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This thesis contains the results of a study in kernel density 
estimation. Bayesian inference and the random effects model, with 
application to a forensic problem. 

Estimation of the Bayes' factor in a forensic science problem 
involved the derivation of predictive distributions in non-standard 
situations. The distribution of the values of a characteristic of 
interest among different items in forensic science problems is often 
non-Normal. Background, or training, data were available to assist 
in the estimation of the distribution for measurements on cat and dog 
hairs. An informative prior, based on the kernel method of density 
estimation, was used to derive the appropriate predictive 
distributions. The training data may be considered to be derived 
from a random effects model. This was taken into consideration in 
modelling the Bayes' factor. The usual assumption of the random 
factor being Normally distributed is unrealistic, so a kernel density 
estimate was used as the distribution of the unknown random factor. 
Two kernel methods were employed: the ordinary and adaptive kernel 
methods. The adaptive kernel method allowed for the longer tail, 
where little information was available. 

Formulae for the Bayes' factor in a forensic science context 
were derived assuming the training data were grouped or not grouped 
(for example, hairs from one cat would be thought of as belonging to 
the same group), and that the within-group variance was or was not 
known. The Bayes' factor, assuming known within-group variance, for 
the training data, grouped or not grouped, was extended to the 
multivariate case. The method was applied to a practical example in 
a bivariate situation. Similar modelling of the Bayes' factor was 
derived to cope with a particular form of mixture data. Boundary 
effects were also taken into consideration. 

Application of kernel density estimation to make inferences 
about the variance components under the random effects model was 
studied. Employing the maximum likelihood estimation method, it was 
shown that the between-group variance and the smoothing parameter in 
the kernel density estimate were related. They were not identifiable 
separately. With the smoothing parameter fixed at some predetermined 
value, the within- and between-group variance estimates from the 
proposed model were equivalent to the usual ANOVA estimates. Within 
the Bayesian framework, posterior distributions for the variance 
components, using various prior distributions for the parameters, 
were derived incorporating kernel density functions. The modes of 
these posterior distributions were used as estimates for the variance 
components. 

A Student-t kernel within a Bayesian framework was derived after 
introduction of a prior for the smoothing parameter. Two methods of 
obtaining hyper-parameters for the prior were suggested, both 
involved empirical Bayes methods. They were a modified leave-one-out 
maximum likelihood method and a method of moments based on the 
optimum smoothing parameter determined from Normality assumption. 
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SOME USEFUL NOTATIONS 

The following notations are used in this thesis: 

Symbol 	Usual representation (unless stated separately) 

X/X 	An univariate/multivariate random variable which 
represents control data and has a known source 

Y/Y 	An univariate/multivariate random variable which 

	

- 	represents recovered data and has an unknown source 

Z/Z 	An univariate/multjvarjate random variable 
represents training data (TS for short) 

T, U, V, W 	Univariate random variables for general purposes 

	

z. 	jth observation from the 1th  group of the training 
data 

n 	Number of groups in the training data Z 

J 	Common number of observations within each group 
in the training data 

N (= nxj) 	Total number of observations in the training data 

In 	 Number of observations arise from X 

r 	Number of observations arise from Y 

Ui 	 Population mean from the ith  group 

Precision of population mean 

U, 13 	Hyperparameters of the prior for -r 

or o 	Within-group variance 

Between-group variance 

	

X 	 Smoothing parameter 

	

6 	 Sensitivity parameter 



CHAPTER 1 

INTRODUCTION 

1.1 Aims 

Bayesian approaches to statistical analysis are often based on 

parametric models. For instance, the underlying density function is 

assumed to be a member of a specified family, {f(t;e): t € ez, 0 e} 

where 6 is a set of possible values of the parameter 0 and R is the 

sample space. The standard Bayesian model adds two assumptions: (1) 

that the parameter 0 can be regarded as a random variable, and (2) 

the prior distribution ii of this random variable is known, either to 

make inferences, about the parameter 0 or to obtain marginal 

distributions of the data. Lindley (1965), Box and Tiao (1973), 

Press (1982) and among others employ improper types of prior 

distribution for the parameter. The resultant distributions may be 

undefinable and mathematically unacceptable. Nevertheless one could 

adopt the approach suggested by Raiffa and Schlaifer (1961), who 

introduced conjugate prior distribution. As a result if the 

underlying density function of the data belongs to a parametric 

family, then the conjugate prior also belongs to a parametric family. 

However, this is often not the case especially in a random effects 

model situation, while the within group observations are Normally 

distributed but the between group random factors are usually not. 

Assuming the between group random factor is distributed Normally may 

lead to misleading results and invalid model (Scheffe (1959), Tiao 

and All (1971)). It is possible to construct non-parametric 

estimates of the density function for the random variable in a 
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context of empirical Bayes approach. This provides the possibility 

of using such estimates to provide a means of non-parametric 

modelling and analysis. The aim of the major part of this thesis is 

to develop the ideas of implementing the kernel density estimation 

method in Bayesian modelling and making use of additional information 

such as the training data. Development of these ideas were motivated 

by a forensic problem. 

In order to allow the concept described above parallel to the 

Bayesian framework, it would be more acceptable if we use a Bayesain 

approach to estimate the density of the random factors. Bayesian 

models are applicable when the distribution F underlying the data is 

unknown and can itself be thought of as being generated by some 

random mechanism. Much of the Bayesian approach to non-parametric 

density estimation is concentrated on inducing prior information 

about the unknown underlying density function f. In the context of 

non-parametric models, to make F random we must define a Probability 

P on a non-parametric family ? of distributions. At the same time, P 

should be a plausible probability distribution for F. A breakthrough 

in the problem of finding such a P was made by Ferguson (1973). He 

defined the Dirichiet prior P, the finite dimensional distributions 

which are the family of Dirichlet distributions. Wahba (1976) 

developed approximate estimates for the density f based upon Fourier 

expansions and Bayesian argument involving a covariance Kernel and a 

uniform prior estimates for f. - The mean of the posterior 

distribution of f is used as the estimate for f. This approach also 

provides the posterior confidence intervals for f (see Wahba (1983)). 

Leonard (1978) proposed a parallel approach to Wahba ! s  for 



non-parametric estimation of the probability density based upon a 

finite number of observations and prior information about the 

smoothness of the density. Leonard's approach depends substantially 

on the particular choice of prior parameters. The Bayesian approach 

to the density estimation problem proposed here is different from 

those stated above, since in a kernel density estimation problem, the 

smoothing parameter X may be regarded as a random variable depending 

on the data (see Loftsgaarden and Quesenbery (1965), Cover (1972)). 

So the method proposed here is based on an introduction of a prior 

density to the smoothing parameter after specifying the underlying 

density function f takes the kernel density form. 

1.2 Background of the Forensic problem 

In September last year one of the article heading in the 

"Scotsman" newspaper was 'Hair of the dog traps a Bogeyman', see Fig. 

1.1. Robin Smith, the 'Bogeyman', tried to extract a million pounds 

by contaminating products from some of the top supermarket suppliers. 

