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ABSTRACT

The changes of genetic parameters caused by selection are due
to changes in gene frequencies and due to the generation of linkage
disequilibrium, In quantitative traits, the effects associated
with gene frequency changes cannot be predigted but those due to
linkage disequilibrium are predictable in terms of parameters of fhe
base population, the sign of the change depending on the type of
selection applied. With directional selection the sign is negative;
with disruptive selection; it is positive. These predictions however
are based on models which assume an infinite number of loci (infinite-
simal model). fhe work described in tﬁis thesis examines the
validity of these predictions with models of a finite number of loci
in short term selection progiammes.

iTﬁe first eight chapters deal with directional selection.
Initially some twb locus theory is developed and the résults are
extended to quantitative models with use of Mdntecarlo simulation
techniques, 'With additive gene action predictions of selection
response and of reduction in variance based on infinitesimal theory
are accurate provided geﬁe frequencies are not extreme, With dom—
inance these predictions are inaccurate even'in“the first cycle of
selection, ‘In order to quantify the importance of changes of.
~genetic parameters, the difference between observed and predicted
responses to selection relative to the standard deviation of
selection response is discussed for various models. |

Two experiments with'Drosthila designed to study changes of
genetic parameters with selection are reported. Only one out of

the four replicates showed evidence of negative linkage disequilibrium



and the results are interpreted in the light of models studied
in earlier chapters.

It is concluded that expected changes of genetic parameters
in short-term selection studies are not likely to be predicted
accurately but that the generation of disequilibrium plays =
fundamental role in these changes.

The last chapters deal with disruptive selection, An ex~
periment with Dfosophila is reported and the results are shown
to be consistent with theoretical expectations which predict large
increases in genetic parameters due to positive:disequilibrium.
Some further theory is develﬁped which clarifies various aspects

of the expefimental results.
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CHAPTER 1

INTRODUCTICN



Introduction.,

In general the aim of an animal breeding programme is to obtain
high rates of genetic gain from a given amount of initial gemetic
variation, Accurate estimates of genetic parameters are paramount
in providiﬁg information that will lead to the choice of the most
efficient breeding plan and to the prediction of the egpected res-
ponse to selectionmn, |

As a consequence of selection, genetic variances and herit-
abilities: change and rather little attention has been given to
studying the magnitude of these changes and their impact on short-
term selection predictions,

In large populations, changes of genetic parameters induced by
selection come about through changes in fredueﬁcigs of the genes
affecting the trait and due to the generation of covariances bet-
ween the frequencies of these genes,-i;e; linkage disequilibrium,

The changes due to gene fréquency changes 'are highly dependent:
6n the distribution of gene effects and frequencies in.the base
population, the information on which is small in Drosophila and o
almost non-existent in other species. We can then do no more than
iay down the conditions under which gene frequency changes will be
at a minimum which basically dépend on the magnitude of the prop-
ortionate effects of the genes. In other words, with large
population size, for a given amount of initial genetic variation,
the larger the number of loci affecting the trait, the smaller the
expected change in éenetic parameters due to changes in gene fre-

quencies caused by selection. This type of argument together with



a general impression obtained from experimental evidence led
people to tentatively suggest that parameters are not likely to
change much during short term selection experiments and that con-
sequently prediction of expected responses based on present herit-
ability estimates may be valid for a period of five or more
generations (i.e. Falconer, 1960; Hill, 1974).

The other way genetic parameters change is through the
~ generation of linkage disequilibrium induced by the selection
process, In a series of papers, Bulmer (1971, 1974; 1976b) developed
a theory which led him to conclude that in large populations, if
the character is determined by many loci; most of thg changes in
~ genetic variance in short-term selection programmes afedue to the
~ generation of linkage disequilibrium and he developed formulae that
predict such changes. These formulae are functions of readily
estimable parameters of thé base population and are independent of
the number, frequency ﬁnd effects of the ldci affecting the trait
in question., |

As was pointed out by Bulmer, his result should be considered
as a limiting result in the éense that it will hold provided the
number of loci is strictly infinite; In view of fhe theoretical
and practical importance of Bulmer's results, it seems desirable to
study their validity under a range of genetic models. In other .
words, we would like to know how accurately we can predict changes
of genetic paraﬁeters when the assumption of an infinite numbér of

loci is relaxed.



More generally, the purpose of this thesis is to attempt a
better understanding of the consequences of short term selection
programmes on genetic variability. The first eight chapters of
this thesis deal with directional selection. Some theory is de-
veloped for the case of two locus models in order to understand
the way the various parameters interact during the selection
process, Attempts are made to extend the twp locus results to
quantitative models and considerable use is here made of Montecarlo

simulation studies. At the end of this part of the thesis, ex-

periments with Drosophila melanogaster are reported. These experi-
-ments were carried out to provide e#perimental evidence on the theory
developed in earlier chapters,

The last chapters of the thesis deal with disruptive selection, -
Under this type of selection,.v gene frequency changes are small and
most of the change in genetic parameters comes about through the
~ generation of linkage diseéuilibrium° An experiment with Drosophila
is described, the results of which are 1nterpreted in the light of

theoretical work based on some simple algebra and computer simulation.



CHAPTER 2

POPULATION GENETICS OF TWO LOCUS MOIDELS



Introduction

In this section we review some of the deterministic two-locus
theory of population genetics, setting the notation to be used sub-
sequently. We shall be dealing only with those aspects of the theory
which have a bearing on the work of this thesis.

There are basically two types of models in this area: the cbn—
tinuous time model and the discrete generation model. We shall deal
with fhe latter which g;ves a description of gene frequency changes
due to ;election particularly in the case of non-overlapping generations.
Continuous-time models are discuésed by Crow and Kimﬁra (1970).

The basic quéstion raised by the two locus problem concerns the
interaction bétween linkage and selegtion which was probably first
briefly discussed,by Fisher (1930) who suggested that such an inter-
éction might be important. The matﬁematical aspects of the problem
were studied to a limited extent by Wright (1952) and later on expanded
by Kimura (1956) using a continuous-tiﬁe model, and Lewontin and Kojima
(1960) ,, and Bodmer and.Parsons (1962) using a discrete—generation model.
Follbwing these papers a vast amount of literature has déveloped, much
of which has been réviewed by Lewontin (1974) and Kériin (1975) , and

more recently by Hedrick et al. (1978).

- Random Mating

Cogsider a large random mating population of diploid organisms
with no mutation and discrete generations, and assume for simplicity
that two alleles A and a, B and b, are segregating at autosomal loci
A and B respectively. _ There are four ppssible chromosome types: AB,

£f_and f,. The

Ab, aB and ab with respective frequencies fl’ fz, 3 4

- gene frequencies are p, (l-p) for alleles A and a and q, (1l-q) fbr



alleles B and b respectively. As is well known,

t, =pqa +D , t, = (1-p)qg - D
‘ (2.1)
£, =p(l-q) - D £, = (1-p) (1-q) + D
such that p = fl + fz and q = fl + fs, and
D= f1£4 - f2£3 (2.2)

D is called the linkage disequilibrium parameter and can be de-
fined in a number of ways. As defined in (2.2) it is equal tq half
the difference betweeﬁ~coupling phase double heterozygote (AB/ab) over
repulsion double heterozygote (Ab/aB) at the time of random union of
~ gametes, However a more useful way of viewing D for our purposes is

fo define it as a covariance of gene frequency in gametes (Kojima &
Lewontin, 1970; Slatkin, 1972). From this definition,
D = E{(Xp-p) (Xa~-a)} - _ - 2.3

where Xp and Xq are the number (i;e. O or 1) of A aﬁd B alleles res- :

1" pq and is equivalent to. (2.2).

pectively. Thus from (2.3), D= f
When b = 0 the ioci #re indepeﬁdent and the gamete'frequencies are
, given ﬁy the prbducts of the frequenéies of their constituent alleles.
In the absence of selection,recurrence equations for changes in
chromosome frequencies in succeediné generations are easily derived.
Let c be the recomﬁination fraction between loci A and B, Chromosome
AB, say, at generation.t + 1 can be produced from the genotypes of
generation t in two different ways. Firstly, it may be derived from
~ genotypes AB/-- without recombination, where thé notation, --, refers

to the presence of an arbitrary allele at each locus, The prob-

ability of this event is (1~-c¢) and the frequency of such a genotype

in the population at time t is fl(t). Secondly, chromosome AB may
be the result of recombination between loci A- and B in genotypes A-/-B

with probability c,. The frequency of this genotype combination is



Pa, since in a large random mating population gene frequencies remain
constant in all generationms, Thus, with the assumption of random
mating, we have:

g (D (1-c)£1(t) + cpq, and similarly,

1
£ D 2 102, Y 4 ep(1-)
2 2
£, = 02, P 4 ca-ma | (2.4
g (D (1-o) f , c(1l-p) (1-q).
4 . 4 )
Noting that pq = fl(t) - D(t) , We can Write,
fl('t+1). = f1(t> - cn(t? (2.5a), and éimilarly
g (B _ o (B), | (%) (2.5b)
2 2 ' .
g (D) o o () (D) '(2«50)
*3 3
(t+1) _ (t) (t)
. f4 - f4 - cD (295d)
From (2.1) we have, fi(t) = pq + ¢t and,flgt+1) = pq + D(t#l). Sub-

- stituting in (2.5a) we have the well known result: .

p(t+D) _ )

(1-¢)D

1-0 ¢ 0@, snere p¢?

is the initial linkage disequil-
ibrium, In a large random mating population with discrete generationms,

D tends to zero at a rate (1-¢).

Selection
" Let us now consider the effect of selection, We first define
an array of fitness parameters corresponding to the fitnesses of.the

~ genotypes resulting from the random union of the four di fferent

- gametes, as illustrated in Table 2.1.



TABLE 2,1

Gamete Type AB Ab . aB . ab

AB Vi1 W12 W13 Y14

Ab Va1 Vo2 W3 Vo4

aB Va1 V32 V33 Va4

& Wa1 VY Va3 LOVY
Marginal ' Overall
Mean o ..wl. ,WZ_,.4..W3‘.,_,.W4, ‘Mean: W
wij(=wji) is ‘the probability that an individual of the ijth

_ genotypel(i = 1,-;;.; 4; Jj =1, ..., 4) survives from fertilization
until it reproducés by mating at random. We regard wij as a measure
- of both survival and reproduction and thus wg assume that all surviving
,adu;tslhave equal viability, Furtﬁgr, WiJ f wji assumes no maternal
effects on fitness. Wi is the expected fitness of the ith gametic
phase, aﬁd is obtained as: W, = § Wijfj; W is #hé average fitness
ot the population: W = z VLR AR
We shall consider tﬁe effect of seléction at two stages: before
’ and after recombination. ‘From our definition of fifnéSS the frequency‘

of chromosome type AB émqngst seiected genotypes; befbre recombination

takes place, is given by:

£ : Lj
(s,t) _ (71 : 3t o oo 1 (%)
£, = {W (2 W, + £,W, + £ + WD) (£, = ) DA

Similarly,



(t)
(s,8) _ . "2
fz = fz p—
w
(t)
w
fs(s’t) = f3 _-_3 (2.6)
w
(t)
© (S’t) = f -w—4—
4 4 W

(In general we shall place subscripts and stperscripts outside brackets
when they are common to all enclosed parameters. Presence of super-
script s indicates that the parameter in question is measured in the
selected population, Absence of s implies that the parameter is
measured before the oberation of selection).

From the set of equations (2.6), we can write

p<8» t) = (s,t)
| ‘f1 g~ P

}“” @.7n

= {w (¢4 14 Wy - fzfs wzws)

We now consider the production of_gametes of the selected geno-‘
types° The frequency of gamete AB at generation t+1 in the gametic
pool contributed by the selected genotypes, expressed in terms of

parameters-of the previous generation, before selection operated, is

g (D e fw w2 W22 W22 W

1 W 11 12 12 1°3 13 174 14
(t)
Wy, 1%, = W3 %y )]}
Assuming no position effects on fitness so that W =W

14 23’



(t+1) =& =(£,W, - cW py } (V) , and similarly,
1 W 1 14
(t+1) 1(t)
1, = (£, W, + ¢ W, D)}
w
(t+1) _- (1 L1 (%)
S0 = {W(fsw3 +ecW, D)} (2.8)
(t+1) _ (1 o L1 (1)
, = =W, = cvw, , DI
w
In general, the change in frequency of the ith gamete due to omne
cycle of selection is given by:
a2 g (B _ g (2D =’&l[f (W,-W) - k(i) ¢ w D]}(t) (2.9),
i i i W iti
where - -
) 1l fori=1,4
k(i) =¢{ - (Moran, 1964)
E -1 for i = 2,3 :

These sets of expressions afé due to Lewontin and Kojima (1960).
Lewontin (1964) considered the case of mﬁitiplebloci,‘and Kimﬁra and
Ohta (1971) and Roux (1974) have given equivalent recurrenée equations

for a modeifinéolving multiple alleles, From the set of equations

(2.8), 1t is readily shown that p¢t*D) = 1(t+1) + 12(t+1) -
{ (£ w1 + 2,V )}(t) and ¢tV < { (f w1 A )}(t) Furthermqre,f
W ‘ W
CE+1) _ o 0 o e (¥
D = (flf4 :zfs)
Iy e - = (1)
= {ﬁz £,8, WW, - £,£ W,W, - cW D 0} (2.10)

These recurrent equations enable us to describé the value that the
parameter in question takes in terms of its value in the previous
~ generation, before the action of selection.

From these various equations we can draw some important
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conclusions:

(i) Starting at generation zero with a population in equilibrium,
from (2.8) we conclude that changes in gametic frequencies (and
therefore in gene frequencies) are independent of the degree of

linkage between the loci involved, in the first cycle of

(5,00 _ , (D

selection, Therefore we can write fi i

, independent

“of c.

(s,t) _
i =%

if ¢ =-0, If ¢ ?>0 this relationship does not hold. In other

(t+1) for t > O,

(ii) From (2.6) andA(2;8) we can write £
words, uﬁless there is completeAlinkage, the frequency of the ’
) gaxneteé-pmduced by the selected genotypes in the secon.d cycle
of selection depend on the recombination fraction c. Starting
at generation zero (t=0), gamete frequencies are dependeﬁt on c
if t > 2, unless é =.0. ‘ |

p(s’t) =2 58 L5 (8D prrther

(iii) ‘;n general we can write: 1 2 o
more} p(s’t) = p(t+l). ' Sin;e 11(8’1) is not dependent oﬁ c,
provided-D(o) = Ol'gene_frequencies become depéndeﬁt on c if
t >i3. | —

(iv) From (2.7) and (2.10) we conclude that the amount of linkage
disequilibrium generated in the-éametes produéed by the selected
~ genotypes after the first cycle of selection is not dependent on

c and 1is eqﬁal to the disequilibrium present within the chromo-

1)

p(:9) - p(),

somes of the selected genotypes. That is,

provided ¢ = o.

Several_of thesé points will be pursued further in later sections. .



" CHAPTER 3

EFFECT OF DIRECTIONAL SELECTION ON QUANTITATIVE ADDITIVE MODELS

- ONE CYCLE OF SELECTION
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Introduction

In this chapter we apply the concepts developed so far in a
quantitative genetic context. As a result of selection in a large
population, the genotypic variance changes both due to gene frequency
changes and due to the generation of linkage disequilibrium. We shall
investigate the relative importance of these two processes in a first
‘cycle of selection,

The classical theory of selection for a quantitative character
assumes that there is no genetic variability in fitness (viability
and fertility) and that the only selection operating is that imposed
by the breeder. Given this éssﬁmption, artificial seleétion for a
metric trait can tﬁen be éonsidered as a case in which fitness is a
functidn of the phenotyﬁe. Let the phénotype bé deteimined by two

. additive non inteiacting loci; A and:B; each with fwo alleles, A,.a
and B; b; and a normally d;sfributed‘environmeﬁt;1 cémponent; Ve
f 1et'p and q Bejthe ffequency of'alleles having high value for some

and a_, be the difference

quantitative trait, A and B and we let a, 2

between the genotypic values of homozygotes and heterozygotes at
loéus A and B respectivel&. 4We shall assume that the population is
in Hardy-Weinberg equilibrium, The génetic model can then be written

Py P B i
AUWS AVILILUWDS .

AA Aa  aa . BB Bb bb
Value- al 0 —al az | 0 -gz
2 2 2 2
Frequency P 2p(1-p) (1-p) q 2q(1-q) (1-9)

The population mean: M é-al(l-Zp) - a2(1—2q)°

The equilibrium additive variance at each locus is:
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2
Ve, 2p(1-p)a,

2
vVgB 2q(1-q)a2
The total equilibrium additive variance, Vg, being given by: Vg =
VgA + VgB°

The gametic output is, as before

Game te AB Ab aB ab
Value $(a +a)) 1(a,-a,) $(-a +a)  H(-a -a,)
Frequency fl fz f3 f4

Due to our assumption of additivity, it follows that the gametic mean
is equal to‘one half the genotypic mean and further duelto our
assumption of Hard}fWeiﬁberg equilibrium, tﬁe total gametic variance
is equal to one half the total genotypic variance, VG. It is easy to
show that, | ‘ ‘ ‘

VG = Vg + 4alaéD S o ,: ' - 3.1°

If there are many loci affecting the trait we have:

VG = 25a,2q. (1-q,) + 4 I Za,a (3.2)
i S S

D, .
R AF R

The firgt.term in (3.2) iepresentS'the indepéndent contribution to thé
total genotyﬁic variagcg pf_thefn';oc; and we denqte this term, the
equilibrium ad&itive variahce, Vg. -The second term in (3.2) réflects
the contribution of covériances of allelic effects between the %n(n-l);
pairs of loci within gametes and following Bulmer.(1971) we denote
thisAterm, joint disequilibrium and we sp§11 symbolise it CLW. It
should be clear that loci which.are on different chfomosomes also

contribute to CLW, As was pointed out before, with random mating

and no selection, D breaks down at a rate depending on the linkage
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relationship of the loci involved. As D approaches zero, the second
term in (3.2) tends to zero and the population is said to move towards
a state of equilibrium.

Selection changes the value of VG through both its components.
We shall now assume that the base population is in Hardy-Weinberg and
linkage eqﬁilibrium and study the effect oonﬁe cycle of selection on

each of the components of the total genotypic variance.

Changes of Total Genotypic Variance due to Changes of Gene Frequencies

Following a section in Kimura's (1958) paper, the effect of
truncation se1ection for a metric character in a larg; population on
~ gene frequency.changes has been'studied by Griffing (1960) and Latter
(1965), and.more recéntly by. Kimura and Crow (1978). Some aspects of .
th§ genéfal theofy have been. reviewed ﬁy Kemptﬁorne (1977) and Pollak
(1979) . . |
| In whatlfoilofs we assume a large population in equilibrium'and
' seleétion is such thgf a certain proﬁortioﬁ, Q, of individuals that
éxceed a certain phenotypic value are saved for breeding. Mating
amqngst:the selected group is at raﬁdom. The genetic model is one
 in-wh1ch there are many édditive noh interacting loci affecting the
” charactef and we shalltfocus our attention on one bf these loci, The
" phenotypic §ariance, 62, is due to segregation at the rest of the loéi
affecting the trait plus a normally distributed environmental component.
We. shall first deal with thé case in which the genotypic effects are |
small relative to the phenotypic standard deviation, This assumption
is relaxed in the following section. In general we- assume that the

~ genotypic variance contributed by the locus is negligiblé relative to 02r
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Genes of Small Effect

When the proportionate effects of the genes are small (i.e. a/0 -
- Falconer, 1960), we can ignore higher order terms in such quantities
as a first approximation. In this case the change in gene frequency,
Ap, per unit change in phenotype, P, is taken to be linear and can be
expressed as follows (Falconer, 1960):

Ap = b AP
where bpp is the linear regression of gene frequency on phenotype.
Assumipg normélity,

Ap = 1Zp(1-p) | | | (3.3)
where i is the standardised selection differential or intensity of
selection, Thus the selective value in (3.3) is‘approximated by the
quantity ia/c (Haldane; 1931);' |

The;cha.nge in mean, Ml, ;;esAulti'ng from gene frequency changes at

'_ this locus, poting’that'%% « = 2a, can be expressed as follows:

‘%AP =%2a2p(1-p) - . : o (3.9
and is broportionai to the additive variance contributed by the locus.
:Furthermore, since tﬁe :egreésién'oi gege :iequency on phenotype is
linear and dzM/dpz‘and higher érder derivatives are equal'to'zero, the
chgpge in gean or response to selection is symmetrical. If theré are
n loéi affecting the character, the expected total responsé, R, is
- given by:
r=1 g v2a§ py(1-p, = 1nZo ' (3.5)

the usual formula of quantitative genetics,

We now look at the effect of gene frequency changes on the equil-

ibrium additive. variance, Vg, after this single cycle of selection.
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1)
J

th
The contribution from the j locus, Vg is expressed as:

4ng(1) = 2a§(pj+Apj) (l-pj-ApJ) (3.6)

2
Ignoring terms in Ap , the change in variance at this locus is given

by,

avg, = 2a”p,(1- pj)u 2p ) 2.

With n loci, the total change is:

q |

)(l-ZpJ)a 3.7

3

Avg = TAvg, = 22a2p (1-p j
J

J 3 33

The general conclusion we draw from these well known results is that
for a given intensity of seléction and a given initiel value of the

equilibrium additive variance, its change wili be smaller the larger
the.pumhei.oi genes affeéting the trait and as a first approximation,

it will tend to zero as gene frequencies tend to 0.5,

Genes of Lafge Effect

‘When gene effects are large relative to the phenotypic standard
deviation, second order terms in a/c can no longer be ignored and as
we'shall see, the expected response‘to selection is no longer sym-

metrical, This problem'was studied by Latter (1965) whose paper

'~ wme  + hasdis of tha A4i arnncagainan +thaot
ITTrme WS Tasis ¢33 Tae CLeEC SaConh Tasxs

Consider a large population which is normally distributed for

some trait, with mean M and total phenotypic variance 02} Let iij

denote the mean of those individuals whose genotype at a particular
locus is AiAJ and let oij be their phenotypic variance arising from
both segregation at other loci and from a normally distributed en-

vironmental effect.



16.

Following Kimura (1958) we define the selective value of the
ijt§ genotype, wij; as the probability that an individual of such a
~ genotype is selected. Ve assume; as we did before, that a proportion
Q of those phenotypes that exceed a certain truncation point, T, are
saved for breeding. With our assumption o{ﬂnormality and ignoring

the difference between 02 and 02, we can writes

ijJ
. o (X-X )
W, = f(l-{i ) = _'1 f exp{- ———;—3—} dx (3.8)
J J ov2m 3 20

Expanding (3.8) in a Taylor series about M, to second order terms, we

obtain:
= = df - 2 d°¢
CE(X, L) = £ + (X, - M) —_ | + 31X, - —— . diea
= 13 £, W &% -
. iJ .1J . . i3 ' 71}

Noting that Z = iQ, where Z is the ordinate at the point of truncstion
xT, of the standard normal distribution, the selective value can be

expressed as a second order approximation as follows:

..Q L9y ' . -
_ i : i = 2 . -
Wig= Q@+ 57 XM+ = (X, 4~1) _ S (3.9)

The relative selective value is given by

v, . | ix - - |
e - +l(§< -0 +—2E, 07 o © (3.10)
¥ oW o U 20> 13 |

" where Wﬁ the ﬁroportion'selected at thiS'locus, is defined as'follows;
assuming random mating:

W= ZZp p
iy 173 13

Assuming two alleles per locus, we can approximate W as followé:

- - QEp o

W=Q +—> 2a p@1-p) (3.11)
20

to the same order of approximation.
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The relative selective values of the three genotypes are expressed
as follows:

w

11 _ 8 a2 2.9

AA ;=== {1 + 221-p) + 2D 1 x A-p) )2
W W
W12 ' a 82 2,0

aa : —==="{1 + Z1@-2p) + 3D 1 x(1-2p) "}
W W
Yoz a 2 2,9

aa :'—%- = {1 - 27ip + 26?) i xPp }

If the gene effects are large the second order terms in these
expressions can be important, = Latter (1965) showed that the relative
gelective values are poorly estimated by the first order approximation
when (iiJ-M)/G is larger then O.S‘and the prepertion selected'lese
than about 40%. In ract, his Figure 1 shows thet for proportions
seiectedilese than 46%, the first order approximation underestimates
the exacf selecfive value for both pesitive and negative values of -
ij -M) /0, obtained from tables of the normal distribution. Thus for
an additive model provided‘gene.frequencies are not far from inter- -
mediate values, the effect of ignoring second order terms on gene
frequeney changes should not be too drastic, as we shall see shortly.,,

We now define wi/w as the relative selective value of the i

allele. For example for allele A,

= %{pw11 + (-p)W,,}
v oW '

21+ 2a-p + 11 D? x a-p} | (3.12)
= G o’ *r
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The change in gene frequency, Ap, is given by:
ap = Bw, - W) (3.13)
V-f 1

Replacing (3.11) and (3.12) in (3.13), and finally letting
Ax

Q/W =1 - ——5 a p(l-p), we obtain the second order approximation for
(o]

Ap (Latter, 1965):

‘a . zixT C
bp = 2 ip-p)y + D - p(1-p) (1-2p) (3.14)

From this result we draw the following conclusions:

(1) The expected response to selection will be poorly estimated
using (3f5) unless gene frequencies are intermediatg or the_intenSity
of select;on is»50%, so that xtl=-0; For gene frequencieg less thaﬁ
0.5, (3.5) will ténd to overestimate the true response and the opposite

holds for gene frequencies larger than 0.5.

(ii) Althéugh thé functional relationship between gene frequency
.and genotypid'mean is linear, the change in gene fiequency per unit
..chqnge in phenotype iswpot, and therefore two way select?on experiments
will pe asymmet:ical; Given i and*a/o; this asymmetry is maximum when
initial gené frequencies #re-o.s i:l//TE.' .The prbblém:of asymmetry.
of selectionrresponse was further discussed by Latter (1965) and moré
recently by Robertson (1977c¢) and M#ki-Tanila (1980). |

We now turn to changes in the equilibrium additive variance.

This change is expressed as follows:

Avg = I AVgJ

(%

= 7 2a20¢1- .2 ~
= g Zad{(l 2pJ)ApJ Apj} (3.15)

For simplicity, assume all genes have the same effect and frequency.
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Then the proportional change in the equilibrium additive variance

relative to its value before selection, Vg(o), is

i
- _AVg *r 2
A:ro) = i(—g-)(l-zp) + _2 (%) (1—2p)2 - 12(-§)zp(1-p) (3016)
Ve

" In order to get some insight we nowAproduce some numerical results,
We first look at the .accuracy with which expressions (3.3) and (3.14)
predict gene frequency changes for different values of a/c and
initial gene frequencies. Table 3.1 corresponds to a proportion
selected of 10% and Table 3.2 to 20%. In both tables Ap(E) refers
to exact changes in gene frequencieé obtained by numerical integration
of‘the normal distribution and having allo&ed for tﬁe fact that oij
is smaller 1:han.<:rz’° Ap(1l) corresponds to the predictions made using
(3.3) and Ap(2) u3138 (3.14). | |

fhe asymmetry in gene frequeﬁcy Qhanges; particularly at high
values'bf-a/é; are clearly illustrated in these‘results; ﬁhﬁt is
probably most striking is the high degree of accuiacy with which ex-
pression.(3;14) predicts gene frequency changes. The firéé order
approximation (eq; 3.3) bécomés rﬁther poor for values of a/0 of
'045,-_ At éene fréquencies of 0:3 or 0,7 thé difference betwéen the

exact results and those predicted using the first order approximation

: : . . . ae o s a o eas. - a _ .
differ by about 10% for both selection intemsities., ror‘; =-0.3,

this discrepancy decreases to about 4%.
The effect of these results on the changes of the equilibrium

additive variance is presented in Table 3.3, 'AVg(l) is defined as

(1) (0) (1)

Vg - Vg » where Vg is the equilibrium additive variance after

one cycle of selection obtained from the corresponding gene frequencies

€0))

estimated from (3.6). Vg refers to the value of the parameter at
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TABLE 3.1: Predicted and observed changes of gene frequency at an
additive locus after one cycle of selection, assuming
the base population is in equilibrium. Proportion
selected: 10%

-§ a 0.1 0.3 0.5 0.7 0.9
Ap(E) 10.035 0,077 0.088 0.070 0.028

0.2 Ap) | - 0.032 0,074 0.088 0.074 0.032
Ap(2) 0,035 -0.078 0.088 0.070 0.028
Ap(E) 10,099 10,205 '0.216 ‘0,160 0.060

0.5 Apl) 0.079 0.184 '0.219  -0.184 0.079
- Ap@2) | - 0,099 0,208 '0.219 0.161 0.059
Ap(E) -0.205 0.382 = 0.376  0.253 0.086

0,9 Ap(1) '0.142 '0.332 0.395 0.332 0.142
Ap(2) '0.208 0.408  0.395 0.255 0.077

"TABLE 3.2: Proportion Selected: 20%

~§ a 0.1 0.3 0.5 0.7 0.9

Apey | © . 0.027  0.061  -0.070 0,057 0,024

0.2 Ap1) | '0.025 0.059 -0.070 0.059 0.025
. Ap(2) . 0,027 - 0.061 0,070 - 0,057 0.024
Ap(E) .0.073 .0.160 - -0.176 0.135 0.052

0.5 Ap(l) 0,063 0.147 0.175 10,147 0.063
' Ap(2) ..0,074 - 0,159 0.175 0,125 0.052
 Ap(E) 0,145 0.302 . 0.317 0.226 0.079
0.9 Ap(1l) 0.113 -0.265 '0.315 0.265 0.113
Ap(2) 0.148 - 0,305 0.315 0.225 0,079
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(1)

generation zero. This way of predicting Vg is not strictly correct
to first order terms since it includes a term in Apz whose second order
term is ignored. Avg(E) is the exact result, computed from the exact
~ gene frequency changes. 'i‘able 3‘.3 shows that for a proportion
selected of 20%, the prediction using this approach is satisfactory

for values of a/0 smaller or equal to 0.2 ahd reasonably accurate for

values of a/0 = 0.5 unless gene frequencies are extreme,

TABLE 3.3: Values of AVg(l)/AVg(E). Proportion selected: 20%.
(See text for explanation).

2 q 0.1 0.3 0.5 0.7 0.9
0.2 | 10.94 '0.97 1,00 ‘1.04° . 1,08
0.5 | 0.87 = 0,97 0.99 1.11 1.22
0.9 | . 0.82 1,21 -0.99 '1.24 1,48

This wdy of ﬁredictiﬂg the value of the equilibrium additive
"'iariance after the first cyéle of selection, assuﬁing,as we did that
the population is initially in Hardy-Weinberg and linkage equilibrium
éeems to be operationﬁlly useful and due to its simplicity willlbe |
édopted in the comparison between'predicted and observed results in
the Montecarlo siﬁulafidns £hat follow,

Throughout thisAsection we have shown that given the selection
intensity-and initiél gene frequencies, the change in the equilibrium
additive variance is governed by the term -a/0. If there are n loci

of equal effects and frequencies affecting the trait in question, a/c
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2.

. . %
can be expressed as [ b ] . For a given amount of additive

L 2np(1-p)
genetic variation, as the number of loci becomes very large the term
a/o be comes negligible and therefdre the change in the genotypic
variance due to changes of gene frequencies is likely to be small,

particularly during the first few cycles of selection, (See Crow &

Kimura (1970)lfor a more rigorous treatment of this point).

Changes of Total Genotypic Variance due to the Generation of

Linkage Disequilibrium,

We now study the generation of'linkage disequilibrium in the first -
cycle of selection and its-effect on thé genotypic variance of a metric

trait, Having evaluated its effect on VG, we shall compare it with

the effect of gene frequency changes in order to understand their re~ .

-1ative contribution to the changes in the genotypic variance. As we
did before, we assume that the base population is in Hardy-Weinberg
and linkage equilibrium. We defer the genernl review of selection
in multilocus systems for the next chapten. ‘ |

Using the notation of earlier séctions; the problem is reduced
t0zobtnin1ngvanvexplicitvexpression for | |
(5,0

D = o = (s.2 1y

(b 0) - . s . '
(£,,- f2f3) - (3.17)

1 4 f f )

Since we assume that the gametes broduced by the selected genotypes
nre shed into a conceptuaily infinite gametic pool, where gametes

. pair at random to fnrm the zygotes, theAcovariance of gene frequencies
in gametes reflects the degree of linkage disequiiibrium'in the
chromosomés of the offspring of generat;on one° Due to our assump-

tion of initial equilibrium, the- frequencies 61 the four gametic types.
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by the set of expressions (2.6) for t = O. Since AD(O) =0, (2.7
reduces to:
(s,0) _- 1 _ ) .
D {Wz EXXCAN WWo] 3 . (3.18)

Using the procedure described before to approximate the selective

value of a particular genotype in a two-locus situation, it can be

shown fhat ‘the relative selective value of the four gametic phases- is

~glven, to second order terms, by the following set of expressions:

-9 R ' 1"'1'

=) Isﬁ
i .
“"'Jf' o

=l 'Nﬁ
L
| s.',L’“ o

?+—[a (l—p) - azq] +-%[a (1 p) +a§q 2aai’]}
?§ = %{Q + —[- lp + a; (1—q)] + [alp +- a (l-q) 2a a fz]}
W W - RN ‘29; .

go o T Y
Q.+ B—.lf_ﬁp f_'-azf’]’ + _2;3{3;9' M 2""14"‘21'1]}

= Iohs
I LI
B LN L

(3.19)
véhére -
=q+ ——{z 1p(1 P + 2a2<!(1 q)} ., “gor p® =o.
' g 20 , : :

Substituting. the set of expfessions (3.19) in (3.18) and finally

letting Q/W = 1 - %{2'a§p(1-p)'. + Zan(l-q-)} to second order terms,

2g0

Q * G-f[al(lfp) + az(l-q)] ‘ +—2;— [a (1- p) +-a, (l-q) + 2a f4]} _ 3

the covariance of gene frequencies in gametes produced by the selected
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parents, D(l), is obtained in terms of parameters of the population

before selection, namely:

o™ = itz 2,p(1-p) aya(1-0) /0 } O (3.20)

(Hill & Robertson, 1966). The quantity -i(i-xT) is always negative
(unless there is no selection in which case it is zero) whether we
select for high or low value of the trait and is clearly symmetrical,
Directional selection then leads to a reduction of the total geno-
typic variance due to the generation of negative correlations between
loci within individual parental gametic contributions, The value of

the quantity i(ifxT) varies from 0.918 for Q = 1% to 0.637 for

Q = 50%.
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Let the trait of interest be determined by n additive loci. Let
pj be the frequency of the allele having high value for the trait and
aj the differenée between Hdmozygote and heterozygote at locus j.

With n loci there are #n(n-1) pairs of loci within each parental gamete
an@ n(n-i) covariance terms contriﬁutiné to £he total variance between

(1)

gametes, We can then express D in the offspring of selected parents
as follows:

1) _

D = -i(i-xp) I I ap(l-p ) a, P, (1-p,)/0?
7k
Thé total genotypic variance at generation 1, VG(I), is
1 2 @)
=. 1- 2 D
VG ‘ggaj pJ( pJ) + ?;ﬁ ajak jk) (3.21)

where the first term is the equilibrium additive variance in genéfation

1, Yg(l), and the second term is a covariance of allelic effects between

pairs:-of loci, which following Bulmer (1971) we called joint diseduili—

\ brium and we symbolised CLW Since CLW(O) = 0, 'we can write, AVG =
Avg + aw® . The reduction in VG due to joint disequilibrium is
' = -{1(1— y/62} T T 28262 (1 ). (1-p))
x'1' ak 37 P Py
7k
. 0)2 .
2 2 2
= “{10-x)) /o }{—&—— - 12a%p (1-p)°}
p 33 J
whare % Vg(q) and T the value that the parameters take beiore

pJ are
selection, This expression can be written as (Hil11, personal communi-

cation) : i(i x ) : 1+CV2

cwV = 43——— ve2 (9 (1- vy

n

where va is the coefficient of variation of tﬁe quantities ajpj(l-pj).
If all loci contribute equally to Vg and n is large, the reduction in
variance due to jbint disequilibrium'ié given by:

(1) g(0)h2(0)

CLW = -éi(i—x,r)v (3.22).
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as was shown by Bulmer (1971), independent of the number, frequency
and effects of the genes involved°

The validity of this result rests on the assumption that the
phenotypic distribution is normal and that the regression of allelic
effects on phenotype is linear and homoscedasric. These conditions
'are satisfied when the phenotypic values are due to the segregation
of many additive and independent loci and an independent and normally
distributed environmental effect, With a finite number of genes
particularly of large effect and extreme frequencies, these assumptions
are unlikely to hold, introducing a considerable degree of complexity>‘
since higher order moments and bigher order disequilibria may become
relevant in an,attenpt toldescribe the prccess. It seems therefore
pertinent to study the behaviour;cf expression (3.22) under some
simple models in order to obtain some insighf»bn its robustness to
departures from the'sssumptions that lead-to its derivation. We do
this using the technique of numerical integration of the normal dis-
‘tribution used previously for the study of gene frequency changes.

Table 3.4 gives values of CLW(I), starting with a population in-
| equilibrium, for different initial gene frequencies and number of loci.'
We have assumed that the initial genotypic variance is of 4 squared
units, the. heritability of the character is 40% and the quer 20% ‘
of the population is selected.

Proportionate effects of the genes are shown in the bottom of
each gene frequency and number of loci combination, Af extreme fre-
quencies with genes of noderate to large effect, the departures‘frcm
the predicted value of -0;625 using expression (3,22) are indeed

quite substantial., There is a marked degree of asymmetry at extreme



.27.

TABLE 3.4: Reduction of the genotypic variance due to joint disequil-
brium, after a single cycle of directional selection. It
2 .
is assumed that CLW(0)=O; VG(O)= 4; h (0)= 0.4; Q = 20%.
The values in the table are obtained by numerical integ-
ration of the normal distribution,
................ Initial Gene Frequencies .
Number of
loci 0.1 0.3 0.5 0.7, 0.9
-1,.249 -0.739 -0.541 -0.381 -0.162
10 'ﬁ )
...... T ..0.,47 ) 0,31 ] o0.28 .1 .0.31 .. 0.47
: -1,002 -0.717 -0.597 -0.491 -0.316
30 - a : .
. E . . 0.27 R '.0a18, . 0016 . . 0.18 o 0027
-0, 854 -0.688 -0.614 -0.546 -0,.422
80 . a' - = _ . . '
B E » . On17 L. 0e11 . Onlo R 0011 .. 0017
-0.715 -0.652 -0.624 -0.595 -0.540
500 a o - . | .
....... i 0,07 . 0.04: 0,04, . ]..0.04 -0.07.
- oo > -0.625 -0.625 -0.625 ~0.625 -0.625
s 0 0. ... N o | 0.

~ gene frequencigs which disappears at a slow rate with increasing num-

ber of loci. 'The effect of increasing the number of .loci on the

value of CLW

and it is small when gene frequences are between 0.3 and 0.5,

(1), attained clearly depends on -the initial gene frequencies

These

results suggest that the model is rather semnsitive to departures from

the assumptions on which it rests and that higher order moments may
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have to be invoked to describe the process more gccurately. The
validity of the approach used as a first check on the model, which

as we pointed out is based on numerical integration of the normal
curve has been checked by a technique suggested by Professor Alan
Robertson and is described in the Appendix, This asymmetry in the

~ generation of disequilibrium due to selection was first reported in
the empirical studies of ﬁeeley & Rawlings (1971). As we shall show
in Chapter VI; this phenomenon arises as a consequence of‘the skew~-
ness of the genotypic distribution brought about by ext;eme frequencies,
and for a given amount of initial genetic variation, it is accentuéted,
the smaller the number of loci affecting the trait.

We are now in atﬁosition to answer ﬁhe following-questiqn: of
the.total change that takes placé in the genotypic variance after. the
first'cyéle of selection, what proﬁo;tion is due to changes in the
equilibriﬁm additive variance.due fo changes of gene frequencies and‘
what'ﬁroﬁoftioﬁ‘is due té_the generation~of Joint disequilibrium;

Some resu;féibaéed on numerical'integration of the normal curve are

shown in Table 3.5. The f;lgtires in the table refer to values of

) () )

| ACLW/AVG, where, AVG =4Vg + acw, with acww = cow® - aw’® |, aw
having been assumed to be zero.r
| The initial genotypic*variance is taken to be 4 square units, the
heritability is 0.4 and Q = 20%.

