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ABSTRACT 

The changes of genetic parameters caused by selection are due 

to changes in gene frequencies and due to the generation of linkage 

disequilibrium. 	In quantitative traits, the effects associated 

with gene frequency changes cannot be predicted but those due to 

linkage disequilibrium are predictable in terms of parameters of the 

base population, the sign of the change depending on the type of 

selection applied. 	With directional selection the sign is negative; 

with disruptive selection, it is positive. 	These predictions however 

are based on models which assume an infinite number of loci (infinite- 

simal model). 	The work described in this thesis examines the 

validity of these predictions with models of a finite number of loci 

in short term selection programmes. 

The first eight chapters deal with directional selection. 

Initially some two locus theory is developed and the results are 

extended to quantitative models with use of Montecarlo simulation 

techniques. With additive gene action predictions of selection 

response and of reduction in variance based on infinitesimal theory 

are accurate provided gene frequencies are not extreme. With dom-

inance these predictions are inaccurate even in' -the first cycle of 

selection. 	In order to quantify the importance of changes of - 

genetic parameters, the difference between observed and predicted 

responses to selection relative to the standard deviation of 

selection response is discussed for various models. 

Two experiments with Drosophila designed to study changes of 

genetic parameters with selection are reported. Only one out of 

the four replicates showed evidence of negative linkage disequilibrium 



and the results are interpreted in the light of models studied 

in earlier chapters. 

It is concluded that expected changes of genetic parameters 

in short-term selection studies are not likely to be predicted 

accurately but that the generation of disequilIbrium plays a 

fundamental role in these changes. 

The last chapters deal with disruptive selection. An ex-

periment with Drosophila is reported and the results are shown 

to be consistent with theoretical expectations which predict large 

increases in genetic parameters due to positive disequilibrium. 

Some further theory is developed which clarifies various aspects 

of the experimental results, 
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CHAPTER 1 

INTRODUCTION  



Introducti on. 

In general the aim of an animal breeding programme is to obtain 

high rates of genetic gain from a given amount of initial genetic 

variation. Accurate estimates of genetic parameters are paramount 

in providing information that will lead to the choice of the most 

efficient breeding plan and to the prediction of the expected res-

ponse to selection. 

As a consequence of selection, genetic variances and herit-

abilities: change and rather little attention has been given to 

studying the magnitude of these changes and their' impact on short-

term selection predictions. 

In large populations, changes of genetic parameters induced by 

selection come about through changes in frequencies of the genes 

affecting the trait and due to the generation of covariances bet-

ween the frequencies of these genes, i.e. linkage disequilibrium. 

The changes due to gene frequency changes 'are highly dependent' 

on the distribution of gene effects and frequencies in the base 

population, the information on which is small in Drosophila and 

almost non-existent in other species. We can then do no more than 

lay down the conditions under which gene frequency changes will be 

at a minimum which basically depend on the magnitude of the prop-

ortionate effects of the genes. 	In other words, with large 

populition size, for a given amount of initial genetic variation, 

the larger the number of loci affecting the trait, the smaller the 

expected change in genetic parameters due to changes in gene fre-

quencies caused by selection. This type of argument together with 

1 . 
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a general impression obtained from experimental evidence led 

people to tentatively suggest that parameters are not likely to 

change much during short term selection experiments and that con-

sequently prediction of expected responses based on present herit-

ability estimates may be valid for a period of five or more 

generations (i.e. Falconer, 1960; Hill, 1974). 

The other way genetic parameters change is through the 

generation of linkage disequilibrium induced by the selection 

process. 	In a series of papers, Bulmer (1971, 1974, 1976b)developed 

a theory which led him to conclude that in large populations, if 

the character is determined by many loci, most of the changes in 

genetic variance in short-term selection programmes are due to the 

generation of linkage disequilibrium and he developed formulae that 

predict such changes. These formulae are functions of readily 

estimable parameters of the base population and are independent of 

the number, frequency and effects of the loci affecting the trait 

in question. 

As was pointed out by Bulmer, his result should be considered 

as a limiting result in the sense that - it will hold provided the 

number of loci is strictly infinite.. 	In view of the theoretical 

and practical importance of Bulmer's results, it seems desirable to 

study their validity under a range of genetic models. In other 

- words, we would like to know how accurately we can predict changes 

of genetic parameters when the assumption of an infinite number of 

loci is relaxed. 



3 . 

More generally, the purpose of this thesis is to attempt a 

better understanding of the consequences of short term selection 

programmes on genetic variability. The first eight chapters of 

this thesis deal with directional selection. 	Some theory is de- 

veloped for the case of two locus models in order to understand 

the way the various parameters interact during the selection 

process. Attempts are made to extend the two locus results to 

quantitative models and considerable use is here made of Montecarlo 

simulation studies. At the end of this part of the thesis, ex-

periments withDrosophilamelanogaster are reported. These experi-

ments were carried out to provide experimental evidence on the theory 

developed in earlier chapters. 

The last chapters of the thesis deal with disruptive selection. 

Under this type of selection, gene frequency changes are small and 

most of the change in genetic parameters comes about through the 

generation of linkage disequilibrium. An experiment with Drosophila 

is described, the results of which are interpreted in the light of 

theoretical work based on some simple algebra and computer simulation, 



CHAPTER 2 

POPULATION GENETICS OF TWO LOCUS MODELS 



Introduction 

In this section we review some of the deterministic two-locus 

theory of population genetics, setting the notation to be used sub-

sequently. We shall be dealing only with those aspects of the theory 

which have a bearing on the work of this thesis. 

There are basically two types of models in this area: the con-

tinuous time model and the discrete generation model. We shall deal 

with the latter which gives a description of gene frequency changes 

due to selection particularly in the case of non-overlapping generations. 

Continuous-time models are discussed by Crow and Kimura (1970). 

The basic question raised by the two locus problem concerns the 

interaction between linkage and selection which was probably first 

briefly discussed.by  Fisher (1930) who suggested that such an inter-

action might be important. The mathematical aspects of the problem 

were studied to a limited extent by Wright (1952) and later on expanded 

by Kimura (1956) using a continuous-time model, and Lewontin and Kojima 

(1960),. and Bodmer and Parsons (1962) using a discrete-generation model. 

Following these papers a vast amomt of literature has developed, much 

of which has been reviewed by Lewontin (1974) and Karlin (1975), and 

more recently by Hedrick . 	al. (1978). 

Random Mating 

Consider a large random mating population of diploid organisms 

with no mutation and discrete generations, and assume for simplicity 

that two alleles A and a, B and b, are segregating at autosomal loci 

A and B respectively. There are four possible chromosome types: AB, 

Ab, aB and ab with respective frequencies f 1 , f, f3  and f4 . 	The 

gene frequencies are p, (l-p) for alleles A and a and q, (l-q) for 

4 
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alleles B and b respectively. As is well known, 

f 1 =pq+D 	 f3 (l-p)q-D 	
(2.1) 

= p(l-q) - D 	 14  = (1-p)(1-q)' + D 

such that p =I + f 2 and q = f + 1 3 , and 

D = f 
1  f  4 - 	

(2.2) 

D is called the linkage disequilibrium parameter and can be de-

lined in a number of ways. 	As defined in (2.2) it is equal to half 

the difference between coupling phase double heterozygote (AB/ab) over 

repulsion double heterozygote (Ab/aB) at the time of random union of 

gametes. However a more useful way of viewing D for our purposes is 

to define it as a covariance of gene frequency in gametes (Kojima & 

Lewontin, 1970; Slatkin, 1972). 	From this definition, 

D = E{(Xp-p)(Xq-q)} 
	

(2.3) 

where Xp and Xq are the number (i.e. 0 or 1) of A and B alleles res-

pectively. 	Thus from (2.3), D = f 1  - pq and is equivalent to. (2.2). 

When D = 0 the loci are independent and the gamete frequencies are. 

given by the products of the frequencies of their constituent alleles. 

In the absence of selection, recurrence equations for changes in 

chromosome frequencies in succeeding generations are easily derived. 

Let c be the recombination fraction between loci A and B. chromosome 

AB, say, at generation.t + 1 can be produced from the genotypes of 

generation t in two different ways. Firstly, it may be derived from 

genotypes AB/-- without recombination, where the notation, --, refers 

to the presence of an arbitrary allele at each locus. The prob-

ability of this event is (1-c) and the frequency of such a genotype 

in the population at time t is 11(t)• 
	Secondly, chromosome AB may 

be the result of recombination between loci A and B in genotypes A-/-B 

with probability c. The frequency of this genotype combination is 



pq, since in a large random mating population gene frequencies remain 

constant in all generations. 	Thus, with the assumption of random 

mating, we have: 

f(t+l) = (1_c)f1(t) + cpq, and similarly, 

f(t+l) = (l_c)f2(t) + cp(l-q) 

f(t+l) = (1_c),f3t) + c(l-p)q 	 . 	 (2.4) 

f(t+l) = (1_c)f4(t) + c(l-p)(l-q). 

Noting that pq = f(t) 
	

D(t), we can write, 

f (t+l). = f(t) - cD(t 	 (25a), and similarly 

f (t4-l) = f(t). + cDt) 	 (2.5b) 

f (t+l) = f.(t) + cD(t) 	 (2,5c) 

f (t+l) = f 	- cD(t 	 (2,5d) 

From (2.1) we have, f (t) = pq + D(t) and f(t+l) =pq + D(t). Sub-

stituting in (2.5a) we have the well known result: 

= (l- c)DM 

= (l_c)t 	where D 	 is the initial linkage disequil- 

ibriuin. 	In a large random mating population with discrete generations, 

D tends to zero at a rate (1-c).. 	 . 	 . 

Selection 

Let us now consider the effect of selection. We first define 

an array of fitness parameters corresponding to the fitnesses of the 

genotypes resulting from the random union of the four different 

gametes, as illustrated in Table 21. 



TABLE 2.1 

Gamete Type AB 	Ab 	. aB 	ab 

AB W11 	W12 	W13 	W14  

Ab W21 	W22 	W23 	W24  

aB W31 	W32W 	 W34
33 

ab W4•42 	 W 

Marginal 
Mean 1 	. 	2 	.......3 	...... .. ... 

. 

Overall 
Mean:. .W 

Wij(=Wjj) is the  probability that an individual of the ijth 

genotype (1 = 1, a..,, 4; j = 1,'..., 4) survives from fertilization 

until it reproduces by mating at random. We regard W 1  as a measure 

of both survival and reproduction and thus we assume that all surviving 

adults have equal viability. Further, W 1  = W 1  assumes no maternal 

effects on fitness. W is the expected fitness of the ith gametic 

phase, and is obtained as: W 1  = E W1 f; ' is the average fitness 

of the population: W = E W f = E W f 
jj liii 	j ii 

We shall consider the effect of selection at two stages:. before 

and after recombination. From our definition of fitness the frequency 

of chromosome type AB amongst selected genotypes, before recombination 

takes place,, is given by: 

(s, t) ='{—(f
1W11  + f2W12  +f3W13 + f4W14)}(t) = (f 

7. 

Similarly, 
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(t) 

	

(s,t) 	
w2 

2 	
= 

(t) 
f(St) = £3 w3 .- 	 (2.6) 

(t) 
(s, t) 

•L4 	= f4  

(In general we shall place subscripts and superscripts outside brackets 

when they are common to all enclosed parameters. Presence of super-

script s indicates that the parameter in question is measured in the 

selected population. Absence of s implies that the parameter is 

measured before the operation of selection). 

From the set of equations (2.6), we can write 

	

(s,t) 	 - 	(s,t) 	 - 

=' {2j (f1f W1W4  - f2 f3  WW3) }(t) 
	 (2.7) 

We now consider the production ofgametes of the selected geno-

types. The frequency of gamete AB at generation t+l in the gametic 

pool contributed by the selected genotypes, expressed in terms of 	- 

parameters of the previous generation, before selection operated, is 

-a--- 1 	 - 	 - 	- 	 - 	- 	 - 	- 

	

(t+l) 	
{ 1 (f 2  W + ff W + ff W- +.f f4  W 11 	1 2 12 	1 3 	1  14  

- 	 - c(W14  f 
1  f 

 4 - W23  

Assuming no position effects on fitness so that W 14  = W 231 
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f(t+l) 	
{!(f 1 W - c 	 , and similarly, 

w 

f(t+l) 	{!(fw + c W14  

+ c W14 D)}(t) 	 (2.8) 

f(t+l) 	{!(f 	c W14  

In general, the change in frequency of the ith gamete due to one 

cycle of selection is given by: 

f (t) = f(t) - f 
	={!(f1(w1W) - k(i) c W14D)}(t) 	(2.9), 

where 
l for il,4 

k(i) 	 (Moran, 1964) 

1._1 for I = 2,3. 
These sets of expressions are due to Lewontin and Kojima. (1960). 

Lewontin (1964) considered the case of multiple loci, and Kimura and 

Ohta (1971) and Roux (1974) have given equivalent recurrence equations 

for a model involving multiple alleles. From the set of equations 

(2.8), it is readily shown. that p (t+l) = 
f (t+l) + f (t+l) = 

{(f 1W1 + f2W2)1(t) and q(t+l) ' {!(fW + f
3  W3 
	Furthermore,, 

D(t+ - 

	
.(t+1}  

14 	23' 

' 1(f1f4  W1W4  - f2f3  W2W3  - cW14 
 D )}(t) 	 V  (2.10) 

These recurrent equations enable us to describe the value that the 

parameter in question takes in terms of its value in' the previous 

generation, before the action of selection.. 

From these various equations we can draw some important 



conclusions: 

(1) Starting at generation zero with a population in equilibrium, 

from (28) we conclude that changes in gametic frequencies (and 

therefore in gene frequencies) are independent of the degree of 

linkage between the loci involved, in the first cycle of 

selection. 	Therefore we can write 
f (5 	

= f1), independent 

of C. 

From (26) and (2.8) we can write f(5t) = f i t+])  for t )i 0, 

if c =0. 	If c 30  0 this relationship does not hold. 	In other 

words, unless there is complete linkage, the frequency of the 

gametes produced by the selected genotypes in the second cycle 

of selection depend on the recombination fraction c. Starting 

at generation zero (t0), gamete frequencies are dependent on c 

if t ? 2., unless c = 0. 

In general we can write: p (st) 
.f (5t) + f(St) 	

Further-, 

(s,t) 	(t+l) 	 (s, 
more: p 	= p 	• 	Since f1

l)
is not dependent on c, 

provided D °  = 0, gene frequencies become dependent on c if 

t3. 

From (2.7) and (2.10) we conclude that the amount of linkage 

disequilibrium generated in the gametes produced by the selected 

genotypes after the first cycle of selection. is not dependent on 

c and is equal to the disequilibrium present within the chromo-

somes of the selected genotypes. 	That is, D 	= D (1)  

provided D °  = 0. 

10. 

Several of these points will be pursued further in later sections. 
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EFFECT OF DIEETIONAL SELECTION ON QUANTITATIVE ADDITIVE MODELS 

- ONE CYCLE OF SELECTION 
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Introduction 

In this chapter we apply the concepts developed so far in a 

quantitative genetic context. As a result of selection in a large 

population, the genotypic variance changes both due to gene frequency 

changes and due to the generation of linkage disequilibrium. We shall 

investigate the relative importance of these two processes in a first 

cycle of selection. 

The classical theory of selection for a quantitative character 

assumes that there is no genetic variability In fitness (viability 

and fertility) and that the only selection operating Is that Imposed 

by the breeder. Given this assumption, artificial selection for a 

metric trait can then be considered as a case In which fitness is a 

function of the phenotype. Let the phenotype be determined by two 

• 	additive non interacting loci, A and B, each with two alleles, A, a 

• 	and B, b, and a normally distributed environmental component. We 

• 	- let p and q be the frequency of alleles having high value for some 

quantitative trait, A and B and we let a 1  and a2  be the difference 

between the genotypic values of homozygotes and heterozygotes at 

locus A and B respectively. We shall assume that the population is 

in Hardy-Weinberg equilibrium. The genetic model can then be written 

- 	 - 	 - 	 - 

AA 	Aa 	aa 	• BB 	Bb 	bb 

Value 	a1 	0 	-a1 	 a2 	0 	-a2  

Frequency 	p 2 
	2p(l-p) (l-p) 2. 
	

q 2 
	

2q(l-q) (l-q). 2  

The population mean: M =7a1 (1-2p) -  - a2 (1-2q). 

The equilibrium- additive variance at each locus Is: 
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VgA  = 2p(1-p)a12  

Vg9  = 2q(1-q) a22  

The total equilibrium additive variance, Vg, being given by: Vg = 

Vg A + Vga . 

The gametic output is, as before 

Gamete 	AB 	Ab 	aB 	 ab 

Value 	(a1+a2) 	I(a1-a2) 	(-a1+a2) 	(-a1-a2) 

Frequency 	f 	 f2  

Due to our assumption of additivity, it follows that the gametic mean 

is equal to one half the genotypic mean and further due to our 

assumption of Hardy-Weinberg equilibrium, the total gametic variance 

is equal to one half the total genotypic variance, VG. It is easy to 

show that, 

VG. = Vg + 4a1a2D 	 (3.1) 

If there are many loci affecting the trait we have: 

VG = 2Ea12q(l-q1) + 4 Z Za1a D1 	 (3.2) 
i 	 ..i<j 	ii 

The first term in (3.2) represents the independent contribution to the 

total genotypic variance of the n loci and we denote this term, the 

equilibrium additive variance, Vg. The second term in (3.2) reflects 

the contribution of covariances of allelic effects between the n(u-l) 

pairs of loci within gametes and following Bulnier (1971) we denote 

this term, joint disequilibrium and we shall symbolise it CLW. It 

should be clear that loci which are on different chromosomes also 

contribute to CLW. As was pointed out before, with random mating 

and no selection, D breaks down at a rate depending on the linkage 
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relationship of the loci involved. 	As D approaches zero, the second 

term in (3.2) tends to zero and the population is said to move towards 

a state of equilibrium. 

Selection changes the value of VG through both its components. 

We shall now assume that the base population is in Hardy-Weinberg and 

linkage equilibrium and study the effect of one cycle of selection on 

each of the components of the total genotypic variance. 

Changes of Total Genotypic Variance due to Changes of Gene Frequencies 

Following a section in Kimura's (1958) paper, the effect of 

truncation. selection for a metric character in a large population on 

gene frequency changes has been studied by Griffing (1960) and Latter 

(1965), and more recently by. Kimura and Crow (1978). Some aspects of 

the general theory have been reviewed by Kempthorne (1977) and Pollak 

(1979). 

In what follows we assume a large popultiou in equilibrium and 

selection is such that a certain proportion, Q,. of individuals that 

exceed a certain phenotypic value are saved for breeding. Mating 

amongst the selected group is at random. The genetic model is one 

• . 	 in which there are many additive non interacting loci affecting the 

character and we shall focus our attention on one of these loci. The 

phenotypic variance, or2 , is due to segregation at the rest of the loci 

affecting the trait plus a normally distributed environmental component. 

We. shall first deal with the case in which the genotypic effects are 

small relative to the phenotypic standard deviation. This assumption 

is relaxed in the following section. In general we assume that the 

genotypic variance contributed by the locus is negligible relative to CT2.. 



Genes of Small Effect 

When the proportionate effects of the genes are small (i.e. a/a 

- Falconer, 1960), we can ignore higher order terms in such quantities 

as a first approximation. 	In this case the change in gene frequency, 

tip, per unit change in phenotype, P, is taken to be linear and can be 

expressed as follows (Falconer, 1960): 

tip = b, AP 

where b 	is the linear regression of gene frequency on phenotype. 
PP 

Assuming normality, 

a 
AP = i(l-p) (3.3) 

where i is the standardised selection differential or intensity of 

selection. Thus the selective value in (3.3) is approximated by the 

quantity ia/a (Haldane, 1931). 

The change in mean, M, resulting from gene frequency changes at 

this locus, noting that 'AM 	= 2a, can be expressed as follows: 
dP 

dM 	i 2 AP = 2a p(l-p) (3,4) 

and is proportional to the additive variance contributed by the locus. 

Furthermore, since the regression of gene frequency on phenotype is 

linear and d 
2 
 M/dp 

2 and higher order derivatives are equal to zero, the 

change in mean or response to selection is symmetrical. If there are 

n loci affecting the character, the expected total response, B, is 

given, by: 

R 	E 2a 	(l_) = ih2a 	' 	 (3.5) 

the usual formula of quantitative genetics. 

We now look at the effect of gene frequency changes on the equil-

ibrium additive variance, Vg, after this single cycle of selection, 

14. 
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The contribution from the j 	 locus, Vg 
(1) 

 is expressed as: 

Vg (1) = 	 (3.6) 

Ignoring terms in Ap
2
, the change in variance at this locus is given 

by, 

A.Vgj  = 	
is.  
a 

With n loci, the total change is: 

Vg= ZAVg = 	 (3.7) 

The general conclusion we draw from these well known results is that 

for a given intensity of selection and a given initial value of the 

equilibrium additive variance, its change will be smaller the larger 

the. number of genes affecting the trait and as a first approximation, 

it will tend to zero as gene frequencies tend to 0.5. 

Genes of Large Effect 

When gene effects are large relative to the phenotypic standard 

deviation, second order terms in a/a can no longer be ignored and as 

we shall see, the expected responseto selection is no longer sym-

metrical. This problem was studied by Latter (1965) whose paper 

the 	 of the ,14 	 that follows. -  

Consider a large population which is normally distributed for 

some trait, with. mean M and total phenotypic variance a 2 . Let 

denote the mean of those individuals whose genotype at a particular 

locus is A1A and let a be their phenotypic variance arising from 
 i 	 ii 

both segregation at other loci and from a normally distributed en-

vironmental effect. 
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Following Kimura (1958) we define the selective value of the 

1th genotype, W, as the probability that an individual of such a 

genotype is selected. 	We assume, as we did before, that a proportion 

Q of those phenotypes that exceed a certain truncation point, T, are 

saved for breeding. With our assumption of., normality and ignoring 

the difference between a and a2  we can write: 
ii 

- r 	.(X-X ) 2 
W1  = f(1) = a 
	

expi:- 	
2a2 	

} dx 	 (3,8) 

Expanding (3.8) in a Taylor series about M, to second order terms, we 

obtain: 

f(X)= f(M) + (X - M) 	 + (X _2 df 
	+

ij ii 	 - 	dx 	X =M 	 dx 	X M 

	

ii 	ii 	 ii 	ii 

Noting that Z = 1Q, where Z Is the ordinate at the point of tiiinction 

of the standard normal distribution, the selective value can be 

expressed as a second order approximation as follows: _ 	

2 
W1  = Q + 	(X-M) 	

a _2 	
(3.9) 

The relative selective value is given by 

ix 
- = 	{i + i(5 -M) + T(M)2} 	 (3.10) 
W W 	 2a 

where W, the proportion selected at this locus, is defined as follows, 

assuming random mating: 

w = EEp 1p W 1  
IJ- 

Assuming two alleles per locus, we can approximate W as follows: 

QiXT 2 
W Q + 	2 2a PG-P) 	 (3.11) 

2a 

to the same order of approximation.. 
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The relative selective values of the three genotypes are expressed 

as follows: 

Wil -AA : 	{i +2-i(l-p) + 2()2i X,r(l_P)2}a 
TV 	

a 

Aa : - 	{.i + -i(l-2p) + *(a)21 xT(l_2P)} 
W 

W22 	
{i - 2ip + 2(-) 2i xp2 }.2. 

If the gene effects are large the second order terms in these 

expressions can be important. Latter (1965) showed that the relative 

eelective values are poorly estimated by the first order approximation 

when (X1 M)/C7 is larger than 0.5 and the proportion selected less 

than about 40%. In fact, his Figure 1 shows that for proportions 

selected less than 40%,  the first order approximation underestimates 

the exact selective value for both positive and negative values of 

obtained from tables of the normal distribution. Thus for 

an additive model, provided gene. frequencies are not far from inter- - 

mediate values, the effect of ignoring second order terms on gene 

frequency changes should not be too drastic, as we shall see shortly., 

We now define W1  /W as the relative selective value of the ith 

allele. For example for allele A, 	 - 

= 1{pw 1  + (1-p)W12 } 

+ 	+ *i(- ) 2  ic(1-p)} 	 (3.12) 



The change in gene frequency, Ap, is given by: 

Ap = £(W1 - W) 
w 

(313) 

Replacing (3.11) and (3.12) in (3.13), and finally letting 

- 	. 1XT2 
Q/W 1 - -i  a p(,-p), we obtain the second order approximation for 

Cr 
p (Latter, 1965): 

a 

	

= 	ip(1-p) 	
2 ix 

+ (-) -j-- p(1-p)(1-2p) 	 (3.14) 

From this result we draw the following conclusions: 

(1) The expected response to selection will be poorly estimated 

using (35) unless gene frequencies are intermediate or the intensity 

of selection is 50%, so that x0. For gene frequencies less than 

0.5, (3,5) will tend to overestimate the true response and the opposite 

holds for gene frequencies larger than 0,5. 

(ii) Although the functional relationship between gene frequency 

and genotypic mean is linear, the change in gene frequency per unit 

change in phenotype is not, and therefore two way selection experiments 

will be asymmetrical. Given i and a/a, this asymmetry is maximum when 

initial gene frequencies are0.5 ± 1/1. The problem of asymmetry 

of selection response was further discussed by Latter (1965) and more 

recently by Robertson (1977c) and Mdki-Tanila (1980). 

We now turn to changes in the equilibrium additive variance. 

This change is expressed as follows: 

	

tVg = 	Mrg = E 	 - p} 	 (3.15) 

18. 

For simplicity, assume all genes have the same effect and frequency. 



Then the proportional change in the equilibrium additive variance 

relative to its value before selection, Vg(0) , is 

__ 	

a2 	2 2 LV 	
= 

 
(-;7) (1-2p) + -j--  () (1-2p) - i () 2p(l-p) 	(3.16) 

Vg (0)  

In order to get some insight we now produce some numerical results. 

We first look at the accuracy with which expressions (3.3) and (3.14) 

predict gene frequency changes for different values of a/a and 

initial gene frequencies. Table 3.1 corresponds to a proportion 

selected of 10% and. Table 3.2 to 20%. 	In both tables p(E) refers 

to exact changes in gene frequencies obtained by numerical integration 

of the normal distribution and having allowed for the fact that 

is smaller than a2 . 	p(l) corresponds to the predictions made using 

(3.3) and p(2) using (3.14). 

The asymmetry in gene frequency changes, particularly at high 

values of a/a, are clearly illustrated In these results. What is 

probably most striking is the high degree of accuracy with which ex-

pression .(3.14) predicts gene frequency changes. The first order 

approximation (eq. 3.3) becomes rather poor for values of a/a of 

Oo5. At gene frequencies of 0.3 or0.7 the difference between the 

exact results and those predicted using the first order approximation 

  a - 	a 

by _t
JUU L

a
b for both se . eiioa intensities. 

 
ror 

this discrepancy decreases to about 4%. 

The effect of these results on the changes of the equilibrium 

additive variance is presented in Table 3.3, 	VgW is defined as 

Vg (1) - Vg (0) , where Vg 	is the equilibrium additive variance after 

one cycle of selection obtained from the corresponding gene frequencies 

(0) 
estimated from (3.6). 	Vg 	refers to the value of the parameter at 

19 
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TABLE 3.1: Predicted and observed changes of gene frequency at an 

additive locus after one cycle of selection, assuming 

the base population is in equilibrium. Proportion 

selected: 10% 

- q 	0,1 0.3 0.5 0.7 0.9 

p(E) 0.035 0.077 0.088 0,070 0.028 

0.2 	p(l) 0.032 0.074 0.088 0.074 0.032 
p(2) 0.035 0.078 0.088 0.070 0,028 

p(E) 0.099 0.205 0.216 0,160 0.060 

6.5 	p(l) 0.079 0.184 0.219 0,184 0.079 
• 	p(2) 0.099 0.208 0.219 0.161 0.059 

p(E) 0.205 0.382 0.376 0,253 0,086 
0,9 	p(l) 0.142 0.332 0.395 0.332 0.142 

p(2) 0.208 0,408 0.395 0.255 0.077 

TABLE 3.2: Proportion Selected: 20% 

q 0.1 0,3 • 	 :o. 0,7 0.9 

Ap(E) 0.027 0,061 0.070 0,057 0.024 

0.2 	p(l) 0.025 0.059 0.070 0.059 0.025 
tp(2) 0.027 0.061 0.070 0.057 0.024 

p(E) 0.073 0.160 	• 0.176 0.135 0.052 

0.5 	p(1) 0.063 0.147 0.175 0.147 0,063 
• 	

A.. a' -a'-, • 	 • 1'. 	f'. 	A 
-Ow.-    

- fl 	IMn 
- 	 # 0 

( 	 I '7 
a I iS 

I ' 
0 

1% 

p(E) 0.145 0.302 • 0.317 0.226 0,079 

-0.9 	p(1) 0.113 -0.265 -0.315 0.265 0.113 
p(2) • 0.148 0.305 0,315 0.225 0,079 
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generation zero. 	This way of predicting Vg 	is not strictly correct 

to first order terms since it includes a term in Ap whose second order 

term is ignored. 	Vg(E) is the exact result, computed from the exact 

gene frequency changes. Table 3.3 shows that for a proportion 

selected of 20%, the prediction using this approach is satisfactory 

for values of a/a smaller or equal to 0.2 and reasonably accurate for 

values of a/c = 0.5 unless gene frequencies are extreme. 

TABLE 3.3: 	Values of Vg(l)/tVg(E). 	Proportion selected: 20%. 

(See text for explanation). 

q 0.1 0.3 0.5 0.7 0.9 

0.2 0.94 0.97 1.00 1.04' '1,08 

0.5 0.87 0.97 0,99 1.11 1.22 

0.9 0.82 1,21 0.99 '1.24 1,48 

This way of predicting the value of the equilibrium additive 

variance after the first cycle of selection, assuming as we did that 

the population is initially in Hardy-Weinberg and linkage equilibrium 

seems to be operationally useful and due to its simplicity will be 

adopted in the comparison between predicted and observed results in 

the Montecarlô simulations that follow. 

Throughout this section we have shown that given the selection 

intensity and initial gene frequencies, the change in the equilibrium 

additive variance is governed by the term a/a. If there are n loci 

of equal effects and frequencies affecting the trait in question, a/a 
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[2np(1-p) 

fl 
can be exPressed a 	j • For a given amount of additive 

genetic variation, as the number of loci becomes very large the term 

a/a becomes negligible and therefore the change in the genotypic 

variance due to changes of gene frequencies is likely to be small, 

particularly during the first few cycles of selection, 	(See Crow & 

Kimura (1970) for a more rigorous treatment of this point). 

Changes of Total Genotypic Variance due to _theGenerationof 

LinkageDisequilibrium. 

We now study the generation of linkage disequilibrium in the first 

cycle of selection and its' effect on the genotypic variance of a metric 

trait. Having evaluated its effect on VG, we shall compare it with 

the effect of gene frequency changes in order to understand their re-

lative contribution to the changes in the genotypic variance.' As we 

did before, we assume that the base population is in Hardy-Weinberg 

and linkage equilibrium. We defer the general review of selection 

in multilocus systems for the next chapter.  

Using the notation of earlier sections, the problem is reduced 

to' obtaining an explicit expression for 

= D' = 
(ff _ff) (bO) = (ff_ff)•(J.) 	 (3.17) 

Since we assume that the gametes produced by the selected genotypes 

are shed into a conceptually infinite gametic pool, where gametes 

pair at random to form the zygotes, the covariance of gene frequencies 

in gametes reflects the degree of linkage disequilibrium in the 

chromosomes of the offspring of generation one. Due to our assump- 

tion 'of initial equilibrium, the frequencies of the four gametic types 



produced by the genotypes of the first cycle of selection is given 

by the set of expressions (2.6) for t = 0. Since = 0, (27) 

reduces to: 

D(SO) = {2_ [f1f4 (w1W4  - W2W3)] }(0) 
	

(3.18) 

Using the procedure described before to approximate the selective 

value of a particular genotype in a two-locus situation, it can be 

shown that the relative selective value of the four gametic phases is 

given, to second order terms, by the following set of expressions:

QiXT  _! = 	+ .t[a1(l_p) + a2 (l-q)] 	[ai-p, + a2 (1-q) + 2a1 a2 f } 

= 	+ .34a1 (l-p) - a2qJ + '1 
	

a(1-p) + a
2
2  - 2a1a2

1
3]} 

W. 
- = 	+ 	1-ap + a2 (1-q+  :ap + a(l-q) - 2a1a2 f2J} 

WQ 	 Q __± = 	+ 	- alp - a2  q] + 	 + aq + 2a1a2 
 f
l] } 

(3,19) 

where 

WO ='Q + ::2aP1_P + 2aq(1-q) } for 	= 0 

Substituting the set of expressions (3.19) in (3.18) and finally 

letting Q/W 1. -. 	{2ap(l-p) + 2aq(l-q) } to second order terms, 

the covariance of gene frequencies In gametes produced by the selected 

23. 
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parents, D 	is obtained in terms of parameters of the population 

before selection, namely: 

D' 	{_i(i_xT) a1p(l-p) a2q(l-q)/a2 } 0 	 (3.20) 

(Hill & Robertson, 1966). 	The quantity _i(i.xT) is always negative 

(unless there is no selection in which case it is zero) whether we 

select for high or low value of the trait and is clearly symmetrical. 

Directional selection then leads to a reduction of the total geno-

typic variance due to the generation of negative correlations between 

loci within individual parental gametic contributions. The value of 

the quantity i(i-x,.) varies from 0.918 for Q = 1% to 0.637 for 

Q = 50%. 
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Let the trait of interest be determined by n additive loci. Let 

p. be the frequency of the allele having high value for the trait and 

a. the difference between homozygote and heterozygote at locus j. 

With n loci there are n(n-l) pairs of loci within each parental gamete 

and n(n-1) covariance terms contributing to the total variance between 

gametes. We can then express D 	 in the offspring of selected parents 

as follows: 

D' = _i(i_xT) Z E 	 akPkPk)'c 
jk 

The total genotypic variance at generation 1, VG 

(1) 
VG' =. (E2a2 P (l_) + E. 2aaD) 

i i J 	j'k 
(3.21) 

where the first term is the equilibrium additive variance in generation 

1, Vg and the second term is a covariance of allelic effects between 

pairs- of loci, which following Bulmer (1971) we called joint disequili-

brium and we symbolised CLW. Since CLW °  = 0, we can write, AVG = 

Vg + CLW 	The reduction in VG due to joint disequilibrium is 

cLw 	= _{ i(i_xT)/c72} E 	2aaP(l_P)Pk(l_Pk) 

= {i(i_xT)/a2)V2 	- 	 , 

where a 	nd p are the value that the parameters take before 

selection. This expression can be written as (Hill, personal communi- 

cation) : 	 2 
.i(i-x ) 	 li-CV 

CLW' 	 T Vg20(1- 	
V) 

a 

where CV is the coefficient of variation of the quantities a(l- 3). 

If all loci contribute equally to Vg and n is large, the reduction in 

variance due to joint disequilibrium is given by: 

CLW 1  = 	i(ix)Vg(0)h2(0) 
	 (3.22) 



as was shown by Bulmer (1971), independent of the number, frequency 

and effects of the genes involved. 

The validity of this result rests on the assumption that the 

phenotypic distribution is normal and that the regression of allelic 

effects on phenotype is linear and homoscedastic. These conditions 

are satisfied when the phenotypic values are due to the segregation 

of many additive and independent loci and an independent and normally 

distributed environmental effect. With a finite number of genes 

particularly of large effect and extreme frequencies, these assumptions 

are unlikely to hold, introducing a considerable degree of complexity 

since higher order moments and higher order disequilibria may become - 

relevant in an attempt to describe the process. It seems therefore 

pertinent to study the behaviour: of expression (3.22) under some 

simple models in order to obtain some insight on its robustness to 

departures from the assumptions that lead to its derivation. We do 

this using the technique of numerical integration of the normal dis-

tribution used previously for the study of gene frequency changes. 

Table 3.4 gives values of CLW, starting with a population in 

equilibrium, for different initial gene frequencies and number of loci. 

We have assumed that the initial genotypic variance is of 4 squared 

units, the heritability of the character is 40% and the upper 20% 

of the population is selected. 

Proportionate effects of the genes are shown in the bottom of 

each gene frequency and number of loci combination. At extreme fre-

quencies with genes of moderate to large effect, the departures from 

the predicted value of -0.625 using expression (3,22) are indeed 

quite substantial. There is a marked degree of asymmetry at extreme 

26. 
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TABLE 3.4: Reduction of the genotypic variance due to joint disequil-

brium, after a single cycle of directional selection. It 

is assumed that CLW 0 0; VG °  4; h2°  0.4; Q = 20%. 

The values in the table are obtained by numerical integ-

ration of the normal distribution. 

Initial Gene Frequencies...... 
Number of 

loci 0.1 .0.3, .0.5 	. .0,7, .. 	'0.9. 

-1.249 -0.739 -0.541 -0.381 -0.162 
10 	. 	•" V  

0.47 0.47 0.31: .... 0.28 ...... 
. 

-1.002 -0.717 -0.597 ' 

0.31. ...

-0.491 -0.316 
30  

0.18 :0.27, 0.16 ..... :0.18 .... 

-0.854 

......

-0.688 -0,614 -0.546 -0.422 
80 

..... 

' 
' 	'.0.17 .0.11 :0.11 .0.17. 

..... 

-0.715 

. 

-0.652 -0.624 -0.595 -0.540 
500  
•'... 

.... 

. .0.07 	. 

:0.10 ..... 

:0.07. 

. ..... 

+ -0.625 

. . .0.04 	.... 

-0,625 

:0.04 	.... 

-0.625 

0.04 ....

-0.625 -0.625 

..+. :..o . 	. 	........... 0 ..... 0. 0 ...... 

gene frequencies which disappears at a slow rate with increasing num-

ber' of loci. 	The effect of increasing the number of .loci on the 

value of CLW 	attained clearly depends on -the initial gene frequencies 

and it is small when gene frequences are between 0.3. and 0.5. . These 

results suggest that the model is rather sensitive, to departures from 

the assumptions on. which it rests and that higher order moments may 
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have to be invoked to describe the process more accurately. The 

validity of the approach used as a first check on the model, which 

as we pointed out is based on numerical integration of the normal 

curve has been checked by a technique suggested by Professor Alan 

Robertson and is described in the Appendix. This asymmetry in the 

generation of disequilibrium due to selection was first reported in 

the empirical studies of Neeley & Rawlings (1971). As we shall show 

in Chapter VI, this phenomenon arises as a consequence of the skew- 

ness of the genotypic distribution brought about by extreme frequencies, 

and for a given amount of initial genetic variation, it is accentuated, 

the smaller the number of loci affecting the trait. 

We are now in a position to answer the following question: of 

the total change that takes place in the genotypic variance after the 

first cycle of selection, what proportion is due to changes in the 

equilibrium additive variance due to changes of gene frequencies and 

what proportion is due to the generation of joint disequi1ibrium. 

Some results, based on numerical integration of the normal curve are 

shown in Table 3.5. The figures in the table refer to values of 

ACLW/MIG, where, tVG =AVg + 	CLW, with tCLW = CLW' - 

having been assumed to be zero. 

The initial genotypic variance is taken to be 4 square units, the 

heritability is 0.4 and Q ='20%. 

At intermediate gene frequencies, when changes In the equilibrium 

additive variance due to gene frequency changes are at a minimum, most 

of the change in the genotypic variance is due to joint disequilibrium. 

At more extreme gene frequencies the relative contribution of each term 

is highly dependent upon the number of loci affeôtingthe trait. With 
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TABLE 3.5: Values of joint disequilibrium, expressed as a proportion, 

U, of the total change in the genotypic variance after one 

cycle of selection. The remaining fraction, 1-U, is due 

to gene frequency changes. 

Number of 
loci 

Initial Gene Frequency 

0.5 0.7 0.9 

10 0.77 0.32 0.08 

30 0.92 0.53 0.22 

80 0.97 0.68 0.37 

500 1.00 0.86 0.65 

initial gene frequencies at-0.9 the number of loci has indeed to be 

• very large before changes in the genotypic variance can be mostly at- 

tributed to joint disequilibrium. 	If gene frequencies are initially 

at low values, the effects of both terms are of opposite sign, since 

the equilibrium additive variance tends to increase as gene frequencies. 

move towards intermediate values. 	In fact, with a model of 30 loci 

and initial gene- frequencies of0.3, with. the same 'genetic parameter 

values as those in Table 3.5, the effects of both terms tend to cancel 

each other out and the total genotypic variance after one cycle of 

selection remains virtually unchanged. 