However, he was finally trapped by his own dog because Forensic 

scientists identified one hair found in one of the contaminated 

products as belonging to a dog. This eventually leaded to his arrest 

and conviction. The hair in question matched with those hairs 

obtained from his dog. 
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Hair of the dog traps a Bogeyman 
ROBIN SMITH. a sell-styled By JAMES  ROUGVIE Itleintosh a 	tube 	)f Smarties.( 

i "Bogeyman" who thought he 
could 	get 	more than 	half a that he was in direct touch with 	Two 	cosmetics 	manti- One of the children s sweets 

been hollowed out  and an anti- 
million pounds from some of a senior policeman, one of a 	facturers. Proctor and Gamble 

special 	squad 	from 	London 	and Elida Gibbs. were his newt depress ive pill inserted. 
the countrvs top supermarket 
suppliers, was finally trapped assembled 	to 	combat 	the 	targets. lie sent them bottles of Hill wls'n Sinjib responded to 

by the hair of the dog - iron- attacks being made on super- 	shampoo and his demands were the first advert, he was unaware' 
Proctor 	and 	Gamble 	had ically his devoted companion, a markets throughout the spring 	made in black envelopes signed already called 	in the special pedigree boxer called Abra. "the and summer. 	 Bogeyman". 

Smith started his campaign 	He told the executives of the 

 
crime squad and on the end of 

Smith, 33, an uncommunica- e me was a police inspector. 
Live-loner lives on his own.in  his 
flat in the Stobsweil area of 

by sending tins of f 	to the companies to place adverts 
managers of local Safeway and 	the "lost and found" columns of, Astonishingly, Smith guessed 

Dundee after a divorce from his Littlewoods shops, 	 a Scottish daily paper in order "Is correctly and asked 	that a 
police inspector?" but appeared wife--several, years - ago, 	He to 'contaminate their shelf T)T- 	to give him direct contact with satisfied when told this was not thought 	be 	had 	hatched, .a ducts unless they both paid )üm senior management. the case. He made further calls' plot-to force -chain £200,000. 	 He 	then 	sent 	Rowntree to the special number always 'stores and manufacturers tO 

part With mote than £625,000  giving the code word "this is the 
threatening 'to 'spike' their 

 Bogeyman cauin&" 	-. 
Throughout 	May, 	forensic 

,ls':,thre5tEa'to'. £afewa " _____ - 	., 	______ scientists, assisted by :Proctor 
and Gamble's own labàratorlea, iItUewooth,and,.otl, manu. 

facturen's eameamid-a' wave Of 

. 	______ 
'. 	 ________ had minutely analysed the con- 

:cPYc6t''0U'8t 	In . 	 ____ cuts of the packages and do-
covered the one clue which which'  babyfood,' tinned goods , 	________ 
would  ultimately  trap Smith. it rand nappies  were dangerously. - 

.. 	_______ 
was a single dog hair. 

'contaminated." .:, ,.,• 

"Bot-wbat 	th,,fafled'tó -  

_ 
Police.munaged .to locate tIe 

eaIist was  that his plan was - _______ £T 	the  calls were 
neIther -as meticulous as be .'   coming from'.— the Stobswell 

• thought-nor -were the super-  Of Dund",Whètë Smith 
markets standing by helplessly. -' - had his fiat.. 

He made two blunders —'his . 	____ 	'.  Tayside . ,police were told to 
carefully prepared packages of ., 	 _______ stake out every one of the 45-50 
spiked shampoo, which con- . 	. public phdne -boxes and -watch 
tamed hair remover and glass 
particles, was, also contammn- 

____ 	' 
. 	- 	•'- • 

for a man with a dog.  
June,  Oman strolled the 

a 	: b 	single  

do 	
y a 	e  hair  from 	is - 	 , - 	-,.. 	. 	______' 100 yards from 'his -flat to the 

box 	tethered nearest pb6~ 	and 
Further, he did not realise 

his first when be made 	contact 
"Bogeyman's" targets 	Shampoo 	spiked 	with 	hair  Abr2 them. He was on the phone 

remover and Smarties with an anti-depression pill when police opened the box. 

Fig. 1.1 News article from the 'Scotsman' newspaper on 14th, 
September 1989. 

Locard's principle in forensic science states that every contact 

leaves a trace. A criminal, in the course of committing a crime, may 

leave something behind, and he may take something away with him. 

From the examples given in Chan and Aitken (1989) for instance, 

suppose a crime is committed in which the criminal entered the house 

through a broken window and assaulted the residents, in the course of 

which assault blood was spilt. He left behind stains of his own 

blood and fibres from the jacket on the window and he may have taken 

away stains of the residents' blood on his clothes and fragments of 

glass from the broken window on his shoes. A suspect is later 
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apprehended whose blood group matches that left behind at the crime 

scene by the criminal. A jacket is found in his possession with 

fibres of a similar kind to that found on the crime window and with a 

blood stain whose blood group matches that of the victims, which is 

assumed to be different from that of the criminal. Fragments of 

glass are found in a pair of shoes belonging to the suspect with 

refractive index similar to that of the crime window. The problem of 

the assessment of the weight of such evidence, known as transfer 

evidence, is important in the administration of justice. 

Good (1985) reviewed the problems associated with the weighing 

of evidence and proved that the only probabilities of interest in 

such circumstances are the probability of the evidence if the suspect 

is guilty and the probability of the evidence if the suspect is 

innocent. These probabilities are combined to form a measure of the 

weight of the evidence by constructing the ratio of the former 

probability to the latter probability in a likelihood ratio. This 

likelihood ratio may also be considered as a Bayes' factor, adjusting 

the prior odds in favour of guilt before the presentation of the 

evidence under consideration to provide posterior odds in favour of 

guilt after the presentation of the evidence. In certain situations, 

such as fibre transfer, the assumptions of the guilt or innocence of 

the suspect are too strong to make. It is more correct to replace 

these with assumptions that the suspect was present or not present at 

the scene of the crime. - 

The estimation of the Bayes' factor in the evaluation of 

evidence has been discussed in several papers (Lindley (1977), Evett 
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(1982), Evett (1984), Evett, Cage and Aitken (1987) (Evett et al 

hereafter), Chan and Aitken (1989)). Lindley (1977) suggested that 

evidence of contact should depend not only on the measurements but 

also on the distribution of the material of interest in the 

population which would form an additional objective source of 

information. Such information is relevant because when the control 

and recovered data are close enough to suggest a same source of 

material, there is greater evidence for the suspect not being present 

the scene of the crime when that same source is uncommon in the 

population than it is not. Seheult (1978) gave a hypothesis testing 

version to Lindley's arguement. Two years later Grove discussed the 

likelihood ratio approach to interpret forensic evidence. Evett 

(1982) showed that Bayesian inference can assist the forensic 

scientist to evaluate the evidence in the case where transfer has 

occurred from criminal to crime scene, illustrated by an example 

involving blood transfer. Evett (1984) distinguished between 

transfers from the criminal to the crime scene and from the crime 

scene to the criminal and derived general expressions for evaluating 

the evidential strength for either direction of transfer. In the 

former case, evidence found at the crime scene is assumed to have 

come from the criminal. In the latter, evidence found on the 

criminal may have come from some other source; for example in a case 

concerning broken glass, a suspect with glass in the soles of his 

shoes may be a glazier by trade and the glass may have been acquired 

perfectly innocently. Evett et al (1987) considered a particular 

bivariate problem relating to fibre evidence and used kernel density 

estimation to estimate the distribution of the recovered measurement 

assuming it comes from a random source of the population. Makov 



(1987) considered a Bayesian method to assess the degree of evidence 

against each of the suspects, taking into account a 'missing 

suspect', that is an individual not included in the group of suspects 

who are under investigation. 

