
Approximate Procedures for Simulation 

and Synthesis of Nonideal Separation 

Systems 

Teresa do Rosário Senos Matias 

Thesis presented for Degree of Doctor of Philosophy 

University of Edinburgh 

1997 

/ 



Declaration 

I declare that this thesis was composed by myself and that it describes my own 

work except where specifically stated in the text. The work was carried out 

between June 1991 and September 1996 in the Department of Chemical Engineer-

ing at the University of Edinburgh under the supervision of Prof. J.W.Ponton. 

Teresa R. S. Matias 



Acknowledgements 

I would like to thank all the people of the ECOSSE research group for their help 

and support. Special thanks are due to Eric Fraga for the interesting discussions 

and support on using CHiPS, to Neil Skilling and Geoff Ballinger for the computing 

support they have provided and to Rory McKinnel for the valuable team work in 

testing the final part of this work. Also many thanks to Professor Ponton for giving 

me the opportunity to do this work and for his support throughout. Finally I wish 

to thank my husband Murray, for his support and patience. 



Abstract 

Simulation and synthesis of nonideal separation systems is computationally in-
tensive. The main reasons for this are the time used in the calculation of physical 
properties, which cannot be assumed constant throughout the calculation, and the 
elaborate methods required for the full rigorous simulation and design of distilla-
tion units. 

The present work looks at two different ways of reducing computing time in 
steady state simulation and in synthesis of nonideal separation systems: 

. Use of approximate models for physical property calculation. 

• Use of 'shortcut' procedures, which are thermodynamically rigorous, in sim-
ulation and synthesis of nonideal distillation. 

Approximate models are derived for the liquid activity coefficient and for relat-
ive volatilities within a simplified flash unit. Liquid activity coefficient models 
include a Margules-like equation generalised for a multicomponent mixture and 
other equations of the form of rational functions. They are tested with several 
nonideal ternary mixtures and it is shown how their behaviour changes across the 
ternary composition diagram. 

The development of simplified flash units with approximate physical properties 
is done in a dual level fiowsheeting environment. One level is used to solve the 
material balance assuming given fixed relative volatilities. The other level approx-
imates the physical property values based on rigorous bubble point data obtained 
from a rigorous physical property package, using an 'ideal' correction to calculate 
the vapour liquid equilibrium conditions. It is shown how the two levels can be 
used in different arrangements, by converging them simultaneously or one within 
the other. The performance of the dual level flowsheeting arrangements is tested 
using the Cavett problem structure for several mixtures and compared against the 
conventional method where the flash is performed directly by the rigorous physical 
property package. 

Finally a rigorous shortcut procedure has been developed for designing nonideal 
distillation processes. The procedure is based on a nonideal variation of Fenske 
equation with rigorous physical properties using an iterative method. The pro-
cedure is implemented in a package for automated synthesis incorporating heat 
integration. An example case is studied and the results obtained in the synthesis 
are compared with a full rigorous simulation of the same process. It is shown for 
the first time how a rigorous shortcut procedure can be used in synthesis to pro-
duce results that consider heat integration in the initial stages of design, within a 
reasonable amount of time. 
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Chapter 1 

Introduction 

1.1 Motivation 

The computation time required for simulation of nonideal separations has been a 

subject of research for many years. Even with today's much faster computers the 

problem remains the simulation requires significant time. 

The most time consuming activities in the simulation of nonideal separations 

are: 

. The calculation of physical properties, which can not be assumed constant 

throughout. 

. The methods involved in the full rigorous simulation of the separation pro-

cess. 

Reasons for this are: 

• The interaction between components, leading to the physical properties 

changing not only with temperature and pressure but also with composi-

tion. This increases the number of variables for which physical property 

equations must be solved. 

• The lack of shortcut procedures for distillation of nonideal mixtures. 

1 
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The majority of processes of practical interest include nonideal mixtures. Such 

processes require recalculation of physical properties every time conditions change 

in order to maintain accuracy. This is a time consuming activity. It is estimated 

that between 50% and 90% of the simulation time is normally spent estimating 

physical properties [1] [2] [3] [4] [5].  The time required depends on how nonideal 

and complex the components involved in the mixture are. The problem is greater 

when synthesis is considered. In the synthesis of chemical processes, particularly 

one involving nonideal distillation, a large number of alternatives can be considered 

to accomplish the same goal [6].  This coupled with the complexity of a rigorous 

simulation model makes synthesis of nonideal distillation a difficult and lengthy 

process. 

Hence it is desirable to develop efficient ways of reducing computing time. 

This has led in the past to the development of local physical property calculations 

using simplified functions, which are then combined with an updating procedure 

in order to maintain accuracy of the results. 

There is a need for reliable simplified procedures that will cut down comput-

ing time without compromising the validity of the solution. Such a goal can be 

achieved in two different ways: 

• Using approximate models to calculate physical properties. 

• Using shortcut procedures in simulation and synthesis of such processes. 

Such procedures could be in the form of equations to calculate design vari-

ables for nonideal distillation, avoiding full rigorous simulation of the column. 

The present work explores both ways of achieving this goal. It provides new 

approximate models to calculate activity coefficients of multicomponent mixtures. 

It also studies different kinds of dual level flowsheeting structures that use sim-

plified units by approximating physical property calculation. Their performance 

is compared in steady state simulation against the conventional solving method. 
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Finally, the experience gained in the early stages of this work regarding physical 

property behaviour is used to develop a new shortcut procedure for distillation of 

nonideal mixtures. 

1.2 Approximating Physical Properties 

Approximate models are simplified functions that make use of assumptions and 

have a set of local parameters. They should be independent of the thermodynamic 

package and process models used. They should also be easy to fit, using a reduced 

set of states, and they should accelerate calculations while maintaining accuracy. 

These features will reduce computing time in property calculation but have in-

herently only localised applicability requiring in general some kind of parameter 

update. Thus it is important that they mimic well the physical behaviour within 

a specified area of validity. The parameter updating procedure must be efficient 

in order to obtain the savings in computing time while maintaining the accuracy 

of the physical property values. In the case of nonideal mixtures dependence of 

physical properties on composition must be considered, due to the strong inter-

action between components. This increases the complexity of the functions used 

and, hence, of parameter fitting. 

Simplified models should be physically based equations which have a reduced 

set of parameters and can be analytically differentiated. These characteristics 

will provide good extrapolation properties, low overhead for updating and fast 

initialisation. 

Once a decision has been made on the local model structure its parameters 

must be initialised using a set of rigorous physical properties. Some fitting method, 

such as least squares, can be used to fit the parameters. Alternatively, if the 

function is linear in its parameters and a number of explicit equations exists, the 

system of equations may be solved exactly. 
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As simplified models are by nature approximate functions, errors increase as 

conditions change from the point where they were fitted. The functions must be 

therefore used in a dual level environment. A validation criterion determines when 

control of the calculation should pass on to the other level where re-evaluation of 

the parameters is performed. Hence it is necessary to have a measurement of 

the error or to define intervals of validity for the fitted local models. When the 

limiting condition for the error is exceeded, the local model parameters must be 

updated. The update interval may be a composition area, a change in working 

conditions, a preset number of calculations or, in the case of dynamic simulation, a 

calculated time. In steady state simulation an efficient updating interval is harder 

to define. The iteration procedure is not as smooth as with the expected changes 

in operating conditions during dynamic simulation. 

The updating criterion must be carefully chosen. Examples of updating inter-

vals used in the past are 

. Function evaluation intervals. 

. Time intervals. 

Predefined regions of validity, e.g. composition regions. 

. Interval defined by an error model. 

The first issue to consider is the choice of the physical property to approx-

imate. For nonideal vapour liquid separation it is common to choose the liquid 

activity coefficient, since nonideal behaviour is present mostly in the liquid phase. 

Approximate functions must provide nonlinearity and good degree of interaction 

between components to be adequate for the kind of mixtures studied in this work. 

According to the type of function chosen, it will be necessary to establish its valid-

ity boundaries by one of the methods described above. The method's suitability 
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depends on the type of function and calculation required, i.e. steady-state or dy-

namic. The present work considers steady-state only, as its main objective is to 

look at steady-state simulation and synthesis. 

A step further in approximate methods is the use of simplified unit models. The 

physical property package is used only to perform a bubble or dew point calculation 

and the components' relative volatilities are calculated locally. The units are then 

used in a dual level flowsheeting environment. One level of calculation is used 

to solve the flowsheet material balance assuming constant physical properties in 

the units. The other level updates the physical properties using the bubble or 

dew point calculation from the rigorous physical property package. Once both 

levels have converged simultaneously the calculation is completed. In this case 

the physical properties are recalculated always for the latest values of composition. 

Moving between levels can be done in various ways: 

• Both levels can be used in parallel by constantly swapping between levels 

until convergence is achieved. 

• The two levels can be converged one inside the other, using an inside-out 

procedure. The inside level will iterate on the material balance until it 

converges and the outside level recalculates physical properties for the newly 

converged values of composition. 

Such arrangements are particularly suitable for flowsheets containing simpler 

units, such as flash units, mixers and splitters, where changes in physical properties 

do not have as great an effect as with, for instance, more complex distillation 

processes. They prove not to be as effective in steady state simulation of more 

complex nonideal systems and their limitations are used as a stepping stone to 

the development of a shortcut procedure for distillation of nonideal mixtures. 
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1.3 Using a Shortcut Procedure for Nonideal 

Distillation 

In its simplest form a distillation column can be viewed as a series of flash ves-

sels with recycles. The Cavett problem structure described in chapter 4 is an 

example of this. In this structure the change in physical properties during iter-

ation greatly affects the separation and physical properties in the nearby stages. 

Hence convergence becomes more difficult due to interdependency. Complexity 

and computing time increase considerably since, in the rigorous simulation of a 

distillation column, a rigorous physical property package must be called for each 

stage and also for the condenser and reboiler. The liquid vapour ratio specified 

and degree of nonideal behaviour of the mixture significantly affect the computing 

time required in design. 

Shortcut calculations are a valuable tool for the initial stages of design, as 

discussed by Douglas [6].  However little work is available in this area for nonideal 

distillation. This fact is due, in part, to the lack of knowledge on the behaviour of 

nonideal mixtures and the complexity of their physical properties. Well established 

correlations used for ideal mixtures in the calculation of design variables such as 

number of stages [7] [8] and minimum reflux ratio [91 are no longer valid in the 

case of nonideal mixtures because they assume constant relative volatility across 

the column. Hence it is desirable to develop similar correlations and algorithms 

that can be applied to nonideal mixtures, suitable for the initial stages of design. 

Effective nonideal separation design considerably depends on accurate physical 

properties. Errors in their calculation may cause the overall calculation to fail, 

as discussed by Laroche et al. [10].  However a shortcut procedure can be used 

in conjunction with simplified models for the calculation of physical properties, 

provided the models are robust and accurate for the problem in question. 
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The core of the shortcut procedure described in this work is a modified Fenske 

equation, adapted to nonideal systems, that calculates the minimum number of 

stages taking into account changes in physical properties across the column. The 

solution of this equation is obtained via an iterative calculation of a column oper-

ating at infinite reflux. 

1.4 Definitions 

Local Physical Properties: Physical properties calculated by simplified func-

tions used locally in the solution of a flowsheet. The parameters used in 

these functions are usually fitted using rigorous physical property data. 

Rigorous Physical Property Package: Software package used to calculate 

rigorous physical properties. 

Rigorous Physical Properties: Physical properties calculated using a physical 

property database or experimental data. 

VLE Method: Method for calculation of vapour liquid equilibrium. 

Rigorous Full Simulation: A simulation performed using a detailed method, 

e.g. tray by tray calculation in the simulation of a distillation column. Rig-

orous physical properties are used for each tray. 

Rigorous Shortcut Procedure: A procedure using correlations to calculate 

the design variables for a unit, such as a distillation column, using rigorous 

physical properties. 



Chapter 2 

Approximate Methods for Modelling 

Nonideal System Separation 

2.1 Introduction 

This chapter reviews research by other authors on nonideal mixtures' separation. 

It includes the development of approximate functions to calculate physical prop-

erties and a review of the factors that influence a mixture's behaviour and must 

be taken into consideration in the synthesis of nonideal distillation. 

Interest in simulation and synthesis of nonideal separation systems has grown 

considerably in the recent past. The phase separation behaviour of nonideal mix-

tures and its influence on their separation into the pure components has received 

detailed attention. 

In nonideal mixtures one cannot ignore the variation of the components' phys-

ical properties with the mixture composition. Thus the assumption of constant 

physical properties used for ideal mixtures is no longer valid. During simulation 

the calculation of physical properties is done, conventionally, by a rigorous physical 

property package using well established VLE methods and containing the relevant 

parameters for each component in the mixture. The physical property package 

must be called a considerable number of times, which depends on the complexity 

of the mixture behaviour and number of operations required. The calculation of 
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physical properties is a computationally intensive step and efforts have been made 

in the past to reduce the amount of time it requires. 

There are two ways of reducing computation time; using approximate functions 

for physical properties or using shortcut models that have a reduced number of 

calls to the rigorous package. A great part of the work done to date considers 

the first option, although some work has also investigated the approximation of 

calculations such as dew and bubble point, as well as flash and simple distillation 

units. 

Early work considered simple functions for physical properties, such as liquid 

activity coefficient and equilibrium constants. In most cases the functions derived 

are only applicable to mixtures that do not deviate considerably from ideal beha-

viour. Later work used more complex functions in conjunction with an updating 

procedure to maintain accuracy as conditions change. These functions are nor-

mally used in a dual level environment. The function parameters are updated in 

one level using the rigorous physical property package. The other level uses a local 

physical property model to solve the flowsheet until the boundaries of validity are 

exceeded. 

Most work has been developed for use in dynamic simulation. Variations ex-

pected in dynamic simulation are usually smooth, resulting from relatively small 

changes in the operating conditions from time step to time step. Hence they are 

easier to follow making it more straightforward to develop an updating procedure, 

e.g. time related. However some work has also been carried out for steady state 

simulation. 

In order to approximate whole units, particularly in the synthesis of nonideal 

distillation, it is important to understand the physical behaviour for given oper-

ating conditions. In recent years research has moved into this area with the aim 

of developing effective tools for simulation and synthesis of nonideal distillation. 

Important issues, such as separation feasibility and selection of entrainers have 
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been addressed. Different approaches have been taken. One of the main issues 

has remained the considerable amount of time required in the calculations com-

bined with a still incomplete picture of the total area of feasible products and of 

sequencing alternatives for distillation of nonideal mixtures. 

2.2 Thermodynamic Equilibrium 

For a vapour liquid mixture of m  components at thermodynamic equilibrium the 

fugacity of each component is equal between the vapour and liquid phases, i.e. 

fV_fL 	j=1,...,n 	 (2.1) 

where V and L relate to the vapour and liquid phases, respectively and fi  is the 

fugacity of component i. In practice it is important to be able to relate fugacity to 

readily measured process variables such as composition, pressure and temperature. 

The component vapour fugacity is related to composition and operating conditions 

through the definition of fugacity coefficient, q,  i.e. 

_I 	Ji 

wi— yip 
(2.2) 

where y2  is the vapour mole fraction of component i and P the system pressure. 

The fugacity coefficient has a value of 1 for ideal mixtures. For nonideal mixtures 

it is related to temperature, pressure and composition by an equation of state. 

The component liquid fugacity is related to the liquid phase composition 

through the activity coefficient 

AL  
7i =(2.3) 
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where x 2  is the liquid mole fraction of component i and the standard state 

fugacity of the pure liquid, fj°, at the mixture's temperature and pressure is given 

by: 

1 

f° (T, P) P,q5exp [f  	dP] (2.4) 

where P p ,i  is the vapour pressure for component i and the fugacity coefficient 

ç f is calculated under saturation conditions from vapour phase volumetric data. 

The molar liquid volume of component i is given by V2" and is a function of 

pressure. 

Equation 2.1 gives the fundamental relation for vapour liquid equilibrium. Re-

placing equations 2.2 and 2.3 in equation 2.1 gives: 

4yP=7jxf j" 	i=l,...,nc  

Replacing equation 2.4 in equation 2.5 gives: 

i=1,...,nc  

where 

1,s 	pp VL
dP] 

Oi 
= --exp J RT 

For sub-critical components the correction factor F i  has a value close to unity 

when total pressure is sufficiently low or even moderate [ii].  Furthermore equation 

2.6 reduces to Raoult's Law assuming yj = 1, i.e. an ideal mixture. Considering 

that working conditions are such that F i  = 1, the component equilibrium con-

stants, k, can be defined as the ratio between component i vapour and liquid 

molar compositions at equilibrium: 

(2.5) 

(2.6) 

(2.7) 
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k2 = 	= 	 (2.8) 
X i 	P 

Dependency of the activity coefficient on pressure is normally small since it is 

given by 

(Oln'yj 	V_VL* 

\ ap 	RT 
(2.9) 

where V*  is the molar volume of pure liquid i, R the universal gas constant and 

T the temperature. The relationship in equation 2.9 can lead to great variation 

when high pressures are considered, especially in the critical region, but it is 

reasonable to assume it is constant for most cases as noted by Reid et al. [ii]. 

The activity coefficient can be related to the Gibbs free energy, 9E . If the 

Gibbs free energy is known as a function of composition the activity coefficient 

can be determined by: 

/ 	 \ 
RTlny= 

agE 	
7lc 	 (2.10) 

where x 2  is the mole fraction of component i and xj  is the mole fraction of 

other components j ~ i. Therefore equations 2.8 and 2.10 provide the necessary 

information to calculate the equilibrium constants, k2 , for the working conditions 

taking the mixture composition into account. 
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2.3 Rigorous Correlations for the Calculation 

of Activity Coefficients 

Methods have been developed in the past that can be used to predict the activity 

coefficient of each component for a given mixture as a function of composition, for 

given temperature and pressure. Reid et al. [ii] list a series of VLE correlations for 

this purpose. In general the complexity of the equations increases with number 

of components. But, most importantly, their validity depends on the kind of 

components in the mixture and on the operating conditions. 

The liquid activity coefficient is represented by a function of the form of equa-

tion 2.10. In order to solve this equation a suitable function of composition must 

be found for the Gibbs free energy. The function parameters are usually calcu-

lated at some known conditions and, in the case of nonideal behaviour, a change 

in those conditions may invalidate the function's applicability if the parameters 

are not updated. 

There are published VLE methods [121 of greater or lesser complexity that can 

be used with different kinds of mixtures. The simplest equations are of empirical 

nature, such as Margules and Van Laar. These are relatively simple functions to 

use for binary mixtures, preferably with nonpolar liquids, but empirically they 

have been found to perform well also for more complex mixtures. The Margules 

equation is slightly more complex and reliable than Van Laar. Other empirical 

equations have been developed by Redlich-Kwong and Peng-Robinson, as modi-

fications of the Van der Waals equation of state. Their parameters have some 

physical significance. 

Wilson developed a correlation based on molecular considerations and local 

composition. Renon extended Wilson's work to develop the NRTL equation which 

has the advantage that it can be used also for mixtures exhibiting immiscibility. 
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The Wilson equation can be used only where there is a single liquid phase, so if 

a mixture exhibits a liquid phase split one must ensure that the calculations are 

performed outside of that exclusion area. The Wilson equation is mathematically 

simpler than NRTL, having only two parameters as opposed to three for NRTL. 

The UNIQUAC method has a stronger physical basis than the previous cor-

relations. It consists of two parts. The first is a combinatorial part depending on 

composition as well as the size and the shape of the molecules. The second part 

is called residual part and considers intermolecular forces. Subsequently, as more 

data were available and collected into databases, group contribution methods were 

developed, such as ASOG, UNIFAC and modifications thereof [12] [13]. 

Complex VLE methods may be used with more confidence in difficult mixtures, 

i.e. strongly nonideal mixtures but they also have a higher price in terms of 

computing time. This provides justification for using local models for physical 

property calculation. 

2.4 Implementation and Use of Local Models 

in Separation Processes 

An example of early work in the use of simplified calculations for separation pro-

cesses is the work of Hutchison and Shewchuk [14].  They developed a method 

for linearising the equilibrium and enthalpy relationships in a distillation column. 

Rigorous physical properties were used throughout the calculation but the method 

assumes the relative volatilities are locally constant to obtain a linearised set of 

equations used in steady state solution of the distillation column. The set of equa-

tions thus obtained is sparse in most cases. The results obtained by Hutchison and 

Shewchuk [14] were encouraging in that acceleration in convergence of the steady 

state solution was obtained in the examples studied. Subsequently more work was 
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developed in creating simplified functions for equilibrium constants and activity 

coefficients making use of the rigorous property package only for updating. 

Leesley and Heyen [1] implemented an independent procedure to calculate the 

equilibrium constants locally as a function of temperature and pressure only. De-

pendence on composition was not considered because this was not required for the 

mixtures studied. Their results are therefore only applicable to near ideal mix-

tures. They defined a standard state for zero pressure at the system's temperature 

and limited their study to a low pressure range. The resulting function is: 

In ki  = A j lflPvp , r  +B - In 	i = 1, ... ,n., 	 (2.11) 

for a mixture of n components where PEP,, is the known vapour pressure of 

a reference component, P and T are the system's pressure and temperature. A 

and Bi  are parameters for component i, which can be initially estimated from two 

rigorous sets of values (k, P, T) provided by a rigorous physical property database. 

Equation 2.11 performs well only over a temperature range of 50-100°C and for 

pressures lower than 200-300 kPa. A third parameter, C2 , was included to account 

for higher pressures as shown below 

lnkj A i lnPvp , r +Bi +CilflP 	i=1,...,n 	(2.12) 

The application of equations 2.11 and 2.12 above is also restricted to operating 

pressures that do not differ from the reference pressure by more than 30-50%. 

There is no updating procedure. Interpolation was used instead to obtain the 

equilibrium constants at different pressures and temperatures. Since there is no 

physical basis for parameter update, this procedure may result in inaccurate values 

in some instances. However for the near ideal mixtures considered, the error 
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obtained was generally smaller than 5% and to eliminate it a final calculation is 

done using the rigorous physical property package. 

Barrett [15] used approximate functions, or simple global models, as he called 

them, for the calculation of physical properties. The subroutines created were put 

together in a package called TPIF and interact with a rigorous physical property 

database PPDS [16],  using its data to fit Antoine-like functions, which are easily 

differentiable. The system can then be converged using the Newton-Raphson 

method since the Jacobian can be easily calculated. The best performing models 

were those with some physical meaning and of order greater than one. 

Barret and Walsh [17] extended the work of Leesley and Heyen [ii to nonideal 

mixtures. They used local models to calculate the liquid phase activity coeffi-

cient instead of calculating equilibrium constants. Such a procedure accounts for 

composition dependence. 

The regular solution model for liquid phase activity is given by 

 nc  

ln'y 
= Z1 ((A + A) x 

- 	

XkAkiXi) 	i = 1, ..., n 	(2.13) 

Barret and Walsh [17] modified equation 2.13 to give a model with better 

temperature dependence, viz. 

ln -Yi  B + T E (2A ijxj  	XkAkixi) 	i = 1, ..., n 	(2.14) 

Equation 2.14, however, gives poor composition dependence at points far from 

the fitting point. Hence a temperature and composition interaction term was 

included in the error bounds to counteract it. Each pressure and temperature 

region was treated as a different thermodynamic state. Each region has associated 

a set of local model parameters and a set of coefficients to an approximated error 

model. The error function used is a Taylor series expansion around the difference 
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between local and rigorous model functions. They assumed the error would be 

first or second order based on dividing the space into different thermodynamic 

states limited by temperature, pressure and composition bounds. This reduces 

cross dependencies, which cannot be ignored for nonideal mixtures. Thus the 

total error incurred is greater than that actually calculated by their method. 

The method works well, giving good accuracy with nonideal mixtures but, un-

fortunately, computing and updating parameters for activity coefficients are time 

consuming, taking longer than would have been saved by using simpler models. 

Also considerable storage space was required, since the error model parameters 

also had to be stored. 

Boston and Britt [18] applied the local model approach to a flash unit instead 

of just approximating the physical properties. They developed an algorithm using 

local models for physical property calculation in an adiabatic flash model. They 

called this algorithm an 'inside-out' approach. The term 'inside-out' is derived 

from converging the physical properties in the outer iteration as opposed to the 

more conventional method of converging the physical properties within the ma-

terial balance. Their main concern was to find equations whose parameters do 

not depend strongly on the variables that remain constant in each level. In this 

case the variables are the physical properties. This procedure enables a faster 

convergence in each level and an easier parameter update since the Jacobian be-

comes a diagonally dominant matrix. However, not having interdependent terms 

means there is little interaction between temperature and composition, which is 

not acceptable for strong nonideal mixtures. One other disadvantage is that stor-

age requirements for the Jacobian matrix grow in proportion to the square of the 

total number of parameters, making the method impractical for large systems. 

Hence they also studied convergence methods such as direct substitution and the 

Wegstein acceleration method. Direct substitution converges slowly to the solu-

tion whereas Wegstein acceleration performs poorly particularly when strongly 

nonideal mixtures are used. The difficulties encountered in the convergence are 



Chapter 2 	Approximate Methods for Modelling Nonideal System Separation 	18 

due to the method being based on the assumption that autocorrelation of the 

variables is strong when compared to cross-correlation. However cross-correlation 

is very important for nonideal mixtures. 

The algorithm also requires that the inlet variables be prespecified. Feed corn-

position, flow and enthalpy are specified and output compositions and liquid flow 

are calculated. Given the number of degrees of freedom, two other quantities must 

be specified giving the six common types of single-stage flash problem listed in 

table 2.1. A different modification of the base algorithm is needed for each flash 

type. 

Flash type Specified Quantities Calculated quantities 

I Heat flow and Pressure Vapour flow and Temperature 

II Heat flow and Temperature Vapour flow and Pressure 

III Heat and Vapour flows Temperature and Pressure 

IV Vapour flow and Temperature Heat flow and Pressure 

V Vapour flow and Pressure Heat flow and Temperature 

VI 	Temperature and Pressure 	Heat and Vapour flows 

Table 2.1: Types of single-stage vapour-liquid adiabatic flash 

With such an algorithm it is not possible to estimate errors. The calcula-

tion moves from the inner loop to the outer loop when the material balance has 

converged, then the physical property functions are re-evaluated and checked for 

convergence. 

The work from Boston and Britt [18] was later extended by Boston [19] who 

included a composition dependent term in the equilibrium constant local model. 

Such a term is of the form of a pseudo-activity coefficient, which is a linear function 

of composition. As a result two additional parameters must be considered. They 

are computed by a perturbation in the rigorous activity coefficients calculation. 

Boston's main objectives were to keep the update numerically stable and to make it 
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computationally inexpensive through efficient storage and minimisation of rigorous 

evaluations. In order to keep the computing load down only one parameter is 

updated in each iteration, while the other is kept constant. The resulting algorithm 

proved to be more robust for nonideal mixtures when composition dependence was 

included, as would be expected. 

Following these initial steps on the use of local models for evaluation of ther -

modynamic properties, a series of papers was published by Chimowitz et al. [20] 

[21] [22] describing a method called P-DELTA, Process Design by Limiting Ther-

modynamic Approximations. They established several local nonlinear models for 

the equilibrium constants starting from the liquid phase activity coefficient equa-

tions in order to obtain composition dependent models. They based their study 

on the same equation for Gibbs free energy used by Barret and Walsh [17] de-

veloping equations that treated the multicomponent mixture as a pseudo-binary. 

