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ABSTRACT 

 

Cancer-induced bone pain (CIBP), due to bony metastases, is a major clinical 

problem, significantly reducing quality of life in cancer patients. Current therapies 

often provide inadequate analgesia or unacceptable side effects. The aim of this 

thesis was to characterise behaviours of a preclinical model of CIBP and test novel 

analgesic interventions in this model. A secondary aim was to investigate the 

involvement of the N-methyl-D-Aspartate (NMDA) receptors and TRP channels 

(TRPM8, TRPV1 and TRPV4) in CIBP. Investigation of CIBP in a preclinical model 

may lead to better pain management in CIBP patients.  

 

The results presented here demonstrate that this model of CIBP develops 

behaviours that may be indicative of mechanical allodynia, thermal sensitivity, 

movement-evoked pain, ongoing pain and spontaneous pain. This suggests that this 

model reflects the clinical condition of CIBP, where patients suffer from constant 

background pain with spontaneous and movement-related breakthrough pain.  

 

In this study it was found that radiotherapy significantly attenuated 

movement-evoked pain and thermal sensitivity to 20°C and 40°C. XRT also 

significantly reduced anxiety and risk assessment behaviours (grooming behaviour 

and number of protected stretch attends) compared to untreated CIBP. Duloxetine 

attenuated CIBP-induced mechanical allodynia, thermal sensitivity to 40°C and 

movement-evoked pain, whereas S,S-reboxetine attenuated thermal sensitivity to 

40°C but did not effect CIBP-induced mechanical allodynia or movement-evoked 

pain. In addition, CB 65 attenuated movement-evoked pain and thermal sensitivity to 

40°C. A single dose of gabapentin did not attenuate CIBP-induced mechanical 

allodynia, thermal sensitivity to 40°C or movement-evoked pain. These studies 

confirm that the CIBP model shows characteristics and pharmacological sensitivities 

consistent with known and predicted mechanisms and validate it as a useful model 

for assessing potential new treatments proposed for use in patients. 

 



 xvii 

Behavioural results suggest that NMDA receptors containing the NR2A 

subunit are involved in CIBP-induced movement-evoked pain. This suggests that 

NR2A antagonists may be useful for treating CIBP-induced movement-evoked pain. 

Additionally, results show that there is increased expression of NR2A in the laminae 

I, II and III in the dorsal horn of the spinal cord. XRT treated animals also showed 

increased expression of NR2A in laminae I and II. The selective involvement of 

NR2A in CIBP is different to other chronic pain states, for example, neuropathic pain 

states that appear to involve the NR2B subunit. 

 

The TRPV1 antagonist AMG 9810 did not attenuate mechanical allodynia, 

thermal sensitivity to 40°C or movement-evoked pain. Interestingly, the TRPM8 

agonist icilin attenuated movement-evoked pain, which suggests that icilin might be 

useful in the treatment of movement-evoked pain. The TRPV4 antagonist RN 1734 

attenuated mechanical allodynia, thermal sensitivity to 40°C and movement-evoked 

pain in CIBP. This suggests RN 1734 may be useful in the treatment of mechanical 

allodynia, thermal sensitivity to 40°C and movement-evoked pain in CIBP. Results 

show that the expression of TRPV4 is increased in DRG ipsilateral to the cancer-

bearing tibia.  

 

In conclusion, these results show that the preclinical model of CIBP 

investigated in this thesis is suitable for testing novel analgesic interventions. This 

thesis identified some useful targets for the analgesic treatment of CIBP and results 

suggest that many different mechanisms contribute to CIBP. A point to consider is 

that any robust effective treatment may need to target all (or at least several) of these 

mechanisms.  
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1. INTRODUCTION 

 

1.1 An Introduction to Pain Processing 

Pain is defined by the International Association for the Study of Pain (IASP) 

as “an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage”. Nociception is the 

neural process of encoding noxious input without the emotional input. Noxious 

stimuli can be mechanical, thermal or chemical that cause, or have the potential to 

cause, tissue damage. This noxious input is detected in the periphery and is 

transmitted to the brain via the spinal cord.  

 

Physiological pain is a protective event allowing avoidance of, or withdrawal 

from, a noxious stimulus. If the stimulus is of short duration or does not cause 

extensive tissue damage, the pain only lasts for the duration of the stimulus. In 

chronic pain syndromes, pathological changes occur such that  pain no longer acts to 

protect but persists longer than the noxious stimulus or longer than recovery from 

initial injury or inflammation (Woolf, 1989). This is because the central nervous 

system is a plastic system, where changes can be long-lasting. Neuropathic pain is 

caused by damage or lesion to the peripheral or central nervous system and this type 

of pain frequently persists. Inflammatory pain is caused by the endogenous immune 

response to trauma and/or pathogen invasion. The subject of this study is cancer-

induced bone pain (CIBP), which can occur in patients with primary bone tumours 

and more commonly in patients with bone cancers that have metastasized to bone 

from distant primary sites. Patients with metastatic prostate, breast or lung cancer 

frequently suffer from CIBP (Mercadante, 1997). CIBP is a major clinical challenge, 

with limited effective therapies and significantly reduces the quality of life of cancer 

patients (Weinfurt et al., 2005). CIBP is a unique pain state, with aspects of 

neuropathic and inflammatory pain (Urch, 2004). This multi-component nature of 

CIBP means that it is difficult to treat using standard therapies and to allow us to 

improve the treatment of CIBP we must understand the underlying mechanisms. The 

focus of this study will be CIBP, however before going on to review the mechanisms 

of CIBP, the basic neurobiology of pain perception will be reviewed.  
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1.2 Peripheral Transduction of Sensory Information 

Sensory information is transduced in the periphery by receptors present on 

primary afferents. These receptors are activated by a variety of stimuli including 

thermal, chemical and mechanical challenges and this sensory information is 

transduced into action potentials. Primary afferents enter the nervous system and 

synapse within the dorsal horn of the spinal cord and are termed pseudounipolar 

because they have an axon with a terminal at the periphery and a central axon with a 

terminal at the spinal cord (Basbaum et al., 2009). For the main part of the body, 

primary afferents have their cell bodies located in the dorsal root ganglion (DRG), or 

for the head, in the corresponding trigeminal ganglia.  

 

Anatomically, there are 2 broad groups of primary afferents: myelinated A-

fibres and unmyelinated C-fibres. Primary afferents can be subdivided into three 

subtypes organised by diameter and conduction properties; myelinated Aβ-fibres and 

Aδ-fibres as well as unmyelinated C-fibres (Table 1.1). C-fibres can be further 

divided into two classes dependent on the expression of neuropeptides: peptidergic 

and non-peptidergic. Peptidergic C-fibres express substance P and calcitonin gene-

related peptide (CGRP) and non-peptidergic C-fibres bind the lectin isolectin B4 

(IB4) from Griffonica simplicifolia and express the ATP receptor P2X3 and Mas-

related G-protein-coupled receptors (Mrgprd) (Basbaum et al., 2009). The fibres that 

detect noxious stimuli are termed nociceptors and generally fall into the C-fibre or 

Aδ-fibre categories.  

 

Aδ-fibres are classified as either low-threshold D-hair mechanoreceptors that 

detect innocuous stimuli or mechanonociceptors that detect high intensity, noxious 

stimuli including thermal stimuli. Aδ-fibres lose their myelin sheath and terminate as 

free nerve endings in the epidermis (Smith & Lewin, 2009). C-fibres also terminate 

as free nerve endings in the epidermis and the most common C-fibres observed are 

described as polymodal because they respond to mechanical, thermal and chemical 

noxious stimuli (Dubin & Patapoutian, 2010). A small population of C-fibres have 

been shown to be activated by innocuous stimili (Smith & Lewin, 2009). Aβ-fibres 

are associated with specialised non-neuronal structures conferring sensitivity to light 
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touch, stretch, vibration and hair movement such as hair follicles and Meissner 

corpuscles (Smith & Lewin, 2009). 

 

Fibres 
Myelinated/ 

Unmyelinated 

Diameter 

(µm) 

Conduction 

velocities 

(m/s) 

Function 

Aβ-fibres Myelinated >10 >10 
Innocuous 

information 

Aδ-fibres Myelinated 2-6 2-10 
Innocuous and 

noxious information 

C-fibres Unmyelinated 0.4-1.2 <1.5 
Innocuous and 

noxious information 

 

Table 1.1 Properties of primary afferents. Diameters from (Millan, 1999) and 

conduction velocities from (Smith & Lewin, 2009). 

 

1.2.1 Nociceptors 

Sherrington was the first to propose, in 1906, the existence of specialised 

sensory neurons for detecting noxious stimuli (Sherrington, 1906). Many years later, 

The Gate Control Theory of Pain was proposed by Melzack and Wall. The basic 

concept of this theory was that incoming painful stimuli can be „gated‟ such that 

activity in other primary afferents such as low threshold touch receptors and 

descending from supraspinal levels can prevent transmission of pain signals 

(Melzack & Wall, 1965). This theory remains relevant to our understanding of 

nociception. In fact, descending pathways from the brainstem can inhibit or facilitate 

pain signalling. The Gate Control Theory however did presume that specialised 

neurons for detecting pain did not exist and that there were no specific pain receptors 

or dedicated central pain pathways. The original theory was challenged by an 

electrophysiological study carried out by Burgess and Perl who documented fibres 

responding specifically to noxious stimulation of the skin (Burgess & Perl, 1967). 
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Nociceptors are now widely accepted as a separate class of primary sensory neurons, 

which discriminate between noxious and innocuous stimuli.  

 

Of the two main classes of nociceptors, Aδ-nociceptors are thought to be 

responsible for „first‟ pain like the pain of a pinprick whereas C-fibre nociceptors are 

responsible for „second‟ pain such as slow burning pain (Julius & Basbaum, 2001). 

Nociceptors have higher thresholds to stimuli when compared to low-threshold 

sensory neurons and detect a wide range of high intensity stimuli of mechanical, 

thermal and chemical modalities (Bessou et al., 1969). These stimuli are detected by 

ion channels and receptors present on the free nerve endings innervating the skin at 

the peripheral terminals of nociceptors. Activation of these ion channels and 

receptors leads to transduction, where stimuli are encoded in depolarisation, which if 

sufficient can lead to the generation of an action potential. The action potentials are 

then conducted along the peripheral axon to the cell body and then along the central 

axon of nociceptors to the dorsal horn of the spinal cord, where nociceptors synapse 

with central neurons.  

 

The release of neurotransmitters from nociceptor central terminals activates 

second order neurons at central synapses. Nociceptors can release many substances 

potentially involved in central transmission and modulation of nociceptive 

information. Nociceptors are thought to release glutamate as their primary 

neurotransmitter; neuropeptides such as substance P and CGRP; adenosine 

triphosphate (ATP), nitric oxide, prostaglandins and neurotrophins such as nerve 

growth factor (NGF) and brain-derived neurotrophic factor (BDNF).  

 

Nociceptors (or the ways in which central neurons respond to their activation) 

do not have fixed properties but display extensive plasticity, demonstrated by 

sensitisation in chronic pain states. This manifests when „silent‟ C-fibres become 

responsive to noxious stimuli in the setting of injury or inflammation (Julius & 

Basbaum, 2001). Nociceptive processing also displays plasticity with increased 

response to sub-threshold stimuli and/or an increased magnitude of response of 

dorsal horn neurons (discussed in Section 1.7). Sensitisation occurs peripherally 
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through modulation of ion channels by processes such as intracellular signalling 

cascades.  

 

1.3 Ion Channels and Transducers of Noxious Stimuli on Primary Afferents 

There are many ion channels and receptors expressed on primary afferents 

(Figure 1.1). The importance of ion channels in neuronal generation of action 

potentials was originally suggested by Hodgkin and Huxley (Hodgkin & Huxley, 

1952a;Hodgkin & Huxley, 1952b), Depolarisation of primary afferent peripheral 

terminals (which must be of sufficient amplitude and duration) is required to 

generate and propagate action potentials. The opening of ion channels permeable to 

Na
+
 and Ca

2+
 cause the membrane to depolarise. Any events that facilitate closure of 

active K
+
 channels further depolarise the membrane and increase membrane 

resistance. The expression of particular ion channels and receptors on primary 

afferents can change in pathological pain states. The channels and receptors that are 

of interest in this project will now be discussed. 

 

 

 

Figure 1.1 Peripheral and central terminals of the sensory neuron figure adapted from 

(Woolf & Ma, 2007). Noxious stimuli activate sensory neurons and transmit 

information to the CNS. Peripheral depolarisation may activate Na
+
 channels such as 

Nav1.7 and 1.8. This leads to the generation of action potentials which transmit this 

information to central terminals. At central terminals, action potentials trigger the 
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release of neurotransmitters and neuropeptides which act on neurons in the spinal 

cord.  

 

1.3.1 Voltage-dependent Sodium Channels 

Sodium (Na
+
) channels are necessary for the generation and propagation of 

action potentials. Na
+ 

channels open rapidly when the membrane is depolarised 

beyond -60 to -40mV. The opening of these channels and the influx of Na
+
 rapidly 

depolarises the membrane. Sodium channels are composed of α subunits associated 

with auxiliary β-subunits. The α subunits are known as Nav1.1 to Nav1.9. Nav1.7, 

Nav1.8 and Nav1.9 are expressed only in peripheral neurons (Dib-Hajj et al., 2009). 

Nav1.8 has been shown to be essential for cold-induced pain (Zimmermann et al., 

2007). Sodium channels in the adult CNS are associated with β-subunits β1 to β4 

(Catterall et al., 2005). Sodium channels are one of the targets for local anaesthetic 

agents, anticonvulsants, NSAIDs and tricyclic compounds (Dib-Hajj et al., 2009). 

 

1.3.2 Voltage-dependent Calcium Channels  

Voltage-dependent calcium (Ca
2+

) channels (VDCCs) open in response to 

depolarisation and increase intracellular Ca
2+

 concentration. This increase in 

intracellular Ca
2+

 concentration influences neurotransmitter release, membrane 

excitability and gene expression. VDCCs consist of α1, β, α2δ and γ subunits. The α1 

subunit is the pore-forming subunit which is essential for voltage sensing, ion 

selectivity and permeability (Lee et al., 2005b). Different types of calcium channels 

are classified according to the α subunit (10 different α subunits exist). These are L-, 

P/Q-, N-, R- and T-type voltage-dependent calcium channels (Lee et al., 2005b). 

Voltage-dependent Ca
2+

 channels are important for nociception. N-type channel 

blockers administered intrathecally attenuates nerve injury-induced allodynia and 

decreases dorsal horn neuronal responses (Doan, 2010). Gabapentin and pregabalin 

interact with the α2δ subunit of VGCCs, the subunit which influences the function 

and expression of VGCCs. α2δ-1 is upregulated in the DRG and spinal cord in animal 

models of neuropathic pain. Prolonged administration of gabapentin inhibits Ca
2+ 

currents and decreases expression of α2δ subunits (Hendrich et al., 2008). 
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1.3.3 Potassium Channels  

Potassium (K
+
) channels stabilize the membrane potential by producing 

hyperpolarising outward currents. Opening of K
+
 channels therefore results in 

decreased neuronal excitability. There are 4 different families of K
+
 channels; 

Voltage-dependent K
+
 (Kv) channels that open in response to depolarisation and 

shape the action potential, inwardly-rectifying potassium channels that are involved 

in cell signalling pathways, Ca
2+

-activated K
+
 channels that are responsible for 

shaping the after hyperpolarisation of the action potential and finally the two-pore 

domain K
+
 (K2P) channels e.g. TREK1 or TRESK channels, which produce 

background or leak K
+ 

currents (Ocana et al., 2004). Kv channel expression is 

downregulated in a model of neuropathic pain (Kim et al., 2002) and there is a 

reduction in the density of voltage-dependent K
+
 currents in a model of 

temporomandibular joint inflammation (Takeda et al., 2006). These findings suggest 

that Kv channels are involved in the development of neuropathic and inflammatory 

pain (Takeda et al., 2011). Activation of G protein-gated inwardly rectifying K
+
 

(GIRK) channels has been shown to be important for the analgesic effects induced by 

intrathecally administered morphine (Marker et al., 2004;Marker et al., 2005). 

Furthermore, in a mouse model of CIBP, it has been shown that activation of 

peripheral opioid receptors attenuates thermal hyperalgesia through activation of the 

nitric oxide/cyclic guanosine monophosphate (cGMP)/ATP-sensitive inwardly-

rectifying K
+ 

channel cascade (Curto-Reyes et al., 2008;Menendez et al., 2007). 

 

1.3.4 Acid-Sensing Ion Channels 

 Acid-sensing ion channels (ASICs) are activated by extracellular acidity, 

which can be a significant component of inflammation (Lingueglia, 2007). 

Activation of ASICs on primary afferents innervating the bone may contribute to 

CIBP (Yoneda et al., 2011), which is discussed in Section 1.10. The prototypical 

ASIC structure has two transmembrane domains and a large extracellular loop. In 

rodents, six subunits exist (ASIC1a, ASIC1b, ASIC2a, AISC2b, ASIC3 and ASIC4) 

(Deval et al., 2010). Three subunits are necessary to form a functional channel 

(Deval et al., 2010). Expression of homomeric ASIC1a channels is upregulated by 

peripheral inflammation (Duan et al., 2007). 
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1.3.5 P2X Receptors  

P2X receptors are non-selective ion channels that are highly permeable to 

Ca
2+

 and gated by ATP, which in the context of chronic pain states may be released 

from injured afferents or central glial cells. Seven different subunits exist (P2X1-

P2X7), which form homo- and hetero-tetramers (Khakh et al., 2001). P2X3 is highly 

expressed in nociceptors and can form homomeric or heteromeric channels (Dunn et 

al., 2001). Administration of P2X3 or P2X2/3 receptor antagonists have been 

reported to attenuate behavioural hypersensitivity in preclinical models of 

neuropathic pain, chronic inflammatory pain and CIBP (Kaan et al., 2010;Jarvis et 

al., 2002;McGaraughty et al., 2003). 

 

1.3.6 TRP Channels 

The mammalian Transient Receptor Potential (TRP) family of ion channels 

consists of around 30 members, which can be divided into at least 6 subfamilies (Wu 

et al., 2010). In sensory neurons, TRP channels are important for the transduction of 

thermal, chemical and mechanical signals. TRP proteins have 6 transmembrane 

domains with the pore region located between the 5th and 6th domains and 

cytoplasmic N- and C- termini (Wu et al., 2010). TRP channels are homo- or 

heterotetramers of TRP proteins (Nilius et al., 2007b). All TRP channels are 

nonselective cation-permeable channels with a high permeability to Ca
2+

 with the 

exception of TRPM4/5, which is a monovalent cation channel (Gees et al., 2010). 

Depolarizing currents through TRP channels can lead to the generation of action 

potentials and therefore the release of neurotransmitters.  

 

The TRP family includes several ion channels that are selectively expressed 

in primary afferents and respond to temperature stimuli; these are known as 

thermoTRPs. Activation of these thermoTRPs appears to be the best candidate 

mechanism for peripheral thermosensation (Ramsey et al., 2006). ThermoTRPs are 

activated by temperatures ranging from noxious cold to noxious heat and also 

respond to chemical activators and a number of chemical and environmental irritants 

summarised below (Table 1.2). ThermoTRPs (discussed further in Section 6.1) are 

members of the TRPV (Vanilloid), TRPM (Melastatin) and TRPA (Ankyrin) 
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subfamilies. Temperatures below 10°C or above 52°C are generally considered to be 

associated with the sensation of pain. 

 

TRP 

family 

TRP 

channel 

Temperature 

sensitivity 
Non-thermal agonists Locations found 

TRPA TRPA1 < 17°C 
Mustard oil, 

cinnamaldehyde, icilin 

Peripheral nervous 

system, hair cells 

TRPV TRPV1 > 43°C 

Capsaicin, various 

vanilloids compounds, 

acidic pH, nitric oxide, 

arachidonic acid 

metabolites 

Peripheral nervous 

system, brain, spinal 

cord, skin, tongue, 

bladder 

 TRPV2 > 52°C growth factors (mouse) 

Peripheral nervous 

system, brain, spinal 

cord 

 TRPV3 33-39°C 

Camphor, nitric oxide, 

arachidonic acid, 

unsaturated fatty acids 

Peripheral nervous 

system, skin 

 TRPV4 27-34°C 

Osmolarity, phorbol 

esters, low pH, citrate, 

endocannabinoids 

Peripheral nervous 

system, kidney, skin, 

inner ear, trachea, heart 

TRPM TRPM8 8-28°C 
Menthol, icilin, 

eucalyptol 

Peripheral nervous 

system, bladder, 

prostate 

 

Table 1.2 Properties of ThermoTRP channels implicated in somatosensory signal 

transduction. Table adapted from (Dhaka et al., 2006;Wu et al., 2010).  

 

1.4 Dorsal Root Ganglia 

The cell bodies of sensory neurons are located in the DRG located close to 

either side of the spinal cord or in the trigeminal ganglia at the base of the skull. The 

cell bodies of primary afferents can be characterised by the expression of 

neurofilament proteins (NF), CGRP, substance P, nitric oxide synthase and IB4 

binding sites. 
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1.5 Central Transduction of Sensory Information 

1.5.1 The Spinal Cord 

 The neuronal grey matter of the spinal cord is organised into ten cell layers 

known as laminae (Figure 1.2). This anatomical division, proposed by Rexed, is 

consistent between mammalian species (Rexed, 1952). The dorsal horn of the spinal 

cord comprises laminae I-VI and receives the majority of primary afferents. The 

ventral horn comprises laminae VII-X and contains motorneurons as well as a large 

number of interneurons. 

 

The majority of nociceptors synapse in the superficial laminae I and II with a 

smaller number of Aδ-nociceptors synapsing in lamina V (Millan, 1999). More 

specifically, Aδ-nociceptors project to laminae I and V and C-fibre nociceptors 

project predominantly to laminae I and II (Basbaum et al., 2009). The tactile Aβ-

fibres terminate in laminae III, IV and V (Millan, 1999).  

 

In the dorsal horn, primary afferents synapse with projection neurons and 

these neurons contribute to ascending pathways which transmit signals to higher 

centres. Projection neurons are classed as; nociceptive specific (NS) cells, which 

respond selectively to noxious stimuli, wide dynamic range neurons (WDR) neurons, 

which respond to a full range of stimulation or those which respond only to 

innocuous mechanical or temperature information (Willis & Coggeshall, 1991). NS 

cells are mainly found in laminae I-II. 

 

The majority of neurons in the dorsal horn of the spinal cord are interneurons 

(Willis & Coggeshall, 1991), which receive synaptic connections and synapse with 

other neurons in the dorsal horn. There are also glial cells known as 

oligodendrocytes, astrocytes and microglia. Although the normal role of glial cells in 

the CNS may be to provide support for neurons, following injury to the central 

nervous system, glial cells can become activated and release a range of chemical 

signals that play a key role in chronic pain states (Cao & Zhang, 2008). 
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Figure 1.2 Anatomical laminae of the spinal cord according to Rexed (Rexed, 1952).  

 

1.5.2 Ascending Somatosensory Pathways 

There are a number of ascending pathways transmitting somatosensory 

information from the spinal cord to supraspinal levels (Millan, 1999). The major 

ascending pathways for pain information are the spinothalamic tract and the 

spinoparabrachial pathway. Additional ascending pathways that can also contribute 

to pain signalling are the spinoreticulothalamic, spinomesencephalic and dorsal-

column medial lemniscal tracts, detailed in Table 1.3. 

 

 

 

 

 

 

 

Dorsal horn 

Ventral horn 
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Tract 
Laminae 

of origin 
Projections Possible roles 

Dorsal-column medial 

lemniscal 

III-V (most) 

VI 

VII 

Decussates in the 

medulla and projects 

to the  thalamus and 

the somatosensory 

cortex 

Fine touch, vibration 

and proprioception 

Spinothalamic I and III-VI 

Crosses the midline of 

the spinal cord and 

projects to the 

thalamus 

Perception and 

discriminative aspects 

of nociception 

Spinoparabrachial I and II (few) 

Projects to the 

parabrachial nucleus 

to the amygdala and 

the hypothalamus 

Emotional, autonomic 

and neuroendocrine 

aspects of nociception 

Spinoreticulothalamic VII and VIII 

Projects to the 

reticular formation of 

the brainstem and 

parabrachial internal 

nucleus 

Motor reaction, 

attention and 

motivational aspects 

of nociception 

Spinomesencephalic 
I-II, V/VI, 

VII/VIII and X 

Projects to the 

midbrain and 

periaqueductal grey 

Motor reaction, 

motivational, 

emotional and 

autonomic aspects of 

nociception 

 

Table 1.3 Overview of ascending somatosensory pathways pathways adapted from 

(Millan, 1999) and (Gauriau & Bernard, 2002). 

 

1.5.3 Ascending Nociceptive Pathways of Different Tissues 

Information about noxious stimuli applied to different tissue sources appears 

to be relayed preferentially through different ascending spinal pathways. Research 

has suggested that while acute cutaneous nociception is relayed predominantly 

through the spinothalamic tract, visceral nociception maybe predominantly through 

dorsal column pathways (Palecek et al., 2002) and acute bone nociception may 

especially involve the spinoparabrachial pathway (Williams & Ivanusic, 2008). 
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Evidence on the nociceptive pathways from bone was provided by a study using 

injections of Fluorogold retrograde tracer and Fos immunohistochemistry to identify 

the spinal dorsal horn neurons activated by acute noxious mechanical stimulation of 

bone (Williams & Ivanusic, 2008). 

 

1.5.4 The Pain Matrix 

 Neuroimaging has allowed investigations into the brain areas activated during 

pain signalling (Tracey & Mantyh, 2007). Because pain is a complex, subjective 

experience comprising sensory, cognitive and emotional components, many brain 

areas are activated during pain processing. Activation of ascending pathways to the 

brainstem and thalamus transmits pain signalling to various cortical and sub-cortical 

regions, regions known as „the pain matrix‟. The pain matrix represents brain regions 

involved in functions such as cognition, emotion, motivation as well as pain. The 

areas activated include, but are not restricted to, the anterior cingulate cortex (ACC), 

insula, frontal cortices, primary and secondary somatosensory cortices and the 

amygdala (Peyron et al., 2000). During each individual experience of pain a unique 

combination of these areas may be activated. The amygdala plays an important role 

in emotional responses, stress, depression and anxiety and is believed to be a critical 

component of the pain matrix (Neugebauer et al., 2004). Human imaging studies 

suggest that interactions between the prefrontal cortex and the amygdala provide 

emotional-affective modulation of cognitive function in pain (Neugebauer et al., 

2009). Activity in the amygdala is required for the inhibition of pain during stress, 

but can also facilitate pain behaviours during anxiety and depression (Neugebauer et 

al., 2004). 

  

1.5.5 Descending Pathways 

Descending pathways arise from a number of supraspinal sites including the 

midbrain periaqueductal grey (PAG) and rostral ventral medulla (RVM). Descending 

pathways can be facilitatory as well as inhibitory (D'Mello & Dickenson, 2008). The 

PAG is interconnected with the hypothalamus and the amygdala, and also receives 

spinomesencephalic input. The PAG projects to the RVM, which sends output to 

dorsal horn laminae to influence nociceptive processing (Heinricher et al., 2009). In 
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the RVM there are two classes of neuron that project to the spinal cord; ON-cells 

which facilitate pain signalling and OFF-cell, which inhibit pain signalling (Fields, 

2004). Descending inputs to the superficial dorsal horn predominantly involve the 

neurotransmitters serotonin (5-HT) and noradrenaline (Millan, 2002). The actions of 

neurotransmitters released into the dorsal horn of the spinal cord will be detailed in 

the following section.  

 

The complex ascending and descending pathways and „the pain matrix‟ 

highlight the integrative nature of pain signalling. The ascending and descending 

pain pathways also display extensive plasticity, which plays a major role in chronic 

pain states. 

 

 

Figure 1.3 Schematic outline of the principle pathways involved in pain processing. 

Adapted from (Basbaum et al., 2009). Nociceptors convey noxious signals to the 

dorsal horn of the spinal cord. Projection neurons transmit information to the cortex.  
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1.6 Neurotransmitters and Peptides Involved in Pain Signalling 

Intense mechanical, thermal or chemical stimuli are detected at the peripheral 

terminals of primary afferents and trigger action potentials that result in the release of 

a variety of neurotransmitters and neuropeptides. These neurotransmitters and 

neuropeptides act via postsynaptic receptors on dorsal horn neurons. Excitatory 

amino acids and several peptides have been implicated in synaptic transmission from 

nociceptors.  

 

1.6.1 Neuropeptides 

Substance P is a neuropeptide which may be co-released with glutamate from 

a major population of unmyelinated peptidergic neurons. Substance P acts on G 

protein-coupled receptors of the neurokinin (NK) group, which include subtypes 

NK1-3, and shows strong selectivity for the NK1 receptor (Quartara & Maggi, 1997). 

In lamina I, NK1 receptors are expressed over the soma and dendrites of large 

neurons whose dendrites radiate in lamina I only. Occasional NK1-positive somata 

are placed in lamina II, with dendrites that enter lamina I. In laminae III-IV NK1 

receptor expressing neurones have a group of ascending dendrites that cross lamina 

II and then branch extensively in lamina I. The majority of NK1-positive neurons 

have rostrally projecting axons that project to the lateral PB nucleus and lateral 

reticular formation (Todd et al., 2000).  

 

It has been shown that selective ablation of lamina I/II NK-1 receptor 

expressing neurones with a substance P-Saporin conjugate reduced pain sensitivity 

after injury by reducing the excitability of deep dorsal horn neurons (Nichols et al., 

1999). A later study showed that this effect was through removal of the influence of 

NK1-expressing neurons which activate descending facilitatory pathways from the 

brainstem to the dorsal horn (Suzuki et al., 2002). This study also showed that NK1-

expressing cells activate descending inhibitory pathways but to a lesser extent.  

 

NK1 receptors are also present in a number of brain regions involved in the 

processing of nociception and supraspinal administration of substance P can produce 

analgesia. A study showed that substance P suppresses GABAergic transmission 
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onto identified PAG-RVM projection neurons by driving action potential-dependent 

activation of group I mGluRs and retrograde endocannabinoid signalling (Drew et 

al., 2009). 

 

 Calcitonin gene-related peptide (CGRP) is another neuropeptide and CGRP-

positive cells often also express substance P and these two compounds can be co-

released (Gibson et al., 1984;Woolf & Wiesenfeld-Hallin, 1986). As well as acting 

on its own G protein-coupled receptors, CGRP modulates the effect of substance P 

by inhibiting substance P endopeptidase and therefore potentiating the effects of 

substance P (Le Greves et al., 1985).  

 

Galanin is a neuropeptide normally expressed in primary afferents and 

interneurons. Galanin-positive neurons are found in DRG and also contain substance 

P and CGRP (Ju et al., 1987). Galanin-positive neurons are mainly localized in 

lamina II where it coexists with GABA, enkephalin and neuropeptide Y (Simmons et 

al., 1995;Zhang et al., 1995). Three subtypes of galanin receptors have been 

identified: GalR1, GalR2 and GalR3, these are G protein-coupled receptors. GalR1 is 

the prominent receptor in the dorsal horn (Brumovsky et al., 2006).  

 

Galanin has both facilitatory and inhibitory effects on nociception, observed 

after intrathecal administration of galanin at low and high doses, respectively. This 

inhibitory effect is in part due to postsynaptic blockade of the excitatory effects of 

substance P and CGRP (Xu et al., 1990;Hua et al., 2005). Galanin may also reduce 

substance P release (Hua et al., 2005). Under normal conditions galanin plays a small 

antinociceptive role (Liu & Hokfelt, 2002;Xu et al., 2000) but this role increases 

after nerve injury. Galanin is upregulated following peripheral nerve injury (Nahin et 

al., 1994) and it was shown in behavioural studies that reducing the action of galanin 

leads to increased neuropathic pain behaviours (Verge et al., 1993;Ji et al., 1994). 

 

1.6.2 Glutamate  

Glutamate is an excitatory amino acid and is the major excitatory 

neurotransmitter in the dorsal horn. Glutamate is released from primary afferents and 
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interneurons onto second order dorsal horn neurons and also from interneurons. 

Glutamate acts on ionotropic glutamate receptors of the amino-3-hydroxy-5-methyl-

4-isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA) and kainate 

subtypes, and also acts on several metabotropic glutamate receptors (Table 1.4). 

These glutamate receptors are expressed at all levels of the pain pathway; sensory 

neurons, DRG, spinal cord and brain regions associated with nociception. Most 

glutamate-mediated excitatory postsynaptic potentials (EPSPs) are composed of a 

fast AMPA receptor-mediated component that depolarises the cell and a slower 

NMDA receptor-mediated component. The depolarising effects of AMPA receptor 

activation and NMDA receptor function in nociceptive pathways contribute to the 

establishment and maintenance of chronic pain states (Millan, 1999). 

 

AMPA Receptors 

AMPA-type glutamate receptors are tetramers composed of a combination of 

four types of subunit (GluR1-4) (Hollmann & Heinemann, 1994). The AMPA 

receptor subunits are subject to alternative splicing and RNA editing (Seeburg & 

Hartner, 2003). The subunit combination, RNA editing and splice variant expression 

determine the channel‟s permeability to Ca
2+

 and other cations such as Na
+
 and K

+ 

(Hollmann et al., 1991;Sommer et al., 1990;Sommer et al., 1991). GluR1 and GluR3 

subunit incorporation into AMPA receptors increases Ca
2+

 permeability, whereas 

GluR2 incorporation into AMPA receptors strongly reduces permeability to Ca
2+

 

(Burnashev et al., 1992). Synapses in the superficial dorsal horn generally contain 

GluR2, in combination with either GluR1 and GluR3 subunits or both (Polgar et al., 

2008). AMPARs are necessary for synaptic plasticity in nociceptive processing 

(Section 1.7). 

 

NMDA Receptors 

NMDA-type glutamate receptors are tetrameric, made up of two obligatory 

NR1 subunits and two regulatory subunits that can be NR2A-D or NR3A-B to form a 

non-selective cation-permeable channel (Paoletti & Neyton, 2007). The subunit 

composition determines the pharmacological and physiological properties of 

NMDARs (Cull-Candy & Leszkiewicz, 2004). NMDA receptor subunits contain a 
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long extracellular N-terminal domain, 3 transmembrane domains, a re-entrant pore 

loop and an intracellular C-terminal domain (Mayer, 2005). NR1/NR2-containing 

NMDA receptors are normally blocked by Mg
2+

 ions and require depolarization, 

glutamate and the co-agonist glycine (Johnson & Ascher, 1987) or D-serine (Mothet 

et al., 2000) acting on the receptor for activation. The co-agonist binds to the NR1 

subunit (Lynch et al., 1994), however the NR2 subunit determines the binding and 

potency of co-agonist. The extracellular amino terminal domain of the NR2 subunits 

may influence the pharmacological and kinetic properties of the NMDA receptor, 

including agonist potency, deactivation time course, probability of opening and mean 

open and shut duration (Yuan et al., 2009). The C-termini of NR1 and NR2 subunits 

interact with several scaffolding proteins and are subject to phosphorylation and, 

because of these properties, are involved in the regulation of receptor trafficking and 

function (Rebola et al., 2010). NMDA receptor activation importantly results in the 

influx of Ca
2+

 into neurons, which activates downstream signalling molecules known 

to promote synaptic plasticity (Section 1.73). The most common NMDA complexes 

in the dorsal horn of the spinal cord contain NR1 in combination with NR2A/B (Mi 

et al., 2004;Nagy et al., 2004;Petralia et al., 1994). 

 

Kainate Receptors 

 Kainate-type glutamate receptors are tetramers, which can be homo- or 

heteromeric receptors made up of various combinations of 5 subunits, known as 

GluR5-7 and KA1-2 (Stawski et al., 2010). Kainate receptors are present at 

presynaptic neurons and postsynaptic interneurons. Kainate receptors have been 

implicated in the control of inhibitory neurotransmission by modulating the release 

of the inhibitory neurotransmitter GABA (Bleakman et al., 2006). 

 

Metabotropic Glutamate Receptors 

 Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors 

that are widely distributed throughout the central nervous system and play an 

important role in modulating cell excitability and synaptic transmission via second 

messenger signalling pathways. There are 8 known subtypes; mGluRs 1-8, which are 

divided into groups I-III based on the receptors‟ sequence homology, pharmacology 
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and coupling to second messengers. Group I includes mGluR 1 and 5, group II 

mGluRs 2 and 3 and group III mGluRs 4, 6, 7 and 8 (Bleakman et al., 2006).  

 

Group I mGlu receptors are often localised postsynaptically and activate 

signalling pathways such as stimulation of phospholipase C, possibly adenylyl 

cyclase and phosphorylation of MAP kinase. Activation of Group I mGlu receptors 

often leads to cell depolarisation and increased neuronal excitability. This 

modulation of neuronal excitability results from modulation of a number of ion 

channels for example, group I mGlu receptors are known to increase the activity of 

NMDA receptors (Niswender & Conn, 2010). Group I mGlu receptors also play 

important roles in induction of long-lasting forms of synaptic plasticity at 

glutamatergic synapses. Group II mGlu receptors are located pre- and 

postsynaptically and Group III mGlu receptors are predominantly localised 

presynaptically. Both Group II and III mGlu receptors activate signalling pathways 

such as inhibition of adenylyl cyclase, activation of K
+
 channels and inhibition of 

Ca
2+

 channels. Activation of Group I and Group II mGlu receptors may inhibit 

neurotransmitter release at synapses (Niswender & Conn, 2010). 
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Receptor Structure 
Expression in the spinal 

cord 

Ionotropic AMPA 

 

Homo- or heterotetrameric 

comprised of GluR1-4 

Heavily expressed in 

superficial laminae. 

Predominantly expressed 

postsynaptically. 

Ionotropic NMDA 

 

Heterotetrameric comprised of 

NR1, NR2A-D and NR3A-B 

Heavily expressed in 

superficial laminae. 

Predominantly expressed 

postsynaptically. 

Ionotropic Kainate 

 

Homo- or heterotetrameric 

comprised of GluR5-7, KA1-2 
Expressed pre- and cord. 

Metabotropic Glutamate 

 
mGlu1-8 

Expressed pre- and 

postsynaptically in the dorsal 

horn of the spinal cord. 

 

Table 1.4 Structure and expression of glutamate receptors. 

 

1.6.3 Serotonin 

Descending serotonergic pathways can facilitate spinal nociceptive 

transmission. The medulla, including the RVM and reticular formation, is the major 

output zone for descending serotonergic pathways originating in the Raphe nuclei. 

Serotonin (5-hydroxytryptamine, 5-HT) has several G protein-coupled receptor 

subtypes and one ionotropic receptor (5-HT3R). There is evidence that serotonin 

facilitates persistent pain via activation of the 5-HT3R in particular (Suzuki et al., 

2004). This may be due to an increased descending serotonergic drive from higher 

centres. In addition, serotonin released from activated platelets and enterochromaffin 

cells may contribute to facilitation of nociceptors. As mentioned above, a study 

showed that selective ablation of lamina I/II NK1 receptor-expressing neurones 

reduced the excitability of deep dorsal horn neurons (Nichols et al., 1999). This 

effect was mimicked by administration of a selective 5-HT3R antagonist (Suzuki et 

al., 2002). Descending serotonergic tracts can also contribute to inhibitory influences 
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in the dorsal horn by means of other 5-HT receptor subtypes (el Yassir & Fleetwood-

Walker, 1990).  postsynaptically in the dorsal horn of the spinal 

 

1.6.4 Noradrenaline 

Descending noradrenergic pathways exert a strong influence over spinal 

nociceptive transmission that is primarily inhibitory (Millan, 2002). Descending 

inhibition predominantly involves the release of noradrenaline from brainstem nuclei 

such as the RVM and locus coerulus. Noradrenaline acts in part at presynaptic α2-

adrenoreceptors to inhibit neurotransmitter release from primary afferents and 

thereby reduce the firing of projection neurons in the dorsal horn.  Noradrenaline 

also acts at postsynaptic α2-adrenoreceptors to modulate pain signalling (Pertovaara, 

2006). Noradrenaline is also thought to act on α1-adrenoreceptors present on 

inhibitory (GABAergic) interneurons, which leads to increased GABA release and 

enhances inhibition  (Gassner et al., 2009).  

 

1.6.5 Gamma-Amino-Butyric Acid (GABA) and Glycine 

Gamma-amino-butyric acid (GABA) is the main inhibitory neurotransmitter 

found throughout the nervous system (Dickenson et al., 1997). A proportion of 

GABAergic cells contain the co-transmitter glycine (Todd & Sullivan, 1990). In the 

spinal cord GABA and glycine are concentrated in local interneurones, which exert 

tonic inhibitory effects on excitatory dorsal horn inputs (Takazawa & MacDermott, 

2010). Some important GABAergic neurons originate in the RVM and PAG and 

form the descending inhibitory pathways mentioned previously (Section 1.1.5.5) 

(Millan, 2002).  

 

GABA acts on receptors, which are expressed on neurons and glial cells in 

the superficial dorsal horn and in brain areas important for pain signalling. GABA 

acts on GABAA and GABAB receptors. GABAA receptors are ionotropic and GABAB 

receptors are metabotropic (Gwak & Hulsebosch, 2011). Activation of GABAA 

receptors allows Cl
-
 ions to flow and generally leads to cell hyperpolarisation. 

Activation of GABAB receptors causes a decrease in Ca
2+

 and an increase in K
+ 

currents and this also leads to cell hyperpolarisation. This hyperpolarisation will 
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contribute to decreasing neurotransmitter release from the hyperpolarised 

postsynaptic cell (Gwak & Hulsebosch, 2011). Glycine receptors are permeable to 

Cl
-
 ions therefore also contribute to the hyperpolarisation of the postsynaptic cell. 

 

GABA and glycine play an important role in the modulation of nociceptive 

information in the spinal cord, particularly during chronic pain states. During chronic 

inflammatory and neuropathic pain there is reduced GABAergic and/or glycinergic 

inhibition in the spinal cord (Sivilotti & Woolf, 1994). During neuropathic pain, 

GABAA  (and possibly glycine) receptor-mediated inhibition is reduced and this 

might be partly due to a shift in the neuronal chloride gradient (Coull et al., 2005). 

Following nerve injury degeneration of GABAergic interneurons, altered storage 

and/or release of GABA or altered GABAA receptor subunit expression have also 

been suggested to contribute to the reduction in inhibitory GABAergic tone. 

However, these mechanisms have been challenged by other studies and the precise 

mechanisms are still under debate (Munro et al., 2009). 

 

1.6.6 Neurotrophins 

Nerve Growth Factor (NGF), Brain-derived Neurotrophic Factor (BDNF), 

Neurotrophin-3 and Neurotrophin-4/5 are members of the neurotrophin family of 

signalling molecules (Bibel & Barde, 2000). The neurotrophins are well-known for 

their major role in development in regulating survival and differentiation of neuronal 

populations. Later in life, neurotrophins continue to have a major role by influencing 

ion channel activity, neurotransmitter release and axonal pathfinding. NGF 

preferentially binds to TrkA receptors, BDNF preferentially binds to TrkB and NT-3 

to Trk-C and all neurotrophins bind to the p75 low affinity neurotrophin receptor. 

Neurotrophins are synthesised as high-molecular weight precursors (pro-

neurotrophins) and interestingly the precursor form of BDNF (Pro-BDNF) is 

released and preferentially activates the p75 receptor (Lu, 2003). 

 

BDNF is a major regulator of synaptic transmission and plasticity. BDNF 

action at TrkB, initiates intracellular signalling cascades that lead to transcriptional 

changes. In this way, BDNF contributes to synaptic plasticity and regulation of 
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neuronal excitability in nociception (Ren & Dubner, 2007). In the dorsal horn, 

activation of TrkB receptors by BDNF contributes to hyperalgesia associated with 

peripheral inflammation (Woolf & Salter, 2000). An early consequence of peripheral 

nerve injury is the activation of spinal microglia, which leads to an increase in BDNF 

release. BDNF influences the release of GABA from interneurones which leads to 

the activation of GABAB receptors located on the terminals of sensory neurones. 

This decreases sensory neuron transmission in the dorsal horn (Pezet et al., 2002). 

However BDNF also acts in GABA-receptive neurons to decrease expression of the 

KCC2 transporter, which plays an important role normally in establishing that the 

chloride ion gradient is inward and consequently that GABAA and glycine receptor 

activation causes hyperpolarisation (Coull et al., 2005). With reduced KCC2 activity 

GABA and glycine responses lose their inhibitory impact and may even be 

excitatory. A recent further study showed that BDNF drives the changes in excitatory 

synaptic transmission in the rat dorsal horn that follow sciatic nerve injury, where 

there is an increase in drive to excitatory neurons and a decrease in drive to 

inhibitory neurons (Lu et al., 2009). 

 

1.7 Consequences of Tissue Damage 

After an injury, sensitization of the nociceptive pathways may occur which is 

reflected in alterations in signs and symptoms of pain (Jensen & Baron, 2003). Thus, 

there may be spontaneous pain (pain experienced in the absence of any obvious 

peripheral stimulus), hyperalgesia (increased responsiveness to noxious stimuli) and 

allodynia (pain in response to normally innocuous stimuli). Pain hypersensitivity 

occurs in chronic pain states, including neuropathic, inflammatory and CIBP pain. 

There are two major mechanisms that contribute to pain hypersensitivity: peripheral 

and central sensitisation (Ji et al., 2003). Such facilitation of nociceptive processing 

occurs after repeated or intense noxious stimuli and is demonstrated by a lowering of 

activation thresholds and amplification of responses to subsequent inputs. Peripheral 

and central sensitisation initially act as a protective mechanism, to prevent further 

injury, but when peripheral and central sensitisation outlast the initial injury the pain 

can become chronic and debilitating.  
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1.7.1 Peripheral Sensitisation 

Peripheral sensitisation refers to the reduction in nociceptor activation 

threshold and increased magnitude of responses evoked in nociceptors (Latremoliere 

& Woolf, 2009). This occurs in response to tissue damage, inflammation or nerve 

injury when inflammatory mediators known as the „inflammatory soup‟ are released, 

which includes H
+
, K

+
, ATP, arachidonic acid and 5-HT that act on receptors and ion 

channels on nociceptor peripheral terminals to promote nociceptor activation. This 

inflammatory soup also includes other agents such as prostaglandin E2 (PGE2), 

bradykinin (BK) and NGF (Julius & Basbaum, 2001). These mediators act on 

receptors to activate signalling pathways leading to changes in transduction proteins 

by post-translational processing and altered gene expression, and thereby modifying 

nociceptor threshold, excitability and transduction properties. Consequently, 

nociceptors are no longer only activated by noxious stimuli and there is an increase 

in release of neurotransmitters, neuropeptides, ATP and BDNF into the dorsal horn 

of the spinal cord, as well as chemokines and cytokines from immune system cells. 

In nerve injury, microglial cells are activated, and contribute to releasing such 

mediators (Biggs et al., 2010). Following on from peripheral sensitisation, the 

increased excitability and spontaneous activity of primary afferents is thought to 

trigger central sensitisation. 

 

1.7.2 Central Sensitisation 

Central sensitisation was first described by Woolf in 1983 (Woolf, 1983) and 

refers to enhanced excitability of dorsal horn neurons, such that they may fire 

spontaneously or in an exaggerated manner in response to primary afferent input and 

there is enlargement of their receptive field size (Cook et al., 1987).  

 

Multiple cellular processes lead to central sensitisation, which is a diffuse 

heterosynaptic phenomenon, including increased excitatory mechanisms such as 

enhancement of the activation of NMDA and AMPA receptors and changes in their 

trafficking to or from the membrane (Latremoliere & Woolf, 2009). Decreased 

inhibitory mechanisms also contribute, such as reduced release or activity of GABA 

and glycine (Latremoliere & Woolf, 2009) and this may reveal previously suppressed 
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inputs from „silent nociceptors‟ (Torsney & MacDermott, 2006). In central 

sensitisation there may be recruitment of other neurons, not only nociceptors, to pain 

pathways. Synapses made by Aβ-fibres may be affected leading to Aβ fibre-derived 

pain. There are several other types of synaptic plasticity in the spinal cord, such as 

wind-up. Wind-up is a reversible synaptic plasticity characterised by a progressive 

increase in action potential output from dorsal horn neurons during a train of 

repeated low-frequency C-fibre or nociceptor stimuli (Mendell & Wall, 1965). 

Frequencies of between 0.5Hz and 2Hz are required for the induction of wind-up. It 

has been shown that NMDA receptor activation is required for windup to occur but 

not for the baseline activity of dorsal horn neurons (Davies & Lodge, 1987;Woolf & 

Thompson, 1991). AMPA receptors are also involved in the induction and 

maintenance of windup (You et al., 2004). Homosynaptic plasticity analogous to 

classical long-term potentiation (LTP), as first described in the hippocampus, has 

also been reported in the superficial dorsal horn (Sandkuhler & Liu, 1998). The 

direction of synaptic plasticity (LTP or long-term depotentiation) may be determined 

by the NMDA receptor subunit composition and levels of intracellular Ca
2+

 (Liu et 

al., 2004). Central sensitisation shares some characteristics in common with LTP but 

there are clearly distinguishing aspects (Ji et al., 2003). Although classical LTP 

requires high frequency stimulation that may not be readily observed in nociceptive 

afferents, recent findings indicate that some subgroups of rostrally projecting 

superficial dorsal horn cells may exhibit LTP at much lower input frequencies (Ikeda 

et al., 2006)  

 

1.7.3 Mechanisms of Central Sensitisation 

In normal nociceptive signalling, AMPA receptor activation sets the baseline 

depolarisation of dorsal horn neurons. Sustained depolarisation caused by repetitive 

or high-frequency stimulation of C-fibres leads to the activation of NMDA receptors. 

As mentioned previously, the activity of NMDA receptors requires depolarisation to 

release the Mg
2+

 block of the ion channel, and also the agonist glutamate and co-

agonist glycine or D-serine. It is the combination of these that allows the NMDA 

receptor to open and the flow of ions to enter the cell. Ca
2+

 ions are thought to make 

up a large proportion of the positive ions that flow into the cell upon opening of 
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NMDA receptors. Ca
2+

 can also enter via some AMPA receptors, voltage-dependent 

Ca
2+

 channels and be released from intracellular stores after activation of Ca
2+

- 

mobilising G protein-coupled receptors, such as mGlu receptors. Ca
2+

 can activate an 

array of pathways known to promote synaptic plasticity and this can lead to the 

increased responsiveness and activity of dorsal horn neurons.  