1.3 Observational data 

Apart from simulated data which were used to validate and 

demonstrate the model and methods proposed in this thesis, practical 

data were also used. For instance, the methods discussed in Chapter 

3 and 5 are applied to data on cat and dog hairs, respectively, 

available from the Home Office Forensic Science Service Central 

Research and Support Establishment at Aldermaston. These data were 

previously discussed by Peabody et Al (1983) and Aitken (1986) and 

are known as the cats and dogs data throughout this thesis. The data 

sets consist of 22 cats and 20 dogs (10 hairs from each cat/dog) 

bivariate hair measurements, namely the hair width and medullary 

fraction (i.e. medullary width/hair width). The following diagram 

shows a cross section of a filament of hair, which indicates the hair 

and medullary width. 

Cross-section 	 Longitude-section 
view 	 view 

() 

Hc— ch\  

Diagram 1.1 



1.4 Outline of the thesis 

Kernel density estimation is a useful tool when the data are 

known to be not Normal. Some aspects of kernel density estimation 

are reviewed in Chapter 2. Also in chapter 2 Bayesian methods and 

introduction of the variance components problem are briefly 

summarised. In Chapter 3, the estimation of Bayes' factor in a 

forensic context is modelled under different assumption about the 

training data and parameters. Random effects model arises when we 

have training data consisting of between and within individual 

measurements. 

In a random effects model, interest often lies in the estimation 

of the variance components and making relevant inference about them 

under the Normality assumption. 	However, this assumption is often 

not valid especially for the between groups variation. 	Kernel 

density is utilized to model the sample group means to investigate 

the effect of Non-normality about the between group variations. This 

was discussed in Chapter 4. 

Chapter 5 is an adaptation of Chapter 3 to model a particular 

mixture data. It is motivated by a set of data which has a positive 

probability at a particular point, in this case it is at zero. 

Extension of Chapter 3 in a multivariate version, for the case where 

the within group variance is assumed known, is presented in Chapter 6. 

Chapter 7 consists of a study on a new kernel density estimate, 

known as a Student-t. The Student-t kernel is a hybrid of the 

Gaussian kernel and the Bayesian method. 



CHAPTER 2 

DENSITY ESTIMATION. BAYESIAN METHODS AND 

RANDOM EFFECTS MODEL 

2.1 Density estimation 

Density estimation is a construction of an estimate of the 

density function from the observed data. A very natural use of 

density estimation is the informal investigation of the properties of 

a given set of data. Suppose that there is a set of observed data 

assumed to be a sample from an unknown probability density function 

(p.d.f.), f say. The probability density function can be estimated 

using either a parametric or a non-parametric approach. The former 

approach assumes the data are drawn from one of a known parametric 

family of distributions. An obvious example for this, is the Normal 

distribution with mean u and variance The density f underlying 

the observed data can be estimated by substituting estimates for u 

and o2  from the observed data into the formula for the Normal 

density. The non-parametric approach, however, is more flexible and 

it lets the data speak for themselves. 

Non-parametric density estimation can give valuable indications 

of features such as skewness and multiinodality in the data. The 

oldest and most widely used density estimator is the histogram. The 

histogram has long been used as a means of displaying the 

distributional shape of a set of univariate data D  

assumed to be realisations of independent, identically distributed 

random variables. Usually, the histogram is required for pictorial 

9 



representation only, although it may be regarded as a formal estimate 

of the underlying density function (Tarter and Kronmal (1976)). 

Viewed as a density estimate, the histogram may be criticised in a 

number of ways; mainly that the underlying density is assumed to be 

smoothed, but the histogram is not and information has been thrown 

away in replacing {t 1  ..... t) by (v i ,...,vn*), the mid-points of the 

bin containing the observations (t1) and the bin frequencies 

(fr 1 ,...,fr*), where is the number of bins. 

2.1.1 The Kernel method 

Rosenblatt (1956), Whittle (1958) and Parzen (1962) developed an 

approach to the problem which removed the difficulties the histogram 

method created. With the same notation as in the previous section, 

the estimator is of the form 

f(t;D,h) = n 1 K(t;t1,h) 

where K is itself a symmetric probability density, called a kernel 

function centred on 4, whose variance is controlled by the parameter 

h. For example, it is often convenient to use for K a Normal density 

mean and standard deviation h. Because of its role in determining 

how the probability associated with each observation is spread over 

the surrounding space, h is called the smoothing parameter. Since 

the properties of K are inherited by f, choosing K to be smooth will 

produce a density estimate which is also smooth. Furthermore each 

observation now has a kernel function centred directly over it and so 

the criticism associated with the histogram method discussed in 

Section 2.1 have been overcome. However, as the value of the 

smoothing parameter, h, can greatly affect the estimator (Bowman 
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(1985)) it must be chosen with care. 

Other types of density estimator exist, such as those based on 

orthogonal series (see Fryer (1977)) and the penalised likelihood 

approach with Bayesian interpretation (Good and Gaskins (1971)). But 

no particular method can be regarded as superior over all others and 

the choice of a smoothing parameter analogous to the kernel smoothing 

parameter, h, is always required. 

Here, the kernel approach is used because it is computationally 

straightforward, is conceptually simple being derived naturally from 

the histogram, and is closely related to other density estimation 

techniques. It is especially useful since it may be combined with 

other density functions in a obvious manner. However, the kernel 

method has a slight drawback when applied to data from long-tail 

distributions. It is because the smoothing parameter is fixed across 

the entire sample, so some spurious noise will appear in the tails of 

the estimates; if the estimates are smoothed effectively to deal with 

this, then we have problem of losing essential detail in the main 

part of the distribution. 

A good general introduction to the subject of density estimation 

is given by Fryer (1977), with Wertz and Schneider (1979) providing 

an extensive additional list of references. The common structure of 

smoothing techniques is summed up by Titterington (1985). 

In Chapters 3, 6 and 7 an adaptive kernel method, which is a 

modification of the ordinary kernel method, is also used and a brief 
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description is given below. The adaptive kernel provides better fit. 

especially, for smoothing long-tail distributions. Further 

discussion of the method is given by Silverman (1986). 

2.1.2 The adaptive kernel method 

The adaptive kernel method is an extension of the variable 

kernel method based on a nearest neighbours approach (see Silverman 

(1986)). The adaptive kernel method consists of a two-stage 

procedure in which an initial estimate is used to get a rough 

estimate of the density, then this estimate yields a pattern of 

smoothing factors corresponding to the various observations and these 

smoothing factors are used to construct the adaptive estimator 

itself. 