To summarize the main points of this chapter, we can say that in 

large populations the overall change in the genotypic variance, in a 
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first cycle of selection, starting with a population in equilibrium, 

is very much dependent on the genetic model used. Provided gene 

frequencies are not extreme and the number of loci affecting the 

trait is not small, the largest contribution to the change in the 

genotypic variance comes from joint disequilibrium. At low initial 

frequencies, the generation of disequilibrium, and gene frequency 

changes have opposing effects and consequently the genotypic variance 

does not alter very substantially, whilst at high initial, frequencies 

both effects act in the same direction towards reducing the genotypic 

variance. The predictions of changes in variance due to di sequi ii-

bnium, assuming that the base population is initially in Hardy- 

Weinberg and linkage equilibrium, are accurate provided gene frequencies 

are close to intermediate values. They become less so if initial gene 

frequencies are at more extreme values and this is accentuated as the 

proportionate effects of the genes increases. 



CHAPTER 4 

CHANGES OF LINKAGE DISEQUILIBRIUM WITH SEVERAL CYCLES OF SELECTION 

- A REVIEW 
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Introduction. 

In this section we review the effects of several generations of 

selection on linkage disequilibrium. We shall generally assume 

large populations and thus confine ourselves mostly to deterministic 

nxdels. 

Most of the studies of the joint effects of linkage disequilibrium 

and selection have been carried out by population geneticists in an 

attempt to understand the factors controlling the observable genetic 

variability in natural populations. As a consequence, a large amount 

of work has been concentrated on equilibrium populations and on the 

effect of recombination on the stability and position of the equilibria 

under different kinds of multilocus models. Much of this work has 

been reviewed by Lewontin (1974) and Karlin (1975), and more recently 

by Hedrick 'et al. (1978). 

Less attention has been given to the effect of directional 

selection, natural or artificial, on interlocus associations, where 

alleles increase in frequency towards fixation. Lush stated more 

than thirty years ago (Lush, 1948) that selection could cause disequil-

ibrium in the gametic array, as It "produces a minor excess of re-

pulsion gametes as compared with what would exist if each gene had 

the very same frequency but no selection were practiced". According 

to Lush, this negative disequilibrium generated by directional 

selection should be very small. 	 - 

Griffing (1960) investigated the effect of linkage on response to 

selection in large populations, assuming that gene effects were small 

enough that second order terms in selective advantage could be ignored. 

He showed that additive x additive epistasis can generate linkage 



disequilibrium but his assumption caused him to ignore the disequil-

ibrium produced by the additively acting genes. 

The first derivation of changes of linkage disequilibrium due 

to directional selection was made by Nei (1963). 	Studying a two 

locus model, Nei showed that the value of D generated after one cycle 

of selection, DW,  starting from a population in equilibrium, was 

given, using the notation of previous sections by 

= f1 f4 (W1-W2-W3+W4)/W- Apq 

= f1f4c-pq 
	 (4.1) 

where c is a measure of epistasis at the fitness scale and the second 

term is the product of gene frequency changes. Nei assumed that in 

the absence of epistasis at the phenotypic scale, c vanishes and thus, 

replacing (3.3) in (4.1) he obtained 

= - 4 a1p(l-p)a2q(l-q) 
a 

(4.2) 

However, we should make clear that additivity at the phenotypic level 

does not imply additivity at the level of fitness. In fact, it can 

be shown that perfect additivity in the phenotypic level leads to a 
AxM  

value of = 2—a1a2 , to second order terms, where as before a i 
is the 

a 	 th 
average effect of a gene substitution at the i locus. 	(In the case 

of a dominance model, C = -j--a1 a2  to the same order of approximation, 
Cr 

where a, = a1  + d1 (l-2p1)). 	Substituting this value for C in (4,1), 

we obtain (3.2). Nei concluded that in a large population under 

selection, provided that c is zero, the amount of disequilibrium 

32 

generated by the second order effect of gene frequency changes is small 



enough to be ignored. 

The departure of gamete frequencies from their equilibrium 

value can also be measured by the following expression: 

R =f 2 f 	
(4.3) 

which is related to D by : R = 1 + D/(f2 f3). Thus when D = 0, 

R =1, Kimura (1965) showed that in ,a large population if gene fre-

quencies are changing slowly under loose linkage and relatively weak 

epistatic interaction in fitness, a state is rapidly achieved in which 

chromosome frequencies change in such a way that R remains practically 

constant. He called this state quasi-linkage equilibrium. 	For the 

properties of this quantity, see Kimura (1965), Feldman and Crow (1970) 

and Nagylaki (1974). 

If a population is initially in linkage equilibrium, for it to 

remain in equilibrium after selection the genes concerned must affect 

fitness in a multiplicative manner (iae. W 1 W  4 = W2W3). This can be 

shown by setting D 	 equal to zero in the following expression: 

= (f1+f1)(f4+f4) - (f2+f2)(f3+f3) 	 • 	(4.4) 

Substituting Af1  by the set o expressIons (26) in (4.4) yieldz 

W
1  W4

= W2W3 . This was pointed out by Felsenstein (1965) who examined 

the qualitative effects of directional selection on linkage disequili-

brium and the effects of linkage on the rate of change of gene fre-

quencies. He showed that directional selection for an additively 

determined trait will immediately cause negative linkage disequilibrium. 

This implies an excess of gametes with both the favourable and un-

favourable alleles associated thus producing eventually relatively less 

33. 
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extreme genotypes and therefore reducing selection response. 	Con- 

tinuous selection produces fresh disequilibrium on each cycle, while 

recombination tends to break it down. 	With tight linkage, disequil- 

ibrium tends to accumulate and we then expect the rate of selection 

response to be smaller than with free recombination. 	In a very large 

population though, linkage does not affect the selection limit but 

only the rate of advance to that limit. Linkage disequilibrium 

eventually disappears when the favourable alleles become fixed. 

Several of these expectations have been confirmed by Neeley and 

Rawlings (1971) who carried out extensive numerical studies on the 

effect of several cycles of selection on changes of genotypic variance 

under a strictly additive model. 	In general they found that the 

generation of linkage disequilibrium increases with heritability, 

intensity of selection and tightness of linkage, though linkage has 

little effect during the early generations of selection. 

The most conclusive and complete study of the effect of selection 

on interlocus associations for a quantitative trait in infinite popul- - 

ations was carried out by Bulmer (1971, 1974, 1976b). Since this thesis 

relies heavily on Bulmer's work, we shall now review it in some detail. 

First we deal with the case of free recoinbination. We relax this 

assumption in the following section. 
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Selection Under the Infinitesimal Model. 

Free Recombination. 

Consider a large population in equilibrium and let P be the 

phenotypic value of a metric trait determined by the sum of a genotypic 

value, G, and an independent normally distributed environmental com-

ponent, E. 	If we assume that G is given by the sum of an effectively 

infinite number of additive (non-epistatic) loci, then the phenotypic 

distribution will be normal. This model was first studied by Fisher 

(1918) and is usually referred to as the infinitesimal model. 	We 

shall now show the consequences of a first cycle of selection in the 

parental generation on the phenotypic variance in the offspring gener-

ation. This can be done in a variety of ways. One such way is to 

study as we did before, the change in the covariance between allelic 

effects in gametes due to selection on the phenotype. We have shown 

before that the covariance between allelic effects in gametes is a 

component of the total genotypic variance. Under the assumptions of 

the present model, the joint distribution of allelic effects and pheno-

typic values is bivariate normal and therefore the regression of one 

on the other is exactly linear and homoscedastic. 

An alternative approach, also using regression theory, is to con-

sider the regression of offspring on parents. Under the present 

model, Bulmer (1971) showed that the phenotypic values of two or more 

related individuals follow a multivariite normal distribution. He 

further proved that this result holds in the presence of linkage pro-

vided the related individuals are identical twins and offspring and 

one or both parents. 	For other types of relatives, the regression 

line is unaffected by linkage but the residual variance about the re-

gression line is no longer constant (Bulmer, 1976a). 



In the absence of selection, the joint regression of offspring, 

on both parents, P m and P f  is given by P 	= a + bP +bP f  + e, 

where b = h2  (Falconer, 1960) 	With random mating, the variance in 

(1) 
the offspring, VP 	, which is equal to the variance in the parents, 

is given by: 

= b2V(P I + P f) + V(e), 

and therefore, 

V(e) = VP (0)  (1 - 

If directional selection operates in the parental generation, so that 

the variance amongst the parental phenotypic values changes to 

- i(ixT)}, the regression and the residual variance about 

the regression line is unaltered and therefore, in the offspring 

generation, with random mating of the selected parents, the phenotypic 

variance becomes: 

= VP (0) - 	 (4.5) 

where h2 ' °  is the heritability in the base population before selection 

operated. Since the environmental variance is assumed to be constant, 

the change in the phenotypic variance is due to the change in the geno-

typic variance in this first cycle of selection. Therefore, from 

(4,5) the reduction In the genotypic variance after one cyc1e of 

selection is 

VG '  = VG°(1 - i(i_xT)h2° ) 
	

- 	(4.6) 

as (3.22). 

We have shown before that this reduction in the genotypic variance 

is due to the generation of negative linkage disequilibrium. Buimer 

(1971) showed that this was the case by studying the regression of 
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grandchildren on their selected grandparents, assuming that selection 

was relaxed in the parental generation. 	Following the algebra through, 

it is seen that the single cycle of random mating reduces the change 

in the variance by one half compared with its value immediately 

following selection. This is the rate at which D breaks down under 

random mating and free recombination. At the risk of being repetitive, 

we shall confirm Bulmer's result using an analysis of variance model, 

to stress the analogy between the two models. 

Consider a full-sib family structure, such that P (2) = p+ F + e, 

where P 	 is the phenotypic value of an individual whose grandparents 

at generation 0 had been selected but whose parents had been chosen 

and mated at random. 	F, is the family effect, such that 

VP (2) = V(F) + V(e), 

where V(e) is now the pooled variance within family means. 	V(F), the 

variance component between full-sib family means, estimates one half 

of the genotypic variance in the parental generation, (VG ) which 

we have shown is equal to (4.6). The variance within families, as we 

shall subsequently show, Is unaltered and thus is an estimate of i VG 

+ yE, where VE is the environmental variance. Putting all this to-

gether it is easily shown that 

VG (2) = VG (0)(1- 1i(i_xT)h2), 

the reduction in variance having been halved after one cycle of random 

mating. In this way we confirm that in the infinitesimal model the 

reduction in variance due to directional selection is temporary and 

with free recombination, on relaxation of selection, the variance 

quickly reverts to its original value. There are no permanent changes 



in variance due to gene frequency changes because the model assumes 

an infinite number of loci. We then have an expression which pre-

dicts changes of genetic variance using estimable parameters of the 

base population. 

We must now describe the process when repeated cycles of selection 

are carried out. Since the genotypic values at different loci are 

now correlated due to the generation of joint disequilibrium, the 

assumption of linearity of regression of allelic effects on the pheno-

type and constant variance about the regression line may not strictly 

hold. However these assumptions will, hold approximately, when the 

correlations between loci are small and each locus contributes a small 

part of the total phenotypic variation. These requirements are in 

line with the infinitesimal model. , 	Consider a second cycle of 

selection. The joint disequilibrium in the offspring at generation 

2, CLW 
(2) , can be described by two components. The first one is due 

to the fresh disequilibrium generated in this second cycle of selection. 

The second component is attributable to the fact that with free recom-

bination, half of the disequilibrium present in the offspring at 

generation one is preserved in the offspring at generation two. There-

fore we can write 

VG (2) = VG (0) + cLw2 

= VG °  .- 	 + CLW 

and in general, at generation t + 1, 

38, 

VG (t+]) = VG° + ciw(t 

where. 



39. 

= - i ( i _x,,,)VGt)h2 (t) + iCLW t) 	 (4.7) 

This recurrence relationship allows us to calculate the changes in 

the genotypic variance in successive generations of selection. Since 

under directional selection, the first term in (4.7) tends to decrease 

in successive cycles of selection and the second term increases due to 

recombination, a limiting value is arrived at which can be evaluated 

by putting cr.w:t+  = cLw(t) = LW* in (4.7). 	This leads to a quad- 

ratic equation which can be solved in terms of parameters of the base 

population, namely, VG
(0)  andh20 . With an initial heritability 

of 50% and a proportion selected of 20%, the reduction in the genotypic 

variance in the first cycle of selection is of ahout.20%. This leads 

to a reduction of the observed response at generation two of 15% re-

lative to the response predicted on the assumption of no changes of 

parameters due to selection. 	 - 

The limiting value is achieved after about four cycles of 

selection and at that point, the final reduction in the genotypic 

variance is of the order of 25% of its original value.. This shows 

that most of the decline in variance takes place after the first cycle 

of selection and that the steady state is arrived at fairly soon in 

the selection process. 'If selection is relaxed and random mating 

restored, the genotypic variance will soon revert to its original value. 

The 'Presence of 'Linkage  

It has been stated that in any generation, the joint disequilibrium, 

before selection, comprises two terms. The first term is due to the 

fresh disequilibrium generated in the parental generation, and the 



second term is the proportion of the disequilibrium present in the 

previous offspring generation which recombination did not break down. 

Bulmer (1971) showed that the - fresh disequilibrium is independent of 

linkage; the second term though is 'clearly dependent on the degree 

of linkage between the loci involved. 	In other words, the contri- 

bution of a pair of loci to the disequilibrium in the following 

generation is positively correlated with the degree of linkage between 

them (Bulmer, 1974). Consider a trait determined by n loci of equal 

effects, where n is large. Let c be the recombination fraction bet-

ween a particular pair of such loci and let 
5(t) 

 be the contribution 

from this pair to the total joint disequilibrium, cijw(t1, in the th 

cycle of..selection. 	Since all n loci have the same effect and the 

fresh disequilibrium produced at generation t + 1 is independent of 

linkage, it follows that 

(t+1) 
(4i(i_xT)VG t h2t )/In(n_l) + (1-c)6 (t) 

since there are n(n-1) pairs of lad. The limiting value of 

5*, is evaluated by putting '(t+l) = 6(t) in the above expression. 

Summing over pairs of loci, we obtain the limiting value of the total 

disequilibrium, CLW*, which is given by 	
, 	 V 

aJW* = 4i(i_ x, )h4*VG*/H , 

where h2* and VG* are the limiting values of the heritability and, geno-

typic variance respectively and H is the harmonic mean of the recom-

bination fractions.(Bulmer, 1974). 	For given n, the value of H depends 

on the total number of chromosomes. When the number of' chromosomes is 

large, H tends to and the system behaves as in the case of no linkage. 
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However, in an organism like Drosophila, Bulmer shows that H is around 

0.1. 	Assuming an initial heritability of 50% and a proportion 

selected of 20%, the final reduction in variance is of about 50% of 

its original value, compared to the value of 25% obtained with free 

recombination. Hence with tight linkage the reduction in variance 

due to joint disequilibrium is larger and the rate of approach to the 

limiting value is slower than with free recombination. 

As stressed by Bulmer, this theory is to be considered as a 

limiting result which will hold provided the number of loci is strictly 

infinite. With finite number of loci gene frequency changes cannot 

be ignored, but one can argue that for a given amount of initial gene-

tic variation, as the number of loci increases gene frequency changes 

become progressively smaller and most of the change in variance during 

the early generations could be attributed to the generation of joint 

disequilibrium. A simulation study of the effects of different modes 

of selection on genetic variability was reported as a first check on 

the theory (Bulmer, 1976b). Three different types of selection were 

studied, namely, stabilizing, disruptive and directional selection. 

The metric character studied was assumed to be determined by twelve 

additive loci, with no dominance or epistasis. All twelve loci had 

equal proportionate effects on the character (a/a = 1). Two alter-

native sets of simulations were undertaken. 	In one. of them, called 

the mouse simulations, the twelve loci were assumed to be on different 

chromosomes and therefore to segregate independently. In the other 

set of simulations called the Drosophila simulations, the twelve loci 

were distributed in groups of four on three chromosomes, the recombi-

nation fraction between adjacent loci being taken as 0.1 in females 
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and zero in males. 	In most simulations, 100 individuals of each 

sex were selected out of a total of 500.. The heritability in the 

base population was about 57%. As expected from theory, stabilizing 

selection generated negative joint disequilibrium whilst disruptive 

selection generated strong joint disequilibrium of the opposite sign. 

The limiting values of disequilibrium were in good agreement with 

theory, In the case of directional selection gene frequencies went 

to fixation very rapidly (13 and 16 generations in the mouse and 

Drosophila simulations respectively). This is not surprising in view 

of the large selection pressure at each locus. When averaged over 

the first five generations of selection, 62% of the total reduction 

in the genotypic variance was due to gene frequency changes, in both. 

sets of simulations. Bulmer did not present results of the changes 

in the genotypic variance during the first few, generations of 

selection. 	It is during this early stage when the effect of disequil- 

ibrium should be relatively more important as a cause of change in the 

genotypic variance, especially in this study,where initial gene fre-

quencies were such that the change in the equilibrium additive variance 

due to gene frequency changes was minimised. 

Robertson (1977b) has recently studied the response to selection 

in small populations using an additive model with an effectively in-

finite number of loci. The finiteness of the population introduces a 

new variable into the problem with a considerable increase in the level 

of complexity. The genetic variance within lines declines not only 

due to linkage disequilibrium but also due to genetic drift, this latter 

effect being accentuated by selection through an increase in the 

variance of family size (Robertson, 1961), Bulmer's expressions are 
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then likely to underestimate the decline in variance in finite 

populations. Robertson shows that small population size and degree 

of linkage interact in such a way that the- limiting value of disequil-

ibrium is only achieved in the case of free recombination or loose 

linkage. With tighter linkage the genetic variance declines con- 

sistently as selection proceeds, and with complete linkage the limiting 

value is zero. 	In agreement with the numerical results of the deter- 

miziistic models used by Neeley and Rawlings (1971), Robertson shows 

that the degree of linkage has little effect on selection response 

during the early generations. 

The Implications of Bulmer's work are clearly of theoretical and 

practical importance. From a practical point of view, knowledge of 

changes of genetic parameters is essential for optimum implementation 

of breeding plans. These results will feature in such problems as conse-

quences of selection on .the estimation of genetic parameters and. in the 

comparison between different kinds of selection schemes. Work on these 

lines has already been reported by Robertson (1977a) and Fimland (1979). 

In the forthcoming chapters we shall investigate the validity of 

the results based on the infinitesimal model relaxing some of the 

assumptions on which it is based, in particular, we want to study the 

effect of a finite number of loci, with associated gene frequency 

changes. An understanding of the robustness of the model is essential 

before it can be applied with any benefit in the evaluation of alter-

native breeding programmes. 	 . 



CHAPTER 5 

EFFECT OF DIRECTIONAL SELECTION ON QUANTITATIVE ADDITIVE MODELS 

- SEVERAL CYCLES OF SELECTION 



Introduction. 

In this chapter we examine the effects of several cycles of 

selection on changes of the genotypic variance with a strictly addi-

tive model. We shall assume that the population is large enough 

that random drift can be ignored and therefore in the Montecarlo 

simulations that follow, we focus our work on short term selection 

response. This is in contrast with most computer simulations re-

ported in the literature where attention was generally concentrated 

on the effects of small population size and degree of linkage on 

selection limits (i.e. Martin & Cockerham, 1960; Hill & Robertson, 

1966; Robertson, 1970a). 	- 

Nei (19 63) studied the effect of selection on changes in the 

components of the genotypic variance, ignoring the effects of linkage 

disequilibrium. He worked with a variety of models, including 

different kinds of epistasis, and the changes were strictly due to 

changes of gene frequencies. It was assumed in Nei's work that gene 

effects were small enough that second order terms in selective ad-

vantage could be ignored. 	Initial gene frequencies were taken as 

0.5 and a/a assumed to be 0.1 and to remain constant throughout the 

selection programme. Selection was followed by one generation of 

random mating. Nei showed that the additive variance was the com-

ponent most sensitive to gene frequency changes, while the dominance 

x dominance component was the least affected. 	In general, the 

genetic components of variance associated with additive effects 

changed more rapidly than those associated with dominance. 

44. 
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Latter (1965) investigated the effects of genes of large 

proportionate effect on the expected response to selection using 

a single locus additive model. He showed that the expected res- 

ponse to selection in early generations is poorly estimated if gene 

effects are large and that substantial asymmetry can develop in two 

way selection experiments. 	Due to the nature of his model, effects 

of linkage disequilibrium on gene frequency changes were ignored. 

Young (1966, 1967) examined the changes in genetic variances 

and heritability through Montecarlo simulations, under different 

genetic models. He used very large population sizes and selection 

was carried on for 30 generations. No theoretical predictions were 

made and the conclusions were basically drawn empirically from the 

simulation results, which indicated that the additive component of 

variance changed more than the other components as selection pro-

ceeded, in agreement with Nei's results. The predictions of 

selection response over the early generations of selection based on 

parameters of the base population were reasonably accurate under the 

strictly additive model. 	In general, the presence of dominance or 

different types of epistasis made the predictions of early response 

less accurate. 

Wri ght (1977) illustrates the course of change in the genotypic 

variance and its components with various genetic models, assuming a 

heritability of 1. The different components of the variance are 

graphed for different gene frequencies and therefore they should be 

regarded as what we called, following Bulmer (1971), the equilibrium 

value for the component in question. The point we want to make is 



that the response to selection in a particular generation depends 

not only on the variance of individual genes (the equilibrium com-

ponent), but also on the covariance between them and therefore, for 

the case of a completely additive model, this disequilibrium com- 

ponent must be included in the description of the genotypic variance, 

if the latter is to reflect the response to selection at the gener-

ation in question. 

We now proceed to study the theoretical consequences of 

directional selection on the total genotypic variance. We first 

develop the theory for a two locus model and then we extend it for 

an arbitrary number of loci. 

Two Locus Models. 

Changes of Gene Frequencies due to Directional Selection. 

The genetic model we shall use for the two locus case has been 

defined before in Chapter 3 and it is reproduced below: 

AA 	Aa 	as, 	 BB 	Bb 	bb 

Value 	a1 	0 	-a1 	 a2 	0 	-a2  

2 	 2 	2 	 2 Frequency 	p 	2p(l-p) (l-p) 	q 	2q(l-q) 	(l-q) 

Population Mean : M = -a1 (1--2p) 	a2(1-24) 

The problem of evaluating the change in gene frequency in a 

two locu model is easily approached by obtaining - explicit expressions 

for the change in the frequency of the different types of gametes 

before (or after) recombination takes place, using the set of ex- 

th 
pressions (2.6). 	The relative selective advantage of the ij 
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genotype is given, as a second order approximation by, (Latter, 1965) 

W 	 ..ix 
= (1 + •(1 -M) + 1(X _2) 

rN 	
a ii 	2cY2 ij 

(5.1) 

th 
The relative selective advantage of the I— gametic phase is defined 

as follows, 

W 
E WI  f 	, 	 I1,.,,,4; 	j=l,.. 1 4, 	(5.2) 

w 	Wi 

Replacing (5.1) in (5.2) it is shown that 

Wi  941 1XT  
+1(X 	+— M) 	+ (1M) 2)} 	 (5.3) 
aj 	

2a2 

where X 	is the 
th 

mean of the i 	gametic phase and VW1  is the variance 

within the I— gametic phase, given by 

vwi  = 
	

(5.4) 

Under a strictly additive model, it can be shown that Vw 1  = VG 

for all i, where VG is the total genotypic variance defined pre-

viously (3.1). The term Vw1  appears in the second order term in 

(5.3) due to the fact that selection operates at the genotypic level. 

VW does not feature in the expression for the second order approxi-

mation of the relative selective advantage of the different gametic 

phases if it is assumed that selection operates at the gametic level. 

Similarly, it can be shown that, 



• QixT 
= Q + 	EVw f + E(_M) 2 f l] 	 (5.6) 

2a2 	i i 
i 	 1 

where the second term in square brackets in (5.6) is the 

variance between marginal means of gametic phases. Both terms in 

square brackets add up to the total genotypic variance contributed 

by the pair of loci. Hence, 

QixT 
WQ+ 	VG 

202  
(507) 

Substituting (5.3) and (5.7) in (2.9) we obtain the following set 

of expressions for the change in chromosome frequencies before recom-

bination takes place, f1 
(s,t), 

 in terms of parameters before 

selection: 

Af 	
•

1 (t) = f (t){i.(a1(l_p) + a2(1-q)) 	
XT 	

2(1-p)(1-2p) 
1 	1 	a 

+ a22 (l-q) (1-2q) + 2a1a2  ((l-p) (l-q) - D)) }(t) 

f(t) = f
2 (t) {1(al(1_p) - a2

q) + ix T (a 
 
J2 
	- a22q(1-2q) 

2a2 12 

(4' 
- 2a1 a2 ((l-p)q + D)) 1' ' 

ix 
f(t) = f (t){.i.(_a1p + a2(l-q)) + 
	T a

12 (l-p)(l-2p) + a22 (l-q)(1-2q) 

- 2a1a2(p(l-q) 
+ 

48. 
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Af 	 2 (l-2p) - a2 	-. 2q(l2q) (t) = 
	(t){ (-alp  

4 	
p - a2q) 	

2a2 	
1 

+ 2a1a2(pq_D) )}(t) 

(5.8) 

The change in frequency of allele A, tsp, is then approximated by 

Ap = Af1  + Af 2-9 

ix T1 
12p(l-p) (1-2p) + a22 (l-2q)D = (a1p(1-p) + a2D) + —a 

2a2  

+ 2a1a2 (1-2p)D) 
	

(5.9) 

Similarly, Aq = Af 1  + Af 31 

ix 
Aq = (a2q(l_q) + a1  D) + __1 (a22q(l-q) (1-2q) + a12(l-2p)D

2a 2 

+ 2a1a2 (1-2q)D) 
	

(5.10) 

Expression (5.9) reduces to (3.14) obtained by Latter (1965), when 

the initial population is in linkage equilibrium. Selection immed-

iately causes negative linkage disequilibrium and therefore when more 

than one locus is considered, I) cannot be ignored after a first cycle 

of selection. 	It is clear, from the above expressions that the 

change in gene frequency of an allele at a particular locus is due 

to direct selective pressure on the locus itself, and due to pressures 

arising from correlations with alleles at other loci. 

Consider now the expected response to selection, R, from loci 
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A and B. 	Noting that 5M/5p.= 2a 1  and that 6M/5q = 2a2 , the res- 

ponse due to locus A, R(A) and due to locus B, R(B) is, ignoring 

the second order term in (5.9) and (5,10), 

'SM 	1 
R(A) = — p = i(2 
(A)

+ 2a1a2D), 

and similarly, 

R(B) = .-!! 1q = (2a22q(1-q) + 2a1 a2D). 

Therefore the expected response due to changes in gene frequency at 

both loci is: 

R = R(A) + R(B) = (2 12p(1-p) + 2a22q(l-q) + 4a1a2D) 	(5.11) 

This expression is easily generalised to an arbitrary number of loci, 

a Za R = (Z2a 2p(1-p 	+ 4E ) 	 D1 ) = ih2 cl 	 (5.12) 

as before (3.5). The important point we want to stress is that the 

joint disequilibrium generated by selection is to be regarded as part 

of the expected selection response or expected realised heritability. 

Furthermore, we can extend this argument to the case of offspring-

parent regressions as estimators of heritabilities in a given popul-

ation at a given time. Let AM6 and AMp be the deviations of the 

means of the offspring and parents from the population meanM. Then, 

as is well known, 

AMo = b0 
AMP I 

 



where b0  is the regression of offspring on mid-parent. Assuming 

normality, AMp is expressed as icY, and Mo is the expected response 

to selection as defined above. It then follows that, 

bof == (E2a 2 (1-.) + 4EZa1 aD1 )/a 2 	 (5.13) 

In other words, the regression of offspring on mid-parent provides 

us with an unbiased means of estimating the heritability at a parti-

cular generation and therefore reflects accurately the genotypic 

variance available for selection response at that generation. 	It 

should be clear though, that the above argument assumes linearity of 

regression. 

The Generation of Diseguilibria with Selection. 

We have pointed out that directional selection leads to negative 

covariances between loci within gametes and following Bulmer we have 

called their effect on the genotypic variance, joint disequilibrium. 

The purpose of this section is to show that amongst selected genotypes 

there are covariances both between and within gametes, the former 

disappearing in the offspring generation provided mating of the 

selected individuals is at random. As we shall subsequently show, 

the expressions to be derived are relevant both from a theoretical 

and from a practical point of view. 	Theoretically, it is believed 

that this approach leads to a clear understanding of the dynamics of 

the selection process. From a practical viewpoint it will be shown 

in later sections that these expressions feature in some methods 

0  I 'd I ~ 
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commonly used in animal breeding practice to estimate genetic 

parameters. 

We first give a semi-intuitive explanation of the theory that 

follows. Consider a trait determined by n additive loci where a(a) 

is the average effect of the m— allele at the 1— locus from the 

maternally (paternally) derived chromosome. The genotypic value of 

an individual, G, can then be described by the following model, 

n 
= M + E (a4m + a11') 

1=1 
(5.14) 

where M is the population mean. It then follows that the variance 

of G is, 

VG = E(.V(am) + V(a11')) + 2Ecov(a1m , a11') 
1 	 I 

+ 2 E (cov(ajm,  a) + cov(a1 , aj")) 
i<J 

+ 2 Z (cov(a1m,a m) + cov(a1 , a p  
i<j 	 .1 	 i 

There are four different kinds of terms in (5.15). The first term 

is the variance of alleles acting singly. We have called it the 

	

equilibrium, additive variance, Vg. 	The second term is a covariance 

of allelic effects within loci between chromosomes reflecting de-

partures from Hardy-Weinberg equilibrium and following Bulmer (1976b) 

we symbolise it cHW. 

The second and third terms are covariances between allelic 

52. 
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effects at different loci, between and within chromosomes (or more 

generally between and within gametic contributions) respectively. 

We use the symbols, CLB and CLW, for this joint disequilibria between 

and within parental contributions respectively. 	Summarising, we can 

express (5.15) as follows: 

VG=Vg+W+CLW+2 	 (5.16) 

From this account we draw the following conclusion: 

If mating is strictly at random and an effectively infinite 

number of offspring are produced, QIW and CLB become zero in the 

offspring generation since by definition there are no associations 

between chromosomes. Therefore, in contrast to the case of CLW, 

values of CHW and CLB do not accumulate as selection proceeds. 

We shall now study the effect of selection on these different 

types of covariances, before and after recombination takes place. 

Initially the algebra is developed for a two locus model. The 

results are then extended to accommodate an arbitrary number of loci. 

Cyariances Between and Within Gametic Contributions Amongst 

Selected Genotypes. 

Covariance Between Loci Within Gametes (CLW it)) 

The approach we follow is equivalent to the one we used in the 

derivation of (3.20). 	In this case we assume that the population 

we select from is initially in Hardy-Weinberg equilibrium but not 

necessarily in linkage equilibrium. The parents in each generation 

are then taken to mate strictly at random. The existence of linkage 
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disequilibrium in the generation prior to selection leads inevitably 

to more cumbersome algebra and less neat results. The final ex-

pressions, however, are amenable to clear interpretation. 	Normality 

is assumed throughout the derivation. 

The covariance of gene frequencies within parental contributions 

In individuals of the t  cycle of selection, prior to recombination, 

Is defined, as shown in chapter III: 

= (f1 
 f4- ff)(St) 

where, 

(s, t) = f  t .....(W...W) (t) 
£ 

Therefore we can write, 

t 	
.f 	(t) 	.f4 	1 (t) 

D' ' =J f1 + __i(Wf.W)] 	[ + 

f2   + —(W 2_W)] 
(t) 

 [f3  + 3(W3W) 1(t) 

= D(t) + .!f1f4((w1_) + (W4-W)) - r2 f3((W2-W) 

(1-s 

+ (W3-W)) } 	+ .j.{f1f4(W1_W)(W4_W) - f2f3(W2-W)(W3-W)}'t 

(5.17) 

Substituting (5,3) and (5.7) in (5,17) and letting QA equal to 

Q - —.( 2a12p(l-p) + 2a22q(l-q) + 4a1a2D) to second order-terms, we 
2a2  

obtain: 



(t) i(i_xT 
D

, 	
DM = D(t) + -(a1(l-2p)D + a2 (1-2q)D) 	-(-,=ap(l-p) 

(t) 
a2 	

1XT 	
2  (t) +—((a1  (1-2p) + a2 (1_2q))D) q(l-q))  

2a2  

- 	(a p(l-p)D + 
2 	

a22q(l-q)D)t 	(TaaD2)(t) — 

a2 1 
	 a2 

(5.18) 

In expression (5.18) we can identify two components. 	The first 

component, D(t),  is the disequilibrium present in the offspring be-

fore selection operated. 	The second component, (the five terms 

following D(t))  is the fresh disequilibrium generated in the tth  

selection cycle, and we shall refer to it as Dt). Notice that 

Df(t) is not independent of D(t)If  the population is initially 

in equilibrium such that D °  = 0, then (5.18) reduces to (3.20). 

We can then write: 

= D 	+ Df(t) 	 (5.19) 

and 

CLW( 5, t) = 4a1a2D( 5 t) 	 (5.20) 

We should further point out that (5.20) shows that if D(t 

(s,t) iz not ayrnet71ca1 .uiies gene frequencies are exactlylnter-

mediate.  Selection in both directions from a population in linkage 

disequilibrium will lead to different values of Df(t)  in each 

direction if p 91  05. 
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Covariance Between Loci Between Gametes (CLB (s,) 

We now investigate the generation of disequilibrium between loci

th  
on different parental contributions in genotypes of the t cycle of 

selection. Writing it in terms of associations of gene frequencies, 

we define this covariance as follows: 

D (s,t) 
B 	

{E(xp_p)(m)(xq_q)(P)}(st) 	 (5.21) 

where X and X are the number (i.e. 0 or 1) of A and B alleles in 
p 	q 

the maternally and paternally derived chromosomes at locus A and B 

respectively, and p and q are their expected frequencies. Since the 

expected gene frequencies are the same in both sexes, the covariance 

of allelic effects from both chromosomes is: 

ci8,t) = 4a1a2DB 't  

The frequency of allele combination AB amongst selected individuals 

is seen to be (dropping superscript t): 

f()  =-1{f(f1W11  + f3W13) + t2U1W ]2  + f3W23)1. 

Following the algebra through, DB(5t)  reduces to 

W1414 - 

	
(5.22) 

Assuming W14  = W23 , (5.22) reduces to: 

D(5t) = D( 5, t) - •l4 D B 	 (t) 

W 

= D(t)(1 ..._.±) + 

w 
Let us examine expression (5.23) 

(5,23) 
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Under the present model the relative selective advantage of the 

coupling heterozygote, is given by (as a second order approximation): 

±{ 	! 	- 	- 
1 + (a (1 2p)+a (1 2q)) + —(a 1 (l-2p) + a2 (l-2q)) 2 } 	(5.24) 

79 	
ci 	2 	 202 

2 	 2 
Letting Q/W = 1 - —(2a1  p(l-p) + 2a2  q(l-q) + 4a1a2D), it is seen 

202  

that at intermediate gene frequencies, W14/W is close to 1. At ex-

treme gene frequencies, the term i/a can be important though it will 

become less so as gene effects become smaller. Hence as the number 

of loci affecting the trait increases, the disequilibrium between 

loci between parental gametes will tend. to become closer in value to 

the fresh disequilibrium within parental gametes. 	DB(st) , as was 

mentioned before, vanishes in the offspring generation (assuming large 

populations and random mating) and is created anew on each cycle of 

selection. 

It is possible to get an explicit expression for (5,23) by ap-

proximating its first term and using (5.18). 	Carrying out the 

algebra it can be shown, 

DB ,t) = 	' 	
(a1  2p(l 	2  -p)D + a2 q(l-q)D + ap(l-p) a9q(l-q) 

0 

+ a 1 a 
 2 
 D 2) 
	

(5.25) 

As. in the case of the fresh disequilibrium in (5.18), the 

smallest order term in the above expression is a 1p(1-p)a9q(l-q). 

The difference between the above expression and Df(t)  is of order D, 

that is, Df(t) - 
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} _D(t){(l + • a1 (l-2p) + a2 (1-2q)) + ix, —a ((1
- 
 2p)

2 
 2p(1- p) 

2a2 12 
 

+ a22 {(1-2q) 2  - 2q(1-q)} + 2a 1 a2{(1-2p)(1-2q) - 2D})J 

= _D(t)(1 W14Y. 
rN 

If gene frequencies are low so that W14 /W > 1, D - D 	
is <0. 	At 

high gene frequencies, W 14/W < 1 and therefore Df - D 	is >0. 

Clearly, at t=0, if 	= 0, = 

As the number of loci. affecting the trait Increases, the differ-

ence between both covariances will become smaller. 

Covarianceofallelic effects within loci between 

chromoSOmes (CHW). 

This covariance due to Hardy-Weinberg departures, following 

expression (5.15) is defined, 

HW = 2ZE(a1 	a11 ), 
I 

(5.26) 

M 	 p 	 th 	th 
where a1  and a1  are average effects of the in—  and p—  allele at 

th 
the i locus. Consider our two locus model. Let D be the de- 

parture of genotype frequencies from Hardy-Weinberg proportions 

caused by selection (which can be regarded as a covariance of gene 

frequencies within loci). 	Assuming two alleles per locus (in = p = 

12) we can write: 

2 	D(5,t) 
- (s,t) = HW 

(5.27a) 

- 2 	' 	
= _2D 5,t) 	 (5.27b) 

(Aa) 	(5,t)(5,t) 	HW 
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f 	(1-p 2 = D(5,t) 
- 

(as) 	(s,t) 	HW 
(5,27c) 

where p (s,t) is the frequency of the plus allele at locus A and f ()  

are the genotypic frequencies. 	It then follows from (5.26) 

(dropping subscripts): 

E(am, a) = a12 (p2+ D) + 2a1a2(p(l_p)_DHW) + a22((1-p)2 + DHW) 

= (a1-a2) 2DERY  

= a2  

where a is the average effect of the gene substitution at the locus. 

Hence, from (5.26), CHW = 2a2D,. 	From (5 0 27a) we can then write: 

4 ,t) i f2ll - f2(st)) + [2flf2—! - 2f (St) f (St)]
1.  

	

+ [ f 2 _a_ f2(st)] 	 (5.28) 

In each term in square brackets, the first term reflects the value 

of the parameter before selection. Following the algebra through, 

it can be shown that the second order approximation of (5.28) is given 

by the following expression, 

= 	 T) 	2 2 	
2 	 2  

a2 	

i 
 a1  p (1-p) + 2a1a2p(l-p)D + a2D ) 	(529) 

Expression (5.29) tells us that the covariance of gene frequencies 

within the locus is always negative and depends on the covariance bet-

ween it and the other locus. This is probably not surprising since 

we know that the change in gene frequency at a particular locus is 



influenced by the existing disequilibrium with the second locus. 

The effect of the covariance of gene frequency within locus A, 

CHW 	on the total genotypic variance is, from (5,29): 

01W= a2 	
(2a14p2 (l-p) 2  + 2a12p(l-p)2a1 a2D + 2a22D2 ) 

For this two locus model, if gene effects and frequencies are the 

same at both loci, when D °  = 0, the three different disequilibria 

generated in the first cycle of selection are the same. With 

equality of effects and frequencies at both loci, DB (st)  and DRW(5t)  

take similar values for alit. With n loci, however, the leading 

term in (5.29) is of order n whereas the corresponding term in (5.25) 

is of order n2 , and therefore as n increases the effect of CHW on VG 

becomes small, relative to that coming from CLW and CLB. 

Covariance Within Gametic Contributions after Recoithination. 

As was mentioned before, in an infinite population, under a 

strictly additive model, provided mating takes place at random, the 

variance amongst gametic values is equal to half the genotypic var-

iance in the offspring generation. The consequence of random mating 

is that chromosomal values are not correlated in any way and therefore 

both CLB and (BW vanish in the expression of the genotypic variance 

which is equal to twice the variance between gametic values. 	We 

shall now show that the covariance of allelic effects within gametes 

at generation t+l (after recombination) comprises two terms. The 

first term is a fraction approximately (1-c) of the disequilibrium 

present at generation t, before selection operated 	The second term 
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is due to what we have called fresh disequilibrium generated at 

the (t+l) 	cycle of selection. 	The covariance of gene frequencies 

in gametes is, 

=(f lf4 - 
ff) (t+l) 

Recalling the set of expressions (2.8), this can be written: 

D(t+ 	(t) 
= D (1 - - c) + 2 {f1f4 ((W1-W) + (W4-)) - f2 f3((W2-W) 

TV 	w 

+ (W3-W)) }(t) +{f 1f4(W1-W) (W4- - f2f3 (W2-W) (W3-W) 
rV2 

- cD(t) !i±f1(W1_w) + f2 (W2-+ f3(W3-W) + f 4(W4_ 	(t) W)} 

(5.30) 

The last term in (5.30) clearly vanishes since it involves the 

expected deviation of the marginal gametic fitnesses from the mean 

population fitness and therefore, from (519), 

= D(t)l4 
	

(t) 	
- 	 (5.31) (1 - - c) + D 

It may be helpful to summarise at this stage the results of 

this section. Starting at t=0, with D °  = 0, selection causes 

three different types of covariances of gene frequencies between 

parts of the genome: D5,0),  D (s,o) D (s,o) 
B 	' RW 

The total reduction in the genotypic variance amongst selected 

individuals due to these negative correlations is: 

= cj.w0) + ci' °  + 

61. 