The dominant constituent in the mixture is elected as reference component and 

pseudo-binary pairs are formed between it and other components in the mixture. 

For each pair they assume that composition dependence of the activity coefficients 

takes the form of a two-suffix Margules-like equation. In this case the Gibbs free 

energy, gE,  is given by 

gE = a xx 
	

(2.15) 

where a is an empirical constant with energy units, characteristic of compon-

ents i and j, depending on temperature but independent of composition. As the 

liquid phase activity coefficient is given by equation 2.10 they wrote for a pseudo-

binary system (i = 1, 2) 

In -yj  = 	(1 - x 2 ) 2 	 (2.16) 
RT 

By taking the logarithm and substituting equation 2.16 in equation 2.8 they 

obtain the reference component equilibrium constant 
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In (krP) = 	(1 - Zr) 2  + in P p,, 	 (2.17) 
RT 

Equation 2.17 is used as a base for several local models developed by Chimowitz 

et al. [20]. The first two use equations for relative volatility solved in conjunction 

with equation 2.17 above. These equations are obtained from equation 2.8 written 

both for a component i and a reference component. The resulting equations are 

divided to obtain the ratio and the activity coefficient is substituted by equation 

2.16. For the case where the ratio of pure component vapour pressures is assumed 

to be insensitive to temperature the following equation is obtained: 

(In
k,  ) 

 i 	
=Aj (1X r ) 2 +Bj (1X j ) 2 +Cj 	i1,...,n 	(2.18) 

As an alternative to equation 2.18 they assume the ratio of pure component 

vapour pressures to be a simple function of temperature of the form a + . This 

assumption gives a local model with an extra parameter, 

7k, \ 
In 	)=Ai ( 1_X r ) 2 +Bi(1_Xi) 2 +Ci+ 	i1,...,rl 	(2.19) 

A third alternative was to simply calculate the equilibrium constants for each 

component using equation 2.17 instead of relative volatilities. 

The last alternative presented by Chimowitz et al. [20] approximates in ('yj)  by 

a linear or quadratic function: 

ln(kP)=Ax+B2x+C1 	i=1,...,n 	 (2.20) 

The behaviour of each model was studied and results compared both with rig- 

orous calculations and previous work from Leesley and Heyen W. More accurate 
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behaviour was found, mostly because composition was considered as a variable in 

the local models. 

Chimowitz et al. applied these equations both to fundamental problems in 

separation [21] and to dynamic simulation of more complex problems [22].  The 

models require initialisation and parameter updating which they developed suc-

cessfully in both cases. In their dual level approach physical properties are also 

calculated and updated in the outside level. The publications by Chimowitz et 

al. [20] [21] [22] are the first where a systematic procedure is successfully built to 

determine the frequency for error and parameter update. Estimation and update 

of parameters is done using recursive least squares (RLS). 

Following the usual least squares procedure applied to a linear system of equa-

tions they constructed a recursive procedure in which only one new rigorous meas-

urement is used at a time. This has the advantage of keeping information on all 

past measurements, and also that they do not need to re-invert the matrix used 

to store them. This way the cost of perturbation and the inaccuracy resulting 

from neglecting cross dependencies is avoided. An uncertainty is set initially and 

a scaling factor is also used during the update to disregard old information as it 

becomes obsolete. The factor is increased in proportion to the square root of the 

estimated relative error. This gives a variable scaling, avoiding having new data, 

which really has not changed much, always replacing the old data. 

The local models are always updated in the outside level of calculation. In the 

case of fundamental equilibrium calculations the local model parameters are up-

dated every time the inside level (material balance) converges and the calculation 

is passed on to the outside level for physical property convergence. In dynamic 

simulation examples update is done when one of two different conditions occur. 

If the relative change between the local model output and the corresponding last 

rigorous calculation is greater than a given tolerance, an update is performed and 

the sampling time interval is reduced. Otherwise, if the error is still too small, the 

sampling time is increased. The error is again used in the scaling factor computa- 
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tion for parameter update. This means that if there was a recent large variation 

the recursive update would 'forget' faster about past information due to changing 

the scaling factor. Also the sampling interval is reduced causing more frequent 

update. 

This method works well for relatively large problems, being stable and effi-

cient with reasonable storage requirements. Implementation of the recursive least 

squares algorithm requires, however, careful attention to numerical details during 

parameter update. 

A different approach was taken by Johns and Vadhwana [23] who used a sim-

ilar procedure to Barret and Walsh [17] to approximate unit models instead of just 

physical properties. Their main aim was to avoid integration and iterative proced-

ures in order to reduce computing time. They developed approximate models for 

the calculation of bubble and dew points, and for modelling flash units and simple 

distillation units. By first approximating the system to an ideal mixture they 

obtain explicit equations for bubble and dew point temperatures, as a function of 

pressure, composition and activity coefficients. For bubble point they obtained: 

'flc 

(jPaixi 

	

1 	R\ _____ 

	

- 	
- 	In 	 (2.21)

H.11 	 P T Tr 

where Tr is the temperature at which the rigorous data was computed, Hay  

is some mean enthalpy of vaporisation, R the universal gas constant and P2  the 

pressure of pure component i that predicts the correct boiling point at matching 

conditions. The boiling point is given explicitly by: 

ii(R\ (P') 
- 	

+ 	In 	i = 1,..., n 	 (2.22) 
Tbp,i 	Tr 

The activity coefficient is given as a function of composition only in a Margules- 

like equation. This equation contains only one parameter. Thus it can be fitted 
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with one reading from the rigorous physical property package. Analogously for 

the dew point they obtain 

	

1 _(1 	R\ "  
- 	—)1n(P 	 (2.23) --- 

	

- T' 	Hav  J 	\ j=i •_Yipi) 

For flash units they assume as parameters the fraction of feed vapourised, 

, the ratio of temperatures Td ,b = ('7) 
and the ratio of enthalpies Hd,b = 

To avoid integration from bubble point (Td ,b  = 0) to dew point (Td , b  = 

1) explicit relationships are established as follows: 

Td,b = Hd,b + A1 Hd,b  (1 - Hd,b) 	 (2.24) 

= Td,b + A2Td,b  (1 - Td,b) 	 (2.25) 

Only one rigorous point is needed to obtain A 1  and A 2 . The algorithm works 

well for near ideal mixtures. It is less accurate however for nonideal mixtures. 

Johns and Vadhwana [24] extended their earlier work by developing an optim-

isation method for updating the approximate model parameters. Their aim is to 

optimise the computing time by calculating the optimal number of local calcu-

lations before a rigorous calculation has to take place. The resulting expression 

is based on several assumptions. The values calculated by the local and rigorous 

models are linearly convergent to their respective solutions. The difference between 

the values calculated by the local and rigorous models at the same iteration step 

increases super linearly from the starting point. The final assumption is that the 

error in the local models is linearly related to the distance between refitting point 

and rigorous solution point. The mathematical expressions for the above assump-

tions result in an explicit equation for the number of local calculations, n, of the 

form 
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v in ii 
Tn = 	 (2.26) 

1(tr - 
i) rl 

(r_v)1n[ 	tr 	I 
rj 

where tr  and t1  correspond to time taken, respectively, by a rigorous and a 

local calculation, r is the linear convergence rate and ii gives a measure of the local 

model quality. Equation 2.26 depends on the credibility of the values assigned to r 

and v. Johns and Vadhwana examined the behaviour of equation 2.26 for different 

values of , v and r. They concluded that n is rather insensitive to the quality 

of the model and the equation performed well for most practical cases. They 

also concluded that the number of local model calculations is independent of the 

iteration starting point. One cumbersome issue still remaining is the estimation 

of r and i', sincecan be calculated from a one off calculation using each model. tr 

The values of r and ii are calculated using an arbitrary procedure that gives and 

approximation to their value. 

Following from Johns and Vadhwana [23],  Ponton [25] presents a non-iterative 

procedure for equilibrium calculations. The general case of a flash is presented, 

similarly to that studied by Boston and Britt [18].  Feed composition, heat load 

and pressure are given. Vapour and liquid outputs, temperature and vapour split 

ratio must be determined. The conventional calculation requires an iterative solu-

tion of the material and energy balances until suitable values for vapour split ratio 

and temperature are found. Ponton noted, however, that the relationship between 

vapour split ratio and total enthalpy, i.e. combination of material and energy bal-

ances, is close to linear. He made use of this property to fit the vapour split ratio 

to an approximate function in the form of a rational function: 

V_ A 1 +A2H 
(2.27) 

1+A3H 
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where A 1 , A 2  and A 3  are parameters that can be determined using three dis-

tinct rigorous points. Such a rational function provides non-linearity and is relat-

ively easy to fit. The method works well for narrow boiling mixtures, but results 

are not so accurate for wide boiling mixtures. 

In a more recent work Hillestad et al. [5] implement another method for es-

timating the error of approximate models. This method is intended for dynamic 

simulation. Like Macchietto et al. [22] they use recursive least squares for para-

meter update. The approximate function used has the form 

1n(kP) = A i  + 	+Cj (1 —x) 2 	i = 1,...,n 	(2.28)
Bi  

Equation 2.28 does not take into account interactions between components 

in the mixture, hence it is not such a good approximation for strongly nonideal 

mixtures. However the error estimation model performs reasonably well. The 

estimated error is defined as the difference between the value obtained using the 

rigorous model and the value of the last updated point. To calculate this error 

a Taylor series expansion truncated after the third term is used around the last 

updated point. As the approximate model is given by equation 2.28 the following 

quadratic structure is obtained for the error at point k, c: 

fk(X) = E 	
1 

k(Xk) + (x - xk)
T 
 Qk (x - xk) 	 (2.29) 

where x is the vector of independent variables in the approximate model and 

Qk is an estimate of the Hessian matrix at point k, giving a measure of the 

rigorous model curvature. An estimate of Qk  is used to avoid too many calls to 

the rigorous package. The estimation is done by perturbing equation 2.28 around 

point k. When the calculated error is too large the rigorous model is used and the 

parameters are updated. This enables the correct computation of the exact error 

and equation 2.29 can be fitted again with the correct Hessian, thus updating Qk. 
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Assuming a rank-one update and a constant rigorous model curvature over the 

interval between two updates, the equation for recursive updating is established 

(Xk+1 - Xk) (Xk+1 - Xk) 26k+1 
(2.30) Qk+1=Qk+ [( 

Xk+1 - Xk)
T 
 (Xk+1 - Xk)] 

where 6k+1  is the difference between the measured and the predicted error. 

The method does not require any additional property evaluations except in the 

initialisation. 

This work was extended by Støren and Hertzberg [26] in a recent publication. 

An extra parameter was included both in the model and in the error function. This 

parameter is then updated while the parameters in the original model are kept 

constant. The method performed well although instability can occur if an update 

is executed far from the region where the actual error is close to the predefined 

one. 

Also recently Hager and Stephan [27] presented a different approach by con-

structing a group model for multicomponent mixtures. Thermophysically similar 

components are classified into substance groups. Components of the same group 

are assumed to have ideal behaviour and interactions between components of one 

group and another should be similar. An overall mole fraction, is defined for 

each group as 

=E Xk,9 
	

(2.31) 
k,g 

where Xk,9 are mole fractions of each component k in group g. Similarly an overall 

group equilibrium constant, 	is given by: 

= fl kk,9 
	

(2.32) 
k,g 
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where kk,g  are the equilibrium constants of each component k in the group g. 

The division of components into groups follows Ewell's classification [28].  Hence, 

for a particular multicomponent mixture the simplified equations describing the 

physical properties can be expressed in terms of groups of components instead of 

each component separately. Thus the number of necessary parameters is reduced. 

The examples provided by Hager and Stephan [27] are again for dynamic simu-

lation only and compare well with results previously obtained by Macchietto and 

coworkers [22]. 

Recent work published by Perreguard [29] describes a general model simpli-

fication procedure to be used in the calculation of physical properties both with 

dynamic and steady-state simulation. The procedure makes use of a Newton-like 

method to solve the set of nonlinear equations. Its novelty lies on the use of a 

simplified model for calculating the Jacobian only, while the function values, e.g. 

equilibrium constants, are always calculated using the rigorous model. A reli-

able simplified model is required for Jacobian calculation, otherwise the error and 

updating procedure may not work properly. Perreguard calculates equilibrium 

constants using a Wilson-like equation, viz. 

Bi
re ink2  = A+ 	+C(1 —x2)2 	

[PP f] 
+D2 1n 
	

(2.33) 

where A 2 , B, C2  and D2  are parameters for component i, T and P are temper-

ature and pressure, pref  is the reference pressure and x i  the molar composition of 

component i in the mixture. 

Since the derivatives of k 2  with respect to x 2 , T and P are required for the 

Jacobian and they can be explicitly written from equation 2.33, there are enough 

equations to determine the four unknown parameters from one rigorous model eval-

uation only. The procedure works well for moderate nonideal mixtures, although 

it is not as reliable as that developed by Macchietto and coworkers [22].  It is less 
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accurate for strong nonideal mixtures, due to stronger composition dependence of 

the physical properties. 

2.5 Distillation of Nonideal Mixtures 

Thus far the discussion has concentrated on ways of reducing the computing load 

by using approximate models in the calculation of physical properties. Simple 

flash and distillation models have been developed by using approximate physical 

properties. Keeping physical properties up to date is a key factor when nonideal 

mixtures are considered. Particularly in design and simulation of nonideal distil-

lation units, the cost of keeping the physical properties up to date is usually high. 

Another way of reducing computing load is through the use of shortcut methods 

to calculate design variables. 

Shortcut methods have been published in the past to be used in distillation 

of ideal mixtures. These methods include using the Underwood equation [9] to 

calculate the minimum reflux ratio, the Fenske equation [7] for the minimum num-

ber of stages and the Gilliland correlation [8] for the effective number of stages. 

However the application of Underwood and Fenske equations in the case of dis-

tillation of nonideal mixtures is questionable due to the inherent assumption of 

constant relative volatility across the column. 

The present work investigates ways of establishing shortcut procedures for 

nonideal distillation. So far in the discussion there has been no reference to 

azeotropic behaviour and its effects on separation. The emphasis has been on 

establishing correlations for accurate calculation of physical properties in a given 

mixture. Assuming now there is a reliable way of obtaining the physical proper-

ties the next question is how the mixture behaviour affects the separation process. 

The presence of azeotropes creates zones of distillation in the equilibrium diagram 

which are bounded by n - 2 dimensional hyperplanes and distillation bound- 
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aries. A distillation boundary indicates the existence of a concentration profile 

corresponding to the azeotropic mixture. For many years scientists have tried to 

understand the exact meaning of distillation boundaries and their implication in 

separation feasibility. This is a subject of discussion in section 2.6. 

The discussion in this work is restricted to ternary mixtures. Most multicom-

ponent systems contain only binary or ternary azeotropes. Hence they can even-

tually be reduced to separating a ternary azeotropic mixture. A typical problem 

is that of separating a binary mixture that forms an azeotrope into its pure com-

ponents. Separation can be achieved in several ways. Pressure shift can be used 

if azeotrope composition is sufficiently sensitive to changes in working conditions, 

i.e. pressure. In other cases a third component may be added as an entrainer. The 

entrainer may or may not be a species that reacts preferentially with one of the 

azeotrope forming components. Where reaction occurs the process of separation 

is called reactive distillation. The present work addresses non-reactive entrainers 

only, which themselves can be of several kinds. A separation using an entrainer 

that introduces no additional azeotropes in the mixture is called extractive. The 

entrainer modifies the relative volatility between the other species making sep-

aration possible. On the other hand, entrainers may be used that form a new 

azeotrope with at least one of the azeotrope forming components. This type of 

distillation is called azeotropic distillation. It can be further classified as homo-

geneous if there is no phase separation or heterogeneous when liquid phase split 

occurs. 

In heterogeneous azeotropic distillation advantage is taken of the formation of 

two liquid phases by using decantation as part of the separation process. However 

the system controllability will be more difficult and crucial in process operation, 

since a change in operation conditions may cause liquid phase separation to occur 

within the distillation column, thereby reducing efficiency. 

This work is concerned primarily with extractive distillation and homogeneous 

azeotropic distillation using it as a starting point to understanding and tackling 
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the nonideal distillation problem. Since extractive distillation is a special case 

of homogeneous azeotropic distillation, where no new azeotrope is formed with 

introduction of an entrainer, it will be encompassed within the definition of homo-

geneous azeotropic distillation definition. Other authors, such as Levy et al. [30] 

and Doherty and Caldarola [31],  have used similar generalisations. A discussion 

will follow on the current knowledge on the issues to consider for simulation and 

synthesis of nonideal separation systems. 

2.6 Equilibrium Diagrams 

The equilibrium diagram of a mixture containing one or more azeotropes is not 

as straightforward as that of an ideal mixture or nonideal mixture that does not 

contain azeotropes. Presence of azeotropes causes the relative volatilities to change 

considerably in different points of the diagram, creating distillation zones and 

boundaries. These zones have an important role on the separation feasibility as 

will be discussed in section 2.7. 

For a separation by distillation to be feasible two conditions must be satisfied, 

as described by Hoffmann [32]: 

1. There must be, at least, one path of calculation accounting for material and 

energy balances and equilibrium relationships, describing each stage of the 

distillation column, viz. 

Xij= f (xj j, P,,,, 1 , 'yj, T, P, R, D/F, m,...) 	 (2.34) 

where xi,j and x 2 , 1  are the liquid compositions of component i in stage j and 

at the feed stage f, respectively, P p,i the vapour pressure of pure component 
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i, -yj  the liquid activity coefficient of component i, T the temperature, P the 

pressure, R the refiux ratio, D/F the overall recovery and m the number 

of stages. As discussed in the previous sections f() is usually a complex 

function. 

2. The overall balance must be satisfied: 

F=D+B 	 (2.35) 

	

= X,dD + X,bB 	 (2.36) 

where F, D, and B are total flows of feed, distillate and bottom products, 

respectively, and x,1, Xi,d and Xj,b are the corresponding compositions for 

component i. 

For a feasible separation at infinite refiux the first condition is described by 

a residue curve or distillation line connecting the top and bottom compositions 

given by: 

	

Yi,j = f (x,3 , P0  'yj, T, P, ...) 	 (2.37) 

Xj,j+l = Yi,j 
	

(2.38) 

where x,3  and Yi,f  are the liquid and vapour compositions of component i in 

stage j, respectively. 

The operation of an adiabatic column at infinite refiux combines the operation 

at total refiux and a material balance across the column since it assumes that 
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products are taken out. Operation at total refiux is convenient in design calcula-

tion but not of much use in practice, since no products are ever taken out. Thus 

the concentration profiles of a column operating under infinite refiux conditions 

are in fact a number of equilibrium steps connecting the column stages. Figure 

2.1 shows a conventional distillation column with one feed. 
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Figure 2.1: Diagram of a distillation column. 

At infinite refiux the vapour rising from each stage has the same composition 

as the liquid coming down from the stage above, as given by equation 2.38. 

It is also assumed that vapour liquid equilibrium is achieved for each stage, 

hence the vapour and liquid compositions are explicitly related in each stage. The 

relationship can be determined experimentally or by a well established equilibrium 

relation, such as one of those mentioned in section 2.3. Once an initial composition 

is specified at one extreme of the column the system can be solved step by step by 
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a succession of tie lines. Stichimair et al. [33] defined distillation lines by removing 

the tie line steps and connecting the points with a curve, as shown in figure 2.2. 

heavy 

light 	 intermediate 

Figure 2.2: Residue curves and distillation lines in the ternary equilibrium dia-

gram. 

The direction in which liquid is constantly boiled off (from the bottom to the 

top of the column) is used to construct residue curve maps. Residue curves are 

given by: 

dx 
= xi - Yi 
	 (2.39) 

where x i  and yj  are the liquid and vapour composition profiles, respectively, for 

component i and denotes the dimensionless time for the evaporation process or 

the dimensionless height of a packed column [34].  At infinite refiux the differential 

equations describing packed columns coincide with the residue curve equations [10] 

[35] [36].  Hence the residue curve gives a good approximation for the composition 
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profile of a column operating at infinite refiux and can be used interchangeably. 

Figure 2.2 shows graphically the qualitative relation between a residue curve and 

a distillation line in the equilibrium diagram. The difference between them is 

usually insignificant and can be neglected in the calculations [36]. 

Residue curves provide useful information on composition dependence in vapour-

liquid equilibrium for a given system. Various authors use residue curve maps, 

which are a collection of residue curves for a system, to study and understand the 

system behaviour at given operating conditions. Residue curve maps are particu-

larly useful in determining feasibility and in the selection of entrainers, which will 

be discussed in sections 2.7 and 2.8. 

Doherty and Perkins [37] [38] [39] [40] were the first to do an intensive analysis 

of residue curve maps for ternary mixtures. They characterise the equilibrium sur-

face mathematically and combine this with physical considerations to conclude on 

some properties of residue curve maps [37].  Their study is, however, constrained 

by several physical considerations and simplifications, which lead to conclusions 

that are not adequate for nonideal mixtures. In the equilibrium calculations a 

quadratic regular solution model is used [38] in the form of the two suffix Mar-

gules equation described in Reid et al. [ii].  Singular points and their kind are 

determined using the quadratic model. Such points are obtained by examining 

residue curves which run towards the highest boiling points. Singular points can 

be of four different kinds, as shown in figure 2.3. A stable node has all residue 

curves converging to it, i.e. it is an absolute maximum boiling point. An un-

stable node is an absolute minimum boiling point and all residue lines originate at 

this point. Saddle and chair points are intermediate boiling points and have lines 

converging to them but then continuing in the direction of a stable node. 

The procedure implemented by Doherty and Perkins [37] limits the use of 

their theory, particularly for strongly nonideal mixtures which do not follow the 

quadratic model behaviour. They propose that these cases be treated as special 

cases and examined individually. The distillation boundaries are also considered 
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(a) stable node (b) unstable node 

.L. 
(c) saddle point 
	

(d) chair node 

Figure 2.3: Types of singular points. 
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to be rigid, i.e. cannot be crossed. In part 4 of their work Doherty and Perkins 

[40] prove mathematically that the residue curves are unique and do not intersect. 

Later in part 5 Dongen and Doherty [41] show that the valleys and ridges in 

the temperature surface do not coincide with the azeotropic distillation region 

boundaries. They conclude this will give more flexibility in design but it was 

only in 1991 that Wahnschafft [36] explored and took advantage of this fact in 

separation sequencing. 

Octane 
399 K 

P=lOOkPa 

U 	Minimum boiling azeotropes 

Distillation lines 

389 K 

- Distillation boundary .. 

r 
/ 

/ 

Ethylbenzene 400 K 	 2—etboxy—ethanol 

409K 408K 

Figure 2.4: Example of a ternary mixture with a distillation boundary. 

As figure 2.4 shows the composition space is divided into two different areas 

called distillation regions I and II. These regions are separated by a distillation 

boundary, the line in bold in the figure, which limits the separation achievable 

by columns operating at total reflux [36].  The distillation boundary curvature is 

a common occurrence and reflects the selectivity with which components modify 

each others volatilities. A straight line indicates no selectivity at all, which is 

rare in the case of nonideal mixtures. It is important to remember, however, that 
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these distillation boundaries do not always coincide with ridges and valleys of the 

boiling temperature surface [41] [31] [36].  As early as 1945, in experiments with 

five different mixtures, Ewell and Welch [42] realised the existence of ridges in 

vapour liquid surfaces. These surfaces, they remarked, are curved and can be 

crossed during rectification when approached from the concave side. In the case 

of figure 2.4 the concave side is defined as the side of the boundary in distillation 

region II, whereas the convex side is that in distillation region I. The belief that this 

was not possible derives from the initial studies on residue curves and distillation 

boundaries. The temperature is always found to increase along a residue curve 

and residue curves are always diverging from or converging towards distillation 

boundaries. These facts led researchers in the past to believe that the distillation 

boundaries coincided with the valleys and ridges of the temperature surface [41]. 

However the composition profiles do not approach valleys or ridges in the boiling 

temperature surface perpendicularly [43] so there can be paths across the ridge 

that lead continuously upwards. 

2.7 Feasibility of Separation 

Until recently most work has been devoted to ideal mixtures. The lack of know-

ledge and unpredictability of the behaviour of nonideal mixtures justified the re-

duced attention in the past given to the feasibility of their separation. Interest in 

this area has grown considerably in recent past as more progress has been made 

towards understanding their behaviour. 

In nonideal distillation the relative volatility of the components can change so 

that the order of volatility of the components changes locally. This fact, allied to 

the lack of knowledge in the behaviour of nonideal mixtures, has been the cause 

for the difficulty in predicting separation sequences in nonideal distillation. 
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The conditions for a feasible separation, as defined in the previous section, 

require that the overall material balance is satisfied and that there is at least one 

path of calculation accounting for material and energy balances and equilibrium 

relationships describing the individual stages of a distillation column. The lat-

ter condition can be evaluated by checking the feasibility of operation at infinite 

refiux, hence that there is a distillation line going through the top and bottom 

compositions. However it has been shown that finite refiux ratios sometimes lead 

to a better separation than infinite refiux for nonideal mixtures [10] [44], [45]. One 

of the reasons for this is the result of increased curvature of the distillation lines 

as the refiux ratio decreases from infinity [35]. 

Laroche et al. [10] published a review of feasibility and entrainer selection in 

azeotropic distillation. They examine the operation at finite and infinite refiux 

separately. The overall effect of increasing the refiux is a combination of two 

competing effects: 

• It improves the operating lines in the column sections, thereby increasing 

the separation. 

• It dilutes the entrainer in the extractive section, decreasing the relative volat- 

ility of the azeotrope forming components, thereby decreasing separation. 

Laroche et al. [44] show how these two effects combine for different refiux 

ratios. For heavy entrainers, which are usually fed close to the top of the column, 

the separation first increases with the refiux ratio, reaches a maximum and then 

starts decreasing because the effect of dilution takes over. In the limiting condition 

of operation at infinite refiux no separation occurs. But the simplicity and speed 

of calculation of the residue curve maps and the information they provide makes 

them a suitable tool to determine the feasibility of separation in the first stage of 

design [46] [47].  In many cases the methods used hitherto involve heuristic rules 
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and assumptions that often unnecessarily constrain the feasibility of separation 

causing the user to overlook feasible separations. 

Dongen and Doherty [41] analysed the residue curve maps' topology for separ-

ation of ternary mixtures. They looked at how the topology of the vapour liquid 

equilibrium surface constrains the range of possible compositions for the distillate 

and bottom products. This work was then extended by Doherty and Caldarola 

[31] where an attempt at establishing entrainer selection rules is done. These rules 

derive from the assumption that it is impossible for the column material balance 

line to cross the distillation boundary regardless of the operating conditions. This 

assumption proved to be restrictive as will be discussed in section 2.8. Later work 

[33] [36] [48] [10] [34] showed that separation can be feasible even for these cases, 

as long as the boundary is sufficiently curved. 

Be 

3 

Chloroform 

B3  

eolrope 

Acetone 	 337 K D2 	Chloroform 

329.5 K 	 334 K 

Figure 2.5: Separation of a ternary mixture in a three column sequence. 