Define the adaptive kernel estimate 1(t) (assuming that the 

data points lie in p-dimensional space) by 

- 	 n 
f(t) = n' Z hPk1PK{h 1 k1'(t_t1)) 

1=1 	 - - 

where K is the kernel function, h is the smoothing parameter, k 1  is a 

smoothing factor given by. 

= 

f(t) is a pilot estimate of f(t) which satisfies f(ti) > 0 for all 1, 

S is the geometric mean of the f(t1) given by 

loge  g = n' E loge  f'(1), 

and 6 is a sensitivity parameter, a number satisfying 0 	6 4 1. As 

in the ordinary kernel method, K is a symmetric function integrating 
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to unity. 	Throughout the thesis O = 1/2 is used since Abramson 

(1982) gave an interesting and convincing argument that 6 = 1/2 is a 

reasonable choice for both the univariate and the multivariate case. 

However Breiman et al (1977) chose the reciprocal of p for 6. 

The adaptive kernel method is used rather than a nearest 

neighbour method since the adaptive kernel is easy to compute. 

Choice of the sensitivity parameter 6 is required and Abramson (1982) 

suggested that 6 equal to one half is a reasonable choice. Silverman 

(1986) commented on the practical advantages of the adaptive over 

both the kernel and the nearest neighbour methods for smoothing 

long-tail distribution. He suggested that if undersmoothing in the 

tails is likely to cause difficulties, then the adaptive kernel 

approach is well worth considering. Abramson (1982) remarked, with 

reference to Breiman's findings, that the performance of the adaptive 

kernel method in a univariate study was considered disappointing, 

whereas in a bivariate study, excellent. Experience here is that the 

adaptive kernel behaved well. 

2.1.3 Method of choosing smoothing parameter 

For a density estimate to be fully defined, a value must be 

chosen for h. The value of h can be chosen subjectively. For 

example Scott, Tapia and Thompson (1977) recommended the subjective 

choice of a suitable smoothing parameter by decreasing it from values 

which gave estimates which were judged to be oversmoothed to values 

which seemed to give a density which was too rough and then marking 

the transition point. The "test graph" procedure of Silverman 

(1978a) requires the examination of graphs of the second derivative 
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of the density estimate. These techniques are difficult to evaluate 

because of their subjective nature. 

There are many objective criteria in existence for the choice of 

the value of the smoothing parameter. They include asymptotic 

criteria (see Fryer (1977) and Silverman (1978b)), goodness-of-fit 

criteria based on empirical distributions (Good and Gaskins (1980)), 

methods based on Normality (Fryer (1976)), goodness-of-fit criteria 

in terms of Mean Integrated Square Error (MISE) (see Rosenblatt 

(1956), Parzen (1962), Woodroofe (1970), Nadaraja (1974) and Scott, 

Tapia and Thompson (1977)). 

Two methods which will be used in this thesis are the method 

based on Normality (Fryer (1976)) and on cross validation due to 

Habbema et al (1974). The cross validation or, pseudo-maximum 

likelihood method is briefly described below. 

A likelihood approach to the estimation of smoothing parameter 

problem was proposed by Habbema et al (1974) and by Duin (1976). If 

h is chosen to maximise 

;D,h) 

then it is easily seen that the nuisance value of zero is obtained. 

Habbema et al and Duin therefore chose h to maximise 

171fn_i(ti; Dn\{t1},h} 	 (2.1) 

which leads to a reasonable degree of smoothing. 
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2.1.4 Measures of discrepancy 

Some sort of measure or criterion is required to assess the 

performance of the kernel density estimation method. Various 

measures have been employed to study the discrepancy of the density 

estimator f from the true density f. When one considers estimation 

at a single point, a natural measure is the mean square error (MSE), 

defined by 

MSEt(f) = E{f(t)-f(t)} 2  

However, if one wants to have an overall picture of how the 

kernel performed then a measure over a wide range of t values would 

be more suitable. The following three measures provide such 

requirement, they are 

Mean Integrated Square Error (MISE) defined as 

MISE(f) = Ef{f(t)-f(t)) 2  dt, 

Expected Mean Integrated Square Error (EMSE) 

EMSE(f) = f [E{?(t)_f(t)) 2 ]f(t) dt, and 

Integrated Square Error (ISE), defined by 

ISE(f) = f{(t)_f(t))2 dt. 

Evaluation of the measure ISE is quite straight forward. 	Whereas, 

computation of MISE and EMSE is slightly more complicated. 	It 

involves, first of all, breaking down the term E(f(t)-f(t)) 2  in (a) 

and (b) which is exactly the MSE above. 	MSE is the sum of the 

squared bias and the variance of f at the value t (see Silverman 1986 
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for details), namely, 

{E(t)_f(t))2 + Var 	(t). 

When these measures are evaluated all the integrations in (a), (b) 

and (c) are done numerically. 

2.1.5 Examples of application of kernel density estimation 

One of the most successful applications of density estimation 

techniques has been to discrimination problems. In the simplest 

situation, data arise from one of two classes, Cl and C2, each of 

which has an associated distribution defined by the density functions 

f 1 (t) and f 2 (t) respectively. Given data from each of these classes, 

the problem is to assign further observations, of unknown origin, to 

Cl or C2. Allocation to a particular class is usually based on the 

"loge  odd ratio" 

f (t) 1  

Log I f 2 (t) 

The assumption of Normality leads to the familiar linear and 

quadratic discriminant functions, which were compared, by Remme, 

Habbema and Hermans (1980), with the use of nonparametric estimation 

of f 1  and f 2  from the data. The conclusion of the study was that the 

nonparametric approach is a very attractive one, performing well 

under a variety of situations, whereas the parametric procedures can 

give poor results when the underlying distribution is non-Normal. 

Other areas to which kernel density estimation can be applied 

are: cluster analysis, bump hunting and testing for multimodality 



(Cox (1966), Good and Gaskins (1980), Silverman (1981)) , simulation 

(Ripley (1983), Devroye and Györfi (1985)) and bootstrap applications 

(Efron (1981,1982)) etc.. Further details and references for these 

applications can be obtained from Silverman (1986) 

A recent paper by Huang (1987) developed a two-sample 

nonparametric likelihood ratio test which involved the use of the 

kernel density method to estimate the likelihood ratio in order to 

test, with or without the assumption of common variance, whether two 

samples had a common mean. 

Evett et al (1987) applied kernel density estimation to evaluate 

a bivariate probability density function of a vector arising randomly 

from a population in a forensic problem. 

2.2 Some aspects of the Bayesian approach to statistical modelling 

The early work in Bayesian statistics of this century was done 

by de Finetti (1930), Jeffreys (1939, reprinted with corrections, 

1983) and Ramsey (1931/1964). Jeffreys gave the foundation for 

Bayesian inference, which was continued by Lindley (1965), Box and 

Tiao (1973) and Press (1982). Most of these writers employed 

improper type prior distributions for the parameters, but Raiffa and 

Schlaifer (1961) introduce conjugate prior distributions, which are 

proper probability distributions. 

