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Abstract

Conventional synthetic voices can synthesise neutral read aloud speech well. But, to
make synthetic speech more suitable for a wider range of applications, the voices need
to express more than just the word identity. We need to develop voices that can partake
in a conversation and express, e.g. agreement, disagreement, hesitation, in a natural
and believable manner.

In speech synthesis there are currently two dominating frameworks: unit selec-
tion and HMM-based speech synthesis. Both frameworks utilise recordings of human
speech to build synthetic voices. Despite the fact that the content of the recordings de-
termines the segmental and prosodic phenomena that can be synthesised, surprisingly
little research has been made on utilising the corpus to extend the limited behaviour
of conventional synthetic voices. In this thesis we will show how natural sounding
conversational characteristics can be added to both unit selection and HMM-based
synthetic voices, by adding speech from a spontaneous conversation to the voices.

We recorded a spontaneous conversation, and by manually transcribing and select-
ing utterances we obtained approximately two thousand utterances from it. These con-
versational utterances were rich in conversational speech phenomena, but they lacked
the general coverage that allows unit selection and HMM-based synthesis techniques
to synthesise high quality speech. Therefore we investigated a number of blending ap-
proaches in the synthetic voices, where the conversational utterances were augmented
with conventional read aloud speech.

The synthetic voices that contained conversational speech were contrasted with
conventional voices without conversational speech. The perceptual evaluations showed
that the conversational voices were generally perceived by listeners as having a more
conversational style than the conventional voices. This conversational style was largely
due to the conversational voices’ ability to synthesise utterances that contained conver-
sational speech phenomena in a more natural manner than the conventional voices.
Additionally, we conducted an experiment that showed that natural sounding conver-
sational characteristics in synthetic speech can convey pragmatic information, in our
case an impression of certainty or uncertainty, about a topic to a listener. The con-
clusion drawn is that the limited behaviour of conventional synthetic voices can be
enriched by utilising conversational speech in both unit selection and HMM-based

speech synthesis.
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Chapter 1
Introduction

The aim of this thesis is to produce synthetic speech that can express conversational
characteristics in a more natural and believable manner than conventional synthetic
voices. Current speech synthesis techniques use a corpora of speech data to synthesise
new utterances. Our approach is to augment the conventional database of neutrally
read aloud data with speech from a spontaneous conversation, in order to achieve our

goal of synthesising speech that exhibits conversational characteristics.

1.1 Utilising Richer Speech Resources

Unit selection and HMM-based synthetic voices can synthesise neutral read aloud
speech well (see e.g. King and Karaiskos, 2009). For many applications, such as GPS
systems or reading aloud text books, an intelligible read aloud speaking style is suffi-
cient to provide a user with relevant information. But applications created to portray
a believable character require synthetic voices that can express more than just propo-
sitional information. The characters need voices that can give an impression of being
engaged in an interactive exchange by signalling turn-taking behaviour and provide
backchannels, give an impression of self-motivation and intent by signalling agree-
ment, disagreement, hesitation, et cetera (Loyall, 1997; Traum et al., 2008; Romportl
et al., 2010). The challenge for speech synthesis in making synthetic voices suitable
for believable characters is therefore not to make the synthetic voices capable of syn-
thesising more natural-sounding propositional information, but to make a wider range
of speech phenomena sound natural.

To build synthetic voices capable of expressing a wider range of speech phenomena

than just propositional information we could attempt to generate the acoustic proper-
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ties of these other speech phenomena with some signal processing method, or we can
use the unit selection (Aylett and Pidcock, 2007) and HMM-based (Zen et al., 2007)
speech synthesis techniques to learn the segmental and prosodic properties of a wider
range of speech phenomena directly from speech data that contains them. Speech
phenomena with global acoustic properties can be modelled using utterance level sig-
nal processing, e.g. the modelling of “happy” utterances in Romportl et al. (2010)
by increasing the speaking rate and raising the FO of neutral utterances. However,
many other speech phenomena are of more local character, e.g. the phonetic proper-
ties of different phonemes in different syllable or utterance positions. Unit selection
and HMM-based speech synthesis techniques have proven successful in learning these
local properties directly from recordings of human speech and producing high quality
synthetic utterances (Karaiskos et al., 2008; King and Karaiskos, 2009, 2010). The
unit selection and HMM-based speech synthesis frameworks are formulated to pre-
serve the segmental and prosodic properties of the recorded speech (Clark et al., 2007,
Aylett and Pidcock, 2007; Zen et al., 2009). In order to build synthetic voices that are
more suitable for interactive believable characters with these techniques one solution
is to attempt to learn the segmental and prosodic properties from speech resources that
contain a richer variety of the speech phenomena associated with human interaction
than the more conventionally used speech resources of carefully and neutrally read

aloud isolated sentences. This is the approach taken by this thesis.

Spontaneous conversations contain a rich variety of the speech phenomena of hu-
man everyday communication, including propositional information, but also discourse
markers, filled pauses and backchannels (Clark, 1996). The structure and content of
conversations will be described in more detail in sections 2.1 and 2.2. Discourse mark-
ers (e.g. okay, you know, ’cause) and filled pauses (um and uh) are frequently used
in conversation to signal the beginning, continuation or end of a conversational turn,
as well as to signal affective content such as agreement or hesitation (Schiffrin, 1987,
Jurafsky et al., 1998; Clark and Fox Tree, 2002). For example, signalling agreement by
beginning an utterance with yeah or oh yeah (Jurafsky et al., 1998). However, utilising
speech from a spontaneous conversation directly to build synthetic voices is difficult
compared to the conventional approach of using neutrally read aloud sentences. It is
difficult, firstly because conventional sub-word speech synthesis requires a segmen-
tal level match between audio and text which cannot be obtained automatically from
conversations, and secondly because conversations contain an abundance of speech

phenomena that are currently not modelled well in speech synthesis, e.g. heavily re-
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duced, mispronounced or fragmented words, mumbling, interrupted utterances, sighs,
coughs and laughter.

A more controllable alternative to speech from a conversation is to use acted speech,
as in Gustafsson and Sj6lander (2004); Cadic and Segalen (2008); Romportl et al.
(2010); Adell et al. (2010). Although acted speech is useful for particular applications,
the quality of a particular speech phenomenon, e.g. the hesitation and laughter in Cadic
and Segalen (2008), will depend on how well the actor can act, whereas in speech
from a conversation the acoustic properties of the speech phenomena, such as hesita-
tion or laughter, are natural. Similarly to the conventionally used read aloud speech
resources, a bad actor may sound like he is reading aloud, whereas only a good actor
can sound sincere and spontaneous (Newell, 2009). Hence, although well acted speech
has many similarities to spontaneous speech, good actors are rare whereas spontaneous
conversations can be elicited and recorded in large amounts from many different peo-
ple. Therefore within the work presented here, we will focus entirely on speech from
spontaneous conversations, although elicited within the controlled environment of a

recording studio.

1.2 Conversational Speech Synthesis

Unit selection and HMM-based speech synthesis frameworks rely on the recorded
speech providing phonetic coverage; coverage of the different speech units in rele-
vant contexts, to build high quality synthetic voices. In conventional speech synthesis
the speech unit is often based on the phoneme and the contexts include features that
affect the phonetic properties of the phoneme, e.g. neighbouring phonemes, position of
the phoneme in syllable and utterance, etc. The recorded speech resources then contain
read aloud sentences that are pre-selected to provide the desired phonetic coverage. In
general, better phonetic coverage gives better quality of the synthetic speech (Clark
et al., 2007).

The previous research on speech synthesis with spontaneous or acted speech re-
sources have to a large extent focused on selecting whole dialogue acts (Gustafsson
and Sjolander, 2004; Campbell, 2005; Romportl et al., 2010), in particular when the
dialogue acts were considered important for regulating the conversation, e.g. backchan-
nels (“Yeah.”, “Too bad.”) or phrases like “Could you repeat that?”, or express affective
content e.g. "Hi how are you?” or “I’m so sorry about that.”. The propositional content

was however often synthesised from sub-word units with synthetic voices built from
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neutrally read aloud sentences (Romportl et al., 2010; Adell et al., 2010). But, in a con-
versation many utterances contain both propositional content and speech phenomena
such as discourse markers and filled pauses. In the example from our data (described
in chapter 3) the propositional content is bold faced and discourse markers and filled

pauses are in italics:

“yeah exactly and even like uh I’ll go and see bad movies that I know will be bad

um just to see why they’re so bad”.

Campbell (2006) describes this as propositional content being “wrapped” in speech
phenomena that structure the utterance in the interaction or signal affective meaning.
The ability to integrate propositional information with discourse markers and filled
pauses in coherent synthetic utterances is therefore an important step towards synthetic
voices for believable characters that can express themselves in a manner more similar
to human conversation.

The problem of utilising speech from a conversation to build synthetic voices that
can synthesise propositional content wrapped in discourse markers and filled pauses is
that there is less control over the phonetic coverage in spontaneous speech than in the
conventionally used speech resources. Therefore, in order to synthesise high quality
speech from spontaneous speech resources one has to a) accept that what can be said
with the voice is limited, and for example just select whole phrases, b) develop other
synthesis techniques, or ¢) develop methods to regain control over phonetic coverage,
by for example blending speech from different sources. In this work we will consider a

number of blending approaches within the unit selection and HMM-based frameworks.

1.3 Perceptual Evaluation

To support or refute the research hypothesis (see section 1.4) we will conduct percep-
tual evaluations with human participants. Acoustic and linguistic analysis of natural
and synthetic speech will also be conducted to provide motivation for the results of the
perceptual evaluations.

In conventional speech synthesis, one of the most common evaluation methods is
to play isolated utterances of synthetic speech to listeners and let the listeners self-
rate perceived naturalness. The listeners’ ratings of naturalness have been shown to
be negatively affected by the presence of acoustic artefacts associated with synthetic

speech errors, such as FO and spectral discontinuities (Mayo et al., 2005). Evaluating
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the naturalness of a synthetic utterance gives information of the overall quality; of
propositional content as well as discourse markers and filled pauses. Therefore, we
will evaluate the naturalness of our synthetic voices. But naturalness is not enough.
Two synthetic speech samples can be perceived as differing in other aspects than
naturalness: the utterances could have different prosodic properties (e.g. fast/slow),
different linguistic properties (e.g. casual/formal), or one utterance could sound like it
was spoken spontaneously in a conversation and the other like it was read aloud from
a newspaper. Previous research that has evaluated other aspects of synthetic speech
than perceived naturalness include e.g. evaluations of how “colloquial” (Werner et al.,
2006) or “spontaneous” (Lee et al., 2010) an utterance sounds, or whether an utterance
has a ”joyful”,“sad”, “rough” or “neutral” speaking style (Yamagishi et al., 2005). We
will investigate to what extent listeners perceive that synthetic voices built from con-
versational speech data also exhibit recognisable conversational characteristics, and to
what extent this perceived “conversationalness” is distinct from perceived naturalness.
Whereas evaluating a conversational speaking style is intended to capture a general
quality, we will also investigate to what extent our conversational speech synthesis
can convey specific pragmatic meanings. Listeners’ perception of specific phonetic
properties of synthetic utterances have been evaluated by requesting participants to
listen for them, e.g. by requesting them to listen for placement of hesitation (Carlson
et al., 2006) or locate the most prominent word (Strom et al., 2006). Similarly, we will
investigate if certain discourse markers and filled pauses affect the perceived meaning

of a synthetic utterance so that it conveys certainty or uncertainty.

1.4 Research Questions and Hypothesis

Our objective is to create a synthetic voice which is perceived as both natural and
conversational by utilising speech from a spontaneous conversation to build the voice.

The research questions that we will address to achieve this objective are:

e How to obtain spontaneous conversations under the controlled conditions re-

quired for building high quality synthetic voices.

e How to constrain the rich variety of speech phenomena in a spontaneous con-
versation to create a controlled dataset of conversational utterances from which
we can automatically build high quality synthetic voices in conventional speech

synthesis systems.
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e To what extent can we alleviate the lack of control over phonetic coverage in
spontaneous speech resources by blending conventional pre-selected and neu-

trally read aloud data with data from a conversation.

e To what extent does the inclusion of conversational speech in synthetic voices
influence listeners’ impression of conversational speaking style and pragmatic

meaning of synthetic utterances.

The hypothesis of this thesis is that incorporating conversational speech into a
database of neutrally read aloud speech can add conversational characteristics to an
otherwise neutral synthetic voice without causing a negative impact on the perceived
naturalness. In contrast, our null hypothesis is that the differences between conver-
sational speech and neutrally read aloud sentences are too big, and the use of speech
from a spontaneous conversation in synthetic voices will result in no improvement
when synthesising conversational material.

To test this research hypothesis we will build a series of voices constructed with
and without conversational data, as well as with and without methods to support appro-
priate blending of speech data with different speaking styles. We will evaluate these
voices in terms of their naturalness and in terms of their conversational speaking style.
To conclude we will test that a synthetic voice built with conversational speech can

convey pragmatic information, such as certainty and uncertainty.

1.4.1 Structure of the Thesis

The rest of this thesis is outlined as follows: chapter 2 gives the background to conver-
sational speech, unit selection and HMM-based speech synthesis and previous research
on conversational speech synthesis. Chapter 3 describes the recording, transcription
and analysis of the recorded conversations. Chapter 4 describes the details of building
the synthetic voices, and Chapter 5 describes the perceptual evaluations of the synthetic

speech. Finally, chapter 6 contains a concluding discussion.



Chapter 2
Background

In this chapter we will start by giving a broad introduction to conversation in sec-
tion 2.1, before describing in section 2.2 the conversational speech phenomena that are
the focus of this thesis. In section 2.3 we will give an overview of the unit selection
and HMM-based speech synthesis frameworks that were used to build the synthetic
voices in chapter 4. In section 2.4 we will review previous approaches to conversa-

tional speech synthesis.

2.1 What is Conversation?

Human face-to-face interaction is recognised as the foundation of human communi-
cation in research areas ranging from sociology (Goffman, 1967) to phonetics (Local
and Walker, 2005). In the interface between sociology and phonetics we find the ev-
eryday conversation (Clark, 1996). We use Clark (1996) to give a broad introduction
to conversation, because he takes into account both the private perspective of the indi-
vidual participants in the conversation as well as the coordination of the participants’
individual actions through an observable signal that Clark (1996) refers to as language.
Although, face-to-face conversation includes bodily, facial and vocal gestures, it is pri-
marily a linguistic activity (Clark, 1996), and within this thesis we will focus entirely
on the speech signal of the conversation.

The core claim about language use in conversation in Clark (1996) is that it is a
joint action. Conversation requires coordinated interaction between a speaker and an
addressee. What needs to be coordinated is what the speaker means and what the
addressee understands about the speaker’s intended meaning. A short example of par-

ticipants expressing meaning and understanding in a conversation from Clark (1996,

7
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p.227) is shown below:
Roger: now, - um do you and your husband have a j- car
Nina: - have a car?
Roger: yeah
Nina: no -

The example from Roger’s and Nina’s conversation is analysed by Clark (1996)
as follows: Roger believes that he has expressed his meaning to Nina with his first
turn. Nina confirms that she believes that she has understood Roger, except for the last
part which she thinks was have a car. Roger then concludes that if he confirms that
he meant have a car then Nina will have understood what he meant, so he says yeah.
Nina then confirms that she has understood what Roger meant by his first question by

answering it with no.