The example in figure 2.5 illustrates this. If benzene is present in the feed in a 
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sufficient amount it will allow the first column to separate acetone at the top and 

a mixture with a composition close to the distillation boundary is obtained as the 

bottom product. The overall separation is achieved by recycling the azeotropic 

mixture that comes out at the bottom of the third column and mixing it with 

the original feed. The bottom product of the first column is then separated in a 

second column by crossing the boundary, i.e. the feed for this column is on the 

concave side of the boundary whereas both products are on the convex side. This 

arrangement still complies with the definition of separation feasibility described in 

section 2.6. In this way benzene is separated as a bottom product in the second 

column and a binary mixture with only traces of benzene comes out at the top. 

This mixture is then easily separated in the third column into the third component, 

chloroform, at the top and the azeotrope to be recycled. The reasons for boundary 

crossing in this case have no relation to the fact that the residue curve map does 

not overlap with the temperature boiling surface. This is, however, an interesting 

and stable operation as shown by McKinnel [49].  He was able to simulate the 

column dynamically in his distillation column dynamic parallel simulator, PDIST 

and PNET [50].  Starting from an estimate for the feed, of unknown composition 

because it depends on the first column output, and from the product specifications 

the convergence to the expected operating profile was smooth. 

In parallel with the detailed study of the residue curve map, Dongen and 

Doherty [35] published a boundary value method for design of homogeneous azeo-

tropic distillation of ternary mixtures. This method follows certain assumptions, 

such as constant molar overflow, theoretical stages and single saturated liquid feed. 

It is the basis for the development of more complete methods in later publications 

by Doherty and coworkers [30] [31] [51] [52] [53],  particularly for the calculation 

of minimum reflux ratio. The material balances for a column operating at steady 

state are approximated by differential equations. This procedure is equivalent to 

replacing the stage composition points by continuous lines. The approximation is 

done by a Taylor series expansion and the solution is obtained by applying the 4th 
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order Runge Kutta method in the integration. They choose to ignore terms of or-

der higher than one in the Taylor expansion giving a good qualitative, if arbitrary, 

approximation to their study. They assume a given ternary mixture where the 

feed composition and pressure are specified and product specifications are known, 

i.e. compositions for 2 components, at the top and the bottom of the column. A 

search for a feasible separation path starts from both ends of the column, top and 

bottom. The paths should intersect at the feed stage composition for the separa-

tion to be feasible. The application of the method in the design case implies that a 

search must be done for a value of reflux ratio that makes the separation feasible, 

i.e. that makes the lines of the stripping and the rectifying sections intersect at 

the feed stage. The number of stages is also obtained but the process involves 

trial and error and is time consuming. 

Fidkowski et al. [54] [34] took the work developed by Doherty and coworkers 

to implement an equation based method for determining separation regions. They 

made use of the pinch point equations for the rectifying and stripping sections 

provided by Dongen and Doherty [35] together with material and energy balances 

across the column and the condition that the lines coincide at the feed stage com-

position. Combining the above equations they obtained the necessary equations 

to calculate the distillation limits and design variables given the feed composition, 

thermodynamic state and operating pressure. The feasibility check is based on 

the work from Foucher et al. [46],  who developed a criterion to quickly build up 

the residue curve maps and identify feasible entrainers. 

The procedure implemented only requires the knowledge of boiling temperat-

ures and the approximate composition of pure components and azeotropes in the 

mixture. This information in conjunction with a set of properties of the singular 

points listed in the same publication, is used to build up an adjacency matrix 

that represents the connections between the species in the mixture. If there is a 

connection, i.e. residue line, between the species the corresponding term in the 

matrix is set to 1, otherwise it has a value of zero. Once the matrix is completely 
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set it is straightforward to establish connections between the species in the tern-

ary equilibrium diagram. However the distillation boundaries are approximated 

by straight lines taking no advantage of the boundary curvature. When a ternary 

saddle exists and there are as many binary azeotropes as components, it is also 

not possible to determine one unique structure for the equilibrium diagram in this 

way. Several possible structures can be constructed and it is necessary to use a 

VLE method to build up the actual residue curve map. The same holds for the 

case named as 'local indeterminacy' by the authors. Local indeterminacy consists 

of having a different number for the binary saddles and intermediate boiling azeo-

tropes. An example in the same publication illustrated in figure 2.6 shows the two 

possible configurations generated by the method. Again the actual residue curve 

map must be calculated to decide on the correct one. 

dioxaae 
101.35 C 

119.5 C 

(77 % wt. acetic acid) 

118.5C 	 108.65C 	 120.65C 
acetic acid 	(38% wt. acetic acid) I—bmmo,3—methylbutaae 

101.35 C 	 101.35 C 

119.5 C 1193 C 

118.5 C 	 108.65 C 
	

120.65 C 
	

118.5C 	 108.65C 
	

120.65 C 

Figure 2.6: Example of locally indeterminate system as published by Foucher et 

at. 

Another fast procedure to determine separation feasibility is that of considering 
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separation at infinite refiux. Although the method is not infallible, as shown by 

Laroche et al. [44],  it works in a great number of cases and provides a quick way 

of determining regions of feasible products. 

The feasibility of separation at infinite refiux requires that: 

• There is a residue curve or distillation line connecting the top and bottom 

compositions given by equations 2.37 and 2.38. 

• There is a material balance line connecting the products' compositions and 

going through the feed composition, as given by the equations 2.35 and 2.36. 

Stichimair et al. [33] used this definition to identify product composition re-

gions. Figure 2.7 shows an example published by them. They used distillation 

lines to draw the vapour liquid equilibrium diagram of ternary mixtures. The 

distillation lines, as described in section 2.6, are constructed by interconnecting 

the liquid composition points corresponding to stages of a column operating at 

infinite refiux. For simplicity Stichimair et al. removed the points and left the 

smooth lines only. By drawing first the distillation line that passes through the 

feed composition and then the material balance lines that start at its extreme 

boiling points and also pass through the feed composition, the limits of feasible 

product composition regions are obtained. Taking as an example point F1  in fig-

ure 2.7 the application of the method described by Stichimair et al. gives the 

dark shaded areas of that side of the boundary as feasible products' composition 

region. These areas contain the set of points of the distillation lines which can 

be combined with a material balance line that intersects the feed distillation line 

twice, including the intersection at the feed point. 

The feasible regions at infinite reflux are therefore constrained by the sides of 

the composition triangle, the infinite reflux curve (distillation line) through the 

feed and the material balance lines that include feed F1  and the points of lowest 

and highest temperature on the distillation line. 
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Figure 2.7: Identifying feasible products in nonideal ternary mixtures. 
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The situation becomes more complex when the distillation lines have an in-

flexion point and a feed such as F2  in figure 2.7 is located close to that point. The 

method still works even for more complex cases but, as shown by Wahnschafft et 

al. [36] [43],  it includes sufficient conditions only and leaves out an area of feasible 

products, as clearly seen in figure 2.7 (light shaded areas). Wahnschafft described 

a method that is able to determine this area as well. The method is based on 

the construction of pinch point curves, which had been previously discussed by 

Nikolaev et al. [45] when the phenomenon of crossing distillation boundaries was 

being examined. In the construction of the feed pinch point curve tangents to the 

distillation lines are drawn that point through the feed composition point. The 

points that form the feed pinch point curve are the intersection of the tangents,i.e. 

material balance lines, with the same distillation line on the other side of the feed. 

This curve provides the extra area of additional feasible product compositions 

shaded lightly in figure 2.7. 

2.8 Entrainer Selection 

The selection of a suitable entrainer is the first stage of the synthesis procedure 

in azeotropic distillation. The present work is more concerned with the second 

stage where a preliminary flowsheet structure is obtained for a previously chosen 

entrainer. Nevertheless, the choice of entrainer is an important issue to consider 

and a review of research done in this area is justified. 

Until recently the choice of entrainer has been left very much to trial and 

error or practical experience. Work has progressed with the understanding of the 

equilibrium diagram and feasibility of separation discussed in sections 2.6 and 2.7, 

respectively. 

The point at which the entrainer is fed to the column influences the separation 

as pointed out in section 2.7. The entrainer can be previously mixed with the feed 
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or input at a different stage. This is particularly important where the entrainer is 

the extreme boiling component. Wahnschafft et al. [47] recently presented a pre-

liminary method for screening entrainers by ranking them as heavy, intermediate 

and light boiling with respect to the azeotrope forming components. 

Heavy entrainers 

• When used to separate a minimum boiling azeotrope they are fed close 

to the top of the column, because that is where the critical separation 

occurs. 

• When used to separate a maximum boiling azeotrope, they are only 

really required in the stripping section so they are usually fed with the 

feed stream. 

Light entrainer 

• When used with minimum boiling azeotropes, a distillation boundary is 

formed and there is no distillation line connecting the azeotrope forming 

components. The entrainer is usually fed below the azeotrope compos-

ition and recovered at the top of the entrainer recovery column. 

• There is little practical interest in using this kind of entrainer to separ-

ate a maximum boiling azeotrope. Light entrainers normally accumu-

late in the vapour phase and nonideal behaviour usually occurs in the 

liquid phase, so there would be no marked influence in the separation. 

But if its use is recommended it should be fed at the bottom. 

Intermediate boiling entrainer 

This type of entrainer is not common because it is difficult to find a species 

with the appropriate boiling point, between that of the azeotrope forming 

components, that introduces no further azeotropes. They are, however, ver-

satile in separation. As shown by Laroche et al. [55] [10] they enable the 
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separation of the azeotrope forming components in one single column if the 

loss of a small amount of entrainer is allowed. 

Attempts have been made recently to systematise the choice of entrainers. 

There is still not a satisfactory methodology, although advances have been made 

to try to identify the factors that make a good entrainer. Most work makes use 

of the calculation at infinite refiux and residue curve maps to establish rules for 

entrainer selection. While giving a good account for the best entrainers that 

make the separation feasible at infinite reflux, the study is by no means complete 

because it will leave out entrainers that enable the separation at a finite refiux but 

fail at infinite refiux, a case that sometimes happens in homogeneous azeotropic 

distillation, as shown in section 2.7. 

Doherty and Caldarola [31] show a shortcut procedure in which residue curve 

maps can be easily derived from the boiling temperatures of the pure components 

and the azeotropes. However they approximate all boundaries as straight lines 

taking no advantage of the boundary properties. They state that any component 

that does not place the azeotrope forming components in different regions from the 

column feed is a potential entrainer. The restriction of having both the feed and 

distillation column profile lying on the same side of the boundary excludes many 

candidate entrainers. According to a review on entrainer selection by Laroche et 

al. [44] a couple of industrial separations, as well as a class of light entrainers are 

left out. However Doherty and Caldarola [31] justified this decision by stating 

that the processes which are feasible with boundary crossing are not economically 

competitive. 

Stichlmair et al. [33] took advantage of the system's distillation lines to de-

termine the feasibility of separation for a candidate entrainer. They show that it 

is possible to use entrainers that introduce distillation boundaries if these bound-

aries are sufficiently curved. A curved boundary means that the relative azeotropic 

composition changes considerably in the presence of the entrainer. Since distilla- 
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tion lines are used to determine feasibility only entrainers that make separation 

feasible at infinite refiux are accounted for. As mentioned in section 2.7 some can-

didate entrainers will be left out because they may provide a feasible separation 

at finite reflux but fail at infinite refiux. 

Their criterion assumes the entrainer will only be successful if the azeotrope 

forming components are stable nodes, i.e. they are termini of the distillation lines. 

They divide their criterion in two rules: 

A heavy entrainer or an entrainer that forms new maximum boiling azeo-

tropes can be used to separate a maximum boiling azeotrope. 

A light entrainer or an entrainer that forms new minimum boiling azeotropes 

can be used to separate a minimum boiling azeotrope. 

The criterion rules out intermediate entrainers, which had been suggested be-

fore by Hoffmann [32].  Also, as Laroche et al. [44] have shown, it accepts many 

candidate entrainers that do not appear to make separation feasible and excludes 

feasible operations in which saddle components are recovered. One of the reas-

ons why their rules can fail is that they simply extended their conclusions from 

zeotropic distillation. 

Stichimair and Herguijuela [56] study separately entrainer selection with and 

without border crossing and they take intermediate boiling entrainers into consid-

eration. Where no border crossing is considered their work followed closely that 

of Doherty and Caldarola [31].  The azeotrope forming components must be in the 

same distillation region, i.e. the azeotrope should not be an origin or terminus of 

distillation lines. Hence for 

a minimum boiling azeotrope 

Feasible entrainers are intermediate entrainers and the light entrainers that 

form intermediate boiling maximum azeotropes with the light azeotrope 

forming component. 
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a maximum boiling azeotrope 

Feasible entrainers are intermediate entrainers and the heavy entrainers that 

form intermediate boiling minimum azeotropes with the heavy azeotrope 

forming component. 

For processes with border crossing, azeotrope forming components must be 

either origins or termini of distillation lines. The equilibrium diagram is separated 

into two distillation regions by a distillation boundary. Stichimair and Herguijuela 

[56] defined minimum requirements for a successful entrainer, viz 

minimum boiling azeotrope 

An entrainer lighter than the azeotrope, an intermediate entrainer forming 

new minimum boiling azeotropes with the light azeotrope forming compon-

ent or a heavy entrainer forming new minimum boiling azeotropes where at 

least one of them should be lower boiling than the azeotrope to separate. 

maximum boiling azeotrope 

An entrainer heavier than the azeotrope, an intermediate entrainer forming 

new maximum boiling azeotropes with the heavy azeotrope forming com-

ponent or a light entrainer forming new maximum boiling azeotropes, where 

at least one of them should be higher boiling than the azeotrope to separate. 

Foucher et al. [46] followed the method from Doherty and Caldarola [31] by 

building the residue curve maps only from the knowledge of the pure compon-

ent boiling points and approximate azeotrope compositions. This method gives 

a quick but limited study, with no general rules for entrainer screening. Distil-

lation boundaries are approximated by straight lines, taking no advantage of the 

boundary curvature. 

Laroche et al. [55] introduced a procedure for entrainer selection in the separ- 

ation of minimum binary azeotropes. They focus on separation in two distillation 
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columns. The first column is the extractive column and separates one of the azeo-

trope forming components as a pure product and a mixture of entrainer and the 

other azeotrope forming component as the other product. The second column is 

the entrainer recovery column and separates the second azeotrope forming com-

ponent from the entrainer. The entrainer is normally recycled to the first column. 

Only entrainers that do not introduce additional azeotropes are considered. 

They introduce new definitions that are used in comparison of suitable entrainers: 

. Equivolatility curves: curves along which the relative volatilities of the 

two azeotrope forming components are constant. 

. Isovolatility curves: curves along which the relative volatilities of the two 

azeotrope forming components are equal to 1. 

. Local volatility order: relative volatility between the two azeotrope form-

ing components in a specific separation region. 

Their criterion followed from the analysis of these curves and is summarised 

below: 

. Select heavy entrainers which send the lighter or the heavier azeotrope form-

ing component to the top of the extractive column; 

Select light entrainers which send the lighter or the heavier azeotrope form-

ing component to the bottom of the extractive column. 

They also consider all intermediate entrainers. Entrainer selection is used to 

design, cost and optimise sequences and the final result with lowest cost will give 

the best entrainer. 

In their review of entrainer selection Laroche et al. [44] published their own 

results based on a survey done on 416 binary minimum boiling azeotropes. They 

concluded that: 
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o Heavy entrainers that do not introduce azeotropes almost always make the 

separation feasible; 

. Intermediate entrainers that do not introduce azeotropes always make the 

separation feasible; 

. Entrainers that cause the binary azeotrope to become a saddle always make 

the separation feasible. 

Their results are qualitative and they are not dependent on physical specific-

ations. However they acknowledged that these specifications are very important 

for feasibility in homogeneous azeotropic distillation, due to its sensitivity to un-

certainty in the thermodynamic data. 

In conclusion, although considerable attention has been given to the subject of 

entrainer selection recently, there is still no complete and systematic criterion for 

entrainer selection. Progress has been made in recent years but some information is 

contradictory and incomplete, due to deficiencies in the rules and to the difference 

in operation observed in some cases between finite and infinite refiux. 

2.9 Synthesis of Nonideal Distillation 

Westerberg [57] produced a review on the synthesis of distillation systems. The 

review does not include azeotropic distillation which then was only beginning 

to be addressed. Westerberg shows how, even for systems without azeotropes, 

the solution space is large, greatly increasing with the number of components to 

separate. He summarises synthesis methods which include use of heuristics and 

branch and bound search. He comments on the fact that, even for simpler systems, 

heuristics sometimes contradict each other making the synthesis process difficult. 

A review of heat integration for this type of system is also supplied. Normally 

heat integration is considered after the synthesis structure has been found. 
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The richness of the solution space for non-azeotropic mixtures reported by 

Westerberg [57] is more predictable than that of azeotropic distillation. In azeo-

tropic distillation there may be many alternatives and there is no general rule to 

choose among them. 

It was only in this decade that synthesis packages started to emerge geared 

towards nonideal distillation. A summary is given by Malone and Doherty [58]. 

One of the most complete tools for automated synthesis of nonideal distillation 

was developed by Wahnschafft et al. [36] [59].  This tool, named SPLIT, uses a 

decomposition approach where streams, stored in a stack, are considered sequen-

tially. The separation method is chosen before finding feasible splits and selecting 

operating conditions. Processes are created by choosing separation steps until all 

output streams meet the product specifications or can be recycled. The separation 

step is chosen by analysing which splits still have not been carried out and two 

options are considered: 

. Maximum separation between components with different final destinations. 

• Minimum separation of certain streams so that output streams can later be 

sharply separated into products. 

If sharp splits are feasible only the first option is considered. The choice of 

recycles is also automated for the following cases: 

• To facilitate separation, e.g. entrainers. 

• The fiowsheet already contains separation steps which lead to the desired 

separation. 

SPLIT uses a blackboard architecture allowing the user to optionally guide 

the solution procedure. It relies on heuristic rules and handles the problem for-

mulations at different levels of abstraction in a parallel fashion, which is useful 
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for the evaluation of alternatives during conceptual design. Heat integration has 

not been considered. The distillation model used is RADFRAC from Aspen Plus 

[60]. 

Malone and Doherty [58] are developing a computer aid called MAYFLOWER 

also geared towards nonideal distillation. The system is still not capable of syn-

thesising fiowsheets. It includes a feasibility check and designs individual units. 

The procedure requires the specification of the feed composition, operating pres-

sure and product purity. In the feasibility check the residue curves are constructed 

from a chosen VLE model or from experimental data. If not enough information 

is available a sketch of the distillation map is done based on the work of Foucher et 

al. [46].  The separation sequence is then established through a series of heuristics. 

Rules of thumb are used to determine the effective operating flows and number of 

stages and correlations are used for costing. With this procedure a set of compar -

able least expensive alternatives is found. The design is then refined to optimise 

variables such as the pressure, reflux ratio, etc. 

A different approach is taken by CHiPS. CHiPS has been developed by Fraga 

and McKinnon [61].  Its main aims are providing good solutions quickly that can 

then be refined. It includes a single pass generation of heat integrated processes, 

i.e. heat integration, if requested, is done simultaneously as part of the branch 

and bound search for the best sequence. It can also provide the n best solutions. 

The package does not include nonideal distillation. It contains models such as 

reactors, absorbers and ideal distillation columns. However it allows the user to 

develop and include further models through its unit model interface. Hence, a 

nonideal distillation model can be implemented and tested with it. 

Smith and Pantelides [62] have recently proposed a different approach using 

complete plant connectivity and detailed unit operation models for the synthesis 

of complete and rigorous plant flowsheets. For a given feed composition, product 

specification and set of units, as well as the maximum number of each unit al-

lowed, the program optimises the flowsheet choosing the required number of units 
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and links between them. Each input to each unit and all final products may be 

formed by combining all raw materials and all unit outputs in proportions de-

termined by the optimisation. Such a complete connectivity together with the 

maximum number of detailed units allowed for each type usually incurs in lengthy 

calculations. However they state that the use of detailed models in fact alleviates 

the combinatorial nature of the problem and the end result is final with no need 

for further refining. Recycles and best input location for raw materials are done 

automatically due to the method's nature. A drawback is that it tries to do the 

work completely on its own retrieving one best solution, making it hard for the 

user to experiment and consider between the best alternatives. This is aggravated 

by the fact that complete connectivity does not guarantee a global optimum. The 

authors are currently proceeding with research on this. 

2.10 Summary 

Interest in the simulation of nonideal separations has grown in recent years and 

there has been considerable development in the understanding of the physical 

behaviour and separation mechanism for nonideal distillation. The first steps have 

been taken into the automation of the synthesis of nonideal distillation sequences. 

The main motivation has been the need to improve the simulation and design 

performance, not only in terms of reliability but also in computing time. The 

behaviour of nonideal mixtures is only now being understood, in great part due to 

work from Doherty and his coworkers. The complexity of separation of nonideal 

mixtures requires careful handling in the calculation of the mixture's physical prop-

erties. The values change not only with operating conditions, such as temperature 

and pressure, but also with composition. The classical procedure in simulation 

is to keep updating the physical properties by means of rigorous VLE methods 

every time conditions change using parameters stored in a database. This is time 
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consuming and has prompted research into the development of local simplified 

models for calculation of physical properties. The model parameters have limited 

regions of validity, hence they must be used in a dual level calculation environ-

ment where parameter update is performed. Earlier work published in this area 

includes severe restrictions due to lack of generality for nonideal mixtures. Most 

work developed is directed towards dynamic simulation, with particular emphasis 

on the work published by Macchietto and coworkers. They developed robust local 

models and an effective parameter updating procedure that depends on the vari-

ation of the values from the previous rigorous evaluation. The parameter update 

also includes a 'forgetting' factor to discard out of date information. 

More recent similar work has been developed by Hertzberg and coworkers, 

including a different type of error monitoring and update also geared towards 

dynamic simulation. 

The emphasis on dynamic simulation is not only due to its importance in 

the study of process operation. It is also easier to obtain a robust algorithm 

for parameter update. Given the characteristics of a dynamic process one will 

expect changes in normal operating conditions to be smooth, unlike the steady 

state solution of a flowsheet where the final working conditions are not yet known 

and it is likely that the starting point in the calculations is far from the final 

conditions. 

Johns and Vadhwana have also studied process separation fiowsheeting, ap-

proximating dew point, bubble point, flash units and simple distillation by simpli-

fied models. They have produced an updating procedure including optimisation 

of the number of successive local calculations as a function of computing times for 

rigorous and local calculations, and an empirical parameter that gives a measure 

of the quality of the model. Perreguard also looked at steady state simulation. 

He uses approximate functions only in the calculation of the Jacobian, during 

the iteration procedure, whereas the actual physical property values are always 

calculated rigorously in the update. 
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Given the unpredictability in solving steady state fiowsheets it is much harder 

to implement a parameter updating procedure for nonideal mixture separation. 

From one iteration to the next there can be extreme variations in operating con-

ditions. A different kind of boundary of validity such as composition limits may 

be more adequate. 

For a reliable nonideal distillation model, particularly where synthesis is con-

sidered, it is also necessary to look into issues such as feasibility and entrainer 

selection. Distillation sequencing is not always straightforward due to the exist-

ence of distillation regions within the equilibrium diagram. 

Doherty and coworkers have contributed a great deal to the understanding of 

the equilibrium diagrams for ternary nonideal mixtures. This knowledge, even if 

still under development, allows further insight into separation feasibility, entrainer 

selection and calculation of variables such as minimum reflux ratio. The inform-

ation and research are now being compiled and used to implement a synthesis 

package for nonideal distillation. The package relies in part on heuristics, such 

as rules on feasibility criterion. In their work the effect of a curved distillation 

boundary on separation feasibility has been ignored. Feasibility has also been 

studied by Stichimair et al., who used the infinite refiux calculation to quickly 

obtain areas of feasible products for ternary mixtures. Their work was extended 

by Wahnschafft et al., who also investigated the effects of the distillation bound-

ary to a greater extent. Unlike Doherty and coworkers they take advantage of 

the distillation boundary curvature. Previous studies by Doherty and coworkers 

had dismissed this topic with the argument that it would not be economically 

attractive and because questions exist on the stability and controllability of such 

processes. However the dynamic simulation study done by McKinnel [49] suggests 

such systems have a stable operation. Laroche et al. also provided more insight 

into feasibility of separation in their study on entrainer selection. In particular 

they studied the effect of the reflux ratio value in separation feasibility. They 
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showed how operation at infinite refiux may, in some cases, lead to infeasible 

separation, which will actually become feasible for some other finite reflux value. 

The complete picture has not been fully drawn yet. The current knowledge 

on the behaviour of nonideal mixtures separation provides a good basis for the 

development of procedures and tools, with the aim of decreasing the intensive 

computing time required for these systems. Work to date has focussed on tern-

ary mixtures, the most common case in industry. The complexity of behaviour 

increases greatly with the number of components in the mixture. Many nonideal 

multicomponent mixtures can, however, be reduced to a ternary mixture by re-

moving first the components with behaviour close to ideal. 

It is important to evaluate and understand the effect of using approximate 

physical properties in the calculations. The calculation of physical properties is 

a time consuming step but it is also fundamental to use reliable values in the 

simulation and synthesis of nonideal separation, otherwise we may fail to obtain 

results or they may not be trustworthy. 



Chapter 3 

Local Approximations for Liquid 

Activity Coefficient Functions 

Interest in approximate methods for estimating physical properties in nonideal 

mixtures derives from the intense computing time required to maintain accurate 

values as conditions change during vapour liquid equilibrium calculations. In 

nonideal mixtures physical properties depend both on composition and operating 

conditions such as pressure and temperature. In the past experimental data has 

been used to fit parameters in mathematical models. These parameters are stored 

in databases such as PPDS [16].  They can then be used in VLE methods contained 

in the database to retrieve physical properties for components in a mixture at given 

conditions. The number of parameters and complexity of models used, particularly 

for three or more components, usually accounts for a great amount of computing 

time dedicated to physical property calculation during process simulation and 

synthesis. 

As seen in chapter 2 considerable attention has been given to this subject 

in the past. Since a great percentage of overall computing time during process 

simulation is consumed in physical property calculation efforts have been made in 

terms of reducing this time. Reducing the time consuming step, i.e. the rigorous 

calculation of the physical properties, implies the development of local methods for 

61-11 
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their calculation, thereby avoiding frequent calls to the rigorous physical property 

package. 

The use of local models is constrained, particularly in the bounds of their ap-

plicability. As conditions change the model parameters must be updated when 

the region of validity has been exceeded. It is important to know when an update 

is required. Most work published in the past is directed towards dynamic simula-

tion. The main reason for this is that parameter update is more straightforward, 

since changes in operating conditions normally occur gradually. Hence the pattern 

of change is more predictable and this makes implementing a parameter updat-

ing procedure an easier task. Johns and Vadhwana [24] and Perreguard [29] have 

addressed the issue of parameter update in steady state simulation. In the calcula-

tion of steady state operation the starting point of iteration is often quite different 

from the final converged solution. Greater variation is expected from iteration 

to iteration and this unpredictability makes it difficult to establish a parameter 

updating procedure. However, steady state calculations are very important in 

simulation and, particularly, in synthesis where many alternative flowsheets are 

evaluated. 

Approximate models for the activity coefficient should be physically based. 

