NULTIMATE STRENGTH OF MEMBERS OF REINFORCED
CONCRETE FRAMES 1IN COMBINED

BENDING AND TORSION"

Thesis submitted for the degree of

Doctor of Philosophy
of the

University of Edinburgh

by

N. Saw Kulh, B.S5.C.E, (Arizona)

April, 1969




ACKNOWLEDGEMENTS

First, I should like to acknowledge my gratitude to
Professor A,W. Hendry for giving me the opportunity to under-
take the research work in the department of Civil Engineering
and Building Science.

I am greatly indebted to Dr, D,R, Fairbairn whose
close supervision and encouragement throughout the duration of
the research directcdlmy attention to the problems,

I should also like to acknowledge myv gratitude to Mr.
R.S5. Elder and the technical staff for their co-operation,

To Miss Betty Turner and Mr., Ross MacKenZie goes my
appreciation for the fine photographic work,

The excellent typing and form of the thesis is due
entirely to Miss Elizabeth Spinks, to whom the author is most
grateful.

Thanks are due to all my colleagues and co-workers for
help in the solution of many problems both technical and personal,

To Dr, Hla Mon, M.B., B.S, (Rgn) and Mr. Chris, Chambers,
B.Sc.(Eng) goes my acknowledgement for help in the tracing of the
graphs and figures.

Finally, the financial help of the Colombo Plan must be
mentioned without which this research work would not have been

possible.



CONTENTS

Contents
Notations
Synopsis

2l Introduction

24 Brief Review of Previous Works

2.1 Introductions

2.2 General background

2.3 Inclination of the angle of crack

2.4 Inclination of the compression zone

245 Depth of the compression block

2.6 Transverse binders crossed by the cracks
2.7 Summary and Conclusions

3. Ultimate Moment in Combined Bending and

Torsion
* 3.1 General Introduction
3.2 Basis of the equation
(1) The angle of crack
(2) The assumptions
(3) The modified "k" ratio
3.3 Derivation of the ultimate moment equation

3.4 Significance of the coeffiéient 01

3.5 Significance of the coefficient 02

Page Ngiz
(i) to (iii)
(iv)to (v)

(dv)

1-6

11 - 13
19 14
14

14 - 15

16

16
17 - 19

152,
13 - 20
20 - 25

25 - 27

27 - 29

3.6 Torsional Resistance of longitudinal reinforcems

ment

3.7 Proposed minimum compressive reinforcement

29 - 31
31 - 32



3.8

3.9

3.10

3911

3.12

3.13

3.14

4,1

4.2

4.3
4.4
4.5

4.6

4.7

Depth of the compression zone

Significance of Mo

Presentation of design charts

Limiting conditions for validity of the

equation

Correlation of theoretical and experimental

results

Sample solutions

(1) Method of using equation (3.14)
(2) Method of using equation (3.15)

Summacy and Conclusions

Optimum Reinforcement

Introduction

Proposal for balanced longitudinal steel Prc

Provision for torsional shear reinfr rcement
Force Intensity method
Internal Couple method

Comparison of proposed ratios with existing

recommendations
(1) Pure torsion
(2) Combined bending and torsion

Summary and Conclusions,

(ii)
Page Nos,

32 - 37

37 ~ 38

38 - 44

44 - 45

45 ~ 46

46 - 47
47 - 48
48

49 - 50

51

51 =~ 55

20 =~ 37
57 - 61
61 - 65

65

66
68

69



(iii)

Page Nos,
Sa Experimental Investigation
5.1 Introduction 70
5.2 Object and scope of investigation 73
5.3 Description of test specimens 70
5.4 Description of torsion bracket ’ 71 - 72
5.5 Materials and Fabrication of specimen 72
5.6 Test arrangement and procedure 73 %95
5.7 Experimental results | 75
5.8 Analysis and discussion of results 75
5.8.1 Development of cracke Tou= 79
5.8.2 Mechanism of failure 79 ~ 83
5.9 Deformations 83 - 85
5.10 Ultimate strength 85 - 87
5.11 Summary and Conclusions 87 - 88
6. Conclusions and Recommendations
6.1 Conclusions 89 - 90
6.2 Recommendations for future research g0 - 91
Acknowledgements 92
References 92 - 98

Appendix A Calculation for beam K11 tested at ¥ = 2,1 99

Appendix B~ Calculation for If for beam X1l tested at g =21 100



(iv)

NOTATIONS

The

Ay
e
A

o

following symbols are not defined within the text:

tross-sectional area of tensile steel
cross—sectional area of steel at the compression zone,
cross—sectional area of one leg of transverse steel,

width of beam

width of the reinforcing cage

cube strengch of concrete

efficiency coefficient of longitudinal steel

efficliency coefficient of transverse steel

effective depth of beam

depth of the reinforcing cag+

compressive bending stress of the concrete at the comp-
ression zone for combined bending and torsion:

compressive bending stress of conc” ete for pure bending
cylinder strength of concrete
yield strength of the longitudinal steel

yield strength of the longitudinal steel in the
compression zone
allowable tensile streiigth of concrete

over-all depth of beam



(v)

X = coefficient of concrete bending stress

k = pratio of depth to width of the reinforcing cage
Hu = ultimate flexural capacity of the section

Mbt = applied torsional moment

applied bending moment

o™
£
it

bending moment contributed by the longitudinal steel

e
£
i

HbuT = bending moment contributed by the transverse steel

n = depth of neutral axis of beam in combined bending and
torsion

n,oo= depth of neutral axis of beam in pure bending

P = ratio of longitudinal steel to concrete area ia beams

A ratio of balanced longitudinul steel for pure bending

Py S ratio of balanced longitudinal steel in combined bending
and torsion

T = torsional shear reinforcement ratio

Vs = optimum torsional shear reinforcement ratio

e o= maximum torsional shear reinforcement ratio

s = sgpacing of transverse binders

=6 = angle of crack

8 = inclination of angle of inclined compression zone

with respect to the longitudinal axis
ﬁ = ratio of applied bending moment to applied torsional moment
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SYNOPSIS

Based on the equilibrium of external and internal
loads acting normal to the inclined compression zone of the
failure surface proposed by previous investigators for
reinforced concrete beams subjected to combined bending and
tcrsion, a simplified ultimate moment equation was developed
by using the ulvimate equilibrium method suggested by the
Russian recearchers.

The ultimate moment is shown to consist of the contributions
of longitudinal and transverse reinforcement.

Analysis of forty-three beams tested by previous investi-
gators and fifteen beams tested by the author showed that the
equation predicts the ultimate mome.t with good accuracy.

A method for computing the position of the neutral axis
was developed and used in the analysis of the above beams to
obtain the lever arms of the internal mom¢ .ts.

The equation was extended to evolve design charts which are
equally good for analytical purposes.

Finally, proposals were presented to restrict the quantity

of the reinforcement for the validity of the equation.



CHAPTER 1

INTRODUCTION

Torsion occurs in structural members due to the monolithic
characteristics of reinforced concrete members, and wherever there is
asymmetry of loading of beams and slabs. Some examples of members
with torsion may be listed as follows:-

(1) spandrel beams

(2) secondary beams framing into a primary beam.

(3) bow girders

(4) interconnected girders

(5) space frames

and (6) free-standing spiral staircases.

Critical examination of past practice in structural design
reveals that in the absence of methods of design for torsion, three
approaches are generally resorted to: first, “he structural frames
are arranged in such a way that the effect of torsion is minimised;
second, the dimensions of the structural members are chosen so that
the sizes are much larger than actually caleulated, hoping by so doing
to cater for the torsional stresses developed in the members; the third
resort is to use an ample amount of transverse reinforcement to resist

the torsional shearing stresses. In addition, the accepted methods of



design of concrete structures have been based on the elastic
theory, the use of which has been found to result in concrete
sections larger than necessary and thus the extra strength

obtained supposed to resist the torsional stresses. Fortunately,
no catastrophic failure of structures due to torsion seemed to have
been recorded.

Recently, there has been a tremendous upsurge in the structural
design of concrete. A new method of design, the ultimate-load method,
has been advocated strongly by research scientists and advanced
thinking engineers. This led to the publication of a report by
the Institution of Civil Engineers(l)f The ultimate-load method
consists of calculating accurately the ultimate load imposed on the
structural member so that, unlike the elastic method where the actual
factor of safety is not known, the ultimate-load method can forecast the
true margin of safety of the structure, and is thus a more realistic
method of design. In addition, the new method can make full use of
the potential strength of the materials and is thus conducive to
economy,

Due to the more realistic assessment of the load factor made
possible by the use of this new method, together with the more effective

employment of the materials, the resulting design sections are more

slender, The possibility of catering for torsional stresses by the

* The superscript numbers refer to the list of references.



extra strength due to large margin of safety inherent in the

elastic method no longer applies. If these stresses are to be
provided for, then definite design formulae must be evolved.
Further, the formulae must be based on the ultimate-load method

in keeping with developments in other aspects of structural design.
It is thus necessary to investigate the effect of torsional stresses
on the behaviour and strength of concrete members.

In general, torsional moments rarely exist by themselves
but act in conjunction with bending and shear. Some published
works(2’3’4’5) are available where investigations have been made of
the behaviour of beams in combined bending, shear and torsion.

The results are however erratic and inconclusive and more research
is still necessary. The complication in this type of combined
action arises from lack of knowledge of the behaviour of beams in
combined bending and shear. It is felt that until this aspect is
resolved, the nature of combined bending, shear and torsion cannot
be properly investigated., This is particularly true if the propor-
tioning of flexural shear reinforcement is to be considered in
conjunction with the torsional reinforcement as advocated by Cowan(G’?).
It is therefore considered that the combined effect should be studied
first by establishing the action of bending and torsion. With this

in mind, the author feels justified in tackling this problem.



A review of works already carried out for combined
bending and torsion at the ultimate level indicates that most
of the investigators have used the ultimate equilibrium method
developed by the Russian Engineers(s). The method consists of
obtaining the ultimate load (in this case the ultimate moment )
at the failure stage when the reinforcement has yielded, The
method is complicated and the equations obtained are far from
simple. Attempts have been made to simplify the equation but so
far there seems to have been no success. The complication arises
mainly from the three dimensional aspect of the combined action,
resulting iﬁ a complicated failure surface., There seems to be
difficulty in obtaining the correct angles of crack at the sides,
and subsequently, the inclination of the compression zone about which
the beam rotates at the failure stage, This problem has been
resolved by Evans and Sarkar(g) and more recently by Fairbairn(lo’ll).
But still, the resulting equations are not simpl:e and are not
suitable for use in a design office,

The author after careful examination of most of the works
feels that further simplifications and modifications may be achieved,
An analytical investigation is thus made, employing these simplifications

to develop a formula for computing the ultimate bending moment, The



results obtained are again employed to ascertain the contribution
of the reinforcement to bending of the beam, In this way, the

net contribution of reinforcement, both longitudinal and transverse,
is obtained. From this, the actual function of the transverse
binders is .isolated, together with the effect of torsion on the
bending capacity, thereby also obtaining the contribution of the
longitudinal steel to the torsional resistance. Finally, a method
of obtaining the position of the neutral axis is proposed,

Further investigation is then carried out to estimate the
balanced reinforcement for combined bending and torsion by comparing
the balanced longitudinal reinforcement to that for pure beﬁding.
Two methods are then used to calculate the minimum and maximum
transverse torsional reinforcement for the yielding of the steel to
occur, namely: (1) the intensity of force method, in which the
distribution of the reinforcement at yielding is studied using a
hypothetical failure mechanism, and (g} the internal couple method
in which the mechanism of the action of the reinforcement in resis-
ting the internal torsional stresses is studied using a similar
hypothesis. The results obtained from the two methods are compared,
first with each other and then with the recommendations put forward
by other investigators and the Russian Code of Practice. Finally,
a design equation is developed for calculating the reinforced concrete

sections required
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for combined bending and torsion.

The experimental investigation consists of justifying
the assumptions made in the theoretical study and comparing the
calculated ultimate bending moments with the experimental results
observed. The mode of propagation of the cracks are particularly
observed, especielly nt the compression zone on the top surface.

The results are given in the form of tables and graphs.

The author feels that the theoretical formulae obtained
can only be justified within the limitations of the experimental
studizs, and thus further experimental evidence will be necessary
to fully justify the acceptance of the formulae. With this in mind,
the last part of the thesis is devoted to this aspect of tne problem,
with further recommendations for theoretical investigations and

experimental observations.



CHAPTER 2

BRIEF REVIEW OF PREVIOUS WORKS

2.1 Introduction

The main object of this chapter is to review briefly the
existing works on combined bending and torsion of reinforced concrete
beams, with a view to using the findings to develop an ultimate
moment equation. The discussions will be confined to works on
under-reinforced beams with both longitudinal and transverse
reinforcement.

2,2 General background

When reinforced concrete beams are subjected to combined
bending and torsion, the geometry of the surface formed by the
failure of the beams has been observed by previous investigators
to be related to definite crack patterns, The works of Evans

(9) (10:11), Chinen.kov(lz), Lesgig(ls), Gesund

(35)

, Fairbairn

(27)

and Sarkar

(15)

et al y, and other investigators

, Yudin ; Goode and Helmy
showed that, for specimens with moderate to high ratios of bending
to torque, the cracks develop first on the side of the beam where
flexural tension occurs and extend later to the vertical sides.

On the fourth side, a compression zone is formed, For beams with
predominant torsion, cracks have been observed to form first on the

vertical side, extending later to the horizontal faces, and culmi-

nating in the formation of the compression zone in the vertical plane.