2.1.1 Structure of Conversation

The individual contributions in the conversation to the shared social context or dis-
course, e.g. Nina’s -have a car?, have been categorised and analysed in the research
literature as e.g. speech acts (Searle, 1969), turns (Sacks et al., 1974), and more recent
derivations of turns or speech acts as dialogue acts in speech synthesis and spoken
dialogue systems (Campbell, 2005; Traum et al., 2008; Bunt et al., 2010). The main
difference between turns and dialogue acts is that turns focus on the process of coor-
dinating who speaks when (turn-taking) in the conversation (Sacks et al., 1974), and
dialogue acts focus on the pragmatic function of what was said (Bunt et al., 2010).
Part of the definition of a dialogue act in Bunt et al. (2010) is the requirement
of at least two participants: a speaker and an addressee. Clark (1996) argued that
dialogue act type is negotiated between speaker and addressee and depend on both the
addressee’s understanding and acceptance of the speaker’s meaning, and the speaker’s
acceptance of the addressee’s understanding. Clark (1996) gives an example where the
utterance “Sit here” can be interpreted as an order, a request, an offer or an advisory,
and it takes both speaker and addressee to negotiate which one it will be. For example,

by replying “Yes, sir.” the addressee signals that (s)he understands and accepts “Sit

'We present transcribed examples from other work with original annotations. In these examples,
hyphen or dot are used to denote silences, colon is used to denote prolongation of a segment, and other
punctuation marks are used to denote phrase endings, e.g. question mark is denoting a question.
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here” as an order, whereas if the addressee replies with “What a good idea!” the
addressee signals that (s)he understands and accepts “Sit here” as an advisory. The
recording, transcript or dialogue act annotation of a conversation only displays what
did happen, not which other options were available and considered. The structure of a
conversation can appear pre-determined when analysed after the fact, but is the result
of locally negotiated contributions (Clark, 1996).

We will use the terms turn and dialogue act when reporting previous research that
have used them. The speech data analysis (see chapter 3) for the synthetic voices de-
scribed in chapter 4 of this thesis, did not use turns or dialogue act annotation (see
section 2.2). Therefore we will often use the more neutral term utterance when refer-

ring to a delimited stretch of speech.

2.2 Conversational Speech for Speech Synthesis

The problem of synthesising conversation consists of generating appropriate speech
at an appropriate time in an interactive setting. That problem can be divided into
two parts; the interactive part and the static part. The interactive part is addressed
in research such as Traum et al. (2008), where their animated characters engage in
limited conversations. One of the limiting factors of these characters is the lacking
ability to generate speech with conversational characteristics beyond a limited set of
pre-recorded prompts. Generating speech with conversational characteristics in utter-
ances that are not pre-recorded represents the static part of the conversational speech
synthesis problem. In the static view of conversation the features of recorded con-
versations are analysed and duplicated. This is the approach taken in this thesis. We
concentrate on the description and analysis of recorded conversational data and try to
duplicate it. To evaluate this approach we then carry out a limited “interactive” exper-
iment where we present single sentences to our subjects to see if the intended function
of conversation has been successfully synthesised; in this case giving an impression
of certainty or uncertainty (see section 5.6). As a starting point for this approach we
will consider one of the most common features of conversational speech, so called
“wrappers” (Campbell, 2006).

The topics and participants of conversations vary from occasion to occasion, but
many of the speech phenomena in conversation are recurring across different topics
and different speakers. These recurring phenomena are the key to the unit selection

and HMM-based speech synthesis frameworks’ ability to synthesise utterances that
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are not pre-recorded. In section 1.2 we gave an example of conversational speech
where the content was separated into wrappers and propositional content. In a cor-
pus of 150,000 utterances from one person’s everyday conversations Campbell (2006)
found that about half of the utterances consisted only of these recurring wrappers.
Campbell (2006) argued that the wrappers were used in conversation to regulate the
flow (e.g. turn-taking), express inter-personal relationship (e.g. formal/informal) and
express affective content (e.g. agreement, disagreement or hesitation). These wrappers
are generally not well synthesised with conventional synthetic voices. Improving syn-
thesis of the wrappers would make synthetic voices more suitable for applications such
as believable characters (Traum et al., 2008; Romportl et al., 2010).

Based on the research literature we divided the wrapper category into discourse
markers, filled pauses and backchannels. We will focus on discourse markers and
filled pauses, because the challenges for synthesising backchannels are different than
the challenges for synthesising utterances with discourse markers and filled pauses.
Discourse markers and filled pauses mainly occur together with propositional content
in longer utterances (Schiffrin, 1987; Clark and Fox Tree, 2002), whereas backchannels
are often isolated word tokens (Hockey, 1993; Gravano et al., 2007). Given a database
of conversational speech, as in chapter 3, many backchannels already exists in the
recordings and the challenge would be to time them appropriately in a conversation.
The challenge that we will address is to integrate discourse markers and filled pauses
with propositional content to synthesise utterances that are not pre-recorded.

In sections 2.2.1, 2.2.2 and 2.2.3 we will describe phonetic properties and prag-
matic functions of the discourse markers, filled pauses and backchannels. The majority
of the reviewed research has analysed the phonetic properties with respect to manually
labeled discourse features and/or pragmatic functions, e.g. the effect of the preced-
ing utterance on listeners classifications of okay tokens (Gravano et al., 2007), or the
differences in F0 trajectory of okay when used as backchannel or discourse marker
(Hockey, 1993). In our approach we will investigate the use of the lower level features
that are automatically extracted in our speech synthesis systems, such as phoneme se-
quence and utterance position. The decision to use automatically extracted low level
features does have limitations in representing and synthesising meaning contrasts of
conversational speech phenomena. But, the main motivations behind our bottom-up

approach to conversational speech synthesis were:

e The phonetic content of recorded speech is fixed, whereas the pragmatic func-

tion of synthetic speech will be interpreted in a new discourse (see section 2.1.1).
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Therefore, it was considered more important that the extracted features sup-
ported synthetic speech without acoustic artefacts, rather than that the features
reflected every meaning contrast in a recorded conversation. The evaluations of
the synthetic voices in sections 5.2 and 5.5 show that the approach was success-
ful in synthesising more natural conversational style utterances than conventional

synthetic voices.

e Discourse markers and filled pauses consist of a limited set of word tokens that
are frequently occurring at or around phrase boundaries. Many important char-
acteristics of discourse markers and filled pauses can therefore be identified for
speech synthesis through low level features. The claim will be substantiated
by: a) showing preserved phonetic properties of discourse markers and filled
pauses in synthetic speech (in section 4.2.6), and b) showing the effect of dis-
course markers and filled pauses in synthetic speech on listeners’ perception of

pragmatic function (in section 5.6).

Ambiguous examples where low level features are insufficient can be constructed.
For example, does stand-alone right mean the opposite of left, or is it a backchannel?
In our recorded conversation in chapter 3 there are 167 stand-alone right (see table 3.4),
and all of them are backchannels. Thus, the low level features often capture a token’s

prototypical function and associated phonetic properties.

2.2.1 Discourse Markers

Discourse markers include mainly words and expressions that are frequent in conver-
sations, such as: actually, basically, because, (examples from Hirschberg and Litman,
1993), oh, well, but, you know, I mean (examples from Schiffrin, 1987). Different au-
thors have used different terms to refer to similar sets of words and phrases, e.g. cue
phrases (Grosz and Sidner, 1986), editing terms (Levelt, 1983), lexical fillers (Lickley,
1994). In this thesis we will use the term discourse markers (Schiffrin, 1987).

We will focus on describing discourse markers that: a) were used by the speaker
in the data described in chapter 3, and b) have been analysed with respect to their pho-
netic properties and pragmatic functions. The literature review shows that different
discourse markers are often associated with one or a few prototypical pragmatic func-
tions associated with their local phonetic properties. The “lexical form” is an impor-
tant part of this local phonetic context and Jurafsky et al. (1998) treated yeah, oh yeah,
yeah (LAUGH) and well yeah as separate types. Our method of extracting low level
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features from conversational speech that contains a rich variety of discourse marker
types, should therefore identify the local phonetic properties of different discourse
markers and thereby support synthesis of different discourse markers in a manner that

sounds natural.

2.2.1.1 Yeah and Okay

The most frequent word in our data, described in chapter 3, was yeah. That yeah
is frequent in conversations is also the consensus in the literature (Jurafsky et al.,
1998; Fuller, 2003; Benus et al., 2007). Frequent pragmatic functions of yeah include
backchanneling (see section 2.2.3), yes-answer, and agreement (Jurafsky et al., 1998).

Gravano et al. (2007) classified tokens of okay from 12 task-oriented conversations
into pre-defined categories including: backchannel, agreement and discourse marker
at beginning of turn. A subset of the tokens, matched with respect to labeler agreement
(full to none), were selected for a perception task, where participants were asked to
assign one of the three categories to each token. The different tokens of okay were
played both in isolation, and in the context of previous and current turn. An example

is shown below, where the okay in boldface was the token to be classified:
Speaker A: yeah - um there’s like there’s some space there’s
Speaker B: okay - I think I got it

Segmental, prosodic and discourse features were extracted from the okay tokens
to analyse which were correlated with the participants’ classifications. An important
finding was that different features were correlated with the participants’ classifications
when okay was played in isolation or in its context. In isolation there were correlations
with the segmental quality and duration of phonemes, but in context the strongest cor-
relations were related to duration of silence between turns and the length of speaker B’s
turn (where the okay to be classified was). Both in isolation and in context pitch con-
tour showed relatively strong correlation with classifications, where a rising contour
was correlated with backchannels and a falling contour was correlated with discourse
markers (Gravano et al., 2007).

The relation between pitch contour and discourse function for okay (backchannel
or discourse marker) was previously established also in Hockey (1993). A falling pitch
contour was associated with a function as discourse marker, and a rising pitch contour

was associated with a function as backchannel (Hockey, 1993). In addition, there
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were also okay tokens with a flat contour, but no pattern related to function could be
established across speakers, and Hockey (1993) suggested that pitch contour alone was

not a sufficient cue to identify discourse function.

2.2.1.2 | Mean and You Know

In the analysis by Schiffrin (1987), I mean signalled a speaker’s orientation towards
and modification of their own speech. This analysis is in accordance with the function
of I mean also in Levelt (1983). As in the example below where I mean signalled a
change from I don’t know to I know (Schiffrin, 1987, p. 301):

But oh I don’t know the rabb- I mean I know him, but I'm- I- not actively, as far as

I’m concerned

You know, often pronounced (in Schiffrin’s notation) as y ’know, was used to refer to
shared knowledge of the speaker and hearer, where a rising intonation signalled more
uncertainty about the shared knowledge than a falling intonation (Schiffrin, 1987).
You know could also be used to elicit confirmation from the hearer, as in the example
adapted from Schiffrin (1987, p. 292):

Irene: [...] he had taken over the synagogue, which remained there:y’know?

Sally: Yeh, I remember.

2.2.1.3 And and But

The discourse connective and was used to coordinate and continue actions, e.g. signal
relation to previous turns. Whereas the discourse connective but was used to signal
contrast, and also disagreement (Schiffrin, 1987). Although it was not analysed in
Schiffrin (1987) the collocation and followed by a filled pause (and uh/um) was rela-
tively frequent in her examples. Local (2007) showed that and in and uh/um had very
consistent phonetic properties compared to when and as discourse marker was not fol-
lowed by a filled pause. Local (2007) argued that whereas and was used to continue

the current topic, and uh/um was used to return to a prior topic.

2214 So

So can be used to signal turn transitions, as in the example adapted from Schiffrin
(1987, p. 219):
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Henry: [...]

Henry: So:uh...but we buy beer and...cake and that’s-we spend it out of our own

money.
Henry: So:eh:
Debby: So, when Henry’s gone, what do you do?

Where, according to the analysis, Henry offered the turn with the first so, but then
continued when nobody took it, and offered the turn again with the second so, at which
point Debby took the opportunity and asked the third participant a question (Schiffrin,
1987).

An analysis of stand alone so in American English conversations showed how pho-
netic properties differed with respect to discourse function (Local and Walker, 2005).
The comparison was made on two types of stand alone so: “holding-so” and “trailoff-
so”. The “trailoff-so” was a signal to the conversational partner that the previous topic
was finished and that the partner was welcome to take the turn and initiate a new topic.
The “holding-so” on the other hand signalled that the speaker had not finished the cur-
rent topic and therefore continued speaking after the silence, without the conversational
partner attempting to take the turn.

All instances of “holding-so” and “trailoff-so” were in the immediate phonetic con-
text surrounded by silence, and they had a variety of phonetic properties with respect
to: vowel quality, duration, pitch contour and voice quality. But the phonetic differ-
ences with respect to discourse function was that “holding-so” was significantly louder,
had higher fO and was less creaky than “trailoff-so” (Local and Walker, 2005).

2.2.1.5 Discourse Marker Summary

Discourse markers consist of frequent words and expressions that are used to express
a wide range of functions in conversation (Schiffrin, 1987). The different discourse
markers are often associated with a few prototypical functions as described in sec-
tions 2.2.1.1-2.2.1.4. For example, expressing agreement with yeah, signalling relation
to a previous topic with and uh or asking for confirmation with you know.

In our approach, outlined in section 2.2, the phonetic properties and functions of
the different discourse markers were represented for speech synthesis through shallow
linguistic features. If we review the findings we have presented for discourse markers

in sections 2.2.1.1-2.2.1.4 we find that a majority can be modelled to a large extent
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function propositional initial discourse marker final discourse marker
tokens ... nowadays you know sil you know / was... ...with the helmet
automatically who’s gonna die... sp you know sil
function propositional backchannel initial discourse marker
tokens ... my right foot ... sil right sil sil right sp well you guys...
function backchannel confirmation initial discourse marker
tokens sil yeah sil yeah yeah yeah sil yeah [ know it’s...
function propositional hesitation more hesitation
tokens ... It’s fast ... ... it’suh it’s blue ... ... but uh [ think
it’s uh it’s cool

Table 2.1: Examples of how shallow linguistic features, such as representation of ut-
terance position and word/phoneme context, can distinguish between the functions of
different tokens. The sil represents utterance beginning or end. The sp represents ut-
terance internal pauses. Isolated utterances with yeah or right are often backchannels,
written sil yeah sil or sil right sil in this table. In the beginning or end of utterances yeah
and you know are often discourse markers, e.g. in utterances starting with sil yeah
I... or ending with ...sp you know sil. Filled pauses in an utterance signal hesitation,
e.g. ...It's uh it's blue whereas only propositional content often does not signal hesita-
tion, e.g. ...it’s fast.... Orthographic representation of these tokens, e.g. yeah, right or
uh, together with their immediately surrounding context was therefore expected to be
sufficient to represent their phonetic properties for speech synthesis. The examples are

taken from the conversation with Johnny in chapter 3.

through immediate phonetic and word context. Table 2.1 exemplifies how features
such as phoneme sequence and phrase position can capture prototypical function dis-

tinctions.

2.2.2 Filled Pauses and Hesitation

The term filled pause was coined in Maclay and Osgood (1959) (reprinted in Jakobovits
and Miron (1967)) as a contrast to unfilled pauses (silence or phoneme prolongation)
in an analysis of hesitation phenomena in English spontaneous speech. Filled pauses
are sometimes classified as disfluencies, but they have linguistic properties more in
common with other “filler” items, e.g. I mean (Levelt, 1983). The transliteration of

English filled pauses differs within the literature, but in this thesis we will use um and
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uh.

