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NOTATIONS 

The following symbols are not defined within the text: 

AL = &ross-sectional area of tensile steel 

ALC = cross-sectional area of steel at the compression zone. 

AT = cross-sectional area of one leg of transverse steel. 

b = width of beam 

b' 	width of the reinforcing cage 

C 
U 

= cube strength of concrete 

C1  = efficiency coefficient of longitudinal steel 

C2  = efficiency coefficient of transverse steel 

d 	= 	effective depth of beam 

= 	depth of the reinforcing cag 

£ 	= 	compressive bending stress of the concrete at the comp- 

ression zone for combined bending and torsion 

f = 	compressive bending stress of conc ete for pure bending 

El = 	cylinder strength of concrete 

= 	yield strength of the longitudinal steel 

£ = 	yield strength of the longitudinal steel in the 

compression zone 

h = 	over-all depth of beam 



(v) 

coefficient of concrete bending stress 

k 	= ratio of lepth to width of the reinforcing cage 

N u = ultimate flexural capacity of the section 

applied torsional moment 

M. 	= applied bending moment 

Mb bending moment contributed by the longitudinal steel 

abuT = 
bending moment contributed by the transverse steel 

= depth of neutral axis of beam in combined bending and 

torsion 

nb 	= depth of neutral axis of beam in pure bending 

p 	= ratio of longitudinal steel to concete area in beams 

Pb = ratio of balanced longitudinal steel for pure bending 

bc = ratio of balanced longitudinal steel in combined bending 

and torsion 

r 	= torsional shear reinforcement ratio 

r 	= optimum torsional shear reinforcement ratio 

r 	= maximum torsional shear reinforcement ratio 
U 

s 	= spacing of transverse binders 

0< 	= angle of crack 

= inclination of angle of inclined compression zone 
rjbh 	':ct iT' t (Ii 

= ratio of appU.ed bending moment to applied torsional moment 



SYNOPSIS 

Based on the equilibrium of external and internal 

loads acting normal to the inclined compression zone of the 

failure surface proposed by previous investigators for 

reinforced concrete beams subjected to combined bending and 

torsion, a simplified ultimate moment equation was developed 

by using the uliimate equilibrium method suggesced by the 

Russian researchers. 

The ultimate moment is shown to consist of the contributions 

of longitudinal and transverse reinforcement. 

Analysis of forty-three beams tested by previous investi- 

gators and fifteen beams tested by the author showed that the 

equation predicts the ultimate mome.t with good accuracy. 

A method for computing the position of the neutral axis 

was developed and used in the analysis of the above beams to 

obtain the lever a'ms of the internal mom .ts. 

The equation was extended to evolve design charts which are 

equally good for analytical purposes. 

Finally, proposals were presented to restrict the quantity 

of the reinforcement for the validity of the equation. 



CHAPTER I 

INTRODUCTION 

Torsion occurs in structural members due to the monolithic 

characteristics of reinforced concrete members, and wherever there is 

asymmetry of loading of beams and slabs. 	Some examples of members 

with torsion may be listed as follows:- 

spandrel beams 

secondary beams framing into a primary beam. 

bow girders 

interconnected girders 

space frames 

and (6) free-standing spiral staircases. 

Critical examination of past practice in structural design 

reveals that in the absence of methods of design for torsion, three 

approaches are generally resorted to: first, :he structural frames 

are arranged in such a way that the effect of torsion is minimised; 

second, the dimensions of the structural members are chosen so that 

the sizes are much larger than actually calculated, hoping by so doing 

to cater for the torsional stresses developed in the members; the third 

resort is to use an ample amount of transverse reinforcement to resist 

the torsional shearing stresses. 	In addition, the accepted methods of 



2. 
design of concrete structures have been based on the elastic 

theory, the use of which has been found to result in concrete 

sections larger than necessary and thus the extra strength 

obtained supposed to resist the torsional stresses. Fortunately, 

no catastrophic failure of structures due to torsion seemed to have 

been recorded. 

Recently, there has been a tremendous upsurge in the structural 

design of concrete. A new method of design, the ultimate-load method, 

has been advocated strongly by research scientists and advanced 

thinking engineers. This led to the publication of a report by 

(l)* 
the Institution of Civil Engineers . The ultimate-load method 

consists of calculating accurately the ultimate load imposed on the 

structural member so that, unlike the elastic method where the actual 

factor of safety is not known, the ultimate-load method can forecast the 

true margin of safety of the structure, and is thus a more realistic 

method of design. In addition, the new rrethod can make full use of 

the potential strength of the materials and is thus conducive to 

economy. 

Due to the more realistic assessment of the load factor made 

possible by the use of this new method, together with the more effective 

employment of the materials, the resulting design sections are more 

slender. The possibility of catering for torsional stresses by the 

* The superscript numbers refer to the list of references. 
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extra strength due to large margin of safety inherent in the 

elastic method no longer applies. 	If these stresses are to be 

provided for, then definite design formulae must be evolved. 

Further, the formulae must be based on the ultimate-load method 

in keeping with developments in other aspects of structural design. 

It is thus necessary to investigate the effect of torsional stresses 

on the behaviour and strength of concrete members. 

In general, torsional moments rarely exist by themselves 

but act in conjunction with bending and shear. Some published 

works (2,3,4,5) are available where investigations have been made of 

the behaviour of beams in combined bending, shear and torsion. 

The results are however erratic and inconclusive and more research 

is still necessary. The complication in this type of combined 

action arises from lack of knowledge of the behaviour of beams in 

combined bending and shear. 	It is felt that until this aspect is 

resolved, the nature of combined bending, shea: and torsion cannot 

be properly investigated. This is particularly true if the propor-

tioning of flexural shear reinforcement is to be considered in 

conjunction with the torsional reinforcement as advocated by Cowan(6i7). 

It is therefore considered that the combined effect should be studied 

first by establishing the action of bending and torsion. With this 

in mind, the author feels justified in tackling this problem. 
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A review of works already carried out for combined 

bending and torsion at the ultimate level indicates that most 

of the investigators have used the ultimate equilibrium method 

developed by the Russian Engineers(8). The method consists of 

obtaining the ultimate load (in this case the ultimate moment) 

at the failure stage when the reinforcement has yielded. The 

method is complicated and the equations obtained are far from 

simple. Attempts have been made to simplify the equation but so 

far there seems to have been no success. The complication arises 

mainly from the three dimensional aspect of the combined action, 

resulting in a complicated failure surface. There seems to be 

difficulty in obtaining the correct angles of crack at the sides, 

and subsequently, the inclination of the compression zone about which 

the beam rotates at the failure stage. This problem has been 

resolved by Evans and Sarkar 	and more recently by Fairbairn', 

But still, the resulting equations are not simp)j and are not 

suitable for use in a design office. 

The author after careful examination of most of the works 

feels that further simplifications and modifications may be achieved. 

An analytical investigation is thus made, employing these simplifications 

to develop a formula for computing the ultimate bending moment. The 
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results obtained are again employed to ascertain the contribution 

of the reinforcement to bending of the beam. 	In this way, the 

net contribution of reinforcement, both longitudinal and transverse, 

is obtained. From this, the actual function of the transverse 

binders is isolated, together with the effect of torsion on the 

bending capacity, thereby also obtaining the contribution of the 

longitudinal steel to the torsional resistance. 	Finally, a method 

of obtaining the position of the neutral axis is proposed. 

Further investigation is then carried out to estimate the 

balanced reinforcement for combined bending and torsion by comparing 

the balanced longitudinal reinforcement to that for pure bending. 

Two methods are then used to calculate the minimum and maximum 

transverse torsional reinforcement for the yielding of the steel to 

occur, namely: (1) the intensity of force method, in which the 

distribution of the reinforcement at yielding is studied using a 

hypothetical failure mechanism, and () the intrnal couple method 

in which the mechanism of the action of the reinforcement in resis-

ting the internal torsional stresses is studied using a similar 

hypothesis. The results obtained from the two methods are compared, 

first with each other and then with the recommendations put forward 

by other investigators and the Russian Code of Practice. Finally, 

a design equation is developed for calculating the reinforced concrete 

sections required 
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for combined bending and torsion. 

The experimental investigation consists of justifying 

the assumptions made in the theoretical study and comparing the 

calculated ultimate bending moments with the experimental results 

observed. The mode of propagation of the cracks are particularly 

observed, especially t the compression zone on the top surface. 

The results are given in the form of tables and graphs. 

The author feels that the theoretical formulae obtained 

can only be justified within the limitations of the experimental 

studies, and thus further experimental evidence will be necessary 

to fully justify the acceptance of the formulae. With this in mind, 

the last part of the thesis is devoted to this aspect of tne problem, 

with further recommendations for theoretcal investigations and 

experimental observations. 



CHAPTER 2 

BRIEF REVIEW OF PREVIOUS WORKS 

2.1 Introduction 

The main object of this chapter is to review briefly the 

existing works on combined bending and torsion of reinforced concrete 

beams, with a view to using the findings to develop an ultimate 

moment equation. The discussions will be confined to works on 

under-rein$orceu beams with both longitudinal and transverse 

reinforcement. 

2.2  General background 

When reinforced concrete beams are subjected to combined 

bending and torsion, the geometry of the surface formed by the 

failure of the beams has been observed by previous investigators 

to be related to definite crack patterns. The works of Evans 

(9) 	 (10,11) 	 (12) 	(13) and Sarkar 	, Fairbairn 	, Chinerikov 	, Lessig 	, Gesund 

et 	yUdjfl(27) Goode and Helmy, and other investigators 

showed that, for specimens with moderate to }iigh ratios of bending 

to torque, the cracks develop first on the side of the beam where 

flexural tension occurs and extend later to the vertical sides. 

On the fourth side, a compression zone is formed. For beams with 

predominant torsion, cracks have been observed to form first on the 

vertical side, extending later to the horizontal faces, and culmi-

nating in the formation oP the compression zone in the vertical plane. 



AM 

It was further observed that, for under-reinforced beams, 

failure of the beam is preceded by yielding of the reinforcement 

intercepted by the cracks, and the rotation of the beam about the 

compression zone. 

On the basis of the observed behaviour of these beams and 

the crack patterns formed, a failure surface has been developed. 

This failure surface consists of intercepts on the three sides of 

the beam, whose inclination to the axis of twist is equal, and a 

compression zone on the fourth side. 

The ultimate moment equation is developed by considering 

the equilibrium of the internal and external forces and moments 

acting normal to the compression zone. The equation thus obtained 

can be used to calculate the bending moment of any rectangular 

beam section under a known bending to torque ratio and the results 

obtained, when compared with the experimental values, generally have 

close agreement. However, these equations are far too complicated 

for use in a design office. 

Yudin(27) and Goode and Helmy 	have attempted to simplify 

the equation by also considering the equilibrium of moments and forces 

transverse to the failure surface, thus obtaining two simultaneous 

equations. The magnitude of the bending moment Mb  and the torque 

obtained from the process of elimination did not agree with the 

experimental results. 
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The main complication in the ultimate moment equation 

arises due to the following: 

(i) variation in the angle of inclination of cracks. 

variation of the angle of inclination of the com-

pression zone with the horizontal axis, 

the magnitude of the depth of the compression block. 

and (4)  the number of transverse binders crossed by the 

vertical and horizontal cracks. 

2.3 Inclination of the angle of cracks 

It is generally agreed that the inclination of the crack 

on the faces of the beam due to the action of combined bending and 

torsion varies between 45 degrees for pure torsion and 90 degrees 

for pure bending with values close to the former for predominant 

torsion and approeching the later where bending is predominant. 

However, due to the complex stress-strain relationship for concrete 

in tension, together with the general difficult of obtaining the 

true stress distribution in combined bending and torsion, no previous 

studies have given recommendation for calculating the magnitude of 

the angle. 

Examination of published works on combined bending and 

torsion shows that only two experimental studies are available which 

consider the variation of this angle. 	Evans and Sarkar 	in 1964 

developed a formula for calculating the magnitude of this angle based 

on two assumptions, namelr that concrete behaves plastically in 
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torsion, and semi-plastically in tension. 	Their formula expresses 

the angle of crack in terms of the shape of the beam and the 

bending to torque ratio. 	They also reported that the values 

obtained from experiments agree with the calculated values. An 

ultimate moment equation was developed by them, incorporating their 

formula for the angle of crack. The resulting general agreement 

of the theoretical and experimental values indicates that the 

formula is acceptable. 

In 1967. Fairbairn0) suggested that the formula of Evans 

and Sarka: could be modified into tiree simple formulae, considering 

three conditions of bending and torsion, namely (1) predominant 

torsion case, (2) combined bending and torsion, and (3) predominant 

bending. 	The advantage of his formulae lies in their simplicity 

of directly relating the angle of crack to the bending to torque 

ratio. 	Comparisons with the original formula shows that the results 

obtained are justifiable. 