 

One of the major mechanisms for synaptic plasticity is through 

phosphorylation of AMPA and NMDA receptors. PKC, CaMKII, PKA, tyrosine 

kinases and ERK can phosphorylate these receptors (Ji et al., 2003). Intracellular 

pathways involving these molecules are triggered by activation of NMDA, mGlu, 

TrkB, NK1, CGRP and bradykinin B2 receptors. Phosphorylation of Kv4.2 channels 

by ERK produces a decrease in K
+
 currents and thereby increases general membrane 

excitability (Ji et al., 2003). Recruitment of AMPA receptors to the membrane leads 

to an increase AMPA and NMDA receptor mediated currents therefore boosting 

synaptic efficacy (Shi et al., 1999). These changes are generally short-lasting. Long-

lasting changes are dependent on transcriptional regulation. Activation of 

transcription factors, including cAMP response binding protein (CREB), by kinases, 

as mentioned above, also leads to modulation of gene expression (Latremoliere & 

Woolf, 2009). These types of changes can occur in response to both inflammation 

and peripheral nerve injury. A role of AMPA receptors in neuropathic pain has been 

demonstrated by intrathecal AMPA/kainate receptor antagonists which blocked 

thermal hyperalgesia and mechanical allodynia in the sciatic nerve constriction injury  

(CCI) model (Garry et al., 2003b). The role of NMDA receptors in central 

sensitisation will be discussed further in Chapter 5 (Section 5.1.3). 

 

1.7.4 Glial Activation 

Under certain conditions, including injury to the CNS, infection and 

peripheral damage, central glial cells can become activated (Mcmahon & Malcangio, 

2009). Activation of glial cells is one of the marked features of CIBP (Hald et al., 

2009;Medhurst et al., 2002;Schwei et al., 1999;Zhang et al., 2005a). Upon activation, 

glial cells exhibit many changes in morphology, protein expression and cell 

proliferation. Additionally, glial cells become more active in modulating neuronal 
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activity through release of pro-inflammatory cytokines and reactive oxygen and 

nitrogen species. There is now considerable evidence suggesting a link between glial 

cell activation and pain facilitation (Gosselin et al., 2010).  

 

Activated microglia exhibit an enlarged cell body, thickening of processes 

and increased expression of cell surface makers including β2 integrins CD11b and 

CD11c (recognised by the antibody OX-42), ionized calcium-binding adapter 

molecule 1 (IBA-1) and major histocompatibility complex (MHC) class II. Activated 

astrocytes show cell hypertrophy, increased expression of cell surface protein glial 

fibrillary acidic proteins (GFAP) and release of various neuromodulatory mediators 

(Gosselin et al., 2010).  

 

The time pattern of glial cell activation in nerve injury has been investigated. 

Following peripheral nerve injury it appears that microglia are activated quickly but 

this declines over time. Astrocytes are activated later but this persists beyond 

microglia activation (Hald et al., 2009). Microglial activation is thought to play a part 

in pain onset whereas long-lasting activation of astrocytes is thought to be 

responsible for the maintenance of central sensitisation.  

 

 A study using the CCI model of neuropathic pain, showed that BDNF 

released from microglia in lamina I attenuates inhibitory transmission by down 

regulating expression of the potassium chloride exporter protein (KCC2) (Coull et 

al., 2005). This normally maintains an inward gradient of Cl
-
 ions, ensuring that 

ligand-gated chloride channels such as GABAA and glycine receptors are inhibitory 

when activated but this effect is lost in chronic neuropathic pain. In lamina II, BDNF 

further acts to increase synaptic drive to excitatory neurons and reduce that to 

inhibitory neurons. This study suggests that, in this model of neuropathic pain, 

BDNF may be the key mediator of information transfer between microglia and dorsal 

horn neurons during the onset of central sensitisation (Biggs et al., 2010). 

 

 IL-1β is a pro-inflammatory cytokine involved in a variety of diseases with 

associated pain and is induced in astrocytes in models including CIBP (Baamonde et 
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al., 2007;Zhang et al., 2005a). IL-1β may be a messenger between astroglia and 

neurons through its modulation of the NR1 subunit of NMDA receptors. In a model 

of CIBP IL-1β has been shown to enhance NR1 subunit phosphorylation (Zhang et 

al., 2008a). IL-1β enhances NMDA receptor-mediated intracellular Ca
2+

 release 

(Viviani et al., 2003a). Astrocytes play a key role in maintaining normal 

synaptic excitability, as they take up glutamate and convert this to inert glutamine 

(Nakagawa & Kaneko, 2010). Glutamine is then transported back to presynaptic 

terminals where it is converted to glutamate to replenish the transmitter pool. Down-

regulation or functional deficiency of glial glutamate transporters may contribute to 

chronic pain (Nakagawa & Kaneko, 2010).  

 

1.7.5 The Sympathetic Nervous System 

The sympathetic nervous system is part of the autonomic nervous system 

which regulates the function of all innervated tissues and organs throughout the 

vertebrate body with the exception of the skeletal muscle fibres (Elenkov et al., 

2000). The activities of the autonomic nervous system are largely exempt from direct 

conscious control and the main function is to maintain homeostasis. The sympathetic 

nervous system originates in brainstem nuclei and most sympathetic preganglionic 

fibres terminate in ganglia on either side of the spinal column. From these ganglia 

postganglionic sympathetic fibres run to the associated tissue and release 

noradrenaline (Elenkov et al., 2000). The sympathetic nervous system is activated in 

response to any immune challenge and is responsible for the „fight or flight‟ 

response.  

 

It has been shown that neuropathic and inflammatory pain can be modulated 

by the sympathetic nervous system (Janig et al., 1996;Raja, 1995). In normal 

conditions, the sensory neurons in the DRG are not directly innervated by the 

sympathetic nervous system. McLachlan et al. were the first to describe sprouting of 

sympathetic fibres into the DRG after sciatic nerve transaction (Mclachlan et al., 

1993). This study reported basket-like structures formed by sympathetic fibres and 

suggested these neurons played a role in the abnormal discharge following peripheral 

nerve injury (Mclachlan et al., 1993). Sprouting of sympathetic nerve fibres has been 
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shown to occur in many animal pain models (Chung et al., 1993;Lee et al., 

1998;Pertin et al., 2007). In complex regional pain syndrome (CRPS), one 

mechanism that is thought to contribute to the maintenance or exacerbation of 

hypersensitivity is the sprouting of sympathetic nerve fibres. The release of 

noradrenaline from these sympathetic nerve fibres can directly activate nociceptors 

and reduced sympathetic input can attenuate the pain state (Janig & Baron, 2003).  

 

1.8 Endogenous Systems 

1.8.1 Endogenous Opioid System 

Nociceptive signals can be modulated within the dorsal horn by endogenous 

opioids such as endorphins, dynorphins, enkephalins and endomorphins (Millan, 

2002). Opioid receptors include delta (δ), mu (µ) and kappa (κ) opioid subtypes, 

which are present in the peripheral and central nervous system. These are G protein-

coupled receptors that are negatively coupled to adenylyl cyclase, increase K
+
 

currents and decrease Ca
2+

 currents leading to decreased membrane excitability 

(Millan, 2002). In addition, the nociceptin/OFQ receptor (NOP) is a G protein 

coupled-receptor activated by its endogenous ligand nociceptin/orphanin FQ 

(N/OFQ) (Meunier et al., 1995;Reinscheid et al., 1995). Activation of NOP similarly 

inhibits the formation of cyclic AMP, closes Ca
2+

 channels and opens K
+
 channels, 

so consequently reduces neuronal excitability and neurotransmitter release (Lambert, 

2008). The original study by Meunier et al. demonstrated that intracerebroventricular 

administration of N/OFQ produced hyperalgesia (Meunier et al., 1995). When 

delivered supraspinally N/OFQ reverses the effect of exogenous opioids (Heinricher 

et al., 1997;Pan et al., 2000;Zeilhofer & Calo, 2003). This anti-analgesic effect is 

thought to be act via the rostral ventromedial medulla (Pan et al., 2010;Zeilhofer & 

Calo, 2003). In contrast to these effects, spinal administration of N/OFQ produces an 

anti-nociceptive effect. It is thought that spinal N/OFQ produces anti-nociception by 

inhibiting neurotransmitter release at primary afferent terminals in the dorsal horn of 

the spinal cord (Lambert, 2008). 

 

Upon injury endogenous opioids are released and attenuate hyperalgesia. 

Levels of dynorphin have been shown to increase during peripheral inflammation 
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(Iadarola et al., 1988), neuropathic pain (Malan et al., 2000) and CIBP (Peters et al., 

2005). It is further known that leukocytes containing opioids migrate to the area of 

inflammation (Stein et al., 1990). 

 

The endogenous opioid system has been shown to play a role in masking 

early cancer pain in a mouse model of pancreatic cancer. Mantyh et al. demonstrated 

that mice in the early stages of cancer did not exhibit pain behaviours, however after 

administration of opioid receptor antagonists mice with early stage cancer exhibit 

significant pain behaviours (Sevcik et al., 2006). 

 

 Opioids, such as the µ receptor-selective agonist, morphine, are the most 

effective analgesics for the treatment of moderate to severe pain. At the dorsal horn 

of the spinal cord, it has been suggested that µ-opioid receptor agonists bring about 

analgesia by inhibiting neurotransmitter release from the central terminals of primary 

afferents and postsynaptic inhibition of dorsal horn neurons (Fields, 2007). Chronic 

or acute opioid treatment can paradoxically cause hyperalgesia, termed „opioid-

induced hyperalgesia‟ (Arner et al., 1988;Deconno et al., 1991) which occurs in 

parallel to opioid tolerance, that is the reduction of opioid analgesic potency. 

Preclinical studies have shown the development of opioid-induced hyperalgesia 

following the chronic administration of opioids (Gardell et al., 2006;Mao et al., 

1994). A range of mechanisms are thought to contribute to opioid-induced 

hyperalgesia including NMDA receptor activation, TRPV1 receptor activation and 

modulation of spinal input by descending pathways (Colvin & Fallon, 2010). Studies 

suggest that the 5-HT3 receptors may play a key role,  as the selective 5-HT3 receptor 

antagonist could prevent and reverse opioid-induced hyperalgesia and tolerance in 

mice (Liang et al., 2011). The role of opioid receptors in opioid-induced hyperalgesia 

is a contentious issue, with mixed evidence from studies. It has been suggested that 

that opioid receptors are not necessary for opioid-induced hyperalgesia, as opioid 

receptor triple knock-out mice lacking all three genes encoding opioid receptors (mu, 

delta and kappa) still develop opioid-induced hyperalgesia (Juni et al., 2007). 

Furthermore, the general opioid receptor antagonist Naltrexone did not prevent the 

development of opioid-induced hyperalgesia (van Dorp et al., 2009).  
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 Data concerning the effectiveness of opioids for neuropathic pain has 

generated intense debate. Neuropathic pain was thought to be relatively opioid-

resistant as opioids are not effective at tolerable doses in the majority of neuropathic 

pain patients (Woolf & Mannion, 1999). There is increasing evidence however to 

suggest that opioids do not lack efficacy in neuropathic pain (Eisenberg et al., 2006). 

Preclinical studies suggest that the efficacy of opioids in neuropathic pain is variable 

and seems to depend on several factors including type of injury, behavioural 

assessment used and route of administration (Dickenson & Suzuki, 2005).  

 

 Current treatment for CIBP patients follows the World Health Organisation‟s 

ladder approach for relief of cancer pain, which recommends opioids for treatment of 

moderate to severe cancer pain (for more detail see Chapter 4; Section 4.1). Opioid 

treatment of CIBP brings about many challenges including those detailed previously, 

such as opioid-induced hyperalgesia and tolerance, and severe compliance-limiting 

side-effects such as somnolence and mental confusion. 

 

1.8.2 Endogenous Cannabinoid System 

Endocannabinoids are endogenous lipid signalling molecules generated in the 

cell membrane from phospholipid precursors. Two well studied endocannabinoids 

are arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). 

Endocannabinoids bind and activate one or more cannabinoid receptor subtypes; 

CB1 and CB2, which are G protein-coupled receptors present in the peripheral and 

central nervous system. Endocannabinoids are involved in many different 

physiological and pathological functions including analgesia (Guindon & Hohmann, 

2009).  

 

CB1 receptors have been found on sensory neurons, interneurons and 

astrocytes. CB2 receptors are primarily found on cells of the immune system and 

were thought to exist in the peripheral nervous system only but have been shown in 

the central nervous system. The signalling mechanisms of cannabinoid receptors 

appear to have a range of consequences. It has been proposed that activation of 
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presynaptic CB1 receptors on primary afferents inhibits the release of 

neurotransmitters by decreasing Ca
2+

 conductance and increasing K
+
 conductance 

(Guindon & Hohmann, 2009).  

 

It appears that AEA and 2-AG under normal conditions suppress pain through 

a CB1-dependent mechanism. Studies have demonstrated that endocannabinoids act 

at the spinal level to modulate pain. Upregulation of cannabinoid receptors and of 

AEA and 2-AG is observed in the spinal cord following CCI. Studies have shown 

CB1 and CB2 receptors can modulate inflammatory nociception. The CCI and spinal 

nerve ligation (SNL) models of neuropathic pain have been used to show that 

inhibition of endocannabinoid removal processes produces antinociceptive effects 

through CB1 and CB2 mechanisms (Bridges et al., 2001;Herzberg et al., 1997).  

 

Synthetic cannabinoid receptor agonists targeted at CB1 and/or CB2 receptor 

show significant analgesic efficacy in acute and neuropathic pain. CB1 agonists have 

undesirable psychotropic side-effects that prevent their long term use as analgesics. 

CB2 agonists have been shown to act as analgesics in acute, chronic and neuropathic 

pain (Ibrahim et al., 2003). A recent study also showed that systemic administration 

of a CB2 agonist (AM1241) acutely, or for 7 days, significantly attenuated CIBP 

(Lozano-Ondoua et al., 2010). The mechanism of cannabinoid analgesia could 

involve glial cells, as a study demonstrated that a CB1/CB2 agonist and a CB2 

agonist prevent or reverse glial cell activation in the spinal cord in a model of 

neuropathic pain (Leichsenring et al., 2009).  

 

1.9 Cancer-Induced Bone Pain 

CIBP affects 75-95% of patients with metastatic or advanced-stage cancer 

(Mercadante & Arcuri, 1998;Portenoy et al., 1999). CIBP is a complex pain 

syndrome, in which patients suffer from constant background pain with movement-

related and spontaneous breakthrough pain components (Mercadante & Arcuri, 

1998;Portenoy et al., 1999). Background pain is often described as a dull ache or 

burning sensation which gets progressively more severe as the tumour grows 

(Mercadante, 1997). Breakthrough pain is an episode of extreme pain and is the most 
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difficult component of CIBP to treat (Mercadante & Arcuri, 1998;Portenoy et al., 

1999). The multi-component nature of this pain state makes it difficult to manage 

with analgesics and the current therapeutic regime can leave up to 45% of patients 

with inadequate pain control (de Wit et al., 2001b;Meuser et al., 2001b). This current 

regime for CIBP focuses on palliative radiotherapy and opioid analgesics 

complemented by non-steroidal anti-inflammatory drugs (NSAIDs) and 

bisphosphonates. Although background pain is usually controlled by opioids, 

breakthrough pain is more difficult to control due to the quick onset of breakthrough 

pain when compared to the onset of opioid-induced analgesia and the long duration 

of action of opioids compared to short-lived breakthrough pain (Delaney et al., 

2008). The nature of breakthrough pain, where there are short-lived peaks of pain 

over and above stable background pain, means that the opioid adverse effects are 

more likely to be problematic (Delaney et al., 2008). The doses of opioids that are 

required to control the breakthrough components of CIBP frequently result in 

unacceptable side effects, in particular, excess sedation and mental confusion. 

Chronic use of opioids results in severe side-effects including analgesic tolerance, 

somnolence, constipation and respiratory depression (Vanderah et al., 2000). By 

investigating the central mechanisms underlying CIBP it may be possible to develop 

novel, more effective, analgesics. The analgesic efficacy of the therapeutic 

candidates radiotherapy, gabapentin, duloxetine, S,S-reboxetine and CB 65 will be 

assessed in a preclinical CIBP model and discussed in Chapter 4. 

 

1.9.1 Animal Models of CIBP 

Focal models of CIBP have been developed based on site-specific tumours. 

These models allow examination of the pain associated with tumour progression 

without the overall cancer-related sickness that is brought about by metastatic 

models. A mouse model of bone cancer was developed by Schwei et al. where 

fibrosarcoma cells (NCTC 2472) were implanted directly into the intramedullary 

space of the femur (Schwei et al., 1999). Mouse models using different tumour cells 

and rat models have also been established to further investigate the mechanisms that 

drive CIBP (Medhurst et al., 2002;Urch et al., 2003b). The first rat model was 

developed by Medhurst et al. where MRMT-1 rat mammary gland carcinoma cells 
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were injected into the tibia (Medhurst et al., 2002). The injection of cancer cells 

directly into bone allows the location of the tumour to be carefully controlled and 

site-specific behavioural analysis can be carried out. Neurochemical and 

neuroanatomical changes that occur at the tumour site, in the DRG and within the 

spinal cord can all be analyzed.  

 

Animal models of CIBP display pain behaviours such as allodynia and 

hyperalgesia and have been validated to show that NSAIDs and opioids have an 

analgesic effect similar to that in humans. Furthermore, pain-related behaviours 

increase as the tumour develops and correlate with tumour-induced bone destruction, 

which mirrors the clinical situation. Animal studies indicate that treatments may 

differentially modify specific components of pain behaviour. One challenge is to 

ascertain which interventional therapies are most effective for different components 

of CIBP. Animal studies have shown that CIBP appears to be relatively resistant to 

opioid analgesia with 10-fold higher doses of morphine required compared to chronic 

inflammatory pain (Luger et al., 2002). This need for an increased dose may be due 

to down-regulation of µ opioid receptors in the DRG of CIBP animals compared 

with inflammatory pain models, which show an increase in µ opioid receptors 

(Yamamoto et al., 2008). This resistance to morphine treatment in CIBP highlights 

the importance of alternative analgesics for CIBP treatment. In addition it was shown 

that sustained morphine treatment may actually accelerate bone destruction when 

compared to vehicle treated animals (King et al., 2007).  

 

Spinally-mediated reflex responses to noxious stimuli are often used to assess 

animal pain behaviours. These include von Frey filaments to measure mechanical 

allodynia or thermal plate to measure thermal sensitivity. Spontaneous pain-like 

behaviours can also be observed in CIBP animals with spontaneous flicking of the 

affected limb. In the clinical setting, spontaneous pain is a major symptom in CIBP 

patients. In addition, abnormal ambulatory movement can be observed. Models of 

limb bone cancer develop plantar hypersensitivity, this may occur due to the spinal 

sensitization across a wide area of the spinal cord, and not just the segments in which 

the central terminals of the afferent fibres innervating the cancer bearing tissues are 
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located.  However, peripheral mechanisms may be involved because the DRG that 

contain the cell bodies of afferents from the femoral bone also, to a limited extent, 

contain neurons which make up part of the sciatic nerve.  

 

1.9.2 Affective Component of CIBP 

Anxiety and depression are common in patients suffering from cancer pain 

(Zimmerman et al., 1996). Relatively few animal studies have investigated how 

prolonged pain influences affective behaviours. However, it has been shown that 

anxiety-like behaviour in the open field is increased in a model of HIV-associated 

peripheral neuropathic pain (Wallace et al., 2007). Anxiety-like behaviour on the 

elevated plus maze has been shown to increase in a chronic constriction injury model 

of neuropathic pain but not in a partial nerve ligation model of neuropathic pain 

(Roeska et al., 2008). CIBP is often associated with anxiety and depression. 

However, no animal study has analysed affective behaviours in CIBP.  

 

1.10 Mechanisms of CIBP 

The molecular mechanisms responsible for cancer-induced bone pain are 

being elucidated. Studies using animal models of CIBP have shown that CIBP is 

mechanistically distinct compared with neuropathic and inflammatory pain states 

with both neuropathic and inflammatory components (Honore et al., 2000).  

 

Normal bone undergoes a continuous remodelling cycle of resorption and 

formation. Osteoclasts are remodelling cells responsible for bone resorption, whereas 

osteoblasts are support cells responsible for bone formation. In normal bone there is 

a balance between osteoclast and osteoblast function. This balance is disrupted when 

tumour cells invade the bone microenvironment. The process of bone metastasis 

occurs when primary tumour cells invade the surrounding normal tissue by 

producing proteolytic enzymes, penetrate the walls of small blood vessels and enter 

the circulation. Cancer cells enter the wide-channelled sinusoids of the bone marrow 

cavity where they become bone metastases. At this site they stimulate the activity of 

osteoclasts or osteoblasts (Mundy, 2002).  
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There is a spectrum of properties in bone metastases where tumours can 

range from mostly osteoblastic (bone-forming) or osteolytic (destructive). However, 

evidence indicates that both resorption and formation are activated in most bone 

metastases (Mundy, 2002). Microfractures resulting from decreased bone density 

and/or disrupted bone architecture due to increased osteoclastic bone resorption have 

been implicated in bone pain (Mercadante, 1997).  

  

Primary afferent sensory neurons innervate mineralised bone, bone marrow 

and the periosteum (the thin fibrous outer covering of the bone highly innervated by 

sensory fibres). Peptidergic sensory nerves (containing substance P and CGRP) and 

sympathetic neurons (demonstrated by immunoreactivity for tyrosine hydroxylase, 

TH, a marker of noradrenergic fibres) innervate the bone marrow (Tabarowski et al., 

1996). A recent study indicated that peptidergic C-fibres, but not the non-peptidergic 

C-fibres, and Aβ/Aδ fibres are the major fibre types signalling pain from the bone 

(Jimenez-Andrade et al., 2010). The most dense innervation is to the periosteum 

(Tabarowski et al., 1996). In addition to generating pain through microfractures of 

the bone, tumour expansion in the bone marrow cavity can stretch the periosteum 

and activate sensory neurons in CIBP.  

 

A component of CIBP may be due to tumour-induced injury to primary 

afferent fibres. Peters et al. used a mouse model of CIBP with green fluorescent 

protein (GFP)-expressing tumour cells injected into the femur. This study showed 

that when tumour cells invade the bone they contact, injure then destroy primary 

afferents which innervate the bone. Activating transcription factor-3 (ATF3) and 

galanin are upregulated in these primary afferents. Sensory fibres were observed at 

the leading edge of the tumour however towards the centre of the tumour these fibres 

become fragmented then undetectable (Peters et al., 2005).  

 

Sensitisation of nociceptors by production of nociceptive substances in cancer 

cells and inflammatory cells can also contribute to CIBP. Schwei et al. showed 

sensitisation of primary afferent neurons with an increase in c-fos expression in 

lamina I and an internalization of substance P receptors in ipsilateral spinal cord after 



 37 

non-noxious palpatation of the tumour-bearing limb (Schwei et al., 1999). These 

nociceptive substances include protons, bradykinin, substance P, CGRP, endothelin, 

histamine, NGF, VEGF, prostaglandins, glutamate and ATP. In fact, osteoclasts, 

metastatic cancer cells and inflammatory cells all produce protons and therefore 

make the bone microenvironment acidic. Local acidification has been shown to 

contribute to CIBP as protons released by osteoclasts, inflammatory cells, immune 

cells and tumour cells activate TRPV1 and ASIC in afferents (Yoneda et al., 2011). 

These signals then activate intracellular signalling pathways and transcription factors 

(Yoneda et al., 2011). TRPV1 is expressed in CGRP-positive sensory neurons (likely 

nociceptors) that innervate the bone (Wakabayashi et al., 2005). Expression of 

TRPV1 in DRG neurons and TRPV1/CGRP receptor colocalization have been 

shown to increase ipsilaterally in a mouse model of CIBP (Niiyama et al., 2007). 

ASIC3 is co-expressed with CGRP in the sensory neurons innervating the periosteum 

of bone. A study further found that mRNA expression of ASIC1a, ASIC1b and 

ASIC3 in DRG was up-regulated ipsilateral to CIBP (Nagae et al., 2007). 

 

In addition to sensitisation of primary afferents, it has been shown that dorsal 

horn neurons become hyperexcitable in a rat model of CIBP, which is consistent with 

the establishment of central sensitisation. The firing rate of dorsal horn neurons in 

response to mechanical, thermal and electrical sensory stimuli was increased and the 

dorsal horn neurons displayed enlarged receptive fields (Urch et al., 2003b).  

 

A recent study showed that increased excitability of dorsal horn neurons in 

lamina II exists across a wide area of lumbar segments, not just the segment 

innervating the cancer-bearing limb (Yanagisawa et al., 2010). This study used 

patch-clamp recording in spinal cord slices attached to DRG to show that there is an 

increase in the amplitude of dorsal horn excitatory post-synaptic currents and that 

this is mediated through C-fibres and Aδ- fibre inputs but not through Aβ- fibres as 

shown in other pain states (Yanagisawa et al., 2010). These results support the idea 

that CIBP is a unique pain state with a distinct profile of synaptic changes.  
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1.10.1 Glial Cell Involvement in CIBP 

Glial cell activation in the spinal cord appears to play a critical role in the 

development and/or maintenance of neuropathic pain (Scholz & Woolf, 2007). As 

mentioned previously, in neuropathic and inflammatory pain states microglia appear 

to be involved only in the induction stage (Romero-Sandoval et al., 2008;Schreiber et 

al., 2008). In CIBP the role of microglia is controversial with different reports 

indicating involvement in induction, induction and maintenance or neither (Hald et 

al., 2009;Lan et al., 2010;Zhang et al., 2005a). This is discussed further in Chapter 5 

(Section 5.1.4). Lan et al. suggest that microglia may be involved in the induction 

and maintenance of behavioural hypersensitivity in CIBP (Lan et al., 2010).  

Astrocytes may also be involved in CIBP (Schwei et al., 1999). A study by Hald et 

al. showed that in a preclinical model of CIBP, astrocyte activation spread from the 

spinal cord segment receiving innervation from the inoculated bone into caudal and 

rostral spinal cord segments. Hypersensitivity is also shown to spread to distant 

spinal cord segments, therefore it is possible that both glial cell activation and 

hypersensitivity may be linked (Hald et al., 2009). 

 

Several pro-inflammatory signals have been proposed to play a role in CIBP, 

including IL-1β, TNF-α, IL-6 and INF-β. Such pro-inflammatory cytokines can be 

released via activation of the microglial transmembrane receptor TLR4. Intrathecal 

administration of TLR4 small interfering RNA (siRNA) in CIBP rats reduced the 

expression of spinal TLR4 and significantly decreased behavioural hypersensitivity 

and expression of spinal microglial markers (Lan et al., 2010). In this model of CIBP 

it has also been shown that there is increased phosphorylation of p38 and increased 

production of IL-1β and TNF-α. which can be prevented by siRNA against the TLR4 

receptor, suggesting that the glial response in CIBP is dependent on TLR4-dependent 

phosphorylation of p38 (Liu et al., 2010).  

 

1.10.2 NMDA Receptor Involvement in CIBP 

NMDA receptors have been implicated in CIBP. A study by Zhang et al. 

suggested that spinal IL-1β enhances NR1 phosphorylation to facilitate bone cancer 

pain (Zhang et al., 2008a). Another study suggested that there is an increase in the 
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expression of the NR2B subunit, as seen in neuropathic pain (Gu et al., 2010a). The 

role that NMDA receptors play in CIBP will be discussed further in Chapter 5. 

 

1.12 Aim 

This study uses a rat model of CIBP modified from Medhurst et al. 

(Medhurst et al., 2002). The primary aim of this study was to define the molecular 

basis for sensitisation in CIBP, through investigating the role of NMDA receptors 

and the involvement of TRP ion channels. In particular, we investigated whether 

CIBP caused a change in NMDAR subunit expression in the dorsal horn of the spinal 

cord. Additionally, we investigated whether CIBP is associated with changes in TRP 

channel expression in the DRG. The secondary aim was to assess the analgesic 

efficacy of palliative radiotherapy and the therapeutic candidates, gabapentin, 

duloxetine, S,S-reboxetine and CB 65. Agents were evaluated for analgesic efficacy 

against the sensory, movement-related and affective components of CIBP. The 

analgesic efficacy of a general NMDA receptor antagonist, (R)-CPP, a NR2B 

subunit-selective antagonist, Ro 25-6981, and a NR2A subunit-selective antagonist, 

AAM 077, were also evaluated against sensory and movement-related components of 

CIBP. The analgesic efficacy of a TRPM8 agonist, icilin, a TRPV1 antagonist, AMG 

9810, and a TRPV4 antagonist, RN 1734 were also assessed in the sensory and 

movement-related components of CIBP. Investigation of the roles of these proteins 

in a CIBP preclinical model by quantified testing techniques could lead to better 

management in the clinic and insights into new therapeutic targets.  
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2. MATERIALS AND METHODS 

All experiments were carried out in accordance with the UK Animals 

(Scientific Procedures) Act 1986 and were approved by the University of Edinburgh 

Ethical Review Committee and performed under UK Home Office Licence (Project 

licence number: 50/3466) and personal licences (PIL number: 60/10911). An in vivo 

model of CIBP was necessary to explore the underlying mechanisms, with the aim of 

leading to the development of more efficacious analgesics.   

 

2.1 Preclinical Model 

This programme of work uses a rat model of CIBP modified from Medhurst 

et al. (2002) and Urch et al. (2003). Adult male Sprague Dawley rats (Harlan) were 

used with an initial weight of 90-100g. All animals were housed in groups of 4-7 per 

cage in a controlled environment with a 12 hour light/dark cycle, temperature of 

21°C ± 1°C and humidity of 50% and were allowed access to food and water ad 

libitum. Animals were acclimatised to housing conditions for at least 1 week prior to 

pre-surgical behavioural testing/surgery. Animals were randomly allocated to their 

experimental group and identified by tail mark using a permanent marker. 

 

2.1.1 Cell Culture 

MRMT-1 rat mammary gland carcinoma cells (Cell Resource Centre for 

Biomedical Research, Tohuko University, Japan) were used for surgery at Passage 6-

8. MRMT-1 cells were cultured at 37°C in 5% carbon dioxide (CO2), cultured in 

RPMI 1640 (GIBCO, UK) medium containing 10% foetal bovine serum (heat-

inactivated; Harlan Sera Lab) and 2% penicillin/streptomycin (Gibco). MRMT-1 

cells were prepared for intra-tibial injection as follows; the adherent cells were 

released from the culture flask by brief exposure to 0.1% w/v trypsin and collected 

by centrifugation for 5 minutes at 800 rpm. The resulting pellet was washed with 

10ml of Hank‟s balanced salt solution (HBSS; GIBCO, UK) and centrifuged for 5 

minutes at 800 rpm. The final pellet was re-suspended in 1ml of HBSS and cells 

were counted using a haemocytometer. Cells were diluted with HBSS to achieve 

final concentration for injection and kept on ice until 10µl of suspension (containing 

6x10
3
cells) of medium was injected into the tibia of an anaesthetised rat. 
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2.1.2 Surgical Procedure 

Surgical procedures were carried out in an aseptic manner. Rats were 

anaesthetised by inhalation of an isoflurane/O2 mixture (Zeneca, UK), 4-5% for 

induction and 2-3% for maintenance, at a flow rate of 2 litres/minute. Adequate 

depth of anaesthesia was assessed by pinching the front paw to check for absence of 

a reflex response. Respiratory rate and pattern were monitored throughout the 

surgery to ensure stability. Following complete induction of anaesthesia the animal 

was placed abdominal side up, the left hind limb was shaved and the skin was 

sterilised with 0.5% Hibitane (chlorhexidine gluconate) (Zeneca, UK). A small 

incision was made in the skin over the tibia, which was then carefully exposed by 

removing the connective tissue over the bone using a cotton bud (Johnson & 

Johnson, UK). A dental drill attachment was used to bore a hole through the 

periosteum of the tibia. Polythene tubing (0.5mm in diameter; Smiths) was fed into 

the intra-medullary cavity of the tibia and 10µl of medium (containing 6x10
3
cells) 

was injected using a 1ml micro-syringe (BD Biosciences, UK) and 25-gauge needle 

(BD Biosciences, UK). The tubing was withdrawn and the hole plugged with dental 

restorative material (IRM, Dentsply; Henry Schein Minerva), to confine the tumour 

cells within the marrow and prevent invasion of the adjacent soft tissue. The wound 

was closed with absorbable subcutaneous suture (5/0 coated vicryl, Ethicon, UK) and 

sterilised with 0.5 % Hibitane. Animals were placed in a thermoregulated recovery 

box until they had fully regained consciousness, following which they were returned 

to their home cages.  

 

Three different Sham models were used throughout this study. These were 

examined to distinguish between the effect of CIBP and bone damage/injection of 

MRMT-1 cells on behavioural responses. For the Sham groups, the surgical 

procedure was the same as CIBP with the following differences; Sham Vehicle 

(Sham V) received a 10µl intra-tibial injection of HBSS only, Sham Heat-Killed 

(Sham HK) received an intra-tibial injection of 10µl of medium containing 6x10
3
 

heat-killed cells that had been boiled at 100°C for 20 minutes and Sham Exposed 

(Sham E) received no drill or injection into the tibia, but the bone was exposed in the 

same way as for the CIBP model.  
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2.2 Behavioural Analysis 

For behavioural analysis, animals were trained to the cages and testing 

apparatus four days prior to surgery (Day -4) and animals were tested prior to 

surgery to obtain baseline values (Day 0) for comparison to post-surgical values. 

Post-surgery animals rested for 2 days (Day 1-2) then behavioural testing resumed 

from Day 3-4 onwards until Day 18-21 (all animals were culled by Day 21). 

Behavioural testing was carried out once on each day of testing. The behavioural 

assessment timeline is shown (Figure 2.1). Behavioural testing was carried out in the 

same room each time and animals always had a minimum of 20 minutes in their test 

environment to allow them to become habituated before testing commenced. 

 

CIBP patients suffer from constant background pain and difficult to control 

movement-evoked and spontaneous pain, therefore it is important to assess a variety 

of pain behaviours in a preclinical CIBP model. A common comorbidity in CIBP 

patients is anxiety. To thoroughly assess the rodent CIBP model we investigated 

several components, which involved measurements of both reflex and non-evoked 

responses and affective behaviours.  

 

We examined CIBP-induced sensory reflex responses (thermal sensitivity and 

mechanical allodynia), movement-related behaviours (avoidance of weight bearing 

on movement in comparison to static weight bearing, distance travelled, speed and 

rearing), spontaneous pain-like behaviour (spontaneous foot lifting) and affective 

behaviours (open field and elevated plusmaze). Non-evoked behaviours were 

analysed by weight bearing difference between hindlimbs and spontaneous foot 

lifting behaviour. These quantitative tests were utilised to assess the efficacy of focal 

palliative radiotherapy (XRT; carried out at Day 7 post induction of CIBP; Section 

2.7.1) and of the compounds; (R)-CPP, Ro 25-6981, AAM 077, CB 65, gabapentin, 

icilin, duloxetine and S,S-reboxetine (detailed in Section 2.7.2). The observer was 

blinded to type of animal and treatment throughout testing. The combination of 

behavioural tests and pharmacological manipulations was used to attempt to 

elucidate the mechanisms underlying CIBP.  
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Figure 2.1 Behavioural assessment summary timeline.  

 

2.3 Sensory Components 

2.3.1 Mechanical Allodynia 

To assess the development of mechanical allodynia, each animal was placed 

in a Perspex chamber on an elevated metal mesh floor allowing the experimenter to 

reach the plantar surface of the hindpaw from beneath, unobserved by the animal. 

Following acclimatisation of the animal to the cage, the paw withdrawal threshold 

(PWT) in response to normally innocuous mechanical stimuli was measured by 

applying a set of calibrated Semmes-Weinstein von Frey filaments (Stoelting Co., 

USA) to the plantar surface of the hindpaw of the ipsilateral (injured) hindlimb and 

the contralateral (non-injured) hindlimb. These filaments exert a fixed bending force 

ranging from 1.202g to 75.858g (corresponding to a pressure range of 

163.68mN/mm
2
 to 3327.7mN/mm

2
). Each filament was applied perpendicularly to 

the mid-plantar surface of the foot until the filament flexed/bent. The filaments were 

applied in ascending order (starting from the weakest) with each force applied 10 

times at one-to-two second intervals. The withdrawal response is characterised as a 

quick paw flick with or without shaking. Threshold was defined as the minimum 

indentation force (grams) required to elicit a response/paw withdrawal to at least 5 

out of 10 applications (i.e. to at least 50% of applications). Data are expressed as the 

mean PWT (grams) ± standard error of the mean (SEM) for each time point. 
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2.3.2 Thermal Sensitivity 

To test thermal sensitivity of the ipsilateral hindlimb, each animal was placed 

on a thermal footplate (Incremental Hot/Cold Plate Meter; IITC Life Science Inc., 

USA), which was set at either 10C, 20C, 30C or 40C (temperature holding 

accuracy is ± 0.1°C). The number of times the animal withdrew its ipsilateral 

hindlimb from the thermal footplate and the latency to the first paw withdrawal over 

150 seconds was recorded (from the time of placing the animal on the thermal 

footplate). If the animal did not flick the latency was recorded as 150 seconds. In 

addition, the total duration of paw elevation was also noted. Each temperature was 

tested with a minimum of twenty minutes between temperatures. Data are expressed 

as the mean ± SEM for each time point for Paw withdrawal/ Latency to paw 

withdrawal/ Duration of paw elevation to 10C, 20C, 30C or 40C.  These 

temperatures were chosen to obtain data from a wide range of temperatures and to 

attempt to elucidate which temperature-sensitive channels might be involved in 

thermal sensitivity in CIBP. 

 

2.4 Movement-related Components 

2.4.1 Movement-evoked Pain  

To assess movement-evoked pain, the rotarod (IITC Life Science Inc., USA) 

was used and set at a constant speed of 5-6 rpm (no ramping of rpm). Goblirsch et al. 

used the rotarod set at a constant speed of 6 rpm to assess paw guarding during 

forced ambulation in a model of CIBP (Goblirsch et al., 2004b). The number of 

avoidances of weight bearing on movement of the ipsilateral hindlimb was counted 

over 30 seconds (from the time of placing the animal on the rotarod). The avoidance 

of weight bearing on movement can range from a subtle movement, whereby the 

animal extends/descends the ipsilateral hindlimb (when compared to the contralateral 

hindlimb) to avoid weight bearing, to a complete avoidance of weight bearing by the 

animal not using the ipsilateral hindlimb during rotation of the rotarod. Therefore the 

number of avoidances of weight bearing on movement includes the number of hops, 

drags or guarding of the ipsilateral hindlimb when compared to the contralateral 

hindlimb. To use a less subjective measure of avoidance of weight bearing on 

movement we used this method of counting the total number of avoidances rather 
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than scoring individual avoidances on a scale system as previously used. 

Experimenters were blind to the condition of each animal, in addition to the 

treatment. This test was performed once on each test day by two different 

experimenters. The figure below illustrates this, showing the presumed line of the 

average lift position of the ankle on the contralateral hindlimb and the ipsilateral 

hindlimb in relation to this line when walking on the rotarod (Figure 2.2). Data are 

expressed as the mean avoidance of weight bearing on movement (number) ± SEM 

for each time point.  

 

 

Figure 2.2 Illustration of assessment of movement-evoked pain using the rotarod. 

 

2.4.2 Static Weight Bearing 

To assess the static weight bearing difference between ipsilateral and 

contralateral hindlimbs, the animal was placed in the Linton incapacitance tester 

chamber and allowed to acclimatise and position itself such that each hindlimb was 

located on its individual transducer pad and the front paws were supported by the 

slanted frame of the box (Figure 2.3). When the position of the animal was correct 

and stable, the static weight bearing value of each hindlimb was measured. The 

incapacitance tester is set to record the load on each transducer pad over 4 seconds 

and the two numbers displayed represent the distribution of the rat‟s weight on each 

Imaginary line:  
Set at the average 
lift position of the 
ankle on the 
contralateral (non-
injured) hindlimb 

The number of times the 
ipsilateral (injured) hindlimb 

ankle joint descends to a lower 
level compared to the 

contralateral ankle prior to leg 
lift i.e. descends below the 

“paw lift” line for the 
contralateral hindlimb over 30 

seconds is counted 

 

Contralateral 
hindlimb 

Ipsilateral  
hindlimb 



 46 

hindlimb (i.e. right and left). Two to three readings of static weight bearing value for 

ipsilateral and contralateral hindlimbs were noted and the mean difference for each 

animal was calculated. Data are expressed as the static weight bearing difference 

(WBD; grams) ± SEM for each time point. This method has been used by others to 

obtain an average reading for the distribution of body weight on each hindpaw 

(Nakazato-Imasato & Kurebayashi, 2009). 

 

 

Figure 2.3 Illustration of the Linton Incapacitance tester. 

 

2.4.3 Voluntary Locomotor Activity in the Open Field 

 Animals were exposed only once to this test as repeated exposure can alter 

responses, with repeated exposure apparently resulting in decreased exploratory 

behaviour (van der Staay et al., 2009).  The open field apparatus consists of a square 

arena 40cm by 40cm with 40cm high Perspex walls. The open field is positioned in a 

quiet light controlled room (with the camera recording from above the open field). 

Testing is conducted under dim white light (60W bulbs, two floor lamps, 145cm 

height each positioned over the open field arena with the light directed such that no 

shadows are cast from the open field walls). The animals were allowed a minimum 

of 30 minutes to acclimatise to the room/lighting conditions before testing in the 

open field. The open field is divided into a centre zone and outer zone (illustrated in 

Figure 2.4). All animals started the test from the same corner in the outer zone of the 

open field, to ensure consistency between tests, and tested for 5 minutes. To assess 

locomotion in the open field arena the following parameters were recorded; total 

distance travelled (metres), average speed (metres/second) and number of rearings. 

Rearing behaviour has been used in previous studies as a measure of general activity 

(A) Linton incapacitance tester 

and chamber 

(B) Showing the position of each 

hind-limb on its individual 

transducer pad

(A) Linton incapacitance tester 

and chamber 

(B) Showing the position of each 

hind-limb on its individual 

transducer pad
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in the open field and elevated plusmaze (Nosek et al., 2008). ANY-maze software 

(Version 4.39; Stoetling) was used to track movement and the observer recorded the 

number of rearings. The open field was cleaned with ethanol (70%) between each 

animal to remove any olfactory cues. Further measures were also recorded in the 

open field (see section 2.6.1).  

 

2.4.4 Voluntary Locomotor Activity on the Elevated Plusmaze 

Animals were exposed only once to this test as repeated exposure decreases 

time spent on the open arms in the elevated plusmaze (Rodgers & Dalvi, 1997). The 

elevated plusmaze has two open arms and two closed arms illustrated in the diagram 

below (Figure 2.4). The plusmaze is elevated 45cm above the floor (with the camera 

recording from above the plusmaze) and positioned in a quiet, light controlled room. 

Testing is conducted under dim red diffused light (60W bulbs, two floor lamps of 

145cm height, each positioned over the closed arms of the maze with light directed 

on the closed arms, the red light is diffused using greaseproof paper). The animals 

were allowed a minimum of 30 minutes to acclimatise to the room/lighting 

conditions. The plusmaze is cleaned with ethanol (70%) before and between each 

animal to remove any olfactory cues. The animals always started the test in the centre 

square facing one of the open arms, to ensure consistency between tests, and were 

allowed to explore the plusmaze for 10 minutes. To assess voluntary locomotor 

activity, the number of rearings on the elevated plusmaze were counted. Further 

measures were also recorded from the elevated plusmaze (see section 2.6.2).  

 

2.5 Spontaneous Component 

 To assess the spontaneous component of CIBP, we examined spontaneous 

foot lifting (SFL), which has been proposed as an indicator of ongoing/spontaneous 

pain (Djouhri et al., 2001). Each animal was placed in a Perspex chamber at room 

temperature, allowed to habituate for 5 minutes and the cumulative duration of SFL 

of the ipsilateral hindlimb over a 5 minute test period was recorded. Foot-lifting 

associated with walking and grooming was not included. Other studies have 

quantified spontaneous flinches and flinching/guarding behaviour over a 2 minute 

period in CIBP model to measure spontaneous pain (King et al., 2007). 
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2.6 Affective Components of CIBP 

Both the elevated plus maze and open field were used to assess anxiety-like 

behaviours. Both tests are established behavioural tests for the assessment of anxiety-

induced modification of exploratory behaviour and have been validated using 

anxiolytic drugs (for example diazepam)(Pellow et al., 1985;Prut & Belzung, 2003). 

 

2.6.1 Open Field  

 As detailed above, animals are exposed only once to this test, which is 

positioned in a quiet light controlled room (testing apparatus, procedure and 

conditions detailed in section 2.4.3) Animals were allowed at least 30 minutes to 

acclimatise to the room/lighting conditions. The open field was cleaned with ethanol 

(70%) before and between each animal to remove any olfactory cues. To assess 

anxiety-related behaviours, the following parameters were recorded; time spent in the 

centre zone, number of entries to the centre zone, latency to enter the centre zone, 

number of groomings and time spent grooming. ANY-maze software (Version 4.39; 

Stoetling) was used to track movement and the observer recorded the number of 

groomings. 

 

2.6.2 Elevated Plusmaze 

As detailed above, animals were exposed only once to the elevated plusmaze 

(testing apparatus, procedure and conditions detailed in section 2.4.4) Animals were 

allowed at least 30 minutes to acclimatise to the room/lighting conditions. The 

plusmaze was cleaned with ethanol (70%) before and between each animal to 

remove any olfactory cues. The following parameters were recorded to assess 

anxiety and risk assessment behaviour; time spent on the open arms, number of 

groomings and number of protected stretch attends. ANYmaze software was used to 

track movement and the observer recorded the number of groomings and number of 

protected stretches. 
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Figure 2.4 Open field and elevated plusmaze testing apparatus. A) Open field is 

divided into centre zone and outer zones. B) Elevated plusmaze is divided into closed 

arms (with walls), open arms and centre square. 

 

2.7 Analgesic Interventions 

Several interventions were assessed in this thesis, to examine their analgesic 

efficacy in CIBP across a range of behavioural tests. 
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2.7.1 Radiotherapy 

Focal palliative radiotherapy (XRT), the current clinical gold standard 

treatment for CIBP, was carried out at Day 7 after induction of CIBP. Animals were 

anaesthetised with sodium pentobarbitone (50mg/kg, i.p.) and positioned in the 

chamber, such that irradiation was restricted to the ipsilateral hindlimb using 

collimators to shield the rest of the animal, thus enabling unattenuated beams of 

radiation over the exposed area. Animals were exposed to a single dose of 8 Gy (at a 

dose rate of 1.1 Gy/min) in a Gammacell 40 Extractor (MDS Nordion International 

Inc.), with a Caesium-137 source above and below the chamber. Animals were 

allowed to recover for 24 hours before behavioural testing resumed at Day 9. The 

effect of XRT treatment on sensory, movement-related and affective components of 

CIBP was assessed. Specifically the analgesic efficacy of XRT on thermal sensitivity 

to 20°C and 40°C, mechanical allodynia, static weight bearing and movement-related 

pain was examined.  The effect of XRT on affective components of CIBP was also 

assessed using the open field and elevated plusmaze.  

 

2.7.2 Pharmacological Agents 

The following pharmacological agents were tested in CIBP animals in 

behavioural tests for sensory, movement-related and affective components of CIBP; 

the voltage-gated calcium channel ligand, gabapentin; the serotonin/noradrenaline 

reuptake inhibitor, duloxetine; the noradrenaline reuptake inhibitor, S,S-reboxetine; 

the selective cannabinoid (CB2) receptor agonist CB 65; the selective NMDA 

receptor antagonist, 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid ((R)-

CPP); the selective antagonist of NMDA receptors containing the NR2B subunit, Ro 

25-6981; the selective antagonist of NMDA receptors containing the NR2A subunit, 

AAM 077; the selective TRPV1 receptor antagonist, AMG 9810; the selective 

TRPV4 receptor antagonist, RN 1734 and the TRPM8/TRPA1 receptor agonist, 

icilin. The pharmacological agent target, dose, route of administration and day of 

administration post CIBP induction of each agent are detailed in the table below 

(Table 2.1).  
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Pharmacological 

agent 
Target Dose Route Day Reference 

Gabapentin 

(Tocris) 

Binds to α2δ-1/ 

α2δ-2 subunits of 

voltage-gated Ca
2+

 

channels 

30mg/kg p.o. 18-21 
Dose taken 

from (1) 

Duloxetine 

(Gift from Wyeth-

Pfizer) 

5-HT/ NA reuptake 

inhibitor 
30mg/kg

 
p.o. 16-21 

Dose and 

route taken 

from (2) 

S,S-reboxetine 

(Gift from Wyeth-

Pfizer) 

NA reuptake 

inhibitor 
10mg/kg

 
p.o. 17-19 

Dose and 

route taken 

from (3) 

Oral vehicle control 

 

(2% Tween-80, 

0.5% 

methylcellulose 

aqueous) 

 p.o. 14-18  

CB 65 

(Tocris) 

Selective CB2 

receptor agonist 
1mg/kg i.p. 20 

Dose and 

route based 

on (4) 

(R)-CPP 

(Tocris) 

NMDA receptor 

antagonist 
7.5nmole i.t. 17 

Dose and 

route based 

on (5) 

Ro 25-6981 

(Sigma-Aldrich) 

NMDA receptor 

NR2B-selective 

antagonist 

50nmole i.t. 15 
Route based 

on (5) 

AAM 077 

(Gift from Novartis) 

NMDA receptor 

NR2A-selective 

antagonist 

50nmole i.t. 14 
Route based 

on (5) 

Icilin 

(Tocris) 

TRPM8/TRPA1 

agonist 
100µmole Topical 14 

Dose and 

route based 

on (6) 

AMG 9810 

(Tocris) 
TRPV1 antagonist 1nmole i.t. 18-21 

Route based 

on (7) 

RN 1734 

(Tocris) 
TRPV4 antagonist 5nmole i.t. 19 

Route based 

on (8) 

Intrathecal vehicle 

control 

 

(0.5% 

dimethylformamide 

in saline) 

 i.t. 20  
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Table 2.1 Details of pharmacological agents showing pharmacological agent target, 

dose, route of administration and day of administration post CIBP induction. (1) 

Chronic subcutaneous administration of gabapentin (30mg/kg) provided analgesia in 

a CIBP model (Donovan-Rodriguez et al., 2005). In the present study the oral route 

of administration was chosen. A Cochrane review showed that a single dose of 

gabapentin (250mg, p.o.) produces an analgesic effect in the treatment of acute post 

operative pain (Straube et al., 2010). (2) Duloxetine (30mg/kg, p.o.) provided 

analgesia in a model of neuropathic pain (Iyengar et al., 2004). A Cochrane review 

showed that duloxetine (60mg and 120mg, p.o.) are efficacious for treating diabetic 

peripheral neuropathy and fibromyalgia (Lunn et al., 2009). (3) S,S-reboxetine 

(30mg/kg, p.o.) provided analgesia in acute and inflammatory pain models 

(Whiteside et al., 2010). In the present study both 10 and 30mg doses were tested for 

sedative effects. The 30mg dose had a significant sedative effect in the rotarod 

sedation ataxia test therefore the 10mg dose was used to test for an anti-nociceptive 

effect. (4) CB2 agonist AM1241 (1mg/kg, i.p.) provided anti-nociception (PMID: 

11514083 Malan et al. 2001). In the present study a different CB2 agonist was used. 

(5) (R)-CPP (100pmol, i.t.) provided analgesia in a model of peripheral 

demyelination (Wallace et al., 2003). (6) Icilin (80µM topical) produced analgesia in 

models of inflammatory and neuropathic pain (Proudfoot et al., 2006). (7) AMG 

9810 (5, 15 and 45µg, i.t.) provided analgesia in a model of inflammatory pain (Yu 

et al., 2008b). In the present study the dose was chosen based on performance on the 

rotarod in the sedation ataxia test. (8) TRPV4 antagonist ruthenium red (0.1-1 nmol, 

i.t.) provides analgesia in a model of neuropathic pain (Ding et al., 2010a). In the 

present study RN 1734, a more selective TRPV4 antagonist, was chosen (Vincent et 

al., 2009). 

