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Non-Standard Abbreviations
Standard abbreviations and symbols recommended by the IUPAC-IUB Commission on

Biochemical Nomenclature have been used. Standard abbreviations for nucleotides and

three-letter abbreviations for amino acids have been used throughout the text. Non¬
standard abbreviations used are described in full in brackets after their first use in the

text.

AAC abdominal aortic constriction

AC aortic constriction

ACE angiotensin converting enzyme

AHC aryl hydrocarbon
AHR aryl hydrocarbon receptor

AKAP A-kinase anchoring protein

Ang I angiotensin I

Ang 11 angiotensin II

ANOVA analysis of variance
ANP atrial natriuretic peptide
AR adrenoreceptor
Arnt aryl hydrocarbon nuclear translocator
ATP adenosine-5 '-triphospohate
ATPase adenosine triphosphatase

ATla angiotensin receptor type 1 a

at2 angiotensin receptor type 2
A-V arterio-venous

BLAST basic local alignment search tool
BM1 body mass index
BNP B-type natriuretic peptide
BP blood pressure

BSA bovine serum albumin
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2+
Ca~ -ATPase adenosine triphosphate-dependent calcium pump

Cain calcineurin inhibitory protein
CAL coronary artery ligation
cDNA complemenatry DNA
CHP calcineurin B homolgous protein
CnA calcineurin A subunit

CsA cyclosporin A

CSQ calsequestrin

C, threshold cycle
CT cardiotrophin

CYP cytochrome P450
DBP diastolic blood pressure

dNTP deoxynucleotide triphosphate (dATP, dCTP, dGTP, dTTP).
ddH20 double distilled water

DMSO dimethylsulfoxide
DNA 2-deoxyribonucleic acid
dn dominant negative
dNTP deoxyribonucleotide-5 'triphosphate

N=A:adenine

N=C:cytosine

N=G:guanine

N=T:thymine
DR Dahl salt-resistant rat

DS Dahl salt-sensitive rat

dsDNA double stranded DNA

dt deceleration time

DTT 1,4-dithiothreitol

E/A E wave to A wave ratio (early and active phases of ventricular

fdling)
ECE endothelin converting enzyme
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ECG electrocardiogram
ECL enhanced chemiluminesence

ECM extracellular matrix

EDTA ethylenediaminetetraacetic acid
eFS endocardial fractional shortening

EGF epidermal growth factor
ERK extracellular signal related kinase
EST expressed sequence tag

ET endothelin

ETa/b Type A or B endothelin receptor

F344 Fischer rat strain 344

FAC focal adhesion complex
FAK focal adhesion kinase

FCS foetal calf serum

FGF fibroblast growth factor
FK506 tacrolimus

FKBP FK506 binding protein
FRNK FAK C-terminal domain

GH growth hormone

GSK-3P glycogen synthase kinase 3 (3
GST glutathione S-transferase
GYT glycerol yeast tryptone medium
h hour(s)

HA haemagglutinin
HEPES N-2 hydroxyehylpiperazine-N'-2-ethanesulfonic acid
HMG CoA hydroxymethylglutaryl Coenzyme A
HOCM hypertrophic obstructive cardiomyopathy
HOPE Heart Outcome Protection Evaluation study

hrp horseradish peroxidase

HTS high titre stock
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I3C

IE

IGF

IL

IMAC

Ito

IVC

IVRT

IVS

JNK

JVS

kDa

kb

LB

LIF

lox

LV

LVDd

LVDs

LVH

LVMI

LVOT

M

M6PR

MAPK

MCIP

MEF

MEKK1

mFS

MHC

indole-3 carbinol

immediate early (gene)
insulin like growth factor
interleukin

immobilised metal affinity chromatography
transient outward current

independently ventilated cage

isovolumic relaxation time

interventricular septum

c-jun-N-terminal kinase

juvenile visceral steatosis
kilodalton

kilobase pairs
Luria-Bertani

leukaemia inhibitory factor
locus of recombination

left ventricle

left ventricular diameter in diastole

left ventricular diameter in systole
left ventricular hypertrophy
left ventricular mass index

left ventricular outflow tract

molar (moles/litre)

mannose-6-phosphate receptor

mitogen activated protein kinase

myocyte enriched calcineurin interacting protein

myocyte enhancer factor
MEK Kinase 1

midwall fractional shortening

myosin heavy chain
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min minute(s)
MKK MAPK Kinase

MLC myosin light chain
MLP muscle-specific LIM protein
MMP matrix metalloproteinase
MOI mulitplicity of infection
MRI magnetic resonance imaging
mRNA messenger RNA
NADPH reduced nicotinamide adenine dinucleotide phosphate
NFAT nuclear factor of activated T cells

NFkB nuclear factor kappa B
NHE sodium hydrogen exchanger
NO nitirc oxide

NPRC natriuretic peptide receptor type C

OD60o optical density at 600nm
PBS phosphate buffered saline
PCR polymerase chain reaction
PE phenylephrine

pfu plaque forming unit
PI3K phosphoinositol-3 kinase
PKA protein Kinase A
PKB protein Kinase B
PKC protein kinase C
PLB phospholamban
PLC phospholipase C
PMSF phenylmethylsulfonylfluoride
PP2B protein phosphatase 2B
PR P-wave to R-wave interval

PWT posterior wall thickness

QRS Q-wave to S-wave interval

vii



QT Q-wave to T-wave interval

QTcB QT interval corrected using Bazette's formula
RAS renin-angiotensin system

Ren2 Ren2d mouse renin

RNA ribonucleic acid

RNase ribonuclease

ROS reactive oxygen species

rpm revolutions per minute
RR R wave to R wave interval

RTPCR reverse transcriptase polymerase chain reaction
RWT relative wall thickness

RYR ryanodine receptor

s second(s)
SAPK stress activated protein kinase
SBP systolic blood pressure

SD Sprague Dawley
SDS sodium dodecyl sulphate
SDS sequence detection system

SERCA sarco(endoplasmic ATPase
Sf9 Spodopterafrugiperda cell line
SHR spontaneously hypertensive rat

SR sarcoplasmic reticulum
SSC sodium chloride, sodium citrate solution

STAT signal transducers and activators of transcription
SW stroke work

TAC thoracic aortic constriction

TAE Tris EDTA acetic acid

TBS Tris buffered saline

TE Tris EDTA

TEMED N,N,N'N'-tetramethylethylenediamine
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TGF transforming growth factor
TGR transgenic rat
TIMP tissue inhibitor ofmatrix metalloproteinase
T1 m melting temperature

TNF tumour necrosis factor

TNM-FH Trichoplusia niMedium - Hink Formulation
Tris Tris (hydroxymethyl) aminomethane
UV ultraviolet

VTI velocity time integral
v/vol volume

w weight

Xg times gravitational force

X-gal 5-bromo-4-chloro-3-indolyl-(3-D-galactopyranoside

Standard prefixes were used
k kilo (103)
m milli (10-3)

micro (10 6)
n nano (10~9)
P pico (10~12)
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Abstract
Left ventricular hypertrophy (LVH) complicates conditions in which there is an increase
in cardiac workload, such as hypertension, valvular and ischaemic heart disease.
Although haemodynamic load is a potent stimulus for LVH, humoral factors also
contribute, and there is increasing evidence that selective inhibition of humoral
signalling pathways can prevent hypertrophy despite persisting haemodynamic stress.
Furthermore, inhibition of LVH without altering haemodynamic conditions appears to
prevent the development of cardiac failure, a common complication of LVH. This
situation is counterintuitive since in the absence of LVH cardiac wall stress is increased,
which would be expected to lead to heart failure. Calcineurin, a calcium calmodulin-
dependent phosphatase has been shown to be a key regulator of LVH, and inhibition of
calcineurin-dependent signalling is associated with a favourable outcome in animal
models of LVH. We hypothesised that increased wall stress may be tolerated if an
increase in myocardial contractility occurs.

To investigate this further we studied cardiac function in a novel conditional transgenic
rat model of hypertension, TGRcyplalren2, during the development of LVH. In this
model the transgene comprises mouse ren2d cDNA under the transcriptional control of
the cytochrome p450 promoter cyplal, rendering it inducible by dietary
arylhydrocarbons such as indole-3 carbinol (I3C). Initial studies demonstrated that
0.15% I3C (w/w) induced a chronic hypertensive phenotype with concentric LVH. No
change in LV function was detected by echocardiography or LV catheterisation.
Telemetric ECG data demonstrated significant electrical remodelling, but only a minor
increase in arrhythmias.

We next investigated the effect of FK506, a calcineurin inhibitor, on the cardiac
hypertrophic response during short-term studies using 0.3% I3C (w/w). Contrary to all
previous reports concerning the use of this drug in models of hypertension we found that
FK506 treatment abolished hypertension, as well as inihibiting vascular injury and end
organ damage. At present we are unable to explain the precise mechanism by which this
occurs.

In separate studies we sought to investigate the mechanism by which prorenin
contributes to cardiac hypertrophy in transgenic rats. Current evidence indicates that
glycosylated prorenin can be imported and activated by cardiomyocytes, via the
mannose-6 phosphate receptor. However this mechanism does not account for the
observation that non-glycosylated mouse prorenin-2 is also taken up by cardiomyocytes
in vitro and in rats transgenic for ren2d. We hypothesised that separate pathways
probably exist for glycosylated and non-glycosylated prorenins. To investigate this
further we produced enzymatically active recombinant mouse ren2d prorenin in a
baculovirus expression system. Unfortunately further studies of prorenin/cardiomyocyte
physiology were prevented by problems with recombinant protein yield and purity.
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Chapter 1

Introduction

1.1 Defining Cardiac Hypertrophy
Cardiac hypertrophy is defined as an increase in cardiomyocyte volume without an

increase in cell number.' In addition, hypertrophy may be accompanied by increases in

non-myocyte numbers and extracellular matrix. At the level of the whole organ this is
manifest as an increase in cardiac mass.

To all intents and purposes the adult cardiomyocyte is terminally differentiated, and

hypertrophy is the only response to stress. Whilst some reports have documented
evidence of mitotic activity in terminally differentiated cardiomyocytes, as well as

derivation of cardiomyocytes from multipotent stem cells, the incidence of this is

probably very small, and hypertrophy is the only adaptive response available to the

majority of terminally differentiated cardiomyocytes.3

Although hypertrophy is generally considered pathological it is physiological during

post-natal development4"8 and in response to sustained exercise training.4 It is a

recognised complication of many cardiovascular diseases, such as hypertension,

myocardial infarction and valvular heart disease. Hypertrophy is therefore widely
believed to represent a compensatory response that allows the heart to maintain output in
the face of an increased workload. Influential observations published by Grossman et al.

(1975)10 and Sasayama et al. (1976)" popularised the concept that hypertrophy acts to

normalise systolic wall stress.

Different patterns of hypertrophy have been recognised based on the gross remodelling
of the heart and the relative change in myocyte dimensions.12 Concentric hypertrophy

2



describes an increase in cardiac mass with an increase in relative wall thickness

(ventricular wall thickness/internal ventricular dimension) due to an increase in myocyte

width. Pressure overload is a common cause of this pattern. Eccentric hypertrophy
describes an increase in cardiac mass with normal relative wall thickness due to myocyte

elongation. This pattern is typically associated with volume overload. In both cases,

ventricular mass is increased, which distinguishes a third category of concentric

remodelling, in which left ventricular (LV) mass is normal with increased relative wall

thickening.12

Hypertrophy can be measured by several criteria, the simplest being whole heart or LV
mass. Usually this is expressed relative to body weight (Heart weight: body weight
ratio, Left Ventricular Mass Index, LVMI) or another anthropomorphic measurement

such as height. Alternatively, myocyte dimensions can be determined microscopically,
either in fixed tissues or after dissociation from the heart by enzymatic digestion.13'14
Isolated myocyte dimensions can also be assessed by Coulter counter methods that
measure electrical resistance.15 The gold standard is demonstration of increased
electrical capacitance,16 which, needless to say is rarely used. In vivo cardiac mass can

be estimated by measuring ventricular dimensions, either by echocardiography, or

magnetic resonance imaging (MRI).17

1.2 Epidemiology, Aetiology and Sequelae of Cardiac

Hypertrophy
1.2.1 Population Studies
Left ventricular mass is a normally distributed variable in the human population, and

18
definitions of abnormality are therefore statistical. Epidemiological studies of the

general population have estimated the prevalence of left ventricular hypertrophy (LVH)

using echocardiographic criteria to be 8% in men under the age of 30 years, and 33% in
-7A 19

men over 70.
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Population studies have been useful in establishing both the causes of left ventricular

hypertrophy, and the determinants of variation within the normal population. Cardiac
mass is influenced independently by lean body mass,20 obesity,21'22 age,2j sex,20'24""6 and

27 29
ambulatory systolic blood pressure. " Unknown genetic factors also appear to have an

influence.30"34 States that impose a workload burden on the heart such as hypertension,
valvular heart disease and myocardial infarction are commonly associated with LVH.

The importance of blood pressure in hypertensive populations in determining cardiac
mass would appear to be self-evident. However, the relationship is not particularly

strong, and patients with similar degrees of hypertension vary widely in their cardiac
23 35-38

masses. ' It is now apparent that blood pressure in isolation is a poor estimate of

haemodynamic load and that other parameters such as stroke volume,29'39 stroke

work,20'40 cardiac contractility39'40 and cardiac geometry40 are much stronger predictors
of cardiac mass. Furthermore, increased cardiac contractility can theoretically

compensate for increased workload without the need for an increase in LV mass.40
Whilst blood pressure per se may be relatively unimportant, non-haemodynamic factors
related to hypertension (e.g. neuroendocrine mediators, genetic influences) may be more

significant.

De Simone and colleagues have proposed a concept of inappropriate left ventricular

hypertrophy, based on the assumption that LVH can be predicted by knowledge of
2 7

cardiac loading (Systolic blood pressure and stroke volume), body size (height ) and

gender.41 Subjects with LVMI exceeding their predicted value can be classified as

having inappropriate LVH, and presumably have additional factors contributing to

excessive LVH. Analysis of plasma insulin and insulin-like growth factor-1 in

hypertensive cohorts with and without LVH has demonstrated that these hormones are
28 42

elevated in subjects with inappropriate LVH. ' In addition, such patients have

impaired cardiac function and a worse cardiovascular prognosis compared to patients
with appropriate LVH.41'43
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1.2.2 Sequelae of Cardiac Hypertrophy
A longstanding tenet of cardiology has been that LVH represents an adaptive response to

increased cardiac workload, and that increased muscle mass is required to maintain
cardiac performance in the face of increased demand. However, many large-scale studies
have established that LVH is associated with a significant increase in cardiovascular and
all-cause mortality, independent of hypertension (reviewed Vakili et al., 200144).
Therefore LVH may be considered to be a maladaptive response. Human population
studies estimate the relative risk of cardiovascular death to be 1.5 to 3.5 fold greater in
those with LVH ,45"48 in proportion with the degree of hypertrophy,48 and highest for
those with concentric hypertrophy.47"51 Regression of LVH appears to be associated with

52
a reduction in relative risk, though few studies have rigorously tested this. The
increased risk of death is presumably explained by a greater incidence of angina,46
myocardial infarction,46 heart failure,46 arrhythmias,53'54 stroke55 and sudden death46'56
compared to patients without LVH who otherwise have comparable risk factors.

1.3 The Hypertrophic Phenotype
1.3.1 Hypertrophic Gene Expression Patterns
A characteristic pattern of changes in gene expression has been defined in studies of

cardiomyocyte hypertrophy in vitro and in vivo.57"59 The earliest changes, identifiable
within minutes of a hypertrophic stimulus involve transient expression of immediate

early genes (IE) such as c-jun,58 c-fos,58 jun-B,60 c-myc,61 egr-1 59 GATA-4,62 nkx2.5.63
These transcription factors orchestrate induction of specific hypertrophy associated

genes that are normally restricted to embryonic development, including atrial natriuretic

peptide (ANP),61 B-type natriuretic peptide (BNP),64 a-skeletal actin,61 smooth muscle
actin65 and beta-myosin heavy chain ((3-MHC).66'67 Induction of the "foetal gene

programme" is used as a hallmark of pathological hypertrophy. It is likely that increased

expression of natriuretic peptides is a protective mechanism that lowers blood pressure

and exerts antihypertrophic/antifibrotic effects on cardiomyocytes and non-

cardiomyocytes. Similarly, myosin heavy chain isoform switching may adapt the heart
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to increased workload.68 Other changes that have been documented include induction of

angiotensin-converting enzyme (ACE),69 transforming growth factor p (TGFp),70
collagen,71'72 fibronectin, frizzled,73 Nix 74 and downregulation of sarcoplasmic
endoreticular calcium ATPase (SERCA), alpha-myosin heavy chain (aMHC) and
natriuretic peptide receptor type C (NPRC).64

Since multiple hypertrophic stimuli appear to induce very similar changes in gene

expression in many different models, it has been widely assumed that the hypertrophic

phenotype stems from the induction of a co-ordinated genetic programme. Gene

expression profiling using microarrays,75'76 expressed sequence tag (EST) analysis77 and
78

subtractive hybridisation techniques has identified a modest number of genes that are

differentially regulated during the induction and regression of LVH in various animal
models. These studies have found patterns of gene expression relating to

transcription/translation/protein synthesis, structural/sarcomeric proteins, signalling,
metabolism, apoptosis and stress responses. Many of the sequences identified so far are
novel EST's, indicating that our current knowledge of LVH is rather limited. Whilst
most studies have confirmed up regulation of archetypal hypertrophy markers such as

ANP, there is relatively limited overlap between studies, suggesting that a highly
conserved LVH pattern does not exist. Aronow et al, (2000)76 compared four transgenic
mouse models of pressure-independent LVH using commercial microarrays. They
demonstrated that ANP was the only gene out of approximately 8,800 analysed that was

upregulated in all four models. Further analysis revealed patterns of expression that
were characteristic of individual models, suggesting that specific stimuli evoke

particular molecular changes.79 Similar findings have also been reported in comparisons
of cardiac gene expression between NOSl " and NOS3" " mice.80 Whilst it could be

argued that none of the models studied were physiologically relevant, this study

highlights the disparity between different models, and the need to reassess our

assumptions about LVH. Another criticism is that single time points were compared in
models with different natural histories. There is little doubt that expression patterns in
LVH probably change both quantitatively and qualitatively with time. Despite this it is
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pertinent to note that comparison between hypertrophied and foetal hearts using
78

subtractive hybridisation has demonstrated similarity in expression profiles.

Recent data suggests that myocyte hypertrophy and foetal gene expression can be
dissociated suggesting that the foetal gene expression patterns may be surrogate markers
of hypertrophy without an integral role in the hypertrophic process itself. Therefore it is

possible to demonstrate pathological LVH in PTEN" mice without upregulation of
81 • 82 86

ANP/BNP, and similar results have been demonstrated in other models. " In

contrast, foetal markers are greatly upregulated in GSK-3(3 transgenic mice subjected to

aortic constriction compared to wild type mice, despite complete absence of LVH by
87 .....

several other criteria. Therefore, the notion that foetal gene reexpression is intrinsic to

LVH is probably wrong. It is intriguing that haemodynamic unloading of the rat heart
also induces foetal gene expression patterns very similar to those caused by aortic

88
banding, which implies that the foetal gene pattern may simply represent a response to

haemodynamic change, in either direction.

Most attention has focussed on gene expression patterns, but it is well recognised that

many critical events in LVH are regulated at a post-translational level. Most of the
89

known signalling pathways mediating LVH comprise kinases and phosphatases.

Furthermore, many proteins involved in excitation-contraction coupling are regulated by

phosphorylation, and may be altered in LVH.90'91 So far proteomic analysis of LVH has
not been reported.

1.3.2 Cardiac Function in Hypertrophy
1.3.2.1 Measurement ofCardiac Function

It is important to appreciate that assessment of cardiac function is not straight forward,
92

particularly when using in vivo measurements in small rodents. Cardiac function, or
cardiac output is an integration of many factors both intrinsic to the myocardium and

imposed on it by the loading conditions. Contractility is the ability of the heart to

generate force and is influenced by inotropic agents. The function of the heart is not
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fixed, but finely tuned to the prevailing haemodynamic conditions of preload and
93

afterload, as described by Frank and Starling. Therefore, comparisons should either be
made under identical loading conditions, or using a functional parameter that is

independent of loading. The majority of in vivo parameters measured using popular
methods such as echocardiography and left ventricular catheterisation are heavily
influenced by haemodynamic conditions,94 and few studies take this in to account. This
is not to say that their conclusions are not valid within the context of the study itself, but

comparisons cannot be easily made between studies. One way to avoid such problems
has been to measure cardiac function ex vivo using Langendorff and working heart

preparations, or papillary muscle set ups, where conditions can be strictly controlled.

Some in vivo functional parameters are considered to be relatively independent of

loading conditions, particularly derivation of end systolic/diastolic pressure-volume
relations and end systolic stiffness from pressure-volume loops.94 However, significant
difficulties can be encountered even with these methods since anaesthesia is usually

required.95'96 Therefore, analysis of cardiac function is currently fraught with difficulty
and no single test can be considered definitive.

1.3.2.2 Function of the Hypertrophied Ventricle
TT . , • , i •.i , 11,97,98 , , 99,100 , 101,102Hypertrophy is associated with normal, subnormal, or supranormal

cardiac function depending on the species, model, timepoint and method of study.

Although the diversity of findings suggests confusion, certain conclusions can be drawn.

LVH is probably an evolving phenotype, rather than a static one, and alterations in gene

expression and cardiac function are constantly changing.11'103'104 For reasons that are not

fully understood, cardiac function inevitably declines and decompensation in to heart
failure occurs.105-107 This is characterised by impaired systolic and diastolic function,108
ventricular dilatation and increased wall stress.10'109 It is not clear whether

decompensation is due to specific events that occur late in the natural history of LVH, or
if it is a consequence of very early adaptations during compensated hypertrophy. It is
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likely that decompensation results from multiple causes with a minor impact on their
own, but a profound effect in combination.

Although it is possible that decompensation is intrinsic to the hypertrophied myocyte,

some decompensatory mechanisms are triggered by extracellular signals. Prime
candidates appear to be upregulation of cardiac endothelin system activity110"113 and
cardiac RAS.111,113-115 In some animal models endothelin antagonists and subpressor
ACE or AT]a blockers prevent functional decline and mortality, without affecting LVH

per se 110'114'116'117 Cardiomyocytes isolated from failing human hearts have a reduced
118

ability to synthesise ET-1 and IGF-1 in response to Ang II. Alterations in growth
factors such as cardiotrophin and neuregulin, and their receptors gpl30 and Erbb2/4
have been described in animal models and failing human hearts."9"'"1

1.3.3 Mechanisms of Myocardial Dysfunction in Cardiac Hypertrophy
Four main causes ofmyocardial dysfunction during cardiac hypertrophy probably exist:
intrinsic myocyte dysfunction, myocyte loss, altered extracellular matrix, and altered

bioenergetics.

1.3.3.1 Intrinsic Myocyte Dysfunction

Myocyte dysfunction appears to develop as a consequence of abnormal calcium
122

homeostasis and altered sarcomeric properties. Seminal work by Sordahl et al. (1976)
demonstrated impaired sarcoplasmic reticular calcium uptake in failing rabbit

123
myocardium. Gwathmey et al. (1985) showed that this resulted in calcium transients
of reduced amplitude and prolonged duration, caused by reduced SERCA

expression/activity.124"126 Such changes reduce the force of contraction, impair relaxation
127 128and limit contractile reserve. '

SERCA down-regulation is a marker of decompensation in rats with aortic
constriction.129'130 Mice heterozygous for functional SERCA2 develop accelerated heart

131failure in response to aortic constriction. Furthermore, overexpression of SERCA
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isoforms in myocytes via adenoviral transfer methods, or transgenic techniques leads to

improved contractility132"136 and resistance to the development of heart failure following
137 138

aortic constriction. ' However, in vitro studies suggest that an optimum level of
SERCA replacement exists, with high levels being detrimental.139

SERCA activity is inhibited by phospholamban (PLB), an interaction that is regulated by
PKA-mediated phosphorylation.140 No consistent changes in phospholamban expression
or phosphorylation have been found in studies of heart failure/LVH decompensation.141
Even where PLB expression is altered, the stoichiometry of expression relative to

SERCA is usually maintained, so that the effect may be negated. Mice deficient in

phospholamban (PLB"") demonstrate enhanced contractility142 and when crossed to

genetic models of heart failure (muscle-specific LIM protein, MLP"" and calsequestrin

overexpressing mice, CSQ0e) maintain normal cardiac function.143'144 Conversely,

overexpression of a superinhibitory phospholamban in mice causes cardiac hypertrophy,
heart failure and death by 6 months.145,146 However, PLB"" mice do not differ from wild

type mice in their response to aortic constriction, and appear to have an earlier decline in
LV function.147 Therefore LV decompensation is probably more complex than reduced
SERCA activity alone. Indeed, cardiomyocytes from transgenic mice overexpressing
activated calcineurin have enhanced calcium handling properties due to changes in
levels of SERCA/PLB, and enhanced contractility in vitro, yet they develop profound

148
cardiac failure.

Changes in expression of other proteins important for calcium homeostasis such as

ryanodine receptor, calsequestrin and calreticulin are inconsistent between reports.141
However, hyperphosphorylation of ryanodine receptors, and abnormal function has been
described.149 Transgenic overexpression of calsequestrin leads to LVH and heart

failure,*3'150 confirming the role of calcium as a mechanism contributing to heart failure.
In addition, downregulation or abnormal function of the Na+-Ca2 exchanger appears to

contribute to diastolic dysfunction in heart failure.151"1 3
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Contraction of cardiomyocytes is a consequence of cross-bridge cycling between actin
and myosin filaments in the sarcomere. Altered sarcomeric function will obviously have
a direct impact on contractility, but this area has received relatively little attention.

Depressed myofibrillar ATPase activity has been described in hypertrophy,154 which
may be explained at least in part by reciprocal regulation of a and |3-MHC
isoforms.155'156 Similar findings have been described in rodents.68,157'158 The recent

finding that gelsolin, a regulator of thin filament turnover, is upregulated in heart failure
adds weight to the importance of altered sarcomeric function.159

1.3.3.2 Myocyte Loss
Loss of cardiomyocytes by necrosis or apoptosis reduces the availability of contractile
units, and thereby decreases contractility. In situations such as myocardial infarction,
cell death is very obvious, but the issue as to whether or not cellular loss contributes to

the progression of LVH to heart failure is contentious, largely due to methodological

problems.160"163 However, there is no doubt that induction of apoptosis in

cardiomyocytes by controlled overexpression of toxins/apoptotic mediators leads to

ventricular remodelling and heart failure.74,164,165

Several investigators have examined the role of apoptosis in cardiac remodelling. There

appears to be undetectable to very low levels of apoptosis in normal rat hearts,166 which
increases with age.167,168 Cardiac hypertrophy in response to aortic constriction is

accompanied by a discrete wave of apoptosis during the first 4 days.166 As LVH

decompensates later on, apoptotic rates increase, particularly in the LV free wall in the

endo/mid-myocardium and areas of fibrosis,169"171 which can be abrogated by
172

captopril.
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Table 1.1 Cardiomyocyte Survival Pathways

Reference Model Pathway targeted Stimulus Response

Hirota et al.,
1999173

gpl30"'" CT-l/LIF/IL-6 signalling AC Dilated cardiomyopathy,
apoptosis and death

Rogers et al.,
1999174

RGS4 G-protein signalling AC Rapid decompensation
and death

Brancaccio et al.,
2003175

melusin"" Pl-integrin signalling AC Dilated cardiomyopathy
Normal LVH with

subpressor Angll/PE

Shai et al.,
2002176

pl-integrin'" pl-integrin signalling AC Dilated cardiomyopathy
and death. Depressed
baseline cardiac function

Crone et al.,
2002177

Erbb2"/_ neuregulin signalling AC Dilated cardiomyopathy,
apoptosis and death
Increased anthracycline
sensitivity

Badorff et al.,
2002178

lpr mutant Fas (apoptosis signalling) AC Dilated cardiomyopathy
and death

O'Connell et al.,
20035

a"■la/c 'lb adrenergic signalling AC Hypertrophy, heart
failure and death

(Basal heart size
diminished by 40%)

AC: aortic constriction, CT-1: cardiotrophin, LIF: leukaemia inhibitory factor, IL-6: interleukin 6, Ang II:
angiotensin II, PE: phenylephrine.

Neurohumeral factors may be responsible for the altered balance between pro- and anti-

apoptotic factors. Cardiac specific overexpression of a,-AR, TNFa, Gaq and Gsa in

transgenic mice leads to LVH and heart failure associated with cell loss and

apoptosis.105'179"18" Since these G-proteins are involved in signal transduction for

catecholamines, angiotensin II and endothelin, a role in decompensation for these factors
is also implied. Furthermore, since these agents actually cause cardiac hypertrophy, it

suggests that hypertrophic and apoptotic pathways may be activated simultaneously, and
that under certain circumstances apoptosis prevails. This concept is supported by
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evidence that specific proapoptotic genes, including Nix/Bnip3L are activated in several
animal models and human hypertensive LVH.74 Equally, Erbb2_/", Gpl30"~ and FGF-2 "
knockout mice are prone to apoptosis and dilated cardiomyopathy in response to

hypertrophic stimuli, indicating that they have an essential anti-apoptotic, or survival
173 177 183

role during cardiac hypertrophy ' ' (table 1.1). A similar case can be made for IGF-
1.184-188 In conditional Erbb2_/" mice, adenoviral overexpression of an antiapoptotic gene,

bcl-xl delays cardiac failure.177

Myocyte stretch in vitro189'190 and in vivo169 also induces apoptosis via angiotensin II-
mediated autocrine signalling.191 Reactive oxygen species (ROS) may be another trigger
for apoptosis in cardiac hypertrophy, activating redox-sensitive proteins17" and causing
structural damage.193"195

1.3.3.3 Extracellular Matrix Remodelling

Increasing evidence suggests that extracellular matrix (ECM) remodelling occurs in

pathological LVH, and it may be a critical event in the transition from compensated

hypertrophy to heart failure.107'196 During both LVH197'198 and ageing,199 ECM

components are changed in quantity and quality. An increase in fibronectin EIIIA
isoform and collagen type I has been described in SHR at the onset of

decompensation,107 a process that may be controlled by TGF|3. Whilst increased fibrosis
can account for increased myocardial stiffness,200 and in particular diastolic

201
dysfunction, the situation must be more complex, as ultimately the main problem is
one of ventricular dilatation, rather than restriction.

Several studies have documented an increase in the expression levels and activities of

matrix-metalloproteinases (MMP's) and their inhibitory counterparts, tissue-inhibitors of
matrix metalloproteinases (TIMP's) in various models of decompensation and heart

202 206
failure." " Furthermore, chronic administration of broad-spectrum MMP inhibitors to

207 208
heart-failure prone SHR, or rats with volume overload due to aorto-caval fistula,
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prevented decompensation without affecting LVH, although not all aspects of

myocardial function were rescued.

Woodiwiss et al., (2001 )209 found that collagen cross-linking was reduced in two rat

models of decompensated LVH, even though collagen content was not even increased in
one model. Taken together this suggests that decompensation is not simply due to

excessive fibrosis, but relates more to the increased turnover and reduced integrity of
ECM components. Newly synthesised collagen requires a series of postranslational
modifications, including cross-linking, that allow formation ofmature fibres. It has been

suggested that compromised ECM structure allows LV dilatation via myocyte

"slippage"."10 Regulators of MMP/TIMP balance include TGF(3 and TNFa."11 Chronic
infusion of TNFa in rats causes cardiac dilatation and reduced collagen content, with

212
reversible changes in myocardial contractility. A similar phenotype is seen following

213
transgenic overexpression of TNFa in mice." Conversely, treatment of patients and
various models of LVH/heart failure with TNFa or TGFP inhibitors prevents ECM

212 214 217
remodelling and in some cases arrests ventricular dilatation. '

1.3.3.4 Altered Bioenergetics

Myocardial force generation during systole depends on the conversion of chemical

energy in to kinetic energy by the hydrolysis of ATP by myosin ATPase, permitting

actin/myosin cross-bridge cycling and filament sliding. Therefore, anything that alters
the availability of ATP will impact on the mechanical performance of the heart. In the
heart the ATP reservoir is buffered by storing high-energy phosphates as

phosphocreatine, which is readily converted to ATP and creatine in the presence of
creatine kinase and ADP. Phosphocreatine also acts as a readily diffusible energy shuttle
from mitochondria to sites of intense ATP usage, as ATP itself is less diffusible. The

energy status of the heart can be assessed by measuring the phosphocreatine/ATP ratio
31 218

by [ P]-MR spectroscopy. The development of heart failure is frequently associated
218

with a decline in the availability of high-energy phosphates, though this is not a
219

universal finding, suggesting that impaired ATP generation may be responsible for the
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decompensation of LV function. Furthermore, similar energetic abnormalities predate
decompensation in several animal models, lending credence to this hypothesis.
However, the intracellular concentration of ATP remains above the Km for most

ATPase enzymes, suggesting that ATP supply is rarely sufficiently limited to impair
such processes. A range of evidence indicates that impaired phosphocreatine

220 221
shuttling, CK flux," and reduced free energy liberation from ATP hydrolysis occur

222
in the presence of elevated ADP levels.

In addition to these abnormalities, myocardial substrate utilisation influences myocardial

efficiency and contractility. Mice deficient in insulin-sensitive glucose transporters
219

(GLUT4) develop severe LVH and contractile dysfunction, whilst mice
223

overexpressing GLUT1 in the heart resist pressure overload induced heart failure."

Despite these changes myocardial efficiency, assessed as oxygen consumption in
relation to work output, is often normal or increased during the transition to heart
r- 224-226failure.

1.4 Mechanisms of LVH

LVH occurs in response to haemodynamic stress, vasoactive peptides, cytokines, growth
factors, reactive oxygen species, altered ECM coupling, sarcomeric defects and altered

cardiomyocyte metabolism.1 Broadly these can be considered as mechanical,
neurohumeral and intrinsic signals. Despite this diversity of stimulatory factors the
intracellular signalling pathways that are activated overlap significantly, resulting in a

common outcome, namely LVH. A contentious issues remains as to what extent LVH is
determined by mechanical load versus endocrine signals, and how these stimuli activate

hypertrophic signalling pathways.

1.4.1 Mechanical Stress

Mechanical stress (haemodynamic load) leads to cell stretching. In vitro, stretched

cardiomyocytes hypertrophy, with demonstrable increases in cell size and induction of
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227 231foetal genes such as ANP. " Therefore, mechanical stretch alone appears to be
sufficient to cause hypertrophy. Langendorff perfused hearts and working heart models
also show features of early hypertrophy in response to increased wall stress.23""234
Demonstrating a pure mechanical effect in vivo is difficult due to activation of
neurohumeral pathways in response to haemodynamic changes. For example, although
thoracic aortic constriction is classically considered to be a model of pure pressure

235
overload, it is associated with distinct patterns of cytokine activation with in the heart,

236whilst abdominal aortic constriction leads to renal ischaemia and RAS activation.

Furthermore, even in vitro experiments are complicated by the fact that stretch activates
237 241autocrine and paracrine signalling in cardiomyocytes and non-cardiomyocytes " so

that it is virtually impossible to study purely mechanical stimuli.

A mechanism must exist in myocytes that detects stretch and initiates hypertrophic

responses. Several possible mechanotransducers have been described: integrins and the

cytoskeleton, stretch-activated ion channels/membrane associated enzymes and
242

autocrine/paracrine pathways. The latter will be discussed in the section on

neurohumeral mechanisms of LVH.

1.4.1.1 Integrin Signalling in the Heart

Integrins are a family of cell surface receptors that mediate adhesion to extracellular
matrix. In effect they link the ECM to the cytoskeleton at focal adhesion sites, making
them ideally placed to act as transducers of external forces imposed on the heart.243 The

cytoplasmic domains of integrin heterodimers recruit non-receptor signalling molecules,

including focal adhesion kinase (FAK), Src, Grb2, Sos, Ras, Raf, phospholipase C

(PLC y), extracellular signal related kinases (ERK's) and stress activated protein kinases

(SAPK's) forming focal adhesion complexes (FAC's) which mediate "outside-in"

signalling in response to changes in ECM conditions and mechanical stretch (reviewed
Ruhof 2000"42). Tyrosine phosphorylation of FAK and activation of downstream

signalling complexes can be detected within minutes of pressure overload in rats

subjected to aortic constriction.244 Overexpression of P1 integrins and FAK by gene
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transfer techniques in cultured cardiomyocytes has demonstrated that these factors can

directly induce cellular hypertrophy.243'245 Disruption of cardiac (31-integrin function via

gene targeting techniques leads to cardiac hypertrophy and failure.176'"46 Signalling via
the cytoplasmic domain of (31-integrin requires interaction with a muscle-specific

protein, melusin. Conditional cardiac melusin knockouts develop heart failure in

response to aortic constriction, but hypertrophy normally in response to subpressor doses
175

of Angll, thereby confirming the role of (H-integrin signalling in stress transduction.

Disruption of FAK signalling in vitro inhibits hypertrophic responses to phenylephrine
and ET-1, suggesting that hypertrophy via humoral signalling is dependent on normal
cell-matrix interactions."47"249 FAK is inhibited by the PTEN tumour suppressor and an

endogenous C-terminal FAK fragment (FRNK).249 250 In keeping with this, cardiac
restricted deletion of PTEN in mice leads to cardiac hypertrophy in the absence of

81
hypertension. Therefore, integrins and associated downstream signalling pathways

appear to be good candidates for the cardiac mechanotransducer.

1.4.1.2 Stretch-Activated Ion Channels/Membrane Associated Enzymes

Membrane deformation by stretch has been postulated to lead to conformational changes
227

in membrane associated enzymes and ion channel complexes. Candidiates include

phospholipase C/D (PLC and PLD), protein kinase C (PKC), small and heterotrimeric
242

GTPases, sodium-hydrogen exchanger (NHE) and stretch-activated channel. For most
of these pathways there are multiple possible mechanisms for activation and evidence is

contradictory as to whether they are directly activated by stretch, or secondarily
activated by autocrine/paracrine signalling/FAC's.

NHE is a Na-H + antiporter that causes cellular alkalinisation. Increased pH in itself
251

can stimulate hypertrophy of cardiomyocytes, and NHE appears to be activated by
252 253

stretch, although this may also involve paracrine signalling." NHE is a potential

therapeutic target for inhibiting cardiac hypertrophy, post-myocardial infarction
254 258 2+

remodelling and ischaemia reperfusion injury." " Ca" influx via stretch-activated ion
channels is a poorly defined mechanotransduction mechanism. As such this may lead to
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activation of PKC and calmodulin-dependent enzymes such as cyclin-dependent kinase-
2 (CDK-2) and calcineurin, causing hypertrophy.24"

1.4.2 Neuroendocrine Signalling
Whilst there is ample evidence for load-induced cardiac hypertrophy, there is equally
substantial data supporting a necessary and sufficent role for endocrine stimuli. Quite

simply, overexpression of single endocrine components in the heart is sufficient to cause

cardiac hypertrophy without any change in the prevailing haemodynamic conditions:
such studies are summarised in table 1.2, and will be discussed in detail in the following
sections.

1.4.2.1 Renin-Angiotensin System
The renin angiotensin system (RAS) is a cascade comprising the enzymes renin and

angiotensin-converting enzyme (ACE) and the substrate angiotensinogen which is
cleaved to form angiotensin I. Angiotensin II (Ang II) is the final effector molecule.
Other angiotensin derivatives have been described, but will not be discussed here. The
RAS is fundamental to the regulation of blood pressure via its effects on vascular tone
and salt-water homeostasis. In addition it may have effects on cardiac hypertrophy,

independent of haemodynamic effects.

1.4.2.2 Renin
259 261

Renin is a substrate-specific aspartyl protease," " which cleaves angiotensinogen to

form angiotensin I. Human renin is a 43kDa polypeptide, with an active site residing in a

cleft between two symmetrical lobes.262"264 The initial mRNA translation product is pre-

prorenin (45kDa), which includes a 20 amino acid signal sequence and a 43 amino acid
265

pro-segment. Post-translational modifications include the formation of disulphide

bonds,266 site-specific hydrolysis of the peptide chain,265 and glycosylation at asparagine
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Table 1.2 Transgenic Models of Pressure Independent LVH
Reference Transgene Pathway actiavted Phenotype

Heinetal., 19972" (xMHC-AT,R AT] receptor Myocyte hyperplasia and

Paradis et al., 2000268
heart block

aMHC-AT ,R AT i receptor LVH progressing to HF
Milano et al, 1994269 aMHC-P, AR* pi adrenoreceptor LVH

Engelhardt et al., 1999105 aMHC-P,AR Pi adrenoreceptor LVH progressing to HF
Zuscik et al., 20012™ a,BAR am adrenoreceptor LVH, hypotension
Adams et al., 1998180 aMHC-Gaq Angll/ET -1 /catecholamines LVH progressing to HF due

to apoptosis
Sakata et al., 1998271 aMHC-Gaq Angll/ET-1 /catecholamines Eccentric LVH and HF in

response to TAC
Mendeetal., 1998"72 aMHC-Gaq* Angll/ET-1 /catecholamines LVH progressing to HF

Iwase et al., 1996273
(transient expression)

aMHC-Gsa P adrenoreceptors LVH progressing to HF due

Hunter et al., 1995 274
to apoptosis

MLC2v-ras* ras LVH with diastolic

Sussman et al., 2000275
dysfunction

aMHC-racl* rac-1 LVH or dilated

cardiomyopathy in different
lines

Wakasaki et al., 1997"76 PKCpII PKCP LVH with systolic

Bowman et al., 1997277
dysfunction

PKCP PKCp LVH in adult: lethal in

85
aMHC-yeRACK

neonate (inducible transgene)
Mochly-Rosen et al., 2000 PKCe Physiological LVH
Chen et al., 2001278 aMHC-\|/dRACK PKCS LVH

Takeishi et al., 20008'' PKCe PKCe LVH

Molkentin et al., 1998s2 aMHC-CnA* Calcineurin/NFAT LVH

CK-CnA* Calcineurin/NFAT LVH
aMHC-NFAT3* Calcineurin/NFAT LVH

Gruver et al., 199327' ANF-CaM Calmodulin LVH and cardiomyocyte
hyperplasia

Passier et al., 20002so aMHC-CaMKIV* MEF2 LVH progressing to HF

Hirota et al., 1995281
(synergy with NFAT)

gpl30 CT-1/LIF/IL6 LVH
Kunisada et al., 2000"8" STAT3 Jak/STAT LVH

DeLaughter et al., 1999283 1GF-1 IGF-1 LVH with progressive

Bueno et al., 2000284
dysfunction

aMHC-MEKl* ERK MAPK LVH with enhanced LV
function: resist apoptosis

Shioi et al., 20007 aMHC-p 110a* PI3-K / Akt Physiological LVH
Matsui et al., 2002285 aMHC-Akt* Akt Spectrum: dilated -

concentric LVH: resist

apoptosis
Zhang et al., 2000286 aMHC-TAKl-DN* p38 MAPK LVH rapidly progressing to

ur

Zhang et al., 2001287 aMHC-SRF Transcription factor
or

LVH and heart failure
Veniant et al., 1996288 al ATrat renin RAS LVH and vascular injury,

normotensive
Shioi et al., 20007 FAK* Integrin signalling LVH
Sato et al., 1998s3 aMHC-CSQ Calsequestrin Mild LVH, contractile

Diwan et al. 2004213
Depression

aMHC-mTNF« TNF« LVH

Depre et al., 2002289 aMHC-Hl IK HI 1 Kinase LVH

* activated mutant, WT: wild type, aMHC alpha-myosin heavy chain promoter, CK: creatinine kinase promoter, ANF: atrial
natriuretic peptide promoter, al AT: alpha-1 antitrypsin promoter. LVH: left ventricular hypertrophy, HF: heart failure.
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residues in some species.290 The cleavage of angiotensinogen is the rate-limiting step of
291the RAS. In humans the availability of active renin governs the rate of this reaction,'

292whilst in mice it is dependent on angiotensinogen concentration. The optimal in vitro
293

pH is 6.0 for human renin, though this varies with species. Species specificity is also
exhibited with regard to angiotensinogen cleavage, particularly amongst murine
renins.*94'"7" Renin is a zymogen:"96'"97 electrostatic and hydrophobic interactions
between specific amino acids in the PI0-20 region of the prosegment appear to be

important for both enzyme inhibition and prorenin expression.298""100 It is thought that the
prosegment sterically hinders the active site, and under normal conditions has to be

proteolytically removed to allow enzymatic activity. Proteolysis occurs at a conserved

site, Arg-43P Leu-1, but the identity of the enzyme responsible is not known.101
302

Candidates based on appropriate in vitro cleavage include kallikrein, cathepsin

B,303'304 proconvertases305"307 and epidermal growth factor (EGF)-binding protein type-

B.308 However, studies of prorenin activation kinetics,309 prosegment binding310 and
active site trapping"99 experiments suggest that proteolytic removal of the prosegment is
not mandatory for enzymatic activity. Conformational changes induced by changes in

temperature, pH, specific antibodies or mutation are sufficient to allow enzymatic
998 311 312 ^19 114 ^ 1 S 17

activity." ' ' Although short term infusion studies in rats ' and monkeys " do
not support a physiological role for prorenin, transgenic mice expressing prorenin with

318 319
non-cleavable prosegments demonstrate evidence of enzymatic activity in vivo. '

Furthermore, elevated prorenin levels in diabetics are predictive of microvascular

complications, adding further weight to this argument.320"322

The juxtaglomerular apparatus is the major site of renin expression,323'324 but other sites
are important, including submaxillary gland in mice, placenta, heart, aorta, brain,

adrenal, testis, adipose and eye in many species.324"337 In juxtaglomerular cells prorenin
secretion is constitutive whilst active renin secretion is regulated."138""140 Plasma levels of

prorenin usually exceed those of renin,341 with a significant contribution from extrarenal
.. 342,343
sites.
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1.4.2.3 Renin-Angiotensin Aldosterone System and Cardiac Hypertrophy
At the most simple level, Angll can stimulate hypertrophy of purified cardiomyocytes
isolated from chicks, and neonatal rats.344"346 However, this effect is weak compared to

other hypertrophic stimuli, possibly owing to the low density of AT] receptors on

cardiomyocytes and the putative antihypertrophic effect mediated by AT2

receptors.347'348 In addition it should be noted that some of the effects of Angll are

mediated in part by paracrine secretion of endothelin, TGF(3-1 and interleukin-6 family

cytokines from non-myocytes,70'239'240'349 and that stretch of isolated cardiomyocytes
237

induces autocrine Angll secretion. However the conclusions of such studies may not

be completely robust since most have used neonatal rat cardiomyocyte preparations,
which may not be directly comparable to the adult situation. In particular, such cells

undergo physiological hypertrophy in vivo in the neonatal period4 and may therefore be

predisposed to hypertrophy. In addition, contamination by cardiac fibroblasts and other
cell types cannot be completely avoided with this approach, thereby complicating

interpretation.

Infusion of angiotensin II in rats and mice causes cardiac hypertrophy via AT, mediated
350

pathways. Subpressor doses of Angll, which are insufficient to raise blood pressure
351

suggest that Angll has a direct effect on cardiomyocytes. However, relatively minor

degrees of hypertension can cause LVH in mice, and no studies have actually
demonstrated continuous normotension via radiotelemetry, thereby leaving open the

question as to whether the effect is truly blood pressure-independent.

Support for a load-independent hypertrophic role for Angll is provided by several
transgenic studies. Overexpression of the AT ] receptor in mice in a cardiomyocyte
restricted distribution leads to hypertrophy and heart failure without any change in blood

267 268
pressure. ' This suggests that Angll can directly induce cardiomyocyte hypertrophy
if sufficient AT] receptors are present. However, it does not necessarily indicate that
this occurs in normal mice. Similarly, mice with cardiac overexpression of

angiotensinogen, or doubly transgenic for human renin and cardiac-restricted human
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angiotensinogen, develop hypertrophy in the absence of hypertension.352,353 Cardiac

overexpression of AT j receptor in transgenic rats leads to exaggerated cardiac

hypertrophy in response to volume and pressure stimuli, but not in the basal state."4
Rats overexpressing rat prorenin also develop cardiac hypertrophy despite normal blood

288
pressure." These studies provide more conclusive evidence that local Angll is

hypertrophic, but they do not distinguish between a direct or paracrine effect.

Contradictory evidence regarding the importance of Angll in LVH comes from other
studies. Van Kats et al. (2001 )35r> recently demonstrated that cardiomyocyte specific

overexpression ofAngll in transgenic mice (via a ubiquitously cleaved fusion protein) is
not sufficient to cause myocyte hypertrophy, but only mild interstitial fibrosis.
Furthermore, in some studies, AT] receptor blockade/deficiency has failed to prevent

hypertrophy after aortic/pulmonary constriction.356"358 In addition, the homeostatic
activation of the RAS in response to dietary manipulation does not cause cardiac

359
pathology in rats. These studies therefore suggest that the hypertrophic effect ofAngll
is load-dependent, and that Angll is not an obligatory pathway in load-induced

hypertrophy.

Which angiotensin receptor mediates LVH has become a contentious issue in the light of
recent reports. Most pharmacological studies have suggested a dominant role of the AT i

receptor in LVH development, whilst AT2 signalling has antihypertrophic effects.360,361
Indeed, AT] antisense delivered to the heart by a retroviral vector protects TGRmren2-

362
27 from cardiac hypertrophy in a blood pressure independent manner. Similarly, mice
deficient for p91phox (a component of NADPH oxidase), are protected from the

351
hypertrophic effects of subpressor doses of Angll, implicating a role for AT]

signalling. However, recent studies have indicated that Angll mediated hypertrophy

may be AT2 receptor dependent. AT2"/y receptor mice resist the development of LVH
and fibrosis in response to aortic banding and pressor doses of Angll363,364 whilst ATla" "

356 358 • -/-
are susceptible. " Equally, neonatal cardiomyocytes from AT]a"" mice hypertrophy in

response to stretch via activation of tyrosine kinase pathways,365 despite the previously
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reported AT] dependence of this process.366 This data suggests that AT[ signalling is
dispensable in several models of LVH, and that AT2 signalling may be essential. A

major caveat is that another AT2~~ model was not protected from LVH, suggesting that

strain-dependent or vector-dependent effects may be important.367'368 Furthermore,
cardiac overexpression of AT2 in mice attenuates the development of perivascular
fibrosis in response to Angll via kinin/NO-dependent mechanisms, without an increase
in LVH.369 Therefore, the exact roles of AT\l AT2 in LVH are complex and await
clarification.

Overall a reasonable interpretation of these conflicting studies is that Angll has weak
direct effects on cardiomyocytes, mainly due to low levels of AT) receptors. Indirect
effects ofAngll, either by activation of paracrine pathways, or load-induced stretch may

be more potent stimuli. Signalling via AT2 receptor appears as important, if not more

important than the AT,a receptor. Although activation of the RAS stimulates cardiac

hypertrophy, it is not absolutely pivotal.

The role of aldosterone in cardiac hypertrophy has been less intensively studied. In
370

vitro, aldosterone has hypertrophic effects on neonatal rat cardiomyocytes, whilst
371

antagonism of the mineralocorticoid receptor prevents LVH in young SHR, and
372

reduces LVH in humans. Whether aldosterone is synthesised de novo within the heart
is a matter of controversy. The essential enzymes for aldosterone synthesis cypl lbl and

373
cypllb2 are detectable in rat myocardium, and appear to be upregulated post-

myocardial infarction,374 but overall, the contribution of myocardial aldosterone
375

synthesis appears to be small. Furthermore, the accepted paradigm that aldosterone
stimulates cardiac hypertrophy and fibrosis is called in to question by recent transgenic

experiments. Hundred-fold overexpression of aldosterone synthase within

cardiomyocytes in transgenic mice does not cause LVH or fibrosis, but induces coronary
376

endothelial dysfunction. Conversely, conditional transgenic expression of
mineralocorticoid receptor antisense RNA selectively in the heart induces reversible
cardiac fibrosis and heart failure in mice.196
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1.4.2.4 Cardiac Renin-Angiotensin System

Increasing evidence supports the concept of tissue-based RAS's in which the constituent

parts of the RAS are present, and exert a physiological effect on a particular tissue,

independently of the plasma-based RAS.335'336

The existence of a cardiac-based RAS is supported by many studies, though no single

experiment has provided indisputable proof. In the heart, expression of most of the

components of the renin-angiotensin system has been demonstrated
333 377 378

conclusively, ' ' including a truncated prorenin transcript lacking the normal signal
379 380

peptide which may be imported in to mitochondria. ' Angll accumulation can be
demonstrated in cardiomyocytes suggesting either uptake via AT receptor internalisation

381
or intracellular generation. Active generation of Angll occurs in porcine and human

382 383 384 385
hearts in vivo ' and rat hearts perfused with renin / angiotensinogen ex vivo. '

Furthermore, mechanical stress/disease appears to upregulate all the key components of
the RAS, including renin, ACE and angiotensinogen.69'115'118'241'386"390 Indeed the activity

118
of the cardiac RAS correlates directly with end systolic wall stress in humans. These
results indicate that an active local RAS exists and may be important in mediating and

. • ■ ,• . . 118,386
sustaining disease states.

In most studies cardiac renin expression is extremely low if present at all.391 Despite

this, renin activity is readily detectable in cardiac extracts, correlating with and

exceeding levels in the plasma.392'393 In addition, this activity disappears after

nephrectomy, suggesting that renal-derived renin is taken up and accumulated by the
heart.394"397 This evidence is supported by other studies which show that cultured rat

cardiomyocytes and human endothelial cells bind and take up recombinant human

(pro)renin via the cation-independent mannose-6-phosphate receptor / Insulin-like

growth factor type 2 receptor (M6PR/IGF2R).398"401 Although prorenin taken up by this
mechanism can be shown to be activated to renin, generation of AngI in the presence of

angiotensinogen could not be demonstrated.399'400 Furthermore, prorenin binding to

M6PR does not lead to any intracellular signalling events, despite the fact that it couples
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with G-proteins, nor is there any evidence that prorenin binding in the presence of
angiotensinogen leads to intracellular Angll formation.402 For these reasons it is possible
that this pathway simply mediates clearance of (pro)renin, as is suggested by studies in
which prorenin was infused into rats403 and monkeys.317'404 This would be in keeping
with the role of M6PR in the clearance and inactivation of numerous hormones (IGFII,

leukaemia inhibitory factor, proliferin, thyroglobulin) and proteolytic enzymes.405 An

exception is the uptake and activation of latent TGF[3 by M6PR106 Several studies

clearly show that exogenous renin participates in the generation of cardiac Angll,
353,382,384,385^ none have identified the mechanism of uptake. Therefore it is reasonable
to conclude that (pro)renin uptake is more than a clearance mechanism, suggesting that
another uptake mechanism may exist.

Another reason to question the role of M6PR-mediated renin uptake is that in general
this receptor recognises proteins containing M6P moieties (IGFII is an exception).
Cardiomyocyte uptake of non-glycosylated forms of renin (eg mouse ren-2) have been
demonstrated in transgenic rats and in vitro, suggesting that a glycosylation-independent

i , ■ , , 407,408mechanism may be involved.

Renin binding protein was previously identified in rats,409 but appears to function as a

carbohydrate epimerase,410 so renin binding activity is probably co-incidental. Other
tissue renin-binding sites have been described, but the molecule(s) involved have not

been identified.411

A recent development in this field is the identification of a novel renin/prorenin receptor

by expression cloning a human mesangial cell cDNA library with iodinated human
recombinant renin.412 This receptor comprises a 350 amino-acid protein with a single

predicted transmembrane domain. Expression studies have demonstrated localisation of
the putative renin receptor to mesangial cells and vascular smooth muscle cells in the
subendothelium of renal and coronary arteries. In vitro studies demonstrated that the

receptor binds (pro)renin with high affinity, and that it enhances the catalytic activity of
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both renin and prorenin leading to local generation of Angll. In addition, binding by
renin and prorenin activates ERK1/2 signalling pathways independently of Angll.

Notably, the renin receptor does not mediate (pro)renin uptake, nor does it appear to be

expressed on cardiomyocytes, so that another receptor may explain the results of Peters
et ah, (2002) 407

In summary, there is substantial evidence for tissue and cellular uptake of circulating

renin/prorenin, and activation of the local RAS. It seems likely that this may be
mediated in part by a renin receptor, whilst the M6PR may act as a clearance mechanism
for circulating renin. It is also worth noting that intracellular angiotensin II may mediate

physiological effects via intracellular AT| receptors, the so-called intracrine RAS.413
Iontophoretic experiments using physiological concentrations of angiotensin II
demonstrate roles in intercellular signalling and inward calcium ion currents.381'413

1.4.3 Other Neurohumeral Pathways in LVH
Several humeral signalling pathways have direct hypertrophic effects, which are at least
as important as those of the RAS.

1.4.3.1 Adrenergic Signalling

a-adrenergic receptor stimulation is pro-hypertrophic in neonatal cardiomyocyte

cultures, using selective agents such as phenylephrine 414 Not surprisingly, transgenic

a|B-adrenergic receptor overexpression in the murine heart leads to cardiac

hypertrophy,269'270 and cardiac failure.179

Stimulation of cardiomyocyte [^-adrenergic receptors in vitro and in vivo also leads to
62

myocyte hypertrophy, often with evidence of myocardial necrosis, " whilst transgenic
cardiac over expression of pradrenoreceptors in mice causes substantial cardiac

hypertrophy leading to heart failure.105'415 Mice lacking endogenous catecholamines due
to dopamine P-hydroxylase deficiency (Dbh~ ~) resist cardiac hypertrophy development

following transverse aortic constriction.416'417
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1.4.3.2 Endothelin

There is little doubt that endothelin is a potent stimulus for cardiac hypertrophy in
vitro.418 Direct in vivo evidence is restricted to pharmacological studies419 due to the

embryonic lethal phenotype of endothelin/endothelin receptor knockouts.420"42" However
there is substantial evidence that the downstream signalling pathways activated by

endothelin, such as G-protein signalling molecules, are required for cardiac hypertrophy.

Gaq couples to endothelin, angiotensin II and ai-adrenergic receptors: experiments in

which activated mutants of Gaq have been overexpressed in a cardiac selective manner

demonstrate a hypertrophic effect as well as activation of apoptosis, leading to heart
failure.84'180,271 Conversely, dominant-negative Gaq mutants resist TAC,423 whilst Gaq""
/Gal 1" " cardiac-specific conditional double knockouts display a similar phenotype.424

1.4.3.3 Cardiotrophin
Seminal work by Pennica et al (1995) using expression cloning with an embryonic stem

cell-based model of cardiogenesis347 identified cardiotrophin 1 (CT-1) as a hypertrophic
stimulus. This is a member of the Leukaemia Inhibitor Factor/IL-6 cytokine family,
which signal via gpl30 tyrosine kinase receptors. Whilst other members of this family
demonstrate weak hypertrophic effects, CT-1 potently induces cardiomyocyte elongation
and hypertrophy in vitro.347'425 Constitutive activation of cardiac gpl30 receptors causes

281
eccentric hypertrophy in vivo. CT-1 is crucial for normal cardiac development and

physiological hypertrophy, in that gpl30" " mice have hypoplastic ventricles.426 Cardiac
selective deletion of gpl30 in adult mice leads to dilated cardiomyopathy and heart
failure in response to pressure overload,173 whereas cardiac specific expression of a

dominant negative form of gpl30 prevents pressure-induced cardiac hypertrophy.427
Therefore the role of gpl30/CT-l in cardiac hypertrophy is complex and model-

dependent.

1.4.3.4 Insulin, Growth Hormone and IGF 1

Given the pleiotropic roles of insulin, growth hormone (GH) and IGF-1 in cell growth
and metabolism, a role in cardiac hypertrophy is likely. Cardiac selective deletion of the
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insulin receptor during postnatal development inhibits physiological cardiac

hypertrophy, with a 25% reduction in heart weight to body weight ratio.6 The

requirement for insulin signaling in pathological hypertrophy has not been tested.

428
Left ventricular hypertrophy is a recognised complication of acromegaly, indicating a

possible effect of GH/IGF-1 excess on cardiac mass. Certainly IGF-1 has direct in vitro

hypertrophic effects,4"9 and studies in rats, pigs and humans have demonstrated
increased expression of IGF-1 during the development of pressure and volume overload
cardiac hypertrophy.430 432 Treatment of rats with recombinant GH or IGF-1 leads to

eccentric LVH,43j whilst IGF-1+/" mice demonstrate impaired cardiac hypertrophy after
186

myocardial infarction. Constitutive overexpression of IGF in the heart enhances
cardiac performance.434

1.5 Signalling in Cardiac Hypertrophy
1.5.1 Intracellular Signaling Cascades and LVH
Stimulation of diverse cell surface receptors and mechanical stress can lead to LVH, via

89 242
activation of intracellular signaling cascades. ' Whilst the patterns of signaling

overlap between different stimuli, they are non the less distinctive. Using transgenic

techniques it has been possible to demonstrate that activation of a single receptor type,

or down stream signalling molecule is often sufficient to induce cardiac hypertrophy in
mice. Furthermore, knockout studies have suggested that certain molecules are

indispenible for cardiac hypertrophy to proceed at all, whilst other molecules appear to

be negative regulators of hypertrophy (table 1.3) or cardiomyocyte survival factors

(table 1.1). Amongst the most intensively studied hypertrophic regulators is calcineurin.
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Table 1.3. Antihypertrophic Pathways

Reference Knockout Pathway targeted Stimulus Response

Knowles et al., 2001435 NprL" ANP/BNP AC Exaggerated LVH and
failure

Vega et al., 2003436 MCIP1 "" Calcineurin/NFAT CnA* Exaggerated LVH and
failure

Crackower et al., 200281 PTEN"'" PTEN/PI3K LVH without foetal

gene induction.
Impaired

Asakawa et al., 2002437
systolic function

PPARy" Energy metabolism AC Exaggerated LVH
Abel et al, 1999438 G4H"'" Insulin induced - LVH with preserved

Kong et al., 2001439
glucose uptake contractility

FHL2"'" transcription Iso Exaggerated LVH
Xin et al., 2002440 FKBP12.6 "" SR Ca2~ release - LVH

Ichinose et al., 2004441 NOS3"'" NO production AC Exaggerated LVH and
failure

Npr: natriuretic peptide receptor, MCIP1: myocyte enhanced calcineurin inhibitory protein, PPAR:
peroxisome proliferative A receptor, FKBP: FK506 binding protein, ANP: atrial natriuretic peptide, BNP:
B-type natriuretic peptide, NFAT: nuclear factor of activated T cells, AC: aortic constriction, CnA*,:
activated calcineurin mutant, Iso: isoprenaline, PI3K: phosphoinositol-3 kinase SR: sarcoplasmic
reticulum.

1.5.2 Calcineurin-NFAT Signalling in Cardiac Hypertrophy
82

In a seminal paper Molkentin et al. (1998) identified a role for the calcineurin-NFAT

signalling pathway in the development of cardiac hypertrophy. Using a yeast two-hybrid

system to isolate cofactors interacting with the cardiac specific transcription factor
GATA-4, they identified NFATc4 (NFAT3) a transcription factor belonging to the
nuclear factor of activated T-cells (NFAT) family. Identification of binding sites for
NFATc4/GATA4 in the promoter of BNP suggested a direct regulatory role for this

pathway in cardiac hypertrophy. In addition, translocation of NFAT's from the

cytoplasm to the nucleus was known to require calcineurin phosphatase activity in

lymphocytes. They demonstrated that activated mutants of NFATc4 and calcineurin
caused hypertrophy of neonatal rat cardiomyocytes in vitro, and transgenic mice over

expressing similar constructs in the heart developed profound cardiac hypertrophy and
heart failure. Furthermore, pharmacological inhibition of calcineurin with ciclosporin
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(CsA) prevented the development of hypertrophy in activated calcineurin transgenic
mice, but not NFAT transgenics, giving credence to the proposed signalling pathway.

1.5.2.1 Calcineurin Biology
Calcineurin (Protein Phosphatase 2B (PP2B)) is a heterodimeric calcium-calmodulin-

dependent serine-threonine phosphatase, comprising calcineurin A (CnA) and B (CnB)
subunits.44" The 58-59kDa CnA-subunit exists in 3 isoforms (a, [3, y), for which

multiple splice variants have been described. It contains the active site, an autoinhibitory

domain, calmodulin-binding domain and a CnB binding domain. CnA isoforms share
81% sequence homology in the catalytic domain, and the CnAa and (3 genes share 99%

amino acid sequence homology between mouse and human species. Expression of
CnAa and p is almost ubiquitous, whilst that of CnAy is restricted to the testis.(reviewed
Crabtree 1999442) In the heart CnAa is probably responsible for most of the known

effects on cardiac hypertrophy 443-444 Surprisingly CnAa knockouts develop normally,

though they have subtle alterations in neuronal architecture and T-cell function.44- Both
CnAa and P-null mice demonstrate abnormalities of skeletal muscle fibre type

switching.446 CnB is a 19kDa subunit containing a calcium-binding domain. Two
isoforms have been identified (a and p).447 Calcineurin regulates the activity and cellular
localisation of several transcription factors including NFAT members,448 myocyte

enhancer factor 2 (MEF2),280 elk-1449'450 and IkB/NFkB.451 Therefore it may have

profound effects on gene expression.

Calcineurin is activated through binding calcium and calmodulin. Multiple stimuli are
known to raise calcium and calmodulin levels in cardiomyocytes, such as humoral
factors (All, ET-1, LIF, PE) and mechanical strain. It is thought that calcineurin is
sensitive to sustained alterations in the calcium concentration mediated via "capacitative
calcium entry", as opposed to the short-term changes that occur with each cardiac

cycle.46" Precisely how this is sensed is unclear, but it may depend on the

compartmentalisation of calcium within the myocyte. The distribution of calcineurin
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with in the cardiomyocyte appears to be regulated by specialised anchoring proteins.

Frey et al. (2000)453 have identified a novel family of calcineurin-interacting proteins,
"calsarcins" that tether calcineurin to a-actinin at the z-line of skeletal and cardiac

myocytes. This suggests that calcineurin is directly exposed to the fluctuating calcium
concentration of the sarcomere, rather than protected from it. In addition it also raises
the possibility that calcineurin may also have roles in the sensing / transduction of
mechanical strain and the regulation of sarcomeric contractility. Other anchoring

proteins described below appear to direct localisation to the sarcoplasmic reticulum and
the nucleus.

Calcineurin activity appears to be highly regulated. Modulatory calcineurin interacting

proteins also known as myocyte-enriched calcineurin interacting proteins (MCIP1, 2 and

3) bind and inhibit CnA in striated muscle.454 In the heart transcription of MCIP1 is

potently induced by calcineurin signalling as well as mechanical strain and LIF,455
thereby providing a negative feedback loop on this pathway. This effect has been
confirmed in MCIPF" mice crossed to MCK-CnA* transgenics, which develop

exaggerated LVH.456 However, the function of MCIP's may be more complex, and there
is experimental evidence that MCIP's may have a permissive role on CnA activity in
certain conditions, and inhibitory functions in others.456

Cain (calcineurin inhibitory protein, also known as cabin) is a 240kDa scaffolding

protein that binds multiple proteins including calcineurin.457'458 CHP (calcineurin B

homolgous protein) is homologous to CnB and competes for binding the CnA subunit.459
AKAP79 (A-kinase anchoring protein 79) is a scaffolding protein expressed in neurones

that binds protein kinases A and C in addition to inhibiting calcineurin.460 Finally,

cyclophilin and FK506 binding protein (FKBP) bind and inhibit calcineurin in the

presence of the immunosuppressants ciclosporin A and FK506 respectively.461"463
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1.5.2.2 NFAT Biology

Although several transcription factors are regulated by calcineurin the best charcterised

target is the NFAT family of transcription factors.464 There are five known members

designated NFATcl (NFATc or NFAT2), NFATc2 (NFATp or NFAT1), NFATc3

(NFAT4 of NFATx), NFATc4 (NFAT3), and NFAT5.448 NFAT5 resides exclusively in
the nucleus, whilst the others are cytoplasmic (hence NFATc designations). Calcineurin-
mediated dephosphorylation of serine residues within SP repeats exposes nuclear
localisation signals allowing translocation in to the nucleus.465 The mechanism of
nuclear export is not fully understood and probably differs for each NFATc. Kinases
such as glycogen synthase kinase-3|3,87'466 p38 MAPK,467-469 JNK,467'470 MEKK1 and

casein kinase la47i all probably rephosphorylate NFAT's leading to nuclear export.

Thus activity of NFAT's appears to be regulated mainly through spatial localisation,
with continual shuttling between cytoplasm and nucleus. They bind a consensus DNA

sequence GGAAAAT via a rel (NFkB) homology domain as monomers or dimers.448
82

Target genes containing this sequence include IL-2 in lymphocytes, BNP

adenylosuccinate synthetase472 and MCIP1 in the heart.473 All NFAT types are expressed
in human heart.474 Expression is otherwise restricted to T-cells and skeletal muscle,

except NFATc4 which is widely expressed.475 Other transcription factors cooperate with
NFATc members in DNA binding, and are collectively known as NFATn: these include

AP-1, c-MAF and GATA4, depending on the tissue.448 NFATc4 and GATA4
82

synergistically activate the BNP promoter within cultured cardiomyocytes.

NFAT's appear to be critical in cardiovascular and immune development. Homozygous
NFATcl knockout mice fail to develop cardiac semi-lunar valves and are embryonic
lethal.476'477 Knockout mice deficient in both NFATc3 and NFATc4 are defective in

angiogenesis and vascular patterning, a phenotype that can be replicated by an

inactivating mutation of the calcineurin B gene.478 NFATcl, NFATc2 and NFATc3
knockouts demonstrate immune dysfunction,479-483 whilst NFATc2 and c3 null mice also
have skeletal muscle abnormalities.484'485
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1.5.2.3 Pharmacological Inhibitors of Calcineurin
Two calcineurin inhibiting drugs, ciclosporin (CsA) and FK506 are currently available
and are used to maintain immunosuppression in patients receiving allografts. CsA is a

lipophilic 11 amino acid cyclic polypeptide derived from Tolypocladium inflatum
Gams.486 It is metabolised by hepatic cytochrome P-450IIIA enzymes to approximately
30 derivatives that are only weakly active. FK506 is a macrolide antibiotic obtained

487 • • • 488
from Streptomyces tsukubaensis. It is 100 times more potent than ciclosporin, and
it is extensively metabolised by hepatic cytochrome P-450IIIA1.489 Both agents depend
on accessory molecules for their inhibitory effect on calcineurin. Cyclophilin A-D and
FK506 binding protein-12 (FKBP12) are ubiquitous cytosolic peptidyl-propyl
isomerases that bind CsA and FK506 respectively.461"463 These complexes bind and
inhibit calcineurin phosphatase activity. The isomerase activities of cyclophilin and
FKBP-12 are also inhibited, though this has no bearing on the immunosuppressant
effect.

Although the effect of these drugs is attributed to their inhibitory effect on NFAT

dephosphorylation / nuclear translocation, other calcineurin-independent effects have
been proposed which contribute to their mode of action and side effects. CsA induces

TGFp, and inhibits members of the mitogen activated protein kinase (MAPK) pathway,
both of which could add to the immunosuppressant effect.490 Whether these are direct
actions is not established. In addition, CsA alters properties of the ryanodine release

channel(RYR)4" and the L-type calcium channel,4'" both of which could impact on

myocardial function.