The author firmly believes that for an accurate determination 

of the ultimate bending moment, the equation must take into account the 

variation of this angle directly. The importance of this rises from 

the fact that, both the intercept of the transverse binders and the 

inclina ion of the compression fulcrum are directly related to this 

angle. 	It is felt that the formulae developed for calculating this 

angle of crack though not absolutely correct may enable a more accurate 

evaluation of the ultimate moment. With this in mind, it is proposed 



to develop the ultimate moment equation incorporatinc the formulae 

of Fairbairn with other simplifications. 

2.4 Inclination of the compression zone 

It has been briefly mentioned that the ultimate moment 

equation is generally developed by equating the external and 

internal moments about the compression zone normal to this plane. 

Thus, the correct evaluation of the bending moment is directly re-

lated to this angle. 

It was further shown that the angle of crack also affects 

this inclination because of the formation of the compression zone 

as a result of the connecting up of the vertical cracks on the 

n 	e •• - 'o c o 

The approach made in evaluating this angle of inclination 

by previous investigators consisted of one of the following: 

The assumption of a coistant angle for the inclination. 

The assumption of 45 degree crack anqies on the sides, 

thus obtaining the projected length on the horizontal axis. 

and (3) By obtaining the projected length on the horizontal 

axis with consideration for its variation with the crack angle. 

Evans and Sarkar 	assumed this angle of inclination to 

be 45 degrees, at the same time using their formula for the crack 

angle. They showed that the use of the 45 degree inclination resulted 

in predicting the ultimate bending moment which is close to the 

experimental value. 
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The works of the Russian investigators seem to be based 

on the assumption of 45 degrees for the angle of crack. This is 

indicated by the analysis of works of Lya1in, Chine Ov(12), 

Lessig 	and Yudin 27) 	Their method of approach is to consider 

the projected length of the crack on the horizontal axis and to 

restrict this len3th to a specified value. They mention at the 

same time that the value of the projected length is influenced by 

the tensile strength of concrete, the bending to torque ratio and 

the spacing of the transverse reinforcement. The equation evolved 

by them 13 however far from simple, 

Goode and He1my 	introduced certain simplifications 

regarding the inclination of the compression zone by relating it 

as a function of the projected leigth of the vertical intercepts 

on the horizontal axis and the breadth of the beam. 	In particular, 

it is interesting to note that they also introduce the concept of 

using the dimensions of the reinforcing cage istead of the usual 

over-all dimensions. The equations they obtained for calculating 

the bending moment and torque are simple, but unfortunately, the 

results did not agree with the experimental values obtained. 

Finally, Fairbairn 	uses his formulae for the angle of 

crack to determine the intercept of the crack on the horizontal axis 

and expresses the inclination of the compression zrne as a function 

of the angle of crack and the depth to breadth ratio of the beam. 
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Thus, he is the first to consider the effect of the variation of 

angle of cracks on the inclination of the compression zone. He 

further incorporates this angle to develop ultimate moment equations 

which are far too complicated for use in a design office. The 

author feels that these equations can be modified by intro i 	.ertain 

simplifications, 	For instance, it seems that the length of the 

lever arm is over-conservative. 

On consideration of the various approaches made by the 

above investigators, the author feels that the approach used by 

both Goode and He1my 	and Fairbairn(1) offer the best method 

available for determining the inclination of the compression zone, 

and in particular, simplification can be achieved combining the two 

methods to produce a modified formula for the angle of inclination 

of the compression zone. 

2.5 Depth of the compression block 

Of the several works available, the rr thod ised for obtaining 

the depth of the compression block is by considering the resolution 

of the forces normal to the compression zone. The equation obtained 

relates the longitudinal and transverse reinforcement with the strength 

of the concrete in compressive bending 

An examination of the approach used by the above authors to 

evolve the formula for calculating the compression block reveals that 

they have not considered the equilibrium of forces transverse to 

the ai1ure zone. 	The aithor feels that if this is introduced, 
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the formula can be simplified considerably, 

2.6 Transverse binders crossed by the cracks 

The derivation of the ultimate moment equation includes 

the effect of the transverse binders in contributing to the 

bending capacity of the beam. 	It is thus imperative that the 

actual number of binders crossed by the cracks is known. 

The cracks at the tension :one crossed the face of the 

beam completely and thus it is simple to estimate the number of 

binders crossed by the cracks, 	This is not true for the vertical 

face since the crack is assumed only to reach the neutral axis, and 

thus the equation are derived with the number of binders calculated 

on this basis. This method has been adopted by most of the research 

workers and tends to make the equation v€ry complicated. 

If the neutral axis plane is considered located at 

about the level of the compression steel, then the term relating 

the number of transverse binders intercepted by the crack on the 

vertical side is considerably simplified, enabling further simpli- 

fication in the ultimate equation. Goode and Helmy 	showed that 

the path traversed by the crack can be approximated by the projection 

of the depth of the reinforcing cage on the horizontal axis so that 

the resulting equation is much simplier, 

2.7 	Summary and Conclusions 

The previous studies examined in this chapter are concerned 

with the development of the original ultimate bendinj moment 



equation, 	The summary of the discussions is given below, together 

with the conclusions arrived at by the author. 	It is felt that 

these discussions have yielded considerable data for the author's 

proposed investigation. 	The following points have been discussed: 

(i) the evolution of the failure surface of reinforced 

concrete beams in combined bending and torsion. 

the concept of deriving the ultimate bending moment 

equations using the above failure surface as a base. 

the formulating of an ultimate equation arising from 

the following: (a) the use of Fairbairn's angle of 

crack, (b) the use of a new formula for the inclina-

tion of the compression zone, (c) the derivation of 

a new formula for calculating the depth of the neutral 

axis, and (d) an expression for the number of transverse 

binders crossed by the crack on the vertical sides. 

The author has concluded that in dev&oping the ultimate 

moment equation, the following additional simplifications should be 

introduced: - 

the use of the angle of crack proposed by Fairbairn. 

a modification of Fairbairn' s expression for the angle 

of inclination of the compression zone. 

a simplification of the formula for obtaining the posi-

tion of the neutral axis. 

and (4) the use of the reinforcing cage dimensions as a basis 

for estimating the quantity of the transverse binders 

crossing the failure zone. 
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CHAPTER 3 

ULTIMATE MOMENT IN COMBINED BENDING AND TORSION 

3.1 General Introduction 

The author proposes to derive an equation for 

calculating the ultimate beinding moment of reinforced concrete 

beams of rectangular section containing both longitudinal and 

transverse reiliforcement, subjected to combined bending and 

torsion. The ultimate equilibrium method proposed by the 

Russian investigators Gvozdez(8),  Chinenkov(2),  Lessig(13),  

Yudin(27) and  Lyalin(36)  will be used together with certain 

modifying assumptions. The angle of crack as proposed by 

Fairbairn0) will be adopted. 	It is proposed to analyse 

several research works using the nw equation in order to 

demonstrate its accuracy. 

3.2 Basis of the equation 

The ultimate equilibrium method has been adopted by 

several research \.1orker9h10114735)  and their general con- 

clusion is that the method is applicable to t}'e analysis of 

reinforced concrete structures at the ultimate stage. The 

method is based on a consideration of the equilibrium of the 

external loads with the internal resistance of the structural 

members. 	In particular, for reinforced concrete members, 

the resistarc is offeri by the stresses in the reinforcement 



and the torsional and compressive stresses of the concrete 

in the compression zone. 

A critical review of works on rectangular sections 

subjected to combined bending and torsion in Chapter 2 has 

shown that differences in the existing theories lie mainly in 

the following categories:- 

the inclination of the angle of crack. 

the position of the neutral axis. 

the number of equilibrium conditions to be 

considered, 

arid (4) the distribution and magnitude of the internal 

stresses. 

It will be shown in the following paragraphs that the 

author has considered his study on tie basis of the following:- 

the adoption of the angle of crack proposed by 

Fairbairn. 

by introduction of certain assumptions thus 

simplifying the problem. 

the adoption of a new ratic of "k"*. 

(i) The angle of crack 

Evans and Sarkar 	have suggested that the angle of 

crack may be completely determined once the concrete properties, 

* see notations 

17. 



the beam dimensions, and the applied bending moment and torque 

are known. Their expression for the angle of crack was 

derived by assuming that the concrete stress distribution in 

flexure is semi-plastic and fully plastic in torsion, as 

suggested by cowan(28). 	Fairbairn0) modified the expression 

into a very simple form by introducing three ranges of loading, 

namely: (a) predominant torsion, (h) combined bending and 

torsion, and (c) predominant bending. 

given by him is 

063 

	

For %<2, Cot<= 	r- 

2%(8, Cot= 0.80  

	

8. Cotb(= 	0.10  

The angle of crack as 

(3.1) 

(3.2) 

.•I..000. 

The angle of crack was found to be applicable to 

hollow as well as solid sections. 	The validity of this fact 

enables the author to analyse the beams tested by Evans and 

Sarkar 	and the correlation of the calculated MD  with the 

experimental values shown in Table 3.4 indicates the appli-

cability of Fairbairn's proposal. 

The author intends to use the above angle of crack 

in deriving the ultimate moment equation with certain simpli-

Lying assumptions, together with a modified k value for the 
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beam dimensions. 

(2) The assumptions 

The following assumptions are adopted to simplify 

the derivation of the ultimate bending moment equation:- 

the concrete has no tensile strength 

the beam is under-reinforced 

the transverse binders are uniformly distributed 

within the failure zone 

the contribution of the compressive reinforcement 

is negligible 

the reinforcement crossed by the cracks reach the 

yield stress 

the neutral axis lied in a plane on the horizontal 

section 

the centroid of the compression block is at the 

mid-depth of the compressic.a zone 

the vertical deviation of the angle of crack beyond 

the neutral axis is negligible, and therefore, the 

compressive zone is rectangular. 

the concrete compressive stress block is rectangular 

with an average stress 	
.3 

(3) The modified "k" ratio 

Most of the existing theories for the behaviour and 

strength of reinforced concrete sections, subjected to pure 

torsion, relate the strength as a function of a coefficient which 

depends on the over-all ratio of k. It was generally considered 



satisfactory to extend this concept to the case of combined 

bending and torsion. 

The author analysed several experimental data 

available and found that, for reinforced concrete beams with 

both longitudinal and transverse reinforcement, subjected to 

combined bending and torsion, the ratio k should be based on 

the dimensions of the reinforcing cage. The new ratio is 

thus 

k = 	 4.S...O. bf 

The use of the new ratio results in a higher value 

for k as compared to the original ratio, and therefore, the 

strength of designed sections is generally under estimated. 

-.-----.'-- < 

3.3 Derivation of the ultimate moment eguatioL 

When a reinforced conci'ete beam is subjected to com-

bined bending and torsion, the resulting f-  ilure surface is as 

shown in Fig. 3.1(a). 	This is based on the assumption that 

the beam fails by formation of a compresion zone across the 

horizontal face. The inclination of the angle of crack is the 

same throughout the two vertical sides, and the horizontal face 

as shown in Figs. 3.1 (b) and 31 (c). 

In order to solve the internal forces, it is necessary 

to estimate the number of transverse binders intercepted by the 



EITZ1T 
	

16 

t 4w .IIIIIIIIiiIII 
(4)  

'ii 

(C) VC-0  w 

3.Y - 	6 re C a )v a";• 	0c ,.- ,, 	4 C7  

a)'? 
),Q/  



21. 

cracks, both on the horizontal and vertical faces. By con-

sidering that the reinforcement is confined within the 

reinforcing cage, considerable simplification is achieved. 

In addition to this, the intercepts crossed by the cracks can 

now be obtained accurately. In order to simplify the 

calculation of the number of binders on the vertical side, it 

will be assumed that the neutral axis plane lies at the level 

of the top reinforcement. This is fully justified because 

experiments have shown that the depth of the compression block 

is generally very small and lies in the order of the depth to 

the top layer of the reinforcement measured from the top com-

pression face. No further complexity is introduced by the 

intercepts on the horizontal crack. 

Using the above assumptiors, the ultimate moment 

equation will now be derived. To do that, the equilibrium of 

the internal and external loads will be fir t ccnsidered. 

Using the above assumptions, the ultimate moment equa-

tion will now be derived. To do that, the equilibrium of the 

internal and external loads will be first considered. 

The internal forces acting across the failure surface, 

normal to the compression zone are 

longitudinal steel •••••• 	AfLSin 

transverse binders 

intercipted by the 

vertical cracks 	...,...,.. A T  f T 
 d' Coto Sin 

S 



(c) transverse binders 

intercepted by the 

22. 

horizontal cracks 
A £ b' TT 	

Cot'Cosf3 

The above internal forces generate the following 

internal moments by rotating about the centroid of the comp- 

ression zone, i.e. 

() dte to force (a) 

due to force (b) 

due to force (c  

........ .ALfLSin 3(ci - 
A f ci' TT 	

Cot 2,' Sin( (d - 

A £ b' 
,...-1---Cot' Cos'(d _) 

The total internal moment is obtained by summation of 

the momer!ts given by (ci), (e) and (f) .as 

MB. = ALELSin (d  - 

Afb' 	 , 	 -- 
(ci - ") 	CotSin+ Co 	 (3.5) 

The internal moment given by expression (3.5) is 

balanced by the external moment M 
bu 	 tu 

and torsional moment M * 

The total external moment is obtained by resolving normal to 

the failure plane, i.e. 

