxn1 was normalised to EVA 
(n=4). (b) CAG-Foxn1ER mice treated with Tamoxifen for 3 months showed changes in their 
hair pigment compared to Cre control mice. 
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5.3 Results 
5.3.1 Thymus size 
As an overt test of the effect of Foxn1 up-regulation during thymus involution, I first 

analysed thymus size. Thymi from 3-4 month old Cre control –Tam mice at the onset of 

thymus involution were overtly larger than thymi from 6-7 month old Cre control –Tam 

mice, indicating the overt effect of involution on thymus size (Figure 5.2a). Cre control 

thymi from 6-7 month old mice with and without Tamoxifen treatment were comparable in 

size, suggesting that Tamoxifen does not effect thymus involution, at least overtly (Figure 

5.2a). Similarly, thymi from 6-7 month old CAG-Foxn1ER mice that had no Tamoxifen 

treatment were comparable in size to age-matched Cre control –Tam thymi, indicating that 

there was minimal background induction of Foxn1ER in the absence of Tamoxifen (Figure 

5.2a).  

 

Thymi from mice that over-expressed Foxn1 from 3-4 months of age for 3 months showed 

distinct overt differences, compared to control thymi. Thymi from CAG-Foxn1ER +Tam 

mice were overtly larger than all age-matched control conditions (Figure 5.2a). Furthermore, 

6-7 month old CAG-Foxn1ER +Tam thymi were comparable size in size to 3-4 month old 

Cre control thymi at the onset of involution (Figure 5.2a). These data establish, at least 

overtly, that over-expression of Foxn1 from the onset of involution is able to maintain 

thymus size. 

 

To correct for the general effect of mouse size/weight on the above data, thymi weights were 

determined relative to mouse body weight. Here, female and male mice are analysed 

separately due the greater weight of male mice. The average thymus to body weight ratio for 

6-7 month old mice across all control conditions (Cre control +/-Tam and Foxn1ER –Tam) 

were comparable within male and female datasets (Figure 5.2b). In 6-7 month old male 

Foxn1 over-expressing mice (CAG-Foxn1ER +Tam) the average thymus to body weight 

ratio was significantly higher than male littermate control mice (Cre control +/-Tam and 

CAG-Foxn1ER –Tam) (n=3, p≤0.05) and was not significantly different from 3-4 month Cre 

control mice (n=3, p=0.46) (Figure 5.2b). Similarly, 6-7 month old female CAG-Foxn1ER 

+Tam mice had significantly higher thymus to body weight ratios compared to the control 

mice (n=5, p<0.03) and were not significantly different from 3-4 month female Cre control 

mice (n=3, p=0.063). Thus, maintained over-expression of Foxn1, at the onset of involution, 

when its expression would normally begin to decrease, results in a thymus size and thymus/ 
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Figure 5.2 Maintained expression of Foxn1 prevents thymus involution. 
(a) When Foxn1 expression was maintained in TECs from the onset of involution for 3 
months (7 month CAG-Foxn1ER +Tam) the thymus was overtly larger than littermate control 
thymi (7 month CAG-Foxn1ER –Tam, Cre control +/-Tam) and comparable in size to a 
thymus at the onset of involution (4 month Cre control). Image shows single thymus lobes 
from male mice and is representative of 3 independent experiments. (b) The thymus (mg) to 
body weight (g) ratio for 6-7 mth CAG-Foxn1ER +Tam mice is higher than all age-matched 
controls. Each data point represents a single mouse. (c) CAG-Foxn1ER +Tam thymi 
contained significantly more CD45+ cells than age-matched controls (n=9, p<0.001) but not 
3-4 mth Cre control thymi (n=3, p=0.11). (▲) Male mouse, (▲) female mouse, (−) average 
for each data set. 
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body weight ratio that is comparable to the t=0 thymus (i.e. at 3-4 months) and larger than 

control littermate thymi.   

 
5.3.2 T cells numbers and composition 
The fundamental function of the thymus is the generation of the of pool naïve T cells that 

emigrate from the organ and perform critical immune functions. Consequently, the most 

important feature that defines thymic involution is the reduction in thymic activity and 

output as determined by number and composition of developing and mature T cells. The 

number of intrathymic CD45+ cells, which accounts for all the hematopoietic cells in the 

thymus (of which, T cells constitute the majority) can be used as a general read-out of 

thymic activity (Chen et al., 2009; Gray et al., 2006).  

 

Thymi from 6-7 month old Cre control –Tam, Cre control +Tam and CAG-Foxn1ER –Tam 

mice contained a comparable number of total intrathymic CD45+ hematopoietic cells 

(8.8×107±3.6×106, 8.0×107±5.2×106 and 8.1×107±5.8×106 cells, respectively) (Figure 5.2c). 

In contrast, thymi from 6-7 month old CAG-Foxn1ER +Tam mice contained, on average, 

significantly more CD45+ cells than all control conditions (1.13×108±4.0×106 cells, n=9, 

p<0.001) (Figure 5.2c). Moreover, the number of CD45+ cells in 6-7 month old Tamoxifen 

treated mice were not significantly different from 3-4 month old Cre control thymi 

(1.27×108±7.2×106 cells, n=3, p=0.11) (Figure 5.2c). The hematopoietic cellularity of 3-4 

month old thymi presented here are in line with data reported in the literature of 

approximately 1.2×108 cells in 3 month old thymi (Gray et al., 2006). This indicates that 

maintenance of Foxn1 expression is sufficient to prevent the reduction in total intrathymic 

hematopoietic cells associated with normal involution.  

 

Next, different T cell sub-populations were analysed in more detail. Firstly, the major T cell 

development stages corresponding to CD4 and CD8 expression profiles were examined. 

There was no reproducible difference detected in the proportions of the four CD4/CD8 

populations (CD4 and CD8 double negative (DN), double positive (DP) and the two more 

mature populations of CD4 and CD8 single positive cells (SP)) across all control and 

experimental conditions (Figure 5.3a). However, differences in the absolute numbers of 

these T cells populations were observed.  

 

Firstly, all 6-7 month old control thymi contained a comparable number of CD4+8+ DP cells 

(Cre control –Tam, 7.38×107±4.0×106; Cre control +Tam, 6.56×107±3.0×106; CAG-
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Foxn1ER –Tam 7.12×107±6.0×106) (Figure 5.3b). Compared to these controls, CAG-

Foxn1ER +Tam thymi contained over 20% and significantly more DP T cells 

(9.13×107±4.0×106, n=6, p<0.02) (Figure 5.3b). Furthermore, the number of DP T cells in 6-

7 month old CAG-Foxn1ER +Tam thymi was not significantly different from 3-4 month Cre 

control –Tam thymi (10.5×107±4.0×106, n=2, p=0.12) (Figure 5.3b). Similarly, 6-7 month 

old control thymi contained comparable numbers of CD4+ SP cells (Cre control –Tam, 

5.79×106±6.0×105; Cre control +Tam, 5.26×106±7.0×105; CAG-Foxn1ER –Tam 

5.16×106±8.2×105); while 6-7 month old CAG-Foxn1ER +Tam thymi contained over 30% 

and significantly more CD4+ SP cells than control thymi (8.0×106±7.9×105, n=6, p≤0.05) and 

comparable CD4+ SP cell numbers to 3-4 month Cre control thymi (7.6×106±1.0×106, n=2, 

p=0.80) (Figure 5.3c). 

 

The differences in CD8+ SP cell numbers were less substantial between 6-7 month old 

control and CAG-Foxn1ER +Tam thymi. Again, CD8+ SP cell numbers were comparable 

between 6-7 month old control thymi (Cre control –Tam, 1.91×106±1.6×105; Cre control 

+Tam, 1.7×106±1.5×105; CAG-Foxn1ER –Tam 1.93×106±2.0×105), and while CAG-

Foxn1ER +Tam thymi contained more CD8+ SP cells, the difference between the controls 

was only approaching significance (2.51×106±2.1×105 cells, n=6, p<0.075) (Figure 5.3c). 

The number of CD8+ cells was not significantly different between 6-7 month old CAG-

Foxn1ER +Tam thymi and 3-4 month Cre control thymi (3.18×106±6.0×105 cells for the 

latter condition, n=2, p=0.21) (Figure 5.3c). The higher relative number of CD4+ SP cells 

compared to CD8+ SP cells in experimental versus control thymi may reflect the increased 

expression of MHC Class II which is required for selection of CD4+ SP cells (discussed later 

in Section 5.3.3).  