At intermediate gene frequencies, when changes in the equilibrium
~ additive variance due to gene frequehcy changes are at a minimum, most
of the change in the genotypic variance is due to joint disequilibrium.

At more extreme gene frequencies the relative contribution of each term

is highly dependent upon the number of loci affecting the trait. With
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TABLE 3.5: Values of joint disequilibrium, expressed as a proportion,
U, of the total change in the genotypic variance after one
cycle of selection, The remaining fraction, 1-U, is due

to gene frequency changes.

Number of Initial Gene Frequency
loci 0.5 0.7 o
10 0.77 | 0.32 A 0.08
% 0.92 0.53 0.22
80 0.97 0.68 0.37
500 | 1.00 0.86 |  0.65
re > | i | > .1 | - i

ihitiﬁl geﬁe'frequeﬁcies at'O;Q thé>nﬁhber of ioci has‘inﬁeed fo be
. very lgfge ﬁefore changes in tﬁe‘genotypic’fariance ﬁan be mostly-at-
vtribufed to joint disequilibriuﬁ. If gene frequgncies are-initially
at low values, the effects bf both terms are of oppésite sign, since
the equilibiium'édd1f1Ve vﬁridncé tends.ﬁo 1ncre£se as gene frequencies
move towards.intermediate values:" "In fﬁct, with a model of 30 loci
and initial gene frequencies 0f 0.3, with the same’genetic parameter
values as.those inATable-3.5, the effects of both terms tend to cancel
each other out and the total genotypic variance after onme cycle of
seléction remains virfﬁally'unchapged;

To summarize the main points of this chapter, we can say that in

large populations: the overall change in the genotypic variance, in a
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first cycle of selection, starting with a population in equilibrium,

is very much dependent on the genetic model used. Provided gene
frequencies are not extreme and the number of loci affecting the

trait is not small, thgilargest contribution to the change in the

~ genotypic variance comes from joint disequilibrium, At low initial
fiequencies, the generation of disequilibrium, and'gene frequency
changes have opposing effects apd consequently the genotypic variance
does not alter very substantially, whilst at high initial frequencies
both effects act in the same direction towards reducing the genotypic
variance, The predictions of changes in variance due to disequili-
brium, assuming thaf.the baée population is initially in Hardy-~
Weinberg and linkage equilibrium, are accurate prbvided gene frequencies
are élose to intermediate values. They become iess so if initial gene
frequencies are at more extreme values and this 15 accentuated as the

proportionate effects of the genes increases{.



CHAPTER 4

CHANGES OF LINKAGE DISEQUILIBRIUM WITH SEVERAL CYCLES OF SELECTION

- A REVIEW
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Introduction,.

In this section we review the effects of several generations of -
selection on linkage disequilibrium. We shall generally assume
large populations and thus confine ourselves mostly to deterministic
models.

Most of the studies of the joint effects of 1inkage disequilibrium
and selection have been carried out by population geneticists in an
attempt to understand the factors controlling the observable genetic
variability in natural populatioms. As a consequence, a large amount
of work has been concentrated on equilibrium populations and on the
"effect of recombination on the stability and position of the equilibria
under different kinds of multilocus models. Mﬁch of this work has
been reyiewed by Lewontin (1974) and Karlin (1975), and more recently
by Hedrick et _al. (1978) .

Less attention has been given to the éffect of diféctional
selection, natural or artificial, on inteflocus aséociations, where
alleles increase in frequency towards fixation. Lush stated more
than thirty years ago (Lush; 1948) that selection could cause disequil-
ibrium in the gametic array, as it "produces a ﬁinor excess of re-
pulsion gametes as compared with what would exist i1f each gene had
the very same frequency but no selection were practice&". According
to Lush, this negative disequilibrium generated by directional
selection should be very small. |

Griffing (1960) investigated the effect of linkage on response to
selection in large populations, assuming that gene effects were small
enough that second ordér terms in selective advantage could be ignored.

He showed that additive x additive epistasis can generate linkage
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disequilibrium but his assumption caused him to ignore the disequil-
ibrium produced by the additively acting genes.

The first derivation of changes of linkage disequilibrium due
to directional selection was made Sy Nei (1963). Studying a two'

locus model, Nei showed that the value of D generated after one cycle

oD

of selection, , starting from a population in equilibrium, was

given, using the notation of previous sections by

oD

1114(W1-W2-W3+W4)/W— ApAq

= flf4e-ApAq : (4.1)
where € is a measure of epistasis at the fitness scale and the second

term is the product of gene frequency changes. Nei assumed that in

the absence of epistasis at the phenotypic scale, € vanishes and thus,

replacing (3.3) in (4.1) he obtained "
2 .
I - i
D 2 a,p(1-p) a,a(1-q) (4.2)

However, we should make clear that additivity at the phenotypic level
does not imply additivity at the level of fitness., In fact, it can

be shown that perfect additivity in the phenotypic level leads to a

Ax,,

value of € = —E:alaz, to second order terms, where as before a, is the
c

average effect of a gene substitution at the ith locus. (In the case
Cix, .
of a dominance model, € = ——!Q a,, to the same order of approximation,

02 172
where o = a, + di(l—Zpi)). Substituting this value for € in (4.1),
we obtain (3.2). 'Nei concluded that in a large population under

‘selection, provided that ¢ is zero, the amount of disequilibrium

~ generated by the second order effect of gene frequency changes is small
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enough to be ignored.
The departure of gamete frequencies from their equilibrium

value can also be measured by the following expression:
R=——2 (4.3)

which is related to Dby : R=1 + D/(fzfs). Thus when D = O,
R =1, Kimufa (1965) showed that in a large population if gene fre-
quencies are changing slowly under loose linkage and relatively weak
epistatic interaction in fitness, a state is rapidly achieved in which -
chromosome frequencies change in such a way that R remains practically
constant. He called this state quasi—linkage equilibrium. For'the
properties of this quantity, see Kiﬁura (1965), Feldman and Crow (1970)
and Nagylaki (1974).

If a population is initially in linkage equilibrium,'for'it to
remain in equilibrium a?ter selection the genes concerned must affect
fitness in a multiplicative menmer (i.e. W,W, = W,W.)). This can be

14
(1)

"shown by setting D equal to zero in the following ekpréssion:

 _ ) ' B .
D = (f1+Af1)(f4+Af4) ‘f2+Af2)(f3+Af3) . (4.4)

¢

Substituting Afi by the set of expressions (2.8) in (4,4) yields

W1W4 = szs. This was pointed out by Fe}senstein (1965) who examined
the qualitative effects of directional selection on linkage disequili-
brium and the effects of linkage on the rate of changé of gene fre-
quencies. He showed that directional selection for an'additively
determined trait will immediately cause negative linkage disequilibrium,

This implies an excess of gametes with both the favourable and un-

favourable alleles associated thus producing eventually relatively less
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extreme genotypesand therefore reducing selection response. Con-
tinuous selection produces fresh disequilibrium on each cycle, while
recombination tends to sreak it down. With tight linkage, disequil-
ibrium tends to accumulate and we then expect the rate of selection
response to be smaller than with free recombination, In a very large
population though, linkage does not affect the selection limit but
only the rate of advance to that limit, Linkage disequilibrium
eventually disappears when the favourable alleles become fixed,

Several of these expectationg have been confirmed by Neeley and
Rawlings (1971) who carried out extensive numerical studies on the
effect of several cycles'of selection on changes of genotypic vari;nce
under a strictly additive model; In general they found that the
~ generation of linkage disequilibrium increases.with heritability,
intensity of selection and tightness of linkage, though linkage has
little effect during the early generations of seleﬁtion;

The most conclusive and complete study of the effect of selection
on interlocué associations for a quantitative trait in infinite popul- -
ations was carried out by Bulmer (1971; 1974, 1976b). Since this thesis
relies heavilylon Bulmer's work, we shall now review it in some detail,
First we deal with the case of free recombination, We relax this

assumption in the following section.
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Selection Under the Infinitesimal Model.

Free Recombination.

Consider a large population in eqﬁilibrium and let P be the
phenotypic value of a metric trait determined by fhe sum of ; genotypic
value, G, and an independent normally distributed environmental com-
pctent, E, 'If we assume that G is given by the sum of an effectively
infinite numbgr of additive (non-epistatic) loci, then the phenotypic
distribution will be normal. This model was first studied by Fisher
(1918) and is usually referred to as the infinitesimal médelf We
shall now show the consequences of a first cycle of selection in the
parental generation on the phenotypic variance in the offspring gener-
ation. This can be done in a-variety-of ways; One such way is to
study as we did beforé; tﬁe changeAin the covariance between allelic'
effects in gametes due to selection on the phenotype. We have shown
.before that the covariance between allelic‘effects in g;metes is a
compoﬁent of the total genotypié variance. Under the aséugptions of |
the present model; the joint distribution of alleiic'effects and phené—
typic values is bivariate normalland.therefore the :egressibn of one
on the other is exactly linear and homoscedastié.

An alternative approach, also using iegression theory, is to con-
sider the regression o£ offspring on parents, Un&er the present
model, Bulmer (1971) showed that the phenotypic vaiues of two or more
related individuals follow a multivariate normal distribution. He
further proved that this result holds in the presence of linkage pro-
vided the related individuals are identical twins and offspring and
one or both parents. For other types of relatives, the regression
line is wmaffected by linkage but the residual va;iance about the re-

gression line is no longer constant (Bulmer, 1976a).
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In the absence of selection, the joint regression of offspring,

1 _

P(l), on both parents, Pm and Pf, is given by P = a + me +bPf + e,

where b = %hz (Falconer, 1960). With random mating, the variance in

the offspring, VP(I), which is equal to the variance in the parents,
VP(O), is given by:
(1)

2 :
VP =Db V(Pm + Pf) + V(e),

and.therefore,

(0)

V(e) = VP (1 - ih4).

If directional selection operate§ in the parental generation, so that
the variance émqngst the parental phenotypic values changes to.
VP(oa{l - i(i-xT)}, the regression and the residual variance about
the regression line is unaltered and therefore, in the offspring

~ generation, with random mating of the selected pafents, the phenotypic

variance becomes:

D - ® | gy 1mxynt Q@

P (4.5)

200

where h is .the heritability in the base population before selection

operated. Since the environmental variance is éssumed to be constanf,
the change in the pheﬁotypic variance is due to the change in the geno-

typic variance in this first cycle of selection. Therefore, from

(4.5) the reductio

n in the genotypic variance after cone cycle of

selection is

13 1 - éi(i-xT)h

(0), 2(0)

VG = VG ) : ) (4.6)
as (3.22);

We have shown before-that this reductién in the genotypic variance -
is due to the generation of negative linkage disequilibrium. Bulmer

(1971) showed that this was the case by studying the :égression of
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grandchildren on their selected grandparents, assuming that selection
was relaxed in the parental generation. Following the algebra through,
it is seen that the single cycle of random mating reduces the change

in the variance by one half compared with its value ihmediately
following selection. This is the rate at which D breaks down under
random mating and free recombination. At the risk of being repetitive,
we shall confirm Bulmer's result using an amalysis of variance model,

to stress the analogy between the two models.

Consider a full-sib family structure, such that P(z) =u+ F + e,

where P(z)

~ is the phenotypic value of an individual whose grandparents
at generation O had been selected but whose parents had been chosen
and mated at random. F, is the family effect, such that

2 - ym + Ve,

VP
where V(e) is now the pooled varignce within family means. - V(F), the
variance component bétween'full-sib»f;miiy means, estimates one half
of the genotypic variance in the pafental generation, <3 VG )) which
we have shown is»equal to (4;6). The vaiiance within families, as we
shall subsequently sﬁow, is unaltered and thus is an estimate of % VG(O)

-+ VE, where VE is the environmental variance. Putting all this to-

~gether it is easily shown that

- }4(i- xT)h

the reduction in variance having been halved after one cycle of random

VG(2) = VG(0) 2(0)

{
mating, In this way we confirm that in the infinitesimal model the
reduction in variance due to directional selection is temporary and
with free recombination, on relaxation of selection, the variance

quickly reverts to its original value, There are no perﬁanent changes
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in variance due to gene frequency changes because the model assumes
an infinite number of loci. We then have an expression whiéh pre-
dicts changes of genetic variance using estimable parameters of the
base population.

We must now describe the process when repeated cycles of seiection
are carried out. Since the genotypic values at different loci are
now correlated due to the generation of joinf disequilibrium, the
assumption of linearity of regression of allelic effects on the pheno-
type and constant variance about the regression lipe may not strictly
holci° However these aésumptiéns will hold approximately; when the
correlations between 16;1 are small and each locus céntributes a small
part of the-total phenotypic variation. These requiremen;s are in'
1iné ﬁith the infinitesimal7m6aeli; Consider a second c&cle of
selection; The joint‘disequilibrium in fhe offspring at'generation
2, CLW(Z); can be described by two components; The first one is due
'%o the fresh disequilibrium generated in thié second cycle of selectioﬁ.'
The second component is attributable to the fact that with free recom-
binatian; ﬁalf of the disequilibrium present in the offspring at
) generatioﬁ one is preserved in the offspring at generation tﬁb. There-
fore we can write
(2)

(0) 2)

VG + CLW

VG

(

W,20) | oy

VG 0). - h(i-x,r)vc

and in general, at gemeration t + 1,

VG('t+1) - VG(0), + CLW(t+1)

»

where.
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ooyt D () p2C8) | 3o (®

= - (=% VG (4.7

This recurrence relationéhip allows us to calculate the changes in
the genotypic variance in successive generations of selection. Since
under directional selection, the first term in (4.7) tends to decrease
in successive cycles of selection and the second ferm~increases due to
recombination, a limiting value is arrived at which can be evaluated

(t+1) _

by putting CLW CLW(t) = CLW* in (4.7). This leads to a quad-

ratic equation which can be solved in terms of parameters of the base

® and_hz(o). With an initial heritability

population; namely, VG
of 50% and a proportion selected of 20%, the reductioq in the genotypic
varian#e in the first cycle of selection-is(of about,ZO%; This leads
to a reduction of the observed response at generation two qf 15% re-
lative to the response predicted on the assuﬁption ofAno chanées of
pﬁrameters due to selection. |

The limiting value is achieved after about féur cycles of
selection and at that point, the final reduction in the genotypic
variance is of the order of 25% of its original value. - This sho&s-
that most of the decline in variance takés place aftef_theAfirst cycle
of selection and that the'steadf state is arrived at fairly soon in

the selection process. ‘If selection is relaxed and random mating

restored, the genotypic variance will soon revert to its original value,

‘The Presence of Linkage

It has been stated that in any generation, the joint disequilibrium,
before selection, comprises two terms. The first term is due to the

fresh disequilibrium generated in the parental genération, and the



second term is the proportion of the disequilibrium present in the
previous offspring generation which recombination did not break down.
Bulmer (1971) showed that the fresh disequilibrium is independent of
linkage; the second term though is ‘clearly dependent on the degree
of linkage between the loci involved. In other words, the contri-
bution of a pair of loci to the diseqﬁilibripm in the following

~ generation is positively correlated with the degree of linkage between
them (Bulmer, 1974). Consider a trait determined by n loci of equal
effects, where n is large. . Let c¢c be the recombination fraction bet-

ween a particular pair of such loci and let § be the contribution

t)
from this pair to the total joint disequilibrium, CLW(t), in the tth
_cycle of.selection. Since all n loci have the same effect and the
fresh.disequilibrium produced at generation t + 1 is independent of
linkage, it follows that ‘

y/3n(n-1) + (1-¢)§

(), 2(t)
. ®

Gct+1)=-(-§i(i-xT)VG

since thefe are én(n-l)_pairs of loci. The limiting valué of'G(t),

'§*, is evaluated by putting-ﬁ- §,.. in the above expression,

ct+1) -~ O¢t) 4 .
Summing over pairs of loéi, we obtain the limiting value of the total

disequilibrium, CLW*, which is given by

CLW* = -ii(i-xT)h4*VG*/E ,

where hz*

and VG* are the limiting values of the heritability and geno-
- typic variance respectively and H is the harmonic mean of the recom-
bination fractions . (Bulmer, 1974). For given n, the value of H depends

on tye total number of chromosomes, When the number of chromosomes is

large, H tends to 34 and fhe system behaves as in the case of no linkage.
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However, in an organism like Drosophila, Bulmer shows that H is around
‘0.1, Assuming an initial heritability oé 56% and a proportion
selected of 20%, the final reduction in variance is of about 50% of
its original value; compared to the value of 25% obtained with free
recombination. Hence with tight linkage the reduction in variance
due to joint disequilibrium is larger and the rate of approach to the
limiting value is slower than with free recombination.

As stressed by Bulmer, this theory is to be considered as a
liﬁiting result which will hold provided the.number of loci is strictly
infinite. With finite number of loci gene frequency changes cannot
be lignoredv, but one can argue that for a given amount of initial gene-
tic variation; as the number of loci increases gene frequency changes
become pxogressiVely émaller and most of the change in variance during
the early generafions could be attributed to the generation of joint
disequiiibriﬁm; A simglation study of the-effects of different modeg
" of selection 6n genetic variability was reportedAas a first check on
the theory (Bulmer; 1976b) . Three different types of seléction were
studied; namely; stabilizipg; disruptive ﬁnd directional selection,
The metric character studied was aséumed to be determined by twelve
additive loci, with no dominance or epistasis. | All twelve loci had
equal proportionaté effecté on the character (a/oc = 1). Two alter-
native sets of simulations were undertaken. In one of them, called
the mouse simulations, the twelve loci were assumed to be on different
chromosomes and tperefore to segregate independently. In the other
set of siﬁulations called the Drosophila simulafions, the twelve loci
were diétributed in groups of four on three chromosomes, the recombi-

nation fraction between adjacentlloci being taken as 0.1 in females
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and zero in males. In most simulations, 100 individuals of each

sex were selected out of a total of 500, The heritability in the
base population was about 57%. As expected from theory, stabilizing
selection generated negative joint disequilibrium whilst disruptive
selection generated strong joint disequilibrium of the opposite sign.
The limiting values of disequilibrium were in good agreement with
theory; In the case of directional selection gene frequencies went
to fixation very rapidly é13 and 16 generations in the mouse and
Drosophila simulatidns respectively); This is not surprisiﬁg‘in view
of the large seiecfion pressure at each locus. When ave:aged‘bver
the first five generations of selection, 62% of the total reduction

in the genotypic variance was due to gene frequency changes, in both .
sets of simulations. Bulmer did not present results of the changes
in the genotypic variénce during the first few.generations of
selection, If is during this early stage when the effect of disequil-
vibrium should be relatively more important as a cause of change in the
~ genotypic variance, especially in this study;where initial gene fre-
quencies wére such that the change in the equilibrium additive variance
due tqhgene'frequéncy changes was minimised.

Robertson (1977b) has recently studied the response to selection
in small populations using an additive model with an effectively in-
finite number of loci. The finiteness of the population introduces a
new variable into the problemn Qith a considerable increase in the level
of complexity; - The genetic variance within'lines declines not only
due to linkage disequilibrium but also due to genetic-drift, this latter
effect being accentuated by selection through an incrgase in the

variance of family size (Robertson, 1961). Bulmer's expressions are
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then likely to underestimate the decline in variance in finite
populations. Rdbertson showé that small population size and degree
of linkage interact in such a way that the - limiting vaiue of disequil-
ibrium is only achieved in the case of free recombination or loose
linkage; With tighter linkage the genetic variance declines con-
sistently as selection proceeds, and with complete linkage the limiting
value is zero; In agreement with the numerical results of the deter-
ministic models used by Neeley and Rawlings (1971), Robertson shows
that the degree of linkage has little effect on selection response
during the eafly generatiqns;

The implications of Bulmer's work are clearly of theoretical and
praétical iméortance. From a practical point of view, knowledge of

changes of genetic parameters is essential'for optimum implementation

of‘bréedipg plans.‘These~résu1fs will feature in such problems as conse-~

_ quencéé‘p? s¢1eéfig#“6ﬁi;he_eéf&ﬁatiéq»d;»geﬁéfié‘p#f;ﬁétefé EﬁdAiQ thé
COmpaiiééﬁibefﬁeen différenf.kiﬁd;'of seiection.échéﬁeé.ttﬁérgmo;wgﬁésé
lineé.hééuglrégq&A£;en“fépofted bj Rdbertson (1977a) and Eimland (1979).
In the forthcoming'chapters we shall investigate the validity of

the results based on the infiﬁitesimal model relaxing some of the
_assumptions on which it is based;vin particular, we wgnt to study'the .
effect of a finite number of loci; with associated gene frequency
changes. An understanding of the~robustness of the model is essential

before it can be applied with any benefit in the evalﬁafion.of’alfér—li

native breeding programmes,



CHAPTER 5

EFFECT OF DIRECTICNAL SELECTION ON QUANTITATIVE ADDITIVE MODELS

- SEVERAL CYCLES OF SELECTION
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Introduction.

In this chapter Qe examine tﬁe effects of several cycles of

_ selection on changes of the genotypic variance with a strictly addi-
tive model. We shall assume that the population is large enough
that random driét can be ignored and ther‘efore in the Montecarlo
simulations that follow, we focus our work on short term selection
response, This is in contrast with most computer simulations re-
ported in the literature where attention was generally concentrated
on the effects of small population size and degrée of linkage oﬁ
selection limits (i.e. Martin & Cockerham, 1960; Hill & Robertson,
1966; Robertson, 1970a).

Nei (1963) studied the effect of selection on changes in the
components of the genotypic variance,.ignorihg the effects éf linkage
disequilibrium, He worked with a-variéty of mo§els, including
different kinds of epistasis, and the changes were strictly due to -
changes of gene frequenciés. It was #séuméd in Nei's work that gene
effects were small enoﬁgh that second order terms in selective ad-
vantage éouldvbe ignored. - Initial gene frequencies wereltaken as
0.5 and a/c assumed to be 0.1 and to remain constant‘throughout the
selection programme, Selection was followed by one generation of
random mating. Nei showed fhat the additive‘variance was the com-
ponent most sensitive to gene frequency changes, while the dominance
x dominance component was the least affected, In general, the
~ genetic components of variance associated wi?h additive effects

changed more rapidly than those associated with dominance.



45,

Latter (1965) investigated the effects of genes of large
proportionate effect on the expected response to selection using
a single locus additive model. He showed that the expected res-
ponse to‘selection in early generations is poorly estimated if gene
effects are large and that substantial asymmetry can develop in two
way selection experiments. Due to the nature of his model, effects
of linkage disequilibrium on gene frequency changes were ignored.
Young (1966, 1967) examined the changes in genetié variances
and heritability through Montecarlo simulations, under different
genetic models. He used very lgrge‘population sizes and selection
was carried on for 30 generatiomns. No theoretical predictions were
made and the conclusions were basically drawn empirically from thé
simulation results; which indicated that the additive component of
variance changed more than the other components as selection pro-
ceeded, in agreement with Nei's results. The predictions of
selectioq response over the early generatibns of seleétion based on
parameters of the base population were regsonably accurate under the
strictly additive model. In general, the presence of dominance or
~different types of epistasis made the predictions of early response
less accurate,

JW:ight (1977) illustrates the course of change in the génotypic
variance aﬁd its components with various genetic models, assuming a
heritability of 1, The different components of the variance are

~ graphed for different gene frequencies and therefore they should be
regarded as what we called, following Bulmer (1971), the equilibrium

value for the component in question. The point we want to make is



that the response to selection in a particular generation depends
not only on the variance of individual genes (the equilibrium com-
ponent) , but also on the covariance between them and therefore, for
the case of a completely additive model, this disequilibriuﬁ com~
ponent must be included in the description of the genotypic variance,
if the latter is to reflect the response to selection at the gener-
ation in question.

We now proceed to study the theoreticai consequences of
directional selection on the total genotypic variance, We first
develop the theory for a two locus model and. then we extend it for

an arbitrary number of loci.

Two Locus Models.

Changes of Gene Frequencies due to Directional Selectionm.

The genetic model we shall use for the two locus case has been

defined before in Chapter 3 and it is reproduced below:

AA Aa aa " BB Bb bb

Value a1 (0] -al az 0 , -az
2 2 2 2
Frequency p 2p(1-p) (1-p) q 2q(1-q) (1-q)

Population Mean : M = -a1(1-2p) - a2(1-zq)

The problem of evaluating the change in gene frequency in a
two locu model is easily approaéhed by obtaining explicit expressions
for the change in the frequency of the different types of gametes
before (or after) recombination takes place, using the set of ex-

pressions (2.6). The relative selective advantage of the ijEE

46,
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genotype is given, as a second order approximation by, (Latter, 1965)

W . L ix
=l=q-+ Xy + _I(iij'mz)% -
W 202 W

The relative selective advantage of the r35 gametic phase is defined

és follows,

2 w £ ? i=1,uooy4; J=1'péoo,4o (502)

Sl|£
(7
= f
[ 3%
[Y
(&N
[ 2N

Replacing (5.1) in (5.2) it is shown that

W i 4
1-84 . %—(ii-m + (VW + ('ii-M)z)} (5.3
W W ‘ .

202

where ii is the mean of the tig gametic phase and Vw, is the variance

i
: “.th
. within the i— gametic phase, given by

w, = (X, ~X. )¢ (5.4)

Under a strictly additive model, it can be shown that Vw, = VG

for all i, where VG is the total genotypic variance defined pre-
viously.(3.l). The term Vw1 appears in the second order term in
(5.3) due to the fact that selection operates at the génotypic level,
Vwi aoes nét feature in the expression for the second order approxi-
mation of the relative selective advantage of the different gametic

phases if it is assuméd that selection operates at the gametic level,

Similarly, it.can be shown that,
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Qi
W=q + T [,ZVw.f. + Z(X.—M)zf.] (5.6)
2 . i P § i
20 i i
where the second term in square brackets in (5.6) is. the
variance between marginal means of gametic phases, Both terms in
square brackets add up to the total genotypic variance contributed

by the pair of loci, Hence,

Qix
W= Q + I

VG (5.7
202

Substituting (5.3) and (5.7) in (2.9) we obtain the following set

of expressions for the change in chromosome frequencies before recom-

bination takes place, fi(s’t), in terms of parameters before
selection:

® _, ® 1z,
AL e (a (1-p) + 8,(1-q)) + — (a (1-p) (1-2p).

20
+ 8,2 (1~@) (1-20) + 2a,8, ((1-p) (1-@) - D))} P

ix
t t) 1 T 2 2
22, = £, 2@ a-p - ayq) + — (5 - (-2 - 2y7a01-20)

+)
- za a ((1 p)aq + D})J i

ix

‘ ) 4 s VI 2
) _ ¢ ( ){;(-alp + az(l-q)) + —2(-a1 (1-p) (1-2p) + a, (1-q)(1-2q)

Af
3 3 20

- 23,3, (P(1-q) + p)) }(®
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ixT
t t) (i 2 -2
Af (t) = f4( ){-:_-(—alp - azq) + ;0—2(—31 p(1-2p) - a2 q(l-Zq)

4
+ 2a_a (pq-D)>}(t)
818
(5.8)
The change in frequency of allele A, Ap, is then approximated by

Ap = Afl + Afz,

ix

_ i T, 2 - 2
Ap = o(alp(l-p) + a2D) + ;;Z(al p(1-p) (1-2p) + a, (1-2q)D
+ 2a;a, (1-2p)D) (5.9)
Similarly, Aq = Afl + Afs,
ix
=41 - T (a2 - 2
Aq = 2(aya(1-q) + ;D) + > (2, a(1-9) (1-2q) + &, (1-2p)D
+ 2a,8,(1-2q9)D) (5.10)

Expression (5.9)-reduceé to (3.14) obtained by Latter (1965), when
the initial population is in linkage equilibrium, Selection immed-
iately causes negativé linkage d;sequilibrium and therefore when more
than one locus is consideied; D cannot be.ignored after a first cycle
of selection. It is glear.from the above expressions that the
change in gene frequency of an allele at a particular locus is due

to direct selective préssure on the locus itself, and due to pressures

arising from correlations with alleles at other loci.

"Consider now the expected response to selection, R, from loci
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A and B, Noting that SM/Sp.= Zal and that 6M/8q = 2a2, the res-

ponse due to locus A, R(A) and due to locus B, R

the second order term in (5.9) and (5.10),

(B) is, ignoring

R =—-Ap=%(2a

2
1 p(1-p) + 2a1a2D),

= . PP
R = Aq = U(Za2 q(l-q) + 2a1a2D).
Therefore the expected response due to changes in gene frequency at

both loci is:

= _ 1 2 - 2 _

This expression is easily generalised to an arbitrary number of loci,

2
) + 4Z Za,a D, ) = ih"0O (5.12)
J 1< 173 13

2
(1-p

as before (3.5). The important point we want to stress is that the
joint diseqﬁilibrium generated by selection is to be regarded as part
of the expected seléction response or expected realised heritability,
Furthermore, we can extend this argument to the case of offspring-

parent regressions as estimators of heritabilifies in a given popul-
ation at a given time. Let AMo and AMp be the deviations of the

means of the offspring and parents from the pépulation meﬁn-M. Then,

as is well known,

AMo = bOﬁ AMb ’
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where b0§ is the regression of offspring on mid-parent. Assuming
normality, AMp is expressed as i0, and Mo is the expected response
to selection as defined above, It then follows that,

b - =—= (I2a 2 (1-p.) + 4I Za )/cr2 (5.13)

P IF Rt L R R F
In other words, the regression of offspring on mid-parent provides
us with an unbiased means of estimating the heritability at a parti-
cular generation and therefore reflects ﬁccurately the genotypic
variance available for selection response at that generation. It
should be clear though, that the above argument assumes linearity of

regression.

The Generation of Disequilibria with Selection.

We have pointed out that directionai selection leads to negative
covariances between loci within gametes aﬁd following Bulmer we have
called'their effect on the genotypic variance, joint disequilibrium,
The purpoée of this section is to show that amongst selected genotypes
there are covariances both between and within gametes, the former
disappearing in the offspring generation provided mating of the
selected individuals is at random. As we shallvsubsequently show,
the expressions to be derived are relevant goth from a theoretical
and from a practical péint of view, Theoretically, it is believed
that this approach leads to a clear understanding of the dynamics of
the selection process, From a p:actical viewpoint it will be‘shown

in later sections that these expressions feature.in some methods
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commonly used in animai breeding practice to estimate genetic
parameters,

We first give a semi-intuitive explanation of the theory that
follows. Consider a’trait determined by n additive loci where a?(af)
is the average effect of the'ﬁig allele at the.iEE locus from the
maternally (paternally) derived chromosome, The genotypic value of

an individual, G, can then be described by the following model,
(5.14)

where M is the population mean, It then follows that the variance

of G is,

= . Py, . m p
VG = i(V(aim) + V(gi )) + 2§cov(ai , ai.)

+2z {(cov(a m, a

Py & cov(éip, ajm))
1<]

i J

+2Z (cov(aim,a

n5 + cov(a p’ a p)) (5.15)
1<) 1 17

There are four different kinds of terms in (5.15). The first term
is the variance bi alleles acting singly. We ﬁafe calied it the
equilibrium additive fariance,‘Vg. The second term is a covariance
of allelic effects within loci between chromosomes reflecting de-
partures from Hardy-Weinberg equilibrium and following Bulmer (1976b)
we symbolise it CHW,

The second and third terms are covariances between allelic
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effects at different lbci, between and within chromosomes (or more

" generally between and within gametic contributions) respectively.

We use the symbols, CLB and CLW, for this joint disequilibria between
and within parental contributions respectively. Summarising, we can

express (5.15) as follows:
VG = Vg + CHW + CLW + CLB (5.16)

From this account we draw the following conclusion:

If mating is strictly at random and an effectively infinite
number of'offspring are produced, CHW and CLB become zero in the
offspring generation since by definition there'are no associations
between chromosomes, Therefore, in contrast to the case of CLw,
values of CHW and CLB do not accumulate as selection proceeds.

We éhall now study the effect of selection on these different
types of covariances, before and after recombination takes place.
Initially the algebra is developed for a two locus model. The

results are then extended to accommodate an arbitrary number of loci.

Coyariances Between and Within Gametic Contributions Amongst

Selected Genotypes.

Covariance Between Loci Within Gametes (CLW(s’t) .

The approach we follow is equivalent to the one we used in the
derivation of (3.20). In this case we assume that the population
we select from is initially in Hard&-Weinberg equilibrium but not
necessarily in linkage equilibrium. The parents in each generation

are then taken to mate strictly at random. The existence of linkage
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disequilibrium in the generation prior to selection leads inevitably
to more cumbersome algebra and less neat results, The final ex-
pressions, however, are amenable to clear interpretation. Normality
is assumed throughout the derivation,

The covariance of gene frequencies within parental contributions
in individuals of 'che-t.:-1E£ cycle of selection, prior to recombinationm,

is defined, as shown in Chapter III:

(s,t) _ _ (s,t)
D = (f1f4 fzfa) ’
where,
s, _ 54 = (t) o
£ ’ = _(W -W) (i:l',éoo ’4)9
i - i
v
Therefore we can write,
, £ (t) £ (t)
(s,t) _ 1, = 4 =
D» —[ fl + ;—(Wl_-W)] [f4 + 'v_-]—(w4-W)]~

: ? t) 2 t)
- [ £, + -W—z(wz-ﬁ)] [f3 + f(ws-W)]

=pt .2 i _my =
=D + "v{flf4((w1 W) + (W, wy) 1:2:t3((w2 W)

-y (w 4-W) - £_£_(W_=W) (ws-W)}(t)

23 2

- ’ 1.
+ (W3-W)) } o+ g{fl‘f ALA

(5.17)
Substituting (5.3) and (5.7) in (5.17) and letting Q/W equal to
1 2 2
Q --———2(2a1 p(1-p) + 2a2 aq(l-q) + 4a1a2D) to second order  terms, we

20
obtain:



55.

(ty G-

4 2(a;(1-20)D + 2,(1-200D) V- ( —7"a,p(1-p)

p&%®) = p

ix
2,a(1-0) ¢ + —((a,(1-2p) + a,(1-20))%;) ¥

202 '

2 i(i+x
i 2 2 (t)
--—;(a1 p(1-p)D + a, q(1-q9)D) -(

o o2

T) 2_(t)

D)

81 8.2

(5.18)

In expression (5.18) we can identify two components, The first

p(®)

component, , is the disequilibrium present in the offspring be-

fore selection operated. The second component,~(the five terms

(t)) is the fresh disequilibrium generated in the tEE

)
f L]

following D

selection cycle, and we shall refer to it as D Notice that

92 is not independent of D(t)° If the population is initially

(o)

De

in equilibrium such that D = 0, then (5.18) reduces to (3.20).

We can then write:

p(Eit) o p(D)

=D (5.19)

cw(® V) -

(5.20)
We should further point out that (5.20) shows that 1f D'*) # o,

s,t - : - . e ’
D( 0 i trical unless gene irequencies are exactly inter-

mediate, Selection in both directions from a population in linkage
(t)

disequilibrium will lead to different values of Df in each

direction if p # 0.5,
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(S,t))

Covariance Between Loci Between Gametes (CLB

We now investigate the generation of disequilibrium between loci
on different parental contributions in genotypes of the tEE cycle of
selection, Writing it in terms of associations of gene frequencies,

we define this covariance as follows:

p (5:©) (m)

(§)) }(s » 1)
B

= {E(XP-P) (Xq'Q) (5.21)

where Xp and Xq are the number (i.e. O or 1) of A and B alleles in
the maternally and paternally derived chromosomes at locus A and B
respectively, and p and q are their expected frequencies, Since- the
- expected gene frequencies are the same in both sexes, the covariance

of allelic effects from both chromosomes is:

(s,t) _ (s,t)
CLB = 4a1a2DB ’

The frequency of allele combination AB amongst selected individuals

. is seen to be (dropping superscript t):

_ 1 :
By T %{fl(flwll +EW )+ B (W, + £, )

(s,t)

Following the algebra thrqugh, Dh reduces to

a (t)

p (8,8) _ (5,8) - 3¢ - (5.22)

B -

PRP
— I, I

1 - o
= 1% T IxT3"23

~~

w

Assuming Wl4 (5.22) reduces to:

23’
(s, _ (s,t) 14 _(t)
p %" =p'®t .=
B -
W
W
pP - 24 4, p, W
W’ f

Let us examine expression (5.23)

(5.23)
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Under the present model the relative selective advantage of the

coupling heterozygote, is given by (as a second order approximation):

w i

14 ) - _
—_—= g~[1 +'l(a (1-2p)+a,(1-2q)) + —(a,(1-2p) + a (1-2q))2} (5.24)
- - o1 2 o 1 2
W w 20
- .1 2 2
Letting Q/W = 1 - -—j;(zal p(1l-p) + 232 q(l-q) + 4a1a2D), it is seen

20
that at intermediate gene frequencies, W14/W is close to 1, At ex~-

treme gene frequencies, the term i/0 can be important though it will
become less so as gene effects become smaller. Hence as the number
of loci affecting the trait increases, the disequilibrium betweep

loci between parental gametes will tend to become closer in value to

« (s,t)
Dy

mentioned before, vanishes in the offspring generation (assuming large

the fresh disequilibrium within parental gametes. , as was
populations and random mating) and is created anew on each cycle of
selection,

It is possible to get an explicit expression for (5.23) by ap-
proximating its first term and using (5.18). Carrying out the

"algebra it can be shown,

ei(i-x) 2
Dy **® = déXT (a; P(1-p)D + a; q(1-q)D + &,P(1-p)a,a(1-q).
2
+ alazD ) (5.25)

As. in- the case of the fresh disequilibrium in (5.18), the

smallest order term in the above expression is alp(l-p)a.,q(l-q)°

The difference between the above expression and Df(t)

(t) (s,t)
£ = Dy :

is of order D,

that is, D
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_D(t)[(l + % a,(1-2p) + a2(1-2Q)) +

i Xr

(2,2t (1-2m” - 2p(1-p)}
202 1

+ 8,2{(1-200% - 20(1-0)} + 22,2, {(1-2p) (1-2q) - 2D})]

W
®a - 24,

w

= -D

If gene frequencies are low so that W14/W >1, D, - DB is <0, At

£

- D_ is >0,

high gene frequencies, W14/W < 1 and therefore D, B

(1) _ p (5,0

Clearly, at t=0, if b’ = o, D, 5

As the number of loci affecting the trait increases, the differ-

ence between both covariances will become smaller,

" ‘Covariance of allelic effects within loci between
" "chromosomes (CHW).

This covariance due to Hardy-Weinberg departures, following

expression (5.15) is defined,
m '
CHW = 2}i:rz(ai o aip) , . : (5.26)

where aim and aip are average effects of the mg and pg-!- allele at

the 1_131_ locus. Consider our two locus model, Let DHw be the de-"
parture of genotype frequencies from Hardy-Weinberg proportions
caused by seiection (which can be regarded as a covariance of gene

frequencies within loci). Assuming two alleles per locus (m = p =

1,2) we can write:

2 _ (s,1)

f( Ay p(s,t) DHW (5.,272a)
- - = - (S’t)

) " PPs,t)y T P(s, b)) T "2y (5.27b)
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= p{s,t)

2
) HW

- (1-p (5.27¢)

f(aa) (s,t)

where p(s t is the frequency of the plus allele at locus A and £
’

)
are the genotypic frequencies, It then follows from (5.26)

)
(dropping subscripts):

m Py — A2 2 oy 2 o2
E(a , a) al (p + DHW) + Zalaz(p(l P) Dpr + a2 ((1-p) + DHW)

B 2
= (a;-ay)) Dy

2
2 Dy o
where a is the average effect of the gene substitution at the locus.

Hence, from (5.26), CHW = ZaZDHw. From (5,27a) we can then write:

W ’ W .

(s,8) _[ , 2011 _ _ 2(s,07 12 _ . (s,8), (5,0
D' = o ]+ [21112 el A ]

2(s,t)j

' W .
+ [_f 222 _, (5.28)
2 o T2 .