After recombination, gametes pair at random and therefore, in an 
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infinite population, the total reduction in the offspring generation 

is: ci° = CLW,0) =CLW 	Since at t0 there is an equal 

number of coupling and repulsion heterozygotes, the degree of linkage 

has no effect on CLT'. 	After t cycles of selection: 

CLt) = (cLwt) + cLwf t)) + ci. (st) + cnw (st) 

where clJw f 	is the fresh disequilibrium generated at the 

selection cycle. The term in square brackets is the joint disequil-

ibrium within chromosomes in selected individuals, CLw(8t). After 

W 1 
recombination and random mating, if we assume - i,CLW 	/ will 

W 
comprise approximately a proportion 1-c of CLW(5,t)and  a proportion 

c of ci(5,t) and therefore: 

CLW(t+ 	(l-c)(CLW t  + cLWf ) + c ci5t) 

(1-c) ciw (t) + ci. wf t) 

since under the assumption of W 14/W = 1, CLW 	c(st) 	This 

assumption will hold approximately provided gene frequencies are 

close to intermediate values and gene effects are small. We shall 

now investigate numerically the validity of these results. The 

technique-we use to calculate what we call exact results, is des-

cribed in the Appendix wider the heading 'Selection Within Genotypic 

Classes'. We work with a model of four additive loci, with an arbi-

trary degree of linkage and we focus our attention on a single pair 

of them.. We start the selection process at t0, assuming Hardy-

Weinberg and linkage equilibrium with the same initial conditions in 

all runs, except for the value ofc. 	Initial gene frequencies are 

set to 0.25 for all loci, h2  = 10% and Q = 20%. 	At t=2, when gene 



frequencies are close to J, we substitute in expressions (5.18), 

(5.25), (5,29) and (5.31) the values obtained from the exact results, 

for gene frequencies and for the disequilibrium in the offspring 

generation induced in the previous 2 cycles of selection. This 

procedure was chosen in order to avoid the asymmetry mentioned in 

Chapter 3 due to extreme gene frequencies. Furthermore, under addi-

tivity, at gene frequencies close to intermediate values W 14/W is 

close to 1 (0,983 for the values of q shown below). The observed 

and predicted results at t=3 are shown in Table5.1, for three differ-

ent values of c.. The last two columns of the table show the dig-

equilibrium within gametes and gene frequencies prior to the third 

cycle of selection. 

TABLE 5,1: Observed and Predicted Values of Different Covariancea 

of Gene Frequencies, See text for Explanation, 

(s2)io5 D'2 lO5  D'2 xl05  D 3 x1O5  D 2 xl05  q (2) xl0' 

(0) (1) (2) (3) (4) . (5) 

OBS -57.93 -152.85 -57.93 -105.39 
0.5 . -96.69 47.07 

PREX . 	 -66.30. . -161.25 -66.30. . -112.90 

OBS -56,73 -178.77 -56.73 -166.57 
0.1- -124.20 41.07 

PREI . 	 -64.74 	. -186.83.. -64.74.. 

OBS -56,43 -185.26 -56.43 -185.26 

-174.41 .. 

0.0 --131.08 47,07 

PRE] -64.39 -193,23 - -64.39 -193,23 
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The predicted results tend to consistently overestimate the 

observed results. The difference between the values in columns 

(1) and (4) represents what we have called fresh disequilibrium, 

Df(t). This difference is in close agreement with the value ob-

served in column (2), illustrating that when w 4iW = 1, 

(t) 
D 	When gene frequencies move away from intermediate values 

such that W14/W 3K 1, D' V Df(t),  particularly in the case of 

the present model where gene effects are rather large. Throughout 

the selection process though, the value of D B 5t)  is in excellent 

agreement with that predicted using (5,23). As predicted from 

(5.18), when gene frequencies are at intermediate values, the 

fresh disequilibrium is independent of the previously existing dis-

equilibrium and therefore is similar for all values of c. When 

gene frequencies move beyond 0.5, three of the five terms involving 

Dft) are positive. 	In fact, at high gene frequencies the fresh 

disequilibrium becomes positive and highly dependent on the recom-

bination fraction between the loci involved. In other words, the 

closer the linkage, the larger the absolute value of the disequili-

brium between loci within parental contributions and therefore the 

higher the positive value of the fresh disequilibrium attained. 

The total disequilibrium within parental contributions amongst 

selected individuals is of course always negative and tends to zero 

as gene frequencies move, towards fixation. We Illustrate these 

concepts in Table 5.2, where the same model and procedures used in 

Table 5.1 are shown after 7 cycles of selection when gene frequencies 

have reached extreme values andW14/W = 0.33. 	As before the pre- 

dicted results overestimate the observed results, this overestimation 
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TABLE 5.2: Observed and Predicted Values of Disequilibria at 

High Gene Frequencies. See Text for Explanation. 

4 "x105  D' 7 xlO5  D' 7 l05  D 8 xlO5  D 7 xlO5  q (7) xlO 
c 

(0) . 	 (1) (2).. (3) (4) (5) 

OBS -1,98 -5.18 -1.98 -3.58 
0.5 -9,83 92.46 

PREI . . 	 -5.34 . . 	 -8.54.  -5,34 	. -7.00 

OBS -2.24 -10.54 -2.24 

. 

-9,71 
0.1 -25.11 91.96 

.PREI . . 	 -6.00. . . -13.75 ... -6.00.. 

-2.35 -13.56 -2.35 

. -13.00 .. 

-13.56 
0,0 74 91.76 

PRED, . 	 -6.10. . . -16.75 ... 6.10,. . 	 -16,75 ............ . 

being relatively larger at high gene frequencies. D f 7  is in all 

cases positive and highly dependent on c. Furthermore, Df.:t)  is very 

different from D 	,t) this difference being of course accentuated31  

with tighter linkage. As before, DB 8t)  is in excellent agreement 

with expression (5,23). Both Tables 5l and 5.2 show that when 

linkage is tight a high proportion of the already existing disequil-

ibrium remains in each generation. In the extreme case of complete 

linkage, the fresh disequilibrium generated at the t cycle of 

selection together with the already existing disequilibrium before 

selection, remain, in. the offspring at generation t+l. 

This analysis of the two locus model is here regarded as an 

attempt to understand the interaction of gene frequency changes and 

disequilibrium during directional selection. The expressions we 
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have arrived at do not seem to predict the course of selection 

with precision but they are useful in that, at least qualitatively, 

they highlight the way the various parameters involved interact to-

gether during the different stages of selection, 

Multilocus Models. 

The theory of changes of genetic parameters developed by Bulmer 

has the great practical advantage that it describes the process In 

terms of readily estimable parameters of the base population. As 

we have pointed out the theory is based on the assumption that the 

trait is determined by an effectively infinite number of loci, so 

that gene frequency changes can be ignored. In this section we ex-

tend the results of the previous section to an arbitrary number of 

loci, and we study the joint effect of gene frequency changes and 

generation of disequilibrium as selection proceeds. 

Gene frequency changes depend on the number, effects and fre-

quencies of the genes involved, information which on the whole is not 

available, particulary for the case of metric traits. Since these 

are variables that must be incorporated in a model which assumes a 

finite number of loci, the work that follows must not be interpreted 

as an attet to provide expressions of direct practical application. 

The purpose of this work is of a different nature, namely to check 

the theory developed by Bulmer under a variety of genetic models and 

from the results obtained, arrive at some conclusions concerning the 

relative importance of the different forces determining changes in 

genetic parameters, 
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We shall first assume that the loci segregate independently. 

We relax this assumption in the next section. 

Free 'Recothbination. 

Consider a trait, determined by n loci of equal proportionate 

effects, a/a, and frequencies. 	If we apply a selection intensity 

of i standard deviations at the ' t 	cycle of selection, the expected 

change of gene frequency at each locus, Ap (:t)1, as a first order ap-

proximation, is, from (5.9): 

Ap (t) = ! (ap(i-p) + (n-l)aD) 
	

(5.32) 

since each locus is correlated with the remaining (n-i) loci in the 

genome. The new gene frequency is then, 

(t+l) =  (t) 	(t+i) 
P 	p 	+ 

from which we obtain the equilibrium additive variance, vgt) = i 

2na2pt)(1_p(t)). Consider now the generation of joint disequilibrium, 

measured before the operation of selection, in each offspring gener-

ation. Bulmer showed that under the infinitesimal model, 

casw(t+]) 	
i(i_x..) 

VG 2 (t) + cLW(t) ,  = - 
	2(t) 

where 

VG (t) = VG° + ciw (t). 

Our approximation (5.18) and (5.31) could readily be extended to 

accommodate an arbitrary number of loci. The resulting expression 

is not as readily interpreted as the one based on the infinitesimal 

model. An alternative approach which has been followed in this work 

is to attempt to find an expression, by trial and error, which can 

describe the process reasonably well and which takes account of the 
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various parameters involved. 	This expression which is suggested 

by Bulmer's result and the definition of the total genotypic variance, 

VG, has been found to be, 

i(i_xT) 
iw(t+ 	

(t) 
[vg(t) +. ctw(tJ 2  + mw(t) 	(5.33) 

This is a function of well defined parameters and allows us to at 

least make some qualitative predictions since the disequilibrium 

generated is ultimately, according to (5,33), a function of gene fre-

quencies. 	In order to understand its behaviour, we shall compare 

(5,33) and (5,31) with exact results at the end of this section. 

Repeated use of (5.33) allows us to predict the value of the total 

genotypic variance in successive generations. These results can be 

readily extended to predict changes In the genotypic variance due to 

selection for a trait determined by loci of different proportionate 

effects and frequencies. Assume that out of n loci affecting the 

character, n 1  have effect a1  and frequency p1 , and n2  have corresponding 

values of a2  and p2 . We refer to the n1  and n2  loci as the type 1 

and type 2 loci respectively. The expected change In frequency of 

each type of loci is: 

I p1 (t) = — (a11( 1-i)-+ (n1-1)a1D11  + 
 Cr 

and 

i (t-1) (t) - 
p2 	- a (a2P2 P2  + (n2-1)a2D22  + n1 a1D12) 

where D,j  is the disequilibrium between type i and type j  loci 

(i=j=1,2). 	These expressions can be used recurrently to predict 
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gene frequency changes from which we obtain the equilibrium additive 

variance v g  (t) 

vg(t) = Vg 
1
M +  v g2 (t 1 ,  

where 

vg1(t) = 	2 2n 
i  a Pi 	

(t) 
i I 

In order to predict the generation of joint disequilibrium under 

this model, the following covariances of allelic effects between loci 

(within and between types) can be readily obtained: 

cLw1t 	
= _[ i(i-xQ 

VGG1 	(l.!_) + i CLW11 (t) 
a2 	

nl 

jj  w22 

 

(t +l) 	[i(i_XT) 	2](t) 	
t) VG 	(l--) + CLW22  

a2 	 n2 

i(i_xT) 
cLwt 	= - 
	

02 VG1VGt + cijw 12 (t) 

where .a' is the total phenotypic variance given by: 

G2(t) = vG1 (t) + VG2 (t) + 

and VG  is the genotypic variance contributed by the i- type of 

loci, such that 

- 	(VG1 + 
v2) (t) / 2t = 	(t) 2 (t) 

VG Ia 

The total joint disequilibrium, CLWT is given by, 

(t+l) CLWTt1 = CLW11(t 	+ CLW12 	+ CLW22(t+]) 	 (534) 



The extension to an arbitrary number of types of loci is straight-

forward. 

The Presence of Linkage. 

Our analysis of the two locus model has clearly identified the 

complications introduced by linkage. As was shown before, the co-

variance of gene frequencies within parental gametic contributions 

in the offspring at generation t+l, contains a proportion 1-c of 

D(5,t) and a proportion c of 	 From (5.21) 'and (5.25), 

this leads to: 

Dt+]) 	c) D 	+ 

the same as (5.31). 	For a given value of gene frequencies, the 

closer the linkage the larger the proportion of the previous disequil-

ibrium which is passed on to the following generation. The fresh 

disequilibrium induced by the t 
th 
 selection cycle is little affected 

by the already existing disequilibrium provided gene frequencies are 

intermediate (see (5.18)), 	As was illustrated in the numerical 	ana- 

lysis this no longer holds at more extreme gene frequencies when 

Dft) is highly dependent on D 	and therefore on the degree of 

linkage. These conclusions are relevant to a model of many linked 

loci: pairs of loci which are closer together will contribute with 

different proportions to the total disequilibrium from loci far apart 

in the genome. From a conceptual point of view, the behaviour and 

understanding of a model of many linked loci is described by summing 

over pairs of loci In the aboveexprèssion. This yields a general 

recurrent equation which allows for an arbitrary number of loci, 
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degree of linkage gene effects and frequencies. Alternatively, 

making some simplifying assumptions we can arrive at simpler ex-

pressions which convey a more meaningful picture and furthermore 

are functions of parameters which in some cases can more or less be 

estimated experimentally. This latter approach was taken up by 

Bulmer (1974) whose work forms the basis of the results that follow. 

Assume n loci affect a metric trait, of equal effects and fre-

quencies. 	Let dij (t)  be the contribution to CLW(t) from the ij- 

pair of loci and let c be the recombination fraction between them.
ij  

If n is large, for a given amount of genetic variation the propor-

tionate effects, and consequently the selection pressure, at each 

locus is relatively small. We then may assume, following Bulmer-

(1974) that the contribution to the fresh disequilibrium from each 

pair of loci is small and more or less similar for all pairs of loci. 

We have shown that this is approximately true provided gene frequencies 

are not far from intermediate values. Therefore we can write, 

d (t) 	 (t) 	.iU_xT) VG 2(t). /n(n-1) 
ii 	

= (l_C 	d 1) ij 
	- 

since there are n(n-1) pairs of loci contributing to CLW. Since 

d. (t) = c1Wt)/nn_l); summing over pairs of 10c1 we obtcii 
1 J 

.i(ixr) v02(t) + (1-c) ci.w(t) 	 (535) ci.w(t+) = - 

where c is the mean recombination fraction between the loci involved 

and can easily be obtained from the relation between recombination 

fraction and map distance. One such relationship, which assumes no 

_2Xij 
interference and which will be used in this work is, C = (l-e 	),

ij 



th 
(Haldane, 1919), where x1 3  is the map distance between the ij- 

pair of loci. 

If at the various loci gene frequencies are extreme or gene 

effects very different, the approximation (5.35) is unlikely to hold, 

particularly because the assumption that the fresh disequilibrium 

is the same for all pairs of loci is untenable. Extreme gene fre-

quencies also lead to the additional problem of lack of normality 

of the genotypic distribution and as we have shown before, this may 

cause substantial degree of asymmetry in the generation of disequil-

ibrium. We shall have an opportunity to study the behaviour of 

expression (5.35) under various models in the simulation work at 

the end of this chapter. 

Genetic Parameters in Parental Generation. 

The approach that we followed in the previous section can be 

used to obtain expressions for the various covariances of allelic 

effects between different parts of the genotype in the selected pop-

ulation. 	From (5.19) and (5.33), the joint disequilibrium within 

parental gametic values amongst selected individuals can be 

approximated by, 

cLw5t) 	
- 	

i(i_XT) VG 2(t) + cLwt) 	 (5,36) 
a
2(t) 

If the number of loci is large and proportionate ejfects are small, 

provided gene frequencies are never extreme, we may assume that W 4/W 

Is close to 1 and therefore, from (5.23) 
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cLBt) 	- 	
i(i-x,) vG2(t) 

2(t) 
(5,37) 

The effect of Hardy-Weinberg departures on the genotypic variance of 

selected parents can be obtained from (5.29): 

s,t) = - i(ixr) 	
2  + 	 a D 	

(t)  
vgja 	

(5.38) 
CHW ( 	Vg 	

n n 

I j ijJ 
CF 	 i<j 

where Vg  is the equilibrium genetic variance of the i.
Ih 
 locus. If 

all loci have equal effects and frequencies, 

caw  (5t) = ._ i(i_XT) vg(t) ( 
v (t) +cijw(t) )' 	 (5.39) 

 2a2(t) 	n 	g 

For a given amount of genetic variation, in the first cycle of 

selection, assuming CLW (0) = 0, CHW is inversely proportional to the 

number of loci. This should hold for later generations though 

eventually, the larger the selective advantage of individual loci, 

the faster the change in Vg and as gene frequencies move towards fix- 

ation, CHW will tend to zero. The effect of Hardy-Weinberg departures 

on the genotypic variance relative to the effect of CLW and CLB is 

of order 1/n. 

We express the total genotypic variance in the selected popul-

ation as: 

VG,t) 	{Vg + CHW + CLW + 
	} (s 1 t) 

As we shall see in later chapters, these expressions feature in 

estimates of heritability from offspring data of selected parents 

using intra-class correlations. 
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We now proceed to carry out some numerical checks on the re-

suits obtained so far, basically as a means of illustrating the 

limitations of the approximations which we shall use in the 

following sections. 	Three different sets of results are presented. 

The first one is obtained from the technique described in the Appendix 

(Selection within genotypic classes), and will be referred to as E. 

The second set of results are the outcome of repeated use of ex-

pression (5.35) and is shown under the heading I. 	The third set of 

results is generated by repeated use of (5.18) and (5.31) and we 

symbolise it, II. 	Since the model assumes two loci the heritability 

is taken to be 5% in order to avoid the problems of genes of very 

large effect, 	In .Table 5.3 we assume that gene frequencies are 

initially0.5 at both loci and c takes values of 0.5, 0.1 and 0.0. 

The results refer to the values of the parameters in the offspring 

generation, before selection. 

Gene frequency changes are predicted with reasonable accuracy 

and as we illustrated in Chapter 3, the first order term overestimates 

the expected change in later generations if initial frequencies are at 

intermediate values. 	The effect of this discrepancy on the equili- 

brium additive variance is very small. For c = at generation 4 

the value of the equilibrium additive variance predicted under-

estimates the true value by about 3%. The predictions of joint dis-

equilibrium using I overestimate the true value particularly when 

linkage is tight. 	Method II is more accurate than method I but 

again overestimates the reduction of the genotypic variance due to 

disequilibrium, 



TABLE 5.3: 

Observed and Predicted Values of Gene Frequencies and Joint Dis-

equilibrium. 	Initial Conditions: q0  = 0.5; VG ° 	1.00; 

CLW ° 0.0O;, h2° 	5%; Q = 20%; a/a = 0.22. 	E, I and II refer 

to the three methods used to predict q and CLW. 	See text for 

further explanation. 

t C q 

E 

cLw ( t) x1o2  

I 

cjjwt)xio2 q 

II 

ciw(t)xio 

0.5 0.500 0.00 0.500 0.00 0.500 0.00 
0 0..1 0.500 0.00 0.500 0.00 0.500 0.00 

0.0 0.500 0.00 0.500 0.00 0.500 0.00 

0.5 0.577 -0.91 0.578 -1.00 0.578 -1.00 
1 0,1' 0.577 -0.91 0.578 -1.00 0.578 -1.00 

0.0 0.577 -0.91 0.578 -1.00 0.578 -1.00 

0.5 0.649 -1.19 0.654 -1.40 0.654 -1.35 
2 0.1 0.649 -1.51 0,654 -1,80 0.654 -1.68 

0.0 0.649 -1.59 0.654 -1,89 0.654 -1.77 

0.5 0.717 -1.10 0.724 -1.51 0.724 -1.32 
3 0.1 0.716 -1.71 0.724 -2 4 39 0.724 -1.98 

00 0.716 -1,89 0.723 -2,68 0.724 -2.17 

0.5 0.776 -0.87 0.785 -1.30 0.785 -1.08 
4 0.1 0.775 -1.58 0.785 -2.71 0.784 -1.88 

0.0 0.775 -1.84. 0.784 -3,29 '0.783 -2.15 
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Tables 5.4 and 5,5 illustrate the selection process starting 

with more extreme frequencies. 

The predictions of gene frequency changes are again quite 

good; the difference between observed and predicted results is 

in the direction predicted from theory. Neither method I nor II 

allow for the initial asymmetry in disequilibrium generated when 

gene frequencies are not intermediate. 	At low initial frequencies 

method I is reasonably accurate, but it is considerably less so at 

high initial frequencies. 	Method II follows the changes in dis- 

equilibrium in reasonable agreement with exact results. 	It is 

worthwhile emphasizing that predictions based on the infinitesimal 

model, which ignore gene frequency changes are bound to break down 

badly if initial gene frequencies are high, since the model assumes 

that the joint disequilibrium always increases towards its maximum 

value as selection proceeds. 	It is clear, however, that the dis- 

equilibrium is a function of gene frequencies and as these move 

towards fixation, the disequilibrium tends to zero. 

We now look at the results in the parental generation. Since 

similar comments and limitations regarding the predictions used 

apply to the parental generation we shall only show results for the 

run in Table 5.3 with c O.5. 	As before, E refers to exact re- 

sults; results under I are obtained from recurrent use of (5.36) 

and (5.37).. Results under II are based on recurrent use of (5.18) 

and (5.25). 	The effect of Hardy-Weinberg departures is obtained 

using (5.3.8). 	The results are shown in Table 5.6, 
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TABLE 5.4: 

Observed and Predicted Values of Gene Frequencies and Joint Disequil-

ibrium for a pair of loci, Initial Conditions: q = 0.2; VG = 0.64; 

h2  = 5%; CLW = 0.0; Q = 20%; a/c = 0.27; C = 

E 

t 
CLW x 10 2

. . 
q t ci1w x io2 ciw x 10  

0 0,200 0.00 0.200 0.00 0.200 0.00 

1 0.263 -0.82 0.262 -0.60 0.262 -0.60 

2 0,338 -1.61 0.334 -1.30 0,334 -1.25 

3 0.421 -2,22 0.413 -1.90 0.416 -1.88 

4 0,509 -2.49 0,505 -2.50 0,507 -2.33 

TABLE 5,5: 

Observed and Predicted Values of Gene Frequencies and Disequil-

ibrium for similar starting conditions as those in Table 5.4, except 

q are assumed to be 0.80. 

ill 	....... 

cLW.x.1Q2  .... 

E.............. 

0 0800 0,00 0800 000 0800 0.00 

1 0,858 . 	 -0.36 0.861 -0.60 0.861 -0.60 

2 0,898 -0,29 0,906 -0,60 0,906 -0,47 

3 0.930 -0.17 0.945 -0.49 0,939 -0,27 

4 0.952 -0.09 0.965 -0.28 0.960 -0.13 
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TABLE 56: 

Observed and Predicted Values of Disequilibria for the Model in 

Table 5,3 for c = 0,5, 	See text for explanation. 

E 

t CLW(8,t) CLB (s,t) cLwf(t) (s, t) 
W 14 

x102  x102  x102  x102  W 

0 -0.91 -0.91 -0.91 -0,91 0.98 

1 -1.59 -0.78 -0,68 -0,78 0.88 

2 -1.57 -0.62 -0.38 -0.62 0,80 

3 -1.27 -0.46 -0.17 -0.46 0,73 

II 	.......... 

t crjw (5,t) cL 5 ,t) cLw(5,t) (s,t) ciw(5,t) . W  14 

X10 

I............ 

x102  ...... x102  ..... Vt 

O . 	 -1,00 -1.00 . 	 -1,00 -1,00 -0.98 0,96 

1 -1.89 

. x102  ..... 

-0.91 	. -1.77 

xlO2  ...... 

-0,91 -0.91 0.86 

2 -2.18 -0.77 -1.84 -0.78 -0.78 0.78 

3 -2,09 -0.60 -1,55 -0.61 -0.61 0.72 
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The exact results illustrate the effect of the declining value 

of 	on cr5t). 	Under the assumption of W14/W = 1, the fresh
14  

Joint disequilibrium, CLWf(t),  should be equal to CLB (s 't). Notice 

however, that the discrepancy between cLWft)  and CLB (s,t) in E, is 

perfectly explained using (5.25). 	As we predicted from the theor- 

etical analysis, the difference between CLWf(t)  and CLB (s,t) is 

positive and becomes larger in magnitude as gene frequencies move 

towards fixation. At generation 0, if D °  = 0, CLB = cLW f. Both 

methods overestimate the value of ci8,t). 	In this particular 

run, the difference in the predicted value of CIS using both methods 

is at the 	decimal place. The overestimates of the fresh dis- 

equilibrium are reflected on the predicted value of cLw(5,t),  which 

is further inflated by the prediction of the already existing dis-

equilibrium within parental contributions. Method II tends to 

correct for the effect of high gene frequencies and is therefore 

more accurate than method I. In this particular run with two loci 

of equal effects and frequencies, criw8t) = 
	s,t) 	Both de- 

cline as gene frequencies move towards fixation. 

This numerical analysis illustrates the limitations of the 

approximations used to predict the course of selection. Method II 

is more accurate than method I, but both seem useful in providing 

us with a means of making some predictions, at least qualitatively. 

The expressions used in method I are functions of parameters which 

can be more or less estimated experimentally. Due to this, and due 

to its simplicity, it will be used to describe the changes of the 

genotypic variance due to selection in the Montecarlo work of the 

next section. 
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Montecarlo Simulation Studies, 

The Simulation Programme. 

The Montecarlo approach followed in this study was that of 

directly simulating the processes of gamete formation, random 

mating, genotypic evaluation on the individual's own performance 

and truncation selection. Bisexual diploid organisms were simulated, 

their quantitative characteristic assumed to be expressed equally in 

both sexes. The metric trait was determined by a maximum of 30 loci, 

two alleles per locus, with arbitrary effects and frequencies and 

any degree of linkage between adjacent loci. The genetic models 

studied assumed additivity between loci (no epistasis) and both add-

itive and dominant models were investigated. The mode of gene action ,  

thus specified the genotypic value of each individual and the pheno-

typic values were generated by adding a normally distributed random 

variable with zero mean and variance VE simulating environmental 

effects. 	In the directional selection studies that follow, the 

highest N scoring individuals of each sex out of a total of M scored 

were selected for breeding. The 2M individuals at generation zero 

were generated according to the input of gene frequencies and there-

fore the base population was assumed to be in Hardy-Weinberg and 

linkage equilibrium,any departures being due to chance. Recombination 

and gamete formation were carried out using an array of binary masks. 

Mating within selected individuals was at random, with no replace- 

ment and a constant number of offspring of each sex per family was 

produced each generation. The computer input can be summarised as 

follows: 
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- Number of loci 

- Number of Male offspring 

- Number of Female offspring 

- Number of Male parents 

- Number of Female parents 

- Number of generations of selection 

- Number of replicates 

- Environmental variance 

- Recombination fraction between adjacent loci 

- Gene frequencies at each locus 

- Additive values at each locus 

- Dominance deviations at each locus 

The output varied somewhat in different versions. In general, the 

following were printed each generation, before selection, together 

with the standard deviation between replicate rims for each estimate: 

- Genotypic mean 

- Total genotypic variance (VG) 

- Equilibrium additive variance (Vg) 

- Covariance of allelic effects within loci (HW) 

- Covariance of allelic effects between loci within gametes (CLW) 

- Skewness of the distribution of genotypic values (93) 

The total genotypic variance (VG) was estimated from the variance of 

the distribution of genotypic values. Vg was estimated from gene 

frequencies which were obtained from each of the n loci. 

W was estimated by subtracting the equilibrium additive 

variance of each locus from the variance between genotypes within the 



corresponding locus and summing over loci. CLW was obtained by 

difference, on the assumption that the expected value of CLB in 

the offspring generation was zero, i.e.: 

ciw(t) =. VG 	Vg - yg(t) - caw (t) 

The same estimates were printed out for the selected group of indi-

viduals, immediately after selection. 	In addition, the covariance 

of allelic effects between gametes, CLB, together with its standard 

deviation between replicates, was printed each generation. This 

estimate was calculated in the following way. An estimate of (CLW 

+ cLB) was obtained by subtracting from VG, the pooled variance bet-

ween genotypes within loci. CLW was estimated by subtracting the 

equilibrium additive variance from twice the variance between 

paternally derived gametic values across individuals (under the as-

sumption that the variance between gametes is the same in maternal 

and paternal gametes) • In most. runs the number of individuals of 

each sex scored each generation was 200, the best ranking 40 of each 

sex being selected. This population size was chosen in order to 

compromise between the number of replications and the number of 

generations of selection for a given length of computing time. The 

number of replicates was seldom larger than 30, this number having 

been decided empirically on the basis of the results obtained in 

different rims. Usually not more than four cycles of selection 

were investigated and therefore, in this strictly short term study, 

given the size of population, the decline in variance within lines 

due to drift has been ignored. 
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Simulation Results. 

In this section we compare the predictions made under the in-

finitesimal model with results obtained from Montecarlo simulations. 

We also produce results based on method I which takes account of 

gene frequency changes. 	In Table 5.7 we sununarise the various 

models. These models were chosen in order to illustrate and dis-

cuss how the various parameters interact and the extent to which 

the previous theoretical analysis provides us with a means of ex-

plaining the results, and no strong claim is made about them re-

flecting possible genetic parameters of a particular character in 

any species. 	The distribution of genes in 	the genome, however, 

may give a rough indication of what can be expected in species with 

different numbers of chromosomes. 

In the tables that follow, simulation results are headed (0); 

those obtained using method I, (I), and those results obtained using 

the infinitesimal model, M. The following genetic parameters, 

before selection, are shown below: 

R 	accumulated selection response 

LW : Joint disequilibrium 

Vg 	: equilibrium additive variance. 

These parameters are calculated each generation in the usual way, 

that is: 

= i 

w(t+1) = 
	

.x,r) vG2tl_.i + (l-c)cLW t  
2(t) 
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TABLE 5.7: 

Initial genetic parameters of the different models. The models are designated by the corresponding number 
of loci (n), the initial gene frequencies (q) and the recombination fraction between adjacent loci (c). 
The first three runs only differ in the number of loci. Run 4 is equivalent to Run 1, except that c is 
zero. 	Run 5 is again equivalent to Run 1 except for the linkage relationship between loci. Run 5 has 30 
loci, 10 on each of 3 chomosómes and recombination fraction between loci on the same chromosome equal to 0.1, 
In Run 6, 5 loci of proportionate effect of 0.61 have initial frequency equal to 0.1 and 25 of proportionate 
effect of 0.11 have initiLal frequency of 0.5, 	The loci are assumed to recombine freely. 	In Run 7, initial 
gene frequencies at all ]Loci are 02. 	In Run 8, initial gene frequencies at all loci are 0.8. 	Both Runs 7 
and 8 assume free recombination. 

Run 
No: 

Run designation 
(nq,c) 

No. of 
loci(n) 

Initial 
of 

value 
a/a 

Initial fre- 
quency,(q 0) Linkage(c) 

Initial 
VG 

Initial 
h2  

1 (30,0.5,0.5) 30 0.18 0.5 0.5 15 0.5 

2 (10,0.5,0.5) 10 0.32 0.5 0.5 15 0.5 

3 (4,0.5,0,5) 4 0.50 0.5 0.5 15 0.5 

4 (30,0.5,0.0). 30 0.18 0.5 0,0 15 0.5 

(10) 0.1 
5 (30,0.5,0.1) 30 0.18 0.5 (10) 0.1 15 0.5 

(10) 0.1 

6 (5/25,0.1/0.5,0.5) 30 0,5 15 0,5 
(25) 0.11 (25) 

7 (30,0.2,0.5) 30 0.23 0.2 0.5 9,6 0,5 

8 (30,0,8,0.5) 30 0.23 0,8 0.5 9.6 0,5 

CO 



in the case of method (I), where VG (t) = vg  (t) + ciw(t) and 

ciw t+ = 	
i(i-x) VG 
	+ (l-) czwt_) 

(t) 

in the case of (), where VG  = vG° + cijw t). 

The results for all runs for the genetic parameters in the off-

spring generation, before selection, are illustrated in Tables 5.8, 

5.9 and 5.10. 	Tables 5.11, 5.12, 5.13 and 5.14 show the genetic 

parameters of the runs in the parental generation immediately 

following selection. 

Gefletic Parameters before Selection. 

We first discuss the results of the various models in the off-

spring generation, before selection. Table 5.8 shows the results of 

runs 1(30,0.5,0.5), 2(10,0.5,0.5) and 3(4,0.5,0,5) which illustrate 

the effect of varying the number of loui., For a given amount of 

genetic variation as the number of loci increases the disequilibrium 

between a single pair of loci becomes smaller, but the number of terms 

contributing to the total disequilibrium becomes larger. For example, 

if the number of loci increases from n 1  to n2  = n1 (l+N), for a given 

amount of genetic variance the average effect of a gene substitution, 
I 

a, at a locus, decreases by a proportion jj 	
and therefore the dis- 

equilibrium between a single pair of loci decreases by a proportion 

l/(l+N). The ratio of the joint disequilibrium with n 1  loci to that 

with n loci is 	 • 	In other words, if n is not too small, 
2 	 n1 	 1 

ni-- 
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TABLE 5,8: 	Results of Runs 1, 2, and 3. 	See text for explanation. 

RUN 1 (20 reps.) RUN 2 (50 reps.) RUN 3 (50 reps.) 

Gener- 
(30, 0.5,0.5) (10, 0.5, 0.5) (4 9  0.5, 0.5) 

ation Vg CLW 	'' R Vg 	'' CLW R Vg CLW R 

0 14,92±0.00 0.57±0.33 0.00 14.96±0.00 0.07±0.16 0.00 14.96±0.00 0.01±0,13 0.00 

0 I 15.00 0.00 0.00 15.00 0.00 0,00 15.00 0.00 0.00 
CO 

, 	 15.00... .0.00 ...... :0.00 	. 	 . .15,00 ..... 0.00 	. .. 	0.00 15.00 0,00 0.00 

0 14.54±0.02 -2.81±0.35 3.84±0.12 14.12±0.02 -2.51±0.16 3.94±0.06 13.06±0,04 -2,00±0,14 3.87±0.04 

1 I 14.76 -2,83 3.83 14.26 -2.64 3.83 13.16 -2.20 3.83 
CO 15.00. 	.. -2,93 	. . . 	 3.83. 	. . 	 . 	 .15.00 ...... -2.93 	...... 3.83. . 	 15,00. 	. -2.43 3.83 

0 13.75±0.04 -3.13±0.25 . 7.16±0.15 1232±0,06 , -2,50±0.14 7.07±0.08 9,18±0,09 -1.53±0.14 6.76±0,05 

2 I 14.17 -3,41 7.05 12.56 -3.11 7.00 9.14 -2.46 6.85 
CO 15.00 -3,57 7.08 15.00 -3.57 7 08 15,00 ....... 7.08 

0 12.76±0,07 -3,3.1±0.34 10,22±0,17 , 	 9,98±0.07 -2.14±0,11 9.82±0.08 5,21±0.13 -0,47±0.07 8,82±0.06 

3 I 13.33 -340 10.02 10,33 -283 9.66 5,20 -1,83 8.86 
00 15.00 -372 10.19 , 	 15,00 	. -3.72 	. 10.19 15,00 	, -3,72 10.19 

0 11.50±0.10 -2,20±0,32 12.89±0.18 7.64±0.09 -1.29±0.13 11,98±0.08 2.37±0.08 -0.11±0.03 10,00±0.04 

4 I 12,27 	. -3,19 12.80 7.95 -2.29 11.87 2.61 -1.09 9.96 
00 15,00 -3.75 	..... 13.28 ..... 15.00 ...... -3,75 ....... 13.28 ... 15.00 ..-3.75 	. 13,28 

Vg : ' equilibrium additive variance 
CLW : joint disequilibrium within parental(gametic) contributions. 
P 	: expected response to selection. 

00 
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TABLE 5,9: 	Results of Runs 4, 5 and 6. 	See text for explanation. 

RUN 4 (20 reps.) RUN 5 (20 reps.) RUN 6 (30 reps.) 

Gener- (30, 0.5, 0.0) S 	(30, 0.5, 	0.1) (5/25, 0.1/0.5, 0.5) 

ation Vg . .CLW 	•. R ..Vg,..., LW R. . 	Vg . 	CLW R 

0 14.96±0.00 -0.50±0.27 0.00 14.96±0.00 -0.06±0.19 0.00 14.91±0,08 -0.06±0.16 0.00 
0 I 15.00 0.00 0.00 15.00 0.00 0,00 15.00 0.00 0.00 

co 15.00 000 0.00 15.00 0.00 0.00 15,00 0.00 0.00 

0 14.66±0.01 -3,17±0.36 3.76±0,07 14.66±0.01 -2.70±0,23 3,80±0,10 21.86±0,14 -4,69±0.29 4.13±0.07 
1 I 14.76 -2.83 3.83 14.76 -2.83 3.83 21,22 -2,65 3.83 

00 15.00 -2.93 3.83 15.00 -2.93 3.83 15.00 . 	-2,93 3.83 

0 13,95±0.04 -4.69±0,50 6.96±0.14 14.04±0.03 -319±025 6,88±0.10 27.51±0.18 -7,47±0,37 8.55±0,14 
2 I 14,17 -4.83 7.05 14,17 -3.74 7.05 27,56 -4,83 8.32 

00 15,00 -5.03 7,09 15.00 -3.90 7.08 15,00 -3,57 7.08 

0 13.02±0.09 -6,04±0.40 9.52±0.22 13.13±0.03 -3.29±0.25 9,82±0.10 30.97±0.17 -8,93±0.39 13.38±0.18 
3 I 13.43 -6.18 9.70 13.35 -3.92 9.95 32,03 -7.00 13.50 

00 15,00 -6,59 989 15,00 -4.24 	. 10.12 15.00 -3,72 10.19 

0 11.82±0.14 -6.53±0.45 11.63±0,27 12.06±0.05 -2.74±0.24 1245±0.11 30,88±0.14 -8.54±0.41 18,44±0.18 
4 I 12.66 -7.08 11.85 12,35 -3.78 12.62 32.00 -8.89 19.04 

00 15.00 -7.77 12.33 . 15.00 -4.36 13.09 15.00 -3,75 13.28 



TABLE 5,10: 	Results of Runs 7 and 8. 	See text for explanation. 

RUN 7 	(30 reps) RUN 8 	(30 reps.) 
(30, 0.2, 0.5) (30, 0.8, 05) 

Gener- 
Vg 

	

........... ation ........... cLW ..................... Vg ........ .....ciw . R 

0 9,56±0.02 -0.00±0.12 0,00 9.59±0.02 0.05±0,12 0.00 
0 I 9.60 0.00.  0.00 9.60 0.00 0.00 

00 9,60 0.00 0.00 9,60 0,00 0.00 

0 11,24±0,03 -2.24±0.20 3,15±0,06 7.70±0.04 -1,53±0.11 2.88±0,05 
1 I 11,28 -1,81 3.07 7.60 -1 1 81 3,07 

9.60 -1.88 3.07 9.60 -1,88 3.07 

0 12,44±0,04 -3,33±0.14 6.22±0.08 6.11±0,05 -1.21+0,08 5,02±0,06 
2 I 12.64 -2.68 6,10 6.08 -1.73 5.13 

00 9.60 -2.28 5.67 9.60 -2.28 5,67 

0 13.32±0.04 -3.90,15 9.27±0.11 4.73±0.05 -0.90±0,08 6.74±0,06 
3 I 1:3.73 -3,26 9.26 4.78 -1,38 6,76 

00 9.60 -2.38 8.16 9.60 . . 	 -2.38 8,16 

0 13,90±0.03 -3.77±0.16 12.26±0,10 3.57±0.05 -0.60±0,07 8.12±0,08 
4 I 14.50 -3,69 12.53 3.66 . 	 -1.03 809 

Go 9.60 -2.40 10.62 . 	 9,60 -2.40 10.62 
00 
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TABLE 5.11: 	Genetic Parameters in Selected Population of Runs 1, 2 and 3. 	See text for explanation. 