MBe = MbSin. 0 +Cos 	 . 



For equilibrium, the external and internal moments 

must balance each other, and therefore, the moment given by 

expression (3.6) must be balanced by the moment given by 

expression (3,5),  i.e. 

M SinP+ MbtCos = ALfLSin(d — bu 	k' 

Afb 
+ 	TT 	

(a — )((--) Co1Sin+ Cos 	Cot,L.... (3.7) 

Dividing the above expression throughout by Sin 
M 

and introducing the ratio % = jj, the equation is simplified 
bt 

to 

Mbu +Cot) = A 	(a - 

Afh 
+ TT 	(a _) 	(bl --) Cot+ 	 (3.8) 

From Fig, 3.1(c), the expression for the inclination 

of the compression zone can be obtained as 

Cot 	
+ 2d') 	--i 
b' 

(i + 2k) Cot  

0ø•*I• ..... e 

.................. (3.10) 

If the expression for Cot (obtained above is sub-

stributed in equation (3.8), and the resulting equation re-

arranged, the ultimate moment equation is given as 



E_-)(+ 	2k)Cot<) 

ATfTbI 	
) 
(Ø'(l + 	Cotc 	...... t.. (3.11) + 

s 	- 

For a particular beam section, the reinforcement is 

generally known or obtainable from the known conditions of 

loading. The unknowns left in the above expression are the 

value of n and the terms in the bracket. The author intends 

to present a method of calculati:g the first in Section 3.8, 

while the terms in the bracket may b replaced by coefficients 

Cl and  02 which are given as 

- _ Tl+2k5Cot - ...# ........ (3.12) 

' (i + 3k)Cot2c 

+ 2k)Cot- - 	2 ........... (3,13) 

For a particular beam with given ', the value of the 

angle of crack is obtained from expression (3.1), (3.2) or (3.3) 

and therefore, the values of C1  and 02 are found to be constant. 

The author has obtained the coefficients C1  and C2  

for variations of % from 0 to 12 with k = 1.0, 1.5, 2.0 and 

2.5, using a computer program. 	The results are plotted 

graphically in. Figs. 3.2, 3.3 and 3.4. 	The graphs of Figs. 

3,3 and 3,4 give the values of the coefficient 02  for pre-

dominant torsion and combined bending and torsion to predominant 
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bending conditions respectively. 

Once the coefficients C1  and C2  are obtained, either 

by direct calculation using the formulae (3.12) and (3.13), or 

from the graphs of Figs. 3.2, 3,3 and 3.4, the ultimate bending 

moment MDu  can be calculated at once by the use of equation 

(3.14) given as 

4bu = AL2L(d - 	+ E)C 	TT 	(a - 	............ (3.14) 

It is necessary to estaulish the conditions under 

wliic}' the above equation is valid. 	The author proposes to 

deal with this in chapter 4. 

3.4 Significance of the coefficient C1  

It can be deduced ly inspe-tion of equation (3.14) 

that, the first term on the right hand side exF'resses the 

contribution of the longitudinal reinforcement, and the second 

term, the contribution of the transverse b .iders. 	The ultimate 

moment 
N.012 can be thus considered as consisting of the bending 

moments contributed by the longitudinal steel and the transverse 

binders, and may be represented by 

= N. 	+ N. 
DU 	buL 	uT 

where M= Af(d - 

	

buL 	L  

AT2Tb t  

	

and MbuT 	 (a -)c2 

(3.16) 

. . . . . . . ( 3 . 17) 



It is proposed to consider the implications of 

equation (3.16) to find the significance of C1. 	From 

Fig. 32, it can be observed that as % increases, the value 

of C1  increases also and vice versa. The values are also 

higher for higher ratio of k. 	By rearranging equation (316), 

the coefficie't C1  can be expressed as a function of the 

relative reduction factor in bending capacity of the beam 

under consideration, namely: 

Mb L  
Ci 

Letting M =ALfL (d- 
0 

(i8) 

(3.19) 

Then C1 	= 1bu1 
M 

0 
. . . . . . ......(3.20) 

It will be shown in Section 3.8 t}-at the magnitude of 

n is very small, and therefore, for purpose of discussion M 

can be considered approximately constnt. 	In fact, the actual 

value is related to M 
u  by the inequality as 

M 

<:1 	1 	 ............ . (3.21) 

Equation (3.20) can be represented as the abscissa 
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in Fig. 3,2, and therefore, the graph may he considered as 

showing the efficiency of the longitudinal steel in con- 

tributing to the bending moment resistance of the beam. 	From 

:his consideration, the author decides to define C1  as "the 

efficiency coefficient of the longitudinal reinforcement". 

3.5 Siçnificonceof the coefficient C2  

The ultimate bending moment has been expressed as 

equation (3.15), where MbL represents the bending moment due 

to the ongitudinal reinforcement, and M buT due to the 

transverse binders. 	It is thus accepted that transverse 

binders in the case o combined bending and torsion also con-

tribute to the bending capacity. This fact has been verified 

by experiments, particularly that due to Gesund et at (15)  

From equation (3.17), the contributicn of the transverse 

binders has been given as 

A 
T T 
2 b' 

M 	
- 	 fl\,. 

huT 	S 

For a fixed quantity of transverse binders, i.e. 

it appears that the coefficient C2  represents the 

effective contribution of that quantity to the bending moment. 

The author therefore proposes to define C2  as 'the efficiency 

coefficient of the transverse reinforcement". 



Gesurid et al 15)  has also shown that the bending 

moment increases with the increase in the transverse binders 

within a certain range. This contribution can be related to 

the parameter "r" which was introduced by Lessig. 

Introducing this parameter in equation (3.17), the 

form of equation is changed to 

MbT = AL2L (a - 11)C r 

or 	MT = Cr 
0 

ATfTb' 
where r = 

AL I L 

S S S S • • • S S S I I S S S (3.22) 

. . . .( 3.23) 

. I I I • S • • I S S S S S .(3.24) 

For a specified beam section, subjected to known 

combined bending and torsional moment, the contribution of the 

transverse binders varies with r, and since the primary 

function of the transverse binders is to resist shearing 

stresses, the author proposes to define "i" as "the torsional 

shear reinforcement ratio". 

The advantage of presenting equation (3.17) in the form 

of equation (3.23) lies in that, the later equation can be plotted 

graphically as shown in Figs. 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 

and 3.12 for r = 0.25, 0.50, 0.75 and 1.00. 	From the graphs, 
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the contribution of the transverse binders to the bending 

capacity is obtained as a dimensionless ratio from which the 

actual amount can he easily calculated. 	It is of interest 

to mention that Figs. 3.3 and 3.4 represent the special case 

of plotting equation (323) with r = 1.00. 

Another important fact which emerged from these graphs 

is the increase cf coefficient C2  with increase in the ratio of 

k. This indicates that the contribution of the transverse 

binders increases as the relative depth of the beam increases. 

3.6 Torsional Resistance of longitudinal reinforcement 

Discussion in Section 3,4 has revealed that the 

coefficient C1  represents the efficient factor of the con-

tribution of the longitudinal reinforcement to the resistance 

of bending moment. This indicates that, for combined bending 

and torsion, there is a loss of the potential resistance of the 

longitudinal steel. 	The author believes that this loss is 

accounted for by the resistance of torsior d stresses. 	Since 

C1  represents the net contribution of the longitudinal steel 

to bending, the remaining force could have been used in torsional 

resistance. 

The net force lost to the resistance of torsion may be 

obtained by subtracting the amount contributed to bending, i.e. 



1Losg = A121 - CAIfL = (i - cl)ALEL  ........ (325) 

Ernst 
(26) 

 has shown that, for pure torsion, the 

longitudinal steel contributes to torsional resistance. 	It 

is believed that this concept is equally applicable to the 

case of combined bending and torsion. 	Therefore, it is 

decided to accept that the longitudinal reinforcement contributes 

to the resistance of torsion, the amount of which may be obtained 

from the above expression. 

It is generally known that torsional stresses are dis-

tributed on the four Laces of a beam when subjected to pure 

torsion, 	The distribution should be similar for combined 

bending and torsion. 	However, the distribution of bending 

stresses on the tor and bottom section varies, the compression 

cone above the neutral axis, for instance takes the compressive 

stress while the tensile steel takes the tensile stress below 

the neutral axis. 	From this consideration, the author believes 

that the torsional stress resisted by the longitudinal steel in 

the tension zone is the longitudinal comporent which occurs below 

the neutral axis. From this, it can also be deduced that the 

transverse component is transferred to the vertical binders. 

This concept will be extended to investigatthe optimum transverse 

reinforcement in chapter 4. 

From the above discussion, it is concluded that, for 



beams subjected to combined bending and torsion, the amount 

of tensile longitudinal force utilised for resisting the 

longitudinal component of the torsional stresses is given by 

expression (3.25). 

3.7 Proposed minimum compressive reinforcement 

I3ased on the concept of similar stress distribution 

throughout tie four faces of a beam for pure torsion, it is 

generally accepted that the longitudinal reinforcement should 

be provided equally both in the top and bottom part of the 

beam. 	It is suggested that this concept should be applicable 

to the case of combined bending and torsion also. 

From expression (3,25), longitudinal force in the 

tension zone for resisting torsional stresses has been suggested 

as 

In order to resist the longitudinal component of 

the torsional stresses which occur at the compression zone, the 

amount of reinforcement provided at the zone should have equal 

force. This force may be given as 

FL 	= ALf s •S.e..• ........(3.26) 

For equilibrium, the force given by expression (3.26) 

should be balanced by the force given by expression (3.25), i.e. 



AL$ = (l_cl)ALfL  ...................  

i.e. AL 
.1 

S 

It is proposed that the minimum compressive rein-

forcement should he calculated from expression (3.28). 

For reinforcement with equal compressive and tensile 

stress, the rein2orcement reduced to 

AL = K -. C )A1  
C 	 1 	-a 

38 Depth of the corn ressijil_zone 

In this section, the author Proposes to presrit a 

method of obtaining the depth of the compression zone "n", 

using the following points which emerged from the preceeding 

sections: 

the net longitudinal force contributing to the 

ultimate bending moment Mbu. is C1AL2L 

the remaining steel (1 - c1)AL generates a force 

(1 - Cl)AL2L to resist the longitudinal component 

of torsional stresses. 

and(c) transverse binders contributes to the bending 

capacity of the beam. 



The effect of the longitudinal steel resisting 

torsional stresses as given by (b) will he ignored as the 

author believed that it is neutralised by the action of 

transverse binders on the vertical side. Only the horizontal 

intercept of the binders will be considered. 

Therefore, it is proposed that the depth of the comp-

ression zone is primarily influenced by the longitudinal steel 

and the concrete strength. The net effect can now be shown 

in Fig. 3.13 which is plan view of the failure surface. 

The compressive force acting normal to the inclined 

compression zone is 

fnbCosec 

The tensile force acting normal to the failure zone 

contributed by the longitudinal steel is 

ClALfLSin 	..............................(3.30) 

Finally, transverse binders intercepted on the 

horizontal face contribute tensile force normal to the failure 

zone amounting to 

ATITb I  
S 	

Cot t< Cos 	. . • . . . . • 1 • • • .. . . •1 .( 3.31) 
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For equilibrium, the force given by expression 

(3.29) is balanced by the summation of the forces given by 

expression (3.30) and (3.31), Le,, 

AT b 2T ' 
fnbCosec = ClALfLSin 	+ 	CotcCo,., (3.32) S 

The above equation can be simplified by considering the 

equilibrium of the tensile forces acting transverse to the 

failure zone. Thus 

CotSjn 	Cl IL fLCOS 	••", .......(3.3.3) 

or 

Solving the two simultaneous equations (i.32) and 
(3.34) equation (3.32) reduces to 

fnbCosec 	= ClALfL Sin  + C1ALCQtr.,  Cogi..... (3.35) 

ClALfL Sin  (l + Cot) ,, .......(3.36) 
CA2 
=1LL 

fb 

The author contends that, the depth of the compression 

zone is given by equation (3.37). 
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However, difficulty arises due to lack of knowledge 

regarding the actual value of the compressive stress to be 

used for combined bending and torsion. 	Available data (14,17, 

37,38,39) 
indicate that the magnitude is related to the ratio 

of compressive stress to shear stress. Under this circumstance, 

it was decicted to use the compressive stress for pure bending. 

Thus 

if = •s•••••oa••ess.s.s........e.....o (3,38) 

Substituting this value in equation (3.37) results 

in the magnitude of n to be 

Q Af 
fl = 	••••*•GIt•ss•Oe•aooeoo•.•e0000e (3.39) 

3 u 

The depth of compression block for pure bending is 

given as 

ALfL 
Xlb = 	•...........s...,.,............ (3.40) 

From this, the depth of compression zone for combined 

bending and torsion may be related to that of pure bending as 

n = Clflb 	••••••••••••. •s•eee••a•e••,• (3.41) 

The author has used the above formula for analysing 

works of previous investigators which are given in Tables 3.1, 



3.2, 3.3, and 3.4. 	The close correlation of the calculated 

moments with the observed values seems to indicate that the 

formula for n is acceptable. 