In each term in square brackets, the first term reflects the value
of the parameter before selection. Following the algebra through,
it can be shown that the second order approximation of (5,28) is given

by the following expression,

=1(1~-%.)
(8, 8) _ T

22 2 2\
e - (a,°p (1-p)” + 2a,3,p(1-p)D + a,"D) (5.29)

Expression (5.29) tells us that the covariance of gene frequencies
" within the locus is always negative and depends on the covariance bet-
ween it and the other locus, This is probably not surprising since

we know that the change in gene frequency at a particular locus is
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influenced by the existing disequilibrium with the second locus.
The effect of the covariance of gene frequency within locus A,

CHW(A) on the total genotypic variance is, from (5.29):

—i(ifxT) 42 2 2 2 2
CHW »y = ——cﬂ—(za1 p (1-p)  + 2a, p(1-p)2a,8,D + 2a, D )

For this two locus model, if gene effects and frequencies are the

(o)

same at both loci, when D = 0, the three different disequilibria

generated in the first cycle of selection are the same. With
(s,t)

DB | and DHW

take similar values for all t. With n 1loci, however, the leading

equality of effects and frequencies at both loci, (8,%)

term in (5.29) is of order n whereas the corresponding term in (5.25)
is of order nz, and therefore as n increases the effect of CHW on VG

becomes small, relative to that coming from CLW and CLB.

Co?ariance Within Gametic éontributidns after Recombination,

As was mentioned before, in an infinite population, under a
strictly additive model, provided mating takés place at random, the
variance amongst gametic values is equal to half the genotypic'var-
iance.in the offspiing generation. The.consequence of random mating

e A

is that chromoseomal valuee are not correlated in any way and ithereifore
both CLB and CHW vanish in the expression of the genotypic variance
which is equal to twice the variance between gametic values. We
shall now show that the covariance of allelic effects within gametes
at generation t+1 (after recombination) comprises two terms. The

first term is a fraction approximately (1l-c) of the disequilibrium

present at generation t, before selection operated.” The second term
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is due to what we have called fresh disequilibrium generated at
the (1:-1-1)--EE cycle of selection. The covariance of gene frequencies
in gametes is,

(t+1) (t+1)

= (£ f4 fzfs)

Recalling the set of expressions (2.8), this can be written:
w

ot z # %
Q- -;:-c) +-—{f S0 -+ (W, -D) - 2,2, ((W,=W)

D(t+1)

o =y, (t) L - = t)
+ (Wym) 1+ e 2 (W =W (W - = £, 2 (W,~W) (W,-1) )

Wz 273" 2

W
14 - = = -
= {2, (W =) + £,(Wy=T) + £,(W-H) + £,(W,-T)

(t) }(t)

- ¢D

(5.30)

- The last term.in (5.30) clea;ly vanishes since it involves the
expgcted deviation of the marginal gametic fitnesses from the mean
population fitness and therefore, from (5.19),

W

p(tH+D) _ (8 o _ 14 o nf""

W

) (50 31)

It may be helpful to summarise at this étage the results of

this section. Starting at t=0, with D(o) = 0, selection causes

three different types of covariances of gene freduencies between

parts of the genome: D(s,o)’ DB(S’O), DHW(S’O).

The total reduction in the genotypic variance amongst selected

individuals due to these negative correlations is:

CLT(S'O) = CLW(S’O) + CLB(S’O) + CHW(S,Q).

After recombination, gametes pair at random and therefore, in an
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infinite population, the total reduction in the offspring generation
1
is: CLT(l) = CLW( ). Since at t=0 there is an equal
number of coupling and repulsion heterozygotes, the degree of linkage

has no effect on CLT(I). After t cycles of selection:

= cLw 5

CLT(s’t) =(cww™® . Cwa(t)) + ™D g5V

(t) " th

where CLWf is the fresh disequilibrium generated at the t—

selection cycle. The term in square brackets is the joint disequil-
(s,t)

ibrium within chromosomes in selected individuals, CLW . After
' w
recombination and random mating, if we assume-—%-i = 1,CLW<t+1) will
- w
comprise approximately a proportion l-c of CLW(S,%)and a proportion
c of cLB'®'?) ang therefore:
e ™ = ey ew'® 4 an ) + e stV
= (1-0) cw'? + aw P,

since under the assumﬁtion of W14/W = 1, CLWf(t) = CLB(s’t).

This
assumption will hold approximately provided gene frequencies are
close to intermediate values and gene effects are small, We shall
now investigate numerically the validity of these results, The'
technique we use to calculate what we call exact results, is des-
cribed in‘thevAppendix under the heading 'Seléction Within Genotypié
Classes', We work with a model of four additive loci, with an arbi-
trary degree of linkage and we focus our attention on a single pair
of themn. We start the selection process at t=0, assuming Hardy-

" Weinberg and linkage equilibrium with the same initial conditions in
ali runs, except for the value of c, Initial gene frequencies are

set to 0.25 for all loci, h® = 10% and Q = 20%. At t=2, when geme



63.

frequencies are close to i, we substitute in expressions (5.18),
(5.25), (5.29) and (5.31) the values obtained from the exact results,
for gene frequencies and for the disequilibrium in the offspring
generation induced in the previous 2 cycles of selection, This
procedure was chosen in order to avoid the asymmetry mentioned in
Chapter 3 due to extreme gene frequencies. Furthermore, under addi-
‘tivity, at gene frequencies close to intermediate values W14/W is
close to 1 (0.983 for the values of q shown below). The observed
and predicted results at t=3 are shown in Table 5.1, for three differ-
ent values of c. The last two columms of the table show the dis-
equilibrium within gametes and.gene fréquencies prior to the third

cycle of selection.

‘ TABLE 5.1: Observed and Predicted Values of Different Covariances

of Gene Frequencies. See text for Explanation,

15,2 _.5[(5,2)_5].(8,2) 5] (D_. 5 (2_-5 2]
c DH x10 |D x10 DB x10°]1 D x10|D x10 | q (2 x10
(O (1) (2) (3) (). (5)
~ OBS -57.93 -152,85 -57.93 -105,.39
0.5 . -96,69 47,07
PRED} -66.30. | ~161.25 -66,30 | -112,90.} . ... ..
OBS -56,73 -178,77 -56,.73 -166 .57
S.1- : -124,20 47,07
,,,,,, PREQ. -64.74 | -186.83 | -64,74 | -174.41
. OBS -56,43 ~185.26 -56,43 -185.26
0.0 -~131,08 47.07

PRE} -64.39 -193.23 . -64,39 -193,23
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The predicted results tend to consistently overestimate the
observed results., The difference between the values in columns

(1) and (4) represents what we have called fresh disequilibrium,

Df(t). This difference is in close agreement with the value ob-
served in column (2), illustrating that when Wi4/W =1, DB(s’t)
Df(t). When gene frequencies move away from intermediate values

(s,t) (t)

such that w14/W # 1, D # D, ’, particularly in the case of

B
the present model where gehe effects are rather large, Throughout

(s,%) is in excellent

the selection process thqugh; the value of DB
agreement with that predicted using (5.23). As predicted from
(5.18) , when gene frequenéies are at intermediate values, the

fresh disequilibrium is independent of the previously existing dis-
equilibrium and therefore is similar for all values of c. When

~ gene frequenﬁies move beyond-o.s, three of the five ferms involving
(t)

D

£ are positive, In fact, at high gene frequencies the fresh

disequilibrium becomes positive and highly  dependent on the recom-
bination fractipn between the loci involved; In other words, the
closer the linkagé, thellgrger the absolute value.of the disequili-
brium between loci within parental contributions and therefore the
higher the positive value of the fresh disequilibrium attained.

The total disequilibrium within paréntal contributions amongst
selected individuals is of course always negative and tends to zero
as gene frequencies move towards fixation, We illustrate these
concepts in Table 5.2, where the same model and procedures used in
Table 5.1 are shown after 7 cycles of selection when gene frequencies
have reached extreme values and'W14/W ~-0,33. As before the pre-

dicted results overestimate the observed results, this overestimation
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TABLE 5.2: Observed and Predicted Values of Disequilibria at

High Gene Frequencies, See Text for Explanation,

Dé;’7)x105 p¢: D x10° Dés’7)x105 p(® %105 0" x10° q(7)x102
C
. N (0)) . . | . 2. . ] D (4) (5)
oBS | -1,98 -5.18 -1,98 -3,58
0.5 -9.83 | 92.46
..... pRED . -5034 - _.8054. I .-50 34 S —7-00
oBS | -2.24 -10.54 -2,24 -9.71 .
0.1 -25,11 | 91,96
PRED| -6.00 | -13.75 | .. -6.00 | -13.00|. .. .. | .. .
oBs | . -2.35 -13,56 -2.35 | -13.56
0.0 -33,74 | 91,76
.o PmD -6.10 -16175 . -6q10 -16075 S A

“

£ is in all

(t)
£ is very

being relatively larger at high gene frequencies, D

cases positive and highly dependent on c. Furthermore, D

different from DB(s't)

with tighter linkage. As before,

, this difference being of course accentuated

D (s,t)

B is in excellent»agfeement

with expression (5.23); Both Tables 5.1 and-5.2 show that when -
linkage is tight a high proportion of the already existing disequil-
ibrium remains in each generation. In the extreme case of complete
linkage, the'fresh disequilibrium generated at 1;11e-i:-Eli cycle of
selectibn together with the already existing disequilibrium before
selection, remain in. the offspring at generation t+l.-

This analysis of the two locus model is here regarded as an
attempt to understand the interaction of gene frequency changes and

disequilibrium during directional selection. The expressions we
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have arrived at do not seem to predict the course of selection
with precision but they are useful in that, at least qualitatively,
they highlight the way the various parameters involved interact to-

gether during the different stages of selection,

Multilocus Models.,

The.theory of changes of genetic parameters developed by Bulmer
has the great practical advantage that it describes the process in
terms of readily estimable parameters of the base population. As
we have pointed out the theory is based on the assumption that the
trait is determined bf an effectively infinite number of loci, so
that gene frequency changes can be ignored, 4 In this section we ex-
tend the results of the érevious section to an arbitraiy number of
loci, and we study the joint effect of gene frequency changes and
~ generation of disequilibrium as selectiomn proceeds,

Gene frequeﬁcy changes depend on the number, effects and fre-
quencies of the génes involved, ipformatioﬁ which on the whole is not
available; particulary for the case of metric traits. Since these
are vafiables that must be incorﬁorated in a model which assumes a
finite number of loci, the work that follows must #ot be interpreted‘
a5 an attempt to provide expressions of direct practical application,
The purpose of this work is of a different naturé, ﬁamely to check
the theory developed by Bulmer under a variety of genetic models and
from the results obtained, arrive at some conclusions concerning the
relative importance of the diffei'ent forces determining changes in

~ genetic parameters,
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Ve shall first assume that the loci segregate independently.

We relax this assumption in the next section.

‘Free Recombination,

Consider a trait determined by n loci of equal proportionate
effects, a/c, and frequencies, If we apply a selection intensity
of i standard deviations at the tEE cycle of selection, the expected

(1)

change of gene frequency at each locus, Ap , as a first order ap-

proximation, is, from (5.9):

8¢ = 2 (ap1-p) + (a-1)aD) (5.32)

since each locus is correlated with the remaining (n-1) loci in the
~ genome, The new gene frequency is then,

t+1 - (t t+1)
p(HHD) o () (D)

(t)

from which we obtain the equilibrium additive variance, Vg =1

2na?p(t)(1—p(t)

). Consider now the generation of joint disequilibrium,
measured before the operation of selection, in each offspring gener-.

ation, Bulmer showed that under the infinitesimal model,

L idi-x) ‘
cw(tHD = -5——-2“')1' va2(® | jew(®
g
where
v6’® = v6(® + aw®,

Our approximation (5.18) and (5;31) could readily be extended to
accommo&éte an arbitrary number of loci. The resulting expression
is not as readily interpreted as the one based on the infinitesimal
model. An alternative approach which has been followed in this work
is to attempt to find an expression, by trial and error; which can

describe the process reasonably well and which takes account of the



68,

various parameters involved, This expression which is suggested
by Bulmer's result and the definition of the total genotypic variance,

VG, has been found to be,

awtD - 3 ikl i [ve® + CLW(t)]z + 2cw® (5.33)
52 (%)

This is a function of well defined parameters and allows us to at
least make some qualitative predictions since the disequilibrium
generated is ultimately, according to (5.33), a function of gene fre-
quencies. In order to understand its behaviour, we shall compare
(5.33) and (5.31) with exact results at the end of this sectionm.
Repeated use of (5.33) allows us to predict the value of the total
~ genotypic variance in successivg generations, These results can be
readily extended to predict changes in the genotypic variance due to
selection for a trait determined by loci of different proportionate
effects and frequencies. Assume that out of n loci affecting the

character, n. have effect a

1 1 and frequency Py and n

2 have corresponding

values of a, and pz. We refer to the n, and n2 loci as the type 1
and type 2 loci respectively, The expected change in frequency of

each type of loci is:

T~ ' (t-1)

p, =5 (2P,(1-p]~+ (n;-DaD)y + 1n,a,D ) '
and
) _ 1 ) (t-1)
P %5 (azpz(l Pp) + (8y;-1)a,D, + nia D) ’

where Dij is the disequilibrium between type i and type j loci

(i=j=1,2), These expressions can be used recurrently to predict
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gene frequency changes from which we obtain the equilibrium additive

variance Vg(t)
(M) t) (t)
vg' ' = vg t T+ Vg, T,
where
t) _ 2 . (t)
Vgi = Zniai pi(l pi) .

In order to predict the generation of joint disequilibrium under
this model, the following covariances of allelic effects between loci

(within and between types) can be readily obtained:

- 1(i=-x.) (t)
C(t+l) _ T 2 1 (t)

CL¥11 = '[% 2 ] a nl) + 3CLW ),

o 1dd-x) (t)
(t+1l) _ T 2 A (t)

CLW,, = - [5"f:;{" VG, ] Q n2) + écnwzz

. i(i-x.)
(t+1) _ _ T ) (t)
., = --——:;;—— VGIVGJ +_QCLw12 ,

where .02 is the total phenotypic variance given by:

528 O] ® , g

= VG 2 ’

+ VG

and. VGi'is the genotypic variance contributed by the i=— type of

loci,‘such that
(VG + vcz)(t)/c2(t) = va{® 2V,

The total joint disequilibrium, CLWT is given by,

(t+l) ‘(t+1)

(t+1) _ + cL

(t+1)
CIWT CLW11 2 + CLW22 (5.34)
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The extension td an arbitrary number of types of loci is straight-

forward,

The Presence of Linkage.

Our analysis of the two locus model has clearly identified the
complications introduced by linkage, As was shown before, the co-~-
variance of gene frequencies within parental gametic contributions

in the offspring at generation t+l, contains a proportion l-c of

%" ang e proportion c of DB(s't)g From (5.21) ‘and (5.25),
this leads to:
(t+1) L .W14 (t) (t)
D =(1-——0¢)D + D, ’
w

the same as (5.31). For a given value of gene frequencies,‘the
closer the linkage the larger the proportion of the previous disequil-
ibrium which is passedlon to the following geﬁeration. The fresh
disequilibrium induced by 1:11e-1-:'-1-;-ll selection cycle is little affected
by the already existing disequilibrium p;ovided gene frequencies are
intermediate (see (5.18)). As was illustrated in the numerical ana-

lysis this no longer holds at more extreme gene frequencies when

p (V) (t)

£ is highly dependent on D

and therefore on the degree of
linkage. These conciusions are relevant to a model of many }inked
loci: paifs of loci which are closer together will contribute with
different proportions to the total disequilibrium from loci far apart
in the genome. From a conceptual point of view, the behaviour and
understanding of a model of many linked loci is described by summing

over pairs of loci in the above: expréssion. This yields a general

recurrent equatiocn which allows for an arbitrary number of loci,
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degree of linkage gene effects and frequencies., Alternatively,
making some simplifying assumptions we can arrive at simpler ex-
pressions which convey a more meaningful picture and furthermore
are functions of parameters which in some cases can more or less be
estimated experimentally, This latter approach was taken up by
Bulmer (1974) whose work forms the basis of the results that follow.

Assume n loci affect a metric trait, of equal effects and fre-

t) v
i

pair of loci and let ¢

quencies, Let d be the contribution to CLW from the iJEE

13 be the recombination fraction between them.,
If n is large, for a given amount of genetic variation the propor-
tionate effects, and consequently the selection pressure, at each
locus is relatively small, We then may assume, following Bulmer -
(1974) that the contribution to the fresh disequilibrium from each
pair of loci is small and more or less similar for all pairs of loci.

We have shown that this is approximately true provided gene frequencies

are not far from intermediate values, Therefore we can write,

i(i-x.)
(t+1) _ ,_~ - (t) _ T 2(t) _
dij (1 Cij) dij i_—;;?;T— VG /in(n 1,

since there are #n(n-1) pairs of loci contributing to CLW. Since

d‘j(t) = CLw(t)/gn(n-l): summing over paire of loci we cbtain:
1
CAdd-x)
.CLW(t+1) = -5.____f2_ vgz(t) + (1-c) CLW(t) (5.35)

oz(t)

where ¢ is the mean recombination fraction between the loci involved
and can easily be obtained from the relation between recombination

fraction and map distance, One such relationship, which assumes no
-2x

interference and which will be used in this work is, cij = 3(1-e iJ),
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(Haldane, 1919), ﬂhere xij is the map distance between the ijEE
pair of loci.

If at the various loci gene frequencies are extreme or gene
effects very different, the approximation (5.,35) is unlikely to hold,
particularly because the assumption that the fresh disequilibrium
is the same for all pairs of loci is untenable, Extreme gene fre-
quencies also lead to ?he additional problem of lack of normality
of the genotypic distribution and as we have shown before, this.may
cause substantial degree of asymmetry in the generation of disequil-
ibrium, We shall have an opportunity to study the behaviour of
expression (5.35) under various models iﬁ the simulation work at

the end of this chapter,

Genetic Parameters in Parental Generation.

The approach that we followed in the previous section caﬁ be
used to obtain expressions for the various covariances of allelic
effects between different parts of the genotype in the selected pop-
ulation. From (5.19) and (5.33), the joint disequilibrium within l
parental gametic values amongst selected individuals can be

approximated by,

2(t)

G )

A(i-x)
——iT— Vv + CLW (5,36)

(s,t) 2 -
cLw —

If the number of loci is large and proportionate ejfects are small,
provided gene frequencies are never extreme, we may assume that W14/W

is close to 1 and therefore, from (5.23)
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i(i-xT)
0z(t)

2(t)

cst®'®? = _ 3 VG (5.37)

The effect of Hardy-Weinberg departures on the genotypic variance of

selected parents can be obtained from (5.29):

i(i-x) , n nn (t)
(s,t) _ _ *r (5.38)
cHw = ——oz(t) (&)i Veg,© + §<§ AVgi(2aiajDij))

where Vgi is the equilibrium genetic variance of the iEE locus. If

all loci have equal effects and frequencies,

Co=idd-x) o, (1) :
(st - T Ve ~ (v ,aut®) (5.39)
202(®) n 8

For a given amount of genetic variation, in the first cycle of

(o _ 0; CHW is inversely proportional to the

selection, assuming CLW
number of loci, This should hold for later generations though-
evenfually, the larger the selective advantagé of individual loci,

the faster the change in Vg and as gene frequencies move towards fix-
ation, CHW will tend to zero. The effect of Hardy-Weinberg departures
on the genofypic variance relative to the effect of CLW and CLB is

of order 1/m.

We express the total geﬁqtypic variance in the selected popul-

ation as:
ve(®'®) = (vg + cuW + cw + cLe} (5%

As we shall see in later chapters, these expressions feature in
estimates of heritability from offspring data of selected parents

using intra-class correlations,
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We now proceed to cafry out some numerical checks on the re-
sults obtained so far, basically as a means of illustrating the
limitations of the approximations which we shall use in the
'following sections. Three different sets of results are presented.
The first one is obtained from the technique described in the Appendix
(Selection within genotypic classes), and will be referred to as E.
The second set of results are the outcome of repeated use of ex~-
pPression (5.35) and is shown under the heading I. The third set of
results is generated by repeated use of (5.18) and (5.31) and we
symbolise it, II. Since the model assumes two loci the heritability
is taken to.be 5% in order to avoid the problems of genes of very
large effect, In Table 5.3 we assume that gene frequencies are
initially 0.5 at both loci and ¢ takes values o0f 0,5, 0.1 and 0.0.

The results refer to the values of the parameters in the offspring
~ generation, before selection.

Gene frequency changes are predicted with reasonable accuracy
and as we illustrated in Chapter 3, the first_order_iefm bvereétimates
the expected chgngq in later geperatiohs if initial frequencies are at
in£ermediate values. The effect of this discrepancy on the equili-
brium additive variance is very small, For ¢ = } at generation 4
the value of the equilibrium additive variance predicted under-
estimates the true value by about 3%. The predictions of joint dis-
"equilibrium using I overestimate the true value particularly when
linkage is tight. Method II is more accurate than metﬁod I but
again overestimates the reduction of the genotypic variance due to

disequilibrium,
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TABLE 5,3:

Observed and Predicted Values of Gene Frequencies and Joint Dis-
equilibrium, Initial Conditions: q, = 0.5; VG<°)= 1,00;

2
CLW(°)=0.00;.,h (o) _ 5%; Q = 20%; a/c = 0,22, E, I and II refer

to the three methods used to predict g and CLVW. See text for

further explanation.

E I I
(t) 2 (t) 2 (t) . |
W

t c q(t) CLW - x10 .q(t) CLW x10 q(t), CL x10
0.5 0.500 0.00 0.500 0.00 0.500 0.00

0O 0.1 0,500 0.00 0.500 0.00 0.500 0,00
0.0 0.500 0.00 0.500 0,00 0.500 0.00
0.5 0.577 -0.91 0.578 -1,00 0,578 -1,00

1 ‘0,1 0.877 -0.91 0.578 -1,00 0,578 -1,00
0.0 0.577 -0,91 0.578 -1,00 0,578 -1,00
‘0.8 0,649 -1,19 0.654 -1.40 0.654 -1,35
0.0 0.649 -1,59 0,654 -1,89 0,654 -1,77
0.5 0.717 -1.10 0.724 -1.51 0.724 -1,32

3 0.1 0.71¢ -1.71 0.724 -2,39 0,724 -1,98
0.0 00716 -1089 00723 "2068 00724 -2017
0.5 0.776 -0,.87 0,785 -1,30 0.785 -1.08

4 0.1 0,775 -1.58 0,785 -2,71 0.784 -1,.88
0.0 0,775 -1.84. 0,784 -3.29 ‘0,783 -2,15




Tables 5.4 and 5.5 illustrate the selection process starting
with more extreme frequencies,

The predictions of gene frequency changes are again quite
good; the difference between observed and predicted results is
in the direction predicfed from theory. Neither method I nor Il
allow for the initial asymmetry in disequilibrium generated when
gene frequencies are not intermediate, At low initial frequencies
method I is reasonably accurate, but it is considerably less so at
high initial frequencies. Method II follows the changes in dis-
equilibrium in reasonable'agréement with exact results. It is
worthwhile emphasizing that predictions based on the infinitesimal
model, which ignore gene frequency changes are bound to break down
badly if initial gene frequéncies are high, since the model assumes
that the joint disequilibrium always increases towards its maximum
value as selection proceeds; It is clear, however, that the dis-
equilibrium is a function 61 genehfrequencies and as these move
towards fixation, the disequilibrium tends to zero,

We now look at the gesults in the parental generation, Since
similar comments and limitations regarding the predictiomns ﬁsed
apply to the parental generation we shall only show results for the
run in Table 5.3 with ¢ =-0,5, | As before, E refers to exact re-
sults; results under i are obtained from recurrent use of (5.36)
and (5.37).. Results under I1 are based on recurrent use of (5.18)
and (5.25). The effect of Hardy-Weinberg deparfures is obtained

using (5.38). The results are shown in Table 5.6,

76.



TABLE 5.4:

Observed and Predicted Values of Gene Frequencies

77.

and Joint Disequil-

ibrium for a pair of loci, Initial Conditions: q = 0.,2; VG = 0,64;
h2 = 5%; CLW = 0.0; Q = 20%; a/0 = 0.27;: c = %,
I II

v 9 o x 102 | %t oW x 100 |- % cw x 102
o 0.200 0.00 0.200 0,00 0.200 0.00

2 0.338 -1.61 0,334 ~-1,30 0.334 -1,25

3 0.421 -2,22 0.413 ~1,90 0.416 -1,88

4 0.509 -2.49 0.505 -2,50 0.507 -2,33

TABLE 5.5:

Observed and Predicted Values of Gene Frequencies and Disequil-

ibrium for similar starting conditions as those in Table 5.4, except

qo are assumed to be 0,80,"

................ B II .
t | q . awx1® | q .. caw=x1® [ q ca¥x10®
o 0;800 0,00 -0, 800 -0.00 0. 800 0.00
1 0,858 40336 0.861 -0.60 0.861 -0.60
2 0.898 -0,29 10,906 -0.60 0.906 -0.47
3 0.930 -0.17 ~ 0,945 -0.49 0.939 -0,27
4 0.952 -0.09 -0.965 ~0.28 0.960 -0.13




TABLE '5.6:

Observed and Predicted Values of Disequilibria for the Model in

78.

Table 5.3 for ¢ = 0,5, See text for explanation,
E
t cLw s cLs(s'®) Cwa(t) caw(s' V) W4
x102 x10> x102 x102 W
o -0,91 -0.91 -0,91 -0,91 0.98
1 -1,59 -0.78 -0,68 -0,78 0.88
2 -1.57 -0.62 -0.38 -0.62 0.80
3 -1.27 -0.46 -0.17 -0.46 0.73
1. 1I
t a‘w(s,t) CL.B(S ,t) CLW(S ;t) CLB(S,t) CHW(S ,t) . w14
x02 . x102 | x10% x102 x102 W
o) -1,00 -1.00 -1.00 -1.00 -0.98 0.96
1 ~1.89 -0.91 -1,77 -0.91 -0.91 0,86
2 -2,18 -0.77 -1.84 -0,78 -0.78 0.78
3 -2,09 -0.60 -1,55 -0.61 -0.61 0,72
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The exact results illustrate the effect of the declining value

(s,t)

of w14/W on CLB Under the assumption of w14/§ = 1, the fresh

joint disequilibrium, CLWf(t), should be equal to CLB(S’t). Notice

() (s,t)

. however, that the discrepancy between CLWf and CLB in E, is

perfectly explained using (5.25). As we predicted from the theor-

(t) (s,t)

etical analysis, the difference between CLWf and CLB is

positive and becomes larger in magnitude as gene frequencies move

towards fixationm, At generation O, if D(o) =0, CLB = CLWf. Both

methods overestimate the value of CLB(s’t)° In this particular
run, the difference in the predicted value of CLB using both methods

is at the 4Ell decimal place, The overestimates of the fresh dis-

(%) Chich

equilibrium are reflected on the predicted value of CLW
is further inflated by the prediction of the already existing dis~
equilibrium within parental contributions. Method II tends to
correct for the effect of high gene frequencies and is therefore

more accurate than method I. In this particular run with two loci

(=% - as®® Both de-

of equal effects and frequencies, CHW
cline as gene frequencies move towards fixationm.

This numerical analysis illustrates the limitations of the
approximations used to predict the course of selection, Method Il
is more accurate than method I, but both seem useful in providing
us with a means of making some predictions, at least qualitatively.
The expressions used in method I are functions of parameters which
can be more or less estimated experimentally. Due to this, and due
to ifs simplicity, it will be used to describe the changes of the
~ genotypic variance due to selection in the Montecarlo work of the

next section,
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Montecarlo Simulation Studies.

-

The Simulation Programme,

The Montecarlo approach followed in this study was that of
directly simuiating the processes of gamete formation, random
mating, genotypic evaluation on the individual's own performance
and truncation selection, Bisexual diploid organisms were simulated,
their quantitative characteristic assumed to be expressed equally in
both sexes, The metric trait was determined by a maximum of 30 loci,
two alleles per locus, with arbitrary effects and frequencies and
any degree of linkage between adjacent loci. The genetic models
studied assumed additivity between loci (no epistasis) and bdth add-..
itive and dominant models were investigated. The mode of gene action"
thus specified the genotypic &alue of each individual and the pheno~ .
typic values were generaéed by adding a normally distributed random
variable with zero mean and variance VE simulating environmental
effects. In the directional selection studies that follow, the
highest N scoring individuals of each sex out of a total of M scored
were selected fog breeding. 'The 2M individuals at generation zero
were generated accdrding to the input of gene frequencies and there-
fore the base population was assumed to be in Hardy-Weinberg and
linkage equilibriuﬁ,any departures being due to chance, Recombination
and gamete formation were carried out using an array of binary masks.
Mating within selected individuals was at random, with no.replace-
ment and a constant number of offspring of each sex per~family was
produced each generation, The cohputer input can be summarised as

follows:
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= Number of loci

- Number of Male offspring

- Number of Female offspring

= Number of Male parents

-~ Number of Female parents

- Number of generations of selection

= Number of reﬁlicates

- Environmental variance

- Recombination fraction between adjacent loci

~ Gene frequencies at each locus |

- Additive values at each locus

- Dominance deviations at each locus
The output varied somewhat in different versionms., In general, the
following were printed each generation, ﬁefore selection, together
with the standard deviation between replicate runs for each estimate:

- Genotypic meah |

- Total genotypic variance (VG)

Equilibrium additive variance (Vg)
- Covariance of allelic effects within loci (CHW)
- Covariance of allelic effects between loci within gametes (CLW)
- Skewness of the distribution of genotypié valuesv(gs)
The total genotypic variance (VG) was estimated from the variance of
the distribution of genotypic¢ values, Vg was estimated from gene
frequencies which were obtained from each of the n loci,
CHW was estimated_by subtracting the equilibrium additive

variance of each locus from the variance between genotypes within the



82,

corresponding locus and summing over loci, CLW was obtained by
di fference, on the assumption that the expected value of CLB in

the offspring generation was zero, i.e,:

(t) (t) (t) (t)

aw' "’ =ve " -vg ) - caEw ",

The same estimates were printed out for the selected group of indi-
viduals, immediately after selection. In addition, the covariance
of allelic effects between gametes, CLB, together with its standard
deviation between replicates, was printed each generation. This
estimate was calculated in the following way. An estimate of (CLW
+ CLB) was obtained by subtracting from VG, the pooled variance bet-
ween génotypes within loci. CLw was'estimated by subtracting the
equilibrium additive variance from twice the variance bétween
paternallf derived gametic values across individualsA(under the as-
sumption that the variance between gametes is the same in maferhal
and paternal gametes). In most. runs the number of individuals of
each sex scﬁred each generation was 200, the best ranking 40 of each
sex being selééted.v This population size was chosen in order to
compromise between the number of replicationmns aﬁd tﬁe number of
generations of selection for a given length of computing time. The
number of replicates was seldom larger than 30, this number having
been decided empirically on the basis of the results obtained in

di fferent rums, Usually not more than four cycles of selection
were investigated and therefore, ip this strictly short term study,
‘given the size of population, the decline in variance ﬁithin lines

due to drift has been ignored.
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‘Simulation Results.

In this section we compare the predictions made under the in-
finitesimal model with results obtained from Montecarlo simulations.
We also produce results based on method I which takes account of
gene frequency changes., In Table 5.7 we summarise the various
models. These models were chosen in order to illustrate and dis-
cuss how the various parameters interact and the extent to which
the previous theoretical analysis provides us with a means of ex-
plaining the results, and no strong claim is made about them re-
flecting possible genetic parameters of a particular character in
any‘species.‘ The distribution of genes in the genome, however,
may give a rough indication of what can be expected in species with
di fferent numbers of chromosomes.

In the tables that follow, simulation results are headed (O);
those obtained using method I, (I), and those results obtained using
lthe infinitesimal model, (w); The following genetic parameters,

before selection, are shown below:

R " ¢ accumulated selection response
CLW : Joint disequilibrium
Vg : equiiibrium additive variance,

These parameteré'are calculated each generation in the usual way,
that is:
R(t+1) = 4 h2(t)o(t)

Ai(ifxT)
c2(t)

et = 3 VGz(t)(l-%)‘ + (1-myaw'®



Initial genetic parameters of the different models, The models are designated by the corresponding number

of loci (n), the initial gene frequencies (q) and the recombination fraction between adjacent loci (c),

The first three runs only differ in the number of loci., Run 4 is equivalent to Run 1, except that c is

zero, Run 5 is again equivalent to Run 1 except for the linkage relationship between loci. Run 5 has 30
loci, 10 on each of 3 chiromosomes and recombination fraction between loci on the same chromosome equal to 0.1,
In Run 6, 5 loci of proportionate effect of 0,61 have initial frequency equal to O.1 and 25 of proportionate
effect of 0.11 have initial frequency of 0.5, The loci are assumed to recombine freely. In Run 7, initial
gene frequencies at all loci are 0,2, In Run 8, initial gene frequencies at all loci are 0.8, Both Runs 7
and 8 assume free recombination, '

Run Run designation No. of Initial value Initial fre- Initial Initial
No: (n,q,c) loci(n) of a/0 quency,(qo) Linkage(c) VG h2
1 (30,0.5,0.5) 30 0.18 0.5 0.5 15 0.5
2 (10,0.5,0.5) © 10  0.32 0.5 0.5 15 0.5
3 (4,0.5,0,5) 4 0.50 ‘ 0.5 0.5 15 0.5
4 (30,0.5,0.0). 30 0.18 0.5 0.0 15 0.5

| ' - (10) 0.1
5 (30,0.5,0.1) . 30 0.18 0.5 (10) 0.1 15 0.5

(10) 0.1
(5) 0.61 (5) 0.1

6 (5/25,0.1/0.5,0,5) 30 (25) 0.11. (25) 0.5 0.5 15 0.5
7 (30,0.2,0.5) 30 0.23 " 0.2 0.5 9.6 0.5
8 (30,0.8,0.5) 30 0.23 0,8 . . . 0.5 9,6 0.5

‘¥8
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() (1)

in the case of method (I), where VG = Vg + CLW and
. i(i-x.)
D o T g2 L5 (D
: 52(®
in the case of (=), where V&'® = va(® 4+ cw‘¥,

The results for all runs for the genetic parameters in the‘off-
spring generation, before selection, are illustrated in Tables 5.8,
5.9 and 5,10, Tables 5.11, 5.12, 5.13 and 5.14>show the genetic
paraméters of the runs in the parental generation immediately

following selection.

"Genetic Parameters before Selection,

We first discuss the results of the various models in the off-
spring generation; before selection. Table 5.8 shows the results of
runs 1(30,0.5,0.5), 2(10,0.5,0,5) and 3(4,0.5,0.5) which i1llustrate
the effect of var&ing the number of loci. For é given amount of
~ genetic variation as the numbe¥ of ;oci increases the disequilibrium
between a single pair of loci becomgs smaller, but the number of terms
contributing to the total disequilibrium becomes larger, For example,

if the number of loci increases from n, ton = n1(1+N), for a given

2

amount of genetic variance the'average effect of a gene substitution,
. : 1

a, at a locus, decreases by a proportion JIIN and therefore the dis-

equilibrium between a single pair of loci decreases by a proportion

1/(1+N) . The ratio of the joint disequilibrium with n, loci to that

n,~1
with n, loci is 1 N In other words, if n

1 is not too small,



R : expected response to selection.

TABLE 5,.8: Results of Runs 1, 2, and 3, See text for explanation,
[
RUN 1 (20 reps.) RUN 2 (50 reps.) RUN 3 (50 reps.)
(30, 0.5, 0.5) (10, 0.5, 0.5) (4, 0.5, 0.5)
Gener— .
ation Vg CLW R Vg - CLW Vg CLW
0 14°92id.00 0.5710.33 0.00 14,96%0.00 0.0716.16 0,00 14.96%0,00 0.01+0.13 0.00
0 1 15.00 0.00 : 0.00 15,00 0.00 0.00 15,00 0.00 0,00
e 156,00 . . 0.00. .. . 0,00 15,00 . . . 0.00 0.00 15.00 0.00 0.00
o|14.54t0,02 -2.81*0.35 3.84t0.12 | 14.12+0.02 -2.51*0.16 3,94t0,06 | 13.06t0,04 -2,00t0.14  3,87+0,04
1 I 14,76 -2,83 3.83 14,26 -2,.64 3,83 13.16 -2,20 3.83
® 15.00. -2,93 .. 3,83 . 15,00 . . -2,93 .. 3.83. 15,00 . -2,43 3.83
0113,75t0,04 -3.18id.25 . 7.1610.15 12.32i0;06 ' =2,50t0,14 7.07+0,08 9.18+t0,09 -1,53%0,14 6.76X0,05
2 I 14,17 ~3,41 - 7,05 12.56_ -3.11 7.00 9,14 -2,46 6.85
© 15,00 =3,57 7.08 15,00 . .. -3,57. . . . 17.08 . 15,00 . ... . . -3,57. .7.08
0| 12,76+0,07 -3,31+0.34 10.22i0,17 . 9,98t0,07 -2,14%0,11 e,8210,08 5.,21%0,13 -0,47+0,.07 8,8210,06
3 I 13,33 ~3.40 10.02 10,33 ~2,83 9,66 5.20 -1,83 8,86
® 15.00 -3.72 - 10,19 15.00 -3,72 10.19 15.00 -3.,72 10,19
0]11.50%0,10 -2.20t0,.,32 12.89%0,18 7.64t0,09 -1,29%0,13 11,98'0,08 2,37t0,08 -0,11%0,03 10,00+0,04
4 I 12,27 -3.19 12,80 7.95 - =2,29 11,87 2,61 -1,09 9,96
il 15000 -.3&75 ..... 13.28 L . 15'00 R -3.75 L 13.28 15000 . ."3. 75 13028
Vg : equilibrium additive variance
CLW : joint disequilibrium within parenta](gametic) contributions.

‘98



TABLE 5,9:

Results of Runs 4, 5 and 6, See text for explanation,

RUN 4 (20 reps,) RUN 5 (20 reps,) RUN 6 (30 reps.)
Gener- (30, 0.5, 0.0) (30, 0.5, 0.1). (5/25, 0.1/0.5, 0.5)
ation Vg . .CLW R Ve . CGwW. . ... R . Vg CLW R
01]14,96t0.00 -0,50+0,.27 0;00 14.96i0.00 -0,06+0.19 0.00 14,91+0,08 -0,06+0,16 0.00
0  § 15,00 0.00 0.00 15,00 0.00 0.00 15,00 0.00 0.00
© 15.00 0,00 0.00 15,00 0.00 0.00 15,00 0.00 0.00
0]14,66x0,01 -3.17i0.36 3,76+0.07 14,66+0,01 -2,70%+0,23 3,80+0.10 21,86+0,14 -4,69*+0.29 4,13+0,07
1l ) | 14,76 -2,83 3.83 14.76 -2,83 3.83 21,22 -2,65 3.83
© 15.00 -2,93 3.83 15,00 -2.93 3.83 15,00 -2,93 3,83
0]13.95t0.04 -4,69+0,.50 6.9610,14 14,04+0,03 -3,19%+0,25 6.8810.10 27,51+0,18 -7.47t0,37 8,55+0,14
® 15,00 -5.03 7,09 15,00 -3,90 7.08 15,00 -3,57 7.08
0 |13.,0210.09 -6.0410.40 9.52+0,22 13.13i0.03 -3.29+0,25 a,82+0,10 30.97+0,17 -8,93t0.39 13,.,38%0,18
3 I 13.43 -6.18 9,70 13,35 -3.92 9.95 32,03 -7.00 13,50
© 15.00 -6,59 9.89 15,00 -4,24 10,12 15,00 -3.72 10.19
0 ]11,82+%0,.14 -6.53t0.45 11,63t0,.27 12.06t0.05 -2,74%0,24 12.45%0,11 30.,88*0,14 -8,5410,41 18,44%+0,18
4 | 12,66 -7.08 11,85 12,35 -3.78 12,62 32,00 -8,.89 19,04
® 15.00 -7.77 12,33 . 15,00 -4,36 13,09 15,00 -3.75 13.28

*LB



TABLE 5,10: Results of Runs 7 and 8, See text for explanation.