FK506 has several activities that impinge on myocardial calcium regulation, and might
therefore be expected to alter contractile function. In cardiomyocytes FKBP12.6 is
associated with the ryanodine receptor whilst FKBP12 is cytosolic. The ryanodine

receptor is a sarcoplasmic reticular calcium release channel responsible for the regulated
release of calcium stores essential for excitation-contraction coupling. FKBP12.6

regulates the gating of the RYR channel493 whilst FK506 induces dissociation of
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FKBP12.6 from the channel. Male FKBP12.67" mice develop LVH,440 whilst FKBP12" "
mice develop cardiac failure and ventricular septal defects. 494 Calcineurin has also been

hypothesised to regulate RYR function by dephosphorylation via an FKBP-dependent
494

interaction.

1.5.3 Inhibition of Left Ventricular Hypertrophy using Pharmacological
Inhibitors of Calcineurin

Considerable attention has focussed in recent years on the use of calcineurin inhibitors to

prevent / reverse LVH. The main studies published to date are summarised in table 1.4,
and it can be seen that numerous models have been studied using both CsA and FK506
in various dosing regimens, in both rats and mice. The overwhelming majority of

published studies support a role for calcineurin signalling in cardiac hypertrophy,

although apparently identical experiments have produced disparate results. The results of
these studies have been extensively reviewed,486'495'496 and the salient points will be
summarised here.

1.5.3.1 Aortic Constriction

Eleven studies have examined the effect of calcineurin inhibition in aortic constriction

models of cardiac hypertrophy in both rats and mice.142'497"505 Whilst the majority of
studies demonstrated a benefit, this was not universally the case, and in some studies
there are real concerns about the methodology used, or the interpretation applied. For

example, many made no assessment of the haemodynamic gradient across the
constriction.497'500'503 This is very important because meticulous studies by Zhang et al.

(1999)498 demonstrated a reduction in the trans-stenotic gradient in drug treated groups,

which negated an apparently beneficial effect of drug treatment on LVH. In addition,
few studies took into account the general toxic effects of drug treatment, in particular

weight loss. To address this issue Lim et al. (2000)500 fed sham-operated and banded rats

a very low calorie diet to induce a similar degree of weight loss as drug treatment.

These control groups maintained identical cardiac mass indexes to their counterparts on

normal diet, suggesting that additional changes seen in drug treated groups were
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genuine. Sussman et al (1998)497 claimed complete inhibition of LVH, but more than
half of the treated rats died perioperatively of heart failure. High levels of mortality have
also been seen in other studies using both CsA and FK506.498'506 Some of this may be

operator-dependent, as well as related to drug dosage, strain background and possibly
even infection. It is known that different rat strains may vary markedly in their tolerance
to drug dosage, with Wistar rats tolerating ten fold higher doses of FK506 than Dahl-

502 507
Iwai rats. ' Whether strain differences impact on LVH potential and calcineurin-

dependence is not known. It is also likely that the site of aortic constriction (thoracic vs

abdominal) may be important. Abdominal aortic constriction is associated with
substantial activation of the RAS, and this appears to be reflected in a different pattern
of hypertrophy marker gene induction.236 Therefore different forms of hypertrophy may

be being studied. Furthermore, although AC is frequently referred to as a

"physiological" model of hypertrophy, it is difficult to see how this can be justified.
235 508

Recent studies by Baumgarten et al. (2001 and 2002) ' examined cytokine

expression after transverse aortic constriction in mice and demonstrated a rapid but
transient rise in IL-ip, IL-6 and TNFa within hours of constriction. Expression was

localised to both endothelial cells and myocytes.

Although the importance of this early inflammatory signalling to the development of

hypertrophy was not examined, it is tempting to speculate that calcineurin inhibition

may down regulate cytokine signalling in cardiomyocytes, in a manner analogous to T-
523

lymphocytes, and this may alter LVH development. Lim and Molkentin (1999) have

suggested that the importance of calcineurin signalling may be time-dependent in

response to AC: an effect with CsA was noted 6 days after constriction, but not after 21

days. This implies that calcineurin inhibition simply retards the onset of LVH without

affecting the final outcome. However, other studies have shown that late treatment can

reduce established hypertrophy.500
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Table 1.4 Drug Inhibition Studies of Calcineurin

Study Species Model Treatment

(mg/kg/day)
% red"
LVH

Comments

Aortic Constriction
Sussman, 1998497 Rat AAC CsA 20, 8 days 100% High mortality
Luo, 1998506 Rat AAC CsA 20 and 40, 14 days no effect Disputed interpretation

Muller, 1998509
Rat AAC FK506 2, 14 days no effect
Mouse TAC CsA 50, 3 weeks no effect

Zhang, 1999498 Rat AAC CsA 10 and 20, 2/4 weeks no effect Reduced BP gradient
Rat AAC FK506 0.3, 4 weeks no effect in treated animals

Ding. 1999s04 Mouse TAC CsA 50, 4 weeks no effect

Meguro. 19994" Mouse TAC CsA 25, 3 weeks 32% Increased CHF / mortality
Shimoyama, 1999s02 Rat AAC FK506 1, 3 weeks 100% Preserved EF%

Eto, 2000503 Rat TAC CsA 40, 4 weeks 58%
Lim, 2000500 Rat AAC CsA 20, 14 days 87%

CsA 8, 14 days 34%
CsA 20, 14 days 62% Reversal of LVH

Wang, 2001505
late intervention

Mouse TAC CsA 50. 3 weeks 66%

Hill, 2000501 Mouse TAC CsA 50, 5 weeks 100% Preserved Function

Cardiomyopathy
Molkentin, 199882 Mouse ocMHC-CnA* CsA 50, 7 days >95%

Sussman, 1998497 Mouse Tropomodulin CsA 30, 15 days 100% Impaired FS%
FK506 6, 15 days 100%

Mouse MLC2v mutant CsA 30, 6 weeks 100%
Mouse |3-tropomyosin CsA 30, 8 days 100% Dilation inhibited
Mouse Activated RARa CsA 30, no effect

Mende, 1998272 Mouse aMHC-Gaq * CsA 30, 28 days ambiguous§
Lim, 2000s 10 Mouse aMHC-CnA* CsA 30, 13 or 26 days 90% Improved FS%

aMHC-CnA* CsA 30, 14 reversal 29% Fibrosis unchanged

Fatkin, 2000s"
P-tropomyosin CsA 30, 8 days 100%

Mouse aMHC403'" CsA 30, <35 days worse Altered intracellular Ca2~
FK506 6, <35 days and increased mortality

Hypertension (Non-Aortic Constriction)
Mervaala, 1997s12 Rat SHR CsA 5, 6 weeks no effect Not primary aim of study
Zhang, 1999498 Rat SHR CsA 5, 6 weeks no effect Increased mortality
Lassila, 2000su Rat SHR CsA 5, 6 weeks no effect
Mervaala, 2000514 Rat dTGR CsA 5, 3 weeks 50% Reduced BP

Murat, 2000s 15 Mouse 2K1C CsA 50, 4 weeks 100%

Hayashida, 2000s'6 Rat Dahl CsA 10, 4/6 weeks no effect

Shimoyama, 2000507 Rat Dahl FK506 0.02 and 0.2, 6 week =50%§ >50% mortality
FK506 0.02 and 0.2, =25%§ Preserved EF%

Sakata, 2000s'7
late 4 weeks Partial reversal

Rat Dahl FK506 1, 12 weeks 48% Fibrosis unchanged
FK506 1, late intervention no effect Increased wall stress

Nagata, 2002s18
4 weeks

Rat Dahl FK506 0.1, 6 weeks 87.5% Rescued FS%. Dilated LV
Reduced fibrosis

Goldspink, 2001s'9 Rat Angiotensin II CsA 50, 7 days 100%
Takeda, 2002s20 Rat Mineralocorticoid FK506 0.5, 6 weeks 70%

CsA 10, 6 weeks 62.5%
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Table 1.4 (continued)

Study Species Model Treatment

(mg/kg/day)
% red"
LVH

Comments

Miscellaneous

0ie, 2000521 Rat CAL CsA 50, 2 weeks 14% Worse CHF

Eto, 2000503 Rat Exercise CsA 40, 10 weeks 100%

Kamiya, 2001522 Mouse JVS FK506 0.5 or 1, 4 weeks partial

SHR: spontaneously hypertensive rat. aMHC: alpha myosin heavy chain promoter. CnA*: constitutively active
calcineurin A mutant. MLC2v: myosin light chain 2v. RARa: retinoic acid receptor alpha. AAC: abdominal aortic
constriction. TAC: thoracic aortic constriction. Gaq *: G-protein alpha-q constitutively active mutant. dTGR: double
transgenic rat (human renin and human angiotensinogen). CAL: coronary artery ligation. 2K1C: 2 kidney one clip
model of hypertension. JVS: juvenile visceral steatosis model (systemic carnitine deficiency). CsA : ciclosporine A.
FK506: Tacrolimus. FS%: fractional shortening. EF% : ejection fraction. CHF: congestive heart failure. § significant
effect only if left ventricular mass normalised to tibial length.

1.5.3.2 Murine Models of Cardiomyopathy
It is well recognised that cardiac hypertrophy can develop in the absence of

hypertension, and many hereditary forms of dilated and hypertrophic cardiomyopathy
are described in which mutations of sarcomeric components are present. These diseases
have been replicated in transgenic mice, and calcineurin inhibition has been shown to

effectively prevent/reverse pathology in several studies.82'497'510 Two exceptions are a

transgenic model of constitutively active retinoic acid receptor (RAR) over

expression,497 and a model of hypertrophic cardiomyopathy caused by MHC
mutation.5" In the later case, calcineurin inhibition exacerbated hypertrophy and

272
increased mortality. In addition, Mende et al. (1998) described a model of sustained
and progressive cardiac hypertrophy due to transient over expression of a constitutively
active Gaq mutant in the heart. They found that hypertrophy could be attenuated using
CsA, but the result was ambiguous because an effect was apparent only when LV mass

was normalised to tibial length, as opposed to body weight.

1.5.3.3 Models of Hypertension
Both CsA and FK506 are known to cause hypertension, as discussed above. Indeed,
CsA has been used as a means of inducing hypertension in rats for many years.524'525
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Therefore the fact that these drugs might blunt the effect of hypertension on the heart is

paradoxical. The effects of these calcineurin inhibitors appear to be dependent on the
model of hypertension studied. In SHR strains LVH appears to be resistant to the effects
of CsA, though this observation was not the primary aim of two of these studies, so a

subtle effect may have been missed.498'512'513 In distinct contrast, FK506 appears to

strongly inhibit cardiac hypertrophy in Dahl salt sensitive (DS) rats,507'517'518 and doses

differing by ten fold appeared to be equally efficacious. Early treatment appeared to

preserve cardiac function, whilst late treatment led to an increase in wall stress,507 and
507 517

declining efficacy once LVH was established. ' However, careful analysis of the
507

data by Shimoyama et al. (2000) reveals that the antihypertrophic effect is not seen if
518

LV mass is normalised to body weight, and the effect reported by Nagata et al. (2002)
is less. Hayashida et al. (2000)516 found that CsA had no effect in DS rats. Using a

transgenic rat model of hypertension based on over expression of human

angiotensinogen and human renin Mervaala et al. (2000)514 found that CsA attenuated
LVH by 50%. However, CsA also reduced systolic blood pressure by about 35mmHg,
which may have accounted for at least some of this effect. Positive results have also
been reported using CsA or FK506 in Wistar rats treated with angiotensin II infusion,519

520
unmephrectomised Wistar rats treated with aldosterone and a murine model of
renovascular hypertension (two kidney one clip).515

This data therefore lends support to the notion that calcineurin inhibition is important in
the development of LVH in response to hypertension. The studies of LVH regression
also suggest that the maintenance of hypertrophy may be partly calcineurin-dependent.
The lack of effect in SHR cannot be easily explained except that LVH in this model may
be calcineurin-independent, or that they are particularly susceptible to CsA-induced

hypertension, which negates any antihypertrophic effect. It has been suggested that
models of hypertension/hypertrophy that are RAS-dependent are particularly susceptible
to calcineurin inhibition. Although the mechanisms of hypertension operating in SHR
and Dahl rats are incompletely understood, there is evidence to support a role of the
cardiac RAS in the development of LVH in both models.526'527
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1.5.3.4 Miscellaneous Studies

Several studies have been published which do not fall in to any of the above categories,
but warrant discussion. 0ie et al. (1999)5"' demonstrated that CsA inhibited post-MI

cardiac hypertrophy in rats, but at the expense of cardiac function. However, their
analysis was flawed in that the result was only significant if LV mass was normalised to

tibial length: if body weight was used there was an apparent increase in LVMI.

Furthermore, they found very little difference in hypertrophy gene marker expression,

adding weight to the argument that this study was actually negative.

Eto et al. (2000)503 have demonstrated that exercise-induced hypertrophy in Wistar rats,
522

is calcineurin-dependent and Kamiya et al. (2001) demonstrated attenuated LVH in a

murine model of hypertrophy due to systemic carnitine deficiency (Juvenile Visceral

Steatosis).

1.5.3.5 Conclusions Regarding Pharmacological Inhibition of Calcineurin
Overall there is substantial evidence to support a role for calcineurin signalling in the

development and maintenance of many forms of cardiac hypertrophy. However, this is
not universal, and the reasons for the discrepancies between studies are not clear.
Several general points warrant further discussion in this regard. An important aspect of

many of these studies is the effect of the drug on the general health of the animals, as

substantial weight loss is frequently reported. This complicates the interpretation of
whether or not LVH has regressed due to a direct effect of the drug, or simply as a

consequence of a general catabolic state. Only one study has actually assessed the effect
of weight loss induced by dietary restriction,500 and this demonstrated that heart mass
was reduced in proportion to body weight, so that LVMI remained constant despite an

absolute reduction in LV mass. This is concordant with many other studies investigating
the effects of starvation diets on rats,528'"29 rabbits,530 dogs,531 and humans.53" In contrast,

529
Cicogna et al (2000) observed that cardiac hypertrophy was reduced in SHR fed a

restricted diet compared to those on a normal diet despite similar blood pressures.
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Although the mechanism is not clear, the catabolic state of starvation reduces cardiac

protein synthesis and shortens the half-life of proteins, leading to cardiac atrophy.^0

Other calcineurin-independent effects of the drugs probably have an effect on cardiac
function. Therefore pharmacological inhibition of calcineurin is a less than ideal method
for assessing its contribution to cardiac hypertrophy.

1.5.4 Transgenic Models of Calcineurin Inhibition
Since pharmacological inhibition of calcineurin has many drawbacks, several groups

have developed transgenic models of calcineurin inhibition, listed in table 1.5, either

using the endogenous calcineurin inhibitors discussed above, or gene targeting methods.
These studies unanimously support a role for calcineurin in the development of cardiac

hypertrophy.

De Windt et al. (2001)5" used cardiac-specific transgenic mice expressing deletion
mutants of either Cain or AKAP79 to inhibit calcineurin. They found that mice

expressing high levels of inhibitor had an LVMI apporximately 10% less than wild type

littermates at baseline, suggesting that calcineurin is important in physiological

hypertrophy during normal growth.

In addition they demonstrated a marked reduction in LVH in response to isoprenaline
infusion or abdominal aortic constriction. Furthermore, adenoviral transfer of Cain in

aortic-banded rats also attenuated hypertrophy. In each case there was diminished
induction of hypertrophy-related marker genes. However, one transgenic founder died

prematurely of dilated cardiomyopathy, suggesting that very high levels of expression of
the inhibitor may have been detrimental to normal cardiac function. Furthermore,

although there was a favourable reduction in hypertrophy, cardiac function was not

studied.
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Table 1.5. Transgenic Studies of Calcineurin Inhibition

Study Species Model Hypertrophic

stimulus

% inhibitionComments

of LVH

De Windt et al. Mouse aMHC-ACain Iso 14 days 50% Low baseline LVMI in high
2001533 AAC 14 days 68-79% expressors

Mouse aMHC-AAKAP79 Iso 14 day 50% Low baseline LVMI in high
AAC 14 days 25-38% expressors

Rat Adenoviral-ACain TAC 14 days 40%
Zou et al. Mouse aMHC-dnCnA AAC 3 weeks 56%
2001534
Rothermel et al. Mouse ctMHC-hMCIPl aMHC-CnA* 72% 5-10% baseline reduction
2001456 Iso 7 days 59% in LVMI. Preserved FS

Exercise 28 days 58%
Hill et al. Mouse aMHC-hMCIPl TAC 3 weeks 27% Preserved FS at 3 months
2002535 TAC 3 months 27% Augmented ANF induction
Bueno et al. Mouse CnAjV AAC 14 days 67% 12% baseline reduction
2002536 Iso 14 days 75% in LVMI

All 14 days 46%
Wilkins et al., Mouse NFATc3"'~ aMHC-CnA* 20-44% Little effect on foetal gene
2002474 AAC 14 days 100% expression

All 100%
Mouse NFATc4"'~ aMHC-CnA* 0%

AAC 14 days 0%
All 0%

aMHC: alpha myosin heavy chain promoter. ACain: calcineurin inhibitory domain of Cain. AAKAP79: calcineurin
inhibitory domain of A-kinase-anchoring-protein 79. dnCnA: dominant negative calcineurin mutant. hMCIPl: human
myocyte-enriched calcineurin interacting protein 1. CnAfL": calcineurin A(3 subunit knockout. Iso: isoprenaline
osmotic minipump infusion. AAC: abdominal aortic constriction. TAC: thoracic aortic constriction. CnA*:
constitutively activated calcineurin A mutant. All: angiotensin II osmotic minipump infusion. LVMI: left ventricular
mass index.

Zou et al. (2001)534 used a dominant-negative approach to inhibit cardiac calcineurin.

They generated a transgenic mouse expressing mutant calcineurin lacking the

calmodulin-binding and autoinhibitory domains. Basal LVMI was normal, as was basal
calcineurin activity. However, in response to abdominal aortic constriction,

hypertrophy, fibrosis, calcineurin activation and foetal gene expression were blunted.

Although echocardiography was performed, cardiac function was not reported.

Rothermel et al. (2001)456 created transgenic mice overexpressing hMCIPl in the heart.
This strategy has the advantage that MCIP1 is probably the natural calcineurin inhibitor
in the heart. These mice had a reduced LVMI at baseline, concurring with DeWindt et
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533
al. (2001). Additionally they were resistant to hypertrophy induction by isoprenaline
infusion, and exercise. Crossing the mice to activated CnA (CnA*) transgenics partially
inhibited the development of hypertrophy, and suppressed reprogramming of gene

expression. Using the same model, Hill et al. (2002)"° demonstrated an impaired

hypertrophic response to thoracic aortic banding, with preserved LV function, as

assessed by echocardiography. However, there was a paradoxical increase in ANF and
BNP expression, and the decrease in LVH was relatively small (30%). Given the

proposed role of MCIP1 as an inhibitor of calcineurin, Vega et al., (2003)436 investigated
the hypertrophic response of MCIPF" mice. Whilst CnA* mediated hypertrophy was

exaggerated as predicted, they unexpectedly found that MCIP1 deficiency prevented

hypertrophy in response to aortic constriction and isoprenaline infusion.436 Therefore,
the role of MCIP's in relation to calcineurin regulation is complex.

Bueno et al. (2002)536 used a knockout approach in mice to examine the role of CnA(3.
This is the predominant form of CnA expressed in the heart, accounting for 80% of
calcineurin activity in the basal state in this study. Knockout mice were overtly normal

except for a 12% reduction in basal heart size compared to wild type littermates.
Knockout mice had severely impaired hypertrophic responses to abdominal aortic
constriction, isoprenaline infusion and angiotensin II infusion. Presumably the residual

hypertrophic capacity reflects activation of non-calcineurin dependent pathways.

Surprisingly the effect of CnAP deletion on hypertrophy-related gene expression was

relatively minor, and fibrosis was not inhibited. Again, assessment of cardiac function
wasnot performed.

Although over expression of NFATc4 in the heart causes profound cardiac
82 /

hypertrophy, NFATc4~" mice remain susceptible to hypertrophy induction by aortic

constriction, activated calcineuirn and angiotensin II infusion.474 In contrast NFATc3~"
mice demonstrate an attenuated hypertrophic response to these stimuli,474 though the
effect is partial. Whilst this suggests a prime role for NFATc3, it would appear that other
NFAT's are sufficient for hypertrophic responses, and that there is a degree of
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redundancy in the NFAT signalling pathway in the heart. Inhibition of all NFATs by
cardiomyocyte overexpression of GSK3P causes a more profound impairment of

87
pressure overload induced hypertrophy though this is still incomplete.

These studies provide compelling evidence for the importance of calcineurin in

physiological and pathological hypertrophy. All studies demonstrate a significant effect
in response to a variety of stimuli, though importantly, there was rarely complete
abolition of hypertrophy, either at an anatomical or molecular level.

1.5.5 Role of Calcineurin in Human Hypertrophy/Heart Failure
Given the evidence presented above, the question remains does calcineurin signalling
have a role in human cardiac hypertrophy, and if so does inhibition lead to clinical
benefit? Limited data are available in this regard, due to the difficulty of obtaining
human tissue. Early studies examined calcineurin protein expression, rather than

523 537
activity, and found conflicting results in end-stage heart failure patients. ' Haq et al.

(2001)444 obtained samples of failing and normal hearts at transplant, and cardiac

hypertrophy samples from donor hearts that were unsuitable for transplant by virtue of

significant hypertrophy. They found that CnA protein levels were elevated 1.82 fold in
cardiac hypertrophy, and 1.5 fold in heart failure. CnA activity normalised to CnA

expression increased in hypertrophy but not in heart failure. Therefore, there appears to

be over expression in both conditions, with an increase in specific activity in
538

hypertrophy. Ritter et al. (2002) obtained samples from patients with hypertrophic
obstructive cardiomyopathy (HOCM) undergoing transaortic subvalvular myotomy-

myectomy and samples of cardiac hypertrophy secondary to aortic stenosis from patients
under going valve replacement. They found increased CnA expression in both

conditions, with increased enzyme activity, associated with NF-AT dephosphorylation.
Furthermore, they detected an apparent decrease in expression of the C-terminal
autoinhibtory domain, suggesting that proteolytic activation of calcineurin may be

occurring, analogous to constitutively active CnA mutants described by Molkentin et al.

(1998).82
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Since calcineurin appears to have a role in human cardiac hypertrophy one might expect
evidence of benefit from the use of calcineurin inhibitors in organ transplantation
studies. On the contrary, CsA has been associated with induction of hypertrophy via
blood pressure-dependent mechanisms."39"40 Therefore, if calcineurin is ever deemed to

be a desirable therapeutic target for cardiac hypertrophy, it is unlikely that current

inhibitors will be used.

1.5.6 Signalling Pathway Cross Talk
Calcineurin-NFAT signalling does not occur in isolation to other signalling pathways,
and there is mounting evidence for important interactions that potentiate or

counterbalance each other. In particular there are multiple interactions, or points of
"cross-talk" between Calcineurin-NFAT, Mitogen Activated Protein Kinase (MAPK)

signalling and Glycogen synthase kinase-3[3 in the heart.

There is evidence that p38 MAPK antagonises NFAT by direct phosphorylation,467"469
which would be expected to be antihypertrophic. This is surprising because p38 and
other MAPK pathways are considered prohypertrophic.284"86'541-544 However, the role of
MAPK signalling is probably complex, because inhibition of the p38 MAPK pathway in
the heart using transgenic dominant-negative species of MAPK Kinase 3 (MKK3),
MKK6 and p38 MAPK actually leads to cardiac hypertrophy, and exaggerated responses

to haemodynamic stress. This indicates that the antihypertrophic effect of p38 MAPK
on NFAT signalling predominates over any putative prohypertrophic effects.545 A

corollary of this is the regulation of elk-1 transcription factor phosphorylation mediated

by p38 MAPK, ERK1/2 versus dephosphorylation by calcineurin.460 In addition,
calcineurin enhances MCP-1 expression, leading to p38 MAPK inactivation.546
Therefore, somewhat surprisingly, MAPK and calcineurin pathways appear to

counteract rather than co-operate with each other.

Some studies have indicated a poorly defined co-operative effect between calcineurin
and MAPK signalling. For example, Murat et al. 2000515 found that treatment of
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cardiomyocytes or mice with CsA inhibited activation of not only calcineurin, but also
PKC isoforms, and MAPK, and similar evidence has been presented by de Windt et al.,
2000.547 However, pharmacological inhibitor studies such as these may be confounded

by diverse non-specific effects, and should be interpreted with caution.

Other pathways also impinge on calcineurin-NFAT. Glycogen synthase kinase-3P

(GSK-3(3) exerts a constitutive constraint on hypertrophy via dephosphophorylation of
NFAT and GATA4, amongst other transcription factors.548"552 This is potently
demonstrated by the resistance of transgenic mice over expressing activated GSK-3(3 in

the heart to several hypertophic stimuli.87 In fact GSK-3(3 is inactivated by virtually all
548

known hypertrophic stimuli, and therefore, it seems plausible to suggest that most

hypertrophic signals potentiate calcineurin-NFAT signalling. In particular this appears to

apply to Fas receptor signalling,553 insulin PI3K/PKB/akt,554 endothelin, angiotensin and

^-catecholamines.466

1.6 Pressure Independent Inhibition of Cardiac Hypertrophy
Many of the genes required for humoral signalling (Dbh, Gocq/Gn, CnA, Agtr2) appear

to be indispensable for a normal hypertrophic response,364'417'424'536'555 and knockout
animals demonstrate resistance to LVH after aortic constriction: this is termed

pressure-independent inhibition of LVH (Table 1.6). Such studies provide powerful

proof that humoral signalling pathways are necessary for mechanical load sensing and
activation of the hypertrophic phenotype. If the concept that LVH normalises wall stress
is valid, one would anticipate that failure to adequately hypertrophy would have
deleterious consequences. However it appears that the converse is true, and that these
animals maintain normal cardiac function and have a survival advantage compared to

wild type animals that develop LVH. This implies that LVH is maladaptive and that
normalisation of wall stress is a flawed concept.
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The original observations of Grossman10 measured end systolic and end diastolic
meridional wall stress in patients with pressure overload, volume overload, and normal
controls. Whilst wall stress was normalised by concentric hypertrophy in pressure-

overloaded patients, this was not the case for the volume overload group. Therefore,

compensation does not necessarily require wall stress to be normalised and other
mechanisms may have a role. Futhermore, the concept of wall stress only takes in to

account the thickness of the myocardium at the instant that it is measured. Of course this

neglects the contractile properties of the myocardium and other qualities, such as

elasticity, which must also contribute to maintaining the integrity of the ventricle.

An elegant study by Esposito et al., (2002)417 examined the stress-strain relationship of
wild type, G-protein inhibitor transgenic mice (GaqI) and catecholamine deficient mice

(Dbh"") using sonomicrometric implants after aortic constriction. Wild type animals

hypertrophied and normalised wall stress, but succumbed to heart failure later on.

In contrast GaqI mice were shown to have a blunted hypertrophic response resulting in

increased end systolic wall stress, but preserved cardiac function for many months.

Although not specifically commented on in the paper, the end systolic pressure volume

relationship (ESPVR) of the GaqI mice was increased relative to controls, suggesting

that they adapted by increasing their myocardial contractility.

In other words, increased contractility may be compensating for increased wall stress
and mitigate the requirement for LVH. Indeed, there is theoretical evidence for this in
humans. 40,556 Exactly how contractility is increased in this model has not been reported.
It is also interesting to note that contractility in Dbh"" mice is increased at baseline,416 so

that this mechanism may not be generally applicable to other models. For example,
Wettschureck et al 2002424 reported that Gaq/Gn " mice subjected to aortic constriction
have normalwall stress and contractility (end systolic elastance) despite complete
inhibition of LVH. Potential mechanisms for increased contractility could involve
enhanced Ca2+ handling by the sarcoplasmic reticulum, altered myosin isoforms (or
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altered regulation), or enhanced metabolic efficiency. There is experimental evidence
that altered expression of SERCA, phospholamban or GLUT 1 are possible mechanisms

132 138 223 557
by which this may occur. " ' ' However, whether such mechanisms occur

naturally has not yet been investigated.

Table 1.6. Pressure Independent Inhibition of LVH in Response to Aortic

Constriction

Reference Knockout /

transgene

% inhibition

of LVH

Pathway targeted Comments

Bueno et al., CnAp-'' 66% Calcineurin/NFAT Reduced LVMI at birth
2002536 ANF not attenuated
Wilkins et al., NFATc3"/_ 100% Calcineurin/NFAT Complete inhibition of
2002474 foetal gene expression
Antos et al., GSK-3[3 60% NFAT Enhanced ANP/BNP
200287 expression
Vega et al., MCIPl7" 45% Calcineurin/NFAT Reduced LVMI at birth.
2003436 Stimulus- dependent effect:

exaggerated hypertrophy
to CnA*

Wettshureck et al., Gaq/G,,"'" 100% AngII/ET-1/catechols Complete inhibition of
2002424 foetal gene expression

Normal wall stress.
No increase in contractility

Esposito et al., GaqI =50% Angll/ET - 1/catechols Enhanced wall stress.
20024'7 Prolonged survival
Akhter et al., GaqI 61% Angll/ET - 1/catechols Preserved LV function

1998423
Senbonmatsu et al., Agtr2"/Y =80% Angiotensin Echo-based LVMI data
2000

Esposito et al., Dbh-'~ =50% Catecholamines Prolonged survival,
20024'7 preserved LV function.
Rapacciuolo et al., Dbh'- 60% Catecholamines
2001416
Rogers et al., RGS4 50% G-protein signalling Rapid decompensation and
1999174 death
Bueno et al., MKP-1 90% MAPK Impaired developmental
2001543 hypertrophy with mild LV

dilatation
Uozumi et al., gpl30 dn 63% CT-l/LIF/IL-6
2001427

'''homozygous null, CnA (3: calcimeurin A [3, NFAT: nuclear factor of activated T cells, GSK-3J3: glycogen synthase
kinase, MCIPl: myocyte enriched calcineurin interacting protein , GaqI: inhibitory mutant of Gaq, Agtr2:

angiotensin receptor type II, Dbh: dobutamine (3-hydroxylase, RGS4, MKP-1: MAPK phosphatase, dn: dominant

negative, Angll: angiotensin II, ET-1: endothelin I, catechols: catecholamines, MAPK: mitogen activated protein
kinase, CT-1: cardiotrophin, LIF: leukaemia inhibitory factor, 1L-6, interleukin 6, LVMI: left ventricular mass index,
CnA*: activated calcineurin mutant.
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1.7 Conclusions Regarding the Regulation of Cardiac

Hypertrophy
It appears that many genes and signalling pathways have an essential role in LVH

development. Since this applies to multiple pathways, it is difficult to reconcile the fact
that many single genes can be both sufficient and necessary for LVH. First of all, careful

scrutiny of papers reveals that few models are 100% resistant to LVH, and there is

usually a relative reduction in LV mass. Secondly, supraphysiological stimulation of a

pathway by transgenic methods may be sufficient to overwhelm counter-regulatory

mechanisms, and therefore be sufficient to cause LVH alone, whilst in normal

physiology the concerted activation of several pathways may be necessary to achieve the
same effect. In other words, multiple signalling pathways may have a co-operative or

permissive effect on each other. If this is the case, it would explain why targeted deletion
of one gene may have a profound disabling effect on the hypertrophic response.

Finally, the responses of individual models may be misleading, particularly where only
one hypertrophic stimulus has been examined. For instance, MEKKL" mice are

susceptible to LVH induced by aortic constriction,558 but not Gaq overexpression.541
/ 173

Similarly gpl30 ~ mice develop cardiac failure after aortic banding, but mice

expressing a dominant negative inhibitor of gpl30 have attenuated hypertrophic

responses without development of failure.427 This implies that different hypertrophic
stimuli require different signalling pathways and that similar mouse models may not be

equivalent.
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1.8 Prorenin (ren2)-Dependent Models of Hypertension and
Cardiac Hypertrophy
Several transgenic models of hypertension exist that rely on overexpression of mouse

prorenin (ren2d). Some of these form an integral part of this thesis, and are therefore
described in detail. Other transgenic models of hypertension based on renin-

angiotensinogen transgenes have been described, but are not discussed here.559"561

1.8.1 TGRmRen2-27

TGRmRen2-27 is the prototypical transgenic rat model of hypertension. The transgene

comprises mouse DBA/2J ren2 genomic DNA, including flanking regulatory
elements.562 It is characterised by severe hypertension developing within weeks of

weaning, but the precise phenotype is strongly influenced by gender, zygosity, and
11 i , 563-565
background strain.

Although the genetic basis of hypertension in this model is well defined, the precise
mechanism is not. Early studies demonstrated elevated plasma prorenin levels, reduced
active renin and angiotensin II, with suppression of hypertension by angiotensin-

converting enzyme inhibition.562 Transgene expression is predominantly adrenal,562'566
though this is probably not relevant to the development of hypertension.567"569 More

562 567 570
importantly, tissue angiotensin II levels are increased in a wide range of organs, ' '

and expression in the vasculature and brain is also implicated in driving hypertension.571"
576

Development of lethal maligant hypertension in this model is strain-dependent,563'564
and linkage studies have mapped the putative modifier loci to chromosomal regions
close to ACE and Atl loci.563

Cardiac transgene expression is detectable, and may contribute to the development of
left ventricular hypertrophy:563'565 evidence of hypertrophy has been found as early as

age 16 days, well before hypertension occurs.36" Pharmacological and gene therapy data
indicate that hypertrophy is driven by angiotensin II, independently of
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362 577 578
hypertension. ' ' However other studies support a prime role for hypertension in
the development of LVH579 and cardiac fibrosis.580

1.8.2 TGR a1ATren2

TGR alATren2 was generated by Dr D Ogg in the Mullins lab.408 The transgene

comprises the ren2d cDNA under the transcriptional control of the human alpha-1-

antitrypsin promoter, directing expression to the liver. The line is maintained on an

inbred F344 background. TGRalATren2 was developed to investigate the dependence

of hypertension in TGRmren2-27 on the site of ren2d expression. Of 16 TGRalATren2

founders, 9 demonstrated evidence of hypertension, which in some was rapidly lethal
without angiotensin-converting enzyme inhibition. Only one line, TG 12, has been
maintained. Analysis of this line demonstrated that transgene expression, by
radionucleotide protection assay was exclusively hepatic. Transgene-derived plasma

prorenin levels are in 10-fold excess at 4 weeks of age, rising to 400-fold by 5 weeks,
without excess plasma renin, angl or angll. Prorenin levels were higher in males than
females. TGI2 males demonstrated impaired growth compared to non-transgenic

littermates, and died with 100% penetrance by 7 weeks of age. SBP measured by tail
cuff plethysmography in lightly anaesthetised male animals was elevated at 4 weeks, and
continued to rise to 7 weeks, reaching approximately 170mmHg.

Interestingly heart weight to body weight ratios were increased by 22% at 2 weeks of

age, before significant hypertension had occurred, reaching 52% at 7 weeks.

Histopathological analysis demonstrated cardiomyocyte hypertrophy and microscopic

myocardial infarcts. In addition there was evidence of remodelling in interlobular

arteries, glomerular ischaemia and occasional fibrinoid necrosis, consistent with

malignant phase hypertension.

1.8.3 TGRcyp1a1ren2
The timing ofmalignant hypertension in TGRmRen2-27 is unpredictable, and can only
be clinically identified at a late stage. Therefore to develop a controlled model of
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malignant phase hypertension a conditional transgenic strategy was adopted, in which a

ren2d cDNA transgene was placed under the regulatory control of the promoter of
581 .... 582 •

cytochrome p450 cyplal. This promoter is intrinsically inactive, " but transcription
can be induced by arylhydrocarbon compounds (AHC) in the presence of the

arylhydrocarbon receptor (AHR) and the aryl hydrocarbon nuclear translocator (arnt),
which form a heterodimer-ligand transcription complex.582"586 Therefore, in the absence
of AHC the cyplalren2 transgene is not expressed, whilst administration of AHC to

TGRcyplalren2 rats induces transgene expression. Transgene expression is
587

predominantly in the liver, but also in the spleen. More widespread expression has
been described using this promoter, reflecting the tissue distribution of AHR and
Arnt.588"590 Background expression levels are undetectable in non-induced rats581 Blood

pressure is dose-dependent and, in short term studies reversible, making this an
581

extremely flexible model for studying hypertension, vascular injury and repair."

Indole-3-carbinol (I3C) is a naturally occurring AHC found in brassicae. I3C itself is a

weak inducer of cyplal but derivatives formed in the stomach are much more potent: up

to 24 different active metabolites have been found in rats fed I3C.591 Since it is readily

absorbed and metabolised, induction of cyplal occurs within hours.591 It also induces
other members of the aryl hydrocarbon battery including CYP1A2, CYP2B1/2 and

592
CYP3A1/2, and inhibits both the activity and expression of flavin monooxygenase 1:

thus, metabolism of other xenobiotics is undoubtedly affected and this may interfere
with pharmacological studies.

0.3%(w/w) I3C reproducibly induces malignant phase hypertension in TGRcyplalren2
581

over a 14 day period." Severe hypertension is induced by 7 days of induction, and this
is sustained until day 14. It is accompanied by a more than 200-fold increase in plasma

prorenin level, whilst plasma renin, angiotensin II and aldosterone rise only slightly. A

key finding of recent studies using this model is that an organ specific pattern of
vascular susceptibility to endothelial damage and fibrinoid necrosis appears to be

present. Fibrinoid necrosis is first identifiable in the vasculature of the heart and
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mesentery on day seven of induction. On day 14 the renal vasculature succumbs to

malignant injury, but the brain appears to be protected. The exact reasons for this

phenomenon are not known, but may relate to the ability of the kidneys and brain to

autoregulate perfusion pressure in the face of severe hypertension.

Peters et al., (2002)40 have presented data to support the hypothesis that transgene-
derived prorenin (ren2) is taken up by the heart and activated to renin in this model. This
is also likely to contribute to pathogenesis of vascular damage and cardac hypertrophy.

1.9 Aims

This thesis concentrates on the mechanisms of LVH in transgenic rats conditionally

overexpressing mouse ren2d (TGRcyplalren2). Earlier work in this model has
demonstrated that 0.3% I3C (w/w) causes malignant hypertension over 14 days, with
evidence of transgene-derived ren-2 uptake in cardiac tissue.407'581 However the severity
of hypertension in response to this dose of inducing agent limits the usefulness of the
model for studies of cardiac hypertrophy. Chapter 3 describes experiments that
characterise the development of cardiac hypertrophy in response to a lower dose of

inducing agent, to determine if this represents a valid model of pressure overload cardiac

hypertrophy. Given the variability of cardiac functional changes in different models of
LVH we also measured the functional consequences of LVH at serial time points. In

particular it was of interest to establish if chronic pressure overload led to heart failure or

other adverse consequence of LVH such as arrhythmia.

Previous discussion has highlighted that inhibition of LVH by disruption of calcineurin

signalling can abrogate progression to heart failure. We hypothesised that pressure-

independent inhibition of cardiac hypertrophy in TGRcyplalren2 by the calcineurin
inhibitor FK506 would lead to compensatory changes in cardiac function that negate the

negative effect of increased wall stress. These experiments are documented in chapter 4.
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Overexpression of mouse ren2d in rats is a potent stimulus for hypertension and cardiac

hypertrophy, yet there are no known extra-renal sites for activation of prorenin to renin,

suggesting that the mechanism by which ren2 exerts its effects is novel. Substantial
evidence has accumulated to support the uptake of physiologically relevant quantities of
human renin/prorenin by cardiomyocytes via the mannose-6 phosphate receptor, but this
mechanism could not explain the uptake of non-glycosylated mouse prorenin-2 seen

TGRcyplalren2. Therefore we hypothesised that a mechanism distinct from the
mannose-6 phosphate pathway mediates prorenin uptake. Chapter 5 describes the

production of recombinant mouse ren2d in a baculovirus expression system for

investigation of renin uptake by cardiomyocytes.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Chemicals and Solutions

Analytical grade chemicals, solvents, acids and alcohols were obtained from Sigma

(Sigma-Aldrich Ltd, Poole, Dorset, UK) or BDH Laboratory Supplies (Poole, Dorset,

UK), unless otherwise stated. Phenol was obtained redistilled, and buffered with Tris-

HCL from BDH. Agarose was supplied by FMC Bioproducts (Flowgen, Sittingbourne,

UK). Acrylamide monomer solution was supplied by National Diagnostics (Atlanta,

Florida, USA). Radioisotopes were supplied by Amersham Pharmacia Biotech (Little

Chalfont, UK). Oligodeoxynucleotide primers were synthesised by MWG Biotech

(Ebersberg, Germany). Kodak XOMAT XAR-5 film was supplied by BDH. Kits for
DNA plasmid Maxi preparation and RNA isolation (RNAeasy) were obtained from

Qiagen (Crawley, UK).

All solutions were prepared with Milli-Q synthesis water (Millipore, Molsheim, France)
and, where appropriate were autoclaved prior to use. RNAse free water (BDH) was used
for RNA work.

2.1.2 Enzymes
Restriction endonucleases were supplied by Roche (Roche Diagnostics GmbH,

Mannheim, Germany), Promega (Southampton, UK) or New England Biolabs (Hitchin,

UK) and used according to manufacturer's recommendations. Pfu DNA polymerase was

purchased from Stratagene (Amsterdam, Netherlands) and Taq polymerase was supplied

by Qiagen. Superscript II reverse transcriptase was supplied by Invitrogen (Paisley,

UK). DNase-free RNase A and proteinase K were supplied by Sigma.
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2.1.3 Bacterial Strains

Escherichia coli (E. coli) strains TOP 10 One Shot and PIR1 were supplied by

Invitrogen (Paisley, UK).

2.1.4 Antibiotics

Antibiotics were purchased from Sigma and used as indicated in table 2.2.

Table 2.2 Antibiotic Selection Concentrations

Antibiotic Selection of plasmids Stock solution

Ampicillin 1 OOpg/ml lOOmg/ml in dH20

Kanamycin 25 pg/ml 25mg/ml in dH20

2.1.5 Antibodies

Antibodies were used for Western blotting, immunoprecipitation and immunaffinity

purification were supplied and used at the optimised dilutions, as indicated in table 2.3.

Table 2.3 Antibodies and Dilutions

Antibody Type Clonal

Designation

Working
dilution

Application Supplier

aHA MM F-7 1:1000 WB Santa Cruz

SC-7392

aHA MM F-7 IP (agarose-

conjugated)

Santa Cruz

SC-7392AC

aHA RM 3F10 - IA (resin) Roche 1815016

arenin RP - 1:10000 WB -

aR-hrp GP - 1:2000 WB Dako P0448

aM-hrp RP - 1:1000 WB SBST

MM: Mouse monoclonal, RM: rat monoclonal, hrp: horseradish peroxidase conjugated. aR: anti-rabbit Ig,
aM: anti-mouse Ig, GP: goat polyclonal, RP, rabbit polyclonal, SBST: Scottish Blood Transfusion
Service, IA: immunoaffinity, IP: immunoprecipitation, WB: Western blotting.
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2.1.6 Reagents and Chemicals
Table 2.4 Common Reagents and Buffers

Reagent or Buffer Composition Comments

Alkaline lysis PI Buffer 50mMTris, lOmM Na2 EDTA,
RNAse A lOOmg/ml, pH8.0

Plasmid DNA miniprep

Alkaline lysis P2 Buffer 0.2M NaOH, 1% SDS Plasmid DNA miniprep
Alkaline lysis P3 Buffer 5.0M Potassium Acetate,

adjusted to pH5.5 with glacial
acetic acid.

Plasmid DNA miniprep

Ampicillin LB Plates LB agar, lOOmg/ml Ampicillin Selective E. coli growth plate
lOOx Denhardt's Solution 2% (w/v) Ficoll 400 (Pharmacia),

2% (w/v), Bovine serum albumin

(Fraction V, Sigma), 2% (w/v)

polyvinyl-pyrrol idone

Constituent of Southern blotting

hybridisation solution

DNA Loading Buffer (6x) 0.25% Bromophenol Blue, 0.25%

Xylene Cyanol FF, 30% Glycerol

DNA gel electrophoresis

Ethidium Bromide Stock lOmg/ml Ethidium Bromide DNA gel electrophoresis
GYT Medium 10% (v/v) Glycerol, 0.125%

yeast extract, 0.25% (w/v)

tryptone

E. coli growth and storage

Medium

Heparin (unfractionated) 20U/ml final concentration in

whole blood

Plasma for electrolyte
measurment

Immobilsed metal affinity

chromatography (IMAC) resin

Talon resin (Nickel) (Clontech) IMAC

IMAC wash buffer (lx) 50mM Na Phosphate
300mM NaCl

IMAC

IMAC elution buffer (lx) 50mM Na Phosphate
300mM NaCl

150mM Imidazole (Clontech)

IMAC

Immunoaffinity Lysis Buffer 50mM Tris pH7.5, 150mM NaCl
0.1% Nonidet P40, Complete
Protease Inhibitor Cocktail

(Roche)

Lysis buffer compatible with

immunoaffinity column

Immunoaffinity Equilibration
Buffer

20mM Tris pH7.5, 0.1M NaCl,
0.1mM EDTA

Immunoaffinity column buffer
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Table 2.4 (continued)

Immunoafflnity Wash Buffer 20mM Tris pH7.5, 0.1M NaCl,
O.lmM EDTA, 0.05% Tween-20

Immunoaffinity column wash
buffer

Immunoaffinity Elution
Buffer

1 mg/ml HA peptide
reconstituted in equilibration
buffer.

Elution of HA-tagged protein
from HA-immunaffinity column

Immunoaffinity Column

Storage Buffer

20mM Tris pH7.5, 0.1M NaCl,
O.lmM EDTA, 0.09% sodium

azide

Prevention of fungal growth

Immunoaffinity Column

Regeneration Buffer

0.1M glycine pH2.0 Removal ofHA peptide from

immunoaffinity column

Immunoprecipitation Lysis

Buffer

1% (w/v) Triton X-100, 50mM

Tris.CI pH 7.4, 300mM Na CI,
5mM EDTA, 0.02% (w/v)
Sodium Azide, lOmM

iodoacetamide, ImM PMSF

2mg/ml Leupeptin

Immunoprecipitation

Immunoprecipitation Wash

Buffer

0.1% (w/v) Triton X-100, 50mM

Tris.CI pH7.4, 300mM NaCl,
5mM EDTA, 0.02% sodium

azide

Immunoprecipitation

Ion Exchange Lysis Buffer 20mM Tris pH7.5, 150mM

NaCl, 2mM EDTA, 1% Triton

X-100

Insect cell lysis buffer for
recombinant protein purification

Ion Exchange Buffer A 50mM Tris pH7.5: filtered

(0.22pm) and degassed.

Ion exchange column wash
buffer

Ion Exchange Buffer B 50mM Tris pH7.5, 1M NaCl:
filtered (0.22pm) and degassed.

Ion exchange elution buffer

2xLaemmii Buffer 0.125M Tris-Cl pH6.8, 4% SDS,
20%v/v Glycerol, 0.2M DTT,
0.02% Bromophenol Blue

Protein loading buffer for SDS-
PAGE

LB (Luria-Bertani) Medium 1.0% Tryptone, 0.5% Yeast

Extract, 1.0% NaCl, pH7.0

E. coli growth medium

57



Table 2.4 (continued)
LB Plates LB medium, 1.5% agar E. coli growth plate
Plasma 6.25mM EDTA Plasma collection for renin and

prorenin samples (final
concentration in whole blood)

Plasma inhibitor mix 6.25mM EDTA pH8.0,

0.625mg/ml 1,10-Q-

phenanthraline, 1.0 mg/ml

pepstatin A, 14.33mM (k

mercaptoethanol, 4.0 mg/ml

captopril, 0.1 mM PMSF

Plasma inhibitor cocktail for

angiotensin samples (final
concentrations in whole blood)

Protein Extraction Buffer

(Animal Tissues)

150mM NaCl, 0.25% Na

deoxycholic acid, 1%NP40

ImM Na,V04 ImM NaF
ImM EDTA, ImM PMSF,

1 mg/ml aprotinin, 1mg/ml

pepstatin A, 1 mg/ml leupeptin

Tissue lysis buffer for protein

analysis

Protein Extraction Buffer

(Sf9 cells)

250mM Na Phosphate, 1.5M

NaCl, EDTA-free Mini-Protease

Inihibitor (Roche), lOOmg/ml

PMSF, pH 7.0

Lysis buffer for Sf9 cells

SDS-PAGE Tank Buffer 0.025M Tris pH8.3, 0.192M

Glycine, 0.1% SDS

Protein electrophoresis

SDS-PAGE 4X Running Gel
Buffer

1.5M Tris-Cl pH8.8 Protein electrophoresis

SDS-PAGE 4x Stacking Gel
Buffer

0.5M Tris-Cl pH6.8 Protein electrophoresis

SDS-PAGE Water Saturated

Butanol

50 ml n-butanol, 5 ml deionised

water

Protein electrophoresis

SDS-PAGE Acrylamide
Monomer solution (National

Diagnostics)

30%(w/v) acrylamide: 0.8%

(w/v) bis-acrylamide stock

solution, 37.5:1

Protein electrophoresis
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Table 2.4 (continued)
SDS-PAGE lOxTris Buffered

Saline

0.2M Tris-Cl pH 7.4
1.5M NaCl

Protein electrophoresis

Silver staining fixative solution 50% (v/v) Methanol, 10% (v/v)
Acetic acid, 10% (v/v) Fixative
enhancer concentrate (Biorad),

30% (v/v) ddH20

Protein detection after

polyacrylamide gel

electrophoresis

Silver staining and

development solution (Biorad)

50% (v/v) Development
accelerator solution, 5% (v/v)

Silver complex solution, 5%

(v/v) Reduction moderator

solution, 5% (v/v) Image

development reagent, 35% (v/v)

ddH20

Protein detection after

polyacrylamide gel

electrophoresis

SOB Medium 2% (w/v) Tryptone, 0.5% (w/v)
Yeast extract, 0.05% (w/v) NaCl,
2.5 mM KC1, pH 7.0 adjusted
with 5N NaOH. MgCl2 added to
final concentration of lOmM

before use.

SOC precursor

SOC Medium SOC + 20mM Glucose E. coli recovery medium

following electroporation
Southern blotting

denaturing solution

0.5M NaOH, 1.5MNaCl DNA gel denaturation

Southern blotting acid

hydrolysis solution

0.125M HC1 DNA blotting

Southern blotting

hybridisation Buffer

5x SSC, 5x Denhardt's, 0.5%

SDS

DNA blotting

Southern blotting

neutralising Solution

1.5M Tris-Cl, 1,5M NaCl, ImM

EDTA, pH7.2

DNA blotting

Southern hybridisation wash

solution

2xSSC/0.1%SDS Standard stringency wash

solution for Southern

hybridisation
Southern hybridisation

stripping solution

1% (w/v) SDS, O.lxSSC, 40mM

Tris, pH 7.6

Probe removal from Southern

blots

59



Table 2.4 (continued)
20xSSC 3M NaCl, 0.3M Na Citrate, pH

7.0

DNA transfer buffer in Southern

blotting
0.8% lxTAE Agarose Gel Agarose 3.2g , ddEEO 392ml,

50xTAE 8ml, Ethidium bromide

stock 20|il

DNA electrophoresis

50xTAE 2M Tris, 0.87M Acetic Acid,

0.05M Na2 EDTA pH8

DNA electreophoresis buffer

Tail Digestion Buffer 50mM TrisHCl pH8.0, 0.1M

EDTA, 0.1M NaCl, 1% SDS

Buffer for isolation of genomic
DNA from rat tail biopsy

TE lOmM Tris pH8.0, ImM EDTA

pH8

DNA buffer

Tris Buffered Saline (TBS) x 10 0.2M Tris base, 1,5M NaCl, pH
7.4

Protein buffer

Western Blotting Blocking

Solution

5% non-fat milk powder, lxTBS,
0.1% Tween 20

Protein blotting

Western Blotting Transfer
Buffer (Towbin)

0.0479M Tris, 0.0384M Glycine,
0.037% SDS, 20% Methanol

Protein blotting

Western Blotting
Incubation/Wash Buffer

lxTBS, 0.1% Tween-20 Protein blotting

Western blotting stripping
solution

lOOmMP-mercaptoethanol, 2%
SDS, 62.5mM Tris-HCl pH6.7

Antibody stripping

2.1.7 Cloning Vectors
Plasmids puniV5HisTOPO® and pBlueBac4.5E were supplied by Invitrogen whilst

pGEM T-Easy was from Promega.

2.1.8 Tissue Culture

Tissue culture plastic was supplied by Iwaki (Aberbargoed, Mid-Glamorgan, UK) and

Corning (Jencons, UK). Low passage Sf9 cells (clonal isolate of IPLBSF21-AE) were
obtained from Invitrogen. All media were obtained from Gibco (Paisley UK). Cells were
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cultured in Grace's Insect Medium (supplemented with yeastolate, lactalbumin

hydrolysate and glutamine) (TNM-FH) with 10% insect qualified Foetal Calf Serum

(FCS) (Gibco), Gentamicin 10|ig/ml (Sigma) and 1% Pluronic F-68 (Gibco). Washes
were performed with Grace's Insect Medium (without supplements). DMSO was

supplied by Sigma.

Sf9 monolayers were maintained in a humidified environment of filtered air at 27°C in a

Hera Cell Incubator (Heraeus Instruments GmbH, Hanau, Germany). Manipulations
were carried out in a laminar flow hood (Jouan, France). All surfaces were cleansed

with 70% (v/v) ethanol prior to use. Sf9 suspension cultures were carried out in 500ml

Erlenmeyer flasks (Corning) using a digitally controlled shaker (Ika Werke, KS 130) in
a cooled incubator at 27°C (LTE Scientific). SeaPlaque GTG Agarose (FMC

Bioproducts) was used for baculoviral plaque assays.

2.1.9 Animals

All animal experiments were carried out in accordance with the Animal (Scientific

Procedures) Act 1986 at the Biomedical Resource Facility, University of Edinburgh.

Transgenic rats were bred in-house in individually ventilated cages (IVC) to specific

pathogen free standards, and transferred to standard cages at weaning. Control Fischer
F344 males were obtained from Harlan (Bicester, Oxon, UK) at 10 - 12 weeks of age.
Ambient temperature was maintained between 18 and 22°C with 45-55% humidity, on a

12 hour light-dark cycle (07.00am - 07.00pm). Rats were fed standard rat chow (Special
Diet Services, Witham, Essex) containing 0.32% NaCl, in either pellet or powder form.
Free access to food and water was allowed at all times. Rats were housed in groups of 2-
6 animals, except during telemetry experiments when they were housed individually.

Only male rats were studied.

2.1.9.1 TGRcyplalren2
In-bred TGRcyplalren2 on a Fischer F344 background were studied from around 12
weeks of age (weighing 200-300g). Hypertension was induced using indole-3 carbinol
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(Sigma) in powdered standard rat chow (Special Diet Services, Witham, Essex, UK), at
either 0.15% or 0.3% (w/w). Age and weight matched Fischer F344 male rats were used
as control animals and were fed an identical diet.

2.1.9.2 TGRoclATren2

TGRalATren2 were on an in-bred Fischer F344 background as heterozygotes. Fitters

were bred from transgenic females maintained on captopril (1Omg/kg) in drinking water.

At weaning males were selected and maintained on normal drinking water. Tail biopsies
were only taken after death in study animals to avoid the effects of tail trauma on tail

cuff plethysmography. Experiments were therefore performed blinded to the genotype of
animals.

2.1.10 Drugs and Anaesthetics

Table 2.5 Drugs and Anaesthetics

Drug Dose Supplier Comments

Amiodarone 1 mg/ml in drinking water Sanofi-Synthelabo Antiarrhythmic

Captopril 1 Omg/kg, administered in

drinking water at 0.5mg/ml

Sigma ACE inhibitor

FK506 1 mg/kg intraperitoneal in

suspension in ddH20, daily

Fujisawa Calcineurin inhibitor,

immunosuppressant
Halothane 1-5% in Oxygen. Merial Gaseous anaesthetic

Indole-3 carbinol 0.3 or 0.15% (w/w) in

powdered diet

Sigma Aryl hydrocarbon

Ketamine 1 OOmg/kg intraperitoneal Pharmacia-UpJohn Injectable anaesthetic
used in combination

with xylazine.

Nifedipine 0.5% (w/w) in powdered
diet

Sigma Dihydropyridine
calcium channel

blocker

Xylazine 5mg/kg intraperitoneal Bayer See ketamine
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2.1.11 Animal Physiology
All radiotelemetry equipment was supplied by Data Sciences International (St Paul, MN,

USA). TL11M2-PXT radiotelemetry devices were used and radiotelemetry signals were

received using PhysioTel RPC-1 receiver plates and stored on a personal computer.
Data was analysed using Dataquest ART 2.1 and Physiostat ECG 3.1 software. Animals
were housed on a custom-built rack in indiviual cages separated by aluminium shields.

Tail cuff plethysmographic blood pressure was measured using a photometric cuff
(Harvard Instruments, USA) and a customised computer detection system.

Echocardiographic studies were performed using a custom-built digital

echocardiography machine with a 16MHz linear array probe at 300 frames per second
with 2 focus lines (Dynamic Imaging, Livingston UK). Analysis was performed using a

custom designed image analysis programme (Image Analyser). Doppler studies were

performed using a VingMed Vivid 5 (General Electric) digital echocardiography
machine with a 10 MHz probe at 196 frames per second using a single focus line.

Analysis was performed off-line using the Echopac digital analysis programme

(VingMed, General Electric).

A 2F high fidelity micromanometer catheter (Millar, Texas, USA) was used to measure

left ventricular pressures. Data was acquired using a PowerLab 4SP acquisition system

(ADInstruments Ltd, Chalgrove, UK) and analysed using Chart v5.0.1 (ADInstruments).
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2.2 Methods

General methods of nucleic acid manipulation were as described in Sambrook et al.

(1989)593 and Ausubel et al. (2003).594 Restriction endonucleases and other DNA

modifying enzymes were used according to the manufacturers' instructions. Protein
methods of were as described in Coligan et al. (2001),595 whilst insect cell culture and
baculoviral methods were as described by the supplier.596'597

2.2.1 Plasmid DNA Preparation
2.2.1.1Alkaline Lysis Miniprep
Small-scale preparations of plasmid DNA for screening purposes were performed by a

598
modification of the method of Birnboim and Doly. Single bacterial colonies were

picked using aseptic technique and transferred to 50ml sterile tubes (Corning) containing
3-5 ml of LB and appropriate antibiotic. These were cultured overnight at 37°C and
shaken at 225rpm (Innova 4000 Incubator Shaker, New Brunswick Scientific). 1 ml of
bacterial culture was removed and centrifuged at 13000rpm for 30 seconds (Biofuge

Pico, Heraeus). The supernatant was removed and the bacterial pellet resuspended in
100 ml of ice-cold PI buffer, vortexed for 10 seconds and allowed to stand on ice for 5

minutes.

200 ml of P2 buffer was added, and the tube inverted 6 times to ensure complete mixing.
After no more than 5 minutes 150 ml of ice cold P3 was added and the tube inverted 6

times again. Cell debris was removed by centrifugation at 13000 rpm for 5 minutes.
The supernatant was transferred to a fresh tube and 0.7 volumes of isopropanol added to

precipitate DNA. DNA was recovered by centrifugation at 13000 rpm for 5 minutes.
The supernatant was discarded, and the pellet washed twice with 70% ethanol. After

allowing the pellet to air dry it was resuspended in 50 ml of TE containing RNAse

(20mg/ml) and stored at -20°C.
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2.2.1.2 DNA Maxi-Preps

Large-scale plasmid preparation was carried out using Qiagen Maxi-prep kit, according
to the protocol for high copy plasmids. 3ml pre-cultures containing appropriate
antibiotic were inoculated with single bacterial colonies and incubated for 8 hours at

37°C/225rpm. Of this 0.1-0.2ml was transferred to a conical flask containing 500ml of
LB/antibiotic and incubated overnight at 37°C/225rpm in an orbital shaker (Series 25
Incubator Shaker, New Brunswick Scientific). DNA was prepared according to the
manufacturer's instructions.

2.2.2 Genomic DNA Preparation From Tail Biopsy
lcm of tail tip was cut from rats at weaning (day 21) and frozen at -20°C until analysed.
Tissue was digested for 8-16 hours in 600|il of tail buffer with 30pl proteinase K

(lOmg/ml) at 55°C whilst rotated gently in a hybridisation oven. 10|ll of lOmg/ml
DNase-free RNase A (Sigma) was added and incubated at 37°C for one hour.

Phenol-chloroform extraction was performed to remove contaminating protein: one

volume of phenol (equilibrated with Tris HC1) was added with 37.5p.l of 2M (3-

mercaptoethanol, and mixed for 15 minutes on a vertical rotator. Phases were separated

by centrifugation at 13000rpm for 3 minutes. The upper aqueous phase was transferred
to a fresh microcentrifuge tube using cell saver tips to avoid shearing the DNA. 0.5
volumes of phenol, and 0.5 volumes of chloroform/isoamyl alcohol (24:1) were added.
After mixing for 5 minutes on a vertical rotator, the sample was centrifuged as before,
and the aqueous phase transferred to another tube. One volume of chloroform/isoamyl
alcohol was added, mixed by gentle rotation for 5 minutes and separated by

centrifugation. The aqueous phase was removed and DNA precipitated by addition of
one volume of isopropanol and mixing by inversion. The DNA was pelleted by

centrifugation at 13000rpm for 3 minutes. The supernatant was discarded and the pellet
dissolved in 200ml of TE at 4°C overnight, or at 37°C for 30 minutes. DNA was

precipitated again with 0.5 volumes of 6M-ammonium acetate and 2 volumes of
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isopropanol. The DNA was pelleted by centrifugation at 13000rpm for 3 minutes, and

supernatant removed. Salt was removed from the pellet by washing with 70% ethanol
and centrifugation. This was repeated and the pellet air-dried at room temperature. Once
the DNA was opaque 100ml of TE was added, and allowed to solubilise overnight at
4°C.

2.2.3 Agarose Gel Electrophoresis
Plasmid DNA molecules were separated on 1% (w/v) agarose gels (Seakem LE), whilist

genomic DNA was separated on 0.8% (w/v) agarose gels. Gels were prepared using

electrophoresis grade agarose in lx TAE buffer with 0.5pg/ml ethidium bromide.

Electrophoresis was performed using Flowgen electrophoresis apparatus (Ashby de-la

Zouch, UK) and an Electrophoresis Power Supply EPS-301 (Amersham Pharmacia

Biotech) in lx TAE at 1-3 V/cm. Samples were run in conjunction with standard size

markers, usually Hind III digested lambda phage DNA. (Promega). Electrophoresed
DNA was visualised under UV light (302 nm, UVP Transilluminator TM36, UVP Inc,

San Gabriel, California, USA) and photographed with Kodak EDAS 290 digital camera

system (Eastman Kodak Company, Rochester, New York, USA) with Kodak ID 3.5.3-
USB Scientific Imaging System software.

2.2.4 Quantitation of Nucleic Acids

DNA and RNA were quantitated by spectrophotometric analysis at wavelengths of
260nm and 280nm (UV 1201, Shimadzu) in a quartz cuvette. Plasmid preparations were
diluted at 1 in 200 in TE to a final volume of 200|il. A TE blank was used to zero

readings, and the cuvette was rinsed with ddH20 between measurements. DNA
concentration was automatically calculated from the A260 reading by the

spectrophotometer. RNA concentration was calculated on the basis that 40(ig/|il RNA

gives an A260 reading of 1.0. DNA/RNA purity was estimated by the A260:A280 ratio.
At pH 7.5 pure RNA has a ratio of 1.9-2.1, whilst DNA has a ratio of 1.7-1.9.
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2.2.5 Gel Purification of DNA Fragments
DNA was electrophoresed, then visualised under UV light for the minimal time possible
to allow appropriate bands to be cut from the gel using a clean razor blade. DNA was

extracted using Qiagen Qiaquick Gel Extraction Kit according to the manufacturer's
instructions. Purified DNA was eluted using lOmM Tris pH8.0.

2.2.6 DNA Precipitation
DNA was precipitated from solution by addition of 0.1 volume of 3M sodium acetate

and 2.5 volumes of 100% ethanol. The solution was mixed well by tube inversion 10-12

times, stored at -20°C for 30 minutes, then pelleted by microcentrifugation at

13,000rpm for 10 minutes. Pellets were washed with 70% ethanol and respun for 5
minutes. Ethanol was aspirated by pipette and the pellet allowed to air-dry for 5 - 10
minutes before resuspension in TE. tRNA (lpg) was added to the initial sample if small

yields ofDNA were anticipated to aid visualisation of the pellet.

2.2.7 Restriction Digestion of DNA
In general DNA was digested using restriction endonucleases supplied by Roche or

Promega, with supplied buffers and BSA (O.lmg/ml) where appropriate. DNA was

digested at a concentration of 0.1-0.5 pg/pl with less than 10% (v/v) enzyme. Digestions

were performed at 37°C for 8-16 hours, dependening on the quantity and type of DNA.
Double digests were performed either in a single reaction with a compatible buffer, or
else sequentially after precipitation and phenol-chloroform extraction of DNA.

2.2.8 TA Cloning of PCR Products
Two TA cloning vectors were used, puniV5HisTOPO® (Invitrogen) and pGEM T-Easy

(Promega), depending on the application. Pfu generated PCR products were incubated
with 1 unit of Taq at 72°C for 10 minutes to allow addition of 5' adenosines. It was not

necessary to gel purify PCR products. Approximately lpl of PCR product was

incubated with 1 pi of vector in ligation buffer according to the manufacturers'
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instructions. 2pl of ligation mix was used to transform TOP 10 E.coli. Appropriate
control reactions were performed.

2.2.9 Preparation of Electrocompetent E. coli
10ml cultures of E.coli without antibiotic selection were grown overnight. A new 100
-500ml culture was set up, using the overnight culture diluted 1:1000. Bacterial growth
was monitored intermittently by measuring the OD60o- At mid-log phase (OD60o 0.6)
cells were chilled on ice for 15 minutes harvested, then centrifuged for 10 minutes at

4°C at 2500 g in a bench top centrifuge (Megafuge 3.OR Heaeus) in prechilled 50ml

Corning tubes. The supernatant was removed and the cell pellet resuspended in 1
volume of ice-cold ddH20 (Milli-Q quality) by vortexing. Centrifugation and

resuspension were repeated once more. After this, cells were resuspended in 0.2
volumes of ice-cold GYT. Cells were again centrifuged for 10 minutes at 4°C at 2500 g,

the supernatant discarded, and the pellet resuspended in the liquid remaining in the tube.
This suspension was transferred to cold 1.5ml microcentrifuge tube and the volume
made up to 1.5 ml with ice-cold GYT. This was centrifuged at 13000 g at 4°C, the

supernatant removed and the pellet resuspended in 1 ml GYT. The suspension was

divided into 50ml aliquots on ice and frozen immediately at -80°C. Competence was

assessed by transfection of plasmid at limiting dilutions and counting the number of
colonies formed.

2.2.10 Transformation of Electrocompetent E. coli

Electrocompetent bacteria were transfected using an Easyject Plus Electroporation

System (Equibio, Broughton Monchelsea, UK) electroporation apparatus. 1-2 pi of

plasmid DNA was added to a fresh 50pl aliquot of electrocompetent E. coli on ice,

without mixing by pipette. This was transferred to a chilled 2mm electroporation
cuvette and electroporated at 2300V and 25pF. Bacteria were immediately placed on ice,
transferred to 200 pi of SOC at room temperature and incubated at 37°C/225rpm for 45
minutes. 20 - 50 pi of the culture was then plated out on antibiotic selection plates.
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2.2.11 Cre recombination reactions

Homologous recombination between plasmid vectors containing lox P sites was carried
out using Cre recombinase according to the supplier's instructions (Invitrogen).

2.2.12 DNA sequencing
Plasmid sequencing was performed by the Centre for Inflammation Research core

facility using an ABI Prism 377 DNA sequencing machine (Applied Biosystems,

Warrington, UK). 200 - 250ng of maxiprep DNA was used per reaction, with 3.2 pmol

primer (0.8pmol/)il) and 8 p,l of ABI BigDye Terminator Ready Mix (Applied

Biosystems), in a total reaction volime of 20|il. PCR conditions were performed on a

GeneAmp 9700 PCR machine (Applied Biosystems), under the conditions specified in
table 2.6. Sequencing was performed according to the principle of the

dideoxynucleoside chain termination reaction.599

Table 2.6 Sequencing PCR Conditions

Step Conditions

1 Rapid thermal ramp to 96°C
96°C for 10 seconds

Rapid thermal ramp to 50°C
50°C for 5 sec

Rapid thermal ramp to 60°C
60°C for 4 min

4

25 cycles

2 Rapid thermal ramp to 4°C: held until ready to purify

DNA was precipitated and pelleted as described in section 2.2.6. Pellets were stored at -20°C until

sequenced. Sequences were analysed using ABI EditView l .0.1, ABI sequence editor (Applied

Biosystems) and BLAST2 (www.ncbi.nlm.nih.gov)60" Plasmid maps were constructed using Vector NTI

(InforMax Inc, Bethesda, USA).

2.2.13 Polymerase Chain Reaction (PCR)

Polymerase chain reaction was carried out using a DNA Engine PTC-200 (MJ

Reasearch). Primers were designed using Vector NTI software, and annealing
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temperatures were calculated from the melting temperature (Tm) of a primer pair. In

general a Tm between 55°C and 65°C was acceptable. Typical reaction conditions for

Taq and Pfu are indicated in table 2.7. Variation from these conditions is indicated in
2+the text. Optimum reaction conditions were found empirically by varying the Mg"

concentration (usually 1.5 mM), and using a temperature gradient. Typically reactions
were carried out in 20jil with 500mM dNTP, 0.375 mM primers, 5 U enzyme. A 50:50

mixture of Taq/Pfu was used.

Table 2.7 PCR Conditions for Taq and Pfu Polymerase

Step Conditions for Taq Conditions for/y«/Taq
1 Rapid thermal ramp to 94°C and hold for 2

minutes

Rapid thermal ramp to 94°C and hold for 2
minutes

2 Rapid thennal ramp to 94°C N
94°C for 10 sec

Rapid thermal ramp to 55°C
55°C for 30 sec

Rapid thermal ramp to 68°C
68°C for 1 minute/kb

J

25-30

cycles

Rapid thermal ramp to 94°C "
94°C for 50 sec

Rapid thermal ramp to 55°C
55°C for 50 sec

Rapid thermal ramp to 68°C
68°C for 2 minute/kb

25

cycles

3 68°C for 10 minutes 68°C for 15 minutes

4 Rapid thermal ramp to 4°C and hold Rapid thermal ramp to 4°C and hold

2.2.14 Reverse Transcription-PCR (RT-PCR)
Reverse transcription from RNA was carried out using Superscript II RNAse IT reverse

transcriptase (Invitrogen) according to the manufacturer's protocol for random octamer

primers.