Nevertheless arbitrary models can also be used successfully in some cases as repor-

ted by Ponton and Kleme [63].  In their study they make a comparison between 

different types of arbitrary functions, including Neural Networks, for inferential 

measurement of composition in ideal distillation and dynamic flash calculations. 

They also suggest an expression for liquid composition as a function of the com-

ponent equilibrium constants. 

In this chapter new local models are presented for component activity coef-

ficients. These models are based on established correlations such as the Mar-

gules equation and Wilson method. The Margules equation is generalised for a 

multicomponent mixture under certain assumptions. Simplified versions of the 
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Wilson correlation are also proposed. The behaviours of these new correlations 

are analysed with several different nonideal mixtures. 

The new equations presented were chosen for their relative simplicity when 

compared to other VLE methods for nonideal mixtures. Their structure makes 

them easy to fit and faster to use. As a result a compromise with accuracy must 

be made in order to decide on their applicability. 

3.1 Considerations on Choice of Approximate 

Models 

Physical insight into activity coefficient behaviour and existing models described in 

Reid et al. [ii] show that functions for activity coefficients are highly nonlinear and 

must include interaction between the variables. The interaction between variables 

can be additive as in 

a0  + a1 x 1  + a2x 2  + ... + bix 2  + b2x + . + 	+ Z2X2 + ... 	( 3.1) 

It can also be polylinear as in 

a0 +a1 x1+a2x2+a3x3+...+b1x1x2+b2x1x3+...+c 1 x 1 x2x3+z1 x 1 x2 ... x+... (3.2) 

or include both terms from equations 3.1 and 3.2. This type of equation re-

quires a great number of parameters, which increases factorially with the number 

of variables. Normally some considerations are made for the particular case that 

allow certain terms to be ignored, thus controlling the number of parameters to 

fit. 
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Another kind of equation which introduces nonlinearity and interaction between 

variables is that of a rational function [64].  The general form of a multivariable 

rational function is given by, 

a0  ± a1 x 1  + a2x 2  + + ax 	
(33) 

bi x i  

A function such as equation 3.3 provides nonlinearity in each variable and 

nonlinear intervariable interactions. Unlike the previous equations 3.1 and 3.2, 

the number of parameters in equation 3.3 increases only linearly with the number 

of variables. 

The type of rational function shown in equation 3.3 has been used successfully 

in physical property calculation, such as boiling temperature [64].  Molecules were 

divided into their structural groups, e.g. C, CH, CH2 , CH3 , Cl and F, and these 

were used as variables in the rational function. Results were encouraging, but the 

number of components used was relatively small. 

In section 3.3 two models are presented based on the Margules model for a 

binary mixture. The first provides only additive interaction between variables 

but the second also provides polylinear interaction. Sections 3.4 and 3.5 test two 

different kinds of rational functions. The data used for fitting the approximate 

models will be discussed in section 3.2. 

3.2 Rigorous Physical Properties Calculation 

Rigorous physical property data required in the calculations is retrieved from 

PPDS [16] through a FORTRAN interface developed locally by Lababidi et al. 

[65]. This interface retrieves up to eighteen constant properties for each component 

in a stream and up to twenty three variable properties, i.e. stream properties. It 
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also performs VLE calculations on streams. The existing options in PPDS [16] 

for VLE calculation methods are: 

Redlich Kwong Soave 

Wilson 

UNIFAC 

Peng Robinson 

Redlich Kwong Soave with API modification 

Lee Kesler Plöcker 

UNIQUAC 

UNIFAC for LLE 

A description of each method can be found in Reid et al. [ii],  Prausnitz et al. 

[12] or in the PPDS manual [16].  Some of them have also been summarised in 

chapter 2. Redlich Kwong Soave, Peng Robinson and Lee Kesler Plöcker are used 

for mixtures with nearly ideal liquid phase behaviour and high pressure systems. 

The Wilson equation along with UNIFAC and UNIQUAC are used in systems 

containing polar components. The Wilson equation is not applicable for mixtures 

which form two liquid phases although it can be used when studying each liquid 

phase in isolation. UNIQUAC parameters are less dependent on temperature [ii] 

when compared to Wilson equation parameters. 

The VLE method to use in rigorous physical properties calculation will be 

very much dependent on the mixtures involved. Wilson and UNIFAC are the 

most adequate for the nonideal mixtures considered here and they will be used in 

this study. 
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3.3 Margules-like Models 

Margules equations are empirical equations used for binary mixtures. The simplest 

equation is the two-suffix Margules equation, which originates from a simple rela-

tion for the Gibbs energy function: 

gE a x1 x 2 
	 (3.4) 

where x 1  and x 2  are the component liquid molar compositions in the binary 

mixture and a is an empirical parameter determined from experimental measure-

ments. Use of equation 3.4 is limited to simple mixtures, i.e. mixtures of compon-

ents which are similar in size, shape and chemical structure. For nonideal binary 

mixtures an equation of higher order such as the three-suffix Margules equation 

is required. A higher order model has more parameters and hence the amount 

of experimental data points needed increases. Typical data in the literature [12] 

leads us to conclude that no more than two or three parameters are required so a 

three-suffix Margules equation is usually sufficient for the general case. 

The three-suffix Margules equation for a binary mixture can be derived by 

assuming for component 1 

In 71  = ax+ cx 
	

(3.5) 

where a and c are empirical binary parameters. Then from the Gibbs Duhem 

equation the activity coefficient for component 2 is given by 

/ 	3\ 
lny2 = (a+c)x—cx 	 (3.6) 



Chapter 3 	Local Approximations for Liquid Activity Coefficient Functions 	64 

Derivation and particulars can be found in pages 209-213 of Prausnitz et al. 

[12]. In order to generalise equations 3.5 and 3.6 for a multicomponent mixture 

they can be written for two generic components i and j as follows: 

In 'yj = ax 2 + cx 
	

(3.7) 

In-y3  = a+
3 

 c X 2 _ cx 	 (3.8) 
2 ) ' 

For the binary case x 2  + x3  = 1, hence equations 3.7 and 3.8 can be rewritten 

as 

1n'yj =a(1—x) 2 +c(1—x) 3 	 (3.9) 

lnyj= (a + c)(1_ xj ) 2 _ c (1_ xj ) 3 	 (3.10) 

In order to generalise equations 3.9 and 3.10 and eliminate x 3  the parameters a 

and c must be transformed. Assuming for component i in equation 3.9 a parameter 

B a the corresponding B3  in equation 3.10 will be given by 

B3  =a+ 
3 

 c 	 (3.11) 

From the newly defined B2  and B: 

c = (B3  - B) 
	

(3.12) 

Equation 3.12 gives a parameter expression for the cubic term of equation 3.7. 

Note that for equation 3.8 i and j exchange places but the constant is now —c 
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resulting in the same parameter expression for the cubic term. Hence the following 

expression can be written for a binary mixture of components i and j: 

	

In -yj  = B (1 - x) 2  + (B - B) (1 - x) 3 	 (3.13) 

Equation 3.13 can be made more general to enable its use for multicomponent 

mixtures by writing it as 

(j=

nc
lnj = B (1 - x)2 +  B - B) (1 - (3.14) 

,j54i 

Equation 3.14 is strictly valid for a binary mixture and could provide a gener-

alisation for a multicomponent mixture with n, > 2. Its form gives a convenient 

way of calculating the parameters. For a mixture of n components n equations 

can be written containing n  parameters using equation 3.14, thus defining a lin-

ear system of equations of size ri x ri in terms of the unknown parameters. The 

number of parameters increases proportionally to the number of components. One 

set of rigorous data, i.e. one measuring point, is required to solve the system of 

equations regardless of the number of components in the mixture. 

In equation 3.14 the activity coefficient for component i depends on its mole 

fraction only and dependence on other components in the mixture is not taken 

into account. However, particularly in nonideal mixtures, the influence of other 

component compositions usually plays an important role in the activity coeffi-

cient value. Equation 3.14 can be rearranged to include the composition of other 

components thus providing polylinear additive interaction as described by Ponton 

[64]. Rewriting equation 3.14 as 

ln'y = (1— x) 2  [B + (1— x) 
( 	

B - B)] 	i = 1, ...,n 	(3.15) 
j=1,j ~i 
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it can be further rearranged so that 

 nc  

3 
(3.16) 

and knowing that 1 - = x2  for a binary 

2 Thc 

1n7=(1—x 2 	
j

Bx_B(l_x))] 	i=l, ... ,n (3.17) 
j=1oi 

Similarly to equation 3.14 equation 3.17 reduces exactly to equation 3.13 for 

a binary mixture. It provides, however, a different approximation from equation 

3.14 for a multicomponent mixture. Both equations will be studied here to assess 

their suitability for multicomponent mixtures. This new approximation takes 

into account the composition of all components in the mixture in calculating the 

component activity coefficient. 

For both equations 3.14 and 3.17 the parameters can be easily calculated with 

one measuring point only, i.e. one call to the rigorous physical property package. 

The data point is then used to solve the linear system of equations. They exhibit 

diagonal dominance and can easily be solved using Gauss Jordan [66]. 

3.3.1 Testing the Models 

Equations 3.14 and 3.17 were tested using six different nonideal ternary mixtures 

shown in table 3.1. 

Boiling points quoted are for 100 kPa in all cases and all data were calculated 

by PPDS using the UNIFAC VLE method. Tests were conducted at a pressure 

of 100 kPa and the ideal values for the equilibrium constants were calculated at a 

temperature of 347 K, except for mixture 2, which has a lower boiling range. In this 
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Boiling point Binary azeotropes 

Mixture Components (K) (molar composition) 

1. water 373.15 0.103 - 

1 2. methanol 337.69 - - 

3. ethanol 351.44 0.897 - 

Azeotrope boiling point (K) 350.86 (mm.) - 

1. acetone 329.22 0.372 - 

2 2. chloroform 334.32 0.628 - 

3. benzene 353.24 - - 

Azeotrope boiling point (K) 337.18 (max.) - 

1. acetone 329.22 0.579 - 

3 2. 2-methylpent-1-ene 335.25 0.421 - 

3. butane 272.65 - - 

FAzeotrope boiling point (K) 321.86 (mm.) - 

1. ethylbenzene 409.34 0.555 - 

4 2. ethylene glycol monoethyl ether 408.15 0.445 0.371 

3. octane 398.82 - 0.629 

FAzeotrope boiling point (K) 396.83 (mm.) 385.64 (mm.) 

1. water 373.15 0.310 - 

5 2. ethylene glycol 470.69 - - 

3. propan-2-ol 355.39 0.690 - 

Azeotrope boiling point (K) 353.02 (mm.) - 

1. acetone 329.22 0.372 - 

6 2. chloroform 334.32 0.628 - 

3. toluene 383.78 - - 

Azeotrope boiling point (K) 337.18 (max.) - 

Table 3.1: Sample nonideal ternary mixtures with data at 100 kPa. 
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case the temperature used was 337 K. Pressure was kept constant. The Wilson 

VLE method in PPDS did not have stored data for some components so any 

results retrieved from PPDS would be ideal in those cases. This would defeat the 

purpose of this study, hence the UNIFAC method was used throughout. Activity 

coefficients were calculated at the mixture's bubble point for each composition 

point at fixed pressure. 

At this stage the objective is to find out if and how the parameters vary across 

the composition diagram. A gradual variation will justify the development of an 

updating procedure. Negligible variation ensures that only one fitting point is 

required and the equation can be used reliably for the whole composition region. 

Hence parameters have been calculated for the whole range of compositions using 

small steps of 0.025. The rigorous physical property package was used at each 

step to ensure that parameters obtained for each point give an accurate value for 

the activity coefficient. 

Results have been plotted in tridimensional graphs showing the parameter for 

each component in the z axis. Scale has been kept between -300 and 100 to help 

with visualisation, although a few values exceed it.The x axis shows the compos-

ition of component 1 in the mixture and the y axis that of component 2. Hence 

the points in the surface lower triangular area to the left give the ternary diagram 

composition region, whereas the other triangular area is meaningless because it 

corresponds to an area of impossible composition, i.e. E x i  > 1. Figures 3.1, 3.2 

and 3.3 show the variation in the parameters values for components 1, 2 and 3, 

respectively, in mixture 1 when equation 3.14 was tested. The parameters values 

remain fairly constant in small areas of the diagrams. There are great variations 

towards some central areas of the diagrams. The area around the azeotrope loca-

tion is well behaved. But the parameters have a relatively large, although smooth, 

variation towards the pure component vertices. All parameters show a similar type 

of behaviour. 

The same type of behaviour is found for mixture 2. In this case the azeotrope is 
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to  

Figure 3.1: Variation in the parameter value of component 1 along the compos-

ition diagram for Mixture 1 with first Margules-like equation 
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70  

Figure 3.2: Variation in the parameter value of component 2 along the compos-

ition diagram for Mixture 1 with first Margules-like equation 
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ZO 

Figure 3.3: Variation in the parameter value of component 3 along the compos-

ition diagram for Mixture 1 with first Margules-like equation 
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located in neighbourhood of the point where changes in the parameters originate 

in a gradual way. The variation seen in the other mixtures was so large and 

unpredictable that the graphs can not be analysed properly. 

The preferential boiling paths in mixture 3 are more complex and this is re-

flected in the unpredictability of parameter values for equation 3.14. This proved 

to be inadequate for mixture 3. 

Mixture 4 contains 2 binary azeotropes and also a more complex boiling path 

diagram. This again reflects on the parameters values. The same conclusions are 

made as in the case of mixture 3. Equation 3.14 does not give good results for 

mixture 5 either. Parameter variation is irregular and happens throughout most 

of the ternary diagram. 

Mixture 6 has small areas where the parameters remain fairly constant or vary 

smoothly. But the same effects appear as in the previous examples. Also as in 

previous cases parameters have a large, if smooth, variation towards the pure 

component vertices. 

In all cases the largest and most unpredictable variations occur towards the 

centre of the diagram where all three components exist in appreciable amounts. 

The variation observed towards the edges, i.e. pure component vertices, is usu-

ally smooth and continuous. A parameter updating procedure would be easy to 

implement in this area given the continuity of the variation. The update would 

be a function of composition only for each temperature and pressure combination. 

However the great variation in the central area is impossible to correlate. Hence 

the use of equation 3.14 is limited to small areas in the diagram. The equation will 

also be limited to mixtures which do not show strong intermolecular dependency. 

The term that accounts for it is absent in this equation and it has proven to be 

important for this kind of mixtures. 

Results obtained with equation 3.17 are more interesting. For mixture 1 they 

are shown in figures 3.4, 3.5 and 3.6. The parameter values remain fairly constant 
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110 

Figure 3.4: Variation in the parameter value of component 1 along the compos-

ition diagram for Mixture 1 with second Margules-like equation 
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Figure 3.5: Variation in the parameter value of component 2 along the compos-

ition diagram for Mixture 1 with second Margules-like equation 
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Figure 3.6: Variation in the parameter value of component 3 along the compos-

ition diagram for Mixture 1 with second Margules-like equation 
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throughout the entire composition region. However the same behaviour is found 

as in equation 3.14 in areas close to pure component vertices. Mixture 2 behaves 

similarly to mixture 1. 

Mixtures 3, 4, 5 and 6, which had shown the greatest parameter variation 

with equation 3.14, now have a much improved behaviour with equation 3.17. 

They show a similar behaviour to mixtures 1 and 2 but there is a more marked 

asymptotic behaviour towards the pure component vertices. 

Results obtained for equation 3.17 show the considerable improvement ob-

tained by introducing a term to account for intermolecular dependency. For this 

small sample of six nonideal mixtures it performs well to concentrations up to 

70%. Only one fitting point is required. 

Parameter variation for compositions richer than 70% is fast and has an asymp-

totic form. An updating procedure is not worth considering. Given the variation 

rate it would have to be used repeatedly, greatly increasing the usage of the rig-

orous physical property package. It is more reasonable to switch to using the 

rigorous physical property package when the purity of the mixture with respect 

to one component exceeds a value of 80%. 

3.4 Wilson-like models 

The equation for the Gibbs energy proposed by Wilson for multicomponent mix-

tures is based on molecular considerations [12] and is given by 

9E 	 (3.18) 

where A 3  are the Wilson equation parameters. Using equation 3.18 in equation 

2.10 to calculate the activity coefficient the following is obtained: 
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nc  
in'y = 1— 	 - In E  xjA ij 	i = 1, ...,n 	(3.19) 

j=1 E A3kxk 	
j=1 

k=1 

Based on equation 3.19 a simpler rational function is proposed for the activity 

coefficient calculation, viz 

In = 1— Aixi ...,n 	 (3.20) nc  

Ax 
3=1 

where A 2 , i = 1, ..., nc  are parameters to be fitted and the x i  are the mixture's 

composition. 

Equation 3.20 has a few desirable properties: 

. it shows correct behaviour at x i  = 1, i.e. for pure component solutions; 

. it contains nc  parameters requiring only one point fit; 

. it introduces nonlinear representation and nonlinear interaction between 

parameters, while including only a reasonable number of nonlinear para-

meter terms. 

A variant of equation 3.20 is 

A••" 	flcA. 
In'y2=1— , 	— 1n> 2—xi 	i=1,...,n 	(3.21) 

A,x3 	j1 Ai 

j=1  

Equation 3.21 is more similar in its structure to equation 3.19 than equation 

3.20. Its more complex structure, however, makes it more difficult to fit. 
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3.4.1 Testing the Models 

As suggested in Ponton [64] the standard NAG library procedure for nonlinear 

least squares [67] has been used. The procedure is readily available and is usually 

quite fast and reliable [64]. 

The equations were tested using the mixtures already described in section 3.3.1. 

The ternary diagram was divided into a grid of compositions at intervals of 2.5% 

and the equations fitted for each point in order to check the parameters' variation 

with composition. 

During the fit of equation 3.20 for each point in the equilibrium diagram not 

all the parameters were successfully calculated. In some cases NAG returned a 

message saying that a minimum could not be found for the least squares. There 

were also cases where the denominator became close to zero causing the method 

to fail. 

In conclusion, a good fit could not be obtained for the whole range of compos-

itions with any of the example mixtures. Two possible reasons for this are: 

The method used to calculate the parameters is ineffective. 

The data can not be well represented by a function such as equation 3.20. 

Analysis of the error between the activity coefficient calculated with the fitted 

data and the value retrieved from PPDS using the Wilson method leads to believe 

that equation 3.20 will not represent the data appropriately in any case. The error 

was greater than 20% for all cases. 

It was not possible to obtain the parameters for equation 3.21 with the non-

linear least squares method. 
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3.5 Rational fraction approximation to activity 

coefficient in flash calculations 

A different approach to the use of rational functions in determining the liquid 

activity coefficient is to use them as a correction factor in a flash calculation. The 

factor is applied to the known feed activity coefficients. The function proposed 

here takes the form: 

/ A 0  + Alx,f'\ 
i=1,...,flc 	 (3.22) 1fl7,1  = 	

1 + A2x, 1  

	

where 	and Yi,f  are component i liquid activity coefficients, respectively, 

for the liquid output and feed. The mole fraction of component i in the feed is 

represented by Xj,f and A 0 , A 1  and A 2  are parameters. Equation 3.22 is basically 

an arbitrary function, containing three parameters: A 0 , A 1  and A 2 . Therefore its 

fitting requires three known rigorous equilibrium data points. 

Hence, three points are chosen and the rigorous physical property package is 

used to obtain values for the components activity coefficients both for the feeds 

and respective liquid outputs. These values are used to fit the function which will 

then be used for any particular feed required. The fitting procedure includes a 

flash calculation for each point. At present the flash calculations allowed by the 

PPDS interface developed by Lababidi et al. [65] include calculations at fixed 

temperature and pressure only. However, to perform the study over the whole 

range of compositions in the ternary diagram it is more useful to fix the pressure 

and vapour to feed ratio, while flash temperature is calculated. Since this is 

impossible at the moment with the tools available it was decided to study the 

function behaviour in two ways: 
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o By varying the temperature for each composition point, choosing the average 

between bubble and dew points for the particular composition. 

o By judging the function's behaviour in the composition area of the diagram 

where phase split occurs for fixed temperature and pressure. 

It is expected that for the points calculated at different temperature from that 

used in the fitting a difference will be found between the rigorous values and 

those obtained by the correction model since no account is taken of temperature 

dependency. Calculation at fixed temperature and pressure should, however, give 

a measure of the function's performance in terms of composition dependence only. 

The three parameters are calculated by solving the system of equations result 

ing from equation 3.22. In this work only ternary mixtures are considered so the 

system is easy and fast to solve, but the resulting system of equations is suitably 

solved for any number of components using the Gauss elimination method. The 

same mixtures described in section 3.3.1 were used here. 

3.5.1 Testing the Model 

There are several issues in the function fitting. The most important is how to go 

about choosing the fitting points. A first fitting was attempted by using three 

points in the middle area of the ternary composition diagram. Table 3.2 shows 

the compositions used for each point. 

Point I Component 1 Component 2 Component 3 

1 	I 	0.15 	0.30 	0.55 

2 	I 	0.25 	0.40 	0.35 

3 	I 	0.45 	0.45 	0.10 

Table 3.2: First fitting set of molar composition points for each ternary mixture. 
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The results for the case where the flash temperature is varied with composition 

have been plotted using tridimensional graphs. Similarly to previous examples the 

z and y axis show the composition of components 1 and 2, respectively. The z axis 

shows the percentile relative error between the liquid activity coefficient calculated 

by PPDS and that calculated by the rational function, for each component in the 

mixture. The upper right triangular area in the graph corresponds to impossible 

composition combination and has no physical meaning. All these points have been 

set to zero. 

'0 

Figure 3.7: Relative error in activity coefficient for component 1 in mixture 2 

along the composition diagram 

Mixture 2 showed best results for all components as seen in figures 3.7, 3.8 
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Figure 3.8: Relative error in activity coeffcient for component 2 in mixture 2 

along the composition diagram 

• • 	 •• • 
- 	 :- 
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/ 

Figure 3.9: Relative error in activity coeffcient for component 3 in mixture 2 

along the composition diagram 
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and 3.9. The other mixtures show great variations as well as large error values, 

including discontinuities in some cases. 

The second case where the only points calculated were those found to have 

vapour liquid equilibrium at the fitting temperature and pressure showed little 

improvement. This case is not easy to visualise in a tridimensional graph because 

only a small area of the diagram is meaningful. But the error remained on a 

similar scale for mixture 1. It was, however, slightly smaller for the other mixtures 

although values up to 40% in relative error have been observed in some cases. It 

was also found that the fitting points must be carefully chosen in order that vapour 

liquid equilibrium is obtained for all of them at the same pressure and temperature 

conditions. 

A second set of fitting points was tried as shown in table 3.3. These points 

are close to each component vertex and a similar behaviour was obtained for the 

error in all mixtures as with the first set of fitting points. 

Point I Component 1 Component 2 Component 3 

1 0.05 0.10 0.85 

2 0.10 0.85 0.05 

3 0.85 0.05 0.10 

Table 3.3: Second fitting set of molar composition points for each ternary mix-

ture. 

The unpredictable discontinuities in the error make an updating procedure 

based on the error difficult to formulate. An attempt to divide the ternary diagram 

into areas was done and the fitting points for each area were chosen accordingly. 

Figure 3.10 shows how the diagram has been divided into four areas. The fitting 

points used are shown in table 3.4. No further improvement was found in function 

behaviour using this system. 



Chapter 3 	Local Approximations for Liquid Activity Coefficient Functions 	85 

Subset 1 Subset 2 

Point Cmpt. 1 Cmpt. 2 Cmpt. 3 Cmpt. 1 Cmpt. 2 Cmpt. 3 

1 0.85 0.05 0.10 0.45 0.50 0.05 

2 0.55 0.10 0.35 0.05 0.85 0.10 

3 0.50 0.45 0.05 0.10 0.55 0.35 

Subset 3 Subset 4 

1 0.45 0.05 0.50 0.45 0.45 0.10 

2 0.05 0.10 0.85 0.05 0.50 0.45 

3 0.10 0.35 0.55 0.55 0.05 0.40 

Table 3.4: Third fitting set of molar composition points for each ternary mixture 
including 4 subsets. 

Component 3 

Component 1 
	

Component 2 

Figure 3.10: Ternary diagram division into four areas for parameter fitting 
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3.6 Conclusions 

Best results were obtained when using the Margules-like equation 3.17. The good 

interdependency of parameters obtained by the equation structure causes the para-

meters to remain approximately constant across the equilibrium surface, except 

near the vertices when one of the component's composition is greater than 80%. 

The difference between equations 3.14 and 3.17 is that activity coefficients become 

explicitly dependent on the composition of other components in the mixture in the 

latter equation. In the area of compositions close to pure components' vertices the 

parameters vary quickly, though smoothly. In these areas the parameters require 

updating. However the ratio of change in the parameter values is so fast that 

almost constant updating will be required, therefore greatly increasing the time 

consumed in the calculation of the physical properties. As discussed in chapter 2 

this will become ineffective and it will be preferable to use the rigorous physical 

property package instead of the simplified model for concentrations greater than 

70% in one component. 

The simplified Wilson-like equations failed to perform satisfactorily. The fit 

obtained for equation 3.20 using least squares was not adequate for any of the 

example mixtures. The relative error between the rigorous value at each point 

and that calculated with the fitted equation was large in all cases. Equation 3.21, 

a more complex version than equation 3.20 could not be fitted using least squares. 

All equations discussed above required one rigorous set of values only. The 

Margules-like equation 3.17, in particular, is linear in the parameters, so it can 

be fitted easily. These features make it convenient to use, since only one fit is 

required for the whole range of compositions in the diagram, excluding the areas 

of composition where the purity is greater than 70%. 

The last equation studied is a completely arbitrary function represented by 
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equation 3.22. It assumes that a correction can be made on the feed activity 

coefficient in a flash calculation. This correction is of the form of a rational 

function, containing three parameters and depending on the feed composition. 

Three rigorous data points are required for fitting in this case. Several different 

sets of points were experimented with, including subsets belonging to predefined 

subregions. The prediction of the liquid activity coefficient obtained was poor in 

most cases. 

The only flash model available through the PPDS interface used requires both 

temperature and pressure to be given. Hence the study of the function behaviour 

across the composition diagram was done for variable temperature to ensure that, 

for each point in the diagram, there was vapour liquid equilibrium at the working 

conditions. There is no temperature term in equation 3.22 to account for tem-

perature variation. Its inclusion would increase the number of parameters in the 

function and, as a consequence, the number of rigorous data points required in 

fitting. However it is only worth considering it if this type of arbitrary function 

can prove to provide a good fit at constant temperature. Results obtained when 

temperature was kept constant show the method proposed is not suitable. The 

same conclusion holds when the equilibrium diagram composition area is divided 

into smaller regions to be fitted separately. 

Although reasonable results were achieved with equation 3.17 it is evident 

how difficult it is to obtain a reliable function to fully describe the component 

activity coefficients in nonideal mixtures. The main difficulty arises from the 

extreme changes in nonideal mixture properties with composition. These systems 

are usually complex in terms of interaction between components in the mixture 

and strongly dependent on composition. This also explains why a more arbitrarily 

based equation such as a rational function correction used in section 3.5 is not 

successful. Equation 3.17 has the advantage of being easy to fit and able to be 

used throughout the composition diagram, except where the concentration of one 
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of the components is greater than 70%. Only one call to the physical property 

package is required to fit the parameters. 