Clark and Fox Tree (2002) argued that filled pauses should be considered normal
English words that signal delay in speech, with slightly different meanings of um and
uh. The postulated meaning difference was argued against in O’Connel and Kowal
(2005), but for this thesis the word-like properties of filled pauses are the focus of

attention, not their meaning difference.

2.2.2.1 Linguistic Properties

As we mentioned in section 2.2.2, filled pauses are sometimes analysed together with
disfluencies such as repetitions, and in these analyses filled pauses were found to be a
very frequent (if not the most frequent) disfluency type (Shriberg, 1996; Lickley, 2001).
The frequency and type (um or uh) of filled pauses are to a large extent individual. In
the analysis by Clark and Fox Tree (2002) of the London-Lund corpus, speaker’s filled
pause rate varied between 1% and 9% of the total number of word tokens and some
speakers showed a clear preference for either um or uh, but averaged over all speakers
they were used about 50% of the time each.

The majority of filled pauses occurred at syntactic boundaries, or after the first
word and less frequently in other positions (Clark and Fox Tree, 2002). The rate of
filled pauses also varied with dialogue act type, with more filled pauses in replies
to wh-questions, instructions and negative answers, than in y/n-questions or positive
replies (Lickley, 2001).

Shriberg and Stolcke (1996) showed that utterances that contained repetitions or
filled pauses had significantly lower bigram and trigram transition probabilities than

fluent utterances.

2.2.2.2 Phonetic Properties

Although filled pauses are word-like, their specific phonetic properties differentiate
them from other words. In this section we will describe the phonetic properties of
filled pauses that have been reported in the research literature.

Filled pauses consisted of a steady vowel part that was sometimes followed by an
/m/ (O’Shaughnessy, 1992). The vowel quality of filled pauses was often close to a
schwa, but could also have other vowel qualities (Shriberg, 1999). But one of the most
distinguishing characteristics of filled pauses was their duration.

Shriberg (1999) reported a median duration for filled pauses of approximately
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300ms, but with a large variation of duration (from about 50ms up to almost a sec-
ond). The duration differed to some extent both between um and uh, where um was on
average 60-100ms longer than uh (Brennan and Williams, 1995; Fox Tree, 2001), and
between filled pauses at syntactic boundaries (200-500ms) and within clauses (170-
320ms) (O’Shaughnessy, 1992).

Filled pauses generally had a lower FO than the rest of an utterance, but filled
pauses at syntactic boundaries tended to have a higher FO onset than clause internal
ones (O’Shaughnessy, 1992). The pitch contour of a filled pause can be falling, level
or rising (Clark and Fox Tree, 2002). Shriberg and Lickley (1993) showed that the
FO of clause internal filled pauses correlated with FO values of surrounding FO peaks
(e.g pitch accents), regardless of if the filled pause was separated from the surrounding
speech with a silent pause.

Filled pauses were sometimes cliticised onto prior words so that e.g. and uh or
but um were pronounced as an duh and bu tum (Clark and Fox Tree, 2002). As a
hesitation phenomenon filled pauses are often associated with a prolongation of at
least the preceding syllable, but the reported evidence for this particular phenomenon
is sparse, and the only explicit support we have found comes from Adell et al. (2008).
Other research has analysed hesitation prolongation as a more general phenomenon
preceding disfluencies, such as repetitions and filled pauses, that also included usage

of fully pronounced versions of e.g. a, the or to (Shriberg, 1999).

2.2.2.3 Pragmatic Functions of Filled Pauses

The reason to synthesise filled pauses and other conversational speech phenomena in a
natural manner, is to communicate something to the listeners. Psycholinguistic studies
have shown how a speaker’s use of filled pauses affect the listeners in various ways.
Brennan and Williams (1995) showed that listeners’ impressions of a speaker’s cer-
tainty of an answer was affected by the presence of filled pauses. Corley et al. (2007)
showed that listeners experienced fewer problems of integrating unpredictable words
into their context when they were preceded by a filled pause. Numerous other psy-
cholinguistic studies (e.g. Arnold et al., 2007) have shown that the listeners’ attention
was directed towards discourse new referents when there was a filled pause before a
referent. Arnold et al. (2007) also showed that this effect was cancelled when listeners
were told that the speaker suffered from agnosia, an inability to recognise or name
objects, showing that listeners took into account why the speaker hesitated. But it

is also worth mentioning that Corley et al. (2007) and Arnold et al. (2007) used (the
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authors’) acted and not actual spontaneous hesitations, recorded in carrier sentences,
such as in the example from (Arnold et al., 2007, p. 916): “click on thee uh ...”. Those
acted hesitations might be more prominent than in actual spontaneous speech, because
Lickley (1995) found that people failed to consciously detect approximately half of the

utterance internal filled pauses in spontaneous speech.

2.2.2.4 Filled Pause Summary

The specific phonetic properties of filled pauses described in section 2.2.2.2 are dif-
ferent from the properties of other speech phenomena (see e.g. Adell et al. (2010)).
Conventional unit selection and HMM-based synthetic voices will therefore not gener-
ate filled pauses with natural phonetic properties, unless there are special solutions as
in Adell et al. (2010).

The filled pauses are in this thesis written as um or uh. This is also how they
are represented in the pronunciation lexicons of our speech synthesis systems, together
with their phoneme sequences. This representation differentiates the filled pauses from
other words, and because filled pauses exist in our speech data their phonetic properties
are well captured through our bottom-up approach outlined in section 2.2 of utilising
phoneme sequence, utterance position and other shallow features to synthesise filled
pauses. Table 2.1 exemplifies how these features in the typical case capture hesitation
or uncertainty about the propositional content through the presence or absence of filled
pauses in the text.

In summary, speakers use filled pauses when hesitating, and listeners, to some
extent, recognise and interpret the reason for the speaker’s hesitation. In section 5.6
we will investigate the contribution of filled pauses on the perception of (un)certainty

in synthetic speech.

2.2.3 Backchannels

Backchannels are signals that the listener is involved in the conversation, but does not
want to take the turn from the speaker (Gravano et al., 2007). Backchannels often
have the same lexical realisations as discourse markers, e.g. okay, yeah, but some
tokens, e.g. uh-huh, have a purely backchannel function (Hockey, 1993). The phonetic
properties, such as pitch slope, have been found to differ between okay tokens classified
as backchannels or discourse markers. Another important classification cue was that

the backchannels were isolated from speech by the same speaker with silent pauses
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Hockey (1993); Benus et al. (2007); Gravano et al. (2007).

The speech data in chapter 3 that was used to build the synthetic voices in chap-
ter 4 contained backchannels. These backchannels could, in unit selection, be selected
as pre-recorded prompts based on orthographic content and phrasal context (see ta-
ble 2.1). The timing of backchannels in conversation is, in contrast, a major challenge.
Examples of work that have focused on the timing of backchannels include Schroder
et al. (2008) and Romportl et al. (2010). These systems typically use a full dialogue
system and an embodied conversational agent (Schroder et al., 2008; Romportl et al.,
2010). Our work did not require modelling timing in conversation, and synthesis of

backchannels will therefore not be considered further in this thesis.

2.3 Speech Synthesis

Unit selection and HMM-based speech synthesis are currently the two dominating
frameworks in speech synthesis. They both utilise recordings of speech to build syn-
thetic voices that capture the characteristics of the speech and speaker in the original
recordings and enable synthesis of utterances that are not pre-recorded.

The unit selection and HMM-based speech synthesis frameworks are based around
the same assumptions about speech as a sequence of context-dependent sub-word
speech units. For English, the sub-word speech unit is generally the phoneme, and the
context includes features that affect the phonetic properties of the phoneme, e.g. neigh-
bouring phonemes, syllable position, utterance position or prosodic prominence. The
different engineering solutions of unit selection and HMM-based speech synthesis
have certain consequences for the resulting synthetic speech. In unit selection the
phonetic detail of the original speech recording is preserved, but the concatenation of
sub-word units in connected speech can result in audible acoustic artefacts at concate-
nation points. In HMM-based speech synthesis the speech is vocoded which results in
a degradation of speech quality, and the training and generation schemes result in a loss
of some of the original phonetic detail, but the training and generation schemes also
result in more consistent speech quality than unit selection. In this thesis we will inves-
tigate whether unit selection is robust enough to make good quality synthetic voices
from conversational speech, and whether HMM-based speech synthesis is sensitive
enough to preserve important phonetic detail of conversational speech phenomena.

We used three different systems to build the synthetic voices in chapter 4: the

CereVoice (Aylett and Pidcock, 2007) unit selection system, and the speaker-dependent
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(Zen et al., 2007) and speaker adaptive (Yamagishi et al., 2009) HMM-based speech
synthesis systems. These three systems have been shown to synthesise good quality
speech from conventional speech resources of read aloud sentences, in for example the
Blizzard Challenge (Andersson et al., 2008; Karaiskos et al., 2008; Yamagishi et al.,
2008). Additionally, techniques have been developed for these systems to synthesise
different “emotions” from recordings of more expressive speech (Aylett and Pidcock,
2007; Yamagishi et al., 2005, 2004). The systems were therefore considered adequate
candidates for the challenging task of utilising conversational speech to build natural-

sounding synthetic voices.

In section 2.2 we motivated how frequent conversational speech phenomena could
be represented for speech synthesis through shallow linguistic and phonetic features.
This analysis can be automatically made by our speech synthesis systems. But, unit se-
lection and HMM-based speech synthesis require phonetic coverage (see section 2.3.1)
in order to build high quality voices. The lack of control over phonetic coverage in con-
versational speech led us to investigate “blending” of conversational and read aloud
data in the synthetic voices. Section 3.5.1 contains an analysis of the phonetic cov-
erage in the conversational and read aloud data. The purpose of the blending was to
use the read aloud data to boost the phonetic coverage, and thereby allow high quality
synthetic speech, while maintaining the conversational characteristics from the conver-
sational speech data. In order to avoid it being obvious to listeners that the synthetic
voices were built from two different sources of data, and therefore sound less natural,
the developed blending techniques needed to take into account the phonetic differences
between the conversational and read aloud speech data. A comparison of the general

phonetic properties of our recorded speech is shown in section 3.5.2.

Conventional speech synthesis evaluations, as in the yearly Blizzard Challenge
workshop (Black and Tokuda, 2005; King and Karaiskos, 2010), generally focus on
evaluating the naturalness and intelligibility of synthetic speech. Naturalness is evalu-
ated by letting listeners self rate the perceived naturalness of synthetic speech. Intel-
ligibility is evaluated by letting listeners write down the perceived orthographic word
sequence of a synthetic utterance. General differences other than naturalness have of-
ten been evaluated in the research literature as a difference in speaking style, e.g. which
utterance sounds more “joyful”, “sad”, or rough (Yamagishi et al., 2005), or which
utterance sounds more “colloquial” (Werner et al., 2006) or “spontaneous” (Lee et al.,
2010). More local properties of synthetic utterances have been evaluated by requesting

listeners to locate e.g. hesitation in the beginning, mid or end of a synthetic utterance
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(Carlson et al., 2006) or identify the prosodically most prominent word in an utterance
(Strom et al., 2006). We will follow the conventional evaluation paradigm, to contrast
the impact of conversational data on naturalness and speaking style of our conversa-
tional synthetic voices compared to conventional voices built from read aloud sen-
tences. We will also evaluate whether a conversational voice communicates pragmatic
information more efficiently than a conventional voice. The details of the perceptual
evaluations are described in chapter 5.

In sections 2.3.2 and 2.3.3 we will describe our unit selection and HMM-based
speech synthesis systems. But first we will give an overview in section 2.3.1 of the

carefully read aloud isolated sentences that are generally used for speech synthesis.

2.3.1 Conventional Speech Resources

Conventional unit selection and HMM-based speech synthesis systems rely on record-
ings of read aloud isolated sentences that are selected to provide phonetic coverage.
Phonetic coverage for synthesis means that the speech unit should be present in all
relevant segmental and prosodic contexts. In particular, the contexts should cover the
intended target domain or text genre (Clark et al., 2007). In this thesis the speech
unit in the unit selection system is the diphone (Aylett and Pidcock, 2007), and in the
HMM-based speech synthesis system the quinphone (Zen et al., 2007). The diphone
stretches from the middle of a phoneme to the middle of the next phoneme. This fa-
cilitates concatenation of units in unit selection since the phonetic properties are more
consistent across contexts in the middle of the phoneme (Clark et al., 2007). The quin-
phone is an extension of the triphone used in speech recognition and stretches from the
beginning of the first phoneme to the end of the fifth phoneme (Young et al., 2006).
In Clark et al. (2007) the CMU Arctic database (Kominek and Black, 2004) was
considered to give a minimum phonetic coverage. The Arctic database consists of
approximately 1200 sentences, 5-15 words long, collected from fiction. The Arctic
database contains at least one of about 90% of the possible diphones in their lexi-
con, when only lexical stress was considered as phonetic context (Kominek and Black,
2004). Richer phonetic coverage generally includes sentences from a variety of text
genres, as in the data used for the Blizzard Challenge 2008 (Karaiskos et al., 2008)
which contains about 8000 sentences from e.g. news, fiction and addresses that were
originally recorded by Strom et al. (2007, 2006). This data was collected to obtain

coverage of phrase boundaries and pitch accents, in addition to lexical stress (Strom
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et al., 2007, 2006). In general, better phonetic coverage results in better synthetic
speech quality; for both unit selection and HMM-based synthetic voices (Aylett and
Yamagishi, 2008).

According to Clark et al. (2007) there are two problems with the need for phonetic

coverage in speech synthesis:

e The need for phonetic coverage quickly increases the number of needed sen-

tences as more prosodic contexts are considered.

e [t is difficult to consistently record a large amount of speech from a single

speaker over multiple sessions.

2.3.1.1 Segmenting Read Aloud Speech

To build synthetic voices from recordings of speech, conventional unit selection and
HMM-based speech synthesis systems require that the speech is segmented into a
phoneme sequence. The phoneme sequence is typically derived from a forced align-
ment of an orthographic transcription to the speech signal. Poorly segmented speech
results in poor synthetic speech quality. The alternative of manual segmentation was
rejected on the basis that it is too resource intensive. Thus, investigating to what ex-
tent spontaneous speech can be automatically processed for synthesis, compared to the
conventional read aloud sentences, is a key problem. Therefore, we utilised forced
alignment to derive a phoneme sequence also for the carefully transcribed conversa-
tional utterances described in section 3.4.

Speech segmentation for synthesis consists of two problems: determining the pho-
neme sequence and aligning that sequence to the speech signal. The HTS system
does not include the tools for determining the phoneme sequence and it was in this
thesis determined with the Festival or CereVoice text processing modules. These mod-
ules are often termed the front-end. The front-end converts transcriptions to phoneme
sequences using pronunciation lexicons, phrasing rules and other phonological rules.
The pronunciation lexicon lists valid phonemic pronunciations (generally citation form
pronunciations) of isolated words, thereby simplifying the problem of determining the
phoneme sequence. Forced alignment, as outlined in Young et al. (2006) and imple-
mented in a similar manner in the Festival and CereVoice systems, generally provides
accurate alignment of carefully read aloud sentences. The forced alignment modules
in both Festival and CereVoice are implemented using the HTK toolkit (Young et al.,
2006). Each phoneme is represented as a three state left-to-right hidden Markov model
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(HMM). The HMM phoneme sequence is initially aligned to the speech signal with a
uniformly distributed duration. The HMM parameters are initialised with the global
mean and variance from the spectral features of all the utterances. Then the HMMs are
trained with the Baum-Welch algorithm to find a more accurate alignment. To make
additional improvements to the alignment optional silences can be inserted between
words during the training, the phoneme HMMs may have multiple Gaussian mixtures
to account for some of the phonemic variation in connected speech (phrase position,
consonant clusters, etc.) and some pronunciation variation is allowed for, in particular,
function words. For example, in the CereVoice system, from the general American lex-
icon, and can be pronounced fully /&nd/ or reduced /sn/, but can be pronounced fully
/bat/ or reduced /bot/, and the can be pronounced fully /di:/ or reduced /d9/. The
result of the forced alignment is to a large extent dependent on how well the phoneme
sequence matches the audio. The listed pronunciation variants allow more variation
that make the phoneme sequence a more likely match to the more casual pronuncia-
tions in spontaneous speech (see e.g. Nakamura et al., 2008; Aylett and Turk, 2006;
Johnson, 2004).