RUN 7 (30 reps.) RUN 8 (30 reps.)
Genere (30, 0.2, 0.5) | (30, 0.8, 9.5)
ation. . | .. . Vg .. . ... .. aw ... ... R | . .. Vvg.... ... ... ¢w .. . R
o 9.56+0,02 -0,00:0,12 10,00 9.59:0,02 0.05:0,12 0.00
0 I 9.60 10.00. 0.00 9.60 0.00 0.00
® 9.60 0.00 0.00 9.60 0.00 0.00
0 11.24+0,03 -2.24+0.20  3.15:0.06 7.70+0.04 -1,53+0.11 2,88+0.05
1 I 11.28 -1,81 3.07 7.60 -1,81 3,07
® 9.60 -1,88 3,07 9.60 -1.88 3.07
0 12,44+0.04 -3,33+0.14 6.22+0,08 6.11+0.05 -1,21+0.08 5,02+0,06
2 I |- 12.64 -2,68 6,10 6.08 -1.73 5,13
w . 9.60 -2.28 5,67 9.60 -2,28 5.67
0 13.32+0.04 -3.98t0.15  9,.27+0.11 4,73+0.05 -0.90+0.08 6.74+0,06
3 1 13,73 -3,26 . 9.26 4,78 -1,38 6.76
w 9,60 -2,38 8.16 . 9,60 - . -2.38 8.16
o | 13.90t0.03 -3.77t0.16 12.26%0.10 3.57+0.05 -0.60+0.07 8.12+0,06
4 I 14,50 -3.69 12,53 3,66 -1,03 8.09
® 9,60 -2,40 ~ 10.62 . .9.60 -2.40 10.62

‘88




TABLE 5,11: Genetic Parameters in Selected Population of Rung 1, 2 and 3, See text for explanation,

RUN 1 (20 reps.) RUN 2 (50 reps.) RUN 3
Gener- (30, 0.5, 0.5) - (10, 0.5, 0.5) ' (4, 0.5, 0.5)
ation CLW CLB me - CLW ClB = ,amf , CLW CLB me
0|-2,98t0.57 -2,16t0,58 - =3,55 -3.13td.24 -1,90+0,24 ~3,20 ~2,48t0,23 -1,46*0,26 -2,56
4] I -2,83 -2,.83 -2,83 -2,64 -2,64 -2,64 -2,20 -2,20 -2,20
o -2.93 -2.93 -2,93 ~2,93 -2,93 -2,93 -2,.93 -2,93 -2,93
0 |-4.60%0,.58 -1.4910.55 .~1,79 3.31+0,22 -1,78+0,21 -0,80 -2,18t0.15 -0.71t0.16 -0.17
1 I -4,83 -2,00 -2,00 -4,42 -1,79 -1,79 -~3,56 -1,36 -1,36
® ~5.,04 -2.11 -2,.11 -5,04 -2,11 1 =2,11 -5,04 -2.11 -2,11
0 |-4.49%0,48 -0,85£0,40 -1.31 -3,05:0,17 -1,110,16 -0.55 -0,70t0,10 -0.31+0,09 0.83
2 I -5.11 -1,70 -1,70 -4,39 -1,29 -1,29 -3.06 -0.60 -0.60
© -5.50 -1,93 ~-1,93 -5,50 -1,93 -1,93 -5,50 -1,93 -1,93
(0] -4.17&0.37 -0,59+0,31 -0,.87 -2,04+0,13 -0,48t0,13 C.10 -0,03+0,08 -0,23+0,08 0.44
3 I - -4.90 -1,49 -1,49 -3.72 -0,88 -0,.88 -2,01 -0,18 -0.18
© -5,61 -1.89 ~1,89 -5,61 -1,89 -1,89 ~5,61 -1,89 -1,89
CLW : Jjoint disequilibrium within parental (gametic) contributions,
CLB- : joint disequilibrium between parental (gametic) contributions.
CLWf : Zfresh disequilibrium within parental (gametic) contributions,
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TABLE ‘5,12 Genetic Parameters in Selected Population of Runs 4, 5 and 6.
RUN 4 (20 reps.) RUN 5 (20 reps.) RUN 6 (30 reps.)

Gener- (30, 0.5, 0.0) (30, 0.5, 0.1) (5/25, 0.1/0.5, 0.5)
ation CLW CLB - CLWf CLW - CIB CLWf CLW CLB CLWf
0] -3,20+0,34 -2,64+0,26 -2,70 -2,81+0,41 -2,.,80+0.42 -2,87 -5,26X0,47 -4,22+0,52 -5,.32
0 I -2.83 -2,83 -2,83 -2,83 -2,83 -2,83 -2,65 -2,65 -2,65
o -2,93 -2,93 -2.93 -2,.93 -~2,93 -2,93 -2.93 -2,93 -2,93
O] -4.85%0,40 -1,29%0.31 -1,63 -4.7010.34 -1,48+0,42 -2,01 -10,73+0,78 -3.67t0.67 -6,04
1 I ~4,83 -2,00 -2,00 -4,83 -2,00 -2.,00 -6,16 -3.51 -3.51
© -5,03 -2,11 -2,11 -5,03 -2.11 -2,11 -5,04 -2,11 -2,11
0| -5.87+0.39 -1.43%0,35 -1,18 -4,58+0,36 -1,62+0,40 -1,39 -13.60t0,63 ~4,26+t0,62 -6,13
2 ) § -6,.18 -~1.36 -1.36 -5,35 ~1,62 -1,62 -9.41 -4,58 -4,58
o -6,.59 -1.56 -1,.56 -5,74 -1,.84 -1,.84 -5,50 -1,93 -1.,93
- 0| -6.68t0.44 -0.65%0,21 -0.64 -3,62+0.32 -1,29+0.28 -0.33 | -14,23t0,53 -3.36%0.58 -5,30
3 I -7,08 -0.89 -0, 89 -5,.29 -1,38 -1.38 -12,39 -5.,39 -5,39
L -7.77 ~1.18 -1,18 - =0,00 .. - ~1,76 . =1,76 -5.61 -1,89 -1,89
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TABLE 5.13:

Genetic Parameters in Selected Population of Runs 7 and 8,

RUN 7 (30 reps.,)
(30, 0.2, 0.5)

RUN 8 (30 reps,)
(30, 0.8, 0,5)

-3.59

-1,21

-3.59. .. . .

Gener-
ation | . awv. CLB CLY, . CIW. ... . . CLB. CLW,
0o | -2.86t0.25 -1,64+0.28 -2.86 -1,49$0,17 ~1,15%0,15 -1.44
0 1 -1,81 -1.81 -1,81 -1,81 -1,81 -1,81
® -1,88 -1,88 - -1,88 -1,.88 -1,88 -1,88
o | -4.78t0.24 -1,59t0.28 -2,53 -1,58+0,14 -0.71+0.13 -0.05
1 1 - 3,59 -1,78 -1,78 -2,64 -0.82 -0.82
© -3,22 -1.34 -1,34 -3.22 . -1.34 -1,34
0 -5.25+0.28 ~2,10%0.26 -1.92 -1,00+0,14 -0,62+0.11 0.21
2 I -4,60 -1.92 -1.92 -2,24 -0.51 -0,.51
‘ w -3,5 -1,24 -1,24 - =3,52 -1.24 -1,24
o | -5.85+0.29 -1,84+0,29 -1,88 -0.80+0.08 -0.35+0,08 0.11
3 I -5,32 -2,06 -2,06 -1,71 -0,34 -0,34
-1,21 ' -1,21

‘16



"TABLE 5,14:

Observed (0) aend Predicted (P) reductions of the Genotypic Variance due to Departures from Hardy-Weinberg
Equilibrium, smong selected individuals (CHW

(s,t)

e

Run Number.

1

.4

Model De-

signation (30,0.5,0.5) (10,0.5,0.5) .(4,0.5;0.5)

.(30,0,5,0,0) (30,0.5,0.1) (5/25,0.1/0,5,0.5) .(30,0,2,0,5) (30,0.8,0.5)

_—

. Gener-

ation |
) -0,48t0.10 -0.41t0.07 -0,790.09 -0,19+0.06 ~0.29%0.07 -0.64t0,14 -0,16£0,04 -0,12%*0,03
° P -0.10 . =0.59 - ~0,73 -0,10 -0,10 . -0.28 ~0,06 . -0,06

0 -0.58:0,08 -0,39t0,07 -0,47+0.09 -0,37:0,10 —0,4310;10. -1,750,24 -0,39+0,06 -0,11+0,03
1‘ P -0.09 .. . . ~0.24. ... . -0,54 . . -0,09 . -0,09 . -0.58 .=0.07 -0,04

0 -0.37t0.11 -0.18t0.06 -0.260.04 -0.36£0,12 -0,16:0.08 -1,32%0,32 -0,37+0,08 -0,090.01
’ P -0.08. . . -0.19 . -0.27. -0.07 -0,08 .. ... .. -0.89. ... . . -0,08 .. .. -0.02

0 -0.43t0,09 -0.17+0.04 ~0.07:0.02 -0.21:0.05 =0.34:0.09 -1,76+0,31 -0.41+0,08 -0,06%0,02
? ~0,07 . =0,09 . .. ~0.06 - . -0.07- - .. - =0,93. ~0.09. -0,02

*26
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there is very little effect of increasing the number of loci on the
value of joint disequilibrium, When n, tends to infinity this ratio

tends to (nl-l)/nl, indicating that given n, the maximum possible

1
value that the joint disequilibrium can take, for the same amount of

genetic variation, is a proportion 1 + %— of its value with n, loci,
1

1
This is illustrated in the results of Table 5.8 corresponding to the

(1 for the

first generation of selection. The expected ratio of CLW
model of four loci to that of 30 loci is 0.78; the observed ratio is
0.71, The expected and observed rafios for 10 and 30 loci are 0.93
and 0.90 respectively. Observed and predicted results would not be
in such close agreement if initial gene frequeﬁcies were extreme due
to the problem of asymmetry mentioned before and to be discussed in
the next chapter,

Since gene frequencies are initially at intermediate values w&
expect the genotypic variance to decline due to both gene fréquency
changes and due to the.generatioﬁ of linkage disequilibrium, With
few loci of large effect;'gene frequencies move quickly towards fix-
ation and therefore the amount of disequilibrium quickly tends to
zero, At high frequencies both (I) and (®) overestimate CLW(t) as
expected, particularly () which is bound to breakdown badly when
few genes are segregating. As the number of loci increases, observed
and predicted results are in closer_agreement; Gene frequency
changes are predicted with reasonable accuracy but in disagreement
with theory, the predictions are an underestimate, This is probably

t)

due to two reasons. Firstly the overestimation of CLW tends to

reduce the predicted value of Ap (see 5.32) and, secondly, the effect
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of drift will tend to increase the decline in heterozygosity.

The observed reduction in the total genotypic variance due to
the effect of joint disequilibrium, relative to its value at generation
O, for runs 1, 2 and 3 is illustrated in Table 5.15, Thé figures in
the table show the effect of varying the number of loci on the relative
contribution of joint disequilibrium and gene frequency changes on

the change in the genotypic variance during the course of selection.

"TABLE '5.15:

Observed reduction of total genotypic variance due to joint disequil-
ibrium relative to its value at generation zero. The complementary
fraction is the reiative reduction due to changes in gene frequency

(ignoring a negligible reduction due to Hardy-Weinberg disequilibrium).

Run 1 Run 2 Run 3

t (30,0.5,0.5) .. . .(10;0.5,0.5) ... .(4,0.5,0.5)
1 0.88 0.72 0.50
2 0.76 0.49 0.21
3 ' 0.63 0.30 10.05
4 _ 0.44 0.15 10,01

Table 5.8 also showé the observed and prédicted response to
selection in the three rums. Observed and predicted responses usipg
method (I) tend to be in good agreement even in the case of run 3
where the total genotypic variance is underestimated due to an over-

estimation of CLW(t). It must be emphasized that fhe_agreement is
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strictly illusory particularly in the case of run 3 in later
- generatiaons,. Our prediction of selection response is based on the
assumption of iinearity gf offspring-parent regression, This as-
sumption does not hold during the later stages in run 3, After three
cycles of selection, gene frequencies have reached a value of around
0.9. With high extreme gene frequencies the distribution of geno-
typic values is negatively skewed. Since thé environmental distri-
bution is assumed to be normal, this leads to non-linearity of
offspring-parent regression duelto inequality of ratios of third to
second moments for the genotypic and environmental distributions and
we would expect a higher response to selection downwards than upwards
(Robertson; 1977c) . The skewness of the éistribution of genotypic
'values amongst the offspring of the 3rd_generation is>40.8010,04.4;The
ratio of the total observed genotypic variance to total observed
phenotypic variance in generétion 3 is 6.24 whereas the observed
realized heritébility is 0.20 +* 0,01, Thé predictions made using _
method (I) yield a value for the ratio VG/VP of 0.18. Observed and
predicted standardised selection differeﬁtials are 1,32 and 1,40 res-
peétively; Therefore, the underestimation of the prediction of the
heritability using (I’ is Qompensated by an overestimation in the
selection differenfial énd hencé observed and predicted responses to-
selection at generation 4 are in reasonableAagreement.(l;lS and 1,10
respectively). It is interesting to note that even though we have

a situation of a'few genes of large effect at extreme frequencies;
with additive gene action the non—linearitj of selection response does
not .seem to be very serious. For the model of 30 loci; the skewness

of the distribution of genotypic values in the 3rd generation offspring
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is -0.02 * 0,04, Observed and predicted standardised selection
differentials are 1.38 and 1.40 respectively and the ratio of observed
VG/VP at generation 3 is 0.38 compared with a realised heritability of
0.39 * 0,02, which agrees with the predicted value of 0.40 using method
(1). Gene frequencies for run 1 at generation 3 reached a value of
around 0.7.

The effect of linkage is illustrated comparing rums 1(30,0.5,0.5),
4(30,0.5,0.,0) and 5(30,0.5,0.1). Up until generation 2 the equili-
brium additive variance and the response to selection should be un-
affected by linkage and any differences amongst the runs are probably
due to sampling. From generation 2 onwards we expect the response to
be reduced with tight linkage but as it is clear from the results the
effect in the early generations is indeed very small, even for the
'cgse of complete linkage, Observed realized heritabilities are shown

in Table 5.16 illustrating this point further.

TABLE :5,16:

Observed realized heritabilities at each generation for different
values of linkage, c refers to the average recombination fraction

between loci.

Run 1 Run 5 Bun 4
(30,0.5,0.5) (30,0.5,0.1) (30,0.5,0.0)

t ¢ . 0.5 . 0.38. . ... ..0,00 .
) 0.50 £ 0,02  0.50 £ 0,01  0.52 * 0,01
1 0.45 + 0,02 0,44 +-0,02 0,44 0,01
2 0.43 + 0,02 0,41 + 0,01 0,37 = 0,02
3 0.40 + 0,02 0,38 £+ 0,01 0,33 % 0,01
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Observed and predicted results of CLW(t) are in general in

good agreement, but as expected the predicted values tend to be an
overestimate. The response to selection is predicted reasonably
accurately with method (I) and in general, with these runs starting
at intermediate gene frequencies the results from the infinitesimal
model follow the course of selection in a satisfactory manner, since
overestimation of CLW partly compensates for the fact that the re-
duction in the total genotypic variance due to gene frequency changes
is ignored.

Run 6 (5/25,0;1/0.5,0.5) simulates a model in which the character
is determined by several genes of small effect at intermediate fre-
quencies and some loci of large effect at low initial frequencies.

In this run, about 67% of tﬁe total genetic. variation at generation
zero is contributed by the five major loci, This rather extreme
situation will serve us to illustrate several points which were dis-
cussed eérlier. From the point 6f view-of the.amount ofljoint dis-
equiiibriuq generated after a first cycle of selection we wouid expect
‘both methods (I) and (®) to grossly underestimate the true value due
to the asymmetfy caused by loci at low initial frequencies, in this
case, the phenomenon being accentuated due to the rather large bro—
portionate effect of such loci, 'In subsequent cycles of selection

as these loci move towards intermediate values the amount of disequil-
ibrium should rise steeply. With this model,'method (I) should be
considerably more accurate than (w)Aﬁecﬁuse the crucial factor causing
the changes of disequilibrium as selection proceeds 1s the change in

gene frequencies,
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Predictions of selection response in the first generation are
likely to be underestimated because of the positively skewed distri-
bution of genotypic values due to the major loci at low frequencies.,
The skewness should quickly tend to disappear as the frequency of the
major loci move away from extreme values.

Thgse points are illustrated in Table 5.9, where the results
are in good agreement with our verbal predictions, Notice that the
predicted value of the equilibrium genetic variance is in reasonable
agreement with observed results but the joint disequilibrium predicted
using (I) and especially () is an underestimate, The selection res-
ponse predicted ﬁsing (I) is again miéleadingly accurate (except at
~ generation 1), this being due to bagically the fact that the over-

estimate of the éredicted total genmotypic variance is more or less
balanced out by higher than expected obsefved realized heritabilities
in view of the non-linearity p:oblem. The observed standardised
selection differentials in the iirst ﬁnd last cycies of selection for
this run were 1.38 and 1,39 respectively,

Table 5.17 gives the values of the skewness of the distribution
oi genotypic values in the offspring generation,‘the observed realised
heritabilities at each generation énd.the observed ratios of total
genotypic to total phenotipic variance as selection proéeeds. |

The table illustrates the fact that as the skewness tends to
disappear observed and predicted results (h2 and VG/VP) tend to agree
more closely, It is interesting to notice that gene frequency
changes and the generation of disequilibrium act together in such a

way that the realized heritability changes little during the course
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TABLE 5.17:

Observed parameter estimates for Run 6(5/25,0.1/0.4,0.5). g3 refers
to the skewness of the genotypic distribution in each offspring

2
generation, h is the single generation realized heritability,

t g3 h2 VG/VP
o 0.44 *+ 0.02 0.54 + 0,01 0.50
1 0,27 * 0.03 0.55 £ 0,01 0.52
2 0.16 * 0,02 0.57 * 0,01 0.57
3 0.04 + 0,02 0.60 * 0.01 0.59

of seleqtibn. Indeed, a very large experiment'would be required to
détect such a change, Upon relaxation of selection, if 75% of the
disehuilibriumvbfeaks down after several cycles of random mating
the heritability would rise to about 68%,

A similar model as ‘the 6ne in Run 6 but with all loci initially
at intermediate frequencies would not produce the initial asymmetry
;n selection response or in the generation of joint disequilibrium,
We>wou1d predict suéhia model to behave in a manner analogous to run
1¢(30,0.5,0.5), but with gene frequencies. of the major loci moving
rapidly towards extreme values we would find lack of agreement .between

observed and predicted values of CLW in later generations. This

T e

overestimate of CLW would more or less balance out the smaller than

predicted realized heritability and again the predicted response



100.

using (I) should be reasonably accurate. These verbal predictions
were confirmed running such a model on the computer,

Runs 7(30,0.2,0.5) and 8(30,0.8,0.5) in Table 5.10 illustrate
the problem of asymmetry in the generation of disequilibrium. As
discussed before, both methods (I) and (*) underestimate the value
of CLW when gene frequencies are at low values and overestimate CLW
at high initiai frequencies, Due to the non-linearity of offspring-
midparent regression the response is underestimated at low frequencies
and overestimated at high frequencies, as discussed before. The

-predictions made under the infinitesimal model are reasonable when

~ gene frequencies are below 0,5, but mﬁch less so at the other extreme
situation, as expected. In general, the infinitesimal model breaks
down badly if initial gene frequencies'are higher than 0.5 because
contrary to what it predicts, the amount of disequilibrium generated
becomes smaller as selection proceeds. As we 111ustrate in the
foliowing section, this is due to the fact that the fresh disequili-
brium eventually becomes positive as predicted from our theoretical
analysis of the two locus model. It is interesting to notice that
in rwn 7(30,0.2,0.5), gene frequency changes and the generation of
Joint disequilibrium resultAin an almost constant value for the ob-
ser;edn(and predicted)'realized herifabilify; Ih'fact fhe observed
realized heritabilities in each cycle of selection are as follows:
 0.52 + 0.01; 0.50 * 0.01; O,Sd + 0.01; 0.50 £ 0.01, The equil-
ibrium additive variance however changes from its value of 9.57 *
0.01 at t=0 to 13.91 + 0.03 at t=4 and therefore if linkage equilibrium
were restored, the realized heritability correspondiné to that value

of Vg(4) would be about 60%.
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Genetic Parameters in Parental Generation.

Tables 5.11 to 5,14 show the observed and predicted values of

disequilibria.. for the various rums, The previous analysis of the

two locus model allows us to make the following verbal predictions:

(1)

(11)

At low gene frequencies, we expect CLW:E < CLB and the dpposite
should hold at high gene frequencies,
At intermediate gene frequencies, CLB and CLWf should take

similar values,

(iii) As gene frequencies reach extreme high values, we expect

(iv)

the fresh disequilibrium to become positive. This pheno-
menon is not allowed for in the predictions méde under
methods (I) of'(w).

With increasing nuhber.of loci, the discrepancy between CLWf

and CLB should tend to be smaller.

Point (i) is illustrated in rumns 7(30,0.2,0.5) and 8(30,0.8,0.5) -

in table 5.13. In run 7 as gene frequencies move towards intermediate

values, CLB and CLW

P tend to be in closer agreement. Table 5.11 shows

- that with larger numbers of loci, the discrepancy between CLWf and

CLB as selection proceeds is reduced. In both runs 2(10,0.5,0.5)

£

and 3(4,0.5,0.5) CLW, > CLB, and CLW_ does indeed become positive at

the last stages of selection, particularly in run 3 where gene fre-

'quencieé have reached high extreme values. In run 8(30,0.8,0.5),

" which assumes high initial frequencies, CLWf becomes positive very

quickly though the‘absolute value reached is smaller than in. the case

cf run 3(4,0.5,0.5) presumably due to the smaller proportionate effect

of the 1loci, ‘Gene frequencies at the 3Eg parental generation in rum
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8(30,0.8,0.5) have reached a value of about 0,94,

Witﬁ very tight linkage we expect CLWf to move relatively more
quickly towards positive values. A comparison between runs
1¢(30,0.5,0.5) and 4(30,0.5,0.0) shows that this effect is indeed
very small, The values of CLB for rum 1(30,0.5,0.5) at generatioms
2 and 3 are rather smalllbut standard errors are large. In fact,
another run of the same model using a different random number
genefator produced the following results for CLB and CLWf respectively
for generations O to 3: (-2.55 +* 0.41; -3.10); (-1.78 £ 0.40;
-1.46); (-1.30 £+ 0.30; -1.33); (-1.30 £ 0.34; -1.21),

The effect‘of Hardy-Weinberg departures on the génotypic variance
amongst selected parents is shown in Table 5,14, From (5.38) and
(56.39) we expect CHW to be smaller at extreme gene frequencies'and
larger at intermediate frequencies. Furthermore, for a given amount
of genetic variation, CHW should increase with decreasing number of
loci., These points are illustrated in the different runs in Table
5.14. It.will be noticed, however, that unless the number of loci
is small, the value of CHW predicted using (5.38) underestimates the
true value. This is partly due to the finiteness of the population.
It can be shown that in a population of size N, with random mating
aﬁd no-seleétion the expected frequenc&fof the three genotypes at

single loci is as follows:

AA Aa aa
2 _p_ 2 _ Q-p)
P 2N - 2p(1<p) 1=p) . === 2N
1 —Bf—f%— 1
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In other words, in finite populations we expect an excess of
heterozygotes and this implies a negative value for DHW‘ With

n loci, the covariance of gene frequencies within loci due to

finite size, Dﬁw, is:
n 9 , Epi(lfpi)
Diw = I PAAD -y = - THRT (5.40)

In our previous discussion of genetic parameters in the offspring
~ generation we ignored the reduction in VG due to departures from
Hardy-Weinberg equilibrium due to the fact that this reduction was
virtually negligible, However, it should be mentioned that the
value of CHW in the offspring generation was consistentlé negative

in all runs and in good agreement with (5.40) above.

In this chapterjwe have attempted to describe the changes in
variance due to selection under a variety of genetic models and at
the same time see to what extent the infinitesimal model.gives a
~ good prediction of such a change; We have seen that provided gene
frequencies are initially at mére or less intermediate values and
~ gene effects‘afe small,vthe infinifesimal model is in good agreement
with observed results, at least in the first few generations of
selection studied here. 1In models in which gene frequencies are
extreme and/or gene effects large, predictions are in poorer agree-
ment, particularly at high frequencies.

Method (I) was derived more or less empirically and we have

shown that it predicts the course of selection with reasonable accuracy



provided again, that gene frequencies are not extreme, Under
this method, the éffect.of gene frequency changes on joint disf .
equilibrium is gllowed for and has been clearly illustrated in

run 6(5/25,0.1/0.5,0.5) where loci had widely different selective
values. At extreme gene frequencies however, the disequilibrium
~generated and the realised heritability are estimated with little
accuracy but as we have seen, these two biases are of opposite sign
and therefore, in general, the response to selection is predicted
with misleading accuracy.

It might be thought that.the models used aré rather restricted
in that only one intensity of selection and one value of herit-
ability were used. The results of the different rumns thqugh,
were shown simply to illustrate the theory developed in earlier
sectionsvand to show how the various parameters interact. It
should be clear, however, that with smaller herjtabilities and or
lower selection intensities the relative reduction in variance is‘
smaller.and furthermore,vthe predictions made under the infinitesim#l
model are more accurate, Thisvis illustrated in Table 5.18 where
-the predicted and observed values of joint disequilibrium and res-
ponse to sélection are shown for a run equivalent to rum 1(30,0.5,
0.5) but with h2<°’ = 0,30,

If h2 is further reduced to 20% and 50% are selected each
~ generation (100/200 of each sex) the difference between method I and
(=) is even smaller and predicted and observed results for all genetic
parameters studied here agree remarkably well. In fact, in such a
model, the Abserved response'at generation 4 is 2,61 * 0,10 and the

predicted results using (I) énd () are 2.60Aand'2,61 respectively.
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TABLE 5,18:

Observed and predicted results of joint disequilibrium (CLW) and
selection response (R) for a run equivalent to run 1(30,0.5,0.5)
but with initial heritability of 0.30. Observed results are the

average of 30 replicates,

t CLW R
0 -0.08 * 0.04 0.00
0.00 0.00
0.00 0.00
-0.44 * 0.06 1.46 + 0.04
-0.42 1.47
-0.43 1.47
-0.49 +-0.06 2,74 + 0,05
-0.55 2,78
-0.57 2.79
-0,50 + 0,06 3.98 + 0,05
-0.58 4,01
-0.61 4.06
-0.42 * 0.06 5.13 + 0.05
-0.57 5.19
-0.62 . 5.33 _
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Gene frequencies in this run moved from 0.50 to about 0.58 in the
four cycles of selection and the relative change in the total
genotypic variance due to joint disequilibrium relative to its
value at generation zero is: 0.90; O0.74; 0.72 and 0.64 for
generations 1 to 4. In this run and the one in Table 5.18, the
agreement of observed and predicted response is not a spurious one;
this agreement is a reflecfion of,(i) accuracy of prediction of gene
frequency changes and the generation of joint diseguilibrium and
(ii) lack of asymmetry of selection response.

Having devoted considerable effort in attempting to understand
the dynamics of gene frequency changes and the generation of joint
disequilibrium, it is natural to ask how important.are these changes
from a practical poinf of view., Some idea of this can be obtained
from the results in Tables 5;8 to- 5,10, In order to be-mgre precise

- though, we can ask how important are these changes in variance due
to selection relative to variation of response to selection that Qe
observe in replicated selection experiments of short duration,

Over the last ten years a considerable body of theory has been
developed to describe the variance among replicated selected lines
in short-term experiments (see Hill, 1977, 1980 for references).
This theory is approximate ih that it aséumes no changes of variances
as selection proceeds and therefore it will hold better, the shorter
the duration of the selection process and the larger the number of
_genes affecting the trait. Without intending to review this theory;
it should be enough to say that thé variation in response between
different lines sampled from the same base population is basically

due to sampling of individuals chosen as parents, which produces
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variance between lines in mean due to binomial sampling of genes
(genetic drift) and variance between replicates of the within line
variance, the latter being mostly due to linkage disequilibrium
provided the number of loci is larger than the population size and
having an effect of the same order of magnitude as the former
(Avery & Hill, 1977; Hill, 1977).

In order to get a feel for the relevance of changes of geno-
typic variance as selection proceeds, we now compare the empirical
standard deviation of the response to selection with the difference
between the observed response (R(0)) and the one predicted on the
assumption of no changes of genetic parameters, We also inélude,
out of interest, predictions of the standard deviation of iesponse
based on formulae by Hill; though it must be clear that these pre-
dictions are not definite since the nuﬁber of replicates uséd in
these simulations are not in general large enough to study second

"order moments; TheAresults are shown in Table-5.i9. For simplicity
runs 4 and 5; which ihvoive linkage, have been omitted; no appreci-
able difference in variance of response or mean response could be
detected between runs 1(30,0.5,0.5) and 5(30,0.5,0.1). Ruﬁ
4(30,0.5,0.0), with complete linkage, showed larger variance of -
fespﬁnse as predicted fr§ﬁ theory. We also 1ﬁc1ude in Table 5;19 “

a measure of the extent to which the predictions of selection respomnse
made under the infinitesimal model are an improvement over those

‘made ignoring any changes of genetic parameters. The measuré of

t@is ;s the ratio of the absolute value of R(w) - R(O)/(tR(l) - ERi),

i
where R(w) and R(O) are defined before, R(l) is the observed response
at t=1 and IR, is the observed cumulative response. If this ratio:

i i



TABLE 5.19:

SDR(O): observed standard deviation of selection response, SDR(P): predicted standard .
deviation of R based on the following formula due to Avery & Hill, 1877,

v
N

as a rough approximation, 2r =2/3N for t>2 (Avery & Hill, 1979). V = tR . -IR, ; W = —2_(0)

1 ;1
Run 9@ 30 loci; q(o) = 0,5, VG(O) 2(0)

=:0.,2, ¢ = 0,5 for all loci, 100/200 selected in
each sex, ' 16 replicates. See Text for Explanation,

4
V(R) = (1-h2(1-0.2-p)) + tizh VP(l-}hz)Zrz, where 21"2 = 0 for t=1; 2r'2 = %-for t=2 and

=15, h

Run 1 Run 2 Run 3 Run 6 Run 7 Run 8 Run 9
t (30,0.5,0.5)| (10,0,.5;0.5) | (4,0.5,0.5)|(5/25,0.1/0.5,0.5) |.(30,0.2,0,5) (30,0.8,0.5)
SDR(0) ‘0,54 0.39 0.30 0.40 0.31 0.30 0.20
1 SDR(P) 0.36 0.36 0,36 0,36 0.29 0.29 0.17
\') - - - - - : - -
vy - - - - : - - -
SDR(0) 0.65 0.55 : 0,38 ‘0.74 0.46 0.34 0.23
2'SDR(P) 0.73 . 0.73 0.73 0.73 0,58 0.58 0.25
\' 0.52 0.81 ' 0.97 -0,29 0.08 0.74 0.06
w 0.15 0.01 0.31 5.00. .. . |.. .. . 6.87 . . 0,88 . | . 0.33
SDR(0) 0.76 0.54 0.41 1,02 0.58 0.31 0.35
3 SDR(P) 0.81 0,81 0,81 0.81 0,65 0.65 0.30
A 1.31 2,00 2,78 -1,00 0,18 1,90 0,08
W 0.02 . 0,19 0.49 | 319 . .. 6,17 0.75 0.25
SDR(O) 0.81 ' 0.59 0.24 1,10 0.55 0.35 0.40
4 SDR(P) 0.94 0.94 . 0,94 0.94 0.75 0.75 0.35
\'f 2,45 3.77 5,40 -1.93 0.33 3.40 0.15
Lj 0.16 . 0.34 .0.61: ) . .2,67T . . | .. 4,97 0,74 .0.00

°80T1
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is smaller than 1, the predictions made under the infinitesimal
model are better than those made on the assumption that genetic
parameters do not change, the opposite holding if the ratio is larger
than 1.

A general glance at the table shows that once again the results
are very much model dependent, In runs 1(30,0.5,0.5) and 2(10,0.5,
0.5), the changes of genetic parameters have a more or less clear
effect on selection response at generation 3, In run 3(4,0.5,0.5)
where genetic parameters change rather dramatically, these changes are
like1} to be detected ﬁt generation 2, In all these three runs, W
shows that the predictions made under the infinitesimal podel improve
our p;edictian of selection‘responsef In run 6(5/25,0.1/0¢5,0.5)
where the variance of response is considerably increased due to the
presence of ioci of large éffect; changes of genetic parameters are
more diifiqult to_detect; The negative value of V indicates that
contrary to the prediction made under theAinfinifesimal mbdel, the
~ genotypic variance increases as seleétion proceeds due to the effect
of tﬁ; major loci moving towards intermediate values. The larée
value of W gives further indication of the lack of accuracy of these‘
predictions with this model. Run 7(30,0.2,0.5) shows a similar
- general picture.l In run 8(30;0;8;6.5), whe#'gene frequenéies are
very extreme, the variance of response is reduced and the effect of
parameter changes on response is ﬁore easily detectable, though as
in runs 2(10,0;5,0.5) and 3(4,0.5,0.5), most of the changes are due
to gene frequency changes, Run 9 illust;ates an interesting
situation, in that with low selection intensity and genes of small

effect, although predicted and observed results agree remarkably well,
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the changes of genetic parameters are so small relative to the
standard deviation of response that they are not likely to be easily
detected.

The figures in the table show that, in general, the prediction
of the variance of response is in reasonable agreement with observed
results except in the models where gene frequencies move quickly to-
wards fixation or, in the case of run 6, where major loci move towards
intermediate frequencies. The simple expression based on the re-
duction in variance in the absence of selection, t VG(O)/N,‘ gives
regults similar to those obtained using Hill's approximation, as
_ suggested by Hill (1977) and Robertson (1977b) .

When population size is small aﬁd many loci of small effect are
being selected; most éhange’s in the equi'librium additive variance will
be due to inbmedi_né. Computer runs made with population size of
about 10 (5 m.ales and 5 females) and selection intensities of 50%
have shown this to be the case in _ag.reement .with theory (Robertson,
>1960). The cérrelation of gene frequencies as selection proceeds
however, does not seem to be affected by the size of population' though
the amoﬁnt of joint disequilibrium generated decreases with smaller
poi)ulation size, presumably due to higher changes in heterozygosity.
The computer resulis suggest that the foliliowing expresgions .can be
used to describe the Vprocess: |

t) _

vg® = vg(®

(i;g;o(t) ,

2N

and assuming no linkage,

t) _ .i(i-.xT) 2(t)

(t)
= - VG
¥ 2(t)

CLW + % CLW ,
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as before, where

(t) (t)

VG = Vg 2

+ CLW o

The selection response at generation t being,

T i VGJ/GJ
=0

These expressions are checked in table 5.20 where a model equivalent

to run 1(30,0.5,0.5) was used, except that 5 out of 10 individuals

in each sex were selected as parents in each generation. The pre-

dicted results agree fairly well with observed results,

" TABLE -5.20:

Observed and predicted genetic parameters when Nia/ 1is small,

2(0 © - 15 5/10

model dssumes 30 unlinked loci, h =-0,50; VG

selected in each sex. O: observed results (40 replicates),

P: predicted results.

I S R /- S aw. ... ... R ..

. O 13.83 ¥ 0,05)-2,79 * 0.57 | 2.09 ¥ 0.04
P 14,25 -2,31 2,03

; O 13.18 *+ - 0.06(-2.21 + 0.65 | 3.61 * 0.05
P 13,53 -2.78 3,70

3 © 12.44 + 0.06l-2.47 +t 0.53 | 5.07 £+ 0.05
P 12,86 -2.77 5,25

s O 11.77 ¥ 0.09|-2.15 * 0.54 | 6.46 * 0.06
P 12.20 -2,63 6.71




112.

Table 5.21 shows the relationship between the reduction in

variance and the variance of response to selection under this model.

TABLE 5.21:

SDR(0) : observed standard deviation of response.

. R - R
TPy (0
= t R - IR Wt = h
\' 0 s i ’ v , where R(p)a1d R(o)are
predicted and observed responses respectively.
t
g SDR(O) -1.37
2 v 0,57
......... w019
SDR(O) ‘1,63
3 v 1.20
.......... Lo WY .0.18
SDR(0) -1.85
4 v 11,90
i L WY ..0.13
| 3 SO I I v e | md Vamad Laceo men Ll cen cwmem VL mndhae oot I tm
VUG A VM A D VUT Ly &V ATAD V. AUVUL UL adV ACpLLVEAVED WwWUUuLU VS

required to detect changeé of genetic parameters at generation 4 and
many more to detect changes in early generations. The W' values
indicate that our predictiomns refléct the course of selection fairly
accurately.

The above analysis shows that it is not easy to make very

}.general statements about the importance of changes of genetic parameters
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during short term'selection programmes, because as we have shown
the results are very much dependent on the model used. Provided
gene effects are not large and gene frequencies not extreme, with
reasonably high h2 and population size, changes of genetic parameters
will be considerably larger than the standard deviafion of selection
response after 3 or 4 cycles of selection, In these cases, the pre-
dictions made under the infinitesimal model will be fairly accurate,
With low initial frequencies, as illustrated in runs 6 and 7, the
effects of gene frequency changes and the generation of joint dis-
equilibrium tend to oppose each other and the total genotypic vari-
ance changes very little during khe first.few cycles of selection,
The detection of changes in the variance under such a model would
require‘relaxation of selection which should exbbse the changes
brought about by the effect of gene frequencies moving towardé inter-
. mediate values,

Pfobably ihe most general imporfant feature of this work is‘
that it highlights the fact that the reduction in variance of
quantitative traits due to the generation of joiht disequilibrium

should not be omitted in short-term selection studies.



CHAPTER 6

EFFECT OF DIRECTIONAL SELECTION ON QUANTITATIVE DOMINANT MODELS
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Introduction

The purpose of this chapter is to study the approximations made
under the infinitegimal model when the character is affected by a
finite number of loci exhibiting non-additive gene~action. ~As we
did in the previous chapter, we shall concentrate attention upon
short_term‘responses and we shall ignore problems of drift and in-
breeding depression.

If a-character is assumed to be determined by an effectively in-
finite number of independent loci, the regression of offspring on
parent is linear and homoscedastic whether or not there is dominance;
In this case the expected response to selection fdr high or low value
of the trait is perfectly éymmetrical and the amount of disequilibrium
~ generated is the saﬁe in each direétion.(Bulmer; 1971). With a finite
number of loéi,_the piesencevof dominance can cause the :egreésidn to
- be non-linear an& the variability about the regression liﬁe to be no
longer conétant. As is well known; the exﬁected respoﬁse to up and
‘down selection of.the éame intensity is no longer symmetrical even if
~ gene effeéts are-small.(ife. Kojima, 1961)'and furthermore, as we shall
show, the amount.ofvjoint disequilibrium generated in each direction 1s..
different ih magﬁitude. In other wofds,'expression (3;225 whicﬁ we
have used previously iﬁvolving second order terms in a/g is no longer
accurate in fhe presence of dominance, In féct as we have shown in
~previqus-chaptefs, this expression is only Qccurate enough with additive
models at intermediate frequencies, Extreme frequencies cause signi fi-
cant departures between observed and predicted results, this being

accentuated with larger gene effects,
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In order to have a theoretical framework against which we can
interpret the simulation results; we shall first bri:efly review the
asymmetry in mean response when selection operates on a dominant
model. We shall then study the changes in the genotypic variance'
due to gene frequency ché,nges and due to the generation of joint dis-

equilibrium.

Asymmetry in Response in a First Cycle of Selection

This problem has been recently studied by Robertson (1977¢) and
M#ki-Tanila (1980). Following Robertson we can study the relationship
between progeny values and parentalv values at two different stages: )
(i) the change in géne frequency in thé parents for a given phenotypic
change, and (ii) the functional relai‘.ionsh:l.p between offspring mean and

~ gene frequenci. Consider the following single locus model,

A A , A_A A_A

1%1 172 faftg

A 2 . 2
‘Frequency P 2p(1-p) (1-p)
Value . a o T d -a

Assuming normality it can be shown that the change in fréquency of the
A, allele after one cycle of selection can-be appmximated by the
following expression:
,ixT -
2 2
ap(l-p) + —3 (a p(1-p) (1-2p) - 4adp (l-p)z) (6.1)
20 '

Ap =

Q=

where a is the average effect of a gene substitution at the locus,
equal to a + d(1-2p) (Falconer, 1960). This expression reduces to the

one obtained by Latter (1965) when-d = 0, Notice that the second order
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term vanishes when the intensity of selection is 50% or, with com-
plete dominance (d = a), when initial gene frequencies are equal to
1l - I/JE (i.e, about 1/3). At this value of gene frequencies, the
~ genotypic distribution is symmetrical with the two genotypic values
equally frequent.

With this modei, the population mean, M, is M(p) = -a(l-2p) +
2dp(1-p). If the gene frequency changes from p to p + Ap, we can

expand in a Taylor series to get,

M(p+Ap) = M(P) + Ap M'(p) + 3ApM''(DP) + ...