2.2.15 Southern Blotting

5-10pg of genomic DNA was digested overnight with an appropriate restriction enzyme

at 37°C, and electrophoresed in a 0.8% agarose gel in lxTAE overnight. Samples were

always included from known transgene positive and negative animals. Gels were

photographed under UV light with a transparent ruler to allow band size to be
determined. Capillary transfer was used to transfer nucleic acid to nitrocellulose
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membrane, based on the method of Southern (1975).601 Briefly, gels were then

depurinated in acid hydrolysis solution for 10 minutes with constant rocking. After

washing in ddH20, the gel was treated with denaturing solution for 30 minutes, rinsed in

ddH20 and then treated with neutralising solution twice, each for 20 minutes. The gel
was placed on 3MM Whatman paper presoaked in 20x SSC, on a standard blotting

apparatus. The gel was covered by a piece of nylon-supported nitrocellulose membrane

(Schleicher and Schuell) presoaked in lOx SSC, and 2 sheets of 3MM paper soaked in
20x SSC. DNA was allowed to transfer overnight using a paper towel stack as a wick.
The membrane was baked for two hours at 80°C between Whatmann 3M paper and
stored at room temperature until required.

2.2.16 DNA hybridisation Probe Radiolabelling
32

Random priming and incorporation of a P-dCTP was performed using the Ready-To-
Go DNA labelling beads (Amersham Pharmacia Biotech) according to the
manufacturer's instructions, based on the method of Feinberg and Vogelstein (1983).602
Probes for genotyping TGRalATren2 were isolated from pBSalATren2 (JJM4) by

sequential digestion with Sacl and Hindlll, which generated a 1.2kb fragment

containing full-length ren2d cDNA. This was isolated by electrophoresis and gel

purification.

2.2.17 Southern Hybridisation analysis
The nitrocellulose blot was rehydrated in 5xSSC at room temperature and prehybridised
at 65°C for a minimum of 30 minutes. A radioactive probe was prepared, denatured at

100°C for 3 minutes and added to the prehybridisation buffer to achieve a final
concentration of 2ng/ml. After a minimum of 16 hours hybridisation, the blot was

washed three times with standard stringency Southern hybridisation wash solution

prewarmed to 65 °C. If excessive radioactive signal remained on the blot after the
standard washes, further high stringency washes were carried out using 0.5x SSC, 0.1%
SDS. After the final wash excess liquid was removed from the filter by placing it on
3MM paper. The filter was covered in Saran wrap, exposed to Kodak X-Omat AR film
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in a film cassette with an intensifier screen at -80°C, and developed after 24 to 48 hours
in a Konica SRX-101 Developer.

2.2.18 RNA Extraction

Total RNA was isolated from animal tissues using Qiagen RNeasy kits according to the
manufacturer's instructions. Frozen tissues were rapidly weighed prior to

homogenisation to ensure recommended buffer volumes were used. Tissues were

maintained on dry ice until homogenised in buffer using an Ultra-Turrax T8 homgeniser

(Ika Werke, Germany) in a 15ml Falcon tube. Between samples the homogeniser was
cleaned with 3% hydrogen peroxide and two washes in ddH20. Homogenised heart
tissue was diluted with two volumes of ddH20 and incubated with proteinase K (0.65

mg/ml) at 55°C for 20 minutes to aid disruption and improve RNA yield. Bound RNA
was eluted from the column with RNAse-free water and recovered by centrifugation.

RNA was DNAse-treated (Ambion) and then precipitated with 0.5 volumes of 7.5M
ammonium acetate and 2.5 volumes of ethanol (-20°C). Samples were centrifuged at

13000 rpm for 20 minutes at room temperature. The supernatant was discarded, and the

pellet of RNA washed twice in 80% ethanol (-20°C). After the final wash the pellet was
air-dried and dissolved in RNAse free water. RNA integrity checked by 0.8% agarose

gel electrophoresis. RNA was stored at-80°C until analysed.

2.2.19 Semiquantative Real-Time PCR
Real-time PCR was carried out using probes and primers developed with Primer Express
1.5 (Applied Biosystems) according to standard criteria recommended by the
manufacturer. Primers were chosen that spanned intron-exon boundaries to increase

specificity of amplification. Details of probes and primers are given in appendix Al.
PCR reactions were performed and monitored using an ABI Prism 7000 Sequence
Detection System (Applied Biosystems) according to the standard conditions
recommended by the manufacturer (table 2.8).
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Assays were set up in a class II tissue culture hood to avoid contamination. cDNA was

prepared from total RNA as described in sections 2.2.14 and 2.2.18. RNA samples that
had not been reverse transcribed were used as controls to detect genomic contamination.
All reactions and controls were performed in thin walled 96 well optical plates (Applied

Biosystems) sealed with optical covers (Applied Biosystems) in 19|ul volumes.

Quantitation was normalised to 18S ribosomal RNA, and therefore every assay included
standard curves for 18S ribosomal RNA and the gene of interest using a standard pool of
reverse transcribed RNA (calibrator). The same reverse transcribed RNA pool was used
for standard curves for all plates that were to be compared. Each experimental sample
was analysed in triplicate for 18S ribosomal RNA, the gene of interest, as well and no

reverse transcriptase control. In addition, a no template control was included on each

plate for each gene.

Table 2.8. PCR conditions for real-time PCR

Step Conditions

1 Rapid thermal ramp to 50°C and hold for 2 minutes
2 Rapid thermal ramp to 95°C and hold for 10 minutes
3 Rapid thermal ramp to 95°C

95°C for 15 sec

Rapid thermal ramp to 60°C
60°C for 1 minute

40 cycles

4 (SYBR green assays) Slow thermal ramp to 90°C over 10 minutes

2.2.20 Protein Extraction

Animal tissues were kept frozen at -80°C until required for analysis. Tissues were

homogenised in chilled protein extraction buffer using an Ultra-Turrax T8 (Ika Werke,

Germany). Depending on the tissue, 1ml of buffer was used per 0.5g of tissue.

Homogenates were kept on ice, and centrifuged at lOOOrpm /4°C for 2 minutes to

remove partially homogenised debris. Supernatants were stored at -80°C until analysed.
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2.2.21 Determination of Protein Concentration

Protein concentration was determined using the bicinchonic acid method (BCA kit:

Pierce) in 96 well format in duplicate, according to the manufacturer's instructions.

Samples were incubated in the reaction mixture for 30 minutes at 37°C, cooled on ice
and immediately analysed on a plate reader (MRX, Dynex Technologies) at 570nm. A
standard curve was generated using a bovine serum albumin standard (Pierce), and

protein concentration was derived from this. Samples were diluted to 1-4 mg/ml with
extraction buffer, depending on the tissue and intended use.

2.2.22 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
SDS-PAGE was performed using Mini-Protean apparatus (Bio-Rad). A 10% running

gel was prepared and immediately poured between the gel plates, leaving approximately
3.0 cm clear from the top of the plates. This was immediately covered with water-

saturated butan-l-ol: this was poured off once the gel had set. A 4% stacking gel was
then poured on top and a gel comb placed between the plates and allowed to set. 10-50

ng protein samples (7.5 |ll maximum) were denatured in 2xLaemmli buffer at 95°C for 3

minutes, snap cooled on ice and spun down. Samples and rainbow molecular weight
marker (Amersham Pharmacia) were loaded in to wells and electrophoresed in tank
buffer at 50mA (constant) for 60 to 90 minutes depending on the resolution required.

Table 2.9. 10% SDS-PAGE Running Gel Recipe
Constituent Volume

30% acrylamide/bis-acrylamide (29:1) 3.35 ml

4x running gel buffer 2.5 ml

dH20 4.0 ml

20% SDS 50 pi
EDTA (lOOmM) 100 pi
10% ammonium persulphate 100 pi
TEMED 10 pi
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Table 2.10. 4% SDS-PAGE Stacking Gel Recipe
Constituent Volume

30% acrylamide/bis-acrylamide (29:1) 0.67 ml

4x running gel buffer 1.25 ml

dH20 2.95 ml

20% SDS 25 pi

EDTA (lOOmM) 50 pi
10% ammonium persulphate 50 pi

TEMED 5 pi

2.2.21 Western Blotting
Gels were separated from the gel plates and allowed to equilibrate with transfer buffer
chilled at 4°C for 10 minutes. Proteins were transferred to Hybond-P membrane

(Amersham Pharmacia) (presoaked in methanol, then transfer buffer) at 100V for 60
minutes using the Bio-Rad Trans-Blot Cell, and the quality of transfer was assessed by
the intensity of rainbow marker.

2.2.22 Antibody Detection by Enhanced Chemiluminesence
Antibodies and their working concentrations are listed in table 2.3. Membranes were

blocked in 5ml 5% non-fat milk in TBS/0. l%Tween 20 in a 50ml tube (Coming) for 1
hour 4°C. Membranes were then washed in TBS/Tween three times (20ml each) and

incubated overnight at 4°C with primary antibody at the appropriate concentration in

blocking solution. A further five washes in TBS/Tween (20ml each) were performed
before incubation with horseradish peroxidase-conjugated secondary antibody in

blocking solution for an hour at room temperature. A final series of five washes were

performed before incubation in ECL+plus (Amersham Pharmacia Biotech) according to

the manufacturer's instructions. Signal was detected with either Kodak X-Omat AR
film, or using a phosphoimager (Storm 860) set to blue-yellow fluorescence. Bands were

quantitated using ImageQuant 5.0 software (Storm).
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2.2.23 Silver Staining
SDS-PAGE gels were silver stained using Silver Stain Plus (Bio-Rad) according to the
manufacturer's instructions. Gels were soaked in ddH20 prior to vacuum-drying at 80°C
for 60 minutes.

2.2.24 Tissue Culture

Sf9 cells were grown in monolayer, or in suspension under the following conditions at

27°C in humdified air in an incubator (LTE), according to the supplier's
recommendations and general references 596'597'603'604

Table 2.11 Tissue Culture Conditions for Sf9 Cells

Type of culture Medium Special Conditions

Monolayer TNM-FH + 10% (v/v) FCS -

Suspension TNM-FH + 10% (v/v) FCS +

0.1% (v/v) F68 Pluronic

130 rpm horizontal shaker
1.0 - 3.5 x 106 cells / ml

TNM-FH: trichoplusia ni medium - Hink formulation, FCS: foetal calf serum

2.2.25 Maintenance and Passage of Sf9 Cells
2.2.25.1 Monolayer Culture
At confluence medium was replaced with 4 ml of fresh warmed medium and cells were

disrupted by "spritzing" with a sterile Pasteur pipette. Cells were split 1:4, or transferred
to an 80cm" flask containing 12ml of TNM-FH. Cells were checked daily for growth and

signs of infection. Typically Sf9 cells doubled over 18-24 hours.

2.2.25.2 Suspension Cell Culture
To initiate a 100ml suspension culture approximately 8 -10 80cm monolayer cultures
were required. Cells were passaged by spritzing and transferred to a disposable 500 ml

Erlenmeyer flask. Cell density was estimated using an improved Neubauer

Haemocytometer and trypan blue staining, to allow identification and exclusion of non¬
viable cells from the counts. Two counts were made for each sample and averaged. Cell
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density was adjusted to 1.8 - 2.0x106/ml with TNM-FH/Pluronic medium. Cell viability
and densities were checked daily. Under these conditions, the doubling time was 24-36
hours. Log phase growth was maintained by keeping the cell density between 1.0 and
3.5 x 106/ml. Suspension cultures could be maintained in a healthy state for more than a

month. Every 4 weeks suspension cultures were centrifuged at 600g for 5 minutes and

resuspended in fresh medium to remove cell debris.

2.2.26 Freezing and Thawing Sf9 Cells

Log phase early passage cells were spritzed and cell density counted. Cells were

centrifuged at 400-600g for 10 minutes at room temperature and the supernatant

removed. The cell pellet was resuspended in freezing medium (60% Grace's medium,
30% FCS, 10% DMSO) to achieve a density of lxlO7 cells /ml and transferred to sterile

cryovials. These were placed in an isopropanol fdled freezing chamber and allowed to

cool to -80°C at approximately 1°C per hour. After 5 days cryovials were transferred to

liquid nitrogen. To initiate monolayer cultures from frozen stocks lxlO7 log phase Sf9
cells were rapidly defrosted from liquid nitrogen storage and transferred to a 25cm
tissue culture flask containing 4 ml of TNM-FH warmed to 27°C. Cells were allowed to

attach for 20 minutes after which the medium was changed to remove DMSO.

2.2.27 Baculoviral Transfection of Sf9 Cells

2xl06 Sf9 cells were plated evenly in 60mm dishes in complete TNM-FH, and allowed
to attach over 15 minutes. 4 pi of plasmid vector (lpg/pl) (pBlueBac) containing the

gene of interest was mixed with 4 pi of Bsu 36 I deletant baculovirus (Invitrogen) inlml
of Grace's insect medium (without supplements or FCS) and 20pl of Lipofectin

liposomes (Invitrogen). Control transfections of vector DNA or viral DNA alone were

carried out. The mixture was vortexed for 10 seconds and incubated at room temperature

for 15 minutes. Medium was removed from the plated cells and replaced with 2 ml of
Grace's medium without supplements or FCS. This was removed and replaced with the
transfection mixture by distributing drops evenly across the monolayer using a pipette.
The plates were sealed in sterile plastic bags and rocked very gently (2 per minute) at
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room temperature for 4 hours. 1ml of TNM-FH was added, the plate sealed again in

plastic and the cells incubated at 27°C for 72 hours. At this time point cytotoxic effects
could be observed within the monolayer, characterised by cell enlargement, granulation
and lysis. Supernatant was harvested and stored at 4°C.

2.2.28 Baculoviral Plaque Assay
Dilutions of the transfection viral stock were made, ranging from 10"2 to 10~4. Eight or
more 100mm plates were seeded with 5xl06 cells to achieve 50% confluence: 2 plates
were used for each dilution, and 2 plates were used for control. Cells were allowed to

attach at room temperature over 30 minutes whilst being rocked gently to ensure even

distribution. All but 2 ml of medium was removed and 1 ml of the appropriate viral
dilution added by distributing drops over the entire monolayer. Plates were then sealed
in plastic and incubated at room temperature for 1 hour with gentle rocking.

After one hour monolayers were covered in 10 ml agarose-TNM-FH mixture (5 ml 2.5%
sterilised Seaplaque agarose at 47°C mixed with 5ml TNM-FH/X-gal (150mg/ml) at

room temperature). The agarose mixture was added against the side of the dish under
sterile conditions, and allowed to set at room temperature. Plates were sealed in plastic

bags containing paper towels soaked in 5mM EDTA to maintain humidity and prevent

fungal growth. These were incubated at 27°C for 5-6 days, and then inspected for
recombinant plaques.

2.2.29 Isolation of Recombinant Plaques: Generation of P1 Stocks
Recombinant plaques were identified on the basis of blue-green colouration of agarose,
which could be seen with the naked eye. At the microscopic level, plaques were

characterised by a central area of cell clearing due to cell lysis and surrounding

cytopathic effects. Plaques were "picked" using sterile Pasteur pipettes to penetrate the

agarose and aspirate the underlying cells. In general, plaques were isolated from the

plates with the lowest density of plaques to minimise the risk of cross-contamination.

Aspirates/agarose plugs were transferred to a 12 well plate seeded with 5xl05 Sf9 cells
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per well in 2ml TNM-FH. This was repeated for each plaque. Plates were sealed with

parafilm and incubated at 27°C for 4-7 days. The supernatant was collected and stored at

4°C: this represents the PI viral stock.

2.2.30 Generation of High Titre Stocks (HTS)

High titre stocks were generated by a two-step process. P2 stocks were made by
2 6

infecting two 25cm flasks (2x10 log-phase Sf9 cells) with 20pl of PI stock, and

incubating for 10 days i.e. until all cells were lysed. Half this stock was frozen at -80°C,
and the remainder was stored at 4°C. P3 stock was generated by infecting a 100ml

suspension culture of Sf9 cells (1.8-2.2xl06 cells/ml) with 1ml of P2 viral stock. Several
flasks were infected and co-incubated for 7-10 days (complete cell lysis). The stock was

purified by centrifugation at lOOOg for 20 minutes, and the supernatant stored at 4°C.

2.2.31 Determination of Viral Titres

Viral titres of the HTS were determined by limiting dilution plaque assays, as described
above. However, since the titre of the P3 stock should be many orders of magnitude

higher than the transfection stock, viral dilution of 10"6-10"8 were used on duplicate

plates. Viral titre was calculated from the number of plaques visible on a plate multiplied

by the dilution factor.

2.2.32 Sf9 Cell Lysis for Recombinant Protein Purification
100ml suspension of baculoviral infected Sf9 cells (MOI 1) were harvested after 72
hours by centrifugation at lOOOg for 15 minutes at 4 °C. The cell pellet was resuspended
in approximately 2 ml of chilled protein extraction buffer containing protease inhibitors.
The suspension was mixed with lOg alumina (Sigma) in a chilled mortar and pestle and

ground for 2 minutes to lyse cells. The lysate was diluted with 20 ml of extraction buffer
and centrifuged at 10,000rpm in a HB6 rotor (Becton-Dickinson) for 30 minutes at 4°C.
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2.2.33 Protein purification by Immobilised Metal Affinity Chromatography
5ml of Talon metal affinity resin (Clontech) (bed volume 2.5ml) was mixed 45 ml of
extraction buffer, centrifuged at 800 rpm for 3 minutes, and the wash step repeated
twice. The cleared lysate was mixed with the equilibrated resin and incubated at room

temperature for 20 minutes on a vertical rotator. The sample was centrifuged at 700g for
5 minutes at 4°C, the supernatant discarded and replaced with 45 ml of extraction buffer.
This was incubated at room temperature for another 10 minutes and then centrifuged

again. The wash step was repeated. The resin pellet was transferred to a 10ml elution
column and allowed to settle. A 10ml wash with extraction buffer was performed and
then the bound protein was eluted with 5 bed volumes of elution buffer and collected in
lml fractions. At each stage of the purification process lOOpl samples were taken for

quality control. Resins were regenerated by cleaning in 6M guanidium

(pH5.0)/l%NP40, washing with ddH20, 20mM morphoethanolsulphonic acid/0.1M
NaCl and stored in 20% ethanol/0.1% azide until reused.

Fractions were examined by Western blotting and silver staining to assess recombinant

protein content and purity. Suitable samples were pooled and the elution buffer replaced
with physiological buffer (150mM NaCl, 50mM Tris, pFI 7.45) by dialysis in 1000 times
the sample volume overnight at 4°C. Samples were concentrated using Amicon filters

(YM30). Recombinant proteins were stored at 4°C as freezing was found to inactivate

enzymatic activity.

2.2.34 Immunoaffinity Protein Purification
10ml of bacculoviral infected Sf9 cells in suspension (lxl09/ml) were pelleted and
washed repeatedly as described above, except that PBS was substituted for extraction
buffer. Cells were lysed in immunoaffinity lysis buffer on ice for 30 minutes. The

lysate was clarified by centrifugation at 10,000rpm in a HB6 rotor for 30 minutes. The

immunoaffinity column containing lml of resin was equilibrated using 10 bed volumes
of equilibration buffer, taking care to avoid dehydration. 4 ml of clarified protein
solution was added (<5mg protein) and allowed to drain. The column was washed with
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20 bed-volumes of wash buffer at room temperature to remove non-specifically bound

protein. One bed volume of elution buffer was added and incubated at 37°C for 15

minutes, and the eluate collected and stored at 4°C until analysed. Additional elution
buffer was added, incubated and collected. The column was regenerated by stripping
with 20 bed volumes of regeneration buffer. Column storage buffer was added and the
resin stored at 4°C.

2.2.35 Immunoprecipitation
0.5 ml of clarified lysate from Sf9 suspension culture was mixed with lpg of agarose-

conjugated anti-HA antibody, and mixed at 4°C on a vertical rotator for 60 minutes.

Suspensions were microcentrifuged at 13,000rpm for 5 seconds and the supernatant

aspirated and discarded. The pellet was resuspended with 1ml lysis buffer, pelleted by

centrifugation and finally washed 3 times with wash buffer.

2.2.36 Ion Exchange Chromatography
All solutions prepared for ion exchange chromatography were chilled to 4°C prior to

adjusting pH, filtered (0.22pm) and thoroughly degassed. An Akta FPLC system was

used (Amersham Pharmacia Biotech) fitted with a MonoQ anion exchange resin

(Amersham Pharmacia Biotech). Prior to use the chromatography equipment was

purged of contaminating proteins by perfusing with buffer B at 5ml/min for 30 minutes.
The column was then flushed with buffer A and allowed to equilibrate. Clarified lysate

(30ml) was prepared from 1 litre of baculovirally infected Sf9 cells using ion exchange

lysis buffer, and filtered (0.22pm) prior to injection in to the chromatography system.

A280 was measured continuously to monitor protein elution and 10ml samples were

collected automatically. The column was perfused with Buffer A at 5 ml/min until the
elution A280 reading had returned to baseline, indicating that unbound protein had been
washed from the resin. Protein was eluted using a linear salt gradient from 0-50% buffer
B over 90 minutes, created by controlled mixing of buffers A and B. Eluted samples
were collected in 5ml aliquots and stored at 4°C until analysed. Samples identified as
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containing recombinant prorenin by Western blotting were pooled and repurified using a

further round of ion exchange chromatography.

2.2.37 Collection of Blood, Tissue and Urine

Animals were sacrificed by C02 inhalation, or cervical dislocation under anaesthetic.
Blood was collected by direct cardiac puncture in to pre-chilled tubes on ice, then

microfuged at 10,000rpm for 5 minutes at room temperature. Plasma was stored at

-80°C until analysed.

As soon as possible after sacrifice tissues were dissected and either snap frozen on dry

ice, or transferred to 10% buffered formal saline. Excess blood was removed from the

heart by blotting dry on tissue paper. The heart was weighed after removal of the aortic
root and other mediastinal structures. The left ventricular free wall and septum were

dissected from the right ventricle and atria, and weighed separately, then frozen

immediately on dry ice. Tibial length was measured between the tibial plateau and the

intercondylar groove using a sliding micrometer caliper, accurate to 0.1mm.

Urine was collected from individual rats over 24 hours using metabolic cages. Urine was

centrifuged at 10 000 rpm for 5minutes to remove debris, then frozen at -80°C until

analysed. Water intake was measured by weighing water bottles before and after the

experiment.

2.2.38 Histological Analysis
Tissues were routinely fixed in 10% buffered formal saline (Sigma) overnight, or longer
if necessary. Samples were then transferred to 70% ethanol, until processed. A Citadel
2000 (Shandon Southern Products Ltd, Cheshire, UK) tissue processor was used to

process tissues through serial dehydration steps in graded ethanol concentrations (70%,

80%, 90% and 3x 100%), followed by dealcoholisation with a clearing agent, Histoclear

(National Diagnostics, Atlanta, Florida, USA) 3 times, and paraffin wax (Histoplast,
Thermo Shandon) immersion twice at 60°C. Tissues were embedded in paraffin wax
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using a Blockmaster III (Raymond Lamb) wax embedding apparatus. Sections were cut

on a microtome (Bright 5040) and floated on a water bath at 50°C (Electrothermal). For
heart 6pm sections were used, whereas 4 pm sections were cut for all other tissues.
Tissue sections were transferred to poly-lysine coated slides (BDH, Poole, UK) and
baked at 56°C for 2 hours. Slides were stored at 4°C until used.

2.2.38.1 Haematoxylin and Eosin Staining
Tissue slides were dewaxed in xylene and rehydrated in decreasing concentrations of
alcohol (100%, 90%, 70%) and stained in haematoxylin for 5 minutes. Slides were

rinsed in tap water and stained in eosin for 5 seconds, briefly rinsed in tap water again
and rapidly dehydrated in alcohol (70%, 90%, 100%). Slides were cleared in xylene and
a cover slip mounted over the tissue using pertex (National Diagnostics).

2.2.38.2 Picrosirius Red Staining 605
Paraffin sections were dewaxed and rehydrated as before, then immersed briefly in

haematoxylin to stain nuclei. Sections were washed in running tap water for 10 minutes,
then stained in solution A (Sirius Red F3B 0.5g, Picric Acid (saturated aqueous solution)

500ml) for 1- 5 minutes. Slides were washed in two changes of solution B (0.5% Acetic

Acid). Excess water was remoned by vigorous shaking, followed by dehyration through

graded alcohols (70%, 90%, 100%). Slides were cleared in xylene and mounted in

pertex.

2.2.38.3 Tissue Photomicrography

Bright field histology was photographed using an Axiovert SI00 inverted microscope

using Open Lab 3.0 software for image capture and processing.

2.2.38.4 Quantification of Left Ventricular Fibrosis

Picrosirius red stained left ventricular sections were examined at high power (XI00),
and 10 fields within the left ventricular free wall were randomly selected and

photographed, as above. Captured images were imported in to Adobe Photoshop 7.0
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and 96 point grid applied. Areas of fibrosis (red) underlying grid points were counted
for each section, and the average calculated for each animal.606

2.2.39 Analysis of Blood
2.2.39.1 Renin Angiotensin System Radioimmunoassays

Renin, prorenin, angiotensin I and angiotensin II assays were performed by Dr J Peters

(University of Greifswald, Germany). For active and inactive renin concentrations

plasma samples were pretreated with buffer or trypsin (400units/ml) and incubated with

lyophilised renin substrate (80|ig/|il) for 1 hour at 37°C. The concentration of

angiotensin I generated was determined by radioimmunoassay.566'607 For plasma renin
concentration the samples were incubated directly with substrate. Angiotenin II samples
were processed by Sep-Pak elution prior to radioimmunoassay.

2.2.39.2 Plasma Potassium

Plasma potassium concentrations were measured using a Hitachi 911 analyser (Roche)

by the Department of Biochemistry, Royal Hospital for Sick Children, Edinburgh.

2.2.40 Anaesthesia

Animals were anaesthetised either by intraperitoneal injection of inhalation of Ketamine

(lOOmg/kg) (Pharmacia-UpJohn) and Xylazine (5mg/kg),249 or by inhalation of
Halothane 1-5% (Merial, UK) in pure oxygen. Anaesthetised animals were kept warm
with a heat pad set to 37°C. The level of anaesthesia was assessed by hindlimb

responses to pain. For echocardiography a "light" anaesthetic was given, in which

prompt withdrawal responses were elicited, without other signs of consciousness. For

operative procedures a deeper level of anaesthesia was maintained in which no hindlimb

responses could be elicited.

2.2.41 Tail Cuff Plethysmography
608

Systolic blood pressure (SBP) was measured by tail cuff plethysmography in
conscious restrained animals. The equipment was calibrated manually using a
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sphygmomanometer. Measurements were made daily between 09:00 and 11:00 after at
least 5 days of training. Systolic blood pressure was defined as the deflation pressure at

which arterial blood flow was first detected. Vasodilation of the tail was induced by

warming the rats in a Thermocage heater set at 38°C for 15 minutes before the

procedure. Vasodilation was maintained during recordings by placing rats on a pad
heated to 38°C. A minimum of three recordings were obtained for each animal at each
time point and averaged.

2.2.42 Left Ventricular Catheterisation

Left ventricular pressures were measured using a 2F high fidelity micromanometer
catheter (Millar, Texas, USA) via a right carotid artery approach in anaesthetised rats.

The catheter was advanced retrogradely across the aortic valve in to the left ventricle.
Prior to use the catheter was zeroed to ambient atmospheric pressure. Data was acquired

using a PowerLab 4SP acquisition system (ADInstruments Ltd, Chalgrove, UK) and
Chart v5.0.1 (ADInstruments) at a rate of 200Hz and analysed off line. Left ventricular
end diastolic pressure was taken as the pressure recorded just prior to the systolic

upstroke. At least five consecutive beats were averaged for each measurement. The

following parameters were routinely analysed: aortic systolic and diastolic pressure

(mmHg), left ventricular peak developed pressure (mmHg), left ventricular end diastolic

pressure (mmHg), +dP/dt max (mmHg/s), -dP/dt min (mmHg/s), and heart rate (bpm).

2.2.43 B and M-mode Echocardiography
Anaesthetised rats were examined in a left lateral position on a heat pad (38°C) after the
chest had been shaved. Warmed ultrasonography gel was applied sparingly and left

parasternal long and short axis B mode views were obtained. The recommendations of
the American Society of Echocardiography609 were followed with regard to cursor

placement, using the "leading edge" method. M-mode images were obtained using B
mode guidance from the parasternal long axis. The cursor was positioned at the tips of
the mitral valve leaflets, so that it transected the septum and posterior ventricular wall

perpendicularly. Ventricular dimensions were measured from m-mode recordings
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wherever possible. This methodology is widely used and has been validated in rat post¬

mortem studies610 Measurements were made from 3-5 consecutive beats to minimise the

effect of respiration on dimensions.

2.2.44 Doppler Echocardiography
Pulse wave Doppler was used in the apical four
transmitral filling and aortic outflow respectively,
minimum possible.

2.2.44.1 Transmitral Flow Velocities

Mitral inflow is biphasic, with an early rapid phase of filling, which is passive and
occurs immediately after mitral valve opening (E wave), followed by a later phase of
active filling, caused by atrial contraction (A wave). The peak velocity of the E and A
waves were measured in 5-6 consecutive beats, as well as the deceleration time (dt) and
the rate of deceleration of the early filling phase.

2.2.44.2 Isovolumic Relaxation Time

Isovolumic relaxation time (IVRT) was measured by positioning the pulse wave Doppler

sampling volume between aortic and mitral flows to obtain both mitral and aortic

signals. IVRT was measured from the closure of the aortic valve, represented by a small
"click" in the Doppler spectra coincident with the end of aortic flow, to the onset of
transmitral flow.

2.2.44.3 Aortic Doppler Velocities and Cardiac Output
Aortic Doppler signals were detected in the five-chamber view, with the pulse wave

sampling volume positioned in the left ventricular outflow tract, allowing measurement

of left ventricular outflow tract (LVOT) peak velocity. Velocity time integral (VTI) was
determined by tracing round the Doppler signal.

and five chamber views to assess

Sample volume was reduced to the
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2.2.45 Echocardiographic Formulae
Left ventricular mass

Left ventricular mass was estimated using the uncorrected cubed formula, derived and
validated in humans by Devereux and Reichek.6'1

LV mass = 1.04 {(IVSd + LVDd+PWTd)3 - (LVDd)3} Equation 1

where IVSd is end diastolic interventricular septum thickness, LVDd is end diastolic left
ventricular diameter and PWTd is the posterior wall thickness in diastole. This assumes

that the heart comprises a prolate ellipsoid with a specific gravity of 1.04 g/cm , with the

long axis dimension being twice that of the short axis. Although such an assumption

may not be valid, particularly in pathological situations, the formula has been validated
in hypertensive rats.61" Other formulae are available for LVM estimation,61' but they
require adequate B-mode (2 dimensional) images which are not always obtainable in
rats.

Endocardial Fractional Shortening (eFS)

eFS%= 100 X (LVDd- LVDS) Equation 2

LVDd

Midwall Fractional Shortening (mFS)

mFS% = 100X {(LVDd+PWTd)-(LVDs+2a)} Equation 3

(LVDd+PWTd)

where a is the distance from the posterior wall endocardium of a theoretical midwall
fibre at end systole.614 "a" can be solved from the following equation, derived from the

assumption that the volume of the ventricular muscle remains constant throughout the
cardiac cycle.
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(0.5LVDd+0.5PWTd)2 - (0.5LVDd)2 = (0.5LVDs+a)2 - (0.5LVDS)2 Equation 4

(0.5LVDd+PWTd)2 - (0.5LVD) (0.5LVDS+PWTS)2 - (0.5LVDS)

Cardiac output

Cardiac output was estimated using the following formula.10"1

Cardiac Output (CO) = VTI x {7t(LVOT/2)2}x heart rate Equation 5

where VTI is the velocity time integral, and LVOT is left ventricular outflow tract

diameter.

2.2.46 Radiotelemetry Device Implantation

Radiotelemetry devices capable of monitoring blood pressure and ECG data were

implanted in the abdomen ofmature rats (weight 250-350g) under halothane anaesthesia

by Mrs Gillian Brooker. The blood pressure cannula was introduced in to the abdominal
aorta below the renal arteries, and fixed with tissue glue. The two electrodes were

implanted subcutaneously in the lead II configuration, with the negative lead at the right
forelimb and the positive lead at the left hind limb. The device was fixed to the anterior
abdominal wall with silk sutures, and the wound closed with surgical clips. Animals
were allowed to recover for at least 14 days before studies were commenced.

2.2.47 Radiotelemetry Blood Pressure Analysis
Data was collected using Dataquest ART 2.1 software (Data Sciences). The frequency of

recordings varied depending on the duration and purpose of the study. Usually

recordings were taken from each animal for 10s every 20 minutes. Data quality was

assessed from the appearance of the blood pressure waveform in real time (continuous

mode), and overall appearance of readings for the recording period. The development of
catheter thrombi was recognised by poor quality "damped" waveforms and artificially

high or low blood pressures. Data was not collected from these animals. Raw blood
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pressure data was exported as ASCI fdes and analysed in Microsoft Excel (2001).
Systolic and diastolic blood pressures were obtained for each animal, and a moving

average was applied to the whole group to smooth out variations where indicated.

2.2.48 Radiotelemetry ECG Data Analysis
ECG waveform data was analysed using Physiostat ECG software 3.1 (Data Sciences

International) set to the default parameters for rats. The "end fit" method was used for
detection of the end of T wave, as opposed to the threshold method. Traces were

reviewed manually for each time point for each rat, to assess alterations in cardiac

rhythm and recording quality. Parameters for each screen of ECG data (representing one

10s recording period) were automatically analysed and averaged by the software to

generate an average or "reference" complex. This data was exported and analysed in
Microsoft Excel 2001. For each parameter, a daily average was calculated for each

animal, which was used to calculate group averages for that day. Data from

unsatisfactory recordings due to movement artefact was discarded. The following

parameters were routinely measured: Heart rate (bpm), P wave: duration, amplitude (s)

(mV), PR and PQ interval (s), R wave amplitude (mV), QRS duration (s), S wave

amplitude (mV), T wave amplitude (mV).

QT interval was analysed Bazett's Formula 615
QTcB (s) = QT interval Equation 6

VRR interval

2.2.49 Radiotelemetry Arrhythmia Analysis
All ECG recordings were scrutinised for evidence of arrhythmias. Ventricular

arrhythmias were graded according to the Lown classification.616 This method has been

applied to both human and animal populations and grades ventricular premature beats as

follows: no ventricular ectopic beats (grade 0), occasional isolated ventricular premature
beats (grade 1), frequent ventricular premature beats (>l/min or >30/h) (grade 2),
multiform ventricular premature beats (grade 3), couplets (grade 4a), salvos of

89



ventricular premature beats (grade 4b) and early ventricular premature beats (R on T)

(grade 5).

2.2.50 Statistics

All animal experiments were carried out with 6 animals per group, unless otherwise
stated. Data is represented as the group mean, plus/minus the standard error of the mean.

Microsoft Excel (Office 2001) was used for data handling and analysis. GraphPad Prism
4.0a software was used for statistical analysis. p<0.05 was considered significant, and
two-sided tests were used. Comparison of single groups at single time points was made

using Student's t-test. Comparisons between multiple groups were made using one-way

ANOVA, followed by Tukey's post-hoc test for significance. Two-way ANOVA was

used to test for interactions between 2 or more variables, followed by Bonferroni's post-
hoc test. When repeated measurements were made during longitudinal follow up studies,
statistical analysis was by repeated measures ANOVA.
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Chapter 3
Low Dose Induction Experiments in

TGRcyp1a1Ren2

3.1 Introduction

Short term experiments in TGRcyplalren2 demonstrated that there is a dose-dependent
effect between I3C and RAS activation, and that 0.3% I3C (w/w) induces malignant

581 587
hypertension over a 14 day period. ' However it is not clear whether the dose of

inducing agent is critical to the phenotype of this model in long-term experiments. This
issue is complicated, because the relationship between prorenin level, hypertension,
vascular remodelling and vascular injury is not known, and may be dependent on many

kinetic variables relating to I3C metabolism, transgene induction, transgene clearance,
substrate availability,617 and vascular structural remodelling, not to mention mechanisms
of compensation and repair. Experiments in rats transgenic for human angiotensinogen
found a non-linear relationship between the dose of osmotic minipump delivered human
recombinant renin and blood pressure,618 suggesting that a lower level of prorenin
induction in TGRcyplalren2 may have dramatically less effect on blood pressure.

Other renin-based transgenic models of hypertension such as TGRmren2-27,56"
TGRalATren2408 and dTGR619 appear to develop cardiac hypertrophy, but succumb to

malignant hypertension (MH) before the development of heart failure. In contrast,

models such as the spontaneously hypertensive rat (SHR) develop compensated LVH
before progressing to heart failure after 18-24 months,106 whilst certain SHR sub-strains

620
are prone to heart failure within 12 months. Dahl salt sensitive rats (DS) have an

accelerated progression from compensated LVH to heart failure, occurring over just a

few months.108,114 Such differences do not appear to be related to the severity of
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hypertension, which is similar between all models, so it is possible that RAS activation
either predisposes to MH, which is rapidly fatal, or else RAS activation is not sufficient
alone to stimulate progression to cardiac decompensation.

Given that 0.3 % I3C induces a severe phenotype that is potentially fatal, we chose to

explore the effect of a lower dose of inducer to assess the possible consequences of
chronic hypertension on cardiovascular pathophysiology. In particular we sought to

establish whether chronic hypertension would lead to hypertensive heart disease, cardiac
failure and fatal arrhythmias, as is seen in essential hypertension in humans.44
TGRcyplalren2 may be an ideal monogenic model of hypertension in which to explore

manipulations that accelerate or ameliorate LVH and progression to heart failure.

Furthermore, TGRcyplalren2 also allows the reversibility of LVH and cardiac

dysfunction to be studied by simply removing the inducing agent from the diet.

We therefore characterised the effect of chronic hypertension induced by dietary 0.15%
I3C (w/w) on cardiovascular function in cohorts of TGRcyplalren2 and F344 controls.
One group of animals was monitored using chronically implanted radiotelemetry devices
to accurately determine haemodynamic and ECG variables. This group also underwent
serial echocardiographic assessment of cardiac function. Other groups were studied at

different time points in a standard manner to assess cardiac function by left ventricular

catheterisation, as well as to obtain samples for left ventricular BNP expression, cardiac

histology and plasma RAS parameters. In addition, the reversibility of all these

parameters was assessed in a group that were returned to standard rat chow after 42 days
of I3C.

3.2 Plasma Renin-Angiotensin System Parameters.
3.2.1 Plasma Prorenin

Prior to dietary I3C exposure, plasma prorenin levels were not significantly different
between TGRcyplalren2 compared to F344 control animals (figure 3.1a). As expected,
I3C had no effect on plasma prorenin levels in F344 animals at any time point, but led to
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a progressive and substantial increase in TGRcyplalren2 animals over a 140-day

period. At days 42, 84 and 140, prorenin levels were elevated 130, 270 and 1225 times

respectively, compared to F344 controls (p<0.001). Removal of I3C from the diet at day
42 resulted in almost complete resolution of plasma prorenin levels to pre-induction
levels within 7 days.

3.2.2 Plasma Renin

The pattern of plasma renin levels differed to that of prorenin in both magnitude and

timing. At baseline and day 42, plasma renin activities were identical between

transgenic and control animals, despite the elevated prorenin levels at these time points

(figure 3.1b). By day 84, renin levels were 4-fold higher in transgenics, reaching only
5.7 fold at day 140. Therefore, in contrast to prorenin, active plasma renin levels are

only modestly elevated, and this is only seen at later time points. After withdrawal of

dietary I3C plasma renin levels were within the normal range by day 7.

3.2.3 Plasma Angiotensin II
Plasma angiotensin II levels were not significantly different between groups at baseline
or day 42 (figure 3.1c). Ang II levels were non-significantly elevated at later time points

by approximately 2-3 fold.

3.3 Blood Pressure Response
To define the chronic effect of 0.15% I3C on blood pressure, animals were studied with

radiotelemetry devices implanted in the abdominal aorta. This allowed continuous

monitoring of blood pressure on a beat-to-beat basis in conscious free moving animals
over several months. Recordings were started one month after device implantation due
to technical problems with telemetry receivers. This delay also avoided the effects of

surgery/anaesthesia on cardiovascular function,621 To simplify analysis a twenty-four
hour moving average was applied to blood pressure data. Baseline parameters were

obtained over a 3-day period prior to dietary I3C exposure, and were indistinguishable
between TGRcyplalren2 and F344 rats (figure 3.2).
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Figure 3.1 Renin-Angiotensin System in TGRcyp1a1ren2 in

Response to 0.15% I3C
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TGRcyplalren2 and F344 controls were fed 0.15% I3C (w/w) over 140 days a). Plasma prorenin. b).
Plasma active renin, c). Plasma angiotensin II. n=6 per group, mean ± SEM. * p<0.001 TGR vs

F344. TGR:TGRcyplalren2, F344: Fischer 344 control. Two-way ANOVA, Bonferroni's test.
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Figure 3.2. Blood Pressure Response of TGRcyp1a1ren2 to

0.15% Indole 3-Carbinol.
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24-hour averaged telemetric blood pressure of TGRcyplalren2 and F344 animals. Rats were fed 0.15%
I3C from day 3 onwards for 140 days. Dietary I3C was omitted in 4 TGR after 42 days to study the

reversibility of blood pressure changes. Data was collected continuously for the first month and then at

weekly intervals for 24 hours. Data between recordings is interpolated, a). Systolic blood pressure, b).
Diastolic. TGR: transgenic (n= 8 and 4), F344: Fischer 344 control (n= 6). Mean ± SEM.
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I3C 0.15% w/w induced a sustained rise in systolic and diastolic blood pressures in

TGRcyplalren2 but not F344 controls (figure 3.2). Blood pressure stabilised at

189±7/144±6 mmHg after 30 days, and remained elevated until day 140, at which time
the study was terminated. In the regression group, blood pressure was not significantly
different from control animals within 4 days of stopping I3C (figure 3.2).

3.4 Heart Rate and Heart Rate Variability
Radiotelemetric ECG recordings were analysed for heart rate and RR interval

variability. Baseline heart rate was similar between groups, but there was significant

variability in heart rate within groups from week to week. However, linear regression

analysis demonstrated an increase in heart rate in the transgenic group over the study

period (fig 3.3), whilst overall, the heart rate did not change significantly for the control

group.

Figure 3.3 Average Heart Rate During Induction of

TGRcyp1a1ren2 with 0.15% I3C (w/w)

0 50 100 150
Time (days

Linear regression analysis demonstrated a significant difference in the heart rate of transgenic and control
animals over the course of the study, p =0.018 TGR vs F344 (TGR y=0.6707x+376.6, F344 y=-

0.2572x+363.1: p=0.018). TGR: transgenic (n=8), F344: Fischer 344 control (n=6).
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Heart rate variability was measured as the standard deviation of the RR interval, and

again there was substantial intra-group variability with time. Linear regression
demonstrated a significant decline in heart rate variability in the transgenic group

compared to controls (figure 3.4).

Figure 3.4 Heart Rate Variability During Induction of

TGRcyp1a1ren2 with 0.15% I3C (w/w)

Time (days

Heart rate variability was determined as the standard deviation of the RR interval. Whilst F344 animals
retained heart rate variability throughout the study, transgenic animals demonstrated a steady decline.
Statistical analysis was by linear regression (TGR y=-2.328xl(J4 x + 0.02119, F344 y=6.0xl04 x

+0.02100: p<0.0001). Mean ± SEM. 95% confidence intervals are shown for regression lines. TGR:

transgenic (n=8), F344: Fischer 344 control (n=6).

3.5 Left ventricular hypertrophy
Since TGRcyplalren2 develop chronic hypertension in response to an activated RAS,
evidence of left ventricular hypertrophy was sought. This was measured gravimetrically
relative to body weight as the left ventricular mass index (LVMI). As expected, LVMI
was identical in TGRcyplalren2 and F334 animals prior to induction of hypertension
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(figure 3.5). After 42 days of induction the LVMI of transgenic animals was increased

by 25% compared to controls, increasing to 77% by day 140. LVH at 6 weeks was

reversible, with the regression group demonstrating a 75% reduction 7 days after
cessation of I3C, and complete regression by 42 days (figure 3.5). Therefore, LVH

appeared to be rapidly reversible in response to restoration of normal haemodynamic
and neurohumeral parameters.

Figure 3.5 Changes in Gravimetric Left Ventricular Mass Index.
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LVMI was measured at serial time points before, during and after induction of hypertension with I3C. n=6

per group, mean ± SEM. * p<0.001 TGR vs F344, f p>0.05 TGR regression vs F344. TGR n= 8, TGR

regression n=4, F344 n=6. TGR: transgenic, F344: Fischer 344 control. 2-way ANOVA, Bonferroni's test.

LVH is characterised by a typical pattern of gene expression changes, including the
increased expression of BNP.64 To demonstrate that TGRcyplalren2 develops typical
LVH, left ventricular BNP expression was determined by a SYBR green Real Time PCR

assay. Primers were designed using Primer Express software with reference to the

published rat BNP genomic sequence:62" primers JJM504/505 span the intron 2/exon 3

junction (figure 3.6), and were found to meet the criteria for Real Time PCR.

Experiments to optimise the primer concentrations were performed (figure 3.7), and
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cloned PCR product was sequenced to confirm the fidelity of amplification. BNP

expression relative to 18S ribosomal RNA was increased by 70% at day 42 of induction

(p<0.01), and suppressed by 35% after regression, relative to F344 controls (p=ns)

(figures 3.8, A2.1, A2.2, tables A2.1 and A2.2). This data indicates that the increases in
LVMI are associated with induction of the foetal programme of gene expression, and
that LVH is reversible both in terms of LV mass and patterns of gene expression.

Figure 3.6 Rat BNP Real-Time PCR Primer Design

exon 2 intron 2 exon 3

gctgctttgggcagaagatagaccggatcggcgcagtcagtcgcttgggctgtgacg ggctgaggttgt
► ^

Forward (JJM 504) Reverse (JJM 505)

Rat BNP sequence 5'-3'. BNP specific primers (red) were design to comply with Real Time PCR

parameters using Primer Express software. In addition, primers were designed to span intron 2, thereby

reducing the risk of genomic DNA amplification. BLAST analysis of primers indicated that they had no

homology with other rat sequences.
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Figure 3.7 Primer Optimisation for BNP Real Time PCR Assay
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A single left ventricular cDNA sample was amplified in quadruplicate using BNP primers at the

concentrations (nM) indicated. The optimal primer concentrations were considered to be 300nM forward,
900nM reverse. Ct: threshold cycle. Mean ± SEM.

Figure 3.8 Left Ventricular BNP Expression

Induction Regression

Left ventricular BNP was measured in two separate groups after 42 days of 0.15% (w/w) I3C, and after 42

days of regression. Results are relative to a calibrator sample and normalised to 18S expression. BNP was

elevated 1.7-fold after 42 days of induction. Conversely after regression, BNP was suppressed. Mean ±

SEM. *p<0.01, f p=ns TGR vs F344. TGR: transgenic, n=5, F344: Fischer 344 control, n=4. 2-way

ANOVA, Bonferroni's test.
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3.6 Cardiac Function During LVH Development
3.6.1 Echocardiography

Echocardiography was performed to estimate cardiac function and mass non-invasively

during the development of hypertension. To establish the reliability of

echocardiographic measurements, and the degree of intraobserver variability, digital

echocardiography recordings from one group of animals were analysed on two separate

occasions 2 days apart by the same observer. Estimates of intraobserver variability are

given in table 3.1, and in general this was low except for posterior wall thickness during
diastole. Similar values have been reported in the literature, suggesting that such

623
variability is acceptable, though not ideal.

Table 3.1 M-mode Echocardiographic Intraobserver Variation

Parameter % difference Standard Error p value

IVSd 7.12 2.95 NS
LVDd 1.31 0.84 NS
PWTd 8.25 1.77 p=0.004
IVSs 2.92 1.29 NS
LVDs 2.17 1.71 NS
PWTs 3.41 1.64 NS

Measurements from M-mode digital recordings of 6 TGRcyplalren2 rats were made on two separate
occasions 2 days apart. Averages for each parameter were compared, and the percentage difference
calculated. (Mean ± SEM). IVS: interventricular septum, LVD: left ventricular internal dimension, PWT:
posterior wall thickness, d: diastole, s: systole. Repeated measures ANOVA, Bonferroni test.

Echocardiography demonstrated that LVEI was concentric, in that there was a

progressive increase in septal and posterior wall thicknesses, and a significant reduction
in relative wall thickness in the transgenic group compared to controls (table 3.2, fig 3.9
& 3.10). Echocardiographically determined LVMI mirrored the gravimetric

measurements, but absolute values were significantly different (fig 3.9). There was no

significant change in endocardial or midwall fractional shortening over the duration of
• I

the study (table 3.2). Although there was a decline in fractional shortening in the

transgenic group by day 140, this was not statistically significant (two-way ANOVA)

(table 3.2). Therefore, there was no evidence of heart failure in the transgenic group.
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Figure 3.9 Echocardiographic Changes in Left Ventricular Mass
Index

0 50 100 150
Time (days)

Echocardiography was performed before, during and after induction of hypertension with 0.15% 13C. LV
mass was calculated using the cubed formula611 (section 2.2.45) and used to calculate LVMI. n=6 per

group, mean ± SEM. * p<0.001 TGR vs F344, t p>0.05 TGR regression vs F344. TGR n= 8, TGR

regression n=4, F344 n=6. TGR: transgenic, F344: Fischer 344 control. 2-way ANOVA, Bonferroni test.

Figure 3.10 Echocardiography in TGRcyp1a1ren2 and F344
Rats

Septum
Left ventricular cavity
Posterior wall

Septum
Left ventricular cavity
Posterior wall

Standard parasternal long axis (a and b) m-mode (c and d) echocardiographic views of F344 (a, c) and
TGR (b, d), demonstrating concentric LVH after 140 days of induction with 0.15% (w/w) I3C.
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Table 3.2 Serial Echocardiography During the

Development of Hypertension and LVH

Day 42 Day 84 Day 133

TGR F344 TGR F344 TGR F344

IVSd 2.08 c 1.69 2.27 c 1.62 2.30c 1.72

(mm) ±0.03 ±0.12 ±0.04 ±0.04 ±0.11 ±0.04

LVIDd 7.55 7.91 7.29a 7.73 7.45b 8.114

(mm) ±0.11 ±0.20 ±0.16 ±0.11 ±0.15 ±0.13

PWTd 1.50 1.18 1.94c 1.34 1.81 2a 1.33

(mm) ±0.09 ±0.05 ±0.13 ±0.11 ±0.08 ±0.02

RWT 2.56b 3.38 1.93c 2.99 2.07 B 3.04

±0.14 ±0.17 ±0.14 ±0.18 ±0.09 ±0.08

LVMI 2.51 c 2.00 2.99 c 1.78 3.05 c 2.02

(mg/g) ±0.08 ±0.07 ±0.13 ±0.17 ±0.19 ±0.05

eFS 24.3 26.5 24.1 24.7 19.3 26.5

(%) ±2.01 ±1.1 ±2.1 ±1.8 ±3.3 ±2.5

mFS 14.2 14.7 12.3 14.93 12.4 16.1

(%) ±1.4 ±1.3 ±1.23 ±1.4 ±0.5 ±1.1

2-way ANOVA, Bonferroni's test. A p<0.05 , B p<0.01, c p<0.001 vs F344.
Mean ± SEM. n=8. TGR, n=6 F344. eFS: endocardial fractional shortening,
mFS: mid-wall fractional shortening, IVS: interventricular septum, LVID:

left ventricular internal dimension, PWT: posterior wall thickness,
RWT: relative wall thickness, d: diastole, s: systole.

103



3.6.2 Left Ventricular Catheterisation

Left ventricular catheterisation on day 140 demonstrated that left ventricular end
diastolic pressure, maximal and minimal rates of LV pressure change (dP/dt max/min)> and
maximal and minimal rates of LV pressure change corrected for pressure

((dP/dTmax/min)/P) were not significantly different between groups at any time point

(Table 3.3). It should be noted that the maximal developed LV pressures and aortic

pressures were substantially lower than arterial pressures measured by radiotelemetry,

suggesting that anaesthesia and surgery had a significant impact on haemodynamics and
cardiac function.

Table 3.3 Day 140: Left Ventricular Catheter Data

LVEDP dP/dtmax dP/dt^,, (dP/dTmJ/P (dP/dTmi„)/P
mmHg mmHg/s mmHg/s /s /s

TGR 16.7 5349 4665 68.7 58.3
±2.2 ±462 ±537 ±3.8 ±2.6

F344 16.0 4632 4375 67.3 57.4
±1.6 ±139 ±176 ±6.1 ±4.3

TGRcyplalren2 and F344 animals underwent LV catheterisation at day 140. N=6 per group. Mean ±
SEM. No significant differences between groups (1-way ANOVA). LVEDP: left ventricular end diastolic
pressure, dP/dt^/^,,: maximal and minimal rates of pressure change, (dP/dTmajl/min)/P: maximal and
minimal rates of pressure change corrected for instantaneous pressure.

3.7 Electrical Remodelling
Electrophysiological changes in hypertrophied cardiomyocytes are reported to

predispose to ventricular arrhythmias.54'624 It was therefore of interest to determine
whether such changes could be detected in TGRcyplalren2, and whether arrhythmias
contributed to premature mortality. Telemetric ECG recordings were made for 12

TGRcyplalren2 and 6 F344 rats over 140 days. These were analysed for changes in
ECG morphology and cardiac rhythm.
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3.7.1 Changes in ECG Morphology
Several distinct and significant changes in ECG morphology developed over time as

hypertension and LVH developed. These included significant prolongation of QRS

duration, PR and QT intervals, and increased amplitude of the R and T waves. In all

cases, regression of hypertrophy after 42 days resulted in complete resolution of ECG

morphology to baseline.

3.7.2 QT Interval and QRS Duration

QT interval was measured using the threshold method to identify the end of T waves.

To validate QT interval measurement using this software 2 transgenic and 2 F344 rats

were treated with amiodarone (lmg/ml in drinking water), a drug known to prolong QT
interval. Over 10 days this resulted in an increase in QTcB of 8% compared to baseline

(167± 1 to 181± 1 ms, p<0.05), indicating the validity of this approach (figure 3.11). The

changes in QT interval followed the same pattern regardless of the method used to

correct for differences in heart rate. Data presented here was analysed using Bazette's
625

formula, which is widely used in human and some rodent studies.

QT interval was identical between groups at baseline, but began to rise after 14 days of
I3C induction in the transgenic group (figure 3.12). This rise was progressive and
sustained throughout the entire study. By day 140, QTcB was increased by 44%

compared to the starting value (p<0.001). There was a minor increase in QT interval in
the control group (p=ns). Regression of LVH after 42 days resulted in restoration of QT
interval to normal in a matter of days, despite continued LVH beyond this time. This
indicates that the changes causing QT prolongation are probably driven by either the

prevailing haemodynamic conditions or RAS activation, rather than being integral to
LVH itself. Since QT interval is influenced by serum potassium concentration this was

analysed in a cohort of rats at day 84, at time point at which QT interval is significantly

prolonged. No significant difference was found between groups (F344 5.14 ± 0.13mM
vs TGR 5.06 ± 0.15mM, p>0.05), suggesting that QT changes were due to intrinsic
changes in hypertrophied hearts.
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Figure 3.11 Effect of Amiodarone on QTc Interval
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Drinking water was supplemented with amiodarone (lmg/ml) for 2 rats, and left unsupplemented for 2
others. ECG monitoring was carried out using chronically implanted radiotelemetry devices. QT interval
corrected by Bazette's formula was measured for each group and averaged for each day. Mean ± SEM.
*p<0.05 Amiodarone vs Water: 2-way ANOVA, Bonferroni's test.

Figure 3.12 Corrected QT Interval During the Development and

Regression of LVH
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QT interval corrected by Bazette's formula was measured for all ECG recordings for each group and
averaged for each week. TGR n= 8 and 4, F344 n= 6, mean ± SEM. *p<0.001 TGRvs F344: two-way
ANOVA, Bonferroni's t test. TGR: transgenic, F344: Fischer 344 control.
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Figure 3.13 QRS Duration During the Development of LVH

Time (days

QRS duration was measured for all ECG recordings for each group and averaged for each week. TGR n=

8, F344 n= 6, mean ± SEM. * p<0.05 TGRvs F344. Two-way ANOVA, Bonferoni's test. TGR:

transgenic, F344: Fischer 344 control.

QRS duration was initially identical between groups at baseline, and remained so until
42 days (figure 3.13). However, after this, QRS prolongation occurred, increasing by
18% by the end of the study (p<0.05). No evidence of bundle branch block was seen.

3.7.3 R and T wave Amplitude

In humans LVH typically gives rise to increased R wave voltages, and this was

demonstrated in this study. Amplitudes were similar between groups prior to induction

(figure 3.14).
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Figure 3.14 R Wave Amplitude During the Development and

Regression of LVH

R wave amplitude was measured from radiotelemetric ECG recordings. Each point represents the mean ±

SEM of all recordings for each week for each group. Although the differences between groups did not

reach statistical significance at any time point, the interaction between genotypes was highly significant

(p<0.0001, 2- way ANOVA). The decline in R wave amplitude and increased variability at later time

points in TGR represents the onset of R wave alternans in this group. TGR: transgenic, F344: Fischer 344
control. TGR n= 8 and 4, F344 n= 6, mean ± SEM.

Induction caused a prompt increase in R wave amplitude, which progressed with the

development of LVH, reaching a maximum increase of 26% at day 77. The differences
between groups did not reach statistical significance by two-way ANOVA at any time

point, although the interaction between genotypes was highly significant (p<0.0001).
After day 77, R wave variability increased due to the development of R wave alternans
in 4 of 8 of the transgenic animals. This phenomenon likely accounts for the apparent

decline in R wave amplitude towards the end of the study. Interestingly the animals that

developed R wave altemans did not develop evidence of echocardiographic heart failure,
nor were they predisposed to premature death. Withdrawal of inducer and regression of

hypertension led to a rapid decline in R wave amplitude, despite persistence of LVH at
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this time point, suggesting that hypertension or RAS activation, rather than LVH are

responsible for the observed increase in R wave amplitude.

Figure 3.15 T Wave Amplitude During the Development of LVH
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The overall interaction between genotype and T wave amplitude was highly significant (p<0.0001), with
evidence of a progressive increase in amplitude in the transgenic group compared to controls. TGR n= 8,
F344 n= 6, mean ± SEM. * p<0.05 TGRvs Con. TGR: transgenic, F344: Fischer 344 control. 2-way
ANOVA

Compared to baseline, T wave amplitude increased to a maximum of 0.146 mV by day

126, representing a 342% increase (p<0.05) (figure 3.15). Variability within the

transgenic group was high.

3.7.4 Arrhythmias
ECG recordings for each animal were examined for evidence of arrhythmia, summarised
below.

3.7.4.1 Ventricular Ectopy and Ventricular Tachycardia
All ECG data was reviewed and ventricular ectopy was graded according to the Lown
classification.616 Overall, the incidence of ventricular arrhythmias was low in both

-TGR
-F344
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groups. Ventricular ectopy (Lown Grade II) was statistically more frequent in the

transgenic group (1.9 vs 0.0 per animal p=0.026). Other ventricular arrhythmias failed to

reach statistical significance, and there was no evidence of sustained ventricular

tachycardia (Table 3.4), even in animals that died in the final week of the study.

3.7.4.2 Bradyarrhythmias and Heart Block
One transgenic animal developed 2:1 heart block after 13 weeks: this was almost

permanent, though periods of normal sinus rhythm were noted. Transient episodes of
2:1 heart block were detected in all other animals, both transgenic and control.

Table 3.4 Incidence of Ventricular Ectopy During Development
of Hypertension

Lown Grade of Ventricular Ectopy

Genotype I II III

(Total incidence per animal over

IVa

duration of study)

IVb

TGR 5.6 1.9" 0.0 1.0 1.4
±2.82 ±0.67 ±0.0 ±0.63 ±0.91

F344 3.0 0.0 0.0 0.0 0.25
±1.15 ±0.0 ±0.0 ±0.0 ±0.25

Results are presented as mean ± SEM. I - IVb: Lown Grade of Ventricular Ectopy. TGR n=8, F344 n=6.
a

p=0.026 vs F344. 1-way ANOVA, Tuckey's test.
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Figure 3.16 Examples of Arrhythmias Detected by

Radiotelemetry
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Radiotelemetric ECG recordings from TGRcypl a I ren2 fed 0.15% (w/w) I3C. a) Normal sinus rhythm, b)
Ventricular bigeminy. c) Salvos of non-sustained ventricular tachycardia.
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3.8 Cause of Death

Telemetered animals were studied for 140 days at which point the study was terminated

following the unexpected death of 3 animals over a 2-day period. 2 animals had
witnessed generalised seizures prior to death, and the third was noted to have brief focal
seizures on the day prior to death. Analysis of telemetric ECG recordings at the time of
death in these animals did not reveal any specific arrhythmia to account for the seizures,
nor was there a significant rise in blood pressure to suggest the development of

malignant hypertension.

Figure 3.17 Renal and Cardiac Histology at Day 140

Haematoxylin and eosin stained kidney sections from Fischer F344 (A) TGRcyplalren2 (B-C) B: hyaline
tubular cast formation (h). C: severe arteriolosclerosis (a). Picrosirius red stained cardiac sections from

F344 (D) and TGR (E) demonstrating mild interstitial fibrosis.
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oedema to account for the seizures. Cardiac histology did not suggest recent or previous

myocardial infarction nor was there a significant difference in interstitial fibrosis

(figures 3.16 and 3.18). Renal histology revealed changes consistent with severe

ischaemia secondary to hypertensive arteriolosclerosis (figure 3.16). It therefore seems

likely that the rats suffered from renal impairment, causing metabolic disturbance and
seizures.

Figure 3.18 Left Ventricular Fibrosis at Day 140

40

2"3

F344 TGR

Fibrosis was quantified (arbitrary units) from high-powered photomicrographs of picrosirius red stained
left ventricular sections using a grid method. TGR n= 4, F344 n= 4, mean ± SEM. p = ns, TGRvs F344.
TGR: transgenic, F344: Fischer 344 control. 1-way ANOVA, Tuckey's test.
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3.9 Discussion

3.9.1 Dose-Dependent Phenotypes
This study has demonstrated that TGRcyplalren2 develops chronic sustained

hypertension when transgene expression is induced with 0.15% (w/w) I3C. This is in
distinct contrast to induction with the higher dose, 0.3% (w/w) I3C, which causes

581
malignant hypertension." The explanation for this profound difference in phenotype

probably relates to both the rate of blood pressure rise and the level of RAS activation.
Similar levels of blood pressure are reached with both drug doses, but the onset of

hypertension is more rapid with the higher dose. Presumably an acute rise in blood

pressure leads to endothelial injury, whereas a gradual increase is better tolerated with
more time for compensatory and repair processes to act. Another difference is the rate

and level of plasma prorenin increase. In response to 0.15% (w/w) I3C this rises more
581

slowly and peaks at values a quarter of those seen with 0.3% (w/w) I3C. Therefore the
combination of acute severe hypertension, and excessive prorenin may be required for

malignant vascular injury to occur.

Extensive studies in TGRmren2-27 suggest that hypertension is mediated by a tissue

RAS,574'626 and that the development of malignant hypertension is primarily determined

by RAS factors rather than hypertension per se. For example subpressor doses of ACE
inhibitors or angiotensin receptor antagonists can inhibit vascular injury without

627 628
significantly affecting blood pressure. ' Similar results have been reported for the 2

kidney one clip model of MH and dTGR, in which RAS activation also occurs.629'630
Furthermore, crosses of TGRmren2-27 on to a Sprague-Dawley (Edinburgh) genetic

background previously demonstrated that susceptibility to MH is independent of blood

pressure,564'631 whilst rats transgenic for rat renin demonstrate vascular injury in the
288

absence of hypertension. Genome wide mapping studies of TGRmren2-27 crossed to

Fischer or Lewis backgrounds identified two loci, on chromosomes 10 and 17, which
contribute to the lethal MH phenotype. These loci are close to the ACE and Atl genes

631
and plasma ACE activity was significantly different between these backgrounds.
Therefore, it seems plausible that differences in RAS activity, perhaps at the tissue level,
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contribute to the development of MH. Human studies have identified an association of
the ACE D-allele with MH.63"'633 Given the weight of this evidence it seems that the

phenotypes observed with different doses of I3C relate to differences in RAS activation,
rather than the kinetics of blood pressure change. Although there is a clear dose-

dependent effect, the relationship between I3C dose, prorenin expression and

hypertension is non-linear. This is consistent with previous work which demonstrated a

logarithmic relationship between human plasma renin level and hypertension in short
618

term studies in another transgenic rat model.

3.9.2 Plasma Renin Angiotensin System

Analysis of plasma prorenin and renin at intervals during induction of hypertension
demonstrated a curvilinear increase with time. Prorenin elevation was much greater than
renin compared to controls, whilst plasma angiotenin II did not differ statistically from
control at any time point. In these respects TGRcyplalren2 is similar to the other

prorenin-based transgenic rat models of hypertension, TGRren2-27, TGRal ATrrenin

and TGRalATren2.288'408'562 Previous work points to an effect of prorenin at the level of

the tissue RAS in mediating hypertension and end organ damage in these

models,567'574'626'627 and there is evidence to support this in TGRcyplalren2 as

well.407'581 It is likely that prorenin levels have to be substantially elevated to mediate
this effect, as short-term infusion studies using recombinant prorenin in monkeys, stroke

prone SHR or rats transgenic for human angiotensinogen, do not demonstrate any effect
on blood pressure.313"316 Emerging evidence of a possible receptor for renin/prorenin

may explain some of the putative direct effects of prorenin,412'634 but these are likely to

be small since conventional RAS inhibitors are effective antihypertensives in rats
. • r- ■ 408,577,587,627,635
transgenic tor prorenin.

581
Angiotensin II levels were higher in F344 animals than previously reported, and this

may have obscured any increase in the transgenic group. Possible explanations include
activation of the RAS by anaesthesia or during sample processing.
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3.9.3 Haemodynamic Characterisation

Hypertension was induced in TGRcyplalren2 within days of exposure to 0.15% I3C

(w/w), leading to a progressive rise in blood pressure over a month, followed by a

prolonged period of sustained hypertension, with little further change in blood pressure.

In particular there was no evidence of a conversion to malignant hypertension at the end
of the study. The degree of hypertension observed was similar to many other rat models
of hypertension, in particular TGRcyplalren2 fed 0.3% I3C (w/w). This indicates that a
dose intermediate between 0.15 - 0.3% would not have any effect on maximal blood

pressure, but simply modify the pattern of vascular damage. Whether an additional
increment in blood pressure would be achieved by salt-loading is not clear, as this may

simply accelerate end organ damage.

The plateauing of blood pressure occurred despite a continued increase in plasma

prorenin and renin, suggesting that compensatory mechanisms develop to counteract

RAS activation. Possibilities include down regulation of AT, receptors, or upregulation
of vasodilatory/natriuretic pathways such as NO, EDRF, bradykinin and ANP/BNP. For

example, upregulation of renal, cardiac and vascular NOS has been demonstrated in
, . , 636,637
hypertensive rats.

Complete analysis of heart rate variability and circadian rhythms of blood pressure

requires power spectral analysis,638 which was not possible with available software.

Nevertheless, analysis of basic parameters such as standard deviation of the RR interval
demonstrated a progressive increase in heart rate and reduction in heart rate variability in

TGRcyplalren2. Such changes are likely to represent alterations in autonomic control,
as has been observed in studies of hypertensive subjects.639'640 The severity of autonomic

dysfunction correlates with hypertension severity 641 and appears to be regulated at least
in part by the brain RAS.642'643
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3.9.4 Reversibilty of Hypertension and Transgene Expression
In contrast to previous studies with TGRcyplalren2 we studied the reversibility of

transgene induction and hypertension after prolonged induction. The consequences of
sustained hypertension include vascular smooth muscle hypertrophy, reduced vascular

compliance, endothelial dysfunction, altered neural control of blood pressure and renal

damage.644 It is conceivable that such changes may be sufficient to prevent complete
normalisation of blood pressure after removal of the hypertensive stimulus. Indeed,
correction of renal artery stenosis in human patients with hypertension does not

necessarily lead to improvement in blood pressure control, despite evidence of

procedural success.645 Similarly withdrawal of high salt diet from the Dahl salt-sensitive
rat (DS) does not completely reverse changes in blood pressure 7 weeks later.646

In this study blood pressure was completely normalised within 4 days of I3C cessation at

day 42. Although we did not formally assess vascular remodelling, other evidence of end

organ damage, such as cardiac hypertrophy was apparent at the time of I3C cessation,

suggesting that vascular remodelling was also present. It would be interesting to assess

the reversibility of hypertension and transgene expression after more prolonged
induction. Prorenin/renin levels were indistinguishable from controls when measured at

1 week after I3C cessation. This data suggests that sustained induction of the cyplal

promoter does not lead to chronic independent activity.

Only one other conditional transgenic model of hypertension has been described to

date,647 in which rat vascular chymase is over expressed in vascular smooth muscle cells
under the control of the tetracycline-regulatory system. However, to our knowledge the

reversibility of hypertension and transgene expression has not been reported.

3.9.5 Induction of LVH

Concentric LVH was a prominent phenotype of this model using 0.15% (w/w) I3C. The
maximum increase in LVMI was 77% at day 140, which is within the range observed in
similar rat models of hypertension such as SHR (260% increase at 12 months),625 dTGR
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(80% at 7 weeks),648 TGRalATren2 (52% at 7 weeks),408 DS rats (50% at 12 weeks),649
and TGRmren2-27 (30% at 12 weeks).680 Since these models develop similar degrees of

hypertension the explanation for the large differences in LVH probably lies in the
different strain backgrounds. However both TGRalATren2 and TGRcyplalren2 are on

a F344 in-bred background, and can be considered to be congenic. Presumably the large
difference in LVMI between these models reflects the different ages at which

hypertension develops and differences in levels of transgene expression. Cross breeding
studies in rats have identified a variety of QTL's associated with variation in LV mass,

including a possible contribution of NppA (ANF) promoter polymorphisms influencing
LVH in WKY/SHR/WKHA/WKHT strains.651'652 Selective cross breeding of SHR on a

F344 background produced a normotensive strain with substantial cardiac hypertrophy,

again suggesting a strong role for genetic determination of LVH in SHR independent of

hypertension.653 Studies in humans have identified a number of candidate gene

polymorphisms that may influence susceptibility to LVH, including ACE,684
angiotensinogen,654 aldosterone synthase,688 a-adducin,686 PPARa,687 G-protein (3-3

subunit,658 and HLA type,659 although some associations have been disputed.660'661
Congenic strains of TGRcyplalren2 on Fischer and Lewis backgrounds which differ

reciprocally for MH lethality susceptibility QTL's on chromosomes 10 and 17 have been

generated in the Mullins laboratory. Since these QTL's included the ACE and Atl loci
it would be interesting to investigate their effect on hypertension and LVH susceptibility
in response to 0.15% (w/w) I3C.