 

2.7.3 Pharmacological Agent Administration 

 To establish baseline behavioural responses, behavioural tests were carried 

out before administration of pharmacological agents. Trials were carried out blind to 

compound identity.  
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Intrathecal Administration of Pharmacological Agents 

For intrathecal administration of pharmacological agents, animals were 

anaesthetised by inhalation of an isoflurane/O2 mixture (as detailed above Section 

2.1.2). Pharmacological agents were administered into the L5/6 intrathecal space of 

anaesthetised rats using a 1ml syringe with a 25-gauge needle (BD Biosciences, UK) 

at a volume of 50µl. To establish the correct site of injection and to ensure the 

volume of 50µl was sufficient to reach the lumbar enlargements which receive hind 

limb innervation, experiments with Blue Dye (Merck-BDH, UK) were performed. A 

tail-flick or movement of the hind limb usually indicated that the needle was 

correctly positioned prior to injection. Behavioural testing commenced 10-15 

minutes post-injection to allow recovery from anaesthesia.  

 

The following pharmacological agents were applied intrathecally: the 

selective NMDA receptor antagonist, (R)-CPP; the selective antagonist of NMDA 

receptors containing the NR2B subunit, Ro 25-6981; the selective antagonist of 

NMDA receptors containing the NR2A subunit, AAM 077; the selective, 

competitive vanilloid TRPV1 receptor antagonist, AMG 9810 and the selective 

TRPV4 antagonist, RN 1734 and vehicle controls. The vehicle control (0.5% 

dimethylformamide in saline) has been shown in previous experiments in the lab to 

exert no changes in behavioural reflex responses following intrathecal injection. 

 

Oral Administration of Pharmacological Agents  

For oral administration of pharmacological agents, all animals were fasted for 

12 hours prior to administration of pharmacological agents by oral gavage at a 

volume of 2ml/kg. For administration, the rat was kept upright with the head 

immobilised and the feeding tube was directed along the roof of the mouth and 

toward the right side of the back of the pharynx and then gently passed down into the 

esophagus. If any resistance was detected the tube was withdrawn and re-inserted. 

Behavioural testing commenced 1 hour post administration. 

 

The following pharmacological agents were orally administered: the voltage-

gated calcium channel ligand, gabapentin; the serotonin/noradrenaline reuptake 
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inhibitor, duloxetine; the selective noradrenaline reuptake inhibitor, S,S-reboxetine 

and vehicle control. All pharmacological agents were dissolved in a vehicle 

consisting of aqueous 2% Tween-80, 0.5% methylcellulose, which has been shown 

through extensive testing at Wyeth to have no effect alone on behavioural reflex 

responses. 

 

Topical Application of Pharmacological Agent 

 For topical application, the pharmacological agent solution was applied to 

both hindlimbs by placing each animal in a Perspex chamber that had a slanted frame 

to support the front paws, enabling the solution to cover both hindlimbs. Topical 

application of pharmacological agent was applied for a 5 minute period. Animals 

were trained prior to the day of pharmacological agent application to the Perspex 

chamber and with both hindlimbs covered with water, so as to reduce the impact of 

stress on the pharmacological agent response. The chamber was designed to allow 

the animal to be placed in volume of pharmacological agent that covered the 

hindlimbs to the knee but did not wet the main body of the animal. Behavioural 

testing commenced 10 minutes after administration. The TRPM8/TRPA1 channel 

agonist, icilin (dissolved in 0.25% dimethylformamide in water) was applied by this 

route (Proudfoot et al., 2006). 

 

Intraperitoneal Adminstration of Pharmacological Agents 

 Animals were restrained to enable injection of pharmacological agents into 

the peritoneal cavity using a 1ml syringe with a 25-gauge needle (BD Biosciences, 

UK) to inject in the lateral aspect of the lower left quadrant at a volume of 3ml/kg. 

The selective cannabinoid (CB2) receptor agonist, CB 65 was administered by this 

route. 

 

2.8 Immunohistochemistry 

To contribute to assessing the underlying mechanisms of CIBP, the 

expression of several proteins was assessed by immunohistochemistry and Western 

blot to determine changes in their expression and localisation in the spinal cord and 

dorsal root ganglion (DRG).  



 55 

2.8.1 Spinal Immunohistochemistry 

Experimental and naïve animals were terminally anaesthetised with an 

intraperitoneal injection of sodium pentobarbitone and transcardially perfused with 

heparinised vascular flush (0.1M phosphate buffer saline pH 7.4 (PBS) containing 

0.6mg/ml heparin), followed by fixative solution (4% paraformaldehyde (PFA; 

Sigma, UK), at a flow rate of 30ml/minute. Post-perfusion, a laminectomy was 

performed through the lumbar region and segments L3-L6 of the spinal cord were 

dissected under an operating microscope. A pin was inserted through the ventral horn 

of the contralateral spinal cord to allow pin-hole identification after 

immunohistochemistry. Tissue samples were post-fixed with 4% PFA (Sigma, UK) 

in 0.1 M PBS and transferred through increasing concentrations of sucrose in 0.1M 

PBS at room temperature (5% for 1 hour, 10% for 3 hours) to a 30% solution 

overnight at 4C, then stored in a 0.1M PBS with 0.01% sodium azide (Sigma,UK) at 

4C.   

 

 Pins were removed from the spinal cord and tissue was mounted on a 

freezing microtome (Leitz Kyromat 1700) in 0.2% agar (in 0.1M PBS) and 

transverse spinal cord sections (40μm) were cut and collected at -15°C and 

transferred to a 36 well plate containing 0.1M PBS. Sections were washed with 0.1M 

PBS. Different antigen retrieval techniques were used, depending on the primary 

antibody (see Table 2.2). Incubation in citrate buffer (pH 6.0) at 90C for 15 minutes 

was used for antigen retrieval for NR1 and NR2B subunits. Antigen retrieval for 

NR2A involved incubating sections for 5 minutes with pepsin (Dako) at 37°C. 

Sections were washed with 0.1M PBS and blocked with blocking buffer (0.5% 

blocking reagent (Perkin Elmer, USA) in 0.1M PBS) for 90 minutes at room 

temperature. Sections were incubated with primary antibodies at the following 

concentrations; goat-anti-NR1 (Santa Cruz; 1:70 in 0.1M PBS at 4C overnight), 

rabbit-anti-NR2B (Santa Cruz; 1:70 in 0.1M PBS at room temperature overnight) or 

goat-anti-NR2A (Santa Cruz; 1:50 in 0.1M PBS at 4°C for 24 hours). Sections 

incubated with NR1, NR2B or NR2A antibodies were also incubated with mouse-

anti-NeuN (Chemicon; 1:500 in 0.1m PBS at 4°C; a marker of neuronal cells). After 

primary antibody incubation, sections were washed with 0.1M PBS and incubated 



 56 

with appropriate secondary antibodies (Table 2.2) in 0.1M PBS for 90 minutes at 

room temperature. Sections were washed in 0.1M PBS and incubated with the 

amplification reagent fluorescein tyramide (Perkin Elmer Life Sciences, Inc.) for 25 

minutes at room temperature (1:50 in 1x amplification diluent). Sections were 

washed with deionised water and mounted onto microscope slides pre-coated with 

poly-L-lysine (Merck-BDH, UK) and cover-slipped with mounting-medium Vecta 

Shield (Vector Laboratories, USA), sealed with clear varnish and stored at 4C in a 

light-sensitive box before confocal microscopy. Control sections were processed as 

above, omitting the primary antisera.  

 

 

Figure 2.5 Regions of interest in the dorsal horn of the spinal cord. The average 

fluorescence intensity of the ipsilateral and contralateral dorsal horn of the spinal 

cord were analysed in regions of interest (ROI). Three ROIs (A, B and C) in lamina 

I, one ROI (D) in lamina II and one ROI (E) in lamina III were analysed for average 

fluorescent intensity. Lamina I value was taken as an average of A, B and C. 

 

2.8.2 Confocal Microscopy and Image Analysis 

Slides were examined using a Leica TCSNT SP5 confocal microscope (Leica 

Microsystems GMBH, Germany). To analyse the expression of NMDA receptor 

subunits, confocal optical sections for ipsilateral and contralateral spinal dorsal horns 

were acquired using a x20 objective lens. The fluorescence intensity of lamina I, II 

and III was analysed using ImageJ software (ImageJ version 1.42). The areas 

analysed are shown in the figure above (Figure 2.5). These areas were chosen to 
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include lamina I and II, where nociceptive input is integrated and relayed by neurons. 

Nociceptors terminate mainly in laminae I, II and V of the dorsal horn, on relay and 

local interneurons (Millan, 1999). The ipsilateral-contralateral difference in 

fluorescence intensity of each subunit (average ipsilateral-average contralateral 

fluorescence intensity) was calculated. Such expression of the NMDA receptor 

subunits was examined in CIBP, Sham E and Naïve animals (six animals per group 

and six sections per animal). The experimenter was blinded to the treatment group 

for analysis. 

 

To analyse co-expression of NR2A with the neuronal cell marker NeuN, 

confocal optical sections were acquired using a x40 oil immersion objective lens. 

NR2A-immunopositive cells (green) and NeuN-immunopositive cells (red) were 

counted in laminae I and II of the dorsal horn using Leica LCS Lite software. Co-

expression of NR2A with NeuN was compared ipsilateral to contralateral and 

between CIBP, Sham V and Naïve animals (six animals per group and six sections 

per animal were analysed). The experimenter was blinded to the treatment group for 

analysis. 
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 Antigen retrieval Primary antibody Secondary antibody 

NR1 

Citrate buffer (pH 

6.0) at 90C for 15 

minutes 

Goat-anti-NR1 (Santa Cruz; 

1:70 in 0.1M PBS, overnight 

at 4C) 

HRP-linked rabbit-anti-goat 

(1:300 in 0.1M PBS, 90 

minutes room temperature) 

NR2A 
Pepsin at 30 °C for 

5 minutes 

Goat-anti-NR2A (Santa Cruz; 

1:50 in 0.1M PBS, 48 hours 

at 4°C) 

HRP-linked rabbit-anti-goat 

(1:300 in 0.1M PBS 90 

minutes room temperature) 

NRB 

Citrate buffer (pH 

6.0) at 90C for 15 

minutes 

Rabbit-anti-NR2B (Santa 

Cruz; 1:70 in 0.1M PBS 

overnight at room 

temperature) 

HRP-linked goat-anti-rabbit 

(1:500 in 0.1M PBS 90 

minutes room temperature) 

NeuN 
Dependent on 

subunit conditions 

Mouse-anti-NeuN (Chemicon; 

1:50 in 0.1M PBS at room 

temperature or 4°C) 

Alexa Fluor goat-anti-

mouse568 (Invitrogen; 1:200 

in 0.1M PBS) 

 

Table 2.2 Antigen retrieval techniques and antibodies used for NMDA receptor-

related spinal cord immunohistochemistry. Conditions were optimised for each 

antibody. 

 

2.8.3 Dorsal Root Ganglia Immunohistochemistry 

Dorsal root ganglia (DRG) from spinal cord sections L4-L6 were dissected 

immediately following terminal anaesthesia from CIBP, Sham V and Naive animals 

ipsilateral and contralateral to injury. DRGs were frozen in optimal cutting 

temperature medium (OCT; Cell Path Plc., UK) on dry ice. DRG sections were cut 

on a cryostat at -20°C to a thickness of 15µm and mounted directly onto poly-L-

lysine coated slides (Merck-BDH, UK). Sections were encircled with a hydrophobic 

barrier pen (ImmEdge; Vector Laboratories, USA). For TRPV4 staining, sections 

were fixed with 4% paraformaldehyde in 0.1M PBS for 5 minutes at room 

temperature prior to first wash. All sections were washed with 0.1M PBS and then 

blocked for 2 hours at room temperature with blocking solution (10% normal goat 



 59 

serum (NGS; Vector Laboratories, USA), 4% fish skin gelatine (FSG; Sigma-

Aldrich, UK) and 1% Triton X-100 (Sigma-Aldrich, UK) in 0.1M PBS). Sections 

were incubated with the following primary antibodies; TRPM8 (Alomone Labs Ltd., 

1:150), TRPV1 (Pierce Biotechnology, 1:1000) or TRPV4 (Alomone Labs Ltd., 

1:1000), Peripherin (Millipore, 1:500), NF-200 (Sigma-Aldrich, 1:1000) in primary 

antibody buffer consisting of 4% NGS, 4% FSG and 0.1% Triton X-100 in 0.1M 

PBS, overnight at room temperature. Antibody conditions are detailed in Table 2.3. 

Sections were washed in 0.1M PBS then incubated with secondary antibodies; Alexa 

Fluor goat-anti-rabbit568 (Invitrogen, 1:750) and Alexa Fluor goat-anti-mouse488 

(Invitrogen, 1:300) in secondary antibody buffer of 4% NGS, 4% FSG in 0.1M PBS, 

for 1 hour at room temperature. Following washing with 0.1M PBS, slides were 

coverslipped with mounting-medium Vecta Shield, sealed with clear nail varnish and 

stored at 4°C in a light sensitive box prior to fluorescent microscopy. Control 

sections were processed as above omitting the primary antisera. 
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Antigen 

retrieval 
Primary antibody Secondary antibody 

TRPM8  

Rabbit-anti-TRPM8 

(Alomone Labs Ltd.; 1:150 in 4% 

NGS, 4% FSG and 0.1% Triton 

X-100 in PBS) 

Alex Fluor goat-anti-rabbit568 

(Invitrogen; 1:750 in 4% 

NGS, 4% FSG in PBS) 

TRPV1  

Rabbit-anti-TRPV1 

(Pierce Biotechnology; 1:1000 in 

4% NGS, 4% FSG and 0.1% 

Triton X-100 in PBS) 

Alex Fluor goat-anti-rabbit568 

(Invitrogen; 

1:750 in 4% NGS, 4% FSG 

in PBS) 

TRPV4 
2% PFA 

 

Rabbit-anti-TRPV4 (Alomone 

Labs Ltd.; 

1:1000 in 4% NGS, 4% FSG and 

0.1% Triton X-100 in PBS) 

Alex Fluor goat-anti-rabbit568 

(Invitrogen; 1:750 in 4% 

NGS, 4% FSG in PBS) 

Peripherin  

Mouse-anti-Peripherin 

(Millipore; 1:500 in 4% NGS, 4% 

FSG and 0.1% Triton X-100 in 

PBS) 

Alex Fluor goat-anti-mouse488 

(Invitrogen; 1:300 in 4% 

NGS, 4% FSG in PBS) 

NF200  

Mouse-anti-NF200 

(Sigma-Aldrich; 1:1000 in 4% 

NGS, 4% FSG and 0.1% Triton 

X-100 in PBS) 

Alex Fluor goat-anti-mouse488 

(Invitrogen; 1:300 in 4% 

NGS, 4% FSG in PBS) 

 

Table 2.3 Antigen retrieval techniques and antibody conditions for TRP channel-

related dorsal root ganglia immunohistochemistry. Conditions were optimised for 

each antibody. 

 

2.8.4 Fluorescence Microscopy and Image Analysis 

Images of DRG sections were captured using a Leica DM 2500 fluorescence 

microscope with Leica DFC 310FX camera and analysis was performed with ImageJ 

software. To analyse the expression of TRP channels, optical sections for ipsilateral 

and contralateral DRG were acquired using a x20 objective lens. The number of cells 

co-expressing TRPM8, TRPV1 or TRPV4 with either NF200 (A-fibre cell body 

marker; (Whiteside et al., 2010)) or peripherin (C-fibre cell body marker; (Goblirsch 
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et al., 2004a)) were counted. The number of cells expressing TRPM8, TRPV1 or 

TRPV4 alone was also counted. Cell counts were performed on 5-6 randomly 

selected DRG sections from six animals per experimental group (ipsilateral and 

contralateral DRG of CIBP and Sham V and combined ipsilateral and contralateral 

Naïve). The experimenter was blinded to the treatment group for analysis.  

 

To count TRPM8-positive cells, the intensity of the brightest cell was 

assessed using ImageJ Colour Histogram tool and cells with an intensity of over 50% 

of this maximum were counted as positive. To count TRPV1-positive and TRPV4-

positive cells, the background intensity was measured using the same ImageJ Colour 

Histogram tool and cells with an intensity of twice the background intensity and 

greater were counted as positive. These two different methods were used in best 

accordance with the staining profiles achieved by each antibody.  

 

2.9 Western Blotting 

2.9.1 Tissue Preparation  

DRG were collected immediately following terminal anaesthesia. DRG from 

L4-6 were dissected both ipsilateral and contralateral to injury. To minimise protein 

degradation, tissue was collected on ice-cold foil, weighed and rapidly homogenised. 

DRG tissue was homogenised in 20x volume of Laemmli lysis buffer (5% 

mercaptoethanol (Sigma, UK), 2% sodium dodecyl sulphate (SDS; Sigma, UK) 

made up in Tris-hydroxymethylaminoethane buffer (Tris buffer; 50mM, pH 7.4, 

Sigma, UK)) containing 1% protease inhibitor cocktail III (Calbiochem, UK). DRG 

homogenates were centrifuged at 10 000 rpm for 10 minutes at 4°C to remove cell 

debris, aliquoted and stored at -20°C. 

 

2.9.2 Western Blotting Procedure 

Proteins were separated by electrophoresis using sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) with the NuPage X-Cell Sure 

Lock
TM

 gel electrophoresis system (Invitrogen, UK). Samples were mixed with 1 µl 

of loading buffer (0.04% w/v bromophenol in glycerol) and loaded into wells on 4-

12% Bis-Tris NuPage gels (Invitrogen, UK). Molecular weight protein standards 
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were run alongside samples as a molecular weight guide (SeeBlue Plus, Invitrogen, 

UK). Electrophoresis was carried out using MOPS running buffer (20% in deionised 

water, NuPage, Invitrogen, UK) at 200V for approximately 50 minutes. Proteins 

were transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, UK) at 

30V for 90 minutes in transfer buffer (5% NuPage transfer buffer (Invitrogen, UK) 

10% methanol in double distilled water). Transfer and protein loading was assessed 

by staining membranes with Coomassie blue (0.1% Coomassie blue in 30% 

methanol, 10% acetic acid (GE Healthcare Ltd, UK)) and scanned. The membrane 

was destained using a solution of 50% methanol, 10% acetic acid in distilled water 

and then rinsed in PBS. The membrane was  incubated in blocking buffer (5% 

Marvel (powdered milk) in PBS or 5% Marvel in PBS-Tween (0.1% Tween-20 in 

PBS)) overnight at 4°C or from 90 minutes to 2 hours at room temperature and 

probed for NR2A, TRPM8, TRPV1 and TRPV4 with the following primary 

antibodies; TRPM8 (rabbit-anti-TRPM8, 1:100, Alomone Labs Ltd. in 5% 

Marvel/PBS-Tween), TRPV1 (rabbit-anti-TRPV1 1:500, Pierce Biotechnology in 

5% Marvel/PBS-Tween) and TRPV4 (rabbit-anti-TRPV4, 1:200, Alomone Labs Ltd. 

in 5% Marvel/PBS-Tween). Membranes were washed with PBS-Tween and probed 

with appropriate horseradish peroxidise (HRP)-linked secondary antibody and 

incubated with enhanced chemiluminescent detection reagent (ECL; Cell Signalling 

Technology, USA). Antibody conditions are detailed in Table 2.4. Membranes were 

placed between two transparent sheets before exposure to autoradiography film (GE 

Healthcare UK Ltd., UK). All membranes were probed for the ubiquitous 

housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH; mouse-

anti-GAPDH 1:750; Millipore in 2% BSA/ PBS-Tween overnight at 4°C) for protein 

level normalization. Sample protein levels were quantified by densitometry using 

arbitrary grey scale values as a percentage of GAPDH using Adobe Photoshop 

software (version 7.0). To identify whether anti-TRPM8 antibody (Alomone Labs 

Ltd., UK) was specific to TRPM8, TRPM8-transfected cells were used as a positive 

control sample. A line of HEK293 cells stably expressing human TRPM8 were used 

(generated by R. Mitchell, P. Holland and B. Rosie, Centre for Integrative 

Physiology). 
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 Block Primary antibody Secondary antibody 

TRPM8 

5% 

Marvel/PBS- 

Tween 

Rabbit-anti-TRPM8 (1:100; 

Alomone Labs Ltd. in 5% 

Marvel/PBS- Tween-20) 

HRP-linked donkey-anti-rabbit 

(1:7500; Chemicon in 5% 

Marvel/PBS-Tween-20) 

TRPV1 
5% 

Marvel/PBS 

Rabbit-anti-TRPV1 (1:500; 

Pierce Biotechnology in 5% 

Marvel/PBS-Tween-20) 

HRP-linked donkey-anti-rabbit 

(1:7500; Chemicon in 5% 

Marvel/PBS-Tween-20) 

TRPV4 
5% 

Marvel/PBS 

Rabbit-anti-TRPV4 (1:200; 

Alomone Labs Ltd. in 5% 

Marvel/PBS-Tween-20) 

HRP-linked donkey-anti-rabbit 

(1:7500; Chemicon in 5% 

Marvel/PBS-Tween-20) 

GAPDH 
5% 

Marvel/PBS 

Mouse-anti-GAPDH (1:750; 

Millipore in 2% BSA/ PBS-

Tween-20) 

HRP-linked goat-anti-mouse 

(1:10 000; Chemicon in 2% 

BSA/ PBS-Tween-20) 

 

Table 2.4 Antibody conditions for Western immunoblots. Conditions were optimised 

for each antibody. 

 

2.10 Statistical Analysis 

2.10.1 Behavioural Assessments 

In each behavioural study, data were pooled for each test day, with group 

mean shown ± SEM. For replicate measures the mean values were determined by 

calculating the mean for each animal, from which the SEM was calculated. For all 

analysis significance was set at p<0.05. Data were analysed using GraphPad Prism 

(version 5.0). The Kolmogorov-Smirnov test was used to check that data was 

normally distributed before statistical analysis was carried out. 

 

Body Weight 

 The difference in body weight between groups was determined by a repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis. 
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Mechanical Allodynia 

 For responses to von Frey filaments, differences between ipsilateral hindlimb 

to contralateral hindlimb were determined by One-way repeated measures ANOVA 

on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis and differences 

between post-surgical and pre-surgical values were determined by One-way repeated 

measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis 

(comparing pre-surgical ipsilateral or contralateral values to each time points post-

surgical ipsilateral or contralateral values, respectively).  

 

Thermal Sensitivity 

 For responses to 10°C, 20°C, 30°C or 40°C thermal footplate, differences 

between ipsilateral post-surgical and pre-surgical values for number of and latency to 

paw withdrawal and duration of paw elevation were determined by a repeated 

measures mixed-model ANOVA followed by a Bonferroni‟s post-hoc analysis 

(comparing pre-surgical ipsilateral values to each time points post-surgical ipsilateral 

values).  

 

Movement-evoked Pain 

 For avoidance of weight bearing on movement, differences between 

ipsilateral post-surgical and pre-surgical values were determined by a repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis 

(comparing pre-surgical ipsilateral values to each time points post surgical ipsilateral 

values).  

 

Static Weight Bearing 

 For static weight bearing difference (difference in weight bearing between the 

ipsilateral and contralateral hindlimb), the differences between post-surgical and pre-

surgical values were determined by a repeated measures mixed-model ANOVA 

followed by Bonferroni‟s post-hoc analysis (comparing pre-surgical ipsilateral values 

to each time points post-surgical ipsilateral values).  

 

 



 65 

2.10.2 Analysis of Analgesic Interventions 

In each behavioural study, data were pooled for each time point, with group 

mean shown ± SEM. To analyse the effects of XRT or pharmacological agent 

administration on mechanical allodynia, post-pharmacological agent ipsilateral paw 

withdrawal thresholds were compared to pre-pharmacological agent baseline using a 

One-way repeated measures ANOVA on Ranks (Friedman‟s test) followed by 

Dunn‟s post-hoc analysis. Ipsilateral paw withdrawal thresholds were compared to 

contralateral paw withdrawal thresholds using a One-way repeated measures 

ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis.  

 

To analyse the effects of XRT on thermal sensitivity, the difference between 

post-XRT ipsilateral responses and pre-XRT ipsilateral responses and XRT-treated 

animals were compared to CIBP alone using a repeated measures mixed-model 

ANOVA followed by Bonferroni‟s post-hoc analysis. To analyse the effects of 

pharmacological agent administration on thermal sensitivity the difference between 

post-pharmacological agent ipsilateral responses and pre-pharmacological agent 

ipsilateral responses were determined using a One-way repeated measures ANOVA 

followed by Dunnett‟s post-hoc analysis.  

 

To analyse the effects of XRT on movement-evoked pain, post-XRT number 

of avoidances of weight bearing on movement were compared to pre-XRT values 

and XRT-treated animals were compared to CIBP animals alone using a repeated 

measures mixed-model ANOVA followed by Dunnett‟s post-hoc analysis. To 

analyse the effects of pharmacological agent administration on movement-evoked 

pain, post-pharmacological agent number of avoidances of weight bearing on 

movement were compared to pre-pharmacological agent using a One-way repeated 

measures ANOVA followed by Dunnett‟s post-hoc analysis.  

 

To analyse the effects of XRT on static weight bearing difference, pos-XRT 

weight bearing difference was compared to pre-XRT values and XRT-treated 

animals were compared to CIBP using a repeated measures mixed-model ANOVA. 
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2.10.3 Analysis of Elevated Plusmaze and Open Field Data 

For responses to the elevated plusmaze (for example time spent in the open 

arms) and the open field (for example time spent in the centre zone) differences 

between groups (CIBP, CIBP + pharmacological agent, XRT treated, Sham V 

operated and Naive animals) were determined by a One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis. For the elevated plusmaze and open field, there were 

several separate test sessions and only those run at the same time were compared. 

Data were not combined for separate test sessions of the same group as these 

measures of anxiety are subject to variation between tests. 

For the elevated plusmaze, the first test session involved Naive, Sham V and 

CIBP, with Sham V as the comparator for effect of CIBP on behaviours. A separate 

group of CIBP and XRT were tested together, with CIBP as the comparator for effect 

of XRT treatment. Gabapentin, duloxetine and vehicle were assessed in parallel, 

however S,S-reboxetine was run at a separate time to the other pharmacological 

agents and was therefore not directly compared to the vehicle control. For the open 

field, the test session involved Naive, Sham V, CIBP and XRT groups, with Sham V 

as the comparator for the effect of CIBP on behaviours. 

 

2.10.4 Exclusion Criteria 

 CIBP animals displaying the most CIBP-induced sensitivity on the day of 

radiotherapy or pharmacological agent administration were included for radiotherapy 

treatment and pharmacological agent profiling. Animals that fell off the elevated 

plusmaze were excluded from analysis of the elevated plusmaze data but not from 

analysis of behavioural tests carried out previously (XRT n=1, CIBP n=2, Vehicle 

n=1 and S,S-reboxetine n=2). 

 

2.10.5 Spinal Cord Immunohistochemistry 

 NR1, NR2A and NR2B expression in laminae I, II and III was compared 

between groups (CIBP Ipsilateral, CIBP Contralateral, Sham E Ipsilateral, Sham E 

Contralateral and Naive) by a repeated measures mixed-model ANOVA followed by 

Bonferroni‟s post-hoc analysis. Differences within groups (e.g. CIBP Ipsilateral 

versus CIBP Contralateral) were compared by an unpaired two-tailed t-test.  
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 NR2A co-expression with NeuN was compared between groups by a One-

way ANOVA followed by Bonferroni‟s post-hoc analysis. 

 

2.10.6 DRG Immunohistochemistry 

 Differences between groups (CIBP Ipsilateral, CIBP Contralateral, Sham V 

Ipsilateral, Sham V Contralateral and Naive) were compared by a One-way ANOVA 

followed by Bonferroni‟s post-hoc analysis. Differences within groups (e.g. CIBP 

Ipsilateral versus CIBP Contralateral) were compared by an unpaired two-tailed t-

test.   

 

2.10.7 Western Blot 

 Differences in relative intensity between groups (CIBP Ipsilateral, CIBP 

Contralateral, Sham V Ipsilateral, Sham V Contralateral and Naive) were compared 

by One-way ANOVA followed by Bonferroni‟s post-hoc analysis. Differences 

within groups (e.g. CIBP Ipsilateral versus CIBP Contralateral) were detected by an 

unpaired two-tailed t-test. 
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3. CHARACTERISATION OF A PRECLINICAL MODEL OF CANCER-

INDUCED BONE PAIN (CIBP)  

 

3.1 Introduction 

Cancer-induced bone pain (CIBP) is difficult to control using currently 

available therapeutic regimes, primarily palliative radiotherapy and opioid therapy. 

Patients suffer from constant background pain with breakthrough pain, which may be 

movement-evoked or occur spontaneously (Portenoy et al., 1999). The breakthrough 

pain component is particularly difficult to treat as the doses of opioids required to 

treat breakthrough pain in CIBP produce unacceptable side-effects (Mercadante et 

al., 1992). Opioid toxicity is a major problem, where symptoms can range from 

sedation and poor concentration to hallucination and agitation. 

 

A clinically relevant preclinical animal model is required to elucidate the 

mechanisms underlying CIBP and facilitate the development of therapies that will 

enable improved pain management of CIBP patients. The validity of preclinical 

findings translating to the clinic is dependent on a model that mirrors the clinical 

condition. Preclinical models of CIBP involving intraosseous injection of carcinoma 

cells using mice (Schwei et al., 1999) and rats (Dore-Savard et al., 2010;Medhurst et 

al., 2002) have been developed. One advantage of these models over the earlier 

metastatic cancer models, which involved systemic (Arguello et al., 1988) or intra 

muscular injection (Kostenuik et al., 1993), is the confinement of the tumour within 

the bone, which allows direct assessment of the affected limb without the 

complication of multiple site metastases. These models have been shown to mirror 

the clinical development of CIBP including tumour growth, extensive bone 

destruction and the development of pain-related behaviours (Luger et al., 2005). 

Anxiety and depression are common comorbidities in patients suffering from CIBP, 

which can impact significantly on quality of life (Portenoy et al., 1999). In addition 

these complex behaviours can have considerable impact on the efficacy of analgesic 

intervention. To date, investigation of anxiety-like behaviours in preclinical CIBP 

models has not been reported. 
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Bone is the most common site of metastases in cancer and around 70% of 

patients dying from breast and prostate cancers have evidence of bone metastases 

(Coleman, 2006). Bone metastases can potentially occur at any bony site, however 

most commonly affect the axial skeleton and proximal long bones. Bone metastases 

can be classified as osteolytic, where there is increased osteoclast activity and net 

bone destruction, osteoblastic where the tumour-induced lesions are characterised by 

excess osteoblast activity leading to formation of abnormal new bone or mixed 

osteolytic/osteoblastic bone lesions. Osteolytic bone lesions are characteristic of 

breast cancer and osteoblastic lesions are characteristic of prostate cancer (Kingsley 

et al., 2007). Dore-Savard et al. showed X-ray scans of a rat model of cancer pain, 

where the femur of male rats was implanted with MRMT-1 cells. Results showed 

that bone density gradually decreased from Day 14 and the cortical line was blurred 

from Day 18. At Day 21, the bone shape was irregular due to irregular bone 

formation by osteoblasts.  Analysis of these results support the osteolytic character of 

the MRMT-1 tumour in the femur of male rats (Dore-Savard et al., 2010) (Figure 

3.1). 

 

 

Figure 3.1 Figure adapted from Dore-Savard et al. 2010. Figure shows radiographs 

of sham-operated and CIBP femurs at 14, 18 and 21 days after surgery. At Day 14, 

decreased bone density is observed in the medullar canal of the bone while cortical 

integrity is maintained. At Day 18, the cortical line is blurred and cortical integrity is 

partially compromised. By Day 21 the bone shape is irregular. 

 

This project used the MRMT-1 model of CIBP, which involves the use of rat 

mammary gland carcinoma cells, to create a clinically relevant model suitable for 
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studying therapeutic interventions. Previous studies have investigated CIBP using 

MRMT-1 cells in both male (Donovan-Rodriguez et al., 2004b) and female 

(Medhurst et al., 2002) rats. Both male and female models, which involve MRMT-1 

cell inoculation into the tibia, display the gradual development of mechanical 

allodynia and progressive bone destruction. In the present study, these cells were 

implanted in male rats to avoid hormonal influences that are known to affect pain 

responses (Aloisi & Bonifazi, 2006;Cairns & Gazerani, 2009). 

 

3.2 Aim 

The primary aim of this part of the study was to comprehensively characterise 

the behaviour of a CIBP model adapted from Medhurst et al. (Medhurst et al., 2002) 

and Urch et al. (Urch et al., 2003b). Using this rat model of CIBP we investigated 

pain-related behaviours, pain-related anxiety and risk-assessment behaviours. 

 

3.3 Methods 

3.3.1 Surgical Procedure 

Experiments were carried out using male Sprague Dawley rats as detailed in 

Chapter 2; anaesthetised animals received a unilateral intra-tibial injection of 

MRMT-1 carcinoma cells (Section 2.1.2). Following injection of cells the wound 

was plugged with dental cement to confine the tumour cells within the tibial marrow 

and prevent invasion of adjacent soft tissue. Three sham-operated models were used 

throughout this study; Sham Vehicle (Sham V) model, Sham Heat-killed (Sham HK) 

and Sham Exposed (Sham E). Surgery for CIBP and all Sham models was the same 

with the following exceptions; Sham V and Sham HK animals received an intra-

tibial injection of vehicle or heat-killed MRMT-1 cells respectively, while the tibia 

was only exposed in Sham E animals (Section 2.1.2). We also examined all 

behaviours in Naïve (un-injured) animals. Three sham models were used to allow us 

to fully characterise the mechanisms behind the pain behaviours observed. This 

ensured that any identified CIBP behaviours were due to tumour growth and not due 

to periosteal or bone damage caused by surgery or by the presence of heat-killed 

cells. 
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3.3.2 Behavioural Analysis 

All animals were behaviourally assessed prior to surgery (to obtain baseline 

values) and post-surgery from Day 3-4 until Day 18-21. This model has a limited 

time frame to ensure that the tumour does not grow outside the bone and spontaneous 

fracture does not occur as a result of bone destruction. Radiographs of a subset of 

hindlimbs were collected to check this. Histological and radiological analysis of this 

model has found significant bone destruction from Day 14 onwards, with no 

evidence of local extra-osseal spread of tumour (Medhurst et al., 2002;Urch et al., 

2003b). The behavioural responses of CIBP animals were compared to baseline 

behaviours (to assess the development of CIBP-induced behavioural changes) and 

additionally compared to Sham V (to control for the effect of bone damage on 

behavioural sensitisation) and Naïve animals. To determine the impact of bone 

damage or the presence of carcinoma cells (without progressive tumour growth) on 

behavioural sensitisation we compared the responses of each Sham group to Naïve 

animals.  

   

The development of mechanical allodynia was examined using calibrated von 

Frey filaments (Section 2.3.1) and signs of movement-evoked pain were evaluated 

using both the rotarod to assess the avoidance of weight bearing on movement and 

the open field/elevated plusmaze to determine voluntary locomotor activity (Section 

2.4.1, 2.4.3 & 2.4.4). Thermal sensitivity was tested using the thermal footplate, at 

the temperatures of 10, 20, 30 and 40°C. The number of ipsilateral paw withdrawals, 

latency to the first paw withdrawal and the duration of paw elevation were recorded 

(Section 2.3.2). Animals were tested for static pain by assessing difference in weight 

bearing between hindlimbs using an incapacitance tester (Section 2.4.2) and assessed 

for the development of spontaneous pain by observation of spontaneous foot lifting 

(Section 2.5). Pain-related anxiety was analysed in the open field and on the elevated 

plusmaze. Risk assessment behaviour was analysed on the elevated plusmaze 

(Section 2.6).  

 

3.3.3 Statistical Analysis 

In each behavioural study, data were pooled for each test day, with group 
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mean shown ± SEM. For replicate measures the mean values were determined by 

calculating the mean for each animal, from which the SEM was calculated. For all 

analysis significance was set at p<0.05. Data were analysed using GraphPad Prism 

(version 5.0). The Kolmogorov-Smirnov test was used to check that data was 

normally distributed before statistical analysis was carried out. 

 

 The difference in body weight between groups was determined by a repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis. 

 

For responses to von Frey filaments, differences between ipsilateral hindlimb 

to contralateral hindlimb were determined by One-way repeated measures ANOVA 

on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis and differences 

between post-surgical and pre-surgical values were determined by One-way repeated 

measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis 

(comparing pre-surgical ipsilateral or contralateral values to each time points post-

surgical ipsilateral or contralateral values, respectively).  

 

For responses to 10°C, 20°C, 30°C or 40°C thermal footplate, differences 

between ipsilateral post-surgical and pre-surgical values for number of and latency to 

paw withdrawal and duration of paw elevation were determined by a repeated 

measures mixed-model ANOVA followed by a Bonferroni‟s post-hoc analysis 

(comparing pre-surgical ipsilateral values to each time points post-surgical ipsilateral 

values).  

 

For avoidance of weight bearing on movement, differences between 

ipsilateral post-surgical and pre-surgical values were determined by a repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis 

(comparing pre-surgical ipsilateral values to each time points post surgical ipsilateral 

values).  

 

For static weight bearing difference (difference in weight bearing between the 

ipsilateral and contralateral hindlimb), the differences between post-surgical and pre-
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surgical values were determined by a repeated measures mixed-model ANOVA 

followed by Bonferroni‟s post-hoc analysis (comparing pre-surgical ipsilateral values 

to each time points post-surgical ipsilateral values).  

 

For responses to the elevated plusmaze and the open field (differences 

between groups (CIBP, Sham V operated and Naive animals) were determined by a 

One-way ANOVA followed by Bonferroni‟s post-hoc analysis. For the elevated 

plusmaze and open field, there were several separate test sessions and only those run 

at the same time were compared. Data were not combined for separate test sessions 

of the same group as these measures of anxiety are subject to variation between tests. 

For the elevated plusmaze, the first test session involved Naive, Sham V and CIBP, 

with Sham V as the comparator for effect of CIBP on behaviours. For the open field, 

the test session involved Naive, Sham V, CIBP, with Sham V as the comparator for 

the effect of CIBP on behaviours. 

 

3.4 Results 

All animals were observed post-surgery to ensure animals maintained a 

healthy weight and did not show signs of distress. 

 

3.4.1 CIBP animals displayed normal weight gain when compared to Sham V 

and Naïve controls 

Body weight was recorded over the time course of behavioural assessment. 

CIBP animals maintained a healthy weight that was not significantly different to 

Sham V and Naïve animals (Figure 3.2). 
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Figure 3.2 Time course of body weight gain. Data shows mean body weight ± SEM 

of Naive (n=10), Sham V (n=10) and CIBP (n=10) animals. No significant difference 

in body weight was found in CIBP and Sham V animals when compared to Naïve at 

any time point. 
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 Time post-surgery (days) 

Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

CIBP 

Weight (grams) 105.1 129.3 154.0 169.7 186.8 198.7 215.9 232.6 

SEM 2.8 3.0 2.9 4.3 3.7 3.6 3.7 3.8 

Sham 

V 

Weight (grams) 102.4 125.2 150.8 170.1 191.3 203.6 224.5 243.3 

SEM 2.2 3.0 3.6 3.1 3.0 2.9 2.9 4.7 

Naive 

Weight (grams) 97.3 119.8 143.0 160.1 179.4 191.7 212.2 230.1 

SEM 3.8 4.6 5.7 6.6 6.5 7.0 7.3 7.2 

 

Table 3.1 Body weight. Data shows mean body weight ± SEM of Naive (n=10), 

Sham V (n=10) and CIBP (n=10) animals. 

 

3.4.2 Bone density analysed by radiographs of CIBP animals’ hindlimbs  

 Radiographs of the subset of hindlimbs collected showed evidence of bone 

destruction, with decreased bone density of the ipsilateral (injured) hindlimb when 

compared to the contralateral (non-injured) hindlimb observed, but no evidence of 

extra-osseal tumour growth observed (Figure 3.3). 
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Figure 3.3 Representative radiograph of CIBP hindlimbs, illustrating decreased bone 

density and increased bone destruction in ipsilateral hindlimb (arrows) compared to 

contralateral hindlimb.  

 

3.4.3 Development of mechanical allodynia in the CIBP model 

The responses to a non-noxious mechanical stimulus (von Frey filaments) 

were measured over 21 days. CIBP significantly reduced ipsilateral hindlimb paw 

withdrawal threshold (PWT) in comparison to baseline from Day 9-11 onwards 

shown by One-way repeated measures ANOVA on ranks (Friedman‟s test) followed 

by Dunn‟s post-hoc analysis, p<0.05. CIBP significantly reduced ipsilateral PWT in 

comparison to contralateral hindlimb values from Day 5-7 onwards shown by One-

way repeated measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s 

post-hoc analysis, p<0.05. Sham V and Naive animals did not show a reduction in 

ipsilateral PWT from baseline or compared to contralateral PWT (Figure 3.4). 

 

 

Ipsilateral ContralateralIpsilateral Contralateral
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Figure 3.4 Time course of CIBP-induced mechanical allodynia. Data show mean 

responses ± SEM of Naive (n=15), Sham V (n=15) and CIBP (n=13) animals. CIBP 

significantly reduced ipsilateral PWT in comparison to baseline from Day 9-11 

onwards (^; One-way repeated measures ANOVA on ranks (Friedman‟s test) 

followed by Dunn's post-hoc analysis, p<0.05). CIBP significantly reduced ipsilateral 

compared to contralateral PWT from Day 5-7 onwards (*; One-way repeated 

measures ANOVA on ranks (Friedman‟s test) followed by Dunn's post-hoc analysis, 

p<0.05). P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05, *** = <0.001, 

** = 0.001 to 0.01 and * = 0.01 to 0.05. 
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 Time post-surgery (days) 

Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

CIBP 

Ipsi 

PWT 

(grams) 
57.8 25.9 23.4 18.8 9.2 7.1 5.8 5.6 

SEM 6.6 6.5 5.5 5.4 1.1 0.6 0.6 0.5 

Con 

PWT 

(grams) 
57.8 54.2 67.6 72.2 68.6 72.2 72.2 72.2 

SEM 6.6 6.8 5.0 3.6 4.9 3.6 3.6 3.6 

Sham V 

Ipsi 

PWT 

(grams) 
53.0 49.0 47.6 46.2 32.6 39.6 57.4 52.8 

SEM 6.6 6.8 8.2 8.5 7.3 7.1 7.0 7.7 

Con 

PWT 

(grams) 
45.8 61.0 66.5 64.6 42.2 60.2 72.7 66.5 

SEM 6.7 6.7 5.0 6.1 6.5 5.9 3.1 5.0 

Naïve 

Ipsi 

PWT 

(grams) 
57.5 46.7 42.6 36.4 43.1 58.9 51.6 57.5 

SEM 7.1 6.4 7.4 6.6 7.4 7.5 7.1 7.1 

Con 

PWT 

(grams) 
62.0 57.1 59.3 55.0 47.6 58.5 60.2 65.5 

SEM 6.3 6.2 6.3 6.9 6.2 6.7 5.9 5.6 

 

Table 3.2 CIBP-induced mechanical allodynia. Data show mean responses ± SEM of 

Naive (n=15), Sham V (n=15) and CIBP (n=13) animals. 

 

3.4.4 Development of thermal sensitivity to 10°C in a CIBP model 

At 10°C, CIBP animals showed a significant increase in number of paw 

withdrawals when compared to baseline from Day 9-11 to Day 18-21. Sham V and 

Naive animals showed a significant increase in number of paw withdrawals when 

compared to baseline at Day 14-15. CIBP animals showed increased number of paw 

withdrawals compared to Sham V at Day 18-21 only. CIBP animals showed 

decreased latency to paw withdrawal compared to baseline at Day 9-11 and Day 18-

21. Only CIBP animals showed a significantly increased duration of paw elevation 

when compared to baseline at Day 14-15 and Day 18-21. CIBP animals showed 

increased duration of paw elevation when compared to Sham V at Day 14-15 and 



 79 

Day 18-21 (Figure 3.5). All shown by repeated measures mixed-model ANOVA 

followed by Bonferroni‟s post-hoc analysis, p<0.05 
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Figure 3.5 Thermal sensitivity to 10°C. Data show mean responses ± SEM of Naive 

(n=8), Sham V (n=8) and CIBP (n=8) animals. A) CIBP animals showed 

significantly increased ipsilateral paw withdrawal when compared to baseline from 

Day 9-11 onwards, Sham V and Naive showed significantly increased ipsilateral paw 

withdrawal when compared to baseline at Day 14-15  (^, * and #, respectively; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). CIBP animals showed significantly increased ipsilateral paw 

withdrawal when compared to Sham V at Day 18-21 only (+; repeated measures 

mixed-model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). B) CIBP 

animals showed decreased latency to paw withdrawal when compared to baseline at 



 80 

Day 9-11 and Day 18-21 (^; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). CIBP animals did not show significantly 

altered latency to paw withdrawal when compared to Sham V. C) CIBP animals 

showed significantly increased duration of paw elevation when compared to baseline 

at Day 14-15 onwards (^; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). CIBP showed significantly increased 

duration of paw elevation at Day 14-15 and Day 18-21 (+; repeated measures mixed-

model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). P values ^^^ = 

<0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05, * = 0.01 to 0.05 and 
+++

 = <0.001. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 18-21 

N
u
m

b
e
r 

CIBP 

 

Number 0.5 1.0 1.6 2.0 2.3 3.5 2.8 

SEM 0.3 0.4 0.4 0.4 0.4 1.1 0.5 

Sham V 
Number 1.0 0.8 1.3 1.0 0.9 2.4 0.6 

SEM 0.3 0.2 0.5 0.3 0.4 0.4 0.3 

Naïve 

 

Number 0.4 0.6 0.3 0.1 0.3 2.0 0.5 

SEM 0.3 0.3 0.2 0.1 0.2 0.4 0.4 

L
a
te

n
c
y
 

 

CIBP 

 

Latency 116.0 92.3 61.8 48.1 70.0 71.0 49.9 

SEM 17.5 21.3 16.8 17.5 10.6 23.3 12.1 

Sham V 
Latency 94.4 106.9 77.8 86.1 105.9 70.1 104.5 

SEM 15.8 15.1 22.0 20.7 20.3 14.0 20.0 

Naïve 

 

Latency 131.4 110.4 120.6 144.0 119.9 85.0 135.8 

SEM 12.7 16.2 19.3 6.0 19.7 15.6 14.3 

D
u
ra

ti
o
n

 

CIBP 
Duration 0.0 2.3 0.0 3.5 3.1 40.3 45.4 

SEM 0.0 1.5 0.0 2.1 1.6 17.9 21.0 

Sham V 
Duration 0.0 0.5 0.0 0.4 0.0 0.0 0.0 

SEM 0.0 0.5 0.0 0.4 0.0 0.0 0.0 

Naive 
Duration 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 3.3 Thermal sensitivity to 10°C showing number of paw withdrawals, latency 

to paw withdrawal and duration of paw elevation. Data show mean responses ± SEM 

of Naive (n=8), Sham V (n=8) and CIBP (n=8) animals. 