It was further observed that, for under-reinforced beams,
failure of the beam is preceded by yielding of the reinforcement
intercepted by the cracks, and the rotation of the beam about the
compression zone,

On the basis of the observed behaviour of these beams and
the crack patterns formed, a failure surface has been developed.
This failure surface consists of intercepts on the three sides of
the beam, whose inclination to the axis of twist is equal, and a
compression zone on the fourth side.

The ultimate moment equation is developed by considering
the equilibrium of the internal and external forces and moments
acting normal to the compression zone. The equation thus obtained
can be used to calculate the bending moment of any rectangular
beam section under a known bending to torque ratio and the results
obtained, when compared with the experimental values, generally have
close agreement. However, these equations are far too complicated

for use in a design office.

(27) (35)

Yudin and Goode and Helmy have attempted to simplify

the equation by also considering the equilibrium of moments and forces
transverse to the failure surface, thus obtaining two simultaneous

equations, The magnitude of the bending moment M, and the torque Mt

b

obtained from the process of elimination did not agree with the

experimental results,
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The main complication in the ultimate moment equation
arises due to the following:

(1) variation in the angle of inclination of cracks,

(2) variation of the angle of inclination of the com-
pression zone with the horizontal axis,

(3) the magnitude of the depth of the compression block.

and (4) the number of transverse binders crossed by the

vertical and horizontal cracks,

2,3 Inclination of the angle of cracks

It is generally agreed that the inclination of the crack
on the faces of the beam due to the action of combined bending and
torsion varies between 45 degrees for pure torsion and 90 degrees
for pure bending with values close to the former for predominant
torsion and approaching the later where bending is predominant,
However, due to the complex stress-strain relationship for concrete
in tenscion, together with the general difficult - of obtaining the
true stress distribution in combined bending and torsion, no previous
studies have given recommendation for calculating the magnitude of
the angle.

Examination of published works on combined bending and
torsion shows that only two experimental studies are available which
consider the variation of this angle, Evans and Sarkar(g) in 1964
developed a formula for calculating the magnitude of this angle based

on two assumptions, namelv that concrete behaves plastically in
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torsion, and semi-plastically in tension. Their formula expresses
the angle of crack in terms of the shape of the beam and the
bending to torque ratio. They also reported that the values
obtained from experiments agree with the calculated values, An
ultimate moment equation was developed by them, incorporating their
formula for the angle of crack. The resulting general agreement
of the theoretical and experimental values indicates that the
formula is acceptable.

In 1967, Fairbairn(lo) suggested that the formula of Evans
and Sarkar could be modified into tiree simple formulae, considering
three conditions »f bending and torsion, namely (1) predominant
torsion case, (2) combined bending and torsion, and (3) predominant
bending. The advantage of his formulae lies in their simplicity
of directly relating the angle of crack to the bending to torque
ratio. Comparisons with the original formula shows that the results
obtained are justifiable.

The author firmly believes that for an accurate determination
of the ultimate bending moment, the equation must take into account the
variation of this angle directly. The importance of this rises from
the fact that, both the intercept of the transverse binders and the
inclination of the compression fulcrum are directly related to this
angle, It is felt that the formulae developed for calculating this
angle of crack though not absolutely correct may enable a more accurate

evaiuation of the ultimate moment. With this in mind, it is proposed
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to develop the ultimate moment equation incorporating the formulae
of Fairbairn with other simplifications,

2.4 Inclination of the compression zone

It has been briefly mentioned that the ultimate moment
equation is generally developed by equating the external and
internal moments about the compression zone normal to this plame,
Thus, the correct evaluation of the bending moment is directly re-
lated to this angle.

It was further shown that the angle of crack also affects
this inclination because of the formation of the compression zone
as a result of the connecting up of the vertical cracks on the
cupper: facel.

The approach made in evaluating this angle of inclination
by previous investigators consisted of one of the following:

(1) The assumption of a constant angle for the inclination.,

(2) The assumption of 45 degree crack angles on the sides,
thus obtaining the projected length on the horizontal axis.

and (3) By obtaining the projected length on the horizontal

axis with consideration for its variation with the crack angle.

Evans and Sarkar(g) assumed this angle of inclination to
be 45 degrees, at the same time using their formula for the crack
angle. They showed that the use of the 45 degree inclination resulted
in predicting the ultimate bending moment which is close to the

experimental value,
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The works of the Russian investigators seem to be based
on the assumption of 45 degrees for the angle of crack. This is

indicated by the analysis of works of Lyalin(s), Chinenkov(lz),

Lessig(ls) and Yudin(27). Their method of approach is to consider
the projected length of the crack on the horizontal axis and to
restrict this lenjth to a specified value. They mention at the
same time that the value of the projected length is influenced by
the tensile strength of concrete, the bending to torque ratio and
the spacing of the transverse reinforcement, The equation evolved
by them is however far from simple,

(35)

Goode and Helmy introduced certain simplifications
regarding the inclination of the compression zone by relating it
as a function of the projected leagth of the vertical intercepts
on the horizontal axis and the breadth of the beam. In particular,
it is interesting to note that they also introduce the concept of
using the dimensions of the reinforcing cage i-.stead of the usual
over-all dimensions. The equations they obtained for calculating
the bending moment and torque are simple, but unfortunately, the
results did not agree with the experimental values obtained.
Finally, Fairbairn(g) uses his formulae for the angle of
crack to determine the intercept of the crack on the horizontal axis

and expresses the inclination of the compression zone as a function

of the angle of crack and the depth to breadth ratio of the beam,
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Thus, he is the first to consider the effect of the variation of
angle of cracks on the inclination of the compression zone. He
further incorporates this angle to develop ultimate moment equations
which are far too complicated for use in a design office. The
author feels that these equations can be medified by introc i, <ertain
simplifications, For instance, it seems that the length of the
lever arm is over-conservative,

On consideration of the various approaches made by the
above investigators, the author feels that the approach used by
both Goode and Helmy(35) and Fairbairn(lo) offer the best method
available for determining the inclination of the compression zZone,
and in particular, simplification can be achieved combining the two
methods to produce a modified formula for the angle of inclination
of the compression zone,

2.5 Depth of the compression hlock

Of the several works available, the m thod uised for obtaining
the depth of the compression block is by considering the resolution
of the forces normal to the compression zone, The equation obtained
relates the longitudinal and transverse reinforcement with the strength
of the concrete in compressive bending.,

An examination of the approach used by the above authors to
evolve the formula for calculating the compression block reveals that
they have not considered the equilibrium of forces transverse to

the failure zone, The avthor feels that if this is introduced,



14.

the formula can be simplified considerably,

2,6 Transverse binders crossed by the cracks

The derivation of the ultimate moment equation includes
the effect of the transverse binders in contributing to the
bending capacity of the beam, It is thus imperative that the
actual number of binders crossed by the cracks is known.

The cracks at the tension zone crossed the face of the
beam completely and thus it is simple to estimate the number of
binders crossed by the cracks. This is not true for the vertical
face since the crack is assumed only to reach the neutral axis, and
thus the equations are derived with the number of binders calculated
on this basis, This method has been adopted by most of the research
workers and tends to make the equation very complicated.

If the neutral axis plane is considered located at
about the level of the compression steel, then the term relating
the number of transverse binders intercepted by the crack on the
vertical side is considerably simplified, enabling further simpli-

(35)

fication in the ultimate equation. Goode and Helmy showed that
the path traversed by the crack can be approximated by the projection
of the depth of the reinforcing cage on the horizontal axis so that

the resulting equation is much simplier.

2.7 Summary and Conclusions

The previous studies examined in this chapter are concerned

with the development of the original ultimate bendinj moment



equation, The summary of the discussions is given below, together
with the conclusions arrived at by the author. It is felt that
these discussions have yielded considerable data for the author's
proposed investigation. The following points have been discussed:
(1) the evolution of the failure surface of reinforced
concrete beams in combined bending and torsion.
(2) the concept of deriving the ultimate bending moment
equations using the above failure surface as a base.
(3) the formulating of an ultimate equation arising from
the following: (a) the use of Fairbairn's angle of
crack, (b) the use of a new formula for the inclina-
tion of the compression zone, (c) the derivation of
a new formula for calculating the depth of the neutral
axis, and (d) an expression for the number of transverse
binders crossed by the crack on the vertical sides,
The author has concluded that in deve oping the ultimate
moment equation, the following additional simplifications should be
introduced:-
(1) the use of the angle of crack proposed by Fairbairn.
(2) a modification of Fairbairn's expression for the angle
of inclination of the compression zone,
(3) a simplification of the formula for obtaining the posi-
tion of the neutral axis,
and (4) the use of the reinforcing cage dimensions as a basis
for estimating the quantity of the transverse binders

crossing the failure zone,



CHAPTER 3

ULTIMATE MOMENT 1IN COMBINED BENDING AND TORSION

3.1 General Introduction

The author proposes to derive an equation for
calculating the ultimate beinding moment of reinforced concrete
beams of rectangular section containing both longitudinal and
transverse reinforcement, subjected to combined bending and

torsion. The ultimate equilibrium method proposed by the

(8) (12) (13)’

Russian investigators Gvozdez , Lessig

(27) (36)

Yudin® and Lyalin

; Chinenkov
will be used together with certain
modifying assumptions. The angle of crack as proposed by

(10) will be adopted. It is proposed to analyse

Fairbairn
several research works using the new equation in order to
demonstrate its accuracy.

3.2 Basis of the equation

The ultimate equilibrium method has been adopted by

p
several research warker§9'10’14’35)

and their general con-
clusion is that the method is applicable to the analysis of
reinforced concrete structures at the ultimate stage. Thea
method is based on a consideration of the equilibrium of the
external loads with the internal resistance of the structural

members, In particular, for reinforced concrete members,

the resistanc: is offer-d bv the stresses in the reinforcement
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and the torsional and compressive stresses 6f the concrete
in the compression zone.

A critical review of works on rectangular sections
subjected to combined bending and torsion in Chapter 2 has
shown that differences in the existing theories lie mainly in
the following categories:-

(1) the inclination of the angle of crack.

(2) the position of the neutral axis.

(3) the number of equilibrium conditions to be

considered,
and  (4) the distribution and magnitude of the internal
stresses.

It will be shown in the following paragraphs that the
author has considered his study on the basis of the following: -

(1) the adoption of the angle of crack proposed by

Fairbairn, |

(2) by introduction of certain assumptions thus

simplifying the problem,

(3) the adoption of a new ratic of "k"¥,

(1) The angle of crack

Evans and Sarkar(g) have suggested that the angle of

crack may be completely determined once the concrete properties,

* gee notations



the beam dimensions, and the applied bending moment and torque
are known, Their expression for the angle of crack was
derived by assuming that the concrete stress distribution in
flexure is semi-plastic and fully plastic in torsion, as

(28) (10)

suggested by Cowan Fairbairn modified the expression
into a very simple form by introducing three ranges of loading,
namely: (a) predominant torsion, (b) combined bending and
torsion, and (c) predominant bending, The angle of crack as

given by him is

For ,Qf<2, Cotx<= Q"‘l—_ svsacavene (3-1)

2 (g8, Cotx= 95'8—0- N )
# ) 8, Cotx= 0,10 TR RIS bt 2

The angle of crack was found to be applicable to
hollow as well as solid sections, The validitv of this fact
enables the author to analyse the beams tested by Evans and

(9)

Sarkar and the correlation of the calculated Mbu with the
experimental values shown in Table 3.4 indicates the appli-
cability of Fairbairn's proposal,

The author intends to use the above angle of crack

in deriving the ultimate moment equation with certain simpli-

fying assumptions, together with a modified k value for the
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beam dimensions,

(2) The assumptions

The following assumptions are adopted to simplify

the derivation of the ultimate bending moment equation:-

(2)

(b)

(e)

(a)

(e)

(£)

(g)

the concrete has no tensile strength

the beam is under-reinforced

the transverse binders are uniformly distributed
within the failure zone

the contribution of the compressive reinforcement
is.negligible

the reinforcement crossed by the cracks reach the
yield stress

the neutral 2xis lie: in a plane on the horizontal
section

the centroid of the compression block is at the
mid-depth of the compressica zone

the vertical deviation of the angle of crack beyond
the neutral axis is negligible, and therefore, the
compressive zone is rectangular.

the concrete compressive stress block is rectangular

d s
with an average stress valuq~o¥igcﬁ 2

(3) The modified "k" ratio

Most of the existing theories for the behaviour and

strength of reinforced concrete sec%ions, subjected to pure

torsion, relate the strength as a function of a coefficient which

depends on the over-all ratio of k. It was generally considered



satisfactory to extend this concept to the case of combinedl
bending and torsion,

The author analysed several experimental data
available and found that, for reinforced concrete beams with
both longitudinal and tramnsverse réinforcement, subjected to
combined bending and torsion, the ratio k should be based on
the dimensions of the reinforcing cage. The new ratio is
thus

ar
k = 'E;T R I R R (3.4)

The use of the new ratio results in a higher value
for k as compared to the original ratio, and therefore, the
strength of designed sections is generally under estimated.
The new ratio.is rwestricted to _1_31.;4;.}.5_

3.3 Derivation of the ultimate moment equatio:i.

When a reinforced concrete beam is subjected to com-
bined bending and torsion, the resulting £ ilure surface is as
shown in Fig. 3,1(a). This is based on the assumption that
the beam fails by formation of a compression zone across the
horizontal face. The inclination of the angle of crack is the
same throughout the two vertical sides, and the horizontal face
as shown in Figs. 3.1 (b) and 3,1 (e).