3.9.6 Echocardiography and Catheterisation Studies

Although the absolute values for LVMI assessed by echocardiography and those
measured gravimetrically are not entirely concordant, this is exacerbated by the fact that
serial echocardiographic measurements were made in a single cohort of animals, whilst
different animal cohorts were sacrificed at the specified time points for gravimetric
measurement. Hence some discrepancy is to be expected. Furthermore, the assessment

17
of LV mass by echocardiography is notoriously inaccurate, especially using single

plane measurements, such as the Devereux method.6" Firstly the formula assumes the
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heart is a prolate elipsoid, which is an over simplification of the geometry of the rat

heart. Furthermore, measurements are made in only one dimension and cubed to

estimate volume, thereby amplifying any error in measurement. Whilst the method has
been validated in mice and rats,612'662 the limitations of the method are generally

accepted. More accurate assessment would require biplane or three-dimensional
methods.613'663 Within this context the values obtained in this study are probably

acceptable within the limits of the method.613'662'664

Assessment of LV function by echocardiography in animals is prone to error due to the
need for anaesthesia. The effects of different anaesthetics on cardiovascular function

vary between agents, with time and between animals and strain. All adversely affect
blood pressure, myocardial contractility, and heart rate to some degree.96'665'666 The

consistency ofmeaurements within the control group, in terms of LVMI and FS over the
course of the study was relatively good, suggesting that the confounding effect of
anaesthesia was consistent at different time points.

Evidence from echocardiography and left ventricular catheter studies in TGRcyplalren2

suggest that LVH is compensated. In other words, there was no evidence of heart
failure, though serial echocardiographic analysis demonstrated a non-significant decline
in mid-wall and endocardial fractional shortening. Similar changes in cardiac function
have been demonstrated in human hypertensive patients and other animal models of

hypertension.667"672 However, the methods employed predominantly examine the
function of radially arranged cardiac fibres. It is increasingly recognised that
subendocardial myocardial fibres are arranged longitudinally and contribute
significantly to contraction in that dimension.673'674 Furthermore, the effects of

hypertension and LVH impact initially on subendocardial myocardium, so that an early
decline in longitudinal systolic function is often observed before any effect on radial
function.675 Increased radial function is frequently observed in LVH in a variety of

species,104'676"679 and it is not until late in the hypertrophic process that this is impaired. It
is not clear exactly whether the increase is a true compensatory mechanism, or an
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artefact of hypertrophied myocardium.667 More sophisticated echocardiographic

techniques that examine myocardial velocities in vivo, such as Doppler tissue

imaging,680'681 have also provided convincing evidence that pathological LVH is
associated with subtle abnormalities of contraction and myocardial strain at an early

stage that simply cannot be appreciated with conventional techniques. In addition, such

tecniques provide evidence that the functional effects of LVH are spatially

heterogeneous, and that single site measurements are probably inadequate to decribe
overall LV systolic function.

LV catheterisation data demonstrated no significant difference in LV systolic or diastolic

performance using a variety of parameters. Again, anaesthetic effects are likely to have
been significant since aortic pressure was significantly less than telemetric recordings at

this time point. Almost all methods used to evaluate LV systolic function are heart rate
and load-dependent, in that they vary with the prevailing haemodynamic conditions of
the heart due to the Frank-Starling mechanism.94'682 If loading conditions are identical
between groups, this would be less of an issue, however since one group is hypertensive
this must be important. A gold standard, load-independent assessment of global LV

systolic function is end systolic stress (Ees) derived from pressure volume loops
obtained under variable loading conditions.94 A variety of methods are available to

obtain pressure volume loops, including microconductance catheters,683"686
sonomicrometric crystal implants,417'687 or simply monitoring LV dimensions by

688 690
echocardiography whilst measuring LV pressure. " However, in animals all these
methods require anaesthesia and manipulation of loading conditions either surgically or

pharmacologically so that many new confounding variables are introduced.

Whether extended induction, beyond 5 months, would eventually lead to heart failure
can only be a matter of speculation at present. The occurrence of sudden death in 3 of 8
animals at this time point suggests that any study aiming to address this question would

require a large number of TGRcyplalren2 so that attrition due to fatal complications
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could be tolerated, without diminishing the statistical power of the study. Perhaps salt-
loading would also accelerate LV dysfunction.

3.9.7 Left Ventricular Fibrosis

At a gross histological level left ventricular fibrosis did not develop, though more

definitive experiments are required to determine if extracellular matrix composition

changes, or if turnover is altered. Histological stains are an imprecise method for

determining fibrosis, but are likely to detect a large difference. In addition analysis of
fibrosis localisation, (eg perivascular, subendocardial) may reveal specific sites of
fibrosis. Ventricular fibrosis is generally held to be stimulated by RAS activation
196,355,363,374,518,691 , • , ^ . . 692 , , ,

via autocrine/paracrine effects on non-myocytes, and would
therefore be expected to be observed in this model. Ventricular fibrosis is well

217 580
documented in similar models of hypertension/LVH such as TGRmren2-27 ' and
SHR693 though it is disputed whether the main stimulus is haemodynamic or endocrine.
Since the rats used in this study were mature, the effects of RAS activation/LVH on

ventricular fibrosis may have been masked by ageing.199'694 Fibrosis is counteracted by

upregulation of BNP695 and kinin/NO,369 so it is plausible that such mechanisms could

protect the heart from fibrosis in this study. Furthermore, fibrosis is not an inevitable

consequence of RAS activation, as mice expressing angiotensinogen in the heart develop
LVH without fibrosis.352

3.9.8 Cardiac Electrical Remodelling
Further evidence of adaptation to hypertension was demonstrated by progressive

changes in ECG parameters such as R wave amplitude, QT interval, QRS duration, heart
rate and heart rate variability. It was notable that many of these parameters continued to

change even after blood pressure and LVH had plateaued, for reasons that are unknown.
This emphasises the dynamic nature of LVH.

QT interval prolongation is well recognised in LVH,696 and is thought to be largely due
to reduced voltage-gated K+ channel expression.697'698 Altered membrane currents,
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sarcoplasmic calcium load,699 increased muscle mass and fibrosis700 predispose to

arrhythmias and sudden death.36'701 However, little evidence of proarrhythmia was seen

in this study, and cardiac arrhythmia was excluded as a cause of death. Continuous
collection and analysis of radiotelemetric data was not possible due to the constraints of
the telemetry system and data handling limitations. Therefore arrhythmic events are

likely to have been underestimated. Despite this, the relative difference between

transgenic and F344 rats remains surprisingly small. It is possible that spontaneous
702ventricular arrhythmias in rats with this degree of LVH are rare, and that the

proarrythmic effects of LVH may only be manifest with physical or biochemical
703

stress. Another explanation may be the lack of ventricular fibrosis in this model,
which is generally considered to be pro-arrhythmic.697

Interestingly, intermittent R-wave alternans developed in 4 of 8 transgenic animals after
100 days. Altered intracellular calcium handling appears to underlie this

phenomenon,704'705 leading to altered mechanical performance and predisposition to

ventricular arrhythmias. The significance of this observation is unclear at present, but

may indicate imminent ventricular decompensation.

All ECG parameters normalised upon withdrawal of I3C from the diet. It was notable
that regression of electrical remodelling was coincident with changes in blood pressure

and RAS parameters, whilst LVH regression appeared to lag behind. This suggests that
electrical changes were induced by neuroendocrine and haemodynamic alterations rather
than LVH per se. Echocardiographic regression of LVH in humans is associated with

706 • 707
reduction in R wave amplitude, and QT interval, leading to improved

prognosis.708'709 Baillard et al. (2000)625 have previously shown that QT interval
correlates with LVH in SHR, and reduction of blood pressure/LVH by ACE inhibition
leads to reversal of QT interval prolongation. However studies in a guinea pig model of
aortic constriction have demonstrated a failure of action potential duration to correct

710
with regression of LVH. Therefore, the reversal of ECG abnormalities with regression

of LVH is not inevitable.
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3.9.9 Regression of LVH
Previous studies of regression of LVH in rats, mice, guinea pigs, rabbits and
, 62,75,606,625,710-721 , , , . , • , , , , .. , • • , ,•sheep, have demonstrated rapid and substantial regression, including

normalisation of altered gene expression. An advantage of TGRcyplalren2 over other
models is the ability to investigate the regression of hypertrophy and vascular

remodelling without recourse to pharmacological agents or surgical intervention.

Although regression of hypertrophy after cessation of the stimulus would appear to be
272 722

inevitable, there are documented instances where this does not occur." ' In particular,
human studies of LVH regression with antihypertensive therapy generally show only

723
small decreases in LVMI. " Similarly, whilst it is logical that regression of LVH is
associated with diminished expression of hypertrophy associated genes, this is not

always the case in many studies of LVH inhibition,536 or even studies of true LVH
75

regression. Indeed, haemodynamic unloading of normal hearts (ie not hypertrophied)
88

can lead to induction of foetal gene expression. In this study, BNP expression was

suppressed, even weeks after removal of the hypertrophic stimulus for reasons that are
not entirely clear. This suggests that recovery from LVH is an orchestrated and

prolonged phenomenon. Regression is not simply the reversal of hypertrophic changes.
A limited number of studies have suggested that regression is transiently associated with
increased apoptosis, particularly in the subepicardium, as assessed by terminal

deoxynucleotidyl transferase, oligonucleosomal DNA fragmentation or

morphometry.716'717 The identity of the cells has not been established, but it seems likely
that this phenomenon only involves non-cardiomyocytes, otherwise it is likely to lead to

premature heart failure.
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Chapter 4
Studies of FK506 in TGRcyp1a1ren2 and

TGRa1ATren2

4.1 Introduction

In chapter 3 it was demonstrated that TGRcyplalren2 develops chronic hypertension
and left ventricular hypertrophy in response to 0.15% (w/w) I3C. It was of interest to
establish whether LVH could be inhibited independently of blood pressure in

TGRcyplalren2 via calcineurin blockade, as this would provide a convenient model in
which to study the possible mechanisms of non-hypertrophic compensation. FK506 is a

487
macrolide antibiotic obtained from Streptomyces tsukubaensis that inhibits
calcineurin phosphatase activity in combination with FK506 binding protein-12 (FKBP-

22^ 461,462 jt ^as prevjousjy been shown to be efficacious in preventing LVH in other
models of hypertension,497'502'507'517'518'520 though not universally.498'506'511 In clinical

practice it is used as an immunosuppressant in organ transplant recipients, and is 100
488

times more potent than ciclosporin A. It is extensively metabolised by hepatic

cytochrome P-450IIIA1.511

Although the weight of evidence supports an effect of FK506 on LVH in animal models,
there are several theoretical drawbacks to its use in this context. In particular FK506

may interfere with sarcoplasmic calcium release and therefore alter excitation
724

contraction coupling. This is mediated via an effect on the ryanodine receptor (RYR)

regulation. In cardiomyocytes FKBP12.6 is associated with the ryanodine receptor

whilst FKBP12 is cytosolic.725 FKBP12.6 regulates the gating of the RYR channel493
725

whilst FK506 induces dissociation of FKBP12.6 from the channel. This situation may

be analogous to heart failure where there is hyperphosphorylation/ dissociation of FKBP
726 727

and a reduced ratio of FKBP to RYR, ' ~ leading to abnormal channel regulation and
an impaired response to (3-agonists.149 Calcineurin has also been hypothesised to
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regulate RYR function by direct dephosphorylation via an FKBP-dependent
•

, .. 727,728
interaction.

729
In clinical practice FK506 causes hypertension in 60% of patients. This appears to be
mediated partly by nephrotoxicity, though it can occur with normal renal function.
Studies in Wistar-Kyoto rats treated with immunosuppressive doses of FK506

(5mg/kg/day) demonstrated a 50 mmHg rise in systolic blood pressure over a 4 week

period which appears to be due to increased vascular ET-1 synthesis and decreased
endothelial NO synthesis.525 Lower doses of FK506 (0.5 mg/kg/day) had no effect on
blood pressure. In SHR toxic doses of FK506 induce renal failure, increased renin

730
mRNA expression, and increased plasma renin activity.

Another potential problem is FK506-induced weight loss, which may be severe and

potentially confound interpretation of changes in LV mass.500 Despite these concerns it
was felt the evidence for a beneficial effect on LVH in other models of hypertension

justified further investigation in short term experiments in which toxicity could be
minimised. Therefore the effect of FK506 on LVH was studied in TGRcyplalren2

induced with 0.3% I3C over 14 days. This protocol is known to induce malignant phase
581

hypertension with mild-moderate degrees of LVH. A dose of 1mg/kg/day
administered by intraperitoneal injection was chosen as this has been shown to be

502 517
effective in other studies ofLVH inhibition in rats. '

4.2 Systemic Effects of Malignant Hypertension and FK506
489

In the rat FK506 is predominantly metabolised by cytochrome p450 3A2 (P450 3A2),
whilst I3C is metabolised by a distinct enzyme, P450 1A1.591 However, since I3C can

592
induce expression of cyp3al/2, there is a possibility ofmetabolic interactions between
FK506 and I3C, which might confound experiments. This was explored in a pilot study

by administering FK506 lmg/kg/day to 2 TGRcyplalren2 over 7 days, one of which
received 0.3% I3C. Blood levels of FK506 were measured (Department of
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Biochemistry, Royal Infirmary of Edinburgh) and found to be identical in both animals,

suggesting no significant interaction had occurred (data not shown).

In initial experiments TGRcyplalren2 and F344 rats were treated daily with FK506 i.p.

(lmg/kg) or vehicle, commencing 3 days prior to induction with I3C 0.3%(w/w), and

continuing for the whole 14 day induction period. The rationale for pre-treatment was to
ensure therapeutic levels were established before hypertension was induced. Induction of

malignant hypertension in TGRcyplalren2 over 14 days led to a decrease in body

weight of 12-16% compared to a weight gain of around 8% in F344 animals fed I3C diet

(Table 4.1)(p<0.001 TGR vs F344). The cause of this profound weight loss is unknown,
but most likely includes fluid loss due to polyuria, as well as anorexia and a catabolic
state due to systemic illness. FK506 had no additional effect on body mass in the

transgenic groups, but in the controls FK506 reduced weight gain to about 0-4%, though
this was not significantly different to water treated controls (Table 4.1, group A).

Therefore, both malignant hypertension and FK506 appeared to cause severe systemic
disturbance. Because of the significant weight loss drug doses were adjusted twice

weekly.
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Table 4.1 Effect of FK506 on Body Weight and Left Ventricular
Mass in TGRcyp1a1ren2

Group Treatment End Body Change in LV mass LVMI LV mass/tibial

Weight (g) BW (%) (g) (mg/g) length (mg/mm)

tgr fk 219.5 -23.1a 0.498 2.27 13.75

±4 ±2.2 ±0.016 ±0.10 ±0.41

h2o 236 -16.9 a 0.625 a 2.66a 16.5
±9 ±1.0 ±0.010 ±0.06 ±0.59

f344 fk 227 +3.1 a 0.467 2.06 12.09
±8 ±1.6 ±0.019 ±0.09 ±0.8

h20 237 +19.2 0.498 2.11 14.30
±5 ±1.1 ±0.009 ±0.03 ±0.36

tgr fk 228.2 -9.8 a 0.553 2.42 14.26
±5 ±1.8 ±0.009 ±0.04 ±0.19

h2o 240 -14.1 a 0.630 a 2.60 a 16.32

±5 ±1.3 ±0.012 ±0.02 0.60

f344 fk 230 +3.2 a 0.426 b 1.85 14.76

±7 ±2.2 ±0.012 ±0.02 ±0.22

h2o 238 +8.0 0.500 2.10 15.10
±4 ±1.2 ±0.013 ±0.03 ±0.41

tgr fk 260 -12.8 a 0.565 2.18 14.17
±7 ±1.0 ±0.016 ±0.04 ±0.39

h2o 267 -12.2 a 0.638 b 2.40 16.11
±9 ±3.0 ±0.023 ±0.17 ±0.61

f344 fk 222 b 0.0 b 0.451 a 2.03 12.17
±5 ±2.7 ±0.006 ±0.04 ±0.20

h2o 253 +8.8 0.544 2.15 14.9
±16 ±1.2 ±0.01 ±0.03 ±0.17

tgr fk 247 a -13.98 a 0.599 2.46 a 15.14
±10 ±3.28 ±0.026 ±0.03 ±0.65

h2o 244 a -14.99 a 0.674 a 2.78 a 17.21

±4 ±3.30 ±0.009 ±0.03 ±0.65

287 +3.56 0.58 2.01 14.69

±8 ±1.67 ±0.019 ±0.05 ±0.41
296 +8.01 0.601 1.99 15.16
±10 ±5.00 ±0.023 ±0.07 ±0.56

Statistical analyses were performed within experimental groups. One-way ANOVA, Dunnett's post hoc
test. A p< 0.01, B p<0.05 vs experimental group water treated control. BW: body weight, LVMI: left
ventricular mass index, FK:FK506 treatment, H,0:water treatment. TGR: transgenic, F344: Fischer F344
control. Change in body weight was calculated from body weights at start and end of study period. Mean ±
SEM. n=6 per group. Group A: treatment from day -3 to day 14 of induction, Group B: treatment from
day 3-14, Group C: treatment from day 7-14, Group D: treatment from day 14-21.
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Table 4.2. Plasma Renin-Angiotensin Assays in FK506-treated

TGRcyp1a1ren2

Group Treatment Prorenin Renin Angll

(ngAI/ml/h) (ngAI/ml/h) (pg/ml)

A TGR FK 21914 AC 119.6 AC 227.4
±1846 ±10 ±40

h2o 7235C 26.6 125.2

±2545 ±9 ±19

F344 FK 65 31.5 178.4
±7 ±6 ±57

h2o 22 31.5 175.4

±7 ±6 ±22

b TGR FK 13917AC 266.7 A " 388.9
±4866 ±81 ±62

h2o 6086C 69.6 189.8

±1755 ±16 ±47

F344 FK 65 79.9 303.8

±4 ±26 ±61

h2o 22 50.7 184.2
±4 ±4 ±27

C TGR FK 6274 147.5 193.0
±5031 ±74 ±32

h2o 6222 69.6 190.0
±1622 ±16 ±37

F344 FK 40 50.6 181.6
±13 ±4 ±29

h2o 22 52.4 185.0
±4 ±3 ±28

D TGR FK 10734° 151.8B 435.7®
±6227 ±41 ±85

h2o 19432° 193.2® 569.4®
±6200 ±65 ±127

F344 FK 53 57.6 296.8
±14 ±17 ±55

h2o 31 21.0 133.5

±8 ±3 ±23

Statistcal analysis was performed within experimental groups: l -way ANOVA, Dunnett's post hoc test.
A

p<0.05 vs water-treated transgenics. u p < 0.05 vs water-treated controls c p<0.001 vs water-treated
controls. TG: transgenic, F344: Fischer F344 control. FK: FK506. H20: water treatment. n=6 per group.
Mean ± SEM. Group A: treatment from day -3 to day 14 of induction, Group B: treatment from day 3 -

14, Group C: treatment from day 7-14, Group D: treatment from day 14-21.
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4.3 Effect of FK506 on Hypertension in TGRcyp1a1ren2
LVH is probably induced predominantly by haemodynamic load in TGRcyplalren2, so
that any effect of FK506 on LVH must be in the absence of any blood pressure

reduction. Systolic blood pressure was measured by tailcuff plethysmography after a 5

day period of training. Since this method has several potential limitations, particularly
the need for restraint, a pilot study was undertaken in two groups of TGRcyplalren2
and F344 rats to assess the accuracy of plethysmographic measurements against the gold

standard, radiotelemetry. Two groups were trained to undergo tail cuff plethysmography,
whilst the other two were monitored by radiotelemetry: all groups were fed identical I3C

0.3%(w/w) diet simulatneously. Figure 4.1 demonstrates that the agreement between
methods was extremely high, suggesting that in our hands tail cuff plethysmography

provides an accurate assessment of systolic blood pressure.

Figure 4.1 Comparison of Tail Cuff Plethysmography and

Radiotelemetric Blood Pressure Measurement
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Cohorts of F344 and TGRcyplalren2 were fed 0.3% I3C (w/w) for 7 days, whilst systolic blood pressure

was measured by either tail cuff plethysmography or radiotelemetry. Agreement between the methods was

found to be excellent. n=4 per telemetry group. n=6 per tail cuff plethysmography group.
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581 587
As previously described, ' 0.3% I3C (w/w) induced a rapid rise in blood pressure in
water treated TGRcyplalren2. Whilst the blood pressure of F344 animals was not

altered by 13C or FK506, there was a significant reduction in blood pressure in

transgenic animals treated with FK506 compared to those treated with vehicle (figure

4.1). After day 5 the blood pressure of FK506-treated transgenics was not significantly
different from the F344 groups (figure 4.2). Therefore, unexpectedly, FK506 appeared to

exert an antihypertensive effect.

Figure 4.2 Effect of FK506 on Hypertension in TGRcyp1a1ren2

Time (days)
Water-treated TGRcyplalren2 animals developed hypertension in response to 0.3% I3C, whilst
administration of FK506 from day -3 of induction inhibited hypertension. Mean ±SEM (n= 5).* TGR +

FK506 vs F344 p=NS. f TGR vs F344 p<0.00l. 2-way ANOVA, Bonferroni's post-hoc test.

Although the pilot study had suggested that FK506 metabolism is not affected by I3C,
the converse had not been examined. It was therefore important to establish whether or
not transgene induction by I3C was inhibited by FK506. Measurement of plasma

prorenin, renin and angiotensin II demonstrated that transgene induction and RAS
activation occurred in both FK506 and vehicle-treated TGRcyplalren2 animals (table

4.2, groupA). In fact, prorenin levels were significantly greater in the FK506 group,

suggesting that transgene expression was enhanced (p<0.05, TGR FK506 vs TGR

water). Measurement of hepatic renin expression by Real Time PCR confirmed that
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transgene expression was increased 13-fold in the FK506-treated group relative to the
vehicle group (0.066±0.0004 units water treated vs 0.897±0.1995 units FK506 treated,

pO.OOl) (figures 4.3 and A2.4, tables A2.5, A2.6). Therefore, FK506 appeared to

inhibit the development of hypertension despite excessive induction of transgene

expression.

Figure 4.3 Hepatic ren2d Transgene Expression in Group A

1.5-t

Water FK506

Hepatic expression of transgene-derived ren2d mRNA was quantitated relative to ribosomal 18S RNA

expression by real time PCR. In keeping with plasma prorenin levels there was significantly more

expression in FK506-treated TGRcyplalren2. There was no detectable ren2 mRNA in F344./ (n=3 per

group, means ± SEM). * pO.OOl, TGR + FK506 vs TGR + water. 2-way ANOVA, Bonferroni's post-hoc
test.

4.4 Effect of Late Treatment with FK506

To further define the effect of FK506 on hypertension a series of experiments were

performed in which the administration of FK506 was delayed until after the
establishment of hypertension. Previous work has demonstrated that vascular damage

581 587
follows a predictable time and organ-dependent course in this model. ' Therefore the
rationale was to identify a time point at which FK506 failed to inhibit hypertension, and
correlate this with pathology. The time points chosen were days 3, 7 and 14 of induction.
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At day 3, hypertension is established but no vascular damage is identifiable by routine

histology. Day 7 is characterised by fibrinoid necrosis in the mesenteric and cardiac

circulations, whilst day 14 is marked by the onset of renal fibrinoid necrosis. To simplify

terminology, the different intervention time points will be referred to as summarised in

figure 4.4. Group A: FK506 treatment commenced 3 days prior to induction of

hypertension for 14 days (described above). Groups B and C: FK506 treatment

commenced on day 3 or day 7 of hypertension induction respectively, until the

experiment was terminated at day 14. Group D: FK506 treatment commenced on day 14
until day 21.

Figure 4.4 Design of FK506 Experiments in TGRcyp1a1ren2

Onset of hypertension
Vascular remodelling/cardiac and mesenteric fibrinoid necrosis

Renal fibrinoid necrosis

Day -3 ^
A

B
C
D

Group

I± 21

0.3% I3C

Experimental groups consisted of TGRcyplalren2 and Fischer F344 controls (n=5-6). Arrows represent
the timing and duration of treatment with FK506 or water. The shaded area represents the timing and
duration of dietary 0.3% (w/w) I3C. Group A began treatment with FK506 or water 3 days prior to the
commencement of dietary I3C. Group B started treatment on day 3 of induction and group C on day 7.
Animals in groups A, B and C were culled after 14 days of inducing diet. Group D animals were induced
with I3C for 14 days before starting FK506 or water treatment, and were culled on day 21. The timing of
specific vascular events previously described in this model is indicated above the time line.

Administration of FK506 at days 3, 7 and 14 led to the immediate and sustained
reduction of blood pressure to control levels (figure 4.5 a and b). Again, this occurred in
the presence of normal transgene induction, confirmed by plasma renin-angiotensin

assays (Table 4.2). Therefore, despite the presence of severe end organ damage, FK506
demonstrated potent antihypertensive effects.
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Figure 4.5 Effect of Late FK506 Administration on Hypertension

a) Groups B and C

b) Group D

0£
X
E
E

o
-

o.
■o
e
_©
S

c*)

300

250

200

150

100

50

1 -A- TGR
—•—TGR + FK506 day 3
-•-TGR + FKS06 day 1
-■0..F344

'£"•1

* *

**

5 10
Time (days)

15

TGR

-■—TGR+FK506 day 14
-F344

F344+FK506 day 14

1 1

9 12

Time (days)

—i—

15

—i—

18

—i

21

Late administration of FK506 after the establishment of hypertension at day 3, 7 (a), or 14 (b) resulted in

normalisation of blood pressure to levels that were not significantly different to F344 control within 1-2

days. Mean ±SEM (n= 5). * TGR + FK506 vs F344 p=NS, ** TGR + FK.506 day 3 vs F344 p=NS (all
other time points TGR + FK506 vs F344 p<0.001). 2-way ANOVA, Bonferroni's post-hoc test.
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4.5 Effect of FK506 on Vascular Injury and End Organ Damage
Induction of malignant hypertension in this model is characterised by the development

581
of fibrinoid necrosis in distinct vascular beds at specific times. Vehicle treated

transgenic rats developed histological evidence of malignant vascular injury at day 14,
with fibrinoid necrosis and perivascular inflammatory infiltrates in the heart, mesentery
and kidney (fig 4.5a-d). By day 21, vascular injury was more florid (figure 4.5e-h).
Concomitant with the antihypertensive effect, we observed complete abolition of
vascular pathology in transgenic rats treated with FK506 in groups A and B (fig 4.6i-p).
Vascular injury was ameliorated in animals treated with FK506 at day 7, with prevention
of renal injury, though mesenteric and cardiac beds showed fibrinoid necrosis (fig 4.6q-

t). However, treatment at day 14 (group D) had no influence on the severity of damage,

despite the reduction in blood pressure (fig 4.6u-x).

Vehicle treated transgenic rats were significantly polyuric compared to nontransgenic
animals at day 14 of induction (fig 4.7). In comparison, pretreatment with FK506
abolished the polyuria in transgenics, and an intermediate effect on polyuria was

observed in animals treated with FK506 at days 3, 7 and 14 of induction (fig 4.7).

In order to distinguish between the possibilities that FK506 inhibited vascular damage

simply through blood pressure reduction, versus a specific blood pressure-independent

effect, an experiment was performed in which one group of TGRcyplalren2 received

nifedipine 0.5% w/w in the powdered diet. Nifedipine is a dihydropyridine calcium
channel blocker that lowers blood pressure without effects on the renin angiotensin

system. Half this dose has previously been demonstrated to control blood pressure in
731

SHR. Surprisingly, blood pressure could not be controlled using this dose of

nifedipine (figure 4.8), and therefore, the question remains unanswered. Further

experiments of this nature were not undertaken due to limitations of animal availability.
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Figure 4.6 TGRcyp1a1ren2 Histology after FK506 Treatment
Right Ventricle Left Ventricle Mesentery Kidney
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Representative haematoxylin and eosin stained tissue sections from water and FK506 treated
TGRcyplalren2 and F344 rats fed 0.3% I3C. TGR: TGRcyplalren2, F344: Fischer control, FK506;
FK506 treated. A - D: experimental group, v: arterial vessel, a: adventitial expansion, g: glomerulus, fn:
fibrinoid necrosis.
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Figure 4.7 Effect of FK506 on Weight-Adjusted Urine Output
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Profound polyuria was observed in water-treated TGRcyplalren2 at days 14 and 21 of induction. This
was dramatically reduced by FK.506 treatment at all time points. (n=5 per group, mean ± SEM). * p< 0.05
vs F344. t p=NS vs F344. 2-way ANOVA, Bonferroni's post hoc test.

Figure 4.8 Effect of Nifedipine on Blood Pressure in

TGRcyp1a1ren2
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TGRcyplalren2 and F344 animals were fed powdered diet supplemented with 0.3% I3C (w/w). In one

group the diet was supplemented with 0.5% Nifedipine. Nifedipine had no sustained effect on the

development of hypertension in transgenic animals, but significantly lowered blood pressure in F344
controls. * p < 0.01, t p=NS TGR vs TGR nifedipine. 2-way ANOVA, Bonferroni's test.
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4.6 Effect of FK506 on Left Ventricular Hypertrophy
Analysis of LVH demonstrated a significant increase in LVMI in water-treated

TGRcyplalren2 group after 14 (23% vs F344) or 21 days (39% vs control)(p<0.01 vs.

control). FK506 treatment prevented LVFI when started early (groups A - C) but had no

effect when administered late (group D) (table 4.1). In view of the severe weight loss
seen in transgenic groups, LV mass corrected by tibial length was also analysed. When
this was used as the reference, significant differences between water treated transgenic

groups and water treated controls remained, whilst all FK506 treated transgenic groups

demonstrated suppression of LVH (table 4.1). Left ventricular brain natriuretic peptide

(BNP) mRNA expression was measured by real time PCR to assess the inhibition of
LVH. In untreated TGRcyplalren2 there was a 1.8-fold induction of BNP expression,
in keeping with the development of LVH (figures 4.9, A2.3 and tables A2.3, A2.4).

Figure 4.9 Left Ventricular BNP Expression
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BNP expression was measured relative to 18S ribosomal RNA expression in left ventricles from

experimental group A. Water treated TGRcyplalren2 animals exhibited a 1.8-fold induction relative to

controls. FK506 did not significantly diminish BNP induction in transgenics despite inhibition of
hypertension and gravimetric LVH. N=4 per group (mean ± SEM). *p<0.05 vs control. 2-way ANOVA,
Bonferroni's post-hoc test.
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However BNP levels in FK506 treated transgenics did not differ significantly from
untreated transgenics (figure 4.9). Therefore the protective effect of FK506 on

ventricular remodelling was incomplete, despite the absence of haemodynamic load.

4.7 Effect of FK506 on Left Ventricular Function

Theoretically FK506 may impair cardiac function by altering sarcoplasmic calcium

regulation,491 reducing cardiac output and thereby blood pressure. Previous reports have
521

demonstrated a similar effect with CsA. To exclude this as an anti-hypertensive

mechanism, heart function was examined by M-mode and Doppler echocardiography.

Doppler echocardiography examines the velocity and direction of blood flow within the
103 732

heart, allowing cardiac output to be estimated using equation 5 (chapter 2). ' In

addition, LVH leads to increased ventricular stiffness, causing altered diastolic
672 733 734

function, ' ' which is reflected in changes in transmitral Doppler spectra such as

peak inflow velocities, early filling deceleration time (dt), rate of early filling
deceleration (dV/dt) and isovolumic relaxation time (IVRT) as illustrated in figures 4.10
-4.12.

There was no difference in, heart rate, fractional shortening, dt, dV/dt, Vmax or E/A ratio
between treated and untreated transgenic groups. Cardiac output was increased in FK506
treated transgenic and non-transgenic animals, though this was only statistically

significant in group A transgenic animals (table 4.3). Furthermore, endocardial fractional

shortening was increased in all transgenic groups compared to water treated controls. All

TGRcyplalren2 animals developed evidence of diastolic dysfunction, with prolongation
of the isovolumic relaxation time (IVRT)(p<0.001), and interestingly this was not

corrected by FK506 treatment (table 4.3). Therefore, cardiac systolic function appeared
to be increased in TGRcyplalren2 animals, whilst early relaxation was impaired.
Furthermore, FK506 appeared to increase rather than impair cardiac output.
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Figure 4.10 Apical Four-Chamber View and Pulse Wave Doppler

Sampling Position
Apex

Right ventricle

Left ventricle

Interventricular

septum
__ Anterior leaflet of mitral valve

Posterior leaflet of mitral valve

Right atrium __ Left atrium

a)

b)

Echocardiography B mode apical 4 chamber view of rat heart to illustrate sample position for mitral valve
inflow Doppler measurement, a) Early diastole: mitral valve is opening, b) Doppler probe is aligned from

apex to transect mitral valve as shown by the yellow line below. The approximate position of the sampling
volume is indicated by the yellow box.
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Isovolumic relaxation time (IVRT) was measured as illustrated in figure 4.10. a) Transmitral Doppler
inflow velocity comprises E and A waves as indicated, b) Measurement of early filling deceleration time
was taken from the peak early velocity to the end of the early filling wave. The rate of deceleration was

measured as indicated by the solid yellow line, c) Pulse wave sampling volume was placed between aortic
and mitral flows so that velocity spectra of both aortic and mitral flows are detected simultaneously, c)
detail of c demonstrating the IVRT between the signal generated by aortic closure and the onset of mitral
inflow.
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Figure 4.12 Apical Five-Chamber View and LVOT Doppler
Velocities

a) apex

aortic valve left ventricular outflow tract

Echocardiography B mode apical 5-chamber view of rat heart to illustrate sample position for left
ventricular outflow tract Doppler measurement, a) The apical five-chamber view was used to obtain left
ventricular outflow tract velocities, by positioning the Doppler probe as indicated, b) Pulse wave Doppler
was sampled in the outflow tract to allow measurement of peak velocity, c) Velocity time integral (VTI)
was calculated by manually tracing round the outflow tract velocity spectra. Cardiac output could be
calculated from VTI, heart rate and outflow tract diameter using equation 5, chapter 2.103
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Table 4.3. Effect of FK506 on Cardiac Function in

TGRcyp1a1ren2

Group Treatment HR eFS E/A dt dV/dt IVRT Vmax co

(bpm) (%) (ratio) (ms) (ms2) (ms) (ms"1) (ml r

f344 h2o 294 53.6 1.66 0.051 14.1 28.2 0.75 75.8
±7 ±1.9 ±0.08 ±0.002 ±0.8 ±1.1 ±0.00 ±6.2

f344 FK506 292 71.7 a 1.48 0.050 14.0 30.0 0.84 94.1
±7 ±1.4 ±0.06 ±0.002 ±0.7 ±1.4 ±0.05 ±4.9

A TGR h2o 274 73.6b 1.63 0.049 13.5 35.4 a 0.95 66.9
±6 ±3.9 ±0.14 ±0.001 ±0.7 ±0.2 ±0.15 ±9.2

D TGR h2o 281 66.6 a 1.50 0.052 13.7 43.3 b 0.73 68.4
±10 ±4.0 ±0.18 ±0.006 ±1.9 ±3.4 ±0.10 ±1.0

A TGR FK506 304 82.7 a 1.39 0.059 11.9 35.7 b 0.91 99.1
±12 ±2.2 ±0.10 ±0002 ±0.5 ±2.5 ±0.01 ±6.0

D TGR FK506 262 71.7 b 1.56 0.050 12.3 37.8 a 0.93 73.0
±10 ±5.1 ±0.16 ±0.003 ±0.8 ±1.6 0.19 ±1.1

Control groups were pooled for analysis according to treatment. H20: water treatment, FK: FK506
treatment, TG: TGRcyplalren2 transgenic, F344: Fischer F344 control, FIR: heart rate, FS: endocardial
fractional shortening, bpm: beats per minute, E/A: ratio of early and late transmitral filling velocities, dt:
deceleration time of early mitral fillling, dV/dt: rate of early filling deceleration, IVRT: isovolumic
relaxation time, Vmax: maximal left ventricular outflow tract velocity, CO: cardiac output. A p<0.05, B
p<0.01and c p<0.001 vs water treated control. 1-way ANOVA, Dunnett's test.

4.8 Effect of FK506 on TGRa1ATren2

FK506 treatment has been used in several different animal models of hypertension,
without any antihypertensive effects being reported. Therefore, to broaden the scope of
these experiments FK506 was administered to another ren2-based transgenic rat model
of hypertension, TGRal ATren2.408 In this model mouse ren-2d is expressed

constitutively from the liver under the control of the human a 1-antitrypsin promoter,

leading to hypertension and premature death at around 7 weeks after birth. This model is
on an inbred F344 background and can be considered to be congenic with
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TGRcyplalren2. Therefore, TGRalATren2 is almost identical to TGRcyplalren2,

except that transgene expression is more highly restricted to the liver, hypertension

develops at an early age and malignant hypertension develops unpredictably around 7
weeks of age.

Figure 4.13 Systolic Blood Pressure in TGRa1ATren2.

St

Age (Days

Male TGRa,ATren2 develop severe hypertension after weaning compared to non-transgenic littermates (*

p<0.05 vs control). n=6 per group. 1-way ANOVA, Dunnett's test.

Male TGRaiATren2 and nontransgenic littermates were studied from weaning (day 21)

to 42 days of age. During this time hypertension developed with a final blood pressure

of 218±8 mmHg in transgenics and 120±2 mmHg in controls (figure 4.13). Treatment
with FK506 abolished hypertension, with a blood pressure of 137±6 mmHg at day 42,
without any effect on hepatic transgene expression (figure 4.14a and 4.15). Similarly
LVH was also abolished by FK506 treatment (figure 4.15b). However, for reasons that
are not clear 2 of 10 transgenic animals failed to respond to FK506, and developed

hypertension and LVH. The effect of FK506 on weight gain was studied. Vehicle
treated transgenic animals had a reduced growth rate compared to nontransgenic
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littermates. However, FK.506 treatment reduced weight gain in nontransgenic animals
but had little additional effect in transgenics (figure 4.16).

Figure 4.14 Effect of FK506 on Systolic Blood Pressure and LVH
in TGRa1ATren2
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FK506 treatment in TGRa,ATren2 completely abrogated hypertension at day 42. Left ventricular mass
index was significantly elevated in water treated transgenic animals compared to controls. FK506
treatment reduced LVMI to control levels. (* p<0.05 vs control) (n=6). 2-way ANOVA, Bonferroni's test.
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Figure 4.15 Hepatic Renin Expression in TGRa1ATren2
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No hepatic ren2 expression was detected in controls: there was no significant difference between

transgenics treated with water or FK.506 (t p=NS TGR + water vs TGR +FK506). p=NS, 2-way ANOVA,
Bonferroni's test. Mean ± SEM.

Figure 4.16 Growth Curves for TGRa1ATren2
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4.9 Possible Mechanisms of Action

The mechanisms by which FK506 exerts an antihypertensive effect are not obvious, but
the data described so far may provide some clues. The potent antihypertensive effect of
FK506 contrasts with the lack of effect of nifedipine, a conventional antihypertensive

agent. This suggests that FK506 may have a novel mode of action, or that it inhibits a

critical pathway in the maintenance of hypertension in these models.

The fact that FK506 had immediate effects on blood pressure at all time points, but did
not lower blood pressure in control animals implies that the mechanism is specific to the

development of hypertension, as opposed to normal homeostatic regulation of blood

pressure. Furthermore, since FK506 has not been shown to affect blood pressure in other
diverse models of hypertension, the likelihood is that the effect of FK506 is particularly

important for the development of ren-2-mediated hypertension. Current knowledge of
the RAS suggests that ren-2-mediated hypertension is dependent on the production of

angiotensin II, which leads to vasoconstriction and salt retention. Therefore, it seemed

likely that FK506 might inhibit angiotensin II signalling in either the kidney or

resistance vessels. Previous work has demonstrated that angiotensin II-mediated
735 736vasoconstriction involves activation of PKC, ras-GTPase, and MAPK

737 738
pathways. ' Specific inhibitors of these signalling molecules can ameliorate

hypertension and vascular injury in animal models.736,739'740 For example p38 and ERK
inhibitors administered to homozygous TGRmren2-27 animals diminish renal injury

independently of blood pressure.740 It has also been shown that calcineurin interacts with
some of these pathways in the heart, and that calcineurin inhibition leads to inhibition of
MAPK. and PKC signalling.547 Therefore it seemed plausible that the effect of FK506

might be to block All-mediated vasoconstrictor pathways in resistance vessels.

To explore this possibility the activation of MAPK signalling pathways in mesenteric
vessels was examined by Western blotting of protein extracts from mesenteric tissues.

Mesentery was studied as this is a well-vascularised tissue from which resistance vessels
can be easily dissected. In order to examine processes involved in the development of
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hypertension, as opposed to processes activated by hypertension itself, an early time

point, day 4 of induction, was chosen. TGRcyplalren2 and F344 animals were induced
for 4 days, and treated with either vehicle or FK506. Western blots of mesenteric

protein extracts were probed with antibodies specific for activated forms of p44/42
MAPK (ERK) p38 MAPK and p54/56 JNK. Unfortunately no reproducible pattern

could be identified, and the role of these signalling pathways remains to be defined (data
not shown).

4.10 Summary
Experiments designed to allow the study of pressure-independent inhibition of LVH
were confounded by the unexpected antihypertensive effect ofFK506. This phenomenon
was explored in more detail, and it was shown that FK506 was a potent antihypertensive
even after the development of severe end organ damage, including renal injury. In
addition to lowering blood pressure, FK506 inhibited end organ damage at a histological

level, though in the heart, expression of a hypertrophic marker, BNP was not

diminished, nor was diastolic dysfunction corrected. These findings were also

generalisable to another transgenic model of hypertension, TGRalATren2. Although
the antihypertensive mechanism of FK506 is unknown, an interaction between
FK506/calcineurin and vasoconstrictor signalling pathways is a theoretical possibility
that remains to be substantiated.
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4.11 Discussion

4.11.1 Mechanism of Antihypertensive Action of FK506
The finding that FK506 exerted an antihypertensive effect in TGRcyplalren2 and
TGRalATren2 was surprising. FK506 has been studied in several animal models of

hypertension, including the Dahl salt-sensitive rats,507'516"518 abdominal aortic
constriction models,498'"0""06 and mineralocorticoid-induced hypertension,520 with only
one report of a minor blood pressure reduction.498 Indeed, hypertension is a common

729
side effect of FK506 in organ transplant patients.

The mechanism by which this effect is mediated is obscure, but several possibilities,
which are not mutually exclusive warrant further discussion.

1. Immunosuppression.
2. Inhibition of angiotensin II-mediated inflammatory processes.

3. Inhibition of angiotensin II-mediated vasoconstriction and salt/water retention.
These will be discussed in more detail.

4.11.2 Immunopathologic Mechanisms in Hypertension
The fact that FK506 is an immunosuppressant raises the possibility that this lies behind
the observed antihypertensive effect. It is well established that calcineurin is crucial for
the activation of T-cell responses, which orchestrate immune responses to foreign

antigen.741 This occurs via calcineurin-dependent mechanisms such as inhibition of

lymphokine secretion,464'741'742 as well as calcineurin independent mechanisms such as

TGFP-induced p21 WAF/CIP1 inhibition.743 Furthermore, FK506 has been shown to

inhibit lymphocytic transendothelial extravasation.744 In our studies FK506 was used at a

dose that has previously been shown to immunosuppressive in rats.745

Early studies in Okamoto strain SHR demonstrated that hypertension may have an

immune contribution. Thymectomy at 4 weeks of age, or thymus grafts/extracts

transplanted at birth delayed the onset and degree of hypertension in later life,746'747
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whilst immunosuppression of SHR with cyclophosphamide or mycophenolate can

ameliorate hypertension.748'749 These findings are not restricted to SHR: mycophenolate

prevents hypertension in dTGR750 and rats made hypertensive by angiotensin II infusion,

partial nephrectomy or nitric oxide synthase inhibition.749'751"753 Therefore, there are

several precedents for our observations.

Exactly how immunosuppression may be antihypertensive is not clear, but it is pertinent
to note that AT, R stimulation on lymphocytes triggers proliferation and augments

immune responses in a calcineurin-dependent manner.754 Therefore, it is possible that

angiotensin II stimulates lymphocyte vascular infiltration and activation, which in turn

provide as yet undefined signals to vascular cells that cause endothelial dysfunction,
vasoconstriction and remodelling, or alter renal sodium/water handling.

The focus of the immune response in hypertension is not obvious. What antigen(s)
drives the process? Haemodynamic stress may damage vascular cells and initiate an

inflammatory/immune response, but in this study treatment prior to the development of

hypertension prevented any rise in blood pressure, so this potential mechanism seems

unlikely to be important. In the hypertensive models studied here, an immune response

against renin would be feasible, since mouse renin is antigenically distinct to rat renin,
and transgene expression is induced in adult animals. However, it seems more likely that
a response against transgene-derived renin would neutralize its activity, thereby

preventing hypertension. Such an effect has been observed in naive SHR transfused
with anti-renin T cells.755

4.11.3 Inflammatory mechanisms in hypertension

Although it has long been recognised that hypertensive end organ damage stimulates
tissue injury and inflammation, it has only recently been appreciated that vascular
inflammation may underlie the development of hypertension itself.7'^6 Indeed,

angiotensin II is a pro-inflammatory agent, with direct effects on chemotaxis,
757

proliferation and differentiation of monocytes in to macrophages. In addition,
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angiotensin II signalling stimulates reactive oxygen species (ROS) that may secondarily
758stimulate inflammatory processes.

Evidence points to a role for angiotensin II in stimulating inflammatory cell recruitment
and activation in vascular tissues. Angiotensin II infusion in rats induces hypertension
as well as marked aortic monocyte infiltration 759'760 by directly inducing MCP-1

expression in endothelial, vascular smooth muscle cells and monocytes.761"763 In

addition, angiotensin II induces expression of cell adhesion molecules (VCAM-1) and
chemoattractants (IL-8, IL-10) on endothelial cells, vascular smooth muscle cells and

neutrophils,764'765 and upregulates IL-6 and TNFa expression in macrophages.766'767
Many of these effects are dependent on AT | / AT2 receptor signalling and NFkB
activation.767'768 Evidence from mice deficient in CCR-2 (MCP-1 receptor) demonstrates
that failure to recruit macrophages to the vessel wall prevents vascular hypertrophy in

769 770
response to angiotensin II, ' thereby indicating the importance of immune infiltrates
in mediating vascular remodelling: however, hypertension was mildly exacerbated rather
than inhibited.769

Angiotensin II induces generation of reactive oxygen species via activation of vascular
758and neutrophil NADPH oxidase. Since ROS are prime activators of NFkB signalling,

and hence inflammatory responses, it seems plausible that they may have a key role in
vascular inflammation and endothelial dysfunction. Angiotensin II promotes ROS

generation both directly as a consequence of receptor coupling to NADPH oxidase, but
also by induction of NADPH oxidase expression in the vascular wall.771'772 The

importance of this is highlighted by the failure of mice deficient in the p47 (phox)

component of vascular NADPH oxidase to develop hypertension in response to
77 1

angiotensin II, with evidence of blunted vascular superoxide production. In addition,

neutrophil activation is influenced by angiotensin II, via redox pathways and
758

calcineurin. This suggests that angiotensin II promotes vascular inflammation at

multiple levels.
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The question therefore arises as to how FK506 may interact with inflammatory

pathways in the vascular wall, and at what level of the inflammatory cascade? The
effects of calcineurin are cell-type specific, diverse and complex. Angiotensin II-
mediated neutrophil NADPH oxidase induction is calcineurin-dependent, and thereby

758
amenable to suppression by FK506. In addition, neutrophil motility also appears to be

773
regulated by calcineurin. In contrast in macrophages calcineurin appears to have a

suppressive role, preventing activation via IkB dephosphorylation.774 Therefore under

certain conditions FK506 and CsA activate macrophages though the doses required for
this effect are greater than those generally required for lymphocyte inhibition.774
Furthermore, in mesenteric endothelium, CsA (and presumably FK506) increases

leukocyte binding and decreases expression of iNOS, suggesting another paradoxical
775

proinflammatory effect.

Interestingly, treatment of rats transgenic for both human angiotensinogen and renin

(dTGR) with ciclosporin A was reported to cause a 35mmHg reduction in blood

pressure, though this was not thought to be of any significance since blood pressure

remained markedly raised.514 This study found that vascular injury was ameliorated by
CsA treatment, with evidence of inhibition ofNFkB activity and IL-6/iNOS expression,

suggesting an anti-inflammatory mechanism. Similar findings have been presented for
the same transgenic model treated with dexamethasone,750 mycophenolate,750

750 • • 776 • • 777
etanercept (anti-TNFa antibody) aspirin, HMG CoA-reductase inhibitor and

778
NFkB inhibitor. It is also worthwhile noting that dTGR resembles TGRcyplalren2

and TGRalATren2 in that all are based on activation of the RAS, suggesting that

angiotensin-II mediated inflammation/hypertension may be susceptible to inhibition by

drugs of this type.

4.11.4 Inhibition of Angiotensin II Signalling

Angiotensin II causes hypertension and vascular injury by several distinct mechanisms.
The most widely recognised effect is the vasoconstrictor response of arterioles to

angiotensin II. This is dependent on AT, receptor activation leading to activation of
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735 736 737 738downstream signal cascades such as PKC, ras-GTPase, and MAPK pathways. '

The interrelation of these distinct pathways is not clear, but studies of cardiac

hypertrophy in mice suggest that permissive interactions, or crosstalk, between
calcineurin and MAPK/PKC pathways occur."47 Therefore, it seems plausible to

speculate that FK506 may inhibit vasoconstrictor pathways, possibly via removal of
essential crosstalk influences. Calcineurin is expressed in vascular smooth muscle cells,
endothelium and vascular fibroblasts, and angiotensin induced dephosphorylation of

779
STAT3, and angiotensin-induced regulation of phenotypic differentiation of vascular

780 781
smooth muscle cells ' are mediated by calcineurin/NFAT. However, evidence for
calcineurin/NFAT-mediated effects in angiotensin-induced vasoconstriction has not

been described. A study of preglomerular vascular smooth muscle cells from Wistar

Kyoto rats and SHR found no role for calcineurin in angiotensin II/isoproterenol induced
782

cAMP formation. Studies of isolated vessels exposed acutely to CsA or FK506
783 784

demonstrate impaired vasorelaxation or even potentiation of vasoconstriction.

In this study no consistent effect could be found with regard to the phosphorylation
status of key MAPK enzymes required for vasocontriction, using antibodies specific for

phosphorylated ERK1/2, JNK and p38 MAPK. The main reasons for this are likely to be
the heterogeneity of cell types present in tissue samples as complex as whole artery, as

well as alterations in signalling due to tissue handling and hypoxia during prolonged
dissection.

4.11.5 Inhibition of Vascular Injury
Vehicle treated transgenic rats developed histological evidence of malignant vascular

injury at day 14, characterised by fibrinoid necrosis and perivascular inflammatory
infiltrates in the heart, mesentery and kidney. By day 21, vascular injury was more

florid. The antihypertensive effect of FK506 was evident at all time points studied, even
in the presence of substantial vascular and renal damage. Early treatment with FK506

prevented the development of vascular injury and remodelling, whilst later treatment

appeared to ameliorate, or at least arrest progression.
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Whether the beneficial effect of FK506 on vascular damage was purely a result of blood

pressure reduction, or if there was specific inhibition of angiotensin-mediated injury was

not clear. Previous studies in a variety of hypertensive animal models have indicated that
vascular injury can be ameliorated by blocking calcineurin, MAPK, TNFa, NFkB and
T> A o • ii- v. t i • .1 J 514,627,628,739,740,750,776,778,785 TRAS signalling, without lowering blood pressure. In dTGR

suppression of blood pressure does not prevent vascular inflammation and end organ
786

damage unless a renin inhibitor is used. Attempts to lower blood pressure with a non-

RAS antihypertensive agent in this study were unsuccessful, leaving this important

question unanswered. The difference in efficacy between FK506 and nifedipine was

striking, and the reason for the failure of nifedipine was unclear. As previously stated
731 »ihalf this dose has been used to control blood pressure in SHR. Nifedipine is known to

be photosensitive, but care was taken to ensure fresh drug was prepared daily, so that
this is unlikely to have been a problem. Since nifedipine is metabolised by P450

787 788 592
3A, ' an interaction with I3C is a possibility. Certain dihydropyridine calcium
channel blockers induce cyplal which would lead to transgene overexpression, but this

789
does not appear to be a property of nifedipine. It is likely that effective blood pressure

control may require more than one antihypertensive agent: triple-drug therapy has been
786

required to maintain normotension in dTGR. Indeed, telemetric studies in TGRmren2-
27 demonstrated that constant dose titration is required to achieve and maintain normal

579
blood pressures with antihypertensive agents, which is rarely done in practice.

4.11.6 Inhibition of LVH

A modest degree of LVH (39%) was observed in vehicle treated TGRcyplalren2 rats

after 21 days of severe hypertension, and a lesser degree of LVH was observed at day 14

(22%). FK506 treatment prevented an increase in LVMI, except for group D where
treatment was administered late (days 14 and 21): however, using tibial length to correct

LV mass (Lvtib) FK506 suppressed LVH effectively in all groups. The correct measure

of LVH is controversial, particularly when there are changes in body mass. This has
been investigated in a variety of species,528"532'790 and LV mass appears to adjust in
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proportion to body weight. Therefore, LVMI is probably the best surrogate marker of
LVH ifmicroscopic or cell capacitance studies are not performed.

The induction of BNP also confirmed that LVH was induced in response to malignant

hypertension. However the failure of FK506 to inhibit BNP expression contradicts the
assertion that FK506 inhibits LVH. This anomaly is intriguing, since the BNP promoter

82
contains NFAT consensus elements, and should be sensitive to calcineurin inhibition.

Similar observations have been made with respect to CnA|3, NFATc3 and GSK-3(3
knockout mice, in which LVH is attenuated, without full inhibition of the LVH gene

program.87'474'536 This suggests that even in the absence of hypertension, an activated
RAS initiates the molecular programme for LVH, without other phenotypic changes
such as an increase in cardiac mass. In other words, various aspects of LVH can be
dissociated. Exactly how this occurs is not known, but one could speculate that some

aspects of LVH are dependent on humoral signals, whilst others require haemodynamic
stimuli. For example, in some studies BNP expression is only increased after the

development of diastolic heart failure, as opposed to LVH with normal diastolic
function."1 Alternatively, genetic markers of LVH such as BNP may simply be

epiphenomena, or markers ofmyocyte stress/haemodynamic alteration. Some credance
for this view is provided by studies of cardiac unloading in rats in which hearts were

transplanted to the abdomen of recipient rats: transplanted hearts demonstrated gene
88

expression profiles similar to LVH, despite a regression of cardiac mass.

Echocardiographic studies demonstrated that endocardial fractional shortening was

increased in water treated transgenic groups compared to controls. Since eFS is a load-

dependent measure of LV function, this may simply reflect the effects of increased
afterload (hypertension) on cardiac function.94 Furthermore, the development of LVH

may be associated with a compensatory increase in radial cardiac function, whilst

longitudinal parameters decline.104'676"679 FK506 did not have a detrimental effect on
cardiac performance, in so far as fractional shortening and cardiac output were increased
in some FK506 treated groups compared to water treated controls. Similar observations
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have been made in invasive studies using intravenous FK506.71' Furthermore in vitro
studies of papillary muscle function during FK506 exposure also found no adverse
effects on contractility.792

A variety of alterations occur during LVH that impact on ventricular diastolic function,
such as impaired myocyte relaxation, myocyte ischaemia, altered myocyte metabolism,
increased myocyte stiffness and increased fibrosis69'152'197,200'201'650'793 Diastolic

dysfunction is due to abnormalities of myocardial relaxation in diastole, causing
alterations in left ventricular filling. This is reflected in changes in Doppler transmitral
flow indices, including prolongation of the deceleration time (dt) of early transmitral

filling, decline in the rate of deceleration (dv/dt), as well as decreased peak early
transmitral velocity to peak late transmitral velocity ratio (e/a ratio).672'794'795 Such

changes were not observed in this study. Isovolumic relaxation time (IVRT) is a

measure of myocardial relaxation during the earliest phase of diastole, in the phase
between aortic valve closure and mitral vave opening, when blood neither enters nor

leaves the left ventricle (ie isovolumic phase of cardiac diastole). Prolongation of IVRT
is an early indicator of diastolic dysfunction, occuring before changes in other

parameters.714 IVRT was prolonged in all transgenic groups, even after FK.506
treatment. This suggests that diastolic dysfunction may be induced by RAS signalling
that is not inhibited by FK506, and can be dissociated from LVH and hypertension.

4.11.7 Effect of FK506 on Transgene Induction
It was striking that FK506 treated animals demonstrated increased transgene expression

compared to water treated controls. This was particularly so for animals in group A that
received FK506 for the longest period, and was evident at both mRNA and enzyme

activity levels. The most likely explanation is that FK506 causes transgene induction

directly via cyplal promoter induction. Alternatively it may be that FK506 treated
animals remain healthier due to inhibition of malignant hypertension, and therefore eat

more inducing diet. Although this was not formally examined it is unlikely because

weight loss in FK506 treated transgenics was as severe as in water treated counterparts.
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Chapter 5

Investigation of Prorenin (ren2)

Uptake
5.1 Introduction

Transgenic rats such as TGRcyplalren2 over express prorenin at extra-renal sites

resulting in vascular damage and/or hypertension"88'408'56'"581 despite the fact that

prorenin is considered inactive. In these models plasma levels of transgene-derived

prorenin are generally 100-1000 fold in excess of those of active renin, and angiotensins
are only modestly elevated if at all -88-408'562-581 However, angiotensin converting enzyme

inhibitors and angiotensin receptor antagonists are highly effective in preventing the

development of hypertension in these models,567'577'579'627 indicating that RAS activation
must be occurring somewhere. This suggests that prorenin is converted to renin at an

extra-renal site, stimulating the tissue-based RAS in various organs. Some circumstantial
evidence supports this hypothesis, in that subpressor doses of ACE inhibitors ameliorate
end organ damage without lowering blood pressure,767'628 though definitive

interpretation of this type of experiment can never be certain. In support of this

hypothesis, Ogg408 demonstrated immunostaining for renin in coronary arteries of
TGRalATren2 using a rabbit polyclonal antibody which recognises both rat and mouse

renin. However, it is not inconceivable that such a result could be an artefact of cross-

reactivity with other aspartyl proteinases such as cathepsins, which share homology with

renin,796 and are known to be present in vessel walls.797 Peters et al. (2002)407
demonstrated that intracardiomyocyte levels of proren2 within the hearts of

TGRcyplalren2 are elevated above levels expected for simple diffusion, whilst isolated
adult cardiomyocytes internalize in vitro translated prorenin (ren2d), leading to the

generation of angiotensins. This supports a concept of prorenin uptake and local RAS
activation within the heart of ren2d transgenic rats. However, the mechanism of uptake
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for ren2 is completely unknown, as it is non-glycosylated and therefore unlikely to be
bound by the mannose-6 phosphate receptor (M6PR) which has previously been

implicated as the mechanism for human (pro)renin uptake in endothelial cells and

cardiomyocytes.399"402'798 Furthermore, uptake and activation of prorenin by this
mechanism has not been shown conclusively to lead to RAS activation or to have

physiological consequences.402 We therefore hypothesised that a separate uptake
mechanism for ren2d exists which is distinct to M6PR, and that ren2d uptake leads to

activation ofprorenin in cardiomyocytes.

One strategy to explore this further is to study the uptake of recombinant prorenin in

vitro, in different cell types (eg cardiomyocytes, vascular smooth muscle cells,
endothelial cells). Subsequent experiments to identify the mechanism responsible would

require diverse approaches such as the use of pharmacological inhibitors, screening of

expression libraries for prorenin binding, or the use of gene transfer techniques to

express candidate receptor molecules in cell culture. In vivo uptake experiments may

also be fruitful, particularly with the availability of mouse knockout models to test the
role of specific molecules on renin distribution and processing.

Since there is no commercially available source for recombinant renin, we chose to

produce recombinant mouse ren2. Mice are unique in that certain strains possess two

renin genes (e.g. Ren-ld and Ren-2d in the DBA/2 strain vs Ren-lc in the C57BL

strain).799"801 This appears to have arisen as a result of a gene duplication event after the

divergence of mice and rats as separate species 10-20 million years ago.802'803 All mouse
renin genes consist of 9 exons and 8 introns with high homology existing between
cDNA sequences, 97% between Ren-lc and Ren-2d and 99% between Ren-lc and Ren-
ld s°4 Ren2d protein is structurally similar to other renins:799'805'806 prorenin (43kDa) is

processed to a 38kDa active renin comprising a 33kDa heavy chain and a 5kDa light
• • • 266 807

chain linked by a disulphide bridge, with an intrachain disulphide bridge. ' Notably
Ren-2d lacks glycosylation stteS5261'805'808'809 and is therefore ideal for investigating

glycosylation independent mechanisms of prorenin uptake. The crystal structure for

157



ren2d is similar to other aspartyl proteinases, comprising an active site within a deep
cleft between the N- and the C-terminal domains, with ten sub-sites within the active site

that determine specificity for angiotensinogen.810 Ren2d has extreme substrate

specificity, cleaving only between a leu-leu peptide bond in angiotensinogen from
811812 d

mouse, rat, horse, hog and dog, but not human. ' Ren-2 is highly expressed in

granular convoluted tubules of the submaxillary gland, but also in the kidney at a level

approximately equivalent to ren-ld.804'813 Deletion of ren-2d in two renin gene mice has
no discernable effect on blood pressure or renal structure, but causes an increase in

plasma active renin and a decrease in prorenin.814 In contrast ren-ld~" mice have
increased plasma concentrations of prorenin and decreased levels of active renin, with
altered JGA and macula densa morphology.815 Female ren-ld" mice are hypotensive.815
Therefore, renld and ren2d are not functionally equivalent and ren2d cannot substitute for
the absence of renld. The role of ren2d is as yet undetermined.

5.2 Overview of Recombinant Renin

Previous investigators have produced recombinant (pro)renin of various species (human,

marmoset, rat and mouse) using a variety of methods including in vitro translation

systems, E.coli, insect cells, and mammalian cells (CHO cells, AtT-20 pituitary cells,

293, COS-1 and COS-7 kidney cells, and dog cells).263'290'298'314'317-403,407,816-841
831

Purification has been carried out using methods such as antisera affinity columns,
842

pepstatin and H77-affinity chromatography, immobilised synthetic renin inhibitors,
825

ion exchange chromatography, concavalin-A-sepharose columns " and GST-fusion
832

proteins. In some studies the prosegment has been found to be essential for efficient
298 819 838

expression and correct protein folding." ' ' Recombinant renin has been used in a

variety of situations, to study crystal structure, in vitro activity, as well as physiological
role in cell culture and in vivo. The choice of expression system ultimately depends on

the final use of the protein, and therefore the desired quantity, purity, and functionality.

We chose a baculoviral expression system to produce recombinant ren2d as this

approach has several theoretical advantages over other methods for recombinant protein

158



production. Insect cells are eukaryotic, and therefore should allow the generation of

functionally active ren2d, given the availability of cellular machinery for protein folding
and disulphide bond formation.843'844 Ren2d contains two disulphide bonds that are

800 808critical to its structure and function ' (Swissprot P00796), and this is therefore an

important consideration. Although other post-translational modifications such as

glycosylation are more primitive than mammalian cells,816'845 this does not affect the

production of ren2d. The ability to grow insect cells in bulk suspension greatly enhances

productivity, theoretically allowing the generation of several grammes of recombinant

protein per litre of culture. If in vivo experiments are to be feasible, quantity is an

important factor.

5.3 Overview of Baculoviral Expression Systems
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is the prototypical
baculovirus used in insect-based protein expression systems.603'604'844 This is a large
double stranded DNA virus that infects arthropods. The genome is relatively large

(130kb), accommodating sizeable foreign DNA inserts. The viral life cycle involves cell
infection via adsorptive endocytosis, followed by replication of viral DNA in the host
nucleus. Waves of gene expression occur, which can be divided into immediate early,

early, late and very late. Replicated viral particles are assembled in the host nucleus, and

comprise two types: occluded and non-occluded. Non-occluded viral particles are

released from the cell via budding and cell lysis, infecting neighbouring cells. Occluded
viral particles form aggregates of virus and protein called polyhedra, of which

polyhedrin is a major component. This protein is expressed in the very late phase of
infection, at around 18 hours. Polyhedrin coated particles contain several hundred viral

particles and protect them from destruction: consumption by other insects leads to

breakdown of occluded particles and release of infective virus, thereby completing the
life cycle. Since occlusion bodies are not essential for viral propagation in a laboratory

setting the polyhedrin gene can be replaced with a gene of interest, which will be highly

expressed in the very late phase of infection. A variety of other viral promoters have also
been used for this purpose, including plO, and basic protein.844
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Insect cell lines available for protein expression include Spodoptera frugiperda (Sf),846
Trichoplusia «z,847 Mamestra brassicae,848 and Estigmene acrea,849 Sf9 cells are the
most commonly used and have the advantage of ease of culture, high culture density and

ability to grow in both monolayers and suspension. Since insect cells are eukaryotic,

post-translational modification of proteins is carried out, such as phosphorylation,

myristylation, glycosylation, disulphide bonding, and prosegment cleavage. However,
the scope of these processes is less advanced compared to mammalian cells: for example

N-glycosylation is limited to high mannose oligosaccharides, and more complex
845 850

oligosaccharides are not generally seen. ' Glycosylation patterns similar to
851mammalian cells are possible either using Estigmene acrea or baculoviral vectors

845 850
containing glycosylation enzymes such as (3-1,4-galactosyltransferase. '

A cloned gene of interest can be introduced into the AcMNPV genome by homologous
recombination using intermediate vectors containing viral sequence homologous to

sequences flanking the polyhedrin locus. Recombination occurs following the
introduction of virus and vector into Sf9 cells. Since this is a relatively rare event, a

mechanism for selecting for appropriate recombination enhances the efficiency and
removes the need for laborious screening processes. The development of modifed
baculoviral DNA (Bsu 36 I linearised) with a lethal deletion of the open reading frame

(ORF) 1629 near the polyhedrin locus has facilitated the production of recombinant
baculovirus. Homologous recombination between the deletant baculovirus and vector

containing the gene of interest restores ORF 1629 generating viable baculovirus, with a

very low background of contaminating wild type virus. Furthermore, identification of
recombinant baculovirus has been aided by the incorporation of lacZ reporter gene

downstream to the baculoviral early to late promoter within the transfer vector, allowing

screening by X-gal visualisation. Vectors are available which include immuno-tags,

purification tags (His, GST) and signal sequences (gp67, mellitin, human placental
alkaline phosphatase) so that a fusion protein can be produced if desired.
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5.4 Recombinant ren2: General Strategy
The basic requirement for our experiments was to produce active ren2d that could be
used in vitro and in vivo to study cellular uptake and distribution. Therefore a method of
identifying recombinant prorenin was desirable. We chose to incorporate epitope tags at

the N- and C- termini of prorenin, using the 9el0 myc and haemagluttinin (HA) epitopes

respectively. These epitopes have been used widely in recombinant and transgenic

expression experiments, allowing convenient distinction of recombinant and endogenous
852 • .... ...

protein, either in vitro, or in vivo. In addition, identification of N- and C-termim in

this manner enables proteolytic loss of the prosegment to be identified. Co-

immunoprecipitation studies to identify interacting proteins may also be facilitated.
Since protein modification in this way could alter function, it was decided to generate

variants in which one or other of the epitopes was omitted. An additional design feature
was the incorporation of a hexa-histidine motif (6xHis tag) to aid purification from

853 855
complex protein mixtures. " Under appropriate conditions histidine rich proteins
bind via imidazole groups through open co-ordination sites on transition metals such as

cobalt, nickel, copper, zinc and iron with high affinity.854"856 Immobilisation of the metal
ions to a matrix through chelating compounds allows capture of histidine rich proteins,
which can then be eluted using free imidazole (immobilised metal affinity chelation,

IMAC).

The general strategy used to generate immuno-tagged prorenin-encoding baculovirus
857

(illustrated in figures 5.1-5.3) is based on the method of Liu et al (1998) ' and involves
a 3 step process: 1. assembly of a ren2d cDNA construct incorporating immunotags by

TA-cloning PCR amplification products into an intermediate vector: 2. generation of a
baculoviral transfer vector in which the ren2d construct is flanked by baculoviral

homology arms, lacZ gene and ORF1629 sequence: 3. recombination of Bsu36I
linearised baculovirus with the intermediate vector to generate a viable recombinant
baculovirus.
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Figure 5.1. Step 1: TA-cloning ren2 PCR products into

pllniV5HisTOPO vector.

r—H R6KyOriginDC Kanamycin
pUniV5HisTOPO

Topoisomerase

V

r—c R6KYOrigin IbC Kanamycin
pUnimycren2HAHis

PCR amplified ren2 constracts (red arrow) were cloned into pUniV5HisTOPO using topoisomerase bound
to the linearised vector. Ligation mixtures were transfected into P1R1 E.coli and selected using

kanamycin. Clones were screened for incorporation of ren2 by restriction digestion, and appropriate
clones were sequenced. LoxP site grey triangle.
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Figure 5.2. Step 2: Generation of Donor Vector by Cre-Mediated
Recombination Between pllnimycren2HAHis and pBlueBac4.5E

r—C R6KyOrigin IK Kanamycin II—■>
pUnimycren2HAHis

X
r

pBlueBac4.5E

MI Promoter IK dUC Origin

Cre Recombinase

V

pBBmycren2HAHis

micillin=KK: R6KyOrigin

pUni constructs containing Ren2 (red arrow) were introduced into the baculoviral transfer vector

pBlueBac4.5E by CVe-mediated recombination. A fusion vector, pBBmycren2HAHis was generated.
Recombination mixtures were transfected into TOPIO One Shot E.coli and cultured under kanamycin
selection. The fidelity of recombination was verified by sequencing. Grey triangles: loxP or loxH sites.
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Figure 5.3 Step 3: Generation of Recombinant Baculovirus by

Homologous Recombination.

Circular Bac-N-Blue DNA

P603 Bsu36\ PPH Zfaw36I 551/361 Pi629

Bsu36l Restriction

Digestion
V

Bsu361

I

Bac-N-Blue DNA

Donor vector

^
pBBmycren2HAHis

Recombination

V

BVmycren2HAHis
P603 Bsu36l PETL PPH Bsu36l P1629

Homologous recombination between pBB vectors and Bsu36l linearised Bac-N-Blue DNA results in the

generation of recombinant baculovirus, with restoration of the essential gene ORF 1629, and full length
Lac Z. Blue: baculoviral sequence, turquoise: Lac Z, red: mycren2HAHis, white: donor vector, grey: lox H.
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5.5 Baculoviral Expression of Recombinant Prorenin
5.5.1 Generation of a Renin cDNA Series

Ren2d cDNA (1.2 kb) was amplified from pBS-0CiAT-Ren2 (JJM4), using a combination
of primers (Table Al). Primer JJM 55 was designed to amplify the native signal

sequence, whilst JJM 361 led to incorporation of a 5' myc tag without inclusion of the

signal sequence. JJM 362 and JJM 363 both incorporated 3' HA motifs. JJM 362 was

designed to allow read through, whilst JJM 363 included a consensus stop codon to

prevent this. Combinations of 5' and 3' primers were used to create ren2d cDNA with
or without signal sequence or tags as illustrated in figure 5.4. In addition, two ren2d
cDNA's mutated at the prosegment cleavage site were amplified from poiiAT-Ren2-

7180 and pBS-a|AT-Ren2-5136 using primers JJM 361 and JJM 362. As previously

discussed prosegment cleavage in ren2 occurs between lysine64-arginine65. Substitution
of serine for arginine (designated PRO7180), or replacing both lysine/arginine with
alanine/alanine (PR05136) theoretically render the site uncleavable by known proteases

311 318
(figure 5.5). ' These modifications were generated by Dr R Molina using site
directed mutagenesis.