 

3.4.5 Development of thermal sensitivity to 20°C in the CIBP model 

At 20°C, CIBP animals showed a significant increase in number of paw 

withdrawals when compared to baseline from Day 12-13 to Day 18-21 and Sham V 

animals showed an increase in number of paw withdrawals when compared to 

baseline at Day 3-4 only. CIBP animals showed increased number of paw 
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withdrawals compared to Sham V from day 12-13. CIBP animals showed decreased 

latency to paw withdrawal at Day 3-4 and from Day 14-15 to Day 18-21 when 

compared to baseline and Sham V animals also showed a decrease in latency to paw 

withdrawal at Day 5-7 and Day 16-17. CIBP animals showed decreased latency to 

paw withdrawal when compared to Sham V at Day 16-17 and Day 18-21. CIBP 

animals showed significantly increased duration of paw elevation when compared to 

baseline from Day 14-15 onwards. CIBP animals showed increased duration of paw 

elevation when compared to Sham V at Day 16-17 and Day 18-21. All shown by a 

repeated measures mixed-model ANOVA followed by Bonferroni‟s post-hoc 

analysis, p<0.05 (Figure 3.6). 
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Figure 3.6 Thermal sensitivity to 20°C. Data show mean responses ± SEM of Naive 

(n=10), Sham V (n=10) and CIBP (n=7) animals. A) CIBP animals showed 
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significantly increased ipsilateral paw withdrawal when compared to baseline from 

Day 12-13 onwards, Sham V showed significantly increased ipsilateral paw 

withdrawal when compared to baseline at Day 3-4  (^ and *, respectively; repeated 

measures mixed-model ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). CIBP animals showed significantly increased ipsilateral paw withdrawal 

when compared to Sham V from Day 12-13 onwards (+ repeated measures mixed-

model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). B) CIBP 

animals showed decreased latency to paw withdrawal when compared to baseline at 

Day 3-4 and from Day 14-15 onwards, Sham V showed decreased latency to paw 

withdrawal when compared to baseline at Day 5-7 and Day 16-17 (^ and *, 

respectively; repeated measures mixed-model ANOVA followed by Bonferroni's 

post-hoc analysis, p<0.05). CIBP animals showed a significant increase in latency to 

paw withdrawal when compared to Sham V at Day 16-17 and Day 18-21 (+; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). C) CIBP animals showed significantly increased duration of paw 

elevation when compared to baseline at Day 14-15 onwards (^; repeated measures 

mixed-model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP 

animals showed significantly increased duration of paw elevation at Day 16-17 and 

Day 18-21 (+; repeated measures mixed-model ANOVA followed by Bonferroni's 

post-hoc analysis, p<0.05). P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 

0.05, * = 0.01 to 0.05, 
+++

 = <0.001, 
++

 = 0.001 to 0.01 and 
+
 = 0.01 to 0.05. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

N
u
m

b
e
r 

CIBP 

 

 0.6 1.4 0.6 1.3 2.1 3.0 3.9 4.6 

SEM 0.3 0.4 0.3 0.4 0.6 0.4 0.6 0.4 

Sham V 
 0.2 1.4 1.2 1.1 0.6 1.1 0.8 0.7 

SEM 0.1 0.6 0.3 0.4 0.3 0.3 0.1 0.3 

Naïve 

 

 0.4 0.5 1.2 0.8 0.7 0.7 0.7 0.3 

SEM 0.2 0.2 0.5 0.3 0.4 0.2 0.3 0.2 

L
a
te

n
c
y
 

 

CIBP 

 

 125.9 52.0 114.7 86.1 73.3 42.0 23.1 15.0 

SEM 11.9 18.0 18.8 19.1 13.5 7.0 4.6 4.2 

Sham V 
 136.8 105.7 85.1 99.2 120.2 98.6 89.2 116.1 

SEM 9.2 13.3 15.0 15.9 13.2 14.0 14.7 13.7 

Naïve 

 

 124.4 123.2 105.6 113.1 115.5 116.3 105.7 131.1 

SEM 14.3 14.3 16.5 13.1 14.2 13.4 15.0 10.8 

D
u
ra

ti
o
n

 

CIBP 
 0.4 1.1 0.0 2.6 2.6 14.9 81.3 59.1 

SEM 0.4 0.7 0.0 2.6 2.1 9.1 16.8 14.4 

Sham V 
 0.0 1.2 0.8 0.7 0.4 0.6 0.0 0.6 

SEM 0.0 1.2 0.8 0.5 0.4 0.6 0.0 0.4 

Naive 
 0.0 0.0 1.3 0.0 0.0 0.5 0.0 0.0 

SEM 0.0 0.0 1.3 0.0 0.0 0.5 0.0 0.0 

 

Table 3.4 Thermal sensitivity to 20°C showing number of paw withdrawals, latency 

to paw withdrawal and duration of paw elevation. Data show mean responses ± SEM 

of Naive (n=10), Sham V (n=10) and CIBP (n=7) animals. 

 

3.4.6 Development of thermal sensitivity to 30°C in the CIBP model 

At 30°C, CIBP animals showed a significant increase in number of paw 

withdrawals when compared to baseline at Day 5-7 and Day 14-15 to Day 18-21, 

which was also observed in Sham V animals at Day 14-15. CIBP animals showed 

decreased latency to paw withdrawal when compared to baseline at Day 5-7 and Day 
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18-21. CIBP animals showed significantly increased duration of paw elevation when 

compared to baseline at Day 18-21. CIBP animals showed increased duration of paw 

elevation when compared to Sham V at Day 18-21. All shown by a repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis, p<0.05 

(Figure 3.7).  
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Figure 3.7 Thermal sensitivity to 30°C. Data show mean responses ± SEM of Naive 

(n=8), Sham V (n=8) and CIBP (n=8) animals. A) CIBP animals showed 

significantly increased ipsilateral paw withdrawal when compared to baseline at Day 

5-7 and from Day 14-15 onwards, Sham V showed significantly increased ipsilateral 

paw withdrawal when compared to baseline at Day 14-15  (^ and *, respectively; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). CIBP animals did not show a significant difference in ipsilateral 
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paw withdrawal when compared to Sham V. B) CIBP animals showed decreased 

latency to paw withdrawal when compared to baseline at Day 5-7 and Day 18-21 (^; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). CIBP animals did not show significantly altered latency to paw 

withdrawal when compared to Sham V. C) CIBP animals showed significantly 

increased duration of paw elevation when compared to baseline at Day 18-21 (^; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). CIBP animals showed significantly increased duration of paw 

elevation at Day 18-21 only (+; repeated measures mixed-model ANOVA followed 

by Bonferroni's post-hoc analysis, p<0.05). P values ^^^ = <0.001, ^^ = 0.001 to 

0.01, ^ = 0.01 to 0.05, * = 0.01 to 0.05 and 
+++

 = <0.001. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 18-21 

N
u
m

b
e
r 

CIBP 

 

Number 0.3 0.5 1.3 0.6 0.6 1.0 1.4 

SEM 0.2 0.3 0.3 0.2 0.2 0.3 0.4 

Sham V 
Number 0.4 0.4 0.9 1.0 0.0 1.1 0.5 

SEM 0.2 0.2 0.4 0.3 0.0 0.2 0.3 

Naïve 

 

Number 0.0 0.4 0.3 0.1 0.0 0.5 0.1 

SEM 0.0 0.2 0.2 0.1 0.0 0.3 0.1 

L
a
te

n
c
y
 

 

CIBP 

 

Latency 131.3 120.1 70.6 107.3 107.5 109.8 62.4 

SEM 
14.6 19.6 19.8 15.0 13.6 10.9 19.9 

Sham V 
Latency 120.0 119.1 79.3 73.6 150.0 91.3 115.9 

SEM 16.9 18.1 21.0 22.7 0.0 12.1 17.1 

Naïve 

 

Latency 150.0 131.1 126.0 144.0 150.0 127.6 135.3 

SEM 0.0 11.2 16.8 6.0 0.0 11.0 14.8 

D
u
ra

ti
o
n

 

CIBP 
Duration 0.0 0.6 0.4 2.8 2.5 16.4 59.9 

SEM 0.0 0.6 0.4 1.5 1.3 6.5 23.2 

Sham V 
Duration 0.0 0.0 0.0 0.9 0.0 1.0 1.3 

SEM 0.0 0.0 0.0 0.9 0.0 1.0 0.8 

Naive 
Duration 0.0 1.3 0.0 0.0 0.0 0.0 0.0 

SEM 0.0 1.3 0.0 0.0 0.0 0.0 0.0 

 

Table 3.5 Thermal sensitivity to 30°C showing number of paw withdrawals, latency 

to paw withdrawal and duration of paw elevation. Data show mean responses ± SEM 

of Naive (n=8), Sham V (n=8) and CIBP (n=8) animals. 

 

3.4.7 Development of thermal sensitivity to 40°C in a CIBP model 

At 40°C, CIBP animals showed a significant increase in number of paw 

withdrawals when compared to baseline from Day 12-13 to Day 18-21 that was also 

noted in Sham V animals at Day 3-4 to Day 9-11. CIBP animals showed increased 

number of paw withdrawals compared to Sham V from Day 12-13 onwards. CIBP 
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animals showed decreased latency to paw withdrawal when compared to baseline at 

Day 12-13 and from Day 16-17 onwards. CIBP animals showed decreased latency to 

paw withdrawal when compared to Sham V at day 16-17 and Day 18-21. CIBP 

animals showed significantly increased duration of paw elevation when compared to 

baseline from Day 12-13 onwards and when compared to Sham V from Day 12-13 

onwards. CIBP animals showed increased duration of paw elevation when compared 

to Sham V from Day 12-13 onwards. All shown by a repeated measures mixed-

model ANOVA followed by Bonferroni‟s post-hoc analysis, p<0.05 (Figure 3.8).  
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Figure 3.8 Thermal sensitivity to 40°C.  Data show mean responses ± SEM of Naive 

(n=15), Sham V (n=15) and CIBP (n=13) animals. A) CIBP showed significantly 

increased ipsilateral paw withdrawal when compared to baseline at Day 12-13 
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onwards, Sham V animals showed significantly increased ipsilateral paw withdrawal 

at Day 3-4, 5-7 and 9-11  (^ and *, respectively; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP animals showed 

significantly increased ipsilateral paw withdrawal when compared to Sham V at day 

12-13 to Day 18-21 (+; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). B) CIBP animals showed decreased latency 

to paw withdrawal at Day 12-13, 16-17 and 18-21 (^; repeated measures mixed-

model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP animals 

showed a significant increase in latency to paw withdrawal when compared to Sham 

V at Day 12-13, Day 16-17 and Day 18-21 (+; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). C) CIBP animals 

showed significantly increased duration of paw elevation when compared to baseline 

from Day 12-13 onwards (^; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). CIBP animals showed significantly 

increased duration of paw elevation when compared to Sham V from Day 12-13 

onwards (+; repeated measures mixed-model ANOVA followed by Bonferroni's 

post-hoc analysis, p<0.05). P values ^^^ = <0.001, ^ = 0.01 to 0.05, ** = 0.001 to 

0.01, * = 0.01 to 0.05, 
+++

 = <0.001, 
++

 = 0.001 to 0.01 and 
+
 = 0.01 to 0.05. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

N
u
m

b
e
r 

CIBP 

 

 0.7 0.8 1.1 1.4 2.1 2.3 3.0 3.3 

SEM 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 

Sham V 
 0.4 1.4 1.5 1.5 0.9 0.7 0.7 0.6 

SEM 0.1 0.3 0.3 0.3 0.3 0.2 0.2 0.2 

Naïve 

 

 0.7 1.4 0.6 0.9 0.3 0.3 0.3 0.4 

SEM 0.2 0.3 0.3 0.3 0.1 0.1 0.2 0.2 

L
a
te

n
c
y
 

 

CIBP 

 

 108.1 113.9 91.3 74.1 55.9 68.1 29.2 29.0 

SEM 
13.2 11.5 15.2 13.1 10.8 11.7 5.4 6.6 

Sham V 
 116.5 89.6 83.0 82.2 108.1 96.4 109.3 95.5 

SEM 11.9 13.7 14.3 11.8 11.9 15.3 13.3 14.4 

Naïve 

 

 117.2 83.1 109.7 94.9 128.7 120.2 136.6 126.9 

SEM 11.9 12.4 13.9 13.2 10.8 12.9 8.0 10.8 

D
u
ra

ti
o
n

 

CIBP 
 0.0 0.0 0.4 0.5 15.9 22.2 56.5 66.6 

SEM 0.0 0.0 0.4 0.3 8.7 9.4 12.2 12.4 

Sham V 
 0.0 2.1 0.3 0.3 0.0 1.1 0.2 0.0 

SEM 0.0 1.3 0.3 0.3 0.0 0.7 0.2 0.0 

Naive 
 0.6 1.1 1.5 0.2 0.0 0.2 0.7 0.1 

SEM 0.4 0.5 1.2 0.2 0.0 0.2 0.6 0.1 

 

Table 3.6 Thermal sensitivity to 40°C showing number of paw withdrawals, latency 

to paw withdrawal and duration of paw elevation. Data show mean responses ± SEM 

of Naive (n=15), Sham V (n=15) and CIBP (n=13) animals. 

 

3.4.8 Development of avoidance of weight bearing on movement and static 

weight bearing difference in CIBP animals 

Movement-evoked pain was assessed using the rotarod to measure the 

number of weight bearing (ipsilateral hindlimb only) on movement at a constant 

speed over a set test period. This method of counting the number of avoidances of 

weight bearing allowed us to quantify the extent of movement-evoked pain in this 

model. Due to the repeated testing involved we decided not to measure latency to fall 
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as an indicator of movement-evoked pain, as repeatedly falling off the rotarod could 

impact on both the welfare of the animal and the sensitivity of this assay. CIBP 

animals showed a significant increase in avoidance of weight bearing on movement 

compared to baseline from Day 5-7 onwards and Sham V animals showed a 

significant increase in avoidance of weight bearing on movement compared to 

baseline at Day 9-11 and Day 12-13. CIBP animals showed a significant increase in 

avoidance of weight bearing on movement when compared to Sham V from Day 12-

13. Naïve animals did not display any signs of avoidance of weight bearing on 

movement at any time point. The static weight bearing of both hindlimbs was 

assessed and CIBP animals showed a significant increase in static weight bearing 

difference from Day 12-13 onwards, which was not observed in Sham V or Naïve 

animals. CIBP animals showed a significant increase in static weight bearing 

difference when compared to Sham V from Day 12-13 onwards. All shown by 

repeated measures mixed-model ANOVA followed by Bonferroni‟s post-hoc 

analysis, p<0.05 (Figure 3.9).  
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Figure 3.9 A) Movement-evoked pain. Data show mean responses ± SEM of Naive 

(n=10), Sham V (n=10) and CIBP (n=10) animals. CIBP animals showed 

significantly increased avoidance of weight bearing on movement in comparison to 

baseline from Day 5-7 onwards. Sham V animals showed significantly increased 
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avoidance of weight bearing on movement when compared to baseline at Day 9-11 

and 12-13 (^ and *, respectively; repeated measures mixed-model ANOVA followed 

by Bonferroni's post-hoc analysis, p<0.05). CIBP animals showed increased 

avoidance of weight bearing compared to Sham V at Day 12-13 onwards (+; repeated 

measures mixed-model ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). B) Weight bearing difference between hindlimbs. Data show mean 

responses ± SEM of Naive (n=14), Sham V (n=15) and CIBP (n=13) animals. CIBP 

animals showed a significant increase in static weight bearing difference when 

compared to baseline from Day 12-13 onwards (^; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP animals showed 

a significant increase in static weight bearing difference when compared to Sham V 

from Day 12-13 onwards (+; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). P values ^^^ = <0.001, ** = 0.001 to 0.01, * 

= 0.01 to 0.05, 
+++

 = <0.001. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

M
o
v
e
m

e
n
t-

e
v
o

k
e

d
 

CIBP 

 

Number 0.5 1.7 2.9 4.0 7.0 9.4 13.7 17.6 

SEM 0.2 0.4 0.5 0.8 0.9 1.2 1.1 0.8 

Sham V 
Number 0.4 1.5 2.0 3.3 2.7 1.8 0.7 0.9 

SEM 0.2 0.3 0.5 0.6 0.4 1.1 0.3 0.3 

Naïve 

 

Number 0.6 0.3 0.9 0.5 1.2 0.5 0.2 0.6 

SEM 0.3 0.2 0.5 0.3 0.5 0.3 0.1 0.5 

W
e
ig

h
t 

b
e

a
ri
n

g
 

 

CIBP 

 

WBD 

(grams) 0.7 3.6 3.2 8.2 27.8 51.8 65.6 68.2 

SEM 1.0 2.5 2.8 2.7 5.3 6.5 7.7 6.0 

Sham V 

WBD 

(grams) 
0.8 5.6 5.6 10.9 3.8 1.1 -0.7 -0.4 

SEM 0.9 2.6 2.4 2.7 2.0 4.2 2.7 2.1 

Naïve 

 

WBD 

(grams) 

-0.2 2.3 0.3 2.3 -1.4 1.7 -0.2 -1.3 

SEM 0.7 1.2 1.3 1.4 2.7 2.6 2.1 2.0 

 

Table 3.7 Movement-evoked pain showing number of avoidances of weight bearing 

on movement. Data show mean responses ± SEM of Naive (n=10), Sham V (n=10) 

and CIBP (n=10) animals. Weight bearing difference between hindlimbs showing 

weight bearing difference between hindlimbs (WBD). Data show mean responses ± 

SEM of Naive (n=14), Sham V (n=15) and CIBP (n=13) animals. 

 

To further understand the impact of CIBP on movement-related pain we 

examined the total distance travelled, average speed and number of rearings in the 

open field and the number of rearings was also measured in the elevated plusmaze. 

These behaviours were used to assess voluntary locomotor activity in all groups. 

 

3.4.9 Effect of CIBP on voluntary locomotor activity measures in the open field 

and elevated plusmaze 

CIBP (7.3 ± 0.5) and Sham V (6.6 ± 0.7) animals showed a significant 

reduction in total distance travelled in the open field when compared to Naive 
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animals (9.5 ± 0.5) and there was no significant difference in total difference 

travelled between CIBP and Sham V animals. CIBP (0.02 ± 0.001) and Sham V 

(0.02 ± 0.002) animals also showed a significant reduction in average speed in the 

open field when compared to Naive animals (0.03 ± 0.002) and there was no 

significant difference in the average speed of CIBP and Sham V animals. CIBP (18.7 

± 3.4) and Sham V (19.5 ± 2.4) animals showed a significant reduction in the number 

of rearings in the open field when compared to Naïve (31.7 ± 2.7) animals and there 

was no significant difference in the number of rearings in the open field between 

CIBP and Sham V animals. The number of rearings on the elevated plusmaze was 

significantly decreased in CIBP (14.7 ± 2.9) animals only when compared to Naïve 

(25.4 ± 2.9) animals and there was no significant difference in the number of rearings 

in the elevated plusmaze between CIBP and Sham V (21.3 ± 2.5) animals (Figure 

3.10). All shown by a One-way ANOVA followed by Bonferroni‟s post-hoc 

analysis, p<0.05. 
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Figure 3.10 Analysis of voluntary locomotor activity measures in the in open field 

and elevated plusmaze. Data show mean responses ± SEM of Naive (n=10), Sham V 

(n=10) and CIBP (n=10) animals. A) CIBP and Sham V animals showed a decrease 

in distance travelled in the open field when compared to Naive (^ and *, respectively; 

One-way ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP did 

not alter distance travelled when compared to Sham  V. B) CIBP and Sham V 

animals showed a decrease in average speed in the open field when compared to 

Naive ( ^ and *, respectively; One-way ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). CIBP did not alter average speed when compared to  Sham  V. C) 

CIBP and Sham V animals showed a decrease in number of rearings in the open field 

when compared to Naive (* and ^, respectively; One-way ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05, respectively). CIBP did not alter the number 

of rearings when compared to Sham V. D) CIBP animals showed a significant 

decrease in number of rearings on the elevated plusmaze when compared to Naive 
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(*; One-way ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP did 

not alter number of rearings when compared to Sham V. P values ^ = 0.01 to 0.05, ** 

= 0.001 to 0.01 and * = 0.01 to 0.05. 

 

3.4.10 Effect of CIBP on non-evoked spontaneous foot lifting behaviour 

Non-evoked spontaneous foot lifting may be a behavioural correlate of 

spontaneous pain (Djouhri et al., 2006). CIBP animals displayed significantly 

increased non-evoked spontaneous foot lifting behaviour when compared to baseline 

at Day 12-13 onwards. CIBP animals showed a significant increase in spontaneous 

foot lifting when compared to Sham V from day 14-15 onwards. Sham V and Naïve 

animals did not show significant spontaneous foot lifting when compared to baseline. 

All shown by a repeated measures mixed-model ANOVA followed by Bonferroni‟s 

post-hoc analysis, p<0.05 (Figure 3.11.A). The number of animals displaying 

spontaneous foot lifting was increased in CIBP animals, when compared to Sham V 

and Naïve animals (Figure 3.11.B).  
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Figure 3.11 Spontaneous foot lifting. Data show mean responses ± SEM of Naive 

(n=15), Sham V (n=15) and CIBP (n=13) animals. A) Time course of spontaneous 

foot lifting behaviour. CIBP animals showed a significant increase in spontaneous 

foot lifting when compared to baseline at Day 12-13 onwards (^; repeated measures 



 97 

mixed-model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). CIBP 

animals showed a significant increase in spontaneous foot lifting compared to Sham 

V at Day 14-15 onwards (+; repeated measures mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). B) Spontaneous foot lifting of individual 

animals. P values ^^^ = <0.001, ^ = 0.01 to 0.05, and 
+++

 = <0.001. 

 

 Time post-surgery (days) 

Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

CIBP 

SFL 

(seconds) 
0.1 29.3 46.5 21.4 43.3 72.3 156.9 129.6 

SEM 0.1 12.9 20.5 9.1 13.5 20.8 32.8 31.3 

Sham V 

SFL 

(seconds) 
0.1 3.5 3.0 7.0 3.2 6.0 2.4 3.8 

SEM 0.1 2.3 2.1 2.9 1.1 4.3 1.3 1.5 

Naive 

SFL 

(seconds) 
0.4 2.3 1.3 0.5 3.7 3.7 1.0 0.0 

SEM 0.4 2.1 1.0 0.3 2.0 2.2 0.7 0.0 

 

Table 3.8 Spontaneous foot lifting (SFL). Data show mean responses ± SEM of 

Naive (n=15), Sham V (n=15) and CIBP (n=13) animals. 

 

The open field is used to assess anxiety in the rodent. The underlying 

principle of this test is based upon the natural aversion of rodents to unprotected, 

open spaces. A reduction in time spent in the centre zone of the open field may 

reflect an anxious-like state, which we used to assess pain-related anxiety in the 

CIBP model. Grooming behaviour in the open field is also used to assess anxiety. 

Grooming behaviour is an important part of rodent behaviour and consists of several 

stages including licking the paws, washing movements over the head, fur licking and 

tail/genitals cleaning (Berridge & Aldridge, 2000). Mild stress such as exposure to a 

novel environment is  known to induce grooming in rats (Jolles et al., 1979). The 

elevated plusmaze is based on the natural aversion to open spaces but with the 

additional element of elevation. The elevated plusmaze has been validated for both 
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anxiolytic and anxiogenic compounds (Pellow et al., 1985). A reduction of time 

spent on the open arms of the elevated plusmaze may reflect anxiety and in this CIBP 

model, pain-related anxiety. The stretch attend posture is an exploratory body posture 

where the animal stretches without walking forward and is regarded as a risk 

assessment behaviour. The concept of risk assessment is derived from research on 

anti-predator defence in rats and refers to a typical pattern of investigation (scanning, 

stretch attend, flat back approach) that is seen in potentially dangerous situations 

(Blanchard et al., 1990). 

 

3.4.11 Effect of CIBP on anxiety-like behaviours in the open field  

 In the open field, the following parameters; time spent in the centre zone, 

number of entries to the centre zone, latency to enter centre zone, number of 

groomings and time spent grooming, did not significantly alter in CIBP when 

compared to Sham V or Naive animals (Figure 3.12).  
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Figure 3.12 Anxiety-like behaviours in open field. Data show mean responses ± 

SEM of Naive (n=10), Sham V (n=10) and CIBP (n=10) animals. A-E) CIBP 

animals did not show altered time spent in the centre zone, number of entries to the 
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centre zone, latency to enter the centre zone, number of groomings or time spent 

grooming in the open field when compared to Sham V or Naïve animals. 

 

3.4.12 Effect of CIBP on anxiety-like behaviours and risk assessment behaviours 

on the elevated plusmaze  

The elevated plusmaze was used to assess anxiety and risk assessment 

behaviours. A reduction of time spent on the open arm may reflect anxiety and, in the 

CIBP model, pain-related anxiety. Grooming behaviour, which may increase during 

stress, was also analysed (Jolles et al., 1979). The number of protected stretch attends 

were recorded as risk assessment behaviour. CIBP did not significantly alter time 

spent on the open arms, grooming behaviour and number of protected stretch attends 

on the elevated plusmaze when compared to Sham V or Naive animals (Figure 3.13). 
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Figure 3.13 Anxiety-like behaviours and risk assessment behaviours on the elevated 

plusmaze. Data show mean responses ± SEM of Naive (n=10), Sham V (n=10) and 
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CIBP (n=10) animals. A-C) Time spent on the open arm, number of groomings and 

number of protected stretch attends was not altered in CIBP when compared to Sham 

V or Naïve animals. 

 

3.4.13 Comparison of Sham models, Sham V, Sham HK and Sham E 

behavioural sensitisation to Naïve animals 

 The development of mechanical allodynia in Sham V, Sham E, Sham HK and 

Naive animals was not apparent, with no significant reductions in ipsilateral PWT 

when compared to baseline or contralateral PWT (Figure 3.14.A and 3.14.B). 

Interestingly Sham V animals showed evidence of movement-evoked pain at Day 9-

11 to Day 12-13 with a significant increase in avoidance of weight bearing on 

movement compared to baseline (0.4 ± 0.2 versus 1.9 ± 0.5, 3.3 ± 0.6 and 2.7 ± 0.4), 

shown by a repeated measures mixed-model ANOVA followed by Bonferroni‟s 

post-hoc analysis, p<0.05. Such increases in avoidance of weight bearing on 

movement were not observed in Naive, Sham HK or Sham E animals when 

compared to baseline (Figure 3.14.C). 

 

Sham V animals showed an increase in thermal sensitivity to 40°C at Day 3-4 

to Day 9-11 with a significant increase in number of paw withdrawals when 

compared to baseline (0.4 ± 0.1 versus 1.4 ± 0.3, 1.5 ± 0.3 and 1.5 ± 0.3), shown by 

repeated measures mixed-model ANOVA followed by Bonferroni‟s post-hoc 

analysis, p<0.05.  The number of paw withdrawals to 40°C did not alter in Naive, 

Sham HK or Sham E animals when compared to baseline (Figure 3.14.D). 

 

Spontaneous foot lifting was only significantly increased in Sham HK at Day 

3-4 to Day 9-11 compared to baseline (0 ± 0 versus 27.8 ± 17.4, 17.4 ± 17.4 and 23.2 

± 14.4), shown by repeated measures mixed-model ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05. Spontaneous foot lifting was not 

significantly different in Sham V, Sham E or Naive animals when compared to 

baseline (Figure 3.14.E).  
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Figure 3.14 Behavioural sensitisation of Sham-operated models. A+B) Mechanical 

allodynia. Data show mean responses ± SEM of Naive (n=15), Sham V (n=15) Sham 

E (n=15) and Sham HK (n=5) animals.  PWT of the ipsilateral hindlimb was not 

significantly different when compared to contralateral PWT or when compared to 

baseline. C) Movement-evoked pain. Data show mean responses ± SEM of Naïve 

(n=10), Sham V (n=10), Sham HK (n=5) and Sham E (n=5) animals. Avoidance of 



 103 

weight bearing on movement was increased in Sham V animals at Day 5-7, 9-11 and 

12-13 when compared to baseline (*; repeated measures mixed-model ANOVA 

followed by Bonferroni's post-hoc analysis, p<0.05). Avoidance of weight bearing on 

movement was not changed in Naive, Sham HK or Sham E when compared to 

baseline. D) Thermal sensitivity to 40°C. Data show mean responses ± SEM of 

Naïve (n=15), Sham V (n=15), Sham HK (n=5) and Sham E (n=5). Number of paw 

withdrawals to 40°C is significantly increased at Day 3-4, 5-7 and 9-11 in Sham V 

animals when compared to baseline (*; repeated measures mixed-model ANOVA 

followed by Bonferroni's post-hoc analysis, p<0.05). Number of paw withdrawals 

did not alter in Naive, Sham HK or Sham E animals when compared to baseline. E) 

Spontaneous foot lifting (SFL). Data show mean responses ± SEM of Naïve (n=15), 

Sham V (n=15), Sham HK (n=5) and Sham E (n=15) animals. SFL was significantly 

increased in Sham HK animals at Day 3-4, 5-7 and 9-11 when compared to baseline 

(*; repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). SFL was not altered in Naive, Sham V or Sham E animals when 

compared to baseline. P values *** = <0.001, ** = 0.001 to 0.01 and * = 0.01 to 

0.05. 

 

3.4.14 Behavioural sensitisation is not apparent in the Sham models, Sham V, 

Sham HK or Sham E at Day 18-21 when compared to Naïve animals 

We examined the behavioural sensitisation of the Sham models compared to 

Naïve and CIBP animals at Day 18-21, when pharmacological agent profiling or 

anxiety tests in CIBP animals were conducted, to ensure that behavioural responses 

observed in CIBP animals were a result of tumour growth. Mechanical allodynia, 

movement-evoked pain, thermal sensitivity to 40°C and spontaneous foot lifting 

were not altered at Day 18-21 in Sham V, Sham HK or Sham E when compared to 

Naïve animals. Mechanical allodynia, movement-evoked pain, thermal sensitivity to 

40°C and spontaneous foot lifting were significantly increased in CIBP animals 

when compared to Naive animals (Figure 3.15).  
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Figure 3.15 Behavioural sensitisation at Day 18-21. A) Mechanical allodynia. Data 

show mean responses ± SEM of Naïve (n= 15), Sham V (n=15), Sham E (n=15), 

Sham HK (n=5) and CIBP (n=13) animals. Ipsilateral PWT of Sham V, Sham E and 

Sham HK animals was not significantly different when compared to Naïve animals. 

Ipsilateral PWT of CIBP animals was significantly decreased when compared to 

Naïve animals (***; One-way ANOVA on ranks (Friedman‟s test) followed by 

Dunn‟s post-hoc analysis, p<0.001). B) Movement-evoked pain. Data show mean 

responses ± SEM of Naïve (n=10), Sham V (n=10), Sham E (n=5), Sham HK (n=5) 

and CIBP (n=10) animals. Avoidance of weight bearing on movement of Sham V, 

Sham E and Sham HK animals was not significantly different when compared to 

Naïve animals. Avoidance of weight bearing on movement of CIBP animals was 

significantly increased when compared to Naïve animals (***; One-way ANOVA 
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followed by Dunnet‟s post-hoc analysis, p<0.001). C) Thermal sensitivity at 40°C. 

Data show mean responses ± SEM of Naïve (n=15), Sham V (n=15), Sham E (n=5), 

Sham HK (n=5) and CIBP (n=13) animals. The number of paw withdrawals of Sham 

V, Sham E and Sham HK animals was not significantly different when compared to 

Naïve animals. In CIBP animals, the number of paw withdrawals is significantly 

increased when compared to Naïve animals (***; One-way ANOVA followed by 

Dunnett‟s post-hoc analysis, p<0.001). D) Spontaneous foot lifting. Data show mean 

responses ± SEM of Naïve (n=10), Sham V (n=10), Sham E (n=15), Sham HK (n=5) 

and CIBP (n=13) animals. Spontaneous foot lifting in Sham V, Sham E and Sham 

HK animals was not significantly different when compared to Naïve animals. In 

CIBP animals, spontaneous foot lifting was significantly increased when compared 

to Naive animals (**; One-way ANOVA followed by Dunnett‟s post-hoc analysis, 

p= 0.001 to 0.01). 

 

3.5 Discussion 

 This rat model of CIBP is adapted from the original mouse model by Schwei 

et al. The mouse model resulted in extensive tumour-induced destruction of the bone 

and as the tumour progressed mice exhibited pain-related behaviour in the form of 

guarding of the affected limb and severe acute pain to normally non-noxious 

palpitation of the affected bone (Schwei et al., 1999). These pain-related behaviours, 

illustrating tactile alloynia and spontaneous pain, are in parallel with the clinical 

condition (Honore et al., 2000). One advantage of adapting this model to the rat is 

that the mouse model involves a surgical procedure in which a patellar arthotomia 

and partial alteration of the knee joint occurs during innoculation of the femur. This 

may result in damage to the knee and lead to impaired locomotion and therefore 

biases in the behavioural results in the mouse model. In contrast, during inoculation 

of the tibial bone in the rat model all joints remain intact. The rat model has been 

developed as a suitable model for studying therapeutic intervention of CIBP 

(Medhurst et al., 2002) and therefore should be useful for translating results to the 

clinical setting.  
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Medhurst et al. measured bone mineral density (BMD) and bone mineral 

content (BMC) to quantify the extent of bone destruction of the tibia of female rats 

injected with MRMT-1 cells (Medhurst et al., 2002). Results showed that MRMT-1 

cells caused a significant decrease in BMD and BMC in CIBP animals when 

compared to Sham animals. The authors concluded  that MRMT-1 cells produced a 

mixed type of bone lesion with eroded cortical bone and spiny bone formation 

around the periosteum (Medhurst et al., 2002).  However, another study showed that 

in the tibia of male rats injected with MRMT-1 there is no alteration in BMC and 

BMD (Urch et al., 2003b). Dore-Savard et al. recently investigated bone destruction 

using micro X-ray computed tomography in a model using MRMT-1 cells injected 

into the femur of male rats. These results show a significant decrease in bone density 

and extra-femoral spiny bone formation was also observed (Dore-Savard et al., 

2010). 

 

3.5.1 This CIBP rat model develops sensory hypersensitivity and spontaneous 

foot lifting 

Our observations demonstrate that this model of CIBP develops behaviours 

that may be indicative of mechanical allodynia, thermal sensitivity, movement-

evoked pain, ongoing pain and spontaneous pain. These results are consistent with 

previous studies in this model where the following pain-related behaviours were 

observed; weight bearing difference between hindlimbs (Medhurst et al., 2002), 

mechanical allodynia and ambulatory pain on the rotarod (Donovan-Rodriguez et al., 

2004a). The rotarod has been used to assess movement-evoked pain, for example by 

grading the response or assessing the latency to fall from the rotarod (Urch et al., 

2003b). As detailed above, to prevent damage to the injured hindlimb we did not use 

latency to fall as a measure of movement-evoked pain. We quantified movement-

evoked pain by counting the total number of avoidances of weight bearing, rather 

than the more subjective grading of individual avoidances of weight bearing (rated 

using a 0 to 3 scale) (Urch et al., 2003b). These present results also expand the range 

of temperatures at which thermally evoked withdrawal responses are known to be 

altered in CIBP. The development of thermal sensitivity has been shown in a limited 

range of temperatures using the acetone cold test (Donovan-Rodriguez et al., 2005) 
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and Hargreave‟s radiant heat test (Zhang et al., 2005a). Here we have expanded the 

range of temperatures, from 10°C to 40°C, to include both noxious and innocuous 

temperatures.  

 

Evoked reflex behaviours, such as paw withdrawal, are used extensively to 

assess animal pain behaviours but do not reflect the most prominent pain in the 

clinic. CIBP patients suffer from uncontrollable movement-evoked, and spontaneous 

pain (Mercadante et al., 1992). This is why it is important in animal models to assess 

many different pain behaviours. Additionally, human imaging studies have shown 

that pain processing involves cortical structures (Tracey & Mantyh, 2007;Vierck et 

al., 2008), however evoked reflex pain behaviours may not require processing in 

cortical structures. Vierck et al. argue against the use of evoked behaviours and 

suggest that cortically-dependent operant escape tasks are more useful for translating 

to the clinical setting (Vierck et al., 2008). Such assessments however may be 

affected by a number of additional undefined factors therefore could be more 

difficult to interpret unequivocally.  

 

Spontaneous or breakthrough pain is a particularly difficult component of 

CIBP to manage. Spontaneous foot lifting has previously been utilised as a measure 

of spontaneous pain in the rodent, which has previously been utilised in neuropathic 

pain  inflammatory pain and CIBP models (Djouhri et al., 2006;King et al., 

2007;Xiao & Bennett, 2007). Indeed high spontaneous firing rates in intact C-fibre 

nociceptive neurons have been linked with spontaneous foot lifting (Djouhri et al., 

2006). Given this linking of C-fibre activity with spontaneous foot lifting, this 

assessment appears to be a suitable preclinical measure of spontaneous pain in CIBP. 

It has been questioned whether spontaneous foot lifting reflects spontaneous pain in 

inflammatory pain models. Xiao et al. suggested that evoked hypersensitivity caused 

by Complete Freund‟s Adjuvant (CFA) injection might contribute to avoidance of 

contact with surfaces resulting in foot lifting behaviour (Xiao & Bennett, 2007). A 

study demonstrated that CFA treatment can induce spontaneous discharge of C-fibres 

(Xiao & Bennett, 2008) however the frequency and prevalence of such spontaneous 
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afferent activity is very low making it uncertain whether this level of afferent drive 

might result in spontaneous pain. 

 

 This present study found that CIBP animals display a significant difference in 

weight bearing between hindlimbs from Day 12-13 onwards whereas Sham V 

animals do not display any such difference. This is consistent with results from 

Medhurst et al. who showed that CIBP animals display increased weight bearing 

difference and Sham-operated animals injected with vehicle or heat-killed cells did 

not (Medhurst et al., 2002). 

 

CIBP results in the development of behavioural sensitisation to both evoked 

and non-evoked stimuli; these behavioural responses could be generated by many 

mechanisms. As detailed previously in Chapter 1 (Section 1.10) CIBP may result in 

tumour cell-induced injury of sensory nerves which innervate the mineralised bone, 

bone marrow and periosteum. In fact, tumour cells have been shown to injure and 

destroy the distal processes of sensory nerves that innervate the mineralised bone and 

bone marrow (Peters et al., 2005). Moreover CIBP results in an acidic 

microenvironment that acts to sensitise and directly activate peripheral sensory 

nerves (Nagae et al., 2007). Bone destruction in CIBP can lead to fractures and 

distortion of the periosteum, which is highly innervated by a subgroup of Aδ- and C- 

fibres (CGRP-positive fibres) that are likely to be involved in nociceptive 

transmission (Mach et al., 2002;Jimenez-Andrade et al., 2010). In addition, the 

immune cells surrounding the tumour release various factors, including 

prostaglandins and endothelins that can sensitise and/or directly activate sensory 

neurons (Mantyh et al., 2002). Furthermore, a study by Mantyh et al. provided 

evidence that sensory and sympathetic nerve fibres can undergo reorganisation where 

there is extensive pathological sprouting and neuroma formation that appears to 

significantly contribute to cancer pain (Mantyh et al., 2010). 
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3.5.2 CIBP and Sham V animals show decreased voluntary locomotor activity in 

the open field 

Distance travelled, average speed and rearing behaviour were measured to 

assess the impact of CIBP on voluntary locomotor activity and were significantly 

decreased in both CIBP and Sham V animals compared to Naive animals. The lack 

of difference between Sham V and CIBP animals suggests these behavioural changes 

may in part be due to the damage to the bone incurred during surgery and not due to 

progressive tumour growth. Interestingly the Sham V animals did not display 

behavioural sensitisation at the time point when activity levels were measured, 

suggesting a long term effect of bone damage that is not detected by sensory testing.   

 

3.5.3 This CIBP model does not show a significant increase in anxiety-related or 

risk assessment behaviours 

Previous studies have shown that decreased time spent in the centre zone of 

the open field or open arms of the elevated plusmaze is indicative of increased 

anxiety (Pellow et al., 1985;Prut & Belzung, 2003). The results of this present study 

show that CIBP did not appear to result in a significant decrease in time spent in the 

centre zone of the open field or latency to enter the centre zone. Others have shown 

that the extent of mechanical hypersensitivity is positively correlated with anxiety-

like behaviour in the open field (reduced number of entries into the centre zone and 

reduced time spent in the centre zone) in a rat model of varicella zoster virus-

associated pain (Hasnie et al., 2007a). Utilising the elevated plusmaze to further 

assess anxiety-related behaviours we demonstrated that decreased time spent on the 

open arms was not observed in CIBP animals. A study found that two different 

models of neuropathic pain (chronic constriction injury and peripheral nerve injury) 

developed anxiety-like behaviour measured by decreased time spent on the open 

arms of the elevated plusmaze. This anxiety-like behaviour was reversed by the 

analgesics, morphine and gabapentin (Roeska et al., 2008). The trends observed in 

CIBP animals could suggest the time-point tested may be crucial to identifying the 

impact of tumour growth on anxiety-related behaviours. There are many other factors 

that could impact on the results, for example the time of day tested, lighting 

conditions, environment etc. To attempt to control for these factors standardised 
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testing procedures were followed when using the open field and elevated plusmaze in 

this study. Animals were tested in the same temperature and humidity controlled 

room each time between the daylight hours of 9:00 am and 5:00 pm. Lighting 

conditions were carefully controlled (see sections 2.4.3 and 2.4.4) and animals were 

allowed to acclimatise to room/lighting conditions for a minimum of 30 minutes 

before testing. The open field and elevated plusmaze were cleaned with ethanol 

(70%) between each animal to remove any olfactory clues. 

 

Rats may demonstrate increased grooming behaviour in response to a novel 

environment (Jolles et al., 1979). In CIBP animals there was no significant increase 

in grooming behaviour in the open field when compared to Sham V and Naïve 

animals. It is possible that we did not observe a significant difference in grooming 

behaviour because all rats (CIBP, Sham V and Naïve) may have experienced mild 

stress in this novel environment and therefore all displayed increased grooming 

behaviour in the open field. Additionally, although rodents show increased grooming 

behaviour in response to mild stress, rodents also show an increase in grooming 

when in a „comfort‟ situation. Therefore, in rodents, grooming can be increased by 

both stress and comfort conditions, thus indicating quantitative measures of 

grooming may not be sufficient for correct interpretation of this behaviour. It is 

possible to analyse grooming using a grooming analysis algorithm which can 

discriminate between different levels of anxiety in rats (Kalueff & Tuohimaa, 2005) 

and future studies could analyse this complex behaviour in more detail.  

 

In the elevated plusmaze increased risk assessment behaviour is reflected by 

high levels of stretch attend postures (Cole & Rodgers, 1993). Cole and Rodgers 

revealed the utility of measuring risk assessment even in the absence of convincing 

effects with the traditional plus-maze parameters (Cole & Rodgers, 1993). However, 

in the present study CIBP did not result in a significant increase in risk assessment 

behaviour on the elevated plusmaze. 

 

 It is important to note that there have been conflicting reports of anxiety-like 

behaviours in preclinical pain models. Kontinen et al. found that a rat model of 
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neuropathic pain (spinal nerve ligation) did not alter anxiety-like behaviours in the 

open field or on the elevated plusmaze (Kontinen et al., 1999). Furthermore, Hasnie 

et al. found that in a mouse model of neuropathic pain (partial sciatic nerve ligation, 

PSNL) mechanical and cold hypersensitivity is not associated with increased 

anxiety-like behaviour. In fact, PSNL animals showed increased time spent in the 

centre zone of the open field and no difference in time spent on the open arms of the 

elevated plusmaze (Hasnie et al., 2007b). Leite-Almeida et al. showed that in a spinal 

nerve injury (SNI) model of neuropathic pain the percentage of time in the open arms 

was decreased in SNI young rats (3 months) and old (22 months) rats but not mid-

aged (10 months) rats (Leite-Almeida et al., 2009). This study highlights how the 

influence of pain on affective behaviours is very susceptible to additional factors, for 

example, age. Therefore in the present study, CIBP animals may not develop anxiety 

because of the model or the sensitivity of the test or for unknown reasons. 

 

3.5.4 Minor alterations in behavioural responses were observed between the 

Sham models at early time points post-surgery 

Sham V animals developed movement-evoked pain at Day 5-7 when 

compared to baseline, returning to baseline values by Day 14-15. Sham HK and 

Sham E animals did not develop movement-evoked pain at any time point tested. 

Only Sham V animals showed an increase in number of paw withdrawals to 40°C 

from Day 3-4 to Day 9-11 that returned to baseline values by Day 12-13. Sham HK 

animals showed an increase in spontaneous foot lifting at Day 3-4 until Day 9-11, 

that returned to baseline values from Day 12-13 onwards. However Sham V and 

Sham E animals did not show an increase in spontaneous foot lifting.  

 

Altered behavioural responses in Sham animals have been reported up to Day 

3 post-surgery (Gu et al., 2010b). Medhurst et al. also demonstrated a slight trend of 

increased mechanical allodynia in rats treated with heat-killed cells, however there 

was no statistically significant difference between shams injected with heat-killed 

cells and shams injected with vehicle. It is important to note that sham behaviours 

were not compared to naïve behaviours in this particular study (Medhurst et al., 

2002). Here we show various alterations in the Sham model responses at early time 
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points, which may result in post-surgical inflammation and/or damage to the bone 

during surgery. However the differences observed between Sham V and Sham HK 

animals suggest the behavioural responses may not be entirely explained by post-

surgical inflammation and/or bone damage. The immune responses to heat-killed 

carcinoma cells may underlie the different behaviours between these models, such as 

reduced movement-evoked pain and thermal sensitivity to 40°C. Whether this 

immune response can alter behavioural responses differently, by leading to an 

increase in spontaneous foot lifting and decrease in thermal sensitivity, needs to be 

clarified. We did not observe any alterations between the Sham groups (Sham V, E 

and HK) at Day 18-21, the time point that tissue was taken for in vitro analysis. 

Indeed Sham-operated animals did not show signs of mechanical allodynia, 

movement-evoked pain, thermal sensitivity to 40°C or spontaneous pain at this time 

point, suggesting that these Sham-operated animals are suitable controls. 

 

Regardless of the precise mechanism of these minor alterations in 

behavioural responses of the Sham animals, the results suggest that the increase in 

pain-related behaviours at early time points in Sham V and Sham HK animals is 

most likely due in part to post-surgery inflammation, which Sham-operated animals 

recover from, and the behaviours we observe in CIBP animals at later time points 

must be a specific consequence of tumour growth.   

 

It should be noted that the model used in this study does have some 

limitations. The focal tumour model does not mirror the clinical observation that 

tumours often metastasise to multiple distant sites. Also, due to the fact that the 

tumour is confined within the bone this implies the animals do not have systemic 

cancer. This suggests that the animal, apart from the focal tumour site, has normal 

physiological function which may not be the case in the clinic and the impact of such 

a systemic condition on pain responses cannot be determined here. However this 

model was chosen to specifically investigate the effects of tumour within the bone 

without the variability of multiple metastases models and to allow us to carry out 

site-specific behavioural tests. In addition, multiple metastases models often result in 

systemically ill animals. This means that the stress of testing may have had a 
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negative impact on the animal itself in addition to the outcomes measured. Another 

limitation of this model is that MRMT-1 rat mammary gland carcinoma cells were 

injected into male rats. This was to avoid the variation associated with hormonal 

influences, particularly because MRMT-1 cells are known to express estrogen 

receptors (Dore-Savard et al., 2010). However, it would have been useful to use both 

male and female rats in this study or indeed to have conducted a pilot study to 

identify any sex differences in the behavioural outcomes measured in this thesis. 

 

3.6 Conclusion 

The results presented here suggest that this model reflects the clinical 

condition of CIBP, where patients suffer from constant background pain with 

spontaneous and movement-related breakthrough pain. This indicates the validity of 

this model in testing the efficacy of analgesic interventions, where the results of 

these tests could potentially be translated to the clinic. The study utilises a wide array 

of behavioural tests that will allow us to identify the efficacy of novel analgesic 

intervention across several components of the complex pain syndrome. The study 

identifies some differences from the clinical situation, in that the preclinical rodent 

model of CIBP does not appear to result in the development of significant pain-

related anxiety, as measured in the open field and on the elevated plusmaze (at least 

under the present conditions). Nevertheless, many aspects of the behavioural profiles 

point to its validity and likely value in assessing both changes in central 

somatosensory pathways and the actions of new candidate therapeutic agents.   
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4. BEHAVIOURAL ASSESSMENT OF ANALGESIC INTERVENTIONS IN A 

PRECLINICAL MODEL OF CIBP 

 

4.1 Introduction  

The CIBP pain state is initiated and maintained by multiple factors, resulting 

in a unique pain state that includes both neuropathic and inflammatory components 

making it particularly challenging to treat. The „gold standard‟ treatment for CIBP is 

focal palliative radiotherapy, however radiotherapy treatment may take more than 4 

weeks to achieve maximum analgesia with only 50% of patients achieving 

acceptable analgesia (Li et al., 2008;Hartsell et al., 2005). The current therapeutic 

regime for CIBP can include combinations of radiotherapy, non-steroidal anti-

inflammatory drugs (NSAIDs), bisphosphonates and opioids. This regime follows 

guidelines proposed by the World Health Organisation (WHO) for the management 

of cancer pain known as „the WHO analgesic ladder‟. This strategy is a three step 

programme which relies on non-opioid non-steroidal anti-inflammatory drugs 

(NSAIDs), such as paracetamol, ibuprofen and COX-2 inhibitors, for weak pain, 

mild opioids, such as codeine, for moderate pain and strong opioids, such as 

morphine, for severe pain. At each step drugs can be combined with adjuvant drugs, 

which may not be primarily analgesic in their mechanism of action but may have a 

supplementary analgesic effect or control the side-effects of opioid or NSAID 

treatment. These adjuvant drugs can include antiemetics, laxatives, anti-depressants, 

anti-convulsants and anxiolytics. This current therapeutic regime used in the clinic 

can leave up to 45% of patients with inadequate pain control (de Wit et al., 

2001a;Meuser et al., 2001a). 

 

Morphine is the most frequently used opioid in the treatment of cancer pain 

(Mercadante 2005). Oral morphine is an effective analgesic in patients who suffer 

cancer pain (Wiffen & Mcquay, 2007). Morphine is usually effective at reducing 

background pain but the doses required to treat breakthrough pain often bring about 

significant unwanted side-effects, such as sedation, nausea and constipation 

(Mercadante & Arcuri, 1998;Portenoy & Hagen, 1990;Portenoy et al., 1999). There 

are conflicting results as to whether morphine enhances or inhibits tumour cell 



 115 

proliferation. Some studies show that morphine inhibits tumour cell proliferation 

(Tegeder & Geisslinger, 2004) whereas other studies show that morphine promotes 

tumour cell proliferation (Farooqui et al., 2007;Gupta et al., 2002). In animal models 

of CIBP, acute morphine treatment attenuates pain-related behaviours. Morphine has 

been shown to dose-dependently inhibit CIBP-induced mechanical allodynia, weight 

bearing difference between hindlimbs (Medhurst et al., 2002) and thermal 

hyperalgesia, with the greatest analgesic effect achieved through activation of µ 

opioid receptors (Baamonde et al., 2005;Medhurst et al., 2002). However, it is clear 

that CIBP is relatively resistant to morphine treatment when compared to 

inflammatory pain. A preclinical study showed that the doses of morphine required 

to block CIBP-related behaviours were 10 times those required to block 

inflammatory pain behaviours (Luger et al., 2002). The expression of peripheral 

opioid receptors has been shown to decrease in a model of CIBP, which could be a 

contributory reason for this resistance to morphine treatment (Yamamoto et al., 

2008). Preclinical studies have examined whether chronic morphine treatment has 

any effect on bone destruction. One study found that chronic morphine 

administration accelerated bone loss and spontaneous fracture and enhanced pain 

behaviours, including spontaneous and movement-evoked pain behaviours, in a 

preclinical model of CIBP (King et al., 2007). However, in contrast, another study 

showed that chronic morphine administration decreased bone loss and produced 

analgesic effects on spontaneous foot lifting and movement-evoked pain behaviours 

in a preclinical model (El Mouedden & Meert, 2007b). The dorsal horn 

pathophysiology of CIBP is unique with increased hyperexcitability of neurons and 

an increased ratio of wide-dynamic range to nociceptive-specific neurons in the 

superficial laminae (Donovan-Rodriguez et al., 2004c). A previous study, using the 

MRMT-1 model of CIBP (as used in this study), showed that chronic morphine 

treatment significantly attenuated pain behaviour, however the increased ratio of 

wide dynamic range to nociceptive-specific neurons remained unaltered (Urch et al., 

2005).  