RUN 1 (20 reps.) RUN 2 (50 reps.) RUN 3 
(30, 0,5, 05) (10, 0.5, 0.5) (4, 	0.5, 	0.5) 

Gener- 
ation CLW CLB CLW CLW CLB CLW CLW CLE CLWf  

0 -2.98±0.57 -2.16±0.58 -3.55 -3.13±0.24 -1.90±0.24 -3.20 -2.48±0.23 -1,46±0,26 -2,56 
0 I -2.83 -2,83 -2.83 -2.64 -2.64 -2,64 -2,20 -2,20 -2,20 

Go -2.93 -2.93 -2.93 -2,93 -2.93 -2,93 -2.93 -2,93 -2.93 

0 -4,60±0.58 -1.49±0.55 -1.79 3.31±0.22 -1.78±0.21 -0,80 -2,18±0.15 -0,71±0.16 -0,17 
1 I -4,83 -2.00 -2.00 -4,42 -1 0 79 -1.79 -3,56 -1,36 -1,36 

00 -5.04 -:2,11 -2.11 -5,04 -2.11 -2,11 -5.04 -2,11 -2.11 

0 -4.49±0,48 -0.843±0,40 -1.31 -3,05±0.17 -1,11±0,16 -0,55 -0.70±0,10 -0.31±0,09 0.83 
2 I -5,11 -1,70 -1,70 -4.39 -1.29 -1.29 -3.06 -0.60 -0.60 

00 -5.50 -:1.93 -1.93 -5.50 -1.93 -1,93 -5.50 -1,93 -1,93 

0 -4,17±0.37 -0.59±0.31 -0.87 -2.04±0.13 -0.48±0,13 0,10 -0.03±0,08 -0,23±0,08 0.44 
3 I -4.90 -:1,49 -1,49 -3,72 -0,88 -0,88 -2,01 -0,18 -0,18 

-5.61 -1,89 -1.89 -5,61 -1.89 -1,89 -5,61 -1.89 -1,89 

CLW : joint disequilibriLum within parental (gametic) contributions. 

CLB : joint disequilibrium between parental (gametic) contributions. 

CLWf  : fresh disequilibrium within parental (gametic) contributions. 
00 



TABLE 5.12: 	Genetic Parameters in Selected Population of Runs 4, 5 and 6. 

RUN 4 	(20 reps.) RUN 5 (20 reps.) RUN 6 	(30 reps.) 

Gener- (30, 0.5, 0.0) (30, 0.5, 0.1) (5/25, 0,1/0,5, 0.5) 

at ion CLW CLB CLWf  CLV! CLB cLW CLW CLB CLW f  

0 -3.20±0.34 -2.64±0.26 -2.70 -2.81±0,41 -2,80±0,42 -2.87 -5,26±0.47 -4,22±0.52 -5,32 
0 I -2,83 -2.83 -2.83 -2,83 -2,83 -2,83 -2,65 -2,65 -2,65 

00 -2.93 -2,93 -2,93 -2,93 -2,93 -2,93 -2.93 -2,93 -2,93 

0 -4.85±0.40 -1,29±0.31 -1.63 -4.70±0.34 -1.48±0.42 -2,01 -10,73±0.78 -3.67±0.67 -6,04 
1 I -4.83 -2.00 -2,00 '-4,83 -2,00 -2,00 -6.16 -3.51 -3.51 

00 -5,03 -2.11 -2.11 -5.03 -2.11 -2,11 -5,04 -2,11 -2,11 

0 -5.87±0.39 -1,43±0.35 -1.18 -4.58±0.36 -1,62±0.40 -1.39 -13.60±0.63 -4,26±0,62 -6,13 
2 I -6.18 -1,36 -1.36 -5.35 -1,62 -1.62 -9,41 -4.58 -4,58 

00 -6.59 -1,56 -1.56 -5.74 -1.84 -1.84 -5,50 -1.93 -1,93 

0 -6.68±0.44 -0.65±0,21 -0.64 -3.62±0.32 -1.29±0.28 -0.33 -14,23±0,53 -3.36±0.58 -5.30 
3 I -7,08 -0.89 -0.89 -5.29 -1.38 -1.38 -12.39 -5.39 -5.39 

CO -7,77 -1,18 -1.18 -6,00 -1.76 -1.76 -5.61 -1.89 -1,89 

j 



TABLE 5,13: Genetic Parameters in Selected Population of Runs 7 and 8. 

RUN 7 	(30 reps.) RUN 8 	(30 reps.) 
(30, 0.2, 0.5) 	. (30, 0.8, 0.5) 

Gener- 
ati on 	......,, LW .......... LB CLW...,,..... LB 	.. CLW 

0 -2.86±0.25 -1,64±0.28 -2.86 -1,49±0,17 -1,15±0,15 -1,44 
0 I -1.81 -1.81 -1,81 -1,81 -1,81 -1.81 

-1.88 . 	 -1,88 -1,88 -1,88 -1.88 -1.88 

0 -4.78±0.24 -1.59±0.28 -2.53 	. -1.58±0,14 -0,71±0,13 -0.05 
1 I -3.59 -1.78 -1.78 -2,64 -0.82 -0.82 

CO -3,22 -1.34 

CLW ...... 

-1.34 	. -3.22 	. -1.34 -1,34 

0 -5,25±0.28 -2.10±0,26 -1.92 -1.00±0,14 -0.62±0.11 0.21 
2 I -4.60 -1.92 -1,92 -2.24 -0,51 -0,51 

00 -3,52 -1.24 -1.24 -3.52 -1,24 -1,24 

0 -5,843±0.29 -1.84±0.29 -1.88 -0.80±0,08 -0,35±0,08 0,11 
3 I -b,32 -2,06 -2.06 -1,71 -0.34 -0,34 

00 -:3,59 -1,21 -1.21 -3.59 ...... -1,21 -1,21 



TABLE 5.14: Observed (0) and Predicted (P) reductions of the Genotypic Variance due to Departures from Hardy-Weinberg 

Equilibrium, among selected individuals (cHWt)) 

Run .Number. .1 	. .2..... 3 	.......... 4 	..........5 ............ 6 7 	.. . 	 8 

Model De- 
signation (30,0.5,0.5) (10,0.5,0.5) .(4,O.5O.5) (30,0.5,0.0) (30,0.5,04) (5/25,0.1/0.5,0.5) (30,0.2,0.5) (30,0,8,0.5) 

Gener- 
ation 

O -0.48±0.10 -0.41±0.07 -0.79±0,09 -0,19±0.06 -0.29±0.07 -0.64±0,14 -0,16±0,04 -0.12±0.03 

0 
P 	. -0.10 	..... -0.59 	..... -0.73. -0.10, .-0.10 .... . -0.28 -0.06., .0,06 

0 -0,58±0,08 -0.39±0.07 -0,47±0.09 -0.37±0,10 -0.43±0.10 -1,75±0,24 -0,39±0,06 -0.11±0.03 

1 
P 	.... -0,09 ........ -0.24 ........ -0.54 ...-0,09 	........ -0.09 ......... -0.58 	. . 	 .. 	-0.07 	. 	.. -0.04 

0 -0,37±0.11 -0,18±0,06 -0.26±0.04 -0.36±0.12 -0.16±0.08 -1.32±0.32 -0,37±0,08 -0,09±0.01 

2 
P .. 	-0.08 ......... -0.19 	........ -0.27 .. .... -.0.07 	........ -0.08 	........ -0.89 . 	...... ... -0.08... ....-0.02 

0 -0,43±0.09 -o.:L7±0.04 -0.07±0,02 -0.21±0,05 -0,34±0.09 -1,76±0,31 -0,41±0,08 -0.06±0.02 

3 
P -0.07 -0,13 -0.09 	..... -0,06........... -0.07........... -0.93 . 	 ...Ø,9. 	. -0.02 



there is very little effect of increasing the number of loci on the 

value of joint disequilibrium. When n 2  tends to infinity this ratio 

tends to (n 1-i)/n 1 , indicating that given n 1  the maximum possible 

value that the joint disequilibrium can take, for the same amount of 

genetic variation, is a proportion 1 + 	of its value with n 1  loci. 
ni  

This is illustrated in the results of Table 5.8 corresponding to the 

first generation of selection. The expected ratio of cLW 1  for the 

model of fOur loci to that of 30 loci is 0.78; the observed ratio is 

0.71. The expected and observed ratios for 10 and 30 loci are 0.93 

and 0.90 respectively. Observed and predicted results would not be 

in such close agreement if initial gene frequencies were extreme due 

to the problem of asymmetry mentioned before and to be discussed in 

the next chapter. 

Since gene frequencies are initially at intermediate values we 

expect the genotypic variance to decline due to both gene frequency 

changes and due to the generation of linkage disequilibrium. With 

few loci of large effect, gene frequencies move quickly towards fix-

ation and therefore the amount of disequilibrium quickly tends to 

zero. 	At high frequencies both (I) and oo  overestimate cijw(t) as 

expected, particularly (Ce)  which is bound to breakdown badly when 

few genes are segregating. As the number of loci increases, observed 

and predicted results are in closer agreement. Gene frequency 

changes are predicted with reasonable accuracy but in disagreement 

with theory, the predictions are an underestimate. This is probably 

due to two reasons. 	Firstly the overestimation ofcLW(t)  tends to 

reduce the predicted value of Ap (see5,32) and, secondly, the effect 

93. 
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of drift will tend to increase the decline in heterozygosity. 

The observed reduction in the total genotypic variance due to 

the effect of joint disequilibrium, relative to its value at generation 

0, for rims 1, 2 and 3 is illustrated in Table 5.15, 	The figures in 

the table show the effect of varying the number of loci on the relative 

contribution of joint disequilibrium and gene frequency changes on 

the change in the genotypic variance during the course of selection. 

TABLE :515: 

Observed reduction of total genotypic variance due to joint disequil-

ibrium relative to its value at generation zero. The complementary 

fraction is the relative reduction due to changes in gene frequency 

(ignoring a negligible reduction due to Hardy-Weinberg disequilibrium), 

Run 	 Run 	 Run  

t 	(30,0.5,0.5) 	(1O,O.50.5).., (4aO.5O.5) 

1 0.88 0.72 0.50 

2 •0.76 0,49 0.21 

3 0.63 0.30 0.05 

4 	 0.44 	 0.15 	 0.01 

Table 5.8 also shows the observed and predicted response to 

selection in the three runs. Observed and predicted responses using 

method (I) tend to be in good agreement even in the case of run 3 

where the total genotypic variance is underestimated due to an over- 

(t) estimation of CLW. 	It must.be  emphasized that the agreement is 



95. 

strictly illusory particularly in the case of run 3 in later 

generations. Our prediction of selection response is based on the 

assumption of linearity of offspring-parent regression. This as-

sumption does not hold during the later stages in run 3. After three 

cycles of selection, gene frequencies have reached a value of around 

M. With high extreme gene frequencies the distribution of geno-

typic values is negatively skewed. Since the environmental distri-

bution is assumed to be normal, this leads to non-linearity of 

offspring-parent regression due to inequality of ratios of third to 

second moments for the genotypic and environmental distributions and 

we would expect a higher response to selection downwards than upwards 

(Robertson, 1977c). The skewness of the distribution of genotypic 

values amongst the offspring of the 3rd generation is -0.80±0.04. The 

ratio of the total observed genotypic variance to total observed 

phenotypic variance in generation 3 is 0.24 whereas the observed 

realized heritability is 0.20 ± 0.01. The predictions made using 

method (I) yield a value for the ratio VG/VP of 0.18. Observed and 

predicted standardised selection differentials are 1.32 and 1.40 res-

pectively. Therefore, the underestimation of the prediction of the 

heritability using (I) is compensated by an overestimation in the 

selection differential and hence observed and predicted responses to 

selection at generation 4 are in reasonable agreement. (1,18 and 1.10 

respectively). 	It is interesting to note that even though we have 

a situation of a few genes of large effect at extreme frequencies, 

with additive gene action the non-linearity of selection response does 

not-seem to be very serious. 	For the model of 30 loci, the skewness 

of the distribution of genotypic values in the 3rd generation offspring 



96. 

is -0,02 ± 0,04. 	Observed and predicted standardised selection 

differentials are 1.38 and 1.40 respectively and the ratio of observed 

VG/VP at generation 3 is 038 compared with a realised heritability of 

0.39 ± 0.02, which agrees with the predicted value of 0.40 using method 

M. Gene frequencies for rim 1 at generation 3 reached a value of 

around 0.7. 

The effect of linkage is illustrated comparing runs 1(30,0.5,0.5), 

4(30,0.5,0.0) and 5(30,0,5,0.1). 	Up until generation 2 the equili- 

brium additive variance and the response to selection should be un-

affected by linkage and any differences amongst the runs are probably 

due to sampling. From generation 2 onwards we expect the response to 

be reduced with tight linkage but as it is clear from the results the 

effect in the early generations is indeed very small, even for the 

case of complete linkage. Observed realized heritabilities are shown 

in Table 5.16 illustrating this point further. 

TABLE 5. 16 

Observed realized heritabilities at each generation for different 

values of linkage. 	C refers to the average recombination fraction 

between loci. 

Thinl Run5 RLn4 

(30,0.5,0.5) (3OO.5,0.1) (30,0.5,0.0) 

t 0.5 .0.38 ........ 0.00. 

0 0.50 ± 0.02 0.50 ± 0.01 0.52 ± 0.01 

1 045 ± 0.02 0.44 ±0.02 0,44 ± 0.01 

2 0.43 ± 0,02 0.41 ± 0.01 0,37 ± 0,02 

3. ± 0,02 0.38 ± 0.01 0,33± 0,01 



Observed and predicted results of CLW 
(t)

are in general in 

good agreement, but as expected the predicted values tend to be an 

overestimate. 	The response to selection is predicted reasonably 

accurately with method (I) and in general, with these runs starting 

at intermediate gene frequencies the results from the infinitesimal 

model follow the course of selection in a satisfactory manner, since 

overestimation of CLW partly compensates for the fact that the re-

duction in the total genotypic variance due to gene frequency changes 

is ignored. 

Run 6 (5/25,0.1/0.5,0.5) simulates a model in which the character 

is determined by several genes of small effect at intermediate fre-

quencies and some loci of large effect at low initial frequencies. 

In this run, about 67% of the total genetic. variation at generation 

zero is contributed by the five major loci. This rather extreme 

situation will serve us to illustrate several points which were dis-

cussed earlier. From the point of view of the amount of joint dis-

equilibrium generated after a first cycle of selection we would expect 

both methods (I) and (co)  to grossly underestimate the true value due 

to the asymmetry caused by loci at low initial frequencies, in this 

case, the phenomenon being accentuated due to the rather large pro-

portionate effect of such loci. 	In subsequent cycles of selection 

as- these loci move towards intermediate values the amount of disequil-

ibrium should rise steeply. With this model, method (I) should be 

considerably more accurate than (c)  because the crucial factor causing 

the changes of disequilibrium as selection proceeds is the change in 

gene frequencies. 

97. 
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Predictions of selection response in the first generation are 

likely to be underestimated because of the positively skewed distri-

bution of genotypic values due to the major loci at low frequencies. 

The skewness should quickly tend to disappear as the frequency of the 

major loci move away from extreme values. 

These points are illustrated in Table 5.9, where the results 

are in good agreement with our verbal predictions. Notice that the 

predicted value of the equilibrium genetic variance is in reasonable 

agreement with observed results but the joint disequilibrium predicted 

using (I) and especially () is an underestimate. The selection res-

ponse predicted using (I) is again misleadingly accurate (except at 

generation 1), this being due to basically the fact that the over-

estimate of the predicted total genotypic variance is more or less 

balanced out by higher than expected observed realized heritabi].ities 

in view of the non-linearity problem. The observed standardised 

selection differentials in the first and last cycles of selection for 

this rim were 1.38 and 1.39 respectively. 

Table 5.17 gives the values of the skewness of the distribution 

of genotypic values in the offspring generation, the observed realised 

heritabilities at each generation and the observed ratios of total 

genotypic to total phenotypic variance as selection proceeds. 

The table illustrates the fact that as the skewness tends to 

disappear observed and predicted results (h2  and VG/VP) tend to agree 

more closely. 	It is interesting to notice that gene frequency 

changes and the generation of disequilibrium act together in such a 

way that the realized heritability changes little during the course 
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TABLE 5 . 17: 

Observed parameter estimates for Run 6(5/25,0.1/0.4,0.5). 	93  refers 

to the skewness of the genotypic distribution in each offspring 

generation. h2  is the single generation realized heritability. 

I t 93  h2  VG/VP 

0 0.44 ± 0.02 0.54 ± 0.01 0.50 

1 0,27 ± 0.03 0.55 ± 0.01 0.52 

2 0.16 ± 0.02 0.57 ± 0.01 0.57 

3 0.04 ± 0,02 0.60 ± 0.01 0.59 

of selection. Indeed, a very large experiment would be required to 

detect such a change. Upon relaxation of selection, if 75% of the 

disequilibrium breaks down after several cycles of random mating 

the heritability would rise to about 68%. 

A similar model as 'the one in Run 6 but with all loci initially 

at intermediate frequencies would not produce the initial asymmetry 

in selection response or in the generation of joint disequilibrium. 

We would predict such a model to behave in a manner analogous to rim 

1(30,0.5,0.5),. but with gene frequencies, of the major loci moving 

rapidly towards extreme values we would find lack of agreement between 

observed and predicted values of CLW in later generations. This 

overestimate of CLW would more or less balance out the smaller than 

predicted realized heritability and again the predicted response 
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using (I) should be reasonably accurate. 	These verbal predictions 

were confirmed running such a model on the computer. 

Runs 7(30,0.2,0,5) and 8(30,0.8,0.5) in Table 5,10 illustrate 

the problem of asymmetry in the generation of disequilibrium. As 

discussed before, both methods (I) and () underestimate the value 

of CLW when gene frequencies are at low values and overestimate CLW 

at high initial frequencies. 	Due to the non-linearity of offspring- 

midparent regression the response is underestimated at low frequencies 

and overestimated at high frequencies, as discussed before. The 

predictions made under the infinitesimal model are reasonable when 

gene frequencies are below 0.5, but much less so at the other extreme 

situation, as expected. 	In general, the infinitesimal model breaks 

down badly if initial gene frequencies are higher than 0.5 because 

contrary to what it predicts, the amount of disequilibrium generated 

becomes smaller as selection proceeds. As we illustrate in the 

following section, this is due to the fact that the fresh disequili-

brium eventually becomes positive as predicted from our theoretical 

analysis of the two locus model. 	It is interesting to notice that 

in run 7(30,0.2,0.5), gene frequency changes and the generation of 

joint disequilibrium result in an almost constant value for the ob- 

served (and predicted) realized heritability. 	In fact the observed 

realized heritabilities in each cycle of selection are as follows: 

0.52 ± 0.01; 0.50 ± 0.01; 	0,50 ± 0.01; 0.50 ± 0.01, 	The equil- 

ibrium additive variance however changes from its value of 9,57 ± 

0.01 at t0 to 13.91 ± 0.03 at t4 and therefore if linkage equilibrium 

were restored, the realized heritability corresponding to that value 

of Vg 
(4) 
 would be about 60%. 



Genetic Parameters in Parental Generation. 

Tables 5.11 to 5.14 show the observed and predicted values of 

disequilibria.. for the various rims. The previous analysis of the 

two locus model allows us to make the following verbal predictions: 

(1) At low gene frequencies, we expect CLW f  < CLB and the opposite 

should hold at high gene frequencies. 

At Intermediate gene frequencies, CLB and cLW f  should take 

similar values. 	 - 

As gene frequencies reach extreme high values, we expect 

the fresh disequilibrium to become positive. This pheno-

menon is not allowed for in the predictions made under 

methods (I) or M.  

With increasing number of loci, the discrepancy between CLW 

and CB should tend to be smaller. 

Point (I) is illustrated in rims 7(30,0.2,0.5) and 8(30,0.8,0.5) 

in table 5.13. 	In run 7 as gene frequencies move towards intermediate 

values, CLB and CLW f  tend to be in closer agreement. Table 5.11 shows 

that with larger numbers of loci', the discrepancy between CLW f  and 

CLB as selection proceeds is reduced. 	In both runs 2(10,0.5,0.5) 

and 3(4,0.5,0.5) CLW f  > CLB, and CLW f  does Indeed become positive at 

the last stages of selection, particularly in rim 3 where gene fre- 

quencies have reached high extreme values. 	In rim 8(30,0.8,0.5), 

which assumes high initial frequencies, CLW f  becomes positive very 

quickly though the absolute value reached is smaller than in the case 

of run 3(4,0.5,0.5) presumably due to the smaller proportionate effect 

of the loci. 	Gene frequencies at the 3;';-  parental generation in 	run 

101. 
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8(30,0,8,0,5) have reached a value of about 0,94. 

With very tight linkage we expect CLW f  to move relatively more 

quickly towards positive values. A comparison between runs 

1(30,0.5,0.5) and 4(30,0.5,0,0) shows that this effect is indeed 

very small. 	The values of CLB for run 1(30,0.5,0.5) at generations 

2 and 3 are rather small but standard errors are large. 	In fact, 

another run of the same model using a different random number 

generator produced the following results for CLB and CLW f  respectively 

for generations 0 to 3: (-2.55 ± 0.41; -3.10); (-1.78 ± 0.40; 

-1.46); (-1.30 ± 0.30; -1.33); (-1,30 ± 0.34; -1,21). 

The effect of Hardy-Weinberg departures on the genotypic variance 

amongst selected parents is shown in Table 5.14. From (5.38) and 

(5.39) we expect aIW to be smaller at extreme gene frequencies and 

larger at intermediate frequencies. Furthermore, for a given amount 

of genetic variation, CHW should increase with decreasing number of 

loci. These points are illustrated in the different runs in Table 

5.14. 	It will be noticed, however, that unless the number of loci 

is small, the value of CRW predicted using (5.38) underestimates the 

true value. This is partly due to the finiteness of the population. 

It can be shown that in a population of size N, with random mating 

and no selection the expected frequency of the three genotypes at 

single loci is as follows:. 

- 	AA 	 As. 	 as. 

2p 	 (1- )2 - (l-p) 
• 	• 2N 	 '2p(1-p) 	............. 2N 

12N 	 £2N 	 12N 



In other words, in finite populations we expect an excess of 

heterozygotes and this implies a negative value for %W.With 

n loci, the covariance of gene frequencies within loci due to 

finite size, Dw, is: 

n 	 2 	
Z(l.P) 
____________ 

	

= E f(AiAi) - Pi = - 2N-1 - 
	 (540) 

In our previous discussion of genetic parameters in the offspring 

generation we ignored the reduction in VG due to departures from 

Hardy-Weinberg equilibrium due to the fact that this reduction was 

virtually negligible. However, it should be mentioned that the 

value of CHW in the offspring generation was consistently negative 

in all runs and in good agreement with (5.40) above. 

DiscUSSiOn. 

In this chapter we have attempted to describe the changes in 

variance due to selection under a variety of genetic models and at 

the same time see to what extent the infinitesimal model gives a 

good prediction of such a change. We have seen that provided gene 

frequencies are initially at more or less intermediate values and 

gene effects are small, the infinitesimal model is in good agreement 

with observed results, at least in the first few generations of 

selection studied here. 	In. models in which gene frequencies are 

extreme and/or gene effects large, predictions are in poorer agree-

ment, particularly at high frequencies. 

Method (I) was derived more or less empirically and we' have 

103. 

shown that it predicts the course of selection with reasonable accuracy 
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provided again, that gene frequencies are not extreme. Under 

this method, the effect of gene frequency changes on joint dis-

equilibrium is allowed for and has been clearly illustrated in 

run 6(5/25,0.1/0,5,0.5) where loci had widely different selective 

values. At extreme gene frequencies however, the disequilibrium 

generated and the realised heritability are estimated with little 

accuracy but as we have seen, these two biases are of opposite sign 

and therefore, in general, the response to selection is predicted 

with misleading accuracy. 

It might be thought that the models used are rather restricted 

in that only one intensity of selection and one value of herit-

ability were used. The results of the different runs though, 

were shown simply to illustrate the theory developed in earlier 

sections and to show how the various parameters Interact. It 

should be clear, however, that with smaller heritabilities and or 

lower selection intensities the relative reduction in variance is 

smaller and furthermore, the predictions made under the infinitesimal 

model are more accurate. 	This is illustrated in Table 5.18 wh'ere 

the predicted and observed values of joint disequilibrium and res-

ponse to selection are shown for a run equivalent to run 1(30,0.5, 

fl_a' 

0.5) but with h 	0.30. 

If h2  is further reduced to 20% and 50% are selected each 

generation (100/200 of each sex) the difference between method I and 

() is even smaller and predicted and observed results for all genetic 

parameters studied here agree remarkably well. 	In fact, in such a 

model, the observed response at generation 4 is 2.61 ± 0.10 and the 

predicted results using (I) and (°) are 2.60 and 2.61 respectively. 



TABLE 5.18: 

Observed and predicted results of joint disequilibrium (CLW) and 

selection response (R) for a run equivalent to rim 1(30,0.5,0.5) 

but with initial heritability of 0.30. Observed results are the 

average of 30 replicates. 

t CLW H 

0 -0.08 ± 004 0.00 

O I• 0.00 0.00 

Co 0.00 0.00 

O .-044 ± 0.06 1.46 ± 0.04 

1 I -0.42 1.47 

-0.43 1.47 

O -0.49 ±0.06 2.74 ± 0.05 

2 I -0.55 2.78 

-0.57 2.79 

O -0,50 ± 0.06 3.98 ± 0.05 

3 I -0.58 4.01 

Go -0.61 4.06 

• 0 -0.42 ± 0,06 5.13 ± 0.05 

4 I -0.57 5.19 

-0.62 5.33 
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Gene frequencies in this run moved from 0.50 to about 0.58 in the 

four cycles of selection and the relative change in the total 

genotypic variance due to joint disequilibrium relative to its 

value at generation zero is: 0.90; 0.74; 0.72 and 0.64 for 

generations 1 to 4. 	In this rim and the one in Table 5,18, the 

agreement of observed and predicted response is not a spurious one; 

this agreement is a reflection of,(1) accuracy of prediction of gene 

frequency changes and the generation of joint disequilibrium and 

(ii) lack of asymmetry of selection response. 

Raving devoted considerable effort in attempting to understand 

the dynamics of gene frequency changes and the generation of joint 

disequilibrium, it is natural to ask how important are these changes 

from a practical point of view. Some idea of this can be obtained 

from the results in Tables 5,8 to 5.10. 	In order to be more precise 

though, we can ask how important are these changes in variance due 

to selection relative to variation of response to selection that we 

observe in replicated selection experiments of short duration. 

Over the last ten years a considerable body of theory has been 

developed to describe the variance among replicated selected lines 

in short-term experiments (see Hill, 1977, 1980 for references). 

This theory is approximate in that it assumes no changes of variances 

as selection proceeds and therefore it will hold better, the shorter 

the duration of the selection process and the larger the number of 

genes affecting the trait. Without intending to review this theory, 

it should be enough to say that the variation in response between 

different lines sampled from the same base population is basically 

due to sampling of individuals chosen as parents, which produces 



variance between lines in mean due to binomial sampling of genes 

(genetic drift) and variance between replicates of the within line 

variance, the latter being mostly due to linkage disequilibrium 

provided the number of loci is larger than the population size and 

having an effect of the same order of magnitude as the former 

(Avery & Hill, 1977; Hill, 1977). 

In order to get a feel for the relevance of changes o:f, geno-

typic variance as selection proceeds, we now compare the empirical 

standard deviation of the response to selection with the difference 

between the observed response (R(0)) and the one predicted on the 

assumption of no changes of genetic parameters. We also include, 

out of interest, predictions of the standard deviation of response 

based on formulae by Hill, though it must be clear that these pre-

dictions are not definite since the number of replicates used in 

these simulations are not in general large enough to study second 

order moments. The results are shown in Table 5.19. For simplicity 

runs 4 and 5, which involve linkage, have been omitted; no appreci-

able difference in variance of response or mean response could be 

detected between runs 1(30,0.5,0.5) and 5(30,0,5,0.1). 	Run 

4(30,0.5,0.0), with complete linkage, showed larger variance of 

response as predicted from theory. We also include in Table 5.19 

a measure of the extent to which the predictions of selection response 

made under the infinitesimal model are an improvement over those 

made ignoring any changes of genetic parameters. The measure of 

this is the ratio of the absolute value of R 	R(Ø) /(tR(1)  - 

where R ( ,)  and R(0)  are defined before, R (1)  is the observed response 

at t1 and ER is the observed cumulative response. 	If this ratio 
ii 
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TABLE 5.19: 	SDR(0) : observed standard deviation of selection response 0 	SDR() : predicted standard. 

deviation of R based on the following formula due to Avery & Hill, 1977. 

V(R) 	(1-h2(1-0.2-p)) + ti 2h4VP(14h2)2r2 , where 2r2  = 0-for t1; 2r2  = 	for t=2 and 
R()  

as a rough approximation, 2r 
2 
 =2/3N for t>2 (Avery & Hill, 1979). 	V = tR 11 -ER1  ; W 	

R(0) 

= 
''1 

Run 9: 30 loci; 
q(0) 

= 0.5, VG 
(0) 

= 15, h2°  =0.2, c = 0.5 for all loci. 	100/200 selected in 

each sex. 	16 replicates. See Text for Explanation. 

Run 1 Run 2 Run 3 Run 	6 Run 7 Run 8 Run 9 
t 	. (30,0.5,0,5) (10O.5,Q.5) .(40.5,0.5) (5/250,1/0.5,0.5) (30,0.2,0.5) (30,0.8,0.5) 

SDR(0) 0.54 0.39 0.30 0,40 0.31 0.30 0.20 
SDR(P) 0.36 0.36 0,36 0.36 0.29 0.29 0.17 

V 
W 

SDR(0) 0.65 0.55 0.38 0.74 0.46 0.34 0.23 
SDR(P) 0.73 0.73 0.73 0.73 0.58 0.58 0.25 

2 
V 0,52 0.81 . 	0.97 -0,29 0.08 0.74 0.06 
W 	. .. 0.01. 031 . 	. 	.5.00....... 6.87 . 	. 0.33 

SDR(0) 0.76 0.54 0.41 :1,02 0.58 0,31 0.35 
SDR(P) 0.81 0.81 0.81 0.81 0.65 0.65 0.30 

V 1.31 2.00 2.78 -1,00 0,18 1.90 0.08 
W 0.02 . 	0.19 0.49. . 	.3,19 ..... . 	6.17 	. 0.75 0.25 

SDR(0) 0.81 0.59 0.24 1.10 0.55 0.35 0.40 
SDR(P) 0.94 0.94 0.94 0.94 0.75 0.75 0.35 

V 2.45 3.77 5.40 -1,93 0.33 3,40 0.15 
W 	. 0.16 0.34 	.. . .0.61 .... 2,67 .......... .4,97 .... 0.74 ...... 0.00 

I-. 
0 
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is smaller than 1, the predictions made under the infinitesimal 

model are better than those made on the assumption that genetic 

parameters do not change, the opposite holding if the ratio is larger 

than 1. 

A general glance at the table shows that once again the results 

are very much model dependent. 	In runs 1(30,0.5,0.5) and 2(10,0.5, 

0,5), the changes of genetic paraliEters have a more or less clear 

effect on selection response at generation 3. 	In run 3(4,0.5,0.5) 

where genetic parameters change rather dramatically, these changes are 

likely to be detected at generation 2. In all these three runs, W 

shows that the predictions made under the infinitesimal model improve 

our prediction of selection response. 	In run 6(5/25,0.1/0,5,0.5) 

where the variance of response is considerably increased due to the 

presence of loci of large effect, changes of genetic parameters are 

more difficult to detect. The negative value of V indicates that 

contrary to the prediction made under the infinitesimal model, the 

genotypic variance increases as selection proceeds due to the effect 

of the major loci moving towards intermediate values. The large 

value of W gives further indication of the lack of accuracy of these 

predictions With this model. 	Run 7(30,0.2,0.5) shows 'a similar 

general picture. 	In run 8(300.8,0,5), when gene frequencies are 

very extreme, the variance of response is reduced and the effect of 

parameter changes on response is more easily detectable, though as 

in runs 2(10,0.5,0.5) and. 3(4,0,5,0.5), most of the changes are due 

to gene frequency changes. Run 9 illustrates an interesting 

situation, in that with low selection intensity and genes of small 

effect, although predicted and observed results •agree remarkably well, 
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the changes of genetic parameters are so small relative to the 

standard deviation of response that they are not likely to be easily 

detected. 

The figures in the table show that, in general, the prediction 

of the variance of response is in reasonable agreement with observed 

results except in the models where gene frequencies move quickly to- 

wards fixation or, in the case of run 6, where major loci move towards 

intermediate frequencies. The simple expression based on the re-

duction in variance in the absence of selection, t VG ° IN, gives 

results similar to those obtained using Hill's approximation, as 

suggested by Hill (1977) and Robertson (19771,). 

When population size is small and many loci of small effect are 

being selected, most changes in the equilibrium additive variance will 

be due to inbreeding. Computer runs made with population size of 

about 10 (5 males and 5 females) and selection intensities of 50% 

have shown this to be the case in agreement with theory (Robertson, 

1960). The correlation of gene frequencies as selection proceeds 

however, does not seem to be affected by the size of population though 

the amount of joint disequilibrium generated decreases with smaller 

population size, presumably due to higher changes in heterozygosity. 

The computer results suggest that the following expressions can be 

used to describe the process: 

Vg 	= Vg (l -) (t) 

and assuming no linkage, 

cijw (t) = 	
. i(i_X.r) VG 2(t). + 

a2 ( t) 



as before, where 

VG(t) = vg(t) + CLWt) .  

The selection response at generation t being, 

R(t) = 
	

I VG 1/a. 
J=O 

These expressions are checked in table-5.20 where a model equivalent 

to run l(3O0.50.5) was used, except that 5 out of 10 individuals 

in each sex were selected as parents in each generation. The pre-

dicted results agree fairly well with observed results. 

'TABLE 5.20: 

Observed and predicted genetic parameters when Nja/ is small. The 

model assumes 30 unlinked loci, h2°  = 0.50; VG (0) = 15 5/10 

selected in each sex. 	0: observed results (40 replicates), 

P: predicted results. 

.. 	.Vg ..... LW ....,....., R,, 

0 13.83 ± 0.05 -2.79 ±0.57 2.09 ± 0.04 
P 14.25 -2.31 2.03 

0 13.18 	0.06 -2.21 ±0.65 3.61 ±0.05 
2 

P 13.53 -2.78 '3.70 

0 1244 ±00R -2.47 ± 0..5 5..07 ±0..05 

P 12,86 -2.77 5.25 

0 11.77 .t 0.09 -2.15 f 0.54 6.46 t 0.06 
P 12.20 -2..63 '6.71 
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Table5.21 shows the relationship between the reduction in 

variance and the variance of response to selection under this model. 

TABLE 5.21: 

SDR(0) : observed standard deviation of response. 

V = t R 1  — ER1 	, w , 	 , where R(P) 	R(0)are 

predicted and observed responses respectively. 

t 	
SDR(0) 	1.37 

2 	 V 	 0.57 

:0.19 

SDR(0) 	1.63 

3 	 V 	 1.20 

w' ......... 0.l5 

SDR(0) 	1.85 

4 	. 	V 	 1.90 

0.13 

TT. J.. 	.a.t. J 	 ..I. I 	 I 	— 	 I a - .a. 	 ._I .$ 1.. 
- 	U&U.L 	 I. £D I. £'J.&L .?.L .&J. V 	 WJU.LA  I.a 

required to detect changes of genetic parameters at generation 4 and 

many more to detect changes in early generations. The W' values 

indicate that our predictions reflect the course of selection fairly 

accurately. 

The above analysis shows that it is not easy to make very 

general statements about the importance of changes of genetic parameters 



during short term selection programmes, because as we have shown 

the results are very much dependent on the model used. Provided 

gene effects are not large and gene frequencies not extreme, with 

reasonably high h2  and population size, changes of genetic parameters 

will be considerably larger than the standard deviation of selection 

response after 3 or 4 cycles of selection. 	In these cases, the pre- 

dictions made under the infinitesimal model will be fairly accurate. 

With low initial frequencies, as illustrated in runs 6 and 7, the 

effects of gene frequency changes and the generation of joint dis-

equilibrium tend to oppose each other and the total genotypic vari-

ance changes very little during the first few cycles of selection. 

The detection of changes in the variance under such a model would 

require relaxation of selection which should expose the changes 

brought about by the effect of gene frequencies moving towards inter-

mediate values. 

Probably the most general important feature of this work is 

that it highlights  the fact that the reduction in variance of 

quantitative traits due to the generation of joint disequilibrium 

should not be omitted in short-term selection studies. 
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CHAPTEP. 6 

EFFECT OF DIRECTIONAL SELECTION ON QUANTITATIVE DOMINANT MODELS 



Introduction 

The purpose of this chapter is to study the approximations made 

under the infinitesimal model when the character is affected by a 

finite number of loci exhibiting non-additive gene action. As we 

did in the previous chapter, we shall concentrate attention upon 

short term responses and we shall ignore problems of drift and in-

breeding depression. 

If a character is assumed to be determined by an effectively in-

finite number of independent loci, the regression of offspring on 

parent is linear and homoscedastic whether or not there is dominance. 

In this case the expected response to selection for high or low value 

of the trait is perfectly symmetrical and the amount of disequilibrium 

generated is the same in each direction. (Bulmer, 1971). With a finite 

number of loci, the presence of dominance can cause the regression to 

be non-linear and the variability about the regression line to be no 

longer constant. As is well known, the expected response to up and 

down selection of the same intensity is no longer symmetrical even if 

gene effects are small (i.e. Kojima, 1961) and furthermore, as we shall 

show, the amount of joint disequilibrium generated in each direction is 

different in magnitude. 	In other words, expression (3.22) which we 

have used previously involving second order terms in a/a is no longer 

accurate in the presence of dominance. In fact as we have shown in 

previous chapters, this expression is only accurate enough with additive 

models at intermediate frequencies. Extreme frequencies cause signifi-

cant departures between observed and predicted results, this being 

accentuated with larger gene effects. 
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In order to have a theoretical framework against which we can 

interpret the simulation results, we shall first briefly review the 

asymmetry in mean response when selection operates on a dominant 

model. We shall then study the changes in the genotypic variance 

due to gene frequency changes and due to the generation of joint dis-

equilibrium. 

Asymmetry in Response in a First Cycle of Selection 

This problem has been recently studied by Robertson (1977c) and 

Mäki-Tanila (1980). Following Robertson we can study the relationship 

between progeny values and parental values at two different stages: 

(1) the change in gene frequency in the parents for a given phenotypic 

change, and (ii) the functional relationship between offspring mean and 

gene frequency. Consider the following single locus model, 

A1A1 	A1A2 
	

A 2 A 2 

Frequency 	p2 	2p(l-p) 	(1-p) 2  

Value 	 a 	 d 	 -a 

Assuming normality it can be shown that the change in frequency of the 

A. allele after one cycle of selection can be approximated by the 

following expression:. 

= 	ap(l-p) + 
	

( ct 2p(1-p)(1-2p) - 4adp 2 (l-p) 2) 	 (6.1) 
2 2   

where a is the average effect of a gene substitution at the locus, 

equal to a + d(1-2p)(Falconer, 1960). This expression reduces to the 

one obtained by Latter (1965) when d =0, Notice that the second order 



term vanishes when the intensity of selection is 50% or, with com-

plete dominance (d = a), when initial gene frequencies are equal to 

1 - 1/y'-2'(i.e. about 1/3). At this value of gene frequencies, the 

genotypic distribution is symmetrical with the two genotypic values 

equally frequent. 

With this model, the population mean, M, is M(p) = -a(1-2p) + 

2dp(l-p). If the gene frequency changes from p to p + Ap, we can 

expand in a Taylor series to get, 

M(p+p) = M(p) + Ap M ,  (p) + JAP2M''(p) +i.. 

= M(p) + 2pa - 2ãp2d 	 (6.2) 

This shows that the relationship between gene frequency and mean, when 

both sexes are selected, is not linear and therefore the response to 

selection is always asymmetrical. 	If dominance is complete, the 

second order term in (6.1) is negative (unless gene frequencies are 

smaller than 1-1//) and so is the term in tp 2  in (6.2). Prediction 

of selection response using the linear term in (6.1) will tend to over-

estimate the expected response. When selection is for a recessive, 

the second order term in (6.1) is positive (unless initial frequencies 

2 
are very low or very high) and so is. the term in Ap in (6.2). 	In 

this case the prediction of selection response based on the linear term 

in (6.1) will underestimate the expected response. 

If selection operates in one sex only, males say, the mean can be 

written, 

M(pm) = -a(1-pm-p) + d(pm+p-2pm p) 
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where pm is the frequency in males and p is the frequency in females. 