It is proposed to study the influence of variation of 

on the formula. 	In order to do this, the formula is 

rearranged by expressing the coefficient as 

	

C- 	 (3,12) 

	

1 - 	1 + 2kbo t: 

	

or= 	
(33'12) 

Dividing throughout by ', the formula reduces to 

= (i + 	
O.SUOO,.••SSI*Q'SO 

(3,143) 

n b 
i.e. 	n = i Cot 

+ 

••Q•S*•IC t 	(3.45) 

Equation (3.45) shows that the macinitue of n is 
r 

CotP 
related to the ratio 	, and in particular when 	= 

45 degrees as assumed by Evans and Sarkr, n is obtained 

in a very simple form as 

n = n.,0(__ 4__.) 	 (3.46) 
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The above formula is probably applicable when the 

level OR torsion is high. 	Thus, it is suggested that the 

formula he used for $2! < 2. 

Another interesting development of the formula is 

that, for pure bending, 
r
l=90 degrees and % =';D 	Terefore 

fl = t1 	•••O••O•II•••*•I*••••I••a.I... .....(3.47) 

3.9 Significance of M 

It is now possible to study the relation between M and 

M by using formula (3.41). In order to do that, the ultimate 

bending moment M in pure bending will be written as 

M = AL2L(d — 	••t•e•*I•s•t••..•.s.... (3.48) 

Similarly, M may be written as 

M =ALfL(d — 	 i.., from (3.19) 

Substituting the value of n in terms of n 
b  from the 

relation (3.41), M0  is obtained as 

M 	=$L(d — Cflb 
	

•.••••..•••••••• ......(3.49) o 

The relation of M 
U 	0 

and N is obtained from equations 

3.48 and 3.50 as 
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1 	rIb 

= d-01b 	
at .. 	 (3.50) 

The coefficient C1  is always less than unity for 

combined bending and torsion, and therefore by inspection 

The above relation has already been shown in Section 

3.4 by equation (3.21). 

The relationship between M and M is very important 

for practical purposes because it gives M in terms of M which 

in practice can be obtained for reinforced concrete beams. 

This will become obvious in Section 3.10 when design charts 

are considered. 

3.10 Presentation of design charts 

The ultimate moment equation given in the form of 

expression (3.11) or (3.14) is basically suitable for purpose 

of analysis and not for design. 	In this sction, the author 

proposes to present design equations in the form of charts but 

the design process can also be approached analytically. This 

will be explained in the following paragraphs. 

From Section 3.3, the ultimate moment equation has been 



shown by equation (3.14) as 

Mb u = AL L f(d - 	+ 	(a 
S 	 2' 2 

where n is given by formula (3.39) developed in Section 3.9 

as 

C. &LfL 
fl 

Cb 3u 

If the moment equation is divided throughout by 

AL2L(d 	), the resulting expression is 

Mb 
= C1 + 	C2 	....... .(3.5i 

Further simplification is achieved by introducing N 

and r from equations (3.19) and (321-) respectively. 	The 

resulting equation is 

N 
bu = C1  + Cr 

The equation has been plotted graphically with 

Mbu as abscissa and 	as ordinates for k = 1.0, 1.5, 2,0, and 

2.5, varying r from 0 to 1.00 as shown in Figs. 3.14, 3.15, 

3.16 and 3.17. 	It can be seen that, for beams under combined 
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bending and torsion, the graphs can be used for analysing 

any beam fulfilling the conditions valid for the applicability 

of the ultimate moment equation. The processbf analysis is 

outlined as follows:- 

From the given beam section, calculate the 

ratio of k 

Compute the ratio of r. 

Using equation (3.39), calculate the value of n 

(.) 	Calculate M hy,usinj.equat±on .(3'l9) 

(e) Knowing the value of %, k and r, use the graph to 
M 

obtain the corresponding ratio for 
0 

finally (f) Obtain the value of Mb  fromlzhe result of (e) 

The process of desn is not as straightforward as 

the process of analysis. The difficulty arises from the 

fact that H has no practical significance. However, its 

relation with M can be exploited to obtair the required 

beam section and the reinforcement. 	It is also necessary to 

modify the allowable compressive stress in bending. The author 

proposes to use the recommendation of the British Code of Practice (21)  

and thus, £ = C and the value ofn, as given in equation 

(3.40) is now transformed to 
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A £ 

c 	
•..........oc.....oc.o... (3.53) 

Subsequently, the value of n changed to 

= 	
.....S........ ............(354) 

C  9u 

The above two formulae vill be modified by introducing 

the following parameter 

£ 
q ap *s••es 	...... 	(3.55) 

A 
where 	L / 

= bd 	 3.56 

Substituting the value of q :.n e.ivation(3.53, the 

formula reduced to 

9 = 	qd .........,• ......... ...... (3.57) 

It is now possible to transform the relation of N 
U 

and M from equation (3.50) as 

9 N 	1 --q 

=9 — ••SI•s**t•t•t**••ti.. (3,58) 
0 	1 — C1 q 

In designing reinforced concrete beams in pure bending 
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or in combined bending and shear, the usual procedure consists 

of obtaining the beam dimensions from the ultimate bending 

strength of the concrete given as 

M = Kbd2c 	1••••••s••e.•s•I••mes••*.*... (3.59) 

where K = to 	 (3.60) 

Jones(40) has suggested the use of K = for 

balanced condition when q 	. However, the value for 

combined bending is probably greater than this value as can 

be seen from equation (3.21). 	Thus 

M> 	' bd2C 	•••S••••SC4bOO••*4,.IS.4O (3.61) 

The exact value can be obtained from eq'.ation 3.58 as 

1 - 2  C1 q 
M = 

9 	(.. bd c) 	 (3.62) 

From the relation of M 
0 	U 

and M , it is now possible 

to proceed with the design of beams in combined bending and 

torsion. 	In order to do this, it is suggested that the 

value of K = -be used. 	Therefore, the ultimate bending 

strength of the concrete is 

M = 14  bd2C 	 (3.63) 
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The process of design is as follows: 

From the assumed loading conditions, the 

value of M 
bu and Kbt  can be obtained and the 

ratio ' can he calculated. 

Choose an "appropriate" ratio for k and r (from 

Chapter 4). 

From the graphs, the ratio of Mbu can he 
M 

obtained. 	 0 

(a) Since Mb  is already known, M can be calculated 

(e) Use equation 3.63 to obtain the approximate beam 

dimensions of b and d, keeping in mind the ratio 

k -chosen 

Calculate the position of the neutral axis from 

equation 3.54. 

Calculate the longitudinal steel from equation 

(3.19) 

Use the ratio r selected in (b) to compute the 

transverse binders required 

Finally (i) Check the design as shown for analysis in 

preceeding paragraphs. 

After the design process is completed, the value of K 

to be used can he checked from equation (3.62) if desired. 
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In choosing the reinforcements, it is necessary to 

restrict the amount of reinforcement. This will be discussed 

briefly in Section 3.11 and in detail in Chapter 4. 

3,11 Limiting conditions for validity of the equation 

In deriving equation (3.11), it was assumed that 

failure of the beam occurs due to yielding of the reinforce-

ment without considering the conditions under which this will 

occur. The application of the equation is therefore restricted 

to situations under which the following conditions are fulfilled: 

(i) the longitudinal reinfox'cement ratio p should be 

restricted to a value less than p 
bc  where p bc 

represents the balanced ratio 

the ratio r should lie in the range between r 

and r 
U 	 o 	u 
where 	r and r are the minimum and maximum 

ratio for the torsional shear reinforcement ratio 

the amount of longitudinal reinforcement in the 

compression zone should he ac least equal to that 

obtained by equation (3.28) 

the limits for the spacing of transverse binders 

is proposed as 

For 	K2, 	s1. b' 	•.,..., ••.,•.o.... ......(3.64) 

For 	2, s,>dt 



(5) the applied moment Mbu  should not be less than 

the applied torsional moment Nbt 

and (6) k,2.5 

The above points will he discussed in detail in 

chapter 4. 

3.12 Correlation of theoretical and experimental results 

The author has analysed experimental data available 

in order to examine the range of accuracy obtained by comparing 

the observed results with the retical values obtained from 

usinç the derived equation. 

From the data available, the works of the following 

authors were chosen as they conform to the conditions laid down 

for the validity of the equation:- 

Cowan 

Cesund and Colleagues 

Chinenkov 

and (4)  Evans and Sarkar 

The comparison of the results are shown in Tables 3.1, 

3.2, 3.3 and 3.4. 	It can be seen that, the correlation of 

experimental and calculated values is good, and therefore, the 

author feels justified that the equation may be used within the 



Table 3.1 - Beams tested by Cowan 

Beam No. Ultimate Moment 

(in kip-in) 

Expt. 	Caic. 

Ratio of 

Expt. 
Caic. 

R5 1 75 	56 1.14 

R2 2 158 	120 1.32 

Ri 6 258 	210 1,23 

Si 2.5 207 	152 1.36 

S2 4 241 	197 1.22 

Average 1.25 



Table 3.2 - Beams tested by Gesund and Col1e1ues 

Beam iTo. Ultimate Moment 

(in kip-in) 

Expt. 	Caic. 

Ratio of 

Expt. 
Caic. 

1 1 79 	87 0.91 

2 1 102 	120 0.85 

3 2 122 	128 0.95 

4 2 134 	154 0.87 

5 3 147 	146 1.00 

6 3 168 	158 1.06 

7 4 173 	159 1.09 

8 4 176 	168 1.05 

9 2 120 	136 0.88 

10 4 176 	212 0.83 

11 2 138 	152 0.91 

12 4 213 	218 0.98 

Average 0.95 



Table 3.3 - Beams tested by Chi.nenkov 

Beam No. 	 Ultimate Moment 	 Ratio of 

(in ton-met) 

Expt. 
Expt. 	Caic. 	 Caic. 

13-2-8-0.1 10 5.6 4.3 1,30 

3-2-9-0. la 10 5.4 4.5 1.20 

13-2-8-0,2 5 4.8 4.0 1.20 

13-2-8-0.2a 5 4.8 4.1 1.17 

i3-2-8-0.4b 3.5 4.0 3.7 1.08 

13-2-8-0.4 2.5 4.2 4.1 1.02 

13-2-8-0.4a 2.5 4.0 3.8 1.05 

13-2-8-0.4b 2.5 4.2 4.0 1.05 

13-2-8-0.4c 2,5 4.4 4•5 0.98 

13-2-8-0.4d 2.5 3.6 3.9 0.92 

3-2-8-0.4e 2.5 3,8 4.0 0.95 

3-2-8.4f 2.5 4.0 3.8 1.05 

:B-2-8-0.4g 4.5 5.0 4.7 1.06 

Average 1.17 



Table 3.4 - Beams tested by Evans and SarEr 
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accuracy required for reinforced concrete design. 

Some exampls of c3iputation of M using 

equations (3.14) and (3.52) and the procedure to be followed 

are given in Section 3.13. 

3.13 Sample calculations 

The procedure to be followed in using equation 3.52 

is:- 

Calculate the ratio of k from the given beam 

sections. 

Compute the ratio r using equation (3.24). 

Use formula (3.1) or (3.2) or (3.3) to obtain 

the magnitude of CotQc. 

4) Using ', k and Cot 	, calculate the coefficients 

and C2. 

Calculate n by using equation 3.39. 

Use equation (3.19) to obtain the value of M. 
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(7) 	The bending moment M bu is now obtainable from 

equation (3.52). 

It is also possible to compute Mbu directly by the 

use of equation (3.11) or (3.14). 	The method depends on 

personal choice. 

The author will demonstrate the use of equation 

(3.14) and (3.52) in the following paragraph by using beam 

No.5 tested by Gsund and Colleagues. 

(i) Method of usquation (3.14) 

From the given data, the following are obtained: 

h = 8", h 	8", d 	A1  = 0,59 sq.in,, 1'L = 51 ksi, 

AT 	0.11 sq.in,, fT  = 50 ksi, s = 5" c/c, 	= 4.24 ksi, 

$ 	3. 

The calculated reinforcing cage is 5.9 by 5.9 in. 

Step (1): 1< 	 = 1,00 

Step (2): Using formula (3.2), calculate C-)tc 

i.e. Cot-ç' = 0-80 	0.27 

Step (3): Use formula (3.12) to obtain coefficient C1  

i.e. C = 	 3 
1 	3 + (1 + 2)(07) = 0.79 

Step (4): Use equation (3.13) to obtain coefficient C2  

3 i.e. C2  = 	
+ (1 + 2)(0.27) (1+3)(0.27 )2 
	0.23 



Step (5): Calculate n by using equation (3.39) 

i.e. n = (59)(0.51)0J = 1,22 

85) (ii. 24) ( 

Step (6): From equation (3,14), Nb  is obtained as follows: 

N 	= 0.59)(51)(6.5 - 0.61)(0,79) bu 

+ 	
0.l150)(5.9) (6,5 - 0.61)(0.23) = i 	kip-in 5 

(2) Method of using equation(3.52) 

The given data used are already given. 