In this section, some basic principles and concepts of Bayesian 

analysis are summarised. The Bayesian approach to statistical 

modelling and other problems is relatively simple but important. 
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2.2.1 The Bayes' Theorem 

An essential element of the Bayesian approach is Bayes' theorem. 

Here the theorem for continuous random variables is stated. Let 

f(t,e) denote the joint probability density function (p.d.f.) for a 

random observation vector t and a parameter vector 0, also considered 

random. The parameter vector 0 may consist of some elements which 

are unknown and which it is derived to estimate in order to specify a 

model. Then, according to usual operations with the p.d.f. and with 

obvious notation, assuming both 0 and t have underlying probability 

distributions, we have 

f(t.0) = f() f() 

= f(alt) f(t) 

and thus 

f(tJO) f(e) 
f(9I) = 	

f(s) 

with f(t) # 0. The above expression can be written as follows: 

f(Olt) m f(e) f(tIO) 

prior p.d.f x likelihood function 	 (2.2) 

where m denotes proportionality, f(0t) is the posterior p.d.f. for 

the parameter vector 0, given the sample information t, f(0) is the 

prior p.d.f. for the parameter vector 0, and f(tle), viewed as a 

function of 0, is the well-known likelihood function. Equation (2.2) 

is a statement of Bayes' theorem, a simple mathematical result in the 

theory of probability. Note that the joint posterior p.d.f. of the 

unknown parameter 0, f(OIt), has all the prior and sample information 
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incorporated in it. 	The prior information enters the posterior 

p.d.f. via the prior p.d.f.. whereas all the sample information 

enters via the likelihood function. In this latter connection the 

'likelihood principle' states that f(tJO), considered as a function 

of 0, quoted from Savage (1962) 

"... constitutes the entire evidence of the experiment, that 
is, it tells all that the experiment has to tell ". 

In the usual Bayesian analysis, the posterior p.d.f. is employed to 

make inferences about parameters. 

Example 2.1 Assume that we have n independent observations, t' = 

(t 1 , t 2 ,..., ta ), drawn from a Normal population with unknown mean u 

and known variance o2 = o. We wish to obtain the posterior p.d.f. 

for ,.. Applying (2.2) to this particular problem, we have 

f(It,o) a  f('-Io) f(tii,o) 

where f(,.tt,o) is the posterior p.d.f for the parameter u, given the 

sample information t and the assumed known value o, f(f.L) is the 

prior p.d.f for z, and f(tp,o), viewed as a function of the unknown 

parameter u is the likelihood function. The likelihood 

function is given by U f(t1,z,o), or 

n 
f(t(,i,o) = ( 2iro)fl/2 exp{-[ E (t1-u) 2 J/2o) 

i=1 

= (2,ra)/2 exp{ - [vs 2  + fl(iv -ii) 2 J/2o 2 ) 	(2.3) 

where V = n-i, g1 = ( 1 /n)ti, the sample mean, and S 2  = 

(l/v).z(t_t) 2 , the sample variance. 
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As regards a prior p.d.f. for u, we assume that our prior 

information regarding this parameter can be represented by the 

following univariate Normal p.d.f., independent of o 

	

f( u o) = ( 21rorh/2 exp{ - ( - a ) 2 /2o} 	 (2.4) 

where ua  is the prior mean and o is the prior variance, parameters 

whose values are assigned by the investigator on the basis of his 

initial information. Then, on using Bayes' theorem to combine the 

likelihood function in (2.3) and dropping the notational dependency 

of the prior distribution of u on o, we obtain the following 

posterior p.d.f 

f(ift,o) 	f() f(tIi.t,o 

J 	I 	(t.L9)2 	n(_)2 
exp----- 	 +  

	

2 	 2 

	

°a 	00 

	

f 
- 

0+0/fl 1 	+ t2a0 /n1 
exp 	 I 	"- 

I 	2oo/n J 	 o + o/n 

from which it is seen that u is Normally distributed, a posteriori, 

with mean 

Lo 2+ 

E() = 
0 + 0/fl 

and variance given by 

00/n 
Var(jt) =  

0+o/n 

+ 

(o/n)' + (o) 

1 

(o/fl)_l + (o) 

(2.5) 

(2.6) 

Note that the posterior mean in (2.5) is a weighted average of the 

sample mean t,  and the prior mean Ua,  with the weights being the 
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reciprocals of os/n  and o. If we let -r 0  = ( o/n) 1  and 'ia 	(°Y. 

then E(u) = (r0 ±11
aa)"(o  + a)' where the i-'s are often referred 

to as "precision" parameters. Also we have Var(u) = l/(i -  + a) from 

(2.6), and thus the precision parameter associated with the posterior 

mean is just [Var()] 1  = -r0 + -T  a' the sum of the sample and prior 

precision parameters. 

2.2.2 Prior probability density functions 

The prior p.d.f., denoted f(0) in (2.2), represents our prior 

information about the parameters of a model; that is, in the Bayesian 

approach, the prior information about parameters of a model is 

usually represented by an appropriately chosen p.d.f. In the example 

2.1, for instance, prior information about a mean .t is represented in 

(2.4) by a Normal p.d.f. with prior mean ua  and variance o. The 

prior mean and variance La  and o are assigned values by the 

investigator in accord with his prior information about the parameter 

z. If this Normal prior p.d.f. is judged an adequate representation 

of the available prior information, it can be used , as demonstrated, 

to obtain the posterior p.d.f. for s. On the other hand, if the 

prior information is not adequately represented by a Normal prior 

p.d.f, another prior p.d.f. that does so may be used. For example, 

if from the past data it is known that u is not Normally distributed, 

or if we have a scalar parameter 0, say, a proportion, that by its 

very nature is limited to an interval [0,1], it would not be 

appropriate to employ a Normal p.d..f. for 0, since a Normal p.d.f. 

does not limit the range of 0 to the interval [0,1]. The p.d.f. for 

0 should be one, say a beta p.d.f., that can incorporate the 

available information on the range of 0. 
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As regards the nature of prior information, it is to be 

recognised that it may include information contained in samples of 

past data or samples randomly gathered to represent the distribution 

of the parameter. When a prior p.d.f. represents information of this 

kind, the prior p.d.f. is called an 'informative' or 'reference' 

prior. Otherwise, it is called 'diffuse' or 'vague'. A situation 

involving vague or diffuse priors may be one in which an investigator 

has little idea about the parameters under study. 