M(p) + 20pa - 2Ap>d ) (6.2)

This shows that the re}ationship between gene frequency and mean, when
both-sexes are sélected, is not linear and therefore the response to
Selection_ié always asymmetricalg‘ If'dominance is complete, the
second order term in (6.1) is negative (unless gene frequénciés are
smaller than 1-1/¢§) and so'i; the term in Ap2 in (6.2). Prediction
of selection réspoﬁse using the linear term in (6.1) willAtend fo'over-
estimafe the expected response, When selection is for a-récessive,
" the second order term in (6.1) is positive (ﬁnless initial frequenciég
are'very lbé or very high) and so 1s.the tefm in Apz in (6.2). In
this case the prediction of selection response based on the linear term
in (6.1) will underestimate the expected response.

If selection oper;tes in one sex only, males say, the mean can be
written,

M(pm) = -a(l-pm-p) + d(pm+p-2pm p)
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where pm is the frequency in males and p is the frequency in females.
Therefore,

- dM(pm

dpm = a + d(1-2p) ,

Since the second derivative is zero, the expected response to
selection in the first éeneration will be symmetrical, or equivalently,
the regression of offspring on single parent will be linear, when the
second order term in (6.1) is zero,

We shall now proceed.to‘show somelnumerical results in order to
iliustrate the consequences of the presence of dominance on éene fre-
quency chsnges. Table 6.1 shows observed.and predicted values of
~ gene - frequency changes for different initial gene frequencies and
proportionate effects. The exact results, Ap(E) , are obtained from
:the fechnique described in the Appendix. Ap(1) refers to predictions
made using.the first order term in (6:1); whilst Ap(2) corresponds to

results obtained usiné (6;1); .

When gene effects are smalllfhe‘predicfions made using»Ap(Z) are
in excellentbagreement with exact results, provided gene frequencies
‘are not too high; In‘agreement-with theoreticai expectations, the
first order term tends to overestimate the change in gene frequency
iwhen dominanceAis complete, though observed and predicted results_agree
fairly well at low initial frequencies. At higher values of'-% ob-
served and predicted results are in poor agreement, particularly the

predictions made using the first order term. At intermediate gene

frequencies, Ap(l) overestimates the observed results by almost 40%.
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TABLE 6.1: Observed and predicted values of Ap for a single locus
model with complete dominance; Ap(E) : exact results ob-
tained from numerical integration;‘Ap(l) : predicted values
using first order approximation; Ap(25 : predicted values

using expression (6.1).

e . Initial Gene Frequency. . . . .
8 g
0.1 0.3 0.5 . 0.7 0.9
Ap(E) 0.027 0.058 | -0.063 0.044 | 0.009 |
0.20 - Ap1) | o0.025 '0.059 0.070 0.059 -0.025 |
Ap(2) 0.026 | o0.058 ~0.064 | - 0,045 | 0.004
Ap(E) .0,.071 -| o0.138 | 0.134 0.068 0,010 .
0.50 Apc1) | 0.063 ‘0.147 | o.182 0.147 | 0.063
Ap(2) 10,070 ‘0.146 | 0.146 0,062 -

These results illustrate the facf that piedictions of expected
'selection :ésponse,‘in the presence of dominance, are likely to be sign-'f'
. ﬁe shall ..

pursue this point further in the simulation work that follows.
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The Two Locus Dominant Model.

Gene frequency changes.

Consider the following model of two loci, A and B, with two

alleles at each locus,

AlAl A1A2 AzAz BB, BlB o B zB 9
' 2 2 2 2
Frequency P 2p(1-p) (1-p) q 2q(l-q) (1-q)
Value a1 d1 —al a2 dz, -a2

The population mean, M, is:

M = -a,(1-2p) + 2d,p(1-p) - a,(1-2q) + 2d,a(l-q) .

With Hardy—Weinberg equilibrium, the total genotypic variance, VG,

under this model, can be shown to be

Ve = 2p(1-pra’ + 2a(1-@)o2 + (2p(1-p)d? + (2a(1-0)dy)”

. 2 .
+ 4a1a2D + 8d1d2D . (6.3)

| D is the disequilibrium parameter, as before and oi(i=1,2) is the
averagey;ffect of a gene substitution at the»ith locus. The first two
terms represent the equilibrium additive variance, Vg; the second two
terms represent the dominance variance, VD, Tﬁe fifth term in (6,3)

is the covariance of average effects of genés between loci within
parental contributions, CLW, and the last term can be shown to be equalv

to twice the covariance of dominance deviations between loci, We can

then write,

VG = Vg + VD + CLW + Cdd (6.4)
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The change in frequency of allele Al, say, is given by,

bp = L2, (W =) + 2,(W,-)) | (6.5)
w

where, as before,

, i = ..ixT _ 9
W, = Q{1 + (X, -M) + ;;E‘Vwi + (X~ )} (6.6)
i | A i
W=Q( + —fg {vai + z(ii-wnzfi}) = Q1 + —fg-ve) (6.7)
20 i i 20

The variance within gaﬁetic phases, Vwi, can be shown to be

~given by the following expressions,

2
vy = (amd) pd-p) + (a,-d,)2q(1-q) + 2D(a -d;) (a,~d))

: 2 2 . . _
sz = (al-dl) p(1-p) + (a2+d2) q‘l—q) + 2D(a1-d1)‘a2+d2)
6.8
: 2
Vo, = (a;+d)?p(1-p) + (a;-d,) “q(1-q) + 2D(ay+d;) (a,-d,)
2 2
Vo, = (2,44 p(1-p) + (ay+dy) a(l-a) + 2D(a +d)) (a,+dy)

All these expressions reduce to 3(vg + CLW) if d, = d, = 0. Using

(6.8), (6.7) and (6,6) and substituting in (6.5), it can be shown that
the second order approximation for the change in gene frequency of the
two locus model with dominance is,
. ix
_ i S 2 2 2
Ap = —(a,p(1-p) + a,D) + 202(p(l p) (1-2p)a, 4a,d,p (1-p)

d'pD2

‘9 ,
+ a2(1-2q)D - 4a2d2q(1-q)D + 2a1a2(1-3p)D - 8d1

o

+ 2D{(a;-d)) (a,+dy)p - 2d,(a -d,) (paD) D) (6.9)
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This expression reduces to (6.1) when D = O and further it reduces

to (5.9) when d1 = d2 = 0. Ignoriﬁg the second order term in (6.9)

and linearising the relationship between genetic mean and gene frequency,
the response to selection from loci A and B is seen to be,

2

R = %(ZP(l-p)ai + 2q(1-q)a: + 4a azD) = ih“o (6,10)

1
It is clear that this is strictly an asymptotic result which should
hold provided gene effects are very small, This restriction is much
more severe in the presence of dominance than under complete additivity

as is illustrated in the simulation work at the end of this chapter.

' The generation of joint disequilibrium.

In this section we deal with problems of asymmetry in the generQ
atién of joint disequilibrium with dominance models. Our abproach
is to show that third order moments in a/0 are required to explain
the reduction in variance due to joint disequilibrium and that the
asymptotic value given by thé expression derived on the basis of the
infinitesiﬁal model is attained véry siowly. ’ We shail assume that
the population is initially in Hardy-Weinberg and linkage equilibrium,
_ The model we use is the two locus dominance model defined in the pre-
vious section.. |

From the third order Taylor series expansion of expression (3.8)
it can be shown that the relative probability of selection of the

th
ij = genotype is given by:
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2

w. . . . iz, _ A(x-1) . <

1 - %{1 + =X 170+ xg(xij-mz + T3 (Xij-M)B} (6.11)
wow 20 60

Replacing (6.11) in (5.2) which describes the relative selective ad- -

t -
vantage of the i h gametic phase, Wi/W,,it can be shown that, to third

order terms:

i i(x_-1)
1.9, iz = 2 <
— == (X.-M) + —(Vw, + (X,-M)° + ———-m—(u
= T ey o2 i 1 PR TE

- - 3
+ 3(X;-M) Vw, + (X,-}) )} 7(6.12).

where ii is the mean of the it# gametic phase; Vwi is given by (6.8)

and “1(3) is the.third mbment from the mean of the itn gametic phase,

defihed as follows:

Assuming initial linkage eqﬁilibrium, the disequilibrium parameter of
selected individuals and their offspring, D(l), is

2.2 |
p'P = 14ww, - ww) o (6.13)
S i.4 a o : - -

w
Substituting (6.12) in (6.13) we obtain,

2
1
P = L& (X, - - (X, XM }e 2, +¥xl{
0'

izx

- (iz_M',z - (ia-m + (Xm0 }flf4 +——~[<x -1 (X, >
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+

- 2 - - 2 - 2 - -
(Xl-M) (X4-M) - (XZ-M)(Xs-M) - (XZ-M) (X3-M) + VWI(X4-M)

i(xg-l)

—— U
603 1(3)

VW, (X -1 - sz(Xz-M) + Vw4(X1-M)}f1f4 +

- Yz T Maem * ey * 3G - Wy Epmin - WGt

+

- = .3 = 3 N 3
Vw4(x4-M)) + (x1 M- - (X2 M- - (X3 M- o (X4-M) } f1f4

(6.14)

Expression (6.14) ‘as it stands is clearly not very informative. The
2 ) .
terms of order cg) can be shown to equal

-i(i-xT)

7— Otlp(l-P) GZQ(I'-Q) ’

of the éame form as (3.20), obtained by Hill and Robertson (1966)
who aséumed additive gene action. |

A little insighf into the third order term can be obtained by
assuming that dominance ié complete (di = ai)’agd that gene-effects
and frequencies are éhe same at bofh loéi. Uﬁder these assumptions?

(6.14) reduces to

(1)‘ -1(i~%) ., . | .(X -i)-1 _ 7
o - :'r o‘2p2 (-py? + %p 'r3 8aspz (1-p)?
g g
" {(1-p)(1-2p) - p} , (6.15)

The third order term in (6.15) vanishes when initial gene frequencies
are equal to 1-1/%5} in other words, when the genotypic distribution

is perfectly symmetrical, - For other values of p, the sign of this
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term depends critically on the selection intensity, in marked con-
trast with the first term in (6.15). VWhen the highest 20% are
'seiected, if gene frequencies are low, the absolute value of ﬂl)
using the second order approximation is ﬁnderestimated whilst the
opposite holds if gene frequencies are higher than 1—1//5. With a
completely recessive model such that d = -a, the third order term

can be shown to equal

ix (x, -1) - 1 .
T sz 8a3p2{p(1-2p) + (1-p)} ,
o ,

which vanishes when p = 1/¢§. If one locus shows complete dominance

and the other complete recessivity, the third order term becomes

ix (x,~-1) = 1
°r sz ) 8a3p(1—p)(1-2p). In other words it vanishes
o ,

when the genotypic distribution is symmetrical. In the absence of:

dominance, with a completely additive model of equal effects and
frequencies, the third order approximation for the disequilibrium
parameter generated after a sihgle cycle of selection is given by

the following expression

' mid-xg) g imp(x-1) -1 o,
DD = T 22 . L a’p” (1-2p)

When gene freduencies arevinitially smaller‘than 0.5, the second
term is negative and the opposite holds if gene frequencies are
higher than 0.5, ° We therefore expect larger absolute values of
aisequilibrium at low frequencies than at high frequencies. At
intermediate frequencies, when the genotypic distribution is sym-
metrical, the second term‘vanishes and we expect tpe-second.order

approximation to describe the process -with good accuracy. The
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probleﬁs of asymmetry of disequilibrium with an additive model,
raised in Chapters III énd V are formally explained in terms of the
above expression,

We now produce some numerical results to illustrate some of
the points of this section, We assume a model of complete dominance
and we study the effect of varying the number of loci affecting the
trait and the initial gene frequencies. The equilibrium additive
variance and the total phenotypic var:fance are fixed for all the
number of loci .and gene frequency combinations, this being achieved
by varying the environmental variance fof di fferent values of the
dominance variance; The results are shown in Table (6.2) where we
compare observed (0) and predicted (P) values using expression (6.15). -
Observed results are qbtained by numerical ihtegration as described
in the Appendix, -

The results show that unless gene frequenqies are in the vicin-
ify of 1 --1//5, expression (3;22) is indeed very inaccufate. L
Furthermore, the ﬁsymptotic value ié'ﬁttained very slowly indeed.,
The predictioﬁs made using (6;15)'are in excellent}agreément with
exact results provided gene ffequencieS‘are not much higher than 0;5.
At high gene frequenciés;f particularly with small number of loci,
the predicted values #re very 1naccurafe. This is probably not en;
tirely surprising since-with complete dominance and very high fre-
quencies the genotypic distribution should be markedly irregular and
probabl& highe; order moments should be invokéd to descriSe the pro-
cess more accﬁrately.

Tﬁe-reason-for the lack of agreement between observed and pre-

dicted results at high gene frequencies can be perhaps clearly
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TABLE 6.2:

Observed (0) and predicted (P) values of joint disequilibrium
 generated in a first cycle of selection with initial Hardy-Weinberg
and linkage equilibrium, We assume a comple?ely dominant model with
Vg = 4, 02 = 40 and the top 20% are selected. The asymptotic value
of joint disequilibrium for n (number of loci) tending to infinity is

1(1-
calculated from: CLW = -3 1 vg2 = _0,156.

Initial Gene Frequencies
n 0.1 0.3 0.5 0.7 0.9
0 -0.206 -0,139 -0.091 -0.034 -0.000
10 P -0.206 -0.143 -0.090  0.020 0.861
(¢/0) 0.24 0.15 0.14 0.15 ' 0.24
o -0.190 -0.149 -0:;119  -0,072 -0,000
30 P -0.190 =-0.151 -0.120 @ -0.054 0.404
(¢/9) 0.14  0.09  0.08 0.09 0.14
0 -0.176 -0.154  -0.137 -0.106 -0.010
100 P -0.176 -0.155 =-0,137 -0.101 0.146
(*/9)  0.07 0.05 0.04 0.05 0.07
o -0.156 -0.156 -~0.156 -0,151 -0.128
10,000 P -0.156 -0,156 -0.155 ~0,151 -0,126
(2/0)  0.01 0.00 0.00 0.00  0.01
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understood by studying the accuracy of the selective values obtained
from the first, second and third order expansion of the normal dis-
tribution, for different standardised deviations from the population

mean, This is illustrated in Figure 6.1, For values of (ii -M) /0

J
larger than 1, the third order approximation overestimates the exact
selective value by about 8%. The bias is relatively more severe for

negative deviations from the mean, At (ii -M)/0 = =1, the over-

J
eStimatién is of about 54%. This has drastic consequences in the pre-
diction of changes in gamete frequencies and the amount of disequili-
brium generated. For example, to take an extreme situation, with

10 loci and gene frequencies of 0.9, the devia£ion 6f'the genotypic
value of the double recessive is of -4.67 standard deviations which
leadé to a very high overestimate of its selective value. Changes

in the éamefe frequencies are prédicted very inaccurately; so much so

" that the predicted disequilibrium parameter takes a positive value.

The general conclusion that we draw from this theoretical ana-
lysis is that predictions of joint diseéuilibriﬁm generated by
selection based on the infinitesimal model are unlikely to hold in
the piesence of dominance, unless the number of loci affecting the
trait is assﬁmed to be very large. Iﬁ subsequentvcycles of selection,
predictions of Joinf disequilibrium are likely to Become more in-

accurate.



FIGURE 6,1:

Selective values (VW

ij) approximated using first, second and third order expamgions of the
normal distribution, expressed as a proportion of selective values obtained from numerical
integration of the normal distribution. (Proportion selected: 20%).
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Simulation Studies.

The Computer Programme and Genetic Models.

The basic structure of the programme is the same as in the case
of the additive models, the minor alteration now being the incorpor-
ation in the piogramme of an arbitrary value of the dominance de-
viation, d, at each locus.

The partitioning of the total genotypic variance in the off-
spring generation merits a brief comment. We are interestéd in
estimating the equilibrium additive variance and the degree of joint
disequilibrium generated; since these are the two componenfs involved
in the prediction of the expected response to selection>;ssuming that
the values of offspring and paient follow a'bivariate>norma1 distri-
bution (expression 6.10).. Frdm a practical point of view we wagt to

know the effiéiency with which this expression prediéts the expected
response to selection, how accurately we can predict the way its com-
ponents‘change as selection progeeds and prov;de satisfactory explan-
ations in case observed and predicted resulfs are not in good agreement,

In the offspring generation, befére selection operates, we cal-

culate the gene frequency at each locus, Assuming Hérdy—Weinberé

.o

_-— T .2
€equii1p0TL

uim, wé Obtain an estimate ofi the average
substitution at each locus and thisvgiveé us a means of oﬁtaining an
estimate of the equilibrium additive variance;.Vg. The assumption of
Hardy-Weinberg equilibrium is a reasonable one since selected indi-
viduals mate at random and as was mentioned in the previous chapter,

departures from equilibrium due to finite population size are very

small, of the order of 1/2N. - The joint disequilibrium, CLW, is



130.

estimated by subtracting the equilibrium additive variance from the
variance of breeding values between individuals.

This approa;h was checked in a different version of the programme,
relaxing the assumption of Hardy-Weinberg equilibrium, Genotype fre-
quencies were obtained for each locus and average effects of alleles
obtained by least squares (i.e. Kempthorne; 1957). The variance of
breeding values obtained in this way was compafed to the one obtained
before and the results were virtually unchanged.

The genetic parameters of thevmodels studied are summarized in
Table-6;3. In all cases, the highest 40 out of 200 individuals of
each sex weré-selegted and all runsvassume 30 loci with free recombin-
ation. When'q = a, dominance is complete; -when d‘= -a there is com-
plete recessivity and when d = O théie‘is no dominance. vThe runs are
identified by their gene frequency aﬁd degree of dominance, | Fof
example, run 4 is designated 0.5/d = a, -a, implying fhat the model
.assumes 1nitial gene frequenéies of 0.5, 15 loci show complete domin-
ance and the remaining 15 loci shpw complete recessivity. The pafa—
meters in the models were chosen to illustrate and check the theory
that has been developed in the earlier sections of this chaptef.

Thus; we have a range offgene'frequencieg which will indicate the
problems of asymmetry in mean gnd in the:generation of disqquilibriuﬁ

as selection proceeds.



TABLE -6,3: Initlal Genetic Parameters of the Models Studied

Run Designation . Gene Proportionate Degree of Vg h2

of Run ~ Frequency - Effect Dominance

1 0.1/d"a 0.1 0,27 d=a 17.50 0.40

2 0.293/d=a 0.293 0.20 d=a 24,85 | 0.50

3 0.5/d=a 0,5 0.18 d=a 15,00 | 0.50
‘ , g , 15 loci,d=a

4 0;5/d=a1-a _ 0.5 0.18 15,00 ] 0.50
i 15 loci,d=-a

15 loci,d~a ]
5 ~ 0.5/¢=a,0 0.5 ~ 0.18 | 1 15.00]| o0.50
: 15 loci,d=0 :
6 0.,7/d=a 0.7 - 0,14 d=a 4,54 0.24

*1IeT
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Results and Discussion

The results for the first cycle of selection for the different
models are shown in Table 6.4.

In contrast with the predictions of selection resbonse and
joint disequilibrium, the change in gene frequency, which is re-
flected in the value of the equilibrium additive variance, is pre-
dicted fairly accurately in all models. The lack of agreement
between observed and predicted values of joint disequilibrium and
selection response is as expected from theoretical considerations.
At very low initial gene freﬁuencies we expect, in the case of a
cdmpletely dominant model; to underesfimate the valug 6: joint dis- ‘

equilibrium attained after a first cycle of selection. ' This ié

jllustrated in model 0.,1/d=a., The observéd value of joint disequil-

ibrium when selection was for the low value of the character of the
same propoftion was -2.26 +-0,21, When initial gene frequencies
are higher than 1-1"//5; the’p‘redicted ;jéint disequinbriu@ should
be an overestimate. This is*showi.in models 0,5/d=a and 0.7/d=a.
In the fo;mer, the predicted result ovérestimates the observed re-
sult by‘a facfor of 2>and in thellatter by a factor of_almost-é. |
WVhen the same proportion is selected for the low value of the |
char;étér, the-observe& joint diseqﬁiiibrium at generation 1 is of
-4.66 + 0,31 and -1;01 t-0.0Q for models 0.5/d=a and 0.7/d=a res-

' pectively, At intermediate gene frequencies, when only half of the
loci show coﬁplete'dominance (model 0.5/d=a,Q) the discrepancy bet-
ween observeﬁ and pre&icted results is smaller, In the case of no

directional dominance with intermediate gene frequencies, the change

o
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TABLE 6.4: Observed (0) and Predicted (P) values of the genetic

parameters at generation 1 after a first cycle of selection. The
base population is assumed to be in Hardy-Weinberg and linkage
equilibriun, The predicted values for the different parameters are

obtained from the following expressions

R - 1h2(°)o(°?
o i(i-x,.)
CLY¥ = _i _.___X_T_ vgz(o,)
o2(0) ‘
- Ty 2 = n ‘
Vg = 2§ p(l)i(l 9(1)1) ®1y1? where Py = Peo) + Ap, Ap

being predicted using (6.1).
&(3) refers to the skewness of the genotypic distribution at

- generation zero.

Observed results are the average of 30 replicates,

-0.43

‘Model Vg CLV . R g(3)
0.1/6=a © 20.67£0.07 =-3.82%0.36 3.86t0.09  0,30t0,02
-~/ P 20.61 -2,75 3,72
0.293/ O 22.75:0.05 -4.330.36 4,84¥0.09  0.02%0.02
da P 23,02 -4,82 4,92 -
0.5/6=a © 11.46+0.07 -1.46%0,20 3,.35t0,08 -0.21%0,02
. P 11.52 -2,93 3,83
0.5/d=a, O 15.34%0,07 -2,98t0.24 3.95%0.09  0.01*0,02
-a P 15.05 -2,93 3.83
~ & 13.14%6.05 -2.15%0.20 -3.60%0.05 -0.14%0.02
0.5/d=s,0 13.16 -2.93 3.83
0  3.30t0.04 -0.05%0.09 -1,31¥0,05 =-0.46%0,02
0.7/d=a P 3,31 1,46
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in gene frequency per unit change in phenotype is linear and so is
the functional relationship between gene frequency and genotypic
mean, Fufthermore, the genotypic distribution is symmetrical and
we therefore expect good agreement between observed and predicted
results of both, selection response and joint disequilibrium. This
is confirmed by the results of model 0.,5/d"a,-a. In model 0.293/d=a,
the genotypic'distribution is symmetrical; the second order term in
Ap is zero but the functional relationship between gene frequency |
and mean is not linear; We expect symmetry in the generation of
Joint disequilibrium and slightly higher observed than predicted
response to selection. _ Thé smali discrepancies obiérﬁed are prob-
ably due to sampling.

The differénces.between observed and predicted genotypic means.
after a first cycle of selection are all consiétent with theoretical
expectationsi The heritabilité used in the<prediction of reéponse
corresponds.to the expected value of.the,estimate that one would ob-
tain by regressing offspring meaﬁs dn éelected parents; assuming the
rélationship to be linéar, when in fact if is_not.' Froﬁ (6.2) the
expected response is given by 2§(Apidi'- Apidi), which, when evaluated
to second order terms gives ué.an indication. of the degree of bias to
be expected using fhe linear term only. With thé exception of model

:0;5/d?a,-a, the expected response to a first cycle of seléction is
not linear but‘the~departures from linearity are small in models.O,l/
¢=a and 0.293/d=a. OZf the models in Table 6,4 those which show the
highest degreg of-asymmetry are 0.5/d=a and O.7/&=a as expected from

theory.
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In subsequent cycles of selection the situation becomes con-
siderably more coﬁplicated due to the presence of joint disequili-
brium. If selection is carried out in both directions the different
"amount of disequilibrium generated in each direction contributes to
the degree of asymmetry of selection respomnse. If we assume a com-
pletely dominant model with initial gene frequencies larger than
1 - 1/“5, from expression (6;15) we expect the reduction in variance
due to disequilibr¥um to be larger in thé low line than in the high
line. This is also related to the fact that the equilibrium ad-
ditive variance is a function of p(l-p)s; which is larger at low
values bf-p. It is difficult and probasly not very meaningful to
“try to_sepérate this sbuice of asymmetry from the §ne discussed pre-~
viousiy'solely in téfmS'of geﬁe'frequenpies on the assumption of
linkage equilibfium: Hdwever; in a simple minded way;_ignoring
disequilibriuﬁ, we expéct:the single generatioﬁ fealised heritabili-
ties.to decrease as'gene‘fréquencies move towards‘higﬁ values and to
increase as;they move towards 1 --1//5. The éffect of the different .
degree;of disequilibrium éeneiated in both difections is, uﬁder this
model, fo-reduce the expectedviegree of asymmétry of‘selection response,

‘Tabl_e~76.5 showsr i:he_ observed single generafion i'ealized herit-
.abilities, joint diseéuilibria and correlation of gene frequencies
for selection in the high and low direction for models 0.1l/d=a,
"0;5/d=g,-0¢7/d=a.. The mogt conspicuous-featuré of tﬁe results is
the degree of asymmetry of respbnse to selection and joint.disequil-
ibrium between the high and low selected replicates within each

model, In model 0.,1/d=a, the equilibrium additive variance increases



- generation in question,

TABLE 6. 5. ‘Montecarlo simulation results of single generation realized heritabilities, joint disequilibria and cor-

relation of gene frequencies within chromosomes for 3 cycles of selection, (H) refers .to the value of the parameters

estimated in the high selection and (L) in the “low selection, -‘The values of h2 at the top of the table correspond to

the ratio of the equilibrium additive variance to total phenotypic variance in the conceptually infinite base population,

The values in brackets correspond to the ratio of joint disequilibrium, to equilibrium additive variance in the

The standard error of each heritability estimate is 0,01,

MODEL 0.1/¢=a h’=0.40 0.5/¢5a h°=0,50 0.7/d=a  h2=0.24
2 ) < ' 2 2 ) )
t h h CLW cLW h h CLW . CLW h h CcLW 'CLW
(H) (L) T (H) (L) (H) (L) (H) (L) (H) L) (H) (L)

0 0.41 0,38 0,00£0.26 -0,02t0.23 | 0.46 0.55  0.07:0,14 -0.340.23 | 0.21 0.28 = 0,03¥0.05 0.03%0,07
-3,82%0,37 -2,26%0,23 | -1.46%0,19 -4.66%0.31 | -0.09%0,06 -1,02%0,09
1 0.30 0.29 {5185y . (-0.175) | 038 055 0,128  (-0.250) | O O3 (o.02m)  (-0.15%)
-5,07+0.37 -1,52¢0.16 | -1,20£0.15 -5.98:0.31 | -0.04¥0.06 -1,78t0,22
2038 0.24 " ;004) (-0.161) | -9 056 0.3  (-0.282) | %M 03 (0,018  (-0.200)

' - ' - ' -0, 84%0.07 - +0 - + - +
3 0.37 o0.18 "5-57H0.39 -0.5880.18 [ oo, o 5o -0.8420.07 -7.50:0.37| o o5 g 4 <-0.0210.06 -2.22:0.22
................ (-0.237) . (=0.091) | .. . . (=0.126) . (-0.331) |  (-0.009) .. (-0.198)

*9gT
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in the up selection from 17.5 to 23.6 as gene frequencies move
towards 1 - 1/V§. This effect is counteracted by the sharp in-
crease in joint disequilibrium and as a result of these two factors,
the single generation realized heritability is eirtually unchanged.
This is a situation where observed and predicted responses toAshort
term selection would be in excellentlagreement; though a rather sub-
stantial chanée in genetic parameters is taking place during ?he
course of selection. In the low lines of.this ﬁodel both selection
response and the ieduction in variance due to joint disequilibrium
‘are coesiderablyvsmaller than in the'ﬁigh lines. In this Case; the
eﬁuilibrium additive fariance falls abruptly from its original value
of 17,5 to a value;oi»4.Q squared units after 4 cycles. of selectiqﬁ.

In.the-othervtwo models where gene frequencies are»ipitially
higher than 1 --I/VE? the equilibrium‘additive variance increases in "
the low lines.and decreases in the high iines. As expected from
our theoretical anglysis, the amount of diseqeilibrium generated is-"
much larger in the low selected replicates, this e£fect beipé'con-
‘siderably acceﬁtﬁafed by the iﬁcrease-in fﬁe eqﬁilibriuh additive
variance. | ﬁode1;0;7/d=a is a good example of the low rate of res-
- ponse obtained with favourable dominant loci at high frequencies.

‘The values in brackets in Table- 6 5 correspond to the correlation
of gene frequencies in each generatiop. “ This is a parameter which
is less affected by gene'frequency;chenges than CLW. The difference
between the correlation A: gene. frequencies iﬁ the high and low lines
within each model is relatively smaller than the covariance of allelic

~ effects but the asymmetry persists.



The conclusion to be drawn from the theoretical analysis and
the simulation study is that the pattern of selection response and
the degree of joint disequilibrium generated are very much dependent
on the genetic modelo' This mode; dependence seems to be more ac-
centuated than in the case of additive models. A general statement
can be made though: in thé presence of directional dominance, pre-
dictions of short-term response and particularly of joint disequil-

ibrium from baée population parameter estimates are not likely to be

very precise. -
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CHAPTER 7
EFFECT OF SELECTION ON HERITABILITY ESTIMATED FROM

INTRA-CLASS CORRELATIONS
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Introduction

When records are available on two generations, heritability
can be estimated using regression of offspring on parent or maximum-
likelihood procedures (Thompson, 1976) and the estimates are not
affected by selection of parents. If records are available on one
generation énly, heritabi;ities are usually estimatgd from intra-

class correlation among sibs obtained from an analysis of variance.
As is well known, selection of parents introduces a bias in this
estimator (Reeve, 1953; Morley, 1955;, Brown & Turner, 1968;
Robertson,‘1977ﬁ; Ponzoni & James, 1978); The expected value of-
the herit.ab‘ilitj; estimate from intra-class correlations on seleéted
data is easily derived from procedurés that were first developed by
Pearson (1903, and later on extéhded ﬁy Cochran (1951), Finney (1956)
and Tallis (1961) to mention a few, | |

Let X aﬂd Y be two random variéblesvwhich‘follow a bivﬁriate
normal distributibﬁ.' It tﬁen fbllows that the regression of oﬁe
on the.othef.is linear and ﬁomoscedasfic; Assume that truncatibn-
selectioh ié practiééd on x;" Let r, Vhr(X) and Var(Y) be the'cor-'
relat;on between x.#nd Y, the variance oflx and the variance of Y
respectifely before sélection operatés. After selection, a propor-
tion r2'o£ the variance of Y which is associated with X will be.re-
duced by a fracfion (l-i(i-xT)), and.the remaining fraction (1-r2)
will be ﬁnaffécted'sihce it is.independent of—X° We can then write

for the variance of Y in the selected population (Var(Y)(S)):



(S) 2

Var(Y) Var(¥)(1 - r + (1 - i(i-xT))rz)

Var(Y)(1 - i(i—xT)rz) ' (7.1)

In a genetic context, let X be the phenotypic value and Y the geno-

typic value, The correlation between X and Y before selection is

1))

/hz(‘? where h is the heritability at time O and therefore (7,.1)

can be written in terms of parameters before the operation of

selection as follows:

(0)

ve&0 _ 4O o | i(i-xT)h? ") (7.2)

0 (s)

where VG and VG are the variance of genotypic values before

and after selection respectively.
~ Assuming initial linkage equilibrium, we have shown before that,

after a first cycle of seleétion,

(5,0)

(8,0 , cis o (7.3)

v o ¢80 | (8,00 L oy

where, aw®? = c18:? - -ii(i-iT)VG(o)hz(o). - Under the

(8,00 _ Vg(o) and we

assumption of an infinite number of loci, Vg
Aignoie CHW relative to CLW and CLB, and therefore (7.3) reduées to

£77 O\
\ Soasy

[ 5]

the éeﬁdtypic variance_caused by sélectibn is due to the.generation
of joint disequilibrium,. .

| Consider a full-sib family structure in which both ﬁales and
" females have been. selected and mated at randomf The variance com—-

‘ponent within families is not affected in the first cycle of

selection, The variance component between full-sibs estimates one

140,
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half of the genotypic variance between chosen families and the sum
of both components of variance estimates twice the gametic contri-
bution of the selected genotypes to the offspring generation. From

(7.2), the expected heritability is given by,

(1 -_i(i?xT)hg<o))

_ .2(0)
2xt =h 2(0)

(]

(7.4)

(1 - éi(i-x,r)h )

as obtained by Reeve (1953), where tc is the intra-class correlation
between full-gib families, |

. According t6 (7.4), this estimator of h2(0) is biased downwards,
the bias being due to.thevgeneration of covariances within and bet-
ween chromosomes induced by éeleétion. Some aspects of fh;s problem
ﬁave,recently been-discussed by Rébe:tson (1977 a)and Ponzoni and
Jaméé (1978). It is important to emphasige however thﬁt the assumb-
tions ;haf lead to the derivation of (‘z4)vimp1y a model‘of an in-
finite number of ;oci and.fhat fhé base popula#ion is in Hardy- -
| Weihberg anq linkage equiliﬁrium. Furtﬁermor;, th;s résult is
stricfly valid for avsingle genération of selection and allowanée
for the bias,<1f at all poSgiblei(seé Robertson, 1977a),should
strictly not be extended beyond . the fiist selection cycle‘as it has
vbeén'inadvefféﬁtly ei;hefkéﬁggesfed or cairied éut ih>tﬁe literﬁtﬁré‘
(Rahnefeld et al., 1963; Brown & Turner, 1968; Katz & Enfield,
1977). With finite number of loci, expression f7.4) is of
questionable accuracy since it ignores gene-frequéncy changes due
to selection. If gene frequencies are not initialiy at intermediate
values, we have shown before that the geheration of disequilibrium

is not symmetrical. Assuming additivity,gene frequency changes are
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relatively larger if they depart from intermediate values and
therefore (7.4) or (7.2) are even less accurate.

The purpose of this chapter is to invesfigate both theoretic-
ally and with Montecarlo methods, the problems raised by the estim-
ation of heritability from intra-class corfelations with selected
data using additive models with a finite number of loci. The re-
sults in this chapter may also be relevant in the evaluation of
selection programmes involving some kind of family selection, Before
studying the effects of selection, we first investigate the effect of
correlations between differept parts of the genotype in the parental

generation on intra-class correlations.

Random Mating - Effect of Disequilibria on intra=class correlations.

We first-review fhebeffect of linkage disequilibrium in thg
parenfal generation on the oomponents of genetic variance. ‘The
disequilibrium could have arisen by chance, or selection or any other
reason in the past history of the population, At time t we assume
that the parental populétion mates at random to produce a very large
number of offspring which constitute generation t+l, For simplicity,
we assume a two locus additive model as described in Chapter 5 and
a full-sib family structure where Var(BFS) and Var(WrS) denote the
variance between and within full-sib families respectively and VE
is the environmental variance assumed constant generation to gener-
ation. Avery and Hill (1979), who worked with considerably more

sophisticated models, showed that

varcwrs) 8D = gve(®) 4 2alaZD(t)(1-2c) + VE

varsrs) (¢ () | 24 2 pV

= tvg 1%

(705)'
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It is clear from these expressions that if loci are unlinked there
is no contribution from pairs of loci to the variance within full-
sib families, The intra-class correlation estimated from (7.5)
adequately describes the ratio of the genotypic to total phenotypic
variance in the population at time t if ¢ = O. Fer any other value
of c, the estimate is biased, For example, for ¢ = % and using

notation of earlier chapters, we have, omitting subscript t,

Vg + CLW
c Vg + 4CLW + VE

2xt (7.6)
This reault also hoids for the case of heritability estimates
based on intra-class correlations between half-sib families, With
a half-sib family srructure, the variance between fullesib'families
is partitioned into two independent componentsﬁ vfhe variance between
half-sibs (Var(HS)) and the variance between full—sibs within half-

sibs (Var(FS/HS)), where, in the case of our model assumptions,

(t+1) (t)

= N ¢
= {vg 7+ a a,D

Var(HS)

Var(FS/HS)(t+1)
We now congider the effect of covari
within loci, due to departures from Hardy-Weinberg equilibrium (Dﬂﬁ)’
covariances betweenvloci between chromosomes (DB) and covariances
between loci within cnromosomes (D) on heritabiliry'estimates based
on intra—class correlations between sibs. We assume that .all these -
covariances'or diseqnilibria are present in the parennal generation

and that they could have arisen by chance or non-random mating., The
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parents mate at random to produce a conceptually infinite number of
offspring and an analysis of variance is performed in the offspring
~ generation.
Since we are working with an additive model, we can work with
single genotypes and partition the total variance contributed by
their gametes into two independent components: the variance between
gametic means and the variance'between gametes within genotypes.
The former is one half Var(BFS) and the latter is one half vVar(WFS).
.This approach leads to considerable algébraic siﬁplicity°
A complete specification of the genotypic frequencies of the twov
locus model involves, in addition to fhe disequilibria involviné
pairs of genes, disequiliﬁria among groupsuof three and four genes..
‘Weir (1979) has referred‘to these #arious disequilibrih as digenic,
trigeﬂic and quadrigenic disequilibria, We shall now briefly.skefch
the ang}ysis that shows therintuitively qbvious‘resuit that whén wé
aré dealing with secoﬂd ordef méments such as varianées'and covariances;'
lt:igenic and quadrigenic A1sequilibfia cancei out ana we are oniy left
with disequilibria invoiving pairs 6: loci, such as D, DB, Dﬁw.
Consider the usual éase of two loci, A and:B, with alieles
| Ai(i=1,2).and BJ(J=1,2) réspectively. Genétypes a;e formed by the
ﬁnion.of materngl gametes, Ai:Bj, and p;terﬁal gameteé, A, By, and
K2(P) _ pi3(p)

have frequencies ?ij(m) = Pracm®

equilibria which has been referred to throughout this work, we must

In addition to the pairwise dis-

define trigenic and quadrigenic disequilibria,
With two alleles at each of two loci, there are two independent
trigenic disequilibria. One involves alleles at the maternal

(paternal) gametezih loci A and B and the paternal (matermal) allele
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at locus A. In Weir's notation, this is symbolised, D:J = Dlj"‘])°
The other trigenic disequilibria involves alleles at the matermal

(paternal) gamete in loci A and B and the paternal (maternal) allele

. 2’ - .
at locus B, This is, D’ (= Dig). With two alleles per locus

ij

there are 8 terms in each type which of course, add up to zero. It
1. 2, _ 1. _ 2, _ 1., _ . 2. _ 1. _

is easily shown that, Dll Dll = D12 = Dl2 D21 = D21 D22

-p2: = TP (= pAB(P))  ferring to the fact that the trigenic dis-

22 AB(m) A(m)

equilibria involves both loci in the maternal gamete and locus A in

the patermal gamete. The same applies to the other set which we

pAB(P)

(r)
symbolise TB B(m)

)(_ ).

. With two alleles at each of two loci there is only one inde-

AB(p)
AB(m) °

pendent quadrigenic disequilibrium which we symbolise Q
Table ‘71 shows the gametic output of the ten genotypes. We

can write, following Weir (1979) , the frequency of each genotype in

terms of its constituent gene frequencies and various functions of

the disequilibria involved. .The.gametic; means, pooled by the cor-.

responding genotype frequencies-lead‘to one half the variance com-

ponent between iull-sib families and the pooled‘variance between

,‘gametes within genotypes leads to one half the variance within full-

_ sib,tamilies. , Following the algebra through, trigenic and quadri-’
1_‘genic disequilibria are seen to cancel out and the variance components
are expressed in terms of second order moments.