Segmenting conversational speech presents a substantial challenge even when the
task is facilitated by having an orthographic transcription of the audio. The chal-
lenges compared to carefully read aloud sentences are that spontaneous speech con-
tains laughter and other non-speech sounds and it contains more word fragments, mis-

pronunciations, phoneme elisions and reductions.

2.3.2 Unit Selection

The CereVoice diphone unit selection speech synthesis system was developed by Cere-
Proc Ltd and is available for academic and commercial use (Aylett and Pidcock, 2007).

The CereVoice synthesis engine is based around the concept of a “spurt” of speech
which is defined as the speech between two silent pauses. An input text to be synthe-
sised must first be converted into spurt-sized XML representations. The spurt XML
is converted to a target phoneme sequence through look-up in a pronunciation lexicon
and applying rules to disambiguate homographs and specify pronunciation reduction
variants of function words (Aylett and Pidcock, 2007).

The selection of units in CereVoice follows the general unit selection framework
outlined in Hunt and Black (1996). Given a target sentence and a database of speech,

the space of heuristically weighted linguistic (target) and acoustic (join) features in the
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database is searched for an optimal sequence of diphone-sized units to concatenate into
the target utterance. In order to speed up the search, pre-pruning of candidate units is
performed before the Viterbi search (Aylett and Pidcock, 2007).

2.3.2.1 Synthesising Different Speaking Styles

The CereVoice system offers the ability to synthesise speech with different speaking
styles with the same voice, and in Aylett and Pidcock (2007) this was utilised to syn-
thesise subtle emotions. To realise different speaking styles, subsets of the speech data
with different speaking styles were marked with a genre tag. When a specific genre
was requested at synthesis time, units from other genres were pruned out before the
Viterbi search. If there was insufficient phonetic coverage from the requested genre,
units from other genres were included in the Viterbi search.

The genre biasing technique had a large impact on which units were selected (Aylett
and Pidcock, 2007). This will be utilised in this thesis both to bias selection towards
conversational units and to blend conversational and read aloud speech when there is

an insufficient amount of appropriate conversational units.

2.3.2.2 Challenges for Conversational Unit Selection

The conventional speech resources in section 2.3.1 are selected to provide phonetic
coverage, because better phonetic coverage gives better quality synthetic speech. In
a spontaneous speech resource there is less control over the content, which makes it
problematic to achieve phonetic coverage. Therefore we attempted to blend read aloud
and spontaneous speech to alleviate the lack of phonetic coverage in our recorded
conversation.

The problem with blending is that people can often hear the difference between
someone speaking spontaneously or reading aloud (Blaauw, 1992, 1994; Laan, 1997).
But, whereas the ability to differentiate between spontaneous and read aloud speech is
high for whole utterances, it decreases to chance level for unstressed syllables (Blaauw,
1992). This suggested that some seamless blending of read aloud and spontaneous
speech would be possible.

As stated in section 1.4, our objective is to synthesise speech which is perceived
as both natural and conversational. The use of speech directly from a spontaneous
conversation in the synthetic utterances is likely to preserve a conversational quality

to the listeners. But, the blending and segmentation may result in low quality syn-
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thetic speech with audible acoustic artefacts. Additionally, if there are too many read
aloud units selected in an utterance, it may sound natural, but it may no longer convey
any conversational quality. The challenge of blending is therefore to find the trade-off
between selecting conversational units to convey a conversational quality to the listen-
ers, and selecting read aloud units to maintain naturalness when there is a gap in the

conversational coverage.

2.3.3 HMM-based Speech Synthesis

The speaker-dependent HT'S system is an integrated statistical framework based around
the hidden Markov model (HMM) for building synthetic voices from recordings of
speech (Zen et al., 2007). The general work flow of the HTS system consists of:

e extracting acoustic parameters from speech
e generating context-dependent phoneme representations

e training HMM-based models of acoustic properties for the context-dependent

phonemes

e generating speech parameters from the trained models

The training and generation steps in Zen et al. (2007) are described in more detail in
sections 2.3.3.1, 2.3.3.2, 2.3.3.3 and 2.3.3.4.

2.3.3.1 Context-dependent Phonemes

The context-dependent phoneme representations define the language related segmental
and prosodic categories and dependencies in speech, for both the training and gener-
ation parts of HMM-based speech synthesis. The context-dependent phoneme repre-
sentations are generated from text analysis of the transcribed speech. The text analysis
is not part of the HTS system itself and was in this thesis made by the CereVoice sys-
tem (Aylett and Pidcock, 2007) for the voices in sections 4.2.4 and 4.2.5, and with the
Festival system (Clark et al., 2007) for the pilot HTS voice in section 4.2.3.

The context specification for neutral read aloud English is generally similar to
Tokuda et al. (2002) or its more recent variants in Zen et al. (2004a) and Yamag-
ishi et al. (2007). The basic speech unit in HTS is the phoneme (it does not have
to be, but it is the most commonly used). The context extends all the way from
neighbouring phonemes to syllable, word, phrase and utterance level. To model the

phonemes’ acoustic properties in different segmental and prosodic contexts, the text
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is converted into context-dependent phoneme definitions that determine the language-
dependent categories of the speech: the phonemes, linguistic and prosodic information
such as boundary tones, pitch accents, part-of-speech, etc. Examples of used contexts
in Tokuda et al. (2002) are:

e {preceding, current, succeeding} phoneme

e which vowel in current syllable

e position of current phoneme in syllable, word and phrase

e position of current syllable in word, phrase and utterance

e position of current word in current phrase

e stress and accent of {preceding, current, succeeding} syllable

e number of {preceding, succeeding} stressed or accented syllables

e part-of-speech of {preceding, current, succeeding} word

e end tone of current phrase

In section 2.2 we argued that such low level features would suffice to capture im-
portant characteristics also for discourse markers and filled pauses.

In (Yamagishi et al., 2005) an additional context: speaking style, was sufficient to

blend and preserve different “emotional” speaking styles.

2.3.3.2 Acoustic Analysis

In this thesis, as well as in Zen et al. (2007), we used the STRAIGHT speech vocoder
(Kawahara et al., 1999). Excitation and spectral parameters, including their delta
and delta-delta, are extracted from the acoustic speech signal as 39 STRAIGHT mel-
cepstrals, aperiodicity and /ogFO0 (Zen et al., 2007). Additionally, a measure (“global
variance”) of the variation of mel-cepstral, aperiodicity and FO per utterance is ex-
tracted (Toda and Tokuda, 2007).

2.3.3.3 Excitation, Spectral and Duration Training

In the training phase the acoustic parameters and the context dependent phonemes are
jointly trained in an integrated HMM-based statistical framework to estimate Gaussian
distributions of duration, excitation and spectral parameters for the context-dependent
phonemes (Zen et al., 2007).

To enable simultaneous modelling of voiced and unvoiced sequences of speech,

and allow better modelling of phoneme duration the basic hidden Markov model have



2.3. Speech Synthesis 27

been extended into a multi-space probability distribution hidden semi-Markov model
(MSD-HSMM) that is used for both training and generation (Zen et al., 2007).

The context-dependent phonemes (see section 2.3.3.1) result in a very large num-
ber of model definitions with very few instances of each unique context-dependent
phoneme. It is not feasible to get training data that covers all combinations of contexts
and during synthesis previously unseen combinations need to be dealt with. There-
fore the parameters are shared between states by decision tree-based context clustering
(Odell, 1995). Decision trees are constructed separately for excitation, spectrum, ape-

riodicity and duration.

2.3.3.4 Parameter Generation

At synthesis time an input sentence is converted into a sequence of context-dependent
phonemes (see section 2.3.3.1). Speech parameters (excitation, spectral and duration)
are then generated from the corresponding trained HMM-based models.

The core enabling technique for generating speech parameters from the HMM-
based models is the ability to generate a perceptually smooth speech trajectory by
taking into account constraints between static and dynamic properties of the trained
statistical models (Tokuda et al., 2000). But in order to alleviate the problem that the
generated speech parameter trajectory is too smooth, which makes it sound muffled,
an extension to the generation framework that better takes into account the variation
in the speech signal was developed in Toda and Tokuda (2007). The method in Toda
and Tokuda (2007) use the global variance measure in section 2.3.3.2 to ensure that the
generated speech parameter trajectory has variation across the utterance that is more

similar to the variation in the natural speech.

2.3.3.5 Speaker and Style Adaptation

One important aspect of the HMM-based speech synthesis framework is the ability to
adapt an existing synthetic voice to sound like a specific target speaker with only a
small amount of target speaker data (Yamagishi et al., 2009). The adaptation together
with the ability to share speech data between different speakers, often termed “average
voice models”, removes the requirement for the phonetic coverage to be recorded from
a single speaker (Yamagishi et al., 2007, 2009).

There exist several different adaptation techniques for HMM-based speech synthe-

sis. The general adaptation techniques come from the neighbouring field of automatic
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speech recognition. Yamagishi et al. (2009) conducted an empirical investigation of
the performance of different adaptation algorithms for speech synthesis. Their results
showed that the best adaptation performance was given by a constrained SMAPLR
(CSMAPLR) combined with a posteriori MAP estimation. The algorithm adapts the
mean and variance of the Gaussians in the clustered decision trees of the original voice
to better match the target speaker (Yamagishi et al., 2009).

The average voice and adaptation techniques enable creating voices from non-
conventional speech resources. Yamagishi et al. (2010) showed that they could cre-
ate hundreds of different voices from speech data that was recorded with a variety of
microphones and differing recording conditions. Not only the speaker identity can be
adapted, but also the speaking style can be adapted. Tachibana et al. (2006) utilised
the adaptation technique to adapt a voice with a neutral speaking style into voices with

joyful and sad speaking styles.

2.3.3.6 Challenges for Conversational HMM Synthesis

The STRAIGHT (Kawahara et al., 1999) vocoder used in HTS is well capable of rep-
resenting modal speech, but has limitations in representing breathy and creaky voice
qualities, a problem addressed in Cabral et al. (2008); Silén et al. (2009). A better
vocoder is a requirement for handling all aspects of conversational speech, e.g. laugh-
ter, but the STRAIGHT vocoder was hypothesised to preserve a sufficient degree of
the phonetic properties of our conversational speech data to allow us to synthesise
natural-sounding conversational characteristics.

Given that large amounts of accurately transcribed and phone aligned conversa-
tional speech data can be time consuming to obtain, the speaker and style adaptation
techniques described in section 2.3.3.5 offered a potential short-cut to achieve con-
versational style synthetic speech from a limited amount of spontaneous speech data.
However, in Lee et al. (2010) and in the pilot study in section 4.2.3 the result of adap-
tation showed that the listeners did not perceive a favourable distinction between the
original read aloud voice and the adapted “spontaneous” voice. The reason behind
these results is discussed in section 4.2.3.3, but the consequence was that we focused
on speaker-dependent HMM-based speech synthesis.

In natural speech, listeners can hear the difference between when someone is speak-
ing spontaneously or is reading aloud from a script (Blaauw, 1992, 1994; Laan, 1997).
The limitations of the STRAIGHT vocoder and the negative findings of adaptation in

Lee et al. (2010) and in section 4.2.3 suggested that the main challenge for conversa-
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tional HMM-based speech synthesis is to preserve the phonetic properties that allow
people to distinguish between natural spontaneous and read aloud speech.

The challenge was addressed by making a larger amount of conversational speech
data available to allow building high quality voices from only conversational speech.
The phonetic coverage of the conversational voice was boosted by blending conversa-
tional and read aloud speech data to further improve the quality of the voice. Then we
made perceptual experiments to evaluate whether HMM-based voices trained from a
substantial amount of conversational speech data could preserve a distinction between

read aloud and conversational speech.

2.4 Conversational Speech Synthesis

Conventional synthetic voices have too limited expressive range to be useful for ap-
plications that require interacting in a more believable manner (Loyall, 1997; Traum
et al., 2008; Romportl et al., 2010). To make synthetic voices suitable for believable
characters, the voices need to be able to express a wider range of the speech phenom-
ena found in human conversation. In sections 2.4.1 and 2.4.2 we will review previous

approaches of making synthetic voices exhibit more conversational characteristics.

2.4.1 Synthesising Dialogue Acts

Of the work in conversational speech synthesis the approach in Campbell (2005, 2007)
stands-out from other research by utilising a much larger corpus of conversational
speech.

The speech corpus was recorded by letting volunteers carry a microphone and
recording device with them during their everyday life and thereby capturing their ev-
eryday conversations. One woman was recorded over a period of five years, resulting
in 600 hours of recordings (Campbell, 2007).

The time taken to record so much data is not feasible for the development of every
new voice, but it provides an interesting dataset for learning how to utilise conversa-
tional speech for synthesis.

All the speech data was transcribed manually and split into utterances. The utter-
ances were classified into two main types based on whether their contents were primar-
ily propositional or affective. Half of the utterances were perceived as having primarily

affective content that signalled speaker state (mood, emotions, health, involvement), or
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speaker listener relationship (friend, stranger, formal, informal) (Campbell, 2005).

The affective utterances were further classified into dialogue acts: greeting, ques-
tion, response, apology, backchannel, objection, suggestion, etc. The speaker state and
speaker-listener relationship were represented in a simplified form as plus or minus
“active and motivated” and plus or minus “friend/friendly” (Campbell, 2005).

Campbell (2005, 2007) argued that propositional content can be synthesised with
the conventional speech synthesis methods, so they focused on synthesising the utter-
ances with affective content.

Campbell (2005) argued that when synthesising greetings, backchannels, short
confirmations etc., it is more important that the utterance has the prosodic properties
of a greeting or backchannel to convey the appropriate pragmatic function, rather than
just having the sequence of segments that form e.g. the word “right” or the phrase
“Hi, how are you doing?”. The target sequence to synthesise was therefore not an
orthographic word sequence. Instead, the utterance classifications were used as top-
down targets to guide selection: the dialogue act (e.g. greeting), the speaker state, and
who was speaking to whom (e.g. friends), limited the target phrases to a small set of
phrases from which a token was selected. Campbell (2007) claimed that this phrase
level selection made each isolated utterance sound natural.

In our opinion, keeping the lexical content underspecified and selecting whole
phrases based on the affective content is a sensible idea for greetings, backchannels
and short confirmations. But, despite five years of recorded data from one person the
method was not sufficient to synthesise what she said in the sixth year (Campbell,

2007), which highlights the necessity of sub-word modelling of speech for synthesis.

2.4.2 Synthesising Filled Pauses and Hesitation

The integration of spontaneous or conversational characteristics into primarily propo-
sitional utterances has been addressed in a small number of approaches that will be
reviewed in this section. All of them focused to some extent on filled pauses and the
associated hesitation described in section 2.2.2.