5.5.2 TA Cloning ren2d cDNA into pUniV5HisTOPO® Donor Vector

pUniV5His TOPO is a 2.3 kb plasmid vector with a R6Ky replication origin,

kanamycin resistance cassette (neo gene), V5 and 6xHis tag sequences, loxP site and a

TOPO" cloning site for direct cloning of PCR products. TA-cloning, is a technique that
takes advantage of the fact that Taq polymerase amplification of DNA leads to non-

template-dependent 3' terminal adenosine bases in the amplification product. Free
adenosine bases can base pair with thymidine bases present at the 3' termini of
linearised vector. The vector is supplied in an "activated" form i.e. linearised, with free

thymidine bases at the 3' ends, and covalently bound Topoisomerase I. Topoisomerase I
858

mediates ligation of the vector and PCR product, whilst non-ligated vector remains
linearised and cannot replicate. The R6Ky replication origin only allows vector

propagation in E.coli strains expressing the pir gene, such as PIR1 and PIR2. This
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feature prevents replication of pUniV5HisTopo in subsequent cloning steps in non-pir
strains.

Figure 5.4 Restriction Maps of ren2 PCR Constructs

mvc sac i(i7s) ren2 cDNA ha
Eco RV(20)>

1

\ , 1 ' Sac 1(877) I)\ I Kpn 1(257) v

<!' I I 1 ^ #
mycren2HA
1222 bp

signal sequence ren2 cDNA

\ Kpn 1(282, | Sac 1(902)
(II I

ren2HA cDNA

1247 bp

HA

mvc ren2 cDNAy Soc I (175) , Sac. (877) HA-STOP
Eco RV (20)

4

\ . v ' Sac 1(877) nM-OlUr)\ Kpn 1(257) v |

<1: I I ' 1 ^
mycren2H£ cDNA

1222 Op

cleavge site mutation ren2-5136 cDNA
myc

Eco RV (20) \

<ff-
i\pn i i«/| .

r ' I jk
HA

mycren2-5136HA cDNA
1222 bp

ren2-7180 cDNA
cleavage site mutation

m*\ \ .S, I,,75,
RV (20)\ Spn 1(257)

ha

mycren2-7180HA cDNA
1222 bp

Ren2d cDNA was amplified using primers that incorporated 5' myc or 3' HA immunotags (blue).
Ren2-5136 and ren2-7180 incorporated prosegment cleavage site mutations as illustrated in figure
5.5. Restriction enzyme cleavage sites are indicated with nucleotide positions in parentheses.
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Figure 5.5 Prosegment Cleavage Site Mutations

5' GAC GTA TTC ACA AAG AGC TCT TCC TTG ACT GAT C

LyS64 S6f65
PRO7180

5' GAC GTA TTC ACA GCT GCT TCT TCC TTG ACT GAT C
Ala64 Ala65

PR05136

5' GAC GTA TTC ACA AAG AGG TCT TCC TTG ACT GAT C

Lys64 Arg65
Ren2

Prosegment cleavage site mutations in ren2 were introduced by site-directed mutagenesis. The resulting
amino acid sequences are thought to be non-cleavable by known proteases.

Table 5.1 Predicted Restriction Fragments of pUni Constructs
Plasmid Restriction

enzyme

Correct ren2 cDNA

orientation (bp)

pUnimycren2HAHis Kpn I 3163, 320

Xho I/Sac I 2227, 702, 364,190

pl)nimycren2HA Kpn I 3106, 320

Xho I/Sac I 2227, 702,364, 133

pUniren2HAHis Kpn I 3163,350

Xho I/Sac I 2227, 702, 364, 220

pUnimycren2-5136HAHis Kpn I 3163, 320

Xho I/Sac I 2227, 702, 364, 190

pUnimycren2-7180HAHis Kpn I 3163,320

Xho I/Sac I 2227, 702, 364, 190

167



Figure 5.6 Restriction Maps of pUni Vectors

Restriction maps of pUniV5HisTOPO (a) and pUnimycren2HAHis (b). Nucleotide positions are relative
to the plasmid replication origin.

Amplified ren2d cDNA's were TA-cloned into the TOPO& cloning site of

pUniV5HisTOPOR (2.3 kb), in frame with adjacent V5 and His tags, generating

pUnimycren2HAHis (3483 bp), pUniren2HAHis (3513 bp), pUnimycren2HA (3426 bp),

pUnimycren2-5136HAHis (3483 bp), pUnimycren2-7180HAHis (3483 bp). The
orientation of cDNA inserts was distinguishable by restriction enzyme digestion with

Kpn I, and Sac l/Xho 1 (Figure 5.7a and b for pUnimycren2HAHis). The restriction maps

for vectors and ren2 constructs with myc and HA tags are shown in figures 5.4 and 5.6.
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Clones were repeatedly sequenced on both strands to confirm the fidelity of PCR

amplification and insert orientation using primers JJM 56, 57, 58, and 59 (Table A2).

Figure 5.7 Screening pUnimycren2HAHis Clones
Kpn 1 Xho MSac 1

HIIIA 1 2 bp HIIIA, 1 2

i€(I( _ 3163

-
_ 320

IB tiflt — 2227 bp

—

702 bp

a) b)
— 364 bp

Clones (l and 2) of pUnimycren2HAHis were restriction enzyme digested and fragments separated on

0.8% agarose gels, a) Kpn I digestion. Correct orientation of the ren2 cDNA insert yielded fragments of
3163 and 320 bp. b) Xho I /Sac I digestion. Correct orientation of the ren2 cDNA inserted yielded

fragments of 2227, 702 and 364 bp. HIIIA.: Hind\\\ digested X bacteriophage DNA.

5.5.3 Generation of Baculoviral Recombination Vector

pBlueBac is a baculoviral transfer vector (4919 bp) used for introducing a gene of
interest into Bsu 36 I deletant baculovirus genome by homologous recombination (figure

5.3). It contains a pUC origin, ampicillin resistance gene, LoxH site, LacZ under the
control of the baculoviral early to late promoter, and other baculoviral sequences,

including ORF1629 and the polyhedrin promoter (figure 5.8). The recombination
vectors were constructed by Cre-mediated recombination between pUni constructs and
the donor vector pBlueBac (pBB) (figure 5.2). Cre is a site-directed recombinase from
the bacteriophage A, which recognises a 19 bp palindromic recombination sequence
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OCQ # #

termed loxP. In vitro Cre-mediated recombination between two supercoiled

substrates, each containing loxP sites, results in a supercoiled dimer at an efficiency of
10-20%.860'861 pBB contains a modified loxP site, termed loxH, which has reduced
recombination efficiency, but interferes less with expression of the gene of interest in

857Sf9 cells. Recombination between pUnimycren2HAHis and pBB results in a fusion

plasmid, pBBmycren2HAHis (8.4 kb) in which ren2d cDNA is placed under the

transcriptional control of the polyhedrin promoter, and is flanked by baculoviral

sequence (0.4 kb and 1.0 kb), and 5' lacZ sequence. Recombination products were

transfected into TOP 10 One Shot E.coli and selected using kanamycin. Since TOP 10
One Shot E.coli lack the pir gene, only pBBmycren2HAHis (containing both the pUC

origin and the neo gene) were propagated. Recombinant clones were verified by
restriction enzyme digestion with EcoR V and Kpn I, (Figure 5.9 pBBmycren2HA) and
checked by sequencing on both strands.

Table 5.2 Predicted Restriction Fragments of pBB Constructs
Plasmid Restriction

enzyme

Correct orientation (bp)

pBBmycren2HAHis Kpn I 5239,3163

EcoR V 6530, 1656,216

pBBren2HAHis Kpn I 5264,3163

EcoR V 6530, 1897

pBBmycren2HA Kpn I 5239,3163

EcoR V 6530, 1656,216

pBBmycren2-5136HAHis Kpn I 5239,3163

EcoR V 6530, 1656,216

pllnimycren2-7180HAHis Kpn I 5239,3163

EcoR V 6530, 1656,216
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Figure 5.8 Restriction Maps

pBBmycren2HAHis

of pBlueBac4.5E and

a)
Eco RV (4)

Petl / Pph
LoxH

SV40pA

5' lacZ

pUC origin

Baculoviral Recombination Sequence (ORF1629

Ampicillin

b)

Petl

Eco RV (4)

PPH
LoxH

5' lacZ

pUC origin

Ampicillin

Baculoviral Recombination Sequence

Xho 1(185)
Eco RV (220)

Kpn 1(457)

mycRen2HA cDNA
Sac 1(1077)

"Sac 1(1441)

~Eco RV (1876)

Kanamycin

pBlueBac4.5E (a) contains a loxH site for Cre-mediated recombination with pUni vectors, such as

pUnimycren2HA, leading to generation of pBBmycren2HAHis (b) In addition, it contains baculoviral

sequences that allow homologous recombination with Bac-N-Blue ACNPV. Petl: baculoviral early-to-late

promoter, PPH: polyhedrin promoter, R6K: replication origin, LoxH: recombination site, LoxP:
recombination site, SV40pA: SV40 poly A sequence.
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Figure 5.9 Screening pBBmycren2HAHis Clones

EcoR V Kpn I HIIIX,

pBBmycren2HAHis clones were screened for correct recombination by restriction digestion with EcoR V
and Kpn I digestion. All clones demonstrated correct recombination. EcoR V: 6530 and 1656 bp. Kpn I:

5239 and 3163 bp. 0.8% agarose. HIIIX: HindlU digested A. bacteriophage DNA.

5.5.4 Baculoviral Recombination

Bsu36 I digestion of Bac-N-Blue baculoviral DNA results in deletion of the 3' sequence
of ORF 1629, polyhedrin promoter and polyhedrin (figure 5.3). Whilst polyhedrin is

dispensible for viral replication, ORF 1629 is vital. Homologous recombination between

pBB constructs and deletant virus rescues viral competency, whilst incorporating ren2d
cDNA into the viral genome.862 The homology arms of the pBB constructs are 5' LacZ

fragment (888 bp of shared homology) and ORF1629 (800 bp of shared homology).
Recombination was mediated by transfection of Bsu36 I deleted baculovirus and pBB
constructs into Sf9 insect cells using liposomes. Correct recombination also generated a

full length Lac Z cDNA under the control of the baculoviral early to late promoter,

allowing visual identification of recombinant viral plaques with X-gal. The recombinant
baculoviruses were named using the prefix BV (e.g. pBBmycren2HAHis and Bsu 36 I
Bac-N-Blue recombination generated BVmycren2HAHis).
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5.5.6 Identification and Isolation of Recombinant Baculovirus

Recombination between pBB and Bsu 36 I digested Bac-N-Blue initiated baculoviral
infection in Sf9 cells. The development of blue-green plaques in the presence of X-gal
within the Sf9 monolayer indicated that recombination had occurred successfully,

producing full-length [3-galactosidase. Under the conditions used, we routinely obtained

around 10-20 individual recombinant plaques per 80mm plate. Within plaques

morphological evidence of viral infection was apparent, such as cell enlargement and
cell lysis (Figure 5.10). Recombinant plaques are initiated by a single recombination
event: virus isolates were obtained from each plaque by aspiration of agarose gel plugs

using a Pasteur pipette. Each isolate was individually propagated on a small scale for
further characterisation of recombination and protein expression.

Figure 5.10 Morphology of Baculoviral Plaques

a) b) c)

Bright-field microscopy of Sf9 cultures a) Subconfluent non-infected Sf9 cells of uniform size (high

power), b) Baculoviral (BVmycren2HAHis) infected Sf9 cells show growth arrest, and gross swelling

(high power), c) Low power view of b) recombinant plaque stained with X-gal. Note central area of cell

lysis.
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Although the use of Bsu 36 I deletant baculovirus significantly reduces contamination

by wild type baculovirus, low level contamination is possible, presumably because of

incomplete restriction digestion of Bac-N-Blue DNA, or complex recombination events.

The presence of wild type virus reduces the efficiency of protein expression due to

competition with recombinant virus for cellular resources, and more efficient replication.

Therefore, it was important to ensure that viral stocks were free of wild type

baculovirus. A PCR assay was used to distinguish recombinant and wild type

baculovirus, using primers flanking the polyhedrin region (JJM 396: nucleotides -44 to

-21: JJM 397: +794 to +774 (nomenclature ofO'Reilly et al, 1992863) Appendix A, table
B), and therefore spanning the ren2d cDNA. Wild type baculovirus led to amplification
of an 839 bp fragment, whilst recombinant virus produced a 3.9 kb fragment (figure

5.11). Non-contaminated viral isolates were selected and characterised further.

Figure 5.11 PCR Screening of Recombinant Viral Isolates

3.9kb —►

839 bp —►

w WW WWW~W^
M jg mf

- wt C 10 9 8 7 65432 IX

Mini cultures of isolated recombinant viral plaques were grown for 3-5 days. DNA was isolated and
screened for the presence of recombinant and wild type baculovirus using primers flanking the polyhedrin

region, wt: Bac-N-Blue wild type control, C: uninfected Sf9 cell DNA control, l-lO: recombinant viral

plaque isolates, X : XHindlll marker.
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5.5.7 Analysis of Protein Expression by Baculoviral Plaque Isolates
Viral isolates expressing ren2 protein were identified by Western blotting of whole cell

lysates from 6 well plates (Figure 5.9), using anti-haemagglutin antibody. The

agreement between PCR and Western blotting results was imperfect, in that only a few
viral isolates appeared to give rise to recombinant renin production. This is likely to be
due to differences in the sensitivity of the two screening techniques as well as variations
in viral titre: if individual infections proceed at different rates some will fail to produce
detectable levels of protein at that time point, whilst giving positive PCR results.

Alternatively, DNA preparation from small cultures did not allow high quality DNA to

be prepared, so PCR may have failed for this reason.

Figure 5.12 Screening for Recombinant Prorenin

KDa

50 -

35 -

30 -HHIH
10 987 65 4321 HA

Western blot. Mini cultures of viral recombinants were grown for 5 days. Crude protein extracts were
made and screened for the presence of recombinant prorenin using aHA antibody. I-IO: BVmycren2
HAHis isolates. HA: hepatic protein from 11 (IHydroxysteroid dehydrogenase-2 transgenic mice
expressing HA-tagged HSD-2. Primary a-HA, 1 : 1000, secondary a-mouse IgG, 1 : 1000. 10% PAGE-
SDSgel."

5.5.8. Generation and Purification of Recombinant Prorenin

On the basis of PCR and Western blotting results suitable viral isolates were identified
for each construct. High titre stocks (>10 x pfu) were generated in 100 ml suspension
cultures of Sf9 cells, according to the method described in section 2.2.30. Time course

and infectivity studies with BVmycren2HAHis indicated that protein yield was optimal
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at 72 hours of infection using a multiplicity of infection of 1.0 (Figure 5.13). Similar
results were obtained for the other recombinant baculoviruses. Although some studies
have suggested that very low MOI's (0.0001) lead to better yields,864 this was not found
to be the case in this instance (data not shown). Recombinant protein was present

entirely in cellular lysates and none was in the culture medium: the vast majority of
renin was in the pelleted insoluble fraction (Figure 5.14). BVren2HAHis retains the

endogenous prorenin signal sequence but was also insoluble (data not shown). Using
these parameters recombinant prorenin was purified under native conditions by
immobilised metal affinity chromatography (IMAC) using a cobalt column.

Polyacrylamide gel electrophoresis and Western blotting identified recombinant renin

using anti-HA and anti-renin antibodies (Figure 5.15 and 5.16). Silver staining showed
that the purity of recombinant protein was low (Figure 5.17).

Figure 5.13 BVmycren2HAHis Infection Timecourse
- 48 72 96 120 144 196 48 72 96 24 48 96 Hours

KDa

Hours Hours

MOI0.1 1.0 10

Suspension cultures were infected with BVmycren2HAHis at different multiplicities of infection and

sampled at intervals of 24 hours after infection. Optimum infectivity and time point is MOl 1.0 at 72

hours. Primary a HA, 1 : 1000, secondary SAPU rabbit amouse, 1 : 1000. - negative control. 10% SDS-
PAGE gel.
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Figure 5.14 Solubility of Recombinant Prorenin

S S WL + S S WL +

Long exposure Short Exposure

Soluble recombinant prorenin (BVmycren2HAHis) was separated from whole lysate by centrifugation at

10,000 rpm for 1 hour in a Sorvall SS34 rotor. Supernatant and whole lysate were analysed by Western

blotting after PAGE. WL: whole lysate, S : supernatant after centrifugation of whole lysate, + : positive

control. aHA 1: 1000, rabbit amouse 1 : 1000. 10% SDS-PAGE gel.

Figure 5.15 IMAC Purification of Recombinant Prorenin

*
£■

I
*

KDa

- 50

-35

-30

- + WL 1 2 3 4 5

BVmycren2HAHis recombinant prorenin was purified by IMAC, separated by PAGE and analysed by

Western blotting. Primary aHA 1:1000, secondary SAPU rabbit amouse 1:1000. - negative control, +

positive control, WL whole lysate (nonpurified), 1 - 5 elution fractions.
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Figure 5.16 Purified Recombinant Prorenin

KDa

Ren

Purified BVmycren2HAHis was analysed by Western blotting using a polyclonal antirenin antibody.

Primary polyclonal antirenin antibody "'1 1/10000. Secondary SAPU rabbit amouse 1:1000. - negative

control, Ren: BVmycren2HAHis sample.

Figure 5.17 Analysis of Recombinant Prorenin Purity

- + 1 2 3 4 5

BVmycren2HAHis recombinant prorenin was purified by IMAC and analysed by silver staining of PAGE

gels. - unpurified negative control, + unpurified positive control, 1 - 5 aliquots of eluate containing

purified prorenin. Samples are identical to figure 5.15.

178



5.3 Enzymatic Activity of Recombinant Prorenin Constructs
Soluble BVmycren2HAHis was partially purified from whole cell lysates by 1MAC

using a cobalt resin. Five 1 ml fractions of eluate were collected in Tris buffer and

samples one and four were tested for renin activity against porcine angiotensinogen
before and after trypsin activation over a range of pH values. Assays were performed by
Prof J. Peters. Figures 5.18 and 5.19 demonstrate that both samples contained prorenin
which was activated to renin by trypsin treatment: marked pH-dependence was seen,

with pH 7.3-8.0 being optimal. Above pH8.0, renin activity was severely curtailed.
Renin activity was also detected in both samples prior to trypsin treatment (figure 5.18),

suggesting either intrinsic activity due to cryoactivation or possible contamination with
active renin. Renin activity was substantially greater for sample 1 compared to sample 4

(90,000 ngAI/ml/h vs 20,000ngAI/ml/h), though this was not in agreement with the

appearance ofWestern blotting and silver staining data (Figures 5.15 and 5.16).

Figure 5.18 Renin Activity of Recombinant Prorenin
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Recombinant prorenin BVmycren2HA was purified by IMAC. Enzymatic activity was measured as the

production of angiotensin I from porcine angiotensinogen, by radioimmunoassay. Fractions 1 and 4 refer
to figure 5.15 and 5.17.
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Figure 5.19 Activity of Recombinant Prorenin
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Recombinant prorenin BVmycren2HA was purified by IMAC, and activated to renin by trypsin digestion.

Enzymatic activity was measured as the production of angiotensin I from porcine angiotensinogen, by

radioimmunoassay. Fractions 1 and 4 refer to figure 5.15 and 5.17.

BVren2HA differs from BVmycren2HA in that it lacks an N-terminal myc epitope and
retains the endogenous signal sequence. This construct was also shown to have

proteolytic activity against porcine angiotensinogen (data not shown). Renin activity of

BVmycren2HA was destroyed by freezing, even in the presence of 20% glycerol or 10%
bovine serum albumin (data not shown).

5.4 Alternative Strategies for Recombinant Protein Purification
Silver staining suggested that there was significant contamination with baculoviral

proteins using the IMAC method. The reasons for inefficient purification by IMAC may

have been due to a high proportion of histidine rich insect proteins, or a problem with
the accessibility of the hexa-histidine tag for interaction with the column. Therefore,
other purification strategies were explored, including modifications of the IMAC

protocol, immunoaffinity, and ion exchange chromatography. These will be discussed
in more detail.
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5.4.1. Modified IMAC

In order to improve the purification of recombinant prorenin by IMAC, strategies were

employed to reduce non-specific binding of insect cell proteins to the cobalt column.
These included the following modifications:

5.4.1.1 Additional centrifugation.
Crude lysates were centrifuged at 10,000 rpm for 30 minutes using an SS34 rotor to

pellet insoluble contaminants. This strategy helped to improve IMAC column flow rate,

but did not significantly affect purity of soluble fractions (figure 5.20).

Figure 5.20 IMAC Purification using Additional Centrifugation

KDa

75 -

50 -

35-

30 -

IMAC purification of BVmycren2HAHis was preceded by centrifugation of whole cell lysate at

10,000rpm for 30 minutes in a Sorvall SS34 rotor, a) Western blot: Primary a-HA 1:1000, secondary
SAPU rabbit a-mouse 1:1000. b) Silver stain of purified fractions. MW: molecular weight marker, WL:
whole lysate, UB, fraction unbound by IMAC column, 1 - 5 elution fractions.

5.4.1.2 Non-ionic detergents (1% NP-40).
NP-40 is a non-ionic surfactant that improves protein solubility and reduces protein-

protein interactions. Use of 1% NP-40 in wash steps appeared to inhibit binding of
recombinant renin to the cobalt column (figure 5.21).
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Figure 5.21 IMAC Purification Using 1% NP40.

a) b)

Recombinant BVmycren2HAHis was purified by IMAC. All solutions used contained 1% NP40. a)

Western blot: Primary a-HA 1:1000, secondary SAPU rabbit a-mouse 1:1000. b) Silver stain of purified
fractions. MW: molecular weight marker, WL: whole cell lysate, UB: unbound protein, 1-4: elution
fractions. +: positive control.

5.4.1.3 Acid-elution (pH 5.0).

pH affects protein solubility and ionic charge, and hexa-histidine binding to the cobalt
column is also pH-dependent. Acidic solutions may be used to elute bound proteins. Use
of 300mM NaCl pH5.0 in the elution step did not appear to improve purity (figure 5.20).

Although sample 3 appeared to be relatively pure and contain high levels of recombinant

prorenin (figure 5.22), concentration of this sample using an Amicon centrifugation
column demonstrated significant contamination.

5.4.1.4 (3-mercaptoethanol (5mM).

[3-mercaptoethanol reduces disulphide bonds and thereby disrupts intermolecular
interactions. Use of low concentrations of [3-mercaptoethanol is widely recommended
for enhancing protein purification, but appeared to prevent recombinant prorenin binding
in this instance (figure 5.23).
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Figure 5.22 IMAC Purification Using Acid Elution

MW + P FT Co 1 2 3 4 5 MW + P FT Co 1 2 3 4 5

a) b)

Recombinant BVmycren2HAHis was purified by IMAC, and eluted with 300mM NaCl pH5.0. a) Western

blot: Primary aHA 1:1000, secondary SAPU rabbit amouse 1:1000. b) Silver stain. + positive control, P:

pooled unconcentrated purified sample, FT: column flow through, Co: concentrated purified sample, 1-5:
elution fractions.

Figure 5.23 IMAC Purification Using p-mercaptoethanol
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a)

MW WL UB 1 2 3 4 5 +

b)

Recombinant BVmycren2HAHis was purified by IMAC. All solutions used contained 5mM (3-

mercaptoethanol. a) Western blot: Primary aHA 1:1000, secondary SAPU rabbit amouse 1:1000. b)
Silver stain of purified fractions. WL: whole lysate, UB: fraction unbound to cobalt column, 1-5: eluate

samples, +: positive control.
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5.4.1.5 High Salt Extraction Buffer (500mM NaCl)

Salt concentration alters protein ionic charge, and may therefore be expected to alter the

binding characteristics of histidine-rich proteins to the cobalt column. Such a strategy

has been employed previously to enhance purification of recombinant green fluorescent

protein (GFP) by IMAC.863 Use of 600mM NaCl solutions throughout the purification

process did not reduce contamination (figure 5.24).

5.4.1.6 Glycerol 10% (v/v)

Glycerol is commonly used as a buffer to stabilise enzymes, and is sometime s

recommended to reduce non-specific protein binding during purification. Inclusion of

glycerol 10% (v/v) appeared to inhibit recombinant protein binding to the IMAC column

(figure 5.24).

Figure 5.24 IMAC Purification Using High Salt or Glycerol

1 2 3 4 +

600mM NaCl

WL 1 2 3 4 5 +

10% Glycerol

a)

WL1234 12345

600mM NaCl 10% Glycerol

b)

Recombinant BVmycren2HAHis was purifed by IMAC. Solutions contained either 600mM NaCl or 10%

glycerol, a) Western blot: Primary olHA 1:1000, secondary SAPU rabbit ounouse 1:1000. b) Silver stain.
WL: whole cell lysate, 1 - 5: elution fractions, +: positive control.
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5.4.1.7 Low Concentrations of Imidazole (1 mM)

Theoretically the affinity of histidine-rich insect cell proteins for the IMAC column is of
lower affinity than that of the hexa-histidine motif, and should elute with low
concentrations of imidazole. This strategy is widely used to improve protein purity.866
However, there was little evidence that this significantly affected the purity of
recombinant ren2 (figures 5.25).

5.4.1.8 Nickel-Based IMAC

The physicochemical properties of different IMAC columns vary according to the
chelation agent and metal used. In the literature conflicting reports regarding the

superiority of different columns suggest that optimal conditions vary for the protein

being studied.866"868 A nickel-based resin (Qiagen) did not significantly alter protein

purification (data not shown).

Figure 5.25 IMAC Purification Using 1mM Imidazole

KDa
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a) b)

Recombinant BVmycren2HAHis was purified by IMAC: all solutions contained ImM Imidazole. l50mM

Imidazole was used for elution. a) Western blot: Primary aHA l: 1000, secondary SAPU rabbit amouse
l:1000. b) Silver stain. WL: whole cell lysate, UB: unbound to cobalt column, I-5: eluate samples +:

positive control.
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5.4.1.9 Denaturation - Renaturation

Although the original intention had been to purify native prorenin, denaturing

purification conditions theoretically circumvent some of the problems encountered with

purification. In particular, because a major proportion of recombinant renin was

insoluble, it was hypothesised that purity and yield might be improved by solubilising

renin, thereby augmenting the availability of renin for binding. In addition, denaturation

may also improve the accessibility of the hexa-histidine tag for binding, since it is

possible that this was sterically hindered by secondary and tertiary protein structures.

Indeed a major determinant of the success of IMAC is thought to be surface exposure

and availability of the histidine tag.854 Denaturation of cell lysates with 6M guanidine

HQ, and IMAC purification under denaturing conditions was followed by overnight

dialysis in 50mM Tris pH7.5. This resulted in precipitation of protein, and this strategy

was not pursued further.

5.4.2 Immunoprecipitation and Immunoaffinity Purification
Since the hexa-histidine tag did not allow efficient purification by IMAC, the possibility
of using the epitope tags for immunoaffinity purification was explored. In the first

instance, an immunoprecipitation procedure was carried out to demonstrate the

feasibility of this approach. Agarose-conjugated anti-HA monoclonal antibody (Santa

Cruz) was used in a standard protocol (section 2.2.35). Western blotting demonstrated
that the recombinant prorenin could be captured by this method (figure 5.26a).

Immunoprecipitated prorenin was not detectable by silver stain, but the level of

contaminating proteins was also negligible (figure 5.26b). This indicated that the HA

epitope is accessible to soluble antibody in the native state, and that selective capture of

prorenin is possible.

Using a commercial sepharose-conjugated rat monoclonal anti-HA column (Roche),

large-scale immunoaffinity purification was attempted using HA peptide (lmg/ml) to

competitively elute recombinant protein. No HA-tagged recombinant protein was

detected in the eluates by Western blotting despite several attempts (figure 5.27).
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Analysis of eluates demonstrated that recombinant protein was not bound by the column.
The reasons for this are not clear.

Figure 5.26 Immunoprecipitation of Recombinant Prorenin
kDa

-70

-50

-35

IP CL MW

a)

IP CL

b)

kDa

-70

-50

-35

MW

a) Western blot. Prorenin was immunoprecipitated with lpg monoclonal agarose-conjugated anti-HA.
Arrow indicates prorenin. Western blot: primary, rabbit polyclonal anti-HA 1:1000, secondary, goat anti-
rabbit polyclonal HRP-conjugated 1:1000. ECL+plus detection, b) Silver stain. IP, immunoprecipitate,
CL, cleared lysate, +, positive control, MW, molecular weight markers.

Figure 5.27 Immunoaffinity Purification of Recombinant
Prorenin

kDa
-50

<— prorenin
-35

1 2 3 L1 L2 L3

Recombinant prorenin present in cleared lysate (LI-3) was not present in elution fractions (1,2,3) collected

after application to a rat monoclonal anti-HA affinity column. By molecular weight criteria the upper band
is likely to be prorenin. Primary Rabbit polyclonal anti-HA, 1:1000, secondary goat anti-rabbit HRP-

conjugated, 1:1000. ECL detection. LI: lysate cleared by 30 minutes centrifugation at 10,000 g. L2: 60
minutes at 10,000g. L3: 60 minutes at 10, 000 g and 0.22|am filter.
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5.4.3 Ion Exchange Chromatography
Ion exchange chromatography exploits the pH-dependent ionic properties of proteins,

allowing differential binding to a charged column and separation according to pH or

binding affinity. The pH at which a protein is in a zwitterionic or isoelectric state (pi)
can be predicted from its amino acid sequence, allowing purification conditions to be
chosen. Using ExPASy on-line tools (http://us.expasy.org) the pi value of

BVmycren2HAHis was calculated to be 5.32, suggesting that an anion exchange column
would be suitable for purification under alkali conditions.869 In general a pH at least 1.0
unit above or below the pi is required. Since renin activity is pH-dependent and maximal
around pH 7.5, this was chosen as the optimal pH. In addition, it was felt that a

physiological pH would simplify further experimental use.

Figure 5.28 Ion Exchange Chromatography

Time

Ion exchange chromatography was perfonned on a BVmycren2HAHis preparation using an Akta FPLC

system and a MonoQ anion resin. Protein was eluted using a buffered NaCl gradient (red line represents

salt concentration). Elution was monitored by A280 absorbance (Blue line). Fractions of eluate were

collected over 5 minute intervals as salt concentration was increased
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A series of pilot studies were performed using conditions described in the methods
section (2.2.36). Figure 5.28 illustrates a typical baculoviral protein elution profile
monitored by A280 nm absorbance. Approximately 90 10ml eluate fractions were

collected and screened for the presence of recombinant renin. Since the level of
recombinant prorenin expression was low all samples had to be screened by Western

blotting. Samples identified as containing prorenin were subjected to a further round of
ion exchange chromatography, and rescreened (figure 5.29b). Purity was checked using
silver staining (fig 5.29a). Unfortunately, purity remained poor and yield was low.
Further ion exchange experiments were therefore not performed.

Figure 5.29 Ion Exchange Chromatography Purified
Recombinant Renin

I kDa

m -70
» .« , ^.

.

^
"35

a) 83 82 81 80 79 78 77 76 + MW

b) MW 84 83 82 81 80 79 78 77 76

a) Silver stained polyacrylamide gel. Recombinant prorenin was purified by two rounds of ion exchange
chromatography using Mono Q Sepharose with a 500mM NaCl elution gradient, b) Western blotting of
ion exchange purified fractions. Lanes: 76 - 83: elution fractions, + : positive control, MW: molecular
weight. Primary Rabbit polyclonal a-HA, l: 1000, secondary goat a-rabbit HRP-conjugated, 1:1000.
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5.5 Discussion

Although the basic aim of producing epitope-tagged recombinant prorenin with

enzymatic activity was successfully achieved, difficulties regarding yield and purity
limited its usefulness as a research tool.

5.5.1 Recombinant Renin Activity
The fact that BVmycren2HAHis was active suggests that production in a baculoviral

system allowed appropriate folding and formation of secondary/tertiary structure. In

addition, the purification conditions (IMAC) were also suitable for the maintenance of

enzymatic activity. The extensive modification of ren2d by the incorporation of several

epitope and purification tags did not inactivate enzymatic activity, although this was not

systematically explored to determine any subtle effect. Previous studies have found
870 871

variable effects depending on the location of tags within the protein, ' and this might
be an avenue for future investigation. pH 6.5-7.0 is optimal for mouse submaxillary

810
prorenin, with little activity above pH 8.0. This is consistent with the observed optima

(pH 7.3-8.0) for trypsin activated BVmycren2HAHis prorenin enzymatic activity against

porcine angiotensinogen, though the difference is not easily explained. Presumably this
reflects the effect of tags on the overall molecular charge of recombinant prorenin.

Although the samples tested for activity were not 100% pure, it is unlikely that
contaminants accounted for the enzymatic activity.

Prorenin exhibits a small degree of renin activity due to non-proteolytic activation,
872

generally in the order of less than 2%. The recombinant prorenin samples studied here
had about 30% intrinsic renin activity prior to trypsin digestion. This probably reflects

cryo-activation due to prolonged storage at 4°C prior to analysis as well as proteolytic
activation during purification. Indeed, Western blotting using anti-HA antibody
demonstrated doublet bands, rather than a single band, suggesting slight proteolytic
breakdown. A further mechanism of activation includes a possible effect of the myc

epitope on prosegment function. Mutational analysis has indicated that autoinhibition of
298

renin by the prosegment is dependent on amino acids within the region P10-P20.
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Amino acid substitutions, particularly alterations in charge may lead to renin activation.
Therefore, it is feasible that the myc epitope disrupts prosegment function, either

sterically, or by charge effects. It is notable that the sample with the least recombinant
renin present, as assessed by Western blotting and silver staining, had the higher

activity. The likely explanation for this must be that not all purified renin was in an

activatible form, possibly due to protein misfolding.

5.5.2 Recombinant Renin Yield

Yield was greatly reduced due to protein insolubility, which may have been caused by
several factors. Firstly, high-level production of a single protein may have saturated

processing pathways, leading to abnormal folding, resulting in insoluble secondary and

tertiary structures. BVmycren2HA was deliberately designed without a signal peptide,
in order to accommodate the myc epitope tag. This may have contributed to the

insolubility problem since it would have prevented normal cellular export leading to

intracellular accumulation. To control for the effect of this BVren2HA was generated,
which lacked the myc tag, but retained the endogenous signal peptide. This recombinant

protein was not secreted in any significant amount in to the culture medium, and was

also insoluble, suggesting that the prorenin solubility was not dependent on secretion.

Although endogenous signal sequences have been shown to be effective in baculoviral
868 873 874

systems, ' ' it may have been worthwhile using established high expression signal
874 375 . 876

sequences such as those from honey bee mellitin, ' baculoviral gp67 or
877

bombyxin. The prosegment was retained in all constructs as previous reports have
298 819 838indicated that this may be important for successful renin folding and yield. ' '

Very high concentrations of a single protein can lead to protein-protein interactions that
form insoluble quaternary structures. Indeed, the His tag itself may promote cation-

878
dependent oligomerization. In addition, the acidic conditions of the baculoviral

system may have been close to the pi value of the recombinant protein (pH 5.32), at
which precipitation is more likely to occur. Strategies to resolubilise precipitated protein

by denaturation and renaturation were not successful due to precipitation of protein
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during dialysis. Although this method may have been viable with extensive refinement,
878

previous studies have also reported problems dialysing His-tagged proteins.

Although Sf9 cells are easy to grow, it is possible that other insect cell lines may have

given better yields. In particular, High Five™ (BRI-TN-5B1-4) cells, derived from

Trichopluisa ni are better adapted than Sf9 cells to protein secretion, but have the

disadvantages ofmore fastidious growth conditions and lower culture density.

5.5.3 Recombinant Protein Purity
A hexa-histidine tag was incorporated in to the design of the recombinant prorenin series
in order to facilitate purification. Although it was recognised that purity would not be
100% using this strategy alone, it was likely to be a simple and effective first step

towards purification. Numerous reports in the literature testify to the usefulness of this

approach. In reality the IMAC strategy was very poor despite numerous attempts to

enhance its success. The reason for this is not immediately clear. Some authors report

better purity using lOxHis tags, as opposed to the more commonly used 6xHis tag used
878

here. Histidine-rich proteins present in baculoviral cells may have been bound by the
IMAC column and therefore co-purified. Attempts to reduce low affinity binding using
low concentrations of imidazole, high salt concentration, and acid elution were not

particularly successful, though assessment of purity was semiquantitative and subjective.
Since silver staining is very sensitive for detecting proteins, purity may have appeared to

have been more acceptable using less sensitive methods such as Coomasie staining.
Other measures such as (3-mercaptoethanol, glycerol and NP-40 appeared to inhibit
recombinant protein binding altogether. It is also possible that there was steric hindrance
of the hexa-histidine motif by the HA epitope tag, given that this was not the most C-
terminal motif. Emphasis has previously been placed on the surface availability of the

879
His tag for interaction with chelated cations, though this is impossible to predict.

Systematic studies of the position of the His tag within proteins have detected variable
870 871 880 881

effects on binding efficiency and yield. ' ' ' However, this seems to be unlikely
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to have been a major factor as the problem was one of contamination, rather than
inability to bind the column.

The failure of immuno-affmity purification was surprising since immunoprecipitation

experiments had been encouraging. The reason for this discrepancy is not clear, but may
relate to the use of different antibodies for the two procedures. In any case, such a

method would not have been suitable for large-scale protein purification both in terms of

logistics and expense.

Finally, ion exchange chromatography was an attractive method for large-scale

purification of native prorenin. Given the physico-chemical properties of the
recombinant prorenin, purification was feasible. However, the level of soluble prorenin

expression relative to that of background contaminants was probably too low for this
method to work efficiently, particularly as large volumes of solute are used, and the

sample becomes very dilute. Successive rounds of purification did not enhance purity.

Furthermore, the possibility of oligomerization of recombinant renin via His tags may

have contributed to the broad elution profile observed.
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Chapter 6
Conclusions

6.1 Introduction

Cardiac hypertrophy is a serious complication of hypertension, with a significant impact
on long-term prognosis due to deleterious effects on cardiac function and

624 882
arrhythmias. ' " Whilst it was once regarded as an essential process to maintain
cardiac output in the face of increased workload, it is increasingly apparent that

hypertrophic remodelling is unnecessary. The work described in this thesis addresses
several aspects of cardiac hypertrophy and cardiac physiology in transgenic rat models
of hypertension which may have relevance to clinical practice. Experiments in chapter 3
concentrated on the functional consequences of LVH in TGRcyplalren2 in the context

of chronic hypertension, and regression of hypertension. Chapter 4 describes attempts to

ameliorate LVH via calcineurin inhibition using FK506, and the unexpected finding that
this abolished hypertension. Chapter 5 reports the production of recombinant prorenin
in a baculoviral expression system in an effort to study potential mechanisms of prorenin

uptake in the heart, and its contribution to LH in prorenin-based transgenic models of

hypertension/LVH.

6.2 Low Dose Induction Experiments in TGRcyp1a1Ren2
6.2.1 Introduction

Whilst the blood pressure response of TGRcyplalren2 to indole-3-carbinol has been
581 587shown to be dose-dependent, ' the only dose investigated in detail so far has been

0.3% I3C (w/w). In this chapter experiments describing the phenotype of

TGRcyplalren2 in response to 0.15% I3C (w/w) were detailed. Given that a lower dose
of inducing agent was used, a milder phenotype was to be expected, and indeed chronic

hypertension ensued, with a moderate degree of LVH. No evidence of MH was found,

although a proportion of transgenic animals died suddenly of unknown cause at around
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day 140 of induction. The degree of hypertension reached was similar to that using 0.3%

(w/w) I3C, except that the onset was slower, and the level of transgene induction was

less.

6.2.2 Phenotype of TGRcyp1a1ren2
In this model LVH did not give rise to any evidence of LV systolic dysfunction, as

assessed by a variety of techniques. Although significant electrical remodelling

occurred, few significant arrhythmias were detected. Therefore, LVH appears to have a

benign impact on cardiac function, at least at the time points studied in this model. In
this respect the data presented here is consistent with early, compensated cardiac

hypertrophy in humans. Comparison with other models of pressure overload suggests

that longer duration of hypertension may have led to significant cardiac problems,

although the severity of this appears to be highly variable between models. Analysis was

carried out under anaesthesia under a single set of haemodynamic conditions, and it is

possible that different afterload or preload may have affected function differently
between hypertrophied and non-hypertrophied hearts. More sophisticated analysis of in
vivo cardiac function using microconductance catheters may have detected subtle
abnormalities of LV function that were missed.

Reversal of hypertension by withdrawing the inducing agent from the diet of

TGRcyplalren2 animals led to a prompt reduction in blood pressure back to control

levels, and regression of LVH, with evidence of normalisation of cardiac functional,
electrical and molecular changes. This is encouraging in that it suggests that effect
treatment of hypertension may be able to completely reverse the detrimental

consequences of LVH in humans.

6.2.3 Future studies

Demonstrating evidence of LV dysfunction in this model would be a significant finding,

providing a model of heart failure secondary to hypertensive heart disease. Such a model
would be a powerful resource for investigating manipulations that either exacerbate or
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ameliorate the transition from LVH to heart failure in an inbred monogenic model of

hypertension. It is likely that prolonged induction of hypertension in a large cohort of

TGRcyplalren2 animals may allow a proportion to survive long enough to develop
heart failure. Alternatively, manipulations such as high salt diet, or chronic aldosterone
infusion may stimulate cardiac fibrosis and lead to earlier cardiac dysfunction. Given the

availability of congenic strains of TGRcyplalren2 varying at loci encompassing ACE
and At] it would be interesting to assess the effect of these loci on the susceptibility to

LVH and heart failure. Future studies should involve assessment of cardiac function

under variable haemodynamic conditions, and use microconductance catheter

technology to obtain reliable pressure-volume data.

The current data on LVH regression was obtained relatively early in the time course of
LVH development and later time points may be interesting in that certain aspects of
ventricular remodelling, such as fibrosis may be irreversible.

6.3 Studies of FK506 in TGRcyp1a1ren2 and TGRa1ATren2
6.3.1 Background to Calcineurin

Calcineurin-dependent LVH has received substantial interest in recent years,486'496
largely because calcineurin inhibitors are widely available, so that relevant experiments
have been easy to perform. Initial optimism was tempered by a series of reports that
demonstrated negative effects of calcineurin inhibition in the setting of pressure

overload.498'504 In particular calicneurin inhibitors appeared to either have no effect on
cardiac hypertrophy, or else, increase mortality. Subsequently, a more detailed and
balanced view has built up from transgenic and knockout experiments, which support a

central role for calcineurin signalling in the development of cardiac

hypertrophy.443'456'501'533'535'536 This function is not exclusive to calcineurin, and a similar
case for other interacting signalling pathways can also be made, such as GSK-3|3,87 so

that at present identification of a single critical mediator of LVH remains elusive. A

pivotal observation of many of these studies has been that prevention of LVH leads to

reduced mortality despite increased cardiac wall stress.417'535 This is a paradoxical
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situation, since theories of LVH that have remained unchallenged for almost 30 years

are based around the assumption that normalisation of wall stress by LVH was

beneficial.10 However, elegant experiments in various knockout mouse strains have
demonstrated that LVH rather than increased wall stress is detrimental, and that long-
term survival occurs in the absence of LVH despite chronically raised wall stress.417'"35
The obvious questions therefore arise as to why LVH is harmful, and whether this is

always the case. Furthermore, if wall stress is irrelevant, what compensatory mechanism
occurs to prevent the onset of heart failure? We hypothesised that increased contractility
may be a mechanism to compensate for raised wall stress.

6.3.2 Effect of FK506 Cardiac Hypertrophy and Blood Pressure
With these questions in mind experiments were undertaken in TGRcyplalren2 to

investigate the effect of the calcineurin inhibitor FK506 on LVH, and to determine if

changes in contractility occurred that might comprise part of a compensatory

mechanism. Rather surprisingly FK506 treatment inhibited hypertension and end organ

damage in this model, as well as in TGRalATren2. LVH was inhibited, but this effect

could not be distinguished from the antihypertensive effect of the drug, and therefore
detailed studies of cardiac contractility were not relevant. Likewise it was not possible to

demonstrate whether the beneficial effect on vascular damage was a direct effect of the

drug, or a secondary effect of blood pressure reduction, and these points require further
clarification.

FK506 exerted an antihypertensive effect that was evident at all time points studied,
even after the establishment of severe end organ damage. The mechanism of blood

pressure reduction is unknown, but several possibilities exist, including direct inhibition
of angiotensin II induced vasoconstriction, or else anti-inflammatory or

immunoinhibitory effects. Studies of MAPK signalling in mesenteric arteries were

inconsistent and conclusions could not be drawn from the data. A different approach to

analysing MAPK signalling in vessels might be more successful, such as the use of
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conditional knockout models lacking key signalling components in vascular smooth
muscle cells, or else the use of pharmacological MAPK inhibitors.

Precedents of immunosuppressant treatments reducing blood pressure in animal models
of hypertension exist,749"753'883 and this relatively novel area of hypertension research
warrants more investigation. Whether this will ever lead to clinical treatments is far from

clear, as existing immunosuppressants are probably too toxic to be used except in life-

threatening hypertension. Paradoxically, agents such as FK506 frequently cause
729

hypertension at immunosuppressive doses in humans, suggesting that species
differences in drug metabolism, immunology or mechanisms of hypertension exist.
Furthermore it is not clear whether the observed effects on blood pressure were due to

calcineurin inhibition, or non-calcineurin-dependent effects of FK506.

6.2.3 Future Experiments
6.2.3.1 Antihypertensive effect
An experiment that I consider imperative to clarify the possible antihypertensive
mechanism of FK506 would be to study vasoconstrictor responses of resistance vessels
from FK506 and vehicle treated animals in an organ bath apparatus. If FK506 is having
a direct effect on vasoconstrictor responses to angiotensin II, this should be evident. A
failure to demonstrate any effect on vasoconstrictor responses suggests that an

immune/inflammatory mechanism may be more likely. Although previous studies have
demonstrated impaired vasorelaxation/vasoconstriction after treatment with FK506 in

783 784
response to Angll ' these studies were after acute exposure to drug, and may not be
relevant to renin-induced hypertension. Indeed, a study by De Lima et al. (1999)884
found that acute incubation of rat resistance vessels with FK506 caused an enhanced

vasoconstrictor response to norepinephrine and impaired vasodilation to nitrate donors,
whilst longterm treatment of rats had the opposite effects. Responses to angiotensin II
were not studied however.
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Another relevant experiment would be to study the effect of FK506 on angiotensin II
induced hypertension in rats. This would establish whether the mechanism is related to

angiotensin II pathways, or an unknown effect of prorenin. Furthermore, it may be

important to repeat the current experiments using ciclosporin to establish if the effect is

likely to be calcineurin-dependent. However, given the pharmacological differences
between the two agents interpretation of a negative result may not be straightforward.

It would be desirable to study the blood pressure response of calcineurin A(3 knockout
mice to angiotensin II. Such mice have been shown to be resistant to angiotensin II-

536
induced cardiac hypertrophy, but the blood pressure response was not reported.' Since
these mice have deficient T cell responses,445 this experiment would not help to

distinguish between an immune or vasoconstrictor effect, so ideally one would want to

generate tissue specific CnA[3 knockouts targeted to vascular smooth muscle cells or T

cells.

The effect of blood pressure lowering without inhibition of the RAS has not been

adequately addressed in these studies, and requires further analysis. A combination of

antihypertensives in high doses such as nifedipine and hydralazine may be sufficient.

Ideally the agents used should have little effect on the RAS, and should not interact with
I3C.

It may be possible to explore immune/inflammatory interactions with hypertension in

TGRcyplalren2 by non-pharmacological methods. In particular, the role of NFkB
warrants further investigation. This transcription factor mediates many aspects of
inflammation by inducing expression of cytokines and cell adhesion molecules.
Previous work in models of hypertension has demonstrated NFkB activation in the

kidney and vasculature, pharmacological inhibition of which ameliorates tissue
778

damage. A more specific method to investigate this further would be to use an
885-887

adenoviral construct to deliver an IkB superinhibitor of NFkB to the vasculature.
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Another approach might be to selectively inactivate immune cell subsets using specific
888monoclonal antibodies.

6.3.3.2 Investigating Non-hypertrophic Mechanisms of Left Ventricular Compensation
The original intention to study non-hypertrophic mechanisms of left ventricular

compensation for increased wall stress remains an area of personal interest. Clearly the
best way to pursue this is to study an existing model of non-hypertrophic compensation,
such as CnA[3 mice. The hypothesis that enhanced cardiac contractility compensates for

increased wall stress remains to be tested. It is also possible that altered myocardial
223

energetics may play a compensatory role. Ideally such an endeavour would involve
detailed analysis of cardiac function by pressure-volume analysis, as well as in vitro
studies of cardiomyocyte/papillary muscle function. Furthermore, since cardiac

contractility is the functional consequence of altered gene expression, protein regulation,
structural reorganisation, and altered metabolism, the use of high-throughput

technologies such as microarrays and proteomics would be essential starting points for
further investigation.

6.4 Investigation of Prorenin (ren2) Uptake
6.4.1 Introduction

Numerous strands of evidence suggest that the cardiac based renin-angiotensin system

imports renin/prorenin, and that this exerts a physiological effect on the
, . 353,393,395,396,400-402,407,889-891 • .. i .• r- cheart. This theory is an attractive explanation for some or the

phenotypes observed in transgenic rats overexpressing prorenin, in which there is little

systemic activation of the RAS, yet profound end organ remodelling and damage
288 408 562

occurs. ' ' The pathway by which circulating renin/prorenin enters the heart is not

well defined, although the mannose-6 phosphate receptor/ IGF-II receptor has been
identified as a renin receptor in cardiomyocytes.400-402 However this candidate lacks

credibility in so far as the renin imported by this mechanism has to be glycosylated, and
it appears to be degraded rather than contributing to local RAS activation.
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We therefore sought to identify a mechanism of ren2 protein uptake by cardiomyocytes
that may be relevant to the transgenic models produced in our laboratory. The strategy

adopted was to study recombinant prorenin uptake in a cell culture system. A variety of
different forms of ren2 were produced in a baculoviral expression system, incorporating
immuno tags and purification tags to aid identification and isolation of the recombinant

protein. Whilst active recombinant prorenin was produced study of uptake mechanisms
was hampered by low yield and purity of the recombinant protein, and efforts to address
this using alternative purification strategies were not successful.

6.4.2 Future Experiments
6.4.2.1 Redesigning Recombinant Prorenin
As previously discussed certain features of the recombinant protein design may have
contributed to the problems encountered. In particular it seems likely that an insect-

compatible signal sequence may have allowed secretion of prorenin into culture
medium. Mathews et al. (1996)400 used the signal sequence from honey-bee mellitin to

express human renin in Sf9 cells, and this method has been used for other proteins with
875 876 892

success. ' However, Park et al 1999 " found that mellitin signal sequence did not

improve the secretion of Thyroid Stimulating Hormone Receptor in Sf9 cells, though

yields were generally improved. An alternative strategy might be to modify the

endogenous renin signal sequence. Expression of HIV gpl20 in Sf9 cells has been
enhanced by reducing the number of positively charged amino acids in the endogenous

signal sequence, or using heterologous signal sequences with low charge such as mellitin
or murine interleukin-3.893 Ren2d signal sequence contains 3 arginine residues and it is

possible that deletion or substitution of these may improve ren2d secretion in Sf9 cells.

Alternative purification strategies available may include the use of different fusion tags
which may be less subject to non-specific binding than hexa-histidine (e.g. Arg-tag,

calmodulin-binding peptide, cellulose-binding domain, DsbA, glutathione S-transferase,

FLAG-tag, HAT-tag, maltose-binding protein, NusA, S-tag, SBP-tag, Strep-tag, and
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thioredoxin). However, no information is available to indicate whether one or other of
these tags is better suited to recombinant renin production, or which tags might interfere
with renin activity. Indeed, there are no published reports demonstrating successful use
of tag sequences in recombinant renin production, so the effect on renin function is

entirely unpredictable. Therefore, a decision to follow a particular strategy would be

speculative.

6.4.2.2 Alternative Recombinant Protein Expression Systems
Transient mammalian cell transfection has been the most widely used expression system
f , • , 290,407,819,826,827,831,833,834,839,841 .• ■ • , , ,tor recombinant renin, suggesting that this might be the

preferred strategy. Using such systems renin is correctly processed and modified, and is
therefore active. Although such advantages are offset by low yields, quantities are

certainly sufficient for in vitro studies,398'407 and possibly even in vivo work 404.

Cell-free translation systems895 have been used to express renin407 allowing high purity

protein to be produced, but serious drawbacks are the small quantities and lack of

regulated protein folding/secondary protein processing. Chaperone proteins can help
896 898

correct folding, " and it is also possible to generate disulphide bonds under

appropriate conditions.896'899 However, there is no published evidence to suggest that
renin produced in this manner is active.379'407 Since the folding of recombinant renin

produced in this manner may be suboptimal, it is hard to see how any firm conclusions
can be made about the cellular uptake using such preparations.

E. coli have been used to produce human prorenin840 and a rat renin-GST fusion
832

protein. " In both cases the protein was expressed as an inclusion body, which required
denaturation and refolding: use of co-expressed chaperone proteins may prevent this

problem.900 trxB deficient E.coli strains can be used for disulphide bond formation, but
at present this rarely occurs in a native pattern.901 Therefore E.coli are probably not an

ideal protein expression system for the purposes of this work.
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6.4.3 Renin Receptor

Nguyen et al. (2002)412 recently reported the identification of a specific renin receptor

which binds renin and prorenin with high affinity (K^ 5.0-7.8 nM). This molecule

appears to be novel in that renin/prorenin binding leads to signal transduction, receptor

phosphorylation and cellular activation, as well as enhancing renin/prorenin catalytic

efficiency by four fold.412 It therefore serves a dual purpose, transducing signals in

response to renin binding, as well as augmenting local RAS activation through kinetic
effects on renin activity. The receptor comprises 350 amino acids (45kDa) with a single

predicted transmembrane segment. It has no known homologues and is highly conserved
between species. Expression has been demonstrated in the heart, as well as brain,

kidney, placenta and liver. Preliminary evidence suggests that it is localised to the

mesangium of glomeruli and the subendothelium of coronary and renal arteries,
associated with smooth muscle cells, though the exact locations are not well defined.412
Cardiomyocyte expression has not been reported which suggests that although the

receptor may contribute to certain vascular effects, perhaps even control of blood

pressure and vascular remodelling, it is unlikely to have a direct effect on cardiac

hypertrophy or cardiac prorenin uptake.

This molecule is an attractive candidate for mediating tissue responses to renin/prorenin.
It may explain the observations from rat renin transgenic rats in which

supraphysiological levels of prorenin cause profound vascular remodeling without
288

hypertension or systemic activation of the RAS. Initial work has confirmed the
existence of a rat homologue of the renin receptor in the heart. cDNA sequence is 89%
identical to human, and 93% identical to mouse, whilst at the amino acid level it is

92.3% and 96% identity to human and mouse sequences respectively (data not shown).
Previous analysis of the human amino acid sequence suggests a hydropathic
transmembrane portion between amino acids 306-326, and a phosphorylatable tyrosine
at position 335. Interestingly, both rat and mouse sequences diverge from human within
the transmembrane portion, though the phosphorylation site is conserved.
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Development of this work should aim to confirm the original findings of Nguyen et al

(2002),41 ~ in particular the binding characteristics of the receptor, the cellular responses
to stimulation, and the precise cellular location. Expression of mutant variants in cell
culture would allow identification of important structural/functional motifs, and perhaps
define portions dedicated to enzyme kinetics versus signal transduction. It should also be

possible to identify the region of renin involved in receptor binding and therefore design

antagonists. Further investigation would involve transgenic studies, as described below.

6.4.4 Transgenic Strategies to Investigate Prorenin Uptake by the Heart
Given the difficulty of producing pure recombinant prorenin it may be worthwhile

considering transgenic approaches to study prorenin uptake by the heart in vivo. The

existing literature has been discussed in detail previously,353'407'90" and confirms the
existence of pathways allowing (pro)renin uptake in the heart, but does not identify the

specific mechanism involved.

If M6PR is involved in prorenin uptake by tissues, one approach to confirm this might
be to generate mice deficient for the M6PR gene. Conditional M6PR knockout mice,

including cardiac specific knockouts have recently been described 903 and would be an

ideal tool for investigation of this. Interestingly, such mice do not display any cardiac

abnormalities, perhaps suggesting that the M6PR has no significant role in cardiac

physiology. This does not necessarily exclude a role in prorenin uptake, and it would be

necessary to look at cardiac renin levels in these mice. Theoretically this would be best
examined by cross-breeding the human prorenin / human angiotensinogen transgenic

353
mice of Prescott et al., (2000) on to this strain, although the breeding strategy for this
would be complex. Equally, normal cardiac development does not indicate that

hypertrophic responses are normal, so it would be worthwhile investigating the effects of

hypertrophic stimuli such as aortic constriction.

Confirmation of the reported role of the putative renin receptor could also be

investigated by transgenic/knockout strategies. In particular the precise cell types
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expressing the receptor could be better defined using the renin receptor promoter to

drive expression of GFP or lac Z. Further evaluation of this molecule will obviously
involve targeted deletion in murine embryonic stem cells. In addition, it would be

interesting to study the effect of conditional ablation in the heart and other tissues if

possible. Given the vascular distribution however, tissue specific deletion may not be
feasible with currently available tissue specific promoters. Furthermore initial BLAST
searches of the published human sequence against genome sequences demonstrate

complete homology of the 3' sequence with the M8-9 subunit of Ff vacuolar ATPase.
This suggests that the ATPase subunit is derived from the renin receptor gene. The

significance of this is unknown though it is worth noting that mice deficent in other
subunits of the H+ ATPase are inviable. 903-904 it is therefore likely that a renin receptor

knockout may have profound gestational abnormalities. An alternative approach would
be cardiomyocyte-specific overexpression of the renin receptor, either in the presence of
normal RAS activity/normotension, as well as in response to pressure overload/prorenin
excess.

Surprisingly no one has reported transgenic overexpression of renin in the heart, though
this experiment would be interesting for several reasons. Firstly, it would help to

establish whether prorenin in the heart has any physiological effect, since this is not

immediately apparent from other transgenic or in vitro uptake studies. Since

overexpressed cardiac renin may be secreted and cause systemic effects, it may be

necessary to generate a non-secretable form lacking the signal sequence. A non-secreted
379

splice variant of renin has been described in rat heart and the effects of this specific
form could also be explored. The phenotype of such animals would have to be carefully
evaluated given the potential for even cardiac-targeted GFP overexpression to cause

dilated cardiomyopathy 905.

6.5 Concluding Remarks
The studies of left ventricular hypertrophy described in this thesis demonstrate that
much is still to be learned regarding the mechanisms controlling hypertrophy, and the
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relationship between LVH, wall stress and adverse cardiac prognosis. The hypothesis
that increased contractility may compensate for increased wall stress warrants further

systematic investigation as this may revolutionise understanding of LVH and its
treatment. A prediction of this hypothesis is that LVH may be preceded by a

hypercontractile state, and that LVH develops as contractility declines towards

normality. Further decline eventually leads to heart failure. This theory therefore

implicates the inotropic state of the heart as the prime determinant of the hypertrophic

response.

The beneficial effect of immunosuppressive treatment with FK506 on blood pressure

suggests that this may be a novel approach to treating some severe forms of

hypertension. In addition, it refocuses attention on the inflammatory aspects of

hypertension and vascular remodelling, which may be amenable to therapeutic
intervention. This is likely to be an important area for future research.

Recombinant protein production has advanced in recent years, yet it still presents

challenges. It is likely that modification of the strategy described in this thesis will yield
a viable method of recombinant prorenin production, of acceptable purity and activity.
Such a resource will allow detailed investigation of the cardiac renin-angiotensin

system, and clarification of the role of the putative renin receptor in this.

206



References

1. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and
failure. N Engl J Med. 1999;341:1276-83.

2. Soonpaa MH, Field LJ. Survey of studies examining mammalian
cardiomyocyte DNA synthesis. Circ Res. 1998;83:15-26.

3. Pasumarthi KBS, Field LJ. Cardiomyocyte Cell Cycle Regulation. Circ
Res. 2002;90:1044-1054.

4. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac
myocytes from hyperplasia to hypertrophy during postnatal development.
J Mol Cell Cardiol. 1996;28:1737-46.

5. O'Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC,
Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson
PC. The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required
for physiological cardiac hypertrophy in the double-knockout mouse. J
Clin Invest. 2003; 111:1783-91.

6. Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M,
Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson
D, Kahn CR, Abel ED. Insulin signaling coordinately regulates cardiac
size, metabolism, and contractile protein isoform expression. J Clin
Invest. 2002;109:629-39.

7. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley
LC, Izumo S. The conserved phosphoinositide 3-kinase pathway
determines heart size in mice. EMBO J. 2000;19:2537-2548.

8. Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated
kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776-
81.

9. Colan SD. Mechanics of left ventricular systolic and diastolic function in
physiologic hypertrophy of the athlete's heart. Cardiol Clin. 1997;15:355-
72.

10. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of
hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56-64.

11. Sasayama S, Ross J, Jr., Franklin D, Bloor CM, Bishop S, Dilley RB.
Adaptations of the left ventricle to chronic pressure overload. Circ Res.
1976;38:172-8.

12. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba
PS, Vargiu P, Simongini I, Laragh JH. Patterns of left ventricular
hypertrophy and geometric remodeling in essential hypertension. J Am
Coll Cardiol. 1992; 19:1550-8.

13. Gerdes AM, Onodera T, Tamura T, Said S, Bohlmeyer TJ, Abraham WT,
Bristow MR. New method to evaluate myocyte remodeling from formalin-
fixed biopsy and autopsy material. J Card Fail. 1998;4:343-8.

207



14

15

16

17

18

19

20

21

22

23

24

25

26

27

Thoss K, Roth J. The use of fluorescein isothiocyanate labelled lectins for
immuno-histological demonstration of saccharides. III. Studies by use of
Ricinus communis lectin and wheat germ agglutinin. Exp Pathol (Jena).
1977;14:215-9.
Said S, Tamura T, Gerdes AM. Measurement of isolated myocyte volume
using the Coulter models Z2 and ZM/C256: a comparison of instrument
function. Biotechniques. 1998;25:522-5.
Nordin C, Siri F, Aronson RS. Electrophysiologic characteristics of single
myocytes isolated from hypertrophied guinea-pig hearts. J Mol Cell
Cardiol. 1989;21:729-39.
Myerson SG, Montgomery HE, World MJ, Pennell DJ. Left ventricular
mass: reliability of M-mode and 2-dimensional echocardiographic
formulas. Hypertension. 2002;40:673-8.
Levy D, Savage DD, Garrison RJ, Anderson KM, Kannel WB, Castelli
WP. Echocardiographic criteria for left ventricular hypertrophy: the
Framingham Heart Study. Am J Cardiol. 1987;59:956-60.
Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli
WP. Echocardiographically detected left ventricular hypertrophy:
prevalence and risk factors. The Framingham Heart Study. Ann Intern
Med. 1988;108:7-13.
Devereux RB, de Simone G, Pickering TG, Schwartz JE, Roman MJ.
Relation of left ventricular midwall function to cardiovascular risk factors
and arterial structure and function. Hypertension. 1998;31:929-36.
Lauer MS, Anderson KM, Levy D. Separate and joint influences of obesity
and mild hypertension on left ventricular mass and geometry: the
Framingham Heart Study. J Am Coll Cardiol. 1992;19:130-4.
Rasooly Y, Sasson Z, Gupta R. Relation between body fat distribution
and left ventricular mass in men without structural heart disease or

systemic hypertension. Am J Cardiol. 1993;71:1477-9.
Hammond IW, Devereux RB, Alderman MH, Lutas EM, Spitzer MC,
Crowley JS, Laragh JH. The prevalence and correlates of
echocardiographic left ventricular hypertrophy among employed patients
with uncomplicated hypertension. J Am Coll Cardiol. 1986;7:639-50.
Goble MM, Mosteller M, Moskowitz WB, Schieken RM. Sex differences in
the determinants of left ventricular mass in childhood. The Medical

College of Virginia Twin Study. Circulation. 1992;85:1661-5.
de Simone G, Devereux RB, Daniels SR, Meyer RA. Gender differences
in left ventricular growth. Hypertension. 1995;26:979-83.
de Simone G, Devereux RB, Kimball TR, Mureddu GF, Roman MJ,
Contaldo F, Daniels SR. Interaction between body size and cardiac
workload: influence on left ventricular mass during body growth and
adulthood. Hypertension. 1998;31:1077-82.
Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M,
Guerrieri M, Gatteschi C, Zampi I, Santucci A, et al. Ambulatory blood

208



28

29

30

31

32

33

34

35

36.

37.

38.

39.

40.

pressure. An independent predictor of prognosis in essential
hypertension. Hypertension. 1994;24:793-801.
Verdecchia P, Reboldi G, Schillaci G, Borgioni C, Ciucci A, Telera MP,
Santeusanio F, Porcellati C, Brunetti P. Circulating insulin and insulin
growth factor-1 are independent determinants of left ventricular mass and
geometry in essential hypertension. Circulation. 1999;100:1802-7.
Chen CH, Ting CT, Lin SJ, Hsu TL, Ho SJ, Chou P, Chang MS, O'Connor
F, Spurgeon H, Lakatta E, Yin FC. Which arterial and cardiac parameters
best predict left ventricular mass? Circulation. 1998;98:422-8.
Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left
ventricular mass: the Framingham Heart Study. Hypertension.
1997;30:1025-8.
Bielen E, Fagard R, Amery A. Inheritance of heart structure and physical
exercise capacity: a study of left ventricular structure and exercise
capacity in 7-year-old twins. Eur Heart J. 1990;11:7-16.
Bielen E, Fagard R, Amery A. The inheritance of left ventricular structure
and function assessed by imaging and Doppler echocardiography. Am
Heart J. 1991;121:1743-9.
Verdecchia P, Schillaci G, Reboldi G, Franklin SS, Porcellati C.
Ambulatory monitoring for prediction of cardiac and cerebral events.
Blood Press Monit. 2001 ;6:211-5.
Garner C, Lecomte E, Visvikis S, Abergel E, Lathrop M, Soubrier F.
Genetic and environmental influences on left ventricular mass. A family
study. Hypertension. 2000;36:740-6.
Rowlands DB, Glover DR, Ireland MA, McLeay RA, Stallard TJ, Watson
RD, Littler WA. Assessment of left-ventricular mass and its response to
antihypertensive treatment. Lancet. 1982;1:467-70.
Abi-Samra F, Fouad FM, Tarazi RC. Determinants of left ventricular
hypertrophy and function in hypertensive patients. An echocardiographic
study. Am J Med. 1983;75:26-33.
Drayer Jl, Gardin JM, Weber MA. Echocardiographic left ventricular
hypertrophy in hypertension. Chest. 1983;84:217-21.
Devereux RB, Savage DD, Sachs I, Laragh JH. Relation of hemodynamic
load to left ventricular hypertrophy and performance in hypertension. Am
J Cardiol. 1983;51:171-6.
Devereux RB, Roman MJ, de Simone G, O'Grady MJ, Paranicas M, Yeh
JL, Fabsitz RR, Howard BV. Relations of left ventricular mass to
demographic and hemodynamic variables in American Indians: the
Strong Heart Study. Circulation. 1997;96:1416-23.
Ganau A, Devereux RB, Pickering TG, Roman MJ, Schnall PL, Santucci
S, Spitzer MC, Laragh JH. Relation of left ventricular hemodynamic load
and contractile performance to left ventricular mass in hypertension.
Circulation. 1990;81:25-36.

209



41. de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP. Prognosis
of inappropriate left ventricular mass in hypertension: the MAVI Study.
Hypertension. 2002;40:470-6.

42. Palmieri V, de Simone G, Roman MJ, Schwartz JE, Pickering TG,
Devereux RB. Ambulatory blood pressure and metabolic abnormalities in
hypertensive subjects with inappropriately high left ventricular mass.
Hypertension. 1999;34:1032-40.

43. Palmieri V, Wachtell K, Gerdts E, Bella JN, Papademetriou V, Tuxen C,
Nieminen MS, Dahlof B, de Simone G, Devereux RB. Left ventricular
function and hemodynamic features of inappropriate left ventricular
hypertrophy in patients with systemic hypertension: the LIFE study. Am
Heart J. 2001;141:784-91.

44. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left
ventricular hypertrophy. Am Heart J. 2001;141:334-41.

45. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering
TG, Laragh JH. Value of echocardiographic measurement of left
ventricular mass in predicting cardiovascular morbid events in
hypertensive men. Ann Intern Med. 1986;105:173-8.

46. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic
implications of echocardiographically determined left ventricular mass in
the Framingham Heart Study. N Engl J Med. 1990;322:1561-6.

47. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of
left ventricular mass and geometry to morbidity and mortality in
uncomplicated essential hypertension. Ann Intern Med. 1991;114:345-52.

48. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone
F. Continuous relation between left ventricular mass and cardiovascular
risk in essential hypertension. Hypertension. 2000;35:580-6.

49. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I,
Santucci A, Santucci C, Reboldi G, Porcellati C. Prognostic value of left
ventricular mass and geometry in systemic hypertension with left
ventricular hypertrophy. Am J Cardiol. 1996;78:197-202.

50. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric
patterns in the Framingham Heart Study. J Am Coll Cardiol. 1995;25:879-
84.

51. Ghali JK, Liao Y, Cooper RS. Influence of left ventricular geometric
patterns on prognosis in patients with or without coronary artery disease.
J Am Coll Cardiol. 1998;31:1635-40.

52. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I,
Reboldi G, Porcellati C. Prognostic significance of serial changes in left
ventricular mass in essential hypertension. Circulation. 1998;97:48-54.

53. Messerli FH, Ventura HO, Elizardi DJ, Dunn FG, Frohlich ED.
Hypertension and sudden death. Increased ventricular ectopic activity in
left ventricular hypertrophy. Am J Med. 1984;77:18-22.



54. McLenachan JM, Henderson E, Morris Kl, Dargie HJ. Ventricular
arrhythmias in patients with hypertensive left ventricular hypertrophy. N
Engl J Med. 1987;317:787-92.

55. Verdecchia P, Porcellati C, Reboldi G, Gattobigio R, Borgioni C, Pearson
TA, Ambrosio G. Left ventricular hypertrophy as an independent predictor
of acute cerebrovascular events in essential hypertension. Circulation.
2001;104:2039-44.

56. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular
mass and hypertrophy are associated with increased risk for sudden
death. J Am Coll Cardiol. 1998;32:1454-9.