 

Lastly, thymi from 6-7 month old CAG-Foxn1ER +Tam mice contained more CD4-CD8- 

DN cells compared to age matched controls  (Cre control –Tam, 4.38×106±9.9×105; Cre 

control +Tam, 4.5×106±1.0×106; CAG-Foxn1ER –Tam 4.88×106±9.0×105; CAG-Foxn1ER 

+Tam, 7.14×106±2.6×105; n=6; p<0.04) (Figure 5.3c). Moreover, DN cell numbers were not 

significantly different between 6-7 month CAG-Foxn1ER +Tam and 3-4 month Cre control 

thymi (8.2×106±4.5×105 cells for the later condition; n=2; p=0.09) (Figure 5.3c). These data 

establish that Foxn1 expression prevents the reduction in size of specific T cell populations 

associated with age-related thymus involution. 
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Figure 5.3 Major T cell subset proportions and numbers following over-expression of 
Foxn1 in aging thymi. 
T cell subsets (CD4+CD8+ double positive (DP), CD4+ or CD8+ single positive (SP) and CD4-

CD8- double negative (DN)) were examined by flow cytometry in experimental and control 
mice. (a) Flow cytometric analysis of CD45+ gated thymocytes with α-CD4 and α-CD8, 
revealed no difference in the proportions of the populations across all mice. (b) However, 
CAG-Foxn1ER +Tam thymi contained more T cells for each population by absolute number, 
compared to age-matched controls. CD4+CD8+ DP, CD4+ SP and CD4-CD8- DN cell 
numbers were significantly higher than in controls (p<0.02, p≤0.05, p<0.04 respectively, n=6) 
while CD8+ SP cell numbers, although higher for CAG-Foxn1ER +Tam, were not significantly 
different (p<0.075, n=6). Additionally, 6-7 month CAG-Foxn1ER +Tam cell numbers were not 
significantly different from 3-4 Cre control thymi (p>0.09, n=2) for any population.  
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In light of the higher CD4-CD8- DN cell numbers in 6-7 month old CAG-Foxn1ER +Tam 

thymi compared to controls, the triple negative (TN, CD3-CD4-CD8-) immature intrathymic 

precursor cell population was analysed. Firstly, the distribution of the TN cell subsets was 

analysed in experimental and control mice. The proportion of TN1 cells was higher in 6-7 

month old Cre control +Tam thymi compared to all other conditions (27%±7.8%, n=4) 

(Figure 5.4a,b). This appeared to be an effect of Tamoxifen as both Cre control and CAG-

Foxn1ER –Tam controls had lower and comparable TN1 proportions (20%±3.1% and 

23%±6.6% respectively), although these differences were not significant. In CAG-Foxn1ER 

+Tam thymi the TN1 proportion was 21%±4.3%, suggesting that if there was a Tamoxifen-

induced block in TN1 to TN2 transition (resulting in the higher TN1 proportion) then Foxn1 

over-expression overcomes this. Interestingly, a potential Foxn1 target, Delta-like 4 (Dll4) 

(Bajoghli et al., 2009; Nowell et al., under review) is a crucial mediator of the TN1 to TN2 

transition, where it regulates T cell commitment (Koch et al., 2008). Thus, it is tempting to 

speculate that the apparent effect of Tamoxifen on the TN1 to TN2 transition (whether an 

effect on Dll4, or otherwise), was corrected by the Foxn1-dependent up-regulation of Dll4.  

 

The proportions of the TN2 and TN3 populations did not show any differences, although –

Tam and +Tam conditions were more closely correlated, possibly indicating a mild 

suppressive effect of Tamoxifen on these populations (Figure 5.4b). However, CAG-

Foxn1ER +Tam thymi contained a higher proportion of TN4 precursors (36%±5.4%) 

compared to all control thymi (although these differences were not significant) (Figure 5.4b). 

This suggests that mediation of the TN3 to TN4 checkpoint, which is also dependent on 

Notch, is impaired when Foxn1 is expressed at low levels (Nowell et al., under review; 

Wolfer et al., 2002)  

 

Next, the absolute TN cell numbers were investigated. 6-7 month old CAG-Foxn1ER +Tam 

thymi contained significantly more total TN cells than all the control thymi (Cre control –

Tam, 2.84×106±2.0×105; Cre control +Tam, 2.27×106±1.7×105; CAG-Foxn1ER –Tam 

2.37×106±5.0×105; CAG-Foxn1ER +Tam, 4.26×106±5.5×105; n=4; p<0.05) and a 

comparable number to 4 month old Cre control (4.57×106, n=1) (Figure 5.4c). The higher 

number of total TN cells translated into more cells in all four TN sub-populations for the 

CAG-Foxn1ER +Tam thymi compared to all controls, however these differences were not 

significant  for any of the four TN sub-populations (n=4, p>0.09) (Figure 5.4d). Thus, 

maintained Foxn1 expression for three months from the onset of involution results in a TN 
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Figure 5.4 Triple negative (TN) cell proportions and numbers following over-
expression of Foxn1 in aging thymi. 
(a) Flow cytometric analysis of TN cells (CD45+lin- (lineage = CD3, CD4, CD8, CD11b, 
CD11c, CD19, NK1.1, Gr-1)) from 6-7 month thymi stained with α-CD25 and α-CD44. (b) 
The average TN sub-population proportions per thymus were determined for all experimental 
conditions (n=4). (c) The average total TN cell number per thymus was significantly higher in 
6-7 month CAG-Foxn1ER +Tam thymi compared to controls (n=4, p<0.05) and was 
comparable to 3-4 month Cre control thymi (n=1). (d) The average number of cells in each 
TN subset was higher in CAG-Foxn1ER +Tam thymi compared to controls thymi (n=4, 
p>0.09). 
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population size that is maintained at the size of to 3-4 month old thymi, and is significantly 

larger than littermate controls. A note should be made here that within the time frame of this 

thesis the data presented for the TN population in the 3-4 month Cre control are only 

minimal and need to be expanded in the future. 

 
5.3.3 TEC numbers and phenotype 
The outcome of the prevention of involution by over-expression of Foxn1, as described 

above in relation to T cell numbers and composition, most likely stems from the action of 

Foxn1 in the thymic epithelium. To investigate this further, TEC numbers and phenotype 

were analysed.  

 

Firstly, total TEC numbers per thymus were determined; TECs were defined as CD45–

EpCAM+, as previously described in Chapter 1 (Farr et al., 1991) (Figure 5.5a). 6-7 month 

old CAG-Foxn1ER +Tam thymi contained over 1.5-fold and significantly more TECs per 

thymus compared to all age-matched control thymi (CAG-Foxn1ER +Tam, 

1.24×105±1.3×104; Cre control –Tam, 7.0×104±6.9×103; Cre control +Tam, 

7.7×104±8.9×103; CAG-Foxn1ER –Tam, 6.8×104±1.2×104; n=4; p<0.025) (Figure 5.5b). 

Furthermore, the number of TECs in 6-7month old CAG-Foxn1ER +Tam thymi was 

comparable to 3-4 month old Cre control thymi (1.41×105±2.4×104, n=4, p=0.55) (Figure 

5.5b). Thus, Foxn1 over-expression during the early stages of involution was sufficient to 

maintain the size of the TEC compartment, which normally decreases as involution 

progresses.  

 

Next, the phenotypic characteristics of the TECs in the experimental and control mice were 

investigated. This analysis was performed using two TEC markers, MHC Class II, a 

functional marker of mature TECs and UEA1, expressed on a subset of mature mTECs. Both 

markers have been shown to decrease in expression during normal involution and when 

Foxn1 expression was perturbed postnatally (Chen et al., 2009; Gray et al., 2006; Sun et al., 

2010).  
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Figure 5.5 Total TEC numbers are greater when Foxn1 expression is maintained 
during thymus involution. 
(a) Flow cytometric analysis of 6-7 and 3-4 month old thymi. Total TECs were identified 
using α-EpCAM after gating on CD45-Ter119- cells without thymocyte depletion. (b) 6-7 
month CAG-Foxn1ER +Tam thymi contained significantly more TECs compared to all 
controls (p<0.025, n=4); 6-7 month CAG-Foxn1ER +Tam TEC numbers were comparable to 
TECs numbers in 3-4 month Cre control thymi (p=0.55, n=4). 
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The MHC Class IIhi proportion of total TECs in CAG-Foxn1ER +Tam thymi was higher 

than in all controls (Figure 5.6a); a direct comparison of the MHC Class II profiles of total 

TECs from CAG-Foxn1ER +Tam and Cre control +Tam thymi distinctly illustrates this 

difference (Figure 5.6b). On average, the MHC Class IIhi proportion of total TECs was 

approximately 10% higher in CAG-Foxn1ER +Tam compared to all controls (39.5%±4.3% 

versus 28.0%±1.4% respectively, n=3) (Figure 5.6c). Additionally, the proportion of MHC 

Class IIhi TECs in CAG-Foxn1ER +Tam was comparable to 3-4 month old Cre control TECs 

(38.0%±1.7%) (Figure 5.6c). The higher proportion of MHC Class IIhi TECs in CAG-

Foxn1ER +Tam thymi compared to age-matched controls might explain the increased 

number of CD4+ SP T cells described earlier (Figure 5.3), as MHC Class II plays a critical 

role in CD4+ cell development. 

 

Next, UEA1 expression in TECs was investigated. Within the UEA1+ mTEC population, 

there are two sub-populations, UEA1hi and UEA1lo. The proportion of the UEA1hi sub-

population decreases with age (the proportion at 1 year is less than half that at 1 month) and 

when Foxn1 expression is down-regulated (Chen et al., 2009). In 6-7 month old CAG-

Foxn1ER +Tam mice, the proportion of UEA1hi TECs within the UEA1+  population was 

1.4-fold greater for CAG-Foxn1ER +Tam thymi compared to all controls (45%±1.3% versus 

32%±1.5 respectively, n=2) (Figure 5.6d,e). Additionally, there was higher proportion of 

UEA1hiMHC Class IIhi TECs within the UEA1+ population for CAG-Foxn1ER +Tam 

compared to all controls (29.2%±0.5% and 22.9%±0.3% respectively, n=2) (Figure 5.6d,e). 

Unfortunately, due to limited available mice, 3-4 month old Cre control data were not 

obtained for UEA1 flow cytometric analyses.  