Example 2.2. 	Consider the Example 2.1 again and assume that our 

prior information regarding the value of u is vague or diffuse. To 

represent such information about the value of u, we follow Jeffreys 

(1939/83) by taking 

f(ti) 	constant 	 - 	u 

as our prior p.d.f.. This prior p.d.f. is improper, i.e., 5 f(m) d 

is not finite. Then the posterior p.d.f. for j.t, f(jilt,o=o 0 ) is given 

by 

f(ut,0=00 ) d f(g) .Q(It,0=00) 

cr exp{_[(,.L_) 2 /2o ]), 

where 	(,zlt,o=o0) 	f(tI,o=o0 ), is the likelihood function of i 

conditional on t and i = E t1/n, the sample mean. It is seen that 

posterior p.d.f. is Normal with mean jL and variance o'0 /n. The same 

result would be obtained in Example 2.1 if there we spread out the 

Normal prior p.d.f. for i (i.e. allowed °a 
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2.2.3 Marginal distribution of the observations 

In certain situations it is of interest to obtain the marginal 

p.d.f. for the observations, denoted by f(t). The p.d.f. can be 

obtained as follows: 

f(s) =  fn f(9.) de 

= fc 	 dO, 	 (2.7) 

where C) is the parameter space of 8. Equation (2.7) indicates that 

the marginal p.d.f. of the observations is an average of the 

conditional p.d.f. f(tJe) with prior p.d.f. f(0) serving as the 

weight function. 

Example 2.3 Let t 1  be an observation from a Normal distribution with 

unknown mean ii and known standard deviation o=o 0 . Then 

f(t 1 ti,o=o 0 ) = (2iro) 	exp(-(t 1 -,.) 2 /2o). 

If the prior p.d.f. for t. is as in (2.4), then the marginal p.d.f. 

for t 1  is 

f(t1) 
= 
 J- f(t j jW ' -0=0 0 )  f() du 

- 00   J_  1 1 (t 1 -0 2  
= (2lr000a)1 

1—co 

exp- 	
('

~ 

2 1 	o 	 o 

On the completing the square for ji in the exponent and performing the 

integration, the result is 

1 	 { 	(t 1 ua ) 2  
f(t1) = 	 exp { -  _________ 

	

I. 	2(o+o) 
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Thus the marginal p.d.f.for t 1  is normal with mean Ua , the prior mean 

for -t, and variance o + o. Since a' o and o are assumed known, 

it is possible to use f(t 1 ) to make probability statements about t 1 , 

a fact that is often useful before t 1  is observed. 

Example 2.3 is an example of the well-known result that a 

convolution of two Normal distribution gives a Normal distribution. 

Two basic results are proved in Appendix 2, which will be used in the 

later chapters. 

2.2.4 Predictive probability density functions 

On many occasions, given sample information t, we are interested 

in making a probability statement about a 'new' observation t 1 , given 

t. In the Bayesian approach the p.d.f. for the 'new' observation t 1 , 

given sample information, can be obtained and is known as the 

predictive p.d.f.; for example, let t represent a vector of the 'new' 

observations. We write 

f(t,elt) = f(te,t) f(Olt) 	 (2.8) 

as the joint p.d.f. for t and a parameter vector 0, given the sample 

information t. On the right of (2.8) f(tIO,t) is the. conditional 

p.d.f. for t, given 0 and t, whereas f(0t) is the conditional p.d.f. 

for 0 given t, that is, the posterior p.d.f. for 0. Note that 

f(tlo,t) = f(tlo) since the 'new' and the past observations are 

assumed to be independent. To obtain the predictive p.d.f., f(it), 

we merely integrate (2.8) with respect to 0 that is 

f(tIl) = fn f(t,et) do 
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.fc) f(tle)  f(elt)  do. 	 (2.9) 

Again, equation (2.9) indicates that the predictive p.d.f. can be 

viewed as an average of conditional predictive p.d.f. 's. f(tlo), with 

the posterior p.d.f. for 0, f(Oft) serving as the weighting function. 

Examples for a wide range distributions can be found in Aitchison and 

Dunsmore (1975). 

2.2.5 Empirical Bayes method 

The empirical Bayes' method is employed in most chapters of this 

thesis to estimate a density function of an unknown parameter. 

Prominent amongst workers in this area are Robbins (1955), who 

pioneered the idea and adopted the terminology 'empirical Bayes 

approach', and Maritz (1970). Maritz (1970) described the approach 

as a 'hybrid' one. 

As an illustration of a Bayes' procedure suppose that data t, 

arise as an observation of a random variable, T. The distribution of 

T, specified by the probability model, is assumed to belong to some 

family. ?, indexed by a parameter e. It is assumed that the 

probability density function of the random variable T has a known 

form, f(tIe), depending on 0; but that 0 is unknown, except that it 

lies in a parameter space, CL For the purpose of the point 

estimation of the parameter 0, one could use the mode or the mean of 

the posterior distribution of 0, given the sample, t. Assume that 

the mean of the posterior distribution of 0 is the estimator of 0 and 

w(e) denotes the prior for 0 then, from (2.2) we could estimate 0 by 
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- 	In  0 f(tO) n(0) do 
e 1  (t) = 	 (2.10) 

In  f(te) ir(0) do 

So if the prior distribution were known, we would have in (2.10) a 

reasonable estimator of 0. In a typical empirical Bayes situation, 

it is assumed that in addition to the current observation t when the 

parameter value is 0, a set of 'past' observations t 1 ,... ,t obtained 

when the parameter values were e 1 ,....,e, say (these 0 values being 

known) is given. It is assumed that O (i=l,...,n) arise as a random 

sample from the prior distribution, ir(e), and that the ti (i=1 .... n) 

are independent sample observations arising under the values of 0. 

The previous observations 'reflect' the prior distribution, r(e) and, 

in the general empirical Bayes' approach, are used to estimate v(G) 

for use in Bayesian inference. In some cases direct estimation of 

v(G) is unnecessary and may be by-passed (see Maritz (1970)). 

If the estimation of the prior p.d.f is an objective of the 

problem and suppose v(o) depends on hyperparameters a € H, then from 

(2.9) the predictive density of t is given by 

f(tJ) = In  f(tie) v(OIu) do, 	t € S, 	u € H 

and one may use this integral equation to find values of a which 

support the fit of the predicted observation t (sampled from the 

population with density f(tlo)) or to fit past observations which 

were sampled from a population with density f(ticz). If one observes 

values t 1 , t2, ..., tn from this distribution, one may find values of 

compatible with these observations by the method of moments or 

maximum likelihood or some other principle of estimation (see Maritz 

(1970) for examples). Or one might put a known prior density on a 
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and estimate a from the conditional distribution of a given the 

predicted observations. 

One interest to many observers will be the extent to which 

Bayesians are able in practice to depart from the standard Bayesian 

model with a subjective guess of ii - , and can instead imbed the problem 

at hand as the (nF1)th  one in the empirical Bayes model, to yield and 

use a more formally described guess ir 1  based on the past n 

observations. To non-Bayesians, Robbins' model will seem much more 

acceptable in many practical settings than the original Bayesian 

formulation. For example, ti might be an observation of some 

biological charateristic of a worker i in a hospital or a large 

plant, and Gi an index of the underlying condition having an unknown 

distribution charateristic of this population of workers. 