 

As mentioned previously, focal palliative radiotherapy is the current „gold 

standard‟ treatment for CIBP patients. Studies suggest that single and multiple 
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fractionation radiotherapy treatments produce equivalent analgesia. A systematic 

review reported that overall pain reduction responses were 58% for single and 59% 

for multiple fractionation and the complete pain relief responses were 23% and 24% 

for single and multiple fractionation, respectively (Chow et al., 2007). However, the 

re-treatment rate and pathological fracture rate were higher after single fraction 

radiotherapy (Sze et al., 2003). The mechanisms of the beneficial effect of 

radiotherapy have not been fully unravelled. Studies in mouse models of CIBP have 

shown that radiotherapy treatment decreased CIBP-induced behavioural 

sensitisation, with the mechanism of radiotherapy thought to be through a direct 

effect on tumour cells resulting in decreased cancer-induced osteolysis and reduced 

tumour size (Goblirsch et al., 2004b;Goblirsch et al., 2005). However, a more recent 

study indicated that irradiation did not change tumour size or osteolysis, but did 

decrease astrocyte and microglial activity in the spinal cord of a mouse model of 

CIBP as well as expression of pain-associated markers such as dynorphin, COX-2 

and chemotactic cytokine receptor-2 (CCR2) (Vit et al., 2006). 

 

A number of co-analgesics/adjuvants are used in the treatment of chronic 

pain. Gabapentin, an anti-convulsant and analgesic, is successfully used in the 

treatment of neuropathic pain (Backonja & Glanzman, 2003). Chronically 

administered gabapentin (30mg/kg) significantly attenuated movement-evoked and 

spontaneous pain in CIBP and reversed dorsal horn changes associated with CIBP, 

such as returning the ratio of wide dynamic range to nociceptive specific neurons to 

normal (Donovan-Rodriguez et al., 2005). However, acute gabapentin administration 

did not attenuate these behaviours (Donovan-Rodriguez et al., 2005). Another closely 

related anti-convulsant, pregabalin (Pfizer) is currently being studied in a clinical 

trial to determine if the addition of pregabalin improves analgesic response to 

radiotherapy in CIBP. Acute administration of a different type of anti-convulsant, 

lacosamide, has been shown to inhibit tactile allodynia, thermal hyperalgesia and 

reduce weight bearing difference in a MRMT-1 rat model of CIBP. This study also 

showed that morphine was effective at inhibiting mechanical allodynia and reducing 

weight bearing difference but did not reduce thermal hyperalgesia (Beyreuther et al., 

2007).  
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The usefulness of tricyclic anti-depressants (TCAs) and serotonin-

noradrenaline reuptake inhibitor (SNRI) anti-depressants in the treatment of 

neuropathic pain has been established, in particular for postherpetic neuralgia and 

diabetic neuropathy (Attal et al., 2010). TCA and SNRI treatments act by increasing 

the concentration of 5-HT and noradrenaline in synapses by inhibition of 

noradrenaline and 5-HT transporters. Serotonin and noradrenaline are known to play 

an important role in the modulation of ascending and descending pain pathways as 

reviewed in Chapter 1 (Section 1.6.3 and 1.6.4). Duloxetine is a potent and balanced 

serotonin-noradrenaline reuptake inhibitor, which is effective in the treatment of 

neuropathic pain caused by fibromyalgia and diabetic neuropathy (Sultan et al., 

2008). Duloxetine (following intraperitoneal administration) has been shown to 

reverse late phase paw licking behaviour in the formalin model of inflammatory pain 

(Iyengar et al., 2004). In the same study, duloxetine significantly reversed 

mechanical allodynia in the lumbar L5/L6 spinal nerve ligation model of neuropathic 

pain after oral administration (Iyengar et al., 2004). A separate study confirmed that 

duloxetine may be efficacious in the treatment of inflammatory and persistent pain, 

as identified by reversing acetic acid-induced writhing and carrageenan or capsaicin-

induced hyperalgesia and allodynia at doses that had little effect on acute nociception 

(Jones et al., 2005). A study reported that the TCA desipramine, which selectively 

inhibits noradrenaline reuptake, and the TCA amitriptyline, which inhibits both 

serotonin and noradrenaline reuptake, decreased spontaneous pain behaviour in a 

preclinical CIBP model but only at doses that also caused sedation (El Mouedden & 

Meert, 2007a). The selective serotonin reuptake inhibitor (SSRI) fluoxetine showed 

limited efficacy and none of these compounds reversed mechanical allodynia or 

affected limb use impairment (El Mouedden & Meert, 2007a). Whiteside et al. 

demonstrated that selectively increasing noradrenaline alone is sufficient for 

analgesic activity in a CIBP preclinical model, as an acute dose of the potent and 

selective inhibitor of the noradrenaline transporter WAY-318068 reversed 

mechanical allodynia in a MRMT-1 rat model of CIBP (Whiteside et al., 2010). 

Another potent and selective noradrenaline reuptake inhibitor, S,S-reboxetine, is 

investigated here as a comparator against duloxetine. 
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Several studies have shown that targeting cannabinoids may be effective in 

the treatment of cancer pain (Alexander et al., 2009;Casanova et al., 2003;Galve-

Roperh et al., 2000;Lozano-Ondoua et al., 2010;Saghafi et al., 2011;Sanchez et al., 

2001). The classical cannabinoid receptors, CB1 and CB2, are G protein-coupled 

receptors. CB1 receptors are expressed in the CNS but also in peripheral tissues such 

as lung, prostate, heart and bone marrow. CB2 receptors are mostly expressed in cells 

of the immune system such as B cells, T cells and macrophages but is also known to 

be expressed in other tissues and some regions of the CNS (Galiegue et al., 1995). A 

recent study showed that a tetrahydrocannabinol:cannabidiol (THC:CBD) extract 

from the Cannabis sativa plant is efficacious for relief of pain in patients with 

advanced cancer (Johnson et al., 2010). THC is a partial agonist of CB1 receptors and 

CBD is an agonist at both CB1 and CB2 receptors (Johnson et al., 2010). A number of 

studies have shown that cannabinoid receptor agonists inhibit cancer cell 

proliferation and/or apoptosis in vitro (De Petrocellis et al., 1998;Olea-Herrero et al., 

2009;Xian et al., 2010) and to cause tumour regression and inhibit metastasis in 

preclinical models (Xian et al., 2010). Cannabinoids have been shown to reduce 

cancer cell invasion by inhibition of matrix metalloproteinases (Ramer et al., 2010). 

CB2 receptor-selective agonists are not thought to cause centrally mediated side-

effects associated with the activation of CB1 receptors (Hanus et al., 1999;Malan et 

al., 2001) making the CB2 receptors an attractive potential analgesic target. This idea 

is supported by evidence of increased expression of CB2 receptors in the dorsal horn 

and sensory afferents in chronic pain models (Anand et al., 2009). CB2 receptor-

selective agonists have recently been shown to reduce pain behaviours in models of 

acute, inflammatory and nerve injury-induced nociception reviewed by Guindon & 

Hohmann (Guindon & Hohmann, 2008). Furthermore, the CB2 receptor-selective 

agonist AM1241 was shown to reduce pain-related behaviours and tumour-induced 

bone destruction in preclinical models of CIBP (Curto-Reyes et al., 2010;Lozano-

Ondoua et al., 2010). The mechanism of action of AM1241 has been the subject of 

some controversy. However, in vivo the effects of AM1241 are blocked by CB2 but 

not CB1 receptor-selective antagonists and the effects of AM1241 are not seen in 

CB2-/- mice. This evidence suggests that AM1241 is a CB2 receptor agonist (Lozano-
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Ondoua et al., 2010). In this thesis, the analgesic efficacy of CB 65, a selective, high 

affinity CB2 receptor agonist (Manera et al., 2006), will be investigated in a model of 

CIBP. 

 

4.2 Aim  

The aim of this part of the study was to use pharmacological tools to try and 

understand the mechanisms of CIBP. The analgesic efficacy of radiotherapy (XRT), 

which mirrors focal radiotherapy administered to patients, and the effect of the 

following pharmacological agents; gabapentin, duloxetine, S,S-reboxetine and CB 65 

were investigated in our model of CIBP. These agents were chosen based on the 

current knowledge of what mechanisms might be important in CIBP. We evaluated 

the efficacy of these potential analgesic interventions in CIBP-induced sensitisation 

across a range of behavioural assessments. Analysis of the efficacy of these agents in 

CIBP could throw further light on the mechanisms of CIBP and help improve 

treatment options for CIBP patients.  

 

4.3 Methods 

4.3.1 Surgical Procedure 

Experiments were carried out using male Sprague-Dawley rats and, as 

detailed in Chapter 2, animals underwent CIBP surgery (Section 2.1.2). Rats were 

anaesthetised by inhalation of an isoflurane/O2 mixture (Zeneca, UK), 4-5% for 

induction and 2-3% for maintenance. The carrier gas was compressed oxygen at a 

flow rate of 2 litres/minute. Following complete induction of anaesthesia the animal 

was placed abdominal side up, the left hind limb was shaved and the skin was 

sterilised with 0.5% Hibitane (Zeneca, UK). A small incision was made in the skin 

over the tibia, which was then carefully exposed by removing the connective tissue 

over the bone using a cotton bud (Johnson & Johnson, UK). A dental drill was used 

to bore a hole through the periosteum of the tibia. Polythene tubing (0.5mm in 

diameter; Smiths) was fed into the intra-medullary cavity of the tibia and 10 µl of 

medium (containing 6x10
3
 cells) was injected using a 1ml micro-syringe (BD 

Biosciences, UK) and 25-gauge needle (BD Biosciences, UK). The tubing was 

withdrawn and the hole plugged with dental restorative material (IRM, Dentsply; 
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Henry Schien Minerva), to confine the tumour cells within the marrow and prevent 

invading the adjacent soft tissue. The wound was closed with absorbable 

subcutaneous suture (5/0 coated vicryl, Ethicon, UK) and sterilised with 0.5% 

Hibitane. Animals were placed in a thermoregulated recovery box until they had 

fully regained consciousness, following which they were returned to their home 

cages. 

 

4.3.2 Analgesic Intervention 

Analgesic interventions were administered to CIBP animals, at various time 

points post surgery (Table 2.1). Focal radiotherapy (XRT) was administered to CIBP 

animals on Day 7 (Section 2.7.1).  

 

Body weight gain of XRT-treated animals was monitored and compared to CIBP 

animals. The effect of XRT on CIBP-induced mechanical allodynia, thermal 

sensitivity to 20°C and 40°C, movement-evoked pain and static weight bearing 

difference was assessed. In addition the effect of XRT on voluntary locomotor 

activity, pain-related anxiety and risk assessment behaviour in the open field and on 

the elevated plusmaze was analysed. CIBP animals that received radiotherapy on 

Day 7 were tested at the same time as the CIBP, Sham and Naive animals 

characterised in Chapter 3. Chapter 4 focuses on the XRT behaviours compared to 

the CIBP animals. Thus the CIBP data in the graphs of Chapter 4 is the same as that 

shown in Chapter 3. 

 

Gabapentin (30mg/kg), duloxetine (30mg/kg) and S,S-reboxetine (10mg/kg) 

were administered by oral gavage and CB 65 (1mg/kg) was administered 

intraperitoneally (Section 2.7.2). The efficacy of these pharmacological agents in 

attenuating CIBP-induced mechanical allodynia, movement-evoked pain and thermal 

sensitivity to 40°C was assessed. The effect of these agents on voluntary locomotor 

activity (as measured by rearing behaviour), pain-related anxiety and risk assessment 

behaviour on the elevated plusmaze was also analysed (Section 2.10.3). 
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4.3.3 Statistical Analysis 

In each behavioural study, data were pooled for each time point, with group 

mean shown ± SEM. To analyse the effects of XRT or pharmacological agent 

administration on mechanical allodynia, post-pharmacological agent ipsilateral paw 

withdrawal thresholds were compared to pre-pharmacological agent baseline using a 

One-way repeated measures ANOVA on Ranks (Friedman‟s test) followed by 

Dunn‟s post-hoc analysis. Ipsilateral paw withdrawal thresholds were compared to 

contralateral paw withdrawal thresholds using a One-way repeated measures 

ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis.  

 

To analyse the effects of XRT on thermal sensitivity the difference between 

post-XRT ipsilateral responses and pre-XRT ipsilateral responses and XRT-treated 

animals were compared to CIBP alone using a repeated measures mixed-model 

ANOVA followed by Bonferroni‟s post-hoc analysis. To analyse the effects of 

pharmacological agent administration on thermal sensitivity the difference between 

post-pharmacological agent ipsilateral responses and pre-pharmacological agent 

ipsilateral responses were determined using a One-way repeated measures ANOVA 

followed by Dunnett‟s post-hoc analysis.  

 

To analyse the effects of XRT on movement-evoked pain, post-XRT number 

of avoidances of weight bearing on movement were compared to pre-XRT values 

and XRT-treated animals were compared to CIBP animals alone using a repeated 

measures mixed-model ANOVA followed by Dunnett‟s post-hoc analysis. To 

analyse the effects of pharmacological agent administration on movement-evoked 

pain, post-pharmacological agent number of avoidances of weight bearing on 

movement were compared to pre-pharmacological agent using a One-way repeated 

measures ANOVA followed by Dunnett‟s post-hoc analysis.  

 

To analyse the effects of XRT on static weight bearing difference, post-XRT 

weight bearing difference was compared to pre-XRT values and XRT-treated 

animals were compared to CIBP using a repeated measures mixed-model ANOVA. 
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For responses to the elevated plusmaze and the open field (differences 

between groups (CIBP, CIBP + pharmacological agent, XRT treated, Sham V 

operated and Naive animals) were determined by a One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis. For the elevated plusmaze and open field, there were 

several separate test sessions and only those run at the same time were compared. 

Data were not combined for separate test sessions of the same group as these 

measures of anxiety are subject to variation between tests. 

 

For the elevated plusmaze, the responses of XRT and CIBP animals were 

compared. The responses of CIBP animals + gabapentin/duloxetine were compared 

to CIBP + vehicle, however CIBP animals + S,S-reboxetine were run at a separate 

time to the other pharmacological agents and were therefore not compared to the 

vehicle control. For the open field, the responses of CIBP and XRT animals were 

compared.  

 

4.4 Results  

All animals were observed post-surgery and treatment to ensure animals 

maintained a healthy weight and did not show signs of distress. XRT was carried out 

at Day 7 after induction of CIBP. 

 

4.4.1 The effect of radiotherapy on body weight  

XRT-treated animals showed a minor alteration in body weight, as 

demonstrated by a significant increase in body weight compared to CIBP animals at 

Day 9-11 only (160.1 ± 6.61 versus 192.8 ± 3.28), indicated by a repeated measures 

mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis, p<0.05 (Figure 

4.1).  
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Figure 4.1 Time course of body weight gain. Data show mean body weight ± SEM of 

CIBP (n=10) and XRT (n=13) animals. XRT animals had significantly increased 

body weight compared to CIBP at Day 9-11 (#; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p = 0.01 to 0.05).   

 

 Time post-surgery (days) 

Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

CIBP 

Weight (grams) 105.1 129.3 154.0 169.7 186.8 198.7 215.9 232.6 

SEM 2.8 3.0 2.9 4.3 3.7 3.6 3.7 3.8 

XRT 

Weight (grams) 104 122 ~ 192 206 218 214 236 

SEM 2.95 2.85 ~ 5.12 8.17 8.5 12.4 9.75 

 

Table 4.1 The effect of XRT treatment on body weight. Data show mean body 

weight ± SEM of CIBP (n=10) and XRT (n=13) animals. ~ = not recorded. 
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4.4.2 The effect of XRT on CIBP-induced mechanical allodynia  

 CIBP animals showed a marked reduction in ipsilateral PWT when compared 

to baseline from Day 9 onwards, which was also observed in XRT animals at Day 9-

11 and from Day 14-15 onwards. CIBP animals showed a significant reduction in 

ipsilateral PWT when compared to contralateral PWT from Day 5-7 onwards that 

was also noted in XRT animals at Day 3-4 and from Day 12-13 onwards. CIBP-

induced mechanical allodynia was not significantly attenuated by XRT treatment 

(Figure 4.2). All indicated by a repeated measures One-way ANOVA on ranks 

(Friedman‟s test) followed by Dunn‟s post-hoc analysis, p<0.05. 
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Figure 4.2 Effect of XRT on mechanical allodynia. Data show mean Paw 

Withdrawal Threshold (PWT) responses ± SEM of CIBP (n=13) and XRT (n=13) 

animals. A) CIBP and XRT animals showed a significant reduction in PWT when 

compared to baseline (^ and √, respectively; One-way repeated measures ANOVA 

on ranks (Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). CIBP and 

XRT animals showed a significant reduction in ipsilateral PWT when compared to 

contralateral PWT (* and +, respectively; One-way repeated measures ANOVA on 

ranks (Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). XRT did not 

alter PWT in comparison to CIBP alone. P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ 

= 0.01 to 0.05, *** = <0.001, ** = 0.001 to 0.01, * = 0.01 to 0.05,
 +++

 = <0.001, 
++

 = 
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0.001 to 0.01, 
+
 = 0.01 to 0.05, √√√ = <0.001, √√ = 0.001 to 0.01 and √ = 0.01 to 

0.05. 

 

 Time post-surgery (days) 

Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

CIBP 

Ipsi 

PWT 

(grams) 
57.8 25.9 23.4 18.8 9.2 7.1 5.8 5.6 

SEM 6.6 6.5 5.5 5.4 1.1 0.6 0.6 0.5 

Con 

PWT 

(grams) 
57.8 54.2 67.6 72.2 68.6 72.2 72.2 72.2 

SEM 6.6 6.8 5.0 3.6 4.9 3.6 3.6 3.6 

XRT 

Ipsi 

PWT 

(grams) 
52.0 27.6 ~ 12.9 18.6 11.3 9.2 9.1 

SEM 7.5 6.6 ~ 1.6 2.4 1.7 1.0 1.2 

Con 

PWT 

(grams) 
55.7 65.8 ~ 36.5 65.0 59.3 65.0 68.6 

SEM 7.5 5.7 ~ 7.9 5.7 7.3 5.7 4.9 

 

Table 4.2 The effect of XRT treatment on CIBP-induced mechanical allodynia 

showing paw withdrawal threshold (PWT). Data show mean PWT responses ± SEM 

of CIBP (n=13) and XRT (n=13) animals. ~ = not recorded. 

 

4.4.3 The effect of XRT on CIBP-induced thermal sensitivity to 20°C 

CIBP animals showed a significant increase in thermal sensitivity to 20°C, 

with a significant increase in number of paw withdrawals from Day 12-13 onwards, a 

significant increase in duration of paw elevation from Day 16-17 onwards and 

significant reductions in latency to paw withdrawal when compared to baseline. XRT 

animals also showed increased thermal sensitivity to 20°C with an increased number 

of paw withdrawals at Day 18-21 and reduced latency to paw withdrawal at Day 14-

15 and Day 18-21. CIBP-induced thermal sensitivity to 20°C was attenuated by 

XRT, where the number of paw withdrawals from Day 12-13 onwards and duration 

of paw elevation from Day 16-17 onwards were decreased. Latency to paw 
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withdrawal at Day 16-17 was also increased by XRT treatment and at Day 3-4, prior 

to XRT treatment, latency to paw withdrawal was significantly different between 

CIBP groups. All shown by repeated measures mixed-model ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05 (Figure 4.3).  
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Figure 4.3 Effect of XRT on thermal sensitivity to 20°C. Data show mean responses 

± SEM of CIBP (n=7) and XRT (n=7) animals. A) Number of paw withdrawals was 

significantly increased in CIBP and XRT animals compared to baseline (^ and √, 

respectively; repeated measures mixed-model ANOVA followed by Bonferroni's 

post-hoc analysis, p<0.05). XRT animals had significantly decreased number of paw 

withdrawals when compared to CIBP from Day 12-13 onwards (# repeated measures 

mixed-model ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). B) 
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Latency to paw withdrawal was significantly decreased in CIBP and XRT animals 

compared to baseline (^ and √, respectively; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). At Day 3-4 the two 

groups of CIBP animals showed a significant difference in latency to paw 

withdrawal and XRT-treated animals had significantly increased latency to paw 

withdrawal at Day 16-17 when compared to CIBP (* and #, respectively; repeated 

measures mixed-model ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). C) Duration of paw elevation was significantly increased in CIBP animals 

when compared to baseline (^; repeated measures mixed-model ANOVA followed 

by Bonferroni's post-hoc analysis, p<0.05). XRT animals did not develop any 

increase in duration of paw elevation, resulting in a significant decrease in duration 

of paw elevation when compared to CIBP (#; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). P values ^^^ = 

<0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05, ** = 0.001 to 0.01, ### = <0.001, ##= 

0.001 to 0.01 and # = 0.01 to 0.05, √√√ = <0.001 and √√ = 0.001 to 0.01. 
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 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

N
u
m

b
e
r 

CIBP 

 

 0.6 1.4 0.6 1.3 2.1 3.0 3.9 4.6 

SEM 0.3 0.4 0.3 0.4 0.6 0.4 0.6 0.4 

XRT 
 0.1 0.3 0.4 1.0 0.6 1.3 0.9 1.7 

SEM 0.1 0.2 0.2 0.6 0.4 0.5 0.3 0.3 

L
a
te

n
c
y
 

(s
e
c
o
n
d

s
) 

 

CIBP 

 

 125.9 52.0 114.7 86.1 73.3 42.0 23.1 15.0 

SEM 11.9 18.0 18.8 19.1 13.5 7.0 4.6 4.2 

XRT 
 145.7 131.0 123.7 111.0 125.4 74.6 106.7 51.9 

SEM 4.3 13.2 14.1 20.0 18.4 21.0 14.4 16.3 

D
u
ra

ti
o
n
 

(s
e
c
o
n
d

s
) CIBP 

 0.4 1.1 0.0 2.6 2.6 14.9 81.3 59.1 

SEM 0.4 0.7 0.0 2.6 2.1 9.1 16.8 14.4 

XRT 
 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

SEM 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

 

Table 4.3 The effect of XRT on thermal sensitivity to 20°C showing number of paw 

withdrawals, latency to paw withdrawal and duration of paw elevation. Data show 

mean responses ± SEM of CIBP (n=7) and XRT (n=7) animals. 

 

4.4.4 The effect of XRT on CIBP-induced thermal sensitivity to 40°C 

CIBP animals showed a significant increase in number of paw withdrawals 

from Day 12-13 onwards, a significant increase in duration of paw elevation from 

Day 14-15 onwards and significant reductions in latency to paw withdrawal from 

Day 12-13 onwards. XRT animals only showed a reduced latency to paw withdrawal 

at Day 9-11 and Day 18-21. CIBP-induced thermal sensitivity to 40°C was 

significantly attenuated by XRT, where the number of paw withdrawals was 

significantly decreased when compared to CIBP from Day 16-17 onwards, latency to 

paw withdrawal was significantly increased when compared to CIBP from Day 16-

17 onwards and the duration of paw elevation was significantly decreased at Day 16-

17 only. All shown by repeated measures mixed-model ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05 (Figure 4.4). 
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Figure 4.4 Effect of XRT on CIBP-induced thermal sensitivity to 40°C. Data show 

mean responses ± SEM of CIBP (n=13) and XRT (n=7) animals. A) CIBP animals 

showed a significant increase in number of paw withdrawals when compared to 

baseline (^; repeated measures mixed-model ANOVA followed by Bonferroni's post-

hoc analysis, p<0.05). XRT-treated animals showed a significant decrease in number 

of paw withdrawals from Day 16-17 onwards when compared to CIBP (#; repeated 

measures mixed-model ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). B) CIBP and XRT-treated animals showed a significant decrease in latency 

to paw withdrawal when compared to baseline (^ and √, respectively; repeated 

measures mixed-model ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). XRT-treated animals had a significant increase in latency to paw 
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withdrawal at Day 16-17 when compared to CIBP alone (#; repeated measures 

mixed-model ANOVA followed by Bonferroni's post-hoc analysis). C) CIBP 

animals had a significant increase in duration of paw withdrawal when compared to 

baseline (^; repeated measures mixed-model ANOVA followed by Bonferroni's post-

hoc analysis, p<0.05). XRT-treated animals showed a significant reduction in 

duration of paw elevation from Day 16-17 onwards compared to CIBP alone (#; 

repeated measures mixed-model ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05, ### = 

<0.001, # = 0.01 to 0.05, √√ = 0.001 to 0.01 and √ = 0.01 to 0.05. 

 

 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

N
u
m

b
e
r 

CIBP 

 

 0.7 0.8 1.1 1.4 2.1 2.3 3.0 3.3 

SEM 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 

XRT 
 0.6 0.9 ~ 1.1 1.6 1.3 0.9 1.1 

SEM 0.2 0.2 ~ 0.3 0.3 0.6 0.3 0.1 

L
a
te

n
c
y
 

(s
e
c
o
n
d

s
) 

 

CIBP 

 

 108.1 113.9 91.3 74.1 55.9 68.1 29.2 29.0 

SEM 13.2 11.5 15.2 13.1 10.8 11.7 5.4 6.6 

XRT 
 120.3 106.8 ~ 88.9 64.6 86.6 98.6 55.3 

SEM 12.6 13.9 ~ 20.4 16.5 23.9 19.1 7.4 

D
u
ra

ti
o
n

 

(s
e
c
o
n
d

s
) CIBP 

 0.0 0.0 0.4 0.5 15.9 22.2 56.5 66.6 

SEM 0.0 0.0 0.4 0.3 8.7 9.4 12.2 12.4 

XRT 
 0.0 0.0 ~ 0.0 0.0 0.0 7.9 0.0 

SEM 0.0 0.0 ~ 0.0 0.0 0.0 7.9 0.0 

 

Table 4.4 The effect of XRT on thermal sensitivity to 40°C showing number of paw 

withdrawals, latency to paw withdrawal and duration of paw elevation. Data show 

mean responses ± SEM of CIBP (n=13) and XRT (n=7) animals. ~ = not recorded.  
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4.4.5 The effect of XRT on CIBP-induced movement-evoked pain and CIBP-

induced ongoing pain 

CIBP animals showed a significant increase in avoidance of weight bearing 

on movement, from Day 5-7 onwards that was also observed in XRT-treated animals 

from Day 9-11 onwards when compared to baseline. XRT animals show a significant 

reduction in avoidance of weight bearing on movement when compared to CIBP 

animals at Day 18-21 only. Static weight bearing difference, as a measure of ongoing 

pain, was significantly increased in CIBP and XRT animals from Day 12-13. That is, 

both CIBP and XRT-treated animals displayed significantly less weight bearing on 

the injured hind limb when compared to baseline; illustrating that CIBP-induced 

ongoing pain was unaltered by XRT treatment (Figure 4.5). All shown by repeated 

measures mixed-model ANOVA followed by Bonferroni‟s post-hoc analysis, 

p<0.05. 
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Figure 4.5 Effect of XRT on CIBP-induced avoidance of weight bearing on 

movement and weight bearing difference between hindlimbs. Data show mean 

responses ± SEM of CIBP (n=10-13) and XRT (n=13) animals. A) CIBP and XRT 

animals showed significantly increased avoidance of weight bearing on movement 

when compared to baseline (^ and √, respectively; repeated measures mixed-model 

ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). XRT significantly 

decreased avoidance of weight bearing on movement when compared to CIBP at 

Day 18-21 (#; repeated measures mixed-model ANOVA followed by Bonferroni's 
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post-hoc analysis, p<0.05). B) CIBP and XRT animals showed significantly 

increased static weight bearing difference when compared to baseline (^ and √, 

respectively; repeated measures mixed-model ANOVA followed by Bonferroni's 

post-hoc analysis, p<0.05). XRT treatment did not affect CIBP-induced increase in 

static weight bearing difference. P values ^^^ = <0.001, ^ = 0.01 to 0.05, ### = 

<0.001, √√√ = <0.001, √√ = 0.001 to 0.01 and √ = 0.01 to 0.05. 

 

 Time post-surgery (days) 

 Group  Baseline 3-4 5-7 9-11 12-13 14-15 16-17 18-21 

M
o
v
e
m

e
n
t-

e
v
o

k
e

d
 

CIBP 

 

Number 0.5 1.7 2.9 4.0 7.0 9.4 13.7 17.6 

SEM 0.2 0.4 0.5 0.8 0.9 1.2 1.1 0.8 

XRT 
Number 0.3 - - 4.3 5.5 10.9 10.7 12.5 

SEM 0.1 - - 0.8 0.8 0.5 0.5 1.5 

W
e
ig

h
t 

b
e

a
ri
n

g
  

CIBP 

 

WBD (grams) 0.7 3.6 3.2 8.2 27.8 51.8 65.6 68.2 

SEM 1.0 2.5 2.8 2.7 5.3 6.5 7.7 6.0 

XRT 
WBD (grams) -1.8 5.7 - 21.3 20.6 52.5 57.7 69.4 

SEM 1.4 3.0 - 4.2 6.2 11.2 10.3 6.5 

 

Table 4.5 The effects of XRT on movement-evoked and static weight bearing 

difference between hindlimbs showing number of avoidances of weight bearing on 

movement and weight bearing difference (WBD). Data show mean responses ± SEM 

of CIBP (n=10-13) and XRT (n=13) animals. 

 

4.4.6 Effect of XRT on measures of voluntary locomotor activity 

The following measures of voluntary locomotor activity in the open field 

were assessed; distance travelled, average speed and number of rearings. XRT 

treatment did not alter CIBP-induced behavioural responses in the open field. In 

addition, the number of rearings in the elevated plusmaze was not altered by XRT 

(Figure 4.6). 
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Figure 4.6 Effect of XRT on voluntary locomotor activity in the open field and 

elevated plusmaze. Data show mean responses ± SEM of CIBP (n=7) and XRT (n=8) 

animals in the open field and of CIBP (n=9) and XRT (n=14) animals on the elevated 

plusmaze. A) XRT did not alter the distance travelled in the open field. B) XRT did 

not alter the average speed in the open field. C) XRT did not alter the number of 

rearings in the open field. D) XRT did not alter the number of rearings on the 

elevated plusmaze. 

 

4.4.7 Effect of gabapentin on CIBP-induced mechanical allodynia, movement-

evoked pain and thermal sensitivity to 40°C 

The anti-convulsant, gabapentin (30mg/kg; p.o. administration), was assessed 

for reversal of CIBP-induced behavioural sensitisation. Gabapentin (given at Day 18-

21 post CIBP induction) did not attenuate CIBP-induced mechanical allodynia as 

shown by no significant alteration in ipsilateral PWT when compared to pre-
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administration values. In addition the pre-administration significant reduction in 

ipsilateral PWT remained unaltered post pharmacological agent administration, 

except at 4 hours. All shown by One-way repeated measures ANOVA on ranks 

(Friedman‟s test) followed by Dunn‟s post-hoc analysis, p<0.05. Gabapentin did not 

attenuate CIBP-induced movement-evoked pain or thermal sensitivity to 40°C when 

compared to pre-administration values, shown by a One-way repeated measures 

ANOVA followed by Bonferroni‟s post-hoc analysis, p<0.05 (Figure 4.7).  
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Figure 4.7 Effect of gabapentin (30mg/kg; p.o. administration) on CIBP-induced 

behavioural sensitisation. Data show mean responses ± SEM (n=10).  A) CIBP 

animals showed a significant reduction in ipsilateral PWT compared to contralateral 

PWT pre- and post-administration (#; One-way repeated measures ANOVA on ranks 
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(Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). Gabapentin did not 

alter ipsilateral PWT when compared to pre-administration values. B) Gabapentin 

did not attenuate CIBP-induced increased avoidance of weight bearing on movement 

when compared to pre-administration. A significant increase in avoidance of weight 

bearing on movement was noted 24 hours post-administration (^; One-way repeated 

measures ANOVA followed by Bonferroni's post-hoc analysis, p<0.05) C) 

Gabapentin did not alter the number of paw withdrawals to 40°C when compared to 

pre-administration values. D) Gabapentin did not alter latency and duration of paw 

elevation to 40°C when compared to pre-administration values. P values ### = 

<0.001, ## = 0.001 to 0.01, # = 0.01 to 0.05 and ^ = 0.01 to 0.05. 
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Time post-administration (hours) 

Pre 1 2 3 4 24 48 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT 

(grams) 
16.2 7.8 6.8 8.6 25.5 5.8 6.2 

SEM 7.0 0.9 0.8 1.0 8.9 0.6 1.7 

Con 

PWT 

(grams) 
75.9 71.2 66.5 71.2 66.5 71.2 75.9 

SEM 0.0 4.7 6.3 4.7 6.3 4.7 0.0 

Movement-

evoked 

Number 16.3 15.9 16.5 16.9 16.5 17.5 16.0 

SEM 0.3 0.6 0.4 0.5 0.3 0.5 0.5 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 Number 

 3.1 2.3 2.8 1.6 1.8 2.0 2.2 

SEM 0.4 0.4 0.5 0.2 0.5 0.3 0.5 

Latency 

(seconds) 

 50.9 64.7 69.3 44.1 71.5 50.0 30.4 

SEM 8.7 15.8 11.6 11.5 17.8 11.9 7.7 

Duration 

(seconds) 

 4.9 25.0 12.2 11.4 11.5 9.1 1.8 

SEM 3.5 12.4 9.9 9.9 10.4 4.9 1.8 

 

Table 4.6 The effects of gabapentin on CIBP-induced behavioural sensitisation 

showing paw withdrawal threshold (PWT), number of avoidances of weight bearing 

on movement, number of paw withdrawals, latency to paw withdrawal and duration 

of paw elevation. Data show mean responses ± SEM (n=10).  

 

4.4.8 The effect of duloxetine on CIBP-induced mechanical allodynia, 

movement-evoked pain and thermal sensitivity to 40°C  

A dual reuptake inhibitor of serotonin and noradrenaline, duloxetine 

(30mg/kg; p.o. administration), which may also act on voltage-dependent sodium 

channels, was assessed for reversal of CIBP-induced behavioural sensitisation. 

Duloxetine (given at Day 16-21 after CIBP induction) attenuated mechanical 
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allodynia at 1 and 2 hours post-administration whereby ipsilateral PWT was 

significantly increased when compared to the pre-administration values and pre-

administration significant reduction in ipsilateral PWT compared to contralateral 

PWT did not return until 48 hours post-administration, shown by a One-way repeated 

measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis, 

p<0.05. Duloxetine also attenuated CIBP-induced movement-evoked pain when 

compared to pre-administration values at 1 to 4 hours post-administration and 

attenuated thermal sensitivity to 40°C, shown by a significant decrease in the number 

of paw withdrawals up to 24 hours post-administration compared to pre-

administration values and a significant increase in latency to paw withdrawal up to 

24 hours post-administration. All shown by One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05. The duration of paw elevation was unaltered 

post- administration (Figure 4.8).  
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Figure 4.8 Effect of duloxetine (30mg/kg; p.o. administration) on CIBP-induced 

behavioural sensitisation. Data show mean responses ± SEM (n=11). A) Ipsilateral 

PWT was significantly decreased (pre-administration and 48 hours post-

administration) when compared to contralateral values (#; One-way repeated 

measures ANOVA on ranks followed by Dunn's post-hoc analysis, p<0.05). 

Duloxetine significantly increased ipsilateral PWT when compared to pre-

administration responses (^; One-way repeated measures ANOVA on ranks 

(Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). B) Avoidance of 

weight bearing on movement was significantly decreased by duloxetine when 

compared to pre-administration (^; One-way repeated measures ANOVA followed 

by Bonferroni's post-hoc analysis, p<0.05). C) The number of paw withdrawals at 

40°C was significantly decreased when compared to pre-administration values (^; 

One-way repeated measures ANOVA followed by Bonferroni's post-hoc analysis). 

D) Latency to paw withdrawal was significantly increased when compared to pre-

administration values (^; One-way repeated measures ANOVA followed by 



 139 

Bonferroni's post-hoc analysis, p<0.05). The duration of paw elevation did not alter 

post-administration. P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05 and 

## = 0.001 to 0.01. 

 

 

Time post-administration (hours) 

Pre 1 2 3 4 24 48 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT 

(grams) 
9.7 56.9 60.5 44.7 50.5 35.4 19.3 

SEM 1.2 8.1 8.0 9.3 9.1 13.1 11.4 

Con 

PWT 

(grams) 
67.3 75.9 67.3 75.9 75.9 68.0 75.9 

SEM 5.7 0.0 5.7 0.0 0.0 7.8 0.0 

Movement-

evoked 

Number 14.4 10.4 9.6 11.7 11.0 14.7 17.2 

SEM 0.5 0.7 0.9 0.8 0.9 0.5 0.8 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 Number 

 3.1 0.8 0.5 1.7 1.0 1.3 2.3 

SEM 0.4 0.3 0.3 0.2 0.3 0.6 0.6 

Latency 

(seconds) 

 46.3 95.1 117.8 72.9 107.6 100.3 34.5 

SEM 11.7 16.4 14.3 9.5 15.2 24.0 11.6 

Duration 

(seconds) 

 0.0 0.0 0.0 4.4 1.8 0.0 0.0 

SEM 0.0 0.0 0.0 2.9 1.8 0.0 0.0 

 

Table 4.7 The effects of duloxetine on CIBP-induced behavioural sensitisation 

showing paw withdrawal threshold (PWT), number of avoidances of weight bearing 

on movement, number of paw withdrawals, latency to paw withdrawal and duration 

of paw elevation. Data show mean responses ± SEM (n=11). 
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4.4.9 The effect of S,S-reboxetine on CIBP-induced mechanical allodynia, 

movement-evoked pain and thermal sensitivity to 40°C  

A selective noradrenaline reuptake inhibitor, S,S-reboxetine (10mg/kg; po 

administration) was assessed for reversal of CIBP-induced behavioural sensitisation. 

S,S-reboxetine (given at Day 17-19 post CIBP induction) attenuated thermal 

sensitivity to 40°C, where the number of paw withdrawals at 4 hours post-

administration were significantly decreased when compared to pre-administration 

values, shown by One-way ANOVA followed by Bonferroni‟s post-hoc analysis, 

p<0.05. The latency to withdrawal and duration of paw elevation were unaltered 

compared to pre-administration values. S,S-reboxetine did not attenuate CIBP-

induced mechanical allodynia, where the pre-administration significant reduction of 

ipsilateral PWT remained unaltered post-administration, shown by a One-way 

repeated measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc 

analysis, p<0.05. Additionally S,S-reboxetine did not attenuate CIBP-induced 

movement-evoked pain (Figure 4.9).  
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Figure 4.9 Effect of S,S-reboxetine (10mg/kg; p.o. administration) on CIBP-induced 

behavioural sensitisation. Data show mean responses ± SEM (n= 12). A) Ipsilateral 

PWT was significantly decreased at all time points when compared to contralateral 

values (#; One-way repeated measures ANOVA on ranks followed by Dunn's post-

hoc analysis, p<0.05). Ipsilateral PWT was unaltered by S,S-reboxetine when 

compared to pre-administration values. B) Avoidance of weight bearing on 

movement was significantly increased from 24 hours onwards when compared to 

pre-administration responses (^; One-way repeated measures ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05). C) The number of paw withdrawals to 40°C 

was significantly decreased when compared to pre-administration values (^; One-

way ANOVA followed by Bonferroni's post-hoc analysis, p<0.05). D) Latency to 

paw withdrawal and duration of paw elevation at 40°C were unaltered compared to 

pre-administration values. P values ^^^ = <0.001, ^^ = 0.001 to 0.01, ^ = 0.01 to 

0.05, ### = <0.001 and ## = 0.001 to 0.01. 
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Time post-administration (hours) 

Pre 1 2 3 4 24 48 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT 

(grams) 
6.9 6.8 7.3 7.6 9.0 8.6 6.7 

SEM 1.0 0.9 1.1 1.1 2.1 2.0 0.9 

Con 

PWT 

(grams) 
68.0 60.2 68.0 71.9 66.9 64.1 70.5 

SEM 5.3 6.7 5.3 3.9 6.1 6.1 5.3 

Movement-evoked 

Number 14.6 15.6 14.0 14.4 15.6 16.6 17.4 

SEM 0.7 0.6 0.8 0.8 0.7 0.5 0.4 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 Number 

 2.8 2.1 2.2 1.8 1.5 2.1 2.4 

SEM 0.2 0.3 0.3 0.2 0.2 0.3 0.4 

Latency 

(seconds) 

 39.0 38.8 40.9 31.0 31.6 22.5 31.9 

SEM 8.6 13.7 12.2 9.3 7.3 5.8 7.0 

Duration 

(seconds) 

 65.8 61.2 74.5 76.5 74.2 80.1 85.9 

SEM 14.8 14.2 16.5 13.6 13.4 17.9 15.6 

 

Table 4.8 The effects of S,S-reboxetine on CIBP-induced behavioural sensitisation 

showing paw withdrawal threshold (PWT), number of avoidances of weight bearing 

on movement, number of paw withdrawals, latency to paw withdrawal and duration 

of paw elevation. Data show mean responses ± SEM (n= 12). 

 

4.4.10 The effect of CB 65 on CIBP-induced movement-evoked pain, thermal 

sensitivity to 40°C and mechanical allodynia 

A selective CB2 receptor agonist, CB 65 (1 mg/kg; i.p. administration), was 

assessed for reversal of CIBP-induced behavioural sensitisation. CB 65 (given at Day 

20 after CIBP induction) did not attenuate CIBP-induced mechanical allodynia 

where ipsilateral PWT was unaltered post-administration of pharmacological agent 
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and the pre-administration significant reduction in ipsilateral paw compared to 

contralateral PWT remained unaltered post-administration, except at 2 to 3 hours, 

shown by One-way repeated measures ANOVA on ranks (Friedman‟s test) followed 

by Dunn‟s post-hoc analysis, p<0.05. CB 65 attenuated CIBP-induced avoidance of 

weight bearing on movement when compared to pre-administration values at 2 hours 

post-administration and CB 65 also attenuated the number of paw withdrawals to 

40°C at 3 hours post-administration, shown by a One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05 (Figure 4.10). 
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Figure 4.10 Effect of CB 65 (1mg/kg; i.p. administration) on CIBP-induced 

behavioural sensitisation. Data show mean responses ± SEM (n= 5). A) CIBP 

resulted in a significant reduction in ipsilateral PWT when compared to contralateral 

values (#; One-way repeated measures ANOVA on ranks followed by Dunn's post-

hoc analysis, p<0.05). B) Avoidance of weight bearing on movement was 
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significantly decreased 2 hours post CB 65 when compared to pre-administration 

values (^; One-way repeated measures ANOVA followed by Bonferroni's post-hoc 

analysis, p<0.05). C) Number of paw withdrawals to 40°C was significantly 

decreased 3 hours post-administration when compared to pre-administration values 

(^; One-way repeated measures ANOVA followed by Bonferroni's post-hoc analysis, 

p<0.05). P values ^ = 0.01 to 0.05 and # = 0.01 to 0.05. 

 

 

Time post-administration (hours) 

Pre 1 2 3 24 

Mechanical allodynia 

Ipsi 

PWT 

(grams) 
5.4 8.0 7.0 16.4 4.1 

SEM 0.9 1.9 1.4 5.4 0.5 

Con 

PWT 

(grams) 
66.5 75.9 57.1 57.1 64.1 

SEM 9.4 0.0 11.5 11.5 11.8 

Movement-evoked 

Number 14.8 13.4 12.0 13.6 14.3 

SEM 0.8 1.3 0.7 1.3 1.0 

Thermal sensitivity to 40°C Number 

 4.0 2.7 2.3 1.2 4.3 

SEM 0.5 0.8 0.6 0.4 0.3 

 

Table 4.9 The effects of CB 65 on CIBP-induced behavioural sensitisation showing 

paw withdrawal threshold (PWT), number of avoidances of weight bearing on 

movement and number of paw withdrawals. Data show mean responses ± SEM (n= 

5). 

 

4.4.11 The effect of vehicle control for gabapentin, duloxetine and S,S-

reboxetine on CIBP-induced movement-evoked pain, thermal sensitivity to 40°C 

and mechanical allodynia 

CIBP-induced mechanical allodynia, movement-evoked pain and thermal 

sensitivity to 40°C were not affected by vehicle control for gabapentin, duloxetine 

and S,S-reboxetine. Vehicle (given at Day 14-18 post CIBP induction) did not alter 
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CIBP-induced mechanical allodynia when compared to pre-administration values 

and ipsilateral PWT remained significantly decreased compared to contralateral 

PWT, shown by a repeated measures ANOVA on ranks (Friedman‟s test) followed 

by Dunn‟s post hoc analysis, p<0.05. In addition, vehicle did not alter CIBP-induced 

movement-evoked pain or thermal sensitivity to 40°C compared to pre-

administration values, shown by a repeated measures One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis, p<0.05 (Figure 4.11).  
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Figure 4.11 Effect of vehicle (p.o. administration) on CIBP-induced behavioural 

sensitisation. Data show mean responses ± SEM (n=10). A) CIBP resulted in a 

significant reduction in ipsilateral PWT when compared to contralateral PWT (#; 

One-way repeated measures ANOVA on ranks followed by Dunn's post-hoc 

analysis, p<0.05), which remained unaltered by vehicle administration. B) Avoidance 

of weight bearing on movement did not alter post vehicle. C) The number of paw 
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withdrawals to 40°C did not alter post vehicle. D) Both the latency and duration of 

paw elevation did not alter post vehicle administration. P values ### = <0.001, ## = 

0.001 to 0.01 and # = 0.01 to 0.05. 

 

 
Time post-administration (hours) 

Pre 1 2 3 4 24 48 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT  

(grams) 
9.9 9.5 8.3 7.8 7.5 8.7 6.0 

SEM 2.5 2.5 2.4 1.0 1.3 1.3 0.9 

Con 

PWT  

(grams) 
71.2 71.2 71.2 71.2 71.2 75.9 71.2 

SEM 4.7 4.7 4.7 4.7 4.7 0.0 4.7 

Movement-evoked 
Number 14.0 14.1 14.0 13.8 14.6 13.6 15.3 

SEM 0.7 0.9 1.0 0.9 0.7 1.3 0.6 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 

Number 
 2.5 2.4 2.8 1.8 1.7 2.2 2.4 

SEM 0.3 0.5 0.4 0.4 0.3 0.4 0.5 

Latency 

(seconds) 

 51.4 37.0 58.3 72.9 61.2 58.0 56.2 

SEM 11.2 8.3 14.6 15.7 13.5 17.6 17.0 

Duration 

(seconds) 

 0.0 0.0 11.2 7.4 5.9 4.5 5.3 

SEM 0.0 0.0 7.5 6.4 2.7 4.5 2.8 

 

Table 4.10 The effects of vehicle on CIBP-induced behavioural sensitisation showing 

paw withdrawal threshold (PWT), number of avoidances of weight bearing on 

movement, number of paw withdrawals, latency to paw withdrawal and duration of 

paw elevation. Data show mean responses ± SEM (n=10). 

 

4.4.12 Effect of gabapentin and duloxetine on number of rearings on the 

elevated plausmaze 

Gabapentin and duloxetine had no effect on voluntary locomotor activity, as 

measured by number of rearings on the elevated plusmaze (Figure 4.12). The effect 
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of these pharmacological agents on other measures of voluntary locomotor activity, 

such as distance travelled or speed in the open field were not assessed in this thesis.  
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Figure 4.12 Effect of gabapentin, duloxetine and S,S-reboxetine on voluntary 

locomotor activity. Data show mean responses ± SEM on the elevated plus maze of 

CIBP + Vehicle (n=9), CIBP + Gabapentin (n=10), CIBP + Duloxetine (n=11) and 

CIBP + S,S-reboxetine (n=10) animals. Experimental series run at the same time are 

grouped by a dashed line and statistical analysis was carried out within these groups. 

S,S-reboxetine was run at a separate time and therefore was not compared to CIBP + 

Vehicle. Gabapentin and duloxetine did not alter the number of rearings in 

comparison to CIBP + Vehicle. 

 

4.4.13 Both duloxetine and S,S-reboxetine had no effect on performance in the 

rotarod test of sedation/ataxia 

Both duloxetine (30mg/kg) and S,S-reboxetine (10mg/kg) were tested for 

potential sedative effects using the rotarod test of sedation/ataxia. This involved an 

automated accelerating rotarod set to accelerate to 17 rpm in 5 seconds and maintain 

that speed for 40 seconds (Iyengar et al., 2004). Naïve animals were allowed three 

training trials on the rotarod 24 hours prior to pharmacological agent testing. 

Duloxetine (n=5) and S,S-reboxetine (n=5) were administered to naive animals 

(whose mean scores were 33.6 ± 3.9 and 30.3 ± 4.2 seconds ± SEM pre-duloxetine or 
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S,S-reboxetine respectively). Both pharmacological agents had no effect on 

performance in the rotarod test of sedation/ataxia, with no significant reductions in 

time scored for example at 1 hour post-duloxetine (32.6 ± 4.9 seconds) or post-S,S-

reboxetine (27.7 ± 3.8 seconds). 

 

4.4.14 Effect of XRT and pharmacological agent therapy on pain-related 

anxiety and risk assessment behaviour 

Pain-related anxiety (as measured by the time spent on open arms of the 

elevated plusmaze) was not altered by XRT or pharmacological agent therapy. The 

number of groomings on the elevated plusmaze was significantly increased by XRT 

when compared to CIBP (2.33 ± 0.58 versus 4.43 ± 0.45), shown by unpaired two-

tailed t-test, p<0.05. The number of groomings was unaltered by pharmacological 

agent therapy. Risk assessment behaviour, as measured by number of protected 

stretch attends, was significantly decreased by XRT when compared to CIBP (10.89 

± 2.25 versus 4.86 ± 1.03), shown by unpaired two-tailed t-test, p<0.05. The number 

of protected stretch attends was not attenuated by pharmacological agent therapy. 

The time spent in the centre zone of the open field was not altered by XRT (Figure 

4.13).  
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B) Number of groomings
on the elevated plusmaze
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C) Number of protected stretch attends
on the elevated plusmaze
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Figure 4.13 Effect of XRT treatment, gabapentin, duloxetine and S,S-reboxetine on 

affective components of CIBP. Data show mean responses ± SEM on the elevated 

plus maze in CIBP (n=9), XRT (n=14), CIBP + Vehicle (n=9), CIBP + Gabapentin 

(n=10), CIBP + Duloxetine (n=11) and CIBP + S,S-reboxetine (n=10) animals and in 

the open field CIBP (n=7) and CIBP + XRT (n=8) animals. Experimental series run 

during the same test session are grouped by a dashed line and statistical analysis was 

carried out within these groups. S,S-reboxetine was run at a separate time and was 

therefore not compared to CIBP + Vehicle. A) XRT did not alter the time spent on 

the open arm in comparison to CIBP. Gabapentin and duloxetine did not alter the 

time spent on the open arm in comparison to CIBP + Vehicle.  B) XRT significantly 
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increased the number of groomings in comparison to CIBP (√√ unpaired two-tailed t-

test, p = 0.001 to 0.01). Gabapentin and duloxetine did not alter the number of 

groomings in comparison to CIBP + Vehicle. C) XRT significantly reduced the 

number of protected stretch attends in comparison to CIBP (√ unpaired two-tailed t-

test, p = 0.01 to 0.05. Gabapentin and duloxetine did not alter the number of rearings 

in comparison to CIBP + Vehicle. D) XRT did not alter the time spent in the centre 

zone in the open field. 