 

Because it was established that CAG-Foxn1ER +Tam thymi contained significantly more 

TECs than all controls (Figure 5.5b), it can be inferred from the MHC Class IIhi and UEA1hi 

proportion data presented above, that CAG-Foxn1ER thymi also contain more of these TEC 

sub-populations by absolute number. Thus, while normal involution results in a decrease in 

the proportions and number of MHC Class IIhi and UEA1hi TEC sub-populations, maintained 

expression of Foxn1 prevents these changes from occurring.  
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Figure 5.6 Effect of maintained Foxn1 expression on TEC phenotype. 
(a) Flow cytometric analysis, without thymocyte depletion, was performed on 6-7 month old 
thymi where total TECs were analysed using EpCAM and MHC Class II, after gating on 
CD45- cells. (b) Histogram representation of contour plot data, shows MHC Class II profile of 
EpCAM+ TECs from CAG-Foxn1ER +Tam (red line) and Cre control +Tam thymi (blue line). 
(c) 6-7 month old CAG-Foxn1ER +Tam thymi contained more MHC Class IIhi TECs 
compared to age-matched controls. This proportion was similar to 3-4 month Cre control 
thymi (n=3). (d) UEA1 versus MHC Class II flow cytometric analysis of EpCAM+UEA1+ TECs 
from 6-7 month old thymi. Plots are representative of 2 experiments. (e) Proportion and 
composition of the UEA1hi sub-population within the UEA1+ TEC population (n=2). 
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5.3.4 TEC gene expression and proliferation 
To further investigate the characteristics of the TECs in CAG-Foxn1ER +Tam versus control 

mice, the expression levels of a suite of genes with defined roles in thymus development 

and/or function were determined. Various TEC genes, including Pax1, Pax9, Dll4, CCL25, 

and FgfR2IIIb exhibit expression levels that are responsive to different levels of Foxn1, as 

shown in a Foxn1 allelic series (Nowell et al., under review). Total EpCAM+ TECs were 

isolated from CAG-Foxn1ER +Tam thymi and control thymi (as described in Chapter 1) and 

assayed for gene expression levels by qRT-PCR. Here, Cre control +/-Tam and CAG-

Foxn1ER -Tam TECs were pooled in the control experiment due to limited mouse numbers 

and on the basis of the comparable data obtained for each condition, as presented above.  

 

First, I determined whether ectopic Foxn1 expression affected expression levels of 

endogenous Foxn1. This was achieved using a qRT-PCR assay for the 3ʹUTR of 
endogenous Foxn1, a region which is not present in the transgenic Foxn1ER mRNA. The 

endogenous Foxn1 level in 6-7 month control TECs was approximately one third of that in 2 

month old WT TEC (Figure 5.7a). In contrast, in 6-7 month old CAG-Foxn1ER +Tam 

TECs, the endogenous Foxn1 level was more than two-fold higher than in control TECs and 

at about 70% of the level in 2 month TECs (Figure 5.7a). This suggests that Foxn1 may 

function in an autoregulatory manner, either directly or indirectly, as Foxn1ER activity 

resulted in an increase in endogenous Foxn1 mRNA levels. 

 

Next, a number of Foxn1 dependent TEC genes were analysed. Pax1, which is expressed in 

a subset of cTECs in the postnatal thymus (Wallin et al., 1996) was detected at a higher level 

in CAG-Foxn1ER +Tam TECs compared to control TECs (over 1.5-fold more) (Figure 

5.7a). Surprisingly, the Pax1 mRNA levels in both 6-7 month samples were higher than in 2 

month WT TECs. Very little is known about the postnatal regulation of Pax1, making an 

explanation difficult; one possibility may be a relative increase in the Pax1-positive cTEC 

subpopulation with age.  
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Figure 5.7 Gene expression and proliferation profile in TECs that over-express Foxn1 
during involution. 
(a) TEC gene levels were quantified by qRT-PCR for total TECs (EpCAM+). TECs were flow 
cytometrically isolated from three pooled thymi for 2 month WT, 6-7 month CAG-Foxn1ER 
+Tam and 6-7 month control samples (one mouse from each condition: Cre control+/- tam 
and CAG-Foxn1ER –Tam were pooled together for the control sample). Endogenous 
(Endog.) Foxn1, Pax1, Pax9, Delta-like 4 (Dll4), CCL25 and FgfR2IIIb genes were 
normalised to α-tubulin. Data represent 6 technical repeats. (b) Proliferation analysis of 
TECs using BrdU. After 3 months of Tamoxifen treatment, 7 month old Cre control and CAG-
Foxn1ER were treated with BrdU for 3 days. Two mice per condition were pooled and TECs 
(EpCAM+) were analysed by flow cytometry for BrdU incorporation.  
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The Pax9 and Dll4 mRNA levels in 6-7 month control TECs were approximately half of that 

in 2 month WT TECs, however over-expression of Foxn1 resulted in an increase in the 

mRNA levels for both genes, to levels comparable to 2 month WT (Figure 5.7a). CCL25 

mRNA was expressed at comparable levels across all samples (Figure 5.7a). CCL25 null 

thymi are smaller than WT thymi and CCL25 expression is dosage responsive to Foxn1 in 

embryos (Liu et al., 2006; Nowell et al., under review). However, in the adult thymus, where 

CCL25 plays a role in the proper recruitment of haematopoietic progenitors, its absence does 

not affect thymus size or output and its expression does not decrease with age (Gui et al., 

2007; Zlotoff et al., 2010). It therefore appears that either, CCL25 is not required in a Foxn1-

dosage dependent manner to maintain thymic output, at least in 6-7 month old thymi, or that 

the CCL25-producing TEC population is not affected during the early involution process.  

 

Next, the levels of the TEC-expressed fibroblast growth factor receptor, FgfR2IIIb, were 

analysed. Thymi from transgenic mice that express a dominant negative form of FgfR2IIIb 

in their TE display the hallmarks of thymus involution, including reduced total cellularity, 

disorganised epithelial architecture and reduction in UEA1 expression (Dooley et al., 2007). 

FgfR2IIIb expression in total TECs decreased by a quarter in 6-7 month old control TECs 

compared to 2 month old WT TECs. Following maintained over-expression of Foxn1, 6-7 

month old TECs expressed FgfR2IIIb at over 1.5-fold and 2-fold higher levels compared to 2 

month WT and 6-7 month control TECs respectively.  

 

Collectively, these gene expression level data demonstrate that over-expression of Foxn1 in 

6-7 month old TEC results in a “younger” gene expression profile which may explain the 

increase in functional TEC phenotype (MHC Class IIhi) and resultant increase in thymic 

output.  

 

Lastly, the cellular mechanism through which Foxn1 exerts its function in this instance was 

investigated. In the Foxn1LacZ/LacZ thymus, where involution occurs prematurely, proliferation 

was significantly decreased in thymic stromal cells compared to the WT thymus (Chen et al., 

2009). Thus, TEC proliferation was investigated here by BrdU analysis. Seven month old 

Cre control and CAG-Foxn1ER mice that had been treated with Tamoxifen for 3 months 

were treated with BrdU for 3 days and analysed. A higher proportion of total TECs from 

CAG-Foxn1ER thymi incorporated BrdU in this time frame compared to Cre control thymi 

(17.6% versus 12.4% respectively) (Figure 5.7b). Comparatively, approximately 20% of 4 

week old Cre control TECs are proliferating (Chen et al., 2009; Gray et al., 2006). This 
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suggests that Foxn1 over-expression may promote or maintain proliferation of TECs that 

would, in contrast, normally decrease with involution. This offers an explanation for the 

higher number of TECs and thymic output observed in these thymi. This analysis is currently 

brief and cannot exclude other factors such as apoptosis or preferential changes in 

proliferation in TEC sub-populations, playing a role and thus further analysis is required. 

 

5.4 Discussion 
The data presented in this Chapter establish that thymic involution can be prevented by 

forced maintenance of a single transcription factor, Foxn1. Thymi that maintained Foxn1 

expression in all TECs were overtly larger and contained significantly more T cells than age-

matched controls, and were comparable to thymi at the start of involution, on the basis of the 

parameters measured herein. 6-7 month old CAG-Foxn1ER +Tam thymi and 3-4 month old 

Cre control thymi contained a comparable number of T cells in the major populations, CD4+ 

SP, CD8+ SP and CD4+CD8+ DP. Additionally, there were more approximately 1.5-fold 

more total intrathymic precursor TN cells in 6-7 month old CAG-Foxn1ER +Tam thymi than 

in age-matched control thymi. The TN population normally decreases with involution – their 

total number at 9 months is less than half that at 2 months (Heng et al., 2005) – but 

maintained Foxn1 expression prevented this decrease from occurring.  

 

The higher number of total intrathymic TN cells in CAG-Foxn1ER +Tam mice, compared to 

all the aged-matched controls, resulted from a higher number of cells across all four TN 

populations. An increase in all four TN population cell numbers was also observed in a sex 

steroid ablation model of thymic regeneration (Heng et al., 2005). Importantly, however, 

further analysis is required with regard to the highly heterogenous TN1 population. For 

example, c-kit and Flt3 phenotyping will be used to further resolve the TN1 population and 

investigate whether an increase in ETP cell number is observed following up-regulation of 

Foxn1 expression (Allman et al., 2003; Godfrey et al., 1992) 

 

The maintained thymic output in 6-7 month old CAG-Foxn1ER +Tam mice compared to 

age-matched controls is most likely a result of the greater cellularity and functionality of 

TEC compartment. Over-expression of Foxn1 maintained the size of the TEC compartment 

at the level observed at the onset of involution, which was approximately 1.5-fold larger than 

6-7 month old controls. BrdU analysis demonstrated that there were more proliferating TECs 

in CAG-Foxn1ER +Tam thymi compared to age-matched controls, although the extent of 

TEC proliferation was not determined for the 3-4 month old thymus as a comparison. 
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Furthermore, forced Foxn1 expression maintained the levels of the key functional marker, 

MHC Class II. Additionally, these TECs expressed a number of genes known to regulate 

TEC development and function at higher levels than age-matched control TECs.  

 

How does the expression of a single transcription factor prevent thymus involution? It is 

known that Foxn1 expression decreases with age (see Chapter 3) and that premature 

reduction or loss of Foxn1 expression in the postnatal thymus results in premature involution 

(Chen et al., 2009; Cheng et al., 2010; Corbeaux et al., 2010; Sun et al., 2010). This suggests 

that Foxn1 may be a target, primary or otherwise, of thymic involution. Additionally, it is 

likely that the age-related decline in Foxn1 expression in the postnatal thymus results in the 

decrease in the size and functionality of the TEC compartment, which leads to a reduction in 

T cell development and thymic output. Evidence increasingly suggests that Foxn1 is the 

master regulator of the TEC programme; as described in a Foxn1 allelic series where Foxn1, 

almost universally, regulates TEC lineage progression and TEC gene expression during 

thymus organogenesis (Nowell et al., under review). Thus, Foxn1 is able to prevent thymus 

involution when its expression is maintained, due to its role in the maintenance of the 

postnatal thymic microenvironment and its role as the proposed master regulator of the 

normal TEC programme including modulation of TEC phenotype, function and proliferation. 