Therefore, 

dM(pm) = 
a + d(1-2p) 

dpm 

• d2M(Pm) - 
2 

dpm 

Since the second derivative is zero, the expected response to 

selection in the first generation will be symmetrical, or equivalently, 

the regression of offspring on single parent will be linear, when the 

second order term in (6.1) is zero. 

We shall now proceed to, show some numerical results in order to 

illustrate the consequences of the presence of dominance on gene fre-

quency changes. Table 6.l shows observed, and predicted values of 

gene frequency changes for different initial gene frequencies and 

proportionate effects. The exact results, p(E), are obtained from 

the technique described in the Appendix. 	p(l) refers to predictions 

made using the first order term in (6.1), whilst tp(2) corresponds to 

results obtained using (6.1). 

When gene effects are small the predictions made using p(2) are 

in excellent agreement with exact results, provided gene frequencies 

are not too high. In agreement with theoretical expectations, the 

first order term. tends to overestimate the change in gene frequency 

when dominance is complete, though observed and predicted results agree 

fairly well at low initial frequencies. At higher values of 	ob- 

served and predicted results'are in poor agreement, particularly the 

predictions made using the first order term. At intermediate gene 

frequencies, p(l) overestimates the observed results by almost 40%. 
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TABLE 6.1: Observed and predicted values of /p for a single locus 

model with complete dominance. 	tip(E) 	exact results ob- 

tained from numerical integration; p(l) predicted values 

using first order approximation; p(2) : predicted values 

using expression (6.1). 

Initial Gene Frequency..,... a 

0.1 0.3 0.5 	. 0.7 0.9 
a 

p(E) 0.027 0.058 . 	 6.063 0.044 0.009 

0.20 	APM 0.025 0.059 0.070 0.059 0.025 

tp(2) 0.026 0.058 0.064 ... 0.004 

tp(E) .0.071 0.138 0.134 0.068 0.010 

.0.50 	tp(1) 	. 0.063 0.147 0.182 0.147 0063 

.tp(2) 0.070 0.146 0.146  

These results illustrate the fact that predictions of expected 

selection response, in the presence of dominance, are likely to be sign-

4 -f4 	less accurate than for completely addItIve models 	We shall 

pursue this point further in the simulation work that follows. 



Gene frequency changes. 

Consider the following model of two loci, A and B, with two 

alleles at each locus, 

A 1 A 1 	
A 
1  A  2 	

A 
2  A  2 	

B 1  B  1 	
B 
1  B  2 	

B 
2  B 

 2 

2 	 2 	2 	 2 
Frequency 	p 	2p(l-p) 	G-P) 	q 	2q(l-q) (1-q) 

Value 	a1 	d1 	-a1 	 a2 	d2 	-a2  

The population mean, M, is: 

M = -a1(l-2p) + 2d1p(l-p) - a2 (1-2q) + 2d2q(1-q) 

With Hardy-Weinberg equilibrium, the total genotypic variance, VG, 

under this model, can be shown to be 

VG = 2p(1-p)c + 2q(1-q)cL + (2p(l-p)d 1) 2  + (2q(l-q)d2) 2  

+ 4 1a2D + 8d1 d2D2  cL  (6.3) 

D is the disequilibrium parameter, as before and a 1 (i1,2) is the 

average effect of a gene substitution at theith  locus. The first two 

terms represent the equilibrium additive variance, Vg; the second two 

terms represent the dominance variance, VD. 	The fifth term in (6,3) 

is the covariance of average effects of genes between loci within 

parental contributions, cLW, and the last term can be shown to be equal 

to twice the covariance of dominance deviations between loci. We can 

then write, 
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The change in frequency of allele A 1 , say, is given by, 

Ap = 	 + f2 (W2-W)} 
TV 

where, as before, 

ix T 
= Q(l + (i.-M) + —(Vw. + (-M) 2)} 

.IXT 
TV = Q(l + —j {Evw 1  + Z(M) 2 f}) = Q(l + 	VG) 

20 	I 	I 

(6.5) 

(6.6) 

(6.7).  

The variance within gametic phases, Vw 1 , can be shown to be 

given by the following expressions, 

Vwl  = (a1-d1) 2p(l-p) + (a2-d2) 2q(l-q) + 2D(a1-d1)(a2-d2) 

Vw2  = (a1-d1) 2p(l-p) + (a2  +d2 )
2 
	+ 2D(a1-d1)(a2+d2) - 

(6,8) 

Vw3  = (á1+d1) 2p(i-p) + (a2-d
2)

2q(1-q) + 2D(a.+d1)(a2-d2) 

Vw4  = (a1+d1) 2p(l-p) + (a2+d2) 2q(l-q) + 2D(a1+d1) (a2+d2) 

All these expressions reduce to (Vg + CLW) if d1  = d2  = 0. Using 

(6.8), (6.7) and (6,6) and substituting in (6.5), it can be shown that 

the second order approximation for the change in gene frequency of the. 

two locus model with dominance is, 

1 	 ix 	 2 	2 	2 
Ap =( 1p(1p) + c 2D) + —j(p(1-p) (1-2p)a 1  - 4a1 d1p (l-P) 

CY 	 2a 

+ ct(l-2q)D - 4a2 d2q(1-q)D + 2ct1 c 2 (1-3p)D - 8d1 d2pD2  

+ 2D{(a1-d1) (a2+d2)p - 2d2 (a1-dl) (pq4D) 1) 	 (6.9) 
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This expression reduces to (6.1) when D = 0 and further it reduces 

to (5.9) when d 1  = d2  = 0. 	Ignoring the second order term in (6.9) 

and linearising the relationship between genetic mean and gene frequency, 

the response to selection from loci A and B is seen to be, 

R = (2p(l-p)c1 + 2q(l-q)c + 4ci 1 ct2 	cr D) = ih2  (6.10) 

It is clear that this is strictly an asymptotic result which should 

hold provided gene effects are very small. This restriction is much 

more severe in the presence of dominance than under complete additivity 

as is illustrated in the simulation work at the end of this chapter. 

The generation of joint disequilibrium. 

In this section we deal with problems of asymmetry in the gener-

ation of joint disequilibrium with dominance models. Our approach 

is to show that third order moments in a/cl are required to explain 

the reduction in variance due to joint disequilibrium and that the 

asymptotic value given by the expression derived on the basis of the 

infinitesimal model is attained very slowly. We shall assume that 

the population is initially in Hardy-Weinberg and linkage equilibrium. 

The model we use is the two locus dominance model defined In the pre-

vious section.. 

From the third order Taylor series expansion of expression (3.8) 

it can be shown that the relative probability of selection of the 

1th genotype is given by: 
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.2 
W. 	 . 	 lx.., 	 ,i(x -1) 

= 	+ .(X. .-M) + 	
2 + 	T  -d 1 	 (6.11) 

TV 	w 	13 	 13 	 6 	i 

Replacing (6.11) in (5.2) which describes the relative selective ad-

vantage of the th  gametic phase, W/W,. it can be shown that, to third 

order terms: 

ix 	 i(4l) 
= ${l+ (X _M) + 	+ (-M)2 + 6c 

Y3 	1(3) W 	W 	 2c1 

+ 3(X 1-M) Vw1  + (X1-M) 3)} 
	

(6.12) 

where X1  is the mean of the 
1th  gametic phase; VW is given by (6.8) 

th and 1(3) is the third moment from the mean of the i gametic phase, 

defined as follows: 

Jj(3)  = 

Assuming initial linkage equilibrium, the disequilibrium parameter of 

selected individuals and their offspring, D' , is 

f  = 	
4(W 1W - W4,W,) 	 (6.13) 

.1 

Substituting. (6.12) in (6.13) we obtain, 

2 	 ix 
D 1  = 	{( 1-M)(X4-M) - (XM)(XM)}ff 

2 
ix 

2  - (X2-M) - (X-M) 2  + (X4-M)2)f1f4 + 
	

{(X-M)(XM) 
2c 



+ (11-M) 2 (X4-M) - (12-M)(X3-M) 2  - ( 2-M) 2 (X3-M) + Vw 1 (X4-M) 

XT 
- Vw2 (X3-M) - Vw3(X2-M) + Vw4(X1-M)}f1f4 +6CY 

	
p1(3) 

- '2(3) - 11 3(3)  + 114(3) 
 + 3(Vw1(11-M) - 
	

- Vw3 (X3-M) 

+ Vw4 (X4-M)) + (X 1-M)- (
1
2 -M) 3  - (-M)3 + (X4-M) 3} f] f4  

(6.14) 

Expression (6.14) as it stands is clearly not very informative. The 

terms of order 
()2 

 can be shown to equal 

2 	
ct
i t,  ( 1-p)c 2q(l-q), 

Cr 

of the same form as (3.20), obtained by Hill and Robertson (1966) 

who assumed additive gene action. 

A little insight into the third order term can be obtained by 

assuming that dominance is complete (d 1  = a1) and that gene effects 

and frequencies are the same at both loci. Under these assumptions, 

(6.14) reduces to 

2 2 	2 	ix(xTi)_l 	3 2 	2 
D 	

= 	
2 a p (1 P)+ 
	

8a p (1-p) 
a 	 a 

{(l-p)(l-2p) - p1 (6.15) 

The third order term in (6.15) vanishes when initial gene frequencies 

are equal to 1-11V, in other words, when the genotypic distribution 

is perfectly symmetrical. For other values of p, the sign of this 
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term depends critically on the selection intensity, in marked con-

trast with the first term in (6.15). When the highest 20% are 

selected, if gene frequencies are low, the absolute value of ó1) 

using the second order approximation is underestimated whilst the 

opposite holds if gene frequencies are higher than 1-11V. With a 

completely recessive model such that d = -a, the third order term 

can be shown to equal 

ixT(xi) - 1 
8a p {p(1-2p) + (l-p)} 

which. vanishes when p = 11IL If one locus shows complete dominance 

and the other complete recessivity, the third order term becomes 

ix(xT_i) 	1 

- 	
8a p(1-p)(1-2p). In other words it vanishes 

a 
when the genotypic distribution is symmetrical. 	In the absence of 

dominance, with a completely additive model of equal effects and 

frequencies, the third order approximation for the disequilibrium 

parameter generated after a single cycle of selection is given by 

the following expression 

(1) 	-'( '-XT)  2 2 	2 	iXT(xTI) - 
	

3 2 
D. 	

= 	2 	
a p (l-p) + 
	

a p (l-2p) 
a 	- 	 a 

When gene frequencies are initially smaller than 0.5, the second 

- 	 term is negative and the opposite holds if gene frequencies are 

higher than 0.5. 	We therefore expect larger absolute values of 

disequilibrium at low frequencies than at high frequencies.. At 

intermediate frequencies, when the genotypic distribution is sym-

metrical, the second term vanishes and we expect the second order 

approximation to describe the process - with good accuracy. The 
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problems of asymmetry of disequilibrium with an additive model, 

raised in Chapters III and V are formally explained in terms of the 

above expression. 

We now produce some numerical results to illustrate some of 

the points of this section. We assume a model of complete dominance 

and we study the effect of varying the number of loci affecting the 

trait and the initial gene frequencies. The equilibrium additive 

variance and the total phenotypic variance are fixed for all the 

number of loci and gene frequency combinations, this being achieved 

by varying the environmental variance for different values of the 

dominance variance. The results are shown in Table (6.2) where, we 

compare observed (0) and predicted (P) values using expression (6.15). 

Observed results are obtained by numerical integration as described 

in the Appendix. 

The results show that unless gene frequencies are in the vicin-

ity of 1 - l/J, expression (3,22) is indeed very inaccurate. 

Furthermore, the asymptotic value is attained very slowly indeed. 

The predictions made using (6.15) are in excellent agreement with 

exact results provided gene frequencies 'are not much higher than O5. 

At high gene frequencies,: particularly with small number of loci, 

the predicted values are very inaccurate. This is probably not en-

tirely surprising since with complete dominance and very high fre-

quencies the genotypic distribution should be markedly irregular and 

probably higher order moments should be invoked to describe the pro-' 

cess more accurately. 

The reason for the lack of agreement between observed and pre-

dicted. results at high gene frequencies can be perhaps clearly 
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TABLE 6.2: 

Observed (0) and predicted (P) values of joint disequilibrium 

generated in a first cycle of selection with initial Hardy-Weinberg 

and linkage equilibrium. We assume a completely dominant model with 

Vg =4, 	40 and the top 20% are selected. The asymptotic value 

of joint disequilibrium for n (number of loci) tending to infinity is 

calculated from: CLW = 
	 Vg = -0.156. 

n 0.1 

Initial Gene 

0.3 	0.5 

Frequencies 

0.7 0.9 

0 -0.206 -0.139 -0.091 -0,034 -0.000 

10 	P -0.206 -0.143 -0.090 0.020 0.861 

(ct/J) 0.24 0.15 0.14 0.15 0.24 

0 -0.190 -0.149 -0.119 -0.072 -0.000 

30 	P -0.190 -0.151 -0,120 -0.054 0.404 

(a/a) 0.14 •0.09 0.08 0.09 0.14 

.0 -0.176 -0.154 -0.137 -0.106 -0.010 

100 	P .  -0.176 -Ô.155 -0,137 -0.101 0.146 

(a/a) 0.07 0.05 0.04 0.05 0.07 

0 -0.156 -0.156 -0.156 -0,151 -0.128 

10,000 	p -0.156 -0,156 -0.155 -0.151 -0.126 

(/) 001 0.00 0.00 0.00 0.01 
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understood by studying the accuracy of the selective values obtained 

from the first, second and third order expansion of the normal dis-

tribution, for different standardised deviations from the population 

mean. 	This is illustrated in Figure 6o1. 	For values of 

larger than 1, the third order approximation overestimates the exact 

selective value by about 8%.  The bias is relatively more severe for 

negative deviations from the mean. 	At (X-M)/cT = -1, the over- 

estimation is of about 54%. This has drastic consequences in the pre-

diction of changes in gamete frequencies and the amount of disequili- 

briuin generated. 	For example, to take an extreme situation, with 

10 loci and gene frequencies of 0.9, the deviation of the genotypic 

value of the double recessive is of -4.67 standard deviations which 

leads to a very high overestimate of its selective value. Changes 

in the gamete frequencies are predicted very inaccurately, so much so 

that the predicted disequilibrium parameter takes a positive value. 

The general conclusion that we draw from this theoretical ana-

lysis is that predictions of joint disequilibrium generated by 

selection based on the infinitesimal model are unlikely to hold in 

the presence of dominance, unless the number of loci affecting the 

trait is assumed to be very large. 	In subsequent cycles of selection, 

predictions of joint disequilibrium are likely to become more in-

accurate. 



FIGURE 6.1: 	Selective values (Wij) approximated using first, second and third order expaions of the 

normal distribution, expressed as a proportion of selective values obtained from numerical 

integration of the normal distribution. 	(Proportion selected: 207o). 
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Simulation Studies. 

The Computer Programme andGenetic Models. 

The basic structure of the programme is the same as in the case 

of the additive models, the minor alteration now being the incorpor-

ation in the programme of an arbitrary value of the dominance de-

viation, d, at each locus. 

The partitioning of the total genotypic variance in the off-

spring generation merits a brief comment. We are interested in 

estimating the equilibrium additive variance and the degree of joint 

disequilibrium generated, since these are the two components involved 

in the prediction of the expected response to selection assuming that 

the values of offspring and parent follow a bivariate normal distri-

bution (expression 6.10),. From a practical point of view we want to 

know the efficiency with which this expression predicts the expected 

response to selection, how accurately we can predict the way its com-

ponents change as selection proceeds and provide satisfactory explan-

ations in case observed and predicted results are not in good agreement. 

In the offspring generation, before selection operates, we cal-

culate the gene frequency at each locus. Assuming Hardy-Weinberg 

- 	 eq uJ. .i.i. urj. u.uL, we uu L.dLM WI C 	.LIU .e 'Ja. L41V 	 .& .I. '.1.2. 

substitution at each locus and this. gives us a means of obtaining an 

estimate of the equilibrium additive variance, Vg. The assumption of 

Hardy-Weinberg equilibrium is a reasonable one since selected indi-

viduals mate at random and as was mentioned in the previous chapter, 

departures from equilibrium due to finite population size are very 

small, of the order of 1/2N. 	The joint disequilibrium, cLW, is 

129. 
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estimated by subtracting the equilibrium additive variance from the 

variance of breeding values between individuals. 

This approach was checked in a different version of the programme, 

relaxing the assumption of Hardy-Weinberg equilibrium. Genotype fre-

quencies were obtained for each locus and average effects of alleles 

obtained by least squares (i.e. Kempthorne, 1957). 	The variance of 

breeding values obtained in this way was compared to the one obtained 

before and the results were virtually unchanged. 

The genetic parameters of the models studied are summarized in 

Table 6.3. 	In all cases, the highest 40 out of 200 individuals of 

each sex were selected and all runs assume 30 loci with free recombin-

atión. When d = a, dominance is complete; -when d = -a there is com-

plete recessivity and when d = 0 there is no dominance. The runs are 

identified by their gene frequency and degree of dominance. For 

example, run 4 is designated 0.5/d = a, -a, implying that the model 

assumes initial gene frequencies of 0.5, 15 loci show complete domin-

ance and the remaining 15 loci show complete recessivity. The para-

meters in the models were chosen to illustrate and check the theory 

that-  has been developed in the earlier sections of this chapter. 

Thus, we have a range of gene frequencies which will indicate the 

problems of asymmetry in mean and in the generation of disequilibrium 

as selection proceeds. 



TABLE 	Initial Genetic Parameters of the Models Studied 

Run Designation 
of Run 

Gene 
Frequency 

Proportionate 
Effect 

Degree of 
Dominance 

Vg h2  

1 o.:I/ca 0.1 0.27 d= a 17.50 040 

2 0.293/da 0.293 0.20 da 24.85 0.50 

3 0.5/da 0,5 0.18 &a 15.00 0.50 

15 loci,da 
4 05/da1-a 0.5 0.18 15.00 0.50 

- 15 loci,d-a 

• 	

• 15 loci,da 
5 0.5/da,0 0.5 0.18 • 15.00 0.50 

15 loci,d0 

6 07/da 0.7 	• 0.14 da 4,54 0.24 

(4 
I-I 



Results andDiscuSsion 

The results for the first cycle of selection for the different 

models are shown in Table 64. 

In contrast with the predictions of selection response and 

joint disequilibrium, the change in gene frequency, which is re-

flected in the value of the equilibrium additive variance, is pre-

dicted fairly accurately in all models. The lack of agreement 

between observed and predicted values of joint disequilibrium and 

selection response is as expected from theoretical considerations. 

At very low initial gene frequencies we expect,. in the case of a 

completely dominant model, to underestimate the value of joint dis-

equilibrium attained after a first cycle of selection. This is 

illustrated in model 0.1/da. The observed value of joint disequil-

ibrium when selection was for the low value of the character of the 

same proportion was -2.26 ±0.21. When initial gene frequencies 

are higher than i-i/V, the predicted joint disequilibrium should 

be an overestimate. This is shown in models 0.5/da and 0.7/da. 

In the former, the predicted result overestimates the observed re-

sult by a factor of 2 and in the latter by a factor of almost 9. 

When the same proportion is selected for the low value of the 

character, the observed joint disequilibrium at generation 1 is of 

-4.66 ± 0.31 and -1.01 ± 0.09 for models 0.5/da and 0.7/da res- 

pectively. 	At intermediate gene frequencies,, when only half of the 

loci show complete dominance (model 0.5/da,0) the discrepancy bet- 

ween observed and predicted results is smaller. 	In the case of no 

directional dominance with intermediate gene frequencies, the change 

132. 



133. 

TABLE6.4: Observed (0) and Predicted (P) values of the genetic 

parameters at generation 1 after a first cycle of selection. The 

base population is assumed to be in flardy-Weinberg and linkage 

equilibrium 	The predicted values for the different parameters are 

obtained from the following expressions 

R = 

i(ixT) 	2 cLw=-4 	v 
2(0) 

CY 

Vg = 2E p(l)i'(l)i a
(1)j . where P (1)  = P (0)  + p, Ap 

being predicted using (6.1). 

refers to the skewness of the genotypic distribution at g (3)   

generation zero. 

Observed results are the average of 30 replicates. 

Model .Vg CLW R g(3). 

O 20.67±0,07 -3.82±0.36 3.86±0.09 0,30±0.02 
O.1/da 

P 20.61 -2.75 3.72 

0.293/ 0 22.75±0.05 -4.33±0.36 4.84±0.09 0.02±0.02 
da P 23.02 -4.82 4.92 

0 11.46±0.07 -1.46±0.20 3.35±0.08 -0.21±0.02 
0.5/da 

P 11.52 -2.93 3.83 

O.5/d7-a, 0 15.34±0.07 -2.98±0.24 3.95±0.09 0.01±0.02 
-a P 15.05 -2.93 3.83 

- 

O.5/da,0 
a 
J 13.14+-0.05   a 	Sa a a a 

.).OU_?_U.0 
a aS a as a 	 a S a 

V.J*-U.0 
as 

P 13.16 -2.93 3.83 

0 3.30±0.04 -0.05±0.09 -1.31±0.05 -0.46±0.02 
0.7/da P -3.31 -0.43 1.46 
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in gene frequency per unit change in phenotype is linear and so is 

the functional relationship between gene frequency and genotypic 

mean. Furthermore, the genotypic distribution is symmetrical and 

we therefore expect good agreement between observed and predicted 

results of both, selection response and joint disequilibrium. This 

is confirmed by the results of model 0.5/d=a,-a, 	In model 0.293/d=a, 

the genotypic distribution is symmetrical, the second order term in 

p is zero but the functional relationship between gene frequency 

and mean is not linear. We expect symmetry in the generation of 

joint disequilibrium and slightly higher observed than predicted 

response to selection. - The small discrepancies observed are prob-

ably due to sampling. 

The differences between observed and predicted genotypic means 

after a first cycle of selection are all consistent with theoretical 

expectations.. The heritability used in the prediction of response 

corresponds to the expected value of the estimate that one would ob-

tain by regressing offspring means on selected parents, assuming the 

relationship to be linear, when in fact it is not. 	From (6.2) the 

expected response is given by 2E(p 1ct. - pd1), which, when evaluated 

to second order terms gives us an indication of the degree of bias to 

be expected using the linear term only.. With the exception of model 

O.5/da,-a, the expected response to a first cycle of selection is 

not linear but the departures from linearity are small in models 0.1/ 

da and 0.293/da. Of the models in Table6.4 those which show the 

highest degree of asymmetry are 0.5/da and 0.7/da as expected from 

theory, 
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In subsequent cycles of selection the situation becomes con-

siderably more complicated due to the presence of joint disequili-

brium. If selection is carried out in both directions the different 

• amount of disequilibrium generated in each direction contributes to 

the degree of asymmetry of selection response. If we assume a com-

pletely dominant model with initial gene frequencies larger than 

1 - l/V, from expression (6.15) we expect the reduction in variance 

due to disequilibrium to be larger in the low line than in the high 

line. This is also related to the fact that the equilibrium ad-

ditive variance is a function of p(l-p) 3 , which is larger at low 

values of p. It Is difficult and probably not very meaningful to 

try to separate this source of asymmetry from the one discussed pre-

viously solely in terms of gene frequencies on the assumption of 

linkage equilibrium. However, in a simple minded way, ignoring 

disequilibrium, we expect the single generation realised heritabili-

ties to decrease as gene frequencies move towards high values and to 

increase as they move towards 1 - 1/4. The effect of the different 

degree of disequilibrium generated in both directions is, under this 

model, to reduce the expected degree of asymmetry of selection response. 

Table 6.5 shows the observed single generation realized herit-

abilities, joint disequilibria and correlation of gene frequencies 

for selection in the high and low direction for models O.1/da, 

O.5/da,0.7/da. 	The most conspicuous feature of the results is 

the degree of asymmetry of response to selection and joint disequil-

ibrium between the high and low selected replicates within each 

model. In modelO.1/d=a, the equilibrium additive variance increases 



TABLE 6.5: 	Montecarlo simulation results of single generation realized heritabilities, joint disequilibria and cor- 

relation of gene frequencies within chromosomes for $ cycles of selection. 	(H) refers .to the value of the parameters 

estimated in the high selection and (L) in the low selection. 	The values of h2  at the top of the table correspond to 

the ratio of the equilibrium additive variance to total phenotypic variance in the conceptually infinite base population. 

The values in brackets correspond to the ratio of joint disequilibrium, to equilibrium additive variance in the 

generation in question. The standard error of each heritability estimate is 0.011 , 

[MODEL 0. 1/&a 	h2 :0.40 . 0.5/d4 	h2=0,50 	. 0.7/d=a 	h2=0,24 

t h 11 hL) LW(H) cLW(L) hH) h LW(H) CLW 
. 	
h hL) cLW (fl)  LW (L) 

0 0.41 0,38 0,00±0.26 .0.02±0.23 0.46-:O.55. o,Q7i0.14 -0.34±0.23 .0.21 . 	 0.28 0.03±0,0 0.03±0.07 

-3.82±0.37 -2.26±0.23 -1.46±0,19 -4,66±0.31 -0.09±0.06 -1.02±0.09 
1 0.39 0.29 

(-0.185) (-0.175). 
36 0.55 

(-0.128). .. ,(-0.250) 
0.16 0.16 0,32 

(-0.027) (-0.153) 

-5.07±0.37 -1.52±0.16 ...,20±0j5 -5.98±0.31 -0.04±0.06 -1.78±0.22 
2 0.38 2 0.4 

(-0.22:4) .(-0.16l) . 
2 ,• 

(-0.137). (-0.282) 
. (-0.018) (-0.200) 

3 '0.37 0.18 
-5.57±0.39 -0.58±0.18 :0.24 0.58 

-0.84±0.07 -7,50±0.37 
0.09 0.41 

-0.02±0.06 -2.22±0.22 

............. (-0.2Z17) . , . . (-0.091) .. (-0.126) . . 	 . (-0.331) 	.......  . . 	 (-0.198) 

1 

C3 
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in the up selection from 17,5 to 23.6 as gene frequencies move 

towards 1 - l/V. This effect is counteracted by the sharp in-

crease in joint disequilibrium and as a result of these two factors, 

the single generation realized heritability is virtually unchanged. 

This is a situation where observed and predicted responses to short 

term selection would be in excellent agreement, though a rather sub-

stantial change In genetic parameters is taking place during the 

course of selection. 	In the low lines of this model both selection 

response and the reduction in variance due to Joint disequilibrium 

are considerably smaller than in the high lines. In this case, the 

equilibrium additive variance falls abruptly from its original value 

of 17.5 to a value of 4.0 squared units after 4 cycles of selection. 

In. the other two models where gene frequencies are initially 

higher than 'l - 	the equilibrium additive variance increases in 

the low lines and decreases in the high lines. As expected from 

our theoretical analysis, the amount of disequilibrium generated is 

much larger in the low selected replicates, this effect being con-

siderably accentuated by the increase in the equilibrium additive 

variance. Model 0.7/da is a good example of the low rate of res-

ponse obtained with favourable dominant loci at high frequencies. 

The values in brackets in Table 6.5 correspond to the correlation 

of gene frequencies in each generation. This is a parameter which 

is less affected by gene frequency changes than CLW. The difference 

between the correlation of gene. frequencies in the high and low lines 

within each model is relatively smaller than the covariance of allelic 

effects but the asymmetry persists. 



The conclusion to be drawn from the theoretical analysis and 

the simulation study is that the pattern of selection response and 

the degree of joint disequilibrium generated are very much dependent 

on the genetic model. This model dependence seems to be more ac-

centuated than in the case of additive models. A general statement 

can be made though: in the presence of directional dominance, pre-

dictions of short-term response and particularly of joint disequil-

ibrium from base population parameter estimates are not likely to be 

very precise. 

138. 



CHAPTER 7 

EFFECT OF SELECTION ON HERITABILITY ESTIMATED FROM 

INTRA-CLASS CORRELATIONS 



Introduction 

When records are available on two generations, heritability 

can be estimated using regression of offspring on parent or maximum-

likelihood procedures (Thompson, 1976) and the estimates are not 

affected by selection of parents. 	If records are available on one 

generation only, heritabilities are usually estimated from intra-

class correlation among sibs obtained from an analysis of variance. 

As is well known, selection of parents introduces a bias in this 

estimator (Reeve, 1953; Morley, 1955;, Brown & Turner, 1968; 

Robertson, 1977a; Ponzoni & James, 1978) • The expected value of 

the heritability estimate from intra-class correlations on selected 

data is easily derived from procedures that were first developed by 

Pearson (1903) and later on extended by Cochran (1951), Finney (1956) 

and Tallis (1961) to mention a few. 

Let X and Y be two random variables which follow a bivariate 

normal distribution. 	It then follows that the regression of one 

on the other is linear and homoscedastic. Assume that truncation 

selection is practised on X. Let r, Var(X) and Var(Y) be the cor-

relation between X and Y, the variance of X and the variance of Y 

respectively before selection operates. After selection, a propor-

tion r2  of the variance of Y which is associated with X will be re-

duced by a fraction (l_i(i_xT)),  and the remaining fraction (1-r2 ) 

will be unaffected since it is independent of X. We can then write 

(S)) for the variance of Y in the selected population (Var(Y) 	: 
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Var(Y) 	= Var(Y)(l - r2  + (1 — i(i_xT))r2) 

= Var(Y)(l — i(i_xT)r2) 	 (7.1) 

In a genetic context, let X be the phenotypic value and Y the geno-

typic value. The correlation between X and Y before selection is 

2 	where h2is Z2 the heritability at time 0 and therefore (7,1) 

- 	can be written in terms of parameters before the operation of 

selection as follows: 

(S 0) 	(0) 	 2(0) 
VG ' 	= VG 	(1 - i(i-)h 	.) (7.2) 

where VG 	 and VG 	are the variance of genotypic values before 

and after selection respectively. 

Assuming initial linkage equilibrium, we have shown before that, 

after a first cycle of selection, 

VG 5 ' °  =. vg' 	+ ar 5 ' 0  + rw'°  + ci' ° 	( 73) 

where, ciw'°  = ciS) = _ii(i )VG . 	Under the 

assumption of an infinitenumberof loci, vg' = Vg 	and we 

ignore CHW relative to CLW and CLB, and therefore (7.3) reduces to 

,1 7.2).    - * 	% I%S words,  	a,. 	 +h 	 Aiie-+4r% 4" 

the genotypic variance caused by selection is due to the generation 

of joint disequilibrium. 

Consider a full-sib family structure in which both males and 

females have been selected and mated at random. The variance com- 

ponent within families is not affected in the first cycle of 

selection. The variance component between full-sibs estimates one 



half of the genotypic variance between chosen families and the sum 

of both components of variance estimates twice the gametic contri-

bution of the selected genotypes to the offspring generation. From 

(7.2), the expected heritability is given by, 

	

2 x t = 
	(1 - i(i_xT)h°) 	

(7,4) 
(1 - 

as obtained by Reeve (1953), where t is the intra-class correlation 

between full-sib families. 

According to (7.4), this estimator of h 20  is biased downwards, 

the bias being due to the generation of covariancea within and bet-

ween chromosomes induced by selection. Some aspects of this problem 

have recently been discussed by Robertson (1977a)and Ponzoni and 

	

James (1978). 	It is important to emphasize however that the assump- 

tions that lead to the derivation of (7,4) imply a model of an in-

finite number of loci and that the base population is in Hardy-

Weinberg and linkage equilibrium. Furthermore, this result is 

strictly valid for a single generation of selection and allowance 

for the bias, if at all possible (see Robertson, 1977a),should 

strictly not be extended beyond the first selection cycle as it has 

been inadvertently either suggested or carried out in the literature 

(Rahnefeld et al., 1963; Brown & Turner, 1968; Katz & Enfield, 

1977). With finite number of loci, expression (7.4) is of 

questionable accuracy since it ignores gene frequency changes due 

	

to selection. 	If gene frequencies are not initially at intermediate 

values, we have shown before that the generation of disequilibrium 

is not symmetrical. Assuming additivity gene frequency changes are 
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relatively larger if they depart from intermediate values and 

therefore (7,4) or (7.2) are even less accurate. 

The purpose of this chapter is to investigate both theoretic-

ally and with Montecarlo methods, the problems raised by the estim-

ation of heritability from intra-class correlations with selected 

data using additive models with a finite number of loci. The re-

suits in this chapter may also be relevant in the evaluation of 

selection programmes involving some kind of family selection. Before 

studying the effects of selection, we first investigate the effect of 

correlations between different parts of the genotype in the parental 

generation on intra-class correlations. 

Random Mating - Effect of Disequilibria on intra-class correlations. 

We first :review the effect of linkage disequilibrium in the 

parental generation on the components of genetic variance. The 

disequilibrium could have arisen by chance, or selection or any other 

reason in the past history of the population. At time t we assume 

that the parental population mates at random to produce a very large 

number of offspring which constitute generation t+1. For simplicity, 

we assume a two locus additive model as described in Chapter 5 and 

a full-sib family structure where Var(BFS) and Var(WFS) denote the 

variance between and within full-sib families respectively and VE 

is the environmental variance assumed constant generation to gener-

ation. Avery and Hill (1979), who worked with considerably more 

sophisticated- models, showed that 

Var(WFS)(t+l) = vg(t) + 2 a1a2D(t)(1_2 c) + VE 

Var(BFS)t 	= vg(t) + 2 a1a2D( t) 	 (7,5)• 
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It is clear from these expressions that if loci are unlinked there 

is no contribution from pairs of loci to the variance within full-

sib families. 	The intra-class correlation estimated from (75) 

adequately describes the ratio of the genotypic to total phenotypic 

variance in the population at time t if c = 0. For any other value 

of c, the estimate is biased. 	For example, for c = and using 

notation of earlier chapters, we have, omitting subscript t, 

Vg + 
2 x t = 	

QW 
c Vg+CLW+VE 

(7.6) 

This result also holds for the case of heritability estimates 

based on intra-class correlations between half-sib families. With 

a half-sib family structure, the variance between full-sib families 

is partitioned into two Independent components: the variance between 

half-sibs (Var(HS)) and the variance between full-sibs within half-

sibs (Var(FS/HS)), where, in the case of our model assumptions, 

Var(HS)t1 = g(t) + a1a2D(t) 

Var(FS/HS) (t+l) = vg  (t) + a1a2D(t) 

- - 	 - 	 - 	 W ?im consider 	- 	9 P ,.f , 	 e.eito ,.4 n 	t P 	 fi.ri iiti .1 a - 	 -..---..---.----- ------------------- -------------- 

within loci, due to departures from Hardy-Weinberg equilibrium (D.), 

covariances between loci between chromosomes (DB)  and covariances 

between loci within chromosomes (D) on heritability estimates based 

on intra-class correlations between sibs. We assume that all these 

covariances or disequi].ibria are present in the parental generation 

and that they could have arisen by chance or non-random. mating. The 
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parents mate at random to produce a conceptually infinite number of 

offspring and an analysis of variance is performed in the offspring 

generation. 

Since we are working with an additive model, we can work with 

single genotypes and partition the total variance contributed by 

their gametes into two independent components: the variance between 

gametic means and the variance between gametes within genotypes. 

The former is one half Var(BFS) and the latter is one half Var(WFS). 

This approach leads to considerable algebraic simplicity. 

A complete specification of the genotypic frequencies of the two 

locus model involves, in addition to the disequilibria involving 

pairs of genes, disequilibria among groups of three and four genes. 

Weir (1979) has referred to these various disequilibria as digenic, 

trigenic and quadrigenic disequilibria. We shall now briefly sketch 

the analysis that shows the intuitively obvious result that when we 

are dealing with second order moments such as variances and covariances, 

trigenic and quadrigenic disequilibria cancel but and we are only left 

with disequilibria involving pairs of loci, such as D, DB,  D. 

Consider the usual case of two loci, A and B, with alleles 

A1 (i=l,2) and B(i=l, 2) respectively. Genotypes are formed by the 

union of maternal gametes, A 1 B and paternal gametes, A. Bt,. and 

have frequencies P
AL(p) =  
iJ(m) 	kL(m) 	

In addition to the pairwise dig- 

equilibria which has been referred to throughout this work, we must 

define trigenic and quadrigenic disequilibria. 

With two alleles at each of two loci, there are two independent 

trigenic disequilibria. One involves alleles at the maternal 

(paternal) gamete. in loci A and B and the paternal (maternal) allele 
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at locus A. 	In Weir's notation, this is symbolised, D (= Dr). ij 

The other trigenic disequilibria involves alleles at the maternal 

(paternal) gamete in loci A and B and the paternal (maternal) allele 

at locus B. 	This is, Dj (= D). 	With two alleles per locus 

there are 8 terms in each type which of course, add up to zero. It 

1 .  
is easily shown that, D11=-D 2. =-0 

 1. 
=D 

 2, 
=-D 

 1. 
=D 

 2. 
21=D 

 1. 
11 	12 	12 	21 	 22 = 

-D 2.= 	(= Tr 
	

s ), referring to the fact that the trigenic di 

equilibria involves both loci in the maternal gamete and locus A in 

the paternal gamete. The same applies to the other set which we 

symbolise Tr)( 
B(m) 

With two alleles at each of two loci there is only one inde-

pendent quadrigenic disequilibrium which we symbolise 

Table 7.1 shows the gametic output of the ten genotypes. We 

can write, following Weir (1979), the frequency of each genotype in 

terms of its constituent gene frequencies and various functions of 

the d.isequilibria involved. The gametic means, pooled by the cor-

responding genotype frequencies lead to one half the variance com-

ponent between full-sib families and the pooled variance between 

gametes within genotypes leads to one half the variance within full-

sib families. Following the algebra through, trigenic and, quadri- 

genic disequilibria are seen to cancel out and the variance components 

are expressed in terms of second order moments. 

As an illustration, consider terms involving products of allelic 

effects, a 1  and a2 , at loci A and B.respectively. These terms only 

appear in the variance between gametes within the double. hetero-

zygotes. The genotypic frequencies of the coupling and repulsion 



TABLE 7.1. 	Gametic Output of the Two Locus Additive Model. 

Gametic Output 

Variance Between Gametes AB Ab aB ab 

Genotype Frequency 
a1+Q I(a1-a2) 1(a2-a1) -1(a1 4-

11
2 ) Mean Within Genotypes 

AB/AB P1 i 1 1(a1+a2 ) 0 
ii 

AB/Ab P' 2  1 1 Ia 1 Ia 2 2 ii 

AB/aB P 21 I I 1a2 Iai2 

AB/ab p22 1(1-c) Ic Ic 1(1-c) 0 (I(a +a2))  2_ ca a 
1 	12 .11 

Ab/Ab P 12  1 I(a -a ) 12 0 
12 

Ab/aB P21  Ic 1(1-c) '1( 1-c) Ic 0 (I(a -a 
))2 	

ca a 12 	12 12 

Ab/ab P22  1 1 -Ia Ia 2 
12 

aB/aB P21  1 -I(a1- a2 ) 0 
21 

aB/ab p22 1 1 -Ia 1 Ia 2 
2  21 

' ab/ab P22  1 -I(a1+a2 ) 
22 



double heterozygotes can be written as follows: (we drop subscript 

m and superscript p) 

2211 
LAB/al,) = P 11  =p = p-p)q(1-q) - (l-q)T + qT - (1-p)T  22 	 AB 	AB 	AB 

+ PTB - 11(l_)D() - P(l_P)D(B) + D(A) D(B) 

+ (1-p)(1-q)D + pqD - (l.p)qD - P(l_q)DB +(D)2+(DB)24QD 22 11 

f(Ab'/aB) = 	P = p(l-p)q(l-q) + qT - (l-q)T- (1-p)1 
12 	21 	 AB 	AB 	AB 

+ pT -P(lP)D(B) - 	 + D(A) D(B) - p(1-q)D 

- (1-p)qD + P11DB + (I_P)(I_)D +(D)2+(DB)2+QD 	.12 

From Table 7.1 after some simplification, terms involving a1a2  

are of the form a1a2D(1-20 - ala2DB(12c) and all other higher 

order disequilibria cancel out.. 	Following the algebra through, the 

following partitioning of twice the gametic variance is obtained, 

Var(WFS) t 	= vg(t)_ cHw(t) ) + cLw(t)(l_2 c) - ICLB(t)(l_2c) + VE 

Var(BFS)t 	= (Vg  (t) +  a1w(t)) + cw(t) + JCIB t 

Total : yg(t) + CLW(t)(l_ c) + CLB(t)c + VE 	 (78) 

The total phenotypic variance in the parental generation can be 

shown to be given by, 
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VP (t) = (Vg +Q3W.I.CLW+CIB+V)(t) 

This quantity can differ considerably from the estimate given by (7.8). 

Comparison of Var(BFS) with(7.7)shows clearly that the former 

estimates one half of the genotypic variance between chosen sires. 