 

 The effects of acute gabapentin, duloxetine, S,S-reboxetine and CB65 

administration on CIBP-induced behavioural sensitisation are summarised in the 

table below (Table 4.11). Gabapentin did not attenuate CIBP-induced behavioural 

sensitisation. Duloxetine reversed mechanical allodynia, at 1-2 hours post-

administration, reversed thermal sensitivity to 40°C at 1-24 hours post-

administration, as measured by number of paw withdrawals, and reversed 

movement-evoked pain at 1-4 hours post-administration. S,S-reboxetine reversed 

thermal sensitivity to 40°C, as measured by number of paw withdrawals, at 4 hours 

only. CB 65 reversed thermal sensitivity to 40°C, as measured by number of paw 

withdrawals, at 3 hours only, and reversed movement-evoked pain, at 2 hours only. 

In addition to these behavioural results, gabapentin and duloxetine were found to 

have no effect on voluntary locomotor or anxiety-related behaviours on the elevated 

plusmaze. 
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 Thermal sensitivity to 40°C  

 
Mechanical 

allodynia 

Number of paw 

withdrawals 

Latency to paw 

withdrawal 

Duration 

of paw 

elevation 

Movement-

evoked 

Gabapentin X X X X X 

Duloxetine 

Reversed at 

1-2 hours 

post-

duloxetine 

Reversed at 1-

24 hours post-

duloxetine 

Increased at 1-

2 and 4-24 

hours post-

duloxetine 

 

X 

Reversed at 

1-4 hours 

post-

duloxetine 

S,S-

reboxetine 

 

X 

Reversed at 4 

hours 

post-S,S-

reboxetine 

 

X 

 

X 

 

X 

CB 65 
 

X 

Reversed at 3 

hours 

post-CB 65 

 

~ 

 

~ 

Reversed at 

2 hours post-

CB 65 

 

Table 4.11 Summary table of the effects of pharmacological agents on CIBP-induced 

behavioural sensitisation where X = no effect and ~ = not recorded.  

 

4.5 Discussion  

4.5.1 Focal radiotherapy carried out at Day 7 after CIBP induction attenuated 

thermal sensitivity to 20°C and 40°C and movement-evoked pain 

These results show that XRT (8 Gy), carried out at Day 7 after CIBP 

induction, significantly attenuated thermal sensitivity to 20°C and 40°C and also 

reversed movement-evoked pain on the rotarod (set at a constant speed of 5-6 rpm)  

at Day 18-21 only. A recent review of clinical guidelines showed pain relief 

equivalency for the dosing schemes; 30 Gy in 10 fractions, 24 Gy in 6 fractions, 20 

Gy in 5 fractions and a single 8 Gy fraction for patients. However, the single dose 

fraction approach optimises patient and caregiver convenience, and is commonly 

used in clinical practice (Lutz et al., 2011). One of the most interesting results is that 

XRT treatment prevented the development of the CIBP-induced increase in duration 
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of paw elevation, as shown by a significant decrease in the duration of paw elevation 

at both 20°C and 40°C. XRT did not attenuate CIBP-induced mechanical allodynia 

or static weight bearing difference between hindlimbs. XRT did not alter the distance 

travelled or average speed in the open field or number of rearings on the elevated 

plusmaze, used as measures of voluntary locomotor activity. A previous study found 

that a single dose (20 Gy) of focal radiotherapy resulted in increased mobility in a 

mouse model of CIBP with improved spontaneous limb use scores and improved 

performance on the rotarod noted (Goblirsch et al., 2004b). In that study mice 

received XRT at Day 7 after inoculation and the rotarod was set at a constant speed 

of 6 rpm, with the animals also being scored for guarding behaviour on the rotarod. 

At Day 13 and day 15 (6 and 8 days after XRT) mice with tumour had behavioural 

scores indistinguishable from mice that received Sham inoculations (Goblirsch et al., 

2004b). This decrease in pain behaviour was shown to be due to a decrease in tumour 

mass and osteoclast activity (Goblirsch et al., 2004b). Another study showed that 

irradiated CIBP mice showed increased performance on the rotarod and in the forced 

grip test (Vit et al., 2006).  This study administered a single dose of 6 Gy XRT at a 

later time point (Day 10 after inoculation) than our study (Day 7 after inoculation). 

The rotarod was set to accelerate from 3.75 rpm with progressive acceleration and 

the time to fall off was recorded, the performance of mice on the rotarod improved at 

Day 13 onwards. At Day 17 after inoculation of tumour cells, non-irradiated mice 

fell after 67+/-16s and irradiated mice fell at 223+/-22s (Vit et al., 2006). The 

palliative effect of low dose irradiation was not seen to be associated with changes in 

tumour size or osteolysis in this study (Vit et al., 2006). Results of the present study 

are fully in agreement, in that XRT successfully reduced movement-induced pain 

and expand on such findings by showing improvements in thermal sensitivity. In the 

present study, it is possible that XRT reduced tumour burden, osteoclast activity or 

pro-inflammatory cytokines and future work could investigate this in the MRMT-1 

rat model.  

 

We looked at the efficacy of XRT treatment in attenuating affective 

components, such as anxiety, a co-morbidity of chronic pain observed in CIBP 

patients. XRT did not alter time spent in the centre zone of the open field or time 



 153 

spent on the open arm of the elevated plusmaze (measures of anxiety). However, 

XRT did significantly increase number of groomings on the elevated plusmaze when 

compared to CIBP. XRT also significantly decreased risk assessment behaviour, as 

measured by number of protected stretch attends, on the elevated plusmaze when 

compared to CIBP. This might indicate that XRT animals show decreases in anxiety 

as measured by these subtle behaviours. However, as detailed in Chapter 3 (section 

3.4.12), these behaviours were not significantly altered in CIBP when compared to 

Sham V or Naïve groups. 

 

XRT appeared to cause a significant increase in body weight at Day 9-11 

when compared to CIBP animals. XRT-treated animals had to be transported to 

receive radiotherapy (treatment was administered under anaesthesia) therefore this 

weight increase may have been due to the change in routine. As shown in Chapter 3 

(Section 3.4.1), the body weight of CIBP animals was not significantly different from 

Naïve and Sham animals therefore this increase in body weight is not likely to be due 

to analgesia from XRT treatment. 

 

4.5.2 Acute gabapentin administered at Day 18-21 did not attenuate CIBP-

induced mechanical allodynia, movement-evoked pain or thermal sensitivity to 

40°C 

Gabapentin is thought to act through voltage-dependent calcium channels 

expressed in sensory neurons to reduce glutamate release but the precise mechanism 

of action of gabapentin remains elusive. Gabapentin binds to α2δ-1 and α2δ-2 

subunits of voltage-dependent calcium channels. The α2δ protein may be involved in 

the trafficking of calcium channel complexes to the membrane and gabapentin may 

act by blocking this trafficking (Bauer et al., 2010). Gabapentin may reduce the 

stimulated release of transmitters by inhibiting the function of Ca
2+

 channels, 

however gabapentin does not appear to inhibit the function of recombinant Ca
2+

 

channels, although it is possible interacting proteins found at synapses are necessary 

for this inhibition (Taylor, 2009). Gabapentin does however, cause a slow 

redistribution of Ca
2+

 channels from plasma membrane to intracellular sites, which 

would inhibit function in nociceptive afferents (Heblich et al., 2008;Tran-Van-Minh 
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& Dolphin, 2010). Results of another study suggested that gabapentin produces 

analgesia through its activation of descending noradrenergic systems and release of 

noradrenaline in the spinal cord (Hayashida et al., 2007). In addition, a recent study 

found that thrombospondin (an astrocyte-secreted protein) binds to α2δ-1 to promote 

synapse formation and that this was inhibited by gabapentin in vitro and in vivo 

(Eroglu et al., 2009). The authors proposed that the analgesic action of gabapentin 

maybe through inhibition of new synapse formation  (Eroglu et al., 2009).  

 

A single dose of gabapentin (30mg/kg) given at Day 18-21 after CIBP 

induction did not attenuate mechanical allodynia, movement-evoked pain or thermal 

sensitivity to 40°C. Gabapentin did not alter the number of rearings on the elevated 

plusmaze. A previous study has shown that chronic administration of gabapentin 

(30mg/kg; given subcutaneously twice daily) attenuated mechanical and cold 

allodynia, as assessed by the acetone test, in CIBP (Donovan-Rodriguez et al., 2005). 

However a single systemic dose had no effect on behaviour and chronic gabapentin 

took 2 days to attenuate behaviours (Donovan-Rodriguez et al., 2005). Therefore our 

results are consistent with the finding that a single dose of gabapentin did not 

attenuate CIBP-induced pain behaviours. In addition, gabapentin did not alter any 

anxiety-like or risk assessment behaviours measured on the elevated plusmaze. 

 

4.5.3 Acute duloxetine given at Day 16-21 after CIBP induction attenuated 

mechanical allodynia, movement-evoked pain and thermal sensitivity to 40°C, 

whereas only attenuation of thermal sensitivity was observed following acute 

S,S-reboxetine administration 

Serotonin (5-HT) and noradrenaline are neurotransmitters involved in 

descending facilitation and inhibition from supraspinal areas onto the dorsal horn of 

the spinal cord (Millan, 2002). Brainstem and midbrain areas project serotonergic 

and noradrenergic neurons onto dorsal horn neurons, where noradrenaline and 

serotonin released from these neurons acts on α2-adrenoreceptors and a variety of 5-

HT receptors, respectively, to modulate dorsal horn responses to pain (Bannister et 

al., 2009). The excitatory influence of the serotonergic system has been shown to be 

enhanced in a number of models of chronic pain including in a model of CIBP 
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(Donovan-Rodriguez et al., 2006). Spinally administered ondansetron, a selective 5-

HT3 receptor antagonist, significantly reduced mechanical- and thermal- evoked 

responses in a MRMT-1 CIBP model (Donovan-Rodriguez et al., 2006). Recently a 

study in mouse models of inflammatory and neuropathic pain using molecular 

depletion of a key enzyme in the 5-HT synthesis pathway showed that descending 5-

HT from the RVM plays a critical role in the descending facilitation of pain during 

persistent pain states (Wei et al., 2010).  

 

Duloxetine is a potent and balanced serotonin-noradrenaline reuptake 

inhibitor and duloxetine is also reported to have some activity at voltage-dependent 

sodium channels and may block Nav1.7 persistent late neuronal Na
+
 currents, which 

may contribute to its analgesic efficacy (Wang et al., 2010). A single dose of 

duloxetine (30mg/kg) given at Day 16-21 after CIBP induction attenuated 

mechanical allodynia, movement-evoked pain and thermal sensitivity to 40°C with 

significantly decreased number of paw withdrawals and increased latency to paw 

withdrawal to 40°C. A possible mechanism of duloxetine might be via an 

enhancement of serotonergic and noradrenergic descending inhibition from the 

midbrain to the dorsal horn of the spinal cord which thereby decreases transmission 

of nociceptive information in the dorsal horn and potentially supraspinally as well 

(Jones et al., 2005).  To attempt to elucidate the mechanism of duloxetine analgesia 

the noradrenaline reuptake inhibitor S,S-reboxetine was tested. A single dose of S,S-

reboxetine (10mg/kg) given at Day 17-19 after CIBP induction did not attenuate 

CIBP-induced mechanical allodynia or movement-evoked pain but did attenuate 

thermal sensitivity to 40°C. This may suggest that duloxetine attenuates mechanical 

allodynia and movement-evoked pain by inhibition of serotonin reuptake alone or by 

inhibition of both noradrenaline and serotonin reuptake. Future studies could test this 

further and the analgesic efficacy of a selective serotonin reuptake inhibitor, such as 

fluoxetine, in this MRMT-1 CIBP model could be investigated. In addition, it would 

be interesting to investigate which serotonin (5-HT) receptors are involved in this 

observed attenuation of CIBP-induced behavioural sensitisation. By targeting the 

specific 5-HT receptors involved, it may be possible to improve the efficacy of 

modulating or mimicking the influence of the descending serotonin pathways. It 
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should be borne in mind that additional pharmacological actions of any of these 

compounds may contribute to their analgesic profile. 

 

As mentioned previously, a study by El Mouedden and Meert reported that 

acute administration of the noradrenaline reuptake inhibitor, desipramine, and the 

noradrenaline and serotonin reuptake inhibitor, amitriptyline, reduced spontaneous 

pain behaviour in a preclinical model of CIBP but only at doses that also caused 

sedation. However, the selective serotonin reuptake inhibitor, fluoxetine, did not 

attenuate spontaneous pain behaviour. The authors found that these compounds did 

not affect mechanical hypersensitivity or limb-use impairment (El Mouedden & 

Meert, 2007a). Whiteside et al. demonstrated that the noradrenaline reuptake 

inhibitor WAY-318068 modestly reversed mechanical allodynia in a CIBP model 

(Whiteside et al., 2010). These studies suggest that increased noradrenaline, without 

the effect of serotonin, is sufficient for attenuating some pain-related behaviours in a 

CIBP model. The effects are not as prominent as with dual serotonin and 

noradrenaline reuptake inhibitors though, suggesting that there could be some 

synergy between the noradrenaline and serotonin mechanisms that attenuate pain 

sensitivity when both are activated simultaneously. A review of preclinical and 

clinical studies suggests that dual acting serotonin and noradrenaline enhancing 

drugs produce the greatest analgesic effects in persistent pain states, with smaller 

effects achieved from enhancing noradrenaline alone (Marks et al., 2009).  

   

4.5.4 CB 65 given at Day 20 after CIBP induction attenuated movement-evoked 

pain and thermal sensitivity to 40°C but did not attenuate mechanical allodynia 

CB 65 is a selective, high affinity CB2 receptor agonist (Manera et al., 2006). 

In the present study, a single dose of CB 65 (1mg/kg; i.p.) given at Day 20 after 

CIBP induction did not attenuate CIBP-induced mechanical allodynia but did 

attenuate CIBP-induced movement-evoked pain and thermal sensitivity to 40°C. 

Previous studies have shown that CIBP-induced thermal hyperalgesia and 

mechanical allodynia are differently affected by the activation of peripheral CB2 

receptors. Curto-Reyes et al. found that reversal of thermal hyperalgesia involved 

both peripheral and spinal CB2 receptors whereas reversal of mechanical allodynia 
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relied on activation of spinal CB2 receptors (Curto-Reyes et al., 2010). These 

different results may be related to the underlying mechanisms of thermal sensitivity 

and mechanical allodynia, although it also appears to depend on the pain state, as 

discussed by Curto-Reyes et al. (Curto-Reyes et al., 2010).  

 

Recently, a CB2 receptor agonist has been shown to provide analgesia and 

prevent bone loss in a murine model of CIBP (Lozano-Ondoua et al., 2010). Acute 

administration or 7 days systemic administration of AM1241 (CB2 receptor agonist) 

significantly attenuated spontaneous pain, assessed by counting of flinching and 

guarding behaviour over 2 minutes, and movement-evoked pain, scored during 

normal ambulation (Lozano-Ondoua et al., 2010). Furthermore, sustained AM1241 

significantly reduced bone loss and decreased fractures (Lozano-Ondoua et al., 

2010). So, while an acute dose effectively attenuated pain-related behaviours, 

sustained administration was necessary to reduce bone destruction (Lozano-Ondoua 

et al., 2010). Another recent study also showed that systemic administration of a non-

selective cannabinoid receptor agonist, a CB1 receptor-selective agonist and a CB2 

receptor-selective agonist significantly attenuated cancer-induced mechanical 

allodynia in a model of oral cancer pain (Saghafi et al., 2011). Additionally, tumour-

growth was significantly attenuated with systemic administration of the CB2 

receptor-selective agonist (AM1241) (Saghafi et al., 2011). These findings suggest 

activation of cannabinoid receptors in CIBP can have additional benefits, 

contributing to analgesia via reduction in bone loss/destruction or through direct 

effects on tumour growth. A study by Cui et al. showed that intrathecal 

administration of WIN 51,212-1, a general cannabinoid receptor agonist, reversed 

mechanical allodynia in a dose-dependent manner in a MRMT-1 model of CIBP (Cui 

et al., 2010). This antinociceptive effect was reversed by intrathecal administration of 

both CB1 and CB2 receptor antagonists, suggesting that the antinociceptive effect is 

mediated through both  CB1 and CB2 receptors at the spinal level (Cui et al., 2010). 

Another study showed that activation of spinal CB1 receptors by intrathecal 

administration of the CB1 receptor agonist arachidonyl-2-chloroethylamide reduced 

spontaneous and movement-evoked pain in a mouse model of CIBP (Furuse et al., 

2009). A decrease in endocannabinoid AEA, a partial agonist of CB1 and CB2 
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receptors, is reported to contribute to the maintenance of CIBP (Khasabova et al., 

2008). These results suggest that both CB1 and CB2 receptors play a role in CIBP. 

 

Cannabinoids do not only act through the classical CB1 and CB2 receptors. 

The G protein-coupled receptor GPR55 is proposed be a receptor for some 

cannabinoids (Ryberg et al., 2007). Although several cannabinoid-type compounds 

modulate GPR55, pharmacological tests of GPR55 activation by different 

compounds produce inconsistent results (Ross, 2009). A recent study demonstrated 

that cannabinoids can activate TRPA1, TRPV1, TRPV2 and antagonise TRPM8 

receptors (De Petrocellis et al., 2010). Furthermore, cannabinoids have been shown 

to provide anti-nociception in a rat model of osteoarthritis (Schuelert & McDougall, 

2008). This anti-nociception in joints may involve actions on the TRPV1 ion channel 

(Baker & McDougall, 2004;McDougall et al., 2008;Schuelert & McDougall, 2008). 

Activation of CB2 receptors coexpressed with TRPV1 in DRG neurons inhibits 

responses mediated by TRPV1 (Anand et al., 2008).  

 

Other treatment options for CIBP patients include; radioisotopes with an 

affinity for bone, nerve blocks and surgical intervention, where surgery is mostly 

utilised if there is a risk of pathological fracture. Emerging treatments include 

osteoprotegerin, which is a decoy receptor for the receptor activator of nuclear factor 

kappa B ligand (RANKL). By binding RANKL, osteoprotegerin can reduce the 

differentiation of osteoclast precursors into osteoclasts and inhibit bone resorption. 

An early study has shown that a single dose of osteoprotegerin caused a sustained 

repression of bone resorption in patients with multiple myeloma or breast carcinoma-

related bone metastases (Body et al., 2003). Further studies have investigated 

antibodies against RANKL, including the antibody densumab, and a recent clinical 

trial showed that densumab reduced bone resorption in CIBP patients (Body et al., 

2006). A recent promising development, comes from the work of Mantyh et al. who 

showed that early sustained administration of anti-NGF, which acts on the TrkA 

receptor, blocks the sprouting of sensory and sympathetic nerve fibres, formation of 

neuromas and inhibits the development of CIBP (Mantyh et al., 2010). The anti-NGF 
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drug tanzemab (Pfizer) is currently undergoing clinical trials for both osteoarthritis 

and CIBP.   

 

4.6 Conclusion 

 In this study we found that XRT significantly attenuated movement-evoked 

pain and thermal sensitivity to 20°C and 40°C. XRT also significantly reduced 

anxiety and risk assessment behaviours (grooming behaviour and number of 

protected stretch attend postures) compared to CIBP. It would have been interesting 

to evaluate the effect of XRT on spontaneous foot lifting in our model. Duloxetine 

attenuated CIBP-induced mechanical allodynia, thermal sensitivity to 40°C and 

movement-evoked pain, whereas S,S-reboxetine attenuated thermal sensitivity to 

40°C but did not effect CIBP-induced mechanical allodynia or movement-evoked 

pain. This suggests that duloxetine may attenuate mechanical allodynia and 

movement-evoked pain by a mechanism involving inhibition of serotonin reuptake in 

conjunction with inhibition of noradrenaline reuptake. In addition, CB 65 attenuated 

movement-evoked pain and thermal sensitivity to 40°C. In agreement with previous 

studies, a single dose of gabapentin did not attenuate CIBP-induced mechanical 

allodynia, thermal sensitivity to 40°C or movement-evoked pain. These studies 

confirm that the CIBP model shows characteristics and pharmacological sensitivities 

consistent with known and predicted mechanisms and validate it as a useful model 

for assessing potential new treatments proposed for use in patients. Furthermore, 

these results suggest that inhibition of serotonin and noradrenaline reuptake may be a 

novel analgesic target for CIBP. 
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5. THE INVOLVEMENT OF NMDA RECEPTORS IN A PRECLINICAL 

MODEL OF CIBP 

 

5.1 Introduction 

NMDA receptors are cation channels permeable both to monovalent cations 

and the divalent cation Ca
2+

. At resting membrane potentials, NMDA receptors are 

blocked by Mg
2+

 and can only be activated following both depolarisation and agonist 

binding. The main mechanism of NMDA receptor function is the entry of Ca
2+

 upon 

channel opening and the subsequent activation of many intracellular pathways by 

Ca
2+

.  

 

5.1.1 NMDA Receptor Structure 

Functional NMDA receptors are heterotetramers that require a combination 

of NR1¸ NR2 (NR2A-D) and occasionally NR3 (NR3A-B) subunits. The NR1 and 

NR3 subunits contain glycine binding sites and the NR2 subunit contains the 

glutamate binding site. NMDA receptors are most commonly composed of two NR1 

subunits and two NR2 subunits (Monyer et al., 1994). The combination of subunits 

determines the functional properties of NMDA receptors, including sensitisation to 

the Mg
2+

 block, kinetics of desensitisation and single-channel conductances (Cull-

Candy & Leszkiewicz, 2004). For example, the NR2A and NR2B subunits generate 

high conductance channel openings whereas NR2C- or NR2D- containing receptors 

give rise to low conductance openings (Misra et al., 2000;Stern et al., 1992;Wyllie et 

al., 1996). NMDA receptor subunits have an extracellular amino terminal domain, 3 

transmembrane domains¸ a re-entrant pore-forming region and a long intracellular 

cytoplasmic tail (Mayer, 2005). The agonist binding site of an NMDA receptor 

subunit is located in a region referred to as the S1-S2 domain (Stern-Bach et al., 1994). The 

amino terminal domain of the NR2 subunits controls agonist potency, channel 

deactivation time course, open probability and mean open/shut duration (Yuan et al., 

2009) (Figure 5.1).  
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Figure 5.1 Structure of NMDA receptor subunits. Diagram shows the amino-terminal 

domain (ATD), the S1-S2 domain (S1-S2) and three transmembrane domains (M1, 

M3 and M4), the re-entrant loop and the intracellular cytoplasmic terminus (-

COOH). Agonists bind at the S1-S2 domain. The intracellular C-terminal domain 

interacts with numerous post-synaptic molecules. Figure adapted from (Ng et al., 

2008).  

 

5.1.2 The NMDA Receptor Complex 

Synaptic NMDA receptors are localised in the post-synaptic density where 

they are structurally organised in a large macromolecular complex composed of 

scaffolding proteins and adaptor proteins that link NMDA receptors to downstream 

signalling molecules and to other transmembrane proteins (Scannevin & Huganir, 

2000). The membrane-associated guanylate kinase (MAGUK) family of proteins are 

important scaffolding molecules that include postsynaptic density proteins PSD-95, 

and PSD-93/chapsyn-110 and synapse-associated proteins SAP-97 and SAP102. 

MAGUK proteins consist of three PDZ domains at the N-terminus, an Src homology 

region 3 (SH3) domain and a guanylate kinase-like (GK) domain at the C-terminal 

(Kim & Sheng, 2004). Several studies have shown that NMDA receptor synaptic 

localisation and binding to scaffolding proteins, such as the MAGUK family, plays a 

major role in the central downstream signals resulting from receptor activation (Elias 

& Nicoll, 2007). The last three amino acids of the carboxy- termini of the NR2A and 
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NR2B subunits have a C-terminal consensus motif, threonine/serine-x-valine (where 

x is any amino acid) is responsible for efficient binding to PDZ domains of MAGUK 

members (Niethammer et al., 1996). Two members of the MAGUK family of 

proteins, PSD-93 and PSD-95, have been shown to be involved in chronic pain 

states. PSD-95 has been shown to be necessary for the development of neuropathic 

pain, as PSD-95 mutant mice do not develop pain behaviours following nerve injury 

but do develop pain behaviours following inflammation, as in wild-type animals 

(Garry et al., 2003a). PSD-93 appears to be involved in both neuropathic and 

inflammatory pain as knockdown of PSD-93 reduced both neuropathic and 

inflammatory pain behaviours (Tao et al., 2003). 

 

5.1.3 Involvement of NMDA Receptors in Central Sensitisation 

The activation of postsynaptic NMDA receptors is necessary for the 

development and maintenance of central sensitisation, which is observed in a number 

of chronic pain states (Woolf & Thompson, 1991). As detailed previously (Chapter 

1, Section 1.7.2), central sensitisation represents the enhancement of nociceptive 

pathways and is characterised by development of increased spontaneous activity in 

nociceptive neurons, a reduction in the threshold for activation of nociceptive 

neurons and enlargement of the receptive fields of nociceptive neurons (Cook et al., 

1987). In addition, there is conversion of nociceptive-specific neurons to wide-

dynamic range neurons that now respond to both innocuous and noxious stimuli. 

Central sensitisation also involves wind-up, where neurons show increased 

responsiveness to further inputs after repeated stimulation. The cellular processes 

that lead to central sensitisation include an increase in membrane excitability, 

facilitated synaptic strength and decreased inhibition of dorsal horn neurons 

(Latremoliere & Woolf, 2009).  

 

The induction of central sensitisation requires intense, repeated and sustained 

activation of nociceptors. Key mechanisms contributing to activity-dependent central 

sensitisation brought about by injury are as follows (Latremoliere & Woolf, 2009); 

tissue injury leads to strong stimulation of nociceptors causing the release of 

glutamate, substance P and BDNF, from central terminals in the dorsal horn. 
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Glutamate, substance P and BDNF act on receptors on the postsynaptic neurons to 

depolarise the postsynaptic neuron. This depolarisation is sufficient to release the 

Mg
2+

 block of NMDA receptors and agonist binding allows current to flow through 

the receptor. The concentration of intracellular Ca
2+

 is increased as Ca
2+

 enters 

through NMDA (and possibly other ionotropic glutamate receptors) and voltage-

gated Ca
2+

 channels, with Ca
2+

 also released from internal stores. Elevated Ca
2+

 

levels lead to the activation of various down stream signalling molecules including 

the serine/threonine kinases cAMP-dependent protein kinase A (PKA), protein 

kinase C (PKC) and CaMKII as well as the tyrosine kinase, Src. These can modulate 

NMDA and AMPA receptors via phosphorylation, which changes the activity of 

these receptors as well as their trafficking to or from the membrane, boosting 

synaptic efficacy. For example, following phosphorylation, NMDA receptors and 

GluR1-containing AMPA receptors are recruited to the synapse and GluR2-

containing receptors are removed from the synapse. Signalling cascades from G-

protein-coupled receptors, such as the NK1 receptor, may also activate kinases, 

converging onto Src-family kinases and contributing to the enhancement of NMDA 

receptor function (Salter & Kalia, 2004). Downstream of PKA and PKC, 

Extracellular Signal-Regulated Kinase (ERK) is activated. Many intracellular 

signalling pathways converge to activate ERK (Figure 5.2). ERK produces diverse 

effects including an increase in NMDA receptor function, through phosphorylation 

of the NR1 subunit, and recruitment of AMPA receptors to the membrane. These 

changes enhance current through these receptors and increases synaptic efficacy. 

Additionally, ERK also phosphorylates and thereby inhibits the K
+
 channel Kv4.2 

and therefore reduces K
+
 currents, increasing membrane excitability. These are all 

short-lasting changes, which can be reversed by processes such as dephosphorylation 

and recycling of receptors. Long-lasting strengthening of the synapse can be 

produced through transcriptional changes mediated by activation of cyclic adenosine 

monophosphate (cAMP), cAMP response element-binding protein (CREB) and other 

transcription factors that drive expression of genes. 
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Figure 5.2 Intracellular pathways contributing to the generation of central 

sensitisation. NMDA receptor activation leads to the activation of PKC, CaMKII and 

ERK. GluR-1 containing AMPA receptors also activate PKC. Intracellular pathways 

resulting from the activation of NMDA receptors, mGluR, TrkB, NK1, CGRP1 or 

B2 receptors converge to activate ERK. Figure adapted from (Latremoliere & Woolf, 

2009). 

 

5.1.4 Glial Cells and Central Sensitisation 

Activated microglia and astrocytes interact with neurons to influence central 

sensitisation through the production and release of neurotransmitters, cytokines, and 

reactive oxygen species which act on neurons. Activated glial cells, as discussed 

previously (Chapter1 Section 1.7.4) appear to play a role in the development of many 

pain states. Following nerve injury, central activation of microglia precedes astrocyte 

activation. In fact, microglia activation is thought to trigger astrocyte reaction 

(Svensson et al., 1993). There may also be extensive astrocyte and microglial 

activation in the spinal cord of CIBP animals (Hald et al., 2009;Medhurst et al., 

2002;Schwei et al., 1999;Zhang et al., 2005a). Prominent activation of astrocytes, 

indicated by an increase in GFAP is observed, in the spinal cord ipsilateral to bone 

cancer, which is uncommon in inflammatory and neuropathic pain conditions 

(Schwei et al., 1999). Studies investigating the involvement of microglia in CIBP 

have produced more variable data. Some studies have indicated that activation of 

Endoplasmic 

reticulum 
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astrocytes occurred ipsilateral to CIBP without activation of microglia, for example, 

bone cancer resulted in astrocyte activation without microglial reaction in a mouse 

model of CIBP (Hald et al., 2009). However, a study using a rat model of CIBP 

showed an increase in GFAP staining and also an increase in the microglial marker 

OX-42 ipsilateral to inoculation at Day 20 post inoculation (Zhang et al., 2005a). 

Another study also showed that transcription of the microglial activation markers, 

CD11b and CD14, was significantly elevated in the initiation phase of CIBP-induced 

behavioural sensitisation, and moderately increased at the maintenance phase (Lan et 

al., 2010). Therefore these observations suggest that microglia may be involved in 

the induction and maintenance of CIBP-induced behavioural sensitisation, which is  

different from the situation in neuropathic and inflammatory pain, where microglia 

are only involved in the initiating phase (Lan et al., 2010).  

 

5.1.5 NMDA Receptors in Pain States 

General NMDA receptor antagonists have been shown to reduce pain 

behaviours in models of neuropathic and inflammatory pain. For example, NMDA 

receptor antagonists, administered intrathecally, reduce spontaneous pain and 

thermal hyperalgesia in a CCI model of neuropathic pain (Mao et al., 1993). NR2A 

and NR2B are the most abundant NR2 subunits in adult rat dorsal horn (Nagy et al., 

2004;Zhang et al., 2008a). NMDA receptors containing the NR2B subunit located in 

the spinal cord play an important role in the development of inflammatory and 

neuropathic pain. NR2B phosphorylation is upregulated during inflammation in a 

CFA model of inflammatory pain (Guo et al., 2002b;Guo et al., 2004). Expression of 

spinal NR2B-containing NMDA receptors has been shown to increase in the 

following models of neuropathic pain; spinal cord injury (Labombarda et al., 2008b), 

CCI (Wilson et al., 2005) and chronic compression of the DRG (CCD) (Ma et al., 

2007;Zhang et al., 2009). The unacceptable side-effect profile of general NMDA 

receptors antagonists has made subunit-specific antagonists an attractive proposition. 

Intrathecal administration of the selective NR2B subunit antagonist, Conantokin G 

(conG), attenuated pain behaviours in formalin and CFA models of inflammatory 

pain (Malmberg et al., 2003b). Selective NR2B subunit antagonists inhibit 

mechanical allodynia without causing motor dysfunction in CCI, CCD and spinal 
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nerve-ligation (SNL) models of neuropathic pain (Boyce et al., 1999;Qu et al., 

2009;Wilson et al., 2005;Zhang et al., 2009;Malmberg et al., 2003a). Others have 

found that in models of inflammatory and neuropathic pain the NR2B subunit is 

phosphorylated by Src resulting in increased activity of NMDA receptors. 

Furthermore, uncoupling of Src from the NMDA receptor can suppress pain 

behaviours (Liu et al., 2008). A recent study showed that perturbing the interaction 

of PSD-95 with the NR2B subunit of NMDA receptors reduced spinal plasticity and 

pain behaviours in a model of neuropathic pain (D'Mello et al., 2011). 

 

5.1.6 Central Sensitisation in CIBP 

CIBP is associated with spontaneous and evoked behavioural sensitisation 

partly caused by injury of the primary afferent fibres innervating the tumour-bearing 

bone (Peters et al., 2005). As well as peripheral sensitisation of primary afferent 

fibres, changes in responsiveness of dorsal horn neurons may be induced by central 

sensitisation. Urch et al. have shown that in a rat model of CIBP, spinal dorsal horn 

neurons show increased excitability and there is enlargement of receptive field size. 

Additonally, there may be an increase in the proportion of WDR neurons in the 

superficial dorsal horn when compared to those in control rats (Urch et al., 2003a). A 

recent study by Yanagisawa et al. found that in a mouse model of CIBP, with cancer 

of the femur, mice exhibit unique plastic changes in spinal excitatory synaptic 

transmission with functional enhancement of excitatory synaptic transmission in 

lamina II across lumbar levels L2-5. More specifically, they showed the amplitude of 

monosynaptic C-fibre-evoked excitatory postsynaptic currents (EPSCs) was 

significantly increased in cancer bearing mice, whereas the monosynaptic Aδ-fibre 

evoked EPSCs remained unchanged. These plastic changes in the dorsal horn of the 

spinal cord represent a unique functional alteration in the spinal synaptic 

transmission when compared to other chronic pain states (Yanagisawa et al., 2010) 

and, along with extensive glial cell activation, suggest that this distinct central 

sensitisation may be one of the underlying mechanisms in CIBP. For this reason, it is 

important to investigate the specific involvement of NMDA receptor subtypes in 

CIBP. 
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5.2 Aim  

The aim of this part of the study was to investigate the involvement of 

NMDA receptors and particular subunits in CIBP.  

 

5.3 Methods 

5.3.1 Surgical Procedure 

Experiments were carried out using male Sprague-Dawley rats. As detailed in 

Chapter 2; animals underwent CIBP surgery (Section 2.1.2). Rats were anaesthetised 

by inhalation of an isoflurane/O2 mixture (Zeneca, UK), 4-5% for induction and 2-

3% for maintenance. The carrier gas was compressed oxygen at a flow rate of 2 

litres/minute. Following complete induction of anaesthesia the animal was placed 

abdominal side up, the left hind limb was shaved and the skin was sterilised with 

0.5% Hibitane (Zeneca, UK). A small incision was made in the skin over the tibia, 

which was then carefully exposed by removing the connective tissue over the bone 

using a cotton bud Johnson & Johnson, UK). A dental drill was used to bore a hole 

through the periosteum of the tibia. Polythene tubing (0.5mm in diameter; Smiths) 

was fed into the intra-medullary cavity of the tibia and 10 µl of medium (containing 

6X103 cells) was injected using a 1ml micro-syringe (BD Biosciences, UK) and 25-

gauge needle (BD Biosciences, UK). The tubing was withdrawn and the hole 

plugged with dental restorative material (IRM, Dentsply; Henry Schien Minerva), to 

confine the tumour cells within the marrow and prevent invading the adjacent soft 

tissue. The wound was closed with absorbable subcutaneous suture (5/0 coated 

vicryl, Ethicon, UK) and sterilised with 0.5% Hibitane. Animals were placed in a 

thermoregulated recovery box until they had fully regained consciousness, following 

which they were returned to their home cages. 

 

5.3.2 Analgesic Intervention 

The analgesic efficacy of the following drugs was investigated; a general 

NMDAR antagonist, (R)-CPP, an NR2B subunit selective antagonist, Ro 25-6981, 

and a NR2A subunit selective antagonist, AAM 077. For analysis of the effects of 

intrathecal administration of specific NMDAR antagonists on somatosensory 

behavioural reflexes; the agents were administered by intrathecal injection to CIBP 
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animals (Section 2.7.3). NMDA receptor antagonists were given when animals were 

displaying substantial CIBP-induced behavioural sensitisation, that is, sensitisation 

not displayed by Sham and Naive animals (Section 3.4.13). Prior to intrathecal 

injection of drugs, response scores for mechanical allodynia (Section 2.3.1) and 

movement-evoked pain (Section 2.4.1) were recorded to obtain pre-administration 

values. All animals were briefly anaesthetised by inhalation of an (5%) isoflurane/O2 

mixture and injected intrathecally at the L5/6 level of the spinal cord. Testing 

continued every 10 minutes thereafter until 40 or 50 minutes post administration. The 

following drugs were administered at Day 14-17 in CIBP animals (a point where 

substantial sensitisation of response was evident); a general NMDA receptor 

antagonist (R)-CPP, a NR2B-selective antagonist, Ro 25-6981, and a NR2A-

selective antagonist AAM 077. 

 

5.3.3 Immunohistochemical Analysis 

Using NMDA receptor subunit-specific antibodies, the expression of NR1, 

NR2A and NR2B subunit proteins in the spinal cord was assessed by 

immunohistochemistry. The co-expression of NR2A with the neuronal cell marker 

(NeuN) was also investigated. 

 

For analysis of expression of NMDA receptor subunits in whole sections 

using immunohistochemistry, spinal cord tissue was taken from CIBP, Sham E and 

Naive animals at Day 18-21 (Section 2.8.1). Animals were terminally anaesthetised 

and perfused before dissection of the lumbar region. Tissue was transferred through a 

sucrose gradient and then stored in PBS. Tissue was sectioned on a freezing 

microtome at 40µM and then placed in PBS. Sections were then processed by 

subunit-specific antigen retrieval techniques. To perform antigen-retrieval for NR1 

and NR2B subunits, sections were incubated in citrate buffer (pH 6.0) at 90C for 15 

minutes. Antigen retrieval for NR2A involved incubating sections for 5 minutes with 

pepsin (Dako) at 37°C. The optimal antigen-retrieval technique for each antibody 

was determined by running a trial of different procedures. After antigen-retrieval by 

the optimised approach, sections were blocked and then probed for anti-NR1, anti-

NR2B or anti-NR2A with NeuN and then detected by HRP-linked or fluorescent 
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secondary antibodies (Section 2.8.1). Sections were washed in 0.1M PBS and 

incubated with the amplification reagent, fluorescein-tyramide (Perkin Elmer Life 

Sciences, Inc.) for 25 minutes at room temperature (1:50 in 1x amplification diluent). 

Dilution trials were run to identify the optimal concentration of each antibody for 

specific staining and minimal background staining. Control sections were processed 

without primary antibody to determine specificity of antibodies. The fluorescent 

secondary antibodies were selected to avoid overlap in excitation/emission 

wavelengths. Images of sections were captured using a fluorescent microscope at x20 

magnification and additionally, for NR2A + NeuN, at x40 magnification. Images 

captured at x20 were analysed using Image J software where ipsilateral-contralateral 

differences in fluorescence intensity were calculated for CIBP, Sham E and Naive 

animals. Images captured at x40 were analysed using Leica LCS Lite software and 

the number of cells co-expressing NR2A and NeuN were counted and compared 

ipsilateral to contralateral for CIBP, Sham V and Naïve (Section 2.8.2). Images were 

numbered to allow analysis to be performed blind. 

 

5.3.4 Statistical Analysis 

In each behavioural study, data were pooled for each time point, with group 

mean shown ± SEM. To analyse the effects of pharmacological agent administration 

on mechanical allodynia, post-pharmacological agent ipsilateral paw withdrawal 

thresholds were compared to pre-pharmacological agent baseline using a One-way 

repeated measures ANOVA on Ranks (Friedman‟s test) followed by Dunn‟s post-

hoc analysis. Ipsilateral paw withdrawal thresholds were compared to contralateral 

paw withdrawal thresholds using a One-way repeated measures ANOVA on ranks 

(Friedman‟s test) followed by Dunn‟s post-hoc analysis.  

 

To analyse the effects of pharmacological agent administration on movement-

evoked pain, post-pharmacological agent number of avoidances of weight bearing on 

movement were compared to pre-pharmacological agent using a One-way repeated 

measures ANOVA followed by Dunnett‟s post-hoc analysis.  
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NR1, NR2A and NR2B expression in laminae I, II and III was compared 

between groups (CIBP Ipsilateral, CIBP Contralateral, Sham E Ipsilateral, Sham E 

Contralateral and Naive) by a repeated measures mixed-model ANOVA followed by 

Bonferroni‟s post-hoc analysis. Differences within groups (e.g. CIBP Ipsilateral 

versus CIBP Contralateral) were compared by an unpaired two-tailed t-test. NR2A 

co-expression with NeuN was compared between groups by a One-way ANOVA 

followed by Bonferroni‟s post-hoc analysis. 

 

5.4 Results  

5.4.1 The involvement of NMDA receptors in CIBP-induced mechanical 

allodynia 

 Intrathecal administration of the general NMDA receptor antagonist (R)-CPP 

7.5nmole (CIBP Day 17 n=4) attenuated ipsilateral CIBP-induced mechanical 

allodynia compared to pre-administration values at 10 and 20 minutes post 

administration, where CIBP resulted in a significant reduction in ipsilateral PWT 

when compared to contralateral values pre-administration and at 50 minutes post-

administration. Intrathecal administration of the NR2B-selective antagonist Ro 25-

6981 50nmole (CIBP Day 15 n=4) did not attenuate CIBP-induced mechanical 

allodynia, where CIBP animals showed a significant reduction in ipsilateral PWT 

when compared to contralateral values at 30 minutes post-administration only. 

Intrathecal administration of the NR2A-selective antagonist AAM 077 50nmole 

(CIBP Day 14 n=4) did not attenuate mechanical allodynia at the doses selected, 

where CIBP showed a significant reduction in ipsilateral PWT when compared to 

contralateral values at 40 and 50 minutes post-administration only (Figure 5.3). All 

data were analysed by One-way repeated measures ANOVA on ranks (Friedman‟s 

test) followed by Dunn‟s post-hoc analysis, p<0.05. It may be that the NR2A-

selective antagonist did not attenuate mechanical allodynia because there was not 

such robust mechanical allodynia in this group of CIBP animals pre-administration 

of AAM 077, shown by no significant difference between ipsilateral and 

contralateral PWT.  
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Figure 5.3 Effect of NMDA receptor antagonists on CIBP-induced mechanical 

allodynia. Data show mean responses ± SEM. A) Effect of the general NMDA 

receptor antagonist (R)-CPP (n=4). CIBP resulted in a significant reduction in 

ipsilateral PWT when compared to contralateral values (#; One-way repeated 

measures ANOVA on ranks followed by Dunn's post-hoc analysis, p<0.05). 

Ipsilateral hindlimb PWT was significantly increased at 10 and 20 minutes post 

administration when compared to pre-administration values (One-way repeated 

measures ANOVA on ranks (Friedman‟s test) followed by Dunn's post-hoc analysis). 

B) Effect of the NR2B subunit-selective antagonist Ro 25-6981 (n=4). CIBP animals 

showed a significant reduction in ipsilateral PWT when compared to contralateral 

values at 30 minutes post-administration only (#; One-way repeated measures 

ANOVA on ranks followed by Dunn's post-hoc analysis, p<0.05). Ipsilateral 



 172 

hindlimb PWT did not alter when compared to pre-administration values (One-way 

repeated measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc 

analysis). C) Effect of the NR2A subunit-selective antagonist AAM 077 (n=4). CIBP 

showed a significant reduction in ipsilateral PWT when compared to contralateral 

values at 40 and 50 minutes post-administration only (#; One-way repeated measures 

ANOVA on ranks followed by Dunn's post-hoc analysis, p<0.05). Ipsilateral 

hindlimb PWT did not alter when compared to pre-administration values (One-way 

repeated measures ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc 

analysis). P values ^^ = 0.001 to 0.01, ^ = 0.01 to 0.05 and # = 0.01 to 0.05. 

 

 Time post-administration (minutes) 

 Antagonist   Pre 10 20 30 40 50 

M
e
c
h
a
n
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a

l 
a

llo
d
y
n
ia

 

(R)-CPP Ipsi PWT (grams) 8.5 52.4 40.6 13.4 11.8 8.5 

  SEM 0.0 13.6 11.8 1.0 0.0 0.0 

 Con PWT (grams) 75.9 75.9 75.9 75.9 75.9 75.9 

  SEM 0.0 0.0 0.0 0.0 0.0 0.0 

Ro 25-6981 Ipsi PWT (grams) 11.8 21.1 11.8 10.9 11.8 10.9 

  SEM 0.0 4.5 1.4 0.8 0.0 0.8 

 Con PWT (grams) 75.9 75.9 75.9 75.9 75.9 75.9 

  SEM 0.0 0.0 0.0 0.0 0.0 0.0 

AAM-077 Ipsi PWT (grams) 11.0 48.9 52.4 32.9 11.8 11.0 

  SEM 1.6 15.8 13.6 14.8 1.4 1.6 

 Con PWT (grams) 52.4 75.9 75.9 75.9 75.9 75.9 

  SEM 13.6 0.0 0.0 0.0 0.0 0.0 

 

Table 5.1 The effects of (R)-CPP, Ro 25-6981 and AAM-077 on CIBP-induced 

mechanical allodynia. Data show Paw Withdrawal Threshold (PWT) ± SEM (n=4 

per group).  

 

5.4.2 The involvement of NMDA receptors in CIBP-induced movement-evoked 

pain 

 The general NMDAR antagonist (R)-CPP and the NR2A subunit-selective 

antagonist AAM 077 attenuated movement-evoked pain 10 to 30 minutes post-

administration. The NR2B subunit-selective antagonist (Ro 25-6981) did not 
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attenuate movement-evoked pain (Figure 5.4). All data were analysed by One-way 

repeated measures ANOVA followed by Dunnett‟s post-hoc analysis, p<0.05.  
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Figure 5.4 Effect of NMDA receptor antagonists on CIBP-induced movement-

evoked pain. Data show mean responses ± SEM. A) Effect of general NMDA 

receptor antagonist (R)-CPP (n= 5) or saline (n=3). Avoidance of weight bearing on 

movement was significantly decreased when compared to pre-administration values 

(^, One-way repeated measures ANOVA followed by Dunnett's post-hoc analysis, 

p<0.05). B) Effect of NR2B-selective antagonist Ro 25-6981 (n=4) or saline (n=3). 

Avoidance of weight bearing on movement was significantly increased when 

compared to pre-administration values (^, One-way repeated measures ANOVA 
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followed by Dunnett's post-hoc analysis, p<0.05). C) Effect of the NR2A-selective 

antagonist AAM 077 (n=6) or saline (n=3). Avoidance of weight bearing on 

movement was significantly decreased when compared to pre-administration values 

(^, One-way repeated measures ANOVA followed by Dunnett's post-hoc analysis, 

p<0.05).   P values ^^^ = <0.001, ^^ = 0.001 to 0.01 and ^ = 0.01 to 0.05. 

 

 
  Time post administration (minutes) 

Antagonist  Pre 10 20 30 40 

M
o
v
e
m

e
n
t-

e
v
o

k
e

d
 

(R)-CPP Number 20.0 16.0 15.8 16.4 21.0 

 SEM 0.3 0.9 0.7 0.9 1.3 

Ro 25-6981 Number 1.5 3.9 7.0 2.4 2.4 

 SEM 0.8 2.0 3.5 1.2 1.2 

AAM 077 Number 19.7 11.8 13.5 13.3 16.7 

 SEM 1.1 0.9 1.3 1.0 0.6 

 

Table 5.2 The effects of (R)-CPP, Ro 25-6981 and AAM 077 on CIBP-induced 

movement-evoked pain. Data show number of avoidances of weight bearing on 

movement ± SEM (n=5, 4 and 6, respectively).  

 

5.4.3 NMDA receptor subunit expression in the dorsal horn of the spinal cord in 

the CIBP model 

Spinal cord sections from CIBP and control animals were analysed for 

NMDA receptor subunit expression using immunohistochemistry. NR2A subunit 

expression was significantly increased following CIBP in laminae I, II and III, as 

shown by an increase in ipsilateral-contralateral difference in fluorescence intensity 

compared to Sham E (Figure 5.5 and 5.6). NR2A subunit expression was still 

significantly increased in XRT-treated CIBP animals in laminae I and II as shown by 

a significant increase in ipsilateral-contralateral difference in fluorescence intensity 

when compared to Sham E (Figure 5.6) All statistical assessments were by mixed-

model ANOVA followed by Bonferroni‟s post-hoc analysis, p<0.05. NR1 and NR2B 

subunits did not show a significant change in ipsilateral-contralateral difference in 

fluorescence intensity in CIBP animals (Figure 5.6).  
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  Contralateral  Ipsilateral 

Figure 5.5 Representative images of the contralateral and ipsilateral dorsal horn in 

CIBP at X5 (i) and X20 (ii and iii) magnification in L4-6 spinal cord. NMDA 

receptor subunit NR2A (green) showed a significant increase in ipsilateral dorsal 

horn, when compared to contralateral dorsal horn, following CIBP shown with NeuN 

(red) to identify neurons. CIBP, Sham E and Naive animals were analysed, n=6 

animals per group and n=6 sections per group. 
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Figure 5.6 NMDA receptor subunit expression in the dorsal horn of the spinal cord. 