 

It is pertinent to make a note of the effect of ER at this point. It was shown that the Foxn1ER 

fusion protein was transcriptionally comparable to wildtype Foxn1 in vitro, and that Foxn1 

over-expression resulted in Foxn1 cell-type specific phenotypes in both the thymus and hair 

(described in this Chapter). However, this does not absolutely exclude the possibility that 

these phenotypes were caused by the effect of ER on Foxn1 function. To address this, I have 

generated a R26-CAG-STOP-Foxn1 transgenic mouse line, on which all analyses performed 

herein will be repeated in the future. 

 

Finally, the data presented show for the first time that thymus involution can be prevented by 

the maintenance of Foxn1 expression relative to wildtype at the onset of involution. While 

other reports show, using a number of approaches, that the aged thymus can be regenerated, 

this is one of the first reports to describe the prevention of thymus involution. 
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Chapter 6: Reversal of involution after up-regulation of Foxn1 
in the aged thymus 
 

 
6.1 Introduction 
The previous Chapter described the prevention of thymus involution through the 

maintenance of Foxn1 expression in the thymic epithelium from the onset of involution 

constitutes the one of the first report of this nature. In contrast, numerous approaches have 

been utilized to increase thymic output in compromised or aged thymi, or following HSCTs, 

in rats, mice and humans. These include IL-7, KGF and IGF-1 treatment protocols and 

ablation of sex steroid signalling, such as via chemical castration in mice or humans 

(Goldberg et al., 2007). In most instances, the increase in thymic output was accounted for 

by an increase in size and organisation of the TEC compartment. Thus, I utilised the CAG-

Foxn1ER mice to test the effect of up-regulation of Foxn1 expression on thymus 

regeneration and output, in aged mice.  

 
6.2 Experimental strategy 
6.2.1 Experimental mice 
All experiments in this Chapter were performed on male mice. Aged R26CAG-Foxn1ER/+; 

Foxn1Cre/+ (CAG-Foxn1ER) mice were treated with Tamoxifen to induce Foxn1 activity and 

then assayed for thymic output. In the first set of experiments, 12 month old mice were 

treated with Tamoxifen (+Tam) for two weeks by repeated IP injection every 2 days. This 

two week period was thought to be sufficient to assay for an effect of Foxn1 as it spanned 

the estimated turnover time for TECs of 10-14 days in the homeostatic thymus, and, as in 

thymic rebound experiments, thymus cellularity was restored from 2 weeks following 

castration (Gray et al., 2006; Sutherland et al., 2005). Additionally, because the TEC 

compartment and thymic function was restored upon castration of mice as old as 2 years old 

(Sutherland et al., 2005), a second set of experiments in older mice was performed. A limited 

number of 18 month old mice were available for analysis within the timeframe of this thesis. 

These mice were treated with a single dose of Tamoxifen by IP injection and then 

maintained on Tamoxifen in their drinking water for one month, as a more convenient means 

of drug administration. 
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6.2.2 Control mice 
Littermate control mice for the 12 month experiments were as described in Chapter 5. In 

brief, there were three control conditions: (1) Cre control mice (R26+/+;Foxn1Cre/+) treated 

with carrier only (-Tam), (2) Cre control mice treated with Tamoxifen (+Tam) and, (3) 

CAG-Foxn1ER mice treated with carrier only – these mice establish the effect of Foxn1ER 

induction/activity in the absence of Tamoxifen. For experiments in 18 month old mice, the 

only control condition that was analysed was ‘Cre control +Tam’ due to the limited number 

of mice at this age.  

 

Tamoxifen or carrier treatments for each age group were the same as described above for the 

experimental mice: repeat IP injections over two weeks, and a single IP injection followed 

by drinking water treatment, for 12 and 18 month old mice respectively.  

 
6.3 Results 
6.3.1 Thymus size 
As an overt test of the effect of Foxn1 up-regulation in aged mice, I first analysed thymus 

size. Thymi from 12 month old CAG-Foxn1ER +Tam mice, that had been treated with 

Tamoxifen for 2 weeks to induce Foxn1ER, were markedly larger than thymi from Cre 

control +Tam mice that were also treated with Tamoxifen (Figure 6.1a). Furthermore, CAG-

Foxn1ER thymi +Tam thymi were larger than CAG-Foxn1ER –Tam, indicating the specific, 

Tamoxifen-inducible effect of Foxn1ER, and also slightly larger than Cre control –Tam 

thymi (Figure 6.1a).  

 

Notably, the comparison between Cre control –Tam thymi and Cre control +Tam thymi 

showed an effect of Tamoxifen on overt thymus size in this experiment; 12 month old Cre 

control –Tam thymi were markedly larger than 12 month old Cre control +Tam thymi. The 

effect of Tamoxifen on overt thymus size indicates that the correct comparison to determine 

the effect of up-regulation of Foxn1 in aged thymi is between CAG-Foxn1ER and Cre 

control mice treated with Tamoxifen. 

 

The increase in thymus size, under comparable experimental conditions, was also observed 

in older mice. Thymi from 18 month old CAG-Foxn1ER +Tam mice that had been treated 

with Tamoxifen for one month, were also markedly overtly larger than Cre control +Tam 

thymi (Figure 6.1b). Thus, the up-regulation of a single transcription factor, Foxn1, in the  
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Figure 6.1 Thymus size and cellularity increase following up-regulation of Foxn1 in 
aged mice. 
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Figure 6.1 Thymus size and cellularity increase following up-regulation of Foxn1 in 
aged mice. 
(a, b) 12 or 18 month thymi that up-regulated Foxn1 (CAG-Foxn1ER +Tam) were overtly 
larger than littermate control thymi. Image shows single thymus lobes from 12 month old 
mice and both thymus lobes from 18 month old mice. Images are representative of four and 
three independent experiments, for 12 and 18 month old mice respectively. Scale bar 
represent 2.5mm (c) Total intrathymic CD45+ cells numbers for 12 month old control mice. 
Cre control -Tam thymi contained significantly more CD45+ cells compared to Cre control 
+Tam thymi (n=4). Cre control -Tam thymi also contained more CD45+ cells than CAG-
Foxn1ER –Tam, although these differences were not significant (n=2). (d) 12 month and (e) 
18 month old CAG-Foxn1ER +Tam thymi contained significantly more CD45+ cells compared 
to Cre control +Tam thymi (n=4 and n=3, respectively). (f) Comparison of CD45+ cellularity 
between 3-4 month old Cre control mice and 12 and 18 month old CAG-Foxn1ER +Tam 
thymic involution reversal mice. 
 

 

thymic epithelium of 12 and 18 month old thymi resulted in an increase in overt thymus size, 

possibly indicating a partial reversal of thymus involution. 

 

6.3.2 T cell numbers and composition 
To test whether the observed increase in total thymus size following Foxn1 up-regulation in 

aged thymi resulted from an increase in thymopoiesis, T cell numbers and composition were 

analysed.  

 

Firstly, analysis of total intrathymic CD45+ cell numbers revealed that 12 month old Cre 

control –Tam thymi contained approximately double the number of cells than Cre control 

+Tam thymi (1.77×107±1.5×106 and 8.7×106±2.1×106 respectively, n=4, p=0.013) (Figure 

6.1c). These data confirm the changes in overt thymus size observed above and show a 

suppressive effect of Tamoxifen on intrathymic hematopoietic cell number. The effect of 

Tamoxifen treatment on the wildtype thymus is poorly understood and is most likely the 

combined effect of a number of different modes of action, including anti-estrogenic, on 

different cell populations in the thymus. Thymic atrophy and a reduction in T cell number 

have been reported following Tamoxifen treatment (Luster et al., 1984; Uhmann et al., 

2007). Thus, the applicable comparison, to account for the effect of Tamoxifen, is between 

Cre control +Tam and CAG-Foxn1ER +Tam experimental conditions. 

 

Further analyses of the control mice showed that the number of CD45+ cells in 12 month old 

Cre control –Tam and CAG-Foxn1ER –Tam thymi was not significantly different 

(1.77×107±1.5×106 and 1.47×107±7.0×105, n=4 and n=2 respectively, p=0.26) (Figure 6.1c). 

These data show that there is no apparent effect of induction of Foxn1ER on intrathymic 

CD45+ cell number in the absence of Tamoxifen.  
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The comparison of the CD45+ cell number in thymi from 12 month old CAG-Foxn1ER 

+Tam and Cre control +Tam mice showed a greater than 2-fold increase following the up-

regulation of Foxn1 (2.1×107±2.3×106 and 8.7×106±2.1×106 respectively, n=4, p=0.008) 

(Figure 6.1d). Similarly, thymi from 18 month old mice that were treated with Tamoxifen for 

one month contained over 3-fold more CD45+ cells in CAG-Foxn1ER +Tam compared to 

Cre control +Tam conditions (1.47×107±1.4×106 and 4.3×106±7.5 ×105 respectively, n=3, 

p=0.003) (Figure 6.1e) These data establish that up-regulation of Foxn1 in aged thymi results 

in an increase in the number of thymocytes compared to the relevant controls. 