In order to solve the internal forces, it is necessary

to estimate the number of transverse binders intercepted by the
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cracks, both on the horizontal and vertical faces. By con-
sidering that the reinforcement is confined within the
reinforcing cage, considerable simplification is achieved,

In addition to this, the intercepts crossed by the cracks can
now be obtained accurately. In order to simplify the
calculation of the number of binders on the vertical side, it
will be assumed that the neutral axis plane lies at the level
of the top reinforcement, This is fully justified because
experiments have shown that the depth of the compression block
is generally very small and lies in the order of the depth to
the top layer of the reinforcement measured from the top com-
pression face, No further complexity is introduced by the
intercepts on the horizontal crack.

Using the above assumptions, the ultimate moment
equation will now be derived. To do that, the equilibrium of
the internal and external loads will be fir it ccnsidered.

Using the above assumptions, the ultimate moment equa-~
tion will now be derived. To do that, +he equilibrium of the
internal and external loads will be first considered,

The internal forces acting across the failure surface,
normal to the compression zone are

(a) 1longitudinal steel eevsese... A £ Sing

(b) transverse binders

intercepted by the
A_f dt

vertical cracks esscessces T T Cth’ Sin B
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(c) transverse binders

intercepted by the

1
ATfTb

horizontal cracks sesaresenT Cot™f Cos 3

The above internal forces generate the following
internal moments by rotating about the centroid of the comp-
ression zone, i.e.

(d) due to force (a) ceereanse A EL SinB(d—%)

ATf a'

(e) due to force (b) e g q'81n( (e

1
ATfTb

(£) due to force (c) voses—o Cot ¥ Cos(f:(cl -2

The total internal moment is obtained by summation of

the momentts given by (d), (e) and (£).as

My, = A £ 8in@(d - -g)

ATf b!
(d --- 1( ) Cotx81n{:s+ CoieCotGr{..“ (3 5)

The internal moment given by expression (3.5) is
balanced by the external moment Mbu and torsional moment Mtu'
The total external moment is obtained by resolving normal to

the failure plane, i.e.

Bl = Mbusm_g’+ MtuCose ¥ LR S 5T



For equilibrium, the external and internal moments
must balance each other, and therefore, the moment given by
expression (3.6) must be balanced by the moment given by

expression (3.5), i.e.
Mbusm@+ M, Cos e = A £ Sin @(d - %)
£-bHY
ATST )I( ) CotwSinf + Cos ¢ Cot: ;‘_..... (3.7)

Dividing the above expression throughout by Sin

and introducing the ratio ;3' = -M—bi, the eguation is simplified
>t

to

Mow (1 + COti) v ALEL(d-%)

AT.EP,].-,‘!D1 % =%
+—--;—(d—5) ( ) Cotey + Cot“’;Cotx.... (3.8)

From Fig, 3.1(c), the expression for the inclination

of the compression zone can be obtained as

Cote Lp' +2d') cotw L R N R (3.9)

=(1+2k) COtw S B P BN TR A e (3.10)

If the expression for Cot {;ﬁobtained above is sub-
stributed in equation (3.8), and the resulting equation re-

arranged, the ultimate moment equation is given as



Moo = 1q]:.fL(d % %)(94(145 2k)COtﬂ)

+ﬂ(d-£) (Pf(1+ 31:)Cot~2=-s T s
s 2’ ‘g + (1 + 2k)Cot:

For a particular beam section, the reinforcement is
generally known or obtainable from the known conditions of
loading. The unknowns left in the above expression are the
value of n and the terms in the bracket, The author intends
to present a method of calculating the first in Section 3.8,
while the terms in the bracket may be replaced by coefficients

C, and C, which are given as

1 2
;:{ +71+2k)Cth’ —3 Cl # 0o e 808w B0 (3.12)
2
Z (1 + 3K)Cotex _
F+(1 + 2x)Cotx - C2 vt el kg i)

For a particular beam with given {, the value of the
angle of crack is obtained from expression (3.1), (3.2) or (3.3)
and therefore, the values of Cl and 02 are found to be constant,

The author has obtained the coefficients Cl and 02
for variations of @ from 0 to 12 with k = 1,0, 1.5, 2.0 and
2.5, using a computer program, The results are plotted
graphically in, Figs. 3.2, 3,3 and 3.4. The graphs of Figs.
3.3 and 3.4 give the values of the coefficient 02 for pre-

dominant torsion and combined bending and torsion to predominant
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bendiﬁé conditions respectively.

Once the coefficients C1 and 02 are obtained, either
by direct calculation using the formulae (3.12) and (3.13), or
from the graphs of Figs. 3.2, 3,3 and 3.4, the ultimate bending

moment Mbu can be calculated at once by the use of equation

(3.14) given as

Spfpd’
bibu:ALfL(d—%)cl +_;"-_ (d --12}.)02 L N R (3.14)

It is necessary to estavlish the conditions under
wiiick the above equation is valid, The author proposes to
deal with this in chapter 4,

3.4 Significance of the coefficient C,

It can be deduced ty inspe-tion of equation (3.14)
that, the first term on the right hand side expresses the
contribution of the longitudinal reinforcement, and the second
term, the contribution of the transverse b’ .aders, The ultimate
moment Mbu can be thus considered as consisting of the bending
moments contributed by the longitudinal steel and the transverse

binders, and may be represented by

Bl e ST Gt Mg TR

I3
Where MbuL = AI,fL(d e E)Cl .Illﬂ.llol..(3.’16)

]
ATfTb

11
ar].d PIbuT == —-S (d_2)02 .lo.l.....l°(3'17)




t is proposed to consider the implications of
equation (3,16) to £ind the significance of C;e From
Fig. 3.2, it can be observed that as ﬁ'increases, the value
of 01 increases also and vice versa, The values are also
higher for higher ratio of k. By rearranging equation (3.16),
the coefficient C, can be expressed as a function of the
relative reduction factor in bending capacity of the beam

under consideration, namely:

L ETE a
1 ALfL(d e )

&

; n
Letting M_ = A £ fd = 2) ev e saag s A A1)
Then C - MbuL

1 ¥ 5 SN L3 20)
(6]

It will be shown in Section 3,8 trat the magnitude of
n is very small, and therefore, for purpose of discussion MO
can be considered approximately constant. In fact, the actual

value is related to Mu by the inequality as

Mu
'}{_' 1 csssc0sevB0eRsssEsI 0 (3-21)
o

#
Fd
\.

Equation (3.20) can be represented as the abscissa
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in Fig. 3,2, and therefore, the graph may be considered as
showing the efficiency of the longitudinal steel in con-
tributing to the bending moment resistance of the beam. From
“his consideration, the author decides to define C1 as "the

efficiency coefficient of the longitudinal reinforcement".

3.5 Significance of the coefficient 02

The ultimate bending moment has been expressed as
equation (3,15), where M, Tepresents the bending moment due
to the longitudinal reinforcement, and MbuT due to the
transverse binders, It is thus accepted that transverse
binders in the case of combined bending and torsion also con-
tribute to the bending capacity. This fact has been varified

{

by experiments, particularly that due to Gesund et a1\15).

From equation (3.17), the contributicn of the transverse

binders has been given as

Pob!
B e
=1

n
buT {a = 3)02

For a fixed quantity of transverse binders, i.e.

o

L it appears that the coefficient C2 represents the

effective contribution of that quantity to the bending moment.

The author therefore proposes to define 02 as "the efficiency

coefficient of the transverse reinforcement",




(15)

Gesund et al has also shown that the bending
moment increases with the increase in the transverse binders
within a certain range, This contribution can be related to
the parameter "r" which was introduced by Lessig(ls).
Introducing this parameter in equation (3.17), the

form of equation is changed to

n
Moo= Af (d4-3)cr e P R S |
w M}LbuTﬂcar .....-......-.0(3.23)
e}
ATfTb‘ ( )
Wherer N esesscasaonbean 3.24
ALfLs

For a specified beam section, subjected to known
combined bending and torsional moment, the contribution of the
transverse binders varies with r, and since the primary
function of the transverse binders is to resist shearing

stresses, the author proposes to define "r" as "the torsional

shear reinforcement ratio".

The advantage of presenting equation (3.17) in the form
of equation (3.23) lies in that, the later equation can be plotted
graphically as shown in Figs. 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3,11

and 3,12 for *= 0,25, 0.50, 0,75 and 1,00. From the graphs,
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the contribution of the transverse binders to the bending
capacity is obtained as a dimensionless ratio from which the
actual amount can be easily calculated, It is of interest
to mention that Figs, 3.3 and 3.4 represent the special case
of plotting equation (3.23) with r = 1,00,

Another important fact which emerged from these graphs
is the increase cf coefficient 02 with increase in the ratio of
k. This indicates that the contribution of the transverse
binders increases as the relative depth of the beam increases.

3.6 Torsional Resistance of longitudinal reinforcement

Discussion in Section 3.4 has revealed that the
coefficient 01 represents the efficient factor of the con-
tribution of the longitudinal reinforcement to the resistance
of bending moment, .This irdicates that, for combined bending
and torsion, there is a loss of the potential resistance of the
longitudinal steel, The author believes that this loss is
accounted for by the resistance of torsior il stresses. Since
01 represents the net contribution of the longitudinal steel
to bending, the remaining force could have been used in torsional
resistance,

The net force lost to the resistance of torsion may be

obtained by subtracting the amount contributed to bending, i.e.



Ploss = Afp - CA 8 = (1 - Co AL weenvana(3.25)

Ernst(26)

has shown that, for pure torsion, the
longitudinal steel contributes to torsional resistance. It

is believed that this concept is equally applicable to the

case of combined bending and torsion, Therefore, it is

decided to accept that the longitudinal reinforcement contributes
to the resistance of torsion, the amount of which may be obtained
from the above expression,

It is generally known that torsional stresses are dis-
tributed on the four faces of a beam when subjected to pure
torsion. The distribution should be similar for combined
bending and torsion. However, tae distribution of bending
stresses on the top and bottom section varies, the compression
gzone above the neutral axis, for instance takes the compressive
stress while the tensile steel takes the tensile stress below
the neutral axis. From this consideration, the author believes
that the torsional stress resisted by the longitudinal steel in
the tension zone is the longitudinal comporent which occurs below
the neutral axis., From this, it can also be deduced that the
transverse component is transferred to the vertical binders.

This concept will be extended to investigatrthe optiﬁum transverse
reinforcement in chapter 4.

From the above discussion, it is concluded that, for



beams subjected to combined bending and torsion, the amount
of tensile longitudinal force utilised for resisting the
longitudinal component of the torsional stresses is given by
expression (3.25).

3.7 Proposed minimum compressive reinforcement

Based on the concept of similar stress distribution
throughout tae fcur faces of a beam for pure torsion, it is
generally accepted that the 1bngitudina1 reinforcement should
be provided equally both in the top and bottom part of the
beam, It is suggested that this concept should be applicable
to the case of combined bending and torsion also.

From expression (3.25), longitudinal force in the
tension zone for resisting torsional stresses has been suggested

as

(1~ cpae
In order to resist the longitudinal component of
the torsional stresses which occur at the compression zone, the
amount of reinforcement provided at the zone should have equal

force. This force may be given as

FLC = Achs ooa--c.n.ooooa-o(3026)

For equilibrium, the force given by expression (3.26)

should be balanced by the force given by expression (3.25), i.e.



(3 & 01)AL£L ST SRR 1

ALCPS

e, A = (1-cq)a 2
7

2]

00..n...--.lqoocr..(3.28)

It is proposed that the minimum compressive rein-
forcement should be calculated from expression (3.28).
For reinforcement with equal compressive and tensile

stress, the reinforcement reduced to

iﬂiLc 3 (1—01)% Ol..'-‘.....0}6.0).(3029}-

3.8 Depth of the compression zone

In this section, the author Proposes to present a
method of obtaining the depth of the compression zone "n",
using the following points which emerged from the preceeding
sections:

(a) the net longitudinal force contributing to the

ultimate bending moment Mbu is C1ALfL

(b) the remaining steel (1 - C1)AL generates a force
& g™ C1)ALfL to resist the longitudinal component
of torsional stresses.
and(c) transverse binders contributes to the bending

capacity of the beam,



The effect of the longitudinal steel resisting
torsional stresses as given by (b) will be ignored as the
author believed that it is neutralised by the action of
transverse binders on the vertical side, Only the horizental
intercept of the binders will be considered,

Therefore, it is proposed that the depth of the comp-
ression zone is primarily influenced by the longitudinal steel
and the concrete strength, The net effect can now be shown
in Fig. 3.13 which is plan view of the failure surface.