Chapter 4 

Local Approximations for Flash 

Models in Flowsheet Solution 

The conventional way of performing an isothermal flash calculation using a rigor-

ous physical property package, such as PPDS [16] is to simply input feed data, 

i.e. flow and composition, and the operating conditions, i.e. temperature and 

pressure. PPDS will make use of stored rigorous physical property data to calcu-

late the flash output for given data. This can be time consuming, particularly for 

nonideal mixtures. 

One possible way to reduce computing time is to use simplified functions to 

approximate liquid activity coefficients in a rigorous vapour-liquid equilibrium 

model as proposed in chapter 3. 

Simplified functions are intended to replace calculations done by the rigorous 

physical property package by approximating the liquid activity coefficients. As 

shown in chapter 3 it is difficult to find an approximate function and maintain 

the accuracy of its parameters for the full range of compositions in the ternary 

diagram. It is important to include physical considerations since purely arbitrary 

functions are likely to fail with complex mixtures. 

In this chapter instead of approximating physical properties only, whole unit 

models for isothermal vapour-liquid equilibrium calculations are approximated 

ET!] 
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with the same intent of reducing computing time in vapour liquid equilibrium 

calculation for nonideal mixtures. These models are incorporated in a modular 

fiowsheeting program and retrieve all required physical data from the rigorous 

physical property package. Local models can interact with the rigorous physical 

property package in a dual level flowsheeting environment. 

In this chapter two different ways of using dual level fiowsheeting are presented 

and analysed: parallel and inside-out methods. The inside-out method has been 

used successfully before [18].  Both methods make use of approximate physical 

property calculations, using the rigorous physical property package for a bubble 

point calculation only. 

The isothermal flash unit assumes constant relative volatilities are given as 

input data. Hence, the flowsheet material balance is performed in one calculation 

level assuming constant physical properties. The physical properties are calculated 

in a different level by an approximate method. Along with the given temperature 

and pressure the method approximates physical properties for the latest material 

balance compositions, as calculated in the other level. Calculations can be done 

in parallel, i.e. the material balance and physical property levels are converged 

simultaneously always using the most up to date values for each level, or using an 

inside-out structure. In the latter case the physical properties are calculated in 

one level for current values of material balance, then used in an inner level that 

converges the material balance. The newly converged material balance values are 

then used in the outer level where the physical properties are again recalculated 

and checked for convergence. 

A further approximation presented in this chapter is a structural evolution 

approach. The approach uses the techniques mentioned, i.e. the parallel or inside-

out approaches, but starts with a simplified flowsheet including fewer units than 

the original. As the simpler flowsheet converges more units are added and the 

procedure is repeated until the complete flowsheet is solved. 
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The behaviour and efficiency of each arrangement will be tested against the 

conventional approach in which the isothermal flash is calculated completely by 

the rigorous physical property package. This is illustrated with the Cavett problem 

described by Rosen and Pauls [68] and by Westerberg et al. [3]. 

4.1 Isothermal Flash Calculation 

The study of the behaviour of different methods is analysed for isothermal flash 

calculation. The mass balance for an isothermal flash is given by 

Xij  = F Yi  + (1 — F ) Xi 	n, 	 (4.1) 

where x 2 ,1 is the mole fraction of component i in the feed, x 2  and y2  are the 

liquid and vapour mole fractions of component i, respectively, and V/F the vapour 

split ratio in the feed. Replacing 7Ji  with equation 2.8 gives: 

xi,i=xi (ici +i—) 	i=1, ... ,nc 	 (4.2) 

Defining the relative volatility, a 2,, between two components i and j as 

k1  
=(4.3) 

lby 

equation 4.2 can be re-arranged to 

Xj= 

V 	
xiiV 
	z=1,...,n, 	 (4.4) 

krai ,r  + 1 - 

where r is a chosen reference component. The vapour mole fractions can then 

be calculated by 
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7jj = kr i,rXi 	i = 11 
..., Tic 	 (4.5) 

Equations 4.4 and 4.5 can be used to calculate the flash outputs by specifying 

either the equilibrium ratio of a reference component r in the products, kr , or 

a fixed split ratio, V/F. One of these two variables must be specified and the 

other can then be calculated since the vapour-liquid equilibrium is bounded by 

the bubble and dew points. 

As the sum of both the liquid and vapour mole fractions must be equal to 1 the 

following condition can be used to check when convergence of previous equations 

has been achieved, 

	

- 	
yi = 0 
	

(4.6) 

Equations 4.4, 4.5 and 4.6 are used to set up a flash module requiring as input 

the feed's total flow and composition, pressure, relative volatilities, and either a 

reference component equilibrium constant or a fixed split ratio. The outputs will 

be the vapour and liquid streams and either the fixed split ratio or the reference 

component equilibrium constant. 

The relative volatility of the components in the mixture is not known initially, 

hence an estimate must be calculated before the flash material balance is solved. 

An updating procedure for the physical property estimates must be implemented 

in order to converge the flash model. Updating is done in a dual level environment. 

In one level the physical properties are evaluated and in the other the flash mater-

ial balance is solved. Overall convergence is achieved when both levels converge 

simultaneously. The next section illustrates different ways of using a dual level 

flowsheeting environment. 
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4.2 Approaches for Flowsheet Solution 

In this section different methods for flowsheet solution are described. The first is 

the conventional approach where rigorous physical properties are used throughout 

the flowsheet calculation. The other approaches are alternative dual level flow-

sheeting environments making use of approximate physical properties in the flash 

model. 

Conventional Approach 

The conventional approach is a single level method used commonly in process 

fiowsheeting. Physical property calculations are performed solely by the rigorous 

physical property package. The rigorous package is called from within the module 

containing the flash calculation, retrieving equilibrium conditions. This approach 

is used to evaluate the performance of the dual level approaches proposed below. 

Parallel Method 

In the parallel method the rigorous physical properties package is used to per-

form a bubble or a dew point calculation on the liquid or vapour output streams, 

respectively, instead of the full vapour liquid equilibrium calculation on the feed 

stream as in the conventional approach. The bubble or dew point results are then 

used in the flash calculation in conjunction with an ideal correction for the flash 

operating conditions which will be explained in more detail in section 4.3. 

The method relies on the difference between the speed of calculation by the 

rigorous physical property package of the bubble or dew point and that of the 

whole flash. The compromise is the additional number of flowsheet iterations 

required by using approximate physical properties. 
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In the parallel method the flowsheet is solved by calculating both physical 

properties and material balance simultaneously. This ensures that the most recent 

approximations are used in both calculation loops, i.e. it is not necessary to 

converge one loop completely before the other variables can be calculated. In 

normal calculation for each flash model the equilibrium physical properties are 

initialised, usually by approximating them to the feed's. The material balance 

for the whole flowsheet is then calculated based on this approximation and the 

new values obtained for the flash output flows are now used for a new update 

in the physical property calculations. Hence there are two loops in parallel, one 

converging the physical properties and the other converging the material balance. 

The calculation keeps moving from one loop to the other every time a new update 

is generated. It stops when overall convergence has been achieved. 

Inside-out Method 

The same approximation for the physical properties is used as in the parallel 

method, i.e. the rigorous physical properties package is used to perform a bubble or 

dew point calculation only. However, in this case, the two loops of calculation, i.e. 

the physical properties and the material balance, are converged separately. Once 

an approximation is obtained for the physical properties, it is used to converge 

the material balance loop. Once convergence has been achieved the new flowsheet 

flows are used to approximate new physical properties. The cycle repeats itself 

until the physical properties loop has converged. 

The material balance loop is the inner loop because it is converged within the 

physical properties loop, which hence is the outer loop. 

This idea has been successfully used in vapour-liquid equilibrium calculations 

by Boston and Britt [18],  as mentioned in chapter 2. 
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Structural Evolution Method 

In the structural evolution method there is a level of calculation in which a flow-

sheet is 'grown' to its full size. Calculation starts with a simpler flowsheet which 

will be a sub-flowsheet of the one to be solved. Once the simpler flowsheet is suc-

cessfully converged, a unit is added, the flowsheet once again converged and the 

procedure repeated until the full flowsheet is represented and fully converged. The 

level in which each flowsheet is solved can use any of the methods described above. 

Figure 4.1 shows the procedure schematically and appendix B shows an example 

of the application of this method to the Cavett problem. The choice of an ap-

propriate initial flowsheet depends on the units contained in the whole flowsheet. 

Normally one would consider starting with a single unit and more could be added 

as the flowsheet converges for each configuration. It may, however, not always be 

possible or advantageous to start with just one unit, particularly if that does not 

include any recycle streams. It is also important to consider arrangements where 

the flowsheet evolution does not involve any abrupt changes in working conditions 

of the units already considered. Both the physical properties and stream compon-

ent flows will have, at that stage, a good approximation to their final values in the 

complete fiowsheet. This enables convergence to occur faster and more smoothly. 

It also means the number of iterations will be considerably reduced when more 

units are being calculated, reducing the amount of time spent calculating the full 

flowsheet. 
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Figure 4.1: Structural evolution method diagram. 
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4.3 Flash Modules 

The models developed are written in FORTRAN in a modular form, enabling 

their easy addition to a modular flowsheeting package. At present they are tested 

in the flowsheeting package ESSPROS [69]. 

ESSPROS is a package of simple units that uses sequential modular simulation 

of chemical processes doing material balance calculations. No energy balances are 

available yet. ESSPROS is a package built for teaching purposes, but its use and 

capability can be increased if linked to other existing packages. It is written in 

FORTRAN. At the moment the operations available in ESSPROS are: 

Stream operations: definition, loading, storing, creating and deleting. 

Unit operations: mixers, splitters, simple flash for ideal mixtures, reactors 

and separators. 

Iteration which uses direct substitution and has now been extended with the 

Wegstein acceleration method and damped substitution. 

Program construction in ESSPROS is simple. As it is built in modular form, 

it consists of a series of calls to relevant subroutines containing models, stream 

setting, definitions, recycling and printing instructions. The following is an extract 

from a typical code for a flowsheet containing a flash with a recycle as shown in 

figure 4.2. 

nc = 7 

codestring = 1 57,9,8,11,10,56;' 

compnaxnes = 'propane, 1-butene ,butane , 2t-butene , 2c-butene ,pentane;' 

feedflows = 1 10.0,15.0,20.0,20.0,20.0,10.0;' 
initrecycle = '0.5,1.5,6.0,6.0,6.0,4.5;' 
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maxiters = 100 

ppdsstream = 'flashstreaxn' 

viemethod = 3 

splitfraction = 0.5 

call set nc(nc) 

call setcodes(codestring) 

call setnames(compnames) 

call feed(1,feedflows,t,p) 

call recycle(6, initrecycle ,t ,p) 

call setiterations (maxiters) 

call start iteration 

WO 

call mixer(1,6,2) 

call ppdsseparator(2,4,3,ppdsstream,t,p,vlemethod) 

call splitter(3 ,5,6, splitf ract ion) 

uncvgstreams = unconverged() 

if (uncvgstreams <= 0) exit 

end do 

call report streams 
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Figure 4.2: Simple flowsheet diagram of flash with recycle. 

4.4 Physical Property Calculations 

The physical property data required for the calculations are retrieved from PPDS 

through a FORTRAN interface developed by Lababidi et al. [65].  This interface 

is used to link the flowsheeting program containing simple units to a comprehens-

ive database from which physical properties can be easily retrieved and used in 

flowsheet calculations. 

There are several ways of solving an isothermal flash using the tools described 

above. PPDS performs an isothermal flash on a stream given its composition, 

temperature and pressure. This is an effective general way of solving an isothermal 

flash since the user only needs specifying the appropriate VLE calculation method. 

This type of calculation corresponds to the conventional method described in 

section 4.2. 

In dual level flowsheeting, however, flash equilibrium compositions are cal-

culated in local models developed for ESSPROS. In this case the flash will be 

solved by ESSPROS rather than PPDS. However the required physical data will 

be provided by PPDS. The new ESSPROS models are based on relative volatil- 
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ities. For a nonideal mixture the flash is solved using a PPDS bubble or dew point 

calculation on the liquid or vapour output streams, respectively. Thus multicom-

ponent data are obtained and approximated to the flash operating conditions. 

The approximation is done via an ideal correction on the reference component 

equilibrium constant rigorously estimated at bubble or dew point conditions. The 

reference component equilibrium constant, kr , at flash conditions is then approx-

imated via 

kr  - 
Pbp 
 kr,bp 
	 (4.7) 

where Pbp  is the bubble point pressure and kr,bp  is the equilibrium constant for 

the reference component at bubble point. 

Equation 4.7 is derived from an ideal approximation of equation 2.8 assuming 

the activity coefficient equal to unity. The value obtained for kr  is then used in 

the flash model to calculate the material balance and the vapour split ratio with 

the relative volatility values. 

In this study the bubble point calculation from PPDS was used since the dew 

point did not seem entirely reliable. Nevertheless in principle either calculation 

can be used in the models. 

4.5 Case Studies 

4.5.1 The Cavett Problem 

The Cavett problem has been used in the past for studying convergence of accel-

eration methods, e.g. by Rosen and Pauls [68] and Westerberg et al. [3].  It will 

be used here to compare the performance of the parallel, inside-out and struc-

tural evolution methods described in section 4.2, against the conventional method 
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described in the same section. The flowsheet of the Cavett problem and the cor-

responding block diagram for ESSPROS are shown in figure 4.3. It consists of a 

series of four flash units where the liquid product stream of each flash is used as 

an input to the next flash unit. The vapour product is part of the input to the 

previous flash. The feed to the system is mixed with the liquid output from the 

first flash and vapour output from the third flash and then fed into the second 

flash. Products are the vapour output of the first flash and the liquid output of 

the last flash. 

From the description above it becomes clear that this problem has a structure 

similar to a four stage distillation column, with the feed coming into the second 

stage from the top. For such a structure there is more than one possible recycle 

configuration depending on the tear streams chosen, as can be seen in figures 4.4 to 

4.8. Rosen and Pauls [68] studied recycle configurations corresponding to figures 

4.4, 4.5, 4.6 and 4.7. Westerberg et al. [3] use the configuration in figure 4.8 by 

tearing streams 4 and 8. 

The original Cavett problem uses a mixture of 16 components as described in 

table 4.1. The table shows results obtained by Rosen and Pauls [68] translated to 

SI units. It was not possible to retrieve the original paper published by Cavett, 

but in Motard and Westerberg [70] it is confirmed there is a typographical error 

in the original article by Rosen and Pauls. They believe the light product should 

contain 2383.2 lb-mole/hr of ethane as opposed to the 2883.2 lb-mole/hr presented 

in the paper. Bearing this in mind the results can still be used to draw conclu-

sions. Rosen and Pauls [68] used FLOWTRAN and its physical property program, 

PROPTY, in their calculations. They studied the first and fourth recycle config-

urations mentioned above. FLOWTRAN took 54 iterations to converge the first 

configuration in figure 4.4 by direct substitution, whereas the fourth configuration 

in figure 4.7 took 73 iterations. Rosen and Pauls tried using Wegstein acceleration 

every iteration on both decompositions but the error value oscillated. When Weg-

stein acceleration method was used every fourth iteration the first configuration 
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Figure 4.3: Cavett Problem. 
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Figure 4.4: Recycle configuration using streams 6, 9 and 11 
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Figure 4.5: Recycle configuration using streams 3 and 11 
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Figure 4.6: Recycle configuration using streams 3 and 10 
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Figure 4.7: Recycle configuration using streams 3 and 8 
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Figure 4.8: Recycle configuration using streams 4 and 8 

converged after 23 iterations. The second configuration converged in 48 iterations 

when acceleration was applied every fifth iteration, although the convergence curve 

was irregular. 

Westerberg et al. [31 applied the secant method to this example with different 

acceleration steps using a recycle configuration with streams 4 and 8, as shown in 

figure 4.8. Their aim was to test the performance of the secant method when not 

using lower bounding. The secant method failed to converge the recycle configur-

ations used by Rosen and Pauls [68].  Their best results were obtained for delayed 

secant method without lower bounding applied every eighth iteration step. In this 

case the fiowsheet converged after 23 iterations. 

In the present study the Cavett problem structure was used with several mix-

tures to test the dual level models proposed and their applicability. First the 

original 16 component mixture was studied. The results obtained by the differ-

ent models were compared and a comparison was also done with the results from 

Rosen and Pauls and also Westerberg et al. Then a three component system of 

water, methanol and ethanol and a nonideal mixture of seven components with 

different characteristics were used to test the models. 
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moles/s Equilibrium constants at solution 

Feed _J Light j_Heavy Flash 1 Flash 2 Flash 3 J Flash 4 Component 

N2  45.23 45.23 0.000011 5.94 24.6 149.7 620.8 

CO2  626.97 626.86 0.60 1.51 4.64 21.1 72.3 

H2 S 42.85 42.26 0.66 0.89 2.03 8.28 27.1 

Methane 378.22 378.32 0.02 3.09 10.3 52.9 200.1 

Ethane 302.46 364.04 1.83 1.0 2.66 11.2 39.3 

Propane 289.27 239.79 51.04 0.502 0.943 3.29 10.8 

Isobutane 76.28 25.03 51.81 0.31 0.445 1.34 4.22 

n-Butane 194.43 37.8 157.50 0.246 0.342 0.99 3.07 

Isopentane 99.8 4.70 95.19 0.155 0.164 0.417 1.22 

n-Pentane 142.66 4.39 138.25 0.126 0.132 0.327 0.944 

n-Hexane 222.82 1.33 221.54 0.064 0.051 0.107 0.290 

n-Heptane 329.13 0.47 328.69 0.035 0.022 0.039 0.101 

n-Octane 232.89 0.069 232.83 0.017 0.008 0.013 0.033 

n-Nonane 210.73 0.015 210.72 0.009 0.004 0.005 0.012 

n-Decane 105.01 0.002 105.01 0.005 0.002 0.002 0.004 

n-Undecane 153.35 0.0008 153.35 0.003 0.0008 0.0009 0.002 

Temperature (K) 322 311 303 311 322 309 303 

Pressure (bar) 4.39 56.2 1.91 56.2 19.6 4.39 1.91 

Table 4.1: Data and solution for the Cavett Problem from Rosen and Pauls. 
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Figure 4.3(b) shows the block diagram used in both the parallel and inside-out 

methods when PPDS is used to calculate the bubble point only. The dashed line 

connects the flowsheet units to the physical property database. In the case of the 

parallel method the physical properties were converged simultaneously with the 

material balance solution as explained in section 4.2. For the inside-out method 

this is done in two levels where the physical properties are updated in an outer 

level only after the flowsheet has converged in the inner level using fixed values for 

physical properties, as seen in section 4.2. The physical properties are then up-

dated for the newly converged stream flows and used in the next material balance 

convergence loop. 

A preliminary study of the system showed that success in convergence was 

very much dependent on the initial approximation for the flash feed stream. The 

reason for this is that having fixed the flash operating pressure, a feed with flows 

very different from the actual values may fall in an area where no equilibrium 

exists. The resulting zero flows prohibited further iteration. This is particularly 

important if the mixture's boiling range is narrow. After performing tests with 

the alternative recycling structures it became clear that the best structure to use 

is that shown in figure 4.4. One of the main reasons is that it is easier to predict 

an approximate composition for the recycle streams in this case. Stream 4, which 

is the output of flash 2 will contain mostly the lightest components in the feed 

mixture (N2 , CO2 , 1128 and CH4 ) and only small percentages of intermediate 

boiling components. The intermediate and heavier components will be almost 

completely recovered in stream 6. Streams 9 and 11 will contain mostly traces of 

the most volatile components and a small amount of the other components in the 

mixture. However, as a good initial approximation can be determined for the feed 

to the first flash (stream 4) replacing recycle stream 6 by stream 4 in the recycle 

configuration of figure 4.4 is still another option and, after some preliminary work 

on the convergence behaviour of both recycle structures, it was decided to use 

stream 4 as a recycle since it leads to faster convergence. The results presented 
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here are compared with those found by Rosen and Pauls [681, summarised in 

table 4.1. However, differences are expected due to the use of a different physical 

property database. 

As the PPDS version used only allows for single precision the relative error 

tolerance used in the convergence loops was restricted to 1 x iO. 

4.5.2 Results with the Original Cavett Problem 

The original problem as proposed by Cavett uses a mixture of 16 components. 

The results obtained using the conventional and parallel methods were identical 

as expected if both methods performed well. Table 4.2 lists data and results for 

the solution of the Cavett problem using these two methods. 

As in the study of Westerberg et al. it was not possible to reproduce exactly 

the same values as Rosen and Pauls. Physical properties were estimated using a 

different data bank and there is also a question on their material balance results 

as discussed in section 4.5.1. Still the results were similar enough for the other 

components which leads to believe they are acceptable. In comparison to the 

three iteration streams in Rosen and Pauls work, there are a total of seven in this 

work because of the approximate nature of the physical properties calculation. 

Three of the iteration streams are the material balance streams 4, 9 and 11 in 

the flowsheet diagram of figure 4.3(b). The other four correspond to ESSPROS 

physical property streams. They are specially defined streams in ESSPROS for 

each flash unit containing the latest values for the relative volatilities. They are 

represented by streams 13 to 16 in the fiowsheet diagram of figure 4.3(b). 

As the original Cavett problem mixture is nearly ideal the VLE methods for 

ideal mixtures from PPDS were used. The Lee-Kesler-Plöcker method did not 

give good results. It gave results that differed considerably from the other methods 

and warned that the system was close to its critical point. Data retrieved from 

PPDS was considerably different from that retrieved by the other methods and 
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moles/s 

Feed Light 

45.23 45.228 

626.97 612.08 

42.85 36.34 

378.22 378.03 

302.46 287.07 

289.27 157.61 

76.28 15.17 

194.43 25.26 

99.8 3.76 

142.66 3.94 

222.82 1.22 

329.13 0.42 

232.89 0.065 

210.73 0.01 

105.01 0.001 

153.35 0.0004 - 

322 311 

4.39 56.2 

ajj  values at solution 

Heavy Flash 1 Flash 2 
j 

Flash 3 Flash 4 

0.002 18.2 69.6 138.3 175.2 

14.88 4.80 9.54 13.7 15.4 

6.51 3.20 4.80 6.27 6.85 

0.19 10.4 30.7 54.4 66.3 

15.39 3.99 7.33 10.2 11.4 

131.66 1.99 2.69 3.17 3.36 

61.11 1.21 1.30 1.36 1.38 

169.17 1.00 1.00 1.00 1.00 

96.04 0.59 0.47 0.41 0.39 

138.72 0.52 0.38 0.32 0.30 

221.60 0.25 0.14 0.10 0.09 

328.71 0.14 0.058 0.035 0.030 

232.83 0.074 0.023 0.012 0.0096 

210.72 0.039 0.0092 0.0041 0.0031 

105.009 0.021 0.0038 0.0014 0.001 

153.35 0.011 0.0015 0.0005 0.0003 

303 311 322 309 303 

1.91 56.2 19.6 4.39 1.91 

I Component 

N2  

Co2  

1128 

Methane 

Ethane 

Propane 

Isobutane 

n-Butane 

Isopentane 

n-Pentane 

n-Hexane 

n-Heptane 

n-Octane 

n-Nonane 

n-Decane 

n-Undecane 

Temperature (K) 

Pressure (bar) 

Table 4.2: Data and solution for the Cavett Problem obtained by both the 

conventional and parallel methods. 
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there was a warning flag stating the system was close to its critical point. All other 

VLE methods achieved a satisfactory solution, similar to that of Rosen and Pauls. 

Table 4.3 lists the number of iterations for each case when using the conventional 

and parallel methods. As in Rosen and Pauls, the error ci at the ith iteration has 

been taken as 

ej  = max 

where Eij is the relative error for component j at the ith iteration step relative 

to the previous iteration. 

VLE Direct substitution Wegstein (5th it.) Wegstein (3rd it.) 

Method Cony. Par. Cony. Par. Cony. Parallel 

R. K. S. 40 41 20 19 27 42 

P. R. 34 36 19 19 27 31 

R. K. S. (API) 39 41 20 20 25 - 

Table 4.3: Number of iterations for the Cavett Problem using the conventional 

and parallel methods. 

Figures 4.9, 4.10 and 4.11 show the maximum error versus iteration number 

when using the conventional approach for each VLE method and figures 4.12, 4.13 

and 4.14 show the corresponding results for the parallel approach. 

The number of iterations increased slightly when the parallel method was used 

with direct substitution. The performance of both conventional and parallel meth-

ods was similar when acceleration was used every fifth iteration. The number of 

iterations was reduced by nearly 50% in most cases compared to direct substitu-

tion. However, when acceleration was used the parallel method more frequently 

had difficulty in converging, moving into an area where no phase equilibrium was 

found for the first flash. 
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The graphs in figures 4.9 to 4.14 show that with acceleration the error follows 

an irregular path towards convergence. When acceleration is used every fifth itera-

tion the error increases and then is followed by a steep decrease until acceleration 

is used again. This behaviour results in an overall faster convergence, if more 

irregular. A similar effect is found when acceleration is used more frequently but 

then convergence rate is slightly slower and the path is even more irregular. It is 

worth considering acceleration at longer intervals, such as every fifth iteration, to 

improve the convergence rate. The nature of the flowsheet makes convergence to-

wards equilibrium in each flash dependent on its input flow for a specified pressure 

and temperature. Hence sudden variations in the input may lead to unrecoverable 

divergence. 

The methods are converged quickly, in terms of running time, and their dif-

ferences are negligible. Although, contrary to what was expected, the parallel 

method does not produce a shorter computing time for the same number of itera-

tions when compared to the conventional method. This is because, as was found 

later, the bubble point calculation in PPDS takes the same time to compute as 

its own flash calculation. A different physical property package with a lower ratio 

in computing time between the bubble point and flash calculations will produce 

more favourable results for the parallel method, since the number of iterations 

required by both methods is similar, except when Wegstein is used every third 

iteration. 

The inside-out method failed to converge after the preset maximum number 

of iterations. This was surprising since it was expected to be a robust method 

[18]. Figure 4.15 shows the profile of maximum relative error along the iteration 

path. After wide variations during the first three iterations, the error oscillates 

between eight discrete values never achieving convergence. The wide variation at 

the start is due to the material balance not converging after the maximum number 

of iterations. The system then recovers from the poor initial estimates but enters 

a cycle between eight points, both for the physical properties and material balance 
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loops. Applying acceleration does not have any effect on convergence although the 

inner loop no longer oscillates between the same group of values. Tightening the 

relative error tolerance in the inner loop, i.e. material balance, does not have any 

effect either. The reason that this may be happening could be the use of single 

precision to converge the data in PPDS whereas a higher precision is used for 

overall convergence. But the smallest error obtained is of the order iO as shown 

in figure 4.15 which is still two orders of magnitude greater than the specified 

tolerance. The following examples, however, show a different behaviour. 

10000 
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CO 
a) 

Cc 
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0.001 

Redlich Kwong Soave 

Inside-out method -0-- 
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Iterations 

Figure 4.15: Iteration of the Cavett Problem using the inside-out method and 

Redlich Kwong Soave. 