The total variance is an estimate of the parental contribution to the 

next generation, (assuming random union of gametes) and therefore the 

effect due to Hardy-Weinberg disequilibrium does not come into it. 

With free recombination, CLW and CLB does not affect the variance 

within families but they have opposite effects on it if c 

In a large population, one cycle of random mating causes both 

CLB and MW to vanish and therefore, assuming c = the heritability 

estimate reduces to (7.6). 

Selection of Parents - Effect'on'Intra-class Correlations. 

Theory. 

In this section we assume that In the parental generation at 

generation t, before selection, there are no covarlances between 

chromosomes (i.e.  CLB= CHW = 0) but there may be linkage diseauili-

brium. Truncation selection is practised among the parents and they 

mate at random to produce a conceptually infinite number of offspring. 

Thus, at generation t, before parents are selected,.. the genotypic 

variance is given by:. VG ('t) = vgt + CLW 	After selection, 

the genotypic variance becomes: 

(t) VG (5,t) = 	(s, t) + W(t) + CLW 	+ 	s,t) + 	(st) 

(s,t) 	(t+l) 	 (t) 
where Vg 	= Vg 	reflects gene frequency changes; CLW 	+ 
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cLw 	= CLW(5,t) is the total allelic covariance within chromosomes,

th  cLw f 	reflecting the fresh disequilibrium generated in the t 

cycle and CLB s,t) + caw  (5t) are the total allelic covariances bet- 
th 

ween chromosomes generated by this t selection cycle. 

An analysis of variance is performed by which the total variance 

among the offspring values is partitioned within and between full- 

sib progeny groups. The necessary parameters are shown in Table 7,2. 

As we did before, we assume additive gene action and we can then 

partition the total variance between gametes into the previous two 

independent components. The variance between gametic means can be 

here regarded as the variance between half-sibs or equivalently, as 

half the variance between full-sibs. After considerable algebra we 

arrive at the following expressions: 

Var(WFS)(t 1 	= ( Vg(0t)_ 	at)) +CLW(t)(l_2c)_ 	+ V  

Var(BES)t' 	(Vg ( 5 t) +  c.Hw(st)) + icLw (t)_  W 14  + imwf(t) + 

Total = vg(8t)  + cIjw(t)(l_c)2 + cTJwf(t) + 	(s,t) + VE 	(7.9) 

A comparison of (7,9) and (7,8) is interesting. Notice that 

the parental chromosomes are uncorrelated before selection operated 

and therefore there is no effect of CLB(S,t)  on Var(WFS). Selection 

of parents immediately leads to the generation, of new sets of dis-

equilibria, which adds on to the already existing disequilibrium 

within chromosomes. This is reflected in the variance component 

between full-sib families which includes all the disequilibria present 



TABLE 7.2: Gametic output of the two locus additive model, The frequencies shown refer to the frequencies 
of the different genotypes after selection operates, in terms of parameters before selection. 

Gametic Output  
Variance between gametes AB - 	 Ab aB ab 

Genotype Frequency  i(a1+a2) "
(42 41) -,(a1+42) Mean within genotypes 

AB/AB 
W 2 	11 

f 	 - 1 (a 1+a2) 0 
W 

AB/Ab 
12  

2f1 f2 	- 
2 

*a2 

AB/aB 2f1  f3
! ia2  a12  

AB/ab 2f1 f4  (lc) ic ic (l-c) 0 ((a1+a2)) 2  - ca1 a2  

Ab/Ab 
22  f22  1. ha1-a2) 0 

A4/áB 
W 23 

2f2 f3 	- jc (l-c) (l-c) c 0 ((a1-a2)) 2  + ca1 a2  

Ab/ab 
24  2f2 f4-- S -a2  

2 
la I 

aB/aB f 3 2 	- 1 -*(a1- a2 ) 0 
w 

aB/ab 2f3  f4 
-a1  Ia22  

sb/sb f42 	M 1 -(a1  +a2) o 
1 

C)' 
0 



immediately following selection. 

Notice that twice the variance between full-sibs minus the 

true genotypic variance in the previous unselected generation is 
Wi4  

equal to (assuming  
w 

(Vg  (5t)  - Vg (t))+ cmv (5t)  + cI lw f t) + ci. (5t)  

In other words, the estimate obtained from the variance between 

full-sibs is considerably biased downwards, particularly with large 

number of loci. 

If the population is initially at equilibrium at t = 0, the 

variance component between full-sib groups at t = 1 is, given (ignoring 

Var(BFS) (1). = vg'° + ci.w (t) 
	

(7.10) 

(since in the first cycle of selection, cLW f  is equal to CLB). From 

(5.36) twice the covariance between full-sib groups becomes, 

2Var(BFS) 	= vg ,0) - 	 which reduces to (7.2) 
a2  (0) 

if gene frequency changes are ignored. 

In general, the variance components within and between full-sib 

groups assuming a model of an infinite number of loci can be shown 

4.__ '- _4.._._ I_,.. 
- .., ft given 

VG2 t)  
Var(BFS) 

(t+l) = 
	 x,) + i(i- 	

. (t) + 
Iciw  (t) 

Var(WFS) (t+') ' VG° + JCLW (t)(i_2 	
+ VE 	 (7.11) 

where, as before,. C is the average recombination' fraction and CLW 
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i(i_xT) 	
2(t) 	 (t cLwt) = - vp(t) VG 	+ (1_)CLW 

 

We now produce Montecarlo simulation results in order to illustrate 

the concepts developed in this section. 

Montecarlo Simulation Studies. 

Table 7,3 shows the simulation results for the various models. 

The details of the parameters of these models are given in chapter 

V. The observed results are obtained by an analysis of variance of 

the Montecarlo simulation results, averaged over replicates. Those 

headed P, are obtained by replacing the observed results, each gener-

ation, in the set of expressions (7.9), assuming W14/W = 1. Com-

parison between these two sets of results can be taken as a check on 

the algebra that lead to the derivation of (7.9). Results headed 

are obtained from (7.11) and ignore gene frequency changes, the 

reduction in variance being solely due to the generation of linkage 

disequilibrium. The table also shows values of single generation 

observed and predicted realized heritabilities, the latter, using re-

suits of the infinitesimal model. Comparison between the estimate 

based on the intra-class correlation at generation (t+l) with the 

realized heritability at generation t gives an. indication or the 

degree of bias introduced by selection of parents. In all the models 

studied, the bias is seen to be of considerable magnitude. 

Table 7.3 shows that even though the predictions of the separate 

variance components based on the infinitesimal model are not strikingly 

accurate, the resultant intra-class correlation gives a rough indi-

cation of its decline as selection proceeds and the degree of bias to 

be expected. 	Unless: models are rather extreme,, such as (4, 0,51, 0,5) 



TABLE 7.3: Observed (0) and Predicted (P, P ) genetic parameters for six additive genetic models. The P 
values are obtained by substituting the observed results in equations (7,9) 	The P values 
are obtained using the results of the infinitesimal model, 	t is the intra-class correlation. 

h2   is the single generation realised heritability. The variance components at generation 0 
are the expected values obtained from the corresponding genetic model. The variance components 
at generation t refers to the analysis of variance of the offspring data of generation t gener- 
ated by parents of generation a, t-l. 	The bias in the intra-class correlation is reflected by 
comparing 2 x t at, generation t+l with h2   at generation t. 	n = number of loci; q = initial 
frequency; c = recombination fraction between adjacent loci. 

Model (n,q,c). .30,0.5, O.5.(20.reps) ...,.... .. . .4, 	0.5, 	0.5 (50 reps) 

t Var(WFS) Var(BFS) 	. 2 x t h2 r  Var(WFS) Var(BFS) 2 x t h2 r  

0 22.50 	. -. 	 . 	 7.50 ........ 0.50 ........ :0.50 ...22.50 ........ 7.50 . 	 0.50 0.50 

O 22.78±0.51 4.47±0.62 0.32 0.45 21.93±0.26 4.24±0.22 0.32 0.41 

1 P 
Go 

' 	 22.50 4.57 0.34 0.45 22.50 4•57 0.34 0.45 

P 22.43 	.... 4.46 	........ 0.33 ................. 21.89. 4.13 	. .0.32 

O 	' 22.76±0.64 4.11±060 0.30 0.43 19.71±0.24 2.81±0.19 0.24 0.32 

2 P 
00 

22.50 . 	 3.93 0.30 0.43 , 22.50 3.93 0.30 0.43 

P . 	 22.12 ' 	 3.50 	. 	. 0.27. . . 	 ............ 19.80. 2.89 0.25 

O 22.09±0.72 3.06±0.41 0.24 0.40 17.24±0.19 2.15±0.13 0.21 0.21 

3 P , 	 . 	 22.50 3.78 	. 0.29 0.43 . 22.50 3.78 0.29 0.43 

P 21.47 ' 	 3.42 0.27 ' '.17,75 '1 098 0.20 

0 20.96±0.63 3.68±0.54 0.30 . 16.37±0.16 1.01±0.12 0,12 - 

4 P 
00 

. 	 22.50 3.75 0.29 ' 	 - 22,50 3,75 0.29 

P 20.91 3.11 	' 	, 0.26 . . 	 16.22 1.03 0.12 I-,  
C.;' 



TABLE 7.3 (Continued):, The standard error of 2 x t is approximately 004 and of h2   is about 0.01. 

Model 
- 	 .... 30,0.5,0.0 30, 0.5, 0.1 

t Var(WFS) 'Var(BFS) 2 x t h2 ' Var(WFS) Var(BFS) 2 x t h2  

0 22.50 7.50 0.50 0.50 22.50 7.50 0,50 0.50 

0 22.28±0.49 4,33±0,36 0.32 0.44 23,36±0.43 3.92±0.30 0.28 0.44 

1 P 0  22.50 4.57 0.34 0.45 22.50 4.57 0.34 0.45 

P 22.39 4.27 0.32 	.. 22.44 . .4.35 0.32 

0 19.91±0.48 3.66±0.35 0.30 0.37 21.38±0.44 3.69±0.28 0.29 0.41 

2 Poo  21.04 3.93 0,31 	' 0.40 22.15 3.93 0.30 0.43 

P 20.55 	. . :3.69 ...... 0.30 ............... 21.87 ...... .3.68 	. 	. 0.29 

0 19.75±0.42 2.53±0.25 0,22 0.33 21.50±0.34 3.34±0.31 0,26 0.38 

3 P 
00 

19.99 	' 3,43 '0,29 0.36 22.03 3.70 0,30 0.42 

P 19.31, ..2.65 	. 	. 	 . 	 . .0,24 .............. 21.23 ....... 3.36 	. 	. . 0.27 

0 17,95±0.33 1.97±0.26 0.20 - 20.23±0.38 3,58±0.29 0.30 - 

4 P 
00 

19.21 3.03 	' 0.27 21,99 3.62 0.28 

P 1797 2.02 	-, 	. 	 . .0.20 . 	 . 	 .20.79..... . 	 .3.39 	. 	. 0.28 	. 

1 



TALE 7.3 (Continued): 

Model (5/25,,0.1/0.5,:0.5) . (30,:O.2,.0.5) 

h2  h2  t Var(WFS) ,Yar(BFS) 	.. ,2,x 	t 	........ Var(WFS) ..... Var(BFS) .... 2,x.t 

0 ' 	 . 22.50 7.50- ..0.50 ........ 0.50 .... 1,4.40 	. . 	 4.80, 	. 	. .0.50 	. 0.50 

0 26.02±0.39 5,76±0.44 0.36 '0.56 15.54±0.22 3.26±0.22 0.34 0.50 

1 p co 22.50 . . 	 4.57 0.34 	. 0,45 14.40 2.93 0.34 0.45 

P 28.18 . 	5.81..... 0.36 .......... 15.27. . .3.26 .0.35 

0 29.04±0.52 5.84±0.56 0.33 0.57 15.70±0.22 2.71±0.16 0.30 0.50 

2 Poo  22.50 3.93 0.30 . 	 0.43 14.40 2.52 0.30 0.43 

P . 	 29.57. ..5.62 	..... 0.32.. . 	 . 16.00 . 	 2.83 0.30 

0 30.92±0.66 5.92±0.43 0.32 0.60 16.18±0.23 2.70±0.16 0.28 0,50 

3 P00  22.50 	' 3,78 	' 0.29 0.43 14.40 2.42 0.29 0.43 

P 31.10 5.86 	. .0.32 16.44 2.79 0.29 

0 30.82±0.52 6.23±0,53 0,33 - 16.73±0,22 2.74±0.18 0.28 - 

4 Pa, 22.50 3.75 0.29 . 	 14.40 2.40 0.29 

P 31.25 5.69. 	. .0.31 	. ...... 16,73. 2.87 	. .0,29 

01 



which has relatively large gene effects, most of the decline in the 

intra-class correlation takes place during the first cycle of 

selection. 	This suggests that the predictors available in the 

literature (i.e. Reeve, 1953; Robertson, 1977a)which are a des-

cription of a unique cycle of selection are likely to provide a 

useful guide to the bias of estimates of heritàbilities based on intra-

class correlations in short term selection programmes. 

Discussion andConclusions. 

Selection bias in the estimation of heritability by intra-class 

correlation between sibs has been well established by studies that 

assumed one cycle of selection on models of an infinite number of 

loci. In this work we have attempted an understanding of the prob-

lem with models of finite number of additive loci. As we pointed 

out in early chapters, prediction of the course of selection with 

such models involves expressions which assume knowledge of the num-

bers, frequency and effects of genes affecting the trait and are 

therefore of no .direct practical application. These expressions 

however, provide us with a means of understanding the way the various 

genetic parameters interact in the selection process and the conse-

quences of introducing a family structure into the model. 

We have shown that the variance component within, families is 

not affected by the presence of disequilibrium provided there is 

free. recombination. If this is not the case, the disequilibrium 

already present before selection operates slightly reduces. this 

component of variance. The fresh disequilibrium generated in the 
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new selection cycle only affects the, variance component between 

sibs which is further reduced by half the disequilibrium present 

prior to selection. Both variance components are dependent on gene 

frequency changes and the sign of this effect will depend on the 

initial gene frequencies. The predictions made under the infinite-

simal model are reasonably useful in providing a rough guide to the 

changes and degree of bias of the intra-class correlation during 

short-term selection studies. 

Differences in heritability estimated by intra-class correlation 

and regression methods have been reported in various studies. - 

Higher values for daughter-dam regression estimates for milk yield 

than- those obtained from haif-sibs were published by Van Vleck' and 

Bradford (1965) and in one of two sets of data by Butcher and 

Freeman (1969). More recently, further evidence of higher daughter-

dam regressions than intra-class correlations estimates was provided 

by Dyninicki etal. (1975). 	Van Vleck and Bradford (1965) suggested 

that the difference between both methods of estimation could be ex-

plained by a large genetic maternal effect though this seems to have 

been disproved by work of Lee and Henderson (1969) who showed that 

genetic maternal effects were of little importance in milk production. 

Syrstad(1966) suggested that environmental covariance between 

daughter and dam in the same herd could be a cause of discrepancy 

between both methods of estimation. 

The problem is clearly not settled but it is interesting in 

that it could provide experimental evidence on the existence and 

magnitude of the negative joint disequilibrium, presumably generated 
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Purser (1980) has provided further evidence of lower estimates 

obtained from half-sib correlations than those obtained from 

realised response for various characters in sheep. The intra-class 

correlations were pooled over 7 or 8 generations of selection and 

were compared with estimates obtained from regressions of cumulative 

response on cumulative selection differential. Further estimates 

were obtained from a random bred control line. 

For the characters studied (cannon bone length and medullation 

index) the largest estimate was the one obtained from the unselected 

control, followed by the realised heritability estimate. 	In agree- 

ment with theory, the smallest value was consistently obtained from 

the intra-class correlation estimate. The data published by Purser 

(1980) provide good experimental evidence of the existence of link-

age disequilibrium generated by directional selection. The work 

with Drosophila reported in the next. chapter was specifically setup in 

an attempt to provide further experimental evidence on this point. 



CHAPTER 8 

EFFECT OF DIRECTIONAL SELECTION ON GENETIC VARIABILITY 

- EXPERIMENTS WITH DROSOPHILA 



Introduction.  

One of the most fundamental concepts in quantitative genetics 

is that of the additive genetic variance of a population and its 

related parameter, the heritability, knowledge of which allows us to 

predict the immediate response of the population to selection press-

ure. 	As a consequence of selection, the additive genetic variance 

and the heritability themselves change, and therefore strictly 

speaking, prediction of selection response based on present esti-

mates of heritability are only valid for one cycle of selection. 

These changes of genetic parameters due to selection are a 

consequence of changes of the frequencies of the genes affecting 

the trait and due to the generation of joint disequilibrium gener-

ated by selection. The magnitude of the changes of frequencies 

of genes depend on the number, effect, initial frequencies and 

linkage relationships between the loci involved., information which 

on the whole is not available to us. 	We are, therefore, unable 

to predict the changes in heritability brought about by selection 

coming from this source and all we can do is to say that if gene 

effects are very small relative to the phenotypic standard deviation 

of the trait, changes in their frequencies are not likely to be 

important during the early cycles of selection. 

The other source of change of genetic parameters comes about 

through the generation of joint disequilibrium. Bulmer (1971, 

1974) has developed a theory which allows us to. predict the magni-

tude of its effect in terms of parameters of the base population, 

before the operation of selection. 	This theory is.based on amodel 

which assumes an infinite number of loci and therefore ignores the 
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changes of genetic parameters due to changes of gene frequencies, 

In Chapters 5 and 6, we have studied the consequences of intro-

ducing a finite number of loci under a range of genetic models, 

on the predictions of changes of genotypic variance based on 

Bulmer's theory, We have shown that, in the absence of dominance, 

the predictions of the generation of joint disequilibrium are 

reasonably accurate, provided gene frequencies are not extreme. 

However, the prediction of changes in the genotypic variance can 

depend critically on the gene frequency distribution in the base 

population. 	In fact, we have shown that with low initial fre- 

quencies, the effect of gene frequency changes and the effect of 

joint disequilibrium tend to cancel each other out and consequently, 

the genotypic variance remains virtually stable during the first 

four generations of selection. 

How important then are the changes of genetic parameters 

likely to be in selection programmes of short duration? From an 

operational point of view, an answer to this question can be obtained 

by comparing predicted responses to selection, based on estimates of 

parameters of the base population, and observed responses (see Wright, 

1977 for a review), though clearly this type of information does not tell 

us anything about the causes determn1ng the agreement or otherwzc 

between these-results. Lack of agreement does not imply that sub-

stantial changes are taking place. Estimates of base population 

parameters from-small samples may be highly variable due to sampling; 

the regression of offspring on parent may be non linear and therefore 

the expected responses to selection in the up and down direction 

will be asymmetrical (Robertson, 1977c); there may be substantial 



maternal effects affecting the trait (Falconer, 1963); there may 

be natural selection opposing artificial selection (Clayton & 

Robertson, 1957a)or there may be problems of scale (Robertson, 

1970c). On the other hand, agreement between observed and pre-

dicted responses should not necessarily lead us to conclude that 

no genetic changes are taking place, since we have shown that the 

effect of gene frequency changes can be opposed by the effect of 

joint disequilibrium and consequently, genetic parameters remain 

fairly stable, at least during the early cycles of selection. 

The experiments reported in this chapter were designed to 

study the effect of short term directional selection on changes of 

the heritability, in particular, those changes associated with the 

generation of joint disequilibrium0 Two experiments of different 

designs were performed, each one rim with two replicates. Essent-

ially both experiments involved a few cycles of selection followed 

by a period of relaxation. Heritability estimates were obtained 

during the period of selection and at the end of the period of 

relaxation. On the basis of the theory developed by Bulmer (1971) 

we anticipate an increase of heritability at the end, of the period 

of random mating due to the breakdown of negative joint disequili-

brium generated during the early cycles of selection. 

In the first experiment the direction of selection was reversed 

each, generation in an attempt to minimise changes of genetic para-

meters due to gene frequency changes and avoid complications intro-

duced by scale effects. The amount of joint disequilibrium should 

accumulate however, regardless of the direction of selection. With 
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a finite number of loci, the reversion of the direction of selection 

may have a small effect on the amount of disequilibrium produced 

each generation, but this effect is not likely to be important unless 

gene effects are very large. 

In the second experiment selection was practised for high value 

of the trait and changes of parameters are then due to both the 

permanent effects of gene frequency changes and due to the temporary 

effects of the generation of disequilibrium. The permanent effects 

on the heritability should be reflected in the estimate obtained at 

the end of the period of relaxation, during which a large proportion 

of the temporary effects should disappear. 

Material andMethods. 

Lines were derived from the Dahomey population which has been 

kept in cages in this laboratory since 1969. 

The character measured was the sum of the abdominal bristles 

on the fourth and fifth segments in males and fifth and sixth seg-

ments in females. 

Flies were reared in standard Edinburgh agar-molasses killed 

yeast medium in which drops of live yeast had been added. All 

cultures were kept at 25 
0  C. 

Two experiments were carried out which we shall designate 

experiment 1 and experiment 2, each one being run with two replicates, 

a andb. 

Experiment 1(a) was carried out in half-pint milk bottles. 

Eggs were-sampled from the cage population with several bottles. 

When the adults emerged, 150 males and 150 females were scored and 
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they constituted generation zero. Two way selection was practised 

by selecting the highest (H) 30 males and 30 females and the lowest 

(L) 30 males and 30 females, 	These two groups were introduced,each 

one in a separate bottle to mate for 48 hours, On the third day, 

flies were transferred into a fresh bottle and allowed to lay eggs 

for 10 hours, The adults emerging from these bottles constituted 

generation 1. Those derived from individuals selected for the high 

value of the character were designated 111; those derived from in-

dividuals selected for low value of the character were designated Li, 

From H]., two way selection was practised once again by selecting 

the 30 highest and 30 lowest of each sex out of a total of 150 

scored from each sex. A similar procedure was followed in Li, and 

therefore, at generation 2, four sets of 300 flies in each set were 

scored and designated as follows. The two way selection originated 

from Hi, yielded H112 and HL2. The two way selection originated 

from Li, yielded LH2 and LL2. 	From HL2, three lines were derived. 

Selection of extremes and random mating within extremes lead to HR3 

and HL3. At the same time, a random sample of 30 males and 30 fe-

males were chosen from EL2 and this procedure constituted the first 

cycle of random mating. The offspring of the first cycle of random 

mating was designated HC3. Similarly, from LH2 we generated LH3, 

LL3 and LC3. Random mating was continued for 6 cycles, At 

generation 8, two way selection was practised from HC8 and LC8, and 

the four lines were designated HH9, HL9, LH9, LL9 O  The design of 

the experiment and designation of the lines are shown in Figure &l. 
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FIGTJRE8.1: 	Design of Experiment 1 

a 

4H9 

ML 

L"9 

LL .9 

Lf.2 

I 	 I 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 

Generations 

Experiment 1(b) was essentially similar to experiment 1(a), 

the difference being that flies were kept in vials with the exception 

of the period comprising the 6 cycles of random mating, when flies 

were kept in bottles. While flies were kept in vials, each of the 

30 full-sib families contributed 5 males and 5 females to those 

scored the next generation. Selection was always carried out on 

the basis of the scores of individual flies. 

In experiment 2, eggs were sampled from the cage using several 

bottles. 30. emerging flies of each sex were sampled from the 

bottles and mated in individual vials, one male and one female per 
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vial, 	Ten days later, when the offspring of these flies emerged, 

5 males and 5 females were randomly chosen from each of the 30 

families, These 300 flies were scored and constituted generation 

zero. 	Two way selection was practised by selecting the highest (H) 

and lowest (L) 10% at each extreme, The selected flies, chosen on 

the basis of their individual scores were mated at random and their 

offspring constituted Ill and Ll. 	Line Ll was discarded. 	From Hi, 

300 flies were scored, 10 males and 10 females from each of the 

15 full-sib families and the top 10% selected and mated at random. 

This procedure was repeated and lead to H2 and H3. At generation 

3, from H3, three lines were started. 	Two way selection lead to 

H4 and L4, whereas random sampling of one male and one female from 

each full-sib family from H3 and subsequent random mating produced 

C4, which constituted the offspring of the first cycle of random 

mating in vials. 	In addition to these three lines, flies were also 

sampled from 113 and relaxed in bottles under crowded conditions to 

investigate the possible regression of the mean during the period 

of random mating. At generation 7, two way selection was practised, 

together with random sampling of 7C and this constituted H8, L8 and 

CS. These three lines were derived from the line that was relaxed 

in vials. Both experiment 2a and experiment 2b were run in the 

same way. The design and designation of the lines are summarised 

in Figure 82, 
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FIGURE 8,2: 	Design of Experiment 2. 
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Results. 

Estimates of Parameters of the Base Population. 

Base population parameter estimates are shown below, The 

means and phenotypic variances are obtained from over 1,200 ob-

servations in each sex. The heritability estimate based on off-

spring mid-parent regression (with parents selected at both ex-

tremes of the distribution) is obtained by pooling 7 independent 

estimates. The full-sib estimate is obtained by pooling two in-

dependent estimates. 
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Males 	 Females 

	

Mean 	Phenotypic 	 Mean 	Phenotypic 
variance 	 variance 

	

33,61 	7,84 	 38.95 	'9,11 

Heritability 

Offspring mid-parent 
regression 	_____- 	0.35 t 0,02 

Twice 
Intraclass correlation 

between full-sibs - - -- - 0.38 ± 0.07 

Total Variance 

Vg - 	- - - - - - - 	3..13t0.21 

Within fly variance - - - - 	.3.98:t 0.16 

Not accounted for - - - - 	1,37 

The 'developmental error' variance was estimated from the mean 

squared difference between scores in both segments. The estimate 

was of about 4 squared units leaving only about-1.4 units to account 

for true environmental and other non-additive genetic components. Notice 

however, the close agreement between the heritability estimate based on 

offspring mid-parent regressions and the one obtained from intra- 

class correlations between full sibs, suggesting that common environ-

mental variance and non-additive genetic variance are not important 

sources of variation in this experiment. 
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Results Of Expérimént 1. 

Means and variances for each sex at generation zero, based on 

150 observations, are shown below for each replicate. 

Replicate 	 Males 	Females 

Mean 	 33.81 	38.42 
1 (a) 

Phenotypic variance 	8.73 	12.81 

Mean 	 32.91 	38.53 
1(b) 

Phenotypic variance 	7.53 	8.83 

Table 8.1 shows the difference between the high and low lines 

and the sum of the standardised selection differentials of the high 

and low lines during the course of the selection programme for both 

replicates of experiment 1. 

The standardised selection differentials are smaller than the 

expected value of 2.8 and they are consistently smaller in experiment 

1(b) than in the other replicate. 	The smaller selection differentials 

in 1(b) reflect the degree to which spare flies had to be used due 

to the occurrence of unsuccessful matings. 	In 1(a), all selected 

flies were introduced in a bottle and therefore no record of indi-

vidual flies were kept. 

Table 8.2 shows the single generation realized heritabilities, 

the genotypic variance and twice the intra-class correlation between 

full-sibs (in the case of experiment 1(b)) during the selection pro-

gramme, The single generation realized heritabilties were obtained 

from the ratio of the divergence over the sum of the selection 

differentials,. The genotypic variance was estimated by multiplying 



TABLE 8.1: 

Sum of intensities of selection for high and low selected lines 

(i) and the divergence, for both replicates (X - XL). 	S.E. of 

divergence obtained from Hill (1972a), 

Generation 

i 

Experiment 1(a) 

(X.-XL) 

Experiment 1(b) 

i 	 (E_XL) 

Hi/Li 2.71 2.69±0.38 2.38 2.05±0.34 

HH2/HL2 2.68 3.84±0.38 2.64 2.46±0.34 

LH2/LL2 2.71 1.83±0.30 2.54 1,94±0.31 

11H3/HL3 2.75 4.47±0,36 2.59 2.61±0.33 

LH3/LL3 2.75 3.25±0.35 2.61 252±0.32 

HH9/HL9 2.67 3.52±0,37 2.51 2,03±0.31 

LH9/LL9 2.70 2.72±0.34 2.54 2,71±0,34 

169. 



170. 

TABLE 8.2: 

Single generation realized heritabilities (h2), genotypic variance 

(VG) and twice the intraclass correlation between full-sib families 

(2xt) for both replicates, obtained from analysis of variance cor-

responding to the generation shown in brackets next to the estimate. 

VG estimated from the product of the realized heritability times 

the phenotypic variance, the latter estimated from the analysis of 

variance in the case of experiment 1(b). Standard errors of h2  

obtained from Hill (1972a). 	St errors of VG obtained from the 
4 	*2 	4 	o*2 	 *2 	*2 

square root of a Var(h ) + h Var(a ), assuming h and a are Un- 

correlated. 	Standard errors of 2tc obtained from Fisher (1941). 

Generation 

Experiment 1(a) 

- 	 VG 	h2  

Experiment 

VG 	h2  

1(b) 

2xt 

0.24±0.13(Hl) 
0 3.231-0.51 0.30±0.04 2,54±0.39 0.31±0.04 

0.25±0,13(Ll) 

0. 35±0.15(HH2) 
Hi 4.47±0.53 0.47±0.04 2.83±0.46 0.36±0,05 

0.48±0.15(11L2) 

006±0.08(LH2) 
Li 1.83±0.32 0.26±0.04 1.93±0.35 0.25±0.04 

0.30±0.14(LL2) 

0.29±0.14(11H3) 
HL2 4.73±0.52 0.56±0.04 2.66±0.71 0,35±0.05 

0. 37±0. 15(HL3) 

0. 49±0. 15 (LH3) 
L}12 3.33±0.43 0.41±0.04 2,49±0.42 0.34±0.05 

0.59±0.14(LL3) 

0. 54±0. 15 (HB9) 
HC8 3.97±0.49 0.44±0.04 2.22±0.40 0.31±0.05 

0. 31±0. 14(HL9) 

0.27±0,14(LH9) 
LC8 2.92±0.41 0.35±0.04 3.09±0.41 0.33±0.04 

0. 54±0. 15(LL9) 



the estimate of the realized heritability by the contemporaneous 

estimate of the phenotypic variance. 

The critical comparisons that should provide evidence for 

the build up of disequilibrium during selection are between the 

estimate at generation 0 and both estimates at HL2 and LH2. The 

standard errors are not small but neither replicate show any decrease 

in the genotypic variance or the heritability. 	Furthermore, there 

are no signs of an increase in genetic parameters during the period 

of random mating. 

Another source of evidence for the build up of disequilibrium 

should come from a comparison between the realized heritabilities 

and twice the'intra-class correlations. We expect the latter to 

be smaller due to the negative bias introduced by selection in the 

parental generation. With the possible exception of the estimates 

of generation ill and Li, a general glance at the table shows no 

indication of any detectable effect of disequilibrium. The equiv-

ocal nature of these results, together with information coming from 

Montecarlo simulation' studies stimulated the development of experi-

ment 2. 

• Results of Experiment 2. 

Estimates of means and variances from each replicate at gener-

ation zero,, based on 150 observations for each sex are shown below. 

Table 8.3 shows the standardised selection differentials and 

the response to selection for both replicates. 
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TABLE 8.3: 

Standardised selection differentials (i) and selection response (H) 

for experiment 2. 	The response is obtained by the difference in 

mean between one generation and the mean of the preceding generation. 

Standard errors of response obtained from Hill (1972b) assuming para-

meters do not change. 

Generation Experiment 

I 

2(a) 

R 

Experiment 2(b) 

i 	 R 

LL -1.60 -2.32±0.40 -1.83 -2,28±0,40 

Hi 1,74 1.20±0.40 1.52 1.90±0.40 

H2 1.70 2.54±0.40 1.87 2.12±0.40 

H3 1.67 0.76±0.40 1.70 2.45±0.40 

H4 1.75 1.78±0.40 1.78 2.93±0.40 

TA -1,68 -0.82±0.40 -1.62 -2.54±0.40 

H8 1.58 0.71±040 1.62 6.72±0.40 

L8 -1.72 -1.70±0.40 -1.50 -5.68±0.40 
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Replicate Males Females 

Mean 33.16 39.28 
2 ( a) 

Phenotypic variance 8.24 7,29 

Mean 33.19 38,78 
2(b) 

Phenotypic variance 6,92 10,37 

The observed selection intensities are, in general, somewhat 

smaller than the expected value of 1.75 obtained from normal tables. 

The response to selection is smaller and more erratic in experiment 

2(a) than 2(b), 

Table 8.4 shows estimates of single generation realized herit-

abilities and genotypic variances obtained from the product of the 

realized heritabilities and their contemporaneous phenotypic vari-

ances estimated from the analysis of variance, and Table 8.5 shows 

estimates of heritabilities obtained from intra-class correlations 

between full sibs and their corresponding variance component between 

families for both replicates of experiment 2. 

The general picture is one of remarkable disagreement between 

both replicates. 	In the case of replicate (a), the single zener- 

ation realized heritabilities show an irregular pattern during the 

first four cycles of selection. This replicate does not show an 

increase in genetic parameters during relaxation, suggesting that 

any effect of the breakdown of disequilibrium, if any, was too small 

to be detected. The results of the variance components between 

families are consistent with those obtained for the realized herit-

abilities and the genotypic variance in that the pattern of change 
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TABLE 8.4: 

Experiment 2: Estimates of single generation realized herit-

abilities (h2) and genotypic variances (VG), obtained as in Table 

8.2. 	Standard error of h2  from Hill (1972b). 

Generaticai 
Experiment 2(a) 

VG 	 ii 

Experiment 2(b) 

VG 	Ii 

0 2.96±0.46 0.38±0.05 3.63±0.52 0.42±0.04 

Hi 4.34±0.75 0.52±0.08 3.44±0.78 0.38±0.06 

H2 1.24±0.55 0.16±0.07 4.48±1,04 0.46±0.10 

H3 2,28±0.40 0.26±0.04 5.83±0.61 0.45±0.03 

C7 2,08±0.36 0.26±0,04 7.66±0.74 0.59±0.03 
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TABLE 8.5: 

Experiment 2: Estimates of heritability based on intra-class 

correlation between full sib families (2t) and corresponding 

	

variance components between families (c). 	Standard errors of 

t from Fisher (1941); standard error of a obtained from the 

square root of 

2  2 {(MSB) 	+ 	(MSW) where 
f 

2 n +1 	n (n-1) +2 , 
n 	f  

n: number of observations per family 

flf : number of families 

MSB: mean square between families 

MSW: mean square within families 

Generation 

Experiment 2(a) 

2t 	 2 

Experiment 

2t 

2(b) 

Hi 0.11±0.11 0.51±0.08 0,25±0,17 1.15±0.10 

Li 0.27±0.17 0.93±0.09 0.23±0.17 0.91±0.09 

ff2 0.40±0.20 1.52±0,11 0.38±0,20 1.85±0,12 

H3 0.20±0.15 0.88±0.09 0.33±0,19 2.14±0.13 

ff4 0.21±0.15 0.96±0.09 0.34±0.19 2.38±0.14 

L4 0.10±0.10 0.40±0.07 0.07±0.08 0.27±0.06 

C7 0.11±0.10 0.45±0.07 0.56±0.20 3.61±0.16 

ff8 0.11±0.10 0.49±0.08 0.29±0.18 2.19±0.13 

L8 0.21±0.15 0.88±0.09 0.23±0.17 1.17±0.10 

Cumulative Res- 
ponse on cumulative 
selection differ- 	0.36±0.03 0.41±0.03 
entia]. (gens 0-H4) 
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is irregular and the value at generation C7 has not increased re-

lative to its value at generation H3. 

The single generation realized heritabilities in replicate 

(b) remain fairly stable during the first four cycles of selection,. 

During the period of random mating, there is a marked increase in the 

genotypic variance and in the heritability and this result is substan-

tiated by a considerable increase in the variance component bet-

ween full-sib families at the end of the period of relaxation re-

lative to its value at generation H3. In marked contrast with 

replicate (a), this replicate showed a considerable increase in the 

variance components between and within families during the cycles 

of selection. 

During the period of relaxation, flies were sampled from the 

vials in each replicate, from which the mean was estimated. The 

data (see Table 8.6) clearly show that there is no regression of 

the mean during the relaxation of selection. 

At generation 7 flies were sampled from the line relaxed in 

bottles and reared in vials for one generation. At generation 8, 

C8, the mean was estimated for both replicates. These means do 

not differ from those obtained from the lines relaxed in vials, 

suggesting that there must be rather weak evolutionary forces holding 

the mean in its original position and further, that natural selection 

does not seem to oppose artificial selection in this short term 

selection experiment. 	The results are summarised in Table 8.6.  
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TALE 8,6: 

Means for both replicates during the period of relaxation. The 

last value corresponds to the estimate of the mean from the lines 

relaxed in bottles. 

Generation Replicate (a) Replicate (b) 

H3 40.94 ± 0.17 42.40 ± 0.20 

C4 41.32 ±0.41 42,35 ± 051 

C5 40.95 ± 0.38 41.72 ± 0.56 

C6 40.32 ± 0.38 41.52 ± 0,52 

C7 40,94 ± 0.40 42.18 ±0,51 

C8 41.55 ± 0.38 42.32 ± 0.54 

CS (relaxed in 41.02 ± 0.42 42.83 ± 0.42 
bottles) 

Discussior. 

Before discussing the results we shall briefly justify the two 

different designs of experiments 1 and 2. 

Experiment 1 was designed in an attempt to keep gene frequency 

• 	 -- 	- 	- - 	- .1 -.._ 	 1•. ___. •I 	- - - £ 	3 	-' 
IJ 	UILLIJ.WUJU. 	 I l W4.J.J. U 	 '.. 

divergent selection followed by a second cycle of divergent selection 

starting from the Hl and Li lines is equivalent to a process in which 

selection is practised in one direction and in the following gener-

ation, the direction of selection is reversed (see Figure 8,1). The 

heritability estimate at generation 0, obtained from the divergence 

of Hi and Li should in principle, be compared with the estimates at 

177. 
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HL2 and LH2, these estimates having.been obtained from the divergence 

of H113/11L3 and LH3/LL3 respectively, 	Gene frequencies at generation 

zero and at both HL2 and LH2 should be more or less similar but the 

two cycles of selection should have caused disequilibrium and this 

should lead to a reduction of the heritability at HL2 and LR2. We 

also expect an increase in the heritability estimate at generations 

HC8 and LC8 after the various cycles of random mating, on the assump-

tion that the reduction at HL2 and L112 was due to the generation of 

linkage disequilibrium. 

In marked contrast with experiment 1, experiment 2 was designed 

in a straightforward fashion and gene frequency changes were not 

controlled, 	1n fact, a higher selection intensity was applied (10% 

rather than 20%)  and one way selection for high abdominal scores was 

practised for three generations. Heritability was accurately esti-

mated at generation zero, at generation 3 and finally at generation 7, 

after the four cycles of random mating. A comparison of the estimate 

at generation 3 with the estimate at generation 7, should provide 

evidence for the effect of the breakdown of disequilibrium which was 

generated during the three cycles of selection. Furthermore, the 

difference between the estimate at generation 7 and at generation 

zero should provide some Idea of the effect of gene frequency changea 

duringthis short term study. 

In experiment I, the results do not suggest that selection has 

generated disequilibrium of any considerable magnitude. Before em-

barking on a description of a genetic model that could account for 

these results, it 1s important to notice that the heritability esti-

mates of the base population obtained from both replicates were 
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indeed very low. 	In fact, the experiment was designed on the 

assumption that the heritability for the sum of the abdominal 

scores in this population was 50%. Our estimates turned out to 

be considerably smaller in both replicates. 	In a large population 

where the heritability is 30%, one cycle of selection of the inten-

sity we used in experiment 1 (20%) is expected to reduce the herit-

ability to about 2776. The effect is very small and not likely to 

be detected. This was realized at the time but notwithstanding 

we decided to continue with the experiment to see "what happened". 

It turned out that basically, "nothing happened". 

The results of experiment 2, however, merit some speculation 

in terms of aniodel that may lead to rather substantial changes in 

genetic parameters, particularly after relaxation of selection, in 

one replicate and none in the other. First of all we want to point 

out that it is unlikely that the increase in heritability in repli-

cate (b) is due to the elimination of lethal factors. 	The design 

we used minimised any effect of natural selection operating between 

families and furthermore, the lack of change in the mean in flies 

reared in crowded bottles during the period of random mating suggest 

that the effect of natural selection opposing artificial selection 

must have been very weak in both replicates. 

The model that we suggest could account reasonably well for 

• this set of results is one in which the character in the base popu-

lation is affected by a few loci of large effect at extreme fre-

quencies and several minor loci at intermediate frequencies. A 

model of natural selection for an intermediate optimum value of the 

quantitative trait, together with uniform mutation rates involving 
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two alleles per locus leads to an equilibrium configuration of 

the kind represented by this model (Latter, 1960). How is such 

a model likely to respond when submitted to selection for high value 

of the character followed by a period of relaxation, as in the case 

of experiment 2? 