As an illustration, consider terms involving products of allelic
-efi’ects,'a1 and’az,'at loci A and B respectively. These terms only

appear in the variance between gametes within the double. hetero-

zygotes, The genotypic frequencies of the coupling_and-repulsion



TABLE 7.1. Gametic 0u1tput'of the Two Locus Additive Model,
Gametic Output
AB Ab aB | ab : Variance Betﬁreen Gametes
Genotype Frequenc& »i(alﬂ'az) %(alfaz) i(gz-gl) -é(a1+a2) Megn Within Genotypes
AB/AB P;: 1 3(a,+a,) 0
AB/Ab P;i E 3 ta, iazz
| AB/sB P%i | 3 | t ta, ’“’12
AB/ab P22 3(1-c) fe ic 3(1-0) J (h(a,+a,)) - caja,
Ab/Ab pii - 1 ) 5‘?1'“2) 0
Ab/aB pf; 3c " i(l-—c)v “$(1-c) ic 0 (k(al—az))2+ ca,a,
Ab/ab Pii 3 .é -1a, &alz
aB/aB Pii 1 -$(a,-2,) 0
aB/sb P22 3 3 ~3a, ta,’
ab/ab p;i 1 -3(a, +a,) o

id
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double heterozygotes can be written as follows: (we drop subscript

m and superscript p)

_ w22 _ 11 _ _ - - _ A _ 1o
£(4B/sb) = Po2 = Pr = p(1-p)a(l-a) - (1-@Tyy + Ty = (1-P) Ty

+ PTay = QQ-O gy, = PO=PIDgy o+ Dy Do o

+ (1-p) (1-)D + pgD - (1-p)aby - P(-WD, +(D) 2+ (D, +anZs .

- 1._ pl2 _ - _ _ - - _
£(ab/aB) = Py = Byl = p(L-p)alog) + Ty - (F@)Tp- (-nTy

21
* Plp ~ PA-P Dy gy = 9Dy ey * Payeay Pawemy ~ PO-VP

. ' | | 2 2 21
- (1-p)aD + paD, + (I-p) (1-@) D +(D) “+(P)"+QD;

' From Table 7.1 after some simplification, terms involving a,a,
are of the form ialazn(l-zc) - %alazDB(l-Zc) and all other higher
order diseﬁuilibria cancel out. Following the aléebra through, the

followihg partitioning of twice the gametic variance is obtained,

var(wrs) ¢+ © )(1-2¢) + V.

= i(Vg(t)- cnw(t)) + %CLW( (1-2c) =~ iCLB(t E
varars) D = 3vg®+ av®) + taw® 4+ pos®
Total : 'Vg(t) + CLW(t)(l-c) + CLB(t)c + V ' | (7.8)

E
The total phenotypic variance in the parental generation can Be

shown. to be given by,
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) 1)

VP = (Vg + CHW + CLW + CLB + Vﬁ)

This quantity can differ considerably from the estimate given by (7.8),
Comparison of Var(BFS) with(7;7)shows clearly that the former
estimates one half of the genotypic variance between chosen sires.
The total variance is an estimate of the parental contribution to the
next generatian;(assuming random union of gametes) and therefore the
effect due to Hardy-Weinberg disequilibrium does not come'inta it,
With free recombination, CLW and CLB does not affect the variance
within families but they have opposite effects on it if c # %,
In a large population, omne cyc1e~of_random mating causes both .
CLB and CHW .to vanish and therefore, assuming cl= % the her;l‘tsbility

estimate reduces to (7.6) .

Selection of Parents -~ Effect on Intra=class Correlations.

- Theory. “
In this section ée assume that in the paréntal generéfion at

~generation t, before selection, there are no covariances between

- chromosomes (i.e. CLB = CHW i'O)Wbuf‘thé;é £§y be llnkage.d;sequiii-".

brium, Truncation selection is practised among the parents and thej”
‘mate at random to producé a conceptually infinite number of offspring.

Thus, at generation t, before parents are selectéd,,the'genotypicA-

variance is given by: VG('t> =AVg(t) + CLW(t), ‘After seléction,

the genotypic vaiiance becomes :

6B ) = (5 W) | (D) . CLW-IQ.“':)+ as®® , aw®® |

()

(s, =4Vgct+1) reflects gene frequency changes; CLW +

where Vg
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CLWf(t) = CLW(S’t) is the total allelic covariance within chromosomes,
(t) . . th
CL'Wf reflecting the fresh disequilibrium generated in the t—

(s,t) + CHW(S’t) are the total allelic covariances bet-

cycle and CLB
ween chromosomes generated by this tEE'selection cycle,

An analysis of variance is performed by which the total variance
among the offspring values is partitioned within and between full-
sib progeny groups. The necessary parameters are shown in Iable 7.2,
As we did before, we assume additive gene action and we can then
partition the total variance between gametes into the previous two
1ndependent‘components. The variance between gametic means can be _
here regardéd as the variance between half-sibs or equivalently, as

half the variance between full-sibs. After considerable algebra we

arrive at the following expressions:

) v

varaies) D = 3veg® P aw® Py 4 gaw P a-2022 + v
| S W
| ' 9 sty L .
var@rs) D = 3vg® s aw® ) + pewP2L o jaw P 4 jas
(8r8) () y_ oo T14 t) (s,t)
Total = Vg ' + CLW (l1-c)— + iCL‘Wf + 3CcILB "' o+ VE (7.9)

A comparison of (7,9) and (7.8) is interesting, Notice that
the parental chromosomes are uncorrelated before selection opeiated

and therefore there is no effect of CLB(S’t)

on Var(WFS). Selection
of parents immediately leads to the generation. of new sets of dis-
equilibria, which adds on to the already existing disequilibrium

within chromosomes. This is reflected in the variance component

between full-sib families which includes all the disequilibria present



TABIE 7.2: Gametic output of the two locus additive model, The frequenciea shown refer to the frequencies
' of the dii:fer_ent_ genotypes after selection operates, in terms of parameters before selection.
" -“Gametic Output =~
AB . . Ab aB ab Variance between gametes
Genotype| Frequency .| #(a +a,) 3(a +a,) Ai(az-_-al) . .—i(al+a2) | . Mean within genotypes
W . : '
s | 22 2 1 3(a, +a,) 0
: 1 - . 1 72
v
w !
o 2
AB/Ab 2f_f 12 3 % 3a 1a
172 - , 1 2
S W : .
W
apsaB | 222, 22| 3 3 3a ta 2
1°3 - - 2 1
w .
V14 ‘ 2
AB/ab 2¢. £, — | #(1-¢) $c - %e 3(1-c) o (3(a,+a. )  ~ ca.a
14 W , 1 2 12
s | 2?2 22 1 $(a,-a,) 0
. 2 = 1 2
w .
| Vo3 .2
Ab/aB 2f_f — ic #(1-c) . 4(1-c) dc 0 (3(a,-a_))" + ca.a
23 W : , 1 2 172
v
24 2
Ab/ab 28,2, —= 3 % -%a, ia,
w .
w
2
aB/aB £ 33 1 -4(a,-a,) o]
3 - : 1
. w I.” .
w
4 .
aB/ab 2f, f 34 3 % -%4a ta 2
374 W 1 2
W
ab/ab g2 A4 1 -3(a, +a,) 0
y 4 W , 1 "2

‘0ST
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immediately following selection,
Notice that twice the variance between full-gibs minus the

true genotyi)ic variance in the previous unselected generation is

.W14
equal to (assuming — = 1),
w
ve®® - ve®y aw®® 4 oaw P 4 o,

b 4

In other words, the estimat.e obtained from the variance between
full-sibs is considernbly biased downwards, particulariy with large
number of loci,

If the population is initially at equilibrium at t = O, the

variance component between full-sib groups at t = 1 is given (ignoring
CHW(S ,0):

, (£)

(1) .
+ CLWf

(s,0)

Var(BFS) = 3vg (7.10)

(since in the first cycle of selection, ('.!l..Wf is equal to CLB), From
(5.36) twice the covariance between full-sib groups becomes , 

W _ g s.0 10200

2Var(BFS) = Vg , which reduces to (7.2)

2
g“(0)
if gene frequency changes are ignored

In general, the variance components within and between full-sib

) gronps assuming a model of an infinite number of loci can be shown

e ha red w h
Y W BA TG W

«

2(t)

var@®Fs) ¢ = 36?4 2ica- xT) VG + 3aw®

(t+1) (t)

Var(Wrs) = ivc“” + 3cLw' "7 (1-2¢) + Vg (7.11)

where, as before, c is the average recombination fraction and CLW(t)

is. given by,
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’ Cii-xy)
caw®) = é——(—?)r— va2(® 4 (-5 et

We now produce Montecarlo simulation results in order to illustrate

the concepts developed in this section,

Montecarlo Simulation Studies,

Table 7.5 shows the simulation results for the various models.
The details of the parameters of these medels are given in Chapter
V. The observed results are obtained by an analysis of variance of
the Mentecaflo simulation results, averaged over replicates. Those
.headed P,‘are obtained by'replacing the observed results, each gener-
ation, in the set of expressions (7.9) , assuming W1'4/W =1, Com-
‘parison between these two sets of results can be taken as a check on
the algebra that lead to the derivation of 7, 9). ' Results headed
Po are obtained from'(7;11) and ignore gene frequency changes, the
reduction in variance being solely due to the generation of linkage
‘disequilibrium. . The table also shows values of single generation
observed and predioted realized heritabilities, the latter, using re-
sults of the infinitesimal model, Comparison between the estimate
bssed on the intra-class cerrelation at generation (t+1) with'the
realized heritability athgeneration t gives an.indication of the
degree of biss introduced by selection of parents; In all the models
studied, the bias is seen to be of considerable magnitude,

Table 7.3 shows that even though the predictions of tne senarate
‘variance components based on fhe infinitesimal model are not strikingly
accurate, the resultnnt intia—class correlation gives s'rqugh indi-
cation o£ its decline as selection proceeds and the degree of bias to

be expected. Unless: models are rather extreme, such as (4, 0.5, 0.5)



Observed (0) and Predicted (P, P ) genetic parameters for six additive genetic models, The P

TABLE 7,3:
values are obtained by substituting the observed results in equations (7.9). The P°° values
are obtained using the results of the infinitesimal model, t. is the intra-class correlation,
h2r is the single generation realised heritability, The variance components at generation O
are the expected values obtained from the corresponding genetic model, The variance components
at generation t refers to the analysis of variance of the offspring data of generation t gener-
ated by parents of generation s, t-1, The bias in the intra-class correlation is reflected by
comparing 2 x t, at generation t+1 with h2r at generation t. n = number of loci; q = initial
frequency; c¢ = recombination fraction between adjacent loci.
Model (n,q,c). - . 30,0.5,05(20reps) ... |. . .4, 0,5, 0.5 (50 reps)
t Var(WFS) Var(BFS) 2 x tc hzi Var(WFs) Var(BFS) 2 x tg hzr
0 22,50 . -7.50. ... ..0.50 .. ... 050 .| .. .. 22,50 ... 7.50 . 0,50 0.50
0 22,78t0,51 -4'.47id.62 . 0.32 0.45 21,93%0,26 4,2410,22 0.32 0.41
1 P 22,50 4,57 0.34 0.45 22,50 4,57 0.34 0.45
22,43 . . .4.46 . . 0.33. ... .. .. .. .. ... .....21.89. 4.13 0,32
0 22.76i0.64 4,11+0,60 .0;30 0.43 19.71+0,24 2,81%+0,19 0.24 0.32
2 P, 22,50 - 3,93 0.30 4 ‘0,43 22,50 3.93 0.30 0.43
22,12 3,50 . . 0.27.. . ... ... ... . ... 19,80 .. .. . 2,89 0.25
(o] 22,09+0,.72 3.0610.41 ‘0.24 0.40 17.2416.19 -2,15%0,13 0.21 0.21
3 P_ . 22.50 '3.78 . 0,20 ° 0.43 22,50 3.78 0,29 0.43
21.47 . - 3,42 . 0.27 IR 17,75 11,98 0.20
0 20.96+0,63 3,68*0,54 0.30 . 16.37id.16 1,01%0.12 0,12 -
4 P 22.50 3.75 0.29 - 22,50 3.75 0.29
" 20.91 3.11 . 0.26 ‘ 16,22 1.03 0.12

‘get



TABLE 7.3 (Cont'inued) : The standard error of 2 x t is approximately 0.04 and of hzr is about 0,01,

Model - . . .. 80,0.5,:0.0 . ... .. .. .. . 30, 0.5, 0.1
t Var (WFS) Var (BFS) 2xt, . hzr' Var(WFS) Var(BFS) 2 xt hzr
o 22.50 7.50 0.50 0.50 22,50 7,50 0.50 0.50
22,28:0,49  4,33:0,36 0.32 0.44 23,36£0,43 . 3,920, 30 0.28 0.44
1 P_ 22.50 4,57  0.34 0.45 22,50 4,57 0.34 0.45
22.39 4,27 0,32 22,44 4,35 0.32
19.910,48  3,66%0,35 0.30 0.37 21,38t0.44  3.69£0,28 0.29 0.41
2 P, 21.04 3.93 10,31 0.40 22,15 3.93 0.30 0.43
20.55 '3.69 . 0.30 . 21,87 23,68 0.29
19.75£0.42 -2,53t0.25 0,22 0.33 21,50:0.34 . 3.34%0,31 0,26 0.38
3 P, 19.99 3,43 0,29 0.36 22.03 3.70 0.30 0.42
19.31 2,65 . 0.24 . . 21,23 3,36 0.27
0  17.950.33 1,9740.26 10.20 - 20,23+0,38 - 3,58+0.29 0.30 -
4 P 19.21 3.03 0.27 21,99 3.62 0.28
P 17.97 2.02 ~..0.20 20,79 . . 3.39 0.28

‘PST



TABLE 7.3 (Continued):

Model (5/25, 0.1/0.5,:0.5) . .. F e (30,:0.2, .0.5)
- 2
t Var(WFs) Var(BFS) 2 x tc ........ hgr_ Var(WFS) ... . Var(BFS) 2 x_tc h r
0 22.50 7.50 .0.50 . .. 0.50. 14,40 4.80 10.50 0.50
26.02+0.39 5,76%0.44  -0.36 0.56 15,54+0.22 3.26+0,22 0.34 0.50
1 P 122,50 - 4.57 0.34 0.45 14,40 2.93 0.34 0.45
26.18 . 5.81 . 0.36 15,27, 3,26 0.35
0  29.04t0.52 5.84%0,.56 0.33 0.57 15.70%0.22  2.710.16 0.30 0.50
2 P 22,50 3.93 0.30 0.43 14.40 2,52 0.30 0.43
P . 29.57. . .5.62 ..0.32 16.00 2.83 0.30
30.92+0.66 -5.92+0.43 0.32 " 0.60 16.18t0.23  2.70%0.16 0.28 0.50
3 P_ 22.50 - 3,78 0.29 0.43 14,40 2,42 0.29 0.43
31.10 5.86 .0.32 16,44 2,79 0.29
30.82+0.52 -6.23+0.53 0.33 - 16,730,232 2,7410.18 0.28 -
4 P_ 22.50 3,75 0.29 14,40 2,40 0.29
P ' 31025 5069_ . 10:31 R 16073 X 2.87 .0029

- *G6e1
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which has relatively large gene effects, most of the decline in the
intra-class correlation takes place during fhe first cycle of
selection. This suggests that the predictors available in the
literature (i.e. Reeve, 1953; Robertson, 1977a)which are a des-
cription of a unique cycle of selection are likely to provide a

useful guide to thg bias of estimates of heritébiiities based on intra-

class correlations in short term selection programmes.

Discussion and Conclusions,

Selection bias in the éstimation of heritability by intra-class
correlation between sibs has been well established by studies that
assﬁmed one cyclé of éeléction on models of an infinite number of’
Ioci., in thié wérk we Lave attempted an ﬁﬁderstaﬁding of the prob-
lem with modéls of finite number of additive'loci. Aé we pointed
out‘in early chapters, prédiction of thebcourse of selection with
sucﬁ moaels invoi&eé expressions whiéh aésume knowlgdge of the num-
befs, frequency and effects of genes affecting the trait‘and are
therefore of nd.direcf practical application; These expreséionsv'
however, provide us with a means éf understanding the wéy the various
~genetic parametefé interact ihvthe selection proceés and fhe conse;'
vquéncés of introdﬁciﬁg a family structure into tge ﬁodéi;

We have sﬁown that the variance component within families is
not affected by thé presenﬁe of disequilibrium provided there is
, freé.recombinaiion._' If this is not tgg'case, the disequilibrium
already present befofe selection operates slightly reduces this

component of variance, The fresh disequilibrium generated in the
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new selection cycle only affects the variance component between
sibs which is further reduced by half the disequilibrium present
prior to selection. Both variance components are dependent on gene
frequency changes and the sign of this effect will depend on fhe
initial gene frequencies., The predictions made under the infinite-
simal model are reasonably useful in providing a rough guide_to the
changes and degree of bias of the intra-class correlation during
short-term selectionlstudies.

Di fferences in he;itability estimgte& by intra~-class correlgtion
and.:egressiqn methods have been reported in various stﬁdies.
Higher valuesvfor-daughter-dam :egreséion estimates for milk yield
than - those obtained from half-sibs weré published by Van Vleck and
Bradford (19655'£ﬁd in one of two sets of data by Butcher and
Freeman (1969); More recently, further e§idence of highér daughter-
dam :egressions than intra-class correlations estimates was provided
by Dymnickilggigl. (1975) . Van §1eck and Bradford (19655 suggested
.that the differen?e between both methods of estimationhcould-be ex-
plained by a large genetic maternal effect though this seems to have
been disproved by work'othee and Hendérﬁon (1969) who showed that
~ genetic maternal effects were of little importahce in milk production,
| S§r§£;d<1966) éuggeéted that enviroﬁmentﬁl covariance between
daughter and-daﬁ in the same herd could be a cause of discrepancy
between both methods of estimétion.

The problem is clearly not settled but it is interesting in
that it could provide experiment#l evidence on the existence and
magnitude of the negative joint disequilibrium, presuﬁably generated

by selection,
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Purser (1980) has provided further evidence of lower estimates
obtained from half-sib correlations than those obtained from
realised response for various characters in sheep. The intra-class
correlations were pooled over 7 or 8 generations of selection and
were compared with estimates obtained from regressions of cumulative
response on cumulative selection differential. Further estimates
were obtained from a random bred control lire,

For the characters studied (cannon bone length and medullation
index) the largest estimate was the one obtained from the unselected
control, followed by the realised heritability estimate, In agree-
ment with theory, the smallest value was consistently obtained from
the intra-class correlation estimate, The data ﬁublished by Purser
(1980) préQide good exper}mental evidence of the existence of link-

age disequilibrium generated by directional selection, The work

with Drosophila reported in the hext:pﬁabter’wés‘specificaiiy set'ﬁp:

an attempt to provide further experimental évidence on this point.

in



CHAPTER 8

EFFECT OF DIRECTIONAL SELECTION ON GENETIC VARIABILITY

-~ EXPERIMENTS WITH DROSOPHILA
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Introduction.

One of the most fundamental concepts in quantitative genetics
is that of the additive genetic variance of a population and its
related parameter, the heritability, knowledge of which allows us to
predict the immediaté response of the population to selection press-
ure. As a consequence of selection, the additive genetic variance
and the heritability themselves change, and therefofe strictly
spesking, prediction of selection response based on present esti-
mates of heritability are oniy valid for one cycle of sélection°

These changes of genetic parameters due to selection are a
consequence of changes of the frequencies of the genes affecting
the tfait and‘due to the generation of joint disequilibrium gener-
ated by selection. The magnitude of the changes of frequencies
of genes depend on the number, effect; initial frequencies and
linkage relationships between‘the loci involved; information which
on the whole is not available to us, We'afe, therefore, unable
to predictvthe changes in heritability brought about by selection
Vcoming from this soufce and all we can do is to say thaf if gene
effects are very small relative to the phenotypic standard deviation
of the trait, changes in their frequéncies are not likely to be
Vimportant'duriﬁg the early cycles of selection.A

The other source of change of genetic parameters comes about
through the generation of joint disequilibrium. Bulmer (1971,
1974) has developed a theory which allows us to predict the magni-
tude of its effect in terms of parameters of the base population,
before the operation of selection. This theory is. based on a.model

which assumes an infinite number of loci and therefore ignores the
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changes of genetic parameters due to changes of gene frequencies.
In Chapters 5 and 6, we have studied the consequences of intro-
ducing a finite number of loci under a range of genetic models,
on the predictions of changes of genotypic>variance based on
Bulmer's theory. We have shown that, in the absence of dominance,
the predictions of the generation of joint disequilibrium are
reasonably accurate, provided gene frequencies are not extreme,
Ho&ever, the prediction of changes in the genotypic variance can
depend critically on the gene frequency distribution in the base
population,. In fact, we have shown that with low initial fre-
quencies, the effect of gene frequency changes and the effect of
joint disequilibrium tend to cancel each other ouf and consequently,
'the genotypic‘yariance remains virtually stable during the first
-four generations éf selection,

How important then are the changes of genetic parameters
likely to be in selection programmes of short duration? From an'
operational point of view; an answer to this question can be obtained
by comparing predicted responses to selection, based on estimates of
parameters of the base population, and observed responses (see Wright,
1977 for a review), though clearly this type of information does not tell
us anyithing fbo"t the causes dae
between these~resu1ts; Lack of agreement does not imply that sub-
stantial changes are taking place.' Estimates of base population
parameters from- small samples may be highly variable due to sampling;
the regression of offspring on parent may be non linear and therefore
the expected responses to selection in the up and down direction

will be asymmetrical (Robertson, 1977c¢); there may be substantial
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maternal effects affecting the trait (Falconer, 1963); there may
be natural selection opposing artificial selection (Clayton.&
Robertson, 1957a)or there may be problems of scale (Robertson,
1970c). On the other hand; agreement between observed and pre-
dicted responses should not necessarily lead us to conclude that
no genetic changes are taking place, since we have shown that the
effect of gene frequency changes can be opposed by the effect of
joint disequilibrium and cansequently; genetic parameters remain
fairly stable; at least during the early cycles of selection.

The experiments reported in this chapter were designed to
study the effect of short term directional selection on changes of
the heritability, in particular, those changes associated with the
~ generation of joint disequilibrium. Two ekperiments of different
designs were performed, each one run with two rgplicates° Essenf-
ially both experiments involved a few cycleg of selection followed
by a period of relaxation. Heritability estimates were obtained
during tPe period of selection and at the end of the period of
relaxation, On the basis'of the theory developed by Bulmer (1971)
we antiqipate an increase of heritability at the end of the period
of random matiﬁg due to the breakdown of negative joint disequili-
brium generated'&uring the early cycles of selection., “

In the first experiment the direction of selection was reversed
each. generation in an attempt to minimise changes of genetic para-
meters due to gene frequency changes and avoid complications intro-
duced by scale effects. The amount of joint disequilibrium should

accumulate however, regardless of the direction of selection, With
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a finite number of loci, the reversion of the direction of selection
may have a small effect on the amount of disequilibrium produced
each generation, but this effect is not likely to be important unless
gene effects are very large.

In the second experiment selection was practised for high value
of the trait and changes of parameters are then Aue to both the
permanent effects of gene frequency changes and due to the temporary
effectslof the generation of disequilibrium, The permanent effects
on the heritability should be reflected in the estimate obtained at
the end of the period of relaxation; during which a large proportion

of the temporary effects should disappear.

‘Material and Methods.

Lines were derived from the Dahomey population which has been
kept in cages in this laboratory since 1969; |

The character measured was the sum of the abdominal'bristlesv
on the fourth and fifth segments in males and fifth and sixth seg-
ments in females;

Flies were reared in standard Edinburgh'agar-molasées killed
yeast medium in which drops of live yeast had been added. All
cultures %ere kept at 25°c; -

Two experiments were carried out which we shall designate
experiment 1 and experiment 2, each one being run with two replicates,
a and b,

Experiment 1(a) was carried out in half-pint milk bottles,
Eggs were sampled from: the cage pobulation with several bottles,

When the adults emerged, 150 males and 150 females were scored and



163.

they constituted generafion Zero, Two way selection was practised
by selecting the highest (H) 30 males and 30 females and the lowest
(L) 30 males and 30 females., These two groups were introduced,each
one in a separate bottle to mate for 48 hours., On the third day,
flies were transferred into a fresh bottle and allowed to lay eggs
for 10 hours. The adults emerging from these bottles constituted

, generation~1; Those derived from individuals selected for the high
value of the character were designated Hl; those derived from in-
dividuals selected for low value of the character were designated Ll.
Frog H1l, two way selection was practised once again by selecting
the 30 highest and 30 lowest of each sex out of a total -of 150
scored from eéch sex, A similar procedure was followed in L1, and
therefore, at generation 2, four sets of 300 flies in each set were
scored and designated as follows. The two way selection originated
from H1l, yielded HH2 and HL2, The two way selection originated
from L1, yielded LH2 and LL2, From HL2, three lines were derived,
Selectioﬁ of extremes and random mating within extremes lead fq HH3
and HL3, At the same time, a random sample of 30 males and 30 fe-
males were chosen from HL2 and this procedure constituted the first
cycle of random mating. The offspring of the first cycle of random
mating was designated HC3, Similarly, from LH2 we generated LH3,
LL3 and LC3. Random mating was continued for 6 cycles. At
generation 8, two way selection was practised from HC8 and LC8, and
the four lines were designated HH9, HL9, LH9; LL9; The design of

the experiment. and designation of the lines are shown in Figure 8;1l.



FIGURE ‘8,1: Design of Experiment 1
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Experiment 1(b) was essentialiy similar to experiment 1(a),
the difference being that flies were kept in vials with the exception
of the period comprising the 6 cycles of random mating, when flies
were kept in bottles; Vhile flies were kept in vials, each of the
30 full-sib families contributed 5 maleé and 5 females to those
scbred the néxt generation. Selection was always carried out on
the basis of the scores of individual flies,

In experiment 2, eggs were sampled from the cage using several
bottles, 30_emerging'flies of each éex were sampled from the

bottles and mated in individual vials, one male and one female per
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vial, Ten days later, when the offspriné of these flies emerged,

5 males and 5 females were randomly chosen from each of the 30
families. These 300 fliés were scored and constituted generation
zZero, Two way selection was practised by selecting thé highest (H)
and lowest (L) 10% at each extreme, The selected flies, chosen on
~ the basis of their individual scores were mated at random and their
offspring constituted H1 and L1. Line L1 was discarded, From H1,
360 flies were scored, 10 males and 10 females from each of the

" 15 full-sib families and the top 10% selected and mated at random,
This procedure was repeated and lead to H2 and H3. At generation
3, frém H3, three lines were started; Two way selection lead to
H4 and L4, wht;reas réndom 's‘amplz.l‘ng of one male and one female :Erom‘
each full-sib family from H3 and subsequent random métipg produced
C4, which constituted the offspring of the first cycle of random
mating in vials;' In addition to these three lines, flies were also
sampled from H3 and relaxed in bottles under crowded conditions to
investigate the possible regression of the mean during the period
of random matiné. At generation 7, two way selection was practised,
together with random sampling of 7C and this constituted H8, L8 and
Cc8. These three lines were derived from the line that was relaxed
in vials, Both experiment 2a and experiment 2b were run in the
same way. The design and designation of the lines are summarised

in Figure 8.2,



166.

FIGURE 8.2: Design of Experiment 2,
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‘Results.

‘Estimates of Parameters of the Base Population.

Base population parameter estimates are shown below, The
means and phenotypic variances are obtained from over 1,200 ob-
servations in each sex; The heritability estimate based on off-
spring mid-parent regression (with parents selected at both ex-
tremes of the distribution) is obtained by pooling 7 independent
estimates., The full-sib estimate is obtained by pooling two in-

dependent estimates,
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Males Females
Mean Phenotypic Mean Phenotypic
variance _ variance
33,61 7,84 38.95 ‘9,11
Heritability
Offspring mid-parent
regression = _ _ _ - - - 0.35%t 0.02
Twice
Intraclass correlation
between full-sibs - — - - -~ 0.38 ¢ 0,07

Total Variance

V@ - = — = = = — - — '3,13% 0.21
Within fly variance - - — — 3,98 ¥ 0.16
Not accounted for — -~ — - 1,37

The 'developmental error' variance was estimgted'from the mean
squared difference between scores in both segments; The estimate
was of about 4 squared units leaving only about 1.4 units to account
for true environmental and o?her non-additive geﬁetic components, Notice
however, the clése agreement between the heritability estimate based on
offspfing mid-parent regressions and the one obtained from intra-
class correlations between full sibs, suggesting that common environ-
mental variance and non-additive genetic'variance afe,not important

sources of variation in this experiment.
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Results of Experiment 1.

Means and variances for each sex at generation zero, based on

150 observations, are shown below for each replicate,

Replicate Males Females
Mean 33.81 38,42

1(a)
Phenotypic variance - 8,73 12.81
Mean 32,91 38.53

1(b)
Phenotypic variance - 7.53 8.83

Table 8.1 shows the difference between the high and low lines
and the sum of the sfandardiséd selection differentials of the high
and low lines during the course of the selection programme for both
replicates of experiment 1.

The standardised selection differentials are smaller than the
expected value of 2.8 and they are consistently sméller in experiment
1(b) than in the other repliqate. The smaller selection differentials:
in 1(b) reflect the degree to which sp;re flies had to be used due
to the occurrence of unsuccessful matings. In 1(a), all selected
flies were introduced in a bottle and therefore no record of indi-
‘vidual flies were kept., |

| Table 8.2 shows the single generation realized heritabilities,
the genotypic variance and twice the intra-class correlation between
full-sibs (in the case of experiment 1(b)) during the selection pro-
~ gramme, The single generation.fealized heritabilties were obtained
from the ratio of the divergence over the sum of the selection

differentials. The genotypic variance was estimated by nmultiplying



TABLE 8.1:

Sum of intensities of selection for high and low selected lines

(i) and the divergence, for both replicates (iﬂ - iL).

divergence obtained from Hill (1972a).

S.E. of

Generation Experiment 1(a) Experiment 1(b)
i &; - X i &, - X))
H1/L1 2.71 2.6910.38 2.38 2,05%0.34
HH2 /HL2 2.68 3.84+0,.38 2.64 2.4610.34
LH2/LL2 2.71 1.83+0.30 2.54 1,94+0.31
HH3/HL3 2,75 4,47+0,.36 2.59 2,61+0,33
" LH3/LL3 2.75 3.25%0.35 2,61 2,52+0.32
" HH9/HL9 2.67 3.52+0,37 2.51 | 2.03%0.31
LH9/LL9 2,70 '2,72+0.34 2,54 - 2,71+0.34
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TABLE 8.2:
Single generation realized heritabilities (hz), genotypic variance
(VG) and twice the intraclass correlation between full-sib families
(2xtc) for both replicates, obtained from analysis of variance cor-
responding to the generation shown in brackets next to the estimate.
VG estimated from the product of the realized heritability times
the phenotypic variance, the latter estimated from the analysis of
variance in the case of experimenf 1(b)., Standard errors of h2
obtained from Hill (1972a).

. o - A
square root of 04 Var(ﬁz) + h4 Var(az), assuming ﬁz and ¢ are un-

St errors of VG obtained from the

correlated. Standard errors of 2tc obtained from Fisher (1941),
Experiment 1(a) Experiment 1(b)
Generationf - vG h2 VG h2 2xtc

L .. Lo 0.24+0,.13(H])

(o] -3.23t0.51 0.30t0.04| 2.54t0.39 0.31t0.04
-0.25%0,13(L1)
. 0.35+0.15(HH2)

H1 -4,47t0.53 0.47t0.04 2.83t0.46 0,36+x0,05 _

, 0,06+0,08(TH2)

L1 -1,83%0.32 0.26x0.04| 1.,93t0.35 0.25%0,04
0,30£0,.14(LL2)
. . : -0,29+0.14 (HH3)

HL2 -4,78t0.52 0.56t0,04 2.66x0.71 0.35%0,05
0.37+0,.15(HL3)
. ) 0,49+£0,15(LH3)

LH2 -3.38t0.43 -0.41t0.04 2,49t0,.42 0,34+0.05
0.59+0.14(LL3)
. ' v 0.54*0,15 (HH9)

HCS8 3.97t0.49 0.44*0.04 2,22+0,40 0.31+0.05
: 0.31+0,14(HL9S)
. . . . 0,27+0,14(LH9)

LCs8 2,92+0,41 0,35%0,04 3.09t0.41 0.380.04
: 0.54+0,15(LL9)
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the estimate of the réalized heritability by the contemporaneous
estimate of the phenotypic variance.

The critical comparisons that should provide evidence for
the build up of disequilibrium during selection are between the
estimate at generation O and both estimates at HL2 and LH2, The
standard errors are not small but neither replicate show any decreasé
in the genotypic variance or the heritability. Furthermore, there
are no signs of an increase in genetic parameters during the period
_of random mating.

Another source of evidence for the build up of disequilibrium
should come from a comparison between the realized heritabilities
and twice the-intra-class correlations; We expect the latter to
be smaller‘due to the negative bias introduced by éelection in the
parental generation; ~ With the possible exception of the estimates
of generation H1l and L1, a general glance at the table shows no
indication of any detectable effect of disequilibrium, The equiv-
ocal nature of these results, together with information coming from
Montecarlo simulation studies stimulated the development of experi-

ment - 2.

‘Results of Experiment 2.

Estimates of means and variances from each replicate at gener—-
ation zero, based on 150 observations for each sex are shown below,.
Table 8,3 shows the standardised selection differentials and

the response to selection for both replicates.,



TABLE 8.3:

Standardised selection differentials (i) and selection response (R)

for experiment 2.

The response is obtained by the difference in
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mean between one generation and the mean of the preceding generation,

Standard errors of response obtained from Hill (1972b) assuming para-

meters do not change,

L8

-1.,50

Generation Experiment 2(a) Experiment 2(b)
1 R i R

LL -1,60 -2,32#0.40 | -1.83 -2,28%0,40
H1 1.74  1.20%0.40 1.52 1.90%0.40
H2 1.70  2.54%0.40 1.87  2.12+0.40
H3 1.67 -0.7610;40 1,70  2,45%0.40
H4 1.75  1.78%0.40 1.78  2,93+0.40
L4 -1.68 -0.82#0.40 | -1.62 -2,54%0.40
HS 1.58  0.71%0.40 '1.62  6.72+0.40

~1.70%0.40 -5,68+0,40




Replicate Males Females
Mean 33.16 39.28

2(a)
Phenotypic variance 8.24 7.29
Mean 33.19 38.78

2(b)
Phenotypic variance 6.92 10.37

The observed selection intensities are, in general, somewhat

smaller than the expected value 0f 1,75 obtained from normal tables,

The response to selection is smaller and more erratic in experiment

2(a) than 2(b), |
Table*8;4 shows estimates of single generation realized herit-

abilities and genotypic variances obtained from the pxoduct of the

realized heritabilities and their contemporaneous phenotypic vari-

ances estimated from the analysis of variance, and Table 8.5 shows

estimates of heritabilities obtained from intra-class correlations
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between full sibs and their corresponding variance component between

families for both replicates of'experiment-z°

The general picture is one of remark;ble disagreement between
both_replicates;_ In the case of replicate (a); the single generQ
ation realized heritabilities show an irregular pattern &uring the
first four cycles of selection. This replicate does not show an

increase in genetic parameters during relaxation, suggesting that

any effect of the breakdown of disequilibrium, if any, was too small

to be detected. The results of the variance components between
families are consistent with those obtained for the realized herit-

abilities and the genotypic variance in that the pattern of change



TABLE 8.4:

Experiment 2:

Estimates of single generation realized herit-

abilities (h2) and genotypic variances (VG), obtained as in Table

8.2, Standard error of hz from Hill (1972b).

Experiment 2(a)

Experiment 2(b)

Generation 9 2
VG h VG h
o 2.96+0,.46 0.38t0.05 3.63t0.52 0,.42+0,04
H1 -4,34+0,.75 -0.52+0,08 3.44t0.78 0,38t0.06
H2 1.24%0.55 ‘0.16X0,07 4,481,04 0.46*0.10
H3 . ‘2.,'28t0.40 ‘ 0.26%0.04 5.83t0.61 0.45%0.03
C7 ' .:’2.084—'0.36 0.26%¥0,04 -7.66%0,74 0.59%0.03
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TABLE 8.5:
Experiment 2: Estimates of heritability based on intra-class
correlation between full sib families (2tc) and corresponding

variance components between families (og). Standard errors of
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~N
tc from Fisher (1941); standard error of 0% obtained from the
square root of :
2 2
"2 (MSB) (MSW)
=1 } , where
n2 nf+1 nf(n-1)+2
n: number of observations per family
nf: number of families
MSB: mean square between families
MSW: mean square within families
Experiment 2(a) Experiment 2(b)
2 2
Generation 2tc % ..?tc \ %
H1 0.11%0.11 0.51+0,08 0.25%0,17 1.15¢o.io
L1 0.27+t0,17 0.93+%0,09 0.23+0.17 0.91+0,.09
H2 0.40%0.20 1.52+0.11 .0.38+0,20 -1,850,12
H3 -0,20*0,.15 0.88t0.09 0.3316.19 -2.1419.13
H4 -0.21*+0,15 -0.,96X0.09 0.3410.19 2.38+t0,.14
L4 0.10%0.10 10.40%0.07 '0.07+0.08 0.27+0.06
c7 0.11%0.10 -0.45%0.07 '0.56+0.20 3.61%0.16
H8 '0.11+0.10 -0.49+0.08 0.29%0.18 -2.19+0,13
L8 10.210.15 .0.88+0.09 0.23+0.17 1.170.10
Cumulative Res-
ponse on cumulative ) .
selection differ- -0,36%0,03 0.41+0.03
ential (gens 0-H4)
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is irregular and the value at generation C7 has not increased re-
lative to'its value at generation H3.

The single generation realized heritabilities in replicate
(b) remain fairly stable during the first four cycles of selection,
During the period of random mating; there is a marked increase in the
genotypic variance and in the héritability and this result is substan-
tiated Dby a considerable increase in the variance component bet-
ween full-sib families at the end of the period of relaxation re-
lative to its value at generation H3, In marked oontr#st with
replicate (a), this replicate showed a considerable increase in the
‘'variance components betweén and within families duripg the cycles
of selection.h

During the period of relaxation, flies were sampled from the
vials in each replicate, from which the mean was estimated, The
data (see Table 8.6) clearly show that there is no regressiqn of
the mean during thé relaxation of selection,

At generation 7 flies were sampled from the line ielaxed in
bottles and reared in vials for one generation; At generation 8,
C8, the mean was estimated for both replicates; These means do
not differ from those obtained from the lines relaxed in vials,
suggesting that there must be rather weak evolutionary forces holding
the mean in its o:iginal position and further, that natural selection
does not. seem to oppose artificial selection in fhis short term

selection experiment. The results are summarised in Table 8.6.
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"TABLE 8.6:

Means for both replicates during the period of relaxation. The

last value corresﬁonds to the estimate of the mean from the lines

relaxed in bottles.

Generation Replicate (a) Replicate (b)
H3. 40.94 + 0.17 42.40 + 0.20
c4 41.32 +.0.41 42.35 * 0.51
c5 1 40.95 + 0.38 41.72 * 0.56
ce 40.32 *+ 0.38 41,52 + 0.52
c7 40.94 * 0.40 42.18 +.0.51
cs 41.55 + 0.38 42.32 + 0.54
C8 (relaxed in + ' v .

bottles) | 41-0%2 £ 0.42 | 42.83 * 0.42

Discussgion.

Before discussing the results we shall briefly justify the two
different designs of experiments 1 and 2.,

Experiment 1 was designed in an attempt to keep gene ffequency
changss t0 a minimum,. It will
divergent selection followed by a second cycle of divergent selection
starting from the H1l and L1 lines is equivalent to a process in which
selection is practised in one direction and in the following gener-

- ation, the direction of selection is reversed (see Figure 8.1). The
heritability estimate at generation 0, obtained from the divergence

of Hl and L1 should in principle, be compared with the  estimates at
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HL2 and LH2, these estimates having.been obtained from the divergence
Qf ﬁHS/HLS and LH3/LL3 respectively, Gene frequencies at generation
zero and at both HL2 and LH2 should be more or less similar but the
two cycles of selection should have caused disequilibrium and this
should lead to a reduction of the heritability at HL2 and LH2, We
also expect an increase in the heritability estimate at generations
HC8 and LC8 after the various cycles of random mating; on the assump-
tion that the reduction at HL2 and LH2 was due to the generation of
linkage disequilibrium,

In marked contrast with expériment 1; experiment 2 was designed
in a straightforward fashion and gene frequency changes were not
controlled.- 'Iﬁ fact; a higher selection intensity was applied (10%
rather than 20%) and one way selection for high abdominal scores was
practised for three generations. Heritability was accurately esti-
mated at generation zero; at generation 3 and finally at genez;ation 7,
after the four cycles of random mating, A comparison of the estimate
a:'t; generation 3 with the estimate at generation .7, should provide
evidence for the effecf of the breakdown of disequilibrium which was
~ generated during the three cycles of selection, Furthermore, the

difference between the estimate at generation 7 and at generation

_ 2 3 D Ll e o OPmmdh o mnom
€ LUt VULl LUT TLLTUL VL ETUuT

- —T. _ _._" 9 — —t —_
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ze m
during this short term study;

In experiment'I; the results do not suggest that selection has
- generated disequilibrium of any considerable magnitude. Before em-
barking on a description of a genetic model that could account for

these results, it is important to notice that the heritability esti-

mates of the base population obtained from both replicates. were
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indeed very low. In fact, the experiment was designed on the
assumption that the heritability for the sum of the abdominal
scores in this population was 50%: Our estimates turned out to
be considerably smaller in both replicateé. In a large population
where the heritability is 30%, one cycle of selection of the inten-
sity we used in experiment 1 (20%) is expected to reduce the herit-
ability to about 27%. The effect is very small and not likely to
be detecte&. This was realized at the time but notwithstanding
we decided to continue with the experiment to see "what happened.
It turned out that basically; "nothing happened“;

The results of experiment 2; however; merit some speculation
in terms of a model that may lead to rather substantial changes in
v genetic'parameters; particularly after relaxation of selection; in
one replicate and none in the other, First of all we want to point
out that it is unlikely that the increase in heritability in repli--
cate (b) is due to the elimination of lethal factors. 'The design
we used minimised any effect of natural selection operating between
families and furthermore, the lack of change in the mean in flies
reared in;crowded bottles during the period of random mating suggest
that the effect of natural selection opposing artificial selectiog
must have been.very weak in both replicateé.