Step (i) k = 1.00 

Step (2) r = = 0.22 

Step (3) as before, i.e. Cotc'= 0,27 

Step (4) as before, i.e, C 1 = 0.79 and C2 = 0,23 

Step (5) as before, n = 1,22 

Step (6) N is obtained from equation (3.19) as shown 

below: 

N = (0.59) (0.51) (6.5 - 0.61) = 177 kip-in. 

Step (7): Mb can now be obtained by direct substitution 

in equation (3.52) 

N bu  =M  o 1 (c +C 2  r) 

= 177(0.79 + 0.23 x 0.22) 

= 146kip-in 
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3.14 Summary and CJ)nclusjons 

The author has developed an ultimate moment 

equation for under-reinforced concrete beams subjected to 

combined bending and torsion. 

The ultimate moment was found to consist of the 

contribution of longitudinal and transverse reinforcement. 

The equation is given as (3.11). 

fly introducing two coefficients, C1  and C2, defined 

as the efficiency coefficients of longitudinal and transverse 

reinforcement, the equation was simplified to the form (3.14). 

Equation (3.14) was further rearranged into the form 

(3.52) by introducing two parameters, M(see equation (3.19)) 

and r, the later defined as torsional shear reinforcement and 

thus relating the contribution of the binders to the total bending 

moment. 	The special feature of expressing the equation as (3.52) 

was the possibility of plotting the design charts shown in Figs, 

3.14, 3.15, 3.16 and 3.17. 	M was related to M by the expres- 

sions (3.58) and (3.62) to simplify desigi of beams in combined 

bending and torsion similar to that for pure bending. 

A method of computing the position of the neutral axis 

was introduced in the form of formula (3.39) and related to that 

for pure bending by (3.41). 
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Further simplification was achieved in expressing the 

position of the neutral axis for predominant torsion cases 

as (3.46). 

A proposal for restricting the minimum longitudinal 

reinforcement in the compression zone is given by the expres-

sion (3.28) o: (3.29). 

Finally, the accuracy of the equation was demonstrated 

by the analysis of forty-three beams tested by previous inves- 

tigators. 	The comparison of the calculated and reported 

ultimite moments are shown in Tables 3.1, 3.2, 3.3 and 3.4. 



CHAPTER 4 

OPTIMUM RE INFO RCE MENT 

4.1 Introduction 

In chapter 3, the author presented an ultimate 

moment equation for calculating the bending moment Mbu for 

beams subjected to combined bending and torsion. The 

application of the equation is restricted to compliance with 

the conditions and assumptions under which the equation was 

derived, and it is proposed in this chapter to discuss these 

conditions in detail under the following: 

(i) the establishment of the balanced longitudinal 

steel p bc for combined bending and torsion, 

and (2) the establishmert of a range of values for r. 

Finally, the proposed limitations will b compared 

with existing design recommendations. 

4.2 	Proposal for balanced longitudinal steel D 
bc 

It is proposed to establish a balanced percentage 

of longitudinal steel p bc so that, at fai:ure, the steel attains 

the yield stress and crushing of the concrete follows. This 

will be done by reference to the case for pure bending. 

For pure bending, provided the percentage of longitudinal 

reinforcement does not exceed a specific value, there is evidence 

that failure occurs due to yielding of the reinforcement and 



52. 

then crushing of the concrete in the compression zone. This 

value is given as 

= 	...........................(4,l) 

in which limitations are imposed by the following assumptions: 

the longitudinal steel reaches the yield stress. 

n,= 	thus ensuring under-reinforcement. 

the concrete compressive stress block is rect-
4C 

angular with an average stress value of - 

The author believes that a similar approach may be 

made for the case of combined bending and torsion. Compli-

cations are introduced }1owevr due to insufficient data 

regarding the true behaviour of concrete under te action of 

combined bending and torsion. Attempts have been made by 

Bresler and pister(373841), Goode and Hemy 	and Reeves, 

but their resuLts are inconclusive. The general agreement is that 

the presenc of torsion tends to reduce the direct stress I to 
c 

a lower value of I. 

For the case of combined bending and torsion, the 

author has decided to use the allowable concrete stress as shown 

in Section 3.10 of Chapter 3, i.e. f = 1  Cu .It. is proposed 

to use this assumption in obtaining the balanced ratio p bc which 

will be done in the lollowing. 



53., 

It has been shown by expression (3.41) that, the 

depth of the compression block is 

ii 	Cn 
1 b 

ALfL 
where 

9 u 

For combined bending and torsion, Pbc may be written 

as 

A 
p

L 
bc = bd 	 (4,2 

or AL 	= Pbcbd •S•• 	 ............ (4.3) 

Substituting AL from (4.2) in expression for 1b shown 

above, 11b 
	theS to 

= 
	

9u 
	••••••••••.S.. ......... (4.4) 

9PbcfLd 	leo a•.,..e.......... (4.5) 

Substituting the value of n.b obtaired from (4.5) in 

the formula for n, the result is 

9p 	2 C 1 bc L 
= 	4C 	

....*t...,...........,., 4.6 
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Restricting the neutral axis depth to that given by 

assumption (2), ri is found as follows 

n 	 .... .............(4.7) 

i.e. 9PbcfLC1 d 
4C 	- 2 	 ..... (..$) 

U 

From expression (4.8), the value of p bc is 

obtained a 

2C 
bc = 
	9fcCi 	

•,Sfl.S...*...e..... (4.9) 

The author contends that expression (4.9) gives the 

balanced longitudinal reinforcement for the case of combined 

bending and torsion for different ratios of % and k. 

It is interesting to show that, for pure bending, 

C1 	= 1100, ad therefore, p bc reduces to che following value, 

i.e. 

2C 
bc 	U 	Pb 

 

which is the sarn. as expression 

in gene:a: expressicn. (4.9) shovs that, as C1  

	

decreases, Pbc increases. 	Since the magniude of C1  decreases 
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for low ratios of as shown in Fig. 3.2 of Chapter 3, it 

can be conclu4ed:that, p bc is always greater than p 
b 
 for 

combined bending and torsion. Therefore, P 
b 
 as given by 

expression (4.1) represents the minimum ratio of 

It is proposed therefore to accept the ratio given 

by expression (4.9) as the ratio for proportioning the longi-

tudinal steel to ensure yielding of the stel in the longi-

tudinal direction. 

In general, the reinforcement provided in actual 

prac Lice is usually less than iie calculated value so that the 

design requi"ement is fulfilled. 	Nevertheless, the author 

Reels that further study will result in further modification of 

this value. 

It is now proposed to carry out investigation to 

establish the minimum and maximum ratios of the transverse 

reirorcemei. 

4.3 Provision for torsional shear reinforcement 

It was shown in Chapter 3 that, for combined bending 

and torsion, the ultimate moment M consists of the contribution bu 

of longitudin&l and transverse reinforcement. 	In particular, 

the net bending moment was shown to be 
MbuL  as given by expression 

(3.l). 	From this result, the net loss of internal force due to 

the resistance of torsional stresses was given by expression (3.25). 
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This is reproduced in the following as it is relevant to the 

discussion. 	Thus 

F 	= A l 	C loss 	L L - 1ALIL = (l-c1)ALL 

that is, the net force resisting the torsional moment and is 

equivalent to the longitudinal component of the torsional 

stress. 

It is contended that, in order for yielding of the 

longitudinal steel to occur, an equivalent amount of transverse 

binders should be provided to resist the transverse component 

of the torsional stress, thus preventing possible premature 

failure before yielding of the longitudinal steel. 	Further, 

it is believed that this amount of reinforceme.jt constitutes the 

minimum requirement and designated by Lessig 	as the optimum 

amount. 

It was also shown in Chapter 3 that the bending moment 

MbT contributed by the transverse binder's is given by expression 

(3.22) as 

MbT 	= 	L(d - ) C2r 

This expression indicates that, for a fixed ratio 
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Of flbc' the contribution of the binders to bending can be 

related to the ratio r. 	In particular, the above equation 

shows that, M
buT  increases for increase in r, a relationship 

which has been coifirmed by experiment 15 

In addition, the fact that tbt2 bending moment 

increases with increase of this ratio implies the existence 

of a range within which this ratio may vary for yielding of 

the reinforcement in both categories. 	The author is of the 

opinion that there is an upper valw for r which determines 

the maximum amount of transverse binders. 

It is proposed therefore to accept r as a basis for 

establishing the minimum and maximum amount of transverse 

binders and develop proposals for these ratios using two 

methods:- ethods:- 

(1) (i) Force intensity method 

and (2) Internal couple method 

4.4 Force intensity method 

This method consisted of relating the intensity of 

the forces in the transverse binders to that of the longitudinal 

steel, thus expressing "r" as follows:— 

TT 

= 
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that is, the ratio of the force intensity of the transverse 

	

binders 	to the force intensity of the longitudinal 

A 2 
steel 

If these relations can be obtained from the equili-

brium of the internal stresses of the beam yielding at 

D ailure, then it forms a basis from which the minimum and 

maximum ratios can be established, 

Exerimental evidence 	indicates that the concrete 

core is not effective in resisting the torsional stresses since 

these stresses occur only on the outer periphery c' the beam. 

It is asumed therefore that the stresses are distributed as 

follows: 

(i) the transverse components of the torsional 

stresses are resisted by the transverse binders. 

(2) the top and bottm longitu inal steel resist 

the longitudinal component of the torsional 

stresses 

	

and 	(3) the resistance of concrete is negligible. 

Assrnption (2) is based on a further assumption that 

the longitudinal steel behaves as though distributed uniformly 

around the periphery of the beam, so that, half the tensile 

longitudinal steel resists the stresses on half of the periphery, 
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while the remainder resist the other half. The mechanism of 

this action is illustrated in Fig. 4.1. 

From the figure, the intensity of the longitudinal 

steel is given as 

gi = (i - c) AL2L d') •'....... (4.11) 

and the intensity of the transverse binders as 

Af 
ff 	

= 	T T 	•••••,•••,,•,•••••••••.•••• (4.12) 

so that, for equilibrium, 

= 	•••••• .............. ...........(4.13) 

Af 	 A1 
TT 	/ 	LL 

i.e. 	= ¼l - C1) (b' + a7T .......•••• 	4.14 

(1 - C ) 
or 	r 	

= 	1 	•••••••,••• ...........(4.15) 

Substituting for coefficient C1  from expression 

(3.43) in chapter 3 gives r as 

1 
r 	= 	 ...... ..... (4.16) 

Cot:. 

For a particular beam, "r"  is related to the ratio 
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Cot 
	and when is fixed, the value is directly 

determined once the value of Cot is obtained. 

Chinenkov2) found by plotting graphs of Mbu 

against Cot that, the bending moment gradually decreases 

up to a certain value of Cot, and then again increases when 

Cot increases, and concluded that there is a minimum value 

for Mb. 

By inspection of expression (4.16), r will be a 

minimum when angle is 45 degrees. The author proposes 

the'e2ore to use this angle a.3 a basis for fixing the minimum 

ratio of r. 	It is interesting to note that Evans and Sarkar (9)  

use the same angle with satisfactory results. 

The optimum ratio r of ic minimum ratio is taken 
C 

as 

r 	= 	1 	
• ..... (4.17) 

(i+ 

Similarly, the maximum value 0±,  r should be limited 

by fixing or limiting the value for the angle • This 

consideration is supported by the fact that Lessig 13)  from 

experimental observation found that, for practical purposes, 

the intercept on the longitudinal axs can he approximated to 

(b +2h). This amounts to restricting the angle of inclination 

to 
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Cot 	
= b 	

= 1 + 2k ,....., 	(4.18) 

In general, when the intercept on the longitudinal 

axis is about (b + h), the structural member is badly 

deflected, and therefore the intercept should not be allowed 

to exceed this length. 	On the basis of this reasoning, 

the author decides to accept the above limitation for Cot 

and proposes the maximum !trrt a 

- 	- 	- 	1- • • . . . . . . , (4.i9) r - 
 

Ccmparisons of proposed ratios given by expression 

(4.17) and (4.19) with the recommendations put forward by 

other investigators are shown in Frs. 4.4., 45, 4.6 and 4.7. 

It may be concluded that the assumed values are both satis-

factory and consistent, 

Alternatively, the above £ormu'ae can be obtained 

by the internal couple method as described in Section 4.5. 

4.5 Internal _couple method 

This method is based on a hypothetical mechanism of 

the transverse and longitudinal steel as they generate internal 

moments. The method is simple and the author feels that it 

explains the internal action of the reinforcement rationally. 
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The effects of vertical intercepts of the transverse 

binders and the longitudinal steel amounting to (1 - cl)AL 

are assumed to induce the internal moments. It is assumed 

that the horizontal legs of the binders intercepted by the 

crack at the bottom do not contribute directly to bending 

action and the binders in the upper layer can be also ignored. 