Using the structural evolution approach, the Cavett problem was built up for 

each method starting with flash 1 and adding one flash at a time as described in 

appendix B. The parallel method performs better using a total of 61 iterations 

as opposed to 67 by the conventional method. Table 4.4 shows the number of 

iterations taken by each flowsheet evolution. The parallel method shows faster 

convergence as the flowsheet 'grows' from one flash vessel to the full process. 
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However, once again convergence is very much dependent on the initial guesses for 

recycle streams and could not be achieved by the parallel method using the Peng 

Robinson VLE method. The structural evolution method proved to be a lengthier 

way of calculating the complete flowsheet in terms of overall number of iterations. 

Although the number of calls to PPDS is reduced during the early iterations when 

the flowsheet does not yet include all units, the number of iterations still required 

in the last step, when the whole flowsheet is being calculated, makes this method 

more expensive in terms of computing time, even for the fastest approach. The 

inside-out method failed as expected from the results obtained previously. 

4.5.3 Results with a Mixture of Water, Methanol, Eth-

anol 

The results obtained for this mixture are rather different. The Wilson VLE method 

is the only one that works with this mixture. A closer look through the boiling 

ranges computed by PPDS for the same mixture with the different VLE methods 

shows a remarkable variation from method to method. As expected Redlich Kwong 

Soave, Peng Robinson and Redlich Kwong Soave (API) show similar intervals, 

but these are different from Wilson's, UNIFAC and UNIQUAC. Furthermore, all 

methods except Wilson showed strange behaviour for this mixture. The mixture 

would flash in sudden peaks for small temperature intervals and the iteration 

variables oscillated between zero and other values, never converging. 

The data used in the Cavett structure for this mixture and results obtained 

can be found in table 4.5. The choice of temperature and pressure for each flash 

was done by trial and error until phase separation was found. As a result not much 

separation was obtained in the light and heavy products. However a comparison 

on the methods behaviour can still be done. 

Convergence with the Wilson method is fast both when the conventional and 

parallel methods are used. Using direct substitution the conventional and the 
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Number of Number of iterations 

VLE flash vessels Conventional method Parallel method 

Method in structural Dir. Wegstein Wegstein Dir. Wegstein Wegstein 

evolution Subst. 5th it. 3rd it. Subst. 5th it. 3rd it. 

1 2 2 2 5 5 5 

2 6 6 7 5 5 5 

R.K.S. 3 24 15 15 13 10 8 

4 35 31 34 37 14 19 

Total 67 54 58 61 34 37 

1 2 2 2 - - - 

2 6 6 7 - - - 

P.R. 3 20 15 13 - - - 

4 32 32 23 - - - 

Total 60 54 45 - - - 

1 2 2 2 5 5 5 

2 6 6 7 5 5 5 

R.K.S. 3 21 10 15 13 10 8 

(API) 4 37 22 33 18 14 18 

Total 66 40 57 41 34 36 

Table 4.4: Number of iterations taken by the structural evolution method coupled 
with the conventional and parallel methods. 
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moles/s a23  values at solution 

Feed Light I  Heavy Flash 1 1  Flash 2 1  Flash 3 1  Flash 4 Component 

Methanol 40.0 39.90 0.10 1.0 1.0 1.0 1.0 

Ethanol 30.0 29.82 0.18 0.74 0.68 0.66 0.64 

Water 30.0 29.29 0.71 0.38 0.32 0.31 0.29 

Temperature (K) 400 470 375 470 400 390 375 

Pressure (bar) 2.0 24 1.6 24 4.73 2.75 1.6 

Table 4.5: Data and solution for the 3 component mixture Cavett Problem 

obtained by all methods using Wilson data. 

parallel methods take 17 and 19 iterations, respectively. The lowest number of 

iterations was found using Wegstein every fifth iteration with only 9 iterations 

required for the conventional method and 13 for the parallel method. Using accel-

eration every third iteration required 13 iterations for conventional method. The 

parallel method did not converge in this case, as can be seen in figure 4.16. The 

error increased after iteration 9, when acceleration had just been used, and the 

system diverged to distant values and was no longer able to readjust and achieve 

convergence ending up with a solution of no phase split for the first flash in the 

flowsheet. A little improvement was found when acceleration was used every fifth 

iteration. The same behaviour observed for the previous mixture when accelera-

tion was used is observed here. This time the shoot up in the error, caused by 

acceleration every third iteration, led to an unrecoverable situation. This confirms 

that acceleration works only if used carefully. 

The inside-out method converged the physical properties loop at the second 

iteration making this method the fastest to converge. It had been seen before that 

there was little variation in the relative volatilities for this case since as long as the 

system stays clear of the azeotrope conditions it can be considered nearly ideal. 

This contributed to the fast convergence of the physical property loop, i.e. outer 
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Figure 4.16: Convergence of the three component system using the parallel 

method. 

loop. It can also be due to the lack of effective separation of the feed into a light 

and a heavy product for the operating conditions. 

In this mixture the structural evolution method worked with the conventional 

method only. The total number of iterations required was 48 and 16 iterations 

were required at the last stage of structural evolution, similar to the total number 

of iterations for the previous methods, as table 4.4 shows. The difficulties and 

type of physical data contained in PPDS for this mixture account for these poor 

results, since in most cases the system diverged to areas where there is no phase 

split and was unable to recover. 

4.5.4 Results with a Seven Component Nonideal Mixture 

The data and results obtained for this mixture can be seen in table 4.6. 
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moles/s aij  values at solution 

Feed Light I  Heavy Flash _1]_Flash 2 Flash 3 Flash 4 Component 

CO 10.0 8.48 1.52 344.2 111.6 400.4 494.4 

HCN 10.0 0.14 9.86 3.94 2.74 3.98 4.24 

Methanol 10.0 0.02 9.98 1.0 1.0 1.0 1.0 

Acetone 10.0 0.02 9.98 1.36 1.05 1.35 1.40 

Acetic Acid 10.0 0.0003 10.0 0.123 0.131 0.114 0.111 

Methyl Ether 10.0 1.21 8.79 19.83 11.18 20.8 23.06 

Methyl Acetate 10.0 0.03 9.97 1.44 1.21 1.52 1.57 

Temperature (K) 350 320 310 320 350 315 310 

Pressure (bar) 10.0 30.0 6.0 30.0 20.0 7.0 6.0 

Table 4.6: Data and solution for the 7 component mixture Cavett Problem 

obtained by all methods using Wilson data. 

Table 4.7 summarises the results obtained with the different VLE methods. 

Redlich-Kwong-Soave is only used for reference. In fact results obtained with it 

assume an ideal mixture so they will not be correct and flows are actually different 

from the results obtained with Wilson. Given this is a nonideal mixture only the 

Wilson, UNIFAC and UNIQUAC VLE methods could be used effectively. However 

for the latter two methods PPDS had only ideal data stored for the components 

so the results obtained are ideal and therefore different from those obtained by 

the Wilson equation. 

For the Wilson method the system converged quickly and again there was no 

difference between using the parallel and conventional methods. In this case accel-

eration did not have any effect. Once again direct substitution gives a smoother 

iteration curve whereas acceleration curves are more unstable. The inside-out 

method converged quickly. It took five outer loop iterations to converge the phys-

ical properties. The number of iterations required in the inner loop to converge 
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VLE Direct substitution Wegstein (5th it.) Wegstein (3rd it.) 

Method Cony. Par. Cony. T  Par. Cony. Par. 

R.K.S. 8 - 7 - - 7 

Wilson 8 8 8 8 9 9 

UNIFAC 8 8 8 8 9 9 

UNIQUAC 8 - 7 - 9 - 

Table 4.7: Number of iterations for the Nonideal Cavett Problem using conven-

tional and the parallel methods. 

the material balance decreased very quickly after each outer loop iteration as table 

4.8 shows. 

Outer loop 

Iteration number 

Number of inner 

loop iterations 

1 8 

2 6 

3 3 

4 2 

5 2 

Table 4.8: Number of iterations required by the inside-out method 

The structural evolution approach worked with the conventional method only. 

The last stage of flowsheet evolution took the same number of iterations as the 

conventional method on its own. So again, there was no gain in using structural 

evolution. 
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4.6 Conclusions 

In this chapter methods were presented to solve flowsheets containing isothermal 

nonideal phase separation steps. They are used in a dual level flowsheeting envir-

onment where the physical properties are approximated and solved in conjunction 

with the material balance. The intention behind using a dual level flowsheeting 

environment is to reduce computing time by performing some calculations loc-

ally in a simplified manner. However the results obtained were not completely 

successful. 

Two different strategies have been presented: the parallel and inside-out meth-

ods. Their performance was compared against the traditional approach where the 

full equilibrium calculation is done by the rigorous physical property package. A 

third method using a structural evolution approach was also studied. The per-

formance of the methods has been tested using the Cavett structure with several 

mixtures, with varying degrees of nonideal behaviour. It was also possible to study 

the behaviour of the methods using different convergence algorithms. 

The parallel method using local approximations had a performance comparable 

to the conventional method. This did not translate to faster running times as 

expected when using local calculations because PPDS took the same amount 

of time to perform a bubble point calculation as to perform an isothermal flash 

calculation. It is worth, however, testing the parallel method with a different 

rigorous physical property package where the ratio of calculation rate between 

bubble point and isothermal flash is smaller. This test could not be implemented 

in the current work because, at the time, there was no other package available to 

the author. The modular form of the models developed makes them easy to plug 

into other software with minimum transfer work. 

The inside-out method was not successful for the original 16 component mix- 
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ture. The error curve showed a cyclic behaviour, in which the error oscillates 

between a distinct set of values. An analysis of the errors for each variable show 

that each converged material balance loop originated a new set of distinct values 

for the relative volatilities in a sequence of eight different solutions that repeated 

themselves without achieving the required accuracy between each converged solu-

tion. However the method worked well and proved to be very fast for the other two 

mixtures studied. Results show that this method is fast and converges efficiently 

to the final solution when used for nonideal mixtures. However it is not absolutely 

reliable since it does not always guarantee convergence will be achieved. 

This method differs from that of Boston and Britt [18] in the way the reference 

component equilibrium constant is calculated. As seen in chapter 2 they assume a 

simplified function of temperature which includes two parameters that are largely 

independent of temperature. Later Boston [19] included a third parameter to 

account for pressure dependency in nonideal mixtures. In this work an ideal 

approximation for the pressure correction is used of the form of equation 4.7. 

For an isothermal flash, no temperature correction is performed. It is expected 

that such an approximation gives a good estimate of the value for the reference 

component equilibrium constant. It is also possible that this lack of convergence 

has to do with the precision required in ESSPROS which is greater than that 

used by PPDS. 

The use of Wegstein acceleration is justified on an infrequent basis. It causes 

irregularity in convergence but reduces the number of iterations considerably when 

used every fifth iteration. It should be used with caution because frequent accel-

eration may cause the system to diverge. 

There was no noticed gain in using the structural evolution method. It con-

verged quickly in the first steps when simpler flowsheets were being considered. 

This, however, did not produce better estimates for the recycle streams associated 

with added units and so did not decrease the number of iterations required to 

converge the final flowsheet. In fact the number of iterations was basically the 
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same in the last stage of structural evolution, when the full flowsheet was calcu-

lated, as when no structural evolution was used. Some mixtures even experienced 

problems in converging for the new estimates. This is related in particular to the 

kind of components in the mixture, as in the case of the ternary mixture of wa-

ter, methanol and ethanol. The models cannot cope with great variations in the 

feed when the temperature and pressure are fixed. In these cases, particularly for 

narrow boiling mixtures, the estimated flash feed composition may fall in a region 

where no vapour liquid equilibrium exists, making it impossible for the algorithm 

to recover due to lack of new values for the physical properties in the new iteration 

step. 

In summary, for the cases studied, the best results were obtained by the con-

ventional and parallel methods accelerated every fifth iteration. Unfortunately no 

gain was found in terms of computing time for the parallel method, due to the 

inefficiency of the bubble point calculation in PPDS. It would be worth doing the 

same study with a different rigorous physical property package to evaluate this. 

The results obtained in this chapter and in chapter 3 show how difficult it is 

to obtain a reliable method using approximate physical properties to solve the 

separation of nonideal mixtures. Given the high interdependency of components 

in nonideal mixtures, it is extremely important to have accurate values for the 

physical properties, which implies the need for a robust and reliable way of cal-

culating them. As was stressed before in this work, time is an important factor 

and is strongly related to the frequency with which the properties are calculated 

in flowsheet simulation and synthesis. 

The results so far in this work show how critical the use of accurate physical 

properties is to successfully simulate nonideal separation systems. Nevertheless 

their calculation is an important slice of the simulation time required. The other 

potential time consuming factor is the use of detailed models to accurately and 

completely simulate and design a separation unit. The remainder of this work will 
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discuss the development of a shortcut procedure for nonideal mixture separation 

that is thermodynamically rigorous. 



Chapter 5 

A Thermodynamically Rigorous 

Shortcut Procedure for Nonideal 

Distillation 

Work to date as described in chapter 2 shows the complexity and lengthiness of 

rigorous simulation and synthesis for the separation of nonideal mixtures. The 

complexity of physical properties of nonideal mixtures and their influence on the 

separation process do not lend themselves easily to the development of shortcut 

methods for use in design. On the other hand the computing demand justifies 

research into the development of shortcut methods for the first stage of design. 

The areas of greatest time consumption are: 

• Physical property calculation. 

• Full rigorous simulation of the separation process. 

Thus far this work has looked into ways of reducing the amount of comput-

ing time by approximating component physical properties. This has proved to 

be a difficult task and the results highlighted how important it is to use accurate 

physical properties in order to obtain reliable and fast convergence in simulation. 

126 
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It becomes more crucial in the synthesis of nonideal distillation processes. Vari-

ous designs must be evaluated under different operation conditions, making the 

effective use of approximate physical properties even more difficult. 

The other potential time reducing factor is the use of shortcut correlations 

to avoid a time consuming rigorous simulation. There are well known shortcut 

methods both in the form of correlations and in graphical form [71] mainly used 

for ideal and near ideal mixtures. In particular correlations such as Underwood's 

equation for the minimum refiux [72] and the Fenske equation for the minimum 

number of stages [7] are usually employed assuming physical properties will remain 

constant along the column. This assumption invalidates their use for nonideal 

systems. 

The use of shortcut correlations also implies that a rigorous detailed simulation 

will be required at a latter stage to obtain the complete design and specifications. 

Hence a shortcut procedure should be viewed as a fast tool to eliminate the bulk 

of unwanted solutions and provide the user with the best candidates to be worked 

on in detail. Some authors, e.g. Smith and Pantelides [62],  consider it convenient 

to have a tool capable of making all the decisions using complex rigorous models 

to design a process in detail. Such a tool would retrieve a single optimal fiowsheet. 

Their reasoning is that approximate methods, if not accurately defined, may lead 

to structures that may not always be feasible to operate, or may overlook other 

feasible structures. However it also means that the user will rely completely on 

the final solution presented and will have little input on how it is achieved. Other 

authors such as Wahnschafft et al. [36] [59] and Malone and Doherty [58] agree 

that it is useful to have a first stage of synthesis using heuristics and shortcut 

methods to decide on the structure, at the same time allowing the user some 

control. Such a procedure screens off the bulk of unwanted alternatives in a small 

amount of time, in comparison to the full rigorous simulation. As a result the 

synthesis procedure retrieves a set of best solutions found, which the user can 

then refine. 
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Recent developments in the understanding of nonideal separation behaviour 

have enabled more research into the use of heuristics and shortcut calculations. 

The resulting small set of alternative designs can then be refined by the user, taking 

into account knowledge and facts specific to the particular problem. At this stage 

a fully rigorous simulation tool can be used to decide on the final design. Although 

previous authors have made frequent use of heuristics, it is important to keep them 

to a minimum to maintain the required degree of rigour and accuracy for the 

preliminary design, while employing techniques that will shorten the computing 

time required. 

The present work puts the previous considerations into practice by using a 

thermodynamically rigorous shortcut procedure. Figure 5.1 shows the schematic 

of the proposed procedure. The design variables generated are the number of 

stages, refiux ratio, heat requirements and costs. The refiux ratio calculation is 

based on the minimum reflux ratio calculated by the Underwood equation using 

rigorous physical properties at the feed. Section 5.4 describes the minimum refiux 

calculation in more detail. The actual reflux ratio for the column is then calculated 

with a reflux factor provided by the user. The minimum number of stages for the 

column is obtained via an infinite refiux calculation, which is an iterative procedure 

and will be described in section 5.1. The actual number of stages is calculated via 

the Gilliland correlation [8].  The cost correlation used is from Rathore et al. [73] 

and is described in chapter 6. 

5.1 Infinite Refiux Calculation 

A column operating at infinite refiux can be shown graphically by the distillation 

lines described in chapter 2, section 2.6. Although this is not a practical separa-

tion condition, it has interesting qualities that are useful for shortcut calculations. 

Apart from giving an operation profile it includes a material balance around the 
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Figure 5.1: Structure of rigorous shortcut procedure. 
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column corresponding to a feasible operation point. Furthermore, given the com-

paratively small dimension of the flows in and out of the column in relation to 

the infinite reflux, the number of feeds and their location are irrelevant for the 

calculations. 

The operation inside the column is equivalent to that of total reflux, involving 

the same stage-to-stage and equilibrium equations, viz 

Yi,j = Xi,j+i 
	

(5.1) 

yi j  = kx,2 = 
flc 

air,jXij 
	 (5.2) 

k=1 

where i is the component number from 1 to n and j is the tray number from 1 

to m counting from the bottom. The variables x and y are the liquid and vapour 

mole fractions, respectively, k2 ,, the equilibrium constant as defined by equation 

2.8 and 0ir,j  the relative volatility with respect to a reference component r, as 

defined by equation 4.3. 

In addition there are n  material balances around the column, viz 

f = d2  + b 2 	 (5.3) 

where f2, d2  and b2  are the partial flows of component i in the feed, distillate 

and bottoms, respectively. 

The compositions at the top stage, Yi,m,  and bottom stage, x 2 , 1 , and the cor-

responding component flows, d2  and b2  are related by 
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di  
Yi,m = flc 	= Yi,d 	 (5.4) 

di  

bi  
xi,1 = 	= Xj,b 	 (5.5) 

bi  

Substituting Yi,j  given by equation 5.1 in equation 5.2 for two key components, 

light key, 1, and heavy key, h, the following relation is obtained: 

xl,j+l = cEl,3 xl,j 

Xh,j+1 	cxh,j Xh,j 
(5.6) 

Hence, 

Yh,d 	Xh,b j =i Ceh,j 	
(5.7) 

If the component relative volatilities are constant across the column, equation 

5.7 reduces to the Fenske equation: 

(ahj 

\
= 	 (5.8) 

Yh,d 	Xh,b 	/ 

From equations 5.4 and 5.5 it follows that 

Yi,ddi 	
(5.9) 

Yj,d 	d3 
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Xj,b - b 

Xj,b - b3  
(5.10) 

So for any component i =,4 h 

dh 	bh j=1 ahj 
	 (5.11) 

which can be re-written as 

b2 	bh j=1  ah, 
	 (5.12) 

From the equations above there are 

• n component material balances in equation 5.3. 

• (n - 1) equilibrium equations in equation 5.11. 

If the component flows in the feed are known there are 

• (2 x n) unknowns, d2  and b2 . 

• 1 unknown number of stages m. 

Hence there are a total of (2n - 1) equations and (2nc + 1) unknowns. If two 

other variables are specified the remaining unknowns can be determined. Typical 

specifications are 

• In design: two product flows, concentrations or recoveries. 
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. In simulation: one product flow, concentration or recovery and number of 

stages. 

The primary aim of this study is to produce a model that will be used in 

design and synthesis of processes. Hence a procedure must be developed for use 

in the design of distillation columns. The development of such a procedure will 

be discussed in the next section. 

5.2 Algorithm 

The rationale described in section 5.1 is used to implement an algorithm to calcu-

late the minimum number of stages for a nonideal distillation column. As seen in 

section 5.1 two degrees of freedom remain, hence two variables must be specified. 

The variable to calculate is the minimum number of stages, m, which appears in 

equation 5.12. In order to calculate m it is necessary to know the component flow 

rates and relative volatilities for each stage. The relative volatilities vary from 

stage to stage. Their rigorous calculation depends on the mixture's composition 

for each stage, and hence on the component flows. But the composition is not 

known for any stage, including either extreme of the column. Hence an initial 

estimate is required for the calculations. Iteration proceeds from there until the 

physical properties and the material balance across the column are solved, thus 

obtaining the solution for m. 

In order to facilitate the calculation of the component flows across the column, 

the two specified variables were chosen to be the recoveries of two components, 

light key, 1, and heavy key, h. The recovery for component i, ri  is defined as 

di  = 	 (5.13) 
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From the flows relationship given by equation 5.3, equation 5.13 can be re- 

written as a function of the product flows, viz 

_ r 
- 1 - ri  

(5.14) 

Also the material balance equation 5.3 can be rearranged by dividing bi  on 

both sides, viz 

b A 
 di 

i- 1+ 
bi  

(5.15) 

It is more convenient to write the equation in this form since it gives the ratio 

d/b, which also appears in the nonideal Fenske equation 5.12. 

The solution for m is obtained at the point where the extreme points of the 

infinite reflux profile coincide with the material balance across the column. Hence 

the iterative calculation can start at one extreme of the material balance profile, 

i.e. tops or bottoms composition. The stage by stage infinite reflux calculation 

will proceed from there until the specified recovery is achieved. At this point, if 

the system has converged, the composition of the infinite reflux profile for this 

stage should coincide with the corresponding material balance composition. 

5.2.1 Initial Estimate 

Given that both the components flows and their relative volatility are unknown 

across the column and must be iterated upon, an initial estimate is required to 

start up the procedure. 
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An initial estimate for the tops and bottoms components flows can be obtained 

assuming ideal physical properties. This assumption provides an analytical solu-

tion by using Fenske equation 5.8 which can be re-written in terms of flows as 

follows: 

d1 	dh (L!L) m 	 (5.16) 

Since, in this case, the physical properties are constant, it can be further 

assumed they are equal to those of the feed. Hence they can easily be calculated 

using a rigorous physical property package. 

The ratios dh/bh  and d1 /b1  can be easily calculated using equation 5.14 for 

the specified light and heavy key component recoveries. These two ratios plus the 

physical properties calculated for the feed provide a first estimate for the minimum 

number of stages assuming an ideal mixture. Equation 5.16 can then be used again 

to calculate all d2 /b2  for other components in the mixture, using the calculated m 

and one of the key component ratios. Once all ratios are calculated the actual 

flows bi  and di  can finally be obtained with equation 5.15. 

The calculation above provides the necessary initial estimates for the algorithm 

explained below. These are the bottoms and tops component flows to start the 

stage by stage calculation and check whether the lines intersect at the other end. 

5.2.2 Calculation of the Minimum Number of Stages 

The stage by stage calculation can start at either end of the column. This will be 

determined by which component is being separated from the mixture, since the 

required recovery may not be achieved for the other key component at the other 

end of the column. 
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Tithe tops are chosen, then an estimate must be provided as described above. 

The stage by stage calculation will then proceed as a series of dew point calcula-

tions until the required recovery for the key component is achieved. The flows are 

calculated for each stage and compared to the estimate obtained for the bottoms 

by the material balance. They must coincide for convergence to be achieved. Al-

ternatively the calculation can start at the bottoms but follow the same rationale. 

For illustration it will be assumed that the calculation will start at the bottom 

of the column and the initial flow estimate has been calculated as detailed in sec-

tion 5.2.1. In this case the bubble point conditions are calculated for the bottom 

flow via a rigorous physical property package. The bubble point vapour compos-

ition is used to calculate the top product flows for this stage. This calculation is 

done in the following way. The amount of light key required in the tops is known 

and calculated from equation 5.13. The flow of heavy key has been fixed and its 

amount in the bottoms has been estimated as bh.  Thus dh can also be estimated. 

By definition in equation 5.4 

dh 	d1 	d, 

Yh 	Yt 	Yi 
(5.17) 

Hence all component flows can be calculated from the stage vapour composition 

and fixed dh. A value for d1 is obtained for the current stage, which will be 

compared to the specified value obtained from equation 5.13. It is now possible 

to decide whether the required recovery for the light key component has been 

achieved for the current stage or if one more stage should be added. As the 

calculation is done assuming equilibrium has been reached at each stage under 

infinite reflux conditions, the liquid flow in the stage above is known and equal 

to the vapour flow coming from the previous stage. Repeated stage to stage 

calculations continue until the required light key recovery is achieved. At this 

point the other component flows are checked for convergence against the estimated 
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material balance flows. This step corresponds to checking if the extreme points 

estimated for the material balance and those of the infinite reflux curve intersect. 

If this is the case calculation is complete. However it will only happen after 

the physical properties have converged because only then will the correct flow 

estimates be obtained. 

If convergence has not been achieved yet, the values for the flows bi  and di  will 

now be estimated using equation 5.12 with the values obtained for the physical 

properties in each stage during the previous iteration and the new number of 

stages, m. 

Since rigorous physical properties are used at all times the method should 

converge easily, as was verified in chapter 4 when rigorous physical properties were 

used. The performance of this shortcut procedure will be evaluated in chapter 6. 

The main steps of the algorithm are summarised below: 

j = 1 (start at bottom of column) 

Perform a bubble point calculation using a rigorous physical property pack-

age to obtain Yi,j. 

Store the component relative volatilities, ajr,j and the stage vapour and 

liquid compositions. 

Calculate top product flows d2 ,3  which would be achieved for this stage using 

equation 5.17. 

Check if calculated light key flow (d1 ,3 ) is greater or equal to the specified d1 

as calculated by equation 5.13. 

If previous condition is true this is the current estimate of column size, i.e. 

m = j. Move to step 8. 
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If the condition is false add one more tray to the column, i.e. j = j + 1, and 

go back to step 2. 

All flows from the column d2 , i 0 1, h are now known. Check these against 

the material balance equation 5.3 with the estimated b. If it meets the 

balance then finish. 

If not, re-estimate b1  by obtaining an improved ratio d/b2  for i 0 1, h from 

equation 5.12 with values obtained for m and cejj1ahj  in the previous iter-

ation. 

Calculate new bi  from equation 5.15. 

Go back to step 2. 

5.3 Azeotrope Detection 

The degree to which a mixture is nonideal can be measured by the deviation of 

the activity coefficient from unity for each component. This deviation in turn 

influences the component equilibrium constants. Wahnschafft [36] describes a 

simple procedure to determine binary azeotropes. The procedure uses equilibrium 

constants for the two components at infinite dilution in each other. Its success 

depends on using a reliable method such as UNIFAC [ii] for physical property 

calculation. 

The calculation of equilibrium constants at infinite reflux is illustrated with 

aid of figure 5.2. The figure shows the bubble and dew point curves for a mixture 

containing acetone and chloroform. It shows a maximum boiling azeotrope at 

atmospheric pressure. The equilibrium constant of acetone at infinite dilution 

in chloroform is lower than one. But the equilibrium constant of chloroform at 

infinite dilution in acetone is also lower than one. Following the same idea, in 
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a mixture with a minimum boiling azeotrope both values would be greater than 

one. According to Wahnschafft [36] this criterion is reliable since it should only 

fail for binary mixtures with multiple azeotropes, an extremely rare phenomenon. 

He includes a third rule in that a heteroazeotrope exists when the equilibrium 

constants at infinite dilution are greater than 10. However this is a heuristic rule 

derived from numerous case studies. 
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Figure 5.2: Bubble and dew point curves of a mixture of acetone and chloroform 

showing a maximum boiling azeotrope at 100 kPa. 