First of all there is the effect of gene frequency change on 

the genotypic variance. The plus alleles at very high frequencies 

do not contribute much initially to the equilibrium additive variance 

and their contribution becomes even smaller as upward selection pro-

ceeds 	However, those plus alleles initially at very low frequency 

will make substantial contributions to the equilibrium additive 

variance as they quickly move towards intermediate values. The 

minor genes at intermediate frequencies are not likely to have an 

impact on the equilibrium additive variance of any real importance, 

particularly during the early generations of selection. Therefore, 

the changes in the genotypic variance arising from overall gene fre-

quency changes are likely to be positive due to the overall increase 

in the equilibrium additive variance. 

Secondly, there is the effect of disequilibrium. We have shown 

in earlier chapters that extreme low initial frequencies, particularly 

when proportionate effects of the genes are large, leads to larger 

reductions in the genotypic variance than predicted on the basis of 

the infinitesimal model. 	If the number and effects of the loci at 

low initial frequencies are the same as those at high frequency 

no asymmetry should develop in a first cycle of selection in either 

the amount of disequilibrium generated or the selection response. 

In a second cycle of selection, the immediate differential change 

in gene frequency of loci at both extremes of the gene frequency 
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range, will lead to substantial reductions in the genotypic vari-

ance due to relatively large generation of disequilibrium contri-

buted by those loci at low initial frequencies. On top of this, 

we have the effect of gene frequencies moving towards intermediate 

values of the major loci, with associated increase in the amount of 

disequilibrium generated. We then expect considerable reductions 

in the genotypic variance coming from this source. Overall, the 

genotypic variance is not likely to change very substantially during 

the early generations of selection and the direction of the change 

will largely depend on the genetic parameters of the model. 

This type of model is also likely to lead to considerable 

degree of variation between replicates. This will depend on the 

size of the initial sample and on how extreme the frequency of the 

major loci are likely to be in the base population. As James (1971) 

pointed out, if a trait is affected by loci of large effect where 

the favourable allele is rare, initial samples of moderate size are 

likely to generate more variation between replicates than samples 

of very small or very large size, because in the latter case, a 

large proportion of the samples will either have, or have not,in-

eluded the favourable alleles, whereas in the former, appreciable 

proportions would include and fail to include them. 

Our conjecture will be that in replicate (b), more loci of 

large effect were picked up than in replicate (a). An important 

question in this respect is, given that in the base population there 

are rare loci of large effect, how many of those are likely to have 

been missed in replicate (a) in order to explain the considerable 

difference. of behaviour compared with replicate (b). 	In order to 
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get some idea of this and to further check the behaviour of this 

model, we resorted to Montecarlo simulation. The model we used 

was one in which 30 loci were distributed in equal numbers in three 

chromosomes, the recombination fraction between loci on the same 

chromosome being0.1, We sampled from a population which assumed 

24 loci at initial frequency of0,4; 4 adjacent loci in chromosome 

1 at frequency 005 and 2 adjacent loci in chromosome 3 at frequency 

0,95. Each of the 24 minor loci had an effect of 0.13 standard de-

viations whereas the 6 loci at extreme frequencies had an effect of 

about 0,60 standard deviations. The genotypic variance in the 

equilibrium base population was 3.8 square units and the phenotypic 

variance was 10 square units. These parameters are similar to the 

estimates we obtained from our Drosophila experiment 2. Together 

with this model we ran others which assumed that 2 and 3. of the 4 

favourable major alleles were completely absent, and finally we ran 

a model in which the genetic variation was due to 30 loci of equal 

effects and initial frequency of 0,4. The parameters of the various 

models, together with the model designation are summarised in Table 

87, 	All models have about the same initial equilibrium additive 

variance and heritability and the highest 15 out of 150 scored in 

each sex were selected and mated at random each generation.  

The results are shown in Table 8.8 and 8,9, Table 8.8 shows 

the equilibrium additive variance, the amount of joint disequilibrium 

and the realized heritabilities. Table 8,9 shows the intraclass 

correlations and the variance components between and within full-sib 

families, 
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Model De- 
signation 

Number of +loci 
at frequency 0.05 

Number of +loci 
at frequency 095 

Number of minor loci 
atfrequency0.4 

4/24 4 2 24 

2/24 2 2 24 

1/24 1 2 24 

0/30 0 0 30 

The results of model 4/24, including the increase in heritability 

predicted during random mating agree closely with those of replicate 

(b). The variance components between and within families however, 

do not increase in the simulation as they do in the Drosophila exper-

iments. This, however, is probably due to a scale problem in the 

sense that, as discussed by Robertson (1970c) for the case of his 

sternopleural lines, in our case, the scale we are using to measure 

abdominal bristle scores may not be the one in which the effect of 

a gene substitution is constant as selection proceeds. 

The results of replicate 2(a) are reasonably compatible with 

those of model 1/24 or 0/30, that is, it is not likely that the 

number of major loci sampled initially is larger than 1. These 

two models lead to rather small reductions in variance due to dis- 

equilibrium and after 4 cycles of selection, the equilibrium additive 

variance is slightly smaller than it was originally. 	Consequently, 

heritability estimates at generation 4 are smaller than the estimate 

obtained from the base population and after relaxation, the break- 
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TABLE 8,8: 	Equilibrium additive variance (Vg), joint disequilibrium (CLW) and single generation realized 
heritabilities (0) for the models of Table 8.4 in 4 cycles of directional selection. 	The results 

are average of 25 replicates. 	The S.E. of h2  is about 0.01. 

Model 
Gener- 
ati on Vg 

4/24 

CLW 
2 

h Vg 

2/24 

CLW 
2 

h Vg 

1/24 

cLW 
2 

h Vg 

0/30 

CLW 
2 

h 

0 3.76±0.04 0.08±0.07 0.39 3.65±0.02 0.02±0.05 0.38 3.66±0.03 -0.08±0.05 0.37 3.74±0.00 0.05±0.05 0.39 

1 4.75±0.09 -0,74±0.15 0.42 4.16±0.06 -0.68±0.12 0.38 3.61±0.06 -0.50±0.05 0.33 3.82±0.00 _0.37±0.11 0.35 

6.18±0.14 -1.68±0.18 0.42 5.08±0.10 -1.08±0.15 0.41 4,07±0.10 -0,98±0,10 0.33 3.74±0.01 _0.60±0.12 0.32 

3 7.08±0.14 -2,68±0.24 0.40 5.35±0.10 -1,18±0.15 0.41 4.18±0.07 -0.82±0.12 0.31 3.58±0.03 _0.71±0.10 0.28 

4 7.20±0.17 -2,65±0.23 - 4.94±0.11 -1,35±0.18 - 3.73±0.12 -0.62±0.12 - 3.31±0.03 -0.67±0.07 - 

4 cycles of random mating 0.56 0.43 0.37 0.34 

TABLE 8.9: 	Variance components within (0 2 ) and between full sib families (a) together with heritability estimates 

based on intra-class correlatons (2xt ) for the various models. 	The S.E. of G and 0
2 are about 0.2. 

The S.E. of t is about 0.01. 	
c 	 w 	b 

Model 4/24 2/24 1/24 0/30 

Gener- 02 02 23A 2  02  2xt 02  0 2  2xt 02  02 
b 

2xt 
c ation w b c w b c w b C w 

1 8.8 1.5 0.30 8.4 1,4 0.29 8,1 1.3 0.26 8.3 1.4 0.28 

2 9.2 1.6 0.30 9.1 1.2 0.23 8.3 1.2 0.25 8.2 1.2 0.25 

3 9.2 1.5 0.28 9.2 1,5 0.28 8.3 1,1 0,23 7,9 1.1 0,24 

4 9.2 1,5 0.27 8.8 1.2 0.23 8.3 1.2 0.24 7.9 1.0 0.22 

00 
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down of the relatively small amount of joint disequilibrium 

generated during the selection process is not likely to be de-

tected. The results of experiment 2(a) conform reasonably well 

with these expectations. 

How are the models in Table 8.7 likely to react in the case 

of the experimental design of experiment 1? Montecarlo simulation 

results are shown in Table 8.10. The design of experiment 1 was 

simulated by selecting up in one generation followed by a second 

cycle of reverse selection, this pattern of selection being con-

tinued for 4 generations. The initial heritability was assumed 

to be 30% and 30 out of 150 scored in each sex were selected as 

parents each generation. 

In all models, the equilibrium additive variance changes very 

little 'during the 4 cycles of intermittent selection. Model 0/30 

produces, as expected,, relatively larger amount of disequilibrium 

but the effect on heritability estimates is small. In all the 

other models, the genes of large effect are kept at low frequencies 

and therefore their contribution to the reduction in the genotypic 

variance due to disequilibrium is only trivial. The results show 

clearly that the increase in heritability during relaxation, even 

if all the .44 aaii4 1 lFi,.4 iim broke vI.in, z,r.1rI be 	 small and it 

would require a very large experiment to detect such a change. 

What is the evidence for this type of model available in the 

literature? All the evidence we have is rather indirect and cii'-

cumatantial. A model of genes of large effect at extreme frequencies 

has been postulated by Clayton et al. (1957b) and Sen and Robertson. 



TABLE 8.10: 

Models of table 8.4 submitted to alternate cycles of high and low selection for 4 generations. 	The 

parameters shown are the amount of disequilibrium generated (CLW) and the single generation realized 

heritabilities (112). 	S.E. of h2  about 0.01. 

Model 

Generation (1W 

4/24 

h2  

2/24 

CLW h2  

1/24 

(1W h2  CLW 

0/30 

h2  

0 0.06±0.04 0.31 -0.09±0.03 0.29 0.04±0,07 0.29 -0.01±0.04 0.31 

1 -0.49±0.11 0.28 -0,49±0.11 0.27 -0.31±0.13 0.26 -0.57±0.10 0.30 

2 -0,50±0.07 0.26 -0.45±0.11 0.26 -0.51±0,11 0.26 -0.74±0.10 0.28 

3 -0.44±0.10 0.29 -0.62±0.11 0.26 -0.65±0.11 0,27 -0.82±0,11 0,27 

4 -0.44±0.10 - -0.50±0.10 - -0.54±0,12 - -0.81±0,14 - 

00 
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(1964) to account for the observations of correlated response 

in sternopleural bristle number on selection for abdominal bristle 

number. Frankham etal. (1968) showed that several of their 

lines showed periods of rapid response associated with increases in 

variance and further, the crosses involving one of their lines 

with others gave rapid response to selection in contrast with the 

response of the crosses not involving this particular line. They 

pointed out that these observations can be reconciled by the pre-

sence of major loci at low frequency in the base population. 

Evidence of this model was also provided by Robertson (quoted by 

James, 1971), and more recently by Yoo (1980), who suggested it 

as a model that could account for the large variation between repli-

cates that he observed amongst his lines. 

What conclusions can be drawn from this work? In agreement 

with the results arrived at in Chapters 5 and 6, we believe that, 

even in the case of short term selection studies, changes of 

genetic parameters are rather dependent on the underlying genetic 

model, that is, the distribution of gene frequencies and effects in 

the base population. Predictions of the generation of joint dis-

equilibrium may be in some cases reasonably accurate, but we are 

not in a position to predict changes in the genotypic variance, 

unless we have some idea of the likely rate of gene frequency change 

during selection, as would be the case of a population resulting 

from a cross between highly inbred lines, or as shown in chapter 5, 

when population size is small enough that most of the changes in 

the equilibrium additive variance are likely to be due to genetic 

drift. 



The response to 4 cycles of selection in experiment 2 was 

6.88 and 9.29 units for replicates (a) and (b) respectively, 

with an average of 8.08. 	The usual prediction, tih20 cY 0 , 

gives an expected total response of 8.12 units. Predicted and 

observed results are in good agreement but if one tentatively 

accepts the model we have proposed to explain the results, it is 

clear that in this case at least, an explanation based on the 

general idea that parameters have not changed, although operation-

ally correct, may be misleading. 
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CHAPTER 9 

EFFECT OF DISRUPTIVE SELECTION ON GENETIC VARIABILITY 

- MONTECARLO SIMULATION STUDIES 



Introduction 

Under natural conditions, variation in the environment over the 

range occupied by an interbreeding population may lead to differences 

in the value of the optimum phenotype favoured by selection. This 

type of selection was termed centrifugal selection by Simpson (1944), 

while Mather (1955) proposed the term disruptive selection. Mather's 

term is usually associated with the situation where those individuals 

at both extremes of the distribution survive and the intermediates do 

not. 

A considerable body of literature on experimental results of 

selection for such phenotypic deviants has grown over the years, much 

of which has been reviewed by Thoday (1972). Several researchers have 

reported considerable increases in the genetic components of variance 

of quantitative traits as an outcome of disruptive selection (Thoday, 

1959; Millicent & Thoday, 1961; Gibson & Thoday, 1963; Scharloo, 

1964; Scharlooet al. ., 1967; Barker & Cummins, 1969) as well as 

genetic diversity at enzyme loci (Powell, 1971; McDonald & Ayala, 

1974). This type of selection may also lead to an increase of non-

genetic components of variance since, assuming that there is genetic 

control of sensitivity to environmental factors, selection of extremes 

should result in selectiün ol the most sensitive individuals. 

The changes in the genetic components of variance are due to 

changes in gene frequency and due to the generation of positive link-

age disequilibrium amongst the loci affecting the trait, Robertson 

(1956) using a single locus model, showed that in very large populations 

disruptive selection leads to stable intermediate gene frequencies, 
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though the change in frequency per cycle of selection is likely to 

be very slow. 	The existence of positive linkage disequilibrium was 

shown experimentally by Thoday and Boain (1959) but it is only recently that 

we have had a theoretical framework which allows us to understand its 

quantitative effects on the genetic variance of metric traits (Bulmer, 

1971), Bulmer worked with a model of an infinite number of loci and 

showed that the changes in the genotypic variance caused by disruptive 

selection were due to exclusively the generation of positive linkage 

disequilibrium and developed formulae which predict such changes. 

These results were checked by computer simulation studies (Bulmer, 

1976b)and it was found that observed and predicted values of disequil-

ibria in equilibrium populations were in good agreement. 

The purpose of this section is to extend Bulmer's results to an 

additive model with a finite number of loci with particular emphasis 

on experiments of short term duration. This work was stimulated by 

the results of a replicated disruptive selection experiment with 

Drosophila which is reported in the following chapter. 

Changes In the Genotypic Variance Caused by Disruptive Selection. 

In this section we study the effect of disruptive selection on 

changes of the genotypic variance. We shall deal with additive 

models of the type described in Chapter 3. 	We first deal with 

the change in gene frequencies and its effect on the equilibrium 

additive variance and in the proceeding section we study the generation 

of joint disequilibrium. 
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Changes in gene frequencies 

We now assume that the metric trait is normally distributed and 

that a certain constant and equal proportion are saved for breeding 

at each generation. The truncation point at each end of the distri-

bution corresponding to the proportion selected is M+T and M-T. The 

probability of selection of the ij genotype is: 

- 	2 	OD 
 

If 	
-(X-X1  ) 	 -(x-x ) 

W = 	41J exp( 	)dx +5 exp(  2a'-)dx} 	(9.1) 

As we did in the case of directional selection, we expand (9.1) in a 

Taylor series about the population mean,. M, which after some manipu-

lation yields the following second order approximation, 

QixT - 	 (9.2) W 	-i 	1 2Q 	(X 
aij 

where, as before, Q is the proportion selected at each extreme of the 

distribution, XT is the point of truncation in standard deviation 

units corresponding to Q and i is the intensity of selection. The 

th 
probability of selection of the I— gametic phase is easily shown to 

be equal to, 	- 	- 

Qix 
W. = 2Q + 	(Vw + (X 	

2) 
1 	 2 

(9.3) 

th 
where VW is the variance within the i gametic phase and X 1  its 

mean. The mean fitness is given as asecond order approximation by, 
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Qix 
W = 2Q + 	T(2a2p(lp) + 2a22q(l-q) + 4a1 a2D) 	 (9.4) 

a2  

The change in the frequency of the plus allele at locus A is, 

= -(f 1 (W1-W) + f2 (W2-W))
TV 
	 (9,5) 

2 
Substituting (9,3) and (9,4) in (9,5) and letting - = 1 - - VG to 

	

W 	a2  

second order terms, we obtain: 

AP 	 2 	 2  = —(a1 p(l-p)(l-2p) + a2 (l-2q)D + 2a1a2 (1-2p)D) 	(9.6) 
2a2  

which reduces to the expression obtained by Robertson (1956) if gene 

frequencies between loci A and B are uncorrelated, From (9.6) we can 

draw the following important conclusions: 

In large populations, gene frequency changes under disruptive 

selection are likely to be small if gene effects are not large 

and they tend to a stable intermediate equilibrium value and, 

In laboratory experiments of relatively short term duration 

changes in the equilibrium additive variance due to changes of 

gene frequencies caused by disruptive selection are not likely 

to be detected. 	In fact, most of the changes in the equilibrium 

additive variance are likely to be due to genetic drift, 



The Generation of Linkage Disequilibrium, 

We now derive a second order approximation for the covariance 

of gene frequencies within gametes generated by disruptive selection 

for the two locus additive model. We first study the disequilibrium 

in the parental generation, before recombination takes place and we 

then extend the result to the offspring generation, allowing for re-

combination. 

At generation t, amongst selected genotypes, we have: 

where 

(ff - 
ff) (St) 

f (St) = f(t) 	(W - W)}(t) + 

Using (9.3) and (9,4) and following the algebra through, the disequil-

ibrium in the parental generation Is given by, 

XT 

	

D(5, t) = D(t) + {
1XT 	 1  

a1p(l-p)a2q(l-q)} t  - —{2a1a2D2  

	

02 	 2a2  

	

- (a1 (l-2p) 	+ a2(1-2q))2D} (t) 
	

(9,7) 

This can be written, 

D(5,t) 6  D(t)+ f 
D (t) 

where D 	is the fresh disequilibrium generated in the 	selection 

cycle. 

When the population is initially in linkage equilibrium, (9.7) 
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reduces to,

ixT  
D' 	a,,(l-p)a2q(l-q) 
	

(9,8) 



For a given intensity of selection the initial generation of 

positive linkage disequilibrium is maximum when gene frequencies are 

intermediate. 	In contrast with the case of directional selection, 

(s,t) 
D 	is rather sensitive to the amount of selection applied. This 

is illustrated in Table 9.1 where values of ix.r  are shown for different 

proportions selected. For comparison we also produce values of 

i(i_xT) corresponding to the directional selection situation. 

TABLE 9 • 1: 

Values of ix and i(i_x.r) for different proportions selected. 	In 

the case of disruptive selection (ixT) ,  Q corresponds to the total 

proportion selected at both ends of the distribution, (For example, 

Q = 20% implies that 10% are selected at each extreme) • For 

directional selection (i(i_x.T)) ,  Q = 20% implies that 20% are selected 

at one extreme of the distribution. 

Q 

.1%. 	10% 	.. 	20% ......50% 

ixT  7 • 449 3,393 . 	 2,249 0.857 

i(i_x,r) 0.918 0.821 0.781 0.637 

The figures in the table also illustrate the fact that for the 

same proportion selected, the amount of disequilibrium generated by 

disruptive selection is considerably larger than the disequilibrium 

generated by directional selection, particularly for high selection 

intensities. For example, for a total proportion selected of 20% 
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disruptive selection generates almost three times more disequilibrium 

(of the opposite sign) than directional selection. 

In the t+l cycle of selection, the covariance of gene frequencies 

within gametes in the offspring generation is easily derived, since, 

as was shown before, 

= D(t)(l - 	c) 	D (t +1)  + f  
W 

(9.9) 

The Important point to notice is that, with close linkage, a larger 

proportion of the previously existing disequilibrium is passed on to 

the next generation. 	Since, with disruptive selection, D is positive, 

from (9.6) we conclude that, the tighter the linkage the higher the 

change in gene frequency at a given locus. This result is intuitively 

obvious, since it Is clear that with disruptive selection, both ex-

tremes are favoured and once we have generated such combinations, we 

do not want to break them down. Similar results were arrived at 

empirically by Maynard Smith (1979) using deterministic simulations, 	- 

We now produce some numerical results to illustrate some of the 

conclusions we have drawn from this analysis. Table 9.2 shows the 

course of 10 generations of disruptive selection in an infinite popu-

lation, for a two locus additive model. 	The results are obtained by 

numerical integration. 

The results clearly indicate that gene frequencies do not change 

by a very substantial amount after 10 generations of selection even 

though gene effects are quite large. 	In agreement with theory the 

change in gene frequency is towards intermediate values and is larger 



TABLE 9.2: 

Gene frequencies (q) and linkage disequilibrium (D) in 10 generations 

of disruptive selection (10% at each extreme), for a two locus addi-

tive model. Gene effects and frequencies are the same at both loci 

and recombination fraction (c) is 0.5 and 0.01. Proportionate 

effects are 0.34 phenotypic standard deviations. 	Initial gene fre- 

quencies are set at 0.35. 

t c0.5 

qxlO2  

c0,Ol c0.5 

DxlO5  

c=0.0l 

0 35.00 35.00 0.00 0.00 

2 36.77 36.77 210,29 269.48 

38.66 38.84 287,64 553.53 

6 40.39 41,01 319.81 833,80 

8 41.90 43.07 335.62 1,094.00 

10 43.20 44.86 344.70 1,324.04 

with tight linkage but the difference is small. There are consider-

able differences in the amount of disequilibrium generated with the 

two degrees of linkage. 	This merely reflects the fact that in large 

populations undergoing disruptive selection, the tighter the linkage 

the smaller the relative 'loss' of the favourable combinations through 

recombination with the consequent increase in frequency of the coup-

ling heterozygote over the repulsion heterozygote in successive 
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generations, 



These results can be extended to allow for an arbitrary number 

of loci. The simplest possible approach is to ignore the changes 

in the equilibrium additive variance on the grounds that in a very 

large population, gene frequency changes due to disruptive selection 

are small. 	It then follows that we can describe the process using 

the results of the infinitesimal model proposed by Bulmer. 	Thus, 

using the notation of earlier chapters, we can write, assuming free 

recombination and following Bulmer (1971): 

ci.w(t) = 	T 	VG2(t) + 	jw(:t_ 	 (9.10) 
2(t) 

where 

VG (t) = Vg (0) +. cLw(t) 	 (9.11) 

where Vg (0)  is the equilibrium additive variance in the base population. 

The validity of this approach is checked in the simulation work that 

follows. 

Simulation Studies. 

The simulation programme used in this work was developed from 

the one used to study directional selection. A subroutine which 

selects the lowest scoring males and females was incorporated into 

the programme. 	The N highest (H) and lowest (L) males (m) and fe- 

males (f) out of a total of M individuals scored from each sex were 

selected and mated in the following way during t cycles of selection. 

Nm (H) x 	N  (H) 

Nm (H) x 	N  (L) 

Nm (L) x 	Nf (H) 

Nm (L) x 	Nf (L) 
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Each pair of mates contributed the same number of offspring 

to the next generation, 25% of which came from each of the four 

types of mating. The choice of which of the highest or lowest 

selected individual should contribute to a particular type of mating 

was completely at random. Under this type of mating regime the ex-

pected phenotypic correlation between mates amongst selected indivi-

duals is zero. 

Table 9.3 summarises the genetic parameters of the various models 

studied. All these models assume additivity between and within the 

30 loci which are uniformly distributed along the chromosome and 20 

out of 200 individuals of each sex are selected at each extreme of 

the distribution. 

TABLE 93: Summary of the input of the various models. 

Model de- 	Rec. frac- 	Proportionate Rerita- 	Initial 
signation 	tion (c) 	effect (a/cY) 	bility 	frequencies 

0.5/0.5 

0.2/0.5 

0.8/0.5 

0.5/0,0 

0.5/0.01 

0.5/0,1 

0,2;0.5/0.5 

0.5 0.18 

0.5 0.23 

0.5 0.23 

0.0 0.18 

0.01 0.18 

0.1 0.18 

5 loci 0.46 
0.5 

25 loci 0,11 

0.50 0.5 

0.50 0.2 

0.50 0.8 

0.50 0.5 

0.50 0.5 

0.50 0.5 

5 loci 0.2 
0,50 

25 loci 0,5 
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The first column in Table 9.3 shows the way the models are 

designated. The figure or figures at the left of the slash represent 

the initial gene frequencies. The figure at the right of the slash 

represents the recombination fraction which is the same for all ad-

jacent loci. 

Results and Discussion. 

The results for the models with free recombination are shown in 

Table 9.4 and 9.5. The genetic parameters shown during the four 

cycles of disruptive selection are the total genotypic variance (VG), 

the amount of joint disequilibrium (CLW) and the realized heritability 

in the high (14) and low (hf) selected fraction of the population. 

These realized heritabilities were calculated in the following way. 

For example, h is obtained by dividing the deviation of the mean of 

the offspring of the H x H matings from the mean of the preceding un-

selected population by the deviation of the mean of the H x H selected 

individuals from their contemporary (unselected) mean. These esti-

mates are a description of the available genotypic variance for 

selection at a particular generation at each end of the distribution. 

In both Tables 9.4 and 9.5, the difference between VG (t and 

1+ 
CLW'' is an estimate of the equilibrium additive variance (ignoring 

a small effect due to departures from Hardy-Weinberg equilibrium). 

It will be noticed that in model 0.5/0.5, this difference is practi-

cally constant during the four cycles of selection, reflecting the 

fact that gene frequency changes during this period are minimal. In 

model 0.2; 0.5/0.5, where five loci have relatively large effect, 



TABLE 9.4: Observed (0) and Predicted (P) values of genetic parameters after four cycles of selection, 

for models 0.5/0.5 and 0.2; 0.5/05. 	The predicted results are obtained from (9.10) and (9.11). 

VG: 	total genotypic variance = Vg + OLW 

h: 	single generation realized heritability in the high extreme 

h: 	;ingle generation realized heritability in the low extreme 

Observed results are the average of 30 replicates. The standard erroxof h 2  are 0.01. 

Model 0.5/0.5 Model 0,2; 0,5/0,5 

VG CLW h h 	 . . 	 VG CLW h 

0 14,79±0.16 -0,11±0.15 0.53.-0.48— . 9,68±0,12 0,23±0.10 0,55 0.49 

O 23.00±0.49 8,26±0.48 0.68 0.70 15.16±0.31 5.37±0.28 0,75 0,65 
1 

P 23.43 8.43 	. 14,90 5.36 

0 39.97±0.91 24.94±0.91 0.77 0,74 26.08±0.77 15.22±0,74 0,78 0.73 
2 

P 35.30 20,30 ,,.. . 	 22.44 12,91 

O 58.06±0.97 43,04±0.97 0.80 0,80 37,56±1,16 26.15±1.11 0.81 0.77 

3 
P 	. .53.02 	. 38.02 	. .........  33,70 24,18 

0 78.58±JL.30 63.94±1,31 

..... ... 

- 49.36±1.29 37,60±1.24 - - 

4 
P 80,50 	. . 	 .65.50 	....................... 51,17 	........ 41.64. ., 

0 
0 



TABLE 9.5: Observed (0) and Predicted (P) values of genetic parameters for models 0,2/0.5 and 

0.8/0.5. 	Observed results are the average of 30 replicates. 

Model 0.2/0,5 Model 0.8/0,5 

t VG,  CLW h h VG CLW h 

0 9.74±0.11 0.20±0.11.. 0,53 0,50 9.68±0.14 0,15±0,14 0,48 0,54 

O 15,15±0,37 5.58±0,37 0.73 0.66 14,99±0.37 5,43±0.35 0.68 0.74 
1 

P 15.00 5.40 15,00 5.40 

0 25.63±0.71 15,63±0,70 0.80 0.73 25,89±0,64 15,93±0,62 0,74 0,80 
2 

P 22.59 12.99 .22,59. 12.99 

0 37.46±1.04 27.29±1,02 0,82 0.77 38,36±0.80 28,19±0.80 0,78 0,81 
3 

P 3393 	. 24.33 . 33,93 24.33. 

0 51,62±1,42 41,36±1,37 - - 50,61±1,12 40.41±1,11 
4 

P 51.52 	. 41.92 ....... ................ 51,52, .. 	..41.92 	. 

1:..) 
0 



202. 

there is a small increase in Vg from about 9,6 squared units to 11.7 

at generation 4, reflecting the change in gene frequency of the 

major loci towards intermediate values as selection proceeds. 	The 

results in Table 9,6 show that even though initial gene frequencies 

are rather extreme, predicted results are in good agreement with ob- 

served results. 	In both runs, gene frequencies move slowly towards 

intermediate values. 	In run 0.2/0.5, the equilibrium additive var- 

iance at generations 0 and 4 was 9.6 and 10.0 respectively and the 

increase of the genotypic mean was of 1.72±0.11 units. In rim 0.8/0.5, 

the value of Vg at generations 0 and 4 was of 9,6 and 10.0 squared 

units and the decrease in the genotypic mean was 1.56±0.15 units. 

The small degree of asymmetry in the observed realized heritabilities 

in both runs is as expected from theoretical considerations, this 

asymmetry tending to decline in later generations. 

The predictions of joint disequilibrium are in good agreement 

with observed results. The increase in the genotypic variance due 

to the generation of joint disequilibrium is reflected in the in-

creasing values of h2  in both directions. This merely says that as 

selection proceeds and the genotypic means of the high and low matings 

move towards opposite extremes, the phenotype of an individual becomes 

a more accurate predictor of its genotype. This phenomenon of course 

is likely to cause departures from normality and will affect the est- 

imates of heritability in that these will be different for different 

intensities of selection,. The regression of offspring on parent, al-

though it is symmetrical, is no longer linear. We shall discuss in 

more detail the development of the lack of linearity of the offspring 
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parent regression with disruptive selection in the next chapter. 

Table 9.6 shows the simulation results of the amount of joint 

disequilibrium generated as selection proceeds with different degrees 

of linkage. Gene frequencies are initially at intermediate values 

in all runs. 

TABLE 96: 

Montecarlo simulation results of joint disequilibrium for various 

degrees of linkage (c) between adjacent loci. Average of 30 

replicates in all runs. Proportion selected: 20/200 in each 

sex at each extreme. 

C 

t 	 0.5 	 0.1 	 .0.01. 	. 	.0.00 

0 -0.11±0.15 0.11±0.21 -0.12±0.15 

1 8.26±0.48 8.37±0.55 8.56±0.49 

2 24.94±0.91 25.06±1,17 25.05±1.02 

3 	. 4304±0.97 44.33±1.97 42.17±1.80 

4 . 	 .63.94±1.31. . .62,81±2.22.. .59.87±2.92 

-0.10±0.16 

8.35±0.46 

24.84±0.83 

41,35±1.70 

55.58±2.74 

Up until generation two there is no detectable effect of link-

age on the degree of joint disequilibrium generated. 	In later 

generations contrary to theoretical expectations based on determin-

istic models the tighter the linkage the smaller the amount of dis-

equilibrium produced. This result is a consequence of the finite-

ness of the population. The maximum amount of disequilibrium 
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produced is when the selected individuals at each extreme of the 

distribution are fixed for either the plus or minus alleles. Con-

sider the extreme case of no recarvbin,L¼Q,tIn this situation, we can 

do no better than fix the best gamete out of the initial sample. 

The probability of obtaining the desirable allele at all loci in the 

initial sample of gametes will depend on the gene frequency, the 

number of loci and the sample size. Provided the population size is 

not too small, the critical parameters are the number of loci and the 

gene frequencies. The larger the number of loci the higher the re-

quired initial gene frequency in the base population to have a given 

probability of obtaining the extreme gamete in the initial sample 

(Robertson, 1970a). 

For a relatively small number of loci, provided the initial fre-

quencies at all loci are not small, we will expect little effect of 

the degree of linkage on the amount of disequilibrium generated 

throughout the selection process, because we are likely to have picked 

the extreme gamete in the initial sample. 	If selection intensities 

are high enough that we can select our extremes from the H x H and 

L x L matings exclusively, we are likely to fix all the plus and minus 

alleles at both ends of the distribution and therefore CLW will reach 

its maximum possible value. On the other hand- wIth large number of 

loci, we have a very small probability of selecting the best possible 

gamete in the initial sample and if linkage is complete we cannot 

generate it through recombination as selection proceeds. We therefore 

expect a smaller degree of divergence between the mean of the high and 

low extremes and considerably less disequilibrium at fixation than in 

the case of free recombination, 
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These points are illustrated in Table 9,7. 	Models involving 

two different numbers of loci (4 and 20) and different degrees of 

linkage between adjacent loci were run for 20 generations of selection. 

As expected, with a small number of loci fixation is reached in a few 

generations and linkage has no detectable effect on either the amount 

of joint disequilibrium generated or on the number of generations re- 

quired to reach the maximum possible divergence. With 20 loci however, 

linkage has a substantial effect on both parameters though these effects 

are small during the first few cycles of selection. Equivalent models 

to the ones presented in Table 5.8 with 50/200 selected at each ex-

treme showed similar patterns though the difference was less marked. 

It is interesting to point out that in the case of the infinitesimal 

model, with large (infinite) population size, the selection intensities 

that we have been using in these simulations would lead to an increase 

of joint disequilibrium without bound. This is due to the fact that 

with intense selection we pick our extreme phenotypes from the extreme 

matings and theoretically the divergence does not reach a maximum 

possible value (Bulmer, 1976b'). 

These results have important consequences on estimators of heri-

tability from populations which have undergone disruptive selection. 

In the case of intra-class correlations, as was shown before, all the 

fresh disequilibrium takes place between full-sib families and the 

within family component is not affected if loci recombine freely, be- 

cause a proportion approximately equal to (1-2c) of the already existing 

disequilibrium takes place within full-sib families. This result was 

derived using a deterministic model and it does not hold in the case of 



TABLE 9,7: 

Montecarlo simulation results of joint disequilibrium (CLW) and 

ratio of observed mean of H x H matings to maximum possible value 

(XH/X MAX 
 ) assuming fixation of plus allele at all loci for 3 values 

of recombination fraction (c) between adjacent loci. 	In all runs, 

the highest and lowest 20 out of 200 are selected. 	Initial gene 

frequencies are 0.4 and the equilibrium additive variance is 9,6 

for all models. The results of the models involving 4 loci are the 

average of 15 replicates; those of 20 loci are based on 7 replicates. 

t C 

4 loci 

CLW 
MAX 

20 loci 

MAX 
0.50 -0.13±0.15 0.40 0.04±0.18 0.40 

0 0.05 -0.10±0,14 0.40 -0.26±0.18 0,40 

0.00 0.10±0.14 0.40 -0.16±0.18 0,40 

0.50 12.62±0.71 0.76 16,02±1.12 0.54 

2 0.05 13.14±0.84 0.77 13.48±1.13 0.54 

0.00 12.85±0.72 0,76 14.14±1.18 0.54 

0.50 26.31±0.52 0.95 59.83±2.92 0.68 

5 0.05 26.65±0,52 0.95 4443±5,59 0.66 

0.00 26.36±0.64 0.94 42,40±3.08 0.66 

0.50 30.19±0.10 1,00 108.89±5.39 0.82 

10 0.05 30.38±0.20 1.00 86.94±6.42 0.77 

J.uv i,uu U s -tv 

0.50 30.10±0.05 1.00 176,70±4.77 0.97 

20 0.05 30.19±0.09 1.00 135.41±7,94 0.87 

0.00 30.21±0,10 1,00 -. 	59,32±6.73 0.71 
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disruptive selection if populations are of finite size. Our 

simulation results suggest that the degree of linkage only affects 

the between family component through its effect on the amount of 

disequilibrium generated, but the within family component is not 

affected by it. The genetic component of the variance within 

families tends to zero as the extreme gametes tend to fixation. 

Table 9.8 shows the variance components within and between full-

sib families, the intraclass correlation and the single generation 

realized heritability of the high selected extremes for the models 

of Table M. The corresponding estimate of h 2  for the low end of 

the distribution did not differ from that of the high and is omitted. 

For brevity, only the results corresponding to complete linkage and 

- free recombination are shown in the table. 

The intra-class correlation at generation t is obtained from an 

analysis of the phenotypic variance of the offspring of generation 

t+l. 	In other words, we are estimating the genotypic variance 

amongst individuals selected at both ends of the distribution at 

generationt. For comparison we include the single generation real- 

ized heritabilities in the high direction. This estimate at generation 

t is based on regressing the deviation of the mean of the offspring of 

the H x H matings at generation t+l from the unselected mean at 

generation t, on the selection differential. The most conspicuous 

feature of the results is the large bias upwards of the intraclass 

correlation as an estimator of the heritability due to the effect of 

the joint disequilibrium on the between family component. It is also 

clear that the within familyt component is not affected by the degree 
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TABLE 9.8: 

Variance component between full-sib families (a), within full-sib 

families (2)  and intra-class correlation (t) for the models of Table 

97. 	The environmental variance in both models is of 9.6 square 

units. 	The standard errors of t and of the single generation real- 

ized heritabilities (h) are 0.01. h2°  = base population heritability. 

4 loci h (0) = 0.50 

t c 02  0`2  t h2  
w b r 

0.5 13.54±0,28 10,50±0.36 0.44 0.74 

0.0 13.44±0.39 10.12±0.47 0.43 0.74 

0.5 13.01±0.23 20.24±0.62 0.60 0,75 
2 

0.0 13.71±0.39 19,83±0.75 0,59 0.78 

0,5 10.44±0.15 36,51±1,09 0.78 0.77 

0 1 0 10.66±0.25 36,09±0.94 0.77 0.74 

0.5 9.81±0.22 40.98±0.64 0.81 0.75 
10 

0.0 10,02±0.22 40,93±0.63 0.80 0,75 

0,5 9,98±023 41.29±0.46 0.81 0.77 
20 

0.0 10.06±0.25 41.30±0.45 0.80 0.77 

20 loci 	h 0  0.50 

0,5 14,30±0.37 12,504-0,47 0.47 0,67 

0.0 13.46±0.54 10.39±0,66 0.43 0.69 

0.5 14.60±0.41 21.75±1.06 0.60 0.77 
2 

0.0 15,53±0,56 19.56±1,51 0,55 0.75 

0.5 13.08±0.84 71,51±3,77 0.84 0,81 

0.0 14,47±0,61 50,54±3,84 0.77 0,77 

0.5 11,03±0,56 115,39±5,70 0.91 0,81 
10 

0.0 9.52±0.71 61,04±5,78 0.86 0.77 

0,5 9.86±0,51 191.50±0.76 0.95 0.86 
20 

0.0 9.53±0,58 68,24±6.41 0,87.. 0,77 
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of linkage and that its genetic component tends to zero as extreme 

gametes reach fixation. 

Conclusions 

The main findings of this work can be summarised as follows: 

Using a two locus additive model, we have shown that under 

disruptive selection, gene frequency changes are of order 

(a/a) 2  and that in large populations, gene frequencies tend 

to move towards stable intermediate values. These results 

are in agreement with those obtained previously by 

Robertson (1956) who worked with single locus models. 

In large populations, changes in gene frequency increase 

with tight linkage. 

Recurrence equations are developed for the amount of dis-

equilibrium generated with disruptive selection under a two 

locus additive model. 	In contrast with the case of 

directional selection, the generation of disequilibrium is 

rather sensitive to the intensity of selection applied and 

it is perfectly symmetrical. 	In other words, the same 

amount of positIve dIsequIlIbrium is generated wIth aodel 

whose initial frequencies are equidistant from 0.5. 

Contrary to predictions based on deterministic models, we 

have shown that with populations of finite size, the 

tighter the linkage the smaller the amount of disequilibrium 

produced. 	This effect however is not important during the 

early cycles of disruptive selection. 
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(iv) We suggest that in populations undergoing disruptive 

selection, the difference between heritability estimates 

based on single generation realized heritabilities and 

on intra-class correlation between sibs provides evidence 

of the existence of Joint disequilibrium generated during 

selection. Problems of lack of linearity of offspring 

parent regressions which develop as a consequence of 

disruptive selection are mentioned and will be discussed 

in the next chapter. 

As was mentioned at the beginning of this chapter, this work was 

stimulated by a disruptive selection experiment carried on with 

Drosophila. Some of these theoretical results however may be rele-

vant to the question posed initially by Fisher (1930) and more 

recently by Maynard Smith (1978), namely: what selective forces 

maintain sexual reproduction and genetic recombination in nature? 

In a recent paper, Maynard Smith (1979) concluded that both normalising - 

and disruptive selection are forces that tend to reduce recombination. 