The model that we suggest could account reasonably well for
" this set of results is one in which the character in the basem;opu—
lation is affected by a fewAloci of large effect at extreme fre-
quencies and several minor loci at intermediate frequencies. A
model of natural selection for an intermediate optimum value of the

.quantitative trait, together with uniform mutation rates involving
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two alleles per locus leads to an equilibrium configuration of

the kind represented by this model (Latter, 1960). How is such

a model likely to respond when submitted to selection for high value
of the character followed by a period of relaxation; as in the case
of experiment 2?

First of all there is the effect of gene frequency change on
the genotypic- variance. The plus alleles at very high frequencies
do not contribute much initially to the equilibrium additive variance
and their contribution becomes even smaller as upward selection pro-
ceeds. However, those plus alleles initially at very low frequency
will make substantial contributiqns to the equilibrium additive
variance as théy quicklf move towards intermediate values. The
minor genes at intermediate frequencies are not likely to have an
impact on the equilibrium additive variance of any real importance,
particularly during the early generationé of selection; ~Therefore,
the changes in the genotypic variance arising from overall gene fre-
‘quency changes are likely to be positive’due to the overall increase
in the equilibrium additive variance,

Secondly, there is the effect of disequilibrium, We have shown
in earlier chapters tﬁat ext;eme low initial'frequencies; particularly
when proﬁortionate effects of the genes are large, leads to larger
reductions in the genotypic variance than predicted on the basis of
the infinitesimal model. If the number and effects of the loci at
low i#itial frequencies are the same as those at high frequency
no asymmetry should develop in a first cycle of selection in either
the amount of disequilibfium generated or the selection response.

In a second cycle of selection, the immediate differential change

in gene frequency of loci at both extremes of the gene frequency
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range, will lead to substantial reductions in the genotypic vari-
ance due to relatively large generation of disequilibrium contri-
buted by those loci at low initial frequencies. On top of this,

we have the effect of gene frequencies moving towards intermediate
values of the major loci, with associated increase in the amount of
disequilibrium generated. We then expect considerable reductions
in the genotypic variance coming from this source, Overall; the

~ genotypic variance is not likely to change very substantially during
the early generations of selection and the direction of the change
will 1largely depend on the genetic parameters of the model.

This type of model is also likely to lead to considerable
degree of variation between replicates. This will depend on the
size of the initial sample and on how extreme the frequency of the
major loci are likely to be in the base population. As James (1971)
pointed out, if a trait is affected by loci of large effect wﬁere
the favourable allele is rare; initial samples of moderate size are
likely to generate more variation betweeﬁ replicates than samples
of very small or very large size, because in the latter case, a
large proportion of the samples will either have, or have not,in-
cluded the favourable alleles, whereas in the former, appreciable
proportions would include and fail to include then. |

Our gonjecture will be that in replicate (b); more loci of
large effect were picked up then in replicate (a). An important
question in this respect is; given that in the base population there
‘are rare loci of large effect, how many of those are likely to have
been missed in replicate (a) in order to explain the considerable

difference of behaviour compared with replicate (b). In order to
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get some. idea of this and to further check the behaviour of this

' model, we resorted to Montecarlo simulation. The model we used
was one in which 30 loci were distributed in equal numbers in three
chromosomes; the recombination fraction between loci on the same
chromosome being 0.1, We sampled from a population which assumed
24 loci at initial frequency of 0.4; 4 adjacent loci in chromosome
1 at frequency 0.05 and 2 adjacent loci in chromosome 3 af frequency
‘0,95, .. Each of the 24 minor loci had an effect of 0.13 standard de-
viations whereas the 6 loci at extreme frequencies had an effect of
about 0,60 standard deviations. The genotypic variance in the
equilibrium base population was'3;8 square ﬁnits and the phenotypic
variance was 10 square units; These parameters are similar to the
estimates we obtained from our Drosophila experiment 2. Together
with this model we ran others which assumea that 2 and 3 of the 4
favourable major alléles were completely absent, and finally we ran
a modei in which the genetic variation was due to 30 loci of equal
effects and initial frequency of 0.4. The parameters of the various
_models; together with the model designation are summarised in Table
" 8.7, All models have about the same initial equilibrium additive
variance and heritability and the highest 15 out of 150 scored in

o o nl
~

B

gex were gelected and mated at random each generation.

The results are shown in Table 8,8 and 8.9, Table 8.8 shows
the equilibrium additive variance, the amount of joint disequilibrium
and the realized heritabilities. Table 8,9 shows the intraclass
correlations and the variance components between and within full-sib

families.
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TABLE 8,.7:

Model De- Number of +loci Number of +loci Number of minor loci
signation at frequency 0.05 at frequeéency 0.95 || at frequency 0.4

4/24 4 2 24
2/24 2 2 24
1/24 1 2 24

0/30 o) (] 30

The results of model 4/24, including the increase in heritability.
predicted during random mating agree closely with those of replicate
(b). The variance components between and within families however,
do not increase in the simulation as they do in the Drosophila exper=
iments. This, however, is probably dﬁe to a scale problem in the
sense that, as discussed by Rosertéon (1970¢c) for the case of his
sternopleural lines, in our case, the scale we are usiné to measure
sbdominal bristle scores may not be the one in which the effect of
a gene substitutioh is constant as selection proceeds;

The results of replicate 2(a) are reasonably compatible with
those of mode1-1/24-or 0/30; that is, it is not likely th#t tﬁe
number of major loci sampled initially is larger than 1. These
two models lead to rather small reductions in variance due to dis-
equilibrium and after 4 cycles of selection, the equilibrium additive
variance is slightly smaller than it was originally. Consequently,
heritability estimates at generation 4 are smaller than the estimate

obtained from the base population and after relaxation, the break-
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8.8 Equilibrium additive variance (Vg), joint disequilibrium (CLW) and single generation realized
heritabilities (h2) for the models of Table 8,4 in 4 cycles of directional selection, The results
are average of 25 replicates, The S.E. of h? is about 0.01,
Model 4724 2/24 1/24 0/30
Gener- 2 } 2 2 2
ation Vg CLW h Vg CLW h Vg CLW h Vg CLW . h
0 3.76x0,04 0,08t0,07 0,39 3.65t0,02 0.02t0.05 0.38 3.66*0,03 -0.03t0,05 0.37 3.74t0.00 0.05t0.05 0,39
1 4.75%0.09 -0.74t0.15 0.42 4,16t0.06 -0.63:0.12 0,38 3.61*0,06 -0.50f0,05 0.33 3.82t0.00 -0.37%0.11 0.35
2 6.120,14 <1.630.18 0.42 5.03t0,10 -1,0&0,15 0,41 4,07t0,10 -0,93¢0.10 0.33 3.74*0,01 -0,.60%t0.12 0,32
3 7.08t0,14 -2.62t0.24 0.40 5,35t0,10 -1.18t0,15 0.41 4,13t0,07 -0,82*0.12 0,31 3.53t0.03 -0.71¥0.10 .0.28
4 7.200,17 -2.65%0.23 - 4,94+0.11 -1,35%0,18 - 3.73%0,12 -0,62+0,12 - 3.31*0.03 -0.67t0.07 -
4 cycles of random mating 0.56 0.43 0.37 0.34
TABLE 8.9: Variance components within (02) and between full sib families (02) together with heritability estimates
based on intra-class correlat¥ons (2xt ) for the various models. The S.E. of 02 and Ob are about 0;2,
The S.E. of t is about 0.01l.
Model 4/24 2/24 1/24 0/30
Gener- 2 2 . 2 2 2 2 2 o2
ation Ow Ob 2z.tc Gw Ob 2xtc Ow Ob thc Ow b thc
1 8.8 1.5 0.30 8.4 1.4 0.29 8.1 1.3 0.26 8.3 1.4 0:28
2 9.2 1.6 0.30 9.1 1.2 0.23 8.3 1.2 0.25 8.2 1,2 0.25
3 9.2 1.5 0.28 9.2 1.5 0.28 8.3 1.1 0.23 7.9 1.1 0.24
4 9.2 1.5 0.27 8.8 1.2 0.23 8.3 1.2 0.24 7.9 1.0 0.22

‘P81
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down of the relatively small amount of joint disequilibrium
generated during the selection process is not likely to be de-
tected, The results of experiment 2(a) conform reasonably well
with these expectations. |

How are the models in Table 8.7 likely to react in the case
of the experimental design of experiment 1? Montecarlo simulation
results are shown in Table 8.10. The design of experiment 1 was
simulated by selecting up in one generation followed by a second
cycle of reverse selection, this pattern of selection being con-
tinued for 4 generafiong. The initial heritability was assumed
to be 30% and 30 out of 150 scored in each sex were selected as
parenfs each‘generation; | -

In all models, the equilibrium additive variance changes very
little during the 4 cycles of intermittent selection. Model 0/36
produces, as expected, relatively larger amount of disequilibrium
but the effect on heritability estimates is small. In all the
other models, the genes of large effectAgre kept at low frequencies
and therefore their contribution to the reduction in the genotypic
variance due to disequilibrium is only trivial, The results show

clearly thét the‘increase in heritability during relaxation, even
if all the digequilibrium hroke down woul ve ry an
would require a very large experiment to detect such a change.
What is the evidence for this type of model available in the
1literature? All the evidence we have is rather indirect and cir-

cumstantial, A model of genes of large effect at extreme frequencies

has been postulated by Clayton et al. (1957b) and Sen and Robertson:



TABLE 8.10:

Models of table 8.4 submitted to alternate cycles of high and low selection for 4 generations. The
parameters shown are the amount of disequilibrium generated (CLW) and the single generation realized
heritabilities (h”). §.E. of h> about 0,01,

Model 4/24 2/24 1/24 0/30

Generation CLW n? CLW b2 CLW n2 CLW n?
0 0.06:0.04 0,31 -0.09:0,03 0.29 0.04:0,07 0.29 -0.01:0.04 0.31
1 ~0.49:0.11  0.28 -0.49+0.11 0.27 -0.31%0.13 0.26 -0,57£0.10 0,30
2 -0,50£0,07 0.26 -0,45:0,11 0,26 -0.51+0,11 0,26 -0.74t0.10 0,28
3 -0.44%0.10 0.29 -0,62+0,11  0.26 -0.65:0,11 0,27 -0.8240,11  0.27
4 -0.44%0,10 - -0.50+0,10 - -0,540,12 - -0.81+0.,14 -

‘981



187.

(1964) to account for the observations of correlated response

in sternopleural bristle number on selection for abdominal bristle
number, Frankham et al. (1968) showed that several of their
lines showed periods of rapid response associated with increases in
variance and further, the crosses involving one of their lines
with others gave rapid response to selection in contrast with the
response of the crosses not involving this particular line. They
pointed out that these observations can be reconciled by the pre-
sence of major loci at low frequency in the base population.
Evidence of this model was also provided by Robertson (quoted by
James, 1971), and more recently by Yoo (1980), who suggested it

as a model tﬂat could account for the large variation between repli;
cates that he observed amongst his lines;

What conclusions can be drawn from this work? In agreement
with the results arrived at in Chapters5 and 6, we believe that,
even in the case of short term selection studies, changes of
genetic parameters are rather dependent on the underlying genetic
model, that is, the distribution of gene frequencies and effects in
the base population. Predictions of the generation of joint dis-
equilibrium may be in some cases reasonably accurate, but we are
ﬁot in a position to predict changes in the genotypic variance,
unless we have some idea of the likely rate of gene frequency change
during selection, as would be the case of a population resulting
from a cross between highly inbred lines, or as shown in Chapter 5,
when population size is small enough that most of the changes in
the equilibrium additive variancg are likely to be due to genetic

drift.
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The response to 4 cycles of selection in experiment 2 was
6.88 and 9.29 units for replicates (a) and (b) respectively,
with an average of 8,08, The usual prediction, tihz(o)o(o),
gives an expected total response of 8.12 units. Predicted and
observed results are in good agreement but if one tentatively
accepts the model we have proposed to explain the results, it is
clear that in this case at least, an explanation based on the

general idea that parameters have not changed, although operation-

ally correct, may be misleading.



CHAPTER 9

EFFECT OF DISRUPTIVE SELECTION ON GENETIC VARIABILITY

- MONTECARLO SIMULATION STUDIES
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Introduction

Under natural conditions, variation in the environment over the
range occupied by an interbreeding population may lead to differences
in the vaiue of the optimum phenotype favoured by selection, This
type.of selection was termed centrifugal selection by Simpson (1944),
while Mather (1955) proposed the term disruptive selection, Mather's
term is usually associated with the situation where those individuals
at both extremes of the distribution survive and the intermediates do
not,

A considerable body of literature on experimental results of
selection for such phenotypic deviants has groWn over the years, much
of which has béén-re;iewed by Thoday (1972). Several researchers have
repo;ted counsiderable increﬁses in the genetic components of variénce
of qgantitative tiaits as an outcome of disruptive selection (Thoday,
1959; Millicent & Thoday, 1961; Gibéon & Thoday, 1963; Scharloo,
1964; Sél_’narlod'g;t'gi.., 1967; Barker & Cummins, 1969) as well as
v ggnetic Aiversity at enzyme loci (Powell, 1971; McDonald & Ayzala,
1974) . This type of selection may also lead to an increase of non-

- genetic components of variance since; assuming that there is gedetic
control of sensitivity to environmental factors; selection of extremes

I T R I VOt R,
it in Sei€eciion o

shculd result the most sensitive individuails.

The changes in the genetic components of variance are due to
changes in gene frequency and due to the generation of positive link-
age disequilibrium amongst the loci affecting the trai£° Robertson
(1956) using a single locus model, showe&‘that in very larée popﬁlations

disruptive selection leads to stable intermediate gene frequencies,
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though the change in frequency per cycle of selection is likely to

be very slow, The existence of positive linkage disequilibrium was
shown experimentally by Thoday and Boam (1959) but it is only recently that
we have had a theoretical framework which allows us to understand its
quantitative effects on the genetic variance of metric traits (Bulmer,
1971) ., Bulmer worked with a model of an infinite number of loci and
showed that the changes in the genotypic variance caused by disruptive
selection were due to exclusively the generation of positive linkage
disequilibrium and developed.formulae which predict such changes,
These results were checked by computer simulation studies (Bulmer,
1976b)and it was found that observgd and predicted values of disequil-
ibria in equilifrium populations were in good agreement,

The purpose of this section is to extend Bulméf's results to an
additive model with a finite number of loci with particular emphasis
on exﬁeriments of short term duration, This work was stimulated by
the results of a replicated disruptive selection experiment with

Drosophila which is reported in the following chapter,

Changes in the Genotypic Variance Caused by Disruptive Selection,

In this'section we study the effect of disruptive selection on
changes of the geﬁotypic variance, We shall deal with additive
models of the type described in Chapter 3. ’ We first deal with
the change in gene frequencies and its effect on the equilibrium
addi tive variaﬁce and in the proceeding section we study the generation

of joint disequilibrium,
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Changes in gene frequencies

We now assume that the metric trait is normally distributed and
that a certain constant and equal proportion are saved for breeding
at each generétion. The truncation point at each end of the distri-

bution corresponding to the proportion selected is M+T and M-T., The

. . . th A
probability of selection of the ij— genotype is:

- - -3 - 2
-(X-X, ) -(X-X, )
_ 1 J 1j f‘ 'y
W, = exp( ydx + exp( -————zi-—)dx} (9.1)
YoooEm = 20 : 20

As we did in the case of directional selection, we expand (9.1) in a
Taylor series gbout the population mean, M, which after some manipu-
lation yields the following second order épproximation,

. Qix . _ 2
Wij =2Q +—7 (xij-M) _ (9.2)

where, as before, Q is the proportion selected at each extreme of the
distribdtion, xT; is the point of truncation in standard deviation
units corresponding to Q and i is the intensity of selection, The
probability of selection of the iZ: gametic phase is easily shown to

be equal to,

Qi

W, =2Q +

- 2 :
L Vo, + (X -1D7) (9.3)

g

where Vwi is the variance within the 122 gametic phase and ii its

mean, The mean fitness is given as a.second order approximation by,
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Qix .

T 2 2
> (22, P(1-p) + 2a, q(1-q) + 4a,a,D) (9.4)

W=29 +

g

The change in the frequency of the plus allele at locus A is,

Ap = (fl(Wl—W) + fz(Wz-W)) (9.5)

= |-

i
9 .
Substituting (9.3) and (9.4) in (9.5) and letting —%'= l1 -—YVG to

w o2
second order terms, we obtain:

i
Ap = —=(a
20

2

2
1 p(l1-p) (1-2p) + a, (1-2q)D + 2a1a2(1-2p)D) (9.6)

which reduces to the expreésion obtained by Robertson (1956) if gene
frequencies between loci A and B are uncorrelated. From (9.6) we can

draw the following important conclusions:

(i) In large populations, gene frequency changes under disruptive
selection are likely to'be small if gene effects are not large
and they tend to a stable intermediate equilibrium value and,

(ii) In laboratory experiments of relatively short terﬁ duration
changes. in the equilibrium additive variance due to changes of

~ gene frequencies caused by Qisruptive selection are not likély
to be detected. In fact, most of the changes in the equilibrium

additive variance are likely to be due to genetic drift.
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The Generation of Linkage Disequilibrium,

We now derive a second order approximation for the covariance
of gene frequencies wit@in gametes generated by disruptive selection
for the two locus additive model, We first study the disequilibrium
in the parental generation, before recombination takes place and we
then extend the result to the offsp?ing generation, allowing for re-
combination,

At generation t, amongst selected genotypes, we have:

(s,t) _ _ (s,t)
D = (32, - 1,1 ’ .
where
f )
2 = O Sl w - P, =1,

Using (9.3) and (9.4) and following the algebra through, the disequil-

ibrium in the parental generation is given by,

i : 1%,
p(8:t) _ p(®) +'f—f1 alp(l-p)azqcl-q)}(t) - '?T[zalaznz
2 202

2 (t) o\
- (a,(1-2p) + a,(1-2q)) D} 9.7

This can be written,

(t)

£ is the fresh disequilibrium generated in the tEE selection

where D
cycle.
When the populatién is initially in linkage equilibrium, (9.7)

reduces to,

i

,0). 1
D(s 0).= D( ) = 0_2_ alp(l_p) azq(l—q) (908)



For a given intensity of selection the initial generation of
positive linkage disequilibrium is maximum when gene frequencies are
intermediate, In contrast with the case of directional selection,
D(s’t) is rather sensitive to the amount of selection applied. This
is illustrated in Table 9.1 where values of ixT are shown for different

proportions selected. For comparison we also produce values of

1(i—xT) corresponding to the directional selection situation,

TABLE ‘9,1:

Values of ixT and 1(i-xT) for different proportions selected, In
the case of diSfuptive selection (ixT), Q corresponds to the total

" proportion selected at both ends of the distribution., (For example,

Q = 20% implies that 10% are selected at each extreme). For
directional selection (i(i-xT)), Q = 20% implies that 20% are selected

at one extieme of the distribution.

Q
1% . 10% .. ..20% .. ... .50%
1xT 7.449 3.393 - 2,249 0.857
i(i—XT) 0.918 ‘0,821 0,781 0.637

The figures in the table also illustrate the fact that for the
same proportion selected, the amount of disequilibrium generatgd by
disruptive selection is considerably larger than the disequilibrium
~ generated Sy directional selection; particularly for high selection

intensities., For example, for a total proportion selected of 20%
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disruptive selection generates almost three times more disequilibrium
(of the opposite sign) than directional selection,

In the t+1 cycle of selection, the covariance of gene frequencies
within gametes in the offspring generation is easily derived, since,
as was shown before,

W
D22y Df(t+1)

w

p(t+1) _

D (9.9)

The important point to notice is that, with close linkage, a larger
proportion of the previously existing disequilibrium is passed on to
the next generation. Since, with disruptive selection, D is positive,
from (9.6) we conclude that, the tighter the linkage the higher the
change in gene freqﬁéncy at a given locus. This‘result is intuitively
obvious, since it is clear that with disruptive selection, both ex-
tremes are favoured and once we have generated such combinations, we
do not want fd break them down, Similar results were arrived at
empirically by Maynard Smith (1979) using deterministic simulations,

We now produce some numerical results to illustrate some of the
concluéions we have drawn from this analysis, Table 9.2 shows the

course of 10 generations of disruptive selection in an infinite popu-

‘numerical integration.

The results clearly indicate that gene frequencies do not change
by a very substantial amount after 10 generations of seiection even
though gene effects are quite large, In agreement with theory the

change in gene frequency is towards intermediate values and is larger
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TABLE 9,.2:

Gene fréquencies (q) and linkage disequilibrium (D) in 10 generations
of disruptive selection (10% at each extreme), for a two locus addi-
tive model. Gene effects and frequencies are the same at both loci
and recombination fraction (c¢) is 0.5 and 0.01. Proportionate
effects are 0.34 phenotypic standard deviations. Initial gene fre- .

quencies are set at 0.35.

qx 102 D x 105
t c = 0.5 c = 0,01 c = 0.5 c = 0,01
) 35.00 35.00 0.00 0.00
2 36,77 36,77 210,29 269,48
4 " 38,66 38.84 287,64 553,53
6 40.39 41,01 319,81 833,80
8 41.90 43,07 335,62  1,094,00
10 43.20 44.86 344,70  1,324.04

with tight linkage but the difference is small. Tﬁere are consider-
able differences in the amount of disequilibrium generated with the
two degrées of link#ge. This merely reflects the fact that in large
populations undergoing disruptive selection, the tighter the linkage
the smaller the relative 'loss' of the favourable combinations through
recombination with the consequent increase in frequency of the coup-
ling heterozygote over the repulsion heterozygote in successive

generations.
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These results can be extended to allow for an arbitrary number
of loci. The simplest possible approach is to ignore the changes
in the equilibrium additive variance on the grounds that in a very
large population, gene frequency changes due to disruptive selection
are small, It then follows that we can describe the process using
the results of the infinitesimal model proposed by Bulmer. Thus,
using the notation of earlier chapters, we can write, assuming free

recombination and following Bulmer (1971):

i
cw D = g—z%;; va?(® 4 e (D (9.10)
o
where i
vel® = vg® 4 aw® (9.11)
where Vg(o) is the equilibrium additive variance in the base population,

The validity of this approach is checked in the simulation work that

follows.

Simulation Studies.

The simulation programme used in this work was developed from
the one used to study directional selection. A subroutine which
~selects the lowest scoring males and females was incorporated into
the programme, The N highest (H) and lowest (L) males (m) and fe-
males (f) out of a total of M individuals scored from each sex were
selected and mate§ in the following way during t cycles of selection.

3 Nm (H) x 3 N£ (H)
3 Nm (H) x % Nf (L)
3 Nm (L) x # Nf (H)

3 Nm (L) x % Nf (L)
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Each pair of mates contributed the same number of offspriné
to the next generation, 25% of which came from each of the four
types of mating. The choice of which of the highest or lowest
selected individual should contribute to a particular type of mating
was completely at random. Under this'type of mating regime the ex-
pected phenotypic correlation between mates amongst selected indivi-
duals is zero.

Table 9.3 summarises the genetic parameters of the various models
studied. All these models assume additivity between and within the
30 loci which are uniformly distributed along the chromosome and 20
out of 200 individuals of each sex are éelected at each extreme of

the distributioh.

TABLE 9.3: Summary of the input of the various models.

Model de- Rec. frac- . Proportionate Herita- Initial
signation tion (c) effect (a/o0) bility frequencies
(a/¢) (h2) Q)

0.5/0.5 0.5 0,18 0.50 0.5
0.2/0.5 0.5 0,23 0.50 . 0.2
.0.8/0.5 0.5 ’ 0.23 0.50 0.8
0.5/0.0 0.0 . 0.18 0.50 0.5
0.5/0.01 0.01 0.18 0.50 0.5
0.5/0.1 . 0.1 0.18 0.50 0.5

5 loci 0.46 5 loci 0.2
0.2;0,5/0.5 0.5 " 0,50

25 loci 0.11 25 loci 0.5
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The first colummn in Table 9.3 shows the way the models are
designated. The figure or figures at the left of the slash represent
the initial gene frequencies. The figure at the right of the slash
represents the recombination fraction which is the same for all ad-

jacent loci.

Results and Discussion,

The results for the models with free recombination are shown in
Table 9.4 and 9.5. The genetic parameters shown during the four
cycles of disruptive selection are the total génotypic variance (VGQ),
the amount of joint disequilibrium (CLW) and the iealized heritability
in the high (hg) and low (hi) selected fraction of the population,
These realized heritabilities were calculated in the following way.
For example, h; ié obtained by dividing the deviation of.the mean of
the offspring of the H x H matings from the'mean of the preceding un-
selected population by the deviation of the mean of the H x H selected
individuals from their contemporary (unselected) mean, These esti-
mates are a description of the available genotypic variance for
selection at a particular generation at each end of the distribution,

In both Tables 9.4 and 9.5, the difference between VG(t)

£ 4\
\vs

-

and
CLW is an estimate of the equilibrium additive variance (ignoring
a small effect due to departures from Hardy-Weinberg equilibrium).
It will be noticed that in model 0.5/0.5, this difference is practi-
cally constant during the four cycles of selection, reflecting the

fact that gene frequency changes during this period are minimal., In

model 0.2; 0.5/0.5, where five loci have relatively large effect,



Observed (0) and Predicted (P) values of génetic parameters after four cycles of selection,

TABLE 9.4:
for models 0.5/0.5 and 0,2; 0,5/0:5, The predicted results are obtained from (9.10) and (9,11).
VG: total genotypic variance = Vg + CLW '
hﬁ: single generation realized heritability in the high extreme
h%: single generation realized heritability in the low extreme
Observed results are the average of 30 replicates, The standard errorsof h2 are 0,01,
Model 0.5/0.5 Model 0.2; 0.,5/0.5
2 2 2 2
VG CLW _hH hL VG . CLW hH‘ hL
o 14,79+0,16  -0,11%0,15. 0.53 . . 0.48. . 9.6810,12 0.23t0.10. = 0,55 0.49
0 23,00+0.49 8.26+0,48 0,68 0.70 15,16+0,31 5,37+0.28 0,75 0,65
1 .
P 23.43 8.43 14,90 5,36
(4] 39.97+0,91 24,94+0,91 0.77 0,74 26,08+0.77 15,22+0,74 0,78 0.73
2 3
P 35,30 20,30 . 22.44 12,91
0 58,06+0,97 43,04+0,97 0.80 0.80 37.56+1,.16 26,15+1,11 0.81 0.77
3 .
P 83.02 38,02 33.70 24,18
(4] 78.58+1, 30 63.94ii¢31 - - 49,36+1,29 37.60+1,24 - -
4
P . 80,560 65.50. . .. .. .. .. .. .. . 81,7 .. ... .. 41,64

‘002



TABLE 9.5: Observed (0) and Predicted (P) values of genetic parameters for models 0.2/0.5 and
0.8/0.5.- Observed results are the average of 30 replicates.
Model o;z/o.s Model 0.8/0.5
VG CLW hﬁ hi VG CLW h: hi
9,74t0,11 0.200,11. . 0,53. 0,50 9,680, 14 0.15£0,14 0,48 0.54
115,15%0, 37 5.58:0,37 0,73  0.66 14,990, 37 5.43:t0,35  0.68 0.74
15.00 5.40 15,00 5.40
25,63t0.71  15.63t0,70 0.80 0,73 25, 890,64 15,93+0,62 0,74 0.80
22,59 12.99 . 22,59 12.99
37.46t1.04  27.20t1,02  0.82  0.77 38, 36+0. 80 28.190.80  0.78 0.81
33.93 24,33 33,93 24.33
51.62t1.42  41,36t1,37 - - 50.61+1,12 40,41+1,11
51,52 41,92 51,52 41,92

‘102
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there is a small increase in Vg from about 9,6 squared units to 11.7
at generation 4, reflecting the change in gene frequency of the
major loci towards intermediate values ‘as selection proceeds. The
results in Table 9.6 show that even though initial gene frequencies
are rather extreme, predicted results are in good agreement with ob-
served results. In both runs, gene frequencies move slowly towards
intermediate values. In run 0.2/0.5, the equilibrium additive var-
iance at generations O and 4 was 9.6 and 10.0 respectively and the
increase of the genotypic mean was of 1.72iD.11 units. In run 0.8/0.5,
the value of Vg at generations O and 4 was of 9.6 and 10.0 squared
units and the decrease in the genotypic mean was 1.56t0.15 units,

The small degreé_of asymmetry in the observéd realized heritabilities
in both runs is as expected from theoretical considerations, this
asymmetry tending to décline in later generations,

The predictions of joint disequilibrium are in good agreement
with observed results. The increase in the genotypic variance due
to the generatiqn of joint disequilibrium is reflected in the in-
creasing values of h2 in both directions. This merely says that as
selection proceeds and the genotypic means of the high and low matings
move towards opposite extremes, the phenotype of an individual becomes
a'more_accurate predictor of its genotype. Tnis phnenomenon of Course
is likely to cause departures from normality aﬁd will affect the est-
imétes of heritabilify in that these will be different for different
intensities of selection. The regression of offspring on parent, al-
though it is symmetrical, is no longer linear. We shall discuss in

more detail the development of the lack of linearity of the offspring
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parent regression with disruptive selection in the next chapter.
Table 9.6 shows the simulation results of the amount of joint
disequilibrium generated as selection proceeds with different degrees

of linkage. Gene frequencies are initially at intermediate values

in all runs,

TABLE 9,.6:

Montecarlo simulation results of joint disequilibrium for various
degrees of linkage (c) between adjacent loci, ~ Average of 30

replicates in all rums, Proportion selected: 20/200 in each

sex at each extreme,

C
0.5 0.1 0.01. .0.00
-0.11¢0.15  0.11%0.21 -0.12%0.15 =-0,10%0.16
8.26+0,48  8,37+0.55  8.56+0.49  8,.35%0.46
24,94+0.91 25,06t1,17 25,05+1,02 24,84+0,83
43,04+0.97 44,33+1.97 42.17+1.80 41.35+1.70
.63,94%1,31 .62‘».8.112‘.22, 59,87+2,92 55.58t2,74

. Up until generation two there is no detectable effect of link-
age on the degree of joint disequilibrium generated, In later
generations cdntrary to theoretical expectations based on determin-
istic models the tighter the linkage the smallér the amount of dis-
eguilibrium produced, This result is a consequence of the finite-

ness of the popuiation; The maximum amount of disequilibrium



1204,

produced is when the selected individuals at each extreme of the
distribution are fixed for either the plus or minﬁs alleles, Con-
sider the extreme case of no recumbinafign.In this situation, we can

do no better than fix the best gamete out of the initial sample,

The probability of obtaining the desirable allele at all loci in the
inifial sample of gametes will depend on the gene frequency, the
number of loci and the sample size, Provided the population size is
not too small, the-critical parameters are the number of loci and the
gene frequencies. The larger the number of loci the higher the re-
quired initial gene frequency in the base population to have a given
probability of obtaining the extreme gamete in the initial sample
(Robertson, 1970a).

For a relatively small number of loci, provided the initial fré—
quencies at all loci are not:small, we will expect little effect of
the degree of linkage on the amount of disequilibrium generated
throughout the selection process, bécause we are likely to have picked
the éxtreme gamete in thé initial sample, If selection intensities
are high enough that we caﬁ select our extfemes from the H x H and
LxL matings exclusively,- we are likely to fix all the plus and minus
alleles at both ends of the distribution and therefore CLﬁ will reach
its maximum poggible value. On the other hand,
loci, we have a very small probability of selecting the best possible
~ gamete in the initial sample and if linkage is complete we cannot
~ generate it through recombination as selection proceeds. We therefore
expect a smaller degree of divergence between the mean of the high. and
low extremes and considerably less disequilibrium at fixation than in

the case of free recombination,
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These points are illustrated in Table 9.7, Models involving
two different numbers of loci (4 and 20) and different degrees of
linkage between adjacent loci were run for 20 generations of selection,
As expected, with a small number of loci fixation is reached in a few
generations and linkage has no detectable effect on either the amount
of joint disequilibrium generated or on the number of generations re-
quired to reach the maximum possible divergence. With 26 loci however,
linkage has a substantial effect on bofh parameters though these effects
are small during the first few cycles of selection, Equivalent models
to the ones presented in Table 5.8 with 50/200 selected at each ex-
treme showed similar patterns though the difference was less maiked.
It is 1nterest1hg to point out that in the case of the infinitesimal
model, with large (infinite) population size, the selection intensities
that we have been using in these simulations would lead to an increase
of joint disequilibrium wi&hout bound, This is due to the fact that
witﬁ intense selection we pick our extreme pheﬁotypes from the extreme
matings and theoretically the divergence does not reach a maximum
possible value (Bulmer, 1976Db) ‘- |

These results have important consequences on estimators of heri-
tability from populations which have undergone disruptive sglection.
In the case of intra-class correlations; as was shown before,'all the
fresh disequilibrium takes place between full-sib families and the
within family component is not affected if loci recombine freely, be-
cause a proportion approximately equal to (1-2c) of the already existing
disequilibrium takes place within full-sib families, This result was

derived using a deterministic model and it does not hold in the case of
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TABLE 9.7:

Montecarlo simulation results of joint disequilibrium (CLW) and
ratio of observed mean of H x H matings to maximum possible value
(iﬂ/iMAX) assuming fixation of plus allele at all loci for 3 values
of recombination fraction (c) between adjacent loci, In all runs,
the highest and lowest 20 out of 200 are selected, Initial gene
frequencies are 0.4 and the equilibrium additive variance is 9.6

for all models, The results of the models involving 4 loci are the

average of 15 replicates; those of 20 loci are based on 7 replicates,

4 loci _ 20 loci
t C CLW i i
MAX MAX
0.50 -0.13t0.15  0.40 0.04%0,18  0.40
0 0.05 -0.10+0.14  0.40 -0.26%0.18  0.40
0.00 | 0.10t0.14 0.40

-0,16%0.18 0,40

0.50 12.62+0.71 0.76 16,02+1,12  0.54
2 0.05 13.14+0.84  0.77 13,48+1,13  0.54
0.00 | 12,.85t0.72 -0.76 14,14%1,18  0.54
0.50 26.31+0.52 0.95 59,83t2,92 0.68
5 0,05 26.65:0.52 0,95 44,43%5,59 0,66
0.00 26.36:0.64 0,94 42,40%3,08 - 0.66
10,50 30.19%0.10  1.00 108.89%5.39 0,82
10 0.05 30.38t0.20 1,00 | 86.94%6.42  0.77
6.00 30.38%0.20 - 1.00 53,58:5.75  ©.70
0.50 30.10t0.05  1.00 | 176,70t4.77  0.97
20 0.05 30.19+0.09 1,00 135.41¥7.94 (.87

0.00 | 30.21¥0,10 1,00 | 59,32¢6,73 - 0.71
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disruptive selection if populations are of finite size, Our
simulation results suggest that the degree of linkage only affects
the between family component through its effect on the amount of
disequilibrium‘generated, but the within family component is not
affected by it. The genetic component of the variance within
familiesAtends to zero as the extreme gametes tend to fixation.

Table 9.8 shows the variance components within and between full-
sib families, the intraclass correlation and the éingle generation
realized heritability of the high selected extremes .for the models
of Table 9.7, The corresponding estimate of h2 for the low end of
the distribut;on did not differ from that of the high and is omittqd.
For brevity, oniy the results corresponding to complete linkage and
free recombination are shown in the table.

The intra-class correlation at generation t is obtained from an
analysis of the phenotypic variance of the offspring of generation
t+1. In other words, we are estimating the genotypic variance
amongst individuals selected at both ends of the distribution at
_ generﬁtion-t. For comparison we include the single generation real-
ized heritabilities in the high direction. This estimate at generation
t is based on regressing the deviation of the mean of the pffspring of
the H x H matings at generation t+l from the unselected mean at
generation t, on the selection differential. The most conspicuous
feature of the results is the large bias upwards of the intraclass
correlation as an estimator of the heritability dﬁe to the effect of
the joint disequilibrium on the between family component. It is also

clear that the within family component is not affected by the degree
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TABLE 9.8:

Variance component between full-sib families (Og), within full-sib
families (oé) and intra-class correlation (t) for the models of Table

9.7, The environmental variance in both models is of 9.6 square

units. The standard errors of t and of the single generation real-
ized heritabilities (hi) are 0,01, h2(0) = base population heritability.
4 10ci h2(® = 0,50
t c o2 02 t h2
w b r
1 0.5 13.54+0,28 10,500, 36 0.44 0.74
. 13.44+0.39 10.12+0.47 0.43 0.74
2 0.5 13.01+0.23 20.24+0.62 0,60 0.75
0.0 13,71+0,39 19,83+0,75 0,59 0.78
5 0.5 "10,44+0.15 36,51+1,09 0.78 0.77
0.0 10.66+0.25 36,09+0.94 0.77 0.74
10 ©-5 9,81+0,22 40,98+0.64 0,81 0.75
0.0 10.02+0,22 40,93+0,63 0.80 0.75
20 0-5 9.98+0.23 41,29+0, 46 0.81 0.77
0,0 10.06+0.25 41,30+0.45 0.80 0.77
20 1oci  h2(? =-0,50
; 0.5 14,300,37 12,50+0,47 0.47 10,67
0.0 '13,46+0,54 10.39+0,66 0.43 0.69
9 0.5 14,60+0,41 21,75+1,06 0.60 0.77
0.0 15,53+0,56 19.56+1,51 0.55 0.75
5 0.5 13,08+0.84 71.51+3,77 0.84 0.81
0.0 14,47+0.61 50,54+ 3,84 0.77 0.77
10 05 11.03+0,56 115,39+5,70 10.91 0,81
0.0 9,.52+0,71 61,04+5,78 0.86 0.77
0o 005 9.86+0.51 191.50+0,76 0,95 0.86
0.0 9,53+0,58 68,24+6,41 0,87. 0.77 |




of linkage and that its genetic component tends to zero as extreme

gametes reach fixation.

Conclusions

The main findings of this work can be summarised as follows:

(i) Using a two locus additive model, we have shown that under
disruptive selection, gene frequen;y changes are of order
(a/o)2 and that in large populations, gene frequencies tend
to move towards stable intermediate values. These results
are in agreement with those obtained previously by
Robertson §1956) who worked with single locus models.

In large populations, changes in gene frequency increase

with tight linkage.