More recently Fidkowski et al. [74] have introduced a mathematical, rather 

than physically based, method for identifying azeotropes of any order. The pre-

diction of azeotropes is defined as a multi-dimensional root finding problem. They 

propose a homotopy method to solve the roots of 

y—x 2 =0 	i=1,...,nc -1 	 (5.18) 
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where x 2  and y2  are the liquid and vapour compositions in equilibrium, re-

spectively, for component i. Equation 5.18 has as roots all pure components and 

azeotropes. 

The homotopy method introduces a deformation by a homotopy parameter h, 

thus defining an artificial equilibrium function 

Pvp,i 

	

h,,) + h] __i 	 (5.19) 

where 7i  and Oi  are the activity and fugacity coefficients, respectively, for 

component i. P p ,i  is the pure component i vapour pressure and P the system's 

pressure. 

For /i = 0 equation 5.19 reduces to Raoult's law and for h = 1 the nonideal 

relation shown in equation 2.8 is obtained. The physical properties can be calcu-

lated using a suitable VLE method, such as UNIFAC or Wilson [ii].  They then 

use a homotopy continuation method and solve 

—x 2  =0 	i = 	n, — 1 	 (5.20) 

in terms of bifurcation theory. Details on the mathematical particulars can be 

found in the paper by Fidkowski et al. [74] and references quoted therein. 

The graphical representation of this method is straightforward. However, ex-

perimental data is still required to fully justify the claims that the method can 

fully determine all azeotropes in a given mixture for more complicated cases. 

In a different approach Schembecker and Simmrock [75] describe a stand-alone 

system called AZEOPERT intended to be used in synthesis. The system has five 

different levels of operation with different degrees of accuracy. It includes a data-

base of about 20,000 azeotropes and heuristic rules formulated on the basis of case 

studies from components in the database and results from literature. Although 
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it is not specified if higher order azeotropes can be determined, all the rules and 

procedures are made for binary azeotropes. This system is reliable in that it tries 

to include sufficient experimental data to provide accurate azeotrope prediction, 

but the use of heuristic rules limits its use and reliability for mixtures of un-

known behaviour, given the unpredictability of nonideal mixtures. Furthermore, 

no mention is made of effects of pressure on azeotrope behaviour. 

In the current work only mixtures with binary azeotropes are considered. 

Hence the procedure used by Wahnschafft [36] is sufficient and has been chosen 

as an efficient way of identifying azeotropes. 

5.4 Calculation of Minimum Reflux Ratio 

A method for calculating the minimum reflux ratio has been developed by Do-

herty and coworkers [30] [51] [52] [53].  Their approach is restricted in that it is 

only valid for splits where either the lightest or heaviest components are separated 

as a high purity stream. It also includes a trial and error procedure and the com-

plete rectifying and stripping profiles are designed during this procedure. They 

include, however, some interesting ideas. Levy et al. [30] developed an approxim-

ate method for nonideal and azeotropic distillation that becomes exact for ideal 

mixtures, reducing to the Underwood method. It assumes constant molar liquid 

flow rates in both sections of the column, constant molar flow rate of vapour, sat-

urated liquid feed and theoretical stages. The basis of this procedure is a design 

method developed by Dongen and Doherty [35] in which the column is approx-

imated by the set of differential equations that have been discussed in chapter 2. 

This method is applied in a trial and error procedure where the iterative variable 

is minimum reflux. The condition for minimum reflux is given by the reflux ra-

tio for which one of the profiles (rectifying or stripping) just ends as it touches 

the other profile (stripping or rectifying). The argument for their method is as 
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follows: if the product compositions, as well as the feed, are specified the profiles 

can be calculated starting at the column extremes and moving in the direction 

of the feed stage. Geometrically they show that the condition of minimum refiux 

in ideal mixtures is that the tangent to the saddle pinch profile at the feed pinch 

point is a straight line through the feed composition. This is the foundation for 

the algebraic method. For ideal mixtures it constitutes a search for the value of 

reflux ratio which makes the feed pinch point, saddle pinch point and the feed 

composition point collinear. 

Although the method is correct for ideal mixtures, it can only be used as an 

approximation for nonideal mixtures since the saddle pinch point profile is no 

longer linear. They claim the approximation is still good and add a few additional 

rules for the case of azeotropic mixtures which contain distillation boundaries. 

These rules are related to boundary crossing which is only allowed if it is done 

from the concave side of the boundary. 

The method was later extended by Levy and Doherty [51] to be used in 

columns with two feed streams. In this case there are pinch points in each section 

of the column, giving a total of three. They determine which is the controlling 

feed composition to eliminate one point and apply the method as before, using the 

ideal approximation again. All assumptions made in the previous work by Levy 

et at. [301 remain. 

In a continuation of this work the assumption of constant molar overflows and 

saturated liquid feed were removed by Knight and Doherty [52] who considered 

non-negligible heat effects. Energy balance equations are thus added to the pre-

vious method by Levy et at. [30].  The calculation is done in the same way, by 

iterating on the reflux ratio value and the ideal approximation of collinear points 

is still used for nonideal mixtures. In the examples shown the errors reported were 

of the order of 5%. 

Julka and Doherty [53] followed up on the previous work from Doherty and 
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coworkers [30] [52]. They reintroduced the restriction of constant molar overflows 

but extended the method for quaternary mixtures and presented a proof of its 

validity to multicomponent mixtures of any number of components. They called 

their method the zero volume method. Instead of three composition points, i.e. 

feed and saddle pinch points and feed composition, three composition vectors are 

obtained comprising the feed point and pinch point concentrations. For an ideal 

mixture these vectors must be coplanar. For nonideal mixtures they make the same 

approximation, as previously done by Levy et al. [30] for the three component 

case. The method is exact for constant relative volatilities and reduces to the 

Underwood method as a limiting case. 

While the methods discussed above merit consideration for the geometric in-

sight on the calculation of the minimum reflux ratio for nonideal mixtures, they 

still contain several assumptions and are limited to two different algorithms valid 

only for certain types of splits. This, allied to the fact that they are trial and 

error methods requiring the calculation of the column profile at each step, justifies 

continuing the search for other more suitable methods for the calculation of the 

minimum reflux ratio in the distillation of nonideal mixtures. 

Recently BlaB and coworkers [76] [77] have developed shortcut models for the 

minimum reflux ratio calculation in nonideal distillation. Their methods are inten-

ded to be used in the first stages of synthesis, hence the choice of a fast shortcut 

procedure. The first publication by Koehler et al. [76] describes an empirical 

method that does not require the assumptions on ideal boiling or enthalpy beha-

viour and is valid for multicomponent mixtures, irrespective of the type of split, 

as long as no mixing gaps occur. The method does not use rigorous simulation 

or column iteration procedures. A reversible distillation model is used, which is 

reversible in the limit where no entropy production occurs. This brings in certain 

conditions such as 
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• All the heat to and from the column must be transferred at zero temperature 

difference. 

• No pressure drop is allowed along the column if no means for reversible 

pressure adjustment exist. 

• No contact of non-equilibrium liquid and vapour is permitted anywhere in 

the column. 

The method developed can only be used in columns with a single feed and 

two outputs and assumes that the products are given and can be obtained by 

distillation. The key components must be neighbouring to each other. 

Instead of the collinearity criterion they propose a general angle minimisation 

criterion to identify the physically meaningful pinch point pair. Minimisation 

then proceeds using the light key component as the search variable in the stripping 

section as opposed to the minimum reflux as used by Doherty and coworkers. BlaB 

and coworkers choose a variable which is known to monotonically decrease/increase 

between a column extreme and the respective adiabatic pinch point. This method 

has been tested with a number of mixtures, a few cases of numerical problems 

were encountered and the authors emphasise that further work is required in the 

numerical details. 

Poellmann et al. [77] substitute the empirical angle criterion by a physically 

based one. Near the pinch point composition the stages are very close together 

and the variation in composition between each stage is small. It is thus possible 

to approximate the nonlinear stage-to-stage model by a linear first order differ-

ential equation. The method is only briefly described in the literature and is 

based on work published elsewhere. In the present work it was not possible to 

collect more detailed information about this recently developed method and test 

its applicability. 



Chapter 5 A Thermodynamically Rigorous Shortcut Procedure for Nonideal Distillation 145 

From the considerations above it was decided to use the Underwood method 

[9] at this first stage of evaluation, using rigorous physical properties at the feed. 

The principle used by the Underwood method is that the conditions for the liquid 

stream leaving the feed stage as derived from the rectifying section and from the 

stripping section must be simultaneously satisfied at minimum reflux. Hence the 

following empirical correlation is obtained: 

flc 

RTfl jfl  + 1 = 	
ai,rxi,d 

(5.21) 
i1 i,r - 1) 

where R,mn  is the minimum reflux ratio, aj,r the relative volatility of component 

i and Xj,d the liquid molar fraction of component i in the distillate. The parameter 

is related to the degree of vaporisation of the feed, q, by 

ne  

= 1 - q 	 (5.22) 
j= a2 ,. 	 ,b 

The parameter should have a value between the values of the relative volat-

ilities of the light and heavy keys. The bisection method is used to solve these 

equations. 

The Underwood method has been widely used for ideal mixtures because it 

assumes constant relative volatilities and molar overflow. The assumption of con-

stant relative volatilities hinders its use for nonideal mixtures, but it will still 

provide an approximation if rigorous physical properties are used. In the present 

work the exact values for relative volatilities at the feed composition are used. 

Hence, the accuracy of the method is restricted by the assumption that the pinch 

occurs at the feed. This is not an unreasonable assumption for a shortcut proced-

ure in the first stage of synthesis, providing a quick answer for The method 

will return a reasonable approximation for the minimum reflux ratio, to which will 

be applied a user defined factor to obtain the operating reflux ratio. The factor 

will be a heuristic factor based on experience. This strategy should be revised in 
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the future as more knowledge on the behaviour of nonideal mixtures is available 

and new methods are under development. 

5.5 Calculation of the Number of Stages 

The calculation of the number of stages can be done by means of two different 

equations. Gilliland equation [8] is used primarily to determine the effective num-

ber of stages, m, once the minimum number of stages, mmjn , minimum reflux 

ratio, R i,, and effective reflux ratio, R, are known. For 

R - 
< 0.125 	 (5.23) 

R±1 

The Gilliland equation is given by 

	

m - rnmin 	 ( min  \ 	 / 	" 
= 0.5039 - 0.5968 

R - R 	 R - Rmin  

	

R+1  ) - 0.0908 log 	
R+1  ) 	

(5.24) 
m+1 

and for 

RR min  
~ 

0.125 	 (5.25) 
R±1 

it is given by 

M - mmjn  = 
 . 	

(R - Rmin \ 	 iR - Rm•\ 2  
06257-0 9868 

	

m+1 	 . 	 R+1 
)+0.5160 

R+1 ) 

(R R min  
— 0.1738 	

R+ 1  ) 	

(5.26) 

An alternative equation has also been made available and that is Eduijee's 

equation [781, which is based on the replacement of the Gilliland graphical method 

by 
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F IR - Rmin 0.56681 

mmjn - 0.75 [1_ 	
R+ 1 ) 	 j m= 

1 0.75 El 	
(R - 	 0.5668 	 (5.27) 

-. 	

- R+1) 

Equation 5.27 is valid only when 

R -  Rinin 
 ~ 0.01 	 (5.28) 

-- R1 

It was found during the analysis of the case studies that the number of stages 

is usually slightly underestimated by these methods. Furthermore Eduijee's equa-

tion tends to calculate a lower number of stages than Gilliland equation. Hence 

Gilliland equation was chosen as a default in the shortcut procedure. This is not 

an unreasonable choice, particularly since the Gilliland equation is most commonly 

used in practice. It should be noted however that no one has yet quantified the 

accuracy of this correlation. 

5.6 Summary 

A thermodynamically rigorous shortcut procedure for nonideal distillation has 

been presented. The procedure can be used as a stand alone model or as part of 

a synthesis package in the preliminary design of nonideal distillation sequences. 

The minimum number of stages is calculated at infinite refiux using an iterative 

procedure and rigorous physical properties for each stage. The actual number 

of stages is calculated by the Gilliland equation. The minimum refiux ratio is 

calculated using the Underwood method assuming rigorous physical properties 

at the feed. The detection of azeotropes is kept as simple as possible at this 

stage. Only binary azeotropes are considered, which are the most common case 

in practice. 
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The design variables calculated by this procedure will be used in the next 

chapter as a model for a synthesis package. Case studies will be presented that 

evaluate the performance of such a procedure for use in the synthesis of azeotropic 

distillation sequences. 



Chapter 6 

Application to the Synthesis of 

Azeotropic Distillation 

In this chapter the shortcut method described in chapter 5 is applied to case 

studies. The model has also been implemented as a stand-alone tool for rapid 

simulation and design of nonideal distillation columns. However, its more import-

ant application is as a model within a synthesis package for synthesis of nonideal 

distillation structures. As discussed in chapter 5 the main aim is to provide ac-

curate design variables for the first stages of synthesis, where it is required to 

calculate a small set of good candidate alternatives for further rigorous analysis 

at later design stages. 

The next sections will give a general view of the synthesis package chosen, 

its features and the implementation of the azeotropic distillation model in it. 

Examples of its application follow. 

149 
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6.1 Introduction to CHIPS 

As seen in chapter 2 a few synthesis tools have been recently implemented that can 

deal with distillation of nonideal mixtures. Each has different aims and different 

philosophies. The most adequate to our goals is CHiPS. The general features of 

CHiPS are described by Fraga and McKinnon [61] and more detail on how to use 

the software is included in Fraga [79]. 

The optimisation algorithm in CHiPS uses a branch and bound search between 

all unit types allowed by the user. One of the features of CHiPS is its ability to 

provide a single pass heat integration, allowing the user to consider heat integrated 

processes at this early stage of synthesis. This feature can be used to much 

advantage at this stage as will be illustrated in the examples in section 6.6. CHiPS 

uses discrete quantities to reduce the amount of calculation needed. In the case 

of heat integration this is done by extending the stream definition to contain heat 

flows, which are called virtual heat links in CHiPS. The discrete nature of the 

heat flows means that further improvement can be achieved when a more detailed 

design is considered. The model described in the previous chapter was used with 

genetic algorithms in a continuous search to optimise the solution found initially by 

the discrete branch and bound search [80].  However considerable gain is attained 

already at this first stage as the examples in section 6.6 demonstrate. 

Once the synthesis process is complete CHiPS provides the user with a set of 

n best solutions that are suitable for the first stages of the synthesis process and 

can be further refined. The user can choose the number n of best solutions. The 

success and reliability of the answer is very much dependent on the models used. 

The user can add on custom built models to serve their particular purposes. This 

is done with help of a built in Unit Model Interface [81].  Hence it is relatively easy 

to implement the azeotropic shortcut distillation model and add it to the CHiPS 

library of built-in models. 
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6.2 Adding the Shortcut Azeotropic Distilla-

tion Model with the Unit Model Interface 

The Unit Model Interface (UMI) enables the user to extend the library of unit 

types (models) that CHiPS can use to synthesise the flowsheet. The unit types are 

usually written in FORTRAN or C [81].  The model developed here was written 

in FORTRAN 90. 

The shortcut azeotropic distillation unit model is decomposed into six modules. 

These are FORTRAN routines and are divided into two groups. One group is 

used for initialising the model settings and the other actually defines the unit 

operations to perform. 

6.2.1 The Initialisation Group 

Four subroutines and functions must be set up to define the model variables. 

Subroutine mit 

Subroutine mit is used to set default values for all variables that can be set by 

the user. Table 6.1 shows the variables that can be set for this model and their 

default values. 

For nonideal mixtures it is found that the factor multiplying the minimum 

refiux ratio to obtain the operating refiux ratio should be, at least, 1.5 [58].  This 

fact has been confirmed by full rigorous simulation runs that were done to test 

results obtained here [ 49]. 

The reference temperature is left undefined initially. The user should specify 

the reference temperature to be used in the calculations of certain physical proper- 
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Variable Description Default value 

reclightkey light key component recovery 0.99 

recheavykey heavy key component recovery 0.99 

refiuxfactor refiux ratio factor 1.5 

trayefficiency tray efficiency 1.0 

userreftemp user set reference temperature -1 (undefined) 

tolerance tolerance 1 x 10 

plotgraphs plot equilibrium diagram of the separation false 

mindistboundary mm. distance from feed to distillation boundary 0.05 

nstagesequation equation for calculation of number of stages 2 

Table 6.1: Variables that can be set in the shortcut azeotropic distillation model. 

ties, such as reference enthalpy and entropy. This may, however, not be necessary. 

If the temperature remains undefined the model will check it and reset the variable 

to 298K if the value is required. 

The tolerance is set to 1 x iO by default, mainly due to the precision used 

by the physical properties package as described in section 6.3. 

The model also provides the ability to plot the ternary diagram and operating 

path at infinite refiux for each column designed. This feature was initially im-

plemented for debugging and easy visualisation of the separation procedure. It is 

therefore restricted to mixtures with one azeotrope only and, at the moment, to 

a two column separation structure, as shown in the examples of section 6.6. It 

can be switched off for other cases, but it is also possible to update it to a more 

general case. 

The minimum distance from the feed to the distillation boundary is currently 

used to determine the feasibility of crossing the boundary when the feed is on its 

concave side and the products are both on the convex side. This variable will be 

withdrawn in the near future since crossing the boundary is feasible as long as the 
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feed is located between the are of the distillation boundary and the straight line 

that connects its extreme points. Thus, upon checking whether the feed is on the 

concave side of the boundary, a further check can be done to ascertain if it lies 

between the arc and the straight line. 

Two methods can be used in the model for calculating the number of stages 

as described in chapter 5. The Gilliland method was chosen as default because 

from experience the Eduljee equation 5.27 usually calculates a smaller value for 

the number of stages. From observation of full rigorous simulations, the number 

of stages is usually slightly underestimated with the Gilliland method [49]. 

Function setvar 

This function allows the user, and also the package during the optimisation, to set 

the particular variables that are initialised in subroutine init. 

Function getvar 

This function is used by the package to retrieve the current values for the variables 

that can be changed in the model and were initialised by subroutine init. 

Function start 

Function start ensures that all remaining settings required are implemented. These 

include, for instance, setting the upper and lower limits for variables such as 

operating pressure and refiux ratio factor. These variables can be used for further 

fine tuning in a continuous fashion in a next stage of design, after the initial 

candidate fiowsheets have been defined, as shown by Fraga and Matias [80]. 

6.2.2 The Design Group 

By the time CHiPS uses this part of the model, all required initialisation of the 

model variables has been done and the input stream has been defined. At the 
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moment CHiPS can only deal with one feed stream for each model, so the azeotropic 

distillation column can have only one feed, although more than two products are 

allowed. However the shortcut procedure overcomes this restriction. Since it uses 

an infinite refiux, both the feed and products are of relatively insignificant size 

when compared to the infinite refiux. Hence their location and number becomes 

irrelevant. Other' input streams can be added as other stream types called make-

ups and, in the latest version, recycles. The model must have information on 

the recycles and make-up streams required. CHiPS uses this information and the 

product specifications to decide on the feasibility of the final fiowsheet, i.e. if there 

is no stream in the process that fits the requirements for the recycle stream to be 

used in the unit, the search continues for another feasible fiowsheet. 

The design functions are called by CHiPS when needed to exhaust all possible 

fiowsheet alternatives during searching. 

Function procstream 

Function procst ream is used once for each stream found during the search. It allows 

the performance of some preliminary work on the stream, such as sorting the 

components by their relative volatility. The function will also pass on information 

to the optimiser regarding the number of make-up streams, number of recycles 

and the size of the family of designs to be done for the combination of stream and 

model. 

Function design 

Function design performs all design calculations for the given feed stream. The 

type of calculation is specified by a combination of two variables: task and counter. 

The variable counter determines which split is being considered. The variable task 

designates if 

9 The whole family of designs is to be calculated. 
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A specific member of the family is to be designed. Usually this is requested 

after the whole family is calculated, e.g. the user requests that the optimal 

flowsheet be designed in order to see the design specifications. 

• A design with certain specified variables can be requested by the optimiser 

after the first stage is completed. The variables that can be used in this 

model for further fine tuning are the operating pressure and the reflux ratio 

factor, as seen in section 6.2.1 

The shortcut procedure is applied for the requested task and counter. The 

column design variables are determined and, if the calculation is successful, costs, 

heating and cooling requirements are computed using the calculated output flows 

and operating conditions. They are then used by CHiPS to analyse the possibility 

of heat integration and to cost the exchangers necessary to meet the heating and 

cooling requirements. 

6.3 Physical Data 

CHiPS has its own built in physical properties calculation. It is based on the 

Kistakowski method [82],  which is not reliable for the azeotropic mixtures being 

studied in this work due to its approximate nature. CHiPS also has a link to 

PPDS[16]. In the current work PPDS is used for the physical property calcula-

tions within CHiPS. The PPDS version available is the single precision version. 

Thus the maximum accuracy used is 1 x iO, hence the choice of default value 

for the variable tolerance in section 6.2.1. The physical properties used in the case 

studies were calculated using UNIFAC. 
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6.4 Cost Function 

The optimisation done by CHiPS is based on the best cost. The cost correlations 

used are from Rathore et al. [73].  They have been updated by a factor of 10 as 

pointed out by Fraga [83].  All costs are in US$. The column cost is given by 

\ 	1 
4.34 [7620 x D / 

He  0 . 68  

-) 	
] 	

(6.1) 
 12.2 

where D is the column diameter and H the column height. A correction 

factor of 

[1 ± 0.0147 (P - 3.4)] 	 (6.2) 

is used for pressure greater than 340 kPa. 

The instrumentation cost is fixed at US$ 4,000.00 and the installed cost of 

trays is given by 

70 
(m (D 1.9 

kii) 1.22) 
(6.3) 

for m trays with a tray efficiency of i. Other costs, such as maintenance cost 

factor and heat exchanger cost are automatically done in CHiPS. 
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6.5 Entrainer Selection and Feasibility 

The model developed assumes that an entrainer has been chosen beforehand and 

it is fed as one of the components in the feed mixture. The position and number of 

feeds is irrelevant in this shortcut procedure because we are considering operation 

at infinite reflux. The fine tuning of entrainer and feed location is left to the next 

stage of synthesis where a full rigorous simulation model must be used. 

At present the feasibility check is simple because a fixed structure of two dis-

tillation columns in sequence performing a direct split has been used initially. In 

this case the feed to the system must be located on the concave side of the bound-

ary for the separation to be feasible. The column product that lies close to the 

boundary must be a near binary mixture of the other two components. 

6.6 Case Studies 

6.6.1 Analysis of Example Mixture 

The shortcut azeotropic distillation unit has been tested first in a simple mixture 

containing one binary maximum boiling azeotrope. Most of this testing has been 

done with CHiPS version 8.0, which did not yet use recycles. Both the unit and 

optimiser had to undergo adaptations so the unit could be implemented success-

fully. 

The ternary mixture of acetone, chloroform and benzene has been used in ex-

amples of azeotropic distillation in the literature [6] [36].  It is a good starting point 

to test the procedure because the data and behaviour are reasonably well known. 

Benzene is used as an entrainer to separate the azeotrope forming components, 
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acetone and chloroform. The equilibrium diagram for the mixture at 100 kPa is 

shown in figure 6.1. 

Benzene 
353 K 

Acetone 	 337 K 	Chloroform 
329.5 K 	 334K 

Figure 6.1: Equilibrium diagram for a mixture of acetone, chloroform and ben-

zene at 100 kPa. 

The maximum boiling azeotrope is a saddle point of composition 37.2% in 

acetone and 62.8% in chloroform, as calculated by PPDS. Benzene is the highest 

boiling component in the diagram, as can be seen from table 6.2. 

The acetone and chloroform vertices are unstable nodes and benzene is a stable 

node. According to the literature [6] [361 the mixture can be split into sequences 

of two or three columns. The separation of this mixture into its components 

includes a column that operates 'across the boundary', i.e. its feed and products 

are on opposite sides of the distillation boundary. Doherty and Caldarola [31] 

had dismissed this type of arrangement initially because they consider that it 

is not economically attractive and doubts exist concerning the operability and 
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Component Flow Boiling Temperature 

(kmol/hr) (K) 

Acetone 36.0 329.2 

Chloroform 24.0 334.3 

Benzene 40.0 353.2 

Table 6.2: Feed composition and Boiling temperature of singular points in the 
system acetone, chloroform and benzene at 100 kPa 

controllability of such a column. These are issues that are not considered at this 

first stage, but should be considered at the next stage, when a small set of best 

alternatives has been selected. The data obtained in this example was used to 

perform a full rigorous simulation and the sequence showed considerable stability 

towards the wanted profile [49]. 

Figure 6.2 shows the two column direct split arrangement. Since the distillation 

boundary can only be crossed from the concave side the feed point, Feed, has the 

composition given in table 6.2. Otherwise it would be impossible to obtain the 

three component products without initially mixing the feed with a stream that 

places the mixture on the concave side of the boundary. 

This is an interesting arrangement in that only two columns are required to sep-

arate the three components. However, the second column operates on the opposite 

side of the boundary from its feed. To enable separation with this arrangement 

a sufficient quantity of benzene must be present in the feed to the first column. 

Benzene is therefore recycled from the second column and mixed with the original 

feed. This operation moves the overall feed composition in the direction of the 

pure benzene vertex and the bottom product will have only traces of acetone. 

A second alternative for separating this mixture is that shown in figure 6.3. 

In this case the second column performs an indirect split by separating benzene 

as a bottom product and a binary mixture of acetone and chloroform as the 

top product. This mixture does not have the correct specifications of a final 
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Figure 6.2: Direct split of a mixture of acetone, chloroform and benzene in a 

two column structure. 
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product but is on the opposite side of the boundary from the original feed. Hence, 

chloroform, which is locally the most volatile component, can now be obtained 

as a final product, but not acetone. The third column is therefore separating a 

binary mixture into the remaining specified product, chloroform, and a mixture 

close to the azeotrope composition. This mixture can be recycled and mixed with 

the initial feed to the first column, as shown, moving the feed composition of the 

first column to a mixture poorer in benzene. In the limit the bottom product 

of the second column would be close to azeotropic composition, but still on the 

opposite side of the boundary from the feed. The infinite refiux distillation profile 

would follow the distillation boundary. 

Be 
3. 

Chloroform 

B3  

otrope 

Acetone 	 337 K 1)2 	Chloroform 
329.5 K 	 334K 

Figure 6.3: Direct/Indirect split of a mixture of acetone, chloroform and benzene 

in a three column structure. 

Starting the separation in the first column with an indirect split, by first sep-

arating benzene as a bottom product, will lead to an infeasible separation of all 

components, as can be seen in figure 6.4. A binary mixture of acetone and chlo- 
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roform is obtained as the top product. This mixture can be separated into a top 

product of acetone and a mixture close to azeotropic composition, but on the same 

side as the original feed. It is thus impossible to separate this mixture, and obtain 

chloroform as a product. There is also no obvious recycle structure that would 

lead to this. 

Benzene 
353 K 

ig azeotrope 

Acetone 	 D,
337 K 	Chloroform 

329.5 K 	 334 K 

Figure 6.4: Indirect split leading to infeasible separation of a mixture of acetone, 

chloroform and benzene. 