57. Schunkert H, Weinberg EO, Bruckschlegel G, Riegger AJ, Lorell BH.
Alteration of growth responses in established cardiac pressure overload
hypertrophy in rats with aortic banding. J Clin Invest. 1995;96:2768-74.

58. Schunkert H, Jahn L, Izumo S, Apstein C, Lorell B. Localization and
Regulation of c-fos and c-jun Protooncogene Induction by Systolic Wall
Stress in Normal and Hypertrophied Rat Heart. PNAS. 1991 ;88:11480-
11484.

59. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene
expression during myocardial growth and hypertrophy: molecular studies
of an adaptive physiologic response. Faseb J. 1991;5:3037-46.

60. Brand T, Sharma HS, Schaper W. Expression of nuclear proto-
oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell
Cardiol. 1993;25:1325-37.

61. Sadoshima J, Jahn L, Takahashi T, Kulik T, Izumo S. Molecular
characterization of the stretch-induced adaptation of cultured cardiac
cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol.
Che/77. 1992;267:10551-10560.

62. Saadane N, Alpert L, Chalifour LE. Expression of immediate early genes,
GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and
during regression in adult mice. Br J Pharmacol. 1999; 127:1165-76.

63. Thompson JT, Rackley MS, O'Brien TX. Upregulation of the cardiac
homeobox gene Nkx2-5 (CSX) in feline right ventricular pressure
overload. Am J Physiol Heart Circ Physiol. 1998;274:H1569-1573.

64. Brown LA, Nunez DJ, Wilkins MR. Differential regulation of natriuretic
peptide receptor messenger RNAs during the development of cardiac
hypertrophy in the rat. J Clin Invest. 1993;92:2702-12.

65. Black FM, Packer SE, Parker TG, Michael LH, Roberts R, Schwartz RJ,
Schneider MD. The vascular smooth muscle alpha-actin gene is
reactivated during cardiac hypertrophy provoked by load. J Clin Invest.
1991;88:1581-8.

66. Dorn GW, 2nd, Robbins J, Ball N, Walsh RA. Myosin heavy chain
regulation and myocyte contractile depression after LV hypertrophy in
aortic-banded mice. Am J Physiol. 1994;267:H400-5.

211



67

68

69

70

71

72

73

74

75

76

77

78

79

Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain
isoform expression in the failing and nonfailing human heart. Circ Res.
2000;86:386-90.
Nadal-Ginard B, Mahdavi V. Molecular basis of cardiac performance.
Plasticity of the myocardium generated through protein isoform switches.
J Clin Invest. 1989;84:1693-700.
Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH.
Increased rat cardiac angiotensin converting enzyme activity and mRNA
expression in pressure overload left ventricular hypertrophy. Effects on
coronary resistance, contractility, and relaxation. J Clin Invest.
1990;86:1913-20.
Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL,
Kimball TR, Doetschman T. TGF-beta1 mediates the hypertrophic
cardiomyocyte growth induced by angiotensin II. J Clin Invest.
2002;109:787-96.
Edgren J, von Knorring J, Lindy S, Turto H. Heart volume and myocardial
connective tissue during development and regression of thyroxine-
induced cardiac hypertrophy in rats. Acta Physiol Scand. 1976;97:514-8.
Turto H, Lindy S. Collagen metabolism of the rat heart during
experimental cardiac hypertrophy and the effect of digitoxin treatment.
Adv Cardiol. 1976;18:41-5.
Blankesteijn MW, Essers-Janssen YPG, Ulrich MMW, Smits JFM.
Increased Expression of a Homologue of Drosophila Tissue Polarity
Gene "Frizzled" in Left Ventricular Hypertrophy in the Rat, as Identified by
Subtractive Hybridization. Journal ofMolecular and Cellular Cardiology.
1996;28:1187-1191.
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC,
Aronow BJ, Lorenz JN, Dorn GW, 2nd. Mitochondrial death protein Nix is
induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy.
Nat Med. 2002;8:725-30.
Friddle CJ, Koga T, Rubin EM, Bristow J. Expression profiling reveals
distinct sets of genes altered during induction and regression of cardiac
hypertrophy. Proc Natl Acad Sci USA. 2000;97:6745-50.
Aronow BJ, Toyokawa T, Canning A, Haghighi K, Delling U, Kranias E,
Molkentin JD, Dorn GW, 2nd. Divergent transcriptional responses to
independent genetic causes of cardiac hypertrophy. Physiol Genomics.
2001;6:19-28.
Hwang DM, Dempsey AA, Lee CY, Liew CC. Identification of differentially
expressed genes in cardiac hypertrophy by analysis of expressed
sequence tags. Genomics. 2000;66:1-14.
Johnatty SE, Dyck JR, Michael LH, Olson EN, Abdellatif M. Identification
of genes regulated during mechanical load-induced cardiac hypertrophy.
J Mol Cell Cardiol. 2000;32:805-15.
Kiarash A, Pagano PJ, Tayeh M, Rhaleb NE, Carretero OA. Upregulated
Expression of Rat Heart Intercellular Adhesion Molecule-1 in Angiotensin

212



II- but Not Phenylephrine- Induced Hypertension. Hypertension.
2001;37:58-65.

80. Cappola TP, Cope L, Cernetich A, Barouch LA, Minhas K, Irizarry RA,
Parmigiani G, Durrani S, Lavoie T, Hoffman EP, Ye SQ, Garcia JGN,
Hare JM. Deficiency of different nitric oxide synthase isoforms activates
divergent transcriptional programs in cardiac hypertrophy. Physiol.
Genomics. 2003;14:25-34.

81. Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T,
Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO,
Lembo G, Fratta L, Oliveira-dos-Santos AJ, Benovic JL, Kahn CR, Izumo
S, Steinberg SF, Wymann MP, Backx PH, Penninger JM. Regulation of
myocardial contractility and cell size by distinct PI3K-PTEN signaling
pathways. Cell. 2002; 110:737-49.

82. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J,
Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for
cardiac hypertrophy. Cell. 1998;93:215-28.

83. Sato Y, Ferguson DG, Sako H, Dorn GW, 2nd, Kadambi VJ, Yatani A,
Hoit BD, Walsh RA, Kranias EG. Cardiac-specific overexpression of
mouse cardiac calsequestrin is associated with depressed cardiovascular
function and hypertrophy in transgenic mice. J Biol Chem.
1998;273:28470-7.

84. D'Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB,
Dorn GW, 2nd. Transgenic Galphaq overexpression induces cardiac
contractile failure in mice. Proc Natl Acad Sci USA. 1997;94:8121-6.

85. Mochly-Rosen D, Wu G, Hahn H, Osinska H, Liron T, Lorenz JN, Yatani
A, Robbins J, Dorn GW, 2nd. Cardiotrophic effects of protein kinase C
epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ
Res. 2000;86:1173-9.

86. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA.
Transgenic overexpression of constitutively active protein kinase C
epsilon causes concentric cardiac hypertrophy. Circ Res. 2000;86:1218-
23.

87. Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM,
Richardson JA, Hill JA, Olson EN. Activated glycogen synthase-3beta
suppresses cardiac hypertrophy in vivo. PNAS. 2002;99:907-912.

88. Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski
S, Davies PJ, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene
expression of cardiac hypertrophy. Nat Med. 1998;4:1269-75.

89. Molkentin JD, Dorn IG, 2nd. Cytoplasmic signaling pathways that regulate
cardiac hypertrophy. Annu Rev Physiol. 2001;63:391-426.

90. Boknik P, Khorchidi S, Bodor GS, Huke S, Knapp J, Linck B, Luss H,
Muller FU, Schmitz W, Neumann J. Role of protein phosphatases in
regulation of cardiac inotropy and relaxation. Am J Physiol Heart Circ
Physiol. 2001;280:H786-94.



91. Boknik P, Heinroth-Hoffmann I, Kirchhefer U, Knapp J, Linck B, Luss H,
MullerT, Schmitz W, Brodde O, Neumann J. Enhanced protein
phosphorylation in hypertensive hypertrophy. Cardiovasc Res.
2001;51:717-28.

92. Nemoto S, DeFreitas G, Mann DL, Carabello BA. Effects of changes in
left ventricular contractility on indexes of contractility in mice. Am J
Physiol Heart Circ Physiol. 2002;283:H2504-10.

93. Noble Ml. The Frank-Starling curve. Clin Sci Mol Med. 1978;54:1-7.
94. Carabello BA. Evolution of the study of left ventricular function: everything

old is new again. Circulation. 2002;105:2701-3.
95. Chaves AA, Weinstein DM, Bauer JA. Non-invasive echocardiographic

studies in mice: influence of anesthetic regimen. Life Sci. 2001 ;69:213-
22.

96. Takuma S, Suehiro K, Cardinale C, Hozumi T, Yano H, Shimizu J, Mullis-
Jansson S, Sciacca R, Wang J, Burkhoff D, Di Tullio MR, Flomma S.
Anesthetic inhibition in ischemic and nonischemic murine heart:
comparison with conscious echocardiographic approach. Am J Physiol
Heart Circ Physiol. 2001 ;280:H2364-2370.

97. Strauer BE. Ventricular function and coronary hemodynamics in
hypertensive heart disease. Am J Cardiol. 1979;44:999-1006.

98. Topol EJ, Traill TA, Fortuin NJ. Hypertensive hypertrophic
cardiomyopathy of the elderly. N Engl J Med. 1985;312:277-83.

99. Alpert NR, Hamrell BB, Halpern W. Mechanical and biochemical
correlates of cardiac hypertrophy. Circ Res. 1974;35:suppl 11:71-82.

100. Bing OH, Matsushita S, Fanburg BL, Levine HJ. Mechanical properties of
rat cardiac muscle during experimental hypertrophy. Circ Res.
1971;28:234-45.

101. Sasayama S, Franklin D, Ross J, Jr. Hyperfunction with normal inotropic
state of the hypertrophied left ventricle. Am J Physiol. 1977;232:H418-25.

102. Kahn JK. Correlates of supranormal (ejection fraction greater than or
equal to 85%) left ventricular performance. Am J Cardiol. 1988;61:1145-
6.

103. Litwin SE, Katz SE, Morgan JP, Douglas PS. Serial echocardiographic
assessment of left ventricular geometry and function after large
myocardial infarction in the rat. Circulation. 1994;89:345-54.

104. Nakamura A, Rokosh DG, Paccanaro M, Yee RR, Simpson PC,
Grossman W, Foster E. LV systolic performance improves with
development of hypertrophy after transverse aortic constriction in mice.
Am J Physiol Heart Circ Physiol. 2001 ;281 :H 1104-12.

105. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy
and heart failure in betal -adrenergic receptor transgenic mice. Proc Natl
Acad Sci USA. 1999;96:7059-64.

106. Bing OH, Brooks WW, Robinson KG, Slawsky MT, Hayes JA, Litwin SE,
Sen S, Conrad CH. The spontaneously hypertensive rat as a model of the

214



107

108

109

110

111

112.

113.

114.

115.

116.

transition from compensated left ventricular hypertrophy to failure. J Mol
Cell Cardiol. 1995;27:383-96.
Boluyt MO, O'Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH,
Crow MT, Lakatta EG. Alterations in cardiac gene expression during the
transition from stable hypertrophy to heart failure. Marked upregulation of
genes encoding extracellular matrix components. Circ Res. 1994;75:23-
32.
Doi R, Masuyama T, Yamamoto K, Doi Y, Mano T, Sakata Y, Ono K,
Kuzuya T, Hirota S, Koyama T, Miwa T, Hori M. Development of different
phenotypes of hypertensive heart failure: systolic versus diastolic failure
in Dahl salt-sensitive rats. J Hypertens. 2000;18:111-20.
Capasso JM, Palackal T, Olivetti G, Anversa P. Severe myocardial
dysfunction induced by ventricular remodeling in aging rat hearts. Am J
Physiol. 1990;259:H 1086-96.
Iwanaga Y, Kihara Y, Hasegawa K, Inagaki K, Yoneda T, Kaburagi S,
Araki M, Sasayama S. Cardiac endothelin-1 plays a critical role in the
functional deterioration of left ventricles during the transition from
compensatory hypertrophy to congestive heart failure in salt-sensitive
hypertensive rats. Circulation. 1998;98:2065-73.
Yamamoto K, Masuyama T, Sakata Y, Doi R, Ono K, Mano T, Kondo H,
Kuzuya T, Miwa T, Hori M. Local neurohumoral regulation in the transition
to isolated diastolic heart failure in hypertensive heart disease: absence
of AT1 receptor downregulation and 'overdrive' of the endothelin system.
Cardiovasc Res. 2000;46:421-32.
Rothermund L, Pinto YM, Hocher B, Vetter R, Leggewie S, Kobetamehl
P, Orzechowski HD, Kreutz R, Paul M. Cardiac endothelin system impairs
left ventricular function in renin-dependent hypertension via decreased
sarcoplasmic reticulum Ca(2+) uptake. Circulation. 2000;102:1582-8.
Zolk O, Quattek J, Seeland U, El-Armouche A, Eschenhagen T, Bohm M.
Activation of the cardiac endothelin system in left ventricular hypertrophy
before onset of heart failure in TG(mREN2)27 rats. Cardiovasc Res.
2002;53:363-71.
Yamamoto K, Masuyama T, Sakata Y, Mano T, Nishikawa N, Kondo H,
Akehi N, Kuzuya T, Miwa T, Hori M. Roles of renin-angiotensin and
endothelin systems in development of diastolic heart failure in
hypertensive hearts. Cardiovasc Res. 2000;47:274-83.
Barlucchi L, Leri A, Dostal DE, Fiordaliso F, Tada H, Hintze TH, Kajstura
J, Nadal-Ginard B, Anversa P. Canine ventricular myocytes possess a
renin-angiotensin system that is upregulated with heart failure. Circ Res.
2001;88:298-304.
Iwanaga Y, Kihara Y, Inagaki K, Onozawa Y, Yoneda T, Kataoka K,
Sasayama S. Differential effects of angiotensin II versus endothelin-1
inhibitions in hypertrophic left ventricular myocardium during transition to
heart failure. Circulation. 2001;104:606-12.

215



117

118

119

120

121

122

123

124

125

126

127,

128,

Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE,
Schunkert H, Benedict CR, Lorell BH. Angiotensin-converting enzyme
inhibition prolongs survival and modifies the transition to heart failure in
rats with pressure overload hypertrophy due to ascending aortic stenosis.
Circulation. 1994;90:1410-22.
Serneri GG, Boddi M, Cecioni I, Vanni S, Coppo M, Papa ML, Bandinelli
B, Bertolozzi I, Polidori G, Toscano T, Maccherini M, Modesti PA. Cardiac
angiotensin II formation in the clinical course of heart failure and its
relationship with left ventricular function. Circ Res. 2001;88:961-8.
Zolk O, Ng LL, O'Brien RJ, Weyand M, Eschenhagen T. Augmented
expression of cardiotrophin-1 in failing human hearts is accompanied by
diminished glycoprotein 130 receptor protein abundance. Circulation.
2002;106:1442-6.
Takimoto Y, Aoyama T, Iwanaga Y, Izumi T, Kihara Y, Pennica D,
Sasayama S. Increased expression of cardiotrophin-1 during ventricular
remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol.
2002;282:H896-901.
Rohrbach S, Yan X, Weinberg EO, Hasan F, Bartunek J, Marchionni MA,
Lorell BH. Neuregulin in cardiac hypertrophy in rats with aortic stenosis.
Differential expression of erbB2 and erbB4 receptors. Circulation.
1999;100:407-12.
Sordahl LA, McCollum WB, Wood WG, Schwartz A. Mitochondria and
sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am J
Physiol. 1973;224:497-502.
Gwathmey JK, Morgan JP. Altered calcium handling in experimental
pressure-overload hypertrophy in the ferret. Circ Res. 1985;57:836-43.
Whitmer JT, Kumar P, Solaro RJ. Calcium transport properties of cardiac
sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58
and 14.6): evidence for a quantitative defect in dilated myopathic hearts
not evident in hypertrophic hearts. Circ Res. 1988;62:81-5.
Mercadier JJ, Lompre AM, Due P, Boheler KR, Fraysse JB, Wisnewsky
C, Allen PD, Komajda M, Schwartz K. Altered sarcoplasmic reticulum
Ca2(+)-ATPase gene expression in the human ventricle during end-stage
heart failure. J Clin Invest. 1990;85:305-9.
Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H,
Kuwajima G, Mikoshiba K, Just H, Hasenfuss G, et al. Alterations of
sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy.
Circulation. 1995;92:778-84.
Ito K, Yan X, Tajima M, Su Z, Barry WH, Lorell BH. Contractile reserve
and intracellular calcium regulation in mouse myocytes from normal and
hypertrophied failing hearts. Circ Res. 2000;87:588-95.
Pieske B, Maier LS, Bers DM, Hasenfuss G. Ca2+ handling and
sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing
human myocardium. Circ Res. 1999;85:38-46.

216



129. Qi M, Shannon TR, Euler DE, Bers DM, Samarel AM. Downregulation of
sarcoplasmic reticulum Ca(2+)-ATPase during progression of left
ventricular hypertrophy. Am J Physiol. 1997;272:H2416-24.

130. Arai M, Suzuki T, Nagai R. Sarcoplasmic reticulum genes are
upregulated in mild cardiac hypertrophy but downregulated in severe
cardiac hypertrophy induced by pressure overload. J Mol Cell Cardiol.
1996;28:1583-90.

131. Schultz JEJ, Glascock BJ, Witt SA, Nieman ML, Nattamai KJ, Liu LH,
Lorenz JN, Shull GE, Kimball TR, Periasamy M. Accelerated onset of
heart failure in mice during pressure overload with chronically decreased
SERCA2 calcium pump activity. Am J Physiol Heart Circ Physiol.
2004;286:H1146-1153.

132. Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH.
Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic
reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte
Ca2+ transients. Circulation. 1997;96:400-3.

133. He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough
PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH.
Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in
the heart of transgenic mice accelerates calcium transients and cardiac
relaxation. J Clin Invest. 1997;100:380-9.

134. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G,
Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M. Targeted
overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases
cardiac contractility in transgenic mouse hearts. Circ Res. 1998;83:1205-
14-

135. Loukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T,
Grupp G, Lytton J, Walsh RA, Periasamy M. Enhanced myocardial
contractility and increased Ca2+ transport function in transgenic hearts
expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-
ATPase. Circ Res. 1998;83:889-97.

136. del Monte F, Hajjar RJ, Harding SE. Overwhelming evidence of the
beneficial effects of SERCA gene transfer in heart failure. Circ Res.
2001 ;88:E66-7.

137. Miyamoto Ml, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T,
Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ. Adenoviral gene
transfer of SERCA2a improves left-ventricular function in aortic-banded
rats in transition to heart failure. Proc Natl Acad Sci USA. 2000;97:793-
8.

138. Ito K, Yan X, Feng X, Manning WJ, Dillmann WH, Lorell BH. Transgenic
expression of sarcoplasmic reticulum Ca(2+) atpase modifies the
transition from hypertrophy to early heart failure. Circ Res. 2001;89:422-
9.

139. O'Donnell JM, Sumbilla CM, Ma H, Farrance IK, Cavagna M, Klein MG,
Inesi G. Tight control of exogenous SERCA expression is required to

217



obtain acceleration of calcium transients with minimal cytotoxic effects in
cardiac myocytes. Circ Res. 2001;88:415-21.

140. Toyoshima C, Asahi M, Sugita Y, Khanna R, Tsuda T, MacLennan DH.
Inaugural Article: Modeling of the inhibitory interaction of phospholamban
with the Ca2+ ATPase. Proc Natl Acad Sci USA. 2003;100:467-72.

141. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure.
Cardiovasc Res. 1998;37:279-89.

142. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T,
Kranias EG. Targeted ablation of the phospholamban gene is associated
with markedly enhanced myocardial contractility and loss of beta-agonist
stimulation. Circ Res. 1994;75:401-9.

143. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone
ME, Wang Y, Ross J, Jr., Kranias EG, Giles WR, Chien KR. Chronic
phospholamban-sarcoplasmic reticulum calcium ATPase interaction is
the critical calcium cycling defect in dilated cardiomyopathy. Cell.
1999;99:313-22.

144. Sato Y, Kiriazis H, Yatani A, Schmidt AG, Hahn H, Ferguson DG, Sako H,
Mitarai S, Honda R, Mesnard-Rouiller L, Frank KF, Beyermann B, Wu G,
Fujimori K, Dorn GW, 2nd, Kranias EG. Rescue of contractile parameters
and myocyte hypertrophy in calsequestrin overexpressing myocardium by
phospholamban ablation. J Biol Chem. 2001;276:9392-9.

145. Haghighi K, Schmidt AG, Hoit BD, Brittsan AG, Yatani A, Lester JW, Zhai
J, Kimura Y, Dorn GW, 2nd, MacLennan DH, Kranias EG. Superinhibition
of sarcoplasmic reticulum function by phospholamban induces cardiac
contractile failure. J Biol Chem. 2001;276:24145-52.

146. Zvaritch E, Backx PH, Jirik F, Kimura Y, de Leon S, Schmidt AG, Hoit BD,
Lester JW, Kranias EG, MacLennan DH. The transgenic expression of
highly inhibitory monomeric forms of phospholamban in mouse heart
impairs cardiac contractility. J Biol Chem. 2000;275:14985-91.

147. Kiriazis H, Sato Y, Kadambi VJ, Schmidt AG, Gerst MJ, Hoit BD, Kranias
EG. Hypertrophy and functional alterations in hyperdynamic
phospholamban-knockout mouse hearts under chronic aortic stenosis.
Cardiovasc Res. 2002;53:372-81.

148. Chu G, Carr AN, Young KB, Lester JW, Yatani A, Sanbe A, Colbert MC,
Schwartz SM, Frank KF, Lampe PD, Robbins J, Molkentin JD, Kranias
EG. Enhanced myocyte contractility and Ca2+ handling in a calcineurin
transgenic model of heart failure. Cardiovasc Res. 2002;54:105-16.

149. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit
N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the
calcium release channel (ryanodine receptor): defective regulation in
failing hearts. Cell. 2000;101:365-76.

150. Schmidt AG, Kadambi VJ, Ball N, Sato Y, Walsh RA, Kranias EG, Hoit
BD. Cardiac-specific overexpression of calsequestrin results in left
ventricular hypertrophy, depressed force-frequency relation and pulsus
alternans in vivo. J Mol Cell Cardiol. 2000;32:1735-44.

218



151. Zeitz O, Maass AE, Van Nguyen P, Hensmann G, Kogler H, Moller K,
Hasenfuss G, Janssen PM. Hydroxyl radical-induced acute diastolic
dysfunction is due to calcium overload via reverse-mode Na(+)-Ca(2+)
exchange. Circ Res. 2002;90:988-95.

152. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS,
Prestle J, Minami K, Just H. Relationship between Na+-Ca2+-exchanger
protein levels and diastolic function of failing human myocardium.
Circulation. 1999; 99:641 -8.

153. Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol
Cell Cardiol. 2002;34:951-69.

154. Litten RZ, 3rd, Brayden JE, Alpert NR. The ATPase activity of
subfragment-1 from the hypertrophied heart. Biochim Biophys Acta.
1978;523:377-84.

155. Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife
RA, Roden RL, Dutcher DL, Robertson AD, Voelkel NF, Badesch DB,
Groves BM, Gilbert EM, Bristow MR. Changes in gene expression in the
intact human heart. Downregulation of alpha-myosin heavy chain in
hypertrophied, failing ventricular myocardium. J Clin Invest.
1997;100:2315-24.

156. Krenz M, Sanbe A, Bouyer-Dalloz F, Gulick J, Klevitsky R, Hewett TE,
Osinska HE, Lorenz JN, Brosseau C, Federico A, Alpert NR, Warshaw
DM, Perryman MB, Helmke SM, Robbins J. Analysis of myosin heavy
chain functionality in the heart. J Biol Chem. 2003;278:17466-74.

157. Lompre AM, Schwartz K, d'Albis A, Lacombe G, Van Thiem N,
Swynghedauw B. Myosin isoenzyme redistribution in chronic heart
overload. Nature. 1979;282:105-7.

158. Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM.
Mechanoenergetic alterations during the transition from cardiac
hypertrophy to failure in Dahl salt-sensitive rats. Circulation.
1998;98:2919-29.

159. Yang J, Moravec CS, Sussman MA, DiPaola NR, Fu D, Hawthorn L,
Mitchell CA, Young JB, Francis GS, McCarthy PM, Bond M. Decreased
SLIM1 expression and increased gelsolin expression in failing human
hearts measured by high-density oligonucleotide arrays. Circulation.
2000;102:3046-52.

160. Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S,
Fujiwara T, Fujiwara H. "Apoptotic" myocytes in infarct area in rabbit
hearts may be oncotic myocytes with DNA fragmentation: analysis by
immunogold electron microscopy combined with In situ nick end-labeling.
Circulation. 1998;98:1422-30.

161. Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K,
Noda T, Fujiwara T, Fukuda K, Minatoguchi S, Fujiwara H. Significance of
myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts
with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation.
1999;99:2757-64.

219



162. Kang PM, Izumo S. Apoptosis and heart failure: A critical review of the
literature. Circ Res. 2000;86:1107-13.

163. Anversa P. Myocyte death in the pathological heart. Circ Res.
2000;86:121-4.

164. Lee P, Morley G, Huang Q, Fischer A, Seiler S, Horner JW, Factor S,
Vaidya D, Jalife J, Fishman Gl. Conditional lineage ablation to model
human diseases. Proc Natl Acad Sci USA. 1998;95:11371-6.

165. Condorelli G, Roncarati R, Ross J, Jr., Pisani A, Stassi G, Todaro M,
Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ,
Napoli C, Croce CM. Heart-targeted overexpression of caspase3 in mice
increases infarct size and depresses cardiac function. Proc Natl Acad Sci
USA. 2001;98:9977-82.

166. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L,
Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-
induced heart hypertrophy in the rat. J Clin Invest. 1996;97:2891-7.

167. Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR,
Kajstura J, Anversa P. Intracellular calcium, DNase activity and myocyte
apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol. 1998;30:519-35.

168. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick
S, Reiss K, Olivetti G, Anversa P. Necrotic and apoptotic myocyte cell
death in the aging heart of Fischer 344 rats. Am J Physiol.
1996;271 :H1215-28.

169. Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de
Rienzo A, Roncarati R, Trimarco B, Lembo G. Increased cardiomyocyte
apoptosis and changes in proapoptotic and antiapoptotic genes bax and
bcl-2 during left ventricular adaptations to chronic pressure overload in
the rat. Circulation. 1999;99:3071-8.

170. Ding B, Price RL, Goldsmith EC, Borg TK, Yan X, Douglas PS, Weinberg
EO, Bartunek J, Thielen T, Didenko VV, Lorell BH. Left ventricular
hypertrophy in ascending aortic stenosis mice: anoikis and the
progression to early failure. Circulation. 2000;101:2854-62.

171. Ikeda S, Hamada M, Hiwada K. Contribution of non-cardiomyocyte
apoptosis to cardiac remodelling that occurs in the transition from
compensated hypertrophy to heart failure in spontaneously hypertensive
rats. Clin Sci (Lond). 1999;97:239-46.

172. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased
cardiomyocyte apoptosis during the transition to heart failure in the
spontaneously hypertensive rat. Am J Physiol. 1997;272:H2313-9.

173. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J, Jr., Muller W,
Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a
critical event in the onset of heart failure during biomechanical stress.
Cell. 1999;97:189-98.

174. Rogers JH, Tamirisa P, Kovacs A, Weinheimer C, Courtois M, Blumer KJ,
Kelly DP, Muslin AJ. RGS4 causes increased mortality and reduced



175

176

177

178

179

180

181.

182.

183.

184.

185.

cardiac hypertrophy in response to pressure overload. J Clin Invest.
1999;104:567-76.
Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De
Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo
G. Melusin, a muscle-specific integrin beta(1 ^interacting protein, is
required to prevent cardiac failure in response to chronic pressure
overload. Nat Med. 2003;9:68-75.
Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura
M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross
RS. Cardiac myocyte-specific excision of the betal integrin gene results
in myocardial fibrosis and cardiac failure. Circ Res. 2002;90:458-64.
Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL,
Chen J, Kahn R, Condorelli G, Ross J, Jr., Chien KR, Lee KF. ErbB2 is
essential in the prevention of dilated cardiomyopathy. Nat Med.
2002;8:459-65.
Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C,
Zeiher AM, Dimmeler S. Fas receptor signaling inhibits glycogen
synthase kinase 3{beta} and induces cardiac hypertrophy following
pressure overload. J. Clin. Invest. 2002;109:373-381.
Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, Hebert
TE, Rindt H. Cardiac-directed overexpression of wild-type alphalB-
adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart
Circ Physiol. 2001 ;281:H931 -8.
Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien
KR, Brown JH, Dorn GW, 2nd. Enhanced Galphaq signaling: a common
pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc
Natl Acad Sci U S A. 1998;95:10140-5.
Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky
AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic
mice with cardiac-specific overexpression of tumor necrosis factor-alpha.
Circ Res. 1997;81:627-35.
Geng YJ, Ishikawa Y, Vatner DE, Wagner TE, Bishop SP, Vatner SF,
Homey CJ. Apoptosis of cardiac myocytes in Gsalpha transgenic mice.
Circ Res. 1999;84:34-42.
Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beermann F,
Brunner HR, Pedrazzini T. Dilated cardiomyopathy and impaired cardiac
hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin
Invest. 2001;108:1843-51.
Duerr RL, McKirnan MD, Gim RD, Clark RG, Chien KR, Ross J, Jr.
Cardiovascular effects of insulin-like growth factor-1 and growth hormone
in chronic left ventricular failure in the rat. Circulation. 1996;93:2188-96.
Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J, Jr.
Insulin-like growth factor-1 enhances ventricular hypertrophy and function
during the onset of experimental cardiac failure. J Clin Invest.
1995;95:619-27.

221



186

187

188

189

190

191

192

193

194

195

196

Palmen M, Daemen MJ, Bronsaer R, Dassen WR, Zandbergen HR,
Kockx M, Smits JF, van der Zee R, Doevendans PA. Cardiac remodeling
after myocardial infarction is impaired in IGF-1 deficient mice. Cardiovasc
Res. 2001;50:516-24.
Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R,
Anversa P. Overexpression of insulin-like growth factor-1 in mice protects
from myocyte death after infarction, attenuating ventricular dilation, wall
stress, and cardiac hypertrophy. J Clin Invest. 1997;100:1991-9.
Welch S, Plank D, Witt S, Glascock B, Schaefer E, Chimenti S, Andreoli
AM, Limana F, Leri A, Kajstura J, Anversa P, Sussman MA. Cardiac-
specific IGF-1 expression attenuates dilated cardiomyopathy in
tropomodulin-overexpressing transgenic mice. Circ Res. 2002;90:641-8.
Janssen PM, Hasenfuss G, Zeitz O, Lehnart SE, Prestle J, Darmer D,
Holtz J, Schumann H. Load-dependent induction of apoptosis in
multicellular myocardial preparations. Am J Physiol Heart Circ Physiol.
2002;282:H349-56.
Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J,
Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer
DB. Reactive oxygen species mediate amplitude-dependent hypertrophic
and apoptotic responses to mechanical stretch in cardiac myocytes. Circ
Res. 2001;89:453-60.
Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura
J, Anversa P. Stretch-mediated release of angiotensin II induces myocyte
apoptosis by activating p53 that enhances the local renin-angiotensin
system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin
Invest. 1998;101:1326-42.
Cook SA, Sugden PH, Clerk A. Regulation of bcl-2 family proteins during
development and in response to oxidative stress in cardiac myocytes:
association with changes in mitochondrial membrane potential. Circ Res.
1999;85:940-9.
Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure:
"oxygen wastage" revisited. Circ Res. 2000;86:119-20.
Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K,
Utsumi H, Machida Y, Egashira K, Takeshita A. Direct evidence for
increased hydroxyl radicals originating from superoxide in the failing
myocardium. Circ Res. 2000;86:152-7.
Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH
oxidase during progression of cardiac hypertrophy to failure.
Hypertension. 2002;40:477-84.
Beggah AT, Escoubet B, Puttini S, Cailmail S, Delage V, Ouvrard-
Pascaud A, Bocchi B, Peuchmaur M, Delcayre C, Farman N, Jaisser F.
Reversible cardiac fibrosis and heart failure induced by conditional
expression of an antisense mRNA of the mineralocorticoid receptor in
cardiomyocytes. Proc Natl Acad Sci USA. 2002;99:7160-5.

222



197. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol.
2000;15:264-72.

198. Diez J, Laviades C, Mayor G, Gil MJ, Monreal I. Increased serum
concentrations of procollagen peptides in essential hypertension. Relation
to cardiac alterations. Circulation. 1995;91:1450-6.

199. Annoni G, Luvara G, Arosio B, Gagliano N, Fiordaliso F, Santambrogio D,
Jeremic G, Mircoli L, Latini R, Vergani C, Masson S. Age-dependent
expression of fibrosis-related genes and collagen deposition in the rat
myocardium. Mech Ageing Dev. 1998;101:57-72.

200. Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J,
Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M.
Myocardial stiffness is determined by ventricular fibrosis, but not by
compensatory or excessive hypertrophy in hypertensive heart.
Cardiovasc Res. 2002;55:76-82.

201. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic
dysfunction. Herz. 2002;27:92-8.

202. Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S.
Excessive activation of matrix metalloproteinases coincides with left
ventricular remodeling during transition from hypertrophy to heart failure
in hypertensive rats. J Am Coll Cardiol. 2002;39:1384-91.

203. Brower GL, Janicki JS. Contribution of ventricular remodeling to
pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol.
2001 ;280:H674-83.

204. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L.
Time-dependent changes in matrix metalloproteinase activity and
expression during the progression of congestive heart failure: relation to
ventricular and myocyte function. Circ Res. 1998;82:482-95.

205. Janicki JS, Brower GL, Henegar JR, Wang L. Ventricular remodeling in
heart failure: the role of myocardial collagen. Adv Exp Med Biol.
1995;382:239-45.

206. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF, Jr. Remodeling
of human myocardial collagen in idiopathic dilated cardiomyopathy. Role
of metalloproteinases and pyridinoline cross-links. Am J Pathol.
1996;148:1639-48.

207. Peterson JT, Hallak H, Johnson L, Li H, O'Brien PM, Sliskovic DR, Bocan
TM, Coker ML, Etoh T, Spinale FG. Matrix metalloproteinase inhibition
attenuates left ventricular remodeling and dysfunction in a rat model of
progressive heart failure. Circulation. 2001;103:2303-9.

208. Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix
metalloproteinase inhibition on ventricular remodeling due to volume
overload. Circulation. 2002;105:1983-8.

209. Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES,
Meyer TE, Norton GR. Reduction in myocardial collagen cross-linking
parallels left ventricular dilatation in rat models of systolic chamber
dysfunction. Circulation. 2001;103:155-60.

223



210

211

212

213

214

215

216

217

218

219

220,

Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E,
Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-
stage failure in ischemic cardiomyopathy in humans. Circulation.
1994;89:151-63.
Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis
factor-alpha decrease collagen synthesis and increase matrix
metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res.
2000;86:1259-65.
Bozkurt B, Kribbs SB, Clubb FJ, Jr., Michael LH, Didenko W, Hornsby
PJ, Seta Y, Oral H, Spinale FG, Mann DL. Pathophysiologically relevant
concentrations of tumor necrosis factor-alpha promote progressive left
ventricular dysfunction and remodeling in rats. Circulation. 1998;97:1382-
91.
Diwan A, Dibbs Z, Nemoto S, DeFreitas G, Carabello BA,
Sivasubramanian N, Wilson EM, Spinale FG, Mann DL. Targeted
Overexpression of Noncleavable and Secreted Forms of Tumor Necrosis
Factor Provokes Disparate Cardiac Phenotypes. Circulation.
2004;109:262-268.
Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor
necrosis factor-alpha and myocardial remodeling in progression of heart
failure: a current perspective. Cardiovasc Res. 2002;53:822-30.
Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman
AM, Mann DL. Results of targeted anti-tumor necrosis factor therapy with
etanercept (ENBREL) in patients with advanced heart failure. Circulation.
2001;103:1044-7.
Kadokami T, Frye C, Lemster B, Wagner CL, Feldman AM, McTiernan
CF. Anti-tumor necrosis factor-alpha antibody limits heart failure in a
transgenic model. Circulation. 2001;104:1094-7.
Pinto YM, Pinto-Sietsma SJ, Philipp T, Engler S, Kossamehl P, Hocher B,
Marquardt H, Sethmann S, Lauster R, Merker HJ, Paul M. Reduction in
left ventricular messenger RNA for transforming growth factor beta(1)
attenuates left ventricular fibrosis and improves survival without lowering
blood pressure in the hypertensive TGR(mRen2)27 Rat. Hypertension.
2000;36:747-54.
Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp
Pharmacol Physiol. 2001;29:351-359.
Weiss RG, Chatham JC, Georgakopoulos D, Charron MJ, Wallimann T,
Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP. An
increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J.
2002;16:613-615.
Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier
R. Energetic crosstalk between organelles: architectural integration of
energy production and utilization. Circ Res. 2001;89:153-159.

224



221. Murakami Y, Zhang J, Eijgelshoven MHJ. Myocardial creatine kinase
kinetics in hearts with postinfarction left ventricular remodelling. Am J
Physiol Heart Circ Physiol. 1999;276:H892-900.

222. Tian R, Ingwall JS. Energetic basis for reduced contractile reserve in
isolated rat hearts. Am J Physiol Heart Circ Physiol. 1996;270:H1207-16.

223. Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen
RM, Tian R. Cardiac-Specific Overexpression of GLUT1 Prevents the
Development of Heart Failure Attributable to Pressure Overload in Mice.
Circulation. 2002; 106:2125-2131.

224. Nitenberg A, Loiseau A, Antony I. Left ventricular mechanical efficiency in
hypertensive patients with and without increased myocardial mass and
with normal pump function. Am J Hypertens. 2001;14:1231-8.

225. Morii I, Kihara Y, Inoko M, Sasayama S. Myocardial contractile efficiency
and oxygen cost of contractility are preserved during transition from
compensated hypertrophy to failure in rats with salt-sensitive
hypertension. Hypertension. 1998;31:949-60.

226. Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM.
Mechanoenergetic alterations during the transition from cardiac
hypertrophy to failure in Dahl salt-sensitive rats. Circulation.
1998;98:2919-29.

227. Sadoshima J, Izumo S. Mechanotransduction in stretch-induced
hypertrophy of cardiac myocytes. J Recept Res. 1993;13:777-94.

228. Sadoshima J, Takahashi T, Jahn L, Izumo S. Roles of mechano-sensitive
ion channels, cytoskeleton, and contractile activity in stretch-induced
immediate-early gene expression and hypertrophy of cardiac myocytes.
Proc Natl Acad Sci USA. 1992;89:9905-9.

229. Vandenburgh HH, Solerssi R, Shansky J, Adams JW, Henderson SA,
Lemaire J. Response of neonatal rat cardiomyocytes to repetitive
mechanical stimulation in vitro. Ann N YAcad Sci. 1995;752:19-29.

230. Mann DL, Kent RL, Cooper Gt. Load regulation of the properties of adult
feline cardiocytes: growth induction by cellular deformation. Circ Res.
1989;64:1079-90. ~

231. Yamazaki T, Komuro I, Yazaki Y. Molecular aspects of mechanical
stress-induced cardiac hypertrophy. Mol Cell Biochem. 1996;163-
164:197-201.

232. Kira Y, Kochel PJ, Gordon EE, Morgan HE. Aortic perfusion pressure as
a determinant of cardiac protein synthesis. Am J Physiol. 1984;246:C247-
58.

233. Palmieri EA, Benincasa G, Di Rella F, Casaburi C, Monti MG, De Simone
G, Chiariotti L, Palombini L, Bruni CB, Sacca L, Cittadini A. Differential
expression of TNF-alpha , IL-6, and IGF-1 by graded mechanical stress in
normal rat myocardium. Am J Physiol Heart Circ Physiol. 2002;282:H926-
934.

234. Li J, Hampton T, Morgan JP, Simons M. Stretch-induced VEGF
Expression in the Heart. J. Clin. Invest. 1997;100:18-24.

225



235

236

237

238

239

240

241

242

243

244

245.

246.

Baumgarten G, Knuefermann P, Kalra D, Gao F, Taffet GE, Michael L,
Blackshear PJ, Carballo E, Sivasubramanian N, Mann DL. Load-
dependent and -independent regulation of proinflammatory cytokine and
cytokine receptor gene expression in the adult mammalian heart.
Circulation. 2002;105:2192-7.
Wiesner RJ, Ehmke H, Faulhaber J, Zak R, Ruegg JC. Dissociation of left
ventricular hypertrophy, beta-myosin heavy chain gene expression, and
myosin isoform switch in rats after ascending aortic stenosis. Circulation.
1997;95:1253-9.
Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of
angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes
in vitro. Cell. 1993;75:977-84.
Sadoshima J, Izumo S. Molecular characterization of angiotensin II-
induced hypertrophy of cardiac myocytes and hyperplasia of cardiac
fibroblasts. Critical role of the AT1 receptor subtype. Circ Res.
1993;73:413-23.
Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II
stimulates cardiac myocyte hypertrophy via paracrine release of TGF-
beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40:352-
63.
Sano M, Fukuda K, Kodama H, Pan J, Saito M, Matsuzaki J, Takahashi
T, Makino S, Kato T, Ogawa S. lnterleukin-6 family of cytokines mediate
angiotensin ll-induced cardiac hypertrophy in rodent cardiomyocytes. J
Biol Chem. 2000;275:29717-23.
Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Fluang H,
Sonnenblick EH, Meggs LG, Baker KM, et al. Identification and activation
of autocrine renin-angiotensin system in adult ventricular myocytes. Am J
Physiol. 1995; 269 :H 1791 -802.
Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac
hypertrophy: mechanisms and signal transduction pathways. Cardiovasc
Res. 2000;47:23-37.
Ross RS, Borg TK. Integrins and the Myocardium. Circ Res.
2001;88:1112-1119.
Franchini KG, Torsoni AS, Soares PHA, Saad MJA. Early Activation of
the Multicomponent Signaling Complex Associated With Focal Adhesion
Kinase Induced by Pressure Overload in the Rat Heart. Circ Res.
2000;87:558-565.
Pham CG, Harpf AE, Keller RS, Vu HT, Shai SY, Loftus JC, Ross RS.
Striated muscle-specific beta(1D)-integrin and FAK are involved in
cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ
Physiol. 2000;279:H2916-26.
Keller RS, Shai SY, Babbitt CJ, Pham CG, Solaro RJ, Valencik ML,
Loftus JC, Ross RS. Disruption of integrin function in the murine
myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac
performance. Am J Pathol. 2001;158:1079-90.

226



247. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion kinase in
phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J
Biol Chem. 2000;275:19250-7.

248. Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM.
Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion
kinase. Am J Physiol Heart Circ Physiol. 2000;278:H1695-707.

249. Heidkamp MC, Bayer AL, Kalina JA, Eble DM, Samarel AM. GFP-FRNK
disrupts focal adhesions and induces anoikis in neonatal rat ventricular
myocytes. Circ Res. 2002;90:1282-9.

250. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H,
Takano H, Nagai R, Komuro I. Integrins play a critical role in mechanical
stress-induced p38 MAPK activation. Hypertension. 2002;39:233-8.

251. Fuller SJ. Stimulation of gene expression in neonatal cardiac myocytes
by raised extracellular pH. Biochem Soc Trans. 1997;25:210S.

252. Yamazaki T, Komuro I, Kudoh S, Zou Y, Nagai R, Aikawa R, Uozumi H,
Yazaki Y. Role of ion channels and exchangers in mechanical stretch-
induced cardiomyocyte hypertrophy. Circ Res. 1998;82:430-7.

253. Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC. Stretch-
induced alkalinization of feline papillary muscle: an autocrine-paracrine
system. Circ Res. 1998;83:775-80.

254. Loennechen JP, Wisloff U, Falck G, Ellingsen O. Effects of cariporide and
losartan on hypertrophy, calcium transients, contractility, and gene
expression in congestive heart failure. Circulation. 2002;105:1380-6.

255. Camilion de Hurtado MC, Portiansky EL, Perez NG, Rebolledo OR,
Cingolani HE. Regression of cardiomyocyte hypertrophy in SHR following
chronic inhibition of the Na(+)/H(+) exchanger. Cardiovasc Res.
2002;53:862-8.

256. Spitznagel H, Chung O, Xia Q, Rossius B, Miner S, Jahnichen G,
Sandmann S, Reinecke A, Daemen MJ, Linger T. Cardioprotective effects
of the Na(+)/H(+)-exchange inhibitor cariporide in infarct-induced heart
failure. Cardiovasc Res. 2000;46:102-10.

257. Yoshida H, Karmazyn M. Na(+)/H(+) exchange inhibition attenuates
hypertrophy and heart failure in 1-wk postinfarction rat myocardium. Am J
Physiol Heart Circ Physiol. 2000;278:H300-4.

258. Marano G, Vergari A, Catalano L, Gaudi S, Palazzesi S, Musumeci M,
Stati T, Ferrari AU. Na+/H+ exchange inhibition attenuates left ventricular
remodeling and preserves systolic function in pressure-overloaded
hearts. Br J Pharmacol. 2004;141:526-32.

259. Inagami T, Misono K, Michelakis AM. Definitive evidence for similarity in
the active site of renin and acidic protease. Biochem Biophys Res
Commun. 1974;56:503-9.

260. McKown MM, Gregerman Rl. Human renin inhibition by a diazoacyl
reagent: relationship of the enzyme to other proteinases. Life Sci.
1975;16:71-9.



261

262

263

264

265

266

267

268

269

270

271

272

273

Misono KS, Inagami T. Characterization of the active site of mouse
submaxillary gland renin. Biochemistry. 1980;19:2616-22.
Rahuel J, Priestle JP, Grutter MG. The crystal structures of recombinant
glycosylated human renin alone and in complex with a transition state
analog inhibitor. J Struct Biol. 1991;107:227-36.
Sielecki AR, Hayakawa K, Fujinaga M, Murphy ME, Fraser M, Muir AK,
Carilli CT, Lewicki JA, Baxter JD, James MN. Structure of recombinant
human renin, a target for cardiovascular-active drugs, at 2.5 A resolution.
Science. 1989;243:1346-51.
Blundell T, Sibanda BL, Pearl L. Three-dimensional structure, specificity
and catalytic mechanism of renin. Nature. 1983;304:273-5.
Catanzaro DF, Mullins JJ, Morris BJ. The biosynthetic pathway of renin in
mouse submandibular gland. J Biol Chem. 1983;258:7364-8.
Misono KS, Inagami T. Structure of mouse submaxillary gland renin.
Identification of two disulfide-linked polypeptide chains and the complete
amino acid sequence of the light chain. J Biol Chem. 1982;257:7536-40.
Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ.
Overexpression of angiotensin AT1 receptor transgene in the mouse
myocardium produces a lethal phenotype associated with myocyte
hyperplasia and heart block. Proc Natl Acad Sci U S A. 1997;94:6391-6.
Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M.
Overexpression of angiotensin II type I receptor in cardiomyocytes
induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA.
2000;97:931-6.
Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF,
Lefkowitz RJ. Myocardial expression of a constitutively active alpha 1B-
adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc
NatlAcad Sci USA. 1994;91:10109-13.
Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ,
Waugh DJJ, Ross SA, Gaivin RJ, Morehead AJ, Thomas JD, Plow EF,
McGrath JC, Piascik MT, Perez DM. Hypotension, Autonomic Failure,
and Cardiac Hypertrophy in Transgenic Mice Overexpressing the alpha
1 B-Adrenergic Receptor. J. Biol. Chem. 2001;276:13738-13743.
Sakata Y, Hoit BD, Liggett SB, Walsh RA, Dorn GW, 2nd.
Decompensation of pressure-overload hypertrophy in G alpha q-
overexpressing mice. Circulation. 1998;97:1488-95.
Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ.
Transient cardiac expression of constitutively active Galphaq leads to
hypertrophy and dilated cardiomyopathy by calcineurin-dependent and
independent pathways. Proc Natl Acad Sci USA. 1998;95:13893-8.
Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wight
DC, Wagner TE, Ishikawa Y, Homey CJ, Vatner SF. Adverse effects of
chronic endogenous sympathetic drive induced by cardiac GS alpha
overexpression. Circ Res. 1996;78:517-24.

228



274. Hunter JJ, Tanaka N, Rockman HA, Ross J, Jr., Chien KR. Ventricular
expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and
selective diastolic dysfunction in transgenic mice. J Biol Chem.
1995;270:23173-8.

275. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL,
Schaefer E, Yager K. Altered focal adhesion regulation correlates with
cardiomyopathy in mice expressing constitutively active rac1. J. Clin.
Invest. 2000;105:875-886.

276. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD,
Walsh RA, King GL. Targeted overexpression of protein kinase C beta2
isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S
A. 1997;94:9320-5.

277. Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman Gl, Buttrick
PM. Expression of protein kinase C beta in the heart causes hypertrophy
in adult mice and sudden death in neonates. J Clin Invest.

1997;100:2189-95.
278. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G,

Banci L, Guo Y, Bolli R, Dorn GW, 2nd, Mochly-Rosen D. Opposing
cardioprotective actions and parallel hypertrophic effects of delta PKC
and epsilon PKC. Proc Natl Acad Sci USA. 2001;98:11114-9.

279. Gruver CL, DeMayo F, Goldstein MA, Means AR. Targeted
developmental overexpression of calmodulin induces proliferative and
hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology.
1993;133:376-88.

280. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek
P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces
cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J
Clin Invest. 2000;105:1395-406.

281. Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of
gp130, a signal-transducing receptor component for interleukin 6-related
cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci U
S A. 1995;92:4862-6.

282. Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, Okabe
M, Kishimoto T, Yamauchi-Takihara K. Signal transducer and activator of
transcription 3 in the heart transduces not only a hypertrophic signal but a
protective signal against doxorubicin-induced cardiomyopathy. Proc Natl
Acad Sci USA. 2000;97:315-9.

283. Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ. Local
insulin-like growth factor I expression induces physiologic, then
pathologic, cardiac hypertrophy in transgenic mice. Faseb J.
1999;13:1923-9.

284. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R,
Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD. The
MEK1-ERK1/2 signaling pathway promotes compensated cardiac
hypertrophy in transgenic mice. Embo J. 2000;19:6341-50.

229



285

286

287

288

289

290

291

292

293

294

295

296

297

298

Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R,
Rosenzweig A. Phenotypic spectrum caused by transgenic
overexpression of activated Akt in the heart. J Biol Chem.
2002;277:22896-901.
Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ,
Michael LH, Overbeek PA, Schneider MD. TAK1 is activated in the
myocardium after pressure overload and is sufficient to provoke heart
failure in transgenic mice. Nat Med. 2000;6:556-63.
Zhang X, Azhar G, Chai J, Sheridan P, Nagano K, Brown T, Yang J,
Khrapko K, Borras AM, Lawitts J, Misra RP, Wei JY. Cardiomyopathy in
transgenic mice with cardiac-specific overexpression of serum response
factor. Am J Physiol Heart Circ Physiol. 2001 ;280:H1782-92.
Veniant M, Menard J, Bruneval P, Morley S, Gonzales MF, Mullins J.
Vascular damage without hypertension in transgenic rats expressing
prorenin exclusively in the liver. J Clin Invest. 1996;98:1966-70.
Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu
X, Kudej RK, Wagner T, Sadoshima J, Vatner SF. H11 kinase is a novel
mediator of myocardial hypertrophy in vivo. Circ Res. 2002;91:1007-14.
Aeed PA, Guido DM, Mathews WR, Elhammer AP. Characterization of
the oligosaccharide structures on recombinant human prorenin expressed
in Chinese hamster ovary cells. Biochemistry. 1992;31:6951-61.
Baxter JD, Duncan K, Chu W, James MN, Russell RB, Haidar MA,
DeNoto FM, Hsueh W, Reudelhuber TL. Molecular biology of human
renin and its gene. Recent Prog Horm Res. 1991;47:211-57; discussion
257-8.
Weaver D, Skinner S, Walker L, Sangster M. Phenotypic inhibition of the
renin-angiotensin system, emergence of the Ren-2 gene, and adaptive
radiation of mice. Gen Comp Endocrinol. 1991;83:306-15.
Yokosawa H, Holladay LA, Inagami T, Haas E, Murakami K. Human renal
renin. Complete purification and characterization. J Biol Chem.
1980;255:3498-502.
Oliver WJ, Gross F. Effect of testosterone and duct ligation on
submaxillary renin-like principle. Am J Physiol. 1967;213:341-6.
Hatae T, Takimoto E, Murakami K, Fukamizu A. Comparative studies on
species-specific reactivity between renin and angiotensinogen. Mol Cell
Biochem. 1994;131:43-7.
Hirose S, Kim S, Miyazaki H, Park YS, Murakami K. In vitro biosynthesis
of human renin and identification of plasma inactive renin as an activation
intermediate. J Biol Chem. 1985;260:16400-5.
Dzau VJ, Tanaka A, Pratt RE. The nature of renin precursor and inactive
renin. Clin Exp Hypertens A. 1982;4:1973-85.
Mercure C, Thibault G, Lussier-Cacan S, Davignon J, Schiffrin EL,
Reudelhuber TL. Molecular analysis of human prorenin prosegment
variants in vitro and in vivo. J Biol Chem. 1995;270:16355-9.

230



299. Derkx FH, Deinum J, Lipovski M, Verhaar M, Fischli W, Schalekamp MA.
Nonproteolytic "activation" of prorenin by active site-directed renin
inhibitors as demonstrated by renin-specific monoclonal antibody. J Biol
Chem. 1992;267:22837-42.

300. Yamauchi T, Nagahama M, Watanabe T, Ishizuka Y, Hori H, Murakami K.
Site-directed mutagenesis of human prorenin. Substitution of three
arginine residues in the propeptide with glutamine residues yields active
prorenin. J Biochem (Tokyo). 1990;107:27-31.

301. Higashimori K, Mizuno K, Nakajo S, Boehm F, Marcotte P, Egan D,
Holleman W, Heusser C, Poisner A, Inagami T. Pure human inactive
renin. Evidence that native inactive renin is prorenin. J. Biol. Chem.
1989;264:14662-14667.

302. Almeida PC, Chagas JR, Cezari MH, Juliano MA, Juliano L. Flydrolysis by
plasma kallikrein of fluorogenic peptides derived from prorenin processing
site. Biochim Biophys Acta. 2000;1479:83-90.

303. Almeida PC, Oliveira V, Chagas JR, Meldal M, Juliano MA, Juliano L.
Hydrolysis by cathepsin B of fluorescent peptides derived from human
prorenin. Hypertension. 2000;35:1278-83.

304. Jutras I, Reudelhuber TL. Prorenin processing by cathepsin B in vitro and
in transfected cells. FEBS Lett. 1999;443:48-52.

305. Laframboise M, Reudelhuber TL, Jutras I, Brechler V, Seidah NG, Day R,
Gross KW, Deschepper CF. Prorenin activation and prohormone
convertases in the mouse As4.1 cell line. Kidney Int. 1997;51:104-9.

306. Mercure C, Jutras I, Day R, Seidah NG, Reudelhuber TL. Prohormone
convertase PC5 is a candidate processing enzyme for prorenin in the
human adrenal cortex. Hypertension. 1996;28:840-6.

307. Jutras I, Seidah NG, Reudelhuber TL, Brechler V. Two activation states
of the prohormone convertase PC1 in the secretory pathway. J Biol
Chem. 1997;272:15184-8.

308. Kim WS, Hatsuzawa K, Ishizuka Y, Hashiba K, Murakami K, Nakayama
K. A processing enzyme for prorenin in mouse submandibular gland.
Purification and characterization. J Biol Chem. 1990;265:5930-3.

309. Derkx FH, Schalekamp MP, Schalekamp MA. Two-step prorenin-renin
conversion. Isolation of an intermediary form of activated prorenin. J Biol
Chem. 1987;262:2472-7.

310. Heinrikson RL, Hui J, Zurcher-Neely H, Poorman RA. A structural model
to explain the partial catalytic activity of human prorenin. Am J Hypertens.
1989;2:367-80.

311. Reudelhuber TL, Brechler V, Jutras I, Mercure C, Methot D. Proteolytic
and non-proteolytic activation of prorenin. Adv Exp Med Biol.
1998;436:229-38.

312. Suzuki F, Hayakawa M, Nakagawa T, Nasir UM, Ebihara A, Iwasawa A,
Ishida Y, Nakamura Y, Murakami K. Human prorenin has "gate and
handle" regions for its non-proteolytic activation. J Biol Chem.
2003;278:22217-22.

231



313

314

315

316

317

318

319
320

321

322

323

324.

325.

326.

327.

Muller DN, Hilgers KF, Mathews S, Breu V, Fischli W, Uhlmann R, Luft
FC. Effects of Fluman Prorenin in Rats Transgenic for Human
Angiotensinogen. Hypertension. 1999;33:312-317.
Hosoi M, Kim S, Takada T, Suzuki F, Murakami K, Yamamoto K. Effects
of prorenin on blood pressure and plasma renin concentrations in stroke-
prone spontaneously hypertensive rats. Am J Physiol. 1992;262:E234-9.
Lenz T, Sealey JE, Lappe RW, Carilli C, Oshiro GT, Baxter JD, Laragh
JH. Infusion of recombinant human prorenin into rhesus monkeys. Effects
on hemodynamics, renin-angiotensin-aldosterone axis and plasma
testosterone. Am J Hypertens. 1990;3:257-61.
Lenz T, Sealey JE, Maack T, James GD, Heinrikson RL, Marion D,
Laragh JH. Half-life, hemodynamic, renal, and hormonal effects of
prorenin in cynomolgus monkeys. Am J Physiol. 1991;260:R804-10.
Kim S, Hosoi M, Ikemoto F, Murakami K, Ishizuka Y, Yamamoto K.
Conversion to renin of exogenously administered recombinant human
prorenin in liver and kidney of monkeys. Am J Physiol. 1990;258:E451-8.
Methot D, Silversides DW, Reudelhuber TL. In vivo enzymatic assay
reveals catalytic activity of the human renin precursor in tissues. Circ
Res. 1999;84:1067-72.
Mollina RaM, J. In; 2000.
Franken AA, Derkx FH, Blankestijn PJ, Janssen JA, Mannesse CK, Hop
W, Boomsma F, Weber R, Peperkamp E, De Jong PT, et al. Plasma
prorenin as an early marker of microvascular disease in patients with
diabetes mellitus. Diabete Metab. 1992;18:137-43.
Wilson DM, Luetscher JA. Plasma prorenin activity and complications in
children with insulin-dependent diabetes mellitus. N Engl J Med.
1990;323:1101-6.
Luetscher JA, Kraemer FB. Microalbuminuria and increased plasma
prorenin. Prevalence in diabetics followed up for four years. Arch Intern
Med. 1988;148:937-41.
Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM,
Peach MJ. Distribution of renin mRNA and its protein in the developing
kidney. Am J Physiol. 1989;257:F850-8.
JONES CA, HURLEY Ml, BLACK TA, KANE CM, PAN L, PRUITT SC,
GROSS KW. Expression of a renin/GFP transgene in mouse embryonic,
extra-embryonic, and adult tissues. Physiol. Genomics. 2000;4:75-81.
Naruse K, Takii Y, Inagami T. Immunohistochemical localization of renin
in luteinizing hormone-producing cells of rat pituitary. Proc Natl Acad Sci
USA. 1981;78:7579-83.
Li C, Ansari R, Yu Z, Shah D. Definitive Molecular Evidence of Renin-
Angiotensin System in Human Uterine Decidual Cells. Hypertension.
2000;36:159-164.
Re R, Fallon JT, Dzau V, Ouay SC, Haber E. Renin synthesis by canine
aortic smooth muscle cells in culture. Life Sci. 1982;30:99-106.

232



328. Field LJ, McGowan RA, Dickinson DP, Gross KW. Tissue and gene
specificity of mouse renin expression. Hypertension. 1984;6:597-603.

329. Field LJ, Philbrick WM, Howies PN, Dickinson DP, McGowan RA, Gross
KW. Expression of tissue-specific Ren-1 and Ren-2 genes of mice:
comparative analysis of 5'-proximal flanking regions. Mol Cell Biol.
1984;4:2321-31.

330. Lilly LS, Pratt RE, Alexander RW, Larson DM, Ellison KE, Gimbrone MA,
Jr., Dzau VJ. Renin expression by vascular endothelial cells in culture.
Circ Res. 1985;57:312-8.

331. Danser AH, van den Dorpel MA, Deinum J, Derkx FH, Franken AA,
Peperkamp E, de Jong PT, Schalekamp MA. Renin, prorenin, and
immunoreactive renin in vitreous fluid from eyes with and without diabetic
retinopathy. J Clin Endocrinol Metab. 1989;68:160-7.

332. Cooper AC, Robinson G, Vinson GP, Cheung WT, Broughton Pipkin F.
The localization and expression of the renin-angiotensin system in the
human placenta throughout pregnancy. Placenta. 1999;20:467-74.

333. Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual,
or a regulator of cardiac function? Circ Res. 1999;85:643-50.

334. Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the
adipose tissue renin-angiotensin system. Hypertension. 2000;35:1270-7.

335. Ganten D, Schelling P, Vecsei P, Ganten U. Iso-renin of extrarenal origin.
"The tissue angiotensinogenase systems". Am J Med. 1976;60:760-72.

336. Dzau VJ, Brenner A, Emmett NL. Evidence for renin in rat brain:
differentiation from other reninlike enzymes. Am J Physiol.
1982;242:E292-7.

337. Hirose S, Naruse M, Ohtsuki K, Inagami T. Totally inactive renin zymogen
and different forms of active renin in hog brain tissues. J Biol Chem.
1981;256:5572-6.

338. Dzau VJ, Pratt RE. Renin gene expression, biosynthesis, and cellular
pathways of secretion. Clin Physiol Biochem. 1988;6:210-6.

339. Pratt RE, Carleton JE, Roth TP, Dzau VJ. Evidence for two cellular
pathways of renin secretion by the mouse submandibular gland.
Endocrinology. 1988; 123:1721 -7.

340. Pratt RE, Flynn JA, Hobart PM, Paul M, Dzau VJ. Different secretory
pathways of renin from mouse cells transfected with the human renin
gene. J Biol Chem. 1988;263:3137-41.

341. Derkx FH, Schalekamp MA. Human prorenin: pathophysiology and
clinical implications. Clin Exp Hypertens A. 1988;10:1213-25.

342. Sealey JE, Moon C, Laragh JH, Atlas SA. Plasma prorenin in normal,
hypertensive, and anephric subjects and its effect on renin
measurements. Circ Res. 1977;40:141-5.

343. Hosoi M, Kim S, Tabata T, Nishitani H, Nishizawa Y, Morii H, Murakami
K, Yamamoto K. Evidence for the presence of differently glycosylated
forms of prorenin in the plasma of anephric man. J Clin Endocrinol Metab.
1992;74:680-4.

233



344

345

346

347

348

349

350

351

352

353

354

355

356

Baker KM, Aceto JF. Angiotensin II stimulation of protein synthesis and
cell growth in chick heart cells. Am J Physiol. 1990;259:H610-8.
Miyata S, Haneda T. Hypertrophic growth of cultured neonatal rat heart
cells mediated by type 1 angiotensin II receptor. Am J Physiol.
1994;266:H2443-51.
Liu Y, Leri A, Li B, Wang X, Cheng W, Kajstura J, Anversa P. Angiotensin
II stimulation in vitro induces hypertrophy of normal and postinfarcted
ventricular myocytes. Circ Res. 1998;82:1145-59.
Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne
WC, Knutzon DS, Yen R, Chien KR, et al. Expression cloning of
cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy.
Proc Natl Acad Sci USA. 1995;92:1142-6.
Booz GW, Baker KM. Role of type 1 and type 2 angiotensin receptors in
angiotensin ll-induced cardiomyocyte hypertrophy. Hypertension.
1996;28:635-40.
Kuwahara K, Saito Y, Harada M, Ishikawa M, Ogawa E, Miyamoto Y,
Hamanaka I, Kamitani S, Kajiyama N, Takahashi N, Nakagawa O,
Masuda I, Nakao K. Involvement of Cardiotrophin-1 in Cardiac Myocyte-
Nonmyocyte Interactions During Hypertrophy of Rat Cardiac Myocytes In
Vitro. Circulation. 1999; 100:1116-1124.
Dostal DE, Baker KM. Angiotensin II stimulation of left ventricular
hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J
Hypertens. 1992;5:276-80.
Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a
gp91(phox)-containing NADPH oxidase in angiotensin ll-induced cardiac
hypertrophy in mice. Circulation. 2002;105:293-6.
Mazzolai L, Nussberger J, Aubert JF, Brunner DB, Gabbiani G, Brunner
HR, Pedrazzini T. Blood pressure-independent cardiac hypertrophy
induced by locally activated renin-angiotensin system. Hypertension.
1998;31:1324-30.
Prescott G, Silversides DW, Chiu SM, Reudelhuber TL. Contribution of
circulating renin to local synthesis of angiotensin peptides in the heart.
Physiol Genomics. 2000;4:67-73.
Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM,
Buikema H, van Gilst WH, Lindschau C, Paul M, Inagami T, Ganten D,
Urata H. Overexpression of the human angiotensin II type 1 receptor in
the rat heart augments load induced cardiac hypertrophy. J Mol Med.
2001;79:601-8.
van Kats JP, Methot D, Paradis P, Silversides DW, Reudelhuber TL. Use
of a biological peptide pump to study chronic peptide hormone action in
transgenic mice. Direct and indirect effects of angiotensin II on the heart.
J Biol Chem. 2001;276:44012-7.
Harada K, Komuro I, Zou Y, Kudoh S, Kijima K, Matsubara H, Sugaya T,
Murakami K, Yazaki Y. Acute pressure overload could induce

234



357

358

359

360

361

362

363

364.

365.

366.

367.

368.

hypertrophic responses in the heart of angiotensin II type 1a knockout
mice. Circ Res. 1998;82:779-85.
Hamawaki M, Coffman TM, Lashus A, Koide M, Zile MR, Oliverio Ml,
DeFreyte G, Cooper Gt, Carabello BA. Pressure-overload hypertrophy is
unabated in mice devoid of AT1A receptors. Am J Physiol.
1998;274:H868-73.
Koide M, Carabello BA, Conrad CC, Buckley JM, DeFreyte G, Barnes M,
Tomanek RJ, Wei CC, Dell'ltalia LJ, Cooper Gt, Zile MR. Hypertrophic
response to hemodynamic overload: role of load vs. renin-angiotensin
system activation. Am J Physiol. 1999;276:H350-8.
Katz SA, Opsahl JA, Wernsing SE, Forbis LM, Smith J, Heller LJ.
Myocardial renin is neither necessary nor sufficient to initiate or maintain
ventricular hypertrophy. Am J Physiol Regul Integr Comp Physiol.
2000;278:R578-86.
van Kesteren CA, van Heugten HA, Lamers JM, Saxena PR, Schalekamp
MA, Danser AH. Angiotensin ll-mediated growth and antigrowth effects in
cultured neonatal rat cardiac myocytes and fibroblasts. J Mol Cell Cardiol.
1997;29:2147-57.
Fischer TA, Singh K, O'Hara DS, Kaye DM, Kelly RA. Role of AT1 and
AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult
cardiac myocytes. Am J Physiol. 1998;275:H906-16.
Pachori AS, Numan MT, Ferrario CM, Diz DM, Raizada MK, Katovich MJ.
Blood pressure-independent attenuation of cardiac hypertrophy by
AT(1)R-AS gene therapy. Hypertension. 2002;39:969-75.
Ichihara S, Senbonmatsu T, Price E, Jr., Ichiki T, Gaffney FA, Inagami T.
Angiotensin II type 2 receptor is essential for left ventricular hypertrophy
and cardiac fibrosis in chronic angiotensin ll-induced hypertension.
Circulation. 2001; 104:346-51.
Senbonmatsu T, Ichihara S, Price E, Jr., Gaffney FA, Inagami T.
Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte
enlargement during in vivo pressure overload. J Clin Invest.
2000;106:R25-9.
Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N,
Murakami K, Kadowaki T, Yazaki Y. Mechanical stretch induces
hypertrophic responses in cardiac myocytes of angiotensin II type 1a
receptor knockout mice. J Biol Chem. 1998;273:24037-43.
Sadoshima J, Izumo S. Autocrine secretion of angiotensin II mediates
stretch-induced hypertrophy of cardiac myocytes in vitro. Contrib Nephrol.
1996;118:214-21.
Akishita M, Iwai M, Wu L, Zhang L, Ouchi Y, Dzau VJ, Horiuchi M.
Inhibitory effect of angiotensin II type 2 receptor on coronary arterial
remodeling after aortic banding in mice. Circulation. 2000;102:1684-9.
Schneider MD, Lorell BH. AT(2), judgment day: which angiotensin
receptor is the culprit in cardiac hypertrophy? Circulation. 2001; 104:247-
8.

235



369

370

371

372

373

374

375

376

377

378

379,

380.

Kurisu S, Ozono R, Oshima T, Kambe M, Ishida T, Sugino H, Matsuura
H, Chayama K, Teranishi Y, Iba O, Amano K, Matsubara H. Cardiac
angiotensin II type 2 receptor activates the kinin/NO system and inhibits
fibrosis. Hypertension. 2003;41:99-107.
Karmazyn M, Liu Q, Gan XT, Brix BJ, Fliegel L. Aldosterone increases
NHE-1 expression and induces NHE-1-dependent hypertrophy in
neaonatal rat ventricular myocytes. Hypertension. 2003;42:1171-6.
Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H. Cardiac
aldosterone production in genetically hypertensive rats. Hypertension.
2000;36:495-500.
Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B,
Kleiman J, Krause S, Burns D, Williams GFI. Effects of Eplerenone,
Enalapril, and Eplerenone/Enalapril in patients with essential
hypertension and left ventricular hypertrophy. The 4E-left ventricular
hypertrophy study. Circulation. 2003;108:1831-38.
Silvestre JS, Robert V, Fleymes C, Aupetit-Faisant B, Mouas C, Moalic
JM, Swynghedauw B, Delcayre C. Myocardial production of aldosterone
and corticosterone in the rat. Physiological regulation. J Biol Chem.
1998;273:4883-91.
Silvestre JS, Heymes C, Oubenaissa A, Robert V, Aupetit-Faisant B,
Carayon A, Swynghedauw B, Delcayre C. Activation of cardiac
aldosterone production in rat myocardial infarction: effect of angiotensin II
receptor blockade and role in cardiac fibrosis. Circulation. 1999;99:2694-
701.
Gomez-Sanchez EP, Ahmad N, Romero DG, Gomez -Sanchez CE.
Origin of aldosterone in the rat heart. Endocrinology. 2004;145:4796-802.
Gamier A, Bendall JK, Fuchs S, Escoubet B, Rochais F, Hoerter J,
Nehme J, Ambroiseine M-L, De Angelis N, Morineau G, d'Estienne P,
Fischmeister R, Heymes C, Pinet F, Delcayre C. Cardiac specific
increase in aldosterone production induces coronary dysfunction in
aldosterone synthase-transgenic mice. Circulation. 2004;110:1819-1825.
Dostal DE, Rothblum KN, Chernin Ml, Cooper GR, Baker KM.
Intracardiac detection of angiotensinogen and renin: a localized renin-
angiotensin system in neonatal rat heart. Am J Physiol. 1992;263:C838-
50.
Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM. Detection
of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts.
Am J Physiol. 1992;263:C851-63.
Clausmeyer S, Reinecke A, Farrenkopf R, Linger T, Peters J. Tissue-
specific expression of a rat renin transcript lacking the coding sequence
for the prefragment and its stimulation by myocardial infarction.
Endocrinology. 2000;141:2963-70.
Clausmeyer S, Sturzebecher R, Peters J. An alternative transcript of the
rat renin gene can result in a truncated prorenin that is transported into
adrenal mitochondria. Circ Res. 1999;84:337-44.