The only approach described in this section that utilised spontaneous speech di-
rectly in the synthetic voices was Sundaram and Narayanan (2002). The other two
approaches Cadic and Segalen (2008) and Adell et al. (2006, 2007b, 2010) based their
models on analyses of spontaneous speech phenomena, but the speech used for syn-

thesis was acted prompts.
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Although Sundaram and Narayanan (2002) utilised spontaneous speech from a lec-
ture, they only used fifty utterances to build a limited domain voice. They inserted
filled pauses, breathing and laughter into utterances and showed that sentences with
these phenomena were more likely to be confused with natural speech. They treated
the filled pauses, breathing and laughter as tokens, but did not go into detail about how

to select an appropriate token.

2.4.2.1 Hesitation 1

Cadic and Segalen (2008) designed sentences to cover word endings in French to
model the transition from neutral speech into filled pauses and laughter for unit se-
lection. They defined a speech sequence as consisting of neutral speech, followed by
an anticipation phase, a paralinguistic element (filled pause or laughter), a return phase,
and back to neutral speech. The anticipation phase was limited to consist of the ending
of a word: the last consonant of a word followed by any other segments in the same
word, motivated from a synthesis and not speech perspective in that consonants are

better concatenation points than vowels.

From a corpus of text, Cadic and Segalen (2008) found that 200 word ending types
covered more than ninety percent of their word ending tokens. The 200 word end-
ings were included in sentences and a speaker was asked to read them twice: once
with a filled pause, and once with laughter. The speaker was instructed to read aloud
in a neutral manner up to the anticipation phase (the word ending) and then laugh or
hesitate as naturally as possible. A unit selection voice was built and the anticipation
phase and the hesitation or laughter was automatically concatenated into synthetic ut-
terances. A perceptual evaluation showed that including an anticipation phase made
the utterance sound more natural than just inserting the filled pause or laughter between

silent pauses.

The approach in Cadic and Segalen (2008) shows the advantage of pre-selecting
text to achieve coverage of conversational speech phenomena. But, in our opinion,
the short stipulated anticipation phase seems to result in hesitation and laughter that
are rather limited compared to the hesitation and laughter in natural conversation or in

well acted speech.
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2.4.2.2 Hesitation 2

In a series of papers Adell et al. (2006, 2007b, 2008, 2010) have addressed the mod-
elling of filled pauses and associated hesitation for speech synthesis. They analysed du-
ration and FO patterns of filled pauses and surrounding context in spontaneous speech,
and used the result to model FO and duration targets for unit selection speech synthesis.
We will not report their analysis results in detail, it suffices to say that their findings
were consistent with the properties of filled pauses and associated hesitation in sec-
tion 2.2.2: the filled pause itself was on average longer than other syllables, generally
had a lower FO than the rest of the utterance, and the syllable preceding the filled pause
was prolonged (Adell et al., 2010).

A set of transcripts of spontaneous speech containing filled pauses were recorded
by two voice talents. A comparison between these acted filled pauses with natural
filled pauses showed some important similarities, but Adell et al. (2007b) also pointed
out that one of the voice talents had less natural-sounding filled pauses and hesitation.
In order to avoid coarticulation problems that arose with a small set of filled pauses
(without a stipulated anticipation phase as in Cadic and Segalen (2008)) they were in
synthesis always inserted between silent pauses (Adell et al., 2007b).

In Adell et al. (2010) a unit selection voice was built from 10h of read aloud speech,
plus an additional 57 sentences containing filled pauses that were read aloud/acted by
the same speaker. An evaluation showed that synthetic speech with and without filled
pauses were perceived as equally natural.

The approach in Adell et al. (2010) is based on models of natural spontaneous
speech. They evaluated the naturalness of their synthetic speech. However they did not
attempt to evaluate to what extent the speech successfully synthesised a conversational
style or conveyed a pragmatic function. Given that they used acted filled pauses and a

large corpora of neutral speech this is a key weakness in this work.

2.4.2.3 Predicting Filled Pauses

The long term goal of a conversational speech synthesis system is to generate speech
with appropriate content at an appropriate time in the conversation. This means that
the content needs to predicted. Given a representation of the propositional content,
e.g. a sentence, plausible placements of the wrappers, e.g. the filled pauses, can be
generated.

In Sundaram and Narayanan (2003) filled pause insertions in text were modelled
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by creating a list of word tokens and part-of-speech sequences that were frequently
followed by a filled pause (mainly function words, such as: a, and, but, the). Then
each part-of-speech and word token sequence was encoded in a finite state network.
Given an input text with a matching part-of-speech or word sequence a filled pause was
inserted. Breathing was inserted heuristically at the beginning of sentences, between
phrases and before half of the um:s. No evaluation of the predicted insertions was
made, but an example of transformed input from Sundaram and Narayanan (2003,

p. 4) is shown below:
INPUT: “Might as well talk about it right now”
Transformed-INPUT: “[BREATHE IN] Might as well talk about it [UM] right now.”

In a similar experiment, Adell et al. (2007a) modelled filled pause insertions in
text with decision trees. The features used to build the decision tree were: current
word, bigram probabilities of word pairs, and part-of-speech of previous, current and
next word. The set of words was limited to only forty candidate words, motivated by
that the ten most frequent words were followed by over 50% of the filled pauses in
their multi-speaker corpus of spontaneous speech. An evaluation of their filled pause
insertions on test data showed 97% precision and 58% recall when using the above
features.

The use of a limited set of function words seemed sufficient to generate plausible
filled pause placements in text. In Andersson et al. (2010a) we developed methods
for insertions of both filled pauses and discourse markers, and in section 5.5 we will
describe an evaluation of how the predicted insertions affected the perceived quality of

the synthetic speech.

2.4.2.4 Conversational Speech Synthesis Summary

The general aim of the work in conversational speech synthesis is to extend the limited
behaviour of conventional synthetic voices and synthesise a richer variety of the speech
phenomena found in human conversations. Our approach outlined in sections 2.2 and
2.3 of augmenting the conventional read aloud voices with speech from a spontaneous
conversation lies roughly inbetween the previous approaches to conversational speech
synthesis that are described in sections 2.4.1 and 2.4.2.

In sections 2.4.1 and 2.4.2 we described two very different approaches to conver-

sational speech synthesis. In section 2.4.1 we described how Campbell (2007) argued
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that utterances with primarily affective content, e.g. greetings or backchannels, should
be selected as whole utterances based on their affective content (e.g. informal or formal
greeting) rather than their phoneme sequence. The selections of utterances were made
from a 600h corpus of one person’s spontaneous conversations. In section 2.4.2 we
described how Adell et al. (2010) and Cadic and Segalen (2008) added filled pauses
to their synthetic voices by creating models for selecting filled pauses from recordings
of acted filled pauses. Adell et al. (2010) showed that they could synthesise utter-
ances containing filled pauses that sounded as natural as synthetic utterances with only

propositional content.

2.5 Conclusion

The main challenge for conversational speech synthesis is to enable the synthetic
voices to synthesise a wide range of conversational characteristics while maintaining
the quality that can be achieved with conventional “neutral” synthetic voices.

We will investigate to what extent we can utilise speech from a spontaneous con-
versation to synthesise natural-sounding conversational style speech with the unit se-
lection and HMM-based speech synthesis methods. We will focus on two types of
speech phenomena that have generally been neglected in conventional speech synthe-
sis: the discourse markers (e.g. yeah, you know or ’cause) and filled pauses (um and
uh) that were described in sections 2.2.1 and 2.2.2, because by synthesising speech
where discourse markers and filled pauses are wrapped around propositional content,
the synthetic voices can express both affective and propositional information, e.g. cer-
tainty or uncertainty about a topic, in the same way humans express it in spontaneous
conversation.

In chapter 3 we will describe the recording and analysis of the spontaneous con-
versation that was used to build the synthetic voices in chapter 4. Chapter 4 describes
the building of the synthetic voices and outline the details of our blending techniques.

Chapter 5 describes the perceptual evaluations of the voices.



Chapter 3

The Speech Data

The first part of this chapter will describe how the conversations used in this work
were recorded and transcribed, and how a subset of the conversations was selected for
use in speech synthesis. The second part of this chapter will describe the linguistic and
phonetic properties of the selected subset of speech from a conversation, in comparison

to a more conventional speech synthesis resource of carefully read aloud sentences.

3.1 Independent Contribution of the Author: Eliciting

and Processing Conversational Speech

Part of the recording, processing and analysis of the speech described in this chapter
has been used for the joint publications in Andersson et al. (2010a), Andersson et al.
(2010b) and Andersson et al. (2012). This section outlines the current author’s inde-
pendent contribution to the speech data collection and analysis. All the methodological
decisions regarding speech data collection, preparation and analysis were made by the

current author.

e The eliciting of conversational speech from the three voice talents in section 3.2

was made by the current author.

e The transcription of the conversations in section 3.4 was carried out by the cur-

rent author.

e The modification of the segmentation in section 3.4.5 and the analysis of the

speech data in section 3.5 were carried out by the current author.

35
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The majority of the acoustic and linguistic analysis was carried out using the tools
available in the CereVoice (Aylett and Pidcock, 2007) and HTS (Zen et al., 2007)
speech synthesis systems. The remaining analysis was carried out using the available
signal processing software installed at the Centre for Speech Technology Research, at
the University of Edinburgh.

The majority of the figures and tables in this chapter were not part of the joint
publications in (Andersson et al., 2010a,b, 2012). The figures and tables that have
been part of our joint publications are generally presented in this chapter in modified

and more detailed versions.

3.2 Recording Spontaneous Conversation
In total we recorded three voice talents:

e Heather, a Scottish female in her early twenties

e Roger, an English male in his forties

e Johnny, an American male in his late thirties

These three voice talents were originally cast for speech synthesis projects unre-
lated to this thesis. Heather was cast by CereProc, Roger was cast by The Centre for
Speech Technology Research (CSTR) and Johnny was cast by David Traum’s group
at the USC Institute for Creative Technologies. To ensure matching recording condi-
tions to the voice talents’ previous recordings of read aloud sentences, the author was
assisted by the previous recording technicians Chris Pidcock (Johnny and Heather),
Yolanda Vazques-Alvarez (Roger) and Ziggy Campbell (Roger). The technicians set-
up the recording tools and the author managed the recordings during the sessions with
the voice talents.

The conversations with Heather and Roger were used to pilot the general ap-
proach of utilising conversational speech for synthesis. The recorded conversations
with Heather and Roger therefore only lasted approximately an hour each, which gave
about 20min of speech from each voice talent. This speech data was used in the pi-
lot speech synthesis experiments in sections 4.2.3 and 4.3.2. The results from these
pilot experiments motivated the recording of the longer, 7h, conversation with Johnny

described in section 3.2.2.
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The recordings were made in separate sessions for each voice talent and the author
of this thesis was the conversation partner in all the recordings. The recordings were
made in a recording studio where the voice talent was positioned inside a booth, but
had eye-contact with the author through a window. The voice talent and the author
spoke to each other via microphones and headphones. The speech of the author and
of the voice talents were recorded on separate channels. All the voice talents had been
recorded before, reading aloud sentences for synthesis. We used the same studios and
microphones when recording the conversations to facilitate comparisons between, and
blending of, spontaneous and read aloud speech. The conversations were recorded
with 48KHz sampling rate and 16bit sample depth.

Eliciting spontaneous conversation from a paid voice talent has advantages and
disadvantages. The disadvantage is the ecological validity of the artificial situation.
But, in our experience, it is not difficult to get people to talk about themselves and
their interests in a friendly environment. The advantages are the controlled recording
environment and that the voice talents could be requested to a) not “put on” different
voices to portray another person, such as their partners or children, and b) not talk
only about themselves, but also ask about the author’s life and interests. Although
such explicit requests are artificially imposed constraints, the impact on spontaneity is
minor. Below we show an example where Johnny adhered to such a request, to give

some impression of how the requests affected the speech:

e ['m not gonna do a damn voice but damn it if I don’t want to

(When he felt an urge to mimic an old girlfriend.)

In sections 3.2.1 and 3.2.2 we give an overview of the conversations with the three
voice talents. The examples from the conversations given in sections 3.2.1 and 3.2.2,
were not all used in the synthetic voices described in chapter 4. Sections 3.4.1, 3.4.2,
3.4.3 and 3.4.4 outline how speech from the conversations was transcribed and selected

for use in the synthetic voices.

3.2.1 Speaking with Heather and Roger

The recorded conversation sessions for Heather and Roger lasted approximately one
hour each. Two examples from the conversations are shown below (the first is from

Heather and the second is from Roger):

o although I was really lucky my [pause] my supervisor was great [pause] the only
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[pause] the only thing I could say against her was the fact she’s a Hibs supporter
which uh [pause] definitely counts against her

e were you uh [pause] serious when you were suggesting continuing the conversa-
tion or was that a subtle ploy to get me back into the uh [pause] into recording

studio

Sections 3.3 and 3.4 outline our method of transcribing the conversations. The
conversations gave 392 transcribed utterances from Heather and 265 utterances from
Roger. The conclusion drawn from the pilot recording sessions with Heather and Roger
was: studio recorded spontaneous conversation is a straightforward method to obtain
conversational speech for speech synthesis. These conversational utterances were used
for the pilot voice building experiments described in sections 4.2.3 and 4.3.2.

Although our approach was to utilise blending of conversational and read aloud
speech to address the lack of phonetic coverage in spontaneous speech resources, this
approach still requires a sufficient amount of conversational speech as outlined in sec-
tions 2.3.2.2 and 2.3.3.6. Therefore, we recorded the longer conversation with Johnny.
Figure 3.4 shows that better coverage can be achieved in spontaneous speech resources
up to about one thousand utterances for diphones, and at least two thousand for quin-

phones.

3.2.2 Speaking with Johnny

The conversation with Johnny! was recorded in three sessions spread over a period of
five days and lasted a total of approximately seven hours. The speech from the con-
versation with Johnny was used in the final unit selection and HMM-based synthetic
voices described in chapter 4.