2.2.6 Bayesian approach to hypothesis testing 

Suppose that there are two hypotheses H1 and Hi, with prior 

probabilities P(H1) and P(H). Let O denote the parameter vector 

associated with hypothesis Hi under which the p.d.f. for the 

observation vector t is f(t101) and Oj, the parameter vector 

associated with hypothesis H under which the p.d.f. for t is 

f(tI0). Then the posterior probability associated with H1 is given 

WA 

P(Hilt) = P(H1) f(tIH1) 	
(2.10) 

f(s) 

and similarly 
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P(H) f(tIH) 
P(HJt) = 	 (2.11) 

f(s) 

By Bayes' rule, the relative posterior probabilities of two 

hypotheses can be written as 

P(HiIt) 	f(tjH1) 	P(H1) 

P(HIt) 	f(tIH) 	P(H) 

The second factor in brackets is the prior odds ratio in favour of 

H1. The data-dependent term in the first set of brackets is the 

"Bayes' factor". 

The data are said to favour H1 relative to H if the Bayes' 

factor exceeds one, that is,- if the observed data t are more likely 

under hypothesis Hi than under hypothesis H. The densities of t, 

implied by the hypotheses in (2.10) and (2.11) are conditional on the 

parameters, u1 and 01  say, but may be straightforwardly "mixed" into 

a marginal density as 

f(tIH1 ) = Jui 
f 
oiz f(tIHj,uj,ol) f(ui,ofl dcl du 	(2.12) 

- 

where f(uj,o) is the prior density. 	The conditional p.d.f. 

f(tIHi,u1,ol) is a likelihood function of (uj.,ol), and (2.12) defines 

f(tIH1) as a weighted or marginal likelihood. 

The Bayes' factor may be contrasted with the likelihood ratio, 

which is used classically to summarize the data evidence. The 

likelihood ratio is 



ui f(tIu1,o,Hj) 

L(H1H) 	

f(tIu j oH) 

The Bayes' factor considers the ratio of the averages of the 

likelihood function over all value of (uj . , oi) and (UjOj). The 

likelihood ratio involves taking the ratio of maximised likelihood 

functions under H1 and Hj, a procedure that amounts to using maximum 

likelihood estimates as if they are true values of the unknown 

parameters. The Bayesian approach, however, presupposes prior 

distributions that can be used to weight the evidence at different 

values of the parameters. 

The Bayes' factor has been employed to make comparison of 

alternative models denoted by different hypotheses. Smith and 

Spiegeihalter (1980) used a Bayesian approach to comparing 

alternative nested linear models and provided a unified development 

of a number of model choice criteria by examining some prior 

specifications. A measure of the weight of evidence provided by the 

data for H1 against H Jeffrey (1939/83, appendix B), suggested the 

following grouping of the Bayes' factor into 'order of magnitude' 

based on the logarithmic scale 
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BF > I 	Evidence support H1. 

1 > BF > 10 	Evidence against Hi, but not 

worth more than a bare mention. 

10 	> BF > 10 Evidence against H1 substantial. 

10 	> BF > 10_3,"2 Evidence against H1 strong. 

10-3/2 > BF > 10 2  Evidence against H1 very strong. 

10 2  > BF Evidence against H1 decisive. 

These groupings are to be used in Chapter 6 to interpret the 

behaviour of the Bayes' factor. 

2.2.7 Hypothesis testing: A Judicial analogy 

This section establishes some judicial concepts and notations 

in conjunction with Chapter 3, though the words 'guilty' and 

'innocent' are in fact too strong for our model in Chapter 3, as 

explained earlier in Chapter 1. 

The subject of hypothesis testing in this context may be 

usefully introduced by an analogy. Based on the evidence presented, 

a judge and/or jury in a legal proceeding decide whether a defendant 

should be innocent or guilty. The assumption of innocence until 

proven guilty beyond a reasonable doubt explicitly favours the 

hypothesis of innocence. The hypothesis of innocence is taken as the 

null hypothesis; the hypothesis of guilt is taken as the alternative 

hypothesis. 

The more critical error - finding an innocent man guilty - is 

called an error- of the first kind or a type I error. Acceptance of 

the null hypothesis when it is in fact false - finding a guilty man 
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innocent - is called an error of the second kind or a type II error. 

Schematically we have 

Actions 

Find innocent 
	

Find guilty 
Hypotheses (States) 
	

(accept H0 ) 

	

(reject H0 ) 

H0 : 	Innocent 
	

I Type I error 

H 1 : 	Guilty 
	

I Type II error 

If a man is innocent, we want to have a low probability of 

finding him guilty. Let this probability be 

a = Pr (guiltyinnocent). 

Analogously, let 

= Pr (innocentguilty). 

If both a and 13 are defined before the judicial process commences, 

then the quality of the evidence may be predicted effectively. For 

example, a zero value of a amounts to the prediction that if the 

defendant is innocent, the evidence will be so unambiguous and the 

process by which a verdict is rendered will be so perfect that with 

probability one he will be justly found innocent. 

2.3 Random effects model 

The random effects models for the analysis of variance are also 

called variance-components models. The origin of the random effects 

models lie in astronomical problems, statisticians re-invented random 

effects models long after they were introduced by astronomers and 
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then developed more complicated ones. 

2.3.1 One-way classification model 

It is easiest to introduce the random effects model by an 

example. 	Young et al (1965) designed an experiment to study the 

maternal ability of mice. 	Weights of ten-day-old litters as a 

measure of maternal ability were used. Six litters from each of four 

dams, all of one breed, constitute the data. A suitable model for 

analysing the data is the one-way classification model 

t u  = A1 + e 	 (1=1,... ,n;j=l,. .. ,J) 	(2.13) 

where t.,, is the weight of the jth litter from the i' dam, A 1  being 

the 'true' mean weight for the ith  dam and e  the usual error term. 

These two random factors are assumed independent. 

Consider the A 1 'S and the dam they represent. The data relate 

to maternal ability, a variable that is assuredly subject to 

biological variation from animal to animal. 	The aim of the 

experiment is therefore unlikely to centre on specifically the 4 - 

female mice used in the experiment. 	After all, they are only a 

sample form a large population of mice, the females of the breed, 

each of which has some ability in a maternal capacity. The animals 

that are in the experiment are therefore envisaged as a random sample 

of 4 from a population of females. 

In the usual one-way random effects model, interest lies not in 

the difference between any one of the 4 mice and any other of them, 

in the experiment described above, but interest does lie in the 
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extent to which maternal ability varies throughout the population of 

mice, and to this end the model (2.13) is directed. 

The sampling process involved in obtaining such data is taken as 

being such that any one of many possible sets of data could be 

derived from repetitions of the data-gathering process. But now, in 

concentrating attention on repetitions, we do not confine ourselves 

to always having the same 4 mice - we imagine getting a random sample 

of 4 on each occasion from the population of mice. Thus the A1 t S, of 

the mice data described, are a random sample from a population of 

A's. Hence, so far as the data are concerned, the A 1 1 s therein are 

random variables and the model associated with this type of data is 

called random effects model or, sometimes, the random model. 

Eisenhart (1947) called it Model II, a name that continues to receive 

widespread use. 