The proposed failure of the beam indicating the 

transverse stresses is illustrated in Fig. 4.2. The diagram 

is a side view of the beam at the failure stage, 

The following assumptions are made:- 

the lever arm of the internal moment is 

approximately equal to ci' 

the aii;le of inclint.ion is as gien by 

expression (3.10) of Chapter 3 

the effect of the tensile stress of the concrete 

is ignored 

and 	(4) all. reinforcement which crss the crack ieach its 

yield stress. 

The ultimate bending moment" 
	and- on the assumption 

(i) is given by equation (3.14) as 

11bu 	 - 	+ 	fTb (ci - )c2 
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To satisfy the assumption (i) shown above, the 

lever arm (d 	is replaced by d' and thus, the moment lu 

is Uaiis2ormed to 

A I b' 
Mb 	= A1 21 d'C1  + 	TT 	

a'c2.... ....... (4.20) 

The above expression for the ultimate moment 

results from considering the action of internal stresses in 

the reinforcement as they rotate anti-clockwise abo't the 

centroici of the compression zone with a lever arm equal to 

(Ii. 

From Fig 4.2, it is observed that, the transverse 

binders form a cuuple generating a clockwise internal moment 

MbuTi ;ihich is given as 
,-fl 

tl 

'buTi 
= LL LL  .1.  

	(b' + d')Cot .
...(4.2l) 

A .11 b'd' 
or 	 _T__ (i + k)Cot 

Similarly, the net longitudinal force (1-c1 )ALIL 

creates an internal moment M buLi  in anti-clock-wise direction 

which is given as 

= 	(1_c1)ALILdt 	•0ê• .............. ,(4.23) 

For equilibrium, the moments M 	and M 	must buLj. 	buTi 

balance each other, i.e. 



(1-c1 )ALfL = A T £ T b'd' (l+k)Cot2cK 	. (4.24) 

and Simplifying, 

Afh' 	I T T 	¼1-C1
( A  

Af 	
................... 

L 	(i+k)Coto 

= 	(1-c1) 	..o.. . ...........  
(l+k)Cot 

For combined bending and torsion, the angle of 

crack may be assumed to be 45 degrees, 	Expression (4.26) 

is therefore rec5.uced to 

r 	= 	(1 -C 

l+k 

which is the same expression (4.15. 

The process is repeated as in the case discussed 

in Section (4.4). 

Th above relation may be extended to obtain the 

minimum and maximum ratio of r by intrcducing the following 

range of the angle of inclination 

45°/ 	..( Cot (i + 2k) 	....... ...........(4.27) 

Substituting the above range of 	3 	, the range of 

r is obtained as 



r(1+k)(1+k) 	
..... (4.28) 

It can be seen that the above range of r is the 

combination of expression (4.17) and (4.19). 

It is proposed to compare the above limits with 

recommendations given by other investigators. 

4,5 Comparison of proposed ratios with existing recommendations 

The recommendations ci:2rent1y available can be 

classified into three categories: 

(i) for torsion only 

(2) for combined bending and torsion 

and (3) combined bending, torsion and shear. 

Of these, the author intends to refer only to cases 

(i) and (2). Combined bending, torsion and shear is not 

treated in this thesis. 

Com'ariors will be made with recommendations 

suggested by the following: 

I , fi (23) j) Pure torsion case - Hsu 	the Russian Code 

of practice(6), and Collins and coiieaguest42. 

and (2) Combined bending and torsion - same as for 

torsion except recommendation of Hsu is ommitted 

\ 
3 

I D - 	 \1 and addition of the suggestion of Lyalin 

65. 
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1. Pure torsion 

Expressions (4.17), (4.19) or (4.28) require 

slight modification so that the ratios can be extended 

to the case of torsion only. This will be done by the 

consideration that, for pure torsion, % = 0, and subs-

tituting this value in expressions (4.17) and (4.19), the 

ratio reduces to 

1 r = 
	(1+k) 	..................o.e...... (4.29) 

It is interesting to observe that the above 

expression can be obtained by slight modification of Cowan's 

recommendation. Based on the argument that, shear 

reinforcement in the form of vertical stirrups must be 

supplemented by an equal volume of longitudinal steel uniformly 

distributed around the circumference to resist the horizontal 

component of the diagonal tension, he proposed the quantity of 

longitudinal steel as 

b'+d') 	
( AL= AT 	S 	

•.......u............. .o) 

The above expression is based on the assumption that, 

the stresses in the reinforcement in both directions are equal, 

and the author feels that the expression applies to this special 

case only. 



If tho diPferonc in quality of ztoel ue in 

both directions is considered, it becomes necessary to 

relate them by modifying the expression (4.30) as follows:— 

AL(fL) = 	(2T)(h'+d') 	................ (4.31) 
S 

1 or 	r 	
= 	(1k) 

which is the same as expression (4.29). 

(23) 	 ,, Hsu 	introduced a parameter m , the value of 

which is given by the following and allowing for the different 

values of f and 

- 	AL(fL)s 	 . ......... (4.32) 
M 

- AT(2T)(b' + a') 

= 	r(1+k) 	•.......•,.. ................ (tl.33) 

The above expression is thus related to the ratio r 

used by the author. 

The range within which this parameter may vary is given 

by Hsu as 

0.7 	m ( 1.5 	.............. ....... . .... (-'1.34) 

It is possible to use the above range to compare his 
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recommendation with that obtained by the author. To do 

this, the expi€s1.or (4.) Je, ye xncje'. and the ratio 

r obtai.r2d as 

= 	n(1+k) 	........................... (4.35) 

Introducing the range of expression (4.34)  in the 

above expression, Hsu' s recommendation amounts to the 

following: - 

0.7 	 , '4 r 	
. 

The above range and the proposal made in exprcsion 

(4.29) are similar. 	In fact, expression (4.29) can be con- 

sidered the mean value of expression (4.36). 	Tt is therefore 

felt that the author's recommendation may be considered 

acceptable. 

Comparison of the rcomrnendations of Hsu as in 

expression (4.36), the Russian Code of Practice and Collins and 

colleagues are plotted in Fig. 4.3. 	It can he obse:'ved that 

the author's recommendation is within the range suggested by 

other investigators. 

(2) Combined bending and torsion 

Comparison of the author's proposal with recommendations 



67 P 04Q c 	CC 

CD€6 o. 
è 	 4 ;•)f ,b ) 	-'4 

) L 	
+ 	

t7 C 

1•- 	Cf C 

, o 	 - 

1.2 



69 * 

o.f the Russian Cod of Practice, Collins and colleagues (41 

42) and Lya1in 	are shown in Figs. 4.4, 4.5, 4.6 and 4.7 

for 51 = 0 to 12 with k = 1.0, 1.5, 2.0 and 2.5. 	The author's 

recommendation lies within the range of that suggested by 

other investigators and is therefore considered acceptable. 

4.7 Summary and conclusions 

In this chapter, the author has made proposals for 

restricting the ratios of reinforcement for both pure torsion 

and combined bending and torsion. 

By the use of the "force intensity method" and 

"internal couple method", the reinforcement may be limited as 

follows:- ollows:- 

(1) (i) the longitudinal steel is limited by expression 

(49) for combined bending and torsion. 

(2) the minimum and maximum ratios of r may be given 

by expressions (4.17) and (4.19) respectively for 

combined bending and torsion. 

and 	(3) the minimum ratio r for pure torsion is given by 

expression (4.29). 

The above proposals were compared with the existing 

recommendations and the close correlation shows that they may 

be considered acceptable for future use. 
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CHAPTER 5 

EXP1RIMENTAL INVESTIGATIOT 

5.1  Introduction 

Torsion often exists in a floorincr system in con-

junction with bending and shear, by the action of loads on 

secondary beams framing into a primary beani. 	This type of 

loading can be simulated in a structural laboratory to study 

the influence of torsion on the bending capacity of beams. 	The 

author has d ve1oped a technique for the above invest*gation and 

used it to invstigate the behnviour and strength of fifteen 

reinforced concrete beams, subjected to combined bending and 

torsion, 	This chapter constitutes the analysis and discussion 

of the results obtained. 

5.2 	Object and scope onvesticjat ion 

The primary object of the investigation is to verify 

by experiment the tltimate moment equation developed by the 

author in chapter three and to study the action of the transverse 

binders. 

The main variables considered are the ratios of bending 

moment to torque, and the spacing of the transverse binders. 

5.3 Description of test specimens 

The test programme consisted of tests on fifteen beam 

specimens grouped in five series as shown in Table 5.1. A typical 

specimen with dimensions and cross-sec ion is shown in Fig, 5.1. 	It 

is in the form of part of a frame, consisting of two transverse arms 

connected to the longitudinal member which represents a girder with 

the transverse arms acting as secondary beams. By studying this type 

of configuration under load, the action of a beam in actual structures 



Table 5.1 - Beam properties 

Beam No. 	 Tie spacing 	 Steel ratio 

p 	r 

2.1 6 in. c/c 0.021 0.019 

K13 21 3 in c/c 0.021 0.039 

K2/266 2.1 2.66 in. c/c 0.021 0.044 

1l 21 1 in. c/c 0.021 0.116 

K16 4.3 6 in. c/c 0.021 0.019 

K13 4.3 3 in.c/c 0.021 0.039 

K11 4.3 1 in. c/c 0.021 0.116 

K16 5.6 6 in.c/c 0.021 0.019 

K13 5.6 3 in. c/c 0.021 0.039 

Ku 5.6 1 in. c/c 0.021 0.116 

1(16 8.5 6 in. c/c 0.021 0.019 

1(13 8.5 3 in. c/c 0.021 0.039 

~Kil 8.5 1 in. c/c 0.021 0.116 

1(2/200 11.8 2 in. c/c 0.021 0.058 

1(2/150 11.8 1.5 in. c/c 0.021 0.077 

* P = AL/ba 

** r = ATITbI/ALfLs 
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may he simulated and a study made of the effects of loading 

on the joints. 

To enable the manufacture of three specimen 

for each mix, three moulds were designed and constructed. 

A typical mould is shown in plate 5.1. 

The beam specimen contained four longitudinal steel 

bars placed at each corner of the rectangular beam and 

transverse binders in the form of closed vertical stirrups. 

With the exception of the effective length measuring 11611 , 

the stirrups were closely spaced to prevent any premature 

failure. 	The spacing varied from 6 inches to 1 inch, centre 

to centre, for each series as given in Table 5.1. 	The beams 

were denoted as 1(16, 1(13, etc., the first number representing 

the group and the second number the spacing for the hinders. 

The testing of the heams was carrid out using five 0 ratios, 

so that each $21' ratio represents a series. 

5,4 Description of Torsion bracket 

A special feature of the testi g programme is the 

need for placing the beam on the loadirg frame and simply-

supporting it without endangering the end parts of the longi-

tudinal member beyond the joints to the effects of combined 

bending, shear and torsion. This was done by the use of two 

specially-designed torsion bracket supports attached rigidly to 

the longitudinal member, allowing it to rotate both in the 



Plate 5.1 
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longitudinal and transverse directions. A photograph of the 

torsion bracket is shown in Plate 5.2. 

5.5 Katerials and Fabrication of specimen 

A considerable time was devoted to the sieving and 

analysis of the aggregate in order to ensure uniformity and 

consistency of the resulting concrete. The cement used was 

Ferrocrete and the aggregates consisted of 3/8" Eddlestone. 

The graph of McIntosh and Erntroy 	was used for 

the design f the mix to attain a concrete strength at twenty- 

eigiit days of 6000 psi 	The concrete was manufactured in a 

"Cuni-f low" type mixer of two cubic feet capacity by mixing for 

two minutes and then poured and vibrated into the moulds. Three 

specimen and thiee control cubes were cast at each concreting. 

The specimen were then cured by placing them under wet burlap 

for seven days to simulate actual conditions in practice s  while 

the cubes were transfered to the curing t. .nk where they were kept 

for twenty-eight clays. 

In order to ensure failure of the test specimen by 

yielding of the reinforcement, it is essential for the steel to 

possess sufficient yield range at constant yield stress 	iRl;ck 

mild steel has been found to be suitable for this purpose 10 

Unfortunately, at the time of preparing the test specimen, the 

author could not obtain this type of steel for the longitudinal 



Plate 5.2 



bars ind cold-worked mild steel had to be used. On testing 

the sample, the steel was found to possess sufficient yield 

range for use in the beams. The transverse binde s consisted 

of bright mild steel annealed a 900°C. 	The yield stresses 

of the longitudinal and transverse steel were found to be 40,000 

psi and 34,000 pi respectively. 

It was essential to maintain equal dimensions for the 

reinforcing cage in order to maintain a constant ratio of k. 

Therefore, extreme care was tai'n in bending the stirrups and 

then tieing them to the longitudinal bars with soft wire. 

The alignment of the reinforcement in the mould was again 

adjusted before and while concreting. 