 

In these experiments, I have established that age-related thymic involution was partially 

reversed, as determined by a greater than 2-fold increase in the number of intrathymic 

hematopoietic cells in CAG-Foxn1ER +Tam compared to Cre control +Tam thymi. Previous 

studies have shown that thymic involution reversal or rebound varies depending on the 

approach utilised. For example, in castration models, the thymus cellularity in 2 year old 

mice was restored to 2 month old levels following castration, while in KGF treatment 

models, 18 month old mice treated with KGF for two weeks showed a more modest 3-fold 

increase in thymus cellularity (Alpdogan et al., 2006; Sutherland et al., 2005). The relative 

increase in thymus cellularity observed following up-regulation of Foxn1 was more in line 

with KGF treatment recovery levels, as thymus cellularity did not recover to the levels seen 

in 3-4 month old mice (Figure 6.1f). 

 
6.3.2.1 CD4/CD8 T cell analysis 
To test whether the observed increase in thymocyte number reflected a proportional increase 

in thymocyte subsets, I next analysed CD4/CD8 cell numbers and distribution. The 

proportions and numbers for the four CD4/CD8 T cell sub-populations (DN, DP and SP) 

were investigated in 12 month old mice that had been treated with Tamoxifen or carrier for 

two weeks. The CD4/CD8 subset distribution was comparable within the Tamoxifen 

treatment conditions but differed between +Tam and –Tam conditions (Figure 6.2a). There 

was a higher proportion of CD4-CD8- DN cells (approximately double), and corresponding 

small decreases in the three other populations, in both CAG-Foxn1ER and Cre control +Tam 

thymi compared to –Tam conditions.  
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Figure 6.2 Major T cell subset proportions and numbers following up-regulation of 
Foxn1 in aged thymi. 
Four major T cell subsets (CD4+CD8+ double positive (DP), CD4+ or CD8+ single positive 
(SP) and CD4-CD8- double negative (DN)) were examined in 12 and 18 month old thymi 
following up-regulation of Foxn1 expression compared to controls. (a, d) Flow cytometric 
analysis on CD45+ gated thymocytes with α-CD4 and α-CD8 for 12 and 18 month old thymi. 
(b, c) Absolute cell numbers for the four CD4/CD8 subsets for 12 month old mice (n=2).  
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The CD4/CD8 subset distributions in thymi from 18 month old CAG-Foxn1ER and Cre 

control +Tam mice were also investigated. Again, the proportions were comparable with a 

small increase in CD4+ SP proportion (approximately 3%) in CAG-Foxn1ER +Tam 

compared to Cre control +Tam (Figure 6.2d). Unfortunately, a limited number of aged mice 

meant that this experiment was only performed once, and thus needs to be repeated to verify 

these differences.  
 

Next, the absolute numbers of DN, DP and SP cells per thymus were determined in 12 

month old mice. Because Tamoxifen affected both the total number of CD45+ cells and the 

CD4/CD8 subset proportions, the comparison that is relevant here is between CAG-

Foxn1ER +Tam and Cre control +Tam thymi (Figure 6.2c); although the cell numbers for all 

control conditions are shown (Figure 6.2b).  

 

Firstly, CAG-Foxn1ER +Tam thymi contained double the number of CD4+CD8+ DP cells to 

that found in Cre control +Tam thymi (1.6×107±2.3×106 and 8.0×106±1.0×106 respectively, 

p=0.086, n=2) (Figure 6.2c). Also, CAG-Foxn1ER +Tam thymi contained more CD4+ SP 

and CD8+ SP cells than Cre control +Tam thymi, with over 3-fold more CD4+ SP cells 

(1.73×106±4.0×105 and 5.0×105±6.4×104 respectively, p=0.094, n=2) and over 2-fold more 

CD8+ SP cells (7.9×105±1.5×105 and 3.2×105±6.3×104 respectively, p=0.10, n=2) (Figure 

6.2c). Lastly, there were significantly more CD4-CD8- DN cells in CAG-Foxn1ER +Tam 

thymi compared to Cre control +Tam thymi (2.3×106±1.0×105 and 1.15×106±6.0×104 

respectively, p=0.01, n=2) (Figure 6.2c). Therefore, although the statistical analyses were 

restricted due to the limited number of aged mice available for biological repeats, these data 

show that up-regulation of Foxn1 in aged thymi resulted in an increase in the absolute 

number of all the major T cell subsets per thymus when Tamoxifen treated conditions were 

compared. 

 

6.3.2.2 Triple negative cell analysis 
To further investigate the observed increase in the DN T cell numbers, the immature triple 

negative (TN, CD3-CD4-CD8-) population was examined in 12 month old mice that had been 

treated with Tamoxifen or carrier for 2 weeks. Firstly, the proportions of the four TN 

populations were determined. For the control conditions, Cre control –Tam and CAG-

Foxn1ER –Tam showed comparable distributions across the four sub-populations (Figure 

6.3a,b). Again, an effect of Tamoxifen treatment was observed as Cre control +Tam thymi 

showed distinct differences compared to the other control thymi. There was a greater than 
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two-fold increase in the TN1 proportion and a markedly lower TN3 proportion in Cre control 

+Tam thymi compared to the other control thymi (Figure 6.3a,b). Up-regulation of Foxn1 in 

CAG-Foxn1ER +Tam thymi restored the aberrant TN1 and TN3 proportions observed 

following Tamoxifen treatment to near –Tam control levels (Figure 6.3a,b).  

 

Next, the absolute numbers of cells within the TN populations per thymus were determined. 

CAG-Foxn1ER +Tam thymi contained more total TN cells than control thymi, with over 

two-fold more cells in CAG-Foxn1ER +Tam thymi compared to Cre control +Tam thymi 

(2.02×106±4.0×105 and 8.1×105±3.0×105 respectively, p=0.073, n=3) (Figure 6.3c).  

 

Analyses of the cell numbers within each of the four TN cell subsets in control thymi 

showed an effect of Tamoxifen; Cre control +Tam thymi contained markedly more TN1 

cells and less TN2, TN3 and TN4 cells than Cre control –Tam thymi (Figure 6.3d).  

 

Cre control +Tam thymi contained a high number of TN1 cells and low number of TN2 cells 

compared to Cre control –Tam thymi. This corroborated the elevated proportion of TN1 cells 

observed above and was suggestive of a TN1-TN2 block (Figure 6.3d). This block was 

overcome following up-regulation of Foxn1 in CAG-Foxn1ER +Tam thymi; there was a 

reduction in the TN1 proportion and significantly more TN2 cells in CAG-Foxn1ER +Tam 

thymi compared to Cre control +Tam thymi (1.42×105±1.0×104 and 2.6×104±1.0×104 

respectively, p=0.015, n=2) (Figure 6.3e). This TN1-TN2 block was also observed during 

the experiments described in Chapter 5, although to a lesser degree, and further implicates 

Foxn1 in the mediation of the TN1-TN2 transition, possibly through regulation of Notch 

signalling component, Dll4 (Koch et al., 2008; Nowell et al., under review). Additionally, 

there were greater than two-fold more TN3 and TN4 cells in CAG-Foxn1ER +Tam thymi 

than in Cre control +Tam (TN3, 6.34×105±1.9×105 versus 1.64×105±9.0×104 respectively, 

p=0.15, n=2 and TN4, 9.73×105±2.7×105 versus 3.6×105±8.0×104 respectively, p=0.16, n=2) 

(Figure 6.3e). These data establish that up-regulation of Foxn1 in aged thymi results in an 

increase in the size of the TN compartment, which is consistent with a reversal in thymus 

involution and activity. 
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Figure 6.3 Triple negative (TN) cell proportions and numbers following Foxn1 up-
regulation in aged thymi. 
(a) Flow cytometric analysis of TN cells (CD45+lin- (lineage = CD3, CD4, CD8, CD11b, 
CD11c, CD19, NK1.1, Gr-1)) from 12 month thymi with α-CD25 and α-CD44. (b) The 
average TN sub-population proportions per thymus were determined for all experimental 
conditions (n=2). (c) The average total TN cell numbers per thymus for 12 month old CAG-
Foxn1ER compared to control thymi (n=3). (d) The average TN sub-population cell numbers 
per thymus for Cre control +/-Tam and CAG-Foxn1ER –Tam control conditions (n=2). (e) 
The average TN sub-population cell numbers per thymus for Cre control +Tam and CAG-
Foxn1ER +Tam conditions (n=2). 
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6.3.3 Total nuclear Foxn1 expression in aged TECs 
To confirm that the epithelium in aged CAG-Foxn1ER +Tam thymi expressed higher levels 

of Foxn1 compared to controls, Foxn1 protein expression was analysed. It was shown that 

total Foxn1 mRNA (endogenous plus Foxn1ER) levels were greater than ten-fold higher in 

postnatal TECs from CAG-Foxn1ER mice compared to Cre control mice, and that Foxn1ER 

protein was inducible by Tamoxifen treatment (Figures 4.8, 4.9, 5.1). To augment these data, 

immunohistochemistry for Foxn1, without any signal amplification, was performed to 

confirm that TECs from 12 month old CAG-Foxn1ER +Tam thymi expressed higher levels 

of Foxn1 than control thymi. While this analysis cannot differentiate between endogenous 

Foxn1 and transgenic Foxn1ER, it provides a comparative indication of the level of total 

nuclear Foxn1 across the experimental conditions. Western blot analysis, which does 

differentiate between Foxn1 and Foxn1ER by size, was attempted, but was unsuccessful due 

to the inability in obtaining sufficient TEC samples from aged thymi. Nonetheless, it was 

evident that Foxn1 was expressed at higher levels in some cells and in a greater number of 

TECs in 12 month old CAG-Foxn1ER +Tam TECs compared to Cre control TECs (+Tam or 

–Tam) (Figure 6.4d and 6.4a,b respectively). Furthermore, there was more nuclear Foxn1 

expression in TECs in CAG-Foxn1ER +Tam thymi compared to CAG-Foxn1ER -Tam 

thymi (Figure 6.4d and 6.4c respectively). Thus, Tamoxifen treatment in aged CAG-

Foxn1ER +Tam mice resulted in higher total nuclear Foxn1 expression levels in TECs 

compared to all control conditions. 