Data show mean Ipsilateral-Contralateral difference in fluorescence intensity (Ipsi-

Con difference) ± SEM. A) NR1 Ipsi-Con difference was not altered between groups 

(mixed-model ANOVA followed by Bonferroni's post-hoc analysis). B) NR2B Ipsi-

Con difference was not altered between groups (mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis). C) NR2A Ipsi-Con difference was significantly 

increased in CIBP laminae I, II and III when compared to Sham E. NR2A Ipsi-Con 

difference was still significantly increased in XRT-treated CIBP animals in laminae I 

and II when compared to Sham E. NR2A Ipsi-Con difference was not altered in 

Naive when compared to Sham E (^, * mixed-model ANOVA followed by 

Bonferroni's post-hoc analysis). P values ^^^ = <0.001, ^ = 0.01 to 0.05, *** = 

<0.001 and * = 0.01 to 0.05. 
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Group  

NR1 NR2B NR2A 

Lamina Lamina Lamina 

I II III I II III I II III 

CIBP Ipsi-Con 0.6 0.4 -1.3 -1.9 -0.1 -0.5 4.4 1.4 1.5 

 SEM 0.6 0.8 0.7 2.2 0.5 0.6 0.7 0.4 0.4 

XRT Ipsi-Con 0.2 -0.3 -1.9 0.3 0.4 -0.5 2.0 1.3 1.2 

 SEM 0.4 0.2 0.6 1.6 0.6 0.4 0.3 0.2 0.2 

Sham Ipsi-Con 0.4 0.3 -1.0 -0.4 0.0 0.1 -0.1 0.1 0.2 

 SEM 0.6 0.3 0.7 0.3 0.1 0.3 0.3 0.1 0.3 

Naïve Ipsi-Con -0.4 -0.1 -0.4 0.0 0.1 -0.3 -0.6 -0.2 -0.1 

 SEM 0.3 0.1 0.3 0.2 0.1 0.3 0.3 0.1 0.3 

 

Table 5.3 Ipsilateral-Contralateral difference in fluorescence intensity. Data show 

mean Ipsi-Con difference ± SEM. 

 

5.4.4 Analysis of neuronal NR2A subunit expression 

 Fluorescent confocal images (Figure 5.7) were analysed to assess the number 

of cells co-expressing NR2A and NeuN and the number of cells expressing NR2A 

only in laminae I and II. Results show that the great majority of NR2A is expressed 

in neuronal cells, shown by NR2A and NeuN co-expression, with relatively few 

expressing NR2A only. There was no significant difference in the number of cells 

co-expressing both NR2A and NeuN between CIBP, Sham V and Naïve groups 

(Figure 5.8). All shown by One-way ANOVA followed by Bonferroni‟s post-hoc 

analysis. 
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CIBP Spinal Cord 

 

Figure 5.7 Representative images of the contralateral and ipsilateral dorsal horn in 

CIBP at X40 magnification in L4-6 spinal cord. NMDA receptor subunit NR2A 

(green) co-expression with NeuN (red) was analysed. CIBP, Sham V and Naive 

animals were analysed, n=6 animals per group and n=6 sections per group. 
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Figure 5.8 Numbers of cells expressing NR2A alone or co-expressing NR2A + NeuN 

in lamina I and lamina II. Data show mean ± SEM of CIBP (n=3), Sham V (n=3) and 

Naive (n=3) animals. The number of cells expressing NR2A + NeuN did not alter 
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significantly in the ipsilateral dorsal horn compared to contralateral dorsal horn or 

between groups. 

   Lamina I Lamina II 

Group   NR2A NR2A + NeuN NR2A NR2A + NeuN 

CIBP Ipsi Number 0.5 6.0 0.2 8.6 

  SEM 0.3 2.4 0.1 3.3 

CIBP Con Number 0.5 6.0 0.2 10.8 

  SEM 0.2 1.8 0.2 3.3 

Sham V Ipsi Number 0.0 10.7 0.0 11.6 

  SEM 0.0 5.9 0.0 6.7 

Sham V Con Number 0.0 11.1 0.0 12.2 

  SEM 0.0 5.9 0.0 6.6 

Naïve  Number 0.3 10.8 0.4 14.9 

  SEM 0.2 4.5 0.2 7.3 

 

Table 5.4 Numbers of cells expressing NR2A or NR2A + NeuN in lamina I and 

lamina II. Data show mean number of cells ± SEM. 

 

5.5 Discussion  

5.5.1 The involvement of NR2A subunit-containing NMDA receptors in CIBP-

induced behavioural hypersensitivity 

The general NMDA receptor antagonist (R)-CPP effectively attenuated mechanical 

allodynia and movement-evoked pain. A NR2B-selective antagonist Ro 25-6981 did 

not attenuate mechanical allodynia or movement-evoked pain in CIBP, although this 

is highly effective in models of neuropathic pain (Boyce et al., 1999). A NR2A 

specific antagonist AAM 077 did not attenuate mechanical allodynia but effectively 

attenuated movement-evoked pain. These results suggest that the NR2A subunit may 

be particularly involved in CIBP-induced movement-evoked pain. The general 

NMDA receptor antagonist (R)-CPP displays a relative potency order (high to low 

potency) of NR2A>NR2B>NR2C>NR2D. In addition, (R)-CPP displayed a 50-fold 

difference in affinity between NR2A and NR2D in one study (Feng et al., 2005). In 

the present study, (R)-CPP may have attenuated mechanical allodynia through 

inhibition of both NR2A and NR2B at the same time and this may explain why the 
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specific NR2A and NR2B antagonists did not significantly attenuate mechanical 

allodynia alone. It is interesting to note that although the NR2A antagonist did not 

significantly attenuate mechanical allodynia, there did appear to be a modest increase 

in PWT when compared to pre-administration values. Further studies with increased 

animal numbers may potentially allow us to observe a statistically significant 

attenuation of mechanical allodynia with AAM 077 administration.  

 

5.5.2 NMDA receptor expression in CIBP 

Fluorescence immunohistochemistry results show that expression of the 

NR2A subunit is significantly increased in the ipsilateral dorsal horn of the spinal 

cord of CIBP animals in laminae I, II and III in L4-L6. These results are significant 

because laminae I and II of the dorsal horn are known to be important for nociceptive 

processing (Chapter 1, Section 1.5.1). Lamina I contains many projection neurons 

which connect to higher centres and the majority of lamina I neurons are nociceptive-

specific cells. Unmyelinated nociceptive C-fibres terminate predominantly in lamina 

II. Lamina III receives primarily large Aβ-fibres and second order neurons from 

lamina III send dendrites to laminae I and IV and to ascending tracts. Central 

sensitisation of dorsal horn neurons contributes to behavioural hypersensitivity in 

models of inflammatory pain, neuropathic pain and CIBP (Hama et al., 2003;Suzuki 

& Dickenson, 2005;Yanagisawa et al., 2010). 

 

The results of this thesis contrast with a recent study, which suggests that the 

NR2B subunit plays a role in CIBP (Gu et al., 2010a). Gu et al. showed that 

intrathecal administration of the NR2B subunit-selective antagonist ifenprodil 

attenuated spontaneous pain, thermal hyperalgesia and mechanical allodynia in a 

murine model of CIBP at 2 and 12 hours post administration, with ifenprodil most 

effective at attenuating thermal hyperalgesia. In the current study we did not 

investigate the effects of NMDA receptor antagonists on thermal nociceptive 

responses and so therefore cannot directly compare results. Our assessment of Ro 25-

6981 on CIBP responses utilises a more selective agent than ifenprodil (Fischer et al., 

1997). The study by Gu et al. also identified an increase in NMDA receptor subunit 

NR2B mRNA and protein levels in the spinal cord of CIBP mice when compared to 
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Sham at Day 14 (Gu et al., 2010a). The disagreement with our results may be due to 

the different model used. Gu et al. used a mouse model of CIBP, whereby C3H/HeJ 

mice received an injection of osteosarcoma NCTC 2472 cells into the femur. The 

time frame of behavioural testing post-administration administration is also different, 

as Gu et al. analysed the effects of intrathecal administration of a NR2B antagonist 

from 2 hours onwards whereas we tested from 10 to 40 minutes post administration.  

  

In this thesis, co-expression analysis showed that the majority of NR2A 

subunit is expressed in neuronal cells but we found no evidence for an increase in the 

number of cells expressing NR2A following CIBP. This would suggest that the 

increase in NR2A is due to an increase in the level of expression of NR2A subunits 

within each cell rather than an increase in the number of cells expressing NR2A. 

Further studies could investigate NMDA receptor mRNA expression in the spinal 

cord of CIBP animals and electrophysiology could be used to characterise the 

NR2A:NR2B ratio within specific cells through their distinctive influences on 

channel properties.  

  

It is interesting that NR2A subunit expression is also significantly increased 

in XRT-treated CIBP animals in laminae I and II. This suggests that the mechanism 

by which XRT attenuated thermal sensitivity to 20°C and 40°C and also reversed 

movement-evoked pain at Day 18-21 is not dependent on preventing the increased 

NR2A expression, which is observed in CIBP. As discussed previously (Section 

4.5.1), the mechanism by which XRT attenuates CIBP-induced behavioural 

hypersensitivity may depend on decreased tumour burden and osteoclast activity 

(Goblirsch et al., 2004b;Goblirsch et al., 2005).  However, another preclinical study 

showed that tumour burden and osteoclast activity were not altered by XRT (Vit et 

al., 2006). That study did however show that XRT led to clear differences in the 

spinal cord including a decrease in glial cell activity, decreased dynorphin, COX-2 

and chemotactic cytokine receptor (CCR2) (Vit et al., 2006). 

 

The involvement of NMDA receptors in CIBP is of considerable interest for 

developing new intervention targets. The proinflammatory cytokine IL-1β has been 
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shown to be selectively induced in astrocytes in animal models of CIBP (Zhang et 

al., 2008a). Zhang et al. further showed that an IL-1β receptor antagonist attenuated 

CIBP and inhibited NR1 phosphorylation. The authors suggested that spinal IL-1β 

facilitates CIBP by enhancing phosphorylation of the NR1 subunit of NMDA 

receptors (Zhang et al., 2008a). IL-1β has correspondingly been shown to enhance 

NMDA receptor-mediated intracellular calcium release (Viviani et al., 2003b). In 

this thesis it would have been interesting to investigate the proteins specifically 

associated with NR2A in CIBP and this could help elucidate the signalling pathways 

downstream of NR2A that are activated in CIBP.  

 

5.6 Conclusion 

Behavioural results suggest that NMDA receptors containing the NR2A 

subunit in particular are involved in CIBP-induced movement-evoked pain. This 

suggests that NR2A subunit-selective antagonists may be useful for treating CIBP-

induced movement-evoked pain. Additionally, results show that there is increased 

expression of the NR2A subunit in the laminae I, II and III in the dorsal horn of the 

spinal cord, which could provide the basis for particular involvement of NR2A-

containing NMDA receptors. XRT-treated animals still showed increased expression 

of NR2A in laminae I and II, despite improvement of reflex behaviours, suggesting 

that the analgesic benefit from XRT is not due to its impact on NR2A subunit 

expression in the dorsal horn. 
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6. THE INVOLVEMENT OF TRP CHANNELS IN A PRECLINICAL 

MODEL OF CIBP 

 

6.1 Introduction  

Currently 28 mammalian TRP channels have been discovered, which can be 

subdivided into 6 main subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM 

(melastatin), TRPP (polycystin), TRPML (mucolipin) and TRPA (ankyrin) 

subfamilies (Montell, 2005). TRP subunits have a common structure of 6 

transmembrane domains (M1-6) with a pore region between the 5
th

 and 6
th

 domains 

(Figure 6.1). Both the N- and C- termini are located intracellularly. The length of the 

cytoplasmic domain and the functional and structural domains contained within the 

cytoplasmic domain vary within subfamilies. A functional TRP channel requires 

tetrameric assembly of TRP subunits, and these channels can either be homomeric or 

heteromeric (Cheng et al., 2010). 

 

Figure 6.1 Structural organisation of TRP channel subunits. TRP subunits have 6 

transmembrane domains (M1-6) with a pore region between the 5
th

 and 6
th 

domains. 

Functional TRP channels can be homotetrameric or heterotetrameric.  Figure adapted 

from (Planells-Cases & Ferrer-Montiel, 2007). 

 

TRP channels are gated by diverse stimuli that include thermal, chemical 

and/or mechanical stimuli. When activated, TRP channels conduct cations and 
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depolarise cells. All functionally characterised TRP channels are permeable to Ca
2+

 

with the exceptions of TRPM4 and TRPM5, which only conduct monovalent cations 

(Nilius et al., 2007a). Ca
2+

 entry through TRP channels (or Ca
2+

 entry mediated by 

alternative pathways but initiated by TRP channels) causes changes in membrane 

potential and elevation of cytosolic Ca
2+

 concentrations, both of which may initiate a 

variety of cellular responses (Wu et al., 2010).  TRP channels are expressed in many 

cell types; however their expression at the peripheral and central terminals of sensory 

neurons make them particularly interesting targets in pain research.  

 

The temperature-sensitive TRP channels, known as thermoTRPs, have been 

widely implicated as somatosensory transducers. The family consists of nine 

members; TRPV (1-4), TRPM (2, 4, 5 and 8) and TRPA1. Each thermoTRP is 

activated in a specific temperature range and activation of thermoTRPs appears to be 

the best candidate mechanism for peripheral thermosensation (Ramsey et al., 2006). 

ThermoTRPs are also activated and modulated by a variety of chemical and other 

physical stimuli, making them polymodal sensors. ThermoTRPs are expressed in 

primary sensory neurons, brain areas and a wide array of non-neuronal cells. Several 

were of particular interest here, TRPM8 and TRPV4 because of their activation at 

mild cool and warm temperatures respectively, corresponding to the temperatures we 

showed to elicit enhanced responses in the CIBP model, and TRPV1 as the classic, 

firmly established mediator of noxious heat responses.  

 

TRPM8 

The TRPM8 channel was cloned and characterised in 2002 (Mckemy et al., 

2002b;Peier et al., 2002). McKemy et al. took an expression-cloning strategy using a 

cDNA library from rat trigeminal neurons and identified a cDNA clone that encoded 

TRPM8. Peier et al. used a bioinformatics approach to search for sequences that may 

define thermosensitive channels related to TRPV1 and hence isolated TRPM8 cDNA 

from DRG. Through these studies, TRPM8 was identified as a non-selective cation 

channel permeable to both monovalent and divalent cations. TRPM8 is activated by 

innocuous cool temperatures (8-28°C) and by agents that elicit a sensation of cooling 
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such as menthol and icilin. Icilin is one of the most potent activators of TRPM8 

discovered so far.  

 

It has been proposed that the mechanism of TRPM8 activation by cooling and 

menthol involves a negative shift of the channel‟s voltage-dependent opening from 

very positive non-physiological membrane potentials toward physiological values 

(Brauchi et al., 2004;Voets et al., 2004). It has been proposed that the C-terminal 

domain contains the thermal sensor (Brauchi et al., 2006;Vlachova et al., 2003). 

Icilin can only activate TRPM8 when intracellular Ca
2+

 is elevated, as intracellular 

Ca
2+ 

appears to act as an icilin-selective co-agonist (Chuang et al., 2004). The critical 

residues for Ca
2+

 acting as a co-agonist appear to be located in the intracellular loop 

connecting transmembrane domains 2 and 3. The same region is critical for 

activation of other TRP channels by chemical agonists. Activation of TRPM8 by 

cold, menthol and icilin is followed by channel desensitisation, which also depends 

on Ca
2+

 in the extracellular medium (Mckemy et al., 2002a). 

 

TRPM8 is expressed on a subset of small diameter DRG and trigeminal 

ganglion neurons (Kobayashi et al., 2005) as well as in visceral afferents, most 

notably in bladder (Lashinger et al., 2008;Stein et al., 2004). In addition it is 

expressed in non-neuronal cells including prostate gland cells and some primary 

tumours (Stein et al., 2004;Tsavaler et al., 2001). The expression of TRPM8 in 

sensory neurons was investigated using mice that express green fluorescent protein 

(GFP) under the control of the TRPM8 promoter. This study showed that TRPM8
GFP

 

mainly marks a unique population of DRG neurons that do not express any 

nociceptive markers (TRPV1, CGRP or IB4). Only a small percentage of 

TRPM8
GFP

-expressing neurons (1% of total DRG neurons) expressed CGRP and 

TRPV1 (Dhaka et al., 2008). This small population could possibly be involved in 

nociceptive thermosensation, but this may well not be the role of the majority of 

TRPM8-positive afferents.  
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Important studies using TRPM8-null mice have established that TRPM8 

plays a key role in thermosensation (Bautista et al., 2007;Colburn et al., 2007;Dhaka 

et al., 2007). The studies confirmed that TRPM8 is an important physiological 

detector of innocuous cool temperatures and perhaps could also be involved in 

detecting noxious cold. TRPM8-null mice display severe thermosensory deficits with 

deficits in avoidance of cold temperatures, tested by temperature-preference 

chambers, latency on the cold plate at 0°C and 1°C and in paw withdrawal to 

acetone. Electrophysiological studies of sensory neurons derived from TRPM8-null 

mice show decreased response to cold and menthol with a small residual population 

of neurons that do respond to intense cold (Bautista et al., 2007). TRPA1 was 

proposed as a candidate receptor for these cold responses. However, controversy 

remains on whether TRPA1 contributes to noxious cold sensing (Kwan & Corey, 

2009). There is evidence from recent in vitro (Fajardo et al., 2008) and in vivo 

(Dunham et al., 2010) studies that TRPA1 plays a role in cold sensing in visceral 

sensory neurones but not in somatic sensory neurones. A recent study further 

provides evidence that TRPA1 plays an important role in cold hypersensitivity rather 

than cold detection (del Camino et al., 2010). 

 

Clinical models of chronic pain show cold hyperalgesia and cold allodynia in 

behavioural assays of cold responses. Using the cold plate test, the CCI model of 

neuropathic pain and the CFA model of inflammatory pain show increased number 

of paw withdrawals and duration of paw elevation from a cold surface (McCoy et al., 

2011). Additionally, the SNL model of neuropathic pain displays a hypersensitivity 

to normally innocuous evaporative cooling to acetone as well as reduced latencies to 

paw withdrawal on a cold plate (McCoy et al., 2011). Studies of TRPM8-null mice 

have shown that TRPM8 is essential for hypersensitivity to cold after injury. In a 

CCI model of neuropathic pain, injured wild-type mice display flinching behaviour 

in response to evaporative cooling by acetone application whereas injured TRPM8-

null mice do not (Colburn et al., 2007). Similar results were shown with acetone 

application in the CFA model of inflammatory pain in wild-type and TRPM8-nulls. 

In the same study, hypersensitivity to heat and mechanical stimuli was unaffected, 
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indicating that deletion of TRPM8 specifically affected cold hypersensitivity 

(Colburn et al., 2007). 

 

TRPM8 may also be involved in cooling-induced analgesia. Work from this 

laboratory showed increased TRPM8 expression in the CCI model of neuropathic 

pain. Furthermore, activation of TRPM8, using icilin, provides analgesia in this 

model of neuropathic pain, in a model of inflammatory pain and in the lysolecithin 

model of demyelination-induced pain (Proudfoot et al., 2006). Moderate cooling also 

appears to elicit analgesia in the CCI model (Proudfoot et al., 2006) and against the 

nocifensive responses elicited by intraplantar formalin (Dhaka et al., 2007). In the 

latter study, moderate cooling reduced formalin responses in wild-type mice whereas 

in TRPM8-nulls only partial reductions were seen (Dhaka et al., 2007). This suggests 

that TRPM8 may well be involved in cool-induced analgesia but TRPM8-

independent mechanisms could also be involved.  

  

TRPV1 

TRPV1 was the first heat-activated TRP channel to be cloned and 

characterised (Caterina et al., 1997). TRPV1 is activated by noxious heat (>43°C), 

acidic pH, capsaicin (the pungent component of chilli peppers), resiniferatoxin, 

voltage and various endogenous lipids, such as anandamide. Other natural 

compounds such as allicin, present in garlic, and piperine, found in black pepper, 

have also been shown to activate TRPV1 (Palazzo et al., 2010). TRPV1 stimulation 

activates Ca
2+

/calmodulin-dependent protein kinases (CaMK) and protein kinase C 

(PKC) (Caterina et al., 1997;Tominaga et al., 1998).  

 

TRPV1 is widely expressed in dorsal root and trigeminal ganglia sensory 

neurons, in C- and Aδ- fibres, as well as in many non-neuronal cells including for 

example, epithelial keratinocytes. Nociceptors show the most abundant expression of 

TRPV1 with 30x more than other tissues (Caterina et al., 1997). TRPV1 can also be 

found in discrete regions of the rat brain, where it may be involved in synaptic 

plasticity (Eid & Cortright, 2009). 
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Activation of TRPV1 can be enhanced by inflammatory mediators such as 

prostaglandins, ATP, NGF and bradykinin released during tissue injury, metabolic 

stress and inflammation (Szallasi et al., 2007). This enhancement can occur 

indirectly through phosphorylation and/or increased expression and trafficking of 

TRPV1 channels. TRPV1 phosphorylation by PKC sensitises the channel by 

increasing the open probability (Vellani et al., 2001) and phosphorylation by Src 

mediates recruitment of new channels to the cell surface by exocytosis (Caterina et 

al., 1997;Zhang et al., 2005b). 

 

TRPV1 has been shown to play a key role in inflammatory pain using studies 

of TRPV1 knock-out mice and pharmacological agents. TRPV1 knock-out studies 

have shown that TRPV1 is crucial for thermal hyperalgesia as TRPV1 null mice fail 

to develop thermal hyperalgesia following a number of inflammatory insults 

including CFA and carrageenan (Caterina et al., 1997;Davis et al., 2000). Intrathecal 

AMG 9810, a TRPV1 antagonist, attenuated thermal hyperalgesia and mechanical 

allodynia induced by CFA (Yu et al., 2008a). Up-regulation and sensitisation of 

TRPV1 receptors could be important in TRPV1-mediated pain. TRPV1 expression is 

increased in primary sensory neurons after peripheral inflammation (Carlton & 

Coggeshall, 2001). TRPV1 expression has further been shown to be up-regulated in 

animal models of disease including osteoarthritis and CIBP (Fernihough et al., 

2005;Ghilardi et al., 2005;Niiyama et al., 2007). More specifically, TRPV1 

expression increases within a subpopulation of DRG neurons expressing NF200 and 

CGRP, but not IB4, in a mouse model of CIBP (Niiyama et al., 2007). 

Pharmacological blockade of TRPV1 has been shown to reduce pain-related 

behaviours in models of CIBP (Ghilardi et al., 2005;Honore et al., 2009;Niiyama et 

al., 2007;Niiyama et al., 2009). Another important aspect of TRPV1 function is that 

TRPV1 undergoes desensitisation following repeated or prolonged activation. This 

desensitisation can diminish pain sensation and agonists have been used as 

analgesics. For example, clinical studies indicate that a new 8% capsaicin patch may 

be useful in the treatment of neuropathic pain (Backonja et al., 2008;Kennedy et al., 

2010).  
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TRPV4 

The TRP vanilloid 4 (TRPV4) channel is activated by a variety of physical 

and chemical stimuli including warm temperatures (27-34°C), hypotonicity, low pH, 

endogenous substances such as arachidonic acid and its metabolites and 

endocannabinoids such as anandamide. TRPV4 is expressed in many tissues 

including epidermal keratinocytes, osteoblasts and osteoclasts in bone and dorsal root 

and trigeminal ganglia neurons (Everaerts et al., 2010). A recent study showed that in 

rat DRG 88.5 ± 4.8% of neurons expressed TRPV4, 33.7 ± 2.4% of neurons 

expressed TRPV1 and 27.9 ± 2.8% of the neurons co-expressed TRPV4 and TRPV1. 

This co-expression was mostly observed in small and medium diameter DRG 

neurons. TRPV1 and TRPV4 were not only expressed in the cell bodies of DRG 

neurons but also expressed at the central terminals of these sensory nerves, at 

laminae I and II of the spinal cord dorsal horn (Cao et al., 2009).  

 

A study of TRPV4-null mice by Lee et al. showed that TRPV4 is required for 

normal thermosensation in vivo. This was based on the findings that TRPV4-/- mice 

showed a preference for warmer floor temperatures compared to wild-type mice and 

TRPV4-/- mice exhibited a strong preference for 34°C (Lee et al., 2005a). Another 

study using TRPV4-null mice indicated that TRPV4 contributes to thermal 

hyperalgesia in the hotplate test following inflammatory pain, as TRPV4-null mice 

exhibited less sensitivity to warmth during carrageenan-induced inflammation 

(Todaka et al., 2004a). TRPV4 also appears to play a role in chemotherapy-induced 

neuropathic pain in the rat, shown by spinal administration of antisense 

oligonucleotide to TRPV4, which reduced expression of TRPV4 in the sensory nerve 

and attenuated hypersensitive pain behaviours (Alessandri-Haber et al., 2004). 

Furthermore, TRPV4 may contribute to mechanical allodynia in the chronic 

compression of DRG (CCD) model of neuropathic pain, where TRPV4 antisense 

partly reversed mechanical allodynia (Zhang et al., 2008b). In the CCD model, 

TRPV4 protein and mRNA expression increased significantly 7-28 days post-CCD 

when compared to sham group. Additionally, TRPV4 has been shown to contribute 

to thermal hyperalgesia in the same model of neuropathic pain, where administration 

of antisense TRPV4 or a TRPV4 antagonist attenuated thermal hyperalgesia (Ding et 
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al., 2010b). These data suggest that TRPV4 is important for thermal and mechanical 

nociception.  

 

TRP Channels in Cancer 

Several TRP channels show altered expression in cancer cells. TRPM8, 

TRPM1 and TRPV6 are highly expressed in cancer cells. Other TRP channels 

including TRPC1, TRPC6, TRPM5 and TRPV1 are also increased in some cancer 

tissues. This altered expression does not appear to involve gene mutations of these 

channels but increased or decreased expression of the wild-type TRP protein 

(Lehen'kyi & Prevarskaya, 2011). The precise roles that TRP channels play in cancer 

are still being elucidated (Lehen'kyi & Prevarskaya, 2011). It has been reported that 

TRPV1-/- mice exhibit increased skin carcinogenesis compared to wild-type mice 

(Bode et al., 2009). Furthermore, topical application of TRPV1 antagonist AMG 

9810 is reported to promote skin tumour development (Li et al., 2011). The authors 

suggest that TRPV1 could potentially play the role of a tumour suppressor and 

chronic antagonism of TRPV1 may lead to tumour development (Li et al., 2011), 

although the mechanistic basis is not firmly established. As mentioned previously, 

however, thermo-sensitive TRP channels are expressed in a particularly focused 

profile on sensory neurons and therefore may be important for sensing pain, 

including that of CIBP. 

 

6.2 Aim 

In this thesis the involvement of TRPM8, TRPV1 and TRPV4 in CIBP was 

investigated. These thermoTRPs were chosen because their activation temperatures 

cover a range of temperatures; TRPM8 is activated by innocuous cool, TRPV1 by 

noxious heat and TRPV4 by innocuous warm temperatures. Additionally, these 

thermoTRPs have been implicated in different pain states. The primary aim of this 

part of the study was to determine the analgesic efficacy of a TRPM8 agonist (icilin), 

TRPV1 antagonist (AMG 9810) and TRPV4 antagonist (RN 1734). The analgesic 

efficacy of these agents on CIBP-induced mechanical allodynia, thermal sensitivity 

to 40°C and movement-evoked pain was investigated. We also aimed to determine 
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whether there were any changes in expression of TRPM8, TRPV1 or TRPV4 in the 

DRG during CIBP.  

 

6.3 Methods 

6.3.1 Surgical Procedures 

Experiments were carried out using male Sprague-Dawley rats and as 

detailed in Chapter 2, animals underwent CIBP surgery (Section 2.1.2). Rats were 

anaesthetised by inhalation of an isoflurane/O2 mixture (Zeneca, UK), 4-5% for 

induction and 2-3% for maintenance. The carrier gas was compressed oxygen at a 

flow rate of 2 litres/minute. Following complete induction of anaesthesia, the animal 

was placed abdominal side up, the left hind limb was shaved and the skin was 

sterilised with 0.5% Hibitane (Zeneca, UK). A small incision was made in the skin 

over the tibia, which was then carefully exposed by removing the connective tissue 

over the bone using a cotton bud Johnson & Johnson, UK). A dental drill was used to 

bore a hole through the periosteum of the tibia. Polythene tubing (0.5mm in 

diameter; Smiths) was fed into the intra-medullary cavity of the tibia and 10 µl of 

medium (containing 6x10
3
 cells) was injected using a 1ml micro-syringe (BD 

Biosciences, UK) and 25-gauge needle (BD Biosciences, UK). The tubing was 

withdrawn and the hole plugged with dental restorative material (IRM, Dentsply; 

Henry Schien Minerva), to confine the tumour cells within the marrow and prevent 

them invading the adjacent soft tissue. The wound was closed with absorbable 

subcutaneous suture (5/0 coated vicryl, Ethicon, UK) and sterilised with 0.5% 

Hibitane. Animals were placed in a thermoregulated recovery box until they had 

fully regained consciousness, following which they were returned to their home 

cages. 

 

6.3.2 Analgesic Intervention 

For analysis of the effect of topically applied or intrathecally applied 

pharmacological agents on somatosensory behavioural reflexes; pharmacological 

agents were administrated when animals were displaying CIBP-induced sensitisation. 

CIBP-induced sensitisation was defined by decreased ipsilateral PWT to von Frey 

filaments, increased ipsilateral avoidance of weight bearing on movement on the 
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rotarod and increased number of ipsilateral paw withdrawals on the thermal footplate 

to 40°C when compared to pre-surgery. Prior to topical or intrathecal administration 

of agents, measurement of mechanical allodynia (Section 2.3.1), movement-evoked 

pain (Section 2.4.1) and thermal sensitivity to 40°C were recorded to obtain pre-

administration values. Mechanical allodynia was assessed by placing the animals in a 

Perspex chamber on an elevated metal mesh floor; the experimenter could then reach 

the plantar surface of the hind paw from beneath, unobserved by the animal. 

Following acclimatisation of the animal to the cage, the PWT in response to 

normally innocuous mechanical stimuli was measured by applying a set of calibrated 

Semmes-Weinstein von Frey filaments (Stoelting co., USA) to the plantar surface of 

the hindpaw of the ipsialteral and contralateral hindlimbs. Each filament was applied 

perpendicularly to the mid-plantar surface of the foot until the filament flexed/bent. 

Threshold was defined as the minimum indentation force (grams) required to elicit a 

response/paw withdrawal to at least 5 out of 10 applications (i.e. to at least 50% of 

applications). Data are expressed as the mean PWT (grams) ± standard error of the 

mean (SEM) for each time point. 

 

 To test thermal sensitivity of the ipsilateral hindlimb, each animal was placed 

on a thermal footplate (IITC Incremental Hot/Cold Plate Meter), which was set at 

40°C (temperature holding accuracy is ± 0.1°C). The number of times the animal 

withdrew its ipsilateral hindlimb from the thermal footplate and the latency to the 

first paw withdrawal over 150 seconds was recorded (from the time of placing the 

animal on the thermal footplate). If the animal did not flick its paw, the latency was 

recorded as 150 seconds. In addition, the total duration of paw elevation was also 

noted. Data are expressed as the mean ± SEM for Paw Withdrawal 

Threshold/Latency to paw withdrawal/ Duration of Paw elevation to 40°C for each 

time point. 

 

To assess movement-evoked pain, the rotarod (IITC) was used and set at a 

constant speed of 5-6 rpm (no ramping of rpm). The avoidance of weight bearing on 

movement of the ipsilateral hindlimb only was measured (number of times) over a 30 

second test period (from the time of placing the animal on the rotarod). Data are 
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expressed as the mean avoidance of weight bearing on movement (number) ± SEM 

for each time point. 

 

For topical application of the TRPM8/TRPA1 agonist icilin (100µM), icilin 

solution was applied to both hindlimbs by placing each animal in a Perspex chamber 

that had a slanted frame to support the front paws, enabling the solution to cover both 

hindlimbs (Section 2.7.3). Topical application of pharmacological agent was 

maintained for a 5 minute period. Behavioural testing commenced at 10 minutes 

post-administration until 80 minutes post-administration. For intrathecal 

administration of the TRPV1 antagonist AMG 9810 (1nmole), TRPV4 antagonist 

RN 1734 (5nmole) and vehicle control (0.5% dimethylformamide in saline), all 

animals were briefly anaesthetised by inhalation of an isoflurane/O2 mixture and 

injected intrathecally at the L5/6 level of the spinal cord (Section 2.7.3). Behavioural 

testing continued every 15 minutes post-administration until 85 minutes post-

administration. A TRPM8 agonist, icilin (100µM), was administrated by topical 

application to CIBP animals at Day 14. The following pharmacological agents were 

administrated to CIBP animals by intrathecal administration; a TRPV1 antagonist, 

AMG 9810 (1nmole), at Day 18-21, a TRPV4 antagonist, RN 1734 (5nmole), at Day 

19 and vehicle control, 0.5% dimethylformamide in saline, at Day 20. RN 1734 has 

been shown to be selective for TRPV4 over closely related TRP channels including 

TRPV1, TRPV3 and TRPM8. RN 1734 has been shown to antagonise both ligand-

gated activation and hypotonicity-induced opening of TRPV4 (Vincent et al., 2009). 

Icilin activates TRPM8 at low micromolar concentrations and activates TRPA1 at 

high micromolar concentrations (Mckemy et al., 2002c;Story et al., 2003). Icilin can 

also elicit mechanisms of desensitisation/shut down of TRPM8 channels (Kuhn et al., 

2009). AMG 9810 is a TRPV1 antagonist with high selectivity and blocks all known 

modes of TRPV1 activation by protons, heat and endogenous ligands (Gavva et al., 

2005).  

 

6.3.3 Immunohistochemical Analysis 

Using specific antibodies, the expression of TRPM8, TRPV1 and TRPV4 

channel proteins in the DRG was assessed. For analysis of expression of TRP 
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channels in DRG sections using immunohistochemistry, L4-6 DRG were taken from 

CIBP, Sham V and Naive animals at Day 18-21 (Section 2.8.3). Animals were 

terminally anaesthetised and DRG were frozen in optimal cutting medium on dry ice. 

Tissue was sectioned on the cryostat to obtain 15µm sections and then mounted onto 

poly-L-lysine slides. Sections were prepared by particular antigen retrieval 

techniques (Table 2.8.2), blocked and then probed with anti-TRPM8, anti-TRPV1 or 

anti-TRPV4 together with a marker of myelinated neurons (anti-NF200) and a 

marker of unmyelinated neurons (anti-peripherin). The primary antibodies were then 

detected by fluorescent secondary antibodies. Sections were then captured using a 

fluorescence microscope at x20 magnification. Images were then analysed using 

Image J (Section 2.8.4) where the numbers of myelinated and unmyelinated neurons 

expressing each of the TRP channels were counted. The percentage of cells co-

expressing NF200 or peripherin with TRPM8/TRPV1/TRPV4 in ipsilateral and 

contralateral DRG in CIBP, Sham V and Naive animals were compared. The total 

number of cells expressing TRPM8/TRPV1/TRPV4 in ipsilateral and contralateral 

DRG in CIBP, Sham V and Naive animals were also compared. 

 

For analysis of total TRP channel protein using Western blot, DRG tissue was 

taken from CIBP, Sham V and Naive animals at Day 18-21. Animals were terminally 

anaesthetised and the DRG were dissected from L4-L6, both ipsilateral and 

contralateral to injury. DRG were then homogenised in Laemmli lysis buffer 

containing 1% protease inhibitor cocktail III and centrifuged at 10 000 rpm at 4°C to 

remove cell debris (Section 2.9.2). Proteins in DRG extracts were then separated by 

electrophoresis and transferred to PVDF membranes, blocked and probed with anti-

TRPM8, anti-TRPV1 and anti-TRPV4 before detection using peroxidase-linked 

secondary antibodies and enhanced chemiluminescence (Section 2.9.1). 

Densitometry was performed to quantify the grey levels of positive protein bands, to 

give a ratio of protein of interest to total GAPDH (Section 2.9.1). 
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6.3.4 Statistical Analysis 

 In each behavioural study, data were pooled for each time point, with group 

mean shown ± SEM. For all analysis significance was set at p<0.05. Data were tested 

for normal distribution with the Kolmogorov-Smirnov test. 

 

To analyse the effects of pharmacological agent administration on mechanical 

allodynia, post-pharmacological agent ipsilateral paw withdrawal thresholds were 

compared to pre-pharmacological agent baseline using a One-way repeated measures 

ANOVA on ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis. 

Differences between ipsilateral and contralateral hindlimb pre- and post-

pharmacological agent were determined by One-way repeated measures ANOVA on 

ranks (Friedman‟s test) followed by Dunn‟s post-hoc analysis.  

 

 To analyse the effects of pharmacological agent administration on thermal 

sensitivity, post-pharmacological agent ipsilateral responses were compared to pre-

pharmacological agent baseline using a One-way repeated measures ANOVA 

followed by Dunnett‟s post-hoc analysis. 

 

 To analyse the effect of pharmacological agent administration on movement-

evoked pain, the number of avoidances of weight bearing on movement following 

drug administration were compared to pre-pharmacological agent using a One-way 

repeated measures ANOVA followed by Dunnett‟s post-hoc analysis. 

 

 For DRG immunohistochemistry differences between groups (CIBP 

Ipsilateral, CIBP Contralateral, Sham V Ipsilateral, Sham V Contralateral and Naive) 

were compared by One-way ANOVA followed by Bonferroni‟s post-hoc analysis. 

Differences within groups (e.g. CIBP Ipsilateral versus CIBP Contralateral) were 

detected by an unpaired two-tailed t-test. 

 

 For Western blot analysis, differences in relative densitometric intensity 

between groups (CIBP Ipsilateral, CIBP Contralateral, Sham V Ipsilateral, Sham V 

Contralateral and Naive) were compared by One-way ANOVA followed by 
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Bonferroni‟s post-hoc analysis. Differences within groups (e.g. CIBP Ipsilateral 

versus CIBP Contralateral) were detected by an unpaired two-tailed t-test. 

 

6.4 Results  

6.4.1 Effect of the TRPM8/TRPA1 agonist, icilin, on CIBP-induced mechanical 

allodynia, movement-evoked pain and thermal sensitivity 

 Topical application of the TRPM8/TRPA1 agonist icilin 100µM (CIBP Day 

14 n=4-5) did not attenuate mechanical allodynia when compared to pre-

administration values. Reflecting this allodynia, ipsilateral PWT was significantly 

reduced compared to contralateral PWT pre-administration and at 70 and 80 minutes 

post-administration shown by One-way ANOVA on ranks (Friedman‟s test) followed 

by Dunn‟s post-hoc analysis, p<0.05, (but not at 10-60 minutes post-icilin) (Figure 

6.2.A). However icilin successfully attenuated movement-evoked pain (avoidance of 

weight-bearing on the rotarod) at 20-60 minutes post-administration, shown by One-

way repeated measures ANOVA followed by Dunnett‟s post-hoc analysis, p<0.05 

(Figure 6.2.B). Icilin had no effect on number of paw withdrawals or latency to paw 

elevation to 40°C, but the duration of paw elevation to 40°C was significantly 

increased at 70 minutes post-administration (Figures 6.2.C-E). All were evaluated by 

One-way repeated measures ANOVA followed by Dunnett‟s post-hoc analysis, 

p<0.05. 
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B) Effect of icilin on movement-evoked pain
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Figure 6.2 Effect of the TRPM8/TRPA1 agonist icilin (100µM, topical application) 

on CIBP-induced behavioural sensitisation. Data show mean responses ± SEM of 

CIBP animals (n=4-5). A) Icilin did not significantly alter post-administration 

ipsilateral PWT to von Frey filaments compared to that pre-administration. Ipsilateral 
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PWT was significantly different when compared to contralateral PWT pre and at 70 

to 80 minutes post-administration (#; One-way repeated measures ANOVA on ranks 

(Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). B) Icilin 

significantly attenuated movement-evoked pain at 20 to 60 minutes post-

administration (*; One-way repeated measures ANOVA followed by Dunnett's post-

hoc analysis, p<0.05). C) Icilin did not alter number of paw withdrawals to 40°C 

when compared to pre-administration. D) Icilin did not alter latency to paw elevation 

to 40
o
C compared to pre-administration. E) Duration of paw elevation to 40

o
C was 

significantly increased at 70 minutes post icilin (*; One-way repeated measures 

ANOVA followed by Dunnett's post-hoc analysis, p<0.05). P values ## = 0.001 to 

0.01, # = 0.01 to 0.05, *** = <0.001, ** = 0.001 to 0.01 and * = 0.01 to 0.05. 
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 Time post icilin administration (minutes) 

Test  Pre 10 20 30 40 50 60 70 80 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT (grams) 
5.3 12.3 22.7 11.8 20.7 9.8 9.3 6.9 5.0 

SEM 2.5 4.8 13.5 2.5 5.4 2.2 2.6 2.0 1.8 

Con 

PWT (grams 
63.7 63.7 54.3 53.6 66.5 57.1 47.7 66.5 66.5 

SEM 12.1 12.1 13.4 13.9 9.4 11.5 11.5 9.4 9.4 

R
o
ta

ro
d

 Number 14.0 11.7 9.2 8.6 9.0 10.4 11.1 13.2 15.0 

SEM 0.7 1.2 1.3 1.0 0.7 0.7 0.8 0.5 0.6 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 

Number 4.5 1.3 1.3 2.0 3.8 2.0 2.5 2.0 3.3 

SEM 1.6 0.6 0.3 0.6 2.8 0.4 0.6 1.1 2.9 

Latency 40.8 52.8 32.0 39.0 104.8 53.5 26.8 62.8 110.3 

SEM 21.5 33.5 10.4 13.3 34.2 23.3 11.9 30.1 32.0 

Duration 7.3 14.8 43.5 34.8 2.3 9.8 15.5 71.8 28.5 

SEM 2.9 14.8 25.2 18.9 2.3 6.8 15.5 44.0 20.0 

 

Table 6.1 The effects of icilin on CIBP-induced behavioural sensitisation showing 

paw withdrawal threshold (PWT), number of avoidances of weight bearing on 

movement, number of paw withdrawals, latency to paw withdrawal and duration of 

paw elevation. Data show mean responses ± SEM of CIBP animals (n=4-5). 

 

6.4.2 The effect of CIBP on levels of TRPM8 expression in DRG 

 TRPM8 protein was identified by Western blot, where two bands were 

identified at around 110kDa. TRPM8-transfected cells were used as a positive 

control sample. TRPM8 protein expression was quantified by determining relative 

intensity normalised to GAPDH (Figure 6.3). TRPM8 expression did not alter in 

CIBP Ipsilateral (0.62 ± 0.06) or CIBP Contralateral (0.73 ± 0.05) when compared to 

Sham V Ipsilateral (0.76 ± 0.04), Sham V Contralateral (0.72 ± 0.04) or Naïve (0.66 

± 0.07), shown by a One-way ANOVA followed by Bonferroni‟s post-hoc analysis. 
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TRPM8 expression also did not alter between ipsilateral and contralateral sides 

within groups, as determined by an unpaired two-tailed t-test.  
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Figure 6.3 TRPM8 expression in CIBP as determined by Western blot. Data from 

densitometry of film images, as illustrated above, show mean relative intensity of 

TRPM8 normalised to GAPDH ± SEM in CIBP (n=6), Sham V (n=6) and Naive 

(n=6) animals. TRPM8 expression did not alter in CIBP when compared to Naïve or 

Sham V (One-way ANOVA followed by Bonferroni‟s post-hoc analysis) or between 

ipsilateral/contralateral sides (unpaired two-tailed t-test). The two bands identified 

around 110kDa were analysed together. To quantify in Photo Shop, the image was 

inverted and a box was drawn around the largest band. The mean density was 

measured (taken as the average of 3 measurements). The same box was dragged over 

other bands. Mean background density was subtracted from the density of each band. 

  Naïve   Sham       Sham      CIBP        CIBP 
                   I               C             I               C 

TRPM8 

GAPDH 

110kDa 

40kDa 
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Corresponding GAPDH bands were measured in the same way. The mean of each 

band was normalised to GAPDH. 

 

6.4.3 Effect of CIBP on TRPM8 expression within individual DRG cells 

The percentage of TRPM8-positive myelinated and unmyelinated cells was 

determined immunohistochemically by analysing co-expression of TRPM8 with 

NF200 or peripherin, respectively (Figure 6.4). The percentage of NF200-positive 

that were TRPM8-positive was not altered in CIBP Ipsilateral (4.09 ± 1.13) or CIBP 

Contralateral (4.64 ± 1.62) when compared to Sham V Ipsilateral (1.94 ± 0.63), 

Sham V Contralateral (2.35 ± 0.49) or Naïve (2.12 ± 0.31), shown by One-way 

ANOVA followed by Bonferroni‟s post-hoc analysis. The percentage of peripherin-

positive cells that were TRPM8-positive was not altered in CIBP Ipsilateral (5.06 ± 

1.32) or CIBP Contralateral (5.55 ± 2.34) when compared to Sham V Ipsilateral 

(2.63 ± 0.63) or Sham V Contralateral (2.86 ± 0.67) or Naïve (5.6 ± 1.23), shown by 

One-way ANOVA followed by Bonferroni‟s post-hoc analysis. The total number of 

TRPM8-positive cells per section was not altered in CIBP Ipsilateral (5.78 ± 0.5) or 

CIBP Contralateral (5.19 ± 0.91) when compared to Sham V Ipsilateral (6.42 ± 0.64) 

or Sham V Contralateral (5.47 ± 0.76) or Naïve (7.63 ± 0.89), shown by a One-way 

ANOVA followed by Bonferroni‟s post-hoc analysis. No differences in percentage 

of NF200-positive or peripherin-positive cells that were TRPM8-positive were 

detected between ipsilateral/contralateral sides within groups, as shown by an 

unpaired two-tailed t-test (Figure 6.5). 
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Figure 6.4 Representative immunofluorescence images of CIBP DRG, showing 

TRPM8 co-expression with markers of myelinated or unmyelinated afferents, NF200 

and peripherin, respectively. A) TRPM8 (red) co-expression with NF200 (green) 

ipsilateral and contralateral to CIBP. B) TRPM8 (red) co-expression with peripherin 

(green) ipsilateral and contralateral to CIBP. 

200µm 200µm 

200µm 200µm 
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A) TRPM8 co-expression with NF200
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B) TRPM8 co-expression with peripherin
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C) Total number of TRPM8-positive cells

N
aï

ve

C
IB

P
 Ip

si

C
IB

P
 C

on

S
ham

 V
 Ip

si

S
ham

 V
 C

on

0

2

4

6

8

10

T
o

ta
l 
n

u
m

b
e
r 

o
f

T
R

P
M

8
-p

o
s
it

iv
e
 c

e
ll
s

Figure 6.5 Quantification of TRPM8 co-expression with markers of myelinated or 

unmyelinated afferents as determined by immunofluorescence histochemistry. Data 

show the mean percentage of cells or mean number of cells expressing TRPM8 ± 

SEM in CIBP (n=6), Sham V (n=6) and Naive (n=6) animals. A) The percentage of 

NF200-positive cells co-expressing TRPM8 did not alter in CIBP or between 

ipsilateral/contralateral sides (One-way ANOVA followed by Bonferroni‟s post-hoc 

analysis and unpaired two-tailed t-test, respectively). B) The percentage of 

peripherin-positive cells co-expressing TRPM8 did not alter in CIBP or between 

ipsilateral/contralateral sides (One-way ANOVA followed by Bonferroni‟s post-hoc 

analysis and unpaired two-tailed t-test, respectively). C) The total number of 

TRPM8-positive cells did not alter in CIBP or between ipsilateral/contralateral sides 

(One-way ANOVA followed by Bonferroni‟s post-hoc test and unpaired two-tailed t-

test, respectively). 
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6.4.4 Effect of the selective TRPV1 antagonist, AMG 9810, on CIBP-induced 

behavioural sensitivity 

Intrathecal administration of the potent and selective TRPV1 antagonist 

AMG 9810 1nmole (CIBP Day 18-21 n=9) did not attenuate mechanical allodynia, 

movement-evoked pain or thermal sensitivity to 40°C (Figure 6.6). AMG 9810 did 

not alter PWT from von Frey filament testing compared to pre-administration values. 

Ipsilateral PWT threshold was significantly different to contralateral values at all 

time points shown by a One-way ANOVA on ranks (Friedman‟s test) followed by 

Dunn‟s post-hoc analysis, p<0.05. Avoidance of weight bearing on movement did 

not alter compared to values pre-administration. Number of paw withdrawals to 40°C 

was significantly decreased at 15 minutes post-administration only, although this was 

also observed after vehicle control (Figure 6.14). This suggests that at 15 minutes 

post-administration there may be a residual anaesthetic effect. In fact, intrathecal 

administration of vehicle alone appeared to significantly decrease avoidance of 

weight bearing on movement, significantly decrease number of paw withdrawals to 

40°C and significantly increase latency to paw withdrawal at 40°C at 15 minutes 

post-administration (Figure 6.14). Latency to paw withdrawal to 40°C did not alter 

following AMG 9810 administration. Surprisingly, duration of paw elevation was 

significantly increased at 45 and 75 minutes post-administration of AMG 9810 

compared to pre-administration shown by One-way ANOVA followed by Dunnett‟s 

post-hoc analysis, p<0.05 (Figure 6.6).  

 

 



 205 

A) Effect of AMG 9810
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D) Effect of AMG 9810 on latency

to paw withdrawal to 40C
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C) Effect of AMG 9810 on number
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B) Effect of AMG 9810
on movement-evoked pain
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Figure 6.6 Effect of the selective TRPV1 antagonist AMG 9810 (1nmole, i.t. 

administration) on CIBP-induced behavioural sensitisation. Data show mean 

responses ± SEM of CIBP animals (n=9). A) PWT to von Frey filaments did not 

show significantly altered responses compared to values pre-administration. 
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Ipsilateral PWT was significantly decreased compared to contralateral values at all 

time points (#; One-way repeated measures ANOVA on ranks (Friedman‟s test) 

followed by Dunn's post-hoc analysis, p<0.05). B) Avoidance of weight bearing on 

movement was not altered compared to pre-administration values. C) Number of paw 

withdrawals to 40°C was significantly decreased 15 minutes post-administration 

when compared to pre-administration values (*; One-way repeated measures 

ANOVA followed by Dunnett's post-hoc analysis, p<0.05). D) Latency to paw 

withdrawal to 40°C did not alter post-administration (One-way repeated measures 

ANOVA followed by Dunnett‟s post-hoc analysis). E) Duration of paw elevation at 

40°C is significantly increased at 45 and 75 minutes post-administration (*; One-way 

repeated measures ANOVA followed by Dunnett's post-hoc analysis, p<0.05). P 

values ### = <0.001, ## = 0.001 to 0.01, # = 0.01 to 0.05 and * = 0.01 to 0.05. 
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  Time post AMG 9810 administration (minutes) 

Test  Pre 15 25 35 45 55 65 75 85 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 Ipsi 

PWT (grams) 
3.9 5.8 5.4 4.7 4.9 5.3 4.7 4.8 4.0 

SEM 0.4 0.8 0.9 0.3 0.3 0.7 0.3 0.6 0.3 

Con 

PWT (grams) 
65.4 75.9 70.6 70.6 75.9 65.4 70.6 75.9 70.6 

SEM 6.9 0.0 5.2 5.2 0.0 6.9 5.2 0.0 5.2 

R
o
ta

ro
d

 

Number 16.9 16.4 17.0 17.6 ~ 16.9 18.0 18.1 18.4 

SEM 0.8 0.8 0.8 0.7 ~ 0.8 0.6 0.4 0.4 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 Number 2.8 1.4 1.8 1.9 1.9 1.8 2.3 2.2 2.0 

SEM 0.3 0.4 0.1 0.3 0.3 0.2 0.2 0.3 0.4 

Latency 29.2 54.6 59.6 55.9 24.8 39.1 47.6 31.4 50.3 

SEM 8.1 19.5 14.9 11.2 7.1 9.6 12.5 8.1 16.0 

Duration 40.0 65.9 49.0 60.2 91.1 80.6 55.9 87.7 84.9 

SEM 14.3 21.9 17.6 17.0 17.3 16.2 11.5 6.2 15.9 

 

Table 6.2 The effects of the TRPV1 antagonist AMG 9810 on CIBP-induced 

behavioural sensitisation showing paw withdrawal threshold (PWT), number of 

avoidances of weight bearing on movement, number of paw withdrawals, latency to 

paw withdrawal and duration of paw elevation.. Data show mean responses ± SEM 

of CIBP animals (n=9). ~ = not recorded. 