5.6 Test arangemont and pocedure 

The loading frame used for testing of the beam 

specimens is shown in Fig. 5.2 and consisted of two horizontal 

gi'ders spaced at 6!011  c/c and another girder placed between 

them for supporting the loading jack. 

The configuration of the bear specimen was specially 

chosen and designed to enable the application of combined bending 

and torsion within the effective length by .a system of spreader 

beams as shown in Fig. 5.3. 	It can be seen that by varying the 

position of the main loading beam resting on the two transverse 

beams, the ratio of bending moment to torque can be varied. The 
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The equation for finding the exact ratio % is given in the 

Figure. 

Preparation of the test specimen for testing 

consisted essentially of the following:- (i) positioning 

and fixing of the demec points on to the surface of the beams 

as shown in Fig. 5.4, (2) attaching the torsion bracket supports 

to the longitudinal member, (3) placing the test specimen on 

the loading frame, (4) arrangement of the spreader beams on the 

test beam, and (5) placing the dial gauges for measurement of 

the deflections. 

The load was applied through hydraulic rams connected 

to a Losenhaisenwerk machine and of capacity of 20 tons. 	In 

this programme, the loading was adjusted to attain a maximum of 

five tons. 	The position of the di.t-gauges with a beam in 

positio1 for testing is shown in Plate 5.3 as well as the 

location of the loading beams and jack. 

The 'imher of load increments ir each test varied from 

8 to 16, depending on the ratio of bending moment to torque so 

that the magnitude of each increment varied between 0.10 arid 

0.15 ton. 	Load was applied to the beam up to the collapse stage, 

and after each load stage, readings of dial-gauges and demec points 

were recorded. The sequence of recording the results consisted 

generally of, the taking of the dial-gauge readings, then, obser-

ving the recording the crack-propogation, then reading the demec 
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points and finally, reading dial-gauges again. The whole 

process for each load stage generally took from three to 

five minutes. 

5.7 Experimental results 

The main results of the experiments are listed in 

Tables 5.2, 5.3, and 54. 

58 Analysis and discussion of results 

5.81 Development of Cracks 

As shown in previous investigations(91042t131445), and 

all the beams tested in this study, the cracks originated 

at the bottom edcic where flexural tension is a maximum. 	These 

cracks widened on further loading, spreading diagonally side-

ways, both in the horizontal and vertical direction. More cracks 

then appeared at the bottom, crossi. .g the whole width of the 

beam, and emerged at the two edges and propagated upwards on the 

vertical faces. 

The inclination of t1ie cracks vth respect to the axis 

of twist was found to be similar on the three faces of the beams 

tested with similar ratios of ', the magnitude of the angle 

varying with 	It was found that the angle was close to 45 

degrees for low ratios, increasing with % and becoming almost 

vertical for large ratios. Typical crack patterns for beams 

tested with different values of 5' are shown in Plates 5.4, 5.5, 

5.6, 5.7 and 5.8 and it can be seen that for low ratios of % 

the path of cracks traced is essentially a straight line right 



Table 5.2 - Ultimate Strength 

Beam No. Cube Strength* 

(ksi) 

Ultimate Moment** 

(kip-in) 

Mb 	Mbt  

1(16 2.1 7.03 10.70 5.10 

1(13 2.1 7.03 13.80 6.57 

1(2/266 2.1 6.04 16.85 8.02 

1(11 2.1 7.03 18.00 8.57 

1(16 4.3 6.99 27.90 6.49 

1(13 4,3 6.99 6.19 

1(11 4.3 6.99 2740 6.37 

K16 5.6 8.12 24.60 4.39 

1(13 5.6 8.12 25. 0  4.54 

1(11 5.6 8.12 24.50 4.38 

1(16 8.5 7.23 27.20 3.20 

1(13 8.5 7.23 25.40 300 

1(11 8.5 7.23 27.20 320 

1(2/200 11.8 6.04 29.90 253 

1(2/150 11.8 6.04 29.90 2.53 

* average of three cbes 

** yield values 



Table 5.3 Concrete strains measured at the ~op face 

earn No. 	 Cube Strength 	Compressive Strain 

(psi) 	 at 

Yield 	Collapse 

1(16 2.1 7030* 0.0005** - 

1(13 2.1 7030 0.0009 - 

1(2/266 2.1 6040 0.0004 0.0004 

1(11 2.1 7030 0.0007 0.0007 

1(16 4.3 6990 0.0008 0.0008 

1(13 4.3 6990 0.0010 0.0010 

1(11 4.3 6990 0.0013 0.0013 

1(16 5.6 8120 0.0010 0.0010 

1(13 5.6 8120 0.0010 0.0013 

1(11 5.6 8120 0.0017 0.0017 

1( 16 8.5 7230 0.0015 0.0037 

.1(13 85 7230 0.00)9 0,0029 

1(11 8.5 7230 0.0013 0.0058 

1(2/200 11.8 6040 0.0011 0.0051 

1(2/150 11.8 6040 0.0011 3.0035 

*average readings at three positions, 

** average of strains measured on the compressive side. 



Table 5.4 - Principal concrete strains measured at the 

center" of beam faces for ' =2.1 

Beam No. Horizontal face Vertical face 

Tension 	Compression Tension compression  

(16 0.00037* 	0.00112 0.00226 0.00057 

1(13 0.00045 	0.00161 0.00069 0.00112 

(11 0.00042 	0.00114 0.00228 0.00074 

* average readings at three positiois. 
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up to the top edge, while for large values, the path deviates 

in a curve at about mid-height, with decreasing slope towards 

the longitudinal axis. 	Similar observations have been 

(9, 14,  reported by previous investigators 	 , and in 

particular, Evans and Sarkar 	assumed the deviated angle as 

450 	
A possible reason for this crack-behaviour is that 

there is a position at which the distribution of flexural 

stresses changes from tension to compression. The neutral 

axis represents this transition zone so that the flexural 

stresses at this level are nil and therefore only the torsional 

stresses are acting hence the tendency for the cracks to 

deviate at a 450  angle. As the load increases towards the 

failure stage, the location of the neutral axis also rises 

and therefore the continuity of the 450  inclination is main-

tamed. 

Another interesting observation concerning the crack 

is the tendency for the cracks to revers as the failure load is 

reached. 	This can be seen in Plates 5.5, 5.9, 5.10, 5.11 and 

5.12, resulting in slicing off pyramoidal shapes of concrete on 

the upper face. This process was also observed by Gesund and 

(20) 
Boston 

The influence of 93' on the rate of crack propagation 
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was significant. 	For low ratios, the rate was rapid, for 

example $' = 2.1; the cracks reached the top face within a 

few increments beyond the cracking stage. This observation 

is similar to the report of Chinenkov(12) who attributed the 

phenomena to the rapid rate of stressing and therefore the 

rapid straining of the reinforcement, resulting in an 

immediate wideiing of the cracks. 	The rate was relatively 

slow for large values of %, for example, % = 8.5; for this 

ratio and hLgher, the crack movement was not noticeable in 

some cascs, and the cracks teiJed to remain localized below 

the top edge even at the collapse stage. The author believes 

that this is due to the considerable compressive stress of the 

concrete which restrains or delays the movement. Another 

possible explanation is that the test beams used in this programme 

were so under-reinforced that the depth of the compression block 

was considerable., The beams may have ben in compression up 

to about the mid-point or lower, with the result that the pro-

pagation of the cracks in the vertical direction was delayed or 

slowed down and the torsional stresses are not sufficiently 

large to crack th2 beam. The final result is to reduce the 

slope of the path of cracks from its original straight line to 

a curve. 



ME 

The influence of the mechanical properties of the 

steel, particularly in the yield range is significant. 	The 

steel used in this study did not possess sufficient yield 

plateau to allow inelastic deformation to occur and in the 

author's opinion, the steel was in the strain-hardening 

range when failure occurred as suggested by the badly-deflected 

condition of the beam shown in Plate 5.13. 

The general weakness of the reinforcement in the 

transverse direction influenced the extent of cracking of 

beams, especially at the lower range of the ratio. 	For 

example, beams tested at = 21 and = 4.3 failed as a result 

of extensive cracking. 	This can he seen from Plates 5.14, 

5.15, 5.16 and 517 which show the conditn of the beams tested 

at X = 2,1. 	The teakness of this reinforcement-  may be discussed 

from two aspects: first, from the point of view of spacing and 

second, the cross-sectional area. A possible effect of 

inadequate spacing of the binders is the development of diagonal 

cracks between the stirrups precipitatfng failure to occur as in 

the case of beam K16 tested at X = 2,1 or beam K16 tested at 

	

5,6 which can be considered a relatively high ratio. 	The 

condition of the beam KlG tested at X = 5.6 is shown in Plate 

5.18. The beam may also fail as a result of the reversed move-

ment of the vertical cracks and splitting of the concrete along 
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the tensile steel at the bottom as shown in Plates 5.16, 

5.19 and 5.20. 	This type of failure is similar to that 

caused by combined bending and shear as observed by Neville 19) 

By the use of closer spacing of the binders, this 

(2') type of failure can be prevented. The recommendations of Zia , 

(23) 	 (24) Hsu 	and Mattock 	are relevant in limiting the maximum 

spacing of the binders. On the other hand, the recommendation 

of the British Code of Practice 21 is considered relevant for 

the behaviour of beams K13 and K2/266 which are shown in Plates 

5.9 and 5.15. 	In the first case, the beam is extensively 

cracked while the later may be considered comparatively intact. 

The spacing for the later was limited by the use of the British 

Code(21). 	The condition of this beam suggests tht the pro- 

vision in the Code is adequate, bu-  further testing is required 

to confirm this aspect. The author believes that beam K13 

failed due to excessive straining of the binders and the pre-

vention of this condition can be achieve by using binders with 

larger cross-sectional area, so that the possibility of failure 

due to inadequate transverse reinforcement is eliminated. 

5.8.2 Mechanism of Failure 

The basic mechanism of failure for the beams tested 

in this study corsisted of the rotation of the whole beam about 

the compressionieon the upper face at the collapse stage. 
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Typical examples of these compression zones are shown in 

Plates 5.21, 5.22, 5.23 and 5.24. 	It can bu seen that the 

compression zone is inclined at an angle to the longitudinal 

axis in each case. 

For all the beams tested, except beams 1(16 and 1(13 

tested at = 2.1;  failure was always preceded by yielding 

of the reinforcement. The weakness of the steel in the 

transverse direction foced yielding to occur in this direction 

first, followed by yielding of the longitudinal steel. 	Up 	to 

and inc1t.ding the ratio ' = 56, the beams failed immediately 

after the longitudinal steel stress reached the yield value, 

while the failure of beams tested at = 8.5 and higher were 

gradual and the margin of loads carried beyond the yield range 

was considerable. 

Failure of beams 1(16 and 1(13 took place as soon as 

the vertical cracks reached the top edge 	The failure was 

sudden and crushing of the concrete was observed in both cases. 

The condition of the top zone is shown in Plates 5.25 and 5.26. 

The formation of a diagonal crack between the transverse binders 

and its extension into the compression zone brought about failure 

02 beam 1(16 so that the longitudinal steel did not reach its 

yield stress. 	It is interesting to note in Plate 5.19 that 
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rotation took place about the vertical side of the crack 

surface. This behaviour is thought similar to that observed 

by Hsu 25)  for plain concrete beams subjected to pure torsion. 

On the other hand, beam K13 failed as the result 

of inadequate transverse reinforcement. The extensive 

cracking ane widening on the vertical side as shown in Plate 

5.15 indicates that the yield stress may have been exhausted. 

Failure occurred when the potential torsional resistance of 

the beam was exceeded. There was no sign of yielding of the 

lon'iitudinal bars. 

The mechanism of failure of beams K2/266 and 1(11 

tested at = 2.1 may be considered similar to the three beams 

tested at = 4.3. 	In all cases, the faiiure took place as 

soon as the yield stress was attained by the reinforcement-  and 

failure was sudden with considerable crushing on the upper face. 

Typical conditioi of this zone are shown in Plates 5.21 and 

5.22. The author believes that failure occurred when the 

reinforcement in both directions reachd the yield value, thus 

imposing excessive compressive and tensile stresses at the 

compression zone where flexural compression existed as well. 

The depth of the compression zone is small in this range of 

and thus, the position of the neutral axis plane is near the top 

edge. The transition from tension below to compression zone is 



very small, which means that i is difficult to restrain the 

vertical cracks from moving up. When the longitudinal steel 

reaches its yield stress, the short inelastic deformation is 

sufficient to push the cracks immediately onto the upper face. 

The maximum compressive stress exceeded the maximum compressive 

strength of the concrete and failure occurred suddenly. Con-

siderable crushing of the top face can be observed in Plate 

5.22. There is an indication of cleavage failure and in the 

author's opinion this was due to the tensile stress at that 

poir.t exceeding the tensile srength of the concrete. 	In 

addition the evidence shown by McHenry and Karni 29)  indicates 

that the nrncof combined compression and tension reduces 

the tensile strength of the concrete. The crack pattern in 

the compression zone, as shown in Plate 5.22, i similar to that 

described and obtained by Goode and He1my. 