The compressive force acting normal to the inclined

compression zone is

fnbcosec l,:' ‘.ll..l.....l"‘..l..l'l.l.l..(3.29)
The tensile force acting normal to the failure zone

contributed by the longitudinal steel is
C1AL£LSin€ ..-1‘{....1..04..00.0‘..'.-0.'(3030)

Finally, transverse binders intercepted on the
horizontal face contribute tensile force normal to the failure

zone amounting to

A f b
M—CO‘I:% COSB aooto-oco..tooaca-coc0(3-31)
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For equilibrium, the force given by expression
(3.29) is balanced by the summation of the forces given by

expl"ession (3.30) and (3131), ine-’

ATfTb'
fnbCosec = C_A. £ Sinﬁ §—
L s

e CotCosf.s.. (3.32)

The above equation can be simplified by considering the
equilibrium of tine tensile forces acting transverse to the

failure zone, Thus

ATfTb'
S Cot-ﬂ:’Slng= ClALchosg 4aeAnN0 e e e na (3033)
or fTb'
e Cot°(= ClALchotgaocoa-aca-.&-oooca-co (3-34)

Solving the two simultaneous equations (3,32) and

(3.34) equation (3.32) reduces to

fnbCosec = C A £ Sinf + C, A Cotei Cosf vuun. (3.35)
= C,]ALELSin@(l + Cotzg) AP L (TR

C,A_f

ises 'n =Pl
fb Gevsstacssrresses e e (3.37)

The author contends that, the depth of the compression

zone is given by equation (3.37).
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However, difficulty arises due to lack of knowledge
regarding the actual value of the compressive stress to be

used for combined bending and torsion, Available data(14’17’

8 0 . . :
37,38,39) indicate that the magnitude is related to the ratio
of compressive stress to shear stress, Under this circumstance,

it was deciued to use the compressive stress for pure bending,

Thus

LEC R B B B BB R B B B B B OO R IR B R A (3.38)

H,
]
u%qo

Substituting this vaiue in equation (3.37) results
in the magnitude of n to be

C.ﬂLfL

—

@& P A0 WO L S POONNCO0 0D OREeED 0N (3.39)

|

w(l)l\)

u

The depth of compression block for pure bending is
given as
n_b = ALFL (3 40)
b

From this, the depth of compression zone for combined

bending and torsion may be related to that of pure bending as

n = C1nb CRC R B L B L R B B B O DR B B I R BB RN I AN N (3.41)

The author has used the above formula for analysing

works of previous investigators which are given in Tables 3.1,



3.2, 3.3, and 3.4. The close correlation of the calculated
moments with the observed values seems to indicate that the

formula for n is acceptable.

It is proposed to study the influence of variation of

7 on the formula, In order to do this, the formula is

rearranged by expressing the coefficient as

1 g 5?(+ (1 ¥ 2k)COt6r --.......-..u,from (3.12)

(a_‘-‘%t};‘,-) sesPdO0OONOGRGGOIEDCENaD BN (33"‘!’2)

or =
Dividing throughout by ﬁ} the formula reduces to
1
C = CPUOOCO®R POOEDECNEED SO 0
i (1+Cot ) (3 43)
Il
b
ioe- T & (1+Cot_) S0 00 EEBIABLCDONDES D0 (3.45)

Equation (3.45) shows that the magnitude of n is

. P . :
related to the ratio Qg%__ , and in particular when é? =

45 degrees as assumed by Evans and Sarkdr(g), n is obtained

in a very simple form as

+

_27_) s e e b ek 3w4G)
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The above formula is probably applicable when the
level of torsion is high, Thus, it is suggested that the
formula be used for Q’<’2.

Another interesting development of the formula is

that, for pure bending, ? = 90 degrees and Q’ =0, Therefore

n=n-b ..........".....‘.“........-..--Q. (3-4?)

3.9 Significance of Mo

It is now possible to study the relation between Mu and
M by using formula (3.41). In order to do that, the ultimate

bending moment Mu in pure bending will be written as

™y

Mu i ALEL(d - '2-") L N N R S i) (3.48)
Similarly, Mo may be written as

n Y,
MO = AllfL(d - -2-) (B R E RN RN RN NN CEL AL i-rom (3*19)

Substituting the value of n in terms of n from the

relation (3.41), Mo is obtained as

S

MO=ALEL(d—- 2) T, LS SR e 1 7Y )

The relation of Mu and MO is obtained from equations

3.48 and 3.50 as



38.

o]

=

LALE S A N N N Y (3.50)

OZ
(o
1
o
Up

m,

The coefficient C1 is always less than unity for

combined bending and torsion, and therefore by inspection

hY

M
o
(o]

The above relation has already been shown in Section
3.4 by equaéion (3.21),

The relationship between Mu and Mo is very important
for practical purposes because it gives Mb in terms of Mu which
in practice can be obtained for reinforced concrete beams.

This will become obvious in Section 3,10 when design charts

are consid%fed.

3.10 Presentation of design charts

The ultimate moment equation given in the form of
expression (3.11) or (3.14) is basically suitable for purpose
of analysis and not for design. In this section, the author
proposes to present design equations in the form of charts, but
the design process can also be approached analytically, This
will be explained in the following paragraphs.

From Section 3.3, the ultimate moment equation has been



shown by equation (3.14) as

£ bt
Ny AT T i
Moy = Af(d- 348y + == ld = g,

where n is given by formula (3.39) developed in Section 3.9

as

Yty

2

30

If the moment equation is divided throughout by

ALfL(d - %), the resulting expression is

Mbtl hTf B
wuj-;j-h-m AL_P 02 ne-ooooolnu-l(B 5]

Further simplification is achieved by introducing MO
and r from equations (3.19) and (3.24) respectively., The

resulting equation is

M_'_ = 01 +C2r 00..!0.'.lltvlo..i.-c!o(3052)

The equation has been plotted graphically with

M as abscissa and ﬁ’as ordinates for k = 1.0, 1,5, 2,0, and
o

2.5, varying r from O to 1.00 as shown in Figse 3.14, 3.15,

3.16 and 3.17. It can be seen that, for beams under combined
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bending and torsion, the graphs can be used for analysing
any beam fulfilling the conditions valid for the applicability
of the ultimate moment equation, The process ®f analysis is
outlined as follows:-

(a) From the given beam section, calculate the

ratio of k

(b) Compute the ratio of r.

(c) Using equation (3.,39), calculate the value of n

(d) Calculate Hé by:using.equation.(3;19)

(e) Knowing the value of #, k and r, qu the graph to

obtain the ccrresponding ratio for E“E
o

£inally (f) Obtain the value of M_  fromthe result of (e)
The process of design is not as straightforward as
the process of analysis, The difficulty arises from the
fact that MO has no practical significance., However, its
relation with Mu can be exploited to obtair the required
beam section and the feinforcement. It is also necessary to
modify the allowable compressive stress in bending. The author
proposes to use the recommendation of the British Code of Practice(zl)

and thus, £ —a Cu and the value of n, as given in equation

9

(3.40) is now transformed to



41,

nh = ALfL

4
9 cub

ol‘ll...'.ltocll..llooelvo (3.53)

Subsequently, the value of n changed to

o
C1AL*L

n = —

='C'b
u

a.n.o...ol'Ill.Qltll-.oco. (3.54)

ES

The above two formulae will be modified by introducing

the following parameter

fL
Q"PC_“ Dclco!sltI.CuolOliIo..lvo.ooc (3.55)
u
Whe"?e P-"—- :b% .n-n.-cooo.-o..-o.o..o.oon.lococ (3-56)

Substituting the value of q -n equation(3,53, the

formula reduced to

qu ".II...ID.O.....I... LI B ) (3.5?)

hE

b

It is now possible to transform the relation of Mu

and Mo from equation (3.50) as

Mu 1- %
ﬁ-— o 9 fobesssssessv st sesnne (3.58)
8 bi=igGya

In designing reinforced concrete beams in pure bending
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or in combined bending and shear, the usual Procedure consists
of obtaining the beam dimensions from the ultimate bending

strength of the concrete given as

2
Mu — Kbd Cu .C..I.‘.I.l...ll"....lltil..l (3.59)
1 1 '
where X = X tog Sossssessse s RasRssaRE R ER IR A (3.60)
Jones(4o) has suggested the use of K =~% for
balanced condition when q = %. However, the value for

combined bending is probably greater than this value as can

be seen from equation (3.21). Thus

i)
BTO > 6bd Cu L N N T (3.61)

The exact value can be obtained from eqration 3,58 as

9
1= =i
X B e
MO - 9 (6bd Cu) LT R I W Y (3'62)
1l - ) q

From the relation of Mo and Mu’ it is now possible
to proceed with the design of beams in combined bending and
torsion, In order to do this, it is suggested that the
value of X = 4 be used, Therefore, the ultimate bending
strength of the concrete is

2

=<
MO_" bd Cu LA R N T R TR, (3.63)
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The process of design is as follows:

(a)

-

(b)

(c)

(a)

(e)

(£)

(g)

(n)

Finally (i)

From the assumed loading conditions, the

ik
value of Mbu and Mbt can be obtained and the
ratio @ can be calculated.
Choose an "appropriate" ratio for k and r (from
Chapter 4),

From the graphs, the ratio of Mbu can be

Mb
obtained,

Since Mbu is already known, Mo can be calculated
Use equation 3.63 to obtain the approximate beam
dimensions of b and d, keeping in mind the ratio
k -chosen

Calculate the position of the neutral axis from
equation 3,54,

Calculate the longitudinal steel from equation
(3.19)

Use the ratio r selected in (b) to compute the
transverse binders required

Check the design as shown for analysis in

Preceeding paragraphs.

After the design process is completed, the value of K

to be used can be checked from equation (3.62) if desired,



In choosing the reinforcements, it is necessary to
restrict the amount of reinforcement, This will be discussed
briefly in Section 3,11 and in detail in Chapter 4,

3.11 Limiting conditions for validity of the equation

In deriving equation (3.,11), it was assumed that
failure of the beam occurs due to yielding of the reinforce-
ment without considering the conditions under which this will
occur, The application of the equation is therefore restricted
to situations under which the following conditions are fulfilled:

(1) the longitudinal reinforcement ratio p should be

restricted to a value less than pbc where pbc
represents the balanced ratio

(2) the ratio r should lie in the range between r

and e where z and r, are the minimum and maximum
ratio for the torsional shear reinforcement ratio

(3) the amount of longitudinal reinforcement in the

compression zone should be av least equal to that
obtained by equation (3,28)
(4) the limits for the spacing of transverse binders

is proposed as

For 9’(:2, s b b sassTay svesse e eusasesl 3a60)
For ﬁ:) 20 %;P.d' Y TR N ORI (T 1) |



(5) the applied moment M, should not be less than
the applied torsional moment Mbt

and (6) 3152.5

The above points will be discussed in detail in
chapter 4,

3.12 Correlation of theoretical and experimental results

The author has analysed experimental data available
in order to examine the range of accuracy obtained by comparing
the observed results with the retical values obtained from
usinc the derived equation,

From the data available, the works of the following
authors were chosen as they conform to the conditions laid down
for the validity of the equation:=-

(1) Cowan

(2) Gesund and Colleagues

(3) Chinenkov

and (4) Evans and Sarkar

The comparison of the results are shown in Tables 3.1,
3.2, 3.3 and 3.4, It can be seen that, the correlation of
experimental and calculated values is good, and therefore, the

author feels justified that the eguation may be used within the



Table 3.1 -~ DBeams tested by Cowan
Beam No, g Ultimate Moment Ratio of
(in kip-in)
Expt.
Expt. Calc, Calc,
R5 1 75 66 1.14
R2 2 158 120 1.32
Rl 6 258 210 1.23
S1 2,5 207 152 1.36
s2 4 241 197 1,22
Average 1.25




Table 3,2 -~ Beams tested by Gesund and Colleagues

Beam No. g Ultimate Moment Ratio of
(in kip-in)

Expt. Calc. %ﬁ%ﬁf
1 1 79 87 0.91
2 1 102 120 0.85
3 2 122 128 0.95
4 2 134 154 0.87
5 3 147 146 1.00
6 3 168 158 1.06
7 4 173 159 1.09
8 4 176 168 1,05
9 2 120 136 0.88
10 4 176 212 0.83
11 2 138 152 0,91
12 4 213 218 0.98

Average 0595




Table 3.3 - DBeams tested by Chinenkov

Beam No, 7 Ultimate Moment Ratio of

(in ton-metye)

i Expt.

Expt. Calc. Cale,

B-2-8-0,1 10 5.6 4.3 1.30
B-2-9-0.1a 10 5 ¢4 4.5 1,20
B-2-8-0,2 5 4,8 4,0 1.20
B-2-8-0,2a 5 4,8 4,1 1,37
B-2-8-0,4b 3.5 4.0 3.7 1.08
B-2-8-0.4 2.5 4,2 4,1 1,02
B-2-8-0.4a 235 4,0 3.8 1.05
B-2-8-0,4b 2.5 4,2 4.0 1.05
B-2-8-0,4c 245 4.4 4.5 0.98
B-2-8-0,44 235 3.6 3.9 0.92
B-2-8-0.4e 2.5 3.8 4.0 0,95
B-2-8-0,4£ 2.5 4.0 3.8 1.05
B-2-8-0.4g 4.5 5.0 4,7 1.06

Average 117




Table 3.4 - Beams tested by Evans and Sarkar
Beam No, ﬁf Ultimate Moment Ratio of
in kip-in
Ex(pt. i C)alc. g—};ﬁ—:
HB/?2 1.9 67 64 1.05
HB/3 3.5 75 75 1.00
HB/4 4.7 82 79 1.00
HB/5 6.6 82 81 1.01
HB/6 8.0 85 84 1.01
HB/8 3.6 80 84 0.95
HB/9 4.4 85 96 0.89
HB/10 5.0 91 98 0,93
HB/11 7.0 94 100 0.94
HB/14 1.9 82 105 0.80
HB/15 3.2 111 119 0.93
HB/16 55 129 131 0.99
HB/17 6.9 137 138 0.99
Average 0.%96




accuracy required for reinforced concrete design.

Some examples of coiputation of Mbu using

equations (3.14) and (3.52) and the procedure to be followed

are given in Section 3.13.