The conversation with Johnny mainly focused around the voice talent’s profes-
sional career as an actor and director, former boxing career, his family and life in
general in the U.S. Below we show a short sample from the conversation, where the
author and Johnny discussed filled pauses in acted and spontaneous speech. In the
example, spontaneous filled pauses (um or uh) and meta-communication about filled

pauses (quoted and bold faced) are intermingled (only Johnny’s speech is shown):

e yeah [pause] yeah [pause] no and that’s cool I mean that’s the thing that that’s

[pause] that’s weird too because even like in the script [pause | um [pause] “um”

I'The recording of Johnny’s speech was made by the author while visiting The USC Institute for
Creative Technologies (http://ict.usc.edu).
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is usually not [pause] scripted [...] I'll [pause] I'll put it in there as part of

[pause] my speech [pause] but it’s not necessarily in the script

o um but I've never really had it [pause] scripted [pause] because it’s uh [pause]
an “um” is almost something you have to earn [pause] you know what I mean
[pause] it’s like uh [pause] like uh [pause] Harold Pinter was like um [pause]
uh [pause] he’s a playwright and [pause ] talked about how you had to earn your
pauses [pause] and so he would [pause] specifically put pauses in there but you

can’t just pause outta nowhere

The explicit request to the voice talent to ask about the authors life and interests
often resulted in a few “uninteresting” questions (e.g. how tall are you), before leading

back to a less staged interaction (only Johnny’s speech is shown):
e yeah do you guys [pause] use like for weight do you guys talk about stone
e kilograms [pause] do you know what a stone is

e [...] okay it just confused the hell outta me and of course I couldn’t just [breathe

in] spend [pause] a minute and a half on the Internet and get that figured out

Even without explicit requests the interpersonal exchange of conversations affects
the speech of the people involved. Johnny occasionally used the expression the whole

nine yards until the author, unfamiliar with the expression, asked him about it:

e yeah [pause] but the whole nine yards I don’t even like that I say that [pause]
and it’s just now being brought to my attention by you [pause] so

(After that, Johnny did not say the whole nine yards again.)

e The author used the British expression knackered, which was unfamiliar to Johnny,
who included it in his vocabulary: yeah [pause] I love that word knackered by
the way [...] yeah [pause] I've never heard it before [...] so it’s been like every

other word at the house

Hence, the sessions recorded with Johnny gave a substantial amount of sponta-
neous conversational speech to use for speech synthesis. The processing and analysis
of this speech data is described in detail in sections 3.3, 3.4 and 3.5. In total we ob-
tained 2120 conversational utterances containing 75min of phonetic material. Table 3.2
summarises the contents of the speech data. This data was used to build the voices for

the perceptual evaluations in chapter 5.
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3.3 Representing Meaning of Conversational Speech

We used orthographic transcription to represent the meaning in conversational speech.
The general hypothesis was that an orthographic transcript of a conversation would
provide a speech resource for building synthetic voices with natural-sounding conver-

sational characteristics. The main motivations behind this hypothesis were:

e The orthographic word (sequence) together with utterance position was hypoth-
esised to capture the prototypical meaning and associated phonetic properties
of discourse markers and filled pauses. For example, yeah as a stand-alone
backchannel, in the confirmation yeah yeah yeah, or in the beginning of a longer

turn yeah I feel kind of dirty afterwards.

e An orthographic transcript also implicitly captures the more expressive nature
of many other words in conversational speech. The following samples illustrate
how orthography in the typical case capture the speaker’s positive or negative

opinion about a topic:
e [ [pause] fucking hate commercials [pause] I can not stand it [pause] oh
drives me insane
e for me I really love to do what I do [pause] I love it
e [ don’t think that [pause] celebrity and politics [pause] need to be related
The orthographic transcripts of speech from a conversation therefore enabled us
to focus on the integration of a wide variety of discourse markers and filled pauses
together with propositional content. This allowed us to synthesise speech capable of
expressing e.g. certainty or uncertainty about a topic in a natural manner and thereby
give our voices a more conversational style than conventional synthetic voices. As in

the examples taken from our recorded conversation where the propositional content is

in bold face and discourse markers and filled pauses are in italics:
e oh yeah it’s great exercise so
e yeah I can see that
e whether successful or not I I aim for that [pause] you know

e and you know it’s just like any other job you hire people you like working
with
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e um [pause] no I uh [pause] uh I moved up for acting
e exactly because he’s he’s Robert de Niro

e wow that’s really cheap

e well she doesn’t know about that one

e yeah [pause] so [pause] and it’s not high end high quality food [pause] I mean

it’s [pause] beans and cheese and ground beef and tortillas and yadda yadda

3.4 Transcription, Selection and Segmentation

In this section we will describe how the speech was transcribed and give examples of
speech sequences that were selected or rejected for use in the synthetic voices built
in chapter 4. The speech from the conversations was manually transcribed. This
method was selected over using automatic speech recognition to eliminate erroneous
transcripts as the predominant error source in the synthetic voices.

The decision of which utterances to use to enable natural and conversational syn-

thetic voices was based on:
e concatenation errors in pilot unit selection voices
e results from forced alignment
e listed pronunciations in the lexicon.

Only utterances that were considered for use in speech synthesis were transcribed. Ut-
terances that contained word fragments, mispronunciations, heavily reduced pronunci-
ations or mumbling were therefore not transcribed and not used in the synthetic voices.
When possible the utterance boundaries were placed so as to exclude any immediately
preceding or succeeding laughter, sigh, throat clearing, etc.

The selection of utterances was less strict for Heather and Roger than for Johnny,
because Heather and Roger were used to pilot the general approach of utilising speech
from spontaneous conversations for speech synthesis. These less strict selections pro-
vided valuable insight into how heavily reduced pronunciations and laughing speech
(where the voice talent laughed and spoke at the same time) affected both the forced
alignment and subsequent synthetic voices. The utterances where Johnny “put on” dif-

ferent voices to mimic a third person, e.g. his wife, children or friends, were excluded.
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This was done to retain speech that represented the voice talent’s “normal” speech,
speech that could be considered his consistent spontaneous conversational speaking

style.

3.4.1 Splitting into Utterances

The only utterance level analysis made by the CereVoice system was between interme-
diate and utterance final phrase boundaries. The utterance final boundary was always
assigned the same phrase boundary category. The intermediate boundary was assigned
when an utterance internal silent pause between 50-250ms was automatically detected.
If an utterance internal silence was longer than 250ms, a phrase final boundary was as-
signed. Therefore, the conversation was not split at every silence, but instead we aimed
at splitting the conversation at the end of a statement, question etc. But, no annotation
of dialogue act was made.

For an isolated read aloud sentence it is very easy to determine the beginning and
end, because they exist. In a conversation people do not speak in isolated sentences
and the notion of utterance beginning and end is more complicated. The splitting of
a conversation into utterances was not always difficult, many times it was a straight-
forward task, in e.g. stand alone and (fairly) grammatical questions, statements, short
responses, confirmations, and most backchannels. But sometimes it was more prob-

lematic:

e Some discourse markers (e.g. and, and uh, and so, so) were used to signal that
the speaker did not consider the current topic to be closed, which could result in
long sequences of speech without silent pauses in connection with a clear phrase
final boundary. As a general guideline we attempted to keep the utterances below
forty words, and split these longer sequences at the best available silent pause,
based on language content and acoustics. The example in figure 3.1 shows such

a long sequence of speech and how it was split.

e In a conversation the participants sometimes interrupt each other. Clear inter-
ruptions that resulted in word fragments or clearly unfinished utterances were
excluded. But discourse markers and filled pauses also offered possibility for
speaker and topic changes, based on the fact that many speaker and/or topic
changes occurred after and, and uh, um, uh even though the current topic was

not necessarily closed off.
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Figure 3.1: The figure shows an example of splitting a long speech sequence into
more manageable utterances, based on acoustics and language content. The top pane
shows a decision to not split, and the two bottom panes show where splits were made.
The speech sequences shown in the panes are bold faced in the transcript of the whole
sequence below: no it's not even about doing it better um what it is for me is under-
standing the dollars and cents behind [pause] um [pause] uh the market value of
of what my name carries right now SPLIT um I've got a little bit of an international
market value but I'm not a big star at all [pause] not even close not even remotely

[breathe in] SPLIT uh [pause] and sometimes to get films funded properly [...]
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3.4.2 Pronunciation and Enunciation

The use of forced alignment required a close match between the stipulated phonemic
pronunciations available in our pronunciation lexicons and the actual pronunciations
in our recorded conversations. Adding words, changing word order or omitting words
in the transcript with respect to what was actually said is devastating for forced align-
ment. But transcribing speech is a very different task from listening to or engaging in a
conversation, and it is easy to interpret what was being said and make utterances more
grammatical than they actually were, by e.g. changing word order, omitting function
word repetitions or filled pauses (Lickley, 1995). This required careful attention to
the detail of the utterances, which made the total time for transcribing and selecting
speech from the seven hour conversation with Johnny take approximately 1-2 months

of fulltime work.

In general the most problematic words to transcribe for synthesis were the function
words (e.g. did they say a or the or nothing), and the discourse markers; both one word
e.g. ‘cause, probably or especially, and longer ones such as: you know what I mean or
at the end of the day. The expressions you know what I mean and at the end of the day
were frequently used by Johnny, but it was often not clear, either from listening or from
the spectrogram, which of the words or phonemes were there or not (but the “gist” of
the expression was clearly there). The expressions you know what I mean and at the
end of the day were only selected for use in synthesis when all the words were clearly
present. But, heavily reduced function words were included in the selected utterances,
because of their very frequency they must be included to retain any spontaneous data

at all.

In an analysis by (Johnson, 2004) of heavily reduced pronunciations in American
English conversations, they listed several of the pronunciation variants of e.g. because
and probably that were encountered in our spontaneous speech data. Whereas because
was often pronounced close to the citation form, ’cause was sometimes heavily re-
duced and only pronounced, as in an example from Johnson (2004), as [k"z]. In figure
3.2, examples of Heather’s reduced ’cause are contrasted with her pronunciation of be-
cause. Figure 3.2 also shows the result from the phonemic forced alignment where the
phoneme identity, or quality of the vowel, is at best questionable, but the word bound-
aries are correct, which actually would make them usable as word representations but
not, as did happen in the pilot voices, as phonemic units in (m)any other word con-

texts. Such heavily reduced pronunciations that deviated substantially from the listed
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Figure 3.2: Examples of forced alignment and actual pronunciations of because (top
pane) and reduced variants of ‘cause pronounced as roughly [k"z]. This [k'z] was
not listed as valid pronunciation variant in our pronunciation lexicon. As stated in Clark
et al. (2007), forced alignment is often more consistent than accurate in aligning phone
boundaries, this is visible in some of the displayed boundaries in this figure, also for the

fully pronounced because (bikuhz) in the top pane.

pronunciations in our lexicon were therefore excluded in the more restrictive selection
of Johnny’s speech. Less reduced variants of because and especially were transcribed
as ’cause or specially, but pronunciations of probably as [prali] or "cause as [k"z] were
excluded.

Only words that were missing from the pronunciation lexicon, mainly proper names,

were added to it. No alterations to the existing lexical entries were made.

3.4.3 Transcribing Filled Pauses and Other Non-lexical ltems

Filled pauses have been converted to orthographic notation in a few different ways
by different authors, but there was no convincing evidence that motivated transcrip-
tions such as um, u:m, uh, u:h (as in Clark and Fox Tree, 2002) or um, umm, uumm,

uh, uhhh, uuuh (as in Ward, 2006), and hence they were transcribed in this thesis as
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“just” um or uh. In the CereVoice lexicon the filled pauses were represented as a vowel
only for uh and a vowel followed by /m/ for um. The vowel quality of the filled
pauses differed slightly between the lexicons for Scottish, English and American ac-
cents. Whether that vowel quality corresponded to the filled pauses in our speech was
not further elaborated on, because most filled pauses seemed at least to have the same
vowel quality, and phonemic representations of non-lexical words mainly act as “place
holders” for forced alignment and speech synthesis. What matters is in which contexts
these phonemes/place-holders occur. Figures 4.5 and 4.4 show that this place-holder
method preserved both duration and vowel quality of the filled pauses in the synthetic
speech.

The same place-holder guideline was applied to other items that lacked a “correct
spelling” but had phonemic properties that were different from the same phonemes
in other word types, e.g. the backchannels uh-huh and mhm and the conversational
“grunts” (e.g. hmm, huh). For example, mhm was represented in the lexicon as /mham/,
but those phonemes should, in unit selection, only be used to synthesise mhm.

Laughter is an integral part of conversations, and the boundary of what is laughter
and what is speech is not always clear. Stand-alone laughter was always excluded
from the selected utterances, but for Roger and Heather laughing speech (speaking
and laughing at the same time) were included. An example of laughing speech in the
word Glasgow is shown in figure 3.3. In the pilot unit selection voice (in section 4.3.2)
this example of laughing speech did have a positive impact on the resulting synthetic
utterance: um [pause] but yeah I think I prefer Glasgow, but this was more to do with
“limited domain” factors than sub-word unit selection. Therefore, laughing speech was

not selected for Johnny’s synthetic voices.

3.4.4 Speech Disfluencies

Speech disfluencies are very frequent in spontaneous speech and were included in the
selected utterances, except when they contained word fragments or mis-pronunciations
(e.g. pronouncing ball as pall). A few transcribed examples (from Johnny) of disflu-

encies (bold faced in the examples) that were included in the final synthetic voices are:

e yeahit’s it’s a significant amount of swelling [pause] um [pause] more than like

I’d say a bruise

e but um [pause] she’s not even good at [pause] at [pause] at hiding ulterior
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Figure 3.3: Spectrograms of Glasgow in modal (top pane) and laughing speech (bottom

pane)

motives you know what I mean she’s very blatant about it

e and I think that’s really [pause ] that that that that conflict within yourself [breathe

in] versus like you see in the movies all the time
e yeah no ’'m I go like hey where’s the chips at

e and then you can go [pause] oh this is actually their job and this is and they
want tips [pause] so [pause] this would actually help them out by letting them
carry my luggage up you know

3.4.5 Segmenting the Conversational Speech

In the previous sections in this chapter we described how the speech from the sponta-

neous conversations was transcribed and selected to:

e provide speech that represented the speakers’ consistent spontaneous speaking
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style
e provide speech that, to a large extent, could be automatically force aligned.

The CereVoice implementation of forced alignment described in section 2.3.1.1
was used. Forced alignment using only spontaneous speech did not provide suffi-
ciently accurate phoneme alignment for speech synthesis for any of the voice talents,
despite the more restrictive utterance selection and substantially more speech from
Johnny. To improve the alignment of the spontaneous speech, without negatively af-
fecting the alignment of the read aloud speech, we initialised the HMM-models for the

spontaneous speech from trained read aloud models from the same speaker as follows:

1. do forced alignment of the read aloud speech (as outlined in section 2.3.1.1)

2. slow down the spontaneous speech by 10% with SoundStretch (Parviainen, 2012),

to better match the speaking rate of the read aloud speech (see section 3.5.2.3)

3. initialise the HMM-models for the spontaneous speech from semi-trained” read

aloud HMM-models, including silence and short pause models

4. continue updating the HMM-model parameters with a further three iterations of

Baum-Welch training using only the spontaneous speech

5. force align with the Viterbi algorithm as described in Young et al. (2006).

The method was developed from the speech of Heather and Roger for which it
made an improvement to synthetic speech quality.

Apart from the improvement obtained by utilising the read aloud models for align-
ment, an important contributing factor to the generally good segmentation quality of
the spontaneous speech was CereVoice’s use of pronunciation variants with a better
match to actual pronunciations than the citation form pronunciations, e.g. and as /on/

or around as aroun.

2“Semi-trained” consisted of six iterations of Baum-Welch training. The complete forced alignment
training in CereVoice do more training iterations, therefore we use the term “semi-trained” instead of
“trained”. This decision was largely made from a practical perspective and the alternative of intialising
with fully trained models was not tested.
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3.4.5.1 Segmentation Result

Table 3.1 shows the result of an evaluation of the forced alignment on ten randomly
selected utterances from Johnny’s conversational and read aloud speech. The automat-
ically aligned phoneme boundaries were compared to manually corrected boundaries.
Only boundaries that were considered erroneous by more than 25ms were adjusted.
The total alignment error was about three times higher for the conversational speech.
However, two misaligned /t/ segments in one conversational utterance accounted for
1500 ms out of the total 2085 ms error. The evaluation confirmed our impression that
the forced alignment of the conversational speech was in general accurate, albeit not as
accurate as for the read aloud speech, and that there were more gross alignment errors

in the conversational utterances.

3.5 Comparing Read Aloud and Conversational Speech

The blending approach to conversational speech synthesis in this thesis utilised both
conversational and read aloud data. In sections 3.5.1 and 3.5.2 we will compare our
conversational and read aloud data, to show that blending them is possible. This blend-
ing will address the lack of phonetic coverage in the conversational data, while preserv-
ing the spontaneous quality of distinguishing speech phenomena in our conversational
speech data.