One last alternative is to perform an intermediate split in the first column, 

obtaining essentially two binary mixtures of acetone + chloroform and benzene + 

chloroform. The mixture of benzene and chloroform is readily separated into the 

two pure components. The mixture of acetone and chloroform is separated into 

acetone and a mixture close to azeotropic composition, which can be recycled as 

in the previous alternatives. Figure 6.5 shows this separation structure. 
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Be 
3 

Acetone 	 D1 	
337 K 	Chloroform 

329.5 K 	 334 K 

Figure 6.5: Intermediate split structure for separation of a mixture of acetone, 

chloroform and benzene. 
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6.6.2 Model Structure 

Ideally the shortcut azeotropic distillation model should be able to allow CHiPS 

to build these sequences automatically and decide on the best. However in all 

cases recycles are required which CHiPS was unable to support at the time of this 

study. It was decided to test the procedure by using a fixed two column structure 

corresponding to the example in figure 6.2. This still leaves decisions, such as 

the choice of operating pressures in each column and, more importantly, it allows 

the evaluation of a useful feature of CHiPS, i.e. heat integration. The operation 

of both columns at different pressures also provides an interesting analysis of the 

mixture and azeotrope behaviour at different conditions. 

The resulting unit thus consists of two distillation columns instead of one and 

has overall one feed and three products. The recycle is totally internal to the unit 

so it does not exist as far as CHiPS is concerned. 

6.6.3 Low Recovery Example 

An initial study was done using a low key component recovery. The results have 

been summarised in a publication by Matias et al. [84].  It was found that the 

procedure had difficulty converging for component recoveries higher than 93%. 

A later examination of the convergence procedure showed that this was due to a 

higher accuracy being used in the material balance, than in the physical properties 

package. Thus the material balance at infinite reflux was unable to converge after 

the physical properties values retrieved from PPDS had converged. This was 

subsequently corrected by using the same accuracy in the material balance in the 

physical property package. Hence the default value of 1 x iO for the tolerance 

variable in section 6.2.1. This value still gives an acceptable accuracy and enables 

the convergence of the unit. 

In this example the feed described in table 6.2 was separated for 
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• Light key recovery in top product 90%. 

• Maximum heavy key in top product 5%. 

The study was carried out in a range of operating pressures from 100 kPa to 

500 kPa. As CHiPS uses discrete quantities the pressure range was divided into 

ten discrete pressure values uniformly in a log basis. Thus there is a total of 100 

pressure combinations, i.e. alternative designs, for the overall system. 

CHiPS calculated the best configuration for two distinct cases. In the first 

case no heat integration was requested. The result obtained is plotted in the 

equilibrium diagram shown in figure 6.6. Point P1  corresponds to the acetone 

product, P2  to the chloroform product and P3  to the benzene product. A second 

run was performed and this time CHiPS was requested to consider heat integration. 

The result is plotted in figure 6.7. F1  is the feed to the first column after the recycle 

has been added to the initial system's feed. F2  is the feed to the second column. 

It is also the bottom product of the first column. 

The calculation of the minimum number of stages converges quickly. The 

calculated number of stages remains constant most times from the second iteration 

until the mass balance is met. An average of five material balance iterations is 

required to solve the infinite reflux calculation. The full synthesis both for heat 

integrated and non-heat integrated examples each took around 30 minutes to 

compute on a SUN SPARCstation 2. 

Figures 6.6 and 6.7 show that the difference in operating pressures between 

the first and second columns is greater for the heat integrated sequence. Figure 

6.7 clearly shows how the distillation boundary moves as pressure changes. In 

this case altering the boundary position does not affect the system, due to the 

composition of the feed to the second column. There may be cases, however, 

where this could be successfully used to advantage, by moving the azeotrope or 

even making it disappear for certain operating pressures. It is possible to have a 
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Benzen e  

Acetone 	 Chloroform 

Figure 6.6: Separation of acetone, chloroform and benzene at low recovery in a 

two column structure with no heat integration 
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Benzene 
fl -1 

Acetone 	 [hloroiorm 

Figure 6.7: Separation of acetone, chloroform and benzene at low recovery in a 

two column structure with heat integration 
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setting where the second column operates at lower pressure, placing the feed to 

the second column on the other side of the boundary thus significantly changing 

the operating conditions of the second column. Although, in this example, it did 

not prove to be the optimal combination in terms of cost, consideration of issues 

such as operability may affect this decision. 

Feed 

Acetone 

Chloroform 

Benzene 

Figure 6.8: CHiPS heat integrated structure for the two column structure example 

Figure 6.8 shows the heat integrated structure calculated by CHiPS for this 

example. Assuming a stage efficiency of 100%, the first column in the heat integ-

rated separation sequence was designed to operate at 120 kPa with a reflux ratio 

of 0.87 and 27 stages. The second column operates at 350 kPa with a refiux ratio 

of 7.44 and 28 stages. The sequence obtained when heat integration was not con-

sidered has the same number of stages in each column as for the heat integrated 

case. Refiux ratio in the second column is 7.75, slightly higher than in the heat 

integrated case. The heat integrated structure operates at higher pressures but 

the reduction in energy costs compensates for compression costs. Heat integration 

results in a cost saving of approximately 10%. 

Table 6.3 shows the cooling and heating requirements for the heat integrated 
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two column arrangement. CHiPS integrated the tops of column 2 with the bottoms 

of column 1, transferring the required 3.4 GJ/hr to the first column reboiler and 

removing the excess amount of heat remaining on the tops of the second column 

with cooling water at 305 K. Medium pressure steam was used in the second 

column reboiler. 

Unit Type Pressure Inlet Temperature Outlet Temperature Duty 

(kPa) (K) (K) (GJ/hr) 

Column 1 Condenser 120 336.1 335.1 0.7 

Column 1 Reboiler 120 354.4 355.9 3.4 

Column 2 Condenser 350 383.8 382.2 6.0 

Column 2 Reboiler 350 398.7 398.8 7.9 

Table 6.3: Operating parameters for the two column heat integrated sequence. 

These results are, however, not completely reproducible by full rigorous sim-

ulation. They are dependent on the recycle calculation, which is internal to the 

unit and assumes a high purity benzene product being recycled to calculate the 

recycle flow required. Hence, the unit as it is should be used for sharp distillation 

only. The next example shows results obtained in this case. 

6.6.4 High Recovery Example 

The same example studied in section 6.6.3 was now tested using 

• Light key recovery in top product 99.9%. 

• Maximum heavy key in top product 0.1%. 

The separation was studied for a wider range of pressures this time to evalu-

ate the model's behaviour and capability under more extreme conditions. Hence 

operating pressures were varied between 100 kPa and 2000 kPa. Similarly to the 
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previous example the pressure range was also divided into ten discrete pressure 

values. Figures 6.9 and 6.10 show results without and with heat integration re-

spectively. 

Acetone 	 [h1oroorm 

Figure 6.9: Separation of acetone, chloroform and benzene at high recovery in a 

two column structure with no heat integration 

The infinite refiux profile for the second column corresponds to that of a binary 

mixture separation and lies on the edge of zero acetone composition. The cost 

for the structure without heat integration is $127, 707.94/yr, whereas the heat 

integrated structure has a cost of $115,857.67/yr. The reduction is, again, nearly 

10%. The difference in cost shows that it is worth considering heat integration at 

this first stage of design when shortcut procedures are being used. 

Convergence of the shortcut procedure, even for high key component recovery, 

is fast taking a maximum of six iterations. However the total calculation time 



Chapter 6 	Application to the Synthesis of Azeotropic Distillation 	 171 

Acetone 	 [h1orooroi 

Figure 6.10: Separation of acetone, chloroform and benzene at high recovery in 

a two column structure with heat integration 
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used by CHiPS slightly exceeds one hour due mainly to the higher number of 

stages required for the second column. 

The number of stages in the first column remains practically the same as in 

the low recovery example because acetone, the component recovered here, is easy 

to separate from the rest of the solution. However, in the second column the 

high purity required for both benzene and chloroform demands that the lower 

part of the column operates close to the distillation boundary while separating a 

product at high purity. As the column profile at infinite refiux in figure 6.9 shows 

the composition change between stages is small and a great number of stages is 

needed to achieve the required purity. 

The minimum number of stages calculated during the iteration usually re-

mains constant after the second iteration. At pressures greater than 1500 kPa the 

azeotrope disappears. The shortcut procedure is not so useful when there are no 

azeotropes present because it requires a column operating at infinite refiux with a 

great number of stages to achieve the component recoveries requested. The infinite 

refiux profile will in fact run along the sides of the equilibrium diagram. Hence 

the calculation is lengthier and the method invariably fails because the maximum 

number of stages of 200 allowed by default is exceeded. A different unit should 

be used for nonideal mixtures with no azeotropes, one that uses rigorous physical 

properties but avoids the infinite refiux calculation. Table 6.4 summarises the 

results obtained for this example. 

Variable 

Without heat integration With heat integration 

Column 1 	Column 2 Column 1 	Column 2 

Pressure (kPa) 100.0 139.5 100.0 378.6 

Refiux ratio 4.78 16.11 4.78 15.25 

Number of Stages 26 43 26 46 

Table 6.4: Results of the synthesis of the high recovery case. 
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The values of the design variables were then used to perform a full rigorous 

simulation of the separation process [49] using PDIST which was developed by 

McKinnel [50].  It was only possible to test the case where no heat integration is 

considered, since heat integration is not available with PDIST. Figure 6.11 shows 

the composition profiles of the columns operating at the conditions described in 

table 6.4. The results are similar to those obtained by the shortcut procedure 

shown in figure 6.9, although the purity achieved in the full rigorous simulation is 

not as high as with the shortcut procedure. 

B enzene 

Acetone 	 [hloroiorm 

Figure 6.11: Full rigorous simulation of the separation of acetone, chloroform 

and benzene at high recovery in a two column structure with no heat integration 

This is due in part to the recycled benzene not being as pure as that assumed 

for the shortcut unit. But in spite of the use of shortcut equations such as the 

Underwood equation for the minimum refiux ratio and the Gilliland equations for 

the number of stages, the agreement is quite good. 
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As a matter of interest McKinnel [49] also found that the dynamic simulation 

of the second column showed a very stable behaviour towards the steady state, 

even when the operating profile moved across the boundary during simulation. 

This indicates that operation of the second column is not as unstable as it is 

believed. 

The second column requires a large number of stages and a high reflux ratio 

This is due to the fact that a large number of stages is needed in the section of 

the column where the composition profile is closer to the saddle azeotrope and in 

the rectifying section where operation is close to the distillation boundary profile, 

as had also been observed for the shortcut procedure. 

6.6.5 Comparison of Performance Against a Full Rigor-

ous Model 

The shortcut procedure shows fast and reliable convergence in the calculation of 

the minimum number of stages. But how does it compare against a full rigorous 

calculation? The running time needed to calculate the number of stages by the 

shortcut procedure was compared against the time taken by the RADFRAC model 

from Aspen Plus [60]. 

Aspen's RADFRAC model was used in design specification mode to design the 

first column of the example presented in section 6.6.4. Similarly to the shortcut 

procedure the light and heavy key recoveries were specified and the overall feed to 

the column included the entrainer flow as calculated by the shortcut procedure. 

An initial estimate was required for the number of stages. Also a search interval 

between 2 and 60 was specified. The reflux ratio entered was the same as that 

calculated in the example of section 6.6.4. 

Aspen took 16.7 seconds to calculate the number of stages and flows when an 

initial estimate near the upper bound of the search interval was given. Twelve 

iterations were required for convergence. When an initial estimate of 30 stages 
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was used the calculation time increased to 30 seconds and the number of iterations 

to 20, even though the initial estimate was much closer to the solution. Looking at 

the iteration output information it is clear why this happens. The iteration does 

not follow a smooth path, the number of stages varies between higher and lower 

values until the solution is finally achieved. Performance is also sensitive to the 

search interval given leading the calculation not to converge in some cases. In this 

case there was already an idea of the number of stages, as it had been calculated 

by the shortcut procedure, but where that option is not available some trial and 

error will be required to obtain the solution. 

The same data was used in the stand alone infinite refiux shortcut procedure. 

In this case convergence is both fast and smooth taking 1.38 seconds to obtain 

the number of stages with five iterations required. The convergence is also robust 

since the number of stages remains constant from the second iteration leaving only 

the material balance to converge. 

6.7 Conclusions 

The agreement between results obtained using the rigorous shortcut procedure and 

the full rigorous simulation in the high recovery example shows that the rigorous 

shortcut procedure is suitable for preliminary design. The convergence of the 

iterative procedure calculating the minimum number of stages is fast and robust. 

It takes a maximum of six iterations in the worst case. The minimum number 

of stages is usually found after two iterations. The remaining iterations are used 

to converge the physical properties in order to obtain a distillation profile that 

fits the material balance around the column, which is the condition for a column 

operating at infinite refiux. 

The procedure includes rigorous phase equilibrium calculations, but avoids a 

complete simulation of the column by using a nonideal extension to the Fenske 
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equation for the calculation of the minimum number of stages in an iterative 

manner. Both the shortcut procedure and full rigorous simulation show stability 

in convergence for the example studied. 

Avoiding full rigorous simulation reduces computing time and, when the short-

cut procedure is used with CHiPS, it enables the generation of preliminary designs 

including heat integration. The user can then concentrate on the smaller set of 

alternatives generated and analyse them in more detail. 

At present the model used is fixed, containing two distillation columns sep-

arating a mixture with a maximum boiling azeotrope. A more general version 

using only one distillation column is required. This model should be able to 

accept recycles which are now supported in CHiPS. The two column model con-

tains an internal recycle which assumes pure entrainer being recycled from the 

second column. Hence, an error is incurred when low key component recoveries 

are specified. This error should be overcome when the recycle can be set up more 

realistically, i.e. when a stream taking into account the impurity in the recycle is 

introduced. The recycle stream is the main difference between the shortcut and 

full rigorous simulation calculations, since the latter uses the actual output flow 

of the bottoms from the second column. 

The infinite reflux calculation becomes lengthy and uses a great number of 

stages when a high recovery is specified and no azeotrope is present. In fact the 

distillation profile at infinite reflux follows the sides of the equilibrium diagram 

triangle in this case. Whereas the method still performs for this case, it is not 

efficient and should not be used. Hence a flag has been introduced in the model to 

avoid any further calculations when no azeotropes are present. A different model 

should be developed to use for zeotropic distillation. 



Chapter 7 

Conclusions 

Considerable research has been given to reducing the amount of computing time 

required for the simulation of nonideal separations. This decade has seen consider-

able development in synthesis tools that include nonideal distillation. This thesis 

has addressed both steady state simulation of systems with nonideal mixtures and 

development of models for synthesis of separation processes for nonideal mixtures. 

Reduction in computing time, while maintaining accuracy in the final result, 

can be achieved in two different ways: 

Approximate procedures can be used for the calculation of physical proper-

ties of the mixture. 

. Shortcut design procedures can be used in conjunction with rigorous physical 

properties. 

This work investigated both ways of reducing computing time. 

177 
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7.1 Approximate Procedures 

7.1.1 Physical Property Calculation 

Most work done in this area has been related to dynamic simulation. When ap-

proximate functions are used to calculate physical properties there is usually a 

need to keep function parameters up to date as conditions change, since the phys-

ical properties of nonideal mixtures do not remain constant. Several approximate 

functions to calculate the component liquid activity coefficient in a mixture were 

tested. The Margules-like equation represented by equation 3.17 in chapter 3 

showed a good fit as long as the mixture purity remained below 70mol%. This 

equation also has the advantage of requiring only one set of rigorous values to fit 

the parameters. As it is linear in its parameters it can be easily fitted using a 

method such as Gauss elimination. For purity higher than 70% the parameters 

varied rapidly with the composition. Using the rigorous physical property package 

in this range of composition becomes the best solution. 

The use of arbitrary rational functions was not successful. It confirms that a 

physically based solution should normally be used instead of a totally arbitrary 

one. 

A different approach to the approximation of the liquid activity coefficient is 

the use of a rigorous physical package in a dual level fiowsheeting environment. 

The rigorous physical property package is used to calculate the bubble point for a 

given pressure and composition. Two levels of calculation exist, one used for local 

calculation of the relative volatilities and the other to solve the material balance. 

Three different strategies were studied. 

The parallel method where the material balance and the physical properties 

are converged simultaneously. 



Chapter 7 	 Conclusions 	 179 

• The inside-out method where the physical properties are converged in an 

outer level and the material balance in an inner level. 

• The structural evolution method which can use either of the two techniques 

described above, but starts by converging a simplified fiowsheet, with fewer 

units, subsequently adding more until the whole fiowsheet is converged. 

The parallel method gave the best performance from the dual level approaches, 

although no reduction in time was effectively accomplished when compared to the 

conventional approach where the rigorous physical property package is used to 

retrieve the vapour liquid equilibrium conditions. The number of iterations in 

each case is similar but it was found that the rigorous physical property package 

takes the same amount of time to perform both the bubble point and the VLE 

calculation. Hence, some gain will be achieved with a physical property package 

that is actually faster in calculating just the bubble point for a mixture. As well 

as using repeated substitution the Wegstein method was also used to accelerate 

the convergence procedure. It was found that the convergence path becomes more 

erratic as acceleration is used more frequently, sometimes leading to divergence. 

Acceleration should be used no more frequently than every fifth iteration for best 

results. 

The inside-out method worked well and it was fast but not for all cases. The 

original Cavett mixture failed to converge with the error showing a cyclic behaviour 

through the iteration. However the method performed well with nonideal mixtures. 

The results obtained by using approximate physical properties highlighted the 

importance of using accurate physical properties in the separation of nonideal 

systems. Experience gained in this analysis led to the development of an effective 

shortcut procedure for use in simulation and the preliminary stages of synthesis. 
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7.1.2 Rigorous Shortcut Procedure for Nonideal Distil-

lation 

The aim of a thermodynamically rigorous shortcut procedure is to combine rig-

orous phase equilibrium calculations with shortcut design calculations. Thus the 

complete rigorous simulation or design of the distillation column is avoided. The 

rigorous shortcut procedure developed in this work includes: 

• The calculation of the minimum reflux ratio by the Underwood method using 

rigorous physical properties at the feed. 

• The calculation of the minimum number of stages via an iterative procedure 

that assumes a column operating at infinite reflux and uses rigorous physical 

properties for each stage. 

• The calculation of the effective number of stages using the Gilliland correl-

ation. 

• The cost calculation using correlations given by Rathore et al. [73]. 

The procedure has been used to implement a model for use in the automated 

synthesis package CHiPS which includes heat integration. Results obtained with 

the rigorous shortcut procedure were found to be in good agreement with those of 

a full rigorous simulation. The procedure also proved to be considerably efficient 

and robust when compared to full rigorous simulation. The shortcut procedure is, 

therefore, a suitable tool for the first stage of design, where a full rigorous model 

is unnecessary and too lengthy in calculation time. 

By taking advantage of the heat integration feature in CHiPS a reduction in 

10% was obtained for the cost at this first stage of design. These results emphasise 

the importance of considering heat integration even at this first stage. Further op-

timisation using genetic algorithms with the same model showed an improvement 

of another 15% in the cost [80]. 
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7.2 Future Directions 

The use of simplified functions for the calculation of the physical properties in 

nonideal mixtures for steady state simulation and design still requires further 

investigation. The Margules-like equation 3.17 can, however, be implemented in 

a package such as CHiPS in a way that it is only used for mixtures where the 

composition of any component does not exceed 70%. The package should then 

be able to automatically switch to a different physical property calculation in the 

region of higher purity. 

The shortcut procedure developed for nonideal distillation now requires gen-

eralisation. This step can be implemented as CHiPS progresses, particularly in 

the way it handles recycle streams. The model generalisation will also require 

a more detailed feasibility analysis to be implemented. This model can then be 

the starting point for the development of models capable of handling heterogen-

eous azeotropic mixtures, as well as reactive distillation. It is also necessary to 

develop a different model for use with nonideal mixtures that do not contain azeo-

tropes. The rigorous shortcut procedure developed in the present work becomes 

too lengthy in those cases. 

The inclusion of mixtures with more than three components is also possible but 

an efficient criterion that determines higher order azeotropes in multicomponent 

mixtures must be developed. Often multicomponent mixtures can be reduced to 

ternary mixtures after the easily separable components have been removed. 
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Appendix B 

Implementation of the Structural 

Evolution Method 

The use of the structural evolution method in simulation starts by making a sim-

pler fiowsheet removing some of the operation units. Once the simplified fiowsheet 

is converged the units initially removed are added one by one with the new flow-

sheet being converged at each stage. The procedure is repeated until the complete 

fiowsheet is solved. 

In this appendix a description is presented of the application of this method 

to the Cavett problem described in section 4.5.1. 

B.1 Application to the Cavett Problem 

The fiowsheet diagram for the Cavett problem and corresponding block diagram 

are given in figure 4.3. As discussed in section 4.5.1 the recycle configuration 

used in this work was that where streams 4, 9 and 11 are used as recycle streams. 

These streams must therefore be given an initial estimate. Their value will be kept 

constant in the calculations until the fiowsheet evolution reaches the point where 

they must be effectively converged, i.e. they appear in the fiowsheet both as an 
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input and an output of different units. In the next flowsheet evolution step they 

will be converged once again, but now their initial estimate will be the converged 

values obtained in the previous flowsheet evolution. 

For the Cavett problem the calculations start with one flash unit only and 

a flash unit is added in each flowsheet evolution until the complete structure is 

obtained. The procedure is described in the steps below. 

Step 1 

The initial simplified flowsheet for the Cavett process contains mixers Ml and M2 

and flash IF1 from figure 4.3(b). Figure B.1 shows the simplified flowsheet for 

step 1. This step includes two recycle streams 4 and 9 which have been assigned 

initial estimates. In this flowsheet they are inputs only, so their value is kept 

constant throughout the calculation. Hence there is no convergence required in 

this first step. All streams are calculated through one pass only and the calculation 

proceeds to the second step. 
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Figure B.1: First stage of structural evolution 

Step 2 

In this step flash unit 1F2 is added as shown in figure B.2. This flowsheet can 

now be converged by calculating the correct flows of recycle stream 4 for this 
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arrangement. Once convergence has been achieved for this flowsheet the next 

evolution step can be performed with the new values obtained for all streams. 

Figure B.2: Second stage of structural evolution 

Step 3 

In this step mixer M3 and flash unit 1F3 are added as shown in figure B.3. The 

new fiowsheet obtained is converged for both streams 4 and 9. In this case the 

starting estimate for recycle stream 4 will be that obtained from converging the 

fiowsheet in step 2 whereas stream 9 will be converged starting from the initial 

estimate. In this fiowsheet recycle stream 11 is simply an input to the process and 

its estimate will remain unchanged. Once this fiowsheet has been converged the 

structural evolution process can proceed to step 4. 

Step 4 

In step 4 the remaining unit 1F4 is added and the flowsheet is now complete. 

The full flowsheet is now converged for all three recycle streams. Convergence of 

stream 11 will start from its initial estimate, whereas convergence of streams 4 

and 9 will start with the values calculated in step 3. Once overall convergence is 

achieved in this step the final flowsheet solution is obtained. 
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Figure B.3: Third stage of structural evolution 



Nomenclature 

Variables 

a = empirical constant, [J] 

a2  = parameters 

ajk = local parameters coefficients for component j at iteration k 

A2  = parameters 

A 23  = interaction parameters between components i and j 

b2  = bottoms component flow, [kmol/s] 

B = total bottom flow, [kmol/s] 

B2  = parameters 

c = empirical constant, [J] 

C2  = parameters 

d2  = distillate component flow, [kmol/s] 

D = total distillate flow, [kmol/s] 

Dc  = column diameter, [m} 

D2  = parameters 

D/F = overall recovery 

ft = feed component flow, [kmol/s] 
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f° = standard state fugacity of the pure liquid i, [kPa] 

f/ = liquid fugacity of component i, [kPa] 

f7 = vapour fugacity of component i, [kPa] 

F = feed total flow, [kmol/sJ 

9  = molar excess Gibbs energy, [J/kmol] 

hp  = homotopy parameter 

H = enthalpy, [J/kmol] 

Hbp  = Bubble point enthalpy 

Hdp  = Dew point enthalpy 

Hd,b = Average of bubble and dew point enthalpies 

Hay  = mean enthalpy, [J/kmol] 

H = column height, [m] 

= overall group equilibrium constant 

k2  = equilibrium constant of component i 

k2 ,3  = equilibrium constant of component i in stage j 

kkg = equilibrium constant of each component k in group g 

kr  = equilibrium constant of reference component r, 

kr,&p = equilibrium constant of reference component r at bubble 

point conditions 

Lk = liquid flow from stage k 

m = number of stages 

mmjn  = minimum number of stages 

n = number of local calculations 
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= number of components 

P = system's operating pressure [kPa] 

pref = reference pressure [kPa] 

Pbp = bubble point pressure, [kPa] 

P = pressure of component i, [kPa] 

= vapour pressure for component i, [kPa] 

Pvp,r = vapour pressure of reference component r, [kPa] 

q = degree of vaporisation of the feed 

Qk = estimate of the Hessian matrix at iteration k 

r = linear convergence rate 

ri  = recovery of component i 

R = in chapter 2, universal gas constant, [8.314J/(kmol. K)] 

R = in chapter 5, reflux ratio 

= minimum reflux ratio 

tt  = time used by the local calculation, [s] 

= time used by the rigorous calculation, [s] 

T = system's temperature, [K] 

T = Bubble point temperature 

Tdp  = Dew point temperature 

Td,b = Average of bubble and dew point temperatures 

Tr = temperature for the rigorous data, [K] 

V' = molar liquid volume of component i, [m3 ] 

Vi'* = molar volume of pure liquid i, [m3 ] 



Nomenclature 

V/F = vapour split ratio, [-] 

Vk = Vapour flow from stage k 

x = vector of independent variables 

xi = liquid molar fraction of component i 

= liquid composition of component i in the bottoms 

Xi,d = liquid composition of component i in the distillate 

xij = liquid composition of component i at the feed 

xij = liquid composition of component i in stage j 

Xk9 = mole fraction of each component k in group g 

= overall group composition 

Xr = liquid molar fraction of reference component r 

y = rigorous property model 

yj  = vapour molar fraction of component i 

= artificial equilibrium vapour composition of component i 

Yi,j = vapour composition of component i in stage j 

Yi,d = vapour composition of component i in distillate 

Yr = vapour molar fraction of reference component r 

Zi  = parameters 

Greek symbols 

ozij = relative volatility of component i w.r.t. j 

aj,r = relative volatility of component i w.r.t. a reference compon-

ent r 
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air,j = relative volatility of component i w.r.t. a reference compon-

ent r in stage j 

4+1 = difference between the measured and the predicted error 

cc  = convergence error 

Ej  = error at iteration step i 

cij  = relative error for component j at the ith iteration step 

Ek = error at point k 

transposed vector of residuals 

= correction factor for component i 

= activity coefficient of component i 

= liquid activity coefficient of component i in the feed 

= liquid activity coefficient of component i in the liquid output 

A 3  = Wilson equation parameters 

v = measure of quality of the local model 

= tray efficiency 

= fugacity coefficient of component i 

= fugacity coefficient of component i calculated under satur-

ation conditions 

= parameter of the Underwood equation 

= dimensionless time for the evaporation process or the di-

mensionless height of a packed column 