236



381. De Mello WC, Danser AH. Angiotensin II and the heart: on the intracrine
renin-angiotensin system. Hypertension. 2000;35:1183-8.

382. van Kats JP, de Lannoy LM, Jan Danser AH, van Meegen JR, Verdouw
PD, Schalekamp MA. Angiotensin II type 1 (AT1) receptor-mediated
accumulation of angiotensin II in tissues and its intracellular half-life in
vivo. Hypertension. 1997;30:42-9.

383. Neri Serneri GG, Boddi M, Coppo M, Chechi T, Zarone N, Moira M,
Poggesi L, Margheri M, Simonetti I. Evidence for the existence of a
functional cardiac renin-angiotensin system in humans. Circulation.
1996;94:1886-93.

384. de Lannoy LM, Danser AH, van Kats JP, Schoemaker RG, Saxena PR,
Schalekamp MA. Renin-angiotensin system components in the interstitial
fluid of the isolated perfused rat heart. Local production of angiotensin I.
Hypertension. 1997;29:1240-51.

385. de Lannoy LM, Danser AH, Bouhuizen AM, Saxena PR, Schalekamp MA.
Localization and production of angiotensin II in the isolated perfused rat
heart. Hypertension. 1998;31:1111-7.

386. Neri Serneri GG, Boddi M, Poggesi L, Simonetti I, Coppo M, Papa ML,
Lisi GF, Maccherini M, Becherini R, Boncompagni A, Toscano T, Modesti
PA. Activation of cardiac renin-angiotensin system in unstable angina. J
Am Coll Cardiol. 2001;38:49-55.

387. Malhotra R, Sadoshima J, Brosius FC, 3rd, Izumo S. Mechanical stretch
and angiotensin II differentially upregulate the renin-angiotensin system in
cardiac myocytes In vitro. Circ Res. 1999;85:137-46.

388. Iwai N, Shimoike H, Kinoshita M. Cardiac renin-angiotensin system in the
hypertrophied heart. Circulation. 1995;92:2690-6.

389. Boer PH, Ruzicka M, Lear W, Harmsen E, Rosenthal J, Leenen FH.
Stretch-mediated activation of cardiac renin gene. Am J Physiol.
1994;267:H1630-6.

390. Tokuda K, Kai H, Kuwahara F, Yasukawa H, Tahara N, Kudo H,
Takemiya K, Koga M, Yamamoto T, Imaizumi T. Pressure-Independent
Effects of Angiotensin II on Hypertensive Myocardial Fibrosis.
Hypertension. 2004;43:499-503.

391. von Lutterotti N, Catanzaro DF, Sealey JE, Laragh JH. Renin is not
synthesized by cardiac and extrarenal vascular tissues. A review of
experimental evidence. Circulation. 1994;89:458-70.

392. Danser AH, Admiraal PJ, Derkx FH, de Bruyn JH, Schalekamp MA.
Changes in plasma renin and angiotensin run in parallel after
nephrectomy. J Hypertens Suppl. 1993; 11 Suppl 5:S238-9.

393. Danser AH, Schalekamp MA. Is there an internal cardiac renin-
angiotensin system? Heart. 1996;76:28-32.

394. Katz SA, Opsahl JA, Lunzer MM, Forbis LM, Hirsch AT. Effect of bilateral
nephrectomy on active renin, angiotensinogen, and renin glycoforms in
plasma and myocardium. Hypertension. 1997;30:259-66.

237



395

396

397

398

399

400

401

402

403

404

405

406.

Danser AH, van Kats JP, Admiraal PJ, Derkx FH, Lamers JM, Verdouw
PD, Saxena PR, Schalekamp MA. Cardiac renin and angiotensins.
Uptake from plasma versus in situ synthesis. Hypertension. 1994;24:37-
48.
Danser AH, Admiraal PJ, Derkx FH, Lamers JM, Verdouw PD, Saxena
PR, Schalekamp MA. Cardiac renin is kidney-derived. J Hypertens Suppl.
1993; 11 Suppl 5:S224-5.
Katz SA, Opsahl JA, Forbis LM. Myocardial enzymatic activity of renin
and cathepsin D before and after bilateral nephrectomy. Basic Res
Cardiol. 2001;96:659-68.
van Kesteren CA, Saris JJ, Dekkers DH, Lamers JM, Saxena PR,
Schalekamp MA, Danser AH. Cultured neonatal rat cardiac myocytes and
fibroblasts do not synthesize renin or angiotensinogen: evidence for
stretch-induced cardiomyocyte hypertrophy independent of angiotensin II.
Cardiovasc Res. 1999;43:148-56.
van den Eijnden MM, Saris JJ, de Bruin RJ, de Wit E, Sluiter W,
Reudelhuber TL, Schalekamp MA, Derkx FH, Danser AH. Prorenin
accumulation and activation in human endothelial cells: importance of
mannose 6-phosphate receptors. Arterioscler Thromb Vase Biol.
2001;21:911-6.
Saris JJ, Derkx FH, Lamers JM, Saxena PR, Schalekamp MA, Danser
AH. Cardiomyocytes bind and activate native human prorenin : role of
soluble mannose 6-phosphate receptors. Hypertension. 2001;37:710-5.
Saris JJ, Derkx FH, De Bruin RJ, Dekkers DH, Lamers JM, Saxena PR,
Schalekamp MA, Jan Danser AH. High-affinity prorenin binding to cardiac
man-6-P/IGF-ll receptors precedes proteolytic activation to renin. Am J
Physiol Heart Circ Physiol. 2001 ;280:H 1706-15.
Saris JJ, van den Eijnden MM, Lamers JM, Saxena PR, Schalekamp MA,
Danser AH. Prorenin-induced myocyte proliferation: no role for
intracellular angiotensin II. Hypertension. 2002;39:573-7.
Marks DL, Kost LJ, Kuntz SM, Romero JC, LaRusso NF. Hepatic
processing of recombinant human renin: mechanisms of uptake and
degradation. Am J Physiol. 1991 ;261 :G349-58.
Hiruma M, Kim S, Ikemoto F, Murakami K, Yamamoto K. Fate of
recombinant human renin administered exogenously to anesthetized
monkeys. Hypertension. 1988;12:317-23.
Blanchard F, Raher S, Duplomb L, Vusio P, Pitard V, Taupin JL, Moreau
JF, Hoflack B, Minvielle S, Jacques Y, Godard A. The mannose 6-
phosphate/insulin-like growth factor II receptor is a nanomolar affinity
receptor for glycosylated human leukemia inhibitory factor. J Biol Chem.
1998;273:20886-93.
Dennis PA, Rifkin DB. Cellular activation of latent transforming growth
factor beta requires binding to the cation-independent mannose 6-
phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci U
S A. 1991;88:580-4.

238



407. Peters J, Farrenkopf R, Clausmeyer S, Zimmer J, Kantachuvesiri S,
Sharp MG, Mullins JJ. Functional significance of prorenin internalization
in the rat heart. Circ Res. 2002;90:1135-41.

408. Ogg D. Characterisation of Rat Lines Transgenic for the Mouse Ren-2d
cDNA. In. Edinburgh: PhD Thesis, University of Edinburgh; 1997.

409. Tada M, Takahashi S, Miyano M, Miyake Y. Tissue-specific regulation of
renin-binding protein gene expression in rats. J Biochem (Tokyo).
1992;112:175-82.

410. Schmitz C, Gotthardt M, Hinderlich S, Leheste J-R, Gross V, Vorum H,
Christensen El, Luft FC, Takahashi S, Willnow TE. Normal Blood
Pressure and Plasma Renin Activity in Mice Lacking the Renin-binding
Protein, a Cellular Renin Inhibitor. J. Biol. Chem. 2000;275:15357-15362.

411. Campbell DJ, Valentijn AJ. Identification of vascular renin-binding
proteins by chemical cross-linking: inhibition of binding of renin by renin
inhibitors. J Hypertens. 1994;12:879-90.

412. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal
role of the renin/prorenin receptor in angiotensin II production and cellular
responses to renin. J Clin Invest. 2002;109:1417-27.

413. Re RN. Implications of intracrine hormone action for physiology and
medicine. Am J Physiol Heart Circ Physiol. 2003;284:H751-7.

414. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells
through an alpha 1-adrenergic receptor and induction of beating through
an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for
independent regulation of growth and beating. Circ Res. 1985;56:884-94.

415. Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV,
Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C,
Singh K, Colucci W, Bristow MR, Port DJ. Myocardial-directed
overexpression of the human beta(1)-adrenergic receptor in transgenic
mice. J Mol Cell Cardiol. 2000;32:817-30.

416. Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA.
Important role of endogenous norepinephrine and epinephrine in the
development of in vivo pressure-overload cardiac hypertrophy. J Am Coll
Cardiol. 2001;38:876-82.

417. Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA,
Koch WJ, Rockman HA. Genetic alterations that inhibit in vivo pressure-
overload hypertrophy prevent cardiac dysfunction despite increased wall
stress. Circulation. 2002;105:85-92.

418. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M,
Taniguchi K, Marumo F. Endothelin-1 induces hypertrophy with enhanced
expression of muscle-specific genes in cultured neonatal rat
cardiomyocytes. Circ Res. 1991;69:209-15.

419. Ito H, Hiroe M, Hirata Y, Fujisaki H, Adachi S, Akimoto H, Ohta Y,
Marumo F. Endothelin ETA receptor antagonist blocks cardiac
hypertrophy provoked by hemodynamic overload. Circulation.
1994;89:2198-203.

239



420. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda
H, Kuwaki T, Cao WH, Kamada N, et al. Elevated blood pressure and
craniofacial abnormalities in mice deficient in endothelin-1. Nature.
1994;368:703-10.

421. Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki
Y. Aortic arch malformations and ventricular septal defect in mice
deficient in endothelin-1. J Clin Invest. 1995;96:293-300.

422. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H,
Kuwaki T, Kumada M, Hammer RE, Yanagisawa M. Cranial and cardiac
neural crest defects in endothelin-A receptor-deficient mice.
Development. 1998;125:813-24.

423. AkhterSA, Luttrell LM, Rockman HA, laccarino G, Lefkowitz RJ, Koch
WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure
overload myocardial hypertrophy. Science. 1998;280:574-7.

424. Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J,
Chien KR, Offermanns S. Absence of pressure overload induced
myocardial hypertrophy after conditional inactivation of
Galphaq/Galphal 1 in cardiomyocytes. Nat Med. 2001;7:1236-40.

425. Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC,
Vernallis AB, Heath JK, Pennica D, Wood Wl, Chien KR. Cardiotrophin-1
activates a distinct form of cardiac muscle cell hypertrophy. Assembly of
sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-
dependent pathways. J Biol Chem. 1996;271:9535-45.

426. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T,
Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda
Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T.
Targeted disruption of gp130, a common signal transducer for the
interleukin 6 family of cytokines, leads to myocardial and hematological
disorders. Proc Natl Acad Sci U S A. 1996;93:407-11.

427. Uozumi H, Hiroi Y, Zou Y, Takimoto E, Toko H, Niu P, Shimoyama M,
Yazaki Y, Nagai R, Komuro I. gp130 plays a critical role in pressure
overload-induced cardiac hypertrophy. J Biol Chem. 2001 ;276:23115-9.

428. Clayton RN. Cardiovascular Function in Acromegaly. Endocr Rev.
2003;24:272-277.

429. Bell D, McDermott BJ. Contribution of de novo protein synthesis to the
hypertrophic effect of IGF-1 but not of thyroid hormones in adult
ventricular cardiomyocytes. Mol Cell Biochem. 2000;206:113-24.

430. Serneri GG, Modesti PA, Boddi M, Cecioni I, Paniccia R, Coppo M,
Galanti G, Simonetti I, Vanni S, Papa L, Bandinelli B, Migliorini A, Modesti
A, Maccherini M, Sani G, Toscano M. Cardiac growth factors in human
hypertrophy. Relations with myocardial contractility and wall stress. Circ
Res. 1999;85:57-67.

431. Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Polidori G, Paniccia R,
Bandinelli B, Perna A, Liguori P, Boddi M, Galanti G, Serneri GG. Early
sequence of cardiac adaptations and growth factor formation in pressure-

240



and volume-overload hypertrophy. Am J Physiol Heart Circ Physiol.
2000;279:H976-85.

432. Donohue TJ, Dworkin LD, Lango MN, Fliegner K, Lango RP, Benstein JA,
Slater WR, Catanese VM. Induction of myocardial insulin-like growth
factor-l gene expression in left ventricular hypertrophy. Circulation.
1994;89:799-809.

433. Cittadini A, Stromer H, Katz SE, Clark R, Moses AC, Morgan JP, Douglas
PS. Differential Cardiac Effects of Growth Hormone and Insulin-like
Growth Factorl in the Rat: A Combined In Vivo and In Vitro Evaluation.
Circulation. 1996;93:800-809.

434. Redaelli G, Malhotra A, Li B, Li P, Sonnenblick EH, Hofmann PA,
Anversa P. Effects of constitutive overexpression of insulin-like growth
factor-1 on the mechanical characteristics and molecular properties of
ventricular myocytes. Circ Res. 1998;82:594-603.

435. Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O,
Rockman HA, Maeda N. Pressure-independent enhancement of cardiac
hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest.
2001;107:975-84.

436. Vega RB, Rothermel BA, Weinheimer CJ, Kovacs A, Naseem RH,
Bassel-Duby R, Williams RS, Olson EN. Dual roles of modulatory
calcineurin-interacting protein 1 in cardiac hypertrophy. Proc Natl Acad
SciUSA. 2003;100:669-674.

437. Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N,
Saito T, Masuda Y, Kadowaki T, Komuro I. Peroxisome proliferator-
activated receptor gamma plays a critical role in inhibition of cardiac
hypertrophy in vitro and in vivo. Circulation. 2002;105:1240-6.

438. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T,
Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell
BB, Ingwall JS, Kahn BB. Cardiac hypertrophy with preserved contractile
function after selective deletion of GLUT4 from the heart. J Clin Invest.
1999;104:1703-14.

439. Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel-Duby R,
Williams RS. Cardiac-specific LIM protein FHL2 modifies the hypertrophic
response to beta-adrenergic stimulation. Circulation. 2001;103:2731-8.

440. Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier
ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff Ml,
Fleischer S. Oestrogen protects FKBP12.6 null mice from cardiac
hypertrophy. Nature. 2002;416:334-8.

441. Ichinose F, Bloch KD, Wu JC, Hataishi R, Aretz HT, Picard MH, Scherrer-
Crosbie M. Pressure overload-induced LV hypertrophy and dysfunction in
mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart
Circ Physiol. 2004;286:H 1070-1075.

442. Crabtree GR. Generic signals and specific outcomes: signaling through
Ca2+, calcineurin, and NF-AT. Cell. 1999;96:611-4.

241



443

444

445

446

447

448

449

450

451

452

453

454

455.

Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of
calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc
Natl Acad Sci USA. 2000;97:1196-201.
Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J,
Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. Differential
activation of signal transduction pathways in human hearts with
hypertrophy versus advanced heart failure. Circulation. 2001;103:670-7.
Bueno OF, Brandt EB, Rothenberg ME, Molkentin JD. Defective T cell
development and function in calcineurin A beta -deficient mice. Proc Natl
Acad Sci USA. 2002;99:9398-403.
Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD. Altered Skeletal
Muscle Phenotypes in Calcineurin A{alpha} and A{beta} Gene-Targeted
Mice. Mol. Cell. Biol. 2003;23:4331-4343.
Ueki K, Muramatsu T, Kincaid RL. Structure and expression of two
isoforms of the murine calmodulin-dependent protein phosphatase
regulatory subunit (calcineurin B). Biochem Biophys Res Commun.
1992;187:537-43.
Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives
of cells. Cell. 2002; 109 Suppl:S67-79.
Sugimoto T, Stewart S, Guan KL. The calcium/calmodulin-dependent
protein phosphatase calcineurin is the major Elk-1 phosphatase. J Biol
Chem. 1997;272:29415-8.
Tian J, Karin M. Stimulation of Elk1 transcriptional activity by mitogen-
activated protein kinases is negatively regulated by protein phosphatase
2B (calcineurin). J Biol Chem. 1999;274:15173-80.
Biswas G, Anandatheerthavarada HK, Zaidi M, Avadhani NG.
Mitochondria to nucleus stress signaling: a distinctive mechanism of
NF{kappa}B/Rel activation through calcineurin-mediated inactivation of
l{kappa}B{beta}. J. Cell Biol. 2003;161:507-519.
Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell'ltalia LJ, Marchase RB.
Capacitative calcium entry contributes to nuclear factor of activated T-
cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol
Chem. 2002;277:14266-73.
Frey N, Richardson JA, Olson EN. Calsarcins, a novel family of
sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci USA.
2000;97:14632-7.
Rothermel B, Vega RB, Yang J, Wu H, Bassel-Duby R, Williams RS. A
protein encoded within the Down syndrome critical region is enriched in
striated muscles and inhibits calcineurin signaling. J Biol Chem.
2000;275:8719-25.
Wang Y, De Keulenaer GW, Weinberg EO, Muangman S, Gualberto A,
Landschulz KT, Turi TG, Thompson JF, Lee RT. Direct biomechanical
induction of endogenous calcineurin inhibitor Down Syndrome Critical
Region-1 in cardiac myocytes. Am J Physiol Heart Circ Physiol.
2002;283:H533-9.

242



456. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J,
Antos CL, Shelton JM, Bassel-Duby R, Olson EN, Williams RS. Myocyte-
enriched calcineurin-interacting protein, MCIP1, inhibits cardiac
hypertrophy in vivo. Proc Natl Acad Sci USA. 2001;98:3328-33.

457. Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative
regulator for calcineurin signaling in T lymphocytes. Immunity.
1998;8:703-11.

458. Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH. Cain, a novel
physiologic protein inhibitor of calcineurin. J Biol Chem. 1998;273:18325-
31.

459. Lin X, Sikkink RA, Rusnak F, Barber DL. Inhibition of calcineurin
phosphatase activity by a calcineurin B homologous protein. J Biol Chem.
1999;274:36125-31.

460. Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin
WM, Scott JD. Association of protein kinase A and protein phosphatase
2B with a common anchoring protein. Science. 1995;267:108-11.

461. Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the
immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase.
Nature. 1989;341:758-60.

462. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX.
Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical
proteins. Nature. 1989;337:476-8.

463. Takahashi N, Hayano T, Suzuki M. Peptidyl-prolyl cis-trans isomerase is
the cyclosporin A-binding protein cyclophilin. Nature. 1989;337:473-5.

464. Jain J, McCaffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL,
Curran T, Rao A. The T-cell transcription factor NFATp is a substrate for
calcineurin and interacts with Fos and Jun. Nature. 1993;365:352-5.

465. Okamura H, Aramburu J, Garcia-Rodriguez C, Viola JP, Raghavan A,
Tahiliani M, Zhang X, Qin J, Hogan PG, Rao A. Concerted
dephosphorylation of the transcription factor NFAT1 induces a
conformational switch that regulates transcriptional activity. Mol Cell.
2000;6:539-50.

466. Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A,
Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, Michael A, Force T.
Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte
hypertrophy. J Cell Biol. 2000;151:117-30.

467. Gomez del Arco P, Martinez-Martinez S, Maldonado JL, Ortega-Perez I,
Redondo JM. A role for the p38 MAP kinase pathway in the nuclear
shuttling of NFATp. J Biol Chem. 2000;275:13872-8.

468. Porter CM, Havens MA, Clipstone NA. Identification of amino acid
residues and protein kinases involved in the regulation of NFATc
subcellular localization. J Biol Chem. 2000;275:3543-51.

469. Yang TT, Xiong Q, Enslen H, Davis RJ, Chow CW. Phosphorylation of
NFATc4 by p38 mitogen-activated protein kinases. Mol Cell Biol.
2002;22:3892-904.

243



470

471

472

473

474

475

476

477

478

479

480

481

482,

Chow CW, Dong C, Flavell RA, Davis RJ. c-Jun NH(2)-terminal kinase
inhibits targeting of the protein phosphatase calcineurin to NFATcl. Mol
Cell Biol. 2000;20:5227-34.
Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V, Wagner G,
Ferrara P, McKeon F. Intramolecular masking of nuclear import signal on
NF-AT4 by casein kinase I and MEKK1. Cell. 1998;93:851-61.
Xia Y, McMillin JB, Lewis A, Moore M, Zhu WG, Williams RS, Kellems
RE. Electrical stimulation of neonatal cardiac myocytes activates the
NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate
synthetase 1 gene. J Biol Chem. 2000;275:1855-63.
Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, Bassel-
Duby R, Williams RS. Independent signals control expression of the
calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ
Res. 2000;87:E61-8.
Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF,
Molkentin JD. Targeted Disruption of NFATc3, but Not NFATc4, Reveals
an Intrinsic Defect in Calcineurin-Mediated Cardiac Hypertrophic Growth.
Mol. Cell. Biol. 2002;22:7603-7613.
Hoey T, Sun YL, Williamson K, Xu X. Isolation of two new members of
the NF-AT gene family and functional characterization of the NF-AT
proteins. Immunity. 1995;2:461-72.
Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC,
Hoey T, Mickanin C, Baldwin HS, Glimcher LH. The transcription factor
NF-ATc is essential for cardiac valve formation. Nature. 1998;392:186-90.
de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ,
Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree
GR, Mak TW. Role of the NF-ATc transcription factor in morphogenesis
of cardiac valves and septum. Nature. 1998;392:182-6.
Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by
Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature.
Cell. 2001;105:863-75.
Hodge MR, Ranger AM, Charles de la Brousse F, Hoey T, Grusby MJ,
Glimcher LH. Hyperproliferation and dysregulation of IL-4 expression in
NF-ATp-deficient mice. Immunity. 1996;4:397-405.
Oukka M, Ho IC, de la Brousse FC, Hoey T, Grusby MJ, Glimcher LH.
The transcription factor NFAT4 is involved in the generation and survival
ofT cells. Immunity. 1998;9:295-304.
Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATcl and NFATc2
together control both T and B cell activation and differentiation. Immunity.
2001;14:13-20.
Ranger AM, Oukka M, Rengarajan J, Glimcher LH. Inhibitory function of
two NFAT family members in lymphoid homeostasis and Th2
development. Immunity. 1998;9:627-35.

244



483. Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, Bozza PT, Luk
DC, Curran T, Rao A. An enhanced immune response in mice lacking the
transcription factor NFAT1. Science. 1996;272:892-5.

484. Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK.
Regulation of the growth of multinucleated muscle cells by an NFATC2-
dependent pathway. J Cell Biol. 2001;153:329-38.

485. Kegley KM, Gephart J, Warren GL, Pavlath GK. Altered primary
myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the
adult. Dev Biol. 2001;232:115-26.

486. Bueno OF, van Rooij E, Molkentin JD, Doevendans PA, De Windt LJ.
Calcineurin and hypertrophic heart disease: novel insights and remaining
questions. Cardiovasc Res. 2002;53:806-21.

487. Goto T, Kino T, Hatanaka H, Okuhara M, Kohsaka M, Aoki H, Imanaka H.
FK 506: historical perspectives. Transplant Proc. 1991;23:2713-7.

488. Goto S, Stepkowski SM, Kahan BD. Effect of FK 506 and cyclosporine on
heart allograft survival in rats. Transplant Proc. 1991;23:529-30.

489. Shiraga T, Matsuda H, Nagase K, Iwasaki K, Noda K, Yamazaki H,
Shimada T, Funae Y. Metabolism of FK506, a potent immunosuppressive
agent, by cytochrome P450 3A enzymes in rat, dog and human liver
microsomes. Biochem Pharmacol. 1994;47:727-35.

490. Matsuda S, Shibasaki F, Takehana K, Mori H, Nishida E, Koyasu S. Two
distinct action mechanisms of immunophilin-ligand complexes for the
blockade of T-cell activation. EMBO Reports. 2000;1:428-434.

491. Bandyopadhyay A, Shin DW, Ahn JO, Kim DH. Calcineurin regulates
ryanodine receptor/Ca(2+)-release channels in rat heart. Biochem J.
2000;352 Pt 1:61-70.

492. Mijares A, Malecot CO, Peineau N, Argibay JA. In vivo and in vitro
inhibition of the L-type calcium current in isolated guinea-pig
cardiomyocytes by the immunosuppressive agent cyclosporin A. J Mol
Cell Cardiol. 1997;29:2067-76.

493. Terracciano CM. Sarcoplasmic reticulum calcium release function and FK
binding proteins in heart failure: another piece of a complex jigsaw.
Cardiovasc Res. 2000;48:191-3.

494. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews
LM, Schneider MD, Hamilton SL, Matzuk MM. Cardiac defects and
altered ryanodine receptor function in mice lacking FKBP12. Nature.
1998;391:489-92.

495. Zhang W. Old and new tools to dissect calcineurin's role in pressure-
overload cardiac hypertrophy. Cardiovasc Res. 2002;53:294-303.

496. Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy: where
have we been? Where are we going? J Physiol. 2002;541:1-8.

497. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert
MC, Gualberto A, Wieczorek DF, Molkentin JD. Prevention of cardiac
hypertrophy in mice by calcineurin inhibition. Science. 1998;281:1690-3.

245



498

499

500

501

502

503

504

505

506

507

508

509,

510.

Zhang W, Kowal RC, Rusnak F, Sikkink RA, Olson EN, Victor RG. Failure
of calcineurin inhibitors to prevent pressure-overload left ventricular
hypertrophy in rats. Circ Res. 1999;84:722-8.
Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner
SF. Cyclosporine attenuates pressure-overload hypertrophy in mice while
enhancing susceptibility to decompensation and heart failure. Circ Res.
1999;84:735-40.
Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR,
Molkentin JD. Calcineurin expression, activation, and function in cardiac
pressure-overload hypertrophy. Circulation. 2000;101:2431-7.
Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z,
Kerber RE, Weiss RM. Cardiac hypertrophy is not a required
compensatory response to short-term pressure overload. Circulation.
2000;101:2863-9.
Shimoyama M, Hayashi D, Takimoto E, Zou Y, Oka T, Uozumi H, Kudoh
S, Shibasaki F, Yazaki Y, Nagai R, Komuro I. Calcineurin plays a critical
role in pressure overload-induced cardiac hypertrophy. Circulation.
1999;100:2449-54.
Eto Y, Yonekura K, Sonoda M, Arai N, Sata M, Sugiura S, Takenaka K,
Guaiberto A, Hixon ML, Wagner MW, Aoyagi T. Calcineurin is activated in
rat hearts with physiological left ventricular hypertrophy induced by
voluntary exercise training. Circulation. 2000;101:2134-7.
Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH.
Pressure overload induces severe hypertrophy in mice treated with
cyclosporine, an inhibitor of calcineurin. Circ Res. 1999;84:729-34.
Wang Z, Kutschke W, Richardson KE, Karimi M, Hill JA. Electrical
remodeling in pressure-overload cardiac hypertrophy: role of calcineurin.
Circulation. 2001; 104:1657-63.
Luo Z, Shyu KG, Guaiberto A, Walsh K. Calcineurin inhibitors and cardiac
hypertrophy. Nat Med. 1998;4:1092-3.
Shimoyama M, Hayashi D, Zou Y, Takimoto E, Mizukami M, Monzen K,
Kudoh S, Hiroi Y, Yazaki Y, Nagai R, Komuro I. Calcineurin inhibitor
attenuates the development and induces the regression of cardiac
hypertrophy in rats with salt-sensitive hypertension. Circulation.
2000;102:1996-2004.
Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann
DL, Vallejo JG. In vivo expression of proinflammatory mediators in the
adult heart after endotoxin administration: the role of toll-like receptor-4. J
Infect Dis. 2001;183:1617-24.
Muller JG, Nemoto, S, Laser, M, Carabello, B.A, Menick, D.R. Calcineurin
inhibition and cardiac hypertrophy. Science. 1998;282:1007a.
Lim HW, De Windt LJ, Mante J, Kimball TR, Witt SA, Sussman MA,
Molkentin JD. Reversal of cardiac hypertrophy in transgenic disease
models by calcineurin inhibition. J Mol Cell Cardiol. 2000;32:697-709.

246



511

512

513

514

515

516

517

518.

519.

520.

521.

Fatkin D, McConnell BK, Mudd JO, Semsarian C, Moskowitz IGP,
Schoen FJ, Giewat M, Seidman CE, Seidman JG. An abnormal Ca2+
response in mutant sarcomere protein-mediated familial hypertrophic
cardiomyopathy. J. Clin. Invest. 2000;106:1351-1359.
Mervaala EM, Pere AK, Lindgren L, Laakso J, Teravainen TL, Karjala K,
Vapaatalo H, Ahonen J, Karppanen H. Effects of dietary sodium and
magnesium on cyclosporin A-induced hypertension and nephrotoxicity in
spontaneously hypertensive rats. Hypertension. 1997;29:822-7.
Lassila M, Finckenberg P, Pere AK, Krogerus L, Ahonen J, Vapaatalo H,
Nurminen ML. Comparison of enalapril and valsartan in cyclosporine A-
induced hypertension and nephrotoxicity in spontaneously hypertensive
rats on high-sodium diet. Br J Pharmacol. 2000;130:1339-47.
Mervaala E, Muller DN, Park JK, Dechend R, Schmidt F, Fiebeler A,
Bieringer M, Breu V, Ganten D, Haller H, Luft FC. Cyclosporin A protects
against angiotensin ll-induced end-organ damage in double transgenic
rats harboring human renin and angiotensinogen genes. Hypertension.
2000;35:360-6.
Murat A, Pellieux C, Brunner HR, Pedrazzini T. Calcineurin blockade
prevents cardiac mitogen-activated protein kinase activation and
hypertrophy in renovascular hypertension. J Biol Chem. 2000;275:40867-
73.

Hayashida W, Kihara Y, Yasaka A, Sasayama S. Cardiac calcineurin
during transition from hypertrophy to heart failure in rats. Biochem
Biophys Res Commun. 2000;273:347-51.
Sakata Y, Masuyama T, Yamamoto K, Nishikawa N, Yamamoto H,
Kondo H, Ono K, Otsu K, Kuzuya T, Miwa T, Takeda H, Miyamoto E, Hori
M. Calcineurin inhibitor attenuates left ventricular hypertrophy, leading to
prevention of heart failure in hypertensive rats. Circulation.
2000;102:2269-75.
Nagata K, Somura F, Obata K, Odashima M, Izawa H, Ichihara S,
Nagasaka T, Iwase M, Yamada Y, Nakashima N, Yokota M. AT1 receptor
blockade reduces cardiac calcineurin activity in hypertensive rats.
Hypertension. 2002;40:168-74.
Goldspink PH, McKinney RD, Kimball VA, Geenen DL, Buttrick PM.
Angiotensin II induced cardiac hypertrophy in vivo is inhibited by
cyclosporin A in adult rats. Mol Cell Biochem. 2001 ;226:83-8.
Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin
inhibition attenuates mineralocorticoid-induced cardiac hypertrophy.
Circulation. 2002;105:677-9.
Oie E, Bjornerheim R, Clausen OP, Attramadal H. Cyclosporin A inhibits
cardiac hypertrophy and enhances cardiac dysfunction during
postinfarction failure in rats. Am J Physiol Heart Circ Physiol.
2000;278:H2115-23.

247



522

523

524

525

526

527

528

529

530

531

532

533

534.

Kamiya H, Okumura K, Ito M, Saburi Y, Tomida T, Hayashi K, Matsui H,
Hayakawa T. Calcineurin inhibitor attenuates cardiac hypertrophy due to
energy metabolic disorder. Can J Cardiol. 2001;17:1292-8.
Lim HW, Molkentin JD. Calcineurin and human heart failure. Nat Med.
1999;5:246-7.
Mervaala E, Lassila M, Vaskonen T, Krogerus L, Lahteenmaki T,
Vapaatalo H, Karppanen H. Effects of ACE inhibition on cyclosporine A-
induced hypertension and nephrotoxicity in spontaneously hypertensive
rats on a high-sodium diet. Blood Press. 1999;8:49-56.
Takeda Y, Miyamori I, Furukawa K, Inaba S, Mabuchi H. Mechanisms of
FK 506-induced hypertension in the rat. Hypertension. 1999;33:130-6.
Kimura B, Mohuczy D, Tang X, Phillips Ml. Attenuation of Hypertension
and Heart Hypertrophy by Adeno-Associated Virus Delivering
Angiotensinogen Antisense. Hypertension. 2001;37:376-380.
Sakata Y, Masuyama T, Yamamoto K, Doi R, Mano T, Kuzuya T, Miwa T,
Takeda H, Hori M. Renin angiotensin system-dependent hypertrophy as a
contributor to heart failure in hypertensive rats: different characteristics
from renin angiotensin system-independent hypertrophy. J Am Coll
Cardiol. 2001;37:293-9.
Freund HR, Holroyde J. Cardiac function during protein malnutrition and
refeeding in the isolated rat heart. JPEN J Parenter Enteral Nutr.
1986;10:470-3.
Cicogna AC, Padovani CR, Okoshi K, Aragon FF, Okoshi MP. Myocardial
function during chronic food restriction in isolated hypertrophied cardiac
muscle. Am J Med Sci. 2000;320:244-8.
Samarel AM, Parmacek MS, Magid NM, Decker RS, Lesch M. Protein
synthesis and degradation during starvation-induced cardiac atrophy in
rabbits. Circ Res. 1987;60:933-41.
Stahl TJ, Alden PB, Madoff RD, Ring WS, Cerra FB. Cardiac beta-
adrenergic responsiveness is well preserved in moderate protein calorie
malnutrition from semistarvation. JPEN J Parenter Enteral Nutr.
1988;12:579-86.
de Simone G, Scalfi L, Galderisi M, Celentano A, Di Biase G, Tammaro
P, Garofalo M, Mureddu GF, de Divitiis O, Contaldo F. Cardiac
abnormalities in young women with anorexia nervosa. Br Heart J.
1994;71:287-92.
De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock
BJ, Kimball TF, del Monte F, Hajjar RJ, Molkentin JD. Targeted inhibition
of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci
USA. 2001;98:3322-7.
Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S,
Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I.
Calcineurin plays a critical role in the development of pressure overload-
induced cardiac hypertrophy. Circulation. 2001;104:97-101.

248



535. Hill JA, Rothermel B, Yoo KD, Cabuay B, Demetroulis E, Weiss RM,
Kutschke W, Bassel-Duby R, Williams RS. Targeted inhibition of
calcineurin in pressure-overload cardiac hypertrophy. Preservation of
systolic function. J Biol Chem. 2002;277:10251-5.

536. Bueno OF, Wilkins BJ, Tymitz KM, Glascock BJ, Kimball TF, Lorenz JN,
Molkentin JD. Impaired cardiac hypertrophic response in Calcineurin
Abeta -deficient mice. Proc Natl Acad Sci USA. 2002;99:4586-91.

537. Tsao L, Neville C, Musaro A, McCullagh KJ, Rosenthal N. Revisiting
calcineurin and human heart failure. Nat Med. 2000;6:2-3.

538. Ritter O, Hack S, Schuh K, Rothlein N, Perrot A, Osterziel KJ, Schulte
HD, Neyses L. Calcineurin in human heart hypertrophy. Circulation.
2002;105:2265-9.

539. Lipkin GW, Tucker B, Giles M, Raine AE. Ambulatory blood pressure and
left ventricular mass in cyclosporin- and non-cyclosporin-treated renal
transplant recipients. J Hypertens. 1993;11:439-42.

540. Ventura HO, Malik FS, Mehra MR, Stapleton DD, Smart FW.
Mechanisms of hypertension in cardiac transplantation and the role of
cyclosporine. Curr Opin Cardiol. 1997;12:375-81.

541. Minamino T, Yujiri T, Terada N, Taffet GE, Michael LH, Johnson GL,
Schneider MD. MEKK1 is essential for cardiac hypertrophy and
dysfunction induced by Gq. Proc Natl Acad Sci USA. 2002;99:3866-71.

542. Choukroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL, Picard
M, Rosenzweig A, Force T. Regulation of cardiac hypertrophy in vivo by
the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J Clin
Invest. 1999;104:391-8.

543. Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR,
Molkentin JD. The dual-specificity phosphatase MKP-1 limits the cardiac
hypertrophic response in vitro and in vivo. Circ Res. 2001;88:88-96.

544. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lemer D, Pu H, Saffitz J,
Chien K, Xiao RP, Kass DA, Wang Y. The in vivo role of p38 MAP
kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl
Acad Sci USA. 2001 ;98:12283-8.

545. Braz JC, Bueno OF, Liang Q, Wilkins BJ, Dai Y-S, Parsons S, Braunwart
J, Glascock BJ, Klevitsky R, Kimball TF, Hewett TE, Molkentin JD.
Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy
through upregulation of calcineurin-NFAT signaling. J. Clin. Invest.
2003;111:1475-1486.

546. Lim HW, New L, Han J, Molkentin JD. Calcineurin enhances MAPK
phosphatase-1 expression and p38 MAPK inactivation in cardiac
myocytes. J Biol Chem. 2001;276:15913-9.

547. De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD. Calcineurin
promotes protein kinase C and c-Jun NH2-terminal kinase activation in
the heart. Cross-talk between cardiac hypertrophic signaling pathways. J
Biol Chem. 2000;275:13571-9.

249



548

549

550

551

552

553

554

555

556.

557.

558.

559.

Hardt SE, Sadoshima J. Glycogen Synthase Kinase-3{beta}: A Novel
Regulator of Cardiac Hypertrophy and Development. Circ Res.
2002;90:1055-1063.
Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. Glycogen
synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol
Chem. 2001;276:28586-97.
Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P. Protein
kinase A negatively modulates the nuclear accumulation of NF-ATc1 by
priming for subsequent phosphorylation by glycogen synthase kinase-3. J
Biol Chem. 2002;277:48664-76.
Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR. Nuclear
export of NF-ATc enhanced by glycogen synthase kinase-3. Science.
1997;275:1930-4.
Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien
RW, Crabtree GR. L-type calcium channels and GSK-3 regulate the
activity of NF-ATc4 in hippocampal neurons. Nature. 1999;401:703-8.
Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C,
Zeiher AM, Dimmeler S. Fas receptor signaling inhibits glycogen
synthase kinase 3 beta and induces cardiac hypertrophy following
pressure overload. J Clin Invest. 2002;109:373-81.
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition
of glycogen synthase kinase-3 by insulin mediated by protein kinase B.
Nature. 1995;378:785-9.
Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S,
Kawai-Kowase K, Moriyama N, Imai Y, Kawakami H, Nishimatsu H,
Ishikawa T, Suzuki T, Morita H, Maemura K, Sata M, Hirata Y, Komukai
M, Kagechika H, Kadowaki T, Kurabayashi M, Nagai R. Kruppel-like zinc-
finger transcription factor KLF5/BTEB2 is a target for angiotensin II
signaling and an essential regulator of cardiovascular remodeling. Nat
Med. 2002;8:856-63.
de Simone G, Di Lorenzo L, Costantino G, Moccia D, Buonissimo S, de
Divitiis O. Supernormal contractility in primary hypertension without left
ventricular hypertrophy. Hypertension. 1988;11:457-63.
del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting
phospholamban by gene transfer in human heart failure. Circulation.
2002;105:904-7.
Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, Takagi G,
Karoor V, Hong C, Johnson GL, Vatner DE, Vatner SF. The MEKK1-JNK
pathway plays a protective role in pressure overload but does not
mediate cardiac hypertrophy. J Clin Invest. 2002;110:271-9.
Ohkubo H, Kawakami H, Kakehi Y, Takumi T, Arai H, Yokota Y, Iwai M,
Tanabe Y, Masu M, Hata J, et al. Generation of transgenic mice with
elevated blood pressure by introduction of the rat renin and
angiotensinogen genes. Proc Natl Acad Sci USA. 1990;87:5153-7.

250



560. Ganten D, Wagner J, Zeh K, Bader M, Michel JB, Paul M, Zimmermann
F, Ruf P, Hilgenfeldt U, Ganten U, et al. Species specificity of renin
kinetics in transgenic rats harboring the human renin and
angiotensinogen genes. Proc Natl Acad Sci USA. 1992;89:7806-10.

561. Caron KM, James LR, Kim HS, Morham SG, Sequeira Lopez ML, Gomez
RA, Reudelhuber TL, Smithies O. A genetically clamped renin transgene
for the induction of hypertension. Proc Natl Acad Sci USA.
2002;99:8248-52.

562. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats
harbouring the mouse Ren-2 gene. Nature. 1990;344:541-4.

563. Kantachuvesiri S, Haley CS, Fleming S, Kurian K, Whitworth CE,
Wenham P, Kotelevtsev Y, Mullins JJ. Genetic mapping of modifier loci
affecting malignant hypertension in TGRmRen2 rats. Kidney Int.
1999;56:414-20.

564. Whitworth CE, Fleming S, Kotelevtsev Y, Manson L, Brooker GA,
Cumming AD, Mullins JJ. A genetic model of malignant phase
hypertension in rats. Kidney Int. 1995;47:529-35.

565. Lee MA, Bohm M, Paul M, Bader M, Ganten U, Ganten D. Physiological
characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J
Physiol. 1996;270:E919-29.

566. Peters J, Munter K, Bader M, Hackenthal E, Mullins JJ, Ganten D.
Increased adrenal renin in transgenic hypertensive rats, TGR(mREN2)27,
and its regulation by cAMP, angiotensin II, and calcium. J Clin Invest.
1993;91:742-7.

567. Bader M, Zhao Y, Sander M, Lee MA, Bachmann J, Bohm M, Djavidani
B, Peters J, Mullins JJ, Ganten D. Role of tissue renin in the
pathophysiology of hypertension in TGR(mREN2)27 rats. Hypertension.
1992;19:681-6.

568. Sander M, Bader M, Djavidani B, Maser-Gluth C, Vecsei P, Mullins J,
Ganten D, Peters J. The role of the adrenal gland in hypertensive
transgenic rat TGR(mREN2)27. Endocrinology. 1992;131:807-14.

569. Tokita Y, Franco-Saenz R, Reimann E, Mulrow P. Hypertension in the
transgenic rat TGR(mRen-2)27 may be due to enhanced kinetics of the
reaction between mouse renin and rat angiotensinogen. Hypertension.
1994;23:422-427.

570. Campbell DJ, Rong P, Kladis A, Rees B, Ganten D, Skinner SL.
Angiotensin and bradykinin peptides in the TGR(mRen-2)27 rat.
Hypertension. 1995;25:1014-20.

571. Senanayake PD, Moriguchi A, Kumagai H, Ganten D, Ferrario CM,
Brosnihan KB. Increased expression of angiotensin peptides in the brain
of transgenic hypertensive rats. Peptides. 1994;15:919-26.

572. Moriguchi A, Tallant EA, Matsumura K, Reilly TM, Walton H, Ganten D,
Ferrario CM. Opposing actions of angiotensin-(1-7) and angiotensin II in
the brain of transgenic hypertensive rats. Hypertension. 1995;25:1260-5.

251



573

574

575

576

577

578

579

580

581

582

583

584

585.

Moriguchi A, Ferrario CM, Brosnihan KB, Ganten D, Morris M. Differential
regulation of central vasopressin in transgenic rats harboring the mouse
Ren-2 gene. Am J Physiol. 1994;267:R786-91.
Hilgers KF, Peters J, Veelken R, Sommer M, Rupprecht G, Ganten D,
Luft FC, Mann JF. Increased vascular angiotensin formation in female
rats harboring the mouse Ren-2 gene. Hypertension. 1992;19:687-91.
Peiro C, Rodriguez-Lopez AM, Angulo J, Regadera J, Marin J, Sanchez-
Ferrer CF, Lopez-Novoa JM. Endogenous angiotensin II and cell
hypertrophy in vascular smooth muscle cultures from hypertensive Ren-2
transgenic rats. Cell Physiol Biochem. 1998;8:106-16.
Fontes MA, Baltatu O, Caligiorne SM, Campagnole-Santos MJ, Ganten
D, Bader M, Santos RA. Angiotensin peptides acting at rostral
ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats.
Physiol Genomics. 2000;2:137-42.
Bohm M, Lippoldt A, Wienen W, Ganten D, Bader M. Reduction of
cardiac hypertrophy in TGR(mREN2)27 by angiotensin II receptor
blockade. Mol Cell Biochem. 1996; 163-164:217-21.
Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao H. Contribution of Local
Renin-Angiotensin System to Cardiac Hypertrophy, Phenotypic
Modulation, and Remodeling in TGR(mRen2)27 Transgenic Rats.
Circulation. 1996;94:785-791.
Witte K, Huser L, Knotter B, Heckmann M, Schiffer S, Lemmer B.
Normalisation of blood pressure in hypertensive TGR(mREN2)27 rats by
amlodipine vs. enalapril: effects on cardiac hypertrophy and signal
transduction pathways. Naunyn Schmiedebergs Arch Pharmacol.
2001;363:101-9.
Bishop JE, Kiernan LA, Montgomery HE, Gohlke P, McEwan JR. Raised
blood pressure, not renin-angiotensin systems, causes cardiac fibrosis in
TGR m(Ren2)27 rats. Cardiovascular Research. 2000;47:57-67.
Kantachuvesiri S, Fleming S, Peters J, Peters B, Brooker G, Lammie AG,
McGrath I, Kotelevtsev Y, Mullins JJ. Controlled hypertension, a
transgenic toggle switch reveals differential mechanisms underlying
vascular disease. J Biol Chem. 2001 ;276:36727-33.
Ryu DY, Levi PE, Fernandez-Salguero P, Gonzalez FJ, Hodgson E.
Piperonyl butoxide and acenaphthylene induce cytochrome P450 1A2
and 1B1 mRNA in aromatic hydrocarbon-responsive receptor knock-out
mouse liver. Mol Pharmacol. 1996;50:443-6.
Ryding AD, Sharp MG, Mullins JJ. Conditional transgenic technologies. J
Endocrinol. 2001;171:1-14.
Zaher H, Yang TJ, Gelboin HV, Fernandez-Salguero P, Gonzalez FJ.
Effect of phenobarbital on hepatic CYP1A1 and CYP1A2 in the Ahr-null
mouse. Biochem Pharmacol. 1998;55:235-8.
Tomita S, Sinai CJ, Yim SH, Gonzalez FJ. Conditional disruption of the
aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss

252



of target gene induction by the aryl hydrocarbon receptor and hypoxia-
inducible factor 1 alpha. Mol Endocrinol. 2000;14:1674-81.

586. Foussat J, Costet P, Galtier P, Pineau T, Lesca P. The 4S
benzo(a)pyrene-binding protein is not a transcriptional activator of
Cyp1a1 gene in Ah receptor-deficient (AHR -/-) transgenic mice. Arch
Biochem Biophys. 1998;349:349-55.

587. Kantachuvesiri S. PhD Thesis. In: Molecular Physiology Group.
Edinburgh: University of Edinburgh; 2000.

588. Campbell SJ, Carlotti F, Hall PA, Clark AJ, Wolf CR. Regulation of the
CYP1A1 promoter in transgenic mice: an exquisitely sensitive on-off
system for cell specific gene regulation. J Cell Sci. 1996; 109 ( Pt
11 ):2619-25.

589. Li H, Dong L, Whitlock J, Jr. Transcriptional activation function of the
mouse Ah receptor nuclear translocator. J. Biol. Chem. 1994;269:28098-
28105.

590. Dolwick KM, Schmidt JV, Carver LA, Swanson HI, Bradfield CA. Cloning
and expression of a human Ah receptor cDNA. Mol Pharmacol.
1993;44:911-7.

591. Stresser DM, Williams DE, Griffin DA, Bailey GS. Mechanisms of tumor
modulation by indole-3-carbinol. Disposition and excretion in male
Fischer 344 rats. Drug Metab Dispos. 1995;23:965-75.

592. Katchamart S, Stresser DM, Dehal SS, Kupfer D, Williams DE.
Concurrent flavin-containing monooxygenase down-regulation and
cytochrome P-450 induction by dietary indoles in rat: implications for
drug-drug interaction. Drug Metab Dispos. 2000;28:930-6.

593. Molecular Cloning: A Laboratory Manual: Cold Spring Harbour Laboratory
Press; 1989.

594. Current protocols in molecular biology. John Wiley & Sons; 2003.
595. Coligan. Current Protocols in Protein Science. 2001 ed: John Wiley &

Sons; 2001.
596. Growth and Maintenance of Insect Cell Lines (version G). In: Invitrogen

Corporation; 2000.
597. pBlueBac4.5-E Echo Cloning System. In: Invitrogen Corporation; 1999.
598. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening

recombinant plasmid DNA. Nucleic Acids Res. 1979;7:1513-23.
599. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-

terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463-7.
600. Tatusova TA, Madden TL. BLAST 2 Sequences, a new tool for comparing

protein and nucleotide sequences. FEMS Microbiol Lett. 1999;174:247-
50.

601. Southern EM. Detection of specific sequences among DNA fragments
separated by gel electrophoresis. J Mol Biol. 1975;98:503-17.

602. Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction
endonuclease fragments to high specific activity. Anal Biochem.
1983;132:6-13.

253



603

604

605

606

607

608

609

610

611

612

613

614

615

Weiss S.A WWG, Gorfien S.F, Godwin G, P. Chapter 3: Insect Cell-
Culture Techniques in Serum-Containing Medium. In: C.D. R, ed.
Methods in Molecular Biology. Humana Press; 1995.
King L.A aPRD. The Baculovirus Expression System: a laboratory guide.
In: Chapman and Hall; 1992.
Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus
polarization microscopy, a specific method for collagen detection in tissue
sections. Histochem J. 1979;11:447-55.
Kojima M, Shiojima I, Yamazaki T, Komuro I, Zou Z, Wang Y, Mizuno T,
Ueki K, Tobe K, Kadowaki T, et al. Angiotensin II receptor antagonist
TCV-116 induces regression of hypertensive left ventricular hypertrophy
in vivo and inhibits the intracellular signaling pathway of stretch-mediated
cardiomyocyte hypertrophy in vitro. Circulation. 1994;89:2204-11.
Schelling P, Ganten U, Sponer G, Linger T, Ganten D. Components of
the renin-angiotensin system in the cerebrospinal fluid of rats and dogs
with special consideration of the origin and the fate of angiotensin II.
Neuroendocrinology. 1980;31:297-308.
Pfeffer JM, Pfeffer MA, Frohlich ED. Validity of an indirect tail-cuff method
for determining systolic arterial pressure in unanesthetized normotensive
and spontaneously hypertensive rats. J Lab Clin Med. 1971 ;78:957-62.
Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding
quantitation in M-mode echocardiography: results of a survey of
echocardiographic measurements. Circulation. 1978;58:1072-83.
Pawlush DG, Moore RL, Musch Tl, Davidson WR, Jr. Echocardiographic
evaluation of size, function, and mass of normal and hypertrophied rat
ventricles. J Appl Physiol. 1993;74:2598-605.
Devereux RB, Reichek N. Echocardiographic determination of left
ventricular mass in man. Anatomic validation of the method. Circulation.
1977;55:613-8.
de Simone G, Wallerson DC, Volpe M, Devereux RB. Echocardiographic
measurement of left ventricular mass and volume in normotensive and

hypertensive rats. Necropsy validation. Am J Hypertens. 1990;3:688-96.
Collins KA, Korcarz CE, Shroff SG, Bednarz JE, Fentzke RC, Lin H,
Leiden JM, Lang RM. Accuracy of echocardiographic estimates of left
ventricular mass in mice. Am J Physiol Heart Circ Physiol.
2001 ;280:H1954-62.
Shimizu G, Zile MR, Blaustein AS, Gaasch WH. Left ventricular chamber
filling and midwall fiber lengthening in patients with left ventricular
hypertrophy: overestimation of fiber velocities by conventional midwall
measurements. Circulation. 1985;71:266-72.
Aytemir K, Maarouf N, Gallagher MM, Yap YG, Waktare JE, Malik M.
Comparison of formulae for heart rate correction of QT interval in
exercise electrocardiograms. Pacing Clin Electrophysiol. 1999;22:1397-
401.

254



616. Lown B, Calvert AF, Armington R, Ryan M. Monitoring for serious
arrhythmias and high risk of sudden death. Circulation. 1975;52:111189-98.

617. Bohlender J, Menard J, Ganten D, Luft FC. Angiotensinogen
concentrations and renin clearance : implications for blood pressure
regulation. Hypertension. 2000;35:780-6.

618. Bohlender J, Menard J, Luft FC, Ganten D. Dose effects of human renin
in rats transgenic for human angiotensinogen. Hypertension.
1997;29:1031-8.

619. Theuer J, Dechend R, Muller DN, Park JK, Fiebeler A, Barta P, Ganten
D, Haller H, Dietz R, Luft FC. Angiotensin II induced inflammation in the
kidney and in the heart of double transgenic rats. BMC Cardiovasc
Disord. 2002;2:3.

620. Haas GJ, McCune SA, Brown DM, Cody RJ. Echocardiographic
characterization of left ventricular adaptation in a genetically determined
heart failure rat model. Am Heart J. 1995;130:806-11.

621. Sharp J, Zammit T, Azar T, Lawson D. Recovery of male rats from major
abdominal surgery after treatment with various analgesics. Contemp Top
Lab Anim Sci. 2003;42:22-7.

622. Roy RN, Flynn TG. Organization of the gene for iso-rANP, a rat B-type
natriuretic peptide. Biochem Biophys Res Commun. 1990;171:416-23.

623. de Simone G, Muiesan ML, Ganau A, Longhini C, Verdecchia P, Palmieri
V, Agabiti-Rosei E, Mancia G. Reliability and limitations of
echocardiographic measurement of left ventricular mass for risk
stratification and follow-up in single patients: the RES trial. Working
Group on Heart and Hypertension of the Italian Society of Hypertension.
Reliability of M-mode Echocardiographic Studies. J Hypertens.
1999;17:1955-63.

624. Messerli FH. Hypertension and sudden cardiac death. Am J Hypertens.
1999;12:181S-188S.

625. Baillard C, Mansier P, Ennezat PV, Mangin L, Medigue C, Swynghedauw
B, Chevalier B. Converting enzyme inhibition normalizes QT interval in
spontaneously hypertensive rats. Hypertension. 2000;36:350-4.

626. Arribas S, Sanchez-Ferrer CF, Peiro C, Ponte A, Salaices M, Marin J.
Functional vascular renin-angiotensin system in hypertensive transgenic
rats for the mouse renin gene Ren-2. Gen Pharmacol. 1994;25:1163-70.

627. Bohm M, Lee M, Kreutz R, Kim S, Schinke M, Djavidani B, Wagner J,
Kaling M, Wienen W, Bader M, et al. Angiotensin II receptor blockade in
TGR(mREN2)27: effects of renin-angiotensin-system gene expression
and cardiovascular functions. J Hypertens. 1995;13:891-9.

628. Montgomery HE, Kiernan LA, Whitworth CE, Fleming S, UngerT, Gohlke
P, Mullins JJ, McEwan JR. Inhibition of tissue angiotensin converting
enzyme activity prevents malignant hypertension in TGR(mREN2)27. J
Hypertens. 1998;16:635-43.

255



629

630

631

632

633

634

635

636

637

638

639

640

641.

642.

Hilgers KF, Hartner A, Porst M, Veelken R, Mann JFE. Angiotensin II
Type 1 Receptor Blockade Prevents Lethal Malignant Hypertension:
Relation to Kidney Inflammation. Circulation. 2001;104:1436-1440.
Mervaala EM, Muller DN, Park JK, Schmidt F, Lohn M, Breu V, Dragun D,
Ganten D, Haller H, Luft FC. Monocyte infiltration and adhesion
molecules in a rat model of high human renin hypertension.
Hypertension. 1999;33:389-95.
Whitworth CE, Fleming S, Cumming AD, Morton J J, Burns NJ, Williams
BC, Mullins JJ. Spontaneous development of malignant phase
hypertension in transgenic Ren-2 rats. Kidney Int. 1994;46:1528-32.
Mayer NJ, Forsyth A, Kantachuvesiri S, Mullins JJ, Fleming S.
Association of the D allele of the angiotensin I converting enzyme
polymorphism with malignant vascular injury. Mol Pathol. 2002;55:29-33.
Stefansson B, Ricksten A, Rymo L, Aurell M, Herlitz H. Angiotensin-
converting enzyme gene l/D polymorphism in malignant hypertension.
Blood Press. 2000;9:104-9.
Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD. Specific receptor
binding of renin on human mesangial cells in culture increases
plasminogen activator inhibitor-1 antigen. Kidney Int. 1996;50:1897-903.
Bohm M, Zolk O, Flesch M, Schiffer F, Schnabel P, Stasch J-P, Knorr A.
Effects of Angiotensin II Type 1 Receptor Blockade and Angiotensin-
Converting Enzyme Inhibition on Cardiac fl-Adrenergic Signal
Transduction. Hypertension. 1998;31:747-754.
Arranz C, Tomat A, Fellet A, Garcia J, Balaszczuk AM, de los Angeles
Costa M. Renal and vascular nitric oxide system in reduced renal mass
saline hypertension. Nephron Physiol. 2003;95:p36-42.
Piech A, Dessy C, Havaux X, Feron O, Balligand JL. Differential
regulation of nitric oxide synthases and their allosteric regulators in heart
and vessels of hypertensive rats. Cardiovasc Res. 2003;57:456-67.
Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood
pressure and heart rate variability in evaluating cardiovascular regulation.
A critical appraisal. Hypertension. 1995;25:1276-86.
Virtanen R, Jula A, Kuusela T, Helenius H, Voipio-Pulkki LM. Reduced
heart rate variability in hypertension: associations with lifestyle factors
and plasma renin activity. J Hum Hypertens. 2003;17:171-9.
Lucini D, Mela GS, Malliani A, Pagani M. Impairment in cardiac
autonomic regulation preceding arterial hypertension in humans: insights
from spectral analysis of beat-by-beat cardiovascular variability.
Circulation. 2002;106:2673-9.
Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E,
Hartikainen J. Heart rate variability and its determinants in patients with
severe or mild essential hypertension. Clin Physiol. 2001;21:594-604.
Baltatu O, Janssen BJ, Bricca G, Plehm R, Monti J, Ganten D, Bader M.
Alterations in blood pressure and heart rate variability in transgenic rats
with low brain angiotensinogen. Hypertension. 2001;37:408-13.

256



643

644

645

646

647

648

649,

650.

651.

652.

653.

654.

655.

Gross V, Plehm R, Tank J, Jordan J, Diedrich A, Obst M, Luft FC. Heart
rate variability and baroreflex function in AT2 receptor-disrupted mice.
Hypertension. 2002;40:207-13.
Schiffrin EL. Vascular changes in hypertension in response to drug
treatment: Effects of angiotensin receptor blockers. Can J Cardiol.
2002; 18 Suppl A:15A-18A.
Radermacher J, Chavan A, Bleck J, Vitzthum A, Stoess B, Gebel MJ,
Galanski M, Koch KM, Haller H. Use of Doppler ultrasonography to
predict the outcome of therapy for renal-artery stenosis. N Engl J Med.
2001;344:410-7.
Kodama K, Adachi H, Sonoda J. Beneficial effects of long-term enalapril
treatment and low-salt intake on survival rate of dahl salt-sensitive rats
with established hypertension. J Pharmacol Exp Ther. 1997;283:625-9.
Ju H, Gros R, You X, Tsang S, Husain M, Rabinovitch M. Conditional and
targeted overexpression of vascular chymase causes hypertension in
transgenic mice. PNAS. 2001;98:7469-7474.
Bohlender J, Fukamizu A, Lippoldt A, Nomura T, Dietz R, Menard J,
Murakami K, Luft FC, Ganten D. High human renin hypertension in
transgenic rats. Hypertension. 1997;29:428-34.
Hayashida W, Kihara Y, Yasaka A, Inagaki K, Iwanaga Y, Sasayama S.
Stage-specific differential activation of mitogen-activated protein kinases
in hypertrophied and failing rat hearts. J Mol Cell Cardiol. 2001 ;33:733-
44.
Flesch M, Schiffer F, Zolk O, Pinto Y, Rosenkranz S, Hirth-Dietrich C,
Arnold G, Paul M, Bohm M. Contractile Systolic and Diastolic Dysfunction
in Renin-lnduced Hypertensive Cardiomyopathy. Hypertension.
1997;30:383-391.
Masciotra S, Picard S, Deschepper CF. Cosegregation Analysis in
Genetic Crosses Suggests a Protective Role for Atrial Natriuretic Factor
Against Ventricular Hypertrophy. Circ Res. 1999;84:1453-1458.
Deschepper CF, Masciotra S, Zahabi A, Boutin-Ganache I, Picard S,
Reudelhuber TL. Functional Alterations of the Nppa Promoter Are Linked
to Cardiac Ventricular Hypertrophy in WKY/WKHA Rat Crosses. Circ
Res. 2001;88:223-228.
Harrap SB, Danes VR, Ellis JA, Griffiths CD, Jones EF, Delbridge LMD.
The hypertrophic heart rat: a new normotensive model of genetic cardiac
and cardiomyocyte hypertrophy. Physiol. Genomics. 2002;9:43-48.
Diet F, Graf C, Mahnke N, Wassmer G, Predel HG, Palma-Hohmann I,
Rost R, Bohm M. ACE and angiotensinogen gene genotypes and left
ventricular mass in athletes. Eur J Clin Invest. 2001 ;31:836-842.
Stella P, Bigatti G, Tizzoni L, Barlassina C, Lanzani C, Bianchi G, Cusi D.
Association between aldosterone synthase (CYP11B2) polymorphism
and left ventricular mass in human essential hypertension. J Am Coll
Cardiol. 2004;43:265-70.

257



656

657

658

659

660

661

662

663

664

665

666.

Winnicki M, Somers VK, Accurso V, Hoffmann M, Pawlowski R, Frigo G,
Visentin P, Palatini P. alpha-Adducin Gly460Trp polymorphism, left
ventricular mass and plasma renin activity. J Hypertens. 2002;20:1771-7.
Jamshidi Y, Montgomery HE, Hense H-W, Myerson SG, Torra IP, Staels
B, World MJ, Doering A, Erdmann J, Hengstenberg C, Humphries SE,
Schunkert H, Flavell DM. Peroxisome Proliferator-Activated Receptor
{alpha} Gene Regulates Left Ventricular Growth in Response to Exercise
and Hypertension. Circulation. 2002;105:950-955.
Semplicini A, Siffert W, Sartori M, Monari A, Naber C, Frigo G,
Santonastaso M, Cozzutti E, Winnicki M, Palatini P. G protein beta3
subunit gene 825T allele is associated with increased left ventricular
mass in young subjects with mild hypertension. Am J Hypertens.
2001;14:1191-5.
Diamantopoulos EJ, Andreadis EA, Vassilopoulos CV, Vlachonikolis IG,
Tarassi KE, Chatzis NA, Giannakopoulos NS, Papasteriades CA.
Association of specific HLA phenotypes with left ventricular mass and
carotid intima-media thickness in hypertensives. Am J Hypertens.
2001;14:632-6.
Ortlepp JR, Breithardt O, Ohme F, Hanrath P, Hoffmann R. Lack of
association among five genetic polymorphisms of the renin-angiotensin
system and cardiac hypertrophy in patients with aortic stenosis. Am Heart
J. 2001;141:671-6.
Shlyakhto EV, Shwartz El, Nefedova YB, Zukova AV, Vinnic TA, Conrady
AO. Lack of association of the renin-angiotensin system genes
polymorphisms and left ventricular hypertrophy in hypertension. Blood
Press. 2001;10:135-41.
Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H,
Sanada S, Kim J, Ogita H, Kuzuya T, Node K, Kitakaze M, Hori M.
Echocardiographic assessment of LV hypertrophy and function in aortic-
banded mice: necropsy validation. Am J Physiol Heart Circ Physiol.
2002;282:H 1703-8.
Wyatt HL, Heng MK, Meerbaum S, Hestenes JD, Cobo JM, Davidson
RM, Corday E. Cross-sectional echocardiography. I. Analysis of
mathematic models for quantifying mass of the left ventricle in dogs.
Circulation. 1979; 60:1104-13.
Devereux RB. Detection of left ventricular hypertrophy by M-mode
echocardiography. Anatomic validation, standardization, and comparison
to other methods. Hypertension. 1987;9:119-26.
Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J, Jr. Impact of
anesthesia on cardiac function during echocardiography in mice. Am J
Physiol Heart Circ Physiol. 2002;282:H2134-40. '
Yang XP, Liu YH, Rhaleb NE, Kurihara N, Kim HE, Carretero OA.
Echocardiographic assessment of cardiac function in conscious and
anesthetized mice. Am J Physiol. 1999;277:H 1967-74.

258



667. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH. Left
ventricular midwall mechanics in systemic arterial hypertension.
Myocardial function is depressed in pressure-overload hypertrophy.
Circulation. 1991;83:1676-84.

668. De Simone G, Devereux RB, Volpe M, Camargo MJ, Wallerson DC,
Laragh JH. Midwall LV mechanics in rats with or without renovascular
hypertension: effect of different Na+ intakes. Am J Physiol.
1996;270:H628-37.

669. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh
JH. Midwall left ventricular mechanics. An independent predictor of
cardiovascular risk in arterial hypertension. Circulation. 1996;93:259-65.

670. Mayet J, Ariff B, Wasan B, Chapman N, Shahi M, Poulter NR, Sever PS,
Foale RA, Thorn SA. Improvement in midwall myocardial shortening with
regression of left ventricular hypertrophy. Hypertension. 2000;36:755-9.

671. Perlini S, Muiesan ML, Cuspidi C, Sampieri L, Trimarco B, Aurigemma
GP, Agabiti-Rosei E, Mancia G. Midwall mechanics are improved after
regression of hypertensive left ventricular hypertrophy and normalization
of chamber geometry. Circulation. 2001;103:678-83.

672. Masuyama T, Yamamoto K, Sakata Y, Doi R, Nishikawa N, Kondo H,
Ono K, Kuzuya T, Sugawara M, Hori M. Evolving changes in Doppler
mitral flow velocity pattern in rats with hypertensive hypertrophy. J Am
Coll Cardiol. 2000;36:2333-8.

673. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left
ventricular fibre architecture in man. Br Heart J. 1981;45:248-63.

674. Greenbaum RA, Gibson DG. Regional non-uniformity of left ventricular
wall movement in man. Br Heart J. 1981;45:29-34.

675. Shan K, Bick RJ, Poindexter BJ, Shimoni S, Letsou GV, Reardon MJ,
Howell JF, Zoghbi WA, Nagueh SF. Relation of tissue Doppler derived
myocardial velocities to myocardial structure and beta-adrenergic
receptor density in humans. J Am Coll Cardiol. 2000;36:891-6.

676. Slotwiner DJ, Devereux RB, Schwartz JE, Pickering TG, de Simone G,
Roman MJ. Relation of age to left ventricular function and systemic
hemodynamics in uncomplicated mild hypertension. Hypertension.
2001;37:1404-9.

677. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR,
Fraser AG. Differentiation between pathologic and physiologic left
ventricular hypertrophy by tissue Doppler assessment of long-axis
function in patients with hypertrophic cardiomyopathy or systemic
hypertension and in athletes. Am J Cardiol. 2001;88:53-8.

678. Wandt B, Bojo L, Hatle L, Wranne B. Left ventricular contraction pattern
changes with age in normal adults. J Am Soc Echocardiogr. 1998; 11:857-
63.

679. Vinereanu D, Nicolaides E, Tweddel AC, Madler CF, Hoist B, Boden LE,
Cinteza M, Rees AE, Fraser AG. Subclinical left ventricular dysfunction in



680

681

682

683

684

685

686

687

688

689

690

691

asymptomatic patients with Type II diabetes mellitus, related to serum
lipids and glycated haemoglobin. Clin Sci (Lond). 2003;105:591-9.
Sutherland GR, Hatle L. Pulsed doppler myocardial imaging. A new
approach to regional longitudinal function? Eur J Echocardiogr.
2000;1:81-3.
Hatle L, Sutherland GR. Regional myocardial function-a new approach.
Eur Heart J. 2000;21:1337-57.
Patterson SW PH, Starling EH. The regulation of the heart beat. Journal
of Physiology. 1914;48:465 - 513.
Gaasch WH, Zile MR, Hoshino PK, Apstein CS, Blaustein AS. Stress-
shortening relations and myocardial blood flow in compensated and
failing canine hearts with pressure-overload hypertrophy. Circulation.
1989;79:872-83.
Georgakopoulos D, Mitzner WA, Chen CH, Byrne BJ, Millar HD, Hare JM,
Kass DA. In vivo murine left ventricular pressure-volume relations by
miniaturized conductance micromanometry. Am J Physiol.
1998;274:H 1416-22.
Feldman MD, Erikson JM, Mao Y, Korcarz CE, Lang RM, Freeman GL.
Validation of a mouse conductance system to determine LV volume:
comparison to echocardiography and crystals. Am J Physiol Heart Circ
Physiol. 2000;279:H 1698-707.
Sato T, Shishido T, Kawada T, Miyano H, Miyashita H, Inagaki M,
Sugimachi M, Sunagawa K. ESPVR of in situ rat left ventricle shows
contractility-dependent curvilinearity. Am J Physiol. 1998;274:H1429-34.
Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J,
Johnston WE. Comparison of measures of left ventricular contractile
performance derived from pressure-volume loops in conscious dogs.
Circulation. 1989;80:1378-87.
Williams RV, Lorenz JN, Witt SA, Hellard DT, Khoury PR, Kimball TR.
End-systolic stress-velocity and pressure-dimension relationships by
transthoracic echocardiography in mice. Am J Physiol. 1998;274:H1828-
35.
Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S,
Hirshfeld JW. Noninvasive determination of left ventricular end-systolic
stress: validation of the method and initial application. Circulation.
1982;65:99-108.
Denault AY, Gorcsan J, 3rd, Mandarino WA, Kancel MJ, Pinsky MR. Left
ventricular performance assessed by echocardiographic automated
border detection and arterial pressure. Am J Physiol. 1997;272:H138-47.
Kang N, Walther T, Tian XL, Bohlender J, Fukamizu A, Ganten D, Bader
M. Reduced hypertension-induced end-organ damage in mice lacking
cardiac and renal angiotensinogen synthesis. J Mol Med. 2002;80:359-
66.

260



692. Matsusaka T, Katori H, Inagami T, Fogo A, Ichikawa I. Communication
between myocytes and fibroblasts in cardiac remodeling in angiotensin
chimeric mice. J Clin Invest. 1999;103:1451-8.

693. Vara N, Iraburu MJ, Varela M, B Liqm, Etayo JC, J Diqm. Chronic AT(1)
blockade stimulates extracellular collagen type I degradation and
reverses myocardial fibrosis in spontaneously hypertensive rats.
Hypertension. 2000;35:1197-202.

694. Forman DE, Cittadini A, Azhar G, Douglas PS, Wei JY. Cardiac
morphology and function in senescent rats: gender-related differences. J
Am Coll Cardiol. 1997;30:1872-7.

695. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M,
Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y,
Tanaka I, Otani H, Katsuki M. Cardiac fibrosis in mice lacking brain
natriuretic peptide. Proc Natl Acad Sci USA. 2000;97:4239-44.

696. Oikarinen L, Nieminen MS, Viitasalo M, Toivonen L, Jern S, Dahlof B,
Devereux RB, Okin PM, for the LIFE Study Investigators. QRS Duration
and QT Interval Predict Mortality in Hypertensive Patients With Left
Ventricular Hypertrophy. The Losartan Intervention for Endpoint
Reduction in Hypertension Study. Hypertension.
2004:01.HYP.0000125230.46080.c6.

697. Swynghedauw B, Chevalier B, Charlemagne D, Mansier P, Carre F.
Cardiac hypertrophy, arrhythmogenicity and the new myocardial
phenotype. II. The cellular adaptational process. Cardiovasc Res.
1997;35:6-12.

698. Lee JK, Nishiyama A, Kambe F, Seo H, Takeuchi S, Kamiya K, Kodama
I, Toyama J. Downregulation of voltage-gated K(+) channels in rat heart
with right ventricular hypertrophy. Am J Physiol. 1999;277:H1725-31.

699. Meszaros J, Khananshvili D, Hart G. Mechanisms underlying delayed
afterdepolarizations in hypertrophied left ventricular myocytes of rats. Am
J Physiol Heart Circ Physiol. 2001 ;281 :H903-14.

700. Assayag P, Carre F, Chevalier B, Delcayre C, Mansier P, Swynghedauw
B. Compensated cardiac hypertrophy: arrhythmogenicity and the new
myocardial phenotype. I. Fibrosis. Cardiovasc Res. 1997;34:439-44.

701. Bikkina M, Larson MG, Levy D. Asymptomatic ventricular arrhythmias
and mortality risk in subjects with left ventricular hypertrophy. J Am Coll
Cardiol. 1993;22:1111-6.

702. Carre F, Lessard Y, Coumel P, Ollivier L, Besse S, Lecarpentier Y,
Swynghedauw B. Spontaneous arrhythmias in various models of cardiac
hypertrophy and senescence of rats. A Hotter monitoring study.
Cardiovasc Res. 1992;26:698-705.

703. Stilli D, Sgoifo A, Macchi E, Zaniboni M, De lasio S, Cerbai E, Mugelli A,
Lagrasta C, Olivetti G, Musso E. Myocardial remodeling and
arrhythmogenesis in moderate cardiac hypertrophy in rats. Am J Physiol
Heart Circ Physiol. 2001 ;280:H142-50.



704

705

706

707

708

709

710

711

712

713

714

Diaz ME, Eisner DA, O'Neill SC. Depressed ryanodine receptor activity
increases variability and duration of the systolic Ca2+ transient in rat
ventricular myocytes. Circ Res. 2002;91:585-93.
Kameyama M, Hirayama Y, Saitoh H, Maruyama M, Atarashi H, Takano
T. Possible contribution of the sarcoplasmic reticulum Ca pump function
to electrical and mechanical alternans. J Electrocardiol. 2003;36:125-35.
Okin PM, Devereux RB, Liu JE, Oikarinen L, Jern S, Kjeldsen SE, Julius
S, Wachtell K, Nieminen MS, Dahlof B. Regression of
electrocardiographic left ventricular hypertrophy predicts regression of
echocardiographic left ventricular mass: the LIFE study. J Hum
Hypertens. 2004.
Oikarinen L, Nieminen MS, Toivonen L, Viitasalo M, Wachtell K,
Papademetriou V, Jern S, Dahlof B, Devereux RB, Okin PM. Relation of
QT interval and QT dispersion to regression of echocardiographic and
electrocardiographic left ventricular hypertrophy in hypertensive patients:
the Losartan Intervention For Endpoint Reduction (LIFE) study. Am Heart
J. 2003;145:919-25.
Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, Bosch J,
Sussex B, Probstfield J, Yusuf S. Reduction of cardiovascular risk by
regression of electrocardiographic markers of left ventricular hypertrophy
by the angiotensin-converting enzyme inhibitor ramipril. Circulation.
2001;104:1615-21.
Verdecchia P, Angeli F, Borgioni C, Gattobigio R, de Simone G,
Devereux RB, Porcellati C. Changes in cardiovascular risk by reduction of
left ventricular mass in hypertension: a meta-analysis. Am J Hypertens.
2003;16:895-9.
Botchway AN, Turner MA, Sheridan DJ, Flores NA, Fry CH.
Electrophysiological effects accompanying regression of left ventricular
hypertrophy. Cardiovasc Res. 2003;60:510-7.
Walther T, Schubert A, Falk V, Binner C, Kanev A, Bleiziffer S, Walther C,
Doll N, Autschbach R, Mohr FW. Regression of left ventricular
hypertrophy after surgical therapy for aortic stenosis is associated with
changes in extracellular matrix gene expression. Circulation.
2001;104:154-8.
Hickson RC, Hammons GT, Holoszy JO. Development and regression of
exercise-induced cardiac hypertrophy in rats. Am J Physiol.
1979;236:H268-72.
Gerdes AM, Clark LC, Capasso JM. Regression of cardiac hypertrophy
after closing an aortocaval fistula in rats. Am J Physiol. 1995;268:H2345-
51.
Ruzicka M, Yuan B, Leenen FH. Effects of enalapril versus losartan on
regression of volume overload-induced cardiac hypertrophy in rats.
Circulation. 1994;90:484-91.

262



715. Yang CM, Kandaswamy V, Young D, Sen S. Changes in collagen
phenotypes during progression and regression of cardiac hypertrophy.
Cardiovasc Res. 1997;36:236-45.

716. Tea BS, Dam TV, Moreau P, Hamet P, deBlois D. Apoptosis during
regression of cardiac hypertrophy in spontaneously hypertensive rats.
Temporal regulation and spatial heterogeneity. Hypertension.
1999;34:229-35.

717. Frolov VA, Drozdova GA, Mustyatsa VF, Rieger P, Antoni Z, Kuzovkin
AE. Possible mechanism of regression of myocardial hypertrophy. Bull
Exp Biol Med. 2001 ;132:644-6.

718. Walther T, Schubert A, Falk V, Binner C, Walther C, Doll N, Fabricius A,
Dhein S, Gummert J, Mohr FW. Left ventricular reverse remodeling after
surgical therapy for aortic stenosis: correlation to Renin-Angiotensin
system gene expression. Circulation. 2002;106:123-6.

719. Moorjani N, Catarino P, El-Sayed R, Al-Ahmed S, Meyer B, Al-Mohanna
F, Westaby S. A pressure overload model to track the molecular biology
of heart failure. Eur J Cardiothorac Surg. 2003;24:920-5.

720. Cooper Gt, Marino TA. Complete reversibility of cat right ventricular
chronic progressive pressure overload. Circ Res. 1984;54:323-31.

721. Wisenbaugh T, Allen P, Cooper Gt, O'Connor WN, Mezaros L, Streter F,
Bahinski A, Flouser S, Spann JF. Hypertrophy without contractile
dysfunction after reversal of pressure overload in the cat. Am J Physiol.
1984;247:H 146-54.

722. Lessick J, Mutlak D, Markiewicz W, Reisner SA. Failure of left ventricular
hypertrophy to regress after surgery for aortic valve stenosis.
Echocardiography. 2002; 19:359-66.

723. Devereux RB, Palmieri V, Liu JE, Wachtell K, Bella JN, Boman K, Gerdts
E, Nieminen MS, Papademetriou V, Dahlof B. Progressive hypertrophy
regression with sustained pressure reduction in hypertension: the
Losartan Intervention For Endpoint Reduction study. J Hypertens.
2002;20:1445-50.

724. Hohl CM, Altschuld RA. FK506 alters sarcoplasmic reticulum calcium
release in neonatal piglet cardiac myocytes. Pediatr Res. 1999;46:316-9.

725. Timerman AP, Onoue H, Xin H-B, Barg S, Copello J, Wiederrecht G,
Fleischer S. Selective Binding of FKBP12.6 by the Cardiac Ryanodine
Receptor. J. Biol. Chem. 1996;271:20385-20391.

726. Yano M, Ono K, Ohkusa T, Suetsugu M, Kohno M, Hisaoka T, Kobayashi
S, Hisamatsu Y, Yamamoto T, Kohno M, Noguchi N, Takasawa S,
Okamoto H, Matsuzaki M. Altered Stoichiometry of FKBP12.6 Versus
Ryanodine Receptor as a Cause of Abnormal Ca2+ Leak Through
Ryanodine Receptor in Heart Failure. Circulation. 2000;102:2131-2136.

727. Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu
M, Hisaoka T, Obayashi M, Ohkusa T, Matsuzaki M. FKBP12.6-mediated
stabilization of calcium-release channel (ryanodine receptor) as a novel
therapeutic strategy against heart failure. Circulation. 2003;107:477-84.

263



728

729

730

731

732

733

734

735

736

737

738

739

740

Shin DW, Pan Z, Bandyopadhyay A, Bhat MB, Kim DH, Ma J. Ca2+-
Dependent Interaction between FKBP12 and Calcineurin Regulates
Activity of the Ca2+ Release Channel in Skeletal Muscle. Biophys. J.
2002;83:2539-2549.
Rabkin JM, Corless CL, Rosen HR, Olyaei AJ. Immunosuppression
impact on long-term cardiovascular complications after liver
transplantation. Am J Surg. 2002;183:595-9.
Nakatani T, Uchida J, Iwai T, Matsumura K, Naganuma T, Kuratsukuri K,
Sugimura K. Renin mRNA expression and renal dysfunction in
tacrolimus-induced acute nephrotoxicity. Int J Mot Med. 2003; 11:75-8.
Saleh FH, Jurjus AR. A comparative study of morphological changes in
spontaneously hypertensive rats and normotensive Wistar Kyoto rats
treated with an angiotensin-converting enzyme inhibitor or a calcium-
channel blocker. J Pathol. 2001;193:415-20.
Slama M, Susie D, Varagic J, Ahn J, Frohlich ED. Echocardiographic
measurement of cardiac output in rats. Am J Physiol Heart Circ Physiol.
2003;284:H691-697.
Ono K, Masuyama T, Yamamoto K, Doi R, Sakata Y, Nishikawa N, Mano
T, Kuzuya T, Takeda H, Hori M. Echo doppler assessment of left
ventricular function in rats with hypertensive hypertrophy. Journal of the
American Society of Echocardiography. 2002;15:109-117.
Cingolani OH, Yang X-P, Cavasin MA, Carretero OA. Increased Systolic
Performance With Diastolic Dysfunction in Adult Spontaneously
Hypertensive Rats. Hypertension. 2003;41:249-254.
Massett MP, Ungvari Z, Csiszar A, Kaley G, Koller A. Different roles of
PKC and MAP kinases in arteriolar constrictions to pressure and
agonists. Am J Physiol Heart Circ Physiol. 2002;283:H2282-2287.
Muthalif MM, Karzoun NA, Gaber L, Khandekar Z, Benter IF, Saeed AE,
Parmentier JH, Estes A, Malik KU. Angiotensin ll-induced hypertension:
contribution of Ras GTPase/Mitogen-activated protein kinase and
cytochrome P450 metabolites. Hypertension. 2000;36:604-9.
Touyz RM, He G, Deng LY, Schiffrin EL. Role of extracellular signal-
regulated kinases in angiotensin ll-stimulated contraction of smooth
muscle cells from human resistance arteries. Circulation. 1999;99:392-9.
Ishihata A, Tasaki K, Katano Y. Involvement of p44/42 mitogen-activated
protein kinases in regulating angiotensin II- and endothelin-1 -induced
contraction of rat thoracic aorta. Eur J Pharmacol. 2002;445:247-56.
Behr TM, Nerurkar SS, Nelson AH, Coatney RW, Woods TN, Sulpizio A,
Chandra S, Brooks DP, Kumar S, Lee JC, Ohlstein EH, Angermann CE,
Adams JL, Sisko J, Sackner-Bernstein JD, Willette RN. Hypertensive
end-organ damage and premature mortality are p38 mitogen-activated
protein kinase-dependent in a rat model of cardiac hypertrophy and
dysfunction. Circulation. 2001;104:1292-8.
de Borst MH, Navis G, de Boer RA, Huitema S, Vis LM, van Gilst WH,
van Goor H. Specific MAP-kinase blockade protects against renal

264



741

742

743

744

745

746

747

748

749.

750.

751.

752.

damage in homozygous TGR(mRen2)27 rats. Lab Invest. 2003;83:1761-
70.

Clipstone NA, Crabtree GR. Identification of calcineurin as a key
signalling enzyme in T-lymphocyte activation. Nature. 1992;357:695-7.
Stankunas K, Graef IA, Neilson JR, Park SH, Crabtree GR. Signaling
through calcium, calcineurin, and NF-AT in lymphocyte activation and
development. Cold Spring Harb Symp Quant Biol. 1999;64:505-16.
Khanna AK. The immunosuppressive agent tacrolimus induces
p21 WAF/CIP1WAF1/CIP1 via TGF-beta secretion. Blochem Biophys Res
Commun. 2003;303:266-72.
Tsuzuki S, Toyama-Sorimachi N, Kitamura F, Tobita Y, Miyasaka M.
FK506 (tacrolimus) inhibits extravasation of lymphoid cells by abrogating
VLA-4A/CAM-1 mediated transendothelial migration. FEBS Lett.
1998;430:414-8.
Stephen M, Woo J, Flasan NU, Whiting PH, Thomson AW.
Immunosuppressive activity, lymphocyte subset analysis, and acute
toxicity of FK-506 in the rat. A comparative and combination study with
cyclosporine. Transplantation. 1989;47:60-5.
Ba D, Takeichi N, Kodama T, Kobayashi H. Restoration of T cell
depression and suppression of blood pressure in spontaneously
hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol.
1982;128:1211-6.
Khraibi AA, Smith TL, Hutchins PM, Lynch CD, Dusseau JW.
Thymectomy delays the development of hypertension in Okamoto
spontaneously hypertensive rats. J Hypertens. 1987;5:537-41.
Khraibi AA, Norman RA, Jr., Dzielak DJ. Chronic immunosuppression
attenuates hypertension in Okamoto spontaneously hypertensive rats.
Am J Physiol. 1984;247:H722-6.
Rodriguez-lturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-
Acosta J, Johnson RJ, Pons HA. Reduction of renal immune cell
infiltration results in blood pressure control in genetically hypertensive
rats. Am J Physiol Renal Physiol. 2002;282:F191-201.
Muller DN, Shagdarsuren E, Park J-K, Dechend R, Mervaala E, Hampich
F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J,
Heidecke H, Haller H, Zenke M, Luft FC. Immunosuppressive Treatment
Protects Against Angiotensin ll-lnduced Renal Damage. Am J Pathol.
2002;161:1679-1693.
Quiroz Y, Pons H, Gordon KL, Rincon J, Chavez M, Parra G, Herrera-
Acosta J, Gomez-Garre D, Largo R, Egido J, Johnson RJ, Rodriguez-
lturbe B. Mycophenolate mofetil prevents salt-sensitive hypertension
resulting from nitric oxide synthesis inhibition. Am J Physiol Renal
Physiol. 2001 ;281 :F38-47.
Rodriguez-lturbe B, Pons H, Quiroz Y, Gordon K, Rincon J, Chavez M,
Parra G, Herrera-Acosta J, Gomez-Garre D, Largo R, Egido J, Johnson

265



753

754

755

756

757

758

759

760

761

762

763

RJ. Mycophenolate mofetil prevents salt-sensitive hypertension resulting
from angiotensin II exposure. Kidney Int. 2001;59:2222-32.
Romero F, Rodriguez-lturbe B, Parra G, Gonzalez L, Herrera-Acosta J,
Tapia E. Mycophenolate mofetil prevents the progressive renal failure
induced by 5/6 renal ablation in rats. Kidney Int. 1999;55:945-55.
Nataraj C, Oliverio Ml, Mannon RB, Mannon PJ, Audoly LP,
Amuchastegui CS, Ruiz P, Smithies O, Coffman TM. Angiotensin II
regulates cellular immune responses through a calcineurin-dependent
pathway. J. Clin. Invest. 1999;104:1693-1701.
Castedo M, Pelletier L, Pasquier R, Guettier C, Huygen K, Michel JB,
Druet P. Anti-renin T cells trigger normal B cells to produce anti-renin
antibodies and normalize blood pressure in spontaneously hypertensive
rats. Int Immunol. 1993;5:1569-76.
Luft FC. Workshop: mechanisms and cardiovascular damage in
hypertension. Hypertension. 2001;37:594-8.
Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano
S, Plaza JJ, Egido J. Role of the Renin-Angiotensin System in Vascular
Diseases: Expanding the Field. Hypertension. 2001;38:1382-1387.
El Bekay R, Alvarez M, Monteseirin J, Alba G, Chacon P, Vega A, Martin-
Nieto J, Jimenez J, Pintado E, Bedoya FJ, Sobrino F. Oxidative stress is
a critical mediator of the angiotensin II signal in human neutrophils:
involvement of mitogen-activated protein kinase, calcineurin, and the
transcription factor NF-{kappa}B. Blood. 2003;102:662-671.
Tummala PE, Chen XL, Sundell CL, Laursen JB, Hammes CP, Alexander
RW, Harrison DG, Medford RM. Angiotensin II induces vascular cell
adhesion molecule-1 expression in rat vasculature: A potential link
between the renin-angiotensin system and atherosclerosis. Circulation.
1999;100:1223-9.
Capers Qt, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N,
Howard AB, Taylor WR. Monocyte chemoattractant protein-1 expression
in aortic tissues of hypertensive rats. Hypertension. 1997;30:1397-402.
Hernandez-Presa M, Bustos C, Ortego M, Tunon J, Renedo G, Ruiz-
Ortega M, Egido J. Angiotensin-converting enzyme inhibition prevents
arterial nuclear factor-kappa B activation, monocyte chemoattractant
protein-1 expression, and macrophage infiltration in a rabbit model of
early accelerated atherosclerosis. Circulation. 1997;95:1532-41.
Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, Lorenzo O, Plaza JJ,
Egido J. Angiotensin II participates in mononuclear cell recruitment in
experimental immune complex nephritis through nuclear factor-kappa B
activation and monocyte chemoattractant protein-1 synthesis. J Immunol.
1998;161:430-9.
Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM.
Angiotensin II induces monocyte chemoattractant protein-1 gene
expression in rat vascular smooth muscle cells. Clrc Res. 1998;83:952-9.

266



764. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB.
Angiotensin II stimulates endothelial vascular cell adhesion molecule-1
via nuclear factor-kappaB activation induced by intracellular oxidative
stress. Arterioscler Thromb Vase Biol. 2000;20:645-51.

765. Hernandez-Presa MA, Bustos C, Ortego M, Tunon J, Ortega L, Egido J.
ACE inhibitor quinapril reduces the arterial expression of NF-kappaB-
dependent proinflammatory factors but not of collagen I in a rabbit model
of atherosclerosis. Am J Pathol. 1998;153:1825-37.

766. Nakamura A, Johns EJ, Imaizumi A, Yanagawa Y, Kohsaka T. Effect of
beta(2)-adrenoceptor activation and angiotensin II on tumour necrosis
factor and interleukin 6 gene transcription in the rat renal resident
macrophage cells. Cytokine. 1999;11:759-65.

767. Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6
transcription in vascular smooth muscle cells through pleiotropic
activation of nuclear factor-kappa B transcription factors. Circ Res.
1999;84:695-703.

768. Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J.
Angiotensin II activates nuclear transcription factor kappaB through AT(1)
and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ
Res. 2000;86:1266-72.

769. Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, Taylor
WR. CC chemokine receptor 2 is required for macrophage infiltration and
vascular hypertrophy in angiotensin ll-induced hypertension.
Hypertension. 2000;36:360-3.

770. Ishibashi M, Hiasa Kl, Zhao Q, Inoue S, Ohtani K, Kitamoto S,
Tsuchihashi M, Sugaya T, Charo IF, Kura S, Tsuzuki T, Ishibashi T,
Takeshita A, Egashira K. Critical Role of Monocyte Chemoattractant
Protein-1 Receptor CCR2 on Monocytes in Hypertension-Induced
Vascular Inflammation and Remodeling. Circ Res. 2004.

771. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ,
Schiffrin EL. Expression of a Functionally Active gp91phox-Containing
Neutrophil-Type NAD(P)H Oxidase in Smooth Muscle Cells From Human
Resistance Arteries: Regulation by Angiotensin II. Circ Res.
2002;90:1205-1213.

772. Cifuentes ME, Rey FE, Carretero OA, Pagano PJ. Upregulation of
p67(phox) and gp91(phox) in aortas from angiotensin Il-infused mice. Am
J Physiol Heart Circ Physiol. 2000;279:H2234-40.

773. Hendey B, Lawson M, Marcantonio EE, Maxfield FR. Intracellular calcium
and calcineurin regulate neutrophil motility on vitronectin through a
receptor identified by antibodies to integrins alphav and beta3. Blood.
1996;87:2038-48.

774. Conboy IM, Manoli D, Mhaiskar V, Jones PP. Calcineurin and vacuolar-
type H+-ATPase modulate macrophage effector functions. Proc Natl
Acad Sci USA. 1999;96:6324-9.

267



775. Rafiee P, Johnson CP, Li MS, Ogawa H, Heidemann J, Fisher PJ,
Lamirand TH, Otterson MF, Wilson KT, Binion DG. Cyclosporine A
enhances leukocyte binding by human intestinal microvascular
endothelial cells through inhibition of p38 MAPK and iNOS. Paradoxical
proinflammatory effect on the microvascular endothelium. J Biol Chem.
2002;277:35605-15.

776. Muller DN, Heissmeyer V, Dechend R, Hampich F, Park JK, Fiebeler A,
Shagdarsuren E, Theuer J, Elger M, Pilz B, Breu V, Schroer K, Ganten D,
Dietz R, Haller H, Scheidereit C, Luft FC. Aspirin inhibits NF-kappaB and
protects from angiotensin ll-induced organ damage. Faseb J.
2001;15:1822-4.

Ill. Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E,
Bieringer M, Gulba D, Dietz R, Luft FC, Haller H. Amelioration of
angiotensin ll-induced cardiac injury by a 3-hydroxy-3-methylglutaryl
coenzyme a reductase inhibitor. Circulation. 2001;104:576-81.

778. Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A,
Theuer J, Breu V, Ganten D, Haller H, Luft FC. NF-kappaB inhibition
ameliorates angiotensin ll-induced inflammatory damage in rats.
Hypertension. 2000;35:193-201.

779. Liang H, Venema VJ, Wang X, Ju H, Venema RC, Marrero MB.
Regulation of angiotensin ll-induced phosphorylation of STAT3 in
vascular smooth muscle cells. J Biol Chem. 1999;274:19846-51.

780. Wada H, Hasegawa K, Morimoto T, Kakita T, Yanazume T, Abe M,
Sasayama S. Calcineurin-GATA-6 pathway is involved in smooth muscle-
specific transcription. J. Cell Biol. 2002;156:983-991.

781. Suzuki E, Nishimatsu H, Satonaka H, Walsh K, Goto A, Omata M, Fujita
T, Nagai R, Hirata Y. Angiotensin II induces myocyte enhancer factor 2-
and calcineurin/nuclear factor of activated T cell-dependent
transcriptional activation in vascular myocytes. Circ Res. 2002;90:1004-
11.

782. Mokkapatti R, Vyas SJ, Romero GG, Mi Z, Inoue T, Dubey RK, Gillespie
DG, Stout AK, Jackson EK. Modulation by Angiotensin II of Isoproterenol-
Induced cAMP Production in Preglomerular Microvascular Smooth
Muscle Cells from Normotensive and Genetically Hypertensive Rats. J
Pharmacol Exp Ther. 1998;287:223-231.

783. Jeanmart H, Malo O, Carrier M, Nickner C, Desjardins N, Perrault LP.
Comparative study of cyclosporine and tacrolimus vs newer
immunosuppressants mycophenolate mofetil and rapamycin on coronary
endothelial function. J Heart Lung Transplant. 2002;21:990-8.

784. Schwertfeger E, Wehrens J, Oberhauser V, Katzenwadel A, Rump LC.
Contractile effects of tacrolimus in human and rat isolated renal arteries. J
Auto Pharmacol. 2001;21:205-210.

785. Park J-K, Muller DN, Mervaala EMA, Dechend R, Fiebeler A, Schmidt F,
Bieringer M, Schafer O, Lindschau C, Schneider W, Ganten D, Luft FC,
Haller H. Cerivastatin prevents angiotensin ll-induced renal injury

268



independent of blood pressure- and cholesterol-lowering effects. Kidney
Int. 2000;58:1420-1430.
Mervaala E, Muller DN, Schmidt F, Park JK, Gross V, Bader M, Breu V,
Ganten D, Haller H, Luft FC. Blood pressure-independent effects in rats
with human renin and angiotensinogen genes. Hypertension.
2000;35:587-94.
Guengerich FP, Martin MV, Beaune PH, Kremers P, Wolff T, Waxman
DJ. Characterization of rat and human liver microsomal cytochrome P-
450 forms involved in nifedipine oxidation, a prototype for genetic
polymorphism in oxidative drug metabolism. J Biol Chem.
1986;261:5051-60.
Shimada T, Mimura M, Inoue K, Nakamura S, Oda H, Ohmori S,
Yamazaki H. Cytochrome P450-dependent drug oxidation activities in
liver microsomes of various animal species including rats, guinea pigs,
dogs, monkeys, and humans. Arch Toxicol. 1997;71:401-8.
Konno Y, Nemoto K, Degawa M. Induction of hepatic cytochrome P450s
responsible for the metabolism of xenobiotics by nicardipine and other
calcium channel antagonists in the male rat. Xenobiotica. 2003;33:119-
29.
Fioretto JR, Querioz SS, Padovani CR, Matsubara LS, Okoshi K,
Matsubara BB. Ventricular remodeling and diastolic myocardial
dysfunction in rats submitted to protein-calorie malnutrition. Am J Physiol
Heart Circ Physiol. 2002;282:H1327-33.
Gardiner SM, March JE, Kemp PA, Fallgren B, Bennett T. Regional
haemodynamic effects of cyclosporine A, tacrolimus and sirolimus in
conscious rats. Br J Pharmacol. 2004.
Milting H, Janssen PM, Wangemann T, Kogler H, Domeier E, SeidlerT,
Hakim K, Grapow M, Zeitz O, Prestle J, Zerkowski HR. FK506 does not
affect cardiac contractility and adrenergic response in vitro. Eur J
Pharmacol. 2001 ;430:299-304.

793. Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos J, van
der Wall EE, de Roos A. Diastolic dysfunction in hypertensive heart
disease is associated with altered myocardial metabolism. Circulation.
1999;99:2261-7.

794. Naqvi TZ. Diastolic function assessment incorporating new techniques in
Doppler echocardiography. Rev Cardiovasc Med. 2003;4:81-99.

795. Mandinov L, Eberli FR, Seiler C, Hess OM. Diastolic heart failure.
Cardiovasc Res. 2000;45:813-25.

796. Hanssens M, Vercruysse L, Verbist L, Pijnenborg R, Keirse MJ, Van
Assche FA. Renin-like immunoreactivity in human placenta and fetal
membranes. Histochem Cell Biol. 1995;104:435-42.

797. Cheng XW, Kuzuya M, Sasaki T, Arakawa K, Kanda S, Sumi D, Koike T,
Maeda K, Tamaya-Mori N, Shi GP, Saito N, Iguchi A. Increased
expression of elastolytic cysteine proteases, cathepsins S and K, in the

786.

787.

788.

789.

790.

791.

792.

269



798

799

800

801

802

803

804

805

806

807

808

809

810

811

neointima of balloon-injured rat carotid arteries. Am J Pathol.
2004;164:243-51.
van Kesteren CAM, Danser AHJ, Derkx FHM, Dekkers DHW, Lamers
JMJ, Saxena PR, Schalekamp MADH. Mannose 6-Phosphate Receptor
Mediated Internalization and Activation of Prorenin by Cardiac Cells.
Hypertension. 1997;30:1389-1396.
Mullins JJ, Burt DW, Windass JD, McTurk P, George H, Brammar WJ.
Molecular cloning of two distinct renin genes from the DBA/2 mouse.
Embo J. 1982;1:1461-6.
Panthier JJ, Foote S, Chambraud B, Strosberg AD, Corvol P, Rougeon F.
Complete amino acid sequence and maturation of the mouse
submaxillary gland renin precursor. Nature. 1982;298:90-2.
Panthier JJ, Dreyfus M, Roux TL, Rougeon F. Mouse kidney and
submaxillary gland renin genes differ in their 5' putative regulatory
sequences. Proc Natl Acad Scl USA. 1984;81:5489-93.
Holm I, Olio R, Panthier JJ, Rougeon F. Evolution of aspartyl proteases
by gene duplication: the mouse renin gene is organized in two
homologous clusters of four exons. Embo J. 1984;3:557-62.
Dickinson DP, Gross KW, Piccini N, Wilson CM. Evolution and variation
of renin genes in mice. Genetics. 1984;108:651-67.
Sigmund CD, Gross KW. Structure, expression, and regulation of the
murine renin genes. Hypertension. 1991;18:446-57.
Misono KS, Chang JJ, Inagami T. Amino acid sequence of mouse
submaxillary gland renin. Proc Natl Acad Sci USA. 1982;79:4858-62.
Dhanaraj V, Dealwis CG, Frazao C, Badasso M, Sibanda BL, Tickle I J,
Cooper JB, Driessen HP, Newman M, Aguilar C, et al. X-ray analyses of
peptide-inhibitor complexes define the structural basis of specificity for
human and mouse renins. Nature. 1992;357:466-72.
Morris BJ, Catanzaro DF, Mullins JJ, Hardman J, Shine J. Synthesis of
mouse renin as a 2-5-33-5 kilodalton pre-pro-two-chain molecule and use
of its cDNA to identify the human gene. Clin Exp Pharmacol Physiol.
1983;10:293-7.
Misono KS, Holladay LA, Murakami K, Kuromizu K, Inagami T. Rapid and
large-scale purification and characterization of renin from mouse
submaxillary gland. Arch Biochem Biophys. 1982;217:574-81.
Corvol P, Panthier JJ, Foote S, Rougeon F. Structure of the mouse
submaxillary gland renin precursor and a model for renin processing.
Arthur C. Corcoran Memorial Lecture. Hypertension. 1983;5:13-9.
Dealwis CG, Frazao C, Badasso M, Cooper JB, Tickle I J, Driessen H,
Blundell TL, Murakami K, Miyazaki H, Sueiras-Diaz J, et al. X-ray
analysis at 2.0 A resolution of mouse submaxillary renin complexed with
a decapeptide inhibitor CH-66, based on the 4-16 fragment of rat
angiotensinogen. J Mol Biol. 1994;236:342-60.
Poe M, Wu JK, Lin TY, Hoogsteen K, Bull HG, Slater EE. Renin cleavage
of a human kidney renin substrate analogous to human angiotensinogen,

270



H-Asp-Arg-Val-Tyr-lle-His-Pro-Phe-His-Leu-Val-lle-His-Ser-OH, that is
human renin specific and is resistant to cathepsin D. Anal Biochem.
1984;140:459-67.

812. Burton J, Quinn T. The amino-acid residues on the C-terminal side of the
cleavage site of angiotensinogen influence the species specificity of
reaction with renin. Biochim Biophys Acta. 1988;952:8-12.

813. Field LJ, Gross KW. Ren-1 and Ren-2 loci are expressed in mouse
kidney. Proc Natl Acad Sci USA. 1985;82:6196-200.

814. Sharp MG, Fettes D, Brooker G, Clark AF, Peters J, Fleming S, Mullins
JJ. Targeted inactivation of the Ren-2 gene in mice. Hypertension.
1996;28:1126-31.

815. Clark AF, Sharp MG, Morley SD, Fleming S, Peters J, Mullins JJ. Renin-1
is essential for normal renal juxtaglomerular cell granulation and macula
densa morphology. J Biol Chem. 1997;272:18185-90.

816. Aeed PA, Elhammer AP. Glycosylation of recombinant prorenin in insect
cells: the insect cell line Sf9 does not express the mannose 6-phosphate
recognition signal. Biochemistry. 1994;33:8793-7.

817. Pitarresi TM, Rubattu S, Heinrikson R, Sealey JE. Reversible
cryoactivation of recombinant human prorenin. J Biol Chem.
1992;267:11753-9.

818. Valdenaire O, Breu V, GillerT, Bur D, Fischli W. Cloning and
characterization of marmoset renin: comparison with human renin. J
Cardiovasc Pharmacol. 1999;34:893-7.

819. Mathews S, Dobeli H, Pruschy M, Bosser R, DArcy A, Oefner C, Zulauf
M, Gentz R, Breu V, Matile H, Schlaeger J, Fischli W. Recombinant
human renin produced in different expression systems: biochemical
properties and 3D structure. Protein Expr Purif. 1996;7:81-91.

820. Grueninger-Leitch F, D'Arcy A, D'Arcy B, Chene C. Deglycosylation of
proteins for crystallization using recombinant fusion protein glycosidases.
Protein Sci. 1996;5:2617-22.

821. Pilote L, McKercher G, Thibeault D, Lamarre D. Enzymatic
characterization of purified recombinant human renin. Biochem Cell Biol.
1995;73:163-70.

822. Tong L, Pav S, Lamarre D, Pilote L, LaPlante S, Anderson PC, Jung G.
High resolution crystal structures of recombinant human renin in complex
with polyhydroxymonoamide inhibitors. J Mol Biol. 1995;250:211-22.

823. Asselbergs FA, Rahuel J, Cumin F, Leist C. Scaled-up production of
recombinant human renin in CHO cells for enzymatic and X-ray structure
analysis. J Biotechnol. 1994;32:191-202.

824. Shibasaki M, Sudoh K, Asano M, Murakami K. The effect of intravenous
recombinant human renin on blood pressure in pithed spontaneously
hypertensive rats. Eur J Pharmacol. 1992;215:271-6.

825. Hosoi M, Kim S, Yamauchi T, Watanabe T, Murakami K, Suzuki F,
Takahashi A, Nakamura Y, Yamamoto K. Similarity between

271



826

827

828

829

830

831

832

833

834

835

836

837

838

physicochemical properties of recombinant rat prorenin and native
inactive renin. Biochem J. 1991 ;275 ( Pt 3):727-31.
Norman JA, Hadjilambris O, Baska R, Sharp DY, Kumar R. Stable
expression, secretion, and characterization of active human renin in
mammalian cells. Mol Pharmacol. 1992;41:53-9.
Yamauchi T, Suzuki F, Takahashi A, Tsutsumi I, Hori H, Watanabe T,
Ishizuka Y, Nakamura Y, Murakami K. Expression of rat renin in
mammalian cells and its purification. Clin Exp Hypertens A. 1992; 14:377-
92.
Holzman TF, Chung CC, Edalji R, Egan DA, Martin M, Gubbins EJ, Krafft
GA, Wang GT, Thomas AM, Rosenberg SH, et al. Characterization of
recombinant human renin: kinetics, pH-stability, and peptidomimetic
inhibitor binding. J Protein Chem. 1991;10:553-63.
Edalji R, Holzman TF, Gubbins EJ. Active prorenin: evidence for the
formation of a conformational variant of recombinant human prorenin. J
Protein Chem. 1991;10:403-6.
Katz SA, Malvin RL, Lee J, Kim SH, Murray RD, Opsahl JA, Abraham PA.
Analysis of active renin heterogeneity. Proc Soc Exp Biol Med.
1991;197:387-92.
Ishizuka Y, Shoda A, Yoshida S, Kawamura Y, Haraguchi K, Murakami K.
Isolation and characterization of recombinant human prorenin in Chinese
hamster ovary cells. J Biochem (Tokyo). 1991;109:30-5.
Campbell DJ, Valentijn AJ, Berka JL. Production of rat renin fusion
protein in Escherichia coli and the preparation of renin-specific antisera.
Mol Cell Endocrinol. 1990;73:83-91.
Vlahos CJ, Walls JD, Berg DT, Grinnell BW. The purification and
characterization of recombinant human renin expressed in the human
kidney cell line 293. Biochem Biophys Res Commun. 1990;171:375-83.
Hatsuzawa K, Kim WS, Murakami K, Nakayama K. Purification of mouse
Ren 2 prorenin produced in Chinese hamster ovary cells. J Biochem
(Tokyo). 1990;107:854-7.
Evans DB, Cornette JC, Sawyer TK, Staples DJ, de Vaux AE, Sharma
SK. Substrate specificity and inhibitor structure-activity relationships of
recombinant human renin: implications in the in vivo evaluation of renin
inhibitors. Biotechnol Appl Biochem. 1990;12:161-75.
Green DW, Aykent S, Gierse JK, Zupec ME. Substrate specificity of
recombinant human renal renin: effect of histidine in the P2 subsite on pH
dependence. Biochemistry. 1990;29:3126-33.
Carilli CT, Vigne JL, Wallace LC, Smith LM, Wong MA, Lewicki JA,
Baxter JD. Characterization of recombinant human prorenin and renin.
Hypertension. 1988;11:713-6.
Sharma SK, Evans DB, Tomich CS, Cornette JC, Ulrich RG. Folding and
activation of recombinant human prorenin. Biotechnol Appl Biochem.
1987;9:181-93.

272



839. Poorman RA, Palermo DP, Post LE, Murakami K, Kinner JH, Smith CW,
Reardon I, Heinrikson RL. Isolation and characterization of native human
renin derived from Chinese hamster ovary cells. Proteins. 1986;1:139-45.

840. Imai T, Cho T, Takamatsu H, Hori H, Saito M, Masuda T, Hirose S,
Murakami K. Synthesis and characterization of human prorenin in
Escherichia coli. J Biochem (Tokyo). 1986;100:425-32.

841. Weighous TF, Cornette JC, Sharma SK, Tarpley WG. Secretion of
enzymatically active human renin from mammalian cells using an avian
retroviral vector. Gene. 1986;45:121-9.

842. Shinagawa T, Do YS, Baxter J, Hsueh WA. Purification and
characterization of human truncated prorenin. Biochemistry.
1992;31:2758-64.

843. Luque T, O'Reilly DR. Generation of baculovirus expression vectors. Mol
Biotechnol. 1999;13:153-63.

844. Possee RD. Baculoviruses as expression vectors. Curr Opin Biotechnol.
1997;8:569-72.

845. Jarvis LJ, Kawar, Z. S., Hollister, J.R. Engineering N-glycosylation
pathways in the baculovirus-insect cell system. Current Opinion in
Biotechnology. 1998;9:528 - 533.

846. Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P. The establishment
of two cell lines from the insect Spodoptera frugiperda (Lepidoptera;
Noctuidae). In Vitro. 1977;13:213-7.

847. Granados RR, Gouxun, L., Derkson, A.C.G., McKenna, K.A. A New
Insect Cell Line from Trichoplusia ni (BTI-Tn-5B1-4) Susceptible to
Trichoplusia ni Single Enveloped Nuclear Polyhedrosis Virus. Journal of
Invertebrate Pathology. 1994;64:260-266.

848. Miltenburger HG, David P. Nuclear polyhedrosis virus replication in
permanent cell lines of the cabbage moth (Mamestra brassicae L.).
Naturwissenschaften. 1976;63:197-8.

849. Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA. Screening of
insect cell lines for the production of recombinant proteins and infectious
virus in the baculovirus expression system. Biotechnol Prog. 1992;8:391-
6.

850. Jarvis DL, Finn EE. Modifying the insect cell N-glycosylation pathway with
immediate early baculovirus expression vectors. Nat Biotechnol.
1996;14:1288-92.

851. Altmann F, Staudacher E, Wilson IB, Marz L. Insect cells as hosts for the
expression of recombinant glycoproteins. Glycoconj J. 1999;16:109-23.

852. Snow BE, Betts L, Mangion J, Sondek J, Siderovski DP. Fidelity of G
protein beta-subunit association by the G protein gamma-subunit-like
domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci USA.
1999;96:6489-94.

853. Sharma SK, Evans DB, Vosters AF, McQuade TJ, Tarpley WG. Metal
affinity chromatography of recombinant HIV-1 reverse transcriptase

273



854

855

856

857

858

859

860

861

862

863

864

865,

866.

containing a human renin cleavable metal binding domain. Biotechnol
Appl Biochem. 1991;14:69-81.
Smith MC, Furman TC, Ingolia TD, Pidgeon C. Chelating peptide-
immobilized metal ion affinity chromatography. A new concept in affinity
chromatography for recombinant proteins. J Biol Chem. 1988;263:7211 -5.
Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity
chromatography, a new approach to protein fractionation. Nature.
1975;258:598-9.
Vosters AF, Evans DB, Tarpley WG, Sharma SK. On the engineering of
rDNA proteins for purification by immobilized metal affinity
chromatography: applications to alternating histidine-containing chimeric
proteins from recombinant Escherichia coli. Protein Expr Purif. 1992;3:18-
26.
Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ. The univector plasmid-
fusion system, a method for rapid construction of recombinant DNA
without restriction enzymes. Curr Biol. 1998;8:1300-9.
Shuman S. Novel approach to molecular cloning and polynucleotide
synthesis using vaccinia DNA topoisomerase. J Biol Chem.
1994;269:32678-84.
Abremski KE, Hoess RH. Evidence for a second conserved arginine
residue in the integrase family of recombination proteins. Protein Eng.
1992;5:87-91.
Abremski K, Hoess R, Sternberg N. Studies on the properties of P1 site-
specific recombination: evidence for topological^ unlinked products
following recombination. Cell. 1983;32:1301-11.
Abremski K, Hoess R. Bacteriophage P1 site-specific recombination.
Purification and properties of the Cre recombinase protein. J Biol Chem.
1984;259:1509-14.
Kitts PA, Possee RD. A method for producing recombinant baculovirus
expression vectors at high frequency. Biotechnlques. 1993;14:810-7.
O'Reilly DRM, L.K. Luckow, V.A. Baculovirus Expression Vectors: A
Laboratory Manual/. W.H Freeman and Company, New York, N.Y.; 1992.
Liebman JM, LaSala D, Wang W, Steed PM. When less is more:
enhanced baculovirus production of recombinant proteins at very low
multiplicities of infection. Biotechnlques. 1999;26:36-8, 40, 42.
Li Y, Beitle RR. Protein purification via aqueous two-phase extraction
(ATPE) and immobilized metal affinity chromatography. Effectiveness of
salt addition to enhance selectivity and yield of GFPuv. Biotechnol Prog.
2002;18:1054-9.
Chen HM, Ho CW, Liu JW, Lin KY, Wang YT, Lu CH, Liu HL. Production,
IMAC purification, and molecular modeling of N-carbamoyl-D-amino acid
amidohydrolase C-terminally fused with a six-his peptide. Biotechnol
Prog. 2003;19:864-73.

274



867. Choe WS, Clemmitt RH, Chase HA, Middelberg AP. Comparison of
histidine-tag capture chemistries for purification following chemical
extraction. J Chromatogr A. 2002;953:111-21.

868. Phan TC, Nowak KJ, Akkari PA, Zheng MH, Xu J. Expression of caltrin in
the baculovirus system and its purification in high yield and purity by
cobalt (II) affinity chromatography. Protein Expr Purif. 2003;29:284-90.

869. Ion Exchange Chromatography: Principles and Methods: Pharmacia
Biotech.

870. Fiore C, Trezeguet V, Roux P, Le Saux A, Noel F, Schwimmer C, Arlot D,
Dianoux AC, Lauquin GJ, Brandolin G. Purification of histidine-tagged
mitochondrial ADP/ATP carrier: influence of the conformational states of
the C-terminal region. Protein Expr Purif. 2000;19:57-65.

871. Goel A, Colcher D, Koo JS, Booth BJ, Pavlinkova G, Batra SK. Relative
position of the hexahistidine tag effects binding properties of a tumor-
associated single-chain Fv construct. Biochim Biophys Acta.
2000;1523:13-20.

872. Admiraal PJ, van Kesteren CA, Danser AH, Derkx FH, SluiterW,
Schalekamp MA. Uptake and proteolytic activation of prorenin by cultured
human endothelial cells. J Hypertens. 1999;17:621-9.

873. Lauritzen C, Pedersen J, Madsen MT, Justesen J, Martensen PM, Dahl
SW. Active recombinant rat dipeptidyl aminopeptidase I (cathepsin C)
produced using the baculovirus expression system. Protein Expr Purif.
1998;14:434-42.

874. Bozon V, Remy JJ, Pajot-Augy E, Couture L, Biache G, Severini M,
Salesse R. Influence of promoter and signal peptide on the expression
and secretion of recombinant porcine LH extracellular domain in
baculovirus/lepidopteran cells or the caterpillar system. J Mol Endocrinol.
1995;14:277-84.

875. Sisk WP, Bradley JD, Leipold RJ, Stoltzfus AM, Ponce de Leon M, Hilf M,
Peng C, Cohen GH, Eisenberg RJ. High-level expression and purification
of secreted forms of herpes simplex virus type 1 glycoprotein gD
synthesized by baculovirus-infected insect cells. J Virol. 1994;68:766-75.

876. Krol BJ, Murad S, Walker LC, Marshall MK, Clark WL, Pinnell SR,
Yeowell HN. The expression of a functional, secreted human lysyl
hydroxylase in a baculovirus system. J Invest Dermatol. 1996;106:11-6.

877. Congote LF, Li Q. Accurate processing and secretion in the baculovirus
expression system of an erythroid-cell-stimulating factor consisting of a
chimaera of insulin-like growth factor II and an insect insulin-like peptide.
Biochem J. 1994;299 ( Pt 1):101-7.

878. Sprules T, Green N, Featherstone M, Gehring K. Nickel-induced
oligomerization of proteins containing 10-histidine tags. Biotechniques.
1998;25:20-2.

879. Hemdan ES, Zhao YJ, Sulkowski E, Porath J. Surface topography of
histidine residues: a facile probe by immobilized metal ion affinity
chromatography. Proc Natl Acad Sci USA. 1989;86:1811-5.

275



880

881

882

883

884

885

886

887

888

889

890

891.

892.

Gaberc-Porekar V, Menart V, Jevsevar S, Vidensek A, Stale A. Histidines
in affinity tags and surface clusters for immobilized metal-ion affinity
chromatography of trimeric tumor necrosis factor alpha. J Chromatogr A.
1999;852:117-28.
Mohanty AK, Wiener MC. Membrane protein expression and production:
effects of polyhistidine tag length and position. Protein Expr Purif.
2004;33:311-25.
Frohlich ED. State of the Art lecture. Risk mechanisms in hypertensive
heart disease. Hypertension. 1999;34:782-9.
Rodriguez-lturbe B, Zhan C-D, Quiroz Y, Sindhu RK, Vaziri ND.
Antioxidant-Rich Diet Relieves Hypertension and Reduces Renal Immune
Infiltration in Spontaneously Hypertensive Rats. Hypertension.
2003;41:341-346.
De Lima JJ, Xue H, Coburn L, Andoh TF, McCarron DA, Bennett WM,
Roullet JB. Effects of FK506 in rat and human resistance arteries. Kidney
Int. 1999;55:1518-27.
Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR, de
Martin R. Adenovirus-mediated expression of a mutant l{kappa}B kinase
2 inhibits the response of endothelial cells to inflammatory stimuli. Blood.
2001;97:1611-1617.
Jobin C, Panja A, Hellerbrand C, limuro Y, Didonato J, Brenner DA,
Sartor RB. Inhibition of Proinflammatory Molecule Production by
Adenovirus-Mediated Expression of a Nuclear Factor {kappa}B Super-
Repressor in Human Intestinal Epithelial Cells. J Immunol. 1998;160:410-
418.
Zuckerbraun BS, McCloskey CA, Mahidhara RS, Kim PK, Taylor BS,
Tzeng E. Overexpression of mutated IkappaBalpha inhibits vascular
smooth muscle cell proliferation and intimal hyperplasia formation. J Vase
Surg. 2003;38:812-9.
Mottram PL, Murray-Segal LJ, Han W, Maguire J, Stein-Oakley A,
Mandel TE. Long-term survival of segmental pancreas isografts in
NOD/Lt mice treated with anti-CD4 and anti-CD8 monoclonal antibodies.
Diabetes. 1998;47:1399-405.
Danser AH. Local renin-angiotensin systems. Mol Cell Biochem.
1996;157:211-6.
Danser AH, Saris JJ, Schuijt MP, van Kats JP. Is there a local renin-
angiotensin system in the heart? Cardiovasc Res. 1999;44:252-65.
Danser AH, van Kats JP, Verdouw PD, Schalekamp MA. Evidence for the
existence of a functional cardiac renin-angiotensin system in humans.
Circulation. 1997;96:3795-6.
Park JY, Lee J, Cho BY, Chae CB. Different bioactivities of human
thyrotropin receptors with different signal peptides. Mol Cell Endocrinol.
1999;147:133-42.

276



893

894

895

896

897

898

899.

900.

901.

902.

903.

904.

905.

Li Y, Luo L, Thomas DY, Kang CY. Control of expression, glycosylation,
and secretion of HIV-1 gp120 by homologous and heterologous signal
sequences. Virology. 1994;204:266-78.
Terpe K. Overview of tag protein fusions: from molecular and biochemical
fundamentals to commercial systems. Appl Microbiol Biotechnol.
2003;60:523-33.
Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB. A
continuous cell-free translation system capable of producing polypeptides
in high yield. Science. 1988;242:1162-4.
Jermutus L, Ryabova LA, Pluckthun A. Recent advances in producing
and selecting functional proteins by using cell-free translation. Curr Opin
Biotechnol. 1998;9:534-48.
Mattingly JR, Jr., Yanez AJ, Martinez-Carrion M. The folding of nascent
mitochondrial aspartate aminotransferase synthesized in a cell-free
extract can be assisted by GroEL and GroES. Arch Biochem Biophys.
2000;382:113-22.
Frydman J, Hartl FU. Principles of chaperone-assisted protein folding:
differences between in vitro and in vivo mechanisms. Science.

1996;272:1497-502.
Middleton RB, Bulleid NJ. Reconstitution of the folding pathway of
collagen in a cell-free system: formation of correctly aligned and
hydroxylated triple helices. Biochem J. 1993;296 ( Pt 2):511-7.
Baneyx F. Recombinant protein expression in Escherichia coli. Curr Opin
Biotechnol. 1999;10:411-21.
Schneider EL, Thomas JG, Bassuk JA, Sage EH, Baneyx F. Manipulating
the aggregation and oxidation of human SPARC in the cytoplasm of
Escherichia coli. Nat Biotechnol. 1997;15:581-5.
Prescott G, Silversides DW, Reudelhuber TL. Tissue activity of circulating
prorenin. Am J Hypertens. 2002;15:280-5.
Wylie AA, Pulford DJ, McVie-Wylie AJ, Waterland RA, Evans HK, Chen
YT, Nolan CM, Orton TC, Jirtle RL. Tissue-specific inactivation of murine
M6P/IGF2R. Am J Pathol. 2003;162:321-8.
Inoue H, Noumi T, Nagata M, Murakami H, Kanazawa H. Targeted
disruption of the gene encoding the proteolipid subunit of mouse vacuolar
H(+)-ATPase leads to early embryonic lethality. Biochim Biophys Acta.
1999;1413:130-8.
Huang WY, Aramburu J, Douglas PS, Izumo S. Transgenic expression of
green fluorescence protein can cause dilated cardiomyopathy. Nat Med.
2000;6:482-3.

277



Appendix 1

A1.1 Oligonucleotide Primers
A1.1.1 Primer and Probe Sequences used for Real Time PCR
Primers and probes for Real Time PCR were designed using Primer Express 1.5
software (Applied Biosystems) according to the optimal criteria specified by the
manufacturer. The pan-renin assay was developed and optimised by Dr Matthew Sharp.

Table A1.1. Real-Time PCR Primers and Probes

Sequence (5'-3') Comment

GCTGCTTTGGGCAGAAGATAGA Rat BNP forward primer

ACAACCTCAGCCCGTCACA Rat BNP reverse primer

GGTGCCCTCCACCAAGTG Pan-Renin forward*

AGTGTCGGAGATACTCAGGAGACT Pan-Renin reverse *

AGCCGCCTCTACCTTGCTTGTGGG Pan-renin probe *

*amplification and detection of rat and mouse renin. A commercial 18S ribosomal RNA kit was used for

amplification of 18S ribosomal RNA as an internal standard (Applied Biosystems).
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A1.1.2 Mouse Ren2d

The primers sequences used for amplifcation of ren2d cDNA and incorporation of

immuno-tags are provided in table A1.2. Primers used for sequencing recombinant
clones are shown in table A 1.3. Rcombinant baculoviral plaques were screened using

primers given in table A1.4.

Table A1.2. Primers used for Recombinant Prorenin Amplification
Primer

ID

Sequence (5'- 3') Properties Tm

(°C)

JJM 55 gtcgaccagatggacaggaggagg ren2 signal sequence only

(1-24)*

69.6

JJM 361 ccateecccaeaaactaatatccuaasaeaacctaa

acaccttcagtctcccaa

renld/2 myc tag (69-84)* 89.2

JJM 362 acaaaaeaeecataatctseaacatcetateaataa

cgggccaaggcgaatc

renld/2 HAtag (1201-

1217)*

90.3

JJM 363 ctagagagaaacataatctagaacatcatatgggtas

cgggccaaggcgaatc

ren 1 d/2HA-STOP (1201 -

1217)*

87.7

*sequence positions according to ren2 cDNA sequence (GenBank BC 011473, gi 15079272).

Underlining indicates immuno-tag sequence. Tm values were calculated according to Breslauer et al.,
1986 assuming 50mM salt concentration and 50nM primer concentration.
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Table A1.3.Sequencing primers for pUni and pBB contructs

ID Sequence (5'-3') Comments Tm (°C)

JJM56 caccccagaccttcaaagtc ren2d forward (289-

308)*

59.3

JJM 57 ctgatccgtagtggatggtg ren2d reverse (459-

430)*

58.7

JJM58 cctggcagatcacacaatgaagg ren2d forward (793-

803)*

66.1

JJM 59 gcatgatcaacttcagggagc ren2d reverse (924-

904)*

61.9

PF aaatgataaccatctcgc polyhedrin forward

primer (365 - 383)§

50.2

UniF ctatcaacaggttgaa puni forward primer

(564-584)§

39.5

*sequence positions according to ren2 cDNA sequence (GenBank BC 011473, gi 15079272).

§ pUniV5HisTOPO vector sequence

Table A1.4. Primers for Recombinant Baculovirus Screening

ID Sequence (5'-3') Comments Tm (°C)

JJM 396 tttactgttttcgtaacagttttg baculovirus forward

primer (-44 to -21)*

55.4

JJM 397 caacaacgcacagaatctagc baculovirus reverse

primer (+794 to 774)*

58.3

* nomenclature ofO'Reilly (1992)
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Appendix 2

A2.1 Real Time PCR Data

A2.1.1 Determination of Standard Curves

Standard curves for each gene of interest (BNP, renin) and the internal standard (18S

RNA) were determined as appropriate, for each PCR plate using pooled total RNA. The
total concentration of RNA in the pooled standard was determined by

spectrophotometry, and serial dilutions were performed to obtain samples for the
standard curve. The threshold cycle (Ct) was determined for each dilution in

quadruplicate (tables A2.1, A2.3 and A2.5), and plotted against the natural logarithm of
the RNA concentration. Linear regression was performed to determine the gradient (m)
and y-intercept (b) (figures A2.1, 2.2 and 2.3).

A2.1.2 Relative Quantification of BNP and 18S Expression

Expression levels of individual samples were determined in the manner described in

Applied Biosystems User Bulletin 2, 1997, using the standard curve for each gene to

calculate the log input amount of RNA (Ln[Input RNA]), based on the threshold cycle

(Ct) value for each sample. The following equation was used:

Ln[Input RNA]=(Ct-b)/m
where b=y-intercept of the standard curve line, and m= gradient of standard curve line.
Therefore the input amount of RNA was the exponent of (Ct-b)/m. This was calculated
for each replicate individually, and then averaged to give the mean RNA quantity for
that sample. Expression levels were normalised to 18S quantity, to allow for variation in

sample loading. The units of quantity are the same as those used to construct the
standard curve. Standard curves and tabulated calculations are given for all real time
PCR experiments.
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Table A2.1 Determination of Standard Curves for Rat BNP and 18S RNA

Quantity of RNA In (ng RNA) BNP threshold 18S threshold

(ng) cycle (Ct) cycle (Ct)

0.001 -6.908 35.51 32.17
35.62 32.28
35.44 32.55
35.91 32.65

0.01 -4.605 31.48 29.00
31.38 28.65
31.71 28.43
31.06 28.43

0.1 -2.303 27.22 23.94
27.37 24.45
27.31 24.43
27.37 24.23

1 0 23.55 21.26
24.06 21.21
23.66 21.16
23.98 21.39

10 2.303 20.10 18.19
19.90 18.19
19.66 18.10
19.79 17.72

Figure A2.1 Amplification Plots for SYBR Green BNP Real Time

PCR Assay
a) b)

Typical amplification plots for BNP. a) Fluorescence (ARn) vs amplification cycle, b) Threshold cycle vs

well position (sample): standard curve for BNP: wells 0 - 24, unknown samples including controls: wells
48-92.
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Figure A2.2 Standard Curves for Rat BNP and 18S RNA
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Standard curve for rat BNP and 18S amplification from left ventricular total RNA. BNP was detected

using SYBR green dye, whilst 18S amplification was detected using VIC labelled probe. Data was plotted

using Microsoft Excel 2001, and linear regression applied using the analysis package. The coefficient of
correlation was automatically calculated by the software.

BNP: y = -1.6985x +23.693
R2 = 0.999

BNP

18S

18S:y = -1.5681x +21.31
R2 = 0.9951
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Table A2.2 Real Time PCR Data for Left Ventricular BNP and
18S RNA: TGRcyp1a1ren2 Induction and Regression
Experiment

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

F344 Controls: 6 weeks Induction

11 BNP 24.20 -0.274 0.760 0.760 0.593
24.11 -0.223 0.800

24.21 -0.280 0.757
24.28 -0.320 0.726

18S 21.23 0.046 1.047 1.283
20.52 0.500 1.648
21.10 0.129 1.138
20.89 0.263 1.361

12 BNP 23.42 -0.456 0.634 0.584 0.672
23.24 -0.333 0.716

23.60 -0.579 0.561
24.01 -0.858 0.423

18S 22.52 -0.124 0.883 0.869
22.56 -0.150 0.860
22.45 -0.078 0.925
22.66 -0.216 0.806

13 BNP 24.34 -0.381 0.683 0.712 0.757
24.22 -0.310 0.733
24.34 -0.381 0.683
24.19 -0.293 0.746

18S 21.55 -0.153 0.858 0.940
21.68 -0.236 0.790

21.17 0.089 1.093
21.28 0.019 1.019

14 BNP 23.93 -0.392 0.676 0.636 0.749
24.15 -0.536 0.589

24.04 -0.461 0.631
23.99 -0.430 0.630

18S 22.07 -0.169 0.845 0.850
22.07 -0.169 0.845

22.17 -0.233 0.792
21.94 -0.086 0.918

15 BNP 24.03 -0.044 0.957 0.923 0.565
23.91 -0.037 1.037

24.31 -0.193 0.824
24.21 -0.136 0.873

18S 20.17 0.780 2.180 2.199
20.32 0.685 1.984

20.04 0.862 2.367
20.1 1 0.817 2.264
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Table A2.2 continued

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA| (ng) RNA to 18S

TGR: 6weeks Induction

3453 BNP 23.02 0.548 1.730 1.671 1.294

22.90 0.617 1.853
23.24 0.421 1.524
23.18 0.456 1.580

18S 21.26 0.155 1.168 1.292
21.08 0.206 1.228
20.44 0.294 1.342
20.84 0.357 1.429

3612 BNP 22.67 0.055 1.057 1.269 0.834
22.38 0.254 1.288
22.36 0.267 1.305
22.23 0.355 1.426

18S 21.74 0.390 1.477 1.521
21.85 0.318 1.374
21.52 0.535 1.708
21.69 0.423 1.527

3615 BNP 23.74 -0.273 0.761 0.807 0.340
23.46 -0.097 0.908
23.73 -0.266 0.766
23.68 -0.235 0.791

18S 20.56 0.797 2.220 2.353
20.44 0.874 2.397
20.39 0.906 2.475
20.49 0.842 2.322

3610 BNP 23.09 0.356 1.428 1.644 0.931
22.88 0.476 1.609
22.62 0.476 1.865
22.81 0.515 1.674

18S 20.94 0.231 1.260 1.762
20.40 0.376 1.778
20.32 0.627 1.872
20.10 0.768 2.155

3455 BNP 22.21 0.873 2.394 2.230 1.475

22.34 0.797 2.218
22.39 0.767 2.154
22.39 0.767 2.154

18S 20.98 0.214 1.234 1.512
20.85 0.293 1.341
20.48 0.529 1.700
20.41 0.574 1.775
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Table A2.2 continued

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

TGR: 6weeks Regression

2563 BNP 24.02 -0.448 0.639 0.613 0.316
24.02 -0.448 0.639

24.04 -0.461 0.631
24.27 -0.605 0.546

18S 20.85 0.612 1.844 1.938
20.70 0.708 2.030

20.77 0.663 1.941
20.77 0.663 1.941

2564 BNP 23.78 -0.051 0.950 0.905 0.302
23.73 -0.022 0.978

24.03 -0.198 0.820
23.93 -0.140 0.870

18S 19.56 1.116 3.053 2.996
19.59 1.097 2.995
19.65 1.059 2.882
19.56 1.116 3.053

2565 BNP 24.37 -0.227 0.797 0.743 0.339
24.38 -0.233 0.792

24.66 -0.394 0.674
24.54 -0.325 0.722

18S 20.17 0.780 2.181 2.199
20.32 0.685 1.984
20.04 0.861 2.367
20.11 0.817 2.265

2924 BNP 23.53 0.106 1.112 0.956 0.228
23.82 -0.059 0.943

23.95 -0.132 0.876
23.92 -0.115 0.981

18S 18.96 1.496 4.464 4.184
18.98 1.483 4.407

19.31 1.272 3.570
19.02 1.458 4.296
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Table A2.2 continued

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

F344 control: 6weeks Regression

R1 BNP 23.06 0.372 1.452 1.414 0.543
23.15 0.320 1.377
23.04 0.384 1.469
23.17 0.308 1.361

18S 20.02 0.823 2.277 2.602
19.69 1.033 2.810
19.75 0.995 2.704
19.80 0.963 2.619

R2 BNP 22.23 0.355 1.426 1.306 0.396
22.18 0.389 1.475
22.40 0.239 1.270
22.68 0.048 1.050

18S 20.23 1.385 4.000 3.293
20.44 1.247 3.479
20.81 0.996 2.708
20.67 1.095 2.990

R3 BNP 28.03 -2.330 0.097 0.090 0.310
28.61 -2.405 0.090
28.29 -2.180 0.838
28.19 -2.423 0.888

18S 23.82 -1.522 0.218 0.291
23.81 -1.516 0.220
22.96 -0.980 0.375
23.07 -1.050 0.350

R4 BNP 23.03 0.390 1.477 1.336 0.548
23.16 0.316 1.372
23.23 0.277 1.319
23.13 0.163 1.177

18S 20.12 0.755 2.128 2.438
19.83 0.940 2.361
19.79 0.966 2.627
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Table A2.3 Real Time PCR Standard Curves for Rat BNP and 18S RNA:

FK506 Study

Quantity of RNA In (ng RNA) BNP threshold 18S threshold

(ng) cycle (Ct) cycle (Ct)

0.01 -4.605 35.67 27.07
36.12 27.07
35.44 27.08

0.1 -2.303 31.41 23.58
31.60 23.66
31.60 23.50

1 0 27.76 19.98
27.96 20.00
27.11 20.60

10 2.303 23.93 17.82
24.18 17.41
24.03 17.32

30 3.401 22.42 16.28
22.32 16.18
22.22 16.19
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Figure A2.3 Standard Curves for Rat BNP and 18S: FK506 Study

^18S

-♦-BNP

-6

BNP: y = -1.7174x +28.092
R2 = 0.9981

18S: y =-3.1154x +20.59
R2 = 0.9963
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Standard curves for rat BNP and 18S amplification from left ventricular total RNA. Methods were as

described in figure A2.1
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Table A2.4 Real Time PCR Data for Rat BNP and 18S RNA: FK506 Study

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

TGRcyplalren2: Water treated

4116 BNP 24.77 2.022 7.559 7.009 0.754
24.96 1.913 6.776
24.92 1.936 6.933

18S 17.44 2.180 8.668 9.398
17.27 2.282 9.799

17.28 2.275 9.728
4117 BNP 25.16 1.612 5.016 4.502 0.675

25.42 1.458 4.297
25.46 1.434 4.197

18S 17.71 1.995 7.351 6.670
17.94 1.828 6.214

17.98 1.863 6.445
4118 BNP 25.09 1.776 5.227 4.862 0.707

25.36 1.654 4.453
25.26 1.553 4.726

18S 17.72 1.966 7.140 6.800
17.65 2.017 7.514
18.02 1.746 5.714

4119 BNP 26.48 0.939 2.556 3.959 0.548
25.51 1.503 1.377
25.39 1.573 1.469

18S 17.92 1.973 7.195 7.227
17.81 2.052 7.804

18.02 1.900 6.682

F344

4 BNP 26.09 1.060 2.857 2.718 0.523
26.28 0.947 2.579
26.21 0.989 2.689

18S 18.08 1.702 5.188 5.193
18.21 1.607 4.990
18.18 1.629 5.101

8 BNP 27.97 0.181 1.198 1.195 0.310
27.87 0.238 1.269
28.09 0.112 1.118

18S 18.54 1.366 3.921 3.858

18.62 1.309 3.702
18.53 1.374 3.950
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Table A2.4 (continued)

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

F344 (continued)

3 BNP 26.44 1.061 2.890 2.650 0.368
26.78 0.866 2.377
26.57 0.987 2.682

18S 17.70 1.972 7.186 7.208
17.75 1.936 6.932
17.64 2.015 7.504

9 BNP 26.65 0.728 2.071 1.868 0.276
27.00 0.520 1.682
27.01 0.514 1.672

18S 17.85 1.871 6.492 6.558
17.87 1.856 6.400

17.79 1.914 6.783

TGRcyplalren2: FK506 treated

4052 BNP 26.14 1.234 3.435 2.959 0.529
26.52 1.015 2.760

26.57 0.987 2.682
18S 18.10 1.684 5.386 5.599

18.03 1.734 5.664
18.01 1.749 5.748

4053 BNP 25.75 1.292 3.639 3.781 0.598
25.47 1.262 3.533
26.65 1.428 4.172

18S 17.71 1.973 7.192 5.319
17.99 1.768 5.861
17.98 1.776 5.904

4054 BNP 24.60 1.945 6.992 5.490 0.873
25.25 1.559 4.754
25.26 1.553 4.726

18S 17.91 1.827 6.214 6.291
17.86 1.863 6.445
17.91 1.827 6.214

4055 BNP 27.16 0.543 1.721 1.644 0.388
27.21 0.514 1.671
27.35 0.432 1.540

18S 18.52 1.530 4.618 4.240
18.61 1.463 4.321
18.79 1.330 3.782
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Table A2.5 Determination of Standard Curves for Rat Renin and 18S RNA

Quantity of RNA In (ng RNA)

(ng)

BNP threshold

cycle (Ct)

18S threshold

cycle (Ct)

0.12 -2.120 30.55 35,28
30.37 36.68

29.92 -

0.6 -0.510 28.11 33.87

28.55 33.27
27.09 -

3 -1.099 25.43 30.53
25.17 28.75
25.66 29.10

15 2.708 23.15 27.31
23.01 26.92
23.12 28.39

75 4.317 21.11 25.44
21.07 25.33
21.25 -

-: failed reaction
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►

Figure A2.4 Standard Curves for Renin and 18S RNA
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18S: y = -1.6913x +32.245
R2 = 0.9827

renin: y = -1.4434x + 27.196
R2 = 0.9969
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Standard curve for renin and 18S amplification from hepatic total RNA. Renin was detected using Fam
labelled probe, whilst 18S amplification was detected using VIC labelled probe. Data was plotted using
Microsoft Excel 2001, and linear regression applied using the analysis package. The coefficient of
correlation was automatically calculated by the software.
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Table A2.6 Real Time PCR Data for Rat Renin and 18S RNA: FK506 Study

Animal Assay Ct In [Input Input RNA Av input Normalised

RNA] (ng) RNA to 18S

TGRcyplalren2: FK506 treated

4049

4052

4053

renin

18S

renin

18S

renin

18S

23.13
23.06
23.44

28.30
27.33
27.44
24.32

24.52
24.31
27.97
28.41

27.10
27.72

27.36
27.17
33.68
31.71
33.68

2.824

2.872
2.608

2.333
2.906
2.841
1.997
1.858
2.050
2.528
2.267
3.042
-0.364
-0.114
0.018

-0.848
0.316

-0.848

16.838

17.676
13.576

10.304
17.133
21.576
7.369
6.413
7.844
12.524
9.655
20.948
0.695
0.892
1.018

0.428
1.372

0.428

16.03

15.240

7.208

14.376

0.869

0.743

1.051

0.51

1.169

TGRcyplalren2: water treated

4115

4116

4117

renin

18S

renin

18S

renin

18S

26.10
25.99
25.74
27.05
26.29
25.52

26.97
26.72
26.84
27.59
26.85
26.72
25.05
25.24
25.08
25.94

24.92
25.47

0.761
0.878
1.011
3.072

3.521
3.976

0.157
0.331
0.247
2.752

3.190
3.266

1.490
1.358

1.469
3.728
4.331
4.006

2.141
2.311
2.749
21.576

33.816
53.317
1.170
1.392

1.280
15.679

24.284
26.225

4.438
3.890

4.368
41.592

76.019
54.915

2.400

36.236

1.281

22.063

4.225

57.509

0.066

0.058

0.073
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Table A2.6 (continued)

Animal Assay Ct In [Input

RNA]

Input RNA

(ng)

F344: FK506 treated

1 renin 38.48 -7.836 0.000
35.92 -6.058 0.002

36.50 -6.461 0.002
18S 25.55 3.958 52.378

25.66 3.893 49.080
25.66 3.893 49.080

3 renin 36.31 -6.329 0.002
35.85 -6.010 0.002
34.52 -5.086 0.006

18S 23.85 4.964 143.113
24.30 4.698 105.680
24.47 4.597 99.191

7 renin 36.03 -6.135 0.002
36.11 -6.190 0.002

40.00 -8.892 0.001
18S 26.18 3.586 36.089

26.29 3.521 33.817
27.15 3.012 20.338

0.004

67.173

69.772

31.678
F344: water treated

renin 36.77 -6.649 0.001

34.07 -4.774 0.008
34.07 -6.072 0.002

18S 25.08 42.36 69.157
25.20 4.165 64.421
25.11 4.219 67.942

renin 35.52 -5.781 0.003
38.05 -7.538 0.001
40.00 -8.892 0.000

18S 24.20 4.757 116.36
25.92 3.740 42.086

25.65 3.900 49.371
renin 40.00 -8.892 0.000

38.36 -7.753 0.000
40.00 -8.892 0.000

18S 27.18 2.994 19.980
25.82 3.800 44.650

26.47 3.415 30.403
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