In addition to the transcribed conversational utterances we had recordings of neu-
trally read aloud sentences available for all voice talents. The read aloud sentences
were recorded by Strom et al. (2006, 2007) for Roger, and by CereProc for Heather
and Johnny. These sentences were recorded to provide phonetic coverage of diphones
in different segmental and prosodic contexts. The sentences were recorded in the same
studios and with the same microphones as the conversations, and in the case of Johnny
also around the same time as recording the conversation.

In the following sections we will quantify some of the linguistic and phonetic prop-
erties of the conversational and read aloud speech. The conversations from Heather
and Roger only gave 392 and 265 utterances respectively. The conversations from
Johnny gave a more substantial 2120 utterances. Therefore, the linguistic and pho-
netic analyses presented in sections 3.5.1 and 3.5.2 were made on Johnny’s speech,
but some references will be made to the speech of Heather and Roger. Table 3.2 gives

an overview of the composition of Johnny’s conversational and read aloud data. Part
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utt no. of phonemes | error (phonemes) | error (ms) | max error (ms)
RD_1 36 4 130ms 50ms
RD_2 55 3 175ms 100ms
RD_3 9 0 0 0
RD 4 19 2 75ms 50ms
RD.5 17 2 140ms 80ms
RD_6 32 0 0 0
RD_7 24 3 75ms 25ms
RD_8 36 2 50ms 25ms
RD 9 41 2 65ms 40ms
RD_10 44 0 0 0
Total 313 18 710ms -
utt_id | no. of phonemes | error (phonemes) | error (ms) | max error (ms)
SP_1 78 3 85ms 30ms
SP2 5 1 40ms 40ms
SP_3 35 4 155ms 70ms
SP_4 8 0 0 0
SP_5 143 12 1725ms 800ms
SP_6 3 0 0
SP_7 8 0 0
SP_8 11 1 50ms 50ms
SP9 14 0 0 0
SP_10 42 30ms 30ms
Total 347 22 2085ms -
Table 3.1: Forced alignment errors in Johnny’s read aloud (RD) and conversational

(SP) speech.
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Conversation | Read Aloud

utterances 2120 2717

word tokens 19841 22363
word types 2200 5026

syllable tokens 24657 30902
phone tokens 58332 75856
diphone types 1769 2483
quinphone types 37654 58867

total duration (incl. silence) 89min 106min

total duration (excl. silence) 75min 103min

Table 3.2: Overview of Johnny’s conversational and read aloud data. The duration
shows the amount of phonetic material, including or excluding utterance internal silent
pauses. The diphone types include silences and lexical stress on vowels. The quin-

phone types include silences, but not lexical stress.

of the analyses in Sections 3.5.1 and 3.5.2 were published in Andersson et al. (2012)

where the first author conducted all the linguistic and phonetic analyses.

3.5.1 Language Composition and Phonetic Coverage

The linguistic analysis in the CereVoice system provided an analysis mainly based on
linguistic features extracted from the text of an utterance, such as phoneme identity,
neighbouring phonemes, lexical stress and phrase position. The use of these auto-
matically predicted features means that there is no need for manual mark-up and the
features can be predicted also for the unseen text that we need to synthesise.

Table 3.2 shows that there was more read aloud than conversational data. In addi-
tion to this overall difference, the two datasets have differences in language composi-
tion and phonetic coverage that have consequences for our aim of integrating discourse
markers and filled pauses with propositional content in synthetic utterances.

Figure 3.4 shows how phonetic coverage of diphone and quinphone types increases
as a function of number of utterances in the read aloud and conversational data, where
the benefit of pre-selecting sentences to achieve phonetic coverage of, in particular, di-
phones is illustrated. However, the read aloud utterances did not have better coverage
of everything. Table 3.3 shows the twenty most frequent words in Johnny’s conversa-

tional and read aloud data. Short function words, such as the, a, of or to were frequent
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Figure 3.4: Diphone and quinphone coverage in the read aloud and conversational
speech. As in table 3.2, the diphones include three levels of lexical stress on the vowels,
making the phoneset contain 72 phonemes. If we exclude the lexical stress, the read
aloud data contains 86% of the theoretically possible diphones, and the conversational
data contains 70%. The quinphone coverage does not include lexical stress on the

vowels.

in both datasets. The most frequent word in the conversational data was yeah, which
occurred a mere three times in the read aloud data, and many other words, e.g. know
and so, showed similarly large distributional differences between the read aloud and

conversational data.

The reason for these distributional differences is that many of the frequent words in
the conversational data are frequent because they were used to regulate the conversa-
tional flow, through discourse markers and backchannels, or express non-propositional
content such as agreement or hesitation. Approximately thirty percent of Johnny’s
conversational utterances consisted of a single isolated word (e.g. 339 yeah, 167 right,
and 54 okay) of which the majority were backchannels. The discourse markers and
filled pauses were however mainly integrated with propositional content in longer ut-
terances, and as table 3.4 shows, often occurred in the vicinity of the phrase or utterance
boundaries. This distribution of discourse markers and filled pauses around phrase and
utterance boundaries represents our speaker’s means of structuring his speech in con-

versation to start, end or keep a turn.
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Conversational Read Aloud
rank | type count type count
1 yeah 818 a 762
2 I 787 the 709
3 and 690 I 390
4 you 570 to 390
5 the 488 of 340
6 a 448 is 304
7 that 366 and 290
8 | know 344 you 251
9 to 336 in 220
10 uh 318 he 204
11 SO 302 it 193
12 um 292 one 192
13 it 291 with 167
14 of 278 two 165
15 it’s 262 we 155
16 but 248 was 151
17 like 217 three 138
18 | right 210 on 134
19 was 207 are 131
20 is 195 they 130

Table 3.3: The twenty most frequent words in Johnny’s conversational and read aloud
data. Non-overlapping words between the two columns are bold faced.
3.5.2 Phonetic Properties

This section will show overall acoustic phonetic properties of the read aloud and con-

versational speech data in table 3.2.

3.5.2.1 Energy

For the HMM-based synthetic voices in section 4.2 the spectral parameters were ex-
tracted as 39th order STRAIGHT (Kawahara et al., 1999) mel-cepstral coefficients.

The Oth coefficient is a measure of the energy in the speech frame. Figure 3.5 shows
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frequency trigram frequency trigram frequency trigram
339 sil_yeah _sil 19 sil_and_I 12 um_sp_you
167 sil_right _sil 18 [ _mean_sil 11 a_bunch_of
124 sil_yeah_sp 18 yeah_yeah _sil 11 and_uh_sil
118 sp-you_know 17 you_know_I 11 and_you_know
68 sil_um_sp 17 but_uh_sp 11 sil_oh_yeah
68 sil_you_know 16 sp-and_uh 11 that_sp_1
54 sil_okay_sil 16 and_uh_sp 11 what_it_is
53 yeah_sp_yeah 16 sp-and_then 11 yeah_I_mean
46 you_know_sp 16 sp-yeah_yeah 11 yeah_sp_no
43 you_know_what 15 sp-and_I 11 sil_no_sil
38 know_what_I 14 I_don’t_know 10 sp_I_was
38 you_know _sil 14 it’s_uh_sp 10 and_I_think
37 a_lot_of 14 sp-and_sp 10 sil_and_sp
37 sp-um_sp 14 when_I_was 10 sil_and_uh
37 sp-yeah_sil 13 sil_but_uh 10 sil_right_sp
36 sp-um_sil 13 sil_yeah_yeah 10 sp-but_uh
36 what_I_mean 13 uh_sp_I 10 sp-exactly_sil
27 sil_yeah_I 13 um_sp_I 10 sil_exactly _sil
27 sp-so_sil 13 um_sp_and 10 sil_nice_sil
23 sp-uh_sp 13 yeah_sp_exactly 10 sp-I_was
23 sp_yeah_sp 12 sil_and_so 10 sp-it_was
20 you_know_and 12 sil_I_mean 10 yeah_sp_I
20 sil_and_then 12 sil_yeah_no 10 yeah_yeah_sp
19 uh_sp_yeah 12 um_sp_but 10 yeah_yeah_yeah

Table 3.4: Trigrams occurring ten times or more in Johnny’s conversational data. The

trigrams include utterance beginning/end as “sil”, and utterance internal short pauses

aS iiSp!!.

the overall distribution of energy in the read aloud and conversational speech. Fig-

ure 3.6 shows the distribution of energy in the centre of the vowels in the read aloud

and conversational speech.

The higher proportion of utterance internal silence in the conversational data re-

ported in table 3.2 is visible also in figure 3.5 as a plateau in the lower energy region.
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Figure 3.5: Histogram of overall energy distribution, measured as the 0th mel-cepstrum

coefficient, in the read aloud and conversational speech.
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Figure 3.6: Histogram of energy, measured as the 0th mel-cepstrum coefficient, in the

centre of the vowels in the read aloud and conversational speech.
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Heather Roger
sil_um_sp sil_um_sp
sp-I_think sp-um_sil
sp-um_sp sp-um_sp
sp-like_sp sil_but_sp
sil_yeah_sp I_think sp

kind_of sp | sp_you_know
sp_but_sp sil_I_mean
sil_I_think sp_I_mean
um_sp_I um_sp_I
sp_and_sp but_sp_um
sp-uh_sp [_mean_I
sp_you_know sil_and_I
sp_kind_of sil_yes_I
I_think_sp sp-uh_sil
but_sp_I and_I_think

Table 3.5: Examples of trigrams occurring five times or more in Heather’s and Roger’s
conversational speech. Including utterance beginning/end as “sil”, and utterance inter-

nal pauses as “sp”.

Although the read aloud and conversational speech were recorded in the same studio
using the same microphone, they were recorded at different times by two different en-
gineers. The similar distributions of vowel energy in figure 3.6 show that we managed
to keep recording levels fairly consistent and that there is no substantial difference

between the conversational and read aloud data.

3.5.2.2 Fundamental Frequency

The fundamental frequency (F0) of the read aloud and conversational speech data
reported in this section was extracted for all the speech data when building the HMM-
based voices described in section 4.2.

Figure 3.7 shows that Johnny had approximately the same pitch range and F0 dis-
tribution when reading aloud isolated sentences and when speaking in a conversation.
However, Figure 3.7 also shows that the conversational speech had more variation in

utterance final 0, probably because of more variation in dialogue acts (questions, con-
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vowel i I € & a
genre || read spon | read spon | read spon | read spon | read spon
mean || 18.722.6 | 15.117.1 | 16.918.2 | 17.021.1 | 17.4 16.3

sd 8.46.6 5753 4854 3569 9.163
vowel A 2 0 U u filled
genre | read spon | read spon | read spon | read spon | read spon | pauses
mean | 18.018.2 | 15.814.1 | 13.617.2 | 13.7159 | 149147 | 244

sd 8.16.3 10.0 8.7 7.07.7 5.68.5 6.964 7.8

Table 3.6: Spectral tilt: H1*-A3* measured in decibel (dB).

firmations, etc.) and speaker state (enthusiastic, doubtful, polite, etc.). But mainly, the
lack of utterance final FO variation in the read aloud data, like the lack of variation in
speaking rate in Figure 3.8, points out the consistency of the task of carefully reading

aloud isolated sentences compared to speaking spontaneously in a conversation.

3.5.2.3 Duration and Speaking Rate

The speaking rate, shown in Figure 3.8, of the conversational and read aloud data was
measured for speech sequences delimited with silent pauses, as syllables per second.
The variation in length of utterances was larger in the conversational data. In order
to remove effects of very short and very long utterances, the speaking rate was only
measured for utterances that were five to ten words long.

Figure 3.9 shows the duration of the monophthong vowels in the read aloud and the
conversational speech. In general the median duration of the read aloud vowels was
higher than in the conversational speech, except in the /a/ vowel, because it contained
the filled pauses in the conversational speech.

The conclusion drawn was that reading prompts presented in isolation gives a very

consistent speaking rate compared to speaking in a conversation.

3.5.2.4 Spectral Tilt

The spectral tilt measure that was used, HI*-A3*, was described in Hanson (1997);
Hanson and Chuang (1999). The measure shows the difference in amplitude between
the first harmonic (H1) and strongest harmonic in the third formant (A3), measured in
decibel (dB). The measure was chosen because it shows properties of the vocal fold

vibration that are related to voice quality (Hanson, 1997; Hanson and Chuang, 1999).
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Figure 3.7: FO distribution in read aloud and conversational speech. The top panes
show histograms of F0 distribution of all voiced frames in the speech data. The bottom
panes show histograms of utterance final F'0 distribution. Due to uncertainties of F0
at the end of utterances, the utterance final FO was measured at the tenth last voiced

frame, frame length was 5ms.

The spectral tilt was estimated using scripts written by Timothy Mills>. The result

is presented in Table 3.6. The H1*-A3* measure relies on correctly estimated F'0 and

3http://nuweb.neu.edu/tmills/scripts.html
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Figure 3.8: Speaking rate for utterances with 5-10 words in the conversational and
read aloud data. The solid line is the median, box borders show the upper and lower

quartiles, and the whiskers are drawn to 1.5 times the inter-quartile range (IQR).

the first three formants and required manual supervision. Therefore, the spectral tilt
was only measured for vowels that fulfilled certain criteria: lexically stressed vowel,
with at least a median duration (but not longer than 1.5 x IQR, see figure 3.9), from a
content word. Only one vowel of each type was extracted from an utterance, e.g. not
two /a/ from the same utterance, to increase the spread of sampled utterances across
the data. The fifty first samples from each monophthong, except the two schwas (/9/
and /o+/), that fulfilled these criteria were selected from the speech data. This selection
gave a total of five hundred vowels from the read aloud speech and five hundred and
fifty (including filled pauses as a separate vowel type) vowels from the conversational
speech. The selection criteria ensured that the extracted vowels spanned across a mini-
mum of a few hundred utterances for the majority of the vowels up to about a thousand

utterances for the vowel /6 / in both the read aloud and conversational speech.

The script extracted F'0 and formants from the centre of the forced aligned vowels.
Manual adjustments of window position for formant extraction and manual mark up

of missing or erroneous pitch periods, allowed reliable estimates for almost all the
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Vowel Durations in Read Aloud and Conversational Speech
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vowels. A few samples were however discarded: In the /o/ vowel the first two formants
lie very close and could in five instances each in the read aloud and conversational
speech not be reliably estimated and were discarded, which for this vowel left forty-
five instead of fifty tokens for spectral tilt analysis. One instance of the vowel /u/ in
the conversational speech was discarded due to that no pitch period could be reliably
identified.

The speech data in Hanson (1997); Hanson and Chuang (1999) came from males
and females reading aloud carrier phrases and the average values of HI*-H3* was 13.8
dB for male speakers and 23.4 dB for female speakers, and standard deviation was 4.8
dB and 6.6 dB, respectively (Hanson and Chuang, 1999). Johnny’s averages for each
vowel in table 3.6 are inbetween those values and show that the majority of the read

aloud and conversational speech were spoken with a modal voice quality.