(ii) Recurrence equations are developed for the amount of dis-
equilibrium generated with disruptive selection under a twé
" locus additive model, In contrast with the case of
-directional selection, the generation of disequilibrium is
rathef sensitive to the intensity of selection applied and

it is perfectly symmetrical. In other words, the same
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whose initial frequencies are equidistant from 0.5,

(iii) Contrary to predictions based on deterministic models, we
have shown that with pqpulations of finite size, the
tighter the linkage the smaller the amount of disequilibrium
produced. This effect however is not important during the

early cycles of disruptive selection,
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(iv) We suggest that in populatioms undergoingAﬂisruptive
selection, the difference between heritability estimates
based on single generation realized heritabilities and
on intra-class correlation betweén sibs provides evidence
of the existence of joint disequilibri&m generated during
selection, Problems of lack of linearity of offspring
parent regressions which develop as a consequence of
disruptive selection are mentioned and will be discussed

in the next chapter,

As was mentioned at the beginning of this chapter, this work was
stimulated by Q disruptive selection experiment carried on with
" 'Drosophila, Some of these.theoretical results however may be rele-
vant to the question posed initially by Fisher (1930) and more
;ecently by Maynard Smith (1978), namely: what selective forces
maintain sexual reproduction and genetic recombination in nature?
In a recent paper, Maynard Smith (1979) concluded £hat both normalising
aﬁd disruptive selection are forces that tend to reduce recombination,
We have shown that in the case of disruptive selection, this is true
for infinite populations. With finite population size however,.this
result does not seem to ﬁold, at least for the rﬁther extreme model
of selection studied here. Further work on this area may help towards

the elucidation of this challenging problem.



CHAPTER 10

EFFECT OF DISRUPTIVE SELECTION ON GENETIC VARIABILITY

- EXPERIMENTS WITH DROSOPHILA
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Introduction.

The consequences of disruptive selection on the genotypic vari-~
ance of a metric trait have been well established over the years.
Robertson (1956) working with a single locus model, showed that
selection of extremes in large populations will cause gene frequencies
to move towards stable intermediate values, but the rate of change per
generation is likely to be very slow, Mather (1941, 1943) argued
that the higher fitness of metric intermediates will lead to the build
up of repulsion linkages. Mather's argument in a disruptive selection
context implies the build up of coupling linkages or positive linkage
disequilibrium, Assuming an additive model, both gene_frequencies
moving towards ‘intermediate values and the generation of positive
linkage disequilibrium will lead to an increase of the genotypic
variance,

Substantial increases in the additi§e genetic variance of metric
traitsiin disrupti?e selection experiments have been reported bj
various workers (Thoday; 1959; Millicent & Thoday, 1961; Gibson &
Thoday, 1963; Scharloo, 1964; Scharloo et al,, 1967; Barker &
Cummins, 1969) and Thoday and Boam (1959) have provided evidence for
the maintenance of coupling linkage disequilibrium.

It is only re , however that we have had a theoretical
framework which allows us to quantify the effect of disruptive selec-
tion on the genotypic variance of a metric trait (Bulmer; 1971).
Bulmer worked with a model of an infinite number of loci and showed

that the changes in the genotypic variance caused by disruptive

selection were due to exclusively the generation of positive linkage
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disequilibrium and developed formulae which predict such éhanges,
The consequences of introducing é finite number of loci into the
model were reported in the previous chapter.

In view of the rather inconclusive results of the directional
selection experiments with Drosophila described in Chapter 8 aimed
at studying the generation of joint disequilibrium due to selection,
it was decided to perform experiments on disruptive selection,
Selection of extremes leads to relatively larger generation of joint
disequilibrium and therefore its effects on the genotypic variance
are more likely to be detected experimentally. The present short

term experiment with Drosophila melanogaster was designed as a check

on the theory developed by Bulmer.

Basically, the experiment consisted of carrying out three cycles
of disruptive‘ selection, followed by a period of relaxation. Herit-
ability was:estimated during the period of selection and at the end
of the period of random mating, On the assumption of Bulmer's theory
we anticipate an increase in the heritability during selec‘t‘ion, due
to the build up of positive linkage disequilibrium followed by a
decline at the end of the period of random mat:l;ng, presumably due to

the breakdown of the joint disequilibrium,

Material and Methods.

The lines were derived from the Dahomey population, This pop-
ulation originated from a large sample (numbers unknown) of flies
collected in West Africa in 1969, Since then, a number of cage

populations have been mainta;ined in this laboratory from which samples
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were taken to originate the lines.

The character measured was the sum of the abdominal bristles
on the fourth and fifth segments in males and fifth and sixth seg-
ments in females,

The experiment was run with two replicates, In replicate 1
eggs were sampled from the population cage in four half-pint milk
bottles, WVhen the adults emerged, 160 males and 160 virgin females,
sampled in equal numbers from each bottle were scored and constituted
~ generation 0. The highest (H) and lowest (L) 16 males and 16 fe-

males were selected and mated in individual vials in the following way:

Number of : Number of offspring con-
full-sib families Males x Females tributed by each mating
pair
8 H x H 5
8 H x L ’ 5
8 L x H 5
8 L x L 5

Within each type of mating, flies were paired at random and the
choice of which flies within each extreme should be mated with high
or low partnersrwas also random, The expected phenotypic correlation
between mates is therefore, O. At generation 1, 5 males and 5 fe-
males from each full=-sib family (vial) were chosen at random from
those first emerging (from the first 36 hrs of emergence). The

males and the virgin females were aged in vials for three days and

after scoring they were mated as described above, with several spare
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matings kept until the hatching of the larvae to replace umsuccessful
matings. At generation 3, after scoring, one male and one female
were chosen at random from each of the 32 families and introduced into
a half-pint milk bottle for random mating. After 24 hrs ;11 flies were
shaken off into another bottle without etherization and allowed to lay
eggs for about 8 hours. This random mating procedure was continued
for 7 generatiomns. At generation 10, after 7 cycles of random mating,
and at generation 11, after 8 cycles 6f random mating, 160 flies of
each sex were sampled and scored from the half-pint milk bottles and
the extremes selected and mated as described above following which

the replicate was discontinued. ‘

Replicate é differed slightly from replicate 1 in that flies
that contributed to generation zero were-themselves‘reared in vials.
Further, the cycles of random mating were carried on in vials rather
-than in bottles, each family contributing one male and one female to
the next generation and this procedure was continﬁed for 4 generations
rather than 7, The replicates were not run contemporaneously.,

The flies were reared in standard Edinburgh agar-molasses-killed
yeast medium i# which drops of live yeast had been added. The
cultures were kept in a room at constant temperature (25°C) aﬂd 1it
continuously for 24 hours, |

In both replicates, heritability was estimated from the regression
of offspring on the selectéd mid-parental values, at generatiom O,

1 and 2, and at the end of the period of relaxation.



Results.

Estimates of various base population parameters from each re-

plicate are shown in Table 10.1.

vided estimates of heritabi lity of the base population based on

offspring-midparent regressions.

"TABLE 10,.1:

Parameter estimates from each replicate

Xm : mean of males

if : mean of females

VP(m) : Phenotypic variance (males)

VP(fj : .Phenotypic variance (females)

The first cycle of selection pro-
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(1) : heritability estimates based on offspring-midparent regressions.

Means and phenotypic variances based on 160 observations.

Replicate 1 33.48 38.89 8.19

Replicate 22 35.61 40.21 7.52

The heritability estimates of both replicates are in reasonable
agreement with those reported in Chapter 8.

2 are significantly higher than those of replicate 1 and this may be

The means of replicate

a consequence of the fact that at generation zero, flies in replicate

2 were reared in vials whilst those of replicate 1 were reared in

bottles.



Tables 10.2 and 10.3 show the means of the offspring of the
di fferent mating types for both replicates and Figure 10.1, shows‘-
the means of the offsprings of the H x H and L x L matings expressed
as deviations from their contemporary means, The results show that
there is good agreement between the responses of the H x H and LxL
matings in both replicates and no signs of asymmetry are suggested
by the data, In both replicates, the means of the H x L and L x H
are very similar and the difference between their average and the
contemporary méan does not differ significantly from zero, suggesting
that neither sex-linkage nor dominance gene action are important in
this character.

In replica£§ 1 the overall mean 1ﬁcreases ffom generation 3 t§
~generation 6 and it remains at a value between 38 and 39 bristles
until the énd of the experiment. As no controls were used it is
difficult to assess whether the change is due to an environmental
trend, due to natural selection acting against the low deviants or due
to drift. Since in this replicate the flies were kept in bottles
during the period of rela#ation, there is no control over the effect-
ive population size and any bottlenecks during this period can cause
subsfantial changes in both mean and variance. No signs 'of trends
in the overall mean aré present in feplicaté~2.

Figures 10.2 and 10.3 sﬁow the frequency distribution of the
total number of bristles of individual females for va;ious periods of
the selection programme for replicate 1 and 2 respectively (the dis-
tribution in males follow éimilar patteins and are omitted). We

have also included the frequency distribution of the offspring of the

216.
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37.5%0.4

TABLE 10.2: Means of the offspring of the different type of matings
in replicate 1
Gener- HxH mxL . LxH . Lxui  oversll
ation Mean
1 37.2%0.4 35,.7+0.4 36.8+0.4 33,80.4 35.8+0,2
2 38.4%0.4 35.2+0.4 35,3+0.4 33,3+0.4 35,6%0.2
3 41.7+0.6 34.9+0.6 35.7+0.6 31.6+0.6 36.0%0.3
6 39.1%0.3
9 39.0%0.2
10 41.0%0.5 37.8+0.5 38.3%0.5 34,8t0.5 38.0+0.2
12 41.6%0.5 39.2%0.5 39.7t0.5 36.8+0.5 39.3%0.2
- TABLE 10.3: Means of the offspring of the different types of mating
in replicate 2,
| Genmer- HxH HxL LxH L xp1  Overall
ation Me an
38.5%0.3 37.3%0.3 37.2+0.3 35.0%0.3 37.0%0.2
42.1%0.5 37.2%0.5  38.0:0.5  34.9%0.5  38.1%0.3
41.3%0.5 36.9%0.5 38.1*0.5  32.9%0.5  37.3%0.3
'8 39.6t0.4  36.7%0.4 35.3t0.4 - 37.3%0.2




FIGURE 10.1: Means of abdominal bristle scores of H x H and L x L offspring expressed as deviaticns

from contemporary mean, (Average of males and females).
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FIGURE 10.2:  Replicate 1. Frequency distribution of abdominal bristle
scores in females at generation zero (a) during the three cycles of selection
(b,c,d) ané at the end of the period of relaxation (e). The solid columms
refer to the offspring of the L x L matings and the cross hatched columns to
the offspring of the | x |} matings..
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FIGURE 10.3: 2951315 13351355375 1395 415435/ 455475 ' 495'515
Replicate 2. Frequency distribution of abdominal bristle scores in females
at generation zero (a) during the three cycles of selection (b,c,d) and at
the end of the period of relaxation (e). The solid columns refer to the
offspring of the L x L matings and the cross hatched columns to the offspring

of the f x § matings.,
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HxH and L x L matings. As expected, as selection proceeds the
overall distribution becomes more platykurtic and the H x H and L x L
distributions -tend to move apart, After three cycles of selection
there is very little overlap between the H x H and L. x L distributions
and the result is consistent in both replicates. This result is
also illustrated in Table 10.4 (a and b) where we show the observed
(and expected) proportions of flies selected at each extreme of the
distribution coming from each qf the four types of mating in the
previous generation, It is clear that as the two extremes become
differentiated, the phenotype of an individual becomes a better pre-
dictor of its breeding value and therefore the choice at each end of
the distribution is more accurate. This is another way ofvsaying V
that this type of selection causes substantial amounts of bositive
linkagé disequilibrium with consequent increases in the heritability.

The differencé betﬁeen observed_and predicted contributions
(numbers in brackets in the table) partly give an indication of the
degree of unsuccessful matings. These were low and non-fertile
matings were not associated with any given mating type.

Tables 10.5 (a and b) show estimates of offspring—midﬁarent re-
~ gressions and estimates of intraclass correlations obtained from
analysis of variance between full-sibs during different stages of
the selection programme in both replicates; The positive build up
of linkage disequilibrium is clearly demonstrated in the estimates
of'heritability by offspring-midparent regressions. As was shown
in the previous chapter, disruptive selection in the parental gener-

ation causes the estimates of heritability from intra-class



TABLE 10.4a: Replicate 1.

Gener-
ation HxH H x L(L x H)

'L'x L

offspring of each type of mating.

1 0.41 0.41
(0.47) (0.38)
2 Q.84 0.16
(0. 84) (0.16)

offspring of each type of mating.

Proportion of high extremes selected from the

Propoitian of low extremes selected from the

0.18
(0.15)

0.00
(0.00)

1 0.09 0.25 0,66
(0.09) (0.13) (0.780
2 0.06 0.22 0.72
(0.06) (0.22) (0.72)
"TABLE "10.4b: Replicate 2,
Gener~- .
lation '~ HxH " HxL(LxH) " L'xL°

~spring of each type of mating.

1 0.62 '0.34
(0.62)* (0.34)
g 0,88 0.09
(0.88) (0.09)

anrine of each tvne of mating._
Fr et T SEYE O Sogrs Y- SRVSSSos

. 0.07 '0.34
(0.07) (0.24)
5 .0.00 0.31

| (0.00) .. .. R

Proportion of high flies selected from the off-

Proportion of low flies selected from the off-~

0,04
(0.04)

0,03
(0.03)

‘0.59
(0.69)

0.69

*In both tables, the numbers in brackets refer to

proportion based on the selected mating. -~ Due to infertility spare
matings were occasionally used and this effect is partly reflected
in the difference between the number in brackets and the number

directly on top of it.

the expected

222,
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TABLE 10.5a:

Estimates of heritability obtained from offspring midparent re-
gressions and intraclass correlations between full-sib families,
The intraclass correlation at generation t is obtained from the
analysis of the offspring at generation t whose parents were

selected in the previous generation.

Generation .. . bo§4.. L2 xt
) 0.38+0,07  0.77%0.12
0.54+0.09 1,00%0,11

2 0.74+0.07 1.25+0,13

9 .0.47£0.04  0.61%0.13
11 , 0.47t0.06  0.66+0.14

TABLE 10.5b: Replicate 2.

Generation boﬁ 2 x tc_
(0.24%0.14) V)
o 0.35:0.08  0,.88+0,12
0.72+0.07  1.03%0.11 .
2 '0.64t0.07  1.09%0.11
. (0.46%0,13) 1)
7. 0.44%0.07. . 0.77%0.12

1) L L. s s - o ‘
*"“The structure of the data in this repiicate ailowed estimation

€

of the intraclass correlation before the operation of selection,
both at generation O and at the end of the period of relaxzation.
In both tables, b.= refers to the offspring-midparent regression

oP s
and tc is the intraclass correlation between full-sibs.



correlations to be biased upwards and this is clearly reflected
in the results of both replicates.,

During the period of relaxation, the disequilibrium breaks
down at a rate approximately equal to (1-c) (or slightly less if
account is taken of the finiteness of the population) and this is

again reflected in the b_s of both replicates and the relatively

OP
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smaller degree of bias of the intra-class correlation. The decline

in variance during the period of relaxation is also illustrated in
Figures 10.2(e) and 10.3(e), where the frequency distribution of
total counts are shown at the end of the experiment for both repli-~
cates,

The expected decline in variance in replicate 1 during the 6
cycles of random mating due to the effect of génetic drift; using
estimates of the ratio of effective to actual humbers reported by
Crow and Morton (1955) is of the‘order of 6%. In replicate 2,
where flies were kept in vials during the four generations of re-
laxation and each family contributed with equal members to the next
) éeneration, the expected decline in variance due fo*drift is of
about 2%, In both replicates the observed decline in variance is
well in excess of the expected decline due to drift alone.

The mean squared difference between both segments can be re-
~ garded as one of the components of the environmental variance,
namely, that one due to the effects of local accidents of develop-
ment which prevent perfect replication of the same pheno?ype under
the same environmental conditions. This within fly variance was

calculated in each generation in both replicates and it remained
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virtually unchanged throughout the selection programme at a value
of about 4 square units.

Table 10.6 shows observed (O) and predicted (P) values of
offspring~-midparent regressions. Obserfed results are obtained by
pooling the estimates obtained from both replicates whenever these
estimates were obtained from the same cycle of selection. Pre-
dicted results are based on the ratio of genotypic to phenotypic
variance obtained using Bulmer's predictions with a model which
assumes 30 additive loci of equal effects distributed on 3 chromo-
somes, the recombination fraction betweén adjacent loci being 0:l.
The equilibrium additive variance at generation zero was assumed to
be 3.7 and the'phenotypié variance, 10, The mapping function used
'to obtain the mean recombination fraction was, ¢ = i(l—e—zx) for
loci on the same‘chromosome and ¢ = 4 for loci on different chromosomes.

The data tend to suggest that predicted results tend to under—
estimate the estimates based on offspring midparent regressions,
particularly during the period when disruptive selection is-operating;

This effect seems to disappear after the cycles of random mating.

Discussion.
The purpose of this work Las béen to provide an experimental

~ check on the theory developed by Bulmer (1971, 1974). The results
obtained are consistent with the expectation that disruptive selection
causes positive linkage disequilibrium which leads to an increase in
the heritability of the metric trait. Evidence for the existence of
joint disequilibrium is provided by the reduction in heritability
during the period of random mating and also by the substantial bias

in the intra-class correlations.



TABLE 10.6.

Observed (0) and predicted (P) heritability estimates during the
disruptive selection experiment.

h2(0) : pooled offspring mid-parent regressions.

hz(P) : predicted results based on Bulmer's theory, from the
ratio of the genotypic to phenotypic variance.

Cemtin, Yo de
(o) 0.37x0.05 (0.37)
1 ~ 0.65%0,06 0.47
2 0.68t0,05 0.55
Number of cycles
of random mating
4 O.44i0.07* | 0.50
7 0.47+0,04%* 0.43
'8 © 0.47#0,05%* 0.41

o* obtained from replicate 2 only.

" %% obtained from replicate 1 only.

226,



227,

The results however seem to suggest fhat observed estimates
of heritability are larger than the predicted ratio of gemotypic
to phenotypic variance, If this is a real phenomenon, two possible
reasons may account for it. First, the predicted results may be
model dependent and therefore different combinations of the number,
frequencies, effects and recombination values of the loci affecting
- the trait; for the same initial genetic parameters may yield pre-
dictions in closer agreement with observed results. Alternatively,
it is possible that our estimates of the-changes in heritability
based on the regressions of offspring on selected parents may be
biased due to departures from normality generated by this type of
selection as iéiclearly 11iustrated in Figures 10.2'and 10.3.

In the previoﬁs chaptef,-we'have shown that, particularly in
the early cycles of selection, the predictions of the generation of
Jjoint disequilibrium based on the infinitesimal model are in good
agreement with Montecarlo simulation results. This provides somé
evidence against the model dependence argument, Further evidence
is provided in Tabie 10.7 where Montecarlo simulation results are
shown for three genetic models involving different degrees of ;ink-
.age; proportionate effects of the loci involved and initial gene
frequencies ior the same 1n1t1ai‘values Qi genotypic and phenotypic
variance of the model used in Table 10.6, taken from the Drosophila
experiment. The simqlation programme assumes the same mating
structure as the Drosophila experiment, with 16 males and females
selected at each end of the distribution, The first model is based

on 30 loci of equal effects and frequencies with free recombination,



We symbolise it (30,0.5,0.5). The second model is equivalent to
the first but the 30 loci are distributed in 3 chromosomes with 10
loci on each chromosome and récombination value'befween adjacent
loci ié 0:1. We symbolise it (30;0.550,1). The third model
which assumes free recombination, is based on five loci at initial
frequency of 0.1 and proportionate effects, a/o, of 0.45 and 25
loci at initial frequency of 0.4 and proportionate effect 0.13.
We symbolise it (5/25,0.1/0.4,0.5).

The results in Table 10.7 show that observed and predicted
values of disequilibrium in this short term selection study are in
. good agreement and that there is no cleaf difference among models.

Table 10.8 provides evidence”which supports the suggestion

that the lack of agreement between observed and predicted results

éhown in Table 10,6 is due to a problem of non?linearity of the
offspring parent regression,

The simulation fesults show that the ratio of gemnotypic to
phenotypic variance is in very close agreement with the results
predicted on the basis of the infinitesimal model and furthérmore,
the realized'heritabilities in all models are remarkably similar
to the estimates of heritability based on offspring mid-parent re-

The discrepancy between the ratio of genotypic to phenotypic
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variance and thé realized heritabilities obtained from the selection

of extreme deviants can be explained in the following way. The

first cycle of disruptive selection produces considerable divergence

between the means of the offspring of the H x H and L x L matings.
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TABLE 10.7:

Montecarlo simulation results (0) and predicted results (P) of
joint disequilibrium for three genetic models with equal equilibrium
additive variance and phenotypic variance at generation-zero. Pre-

Observed results are the

dicted results based on Bulmer's theory.

average of 10 replicates.

. Model .
Generation (30,0.5,0.5) (30,0.5,0.1)  (5/25;0.1/0.4,0.5)

o -0.04 + 0.09 .0.06 + 0.08 - -0.14 * 0,09
o =

P 0,00 .0.00 .0.00

0 '1.30 *+ 0.14 1,74 £ 0.18 1,54 +-0.18
1 ’ .

P 1,61 1,61 '1.61

o 4.20 *+ 0.39 '5.08 £ 0.41 3,93 +-0.41
2

P 3,64 3.76 . 3.64

0 8,04 £+ 0.71 .8.49 * 0.66 7.81 * 0.75
3

P ' 6.36 6.92 6.36

0 11.12 + 0.80 12.00 * 0.92 10.55 *+ 1.24
. =

P 10.25 11.64 10.25




TABLE 10.8:

Montecarlo simulati@n results of the ratio of tﬁe-genotypic to phenotypic variance (VG/VP) and
realized heritabilities of the H x H matings (hzn). The corresppnding realized heritabilities of
the L x L matings are similar and are omited, %giP) are the predicted results based on Bulmer's

v A kS
theory. The standard errors of hzn are about 0,03, GE ond O ar Ye Vanance COm(on&a"s behoeen anol
Cwithin families respectively .

Model
30,0.5,0.5' 30,0.5,0.1 - |5/25,0.1/0.4,0.5

Genz;ation V6 h2 V6 h2 V6 h2 !Q(p)
selection, | . 'VP ....... HA.... ..VP ....... H..: ..T.V?......,H . . VP

0 0.38 0.35 0.37 0.38 0.38 0,38 0.38

1 0.45 0.60 0.44 0.58 0,46 0,56 0.47

2 0,56 0,67 0,56 0.67 0.58 0,67 0.56

3 0.66 0.70 0,66 0.72 0,67 0,69 0.64

4 0.73 0.75 0.72 0,77 0.73 0,77 0.71

. 2 2 q. 2 2 2

Generatian Gw cb UW Ob Gw Ob

1 8,03 3.31 8.10 3.44 8.02 2,95

2 8.08 6:40 | 8.12 7.36 8,21 5.97

3 7.72 10.81 8.00 11.51 7.78 10,63

4 ’ 7.94 15.51 8,03 16.39 8.01 15.12

‘0ee
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In fact, this cycle of selection generates what we can consider to
be three subpopulations, originated from the offspring of the H x H,
L x L and LH(HL) matings. The amount of disequilibrium -generated
is a descriptiqn of the genetic situation in the whole population,
However, in a second cycle of selection, in yhe high extreme say,
the proportion of the selected individuals which are selected from
the offspring of thé H x H matings will generate o;fspring whose
mean will tend to regress towards the mean of the subpopulation
they were selected from rather than to the overall population mean,
This clearly causes a higher heritability than the one we would
obtain if there were no genetic differentiation among subpopulations
and all the mﬁted individuals generated offspring whose mean would
tend to regress towards the (single) population mean, When the
~gametes at each end of the distribution reached fixation, all the
variance within the high, low and their combination is environmental.
It follows that at this stage, very intense selection will lead to
smaller realized heritabilities than those obtained from less in-
tense selection pfovided that, in both cases, the extremes are all
chosenlfrom the extreme gepotypes. This is because in both cases,

" the selection response is the same; regardless of the selection in-
tensity, but the seiection differential is gmaller with less intense
selection. This point is illustrated with Montecarlo simulation
results in which a model of four loci reaches fixation after a few
cycles of intense disruptive selection. At the end of the selection
programme, the realized heritability is obtained by selecting the

highest 50 out of 200 of each sex, or the highest 20 out of 200 of
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each sex, In the first case, the estimate is 0.95 * 0,01 and
in the second case is 0.75 * 0.0l.

More generally, it can be shown that the relationship between
the conditional offspring means and the parental values is of a
double sigmoid type, the single sigmoid relationship for values
higher than the mean being a mirror image of the one for values
smaller than the mean, It then follows that the response to
selection of the same intensity at each end of the distribution is
symmetrical but depends on the selection pressure applied. The
ratio of the genotypic to phenotypic variance, as predicted from
results based on the infinitesimal model is a linear description of
the expected ¥esponse to selection in a situation where the selection
forces per se lead inevitably to non-linear relationships. Ourk
experimental results would have been in closer agreement with pre-
dicted results based on ;nfinitesimal model theory had we estimated
the heritability from regressions of offspring on non-selected,
randomly mated parents and fitted (incorrectly) a linear regression
equation through the data.

Could we get more insight by studying the effects of disruptive
selection from a different point of view? The experimental design
we have used allows us to follow the experiment as if it were a iwo
way selection experiment. As was mentioned earlier, after a first
» cycle of selection and mating, one can consider the whole populationA

as being composed of a mixture of various normally distributed sub-

populations, corresponding to the offspring of the H x H, Hx L
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(and L x H) and L x L matings, in a ratio 1 : 2 : 1, We have
designated these three subpopulations, H, HL and L. The mean of

the H x H mating expressed as a deviation from the overall mean

2(0) ,(0) n2(0) 5O

is ih and likewise, the mean of the L x L is -

The H x L. (and L. x H) matings yield a distribution with zero mean

and the phenotypic variance within each of the three distributions

(0) 4(0)

is ii(i xT)h . It then follows that the overall

distributions, has zero mean and variance equal to

021 o 2(0) 4(0) 2,4,200

- 3i(i-x -) ) + 31“h

= 20 4(0)

1+ iixT h ),

as obtained by Bulmer (1971). We now apply a second cycle of

selection, and those individuals exceeding a truncation point X

/ 2(1)

(in units of Yo ) standard units from the overall mean in the

mixed distribution at each extreme are saved for breeding. Assuming
normality, it is possible to obtain the proportion of individuéls

which belong to each subpopulation, whose heritability has been re-

2(0) 2(1)_

duced from h to h
w w

(0) 2(0))

VG T = 3i(i-x Db
o._;zw) (

1 - 31@-x)0%(?)

" the subscript w referring tb the within population parameters. In
this second cycle of selection, the top 10% comprises about 23.1%
qf subpopulation H, 7.7% of HL and 1.7% of L. The expected mean
of each subpopulation in the secbnd cycle of selection is then

~given by:
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= . 2(1) / 2(1
Xae2y © Ymeey Bw xH(l)

- . 2(1) /2(D
a2y ~ mLcz) B T +0.0

= - 2(1) 2(1)

L2 T ey Be + Xy
where, for example, iﬂ(z) refers to the selection differential at
the second cycle of selection within the H subpopulation correspond-

ing to a proportion selected of 23.1%. The overall genetic mean

of the top 10% selected is therefore,

20.231) Xy, + 307D Xy o0 + 201D X, = 3,52,

This exercise can be repeated for a second cycle of selection, but
bearing in mind that the total reduction in variance within sub-
popul ations is comprised of the reduction generated in the new
selection cycle plus a proportion (1-c) of the reduction incurred
in the previous cycle of selection. This procedure is similar td
the one used by Robertson (1970b)though he ignored changes in
variance.

Table 10.9 shows four sets of results corresponding to the di-
vergence between the means of the offspring of the H x H and L x L
matings in the first three cycles of selection. The predictions
based on the infinitesimal model which ignore the subdivision of
the overall population into separate subpopulations tend to under-
estimate the observed divergence and this is due to the non-lineafity
of response which we discussed previously, When attempts are made

to allow for the lack of distributional uniformity, the divergence
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TABLE 10.9:
Divergence between extreme matings obtained from the Drosophila

experiment, D from predictions based on the infinitesimal

0’
model ignoring departures from overall normality, D(I); from

similar predictions acknowledging the existence of subpopulations;

D(IM); from Montecarlo simulations of model (30,0.5,0.1), D(Mc)a
Generation D D D . D
(O (€9 (Im “(MC)
1 3.5 £ 0.3 4,2 4,2 4.0 £ 0.2
2 6.2 + 0.4 5.4 7.0 6.7 + 0.2
3 9,3 £ 0.5 7.2 12.1 9.1 * 0.2

is overestimatéd; particularly at generation-3. This is probably
due to the lack of normality associated Qith the finite number of
loci, which develops rather soon in disruptive selection of high
bintensity in both the overall distribution and within subpopulations,
making the predictions based on this approach of questionabie

validity. The Montecarlo simulation results are in good agreement

When we discussed the changes of variance in the context of
directional selection, we illustrated the difficulties which arise
ih’making:reasonahly accurate predictions of selection response due
to the problem introduced by changes of gene frequencies, These

changes not only had an effect on the amount of disequilibrium



generated but also could cause problems of lack of linearity

of offspring parent regressions, With an infinite number of
loci, however, these problems are virtually overcome, and the
amount of non-linearity introduced after a first cycle of direct-
ional selection is negligible (Bulmer, personal communication).
In the case of disruptive selection, particularly in experiments
of short term duration, gene frequency changes are very small but
the lack of linearity of offspring parent regression arises due to
the type of distribution which develops as selection starts
operating. In both types of selection, however, predictions of
changes in variance are likely to be more accurate when selection

intengities are low, but for quite different reasons in each case,

236.
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SUMMARY AND CONCLUSIONS
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Summary and Conclusions,

I. Directional Selection.

At the beginning of this thesis we asked the question, how
accurately can the predictions based on the infinitesimal model
theory describe the changes of genetic parameﬁers induced by .
directional selection. The answer to this question is clearly
dependent on the genetic model we have in mind. In this thesis
we have concentrated attention on additive and dominant models.
Assuming additivity between and within loci, the short term pre-
dictions of expected response to selection allowing for tﬁe changes
caused by the“build up of disequilibrium and ignoring those due to
~ gene frequegcy changes are in good agreement with observed results
prbvided gene frequencies are not far from intermédiate values and
~ gene effects are not large. This is hardly a surprising resulf
sinée we are basically stating the conditions under which gene fre-:
quency changes are minimised énd furthermore, assumptions of normal-
ity are not grossly violated. Extreme gene frequencies and/or the
presénce of loci of large effect will restriét the validity of the
predictions not only of the amount of disequilibrium generated, but
more generally of short term selection response.

In_;greement with other reports in. the literature, we showed
that linkage, even if it is very tight, has little effect on
selection respohse during the first four cycles of selection,

If the population size is sﬁall-enough that most of the changes

in thé equilibrium additive variance are due to drift, we have been
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able to show that reasonably accurate predictions of expected
response can be obtained from estimable genetic parameters. These
results may be useful in the case of laboratory experiments with
Drosophila in situations where the effective population size is of
the order of 10,

As to the importance of these changes and their effect on the
accuracy of the prediction of expected selection response, we ob-
tained a quantitative answer by comparing the difference between
observed and predicted responses (the latter obtained from base
population parameters assuming that these remain unchanged during
selection) with the standard deviation of responsé derived from
Montecarlo simulations; The results again dependvon the underlying
- gene frequency distribution and effects and the size of the experi-
ment; With reasonably large population size (of the order of 60
or more), provided gene frequencies are not initially at low values,
changes of genetic parameters become relevant after three or four
cycles of selection; With low selection intensities and low herit-

abilities, predictions of joint disequilibrium are very accurate
but its effect on changes of genetic parameters is small and not
likely to be detected even if population size is very large,

The presence of dominance introduces more serious complications,
even when the number of loci is as large as 30 and gene effects re-
latively small (d/o =-0,20). 'Independently of the problem of changes
of genetic parameters, we are faced with the non-linearity of off-
spring parent regressions and the consequent asymmetry of immediate
selection response. Predictions of the generation of joint dis-

equilibrium and expected selection response based on infinitesimal
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model theory are inaccurate and two way selection experiments
show considerable asymmetry in the amount of disequilibrium
generated,

Two different experiments with Drosophila melanogaster each

one run with two replicates were carried out in an attempt to
study experimentally the changes of genetic parameters during
selection, The results were rather equivocal in that only one
out of the four replicates showed significant‘evidence of any
build up of disequilibrium during selection. An interesting
feature of the results of this replicate, however, was the fact
that no significant. changes of genetic parameters were apparent
during the four cycles of directional selection but upon four
- generations of random mating a considerable increase in the immed-
iate response to selection was achieved, This result was recon-
‘ciled in terms of a model in which the trait (abdominal bristle
number in this case) was determined by several loci of small effect
at intermediate frequencies and few loci of large effect at extreme
frequencies, With this model; the increase in genotypic variance
due to the permanent effects of gehe frequencies moving towards
intermediate values is‘partly compensated by the reduction in the
enotypic variance caused by the'temporaiy effect of joint disequil-
ibrium, and consequently, genetic parameters remain fairly stable
during the early cycles of selection. As selection is relaxed
and disequilibrium breaks down, the permanentreffects are unmasked
and the realized heritabilify increases.

This result probably points to the moral of this work. We

are still unable to make accurate predictions of expected short term
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responses to selection from present base population parameter
estimates unless we have some idea of the underlying frequency
distribution and effects of the genes affecting the trait in -
question or unless the effective population size is very small,
However we have clearly shown that the reduction in variance due

to the generation of joint diseqqilibrium plays a major role in the
selection process and it should not be omitted in short term

selection studies.

II. 'Disruptive Selection.

Selection of extreme deviants followed by random mating of the
selected indiQiduals is known to lead to small changes of gene fre-
quency, particularly in experiments of short duration. Most of
the changes of the genotypic variance are due to the generation of
linkage disequilibrium which if selection intensity is high, should
lead to considerable increase of genetic ﬁarameters and therefore
its effects are likely to be detected experimentally with little
ambiguity; The experiment carried out with Drosophila, reported in
Chapter 10 was set up in an effort to provide evidence for the
~ generation of linkage disequilibrium on a quantitative trait.

The character measured was abdominal bristle scores, The ex-
periment was run with two replicates and in each one three generations
of disruptive selection lead to conspicuous increases of the herit-
ability estimated by offspring mid-parent :egressioﬂs, the parents
being selected at both ends of the distribution. A large proportion

of the increment in genetic parameters disappeared after several

cycles of Selection, this result being consistent with the expectation
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that the increments observed were temporary and due to the generatioﬁ
of positive linkage disequilibrium. A second source of evidence on
the build up of disequilibrium during disruptive selection was pro-
vided by contemporary estimates of heritability based on intra-class
correlations between sibs which, in agreement with work reported in
Chapter 7 lead to positively biased estimates.

This experiment stimulated the theoretical work on disruptive
selection reported in Chapter 9, which aided in the interpretation
of several aspects of the results obtained with Drosophila, In
particular, we clearly showed that disruptive selection leads immed-
iately to nonf}inear relationships between offspring and parents and
therefore estimates of genetic parameters obtained by fitting linear
regression models to the data during the céurse of selection must be
interpreted with some qualifications. |

Another iﬁteresting outcome of the theoretical work was the
results of the interaction‘between small population size and the
degree of linkage. In marked contrast with the case of deterministic
models we showed that the tighter the linkage the smaller the amount
of disequilibrium generated, but this effect isvsmall during the

first four or five generations of disruptive selection,



APPENDIX

In this Appendix we briefly describe the two methods based on
deterministic models which have been used in this thesis to obtain
what we have termed "Exact Results" (Chapters 3, 5, 6) for changes
of gene and gamete frequencies and various types of disequilibria.
For the purpose of the description that follows, we refer to these
methods as,

(1) Method based on numerical integration of the normal
density function ~ Method I.
(ii) Method based on selection within genotypic classes -

‘Method I1I. |

Some numerical examples are presénted at the end of this section,

"Method I.

This method has been widely used by quantitative geneticists
(i:.e. Griffing; 1960; - Lafter, 1965) and was probably first con-
sidered by Fisher (1918); The conéeptual framework on which it is
based assumes that the metric trait is determined by many additive
(non epistatic) loci; and a normally distributed environmental com-
poﬁent,'such that the distribution of phenotypic values is normal,
with mean M and variance o2, Attention is focussed on one or two

loci, say, such that individuals of the 135 genotype have mean Xi

and their variance in the population is oi. The variance contri-
buted by the locus or pair of loci is ci = g2 - oi. Once the
~ genetic model is specified in terms of the number, frequencies and

effects of the genes involved and the size of the environmental

242,
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variance (VE) truncation selection is practised and those individuals
which exceed a certain value, T, are saved for breeding. With two
loci we have 10 genotypic distributions (many of which have the same

mean) with the same variance, o2, Given T, we find the truncation

i
point in the underlying distribution for the.i-t—g genotype, Ti’ and

the selective value of the genotype is obtained by intégrating the
normal curve, from Ti to infinity. Using standard population genetics
theory we can then find the frequency of the various genotypes, gametes
and genes after selection has operated.

It must be noticed that an important assumption in this technique
is that we coﬁcentrate on a pair of loci say, and we assume that the
distribution éf the various genotypes is normal, this assumption
arising from the fact that the environmental component follows a
normal distribution and that there are many more other loci which
.are still segxegating; The question then arises: what are the
consequences of reducing the total number of loci to a small number
(10, say) whose ffequencies are extreme and whose effects are not
small? How does this affect the results obtained in terms of the
predictions of chﬁnges of gene and gamete frequencies and the amount
of disequilibria generated by selectioh? Attempts to answer these
questions lead to the development of Method II - Selection Within
Genotypic Classes, This method was kindly suggested to me By

Professor Alan Robertson.
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Method II.

This technique was developed in an effort to understand the
validity‘of the results obtained using Method 1, when gene frequencies
are extreme and gene effects are large. The basis of the method is
as follows. The choice of the total number of loci and type of
gene action, immediately specifies the number of genotypic classes,
each genotypic class being defined in terms of its mean and variance.
Consider an additive model of 4 loci, with each plus allele at each
locus having an effect of +1 on the trait, and each minus allele an
effect of -1, There are then 9 possible genotypic values which
range from -4 to +4 and we refer to these as genotypic classes. Out
of the 4 loci; we focus our attention on two of them; For example,
individuals carrying genotype AB/Ab (which has genotypic value 1)
at this pair of loci; may be segregating for any other of the possible
10 genotypes at the other 2 loci and therefore these individuals can
assume genotypic values ranging from (1-2) to (1+2), the frequency
within each class being determined by the initial gamete frequencies
in the population..

The important point to notice is that the variance within each
class is environmental since by definition, all the genotypes belong-
ing to a class have the same genotypic value, Each genotynic class
therefore is normally disfributed, with mean ii and variance VE,

Truncation selection is practised at the level of the phenotypic
distribufion. We can obtain the truncation point at the level of

the various genotypic classes and calculate the selective value of

each class either from normal tables or by numerical integration of
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the normal density function. Knowledge of the selective value

of the various genotypic classes and the frequency of each genotype
within each class leads to the frequency of the various genotypes
amongst selected individuals.

We shall now compare the results obtained from both methods
using three models, all of which involve a total number of 4 additive
loci with the same gene effects and frequencies; The parameters of
the models are summarised in Table A;l. All models assume initial
equilibrium,

Table A.2 shows the observed gene frequencies and the amount
of linkage disequilibrium (covariance of gene frequencies within
~ gametes) at generation 1, after a first cycle of selection;

As expected, with model 0.5/0.10, both methods give very
similar results. What :I.é rather surp‘risl'i'ng, however, is that method
I, based on normality, seems to give results in good agreement with
those obtained using method II even when gene frequencies are e#treme
-and/or gene effects rather large (models 0.1/0.10 and 0.1/0.40).

Kempthorne (1977) suggested that thé validity of method I should‘
be investigated. We believe that this has been done through the

analysis described in this Appendix.
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Initial gene frequencies (q), Proportionate effects at each locus

(a/0), initial genotypic variance (VG) and heritability (hz) for

the three models,

Model .
designation q a/0 vG h
@@/m?)
0.5/0.10 - 0.5 0,22 2,00 0.10
0.1/0.10 0.1 0,37 0,72 0.10
0.1/0.40 0.1 0,75 0.72 0.40
"TABLE ‘A.2:

Gene frequencies (p) and linkage disequilibrium (D) for the various

‘models after one cycle of selection, obtained by methods I and II.

Model 0.5/0.10 0.1/0.10 0.1/0.40
) pxlO2 Dxlos' pxlO2 " Dx105' ' pxloz' DxlO5
Method I 57.83 ~-23.85 15,26 -17.02 21,45 ~106.68
1 Method I1I 57.83 -23,86 15.24 -16,76 21,18 -95,19
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