 

A technical issue that must be highlighted here is the detection of hrGFP, translated from the 

transgenic Foxn1ER-IRES-hrGFP bicistronic mRNA. Although hrGFP expression was 

detected during flow cytometric assays of CAG-Foxn1ER TECs (Figure 4.8), it could not be 

detected in immunohistochemical assays. The signal shown in the goat isotype control image 

was from a CAG-Foxn1ER sample, and spanned the detection spectrum for GFP (Figure 

6.4). The absence of GFP signal may be as a result of low levels of hrGFP expression that 

were not detectable by immunohistochemistry, possibly due to the IRES-dependent 

translation, or because the IHC processing procedures used for the relevant antibodies here 

were not optimal for hrGFP detection. An α-hrGFP antibody was used in an attempt to detect 

hrGFP expression, but this was unsuccessful. 
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Figure 6.4 Foxn1 expression in 12 month old CAG-Foxn1ER and control thymi. 
Immunohistochemical analysis showing total α-Foxn1 staining (endogenous and Foxn1ER, 
green) in TECs (pancytokeratin (PanK) positive, red) in 12 month old thymic sections. (a, b) 
Foxn1 expression in Cre control thymi with and without Tamoxifen treatment. (c) Some 
Foxn1, presumably Foxn1ER, was present in the cytoplasm in CAG-Foxn1ER –Tam TECs. 
(d) Foxn1 is expressed in more TECs in CAG-Foxn1ER thymi TECs compared to controls. 
Scale bars represent 50µm. 
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6.3.4 TEC architecture and phenotype 
The structure of the TEC compartment in the thymus deteriorates with age, including the 

disruption of the cortical and medullary junction (CMJ) and in some areas the loss of clearly 

demarcated cortical and medullary regions. To determine whether up-regulation of Foxn1 in 

aged thymi restored the thymic architecture to a “younger” status, immunohistochemical 

assays using antibodies that broadly demarcate the cortical and medullary compartments, 

were performed. CDR1 and Keratin 5 (K5) antibodies that broadly identify cTECs and 

mTECs respectively were used here. 

 

 In a younger Cre control –Tam thymus (6 months old) the cortical and medullary regions 

were well defined and generally did not overlap (Figure 6.5e). As expected, the TEC 

compartment in a 12 month old Cre control –Tam thymus was generally more disorganised. 

This included co-expression of K5 and CDR1, especially at the CMJ, larger areas of K5+ 

TECs in the cortical regions (indicated with asterisks in Figure 6.5) and the loss of the 

extended epithelial network in some regions (Figure 6.5a). CAG-Foxn1ER –Tam thymi and 

Cre control +Tam thymi exhibited a similar phenotype, with a further decrease in medullary 

areas observed in the latter condition (Figure 6.5b,c). In contrast, following up-regulation of 

Foxn1 for 2 weeks in 12 month old thymi, the TEC architecture was restored and resembled 

the structure of a younger thymus with broadly well defined cortical and medullary 

compartments (Figure 6.5d).  

 

Thymic epithelial architecture was also investigated in 18 month old mice. In Cre control 

+Tam thymi, the TEC compartment was more drastically disorganised with complete 

destruction of the CMJ in some regions and overlapping CDR1 and K5 expression (Figure 

6.5f). Following Foxn1 up-regulation in CAG-Foxn1ER +Tam thymi, the TEC structure was 

restored with well defined cortex and medullary regions and a clearly demarcated CMJ 

(Figure 6.5g). These data establish that up-regulation of Foxn1 is able to restore the 

disorganised architecture of the TEC compartment in aged thymi. This is consistent with 

other models of reversal or rebound of thymus involution, such as castration, that also report 

restoration of TEC architecture (Sutherland et al., 2005). 

 

 

 

 



 109 

 

 

Figure 6.5 Thymic epithelium architecture was restored following up-regulation of 
Foxn1 in aged thymi. 
Immunohistochemical analysis using α-Keratin 5 (medulla, red) and α-CDR1 (cortex, green) 
broadly show the architecture of the thymic epithelium. (a, b, c) 12 month old Cre control +/-
Tam and CAG-Foxn1ER -Tam thymi had more disorganised epithelial architecture than 
CAG-Foxn1ER +Tam and 6 month old Cre control thymi (d, e). Asterisks indicate regions of 
expanded K5 expression in the cortex. (f) The thymic epithelium in 18 month old Cre control 
+Tam thymi was more disorganised than in CAG-Foxn1ER +Tam thymi (g). Scale bars 
represent 200µm. 
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Next, the observed changes in the TEC compartment of aged thymi following Foxn1 up-

regulation were quantified by flow cytometry. Twelve month old CAG-Foxn1ER +Tam 

thymi contained more EpCAM+ TECs compared to all controls (4.1×104 cells versus the 

control average of 1.9×104, n=2) (Figure 6.6a). Furthermore, within the expanded TEC 

compartment in 12 month old CAG-Foxn1ER +Tam thymi there was a higher proportion of 

UEA1+ TECs compared to all controls (UEA1+ proportions: Cre control –Tam, 31.1%; Cre 

control +Tam 12.5%; CAG-Foxn1ER –Tam, 31.2%; CAG-Foxn1ER +Tam, 52.8%; n=1) 

(Figure 6.6b). Cre control +Tam thymi contained a lower proportion of UEA1+ TECs 

compared to Cre control –Tam and CAG-Foxn1ER –Tam thymi, possibly indicative of an 

effect of Tamoxifen on TECs (Figure 6.6b). Notably, CAG-Foxn1ER +Tam thymi contained 

a 4-fold higher proportion of UEA1+ TECs than Cre control +Tam thymi. The flow 

cytometric data for UEA1 showed close correspondence to immunohistochemical analysis. 

Again, CAG-Foxn1ER +Tam thymi contained more UEA1+ cells in the medulla with bright 

UEA1 clusters observed in the medulla that were drastically reduced in all control thymi 

(Figure 6.7a).  

 

Similarly, in 18 month old CAG-Foxn1ER +Tam thymi, up-regulation of Foxn1 resulted in 

an increase in the proportion of UEA1+ TECs compared to Cre control +Tam thymi (40.2% 

and 16.8% of total TECs respectively, n=1) (Figure 6.6c). Immunohistochemical analysis 

showed more bright UEA1+ clusters in the medulla of CAG-Foxn1ER +Tam thymi 

compared to Cre control +Tam thymi (Figure 6.7b).  

 

Lastly, the functional TEC cell marker, MHC Class II, was examined in 18 month old mice. 

CAG-Foxn1ER +Tam thymi contained a higher proportion of MHC Class IIhi TECs than Cre 

control +Tam thymi indicating that up-regulation of Foxn1 resulted in a larger functional 

TEC compartment (36.5% and 22.3% of total TECs respectively, n=1) (Figure 6.6d).  

 

Collectively, these data show that up-regulation of Foxn1 in aged thymi resulted in an 

increase in the proportions of UEA1+ and MHC Class IIhi TEC populations among all TECs. 

These changes in TEC phenotype may explain, at least in part, the increase in thymic output 

observed and further contribute to the set of data that establish Foxn1 up-regulation as a 

means of reversing thymus involution.  
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Figure 6.6 Foxn1 up-regulation results in a larger and phenotypically “younger” TEC 
compartment in aged thymi. 
(a) 12 month old CAG-Foxn1ER +Tam thymi contained more TECs than Cre control +/- and 
CAG-Foxn1ER –Tam (n=2). (b, c) Flow cytometric analysis, without thymocyte depletion, 
was performed on 12 and 18 month old thymi where total TECs were analysed using α-
EpCAM, after gating on CD45- and Ter119- cells. Histograms show UEA1 profiles; CAG-
Foxn1ER +Tam thymi contained a higher proportion of UEA1+ cells in the TEC compartment 
compared to controls. UEA1+ gates were determined from FMO controls. (d) Histogram 
shows MHC Class II profiles for 18 month old Cre control and CAG-Foxn1ER +Tam TECs. 
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Figure 6.7 Foxn1 up-regulation increased UEA1 expression in aged thymi. 
(a, b) Immunohistochemical analysis showing staining for the lectin Ulex europaeus 
agglutinin I (UEA1) in the medulla (K14+ TECs) of 12 month and 18 month old thymi. CAG-
Foxn1ER +Tam thymi contained more UEA1+ TECs compared to all controls. Scale bars 
represent 200µm. The relevant isotype control for K14 (Rabbit IC) is shown in Figure 6.5. 
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The larger and architecturally restored TEC compartment observed following Foxn1 up-

regulation in aged thymi could result from an effect of Foxn1 on proliferation, or from an 

effect on TEC maintenance or apoptosis, or a combination of these cellular processes. That 

the TEC compartment was double the size in CAG-Foxn1ER +Tam thymi compared to all 

control thymi, suggests that TEC proliferation may play a role, at least in part. It was 

previously shown that reduced or maintained Foxn1 expression during thymus involution 

resulted in a decrease or increase in TEC proliferation, respectively (Chen et al., 2009; 

Chapter 5). Therefore, proliferation was investigated in TECs in aged thymi by examining 

the TEC-specific proliferative potential marker, p63 (Senoo et al., 2007). The limited 

number of aged mice did not allow for additional proliferation analyses, for example with 

BrdU, to be performed. 

 

Firstly, immunohistochemical analysis using an antibody that recognised all protein isoforms 

of p63 was performed. Twelve month old CAG-Foxn1ER +Tam thymi contained more TECs 

that expressed p63 compared to Cre control +Tam thymi, indicating that the TEC 

compartment was more actively proliferative following Foxn1 up-regulation (Figure 6.8a). 