The behaviour and failure mechanism for beams tested 

at large values of X differ from those tested at low ratios; 

crushing of the concrete generally takes place at collapse and 

the orientation of the compression zone is well-defined. A 

typical example is shown in Plate 5.27. There is distinct 

evidence of cleavage failure which must have occurred after 

crushing tok place. Due to the short yield range of the long-

itudinal steel used in these tests, the stress in the steel bar 
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is in the ultimate range at thc ultimate load and therefore 

the load taken by the beams tested at = 8.5 and % = 11.8 

far exceeds the yield load. 

A peculiar phenomena was observed in the test of 

beam 1(16 at V = 5.6 	It was found that at failure the 

vertical cracks reversed and curved in the direction of the 

longitudinal steel, splitting the concrete along this 

direction. This type of splitting can initiate failure and 

therefore closer spacing of the binders is essential to prevent 

them. 

The beams 1(2/150 and 1(2/200 tested at 0 = 11.8 both 

failed at the joints as shown in Plate 5.28. The failure was 

caused by the combined action of bending, shear and torsion 

concentrated at the joint. There is a possibility that this 

type of failure will occur in actual structures such as at the 

girder-beam connections. Further investigaticn is necessary to 

avoid such failures. 

5.9 Deformations 

Typical load-deflection curves are shown in Figs. 5.5, 

5.6, 5.7, 5.8 and 59. 	The first three graphs illustrate the 

influence of on the deflection, the fourth graph shows the 

effect of spacing o2 binders for beams tested at X = 2.1 and the 

final graph gives a comparison for similar beams tested at 





Q 

 

t 	 ____  
J'oo 	/000 	 /oo 	 oo 	/Oo 

/03) '7C4'QJ 

a 	200 	400 	6Co 



I 

eel &)? ('' 	) " cjP J 





0 	 tOQ 	400 	Goo 	Poo 	 1.00 	A000 	'COO 	/.P"O 

i 

0 

0 



84. 

extreme values of 52)', namely beams tested with 52( = 11.8 and 

= 2.1. 

From Figs. 5.5, 5.6 and 5.8 the abrupt failure of 

the beams is indicated by the sudden termination of the curves 

for low 0 ratios, and from the same graphs, the influence of 

the spacing of the binders on the ductility of the beams can 

be deduced. The influence of this spacing is critical at low 

values of as illustrated by the load-deflection curves of 

beams tested at 0 = 2.1 as shown in Fig. 5.8. 	It is interesting 

to observe that the behaviour of beams Kll and K2/266 are 

similar. 	TL1IS suggests that the spacing for the latter is 

adequate. Fig. 5.9 illustrates the contrast between beams 

with moderate and high levels of be-.ding moment. It can be 

seen that the deflection of beams tested in combined bending 

and torsion is primarily influenced by the level of the bending 

moment. 

Chinenkov 
12)  showed in his experiments that for beams 

tested with different ratios of X, the def'.ection for beams with 

large values of is higher. This was not observed in the beams 

tested by the author, except for the extreme case as giren in 

Fig. 5.9. The deflection of beams tested between 0 = 4.3 and 

= 11.8, shown in Figs. 5.5, 5.6 and 5.7 indicates that the 



magnitudes of the deflections are in the same range and almost 

the same. This is contrary to Chinenkov's observation. 

However, since the beams have the same amount of longitudinal 

steel throughout, the author feels that the deflection cannot 

be considerably different and any study of the influence of % 

should he related to the quantity of longitudinal reinforcement. 

Further, it is believed that the spacing and amount of the 

transverse binders influence the behaviour of the beams. The 

results from this study, however, are not sufficient to allow 

any general conclusion to be made. 

The compressive strains measured on the top surface 

are shown in Table 5.2, while the principal compressive and 

tensile strains measured at the horizontal and vertical faces 

for beams tested at = 2.1 are shown in Table 5.3. 	It is 

interesting to observe the similarities of values of the 

principal strains on the horizontal and v rtical faces, which 

seems to support the author's contention that the beams attempted 

to fail as a torsional failure. 

5.10 Ultimate Strength 

The ultimate strength of the beams tested was analysed 

u,ing the equation developed in Chapter 3, The results are 

tabulated in Table 5.2. For all cases where failure occurred 

by yielding of the reinforcement, :he analysis was made on the 



assumption of a rectangular stress distribution with an 

2 
average compressive stress of 	Sample calculations are 

shown in Appendix A. The ratio k for the dimensions of the 

reinforcing cage, was taken as 1.4. 

Due to the extensive cracking of the beams tested 

at X = 2.1 and % = 4.3, it was felt that analysis of the beams 

using the ultimate torque formula would be valid. It was 

therefore decided to use a combination of the formulae of 

Nadai 31 and Rausch(32) with the assumption that the ultimate 

torque consists of the torque resisted by the concrete and the 

reinforcement. The validity of this assumption has been shown 

( 	(23) 	 (18) 
by Cowan ', Hsu 	and recently by Pandit and Warwaruk 

The allowable useful tensile strength of the concrete was taken 

as 5(ft)2  as given by Hsu(25) The The results are shown in 

Table 5.5. 

	

	Sample calculations are given in the Appendix B. 

The theoretical results and their com?arison with the 

experimental values are listed in Table 5.6. 	It can be seen 

that the theory estimates the strength :f the beams with fair 

accuracy. 	It is therefore concluded on this basis that the 

ultimate moment equation developed in Chapter 3 can be used with 

confidence. On the other hand, the results obtained using the 

ultimate torsion for:la of Nadai and Rausch are erratic and 

unreliable for application to the combined bending and torsion of 



Table 5. 5 - Co22arison of theoretical and  experimental 

valae 	an1v 

Seam No. Ultimate Torque 

Expt. 	Calc.* 

(kip-in) 

Ratio 

Expt./Calc 

K16 2,1 5.10 	6.40 0,80 

K13 2.1 6,57 	7.59 0,87 

:2/266 2,1 8,02 	8,00 1.07 

K11 2,1 8.57 	12.35 0.86 

K16 4,3 6.49 	6.39 1.02 

K13 4.3 619 	7,58 0.82 

Kil 4.3 6.37 	12.35 0.52 

*calculated using fully plastic torque equation of Nadai and 

Rausch's equation for resistance of steel to torque adopting 

the tensile strength of concrete as  
C 



Table 5.6 - Comparison of theoretical and experimental 

value 

Beam No. Ultimate Moment 

(kip-in) 

Expt, 	Caic. 

Ratio 

Exçpt.
Caic. 

K16 2.1 10.70 16,61 Shear failure 

K13 2.1 13.80 16.90 Shear failure 

K2/266 2.1 16.85 16.80 1,00 

0.1 2.1 18.00 17.40 1.03 

0.6 4.3 27.90 24.40 1.14 

K13 4.3 26,60 24.40 1.07 

0.1 4.3 27,40 24.60 1.11 

0.6 5.6 24.60 25,20 0.98 

K13 5.6 25.40 25.20 1.01 

0.1 5.6 24.50 25.30 0.97 

K16 8.5 27.20 27.10 1.00 

1(13 8.5 25.40 27,10 0.94 

Kll 8.5 27.20 27.20 1.00 

1(2/200 11.8 29.90 26.90 1.11 

1(2/150 11.8 29.90 27.70 1.10 

Average 1.04 
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reinforced concrete beams. The results are shown in Table 

5.6. An attempt was also made to use the new formula for 

torsion derived by Hsu (23,25) but the reinforcement ratios of 

beams tested in this experiment did not fulfil the conditions 

for its validity and thus it was abandoned. 

5.11 Summaiy and Conclusions 

The results obtained by testing fifteen beams 

reinforced in both longitudinal and transverse direction have 

been analysed in this Chapter. on the basis of the observed 

mode of failure and the close correlation between the 

theoretical results and the experimental values, the equation 

developed in Chapter 3 may be used with confidence. 

The mode of failure of the beams are as obtained and 

described by Lessig, Yudjfl(27), Gesund et 	
Cowan (28,33), 

Chinenov(12), Evans and Sarkar 	and Fairbairn 0 h 1 ,  but in 

the case of the inclination of the verticl cracks, there is a 

tendency for the angle to deviate from its original path towards 

the longitudinal axis at about the neutral axis. The inclination 

of the compression zone with respect to the axis of twist is not 

clear for low values of %. 

Thus, using the data obtained from the tests, the 

following conclusions are drawn:— 



(i) For ' less than or equal to 2.00, the transverse 

binders should be spaced at b' as suggested by 

the author in Chapter 3. 

For all values of % larger than 2.00, the minimum 

shear reinforcement ratio recommended by the 

B'itish Code of Practice 
21) 

 appears to be 

adequate 

The author's equation may be used with confidence 

to obtain the ultimate bending moment of beams 

provided the cnditions laid down for its validity 

regarding the range of transverse reinforcement 

are ful-filled. 

Until the accual concrete bending stre.s to be 

used for combined bendirq and torsion at the 

ultimate stage is established, the allowable 

bending stress for pure berding seems sufficiently 

accurate 

The use of closed stirr-ups in general tends to 

induce formation of the first mode of failure of 

beams as enunciated by Lessig(13) 

Further research is necessary to investigate the 

interaction of beams and girders at the beam-

girder connections. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The main conclusions drawn from the investigation 

in this thesis are listed as follows:- 

(1) The ultimate moment equation developed in 

Chapter 3 may be applied with confidence for the 

analysis and design of under-reinforced rectangular 

beams reinforced in both longitudinal and transverse 

directions-.-, 

(2 The ultimate moment consists of the contributions 

of longitudinal and transverse reinforcement. 

The longitudinal reiforcement in the tension zone 

contributes to the resistance of torsion thereby 

reducing the bending capacity of the section. 

The reduction of the bendi g resistance due to 

torsion is augmented to a certain extent by the 

contribution of transverse binders. 

The expression proposed for computing the depth of 

the compression block is a reliable method of 

obtaining the position of the neutral axis. 

Provision of longitudinal steel using the balanced 

ratio for pure torsion ensures yielding of the 

steel. 
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The proposals for proportioning transverse 

binders may be applied to obtain the optimum 

transverse hinders to ensure yielding of the 

reinforcement. 

The spacing of transverse binders is critical for 

"bu  lo ratios of 	and should be restricted to the 
Mbt  

',idth of the reinforcing cage to prevent torsional 

failure. 

( 9' 	'ie z1iO'e 

for pure bendinj by the British Code of Practice 

may be applied to the case of combined bending 

and torsion with satisfactory results. 

(io) In designing oeam-girder connections, the high 

moments which occur at this section should be 

taken into account to proportion the beam sections. 

6.2 Recommendations for Future Research 

In the light of the analytical and experimental works 

carried out in this study, the following recommendations are con-

sidered for future research works:- 

(1) Experimental verification of the proposed balanced 

longitudinal reinforcement for combined bending and 

torsion. 



The torsional re;istance of the compressed 

concrete layer. 

Establishment of the concrete compressive 

strength for combined bending and torsion. 

The possibility of establishing the flexural 

rigidity of the beams under combined moments 

for analysis of indeterminate structures. 

and (5) Extension of the ultimate equilibrium method 

to the analysis of combined bending, torsion 

and shear. 

91, 
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Lipatndi.,-  

Calculation for beam Kll tested at ' =2.1 

Given data: b = 3"1  h = 4", d = 3.5", b' = 2.5", d' = 3.5" 

AL = 2" diam. 	= 40ksi 

AT = -111diam. @ un c/c, T 	34ksi 

Cu = 7.03ksi 

The calculated reinforcing cage is 2.5" by 3.5" 

	

Step (11: 	k = 	= 1.4 2.5 

	

Sej .).: 	By formula (3.2), Cot '' = 	= 038 
2.1 

	

Step (3): 	B-r formula (3.12), 0  1 =  - + 	
= 0,59 

	

ç: 	Dy formula (3.13 ç  C2 = 0.59(1 ± 3)(o.38)2 = 0.34 

	

Step (5): 	Use formula (3.39) to find ii: 

(0.11) (40)_L_.59),  

=(7.o3) () 	
= 0.62" 

	

Step (6): 	Calculate the value of bu by expression (3.14) 

Mb = (o.ii) (40) (3.5 - 0.31) 

(0.012) (34) 
+ 	(0 11) (40) 1 

= 17.80kip-i.  (answer) 



Appendix B 

Calculation for NbL for beam K11 tested at = 2.1 

Data given same as above: 

Use Raush formula: i.e. Mbt = b2  (h - 	+ 	Tb5d 

1 
Using Hsu's recommendation for 2 1 Bt = 

i.e. £' = O.85C ; 	f 	= 044ksi C 	 U 	t 

(2.5) ( 
4)(4-1) (0.44) + (0.012) (34) 	1 

6,00 1- 1.80 

=jLiZ— in 

The experimntai Mbt 	 =S,.50 kip—in 