3.13 Sample calculations

The procedure to be followed in using equation 3,52

is:-

(1)

(2)
(3)

(4)

(5)

Calculate the racio of k from the given beam
sections.

Compute the ratio r using equation (3.24),

Use formula (3.1) or (3.2) or (3.3) to obtain

the magnitude of CoteX.

Using ﬁ: k and Cote , calculate the coefficients
C1 and CE'

Calculate n by using equation 3.39.

Use equation (3,19) to obtain the value of Mo'
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(7) The bending moment M, is now obtainable from
equation (3.52).

It is also possible to compute Mbu directly by the
use of equation (3.11) or (3.14). The method depends on
personal choice,

The author will demonstrate the use of equation
(3.14) and (3.52) in the following paragraph by using beam
No.5 tested by Gesund and Colleagues,

(1) Method of using ccuation (3,14)

From the given data, the following are obtained:

b e 8”{ h = 8“, d = 635”’ AL = 0.59 Sq.in., f = 51 ksi,

L
Ap = 0.11 sq.in., £, = 50 ksi, s = 5" c/c, 2! = 4.24 ksi,

g = 3.4,

The calculated reinforcing cage is 5,9 by 5,9 in,

Step (1)t k¥ = %{g- = 1,00

Step (2): Using formula (3.2), calculate Cotex

i.e. Coter = 22 o 0,27
Step (3): Use formula (3.12) to obtain cvoefficient Cl
ey 3+ (1 + 2)(0,27)

Step (4): Use equation (3.13) to obtain coefficient 82

Liea By wars +32)(0.2?)1(1+3)(0.27)2 = 0.23



Step (5): Calculate n by using equation (3.39)
(0.59)(0,51)(0,79)
%(0.85)(4.24)(8)

i.e, Foee

Step (6): From equation (3.14), Mbu is obtained as follows:

M = (0.59)(51)(6.5 - 0.61)(0.79)

i iQ;&ll%égliéagl (6.5 - 0.61)(0.23) = 146 kip-in

(2) Method of using equation(3.52)

The given data used are already given.
Step (1) k = 1.00

0,11) (50} (5.
s (3 + - EEHEGA - o

Step (3) as before, i.e, Cotof= 0,27

Step (4) as before, i.e, C, = 0,79 and C, = 0,23

1 2
Step (5) as before, n = 1,22
Step (6) M is obtained from equation (3.19) as shown
below:
M = (0.59) (0.51) (6.5 - 0.61) = 177 kip-in,
Step (7): Mbu can now be obtained by direct substitution
in equation (3.52)

M = MO(Cl + car)

177(0.79 + 0.23 x 0,22)

146 kip-in
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3.14 Summary and Conclusions

The author has developed an ultimate moment
equation for under-reinforced concrete beams subjected to
combined bending and torsion.

The ultimate moment was found to consist of the
contribution of longitudinal and transverse reinforcement.
The equation is given as (3.11),

By introducing two coefficients, C. and C,, defined

1 2
as the efficiency coefficients of lengitudinal and transverse
reinforcement, the equation was simplified to the form (3.14).

Equation (3.14) was further rearranged into the form
(3.52) by introducing two parameters, MO(see equation (3,19))
and r, the later defined as torsional shear reinforcement and
thus relating the contribution of the binders to the total bending
moment, The special feature of expressing the equation as (3.52)
was the possibility of plotting the design charts shown in Figs.
3.14, 3.15, 3.16 and 3.17. Mo was related to Mu by the expres-
sions (3.58) and (3.62) to simplify desiga of beams in combined
bending and torsion similar to that for pure bending.

A method of computing the position of the neutral axis

was introduced in the form of formula (3.39) and related to that

for pure bending by (3.41).
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Further simplification was achieved in expressing the
position of the neutral axis for predominant torsion cases
as (3.46).

A proposal for restricting the minimum longitudinal
reinforcement in the compression zone is given by the expres-
sion (3.28) or (3.29).

Finally, the accuracy of the equation was demonstrated
by the analysis of forty-three beams tested by previous inves-
tigators. The comparison of the calculated and reported

ultimate moments are shown in Tables 331; 3.2, 3.3 and 3.4.



CHAPTER 4

OPTIMUM REINFORCEMENT

4.1 Introduction

In chapter 3, the author presented an ultimate

moment equation for calculating the bending moment Mbu for
beams subjected to combined bending and torsion. The
application of the equation is restricted to compliance with
the conditions and assumptions under which the equation was
derived, and it is proposed in this chapter to discuss these
conditions in detail under the following:

(1) the establishment of the balanced longitudinal

steel pbc:for combined bending and torsion,
and (2) the establishment of a range of values for r.

Finally, the proposed limitations will be compared

with existing design recommendations,

4.2 Proposal for balanced longitudinal stee"_ghc

It is proposed to establish a balanced percentage
of longitudinal steel Ppe SO that, at failure, the steel attains
the yield stress and crushing of the concrete follows, This
will be done by reference to the case for pure bending,

For pure bending, provided the percentage of longitudinal
reinforcement does not exceed a specific value, there is evidence

that failure occurs due to yielding of the reinforcement and
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then crushing of the concrete in the compression zone. This

value is given as

I o
Q
<

P =
b 9fL

e (S )

in which limitations are imposed by the following assumptions:
(1) the longitudinal steel reaches the yield stress.
(2) n = %, thus ensuring under-reinforcement.
(3) the concrete compressive stress block is rect-

4C

angular with an average stress value of —;E .

The author believes that a similar approach may be
made for the case of combined bending and torsion. Compli-
cations are introduced howev:r due to insufficient data
regarding the true behaviour of concrete under the action of

combined bending and torsion. Attempts have been made by

(37=38’41). 17) (39)'

Bresler and Pister Goode and He]my( and Reeves
but their results are inconclusive, The general agreement is that
the presence of torsion tends to reduce the dircct stress fc to
a lower value of £,

For the case of combined bending and torsion, the
author has decided to use the allowable concrete stress as shown
in Section 3.10 of Chapter 3, i,e, £ = % C, - It. is proposed
to use this assumption in obtaining the balanced ratio P which

will be done in the following,.
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It has been shown by expression (3.41) that, the

depth of the compression block is

n = 01
Wt
where nb =‘% Cub

For combined bending and torsion, P may be written
as

CeBAdos eGP OBBREEEEERe e Do (402:

o
bd

Pbc

OI'AL = Pbcbd Seerar I IR S IRENSIIRRIAEDBTERSEES (4.3)

Substituting AL from (4.2) in expression for o shown

above, n, reduces to

P Pud
be™L
s o S LR N N N N N N N (4-4)
s
9™u
9pr£Ld
&2 ZE“__ CeePLoBeeseCH. BesEease (4.5)
u

Substituting the value of n, obtained from (4.5) in
the formula for n, the result is
Efpchc1

n - e s

lll..l....l.l....‘......(4‘6)
4C_



Restricting the neutral axis depth to that given by

assumption (2), n is found as follows

d
n = 'é' S E 0SB CAIEe00OBONtEREBO B E S (4-7)
ie. Pucflly 4
_'4':-6._—— {ja ‘é' R N N A R N ) (408)
u

From expression (4.8), the value of Pic is

obtained as
2C
u

foenessesdsepBeEr e RS (4.9)
9fLC1

Pbc

The author contends that expression (4.9) gives the
balanced longitudinal reinforcement for the case of combined
bending and torsion for different ratios of @ and k.

It is interesting to show that, for pure bending,
C1 = 1,00, a»sd therefore, Pre reduces to che following value,
1Je)

IR s

L
which is the samz as expression (4.1).
In general, expressicn (4.9) shovws that, as C

.I

decreasecs, pbc increases, Since the magnicude of Cl decireases
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for low ratios of Q'as shown in Fig, 3.2 of Chapter 3, it
can be concluded:that, pbc is always greater than pb for
combined bending and torsion. Therefore, P, 2s given by
expression (4.1) represents the minimum ratio of Pyt

It is proposed therefore to accept the ratio given
by expression (4,9) as the ratio for proportioning the longi-
tudinal steel to ensure yielding of the steal in the longi-
tudinal direction,

in general, the reinforcement provided in actual
praccice is usually less than :he calculated value so that the
design requirement is fulfilled, Nevertheless, the author
feels that further study will result in further modification of
this value,

It is now proposed to carry out investigation to
establish the minimum and maximum ratios of the transverse
reirforcement,

4.3 Provision for torsional shear reinforcement

It was shown in Chapter 3 that, for combined bending
and torsion, the ultimate moment Mbu consists of the contribution
of longitudinal and transverse reinforcement. In particular,
the net bending moment was shown to be MbuL as given by expression
(3.16). From this result, the net loss of internal force due to

the resistance of torsional stresses was given by expression (3.25).
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This is reproduced in the following as it is relevant to the

discussion, Thus

¥loss ™ Apfy - Giffy = (1-C )8 2

that is, the net force resisting the torsional moment and is
equivalent to the longitudinal component of the torsional
stress.,

It is contended that, in order for yvielding of the
longitudinal steel to occur, an equivalent amount of transverse
binders should be provided to resist the transverse component
of the torsional stress, thus preventing possible premature
failure before yielding of the longitudinal steel. Further,
it is believed that this amount of reinforcemeat constitutes the
minimum requirement and designated by Lessig(13) as the optimum
amount,

It was also shown in Chapter 3 that the bending moment
MbuT contributed by the transverse binders is given by expression

(3.22) as

Moup = Afy(d =) opr

This expression indicates that, for a fixed ratio
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of Py the contribution of the binders to bending can be
related to the ratio r. In particular, the above equation

increases for increase in r, a relationship
(15)
L]

shows that, MbuT
which has been confirmed by experiment

In addition, the fact that the bending moment
increases with increase of this ratio implies the existence
of a range within which this ratio may vary for yielding of
the reinforcement in both categories. The author is of the
opinion that there is an upper valuec for r which determines
the meximum amount of transverse binders,

It is proposed therefore to accept r as a basis for
establishing the minimum and maximum amount of transverse
binders, and develop proposals for these ratios using two
methods: -

(1) Force intensity method

and (2) 1Internal couple method

4.4 Force intensity method

This method consisted of relating the intensity of
the forces in the transverse binders to that of the longitudinal
steel, thus expressing "r" as follows:-

éTfT

S

r = _TA-]';F;_ ‘lttul...0!0-0!llq.‘l...lo.(q'.lo)

bl
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that is, the ratio of the force intensity of the transverse
A_F

binders ' to the force intensity of the longitudinal

A £
steel I

. - -]
Yi
9]

If these relations can be obtained from the equili-
brium of the internal stresses of the beam yielding at
failure, then it forms a basis from which the minimum and
maximum ratios can be established,

Exverimental evidenca(23) indicates that the concrete
core is not effective in resicting the torsional stresses since
these stress=s occur only on the outer periphery of the beam,
It is assumed therefore that the stresses are distributed as
follows: ~

(1) the transverse components of the torsional

stresses are resisted by the transverse binders,

—
o
N

the top and bottom longitu .inal steel resist
the longitudinal component of the torsional
stresses
and (3) the resistance of concrete is negligible,
Assumption (2) is based on a further assumption that
the longitudinal steel behaves as though distributed uniformly
around the periphery of the beam, so that, half the tensile

longitudinal steel resists the stresses on half of the periphery,



while the remainder resist the other half. The mechanism of
this action is illustrated in Fig. 4.1.
From the figure, the intensity of the longitudinal

steel is given as

z
L
E'L=(1_C1)F+—d'7 seessrvresesnens (4-11)

and the intensity of the transverse binders as

uhs . S

T s ® 460 60 8000 BOB RS PESSEE eSS Ees (4.12)

so that, for equilibrium,

B = Bl seeevescsssneciisscsicsisanases (4413)
1.8 Asz = (1 - 01) rgié:-ary T e o
(1-c)
or T R taw o B T e s S (%.15)
Substituting for coefficient 01 from expression
(3.43) in chapter 3 gives r as
: (4.16)
r = AT %é;;) cosssssssssssces (4

For a particular beam, "r'" is related to the ratio
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T R and when  is fixed, the value is directly
detérmined once the value of Cotg is obtained.

Chinenkov(la) found by plotting graphs of Hbu
against Cot that, the bending moment gradually decreases
up to a certain value of Cotﬁ, and then again increases when
Cot E increases, and concluded that there is a minimum value
for Mbu'

By inspection of expression (4.,16), r will be a
minimum when angle B is 45 degrees. The author proposes
therefore to use this angle as a basis for fixing the minimum-
ratio of n, It is interesting toc note that Evans and Sarkar(g)
use the same angle with satisfactory results.

The optimum ratio rC of 1ae minimum ratio is taken

as

g & = 1 tsesmevesnsobBeRrE (4.17)

& G+ 800 +9)

Similarly, the maximum value of r should be limited
by fixing or limiting the value for the angle B . This

(13)

consideration is supported by the fact that, Lessig from
experimental observation found that, for practical purposes,
the intercept on the longitudinal ax.s can be approximated to

(b +2h). This amounts to restricting the angle of inclination

to
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COt5= b:;z‘h = 1+2—k D.III.QII!.I..Q(4.18)

In general, when the intercept on the longitudinal
axis is about (b + h), the structural member is badly
deflected, and therefore the intercept should not be allowed
to exceed this length, On the basis of this reasoning,
the author decides to accept the above limitation for Cot

and proposes the maximum "r" ag

1

2 b (1+k) (1+-('1_%2ﬁ)

Ccmparisons of proposed ratios given by expression

ooeobooocno(4.19)

(4.17) and (4,19) with the recommendations put forward by
other investigators are shown in Figs, 4.4, 4.5, 4.6 and 4.7,
It may be concluded that the assumed values are both satis—
factory and consistent,

Alternatively, the above formu®ae can be obtained
by the internal couple method as described in Section 4.5.