The p63 expression was nuclear and confined to TECs (Figure 6.8a). The isoform of p63 that 

specifically marks proliferative potential in TECs is ΔNp63, with its expression also shown 

to decrease following Wnt inhibition-mediated degeneration of the thymus (Osada et al., 

2010; Senoo et al., 2007). CAG-Foxn1ER thymi contained more TECs that expressed 

ΔNp63 than Cre control +Tam thymi (Figure 6.8b). These ΔNp63+ TECs were primarily in 

the medulla of the thymus (in agreement a previous report - Senoo et al., 2007) and, 

interestingly, most also co-expressed Keratin 8 (K8). K8, a pan-cortical marker, also marks a 

small population of mTECs that have a globular phenotype and express high levels of MHC 

Class II (Gray et al., 2006). Thus, as determined by the read-out of p63 expression, Foxn1 

up-regulation resulted in an increase in proliferating TECs and/or TECs with proliferative 

potential in aged thymi, providing an explanation, at least in part, for the Foxn1-driven 

process of involution reversal. 
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Figure 6.8 p63 expression in aged thymi following up-regulation of Foxn1. 
Immunohistochemical analysis of the TEC-specific proliferative potential marker, p63, in 12 
month old thymi. (a) Images show representative sections for co-staining of α-p63, which 
marks all isoforms of p63, and α-pancytokeration (PanK), which marks the epithelium. (b) 
Images show representative sections for α-ΔNp63 (that specifically marks proliferative 
potential in TECs), Keratin 8 (K8) and nuclei (DAPI) stains. Images show medullary areas, 
characterised by the globular epithelial K8 staining pattern – insert shows comparative K8 
staining in the cortex. Right panels show co-stains of left panels. Scale bars represent 50µm. 
The relevant isotype control images for ΔNp63 (rabbit IC) and K8 (rat IgG2a) are shown in 
Figure 6.5. 
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6.3.5 TEC gene expression 
To further investigate the characteristics of the TECs in the larger, architecturally restored 

epithelial compartment that resulted from the up-regulation of Foxn1 in aged thymi, the 

expression levels of a panel of genes with known roles in thymus development and function 

were determined. The expression of various genes expressed in TECs, including Pax1, Pax9, 

Dll4, CCL25 and FgfR2IIIb, was shown to be responsive to different levels of Foxn1 by 

analysis of a Foxn1 allelic series (Nowell et al., under review). Thus, in the analysis here, 

total EpCAM+ TECs were isolated from 18 month old CAG-Foxn1ER +Tam thymi and 

control thymi and assayed for gene expression levels by qRT-PCR (as described in Chapter 

1). Here, Cre control +Tam and CAG-Foxn1ER –Tam TECs were pooled in the control 

experiment due to limited mouse numbers. 

 

Firstly, due to the potential autoregulatory mechanism of Foxn1, illustrated by the up-

regulation of the endogenous transcript in the experiments performed in Chapter 5, 

endogenous Foxn1 levels were investigated in aged TECs. In contrast to the experiments 

where Foxn1 up-regulation from 3 months of age resulted in an increase in endogenous 

Foxn1, endogenous Foxn1 was not expressed at up-regulated levels following activation of 

Foxn1ER in 18 month CAG-Foxn1ER +Tam TECs, compared to the control. This suggests 

that the endogenous Foxn1 locus is no longer accessible to Foxn1ER, possibly due to age-

related chromatin modifications. 

 

Pax1 mRNA expression was 1.5-fold higher in 18 month old CAG-Foxn1ER +Tam TECs 

compared to control TECs; while Pax9 expression showed a more dramatic increase with an 

over 6-fold up-relative increase in CAG-Foxn1ER +Tam TECs compared to control TECs 

(Figure 6.9). Additionally, the mRNA expression level of the TEC-expressed fibroblast 

growth factor receptor, FgfR2IIb, increased 3-fold following up-regulation of Foxn1 (Figure 

6.9). Lastly, the Foxn1-responsive regulators of hematopoietic cell colonisation and 

commitment, CCL25 and Dll4, were over 1.5-fold and 2-fold increased, respectively, 

following up-regulation of Foxn1 in aged TECs. The increased Dll4 expression in CAG-

Foxn1ER +Tam TECs compared to control TECs offers a potential explanation for the 

release of the TN-1TN2 block during TN cell development observed in Figure 6.3.  

 

Thus, the increased expression levels for these genes following up-regulation of Foxn1 

substantiate the restoration of the TEC compartment and increase in thymic output that was 

previously described in this Chapter. 
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Figure 6.9 Gene expression profile for aged TECs following Foxn1 up-regulation. 
TEC gene levels were quantified by qRT-PCR for total TECs (EpCAM+). TECs were isolated 
by flow cytometry from thymi from three pooled mice for 18 month CAG-Foxn1ER +Tam and 
18 month control samples (two Cre control +Tam mice and one CAG-Foxn1ER –Tam mice 
were pooled together). Endogenous (Endog.) Foxn1, Pax1, Pax9, Delta-like 4 (Dll4), CCL25 
and FgfR2IIIb genes were normalised to α-tubulin. Data represent 3 technical repeats. 
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6.4 Discussion 
The previous Chapter described how maintenance of Foxn1 expression prevented involution 

in the postnatal thymus. This Chapter details the partial reversal of thymus involution 

through up-regulation of Foxn1 in aged thymi, as defined by the parameters measured 

herein. When Foxn1 was up-regulated by Tamoxifen treatment of 12 or 18 month old CAG-

Foxn1ER mice, there was an increase in thymus cellularity, with a greater than two-fold 

increase in the total number of intrathymic haematopoietic cells compared to Tamoxifen 

treated control mice. This represented an increase in cell number per thymus for all the major 

T cell and TN cell subsets analysed here, indicating an increase in thymic activity. The 

driving force behind this increase in thymic activity was most likely a more structured, 

proliferative and functional TEC compartment that up-regulated various genes important for 

thymus development and function.  

 

A few strategies currently exist that promote immune reconstitution in aged mouse models 

through the targeted increase of thymus activity, including sex steroid modulation and KGF 

treatment protocols. The increases in thymus cellularity and function in these approaches 

varies from several-fold (KGF) to complete recovery (castration) (Alpdogan et al., 2006; 

Sutherland et al., 2005). Foxn1 up-regulation in 12 month and 18 month old thymi resulted 

in a greater than two-fold and three-fold increase in thymus cellularity, respectively (which 

probably represents the different Tamoxifen treatment periods) falling in line with results 

observed in KGF treatment protocols.  

 

Of note here is the effect of Tamoxifen on the thymus. Tamoxifen appeared to affect T cell 

cellularity, some TN population proportions and UEA1 expression on TECs. The most 

prominent effect of Tamoxifen may be on the viability of mature T cells, as the sizes of the 

TEC compartment and TN population were comparable between all controls and lower than 

CAG-Foxn1ER +Tam condition. In contrast, these effects of Tamoxifen were not observed 

in the experiments in Chapter 5 where all control conditions generated similar results, 

although there were 10% less CD45+ cells in Cre control +Tam compared to Cre control –

Tam thymi. This may be due differences in the Tamoxifen treatment: high dose administered 

by IP injection for two weeks in the aged mice and a lower dose administered through the 

drinking water for 3-4 month old mice. Nonetheless, the up-regulation of Foxn1 in aged 

thymi resulted in the partial reversal of thymus involution with an increase in cellularity and 

restoration of the TEC compartment, despite the requirement for Tamoxifen administration 

to maintain Foxn1 over-expression. 
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The effect of Tamoxifen on the thymus is poorly characterised although thymic atrophy and 

reduction in thymocytes has been reported (Luster et al., 1984; Uhmann et al., 2007). 

Additionally, thymus cellularity was reduced in estrogen receptor knock-out mice, which is a 

phenotype that could be recapitulated to some degree due to the anti-estrogenic effects of 

Tamoxifen (Staples et al., 1999). Indeed, future experiments will be aimed at ascertaining the 

effect of the Tamoxifen treatment regime used here on the cellular composition of bone 

marrow – the source of the thymic seeding cells. Furthermore, as discussed in the previous 

Chapter, further phenotypic resolution within the TN1 population (e.g. analysis of c-kit 

expression) is required to investigate (1) the effect Tamoxifen on this population and (2) the 

effect up-regulation of Foxn1 on this population, especially with regards to the ETP 

population. These analyses are important given the significant effect of Tamoxifen on the 

proportion of TN1 cells and the apparent ability of Foxn1 to restore the TN1 proportion to 

normal levels (Figure 6.3b).  

 

The issue of the effect of Tamoxifen will be addressed in the future using another transgenic 

mouse line transgenic mouse line that I have generated, R26-CAG-STOP-Foxn1. These mice 

will be crossed with a Foxn1CreERt2 transgenic mouse line that has recently been generated in 

the Blackburn lab. This should render a single dose of Tamoxifen sufficient to induce 

transgenic Foxn1 expression via CreER-mediated excision of the stop cassette. 

 

To my knowledge, this represents the first report of the regeneration of the aged thymus, or 

any organ, through the up-regulation of a single transcription factor. While other instances 

exist where transcription factors, including forkhead factors, are required or promote organ 

or tissue regeneration, this is first instance where a transcription factor is the primary 

instigator of regeneration. The notion that Foxn1 is the master regulator of the thymic 

epilethial programme, with a host of TEC genes responsive to Foxn1 dosage, lends to the 

scenario here where Foxn1 alone is able to provoke thymus regeneration. The data presented 

here describe a novel method of thymus regeneration through modulation of Foxn1 and thus 

a new approach to immune reconstitution in aged organisms.  
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Chapter 7: Concluding remarks 
 

 
7.1 Foxn1 in the postnatal thymus 
This thesis examined the expression of Foxn1 in the postnatal thymus and the effect of up-

regulation of Foxn1 on thymus involution. The data presented showed that Foxn1 is 

expressed at different levels in the major TEC compartments, and in mature and immature 

TEC sub-populations, and that Foxn1 expression decreases with age. Furthermore, using a 

newly generated, regulatable Foxn1 mouse model, I showed that forced over-expression of 

Foxn1 was able to prevent thymus involution, and that up-regulation of Foxn1 in aged thymi 

was able to partially reverse thymus involution. 