We have shown that in the case of disruptive selection, this. is true 

for infinite populations. 	With finite population size however, this 

result does not seem to hold, at least for the rather extreme model 

of selection studied here. Further work on this area may help towards 

the elucidation of this challenging problem. 
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1APTER 10 

EFFECT OF DISPUPTIVE SELECTION ON GENETIC VARIABILITY 

- EXPERIMENTS WITH DROSOPHILA 



Introduction, 

The consequences of disruptive selection on the genotypic vari-

ance of a metric trait have been well established over the years. 

Robertson (1956) working with a single locus model, showed that 

selection of extremes in large populations will cause gene frequencies 

to move towards stable Intermediate values, but the rate of change per 

generation is likely to be very slow. 	Mather (1941, 1943) argued 

that the higher fitness of metric intermediates will lead to the build 

up of repulsion linkages. Mather's argument in a disruptive selection 

context implies the build up of coupling linkages or positive linkage 

disequilibrium. Assuming an additive model, both gene frequencies 

moving towards intermediate values and the generation of positive 

linkage disequilibrium will lead to an Increase of the genotypic 

variance. 

Substantial increases In the additive genetic variance of metric 

traits in disruptive selection experiments have been reported by 

various workers (Thoday, 1959; Millicent & Thoday, 1961; Gibson & 

Thoday, 1963; Scharloo, 1964; Scharloo et al., 1967; Barker & 

Cummins, 1969) and Thoday and Boam (1959) have provided evidence for 

the maintenance of coupling linkage disequilibrium. 

It Is only recently, however, that we have had a theoretc1 

framework which allows us to quantify the effect of disruptive selec-

tion on the genotypic variance of a metric trait (Bulmer, 1971), 

Bulmer worked with a model of an infinite number of loci and showed 

that the changes in the genotypic variance caused by disruptive 

selection were due to exclusively the generation of positive linkage 
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disequilibrium and developed formulae which predict such changes. 

The consequences of introducing a finite number of loci into the 

model were reported in the previous chapter. 

In view of the rather inconclusive results of the directional 

selection experiments with Drosophila described in chapter 8 aimed 

at studying the generation of joint disequilibrium due to selection, 

it was decided to perform experiments on disruptive selection. 

Selection of extremes leads to relatively larger generation of joint 

disequilibrium and therefore its effects on the genotypic variance 

are more likely to be detected experimentally. The present short 

term experiment with Drosophila melanqgaster was designed as a check 

on the theory developed by Bulmer. 

Basically, the experiment consisted of carrying out three cycles 

of disruptive selection, followed by a period of relaxation. Herit-

ability was estimated during the period of selection and at the end 

of the period of random mating. On the assumption of Bulmer's theory 

we anticipate an increase in the heritability during selection, due 

to the build up of positive linkage disequilibrium followed by a 

decline at the end of the period of random mating, presumably due to 

the breakdown of the joint disequilibrium. 

Material and Methods.. 

The lines were derived from the Dahomey population, This pop-

ulation originated from a large sample (numbers unknown) of flies 

collected in West Africa in 1969. Since then, a number of cage 
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populations have been maintained in this laboratory from which samples 
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were taken to originate the lines. 

The character measured was the sum of the abdominal bristles 

on the fourth and fifth segments in males and fifth and sixth seg-

ments in females. 

The experiment was rim with two replicates. In replicate 1 

eggs were sampled from the population cage in four half-pint milk 

bottles. When the adults emerged, 160 males and 160 virgin females, 

sampled in equal numbers from each bottle were scored and constituted 

generation 0. The highest (H) and lowest (L) 16 males and 16 fe- 

males were selected and mated in individual vials in the following way: 

Number of Number of offspring con- 
full-sib families Males x Females tributed by each mating 

pair 

8 H x H 5 

8 H x L 5 

8 L x H 5 

8 L x L 5 

Within each type of mating, flies were paired at random and the 

choice of which flies within each extreme should be mated with high 

or low partners was also random. The expected phenotypic correlation 

between mates is therefore, 0. At generation 1, 5 males and '5 fe-

males from each full-sib family (vial) were chosen at random from 

those first emerging (from the first 36 hrs of emergence). The 

males and the virgin females were aged in vials for three days and 

after scoring they were mated as described above, with several spare 
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matings kept until the hatching of the larvae to replace unsuccessful 

matings. 	At generation 3, after scoring, one male and one female 

were chosen at random from each of the 32 families and introduced into 

a half-pint milk bottle for random mating. After 24 hrs all flies were 

shaken off into another bottle without etherization and allowed to lay 

eggs for about 8 hours. This random mating procedure was continued 

for 7 generations. At generation 10, after 7 cycles of random mating, 

and at generation 11, after 8 cycles of random mating, 160 flies of 

each sex were sampled and scored from the half-pint milk bottles and 

the extremes selected and mated as described above following which 

the replicate was discontinued. 

Replicate 2 differed slightly from replicate 1 in that flies 

that contributed to generation zero were themselves reared in vials. 

Further, the cycles of random mating were carried on in vials rather 

than in bottles, each family contributing one male and one female to 

the next generation and this procedure was continued for 4 generations 

rather than 7. The replicates were not run contemporaneously. 

The flies were reared in standard Edinburgh agar-molasses-killed 

yeast medium in which drops of live yeast had been added. The 

cultures were kept in a room at constant temperature (25 °C) and lit 

continuously for 24 hours. 

In both replicates, heritability was estimated from the regression 

of offspring on the selected mid-parental values, at generation 0, 

1 and 2, and at the end of the period of relaxation. 



Results. 

Estimates of various base population parameters from each re-

plicate are shown in Table 10.1. The first cycle of selection pro-

vided estimates of heritabi lity of the base population based on 

offspring-midparent regressions. 

TABLE 10,1: 

Parameter estimates from each replicate 

X : mean of males 
M 

TI  : mean of females 

VP ()  : Phenotypic variance (males) 

VP (f)  : Phenotypic variance (females) 

(1) : heritability estimates based on offspring-midparent regressions. 

Means and phenotypic variances based on 160 observations. 

X 	Xf 	
(m) 	

VP (f) 	h2  

Replicate 1 	33.48 38.89 	8.19 	7.32 	0.38 ± 0.07 

Replicate 2 	35.61 40.21 	7.52 	9.02 	0.35 ± 0.08 

The heritability estimates of both replicates are in reasonable 

agreement with those reported in Chapter 8. The means of replicate 

2; are significantly higher than those of replicate 1 and this may be 

a consequence of the fact that at generation zero, flies in replicate 

2 were reared in vials whilst those of replicate 1 were reared in 
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Tables 10.2 and 10.3 show the means of the offspring of the 

different mating types for both replicates and Figure 10.1, shows 

the means of the offsprings of the H x H and L x L matings expressed 

as deviations from their contemporary means. The results show that 

there is good agreement between the responses of the H x H and L x L 

matings in both replicates and no signs of asymmetry are suggested 

by the data. In both replicates, the means of the H x L and L x H 

are very similar and the difference between their average and the 

contemporary mean does not differ significantly from zero, suggesting 

that neither sex-linkage nor dominance gene action are important in 

this character. 

In replicate 1 the overall mean increases from generation 3 to 

generation 6 and it remains at a value between 38 and 39 bristles 

until the end of the experiment. As no controls were used it is 

difficult to assess whether the change is due to an environmental 

trend, due to natural selection acting against the low deviants or due 

to drift. Since in this replicate the flies were kept in bottles 

during the period of relaxation, there is no control over the effect-

ive population size and any bottlenecks during this period can cause 

substantial changes in both mean and variance. No signs of trends 

in the overall mean are present in replicate 2. 

Figures 10.2 and 10.3 show the frequency distribution of the 

total number of bristles of individual females for various periods of 

the selection programme for replicate 1 and 2 respectively (the dis-

tribution in males follow similar patterns and are omitted). We 

have also included the frequency distribution of the offspring of the 
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TABLE 10.2: Means of the offspring of the different type of matings 

in replicate 1 

Gener- H x H H x L L.x.H L.x.L. 
Overall 

ation . 

. 	 ....... Mean 

1 37.2±0.4 35.7±0.4 36.8±0.4 33.8±0.4 35.8±0.2 

2 38.4±0.4 35,2±0.4 35.3±0,4 33.3±0.4 35,6±0,2 

3 41,7±0.6 34,9±0,6 35.7±0,6 31,6±0,6 36.0±0.3 

6 39.1±0.3 

9 39.0±0.2 

10 41.0±0.5 37.8±0.5 38.3±0.5 34.8±0.5 38.0±0.2 

12 41.6±0.5 39,2±0.5 39.7±0.5 36.8±0.5 39.3±0.2 

TABLE 10.3: Means of the offspring of the different types of mating 

in replicate 2. 

Gener- BxH. HxL. LxH Lx.L 
Overall 

.... 
ation 

. 

Mean 

1 38.5±0.3 37,3±0,3 37,2±0,3 35.0±0.3 37,0±0.2 

2 42.1±0.5 37.2±0,5 38.0±0.5 34,9±0,5 38.1±0.3 

3 41.34-0.5 36.9±0.5 38.1±0.5 32.9±0.5 37.3±0.3 
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8 	39.6±0.4 	36.7±0.4 	37.5±0.4 	353±0,4 	37.3±0.2 



FIGURE 10.1: Means of abdominal bristle scores of H x H and L x L offspring expressed as deviations 

from contemporary mean. 	(Average of males and females). 
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FIGURE 10.2: Replicate 1. 	Frequency distribution of abdominal bristle 

scores in females at generation zero (a) during the three cycles of selection 
(b,c,d) and at the end of the period of relaxation (e).. 	The solid columns 

refer to the offspring of the L x L matings and the cross hatched columns to 

the offspring of the N  x J ratings.. 
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Replicate 2. 	Frequency distribution of abdominal bristle scores in females 

at generation zero (a) during the three cycles of selection (b,c,d) and at 

the end of the period of relaxation (e). 	The solid columns refer to the 

offspring of the L x L matings and the cross hatched columns to the offspring 

of the R x Jj matings. 
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H x H and L x L matings,. As expected, as selection proceeds the 

overall distribution becomes more platykurtic and the H x H and L x L 

distributions -tend to move apart. 	After three cycles of selection 

there is very little overlap between the H x H and L x L distributions 

and the result is consistent in both replicates. 	This result is 

also illustrated in Table 10.4 (a and b) where we show the observed 

(and expected) proportions of flies selected at each extreme of the 

distribution coming from each of the four types of mating in the 

previous generation. 	It is clear that as the two extremes become 

differentiated, the phenotype of an individual becomes a better pre-

dictor of its breeding value and therefore the choice at each end of 

the distribution is more accurate. This is another way of saying 

that this type of selection causes substantial amounts of positive 

linkage disequilibrium with consequent increases in the heritability. 

The difference between observed and predicted contributions 

(numbers in brackets in the table) partly give an indication of the 

degree of unsuccessful matings. These were low and non-fertile 

matings were not associated with any, given mating type. 

Tables 10.5 (a and b) show estimates of offspring-midparent re-

gressions and estimates of intraclass correlations obtained from 

analysis of variance between full-sibs during different stages of 

the selection programme in both replicates. The positive build up 

of linkage disequilibrium is clearly demonstrated in the estimates 

of heritability by offspring-midparent regressions. As was shown 

in the previous chapter, dIsruptive selection in the parental gener-

ation causes the estimates of heritability from intra-class 
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TABLE 10.4a: 	Replicate 1, 

Gene r- 
ation 	H x H H x L(L x H) Lx L 

Proportion of high extremes selected from the 
offspring of each type of mating. 

0.41 0.41 0.18 
(0.47) (0.38) (0.15) 

0.84 0.16 0.00 
2 

(0.84) (0.16) (0,00) 

Proportion of low extremes selected from the 
offspring of each type of mating. 

0.09 0.25 0.66 
(0,09) (0.13) (0.780 

0.06 0.22 0.72 
2 	

(0.06) (0.22) (0.72) 

TABLE 10..4b: 	Replicate 2. 

Gener- 
ation Hx}IHxL(LxH) LxL 

Proportion of high flies selected from the off- 
spring of each type of mating. 

0.62 0.34 0,04 
1 

(0.62)* (0.34) (0.04) 

0.88 0.09 0.03 
2 

(0,88) (0.09) (0.03) 

Proportion of low flies selected from the off- 
y,lno nf annh tvri 

----- 
f mf1 ya 

----.—o- 

0.07 0.34 0.59 
1 

(0.07) (0,24) (0.69) 

•000 0,31 0,69 
(0.00) 	. . . 	 . 	(0.31) 	............ (0.69) 

*In both tables, the numbers in brackets refer to the expected 
proportion based on the selected mating. Due to infertility spare 
matings were occasionally used and this effect is partly reflected 
in the difference between the number in brackets and the number 
directly on top of it, 



TALE 10,,5a: 

Estimates of heritability obtained from offspring midparent re-

gressions and intraclass correlations between full-sib families. 

The intraclass correlation at generation t is obtained from the 

analysis of the offspring at generation t whose parents were 

selected in the previous generation, 

	

Generation .. b - 	 2 x t 

	

op . 	
C 

	

0 	 0.38±0,07 	0.77±0.12 

	

1 	 0.54±0.09 	1.00±0.11 

	

2 	 0.74±0.07 	1.25±0.13 

	

9 	 0.47±0,04 	0.61±0.13 

	

11 	. 	0.47±0.06 . 0.66±0.14. 

TABLE 10,5b: Replicate 2. 

	

Generation 	 b
op  
- 	 2 x t 

(0.24±0.l4) 

	

0 	 0.35±0.08 	0.88±0.12 

	

1 	 0.72±0.07 	1.03±0.11 

	

2 	 0.64±0,07 	1.09±0.11 

(0.46±0.13) (1) 

	

7 	. 	,Q44±Q,O7....  0.77±0.3.2. 

(1 
 The structure or the data in this replicate allowed estimation 

of the intraclass correlation before the operation of selection, 

both at generation 0 and at the end of the period of relaxation,. 

In both tables, b refers to the offspring-midparent regression 

and t is the intraclass correlation between full-sibs. 
C 
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correlations to be biased upwards and this is clearly reflected 

in the results of both replicates. 

During the period of relaxation, the disequilibrium breaks 

down at a rate approximately equal to (1-c) (or slightly less if 

account is taken of the finiteness of the population) and this is 

again reflected in the b0  of both replicates and the relatively 

smaller degree of bias of the intra-class correlation. 	The decline 

in variance during the period of relaxation is also illustrated in 

Figures 10.2(e) and 10.3(e), where the frequency distribution of 

total counts are shown at the end of the experiment for both repli-

cates. 

The expected decline in variance in replicate 1 during the 6 

cycles of random mating due to the effect of genetic drift,, using 

estimates of the ratio of effective to actual numbers reported by 

Crow and Morton (1955) is of the order of 6%. 	In replicate 2, 

where flies were kept in vials during the four generations of re-

laxation and each family contributed with equal members to the next 

generation, the expected decline in variance due to drift is of 

about 2%. In both replicates the observed decline in variance is 

well in excess of the expected decline due to drift alone. 

The mean squared difference between both segments can be re-

garded as one of the components of the environmental variance, 

namely, that one due to the effects of local accidents of develop-

ment which prevent perfect replication of the same phenotype under 

the same environmental conditions. This within fly variance was 

calculated in each generation in both replicates and it remained 



virtually unchanged throughout the selection programme at a value 

of about 4 square units. 

Table 10,6 shows observed (0) and predicted (P) values of 

offspring-midparent regressions. Observed results are obtained by 

pooling the estimates obtained from both replicates whenever these 

estimates were obtained from the same cycle of selection 	Pre- 

dicted results are based on the ratio of genotypic to phenotypic 

variance obtained using Bulmer's predictions with a model which 

assumes 30 additive loci of equal effects distributed on 3 chromo-

somes, the recombination fraction between adjacent loci being Oil. 

The equilibrium additive variance at generation zero was assumed to 

be 3.7 and the phenotypic variance, 10. The mapping function used 

to obtain the mean recombination fraction was, c = 	 for 

loci on the same chromosome and c = for loci on different chromosomes. 

The data tend to suggest that predicted results tend to under-

estimate the estimates based on offspring midparent regressions, 

particularly during the period when disruptive selection is operating. 

This effect seems to disappear after the cycles of random mating. 

Discussion. 

The purpose of this work has been to provide an experImental 

check on the theory developed by Bulmer (1971, 1974). The results 

obtained are consistent with the expectation that disruptive selection 

causes positive linkage disequilibrium which leads to an Increase in 

the heritability of the metric trait. Evidence for the existence of 

joint disequilibrium is provided by the reduction in heritability 

during the period of random mating and also by the substantial bias 

in the intra-class correlations. 
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TABLE 10. 6. 

Observed (0) and predicted (P) heritability estimates during the 

disruptive selection experiment. 

h2 (0) : pooled offspring mid-parent regressions, 

h2 (P) : predicted results based on Bulmer's theory, from the 

ratio of the genotypic to phenotypic variance. 

Generation 
(Selection) 

h2  0' h2 P ( 	) 

0 0.37±0,05 (0.37) 

1 0.65±0,06 0.47 

2 0.68±0.05 0.55 

Number of cycles 
of random mating 

4 0.44±0.07* 0.50 

7 0.47±0,04** 0.43 

8 0.47±0,05** 0.41 

* obtained from replicate 2 only, 

** obtained from replicate 1 only, 
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The results however seem to suggest that observed estimates 

of heritability are larger than the predicted ratio of genotypic 

to phenotypic variance. If this is a real phenomenon, two possible 

reasons may account for it. 	First, the predicted results may be 

model dependent and therefore different combinations of the number, 

frequencies, effects and recombination values of the loci affecting 

the trait, for the same initial genetic parameters may yield pre-

dictions in closer agreement with observed results. Alternatively, 

it is possible that our estimates of the changes in heritability 

based on the regressions of offspring on selected parents may be 

biased due to departures from normality generated by this type of 

selection as is clearly illustrated in Figures 10.2'and 10.3. 

In the previous chapter, we have shown that, particularly in 

the early cycles of selection, the predictions of the generation of 

joint disequilibrium based on the infinitesimal model are in good 

agreement with Montecarlo simulation results. This provides some 

evidence against the model dependence argument. Further evidence 

is provided in Table 10,7 where Montecarlo simulation results are 

shown for three genetic models involving different degrees of link-

age, proportionate effects of the loci involved and initial gene 

frequencies for the same initial values or genotypic and phenotypic 

variance of the model used in Table 10.6, taken from the Drosophila 

experiment., The simulation programme assumes the same mating 

structure as the Drosophila experiment, with 16 males and females 

selected at each end of the distribution. 	The first model is based 

on 30 loci of equal effects. and frequencies with free recombination, 
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We symbolise it (30,0.5,0,5). 	The second model is equivalent to 

the first but the 30 loci are distributed in 3 chromosomes with 10 

loci on each chromosome and recombination value between adjacent - 

loci is 0.1. 	We symbolise it (30,0.50,1) 	The third model 

which assumes free recombination, is based on five loci at initial 

frequency of 0.1 and proportionate effects, a/c, of 0,45 and 25 

loci at initial frequency of 0.4 and proportionate effect 0.13. 

We symbolise it (5/25,0.1/0.4,0.5). 

The results in Table 10.7 show that observed and predicted 

values of disequilibrium in this short term selection study are in 

good agreement and that there is no clear difference among models. 

Table 10.8 provides evidence which supports the suggestion 

that the lack of agreement between observed and predicted results 

shown in Table 10,6 is due to a problem of non-linearity of the 

offspring parent regression. 

The simulation results show that the ratio of genotypic to 

phenotypic variance is in very close agreement with the results 

predicted on the basis of the infinitesimal model and furthermore, 

the realized heritabilities in all models are remarkably similar 

to the estimates of heritability based on offspring mid-parent re-

gresslons of thePronphi1a experiment. 

The discrepancy between the ratio of genotypic to phenotypic 

variance and the realized heritabilities obtained from the selection 

of extreme deviants can be explained in the following way. The 

first cycle of disruptive selection produces considerable divergence 

between the means of the offspring of the H x H and L x L matings. 
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TABLE '10.7: 

Montecarlo simulation results (0) and predicted results (P) of 

joint disequilibrium for three genetic models with equal equilibrium 

additive variance and phenotypic variance at generation zero. Pre-

dicted results based on Bulmer?s theory. 	Observed-results are the 

average of 10 replicates. 

Generation (30,0.5,0.5) 
Model 

(30,0,5,0,1) (5/25,0.1/0.4,0.5) 

0 -0.04 ± 0.09 0,06 ± 0.08 -0.14 ± 0.09 

0 - 

P 0.00 •0.00 0.00 

0 1.30 ± 0.14 1.74 ±0.18 1.54 ± 0.18 

1 
P 1.61 1.61 1.61 

0 4.20 ± 0.39 5.08 ± 0.41 3.93 ± 0.41 

2 
P 3.64 3.76 3.64 

0 8.04 ±0,71 8.49 ± 0.66 7.81 ± 075 

3 
P 6.36 6.92 6.36 

0 11.12 ±0.80 12,00 ± 0.92 10.55 ±1,24 

4 
P 10.25 11.64 10,25 



TABLE 10.8: 

Montecarlo simulation results of the ratio of the genotypic to phenotypic variance (VG/VP) and 

realized heritabilities of the H x H matings (h2H). 	The corresponding realized heritabilities of 

the L x L matings are similar and are omited. 	are the predicted results based on Bulmer's 
VP 

theory. 	The standard errors of h 2 H are about 0,03, 	ana (5..) are 	 Variance Cos.iroQes ke*4ee,t'i ana  

' i4AV% 	P1 LII*2 	 g c4,v.eJ, - 
Model 

30,0.5,0.5 30,0.5,0.1 	. 5/25 10.1/0.4,0.5 
Generation VG 2 VG 2 VG 2 

h 
VG 

of 
VP 

ii H h H VP H 
selection. 

0 0,38 0,35 037 0.38 0.38 0,38 0,38 

1 0.45 0.60 0,44 0.58 0,46 0,56 0,47 

2 0,56 0.67 10.56 0.67 0.58 0,67 0,56 

3 0.66 0.70 0,66 0,72 0,67 0.69 0,64 

4 0.73 0.75 0.72 0,77 0.73 0,77 0.71 

Generation CY Cy b  
a 

w  
2 
w - 

1 8.03 3.31 8.10 3.44 8.02 2,95 

2 8.08 6.40 8.12 7.36 8.21 5.97 

3 7.72 10.81 8.00 11.51 7.78 10.63 

4 7.94 15.51 8,03 16.39 8.01 15.12 

0 
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In fact, this cycle of selection generates what we can consider to 

be three subpopulations, originated from the offspring of the H x H,. 

L x L and LH(HL) matings0 The amount of disequilibrium generated 

is a description of the genetic situation in the whole population. 

However, in a second cycle of selection, in the high extreme say, 

the proportion of the selected Individuals which are, selected from 

the offspring of the H x H matings will generate offspring whose 

mean will tend to regress towards the mean of the subpopulation 

they were selected from rather than to the overall population mean. 

This clearly causes a higher heritability than the one we would 

obtain if there were no genetic differentiation among subpopulations 

and all the mated individuals generated offspring whose mean would 

tend to regress towards the (single) population mean. When the 

gametes at each end of the distribution reached fixation, all the 

variance within the high, low and their combination is environmental. 

It follows that at this stage, very intense selection will lead to 

smaller realized heritabilities than those obtained from less in-

tense selection provided that, in both cases, the extremes are all 

chosen from the extreme genotypes. This is because in both cases, 

the selection response is the same, regardless of the selection in-

tensity, but the selection differentIal Is smaller with less intense 

selection. 	This point is illustrated with Montecarlo simulation 

results in which a model of four loci reaches fixation after a few 

cycles of intense disruptive selection. 	At the end of the selection 

programme, the realized heritability is obtained by selecting the 

highest 50 out of 200 of each sex, or the highest 20 out of 200 of 
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each sex. 	In the first case, the estimate is 0.95 ± 0.01 and 

in the second case is 0.75 ± 0,01. 

More generally, it can be shown that the relationship between 

the conditional offspring means and the parental values is of a 

double sigmoid type, the single sigmoid relationship for values 

higher than the mean being a mirror image of the one for values 

smaller than the mean. 	It then follows that the response to 

selection of the same intensity at each end of the distribution is 

symmetrical but depends on the selection pressure applied. The 

ratio of the genotypic to phenotypic variance, as predicted from 

results based on the infinitesimal model is a linear description of 

the expected response to selection in a situation where the selection 

forces per se lead inevitably to non-linear relationships. Our 

experimental results would have been in closer agreement with pre-

dicted results based on infinitesimal model theory had we estimated 

the heritability from regressions of offspring on non-selected, 

randomly mated parents and fitted (incorrectly) a linear regression 

equation through the data. 

Could we get more insight by studying the effects of disruptive 

selection from a different point of view? The experimental design 

we have used allows us to follow the experiment as if it were a two 

way selection experiment. As was mentioned earlier, after a first 

cycle of selection and mating, one can consider the whole population 

as being composed of a mixture of various normally distributed sub-

populations, corresponding to the offspring of the H x H, H x L 
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(and L x H) and L x L matings, in a ratio 1 : 2 : 1, We have 

designated these three subpopulations, H, HL and L. The mean of 

the H x H mating expressed as a deviation from the overall' mean 

is ih20 a 0  and likewise, the mean of the L x L is -ih20 a 0 . 

The H x L (and L x H) matings yield a distribution with zero mean 

and the phenotypic variance within each of the three distributions 

is a2()(1 - i(i_xT)h4°). 	It then follows that the overall 

distributions, has zero mean and variance equal to 

= 0`2'0)(1 - i(i_xT)h4°) + 12h4 0`2(  

= a2(0)(l + 
iXT h4°), 

as obtained by Bulmer (1971). We now apply a second cycle of 

selection, and those individuals exceeding a truncation point 

(in units of 1a2"))  standard units from the overall mean in the 

mixed distribution at each extreme are saved for breeding. Assuming 

normality, it is possible to obtain the proportion of individuals 

which belong to each subpopulation, whose heritability has been re-

duced from h 	to 	= 
w 	w 

VG°(1.- .i(ixT)h) 

- 

the subscript w referring to the within population parameters. In 

this second cycle of selection, the top 10% comprises about 23.1% 

of subpopulation H, 7.7% of HL and 1.7% of L. The expected mean 

of each subpopulation in the second cycle of selection is then 

given by: 



2(1) /2(1) + XH(l) 
= '11(2) hlw 

XHL(2) = 	w 	w 
'HL(2) h 2(1)h 2(1) + 0.0 

2(1)  
XL(2) = 1L(2) h w 	

yu 	 +XL(l) 

where, for example, 	(2) refers to the selection differential at 

the second cycle of selection within the H subpopulation correspond-

ing to a proportion selected of 23.1%. The overall genetic mean 

of the top 10% selected is therefore, 

1(0.231) XH(2) + 1(0.77) XEL(2) + 10.17) XL(2) = 3.52. 

This exercise can be repeated for a second cycle of selection, but 

bearing in mind that the total reduction in variance within sub-

populations is comprised of the reduction generated in the new 

selection cycle plus a proportion (1-c) of the reduction incurred 

An the previous cycle of selection. This procedure is similar to 

the one used by Robertson (1970b)though he ignored changes in 

variance. 

Table 10.9 shows four sets of results corresponding to the di-

vergence between the means of the offspring of the H x if and L x L 

matings in the first three cycles of selection. The predictions 

based on the infinitesimal model which ignore the subdivision of 

the overall population into separate subpopulations tend to under- 

estimate the observed divergence and this is due to the non-linearity 

of response which we discussed previously. When attempts are made 

to allow for the lack of distributional uniformity, the divergence 
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TABLE 10.9: 

Divergence between extreme matings obtained from the Drosophila 

experiment, D (0) ; from predictions based on the infinitesimal 

model ignoring departures from overall normality, D (1) ; from 

similar predictions acknowledging the existence of subpopulations; 

from Montecarlo simulations of model (30,0,5,01), D(Mc). 

Generation D(0)  D(1)  D(1. D(MC) 

1 3.5 ± 0.3 4.2 4.2 4.0 ± 0.2 

2 6.2 ± 0.4 5.4 7.0 6.7 ± 0.2 

3 9,3 ± 0.5 7.2 12,1 9.1 ± 0.2 

is overestimated, particularly at generation 3. This is probably 

due to the lack of normality associated with the finite number of 

loci, which develops rather soon in disruptive selection of high 

intensity in both the overall distribution and within subpopulations, 

making the predictions based on this approach of questionable 

validity. The Montecarlo simulation results are in good agreement 

wilt'.-.- observed results, 

When we discussed the changes of variance in the context of 

directional selection, we. illustrated the difficulties which arise 

in making reasonab.ly accurate predictions of selection response due 

to the problem introduced by changes of gene frequencies. These 

changes not only had an effect on the amount of disequilibrium 
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generated but also could cause problems of lack of linearity 

of offspring parent regressions. 	With an infinite number of 

loci, however, these problems are virtually overcome, and the 

amount of non-linearity introduced after a first cycle of direct-

ional selection is negligible (Bulmer, personal communication). 

In the case of disruptive selection, particularly in experiments 

of short term duration, gene frequency changes are very small but 

the lack of linearity of offspring parent regression arises due to 

the type of distribution which develops as selection starts 

operating. 	In both types of selection, however, predictions of 

changes in variance are likely to be more accurate when selection 

intensities are low, but for quite different reasons in each case. 
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CHAPTER 11 

SUMMARY AND CONCLUSIONS 



Summary and Conclusions. 

I. Directional Selection. 

At the beginning of this thesis we asked the question, how 

accurately can the predictions based on the infinitesimal model 

theory describe the changes of genetic parameters induced by. 

directional selection. 	The answer to this question is clearly 

dependent on the genetic model we have in mind. In this thesis 

we have concentrated attention on additive and dominant models. 

Assuming additivity between and within loci, the short term pre- 

dictions of expected response to selection allowing for the changes 

caused by the build up of disequilibrium and ignoring those due to 

gene frequency changes are in good agreement with observed results 

provided gene frequencies are not far from intermediate values and 

gene effects are not large. This is hardly a surprising result 

since we are basically stating the conditions under which gene fre-

quency changes are minimised and furthermore, assumptions of normal-

ity are not grossly violated. Extreme gene frequencies and/or the 

presence of loci of large effect will restrict the validity of the 

predictions not only of the amount of disequilibrium generated, but 

more generally of short term selection response. 

In agreement with other reports In. the literature, we showed 

that linkage, even if it is very tight, has little effect on 

selection response during the first four cycles of selection. 

If the population size is small enough that most of the changes 

in the equilibrium additive variance are due to drift, we have been 

237 



able to show that reasonably accurate predictions of expected 

response can be obtained from estimable genetic parameters. These 

results may be useful in the case of laboratory experiments with 

Drosophila in situations where the effective population size is of 

the order of 10. 

As to the importance of these changes and their effect on the 

accuracy of the prediction of expected selection response, we ob-

tained a quantitative answer by comparing the difference between 

observed and predicted responses (the latter obtained from base 

population parameters assuming that these remain unchanged during 

selection) with the standard deviation of response derived from 

Montecarlo simulations. The results again depend on the underlying 

gene frequency distribution and effects and the size of the experi-

ment. With reasonably large population size (of the order of 60 

or more), provided gene frequencies are not initially at low values, 

changes of genetic parameters become relevant after three or four 

cycles of selection. With low selection intensities and low herit-

abilities, predictions of joint disequilibrium are very accurate 

but its effect on changes of genetic parameters is small and not 

likely to be detected even if population size is very large. 

The presence of dominance introduces more serious complications, 

even when the number of loci is as large as 30 and gene effects. re-

latively small (ct/a = 0.20), 	Independently of the problem of changes 

of genetic parameters, we are faced with the non-linearity of off-

spring parent regressions and the consequent asymmetry of immediate 

selection response. Predictions of the generation of joint dis-

equilibrium and expected selection response based on infinitesimal 
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model theory are inaccurate and two way selection experiments 

show considerable asymmetry in the amount of disequilibrium 

generated. 

Two different experiments with DrosophilamelanOgaster each 

one run with two replicates were carried out in an attempt to 

study experimentally the changes of genetic parameters during 

selection. The results were rather equivocal in that only one 

out of the four replicates showed significant evidence of any 

build up of disequilibrium during selection. An interesting 

feature of the results of this replicate, however, was the fact 

that no significant changes of genetic parameters were apparent 

during the four cycles of directional selection but upon four 

generations of random mating a considerable increase in the immed-

iate response to selection was achieved. This result was recon-

ciled in terms of a model in which the trait (abdominal bristle 

number in this case) was determined by several loci of small effect 

at intermediate frequencies and few loci of large effect at extreme 

frequencies. With this model, the increase in genotypic variance 

due to the permanent effects of gene frequencies moving towards 

intermediate values is partly compensated by the reduction in the 

genotyp± vrfance caused by the temporary effect of joint disequil-

ibrium, and consequently, genetic parameters remain fairly stable 

during the early cycles of selection. As selection is relaxed 

and disequilibrium breaks down, the permanent effects are unmasked 

and the realized heritability increases. 

This result probably points to the moral of this work. We 

are still unable to make accurate predictions of expected short term 
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responses to selection from present base population parameter 

estimates unless we have some idea of the underlying frequency 

distribution and effects of the genes affecting the trait in 

question or unless the effective-population size is very small. 

However we have clearly shown that the reduction in variance due 

to the generation of joint disequilibrium plays a major role in the 

selection process and it should not be omitted in short term 

selection studies. 

II. Disruptive Selection. 

Selection of extreme deviants followed by random mating of the 

selected individuals is known to lead to small changes of gene fre-

quency, particularly in experiments of short duration. Most of 

the changes of the genotypic variance are due to the generation of 

linkage disequilibrium which if selection intensity is high, should 

lead to considerable increase of genetic parameters and therefore 

its effects are likely to be detected experimentally with little 

ambiguity, The experiment carried out with Drosophila, reported in 

Chapter 10 was set up in an effort to provide evidence for the 

generation of linkage disequilibrium on a quantitative trait. 

The character meaui'ed was abdominal bristle scores. The ex-

periment was run with two replicates and in each one three generations 

of disruptive selection lead to conspicuous Increases of the herit-

ability estimated by offspring mid-parent regressions, the parents 

being selected at both ends of the distribution. A large proportion 

of the increment in genetic parameters disappeared after several 

cycles of selection, this result being consistent with the expectation 

240. 



241. 

that the increments observed were temporary and due to the generation 

of positive linkage disequilibrium. A second source of evidence on 

the build up of disequilibrium during disruptive selection was pro-

vided by contemporary estimates of heritability based on intra-class 

correlations between sibs which, in agreement with work reported in 

Chapter 7 lead to positively biased estimates. 

This experiment stimulated the theoretical work on disruptive 

selection reported in Chapter 9, which aided in the interpretation 

of several aspects of the results obtained with Drosophila. 	In 

particular, we clearly showed that disruptive selection leads immed-

iately to non-linear relationships between offspring and parents and 

therefore estimates of genetic parameters obtained by fitting linear 

regression models to the data during the course of selection must be 

interpreted with some qualifications. 

Another interesting outcome of the theoretical work was the 

results of the interaction between small population size and the 

degree of linkage. In marked contrast with the case of deterministic 

models we showed that the tighter the linkage the smaller the amount 

of disequilibrium generated, but this effect is small during the 

first four or five generations of disruptive selection. 



APPENDIX 

In this Appendix we briefly describe the two methods based on 

deterministic models which have been used in this thesis to obtain 

what we have termed "Exact Results" (Chapters 3, 5, 6) for changes 

of gene and gamete frequencies and various types of disequi].ibria0 

For the purpose of the description that follows, we refer to these 

methods as, 

(1) Method based on numerical integration of the normal 

density function - Method I. 

(ii) Method based on selection within genotypic classes - 

Method II. 

Some numerical examples are presented at the end of this section. 

Method I. 

This method has been widely used by quantitative geneticists 

(10e. Griffing, 1960; Latter, 1965) and was probably first con-

sidered by Fisher (1918). The conceptual framework on which it is 

based assumes that the metric trait is determined by many additive 

(non epistatic) loci, and a normally distributed environmental com-

ponent, such that the distribution of phenotypic values is normal, 

with mean M and variance a2 . Attention is focussed on one or two 

th 
loci, say, such that individuals of the i- genotype have mean 

and their variance in the population is a. The variance contri-

buted by the locus or pair of loci is c = a2  - a. Once the 

genetic model is specified in terms of the number, frequencies and 

effects of the genes involved and the size of the environmental 
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variance (yE) truncation selection is practised and those individuals 

which exceed a certain value, T, are saved for breeding. With two 

loci we have 10 genotypic distributions (many of which have the same 

mean) with the same variance, c. Given T, we find the truncation 

point in the underlying distribution for the ' l genotype, Ti, and 

the selective value of the genotype is obtained by integrating the 

normal curve, from Ti to infinity. Using standard population genetics 

theory we can then find the frequency of the various genotypes, gametes 

and genes after selection has operated. 

It must be noticed that an important assumption in this technique 

is that we concentrate on a pair of loci say, and we assume that the 

distribution of the various genotypes is normal, this assumption 

arising from the fact that the environmental component follows a 

normal distribution and that there are many more other loci which 

are still segregating. The question then arises: what are the 

consequences of reducing the total number of loci to a small number 

(10, say) whose frequencies are extreme and whose effects are not 

small? Row does this affect the results obtained in terms of the 

predictions of changes of gene and gamete frequencies and the amount 

of disequilibria generated by selection? Attempts to answer these 

questions lead to the development of Method II - Selection Within 

Genotypic Classes. This method was kindly suggested to me by 

Professor Alan Robertson. 
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Method II. 

This technique was developed in an effort to understand the 

validity of the results obtained using Method I, when gene frequencies 

are extreme and gene effects are large. The basis of the method is 

as follows. The choice of the total number of loci and type of 

gene action, immediately specifies the number of genotypic classes, 

each genotypic class being defined in terms of its mean and variance. 

Consider an additive model of 4 loci, with each plus allele at each 

locus having an effect of +1 on the trait, and each minus allele an 

effect of -1. There are then 9 possible genotypic values which 

range from -4 to +4 and we refer to these as genotypic classes. Out 

of the 4 loci, we focus our attention on two of them. For example, 

individuals carrying genotype AB/Ab (which has genotypic value 1) 

at this pair of loci, may be segregating for any other of the possible 

10 genotypes at the other 2 loci and therefore these individuals can 

assume genotypic values ranging from (1-2) to (1+2), the frequency 

within each class being determined by the initial gamete frequencies 

in the population. 

The important point to notice is that the variance within each 

class is environmental since by definition, all the genotypes belong-

jug to a class have the same genotypic value. Each genotypic class 

therefore is normally distributed, with mean X 1  and variance YE. 

Truncation selection is practised at the level of the phenotypic 

distribution. We can obtain the truncation point at the level of 

the various genotypic classes and calculate the selective value of 

each class either - from normal tables or by numerical integration of 
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the normal density function 	Knowledge of the selective value 

of the various genotypic classes and the frequency of each genotype 

within each class leads to the frequency of the various genotypes 

amongst selected individuals. 

We shall now compare the results obtained from both methods 

using three models, all of which involve a total number of 4 additive 

loci with the same gene effects and frequencies. The parameters of 

the models are summarised in Table Ail. All models assume initial 

equilibrium. 

Table A,2 shows the observed gene frequencies and the amount 

of linkage disequilibrium (covariance of gene frequencies within 

gametes) at generation 1, after a first cycle of selection. 

As expected, with model 0.5/0.10, both methods give very 

similar results. What is rather surprising, however, is that method 

I, based on normality, seems to give results in good agreement with 

those obtained using method II even when gene frequencies are extreme 

-and/or gene effects rather large (models 0.1/0.10 and 0.1/0.40). 

Kempthorne (1977) suggested that the validity of method I should 

be investigated. We believe that this has been done through the 

analysis described in this Appendix. 



TABLE A.i: 

Initial gene frequencies (q), Proportionate effects at each locus 

(a/a), initial genotypic variance (VG) and heritability (h2) for 

the three models. 

Model 
designation 

(g/ll2 ) 
q a/a VG 

2 
h 

0.5/0.10 0.5 0.22 2.00 0.10 

0.1/0.10 0.1 0.37 0.72 0.10 

0.1/0.40 0.1 0.75 0,72 0.40 

TABLE A.2: 

Gene frequencies (p) and linkage disequilibrium (D) for the various 

models after one cycle of selection, obtained by methods I and II. 

Model 0,5/0.10 0,1/0.10 	- 0.1/0.40 

pxlO2  Dx105  px102  Dx105  pxlO2  Dx105  

Method I 57.83 -23.85 15,26 -17.02 21.45 -106.68 

Method II 57.83 -23.86 15.24 -16.76 21.18 -95.19 
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