4,5 Internal couple method

This method is based on a hypothetical mechanism of
the transverse and longitudinal steel as they generate internal
moments, The method is simple and the author feels that it

explains the internal action of the reinforcement rationalily.
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The effects of vertical intercepts of the transverse
binders and the longitudinal steel amounting to (1 - C1)AL
are assumed to induce the internal moments. It is assumed
that the horizontal legs of the binders intercepted by the
crack at the bottom do not contribute directly to bending
action and tne banders in the upper layer can be also ignored,
The proposed failure of the beam indicating the
transverse stresses is illustrated in Fig. 4.2. The diagram
is a side viesw of the beam at the failure stage,
The following assumptions are made:-
(1) the lever arm of the internal moment is
approximately equal to 4!
(2) the angle o2 inclinztion is as giten by
expression (3.10) of Chapter 3
(3) the cffect of the tensile stress of the concrete
is ignored
and (4) all reinforcement which cross the crack reach its
yield stress.
The ultimate bending moment Mbu and on the assumption
(1) is given by eguation (3.14) as

3)01 +

hTf b!
2

n
5T kd = 2)02

e =i g g
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To satisfy the assumption (1) shown above, the
lever arm (4 -'%) is replaced by d' and thus, the moment Mbu

is transformed to

£ bt
R 52;3—- BB Caveslonss (4,50)

The abuve expression for the ultimate moment
results from considering the action of internal stresses in
the reinforcement as they rotate anti-clockwise about the
centroid of the compression zone with a lever arm equal to
ar

From Fig., 4.2, it is observed that, the transverse
binders form a cuuple, generating a clockwise internal moment

Mb . which is given as
uTi

A_f£ at
th ﬂysT (b' + d')COt%H (4 21)
MbuTi e TR N NN W L]
Apfpbta’ 2
or ————— (1 # X)COtO wueessrasa(4:22)
Similarly, the net longitudinal force (1»01)ALfL
creates an internal moment M . in anti-clock-wise direction

buli

which is given as

S (1—01)ALde' e s o

ilibri i M . 4 : £
For equilibrium, the moments Suli and hbuTl must

balance each other, i.e,
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Apfqbiat 2
(1-‘01)!1LfL = _""'S_"""_ (1+k)COt c‘(uao.-c-oc(4-24)
and simplifying,
Bifys E1+kiCot;§
i.eﬁ = (1—01) .lﬁo.lﬂ.CCI...'..‘.(4.26)

(1+kiCotcy

For combined bending and torsion, the angle of
crack may be assumed to be 45 degrees, Expressicn (4.26)
is therefore reduced to
(1-c,)

1+k

which is tke same expression (4.15).

The process is repeated as in the case discussed
in Section (4.4).

The above relation may be exterded to obtain the
minimum and maximum ratio of r by intrcducing the following

range of the angle of inclination .,
450\< g e Cot N B BK)  sanniessaiinaos sy Laead)
Ll \

Substituting the above range of **%3 , the range of

r is obtained as



1

1 ’
T {g r ﬁ: (143) (14 r?%ég)) e sikamey sy (4528)

It can be seen that the above range of r is the
combination of expression (4.17) and (4.19).

It is proposed to compare the above limits with
recommendations given by other investigators,

4.6 Comparison of proposed ratios with existing recommendations

The recommendations currently available can be
classified into three categories:

(1) #fcr torsion only

(2) for combined bending and torsion

and (3) combined bending, torsion and shear,

Of these, the author inteads to refer only to cases
(1) and (2). Combined bending, torsion and shear is not
treated in this thesis,

Comparisonswill be made with recommendations
suggested by the following:

(23)

{1) Pure torsion case - Hsu'

(6)

the Russian Code

of Practice (4’423.

, and Colling and Colleagues
and (2) Combined bending and torsion - same as for
torsion except recommendation of Hsu is ommitted

and addition of the suggestion of Lyalin(s).
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1, Pure torsion

Expressions (4.17), (4.19) or (4.28) require
slight modification so that the ratios can be extended
to the case of torsion only. This will be done by the
consideration that, for pure torsion, @ = 0, and subs-
tituting this value in expressions (4,17) and (4.19), the

ratio reduces to

1
x — m L R R RN Y (4{29)

It is interesting to observe that the above
expression can be obtained by slight modification of Cowan's

recommendation(ss).

Based on the argument that, shear
reinforcement in the form of vertical stirrups must be
supplemented by an equal volume of longitudinal steel uniformly
distributed around the circumference to resist the horizontal

component of the diagonal tension, he proposed the quantity of

longitudinal steel as

b (b'+d')
AL -_ AT S LA R R R R EERE RN R ] (4.30)

The above expression is based on the assumption that,
the stresses in the reinforcement in both directions are equal,
and the author feels that the expression applies to this special

case only,



If the differcnce in quality of steel used in
both directions is considered, it becomes necessary to

relate them by modifying the expression (4.30) as follows:-

a(e) = AERIBIHY) o eesnsens (4.51)
or I = 5
T1+k

which is the same as expression (4.29),

Hsu(za) introduced a parameter "m", the value of
which is given by the following and allowing for the different

values of fL and fT’

Ap(g)s A5 AL\ e
AT(fT)(b' + dt)

1
=t r1+k S 2 5 8 85888008 aAF B PEeEEEN S (4.33)

The above expression is thus related to the ratio r

used by the author.

The range within which this parameter may vary is given
by Hsu as

0.7 <: m <f 34 S UCS WS SR Ny | Cri ER

It is possible to use the above range to compare his
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recommendation with that obtained by the author. To do
this, the expression (4.33) is rearranged and the ratio

r ohtained as

i = m1+k R R I I O T B O I A A I A I I W R (4.35)
Introducing the range of expression (4.34) in the
above expression, Hsu's recommendation amounts to the

following: -

1.4

0,7 28
mﬂ < i (_‘_\ m sP B s s s EB oA (4.36)

The above range and the proposal made in expression
(4,29) are similar, In fact, expression (4.29) can be con-
sidered the mean value of expression (4.36). Tt is therefore
felt that the author's recommendation may be considered
acceptable.

Comparison of the rucommendations of Hsu as in
expression (4.36), the Russian Code of Practice and Collins and
colleagues are plotted in Fig, 4,3, It can be observed that
the author's recommendation is within the range suggested by
other investigators.

(2) Combined bending and torsion

Comparison of the autnor's proposal with recommendations
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of the Russian Code of Practice(ﬁj, Collins and colleagues(4’

42) and Lyalin(s)

are shown in Figs. 4.4, 4.5, 4.6 and 4.7
for ﬂ': 0 to 12 with k. = 1.0, 1.5, 2.0 and 2,5, The author's
recommendation lies within the range of that suggested by

other investigators and is therefore considered acceptable,

4.7 Summary and conclusions

In this chapter, the author has made proposals for
restricting the ratios of reinforcement for both pure torsion
and combined bending and torsion.

By the use of the "force intensity method" and

"internal couple method", the reinforcement may be limited as

follows: ~
(1) the longitudinal steel is limited by expression
(4.9) for combined bending and torsion,

(2) the minimum and maximum ratios of r may be given
by expressions (4.17) and (4.19) respectively for
combined bending and tors.ion.

and (3) the minimum ratio r for pure torsion is given by

expression (4.29).

The above proposals were compared with the existing
recommendations and the close correlation shows that they may

be considered acceptable for future use,
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CHAPTER 5

EXPERTMENTAL INVESTIGATION

5.1 Introduction

Torsion often exists in a flooring system in con-
Jjunction with bending and shear, by the action of loads on
secondary beams framing into a primary beam., This type of
loading can be simulated in a structural laboratory to study
the influence of torsion on the bending capacity of beams, The
author has daxveloped a technique for the above investigation and
used it to investigate the behaviour and strength of fifteen
reinforced concrete beams, subjected to combined bending and
torsion, This chapter constitutes the analysis and discussion
of the results obtained,

5.2 Object and scope of Investigation

The primary object of the investigation is to verify

by experiment the ultimate moment equation developed by the
author in chapter three and to study the action of the transverse
binders,

The main variables considered are the ratios of bending
moment to torque, and the spacing of the transverse binders,

5«3 Description of test specimens

The test programme consisted of tests on fifteen beam
specimens grouped in five series as shown in Table 5,1, A typical

specimen with dimensions and cross-cec ion is shown in Fig. 5.1. 1t o
is in the form of part of a frame, consisting of two transverse arms
connected to the longitudinal member which represents a girder with
the transverse arms acting as secondary beams, By studying this type

of configuration under load, the action of a beam in actual structures



Table 5.1 - Beam properties

Beam No. pf Tie spacing Steel ratio

( .-"8- “diam D 5 {
K16 ST 6 in, c/c 0,021 0,019
K13 2.1 3 in, c/c 0.021 0.039
X2/266 2.1 2.66 in. c/c 0.021 0,044
K11 Al 1 in., c/c 0,021 0.116
X16 4.3 6 in. c/c 0.021 0,019
K13 4.3 3 in, c/c 0.021 0,039
X11 4.3 1 in. c/c 0.021 0,116
K16 5.6 6 in. c/c 0.021 0.019
K13 546 3 in, c/c 0.021 0,039
K11 5.6 1 in. c/c 0,021 0.116
X16 8.5 6 in, ¢/c 0,021 0,019
K13 8.5 3 in. c/c 0.021 0,039
K11 8.5 1 in, c/c 0.021 0,116
x2/200 11.8 2 in, ¢/c 0,021 0.058
X2/150 11.8 1.5 in, c/c 0,021 0.077
*p= A/bd

*¥* p = ATfTb'/thLs
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may be simulated and a study made of the effects of loading
on the joints,

To enable the manufacture of three specimen
for each mix, three moulds were designed and constructed,

A typical mould is shown in plate 5.1,

The beam specimen contained four longitudinal steel
bars placed at each corner of the rectangular beam and
transverse binders in the form of closed vertical stirrups,
With the exception of the effective length measuring 1'6",
the stirrups were closely spaced to prevent any premature
failure, The spacing varied from 6 inches to 1 inch, centre
to centre, for each series as given in Table 5.1. The beams
were denoted as K16, K13, etc., the first number representing
the group and the second number the spacing for the binders,
The testing of the beams was carrie¢d out using five ﬂ'ratios,
so that each @ ratio represents a series.

5.4 Description of Torsion bracket

A special feature of the testi.g programme is the
need for placing the beam on the loadirg frame and simply-
supporting it without endangering the end parts of the longi-
tudinal member beyond the joints to the effects of combined
bending, shear and torsion. This was done by the use of two
specially-designed torsion bracket supports attached rigidly to

the longitudinal member, allowing it to rotate both in the
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longitudinal and transverse directions. A photograph of the
torsion bracket is shown in Plate 5,2,

5.5 Materials and Fabrication of specimen

A considerable time was devoted to the sieving and
analysis of the aggregate in order to ensure uniformity and
consistency of tne resulting concrete, The cement used was
Ferrocrete and the aggregates consisted of 3/8" Eddlestone.

The graph of McIntosh and Erntroy(so) was used for
the design »f the mix to attain a concrete strength at twenty-—
eigut days of 6000 psi, The concrete was manufactured in a
"Cum-flow" type mixer of two cubic feet capacity by mixing for
two minutes and then poured and vibrated into the moulds. Three
specimen znd three control cubes were cast at each concreting,
The specimen were then cured by placing them under wet burlap
for seven days to simulate actual conditions in practice, while
the cubes were transfered to the curing t nk where they were kept
for twenty-eight days.

In order to ensure failure of the test specimen by
yielding of the reinforcement, it is essential for the steel to
possess sufficient yield range at constant yield stress. Black
mild steel has been found to be suitable for this purpose(lo).
Unfortunately, at the time of preparing the test specimen, the

author could not obtain this type of steel for the longitudinal



Plate 5,2



St e

bars and cold-worked mild steel had to be used. On testing
the sample, the steel was found to possess sufficient yield
range for use in the beams, The transverse binde s consisted
of bright mild steel annealed at 90000. The yield stresses

of the longitudinal and transverse steel were found to be 40,000
psi and 34,000 psi respectively,

It was essential to maintain equal dimensions for the
reinforcing cage in order to maintain a constant ratio of k.
Therefore, extreme care was taken in bending the stirrups and
then tieing them to the longitudinal bars with soft wire.

The alignment of the reinforcement in the mould was again
adjusted before and while concreting,

5.6 Test arrangement and procedure

The loading frame used for testing of the beam
epecimensg is shown in Fig, 5.2 and consisteé'of two horizontal
girders spaced at 6'0O" c/b and another girder placed between
them for supporting the loading jack.

The configuration of the bear specimen was specially
chosen and designed to enable the application of combined bending
and torsion within the effective length by a system of spreader
beams as shown in Fig. 5.3. t can be seen that by varying the
position of the maia loading beam resting on the two transverse

beams, the ratio of bending moment to torque can be varied. The



o Lol (sea Plale
s2)

@) Ecevarion SEromg ¥ Loor
I .