 

6.4.5 Effect of CIBP on levels of TRPV1 expression in DRG 

 TRPV1 protein was identified by Western blotting with a band at the 

predicted molecular size of 95kDa. TRPV1 protein expression was quantified by 

determining relative intensity normalised to GAPDH (Figure 6.7). TRPV1 

expression did not alter in CIBP Ipsilateral (0.41 ± 0.03) or CIBP Contralateral (0.47 

± 0.06) when compared to Sham V Ipsilateral (0.53 ± 0.03), Sham V Contralateral 

(0.48 ± 0.03) or Naïve (0.44 ± 0.03), shown by a One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis. TRPV1 expression also did not alter between 
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ipsilateral/contralateral sides within groups, as determined by an unpaired two-tailed 

t-test. 
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Figure 6.7 TRPV1 expression as determined by Western blot. Data from 

densitometry of film images as illustrated above show mean relative intensity of 

TRPV1 normalised to GAPDH ± SEM of CIBP (n=6), Sham V (n=6) and Naive 

(n=6) animals. TRPV1 expression did not alter in CIBP when compared to Naïve or 

Sham V or between ipsilateral/contralateral sides. The band at 95kDa was analysed. 

To quantify in Photo Shop, the image was inverted and a box was drawn around the 

largest band. The mean density was measured (taken as the average of 3 

measurements). The same box was dragged over other bands. Mean background was 

Naïve         CIBP      CIBP       Sham      Sham 
                      I             C             I              C 

40kDa 

TRPV1 
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110kDa 
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subtracted from the density of each band. Corresponding GAPDH bands were 

measured in the same way. The mean of each band was normalised to GAPDH. 

 

6.4.6 Effect of CIBP on TRPV1 expression within individual DRG cells 

The percentage of TRPV1-positive myelinated and unmyelinated cells was 

determined immunohistochemically by analysing co-expression of TRPV1 with 

NF200 or peripherin, respectively (Figure 6.8). The percentage of NF200-positive 

cells co-expressing TRPV1 was not altered in CIBP Ipsilateral (9.06 ± 0.49) or CIBP 

Contralateral (11.68 ± 1.83) when compared to Sham V Ipsilateral (11.65 ± 1.69) or 

Sham V Contralateral (9.54 ± 1.56) or Naïve (11.51 ± 1.42) shown by One-way 

ANOVA followed by Bonferroni‟s post-hoc analysis. The percentage of NF200-

positive cells co-expressing TRPV1 was not altered between ipsilateral/contralateral 

sides within groups, as shown by unpaired two-tailed t-test. The percentage of 

peripherin-positive cells co-expressing TRPV1 appeared to be significantly 

decreased in CIBP Ipsilateral (64.87 ± 3.6) and Sham V Ipsilateral (66.96 ± 2.42) 

when compared to Naïve (82.02 ± 2.54), shown by One-way ANOVA followed by 

Bonferroni's post-hoc analysis, p<0.05. The percentage of peripherin-positive cells 

co-expressing TRPV1 was not altered between ipsilateral/contralateral sides within 

groups as shown by unpaired two-tailed t-test. The total number of TRPV1-positive 

cells was not altered in CIBP Ipsilateral (31.87 ± 2.97) or CIBP Contralateral (34.19 

± 3.30) when compared to Sham V Ipsilateral (33.61 ± 2.96), Sham V Contralateral 

(29.49 ± 2.85) or Naïve (33.61 ± 4.21), as shown by One-way ANOVA followed by 

Bonferroni‟s post-hoc analysis or between ipsilateral/contralateral sides within 

groups, as shown by unpaired two-tailed t-test (Figure 6.9). 
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CIBP Ipsilateral      CIBP Contralateral 

 

 

Figure 6.8 Representative immunofluorescence images of CIBP DRG showing 

TRPV1 co-expression with markers of myelinated and unmyelinated afferents,  

NF200 and peripherin, respectively. A) TRPV1 (red) co-expression with NF200 

(green) ipsilateral and contralateral to CIBP. B) TRPV1 (red) co-expression with 

peripherin (green) ipsilateral and contralateral to CIBP.  
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A) TRPV1 co-expression with NF200
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B) TRPV1 co-expression with peripherin
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C) Total number of TRPV1-positive cells
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Figure 6.9 Quantification of TRPV1 co-expression with markers of myelinated or 

unmyelinated afferents as determined by immunofluorescence histochemistry. Data 

show the mean percentage of cells or mean number of cells expressing TRPV1 ± 

SEM of CIBP (n=6), Sham V (n=6) and Naive (n=6) animals. A) The percentage of 

NF200-positive cells co-expressing TRPV1 did not alter in CIBP or between 

ipsilateral/contralateral sides. B) The percentage of peripherin-positive cells co-

expressing TRPV1 is significantly decreased in CIBP Ipsilateral (**) and Sham V 

Ipsilateral (*) when compared to Naive (One-way ANOVA followed by Bonferroni's 

post-hoc analysis, where ** p = 0.001 to 0.01 and * p = 0.01 to 0.05). 

Ipsilateral/contralateral sides however were not significantly different. C) The total 

number of TRPV1 cells did not alter in CIBP or between Ipsilateral/contralateral 

sides.  
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6.4.7 Effect of the selective TRPV4 antagonist RN 1734 on CIBP-induced 

behavioural sensitisation 

 The selective TRPV4 antagonist RN 1734 attenuated mechanical allodynia, 

movement-evoked pain and thermal sensitivity to 40°C (Figure 6.10). Ipsilateral 

PWT from von Frey filament testing threshold was significantly different from 

contralateral values pre- and at 25 minutes and 45-85 minutes post-RN 1734 

administration as shown by One-way repeated measures ANOVA on ranks 

(Friedman‟s test) followed by Dunn‟s post-hoc analysis, p<0.05.  RN 1734 

significantly altered PWT compared to pre-administration values at 15 and 35 

minutes post-administration shown by One-way ANOVA followed by Dunn‟s post-

hoc analysis, p<0.05. Avoidance of weight bearing on movement was significantly 

attenuated at 15 to 35 minutes post-administration when compared to pre-

administration, as shown by One-way repeated measures ANOVA followed by 

Dunnett‟s post-hoc analysis, p<0.05. The number of paw withdrawals to 40°C was 

significantly decreased at 35 and 85 minutes post-administration only when 

compared to pre-administration, shown by a One-way ANOVA followed by 

Dunnett‟s post-hoc analysis, p<0.05. Latency to paw withdrawal to 40°C did not 

alter post-administration, whereas duration of paw elevation appeared to be 

significantly increased at 45 to 85 minutes post-administration, shown by One-way 

ANOVA followed by Dunnett‟s post-hoc analysis, p<0.05. 

 

 

 



 213 

B) Effect of RN 1734
on movement-evoked pain
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Figure 6.10 Effect of the selective TRPV4 antagonist RN 1734 (5nmole, i.t. 

administration) on CIBP-induced behavioural sensitisation. Data show mean 

responses ± SEM of CIBP animals (n=9). A) Ipsilateral PWT was significantly less 

than contralateral pre-administration and at all later time points except 15 and 35 
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minutes, at which time it was significantly increased when compared to pre-

administration values (# and *, respectively; One-way repeated measures ANOVA 

on ranks (Friedman‟s test) followed by Dunn's post-hoc analysis, p<0.05). B) 

Avoidance of weight bearing on movement was significantly decreased at 15 to 35 

minutes post-administration compared to pre-administration values (*; One-way 

repeated measures ANOVA followed by Dunnett's post-hoc analysis, p<0.05). C) 

Number of paw withdrawals to 40°C was significantly decreased at 35 and 85 

minutes post-administration (*; One-way ANOVA followed by Dunnett's post-hoc 

analysis, p<0.05). D) Latency to paw withdrawal to 40°C did not alter post-

administration compared to pre-administration. E) Duration of paw elevation to 40°C 

was significantly increased at 45 to 85 minutes post-administration compared to pre-

administration values (*; One-way ANOVA followed by Dunnett's post-hoc analysis, 

p<0.05). P values ### = <0.001, # = 0.01 to 0.05, * = 0.01 to 0.05, ** = 0.001 to 0.01 

and * = 0.01 to 0.05. 
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  Time post RN 1734 administration (minutes) 

Test  Pre 15 25 35 45 55 65 75 85 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 

Ipsi 

PWT (grams) 
3.9 8.9 7.3 7.9 7.7 5.4 4.9 5.3 4.3 

SEM 0.5 0.6 0.8 0.9 1.0 0.9 0.3 0.7 0.3 

Con 

PWT (grams) 
75.9 75.9 75.9 65.4 70.6 75.9 75.9 75.9 70.6 

SEM 0.0 0.0 0.0 6.9 5.2 0.0 0.0 0.0 5.2 

R
o
ta

ro
d

 Number 19.1 16.3 16.1 16.9 - 17.9 18.4 18.7 19.1 

SEM 0.4 0.6 1.0 1.1 - 0.6 0.5 0.4 0.3 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 

Number 3.0 1.8 1.8 1.6 2.0 1.7 2.2 1.8 1.4 

SEM 0.4 0.5 0.2 0.4 0.3 0.4 0.4 0.3 0.2 

Latency 41.7 65.0 46.4 54.9 19.9 46.6 24.2 28.1 25.2 

SEM 13.2 13.5 8.5 18.8 3.2 16.8 6.8 8.3 6.2 

Duration 26.9 14.0 46.9 62.3 93.2 80.1 77.0 101.7 102.2 

SEM 15.7 10.3 17.5 16.3 13.6 20.2 16.6 18.8 12.3 

 

Table 6.3 The effect of the selective TRPV4 antagonist RN 1734 on CIBP-induced 

behavioural sensitisation showing paw withdrawal threshold (PWT), number of 

avoidances of weight bearing on movement, number of paw withdrawals, latency to 

paw withdrawal and duration of paw elevation. Data show mean responses ± SEM of 

CIBP animals (n=9). 

 

6.4.8 Effect of CIBP on levels of TRPV4 expression in DRG   

 TRPV4 protein was identified by Western blotting with two bands at the 

predicted molecular size of 98-107kDa. TRPV4 protein expression was quantified by 

determining relative intensity normalised to GAPDH (Figure 6.11). TRPV4 

expression did not alter in CIBP Ipsilateral (3.29 ± 0.36) or CIBP Contralateral (2.39 

± 0.08) when compared to Sham V Ipsilateral (2.84 ± 0.65), Sham V Contralateral 

(2.45 ± 0.36) or Naïve (2.13 ± 0.22), shown by a One-way ANOVA followed by 
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Bonferroni‟s post-hoc analysis. TRPV4 expression was significantly increased in 

CIBP ipsilateral DRG (3.29 ± 0.36) when compared to CIBP contralateral DRG 

(2.39 ± 0.08), as determined by an unpaired two-tailed t-test, p<0.05.  
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Figure 6.11 TRPV4 expression as determined by Western blot. Data from 

densitometry of film images as illustrated above show mean relative intensity of 

TRPV4 normalised to GAPDH ± SEM of CIBP (n=6), Sham V (n=6) and Naive 

(n=6) animals. TRPV4 expression was not significantly altered between treatment 

groups but was significantly increased in CIBP Ipsilateral when compared to CIBP 

Contralateral (**; unpaired two-tailed t-test, p=0.001 to 0.01). TRPV4 expression 

was not significantly altered between Sham Ipsilateral and Sham Contralateral. The 

two bands at around 85kDa and 110kDa were analysed. To quantify in Photo Shop, 

 

Naïve        CIBP    CIBP      Sham    Sham 
                     I          C             I            C 
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the image was inverted and a box was drawn around the largest band. The mean 

density was measured (taken as the average of 3 measurements). The same box was 

dragged over other bands. Mean background density was subtracted from the density 

of each band. Corresponding GAPDH bands were measured in the same way. The 

mean of each band was normalised to GAPDH. 

 

6.4.9 Effect of CIBP on TRPV4 expression within individual DRG cells 

The percentage of TRPV4-positive myelinated and unmyelinated cells was 

determined immunohistochemically by analysing co-expression of TRPV4 with 

NF200 or peripherin, respectively (Figure 6.12). The percentage of NF200-positive 

cells that were TRPV4-positive was not altered in CIBP Ipsilateral (60.97 ± 6.04) or 

CIBP Contralateral (69.96 ± 3.47) when compared to Sham V Ipsilateral (63.11 ± 

3.05), Sham V Contralateral (55.48 ± 2.03) or Naïve (58.37 ± 6.39). The percentage 

of peripherin-positive cells that were TRPV4-positive was not altered in CIBP 

Ipsilateral (72.62 ± 5.46) or CIBP Contralateral (73.77 ± 3.27) when compared to 

Sham V Ipsilateral (59.47 ± 5.89), Sham V Contralateral (59.21 ± 3.46) or Naïve 

(65.42 ± 7.86). The total number of TRPV4-positive cells per section was not altered 

in CIBP Ipsilateral (66.85 ± 6.09) or CIBP Contralateral (68.84 ± 5.41) when 

compared to Sham V Ipsilateral (62.26 ± 3.77), Sham V Contralateral (55.19 ± 3.30) 

or Naïve (53.59 ± 4.15), shown by a One-way ANOVA followed by Bonferroni‟s 

post-hoc analysis (Figure 6.13). There were no differences in the percentage of 

NF200-positive or peripherin-positive cells that were TRPV4-positive between 

ipsilateral/contralateral sides within groups, as shown by an unpaired two-tailed t-

test. 
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Figure 6.12 Representative immunofluorescence images of CIBP DRG, showing 

TRPV4 co-expression with markers of myelinated and unmyelinated afferents, 

NF200 and peripherin, respectively. A) TRPV4 (red) and NF200 (green) co-

expression ipsilateral and contralateral to CIBP. B) TRPV4 (red) and peripherin 

(green) co-expression in CIBP ipsilateral and contralateral. 
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C) Total number of TRPV4-positive cells
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Figure 6.13 Quantification of TRPV4 expression with markers of myelinated or 

unmyelinated afferents as determined by immunofluorescence histochemistry. Data 

show the mean percentage of cells or number of cells expressing TRPV4 ± SEM of 

CIBP (n=6), Sham V (n=6) and Naive (n=6) animals. A) The percentage of NF200-

positive cells co-expressing TRPV4 did not alter in CIBP or between 

ipsilateral/contralateral sides within groups. B) The percentage of peripherin-positive 

cells co-expressing TRPV4 did not alter in CIBP or between ipsilateral/contralateral 

sides within groups. C) The total number of TRPV4-positive cells did not alter in 

CIBP or between ipsilateral/contralateral sides within groups. 
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6.4.10 The effect of vehicle control for AMG 9810 and RN 1734 on CIBP-

induced behavioural sensitisation 

 Vehicle (0.5% dimethylformamide in saline) control for AMG 9810 and RN 

1734 did not significantly attenuate mechanical allodynia. Ipsilateral PWT from von 

Frey filaments testing was significantly different when compared to contralateral 

values pre-administration and at 25 – 85 minutes post-administration but not at 15 

minutes shown by One-way repeated measures ANOVA on ranks (Friedman‟s test) 

followed by Dunn‟s post-hoc analysis, p<0.05. Avoidance of weight bearing on 

movement was attenuated at 15 minutes post-administration only, shown by a One-

way repeated measures ANOVA followed by Dunnett‟s post-hoc analysis, p<0.05. 

Number of paw withdrawals to 40°C appeared to be significantly reduced at 15 and 

65-85 minutes post-administration when compared to pre-administration. Latency to 

paw withdrawal to 40°C was significantly increased only at 15 minutes post-

administration and duration of paw elevation to 40°C appeared to be significantly 

increased only at 75 minutes post-administration (Figure 6.14); shown in each case 

by One-way repeated measures ANOVA followed by Dunnett‟s post-hoc analysis, 

p<0.05. The effect of vehicle control on CIBP-induced behavioural sensitivity at 15 

minutes post-administration may be attributed to a residual anaesthetic effect. The 

decrease in number of paw withdrawals to 40°C at 65-85 minutes post-

administration may correspond to increased duration of individual paw elevation 

events. 
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Figure 6.14 Effect of vehicle (0.5% dimethylformamide in saline, i.t. administration) 

on CIBP-induced behavioural sensitisation. Data shows mean responses ± SEM of 

CIBP animals (n=9). A) Ipsilateral PWT to von Frey filaments was not significantly 
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altered when compared to pre-administration values. PWT ipsilateral to CIBP was 

significantly decreased compared to contralateral PWT except at 15 minutes post-

administration (#; One-way ANOVA on ranks (Friedman‟s test) followed by Dunn's 

post-hoc analysis, p<0.05). B) Avoidance of weight bearing on movement was 

significantly decreased at 15 minutes post-administration compared to pre-

administration (*; One-way repeated measures ANOVA followed by Dunnett's post-

hoc analysis, p<0.05). C) Number of paw withdrawals to 40°C was significantly 

decreased at 15 and 65 to 85 minutes post-administration (*; One-way repeated 

measures ANOVA followed by Dunnett's post-hoc analysis, p<0.05). D) Latency of 

paw withdrawal to 40°C was significantly increased at 15 minutes post-

administration compared to pre-administration (*; One-way repeated measures 

ANOVA followed by Dunnett's post-hoc analysis, p<0.05). E) Duration of paw 

elevation to 40°C was significantly increased at 75 minutes post-administration 

compared to pre-administration (*; One-way repeated measures ANOVA followed 

by Dunnett's post-hoc analysis, p<0.05). 
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  Time post vehicle administration (minutes) 

Test  Pre 15 25 35 45 55 65 75 85 

M
e
c
h
a
n

ic
a

l 
a

llo
d
y
n
ia

 Ipsi 

PWT (grams) 
4.0 6.1 5.7 4.3 4.0 4.3 4.5 3.9 4.3 

SEM 0.3 0.8 0.8 0.3 0.3 0.3 0.4 0.4 0.3 

Con 

PWT (grams) 
75.9 70.6 70.6 75.9 75.9 75.9 70.6 75.9 75.9 

SEM 0.0 5.2 5.2 0.0 0.0 0.0 5.2 0.0 0.0 

R
o
ta

ro
d

 Number 18.2 17.0 17.2 17.6 17.7 - 18.4 17.7 18.8 

SEM 0.6 0.7 0.5 0.7 0.6 - 0.6 0.7 0.5 

T
h
e
rm

a
l 
s
e
n

s
it
iv

it
y
 t

o
 4

0
°C

 Number 3.4 1.6 2.2 3.0 2.6 2.7 1.8 1.7 2.0 

SEM 0.7 0.4 0.3 0.6 0.6 0.3 0.3 0.2 0.2 

Latency 25.1 66.2 50.7 35.2 35.1 16.7 30.0 30.6 23.8 

SEM 10.2 17.2 18.0 8.9 14.5 2.8 6.7 7.1 6.3 

Duration 60.8 33.1 64.0 61.6 77.4 81.1 102.8 105.8 98.9 

SEM 17.3 16.0 15.9 9.4 14.3 9.6 8.4 8.0 10.9 

 

Table 6.4 The effect of vehicle on CIBP-induced behavioural sensitisation showing 

paw withdrawal threshold (PWT), number of avoidances of weight bearing on 

movement, number of paw withdrawals, latency to paw withdrawal and duration of 

paw elevation. Data shows mean responses ± SEM of CIBP animals (n=9). 

 

6.5 Discussion 

 The TRPM8/TRPA1 agonist, icilin, attenuated movement-evoked pain in this 

preclinical model of CIBP, which suggests that icilin might be useful in the treatment 

of movement-evoked pain. The selective TRPV1 antagonist AMG 9810 did not 

attenuate mechanical allodynia, thermal sensitivity to 40°C or movement-evoked 

pain. However, the selective TRPV4 antagonist RN 1734 attenuated mechanical 

allodynia, thermal sensitivity to 40°C and movement-evoked pain in CIBP. 

Expression of TRPM8 and TRPV1 in the DRG was not altered in this preclinical 
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model of CIBP. Notably, the expression of TRPV4 in DRG ipsilateral to CIBP was 

increased, which may play a part in its increased role in CIBP. These results suggest 

that TRPM8 agonists and TRPV4 antagonists may be useful in the treatment of 

behavioural sensitisation in this model of CIBP, while no direct evidence to support a 

role of TRPV1 was obtained in the present study. 

 

6.5.1 The involvement of TRPM8 in CIBP 

 The TRPM8/TRPA1 agonist icilin (topically applied at 100µM) attenuated 

movement-evoked pain but did not attenuate mechanical allodynia or thermal 

sensitivity to 40°C. The attenuation of movement-evoked pain by icilin could be of 

great significance in the clinic because movement-evoked pain is one of the most 

difficult components of CIBP to control (Zeppetella, 2009). A previous study from 

our laboratory showed that topically applied icilin (80µM) reversed mechanical 

allodynia, (demonstrated using von Frey filaments), and thermal sensitisation to 

noxious heat, (using the Hargreaves‟ test), in the following rat models; the CCI 

model of neuropathic pain, the CFA model of inflammatory pain and the lysolecithin 

model of demyelination-induced pain (Proudfoot et al., 2006). The mechanism of 

icilin-induced analgesia is thought to be largely centrally-mediated (Proudfoot et al., 

2006). The same study also found an increase in TRPM8 expression in the DRG of 

CCI rats ipsilateral to nerve injury, occurring in both myelinated Aδ-fibres and 

unmyelinated C fibres. It appears that in CIBP, there was no increase in TRPM8 

expression. In principle, this may contribute to the finding that TRPM8 activation did 

not reverse mechanical allodynia or thermal sensitivity to 40°C in the CIBP model. 

The mechanism by which icilin achieves a degree of selectivity in attenuating 

movement-evoked pain in CIBP would be worth exploring in further studies.  

 

6.5.2 The involvement of TRPV1 in CIBP 

The selective TRPV1 antagonist AMG 9810 did not attenuate mechanical 

allodynia, movement-evoked pain or thermal sensitivity to 40°C in our preclinical 

model of CIBP. These behavioural results are in contrast with other studies showing 

that administration of TRPV1 antagonists can effectively attenuate CIBP. 

Administration of the TRPV1 antagonist JNJ-17203212 injected subcutaneously into 
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a mouse model of CIBP reduced both ongoing pain and movement-evoked pain as 

measured by spontaneous flinching and guarding induced by (normally non-noxious) 

palpation of the distal femur, respectively (Ghilardi et al., 2005). Another study also 

showed in a murine model of CIBP that systemic administration of the selective 

TRPV1 antagonist, 5‟-iodoresiniferatoxin reduced both movement-evoked and 

ongoing pain as measured by limb use during spontaneous ambulation, spontaneous 

flinching and weight bearing (Niiyama et al., 2007). However, systemic 

administration of another, more potent, TRPV1 antagonist SB366791 reduced the 

number of spontaneous flinches but did not improve ambulation and weight bearing, 

suggesting that the precise impact of TRPV1 blockade may be to reduce ongoing but 

not movement-evoked pain (Niiyama et al., 2009). The authors suggested that these 

differences in behavioural results may be due to the different pharmacological 

profiles of TRPV1 antagonists. The TRPV1 antagonist ABT-102 also has been 

shown to decrease spontaneous pain behaviours and those evoked by thermal and 

mechanical stimuli in a murine model of CIBP (Honore et al., 2009). Furthermore, 

this study found that repeated dosing of ABT-102 enhanced its analgesic activity. In 

view of these results, the current finding that AMG 9810 was without effect is 

surprising since it is a highly selective and potent TRPV1 antagonist (Gavva et al., 

2005) and it was tested at a dose shown to be effective for agents with comparable 

affinity for other receptors. Nevertheless, results from the literature suggest that other 

TRPV1 antagonists should be tested for analgesic activity in our preclinical rat 

model of CIBP and repeated dosing might be more likely to achieve analgesic 

efficacy. 

 

A study showed that TRPV1 is expressed in sensory neurons innervating 

mineralised bone and bone marrow (Ghilardi et al., 2005). In this thesis, results 

showed that TRPV1 expression was not altered in DRG ipsilateral to CIBP at Day 

18-21, as determined by Western blot and immunohistochemistry. This result is 

consistent with a study carried out by Nagae et al., which demonstrated in a rat 

model of CIBP that there was no change in expression of TRPV1 mRNA in DRG 

ipsilateral to CIBP. Their study used female rats and MRMT-1 cells injected into the 

tibia to model CIBP (Nagae et al., 2007). However, other studies have demonstrated 
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increased TRPV1 expression in CIBP models (Ghilardi et al., 2005;Niiyama et al., 

2007;Pan et al., 2010). For example, TRPV1 expression was reported to be increased 

in DRG ipsilateral to CIBP shown by Western blot and real time-PCR (Ghilardi et 

al., 2005). A recent study showed that in a CIBP model where female Sprague-

Dawley rats received an intratibial injection of Walker 256 rat mammary gland 

carcinoma cells, there was an increase of TRPV1 expression in DRG at Day 14, as 

determined by Western blotting (Pan et al., 2010). This suggests that an increase in 

TRPV1 expression might be detected at an earlier time point in our model, although 

such extrapolation is not necessarily secure and it should be borne in mind that 

different CIBP models could have quite different characteristics. Studies of TRPV1-

deficient mice have also shown that in a CIBP model these mice exhibit reduced 

hypersensitivty, with no significant increase in flinching behaviour in the cancer-

bearing tibia of TRPV1-deficient mice (Ghilardi et al., 2005). 

 

Overall, our study did not find pharmacological evidence for a role of TRPV1 

in CIBP hypersensitivity or altered TRPV1 expression at Day 18-21. However, it 

would be interesting to investigate whether other TRPV1 antagonists showed 

analgesic efficacy (especially after repeated dosing) and explore whether TRPV1 

expression might be increased at different time points in this model.  

 

Analysis of the expression of TRPV1 channels in the present study indicates 

that TRPV1 shows low expression in myelinated (NF200-positive) cells, although 

TRPV1 shows high expression in unmyelinated (peripherin-positive) cells. TRPV1 

was expressed in around 12% of NF200-positive cells in Naive DRG and around 9% 

in CIBP Ipsilateral DRG. TRPV1 was expressed in around 82% of peripherin-

positive cells in Naïve DRG and around 65% in CIBP Ipsilateral DRG. This is in 

contrast to TRPM8 expression, which is in only a small number of both NF200-

positive and peripherin-positive cells. We showed that TRPM8 was expressed in 

around 2% of NF200-positive cells in Naïve DRG and 4% of NF200-postive cells in 

CIBP DRG. TRPM8 was expressed in around 6% of peripherin-positive cells in 

Naïve DRG and around 5% of peripherin-positive cells in CIBP Ipsilateral DRG.  
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6.5.3 The involvement of TRPV4 in CIBP 

The selective TRPV4 antagonist RN 1734 showed modest but statistically 

significant attenuation of mechanical allodynia, movement-evoked pain and thermal 

sensitivity to 40°C at particular time points in this preclinical model of CIBP. These 

results suggest that TRPV4 may contribute in part to establishing the hypersensitive 

pain state. Furthermore, Western blot results indicate that TRPV4 expression was 

significantly increased in ipsilateral DRG in the CIBP model when compared to 

contralateral or Naïve DRG (unpaired two-tailed t-test). However, TRPV4 co-

expression with either NF200 or peripherin was not discernibly altered. Analysis of 

the expression of TRPV4 channels in the present study indicates that TRPV4 shows 

high expression in myelinated (NF200-positive) and unmyelinated (peripherin-

positive) cells. TRPV4 was expressed in around 58% of NF200-positive cells in 

Naïve DRG and 61% of NF200 positive-cells in CIBP Ipsilateral DRG. TRPV4 was 

expressed in around 65% of peripherin-positive cells in Naïve DRG and TRPV4 was 

expressed in around 72% of peripherin-positive cells.  

 

In future work it would be interesting to investigate the analgesic efficacy of 

different TRPV4 antagonists, doses and routes of administration as well as the 

impact of TRPV4 knockout on CIBP-induced behavioural sensitisation. 

 

6.5.4 Effect of vehicle control on CIBP-induced behavioural sensitisation 

Vehicle (0.5% dimethylformamide) control administrated intrathecally under 

isoflurane/O2 anaesthetic attenuated movement-evoked pain and number of paw 

withdrawals to 40°C at 15 minutes post-administration. Animals also showed an 

increased latency to paw elevation to 40°C at 15 minutes post-administration. These 

results suggest that the anaesthetic may still have an effect at 15 minutes post-

administration. Any results with pharmacological agents will therefore be 

questionable at the 15 minute time point. The number of paw withdrawals to 40°C is 

also reduced at later time points but it was observed that repeated testing on the 

thermal footplate often led to a reduction in number of paw withdrawals but an 

increase in the duration of paw elevation. This may be due to increased avoidance of 
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ipsilateral hindpaw contact with the thermal footplate, perhaps through an element of 

behavioural learning.  

 

 These results suggest that the anaesthetic effect is a major limitation to this 

study, at early time points post-pharmacological agent administration. It would be 

interesting to test the efficacy of topical application of TRPV1 and TRPM8 

antagonists. However, as discussed previously (Section 6.1) it has been shown that 

topical application of a TRPV1 antagonist led to an increase in skin cancer (Li et al., 

2011). This might suggest that topical application of TRPV1 antagonists would not 

be a useful analgesic intervention.  

 

 Another limitation in the present study was the small numbers used when 

testing the effect of topical icilin application on behavioural sensitisation, in 

particular thermal sensitivity to 40°C (n=4). It would have been interesting to carry 

out these behavioural tests on a larger sample size. Additionally, because icilin has 

some agonist activity at TRPA1, it would have been interesting to investigate 

whether TRPA1 expression is altered in CIBP.  

 

6.6 Conclusion 

The current findings suggest that TRPM8 activation delivers an analgesic 

effect in this model of CIBP whereas TRPV4, but apparently not TRPV1, contributes 

to the hypersensitive pain state. The present data highlight the potential utility of 

TRPM8 agonists and TRPV4 antagonists as analgesics in CIBP. These results 

suggest that TRP channels are potentially useful analgesic targets in CIBP.  
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7. SUMMARY AND CONCLUSIONS 

 

The primary aim of this study was to define the molecular basis for 

sensitisation in CIBP to gain a better understanding of the CIBP pain state, which 

could lead to improved management in the clinic and insights into new therapeutic 

targets. This study comprehensively characterised behavioural changes in a 

preclinical model of CIBP. The results show that this CIBP preclinical model elicits 

sensitisation in evoked pain behaviours; mechanical allodynia and thermal sensitivity 

and in ongoing pain behaviour; weight bearing difference between hindlimbs. This 

model also elicits movement-evoked pain and spontaneous foot lifting. The 

behavioural characteristics seen in this model closely parallel the clinical condition, 

where breakthrough pain, that may be movement-evoked or occur spontaneously, is 

the most difficult component to treat. This suggests that the present CIBP preclinical 

model is a useful model for testing the effectiveness of novel analgesic interventions 

against breakthrough pain. This model is particularly useful because it allows 

examination of the effects of isolated bone metastases on pain and nociception, 

without the effects of widespread cancer. 

 

A further aim of this study was to determine the analgesic efficacy of XRT 

treatment (the clinical „gold standard‟) and therapeutic candidates in the model. A 

single dose of 8 Gy XRT attenuated thermal sensitivity to 20°C and 40°C and 

movement-evoked pain in this CIBP model. We found that a single dose of the dual 

noradrenaline and serotonin reuptake inhibitor duloxetine effectively attenuated 

mechanical allodynia, movement-evoked pain and thermal sensitivity to 40°C. In 

comparison, the selective noradrenaline reuptake inhibitor S,S-reboxetine only 

attenuated thermal sensitivity to 40°C. These results may suggest that duloxetine 

attenuates movement-evoked pain through inhibition of serotonin reuptake alone, 

whereas mechanical allodynia and thermal sensitivity may be attenuated through 

inhibition of noradrenaline reuptake in synergy with inhibition of serotonin reuptake. 

However, these agents may produce analgesic effects through different mechanisms. 

Our findings support the idea that duloxetine could be useful in the treatment of 

CIBP patients in the clinic. In conclusion, this thesis shows that the preclinical model 
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of CIBP investigated is suitable for testing novel analgesic interventions. This thesis 

established that radiotherapy and duloxetine act as effective analgesics in this model 

of CIBP. 

 

 The general NMDA receptor antagonist (R)-CPP and a NR2A-selective 

antagonist were effective at attenuating CIBP-induced behavioural sensitisation. 

There was also an increased expression the NR2A subunit of NMDA receptors in the 

dorsal horn of the spinal cord. The specific involvement of NR2A in CIBP appears to 

be a unique characteristic of this model. 

 

 The TRPM8 channel agonist, icilin, attenuated movement-evoked pain but 

did not attenuate mechanical allodynia or thermal sensitivity to 40°C. TRPM8 

expression was not increased in CIBP DRG, although this does not rule out an 

increase in peripheral afferents not detected at the DRG level. Surprisingly, the 

TRPV1 antagonist AMG 9810 did not attenuate mechanical allodynia, thermal 

sensitivity to 40°C or movement-evoked pain. However, interestingly the TRPV4 

antagonist RN 1734 attenuated mechanical allodynia, thermal sensitivity to 40°C and 

movement-evoked pain. Additionally, TRPV4 expression was shown to increase in 

the ipsilateral DRG in CIBP. This result is particularly interesting because it may 

suggest that one of the mechanisms of CIBP involves increased expression of 

TRPV4 in sensory neurons. These results show, for the first time, that TRPM8 and 

TRPV4 may be a useful analgesic targets in CIBP.  

 

The characterisation of this preclinical model of CIBP shows that this model 

develops behavioural sensitisation such as mechanical allodynia and weight bearing 

difference between hindlimbs similar to other preclinical models (Donovan-

Rodriguez et al., 2004a;Medhurst et al., 2002;Urch et al., 2003b). These results 

correspond with a recent clinical study from our group, which found that CIBP 

patients demonstrate altered thresholds to mechanical and thermal stimuli with 

increased activation, heightened responsiveness and plasticity of primary afferents 

(Scott et al., 2011). Furthermore, as shown in some components of CIBP-induced 
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behavioural sensitisation in the present preclinical model, radiotherapy treatment 

reversed allodynia, hyperalgesia and the size of the sensitive area (Scott et al., 2011).  

 

The finding that duloxetine effectively attenuated CIBP-induced behavioural 

sensitisation corresponds with preclinical and clinical studies of osteoarthritis. In a 

preclinical model of osteoarthritis duloxetine was moderately efficacious in reversing 

osteoarthritis-induced reduction in grip force (a measure of movement-evoked pain) 

(Chandran et al., 2009). In a clinical study duloxetine reduced pain and improved 

function in patients with osteoarthritis of the knee (Chappell et al., 2011). 

 

The present study showed that the general NMDA receptor antagonist (R)-

CPP attenuated mechanical allodynia and movement-evoked pain and the NR2A 

subunit-selective antagonist AAM 077 attenuated movement-evoked pain. However, 

the NR2B subunit-selective antagonist Ro 25-6981 did not attenuate mechanical 

allodynia or movement-evoked pain. These results are in contrast with results from 

neuropathic and inflammatory pain which are reported to involve the NR2B subunit 

of NMDA receptors, where NR2B-selective antagonists produce analgesia in 

preclinical models of neuropathic and inflammatory pain (Malmberg et al., 2003a;Qu 

et al., 2009;Zhang et al., 2009). Furthermore, spinal NR2B expression is increased in 

neuropathic pain (Labombarda et al., 2008a) and NR2B phosphorylation is 

upregulated during inflammation (Guo et al., 2002a). Additionally, these results are 

in contrast with findings from a mouse model of CIBP where the NR2B antagonist 

was shown to alleviate pain behaviours and NR2B mRNA was increased in the 

spinal cord (Gu et al., 2010a). The clinical implications of increased NR2A 

expression in the spinal cord in this preclinical model of CIBP are that CIBP may 

involve unique downstream signalling pathways compared to inflammatory and 

neuropathic pain states. 

 

The present study showed that the TRPV1 antagonist AMG 9810 did not 

attenuate CIBP-induced mechanical allodynia, thermal sensitivity to 40°C or 

movement-evoked pain. These results contrast with some other studies which show 

that TRPV1 antagonists can attenuate CIBP-induced behavioural sensitisation 
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(Ghilardi et al., 2005;Honore et al., 2009;Niiyama et al., 2007). The results of the 

present study may be different because of the preclinical model used, the dose of 

TRPV1 antagonist or method of administration of TRPV1 antagonist. 

 

The present study shows that the TRPM8 agonist icilin may be effective in 

the treatment of movement-evoked pain. A study showed that icilin provided 

analgesia in the CCI model of neuropathic pain and there was a significant increase 

of TRPM8 expression in the DRG ipsilateral to injury  (Proudfoot et al., 2006). The 

present results suggest that TRPM8 attenuates movement-evoked pain in CIBP 

through activation of the native population of TRPM8 channels. 

 

The present study identifies TRPV4 as a potential analgesic target in CIBP, 

with both behavioural and immunohistochemical evidence that TRPV4 has a role in 

CIBP. TRPV4 has been shown to be important for thermal and mechanical 

nociception in preclinical models of neuropathic pain (Alessandri-Haber et al., 

2004;Ding et al., 2010a;Zhang et al., 2008b) and thermal nociception in a preclinical 

model of inflammatory pain (Todaka et al., 2004b). This is the first time that TRPV4 

has been shown to be involved in CIBP. It may be that TRPV4 is involved in 

neuropathic, inflammatory and CIBP pain states and TRPV4 antagonists could be 

widely applicable analgesic agents. 

 

This thesis has found that different treatments are often effective against 

different components of cancer-induced bone pain. This suggests that combinatorial 

studies should be investigated in future work. Such studies would also identify if the 

analgesic effect of one target would not be hindered/lost when combined with 

another drug. One of the current clinical studies within our research programme is 

studying the combined effect of pregabalin and XRT. From my current work there is 

some evidence of the potential efficacy of duloxetine in CIBP. Future work could 

examine the combination of radiotherapy + duloxetine in attenuating CIBP.  

 

 Single-dose studies were used in this thesis. These doses and routes of 

administration were chosen based on previous studies (see Table 2.1) to attempt to 
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identify novel analgesic targets in cancer-induced bone pain. The major limitations 

of single-dose studies are that higher doses or repeated dosing may have been 

effective and useful analgesic targets could be missed. For example, Donovan-

Rodriguez et al. investigated the effect of both acute and chronic administration of 

gabapentin in a CIBP model and showed that an acute dose of gabapentin had no 

effect, whereas chronic administration of gabapentin attenuated pain-related 

behaviours (Donovan-Rodriguez et al., 2005). 

 

Future Directions 

Characterisation of this preclinical model of CIBP confirmed that CIBP is a 

multi-component pain state, as shown in CIBP patients. The model shows evoked 

pain, ongoing pain and movement-evoked or spontaneous breakthrough pain. This 

suggests that an effective treatment might be a combination of treatments against 

these different components.  

 

The results from testing of analgesic interventions indicate that many 

different mechanisms contribute to CIBP. It is possible that duloxetine produces its 

marked analgesia in this model through inhibition of both noradrenaline and 

serotonin reuptake. The impact of a resulting monoaminergic inhibitory influence 

may affect synapses with increased expression of the NR2A subunit of NMDA 

receptors. It may be that primary afferents expressing TRPV4 transmit noxious 

information in CIBP. A point to consider is that any robust effective treatment may 

need to target all (or at least several) of these mechanisms. It also appears that the 

different pain-related behaviours observed in this thesis respond in varying degrees 

to different analgesic interventions.  

 

This thesis also identified some novel targets for the analgesic treatment of 

CIBP. It would be interesting to ascertain the signalling molecules that interact with 

the NR2A subunit and the downstream signalling pathways involved in CIBP. For 

example, this could involve investigating the interactions of the NR2A subunit with 

PSD-95. In this way, it might be possible to target downstream pathways and target 
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CIBP in a more specific way. It would also be interesting to investigate whether 

repeated dosing of a TRPV4 antagonist can attenuate CIBP to a greater extent. 
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Winter Scientific Meeting of the Anaesthetic Research Society, London, 

December 2009 

 

Oral communication: Central sensitisation in a model of cancer-induced bone 

pain (CIBP) is dependent on NMDA receptors containing the NR2A subunit  

 

Abstract published in the British Journal of Anaesthesia.  

Awarded the Annual Anaesthetic Research Society student prize, 2009. 
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Edinburgh Translational Pain Research Collaboration, University of Edinburgh, UK. 

 

CIBP, due to bony metastases, is a major clinical problem, significantly reducing 

quality of life in cancer patients. Current therapies often provide inadequate 

analgesia or unacceptable side effects. The spontaneous and movement-induced 

components of CIBP are particularly challenging. Animal models of CIBP have 

demonstrated that the underlying neurobiology is unique and different from other 

chronic pain states
1
. We have investigated the involvement of specific subunits of the 

NMDA receptor (NMDAR), which is a strong candidate for a role in the spinal 

plasticity and sensory hypersensitivity in this condition. 

Syngeneic MRMT-1 rat mammary gland carcinoma cells were introduced into the 

intramedullary canal of one tibial bone in anaesthetised Sprague-Dawley rats
2 

and 

analysis of sensory hypersensitivity carried out over 21 days in CIBP, sham and 

naïve rats measuring: 1. Movement-related pain (abnormal paw movements on a 

rotating cylinder; weight bearing difference between hindpaws); 2. Mechanical 

allodynia (withdrawal threshold to von Frey hairs); 3. Thermal sensitivity (paw 

withdrawals at 40°C); 4. Spontaneous pain (spontaneous foot lifts). Intrathecal 

NMDAR antagonist (R)-CPP, selective NR2A antagonist (AAM 1077) and selective 

NR2B antagonist (Ro 25-6981) effects were measured when hypersensitivity was 
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established. Alterations in neuronal expression levels of the NMDAR subunits NR1, 

NR2A and NR2B in the dorsal spinal cord were identified by immunofluorescent 

quantification.  

 

CIBP (n=27-31; mean (SD)) was associated with the development of movement-

related pain (15.67 (2.1) versus baseline 0.63 (1.0)); mechanical allodynia (ipsilateral 

threshold= 643.1(557.5) compared to contralateral threshold = 3179.5 (463.1) 

mN/mm
2
); thermal sensitivity (number of ipsilateral paw withdrawals = 2.5 (1.0) 

versus baseline 0.92 (0.8); naives 0 (0)); increased weight bearing difference (72.51 

(30.3) CIBP versus prior baseline 0.00 (7.1); naïves 1.71 (6.5) gms); and spontaneous 

pain (spontaneous foot-lifting 77.97 (77.8) seconds) ipsilateral to CIBP. Intrathecal 

administration of the NR2A selective antagonist attenuated movement-evoked pain 

(n=4; abnormal paw movements 22 (2.8) decreased to 17.13 (4.6)) and mechanical 

allodynia (n=4; ipsilateral threshold: 783.6 (158.6) increased to 2285.6 (1174.9) 

mN/mm
2
) in CIBP animals. (R)-CPP attenuated movement-related pain (n=4; 

abnormal paw movements 20 (0.7) decreased to 16 (2)) and mechanical allodynia 

(n=4; ipsilateral threshold of 654.18 (0) increased to 2468.61 (992.0) mN/mm
2
) in 

CIBP animals. The NR2B antagonist had no effect. Immunohistochemical analysis 

found that NR2A but not NR1 and NR2B increased significantly in ipsilateral spinal 

cord in laminae I and II (n=3; 9.9 (3.4) fluorescence intensity) compared to 

contralateral (5.4 (3.3)).  

The sensory hyperresponsiveness that developed appears to involve the NR2A 

subunit of the NMDAR. This is a unique finding and distinguishes CIBP from other 

forms of chronic pain. This has clear implications for developing future targeted 

therapies.  
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North British Pain Association Spring Scientific Meeting, Edinburgh, May 2010 

and Neuroscience Day, University of Edinburgh, Edinburgh, May 2010  

 

Poster presentation: Investigating the TRPM8 ion channel as a potential 

analgesic target for cancer-induced bone pain.  
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4
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Aim: Cancer-induced bone pain (CIBP), due to bony metastases, is a major clinical 

problem. Current therapies often provide inadequate analgesia, particularly for 

spontaneous and movement-evoked components of CIBP. TRPM8 activation has 

been shown to produce effective analgesia in chronic pain of neuropathic origin. We 

used an established rat model of CIBP to investigate the efficacy of topical 

administration of a TRPM8 agonist icilin on sensory, movement-evoked and 

affective components of CIBP. We also analysed TRPM8 expression in the dorsal 

root ganglion (DRG) of CIBP rats. 

Methods: In this CIBP model, MRMT-1 rat mammary carcinoma cells were injected 

into the intramedullary canal of one tibial bone in anaesthetised rats. Ipsilateral 

sensitisation to mechanical and thermal stimuli was assessed by measuring paw 

withdrawal from von Frey filaments and 40°C stimuli. Movement-evoked pain was 

evaluated by measuring rotarod-induced avoidance of weight bearing on movement. 

Anxiety was assessed by the elevated plus maze. Following topical administration of 

the TRPM8 agonist, icilin (100µM) we evaluated analgesic efficacy on these 

components of CIBP. TRPM8 expression in the DRG of CIBP rats was also 

investigated. 
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Results and conclusions: Administration of icilin did not reduce CIBP-induced 

mechanical or thermal (40°C) sensitivity or the anxiety-related component of CIBP. 

However, icilin did significantly reduce avoidance of weight bearing on movement 

up to 50 minutes post icilin. Western blot and immunohistochemistry analysis 

showed no significant change in TRPM8 expression in the DRG of CIBP rats. These 

results suggest TRPM8 is a potential analgesic target for CIBP-induced movement-

evoked pain. 
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Poster presentation: A comparative analysis of gabapentin and duloxetine as 

novel analgesic treatments for cancer-induced bone pain.  
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Cancer-induced bone pain (CIBP), due to bony metastases, is a major clinical 

problem, significantly reducing quality of life in cancer patients. Current therapies 

often provide inadequate analgesia, particularly for spontaneous and movement 

related components of CIBP, often with unacceptable side effects. Pre-clinical 

models have shown the underlying neurobiology of CIBP is unique and different 

from other chronic pain states. Chronic administration of gabapentin can reduce 

CIBP-induced dorsal horn neuronal responses and pain-related behaviour. 

Duloxetine, a selective serotonin-norepinephrine reuptake inhibitor, has recently 

been approved for the treatment of neuropathic pain. Here we investigated the 

efficacy of acute administration of duloxetine or gabapentin on sensory, movement-

evoked and affective components of CIBP. 

We used a laboratory model of CIBP, in which MRMT-1 rat mammary carcinoma 

cells are injected into the intramedullary canal of one tibial bone in anaesthetised 

rats. We assessed the development of ipsilateral sensitisation to mechanical and 

thermal stimuli, by measuring paw withdrawal from von Frey filaments and 40°C 

stimuli. We evaluated movement-evoked pain by measuring rotarod-induced 
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avoidance of weight bearing on movement. Anxiety was assessed by the elevated 

plus maze. Following acute administration of gabapentin, duloxetine (both 30mg/kg 

po) or vehicle from 16 days post-surgery, we evaluated their analgesic efficacy on 

sensory, movement-evoked and anxiety-related components of CIBP. This study 

reveals duloxetine to be highly efficacious in attenuating both sensory and movement 

related components of CIBP. 
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Scottish Pain Research Community Launch Event, March 2011 

 

Oral communication: Analysis of gabapentin and duloxetine as novel analgesic 

treatments for cancer-induced bone pain 
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Background: Cancer-induced bone pain (CIBP), due to bony metastases, is a major 

clinical problem, significantly reducing quality of life in cancer patients. Current 

therapies often provide inadequate analgesia with unacceptable side effects. Pre-

clinical models have shown the underlying neurobiology of CIBP is unique and 

different from other chronic pain states.  

Objective(s): To investigate the efficacy of acute administration of duloxetine or 

gabapentin on sensory, movement-evoked and anxiety-related components of CIBP. 

Methods: We used a laboratory model of CIBP, in which MRMT-1 rat mammary 

carcinoma cells are injected into the intramedullary canal of one tibial bone in 

anaesthetised rats. Following acute administration of gabapentin, duloxetine (both 

30mg/kg po) or vehicle from 16 days post-surgery, we evaluated their analgesic 

efficacy. 

Results: Acute administration of duloxetine attenuated CIBP-induced ipsilateral 

sensitivity to thermal (40°C) stimulus up to 24 hours post-injection (from 3.0 ± 0.4 to 

0.8 ± 0.2 (at 1hour) and 1.3 ± 0.5 (at 24 hours) mean paw withdrawal ± SEM; n=11) 

and to mechanical stimuli up to 4 hours post-injection. Gabapentin reversed thermal 

sensitivity at 3 hours post-injection only (from 3.0 ± 0.3 to 1.6 ± 0.2 mean paw 

withdrawal ± SEM; n=10) and had no effect on CIBP-induced sensitivity to 

mechanical stimuli. CIBP-induced movement-evoked pain behaviour was attenuated 
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up to 4 hours by duloxetine only (from 14.4 ± 0.5 to 10.3 ± 0.7 (at 1hour) mean 

avoidance of weight bearing on movement ± SEM; n=10). Administration of vehicle 

had no effect on CIBP-induced ipsilateral sensitivity to either sensory (mechanical 

and thermal) stimuli or movement-evoked pain behaviour at all time points. 

Additionally gabapentin or duloxetine treatment did not alter anxiety levels, 

measured by open-arm time on the elevated plus maze, when compared to CIBP (no 

treatment) animals.  

Conclusions: This study reveals acute duloxetine treatment to be highly efficacious 

in attenuating both sensory and movement-evoked components of CIBP. 
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