 

This is the first study to accurately quantify Foxn1 mRNA expression in aging TECs. While 

a previous study reported that Foxn1 mRNA expression was reduced by 16-fold in 12 month 

old mice compared to 1 month old mice, this analysis was not performed on defined TEC 

populations (Ortman et al., 2002). The data presented in this thesis show that the decrease in 

Foxn1 expression with age is less profound, with an approximate 10-fold reduction in Foxn1 

mRNA expression in TECs in 12 month old mice compared to 1 month old mice.  

 

A further point of interest, with regards to previously published data and data presented 

herein, is the proportion of Foxn1 negative TECs in the postnatal thymus. Corbeaux et al. 

(2010) showed, using a Foxn1:eGFP reporter, in which a ~30kb fragment upstream of Foxn1 

exon 2 was used to drive GFP expression, that only ~70% of TECs are Foxn1+ at 10-15 

weeks of age. The data presented in Chapter 3 show, using a Foxn1GFP reporter model in 

which GFP is knocked into the Foxn1 locus, that probably all TECs express Foxn1 at 12 

weeks of age. While the exact Foxn1 expression state of the Foxn1neg/lo population observed 

(10% of total TECs) needs to be determined, the data presented show that Foxn1+ TECs 

constitute a significantly larger proportion of postnatal TECs than previously reported (90% 

or 100% versus 70% respectively). It is important to know the extent of Foxn1 expression in 

the postnatal thymus, especially in regard to its proposed role as a primary target of 

involution, and the data presented suggest that the entire postnatal TEC lineage expresses 

Foxn1. 

 

A number of recent studies have shown the requirement for Foxn1 in the maintenance of the 

postnatal thymic microenvironment, suggesting that Foxn1 may be a primary target of 
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involution (Chen et al., 2009; Cheng et al., 2010; Corbeaux et al., 2010; Sun et al., 2010). 

Thus, I asked whether maintained over-expression of Foxn1 from the onset of involution was 

able to prevent or delay thymic involution. Using the regulatable Foxn1 mouse model 

generated during this study, I showed that Foxn1 over-expression was sufficient to prevent 

thymus involution, at least within the parameters measured herein, providing further 

evidence that Foxn1 is a primary target of thymus involution. To my knowledge, this is the 

first report that demonstrates, through regulation of Foxn1 expression, that thymus 

involution can be prevented. 

 

Next, I asked whether up-regulation of Foxn1 was able to reverse thymus involution in aged 

mice. Compared to the relevant controls, Foxn1 up-regulation resulted in a greater than 2-

fold increase in total thymus cellularity with a proportional increase in the major T cell 

populations observed. While a host of strategies currently exist to promote thymus function 

in aged mice, this is the first report, to my knowledge, that demonstrates an increase in 

thymus cellularity through the controlled up-regulation of a transcription factor in thymic 

epithelial cells. 

 

How does the up-regulation of Foxn1 in aged thymi result in the regeneration of the thymic 

epithelium and subsequent increase in T cell production? It was shown in Chapter 3 that 

Foxn1 expression decreases with age in TECs, with approximately double the proportion of 

Foxn1lo/neg TECs at 12 months compared to at 3 months (Figure 3.3). Although these aged 

TECs down-regulated Foxn1, they maintained an epithelial identity (EpCAM+), although it 

has been shown that a small proportion of historically Foxn1+ TECs undergo an epithelial to 

mesenchymal transition (Youm et al., 2009). Also, it was shown that approximately 90% of 

TECs in aged CAG-Foxn1ER thymi expressed Foxn1ER (as determined by GFP expression 

from the Foxn1ER-GFP bicistronic mRNA, Figure 4.8). Thus, the regeneration of the 

epithelium and increased thymic productivity observed, following up-regulation of Foxn1 in 

TECs that have age-dependently down-regulated Foxn1, may stem from the restoration of 

functionality in most, if not all, TECs. 

 

At the molecular level, the observed up-regulation of key TEC genes, through the proposed 

master-regulatory action of Foxn1, may explain the regeneration of the thymic epithelium 

and improved T cell production. CCL25 (up-regulated 1.5-fold) plays a role in recruitment of 

hematopoietic precursor cells to the thymus (Zlotoff et al., 2010), while Dll4 (up-regulated 

2-fold) is critical for commitment to the T cell lineage (Koch et al., 2008). Furthermore, the 
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increased TEC compartment size observed, following up-regulation of Foxn1, may result 

from an improved responsiveness to mitogenic Fgf signalling due to the up-regulation of 

FgfR2IIIb (up-regulated 3-fold) (Dooley et al., 2007). Additionally, the apparent increase in 

the number of ΔNp63 positive TECs following Foxn1 up-regulation indicates a greater 

proliferative potential in the TEC compartment (Senoo et al., 2007). Interestingly, Pax6 – the 

master regulator of eye development – controls proliferation of cells during eye lens 

regeneration (Madhavan et al., 2006). Thus, Foxn1, through its role as a proposed master 

regulator of TEC development, is able to provoke thymic epithelial regeneration by 

enhancing function and proliferation of aged TECs. 

 

7.2 Experimental considerations: present and future 
An important aspect of the Tamoxifen-inducible system that was not addressed during this 

study was the precise quantity of Foxn1 protein present in the nuclei of TECs, following 

Tamoxifen-induced nuclear translocation of the Foxn1ER protein. It was shown that total 

Foxn1 mRNA levels increased, and that more TECs expressed nuclear Foxn1 in CAG-

Foxn1ER thymi treated with Tamoxifen, compared to the relevant controls. However, future 

experiments will be aimed at quantifying the amount of total nuclear Foxn1 protein in 

postnatal CAG-Foxn1ER TECs, following Tamoxifen induction. This analysis is severely 

hindered by the difficulty in obtaining sufficient nuclear protein fractions from postnatal 

TECs for protein analysis protocols; an approach that could be utilised in this case is 

capillary electrophoresis. 

 

A further issue to consider is the general effect of Tamoxifen on thymic output parameters 

investigated in this thesis. High doses of Tamoxifen affected thymus cellularity and T cell 

populations in aged mice. While the proper controls were performed and shown (i.e. Cre 

control mice treated with Tamoxifen), this makes it more challenging to delineate Foxn1’s 

function in reversing thymus involution, and in reversing thymus involution and the 

compounding effects of Tamoxifen on the thymus. This will be addressed in the future using 

newly generated mouse models, Foxn1CreER and R26-CAG-STOP-Foxn1 (which I have 

recently generated), such that a single dose of Tamoxifen will be sufficient to induce Cre-

mediated excision of the STOP cassette, and thus Foxn1 over-expression. 

 

Further future experiments will also be performed to show that the increase in thymus 

cellularity and T cell populations, following up-regulation of Foxn1, translates into improved 

immune system functionality, especially in the context of the involution reversal 
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experiments. This will be addressed by investigating peripheral T cell characterises (e.g. 

functionality and composition) in aged mice that have up-regulated Foxn1. 

 

One approach that could be used to investigate peripheral T cell functionality of the mouse 

model described in this thesis, would to test the ability to respond to and overcome an 

immune system challenge, for example following pathogen infection. This thesis has 

established that Foxn1 up-regulation in the aged thymic epithelium resulted in an increase in 

the number of major intrathymic T cell subsets. An infectious challenge experiment would 

determine whether this translated into an increase in peripheral T cell functionality and an 

improved immune system. Aged mice that up-regulate Foxn1 may be expected to have an 

increased capacity to overcome a pathogen infection compare to age-matched controls.  

 

One of the potential negative side effects that should be considered, in the context of an 

increase in the intrathymic T cells in aged mice, is autoimmunity. It would pertinent to 

investigate whether the deletion of autoreactive T cell clones proceeded effectively following 

the increase in intrathymic CD4+ and CD8+ SP T cells observed in CAG-Foxn1ER mice. 

This is especially relevant given that instances of autoimmune disorders are more prevalent 

in the aged, suggesting that mechanisms in place to prevent autoimmunity become 

dysregulated with age (Larbi et al., 2008). However, evidence suggests that Foxn1 plays a 

role in the differentiation of the AIRE+ mTEC lineage, which has a critical role in negative 

selection (Nowell et al., under review). Thus, an up-regulation of Foxn1 in aged thymi may 

not only result in an increase in intrathymic T cells, but also an increase in the size and 

functionality TEC lineage that mediates negative selection. 

 

It will also be interesting to investigate synergistic approaches to thymus regeneration in 

aged mice, for example simultaneous KGF treatment and Foxn1 up-regulation. This is 

particularly relevant given that up-regulation of Foxn1 resulted in an increase in the 

expression of the KGF receptor, FgfR2IIIb, in TECs. Additionally, it will be interesting to 

establish whether Foxn1 over-expression is able to rescue the thymic defects observed in 

FgfR2IIIb mutants. Theses analyses may provide insight into the relationship between Foxn1 

and KGF signalling pathways in the thymus. 

 

Furthermore, it will be interesting to determine the transiency of thymus regeneration 

following Foxn1 up-regulation. Most approaches used to increase thymic output are transient 

in nature, including sex steroid ablation and KGF treatment. Thus two questions could be 
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addressed. Firstly, whether transient up-regulation of Foxn1 is sufficient to permanently 

prevent or reverse thymus involution, and secondly, whether thymus involution can be 

permanently prevented or reversed by maintained over-expression of Foxn1. 

 

The data presented in this thesis describe for the first time that up-regulation of Foxn1 is able 

to prevent and reverse thymus involution in mice. Firstly, this contributes to the recently 

described notion that Foxn1 is a primary target for thymus involution, and secondly, 

represents a novel method to reverse thymus involution. This offers the tantalising possibility 

that manipulation of Foxn1 expression could be used in the future as a clinical approach to 

immune reconstitution. 
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