Soesiog frong
Jee .:" -

]
1

4
74

=)
]

Se. .' I ]
e

=)

-
N

i3

B) Podry ViEW

lFlese- L aa_a_/;'dg /;g_.ggg.




ze;rvcr.rc [oaa/f'f:? y oo
e o7y Fa Jo
Fo 30

Loed "EP Fom sack

Keoctroms

3 Car yofale Thws »o tors o

A #o P I <
27/ N B VAN
@: 7 (e
= ey
/,f ot =£ (vo-a) (2,
. — £2(o)
Load Cromsmilter t/’oﬂﬂ 250 V. / = Plz/-a)
e
£ '

S Z¥e react pm 3% 4 £q
t } A = (7P

L v

e 5.3 — &ﬁs_:_% o ;prae%r ée_afrzé"




74.

The equation for finding the exact ratio @ is given in the
Figure,

Preparation of the test specimen for testing
consisted essentially of the following:- (1) positioning
and fixing of the demec points on to the surface of the beams
as shown in Fig. 5.4, (2) attaching the torsion bracket supports
to the longitudinal member, (3) placing the test specimen on
the loading frame, (4) arrangement of the spreader beams on the
test beam, and (5) placing the dial gauges for measurement of
the deflections.

The lecad was applied through hydraulic rams connected
to a Losenhaivsenwerk machine and of capacity of 20 tons. In
this programme, the loading was adjusted to attain a maximum of
five tons. The position of the diz.l-gauges with a beam in
positiopn for testing is shown in Plate 5.3 as well as the
location of the loading beams and jack.

The number of load increments ir each test varied from
8 to 16, depending on the ratio of bending moment to torque so
that the magnitude of each increment varied between 0,10 and
0.15 ton. Load was applied to the beam up to the collapse stage,
and after each load stage, readings of dial-gauges and demec points
were recorded, The sequence of recording the results consisted
gererally of, the taking of the dial-gauge readings, then, obser-

ving the recording the crack-propogation, then reading the demec
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points and finally, reading dial-gauges again., The whole
process for each load stage generally took from three to
five minutes,

5.7 Experimental results

The main results of the experiments are listed in
Tables 502, 513; and 5.4,

5.8 Analysis and discussion of results

5.8.1 Development of Cracks

As shown in previous investigations
Tor all the beams tested in this study, the cracks originated
at the bottom edgc where flexural tension is a maximum, These

cracks widened on further loading, spreading diagonally side-

ways, both in the horizontal and vertical direction, More cracks

then appeared at the bottom,; crossi..g the whole width of the
beam, and emerged at the two edges and propagated upwards on the
vertical faces,

The inclination of the cracks v.th respect to the axis
of twist was found to be similar on the three faces of the beams
tested with similar ratios of ¢, the magnitude of the angle
varying with QZ It was found that the angle was close to 45
degrees for low ratios, increasing with ﬂ'and becoming almost
vertical for large ratios, Typical crack patterns for beams
tested with different values of @ are shown in Plates 5.4, 5.5,
5.6, 5.7 and 5.8 and it can be seen that for low ratios of ¢

the path of cracks traced is essentially a straight line right

(9’10'12’13'14'15),3.11

d



Table 5,2 - Ultimate Strength

Beam No. g Cube Strength¥ Ultimate Moment¥*
(ksi) (xip-in)

Mou Myt
K16 2.1 7.03 10.70 5,10
K13 P | 7.03 13.80 6.57
x2/966 . 2:1 6.04 16.85 8.02
K11 2.3 7.03 18,00 8.57
X16 4.3 6.99 27.90 6.49
X13 4.3 6.99 26,50 6.19
X11 4.3 6.99 27 .40 6.37
K16 5.6 8.12 24,60 4,39
K13 5.6 8.12 25 .40 4.54
X11 5.6 8.12 24,50 4.38
X16 8.5 7.23 27.20 3.20
K13 8.5 723 25.40 3.00
K11 8.5 7423 27.20 3,20
K2/200 11.8 .04 29.90 2.53
X2/150 11.8 6.04 29.90 2.53

* average of three cubes

%% yield values



Table 5,3 Concrete strains measured at the top face

Beam No. ﬁ’ Cube Strength Compressive Strain
(psi) at

Yield Collapse
K16 2.1 7030% 0,0005%* -
K13 2al 7030 0,0009 -
K2/266 2.1 6040 0.0004 0,0004
(k11 9.1 7030 0.0007 0.0007
K16 4.3 6990 0.0008 0.0008
K13 4.3 6990 0.0010 0.0010
K11 4.3 699C 0.0013 0.0013
K16 546 8120 0.0010 0.0010
X13 546 8120 0.0010 0.0013
K11 5.6 8120 €.0017 0.0017
X16 8.5 7230 0.0015 0.0037
K13 8.5 7230 0.0059 0.0029
K11 8.5 7230 0,0013 0.0058
X2/200 11,8 6040 0.0011 0.0051
X2,/150 11,8 6040 0.0011 0.0035

¥average readings at three positions,

** average of strains measured on the compressive side.




Table 5.4 = Principal concrete strains measured at the

center’of beam faces for # = 2.1

Beam No, Horizontal face Vertical face
Tension Compression Tension compression

K16 0,00037% 0.00112 0,00226 0.00057

K13 0,00045 0.00161 0.00069 0,00112

&11 0.00042 0,00114 0.00228 0.00074

¥ average readings at three positious,
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up to the top edge, while for large values, the path deviates
in a curve at about mid-height, with decreasing slope towards
the longitudinal axis. Similar observations have been
reported by previous investigatoréé’14'15’16’18), and in
particular, Evans and Sarkar(g) assumed the deviated angle as
45°, A possible reason for this crack-behaviour is that
there is a position at which the distribution of flexural
stresses changes from tension to compression. The neutral
axis represents this transition zone 3o that the flexural
stresses at this level are nil and therefore only the torsional
stresses are acting hence the tendency for the cracks to
deviate at a 45° angle, As the load increases towards the
failure stage, the location of the neutral axis also rises
and therefore the continuity of the 450 inclination is main-
tained,

Another interesting observation concerning the crack
is the tendency for the cracks to revers. as the failure load is
reached, This can be seen in Plates £.5, 5.9, 5.10, 5.11 and
5.12, resulting in slicing off pyramoidal shapes of concrete on
the upper face, This pProcsss was also observed by Gesund and
Boston(20).

The influence of gfon the rate of crack propagation
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was significant, For low ratios, the rate was rapid, for
example ﬁ’: 2.1; the cracks reached the top face within a

few increments beyond the cracking stage. This observation

is similar to the report of Chinenkov(lg) who attributed the
phenomena to the rapid rate of stressing and therefore the
rapid straining of the reinforcement, resulting in an

immediate widening of the cracks. The rate was relatively
slow for large values of ﬂ: for example, ¢r= 8.5; for this

ratio and higher, the crack movement was not noticeable in

some casaes, and the cracks tcaded to remain localized below

the top edge even at the collapse stage. The author believes
that this is due to the considerable compressive stress of the
concrete which restrains or delays the movement, Another
possible explanation is that the test beams used in this programme
were so under-reinforced that the depth of the compression block
was considerable. The beams may have be n in compression up

to about the mid-point or lower, with the result that the pro-
pagation of the cracks in the vertical direction was delayed or
slowed down and the torsional stresses are not sufficiently
large to crack the beam, The final result is to reduce the
slope of the path of cracks from its original straight line to -

a curve,
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The influence of the mechanical properties of the
steel, particularly in the yield range is significant. The
steel used in this study did not poszess sufficient yield
plateau to allow inelastic deformation to occur and in the
author's opinion, the steel was in the strain-hardening
range when failure occurred as suggested by the badly-deflected
condition of the beam shown in Plate 5.13.

The general weakness of the reinforcement in the
transverse direction influenced the extent of cracking of
beams, especially at the lower range of the ratio, For
exanple, beams tested at ﬂ’= 2.1 and ﬂ*= 4.3 failed as a result
of extensive cracking. This can he seen from Plates 5.14,
5.15, 5.16 and 5.17 which show the condition of the beams tested
at g’= 2.1. The weakness of this reinforcement may be discussed
from two aspects: first, from the point of view of spacing and
second, the cross-sectional area, A possible effect of
inadequate spacing of the binders is the development of diagonal
cracks between the stirrups precipitating failure to occur as in
the case of beam X16 tested at @ = 2,1 or beam K16 tesied at
@ = 5.6 which can be considered a relatively high ratio., The
condition of the beam X16 tested at @ = 5,6 is shown in Plate
5.18, The beam may also fail as a result of the reversed move-

ment of the vertical cracks and splitting of the concrete along
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the tensile steel at the bottom as shown in Plates 5.16,

5.19 and 5.20, This type of failure is similar to that

caused by combined bending and shear as observed by Neville(lg).
By the use of closer spacing of the binders, this

type of failure can be prevented. The recommendations of Zia(222

Hsu(23) and Mattock(24) are relevant in limiting the maximum

spacing of the binders, On the other hand, the recommendation

(21)

of the British Code of Practice is considered relevant for
the behaviour of beams X13 and X2/266 which are shown in Plates
5.9 and 5,15. In the first case, the beam is extensively
cracked while the later may be considered comparatively intact.
The spacing for the later was limited by the use of the British
Code(zl). The condition of this beam suggests that the pro-
vision in the Code is adequate, buv further testing is required
to confirm this aspect. The author believes that beam K13
failed due to excessive straining of the binders and the pre-
vention of this condition can be achieve . by using binders with
larger cross—seﬁtional area, so that the possibility of failure

due to inadequate transverse reinforcement is eliminated.

5.8.2 Mechanism of Failure

The basic mechanism of failure for the beams tested
in this study consisted of the rotation of the whole beam about

the compressionhingeon the upper face at the collapse stage.
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Tvpical examples of these compression zones are shown in
Plates 5.21, 5.22, 5,23 and 5.24, It can be seen that the
compression zone is inclined at an angle to the longitudinal
axis in each case.

For all the beams tested, except beams X16 and K13
tested at g’= 2.1; failure was always preceded by yielding
of the reinforcement., The weakness of the steel in the
transverse direction forced yielding to occur in this direction
first, followed by yielding of the longitudinal steel, Up to
and inclvding the ratio ﬁ’= 5.6, the beams failed immediately
after the longitudinal steel stress reached the yield value,
while the failure of beams tested at @ = 8,5 and higher were
gradual and the margin of loads carried beyond the yield range
was considerable,

Failure of beams K16 and X13 took place as soon as
the vertical cracks reached the top edge. The failure was
sudden and crushing of the concrete was observed in both cases.
The condition of the top zone is shown in Plates 5.25 and 5,26,
The formation of a diagonal crack between the transverse binders
and its extension into the compression zone brought aboﬁt failure
of beam K16 so that the longitudinal steel did not reach its

yield stress. It is interesting to note in Plate 5,12 that
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rotation took place about the vertical side of the crack
surface. This behaviour is thought similar to that observed
by Hsu(zs) for plain concrete beams subjected to pure torsion.
On the other hand, beam K13 failed as the result
of inadequate transverse reinforcement. The extensive
cracking and wid~=ning on the vertical side as shown in Plate
5,15 indicates that the yield stress may have been exhausted.
Failure occurred when the potential torsional resistance of
the beam was exceeded, There was no sign of yielding of the
lontitudinal bars.

The mechanism of failure of beams X2/266 and X11
tested at @ = 2.1 may be considered similar to the three beams
tested at Q’= 4.3. In all cases, the failure took rlace as
soon as the yield stress was attained by the reinforcement and
failure was sudden with considerable crushing on the upper face.
Typical conditions of this zone are shown in Plates 5.21 and
5.22., The author believes that failure occurred when the
reinforcement in both directions reached the yield value, thus
imposing excessive compressive and tensile stresses at the
compression zone where flexural compression existed as well.
The depth of the compression zone is small in this range of Qz
and thus, the position of the neutral axis plane is near the top

edge. he transition from tension below to compression zone is



He s
i
.

very small, which means that it is difficult to restrain the
vertical cracks from moving up. When the longitudinal steel
reaches its yield stress, the short inelastic deformation is
sufficient to push the cracks immediately onto the upper face.
The maximum compressive stress exceeded the maximum compressive
strength of the concrete and failure occurred suddenly, Con-
siderable crushing of the top face can be observed in Plate

o There is an indication of cleavage failure and in the
author's opinion this was due to the tensile stress at that
soint exceeding the tensile strength of the concrete. In

(29)

addition the evidence shown by McHenry and Karni indicates
that the presence of combined compression and tension reduces
the tensile strength of the concrete. The crack pattern in
the compression zone, as shown in Plate 5.22, ic similar to that
described and obtained by Goode and Helmy(17).