3.5.2.5 Vowel Quality

Figure 3.10 shows the average frequencies of automatically extracted first and second
formants from the centre of the vowels in the forced aligned speech data. The extracted
values were verified manually by spot checking data from some of the vowel types
where the average formant values deviated markedly from more prototypical formant
values. The prototypical formant values were taken from Ladefoged (2006) who gives:
“[the] average of a number of authorities’ values of the frequencies of the first three
formants in eight American English vowels.”(Ladefoged, 2006, p.184). The manual
check confirmed the average values for the front vowels, for example /i/ and /a/, but
revealed problems with some of the back vowels. The small distance between F1 and
F2 in /o/ made the extracted values unreliable. In the /u/ vowel the formants were
not well estimated for the word you because, due to coarticulation, F2 starts off high.
The vowel in the filled pauses were stipulated in the lexicon as an /a/, but as shown
in figure 3.10, this was not entirely correct and was the main reason for the difference
between the averages for the /a/ vowel in the read aloud and conversational speech.
The read aloud and conversational speech both contained a large proportion of
unstressed and unaccented syllables and a generally reduced vowel space is to be ex-
pected. The spectral tilt in Section 3.5.2.4 relied on estimated formant values that were
measured for lexically stressed vowels in content words with at least a median dura-
tion. These formant values, shown in figure 3.11, were expected to be less centralised
than in figure 3.10 and because each vowel was manually verified and taken from a

more restricted phonetic context they should also be able to better capture differences
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in vowel quality between the read aloud and the conversational speech.

Compared to formant frequencies taken from Ladefoged (2006), which show ide-
alised or prototypical formant frequencies, figure 3.10 shows a more reduced vowel
space than figure 3.11 for both the read aloud and conversational speech. Contrary to
Nakamura et al. (2008), neither figure 3.10 nor figure 3.11 show an obvious tendency
to a reduced vowel space for the conversational speech compared to the read aloud
speech. Part of the explanation for this was the careful selection of the conversational
speech and the automatic assignment of schwa in reduced pronunciations, but the result
also confirms our intuition that our speaker Johnny did not have a particularly enun-
ciated reading style. However, there were some observable reduction tendencies, and
an example of differences in vowel formant values in fully pronounced and reduced it
is shown in figure 3.12. Bell et al. (2003) showed that utterance initial vowels were
more likely to be fully pronounced, and the difference between it in the read aloud
and conversational data is likely to be due to the distributional differences in utterance
position. In the read aloud data 77 out of the 193 (40%) it occur in utterance initial
position, whereas only 2 out of the 291 if in the conversational data occur in utterance
initial position. It is possible that we could find other words like it where the vowel
quality differed between the conversational and read aloud data due to differing pho-
netic context, but the analysis in figure 3.10 and figure 3.11 does not support a general
difference in vowel quality between read aloud and conversational speech that would

prevent blending them in speech synthesis.

3.6 Conclusion

In this chapter we showed how a spontaneous conversation was recorded, transcribed
and analysed. The purpose was to obtain conversational speech suitable for building
unit selection and HMM-based synthetic voices.

It may be possible to make synthetic speech exhibit phonetic properties similar
to conversational speech without the use of actual conversational speech data or with
other speech synthesis methods than unit selection or HMM-based speech synthesis,

but as we stated in section 1.1:

e Unit selection and HMM-based speech synthesis are currently the two domi-
nating frameworks due to their ability to build high quality synthetic voices by

mimicing the speech properties from recordings of natural speech (see e.g. King
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Figure 3.10: Mean formant values (F1 and F2) for American English monophthongs in

the read aloud and the conversational speech. The reference formant values are taken
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Vowel Qualities in Full and Reduced 'it'
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Figure 3.12: Mean formant values (F1 and F2) for fully pronounced and reduced vowel

in the word it. Represented as it1 (full) and it (reduced) in the figure.

and Karaiskos, 2010). Building synthetic voices from conversational speech data

should therefore result in synthetic voices with conversational characteristics.

e Any perceived spontaneity from speech that is not spontaneous speech will be
determined by the quality of the actor (see section 1.1). Using speech from a
spontaneous conversation therefore allows the focus of our work to be put on
whether the synthesis and evaluation methods are appropriate for developing

conversational speech synthesis, rather than if the actor is good enough.

The conversational speech phenomena described in section 2.2 and the description of
a recorded conversation in this chapter, suggested that using conversational speech
data in unit selection and HMM-based speech synthesis systems currently represents
the most feasible method for adding conversational characteristics to synthetic voices.
This is the approach tested in this thesis.

Eliciting conversation in a recording studio proved to be a straightforward method
for obtaining speech that contained a rich variety of spontaneous conversational speech
phenomena. Section 3.5 showed that a large proportion of the recorded conversation

consisted of the discourse markers, filled pauses, and backchannels that were described
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in section 2.2.
The recorded conversation was transcribed manually (see section 3.4), but all sub-

sequent processing of the speech was performed automatically:

e Section 3.4.5 showed that the conversational speech could be segmented by ad-

justing the forced alignment method in our speech synthesis system.

e Propositional content is generally represented in speech synthesis through lin-
guistic features such as neighbouring phonemes, and position of syllable in word
and utterance. In section 2.2 we argued that these features would suffice to
preserve also the phonetic properties and pragmatic functions of conversational
speech phenomena, such as discourse markers and filled pauses. The frequency
of the discourse markers and filled pauses together with their local phonetic con-
text shown in table 3.4 should allow them to be selected from an appropriate
context in unit selection, as well as allow capturing their phonetic properties in

the training of HMM-based synthetic voices.

Hence, synthetic voices that sound like a person participating in a spontaneous con-
versation can be built from conversational data with conventional unit selection and
HMM-based speech synthesis systems. However, figure 3.4 shows that the lack of
control over the phonetic material in conversational speech makes it problematic to
achieve phonetic coverage. This lack of coverage and the formulations of the unit
selection and HMM-based speech synthesis frameworks makes it challenging to syn-
thesise consistently high quality utterances that are not pre-recorded.

The phonetic analysis of the read aloud and conversational speech data in sec-
tion 3.5.2 showed that the only general differences between the conversational and
read aloud speech were the speaking rate and vowel duration. Other differences found
were related to the local context, such as the phonetic properties of the filled pauses.
This suggested that the important differences for conversational speech synthesis are
in the local phonetic properties of specific speech phenomena, in particular the differ-
ences related to the language composition in section 3.5.1.

The approach taken in this thesis was therefore to alleviate the lack of phonetic
coverage in the conversation by blending it with a conventional speech resource of
pre-selected and read aloud sentences. The blending required taking into account the
differences in language composition and phonetic properties of the conversational and
read aloud data. In chapter 4 we will describe our developed blending techniques for

unit selection and HMM-based speech synthesis, and in chapter 5 we will describe the
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perceptual evaluations of our blended conversational synthetic voices. We will demon-
strate that conversational speech data and blending can be successfully used to build
synthetic voices with richer behaviour than conventional voices. The conversational
data allowed us to synthesise natural-sounding conversational characteristics, in par-
ticular discourse markers and filled pauses. The added read aloud data allowed us to fill
in the gaps in phonetic coverage and synthesise also high quality propositional content.
This allowed our synthetic voice to express certainty and uncertainty about a topic in

a manner similar to how humans express it in spontaneous conversation.



Chapter 4

Synthetic Voices

This chapter will describe how the HMM-based and unit selection voices were built.
The chapter includes descriptions of initial attempts of utilising spontaneous conversa-
tional speech for unit selection and HMM-based speech synthesis (see sections 4.2.3
and 4.3.2). These voices were built with small amounts (approximately 20min) of con-
versational speech from Heather and Roger, because at the time we did not have the

larger amount of speech from Johnny.

Both the positive and negative results from those pilots were the motivating factor
behind the recordings of a larger amount of spontaneous conversation from Johnny,
described in chapter 3, and the final unit selection and HMM-based synthetic voices

described in this chapter.

The names for the synthetic voices we describe in this chapter, e.g. joh.16k.hts.read,
follow the following naming convention: the first part is a three letter abbreviation of
the speaker (e.g. joh stands for Johnny), the second part is the sampling rate of the
speech data (e.g. 16k for 16kHz), the third part stands for the type of system used (hts
for HTS and unit for unit selection), and the last part contains additional info on the
type of speech data or synthesis technique used in the voice (e.g. read when the voice
contains only read aloud data, or blend when we use our blending techniques in voices

that contain both read aloud and conversational data).

67
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4.1 Independent Contribution by the Author: Design

and Analysis of the Synthetic Voices

The synthetic voices described in this chapter were part of joint work in Andersson
et al. (2010a), Andersson et al. (2010b) and Andersson et al. (2012). This section
outlines the author’s independent contribution to the design, building and analysis of

the synthetic voices in this chapter:

e All preparation of speech data and building of the blended unit selection and

HMM-based voices were carried out by the author of this thesis.

e The design and implementation of the unit selection and HMM-based blending
methods in sections 4.2.5, 4.3.3, and 4.3.4 were all made by the author of this

thesis.

o All the analysis of the synthetic speech in sections 4.2.6 and 4.3.6 was made by
the author of this thesis. The majority of these analyses were not part of the joint

publications.

In general, all reported work was made by the author of this thesis, unless explic-
itly stated otherwise. For example: two of the reference voices used in the pilots in

sections 4.2.3 and 4.3.2 are credited to other people.

4.2 HMM-based Voices

The HMM-based voices described in sections 4.2.4 and 4.2.5 were used in Andersson
et al. (2010b) and Andersson et al. (2012). These voices were built by the author using
scripts provided by Junichi Yamagishi. The scripts were modified by the author for the

blended voices described in Section 4.2.5.

4.2.1 The Context-dependent Phonemes

The HTS system does not include text analysis and the generation of the context-
dependent phonemes. The context-dependent phonemes were therefore generated with
the CereVoice system from the text and speech analysis used for the unit selection
voices (see section 4.3). CereVoice’s contexts were based on the contexts in Tokuda
et al. (2002); Zen et al. (2007) and its more recent variant in Zen et al. (2009), and took

into account:
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e quinphone (i.e. current phoneme with the two preceding and succeeding phonemes

as context, example: s-p-o-1-t)
e preceding, current, and succeeding phoneme types (vowel, plosive, etc.)
e nucleus of current syllable (e.g. &, 0 or a)
e position of phoneme in syllable, word and phrase
e position of syllable in word and phrase
e number of phonemes in syllable, word and phrase
e number of syllables in word and phrase
e part-of-speech (content or function word)
e preceding, current, and succeeding syllable stress and accent

e boundary tone of phrase (utterance final or -medial)

The contexts did not include explicit representations of the discourse markers or
filled pauses (um or uh), but the context specifications implicitly identified many im-
portant characteristics. The quinphone context was large enough to encapsulate many
of the discourse markers and filled pauses, e.g. yeah, you know or oh yeah, together
with their, often initial or final, utterance positions (see table 3.4). The quinphone con-
text was also large enough to include the filled pauses together with a preceding short
function word, such as and or but, or a common word ending, such as -ing, and thereby
potentially preserving any associated preceding hesitation. The contexts with counts
and phrase positions should also be able to capture segmental and prosodic differences
between the same word token in different utterance contexts, as in the previously men-
tioned example in section 3.4 of yeah as a stand alone backchannel, in the confirmation
yeah yeah yeah, or in the longer utterance yeah I feel kind of dirty afterwards.

Our hypothesis was that the current context representations would be sufficient to
build HTS voices where the contrast between different data sources; conversational or
read aloud speech data, could be preserved. The result would be that voices including
conversational speech would generate more natural-sounding conversational speech

phenomena, such as discourse markers and filled pauses.

4.2.2 Building HTS Voices

The HTS toolkit! with which the voices were built is a patch to the HTK speech recog-
nition toolkit (Young et al., 2006). The method and training scripts used to build the

Thttp://hts.sp.nitech.ac.jp/
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HMM-based voices were developed by Junichi Yamagishi. The scripts follow the gen-
eral methodology of the HTS system (Zen et al., 2007) that was described in sec-
tion 2.3.3. The training procedure was the same for all the HMM-based voices in this

thesis.

The speech samples were downsampled from 48kHz to 16kHz. Spectral and ex-
citation parameters were extracted from the speech samples with 25ms window and
Sms frameshift as 39th order STRAIGHT (Kawahara et al., 1999) mel-cepstrals, five
frequency band averaged aperiodicity (Kawahara et al., 2001), logF0, together with

their delta, and delta-delta values.

Gaussian distributions of the acoustic parameters, and duration, were then trained
for the context-dependent phonemes described in section 4.2.1. The context-dependent
phonemes were represented as 5-state left-to-right Hidden Markov models (HMMs),
where the acoustic parameters were trained as five independent streams (one stream
each for mel-cepstral, aperiodicity together with their delta and delta-delta values, and

three separate streams for logF 0, delta logF 0 and delta-delta [ogFO0).

The training of the context-dependent models follows largely the training of HMM
models for speech recognition as outlined in Young et al. (2006), but with extensions
to allow for modelling voiced and unvoiced sequences of speech (Tokuda et al., 1999)
and a better representation of duration for speech generation (Zen et al., 2004b), re-
sulting in the HTS specific MSD-HSMM modelling. Firstly, the context is stripped
from the context-dependent phonemes and monophone HMM models, one for each
phoneme, are trained to obtain robust initialisation values for the context-dependent
models. Secondly, the monophone models are converted back into full context models
and trained with embedded training with maximum likelihood criterion. Thirdly, the
large context gives few instances of each context-dependent phoneme type, and when
synthesising speech, models which are not in the training data need to be dealt with.
Therefore the parameters are shared (“tied”) between the states of the different context-
dependent models. The method, decision tree-based context clustering, used to share
the model parameters and deal with unseen models when synthesising speech was de-
veloped by Odell (1995). The decision tree splits the data into a binary tree, based on
the individual contexts in the full context models. The leaf-nodes in the tree contain
the trained Gaussian distributions. The decision to stop splitting into more leaf-nodes
is determined by the minimum description length (MDL) criterion. A decision tree is
created for each of the mel-cepstral, aperiodicity, logF0 and duration parameters. To

further improve the estimation of the parameters, the process is repeated: the clustered
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parameters are “untied” and the full context models are again trained with embedded
training, and again clustered into decision trees. The resulting trained models can then

be used to generate high quality synthetic speech.

4.2.2.1 Speech Generation

The script for speech generation was developed by Junichi Yamagishi, and was used
unmodified for all HMM-based voices in this thesis. Just as for the training, the
context-dependent phoneme descriptions for speech generation were generated with
the CereVoice system. Speech parameters are then generated from the corresponding
trained models in the clustered mel-cepstral, aperiodicity, /ogF0 and duration trees
as described in section 2.3.3.4. Firstly, the state model sequence is determined by
maximum likelihood generation, giving the mean duration of each model. Then, the
spectral and excitation parameters are generated with the speech parameter generation
technique that considers the global variance (Toda and Tokuda, 2007), to ensure that

the generated utterance has a smooth trajectory with natural variation.

4.2.3 Pilot: Read Aloud to Spontaneous Adaptation

Initial experiments with utilising spontaneous speech for HTS revealed that adapting
read aloud voices with spontaneous speech did not result in perceptually favourable
distinctions of speaking styles.

The data described in section 3.2.1 had only about 300 utterances with 22min of
phonetic material for the male speaker, Roger, which was not enough to build a good
quality speaker-dependent voice from. Instead we utilised the adaptation technique
described in Yamagishi et al. (2007). The aim was to adapt an existing read aloud
voice into a voice with a more spontaneous speaking style, by using a small amount
of spontaneous speech as adaptation data. The read aloud source voice, henceforth
rog.16k.hts.read, was built from several hours of neutrally read aloud sentences from
Roger. This voice was built by J. Yamagishi with the HTS system configurations de-
scribed in Zen et al. (2007). The rog.16k.hts.read voice wa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>