The behaviour and failure mechanism for beams tested
at large values of ﬁ'differ from those tested at low ratios;
crushing of the concrete generally takes place at collapse and
the orientation of the compression zone is well-defined, A
typical example is shown in Plate 5,27, There is distinct
evidence of cleavage failure which must have occurred after

crushing tock place. Due to the short yield range of the long-

itudinal steel used in these tests, the stress in the steel bar



Plate 5,27

Plate 5.28
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is in the ultimate range at the ultimate load and therefore
the load taken by the beams tested at @ = 8.5 and 7 =11.8
far exceeds the yield load,

A peculiar phenomena was observed in the test of
beam K16 at ¢ = 5.6, It was found that at failure the
vertical cracks reversed and curved in the direction of the
longitudinal steel, splitting the concrete along this
direction., This type of splitting can initiate failure and
therefore closer spacing of the binders is essential to prevent
them,

The beams ¥2/150 and X2/200 tested at = 11.8 both
failed at the joints as shown in Plate 5,28, The failure was
caused by the combined action of bending, shear and torsion
concentrated at the joint. There is a possibility that this
type of failure will occur in actual structures such as at.the
girder-beam connections. Further investigaticn is necessary to
avoid such failures,

5.9 Deformations

Typical load-deflection curves are shown in Figs. 5.5,
5.6, 5.7, 5.8 and 5.9, The first three graphs illustrate the
influence of Q’on the deflection, the fourth graph shows the
effect of spacing of binders for beams tested at Q'= 2.1 and the

final graph gives a comparison for similar beams tested at



Loeo//w Lomws)

&£./0

T T T T T T T T
2| §
~ ’-5_-‘
B
e L "‘-' -
~
O=35
0
~ —
230
S =
8- P —
o
p=z./

o
sk e
]

| 1 1 | 1 1 1 L

(o] Zoo $900 6§00 oo 7000 /200 /00 7600 / &o0O

Derfdectionr (rb P _) rivchas
Fr6 55— Looa- a/cf%c{/m curves for beosr AD. K6 w ek vor/o‘fz'oﬁ av(-\g




Looofm Lors)
0. .90 T o /S . (o] 2.0

0.60

0.30

= —

— —l
e el . L WA/ [ 1 |

o Zoo £ 00 €90 Foo /7000 200 foo ‘600 /o0

2erectarn (o /0'3_‘) v ches

e ST 6~ Locol 04/-'41:-2:‘/'0/? cerves ?*G}- éﬁzof__n__/_v/q A3 w/é‘)’vorf'oz‘;ga o ’g§




Looo/(+n Loms)
o.fo /20 /. 50 /. #o 2./0

0.60

o-30

/ b= #£3

E==Z. 5

| | 1 L 1 1

| i

Z oo 400 (1o POO r000 200 /d00 /600

Dallection (# 163) rrche

e 57 - Lood cetVection carves Sor Learsy ¥o A1/ Wwith var

K

oZo o0 apgﬁ

/P00



Lo oo fir toms)
e.60 o . po L&0 ,. &0 /. PO

o. 50

(I k)

L 1l L I

> 360 _
PelYocsom (7o +0%) snckes

~r6 58— Looo- deflection curves wilh var-sfien o e specig Yor Hmg s

1
/000 200 I /600 /oo



Looo (r» “oms)

N T e | St I T T T

S : 4

~ Beorr Mo, X E20O (&= rr ;-L'} |

|

|

. |

g |

i

Beorn v, KE//SO( PB= 17 8) -

e |

R ~

|

|

t

3 '.

& |

of s

l

o Beows o K1 (F=2.7) !

‘. ]

o —g|
o

o B
o]

1 1 4 Js 1 | 1 1 1
o 200 400 600 Poo /900 /200 /#£00 2600 /®00

Der%ction (,f):' /a-",_) irches

Fre 559 - Looo/~ q/c/"/ec‘c{/brp ceries .r/ow/ﬁ? Che rin’leawece o Che »oiso o’ B




84.

extreme values of pf, namely beams tested with ;f = 11,8 and
g = 2.1.

From Figs. 5.5, 5.6 and 5,8 the abrupt failure of
the beams is indicated by the sudden termination of the curves
for low 52( ratios, and from the same graphs, the influence of
the spacing of the binders on the ductility of the beams can
be deduced. The influence of this spacing is critical at low
values of )?f as illustrated by the load-deflection curves of
beams tested at gf = 2,1 as shown in Fig., 5.8. It is interesting
to observe that the behaviour of beams K11 and X2/266 are
similar., Tais suggests that the spacing for the latter is
adequate. Fig. 5.9 illustrates the contrast between beams
with moderate and high levels of bending moment. It can be
seen that the deflection of beams tested in combined bending
and torsion is primarily influenced by the level of the bending
moment.,

Chinenkov(lz) showed in his experiments that for beams
tested with different ratios of §, the deflection for beams with
large values of }3 is higher, This was not observed in the beams
tested by the author, except for the extreme case as given in
Fig. 5.9. The deflection of beams tested between ¢ = 4.3 and

¢ = 11.8, shown in Figs. 5.5, 5.6 and 5.7 indicates that the



magnitudes of the deflections are in the same range and almost
the same, This is contrary to Chinenkov's observation,
However, since the beams have the same amount of longitudinal
steel throughout, the author feels that the deflection cannot
be considerably different and any study of the influence of ﬁ
should be related to the quantity of longitudinal reinforcement.
Further, it is believed that the spacing zmd amount of the
transverse binders influence the behaviour of the beams, The
results from this study, however, are not sufficient to allow
any general conclusion to be .nade,

The compressive strains measured on the top surface
are shown in Table 5.2, while the principal compressive and
tensile strains measured at the horizontal and vertical faces
for beams tested at @ = 2,1 are shown in Table 5.3. It is
interesting to observe the similarities of values of the
principal strains on the horizontal and v rtical faces, which
seems to support the author's contention that the beams attempted
to fail as a torsional failure,

5.10 Ultimate Strength

The ultimate strength of the beams tested was analysed
using the equation developed in Chapter 3. The results are
tabulated in Table 5.2. For all cases where failure occurred

by yielding of the reinforcement, the analysis was made on the



S

assumption of a rectangular stress distribution with an
average compressive stress of %pué ; Sample calculations are
shown in Appendix A, The ratio k for the dimensions of the
reinforcing cage, was taken as 1.4,

Due to the extensive cracking of the beams tested
at ¢ = 2,1 and‘ﬁ = 4.3, it was felt that analysis of the beams
using the ultimate torque formula would be valid, It was
therefore decided to use a combination of the formulae of

(31) (32)

Nadai and Rausch with the assumption that the ultimate
torque consists of the torque resisted by the concrete and the
reinforcement, The validity of this assumption has been shown

{33) (23) (18).

by Cowan , Hsu and recently by Pandit and Warwaruk

The allowable useful tensile strength of the concrete was taken
as S(fé)% as given by Hsu(zs). The results are shown in

Table 5.5. Sample calculations are given in the Appendix B,

The theoretical results and their comparison with the

experimental values are listed in Table 5.6. It can be seen
that the theory estimates the strength of the beams with fair
accuracy. It is therefore concluded on this basis that the
ultimate moment equation developed in Chapter 3 can be used with
confidence., On the other hand, the results obtained using the

ultimate torsion forrmla of Nadai and Rausch are erratic and

unreliable for application to the combined bending and torsion of



Table 5.5

- Comparison of theoretical and experimental

value (Torque only)

Beam No. o4 Ultimate Torque Ratio
Expt. Calc,.* Expt./balca
(kip—in)
K16 2.1 510 6.40 0.80
K13 2.1 6,57 2D 0.87
K2/266 2.1 8,02 8,00 1.07
K11 21 8.57 12,35 0.86
K16 4.3 6.49 6,39 1,02
K13 4.3 6,19 7.58 0.82
K11 4.3 6.37 12.35 0.52

*calculated using fully plastic torque equation of Nadai and
Rausch's equation for resistance of ste=l to torque adopting

the tensile strength of concrete as 5(fé

)E,




Table 5.6

Comparison of theoretical and experimental

value
Beam No., ﬁ' Ultimate Moment Ratio
(xip-in)
Expt, Calc, %ﬁ%ﬁf

K16 251 10,70 16,61 Shear failure
K13 29 13.80  16.90 Shear failure
K2/2€6 2.1 16,85 16.80 1,00
K11 251 18,00  17.40 1.03
K16 4.3 27.90 24,40 1,34
K13 4.3 26.60  24.40 1.07
K11 4.3 27.40 24,60 R
K16 5.6 24,60 25,20 0.98
K13 5.6 25,40 25,20 1.01
K11 5.6 24,50  25.30 0,97
K16 8.5 27.00 . 8700 1.00
K13 8.5 25.40  27.10 0,94
K11 8.5 27 .20 27.20 1.00
K2,/200 11.8 29,90 26,90 51
K2/150 11.8 29,90  27.70 1,10

Averace 1.04
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reinforced concrete beams. The results are shown in Table
Sabia An attempt was also made to use the new formula for

(23,25) but the reinforcement ratios of

torsion derived by Hsu
beams tested in this experiment did not fulfil the conditions
for its validity and thus it was abandoned.

5.11 Summary and Conclusions

The results obtained by testing fifteen beams
reinforced in both longitudinal and transverse direction have
been analysed in this Chapter., On the basis of the observed
mode of failure and the close correlation between the
theoretical results and the experimental values, the equation
developed in Chapter 3 may be used with confidence,

The mode of failure of the beams are as obtained and

(13), Yudin(z?), Gesund et al(ls) (28,33),
(10,13)

(9)

described by Lessig ; Cowan

Chineﬂkov(l2), Evans and Sarkar and Fairbairn , but in
the case of the inclination of the vertic-l cracks, there is a
tendency for the angle to deviate from its original path towards
the longitudinal axis at about the neutral axis, The inclination
of the compression zone with respect to the axis of twist is not
clear for low values of Q:

Thus, using the data obtained from the tests, the

following conclusions are drawn:-—



(1)

(2)

(3)

(4)

(5)

()

>
o
5

For @ less than or equal to 2,00, the transverse
binders should be spaced at b' as suggested by
the author in Chapter 3.

For all values of ﬁ larger than 2,00, the minimum
shear reinforcement ratio recommended by the

(21)

British Code of Practice appears to be
adequate,

The author's equation may be used with confidence
to obtain the ultimate bending moment of beams
provided the crnditions laid down for its validity
regarding the range of transverse reinforcement
are ful-filled.

Until the accual concrete bending stre.s to be
used for combined bending and torsion at the

ultimate stage is established, the allowable

bending stress for pure berding seems sufficiently

accurate

The use of closed stirrups in general tends to
induce formation of the first mode of failure of
. : . (13)

beams as enunciated by Lessig
Further research is necessary to investigate the

interaction of beams and girders at the beam-

girder connections,
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The main conclusions drawn from the investigation

in this thesis are listed as follows:-

(1)

(3)

(4)

(5)

(6)

The ultimate moment equation developed in

Chapter 3 may be applied with confidence for the
analysis and design of under-reinforced rectangular
beams reinforced in both longitudinal and transverse
directions.within the limits of this investi
The ultimate moment consists of the contributions

of longitudinal and transverse reinforcement.

The longitudinal reirforcement in the tension zone
contributes to the resistance of torsion thereby
reducing the bending capacity of the section.

The reduction of the bendi .g resistance due to
torsion is augmented to a certain extent by the
contribution of transverse binders.

The expression proposed for computing the depth of
the compression block is a reliable method of
obtaining the position of the neutral axis.
Provision of longitudinal steel using the balanced
ratio for pure torsion ensures yielding of the

steel.

ratione.



(7) The proposals for proportioning transverse
binders may be applied to obtain the optimum
transverse binders to ensure yielding of the
reinforcement.

(8) The spacing of transverse binders is critical for
low ratios of E;E and should be restricted to the
width of the rei;forcing cage to prevent torsional
failure.,

(9) The: allowahle compressive strength recommended
for pure bendinj by the British Code of Practice
may be applied to the case of combined bending
and torsion with satisfactory results.

(10) 1In designing peam-girder connections, the high
moments which occur at this section should be

taken into account to proportion the beam sections.

6.2 Recommendations for Future Research

In the light of the analytical and experimental works
carried out in this study, the followin¢ recommendations are con-
sidered for future research works:-

(1) Experimental verification of the proposed balanced

longitudinal reinforcement for combined bending and

torsion.



(2)

(3)

(4)

and (5)

The torsional resistance of the compressed
concrete layer.

Establishment of the concrete compressive
strength for combined bending and torsion.
The possibility of establishing the flexural
rigidity of the beams under combined moments
for analysis of indeterminate structures.
Extension of the ultimate equilibrium method
to the analysis of combined bending, torsion

and shear.

9l.
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Appendix: A

Calculation for beam K11 tested at g =2,1

Given data: b= 3"’ h = 4“1 d = 305", b= 2.5“] d. = 3.5“

e ,.2..“ 3 -
AL = 23 diam, £/ = 40ksi
Ay = 3" diam. @ lin c¢/c, £, = 34ksi
c = 7.03ksi
u

The calculated reinforcing cage is 2,5" by 3.5"
Step (1): k= -::2 = 14

2ad
Seep (2): By formula (3.2), Cot % = $— = 0.38

A A 2.1 %
step (3): Br formula (3.12), C, =3+ (T r 280038 ° 0,59

Il

Step (4): By formila (3.13), C, = 0.55(1 + 3)(0.38)% = 0.34

Use formula (3.39) to find n:

{er]
e
]

(0,11) (40) (0.59) e
e %{7.03) (3) = 0,62

Step (6): Calculate the value of Mbu by expression (3.14)

]

(0.11) (40) (3.5 - 0.31)

Mou

0.012 34) (2,50
0,11) (40) (1

17,80kip=in. (answer)
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AEEendix B
Calculation for Mbt for beam K11 tested at ¢'= 2.1

Data given same as above:

Use Raush formula: i.e. M . = %b2 (n --%)ft + $A £ b'd!
8

-
Using Hsu's recommendation for £, £ = S(EL)E

2 R . ¥ 4
i.e, 81 = 0.85C; £ =0.44ksi

M . -1 (4-1) (0.44) + £(0.012) (34) &211_(&1

= 6,00 + 1,80
= 7,80kip-in

i o B0 o Vi
The experimental Mbt e Y €450 kip-in