Let the Aj's and e n 's of model (2.13) have variances 02 and o 

respectively. Then the variance of an observation is from (2.13), 

assuming independence between Ai and e,  o. 
2 = + o. The 

variances, o and o, are accordingly called variance components; 

each is a variance in its own right and is a component of o. The 

model is sometimes referred to as a variance components model. 

Estimation of the variance components and inferences about them are 

the objectives of using such a model. 

2.3.2 Analysis of variance 

The earliest methodology for the estimation of the variance 

components was to equate the analysis of variance sums of squares to 
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their expectations and solve the resulting system of linear eauations 

for estimates of the variance components. The methodology was 

developed by Daniels (1939) and Winsor and Clarke (1940), and the 

sampling properties of the estimators studied by Graybill (1954), 

Graybill and Wortham (1956), and Graybill and Hultquist (1961). For 

example, in the one-way random effects model, the between and within 

mean squares are equated to their expectations, giving analysis of 

variance estimates of the between and within components (See Searle 

(1971)). It is customary to summarise the results in a Analysis of 

Variance (ANOVA) table. The form for the one-way classification is 

given in Table 2.1. 

Table 2.1 Analysis of Variance for the one way classification 

Source of Sum of 	d.f. Mean Expected 	F-ratio 
variation I Square Square MS 

Between 
Within 

BSS 	n-I 
I 	WSS 	n(J-1) 

BSS/(n-1)=BMS 
WSS/n(J-1)=WMS 

o 2 + Jo 2 BMSIWMS 
0e 

Total 	i TSS 	N-I 

A Bayesian approach to the estimation of variance components 

problem was taken by Hill (1965,1967), who studied the one-way model 

and Tiao & Tan (1965, 1966). Stone and Springer (1965) criticized 

Tiao and Tan's choice of prior distribution. Box and Tiao (1973) is 

the first book on Bayesian analysis to deal with the variance 

components of random effects model. They give a very thorough 

treatment of the subject and the methodology is based on numerical 
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determination of the one- and two- dimensional marginal posterior 

distribution of the variance components. Broemeling (1985) gives a 

more general and basic theory of linear models from a Bayesian 

viewpoint. 

Another development of the analysis of variance problem is a 

maximum likelihood estimation technique given by Hartley and Rao in 

1967 and since then there have appeared many new methodologies 

including restricted maximum likelihood, minimum norm quadratic 

unbiased estimation or MINQUE, iterative MINIQUE, MIVGUE, or minimum 

variance quadratic unbiased estimation. Searle (1977) gave a summary 

of the recently developed methods. 

One difficulty which has concerned many of these writers is the 

so-called 'negative estimated variance' problem. For instance, under 

the one-way random effects model, with the assumption that the Ails 

and en's  are independent among themselves, the following unbiased 

estimator for o, the between group variance 

C
az = (BMS-WMS)/J 

where BMS and WMS are the Between and Within Mean Squares (see Table 

2.1), respectively, may, with positive probability, take a negative 

value. This problem does not occur if the Bayesian approach is 

employed. A second difficulty within the traditional framework is 

the sensitivity of inferences to the departures from the underlying 

assumptions. Scheffë (1959) showed that non-Normality in the A1s 

will have serious effects on the distributions of the criteria which 

one uses to make inference about the parameters in the one way model. 
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Tiao and All (1971) investigated the effect of non-Normality on 

inference about the variance components by assuming the distribution 

of Ai  was in a form of a mixture of two Normals. Their investigation 

concluded that inferences regarding the between group variance o are 

very sensitive to the Normality assumption. However, inference 

concerning the within group variance o is not so sensitive to 

failure of the distributional assumptions. 
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CHAPTER 3 

ESTIMATION OF BAYES' FACTOR IN A FORENSIC CONTEXT 

3.1 Introduction 

In Chapter 2 we have already seen the general Bayesian treatment 

of hypothesis testing and statistical modelling. This forms a 

foundation for modelling the forensic problem in this chapter. The 

Bayes' factor, or likelihood ratio, plays an important role in the 

assessment of forensic evidence. The general background of a 

forensic problem was briefly reviewed in Chapter 1. Here we consider 

a particular problem. The method developed here is applied to the 

cat hairs data, see Section 1.3. The most likely scenario is that a 

criminal would pick up cat hairs at the crime scene and the transfer 

of evidence would be from the crime scene to the criminal. A full 

consideration of the strength of the evidence would require knowledge 

of the probability that any suspect present at the crime scene may 

have picked up cat hairs from some innocent source. This possibility 

is not considered here and the assumption is made that hairs found on 

a suspect and assessed under the assumption of presence at the crime 

scene could only have come from the crime scene. This is done so 

that progress may be made in the evaluation of the evidence in the 

situation of relaxed assumptions from Lindley (1977) and Evett et al 

(1987). 

Background data collected by forensic scientists often have a 

random effects structure where the random effects do not have a 

Normal distribution. The methods of assessing these data compare 
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results obtained where a group structure in the background data is 

and is not assumed. and where the within group variance is and is not 

assumed known. The distribution of the random effects is modelled 

using kernel density estimation. Much of this chapter is published 

in Chan and Aitken (1989). 

3.2 Notation 

A crime is committed. A suspect is apprehended and transfer 

evidence is found which associates him with the crime scene. For 

example, cat hairs on his clothes may have come from a cat resident 

at the crime scene. The evidence is assessed by considering the 

probability of the evidence if the suspect was present at the crime 

scene and if he was not. 

In a view of the problem set out above, the following notation 

is used: 

Let C be the hypothesis that there is a contact between the suspect 

and the crime scene and let C be the hypothesis that there is no 

contact. The transfer evidence will be denoted by E and consists of 

two sets of data, X and Y, so that E=(X,Y). Data X =' (xj,...,xm) '  

are control data consisting of m measurements whose source is known, 

for example, measurements on representat'ive hairs from the cat at the 

crime scene. Data Y = (Y,.'•'Yr)' are recovered data consisting of 

r measurements and consist of measurements of material similar to 

that which provides the control data, taken from what is known as a 

receptor body. In the example described earlier they would be 

measurements of cat hairs taken from the suspect's clothing. If the 
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suspect was present at the scene of the crime then X and Y could have 

the same source. If the suspect was not present at the scene then X 

and Y have different sources. To assist in the evaluation of 

evidence there is a set, Z, of measurements, known as the training 

data, which is taken to be a representative sample of the whole 

population of measurements of the material of interest. The training 

data collected often has a random effects structure, that is, there 

are variations between and within individuals or items. Then it is 

neccessary to take this into account in modelling the Bayes' factor. 

The definition of 'grouped' or 'grouping' is that the data are 

generated from a random effects model. If the training data Z are 

said to be grouped, it means that Z are available in grouped form, 

namely, {Z; i=1,2,. . .,n, j=1,2,...,J) where n is the number of 

groups, J is the number of observations (assumed constant) in each 

group and Z. is the jth  observation in the 1th group. For example, 

the training data could consist of measurements from each of J hairs 

taken from each of n cats. Particular measurements (z) are assumed 

to be generated by a random effects model 

zu = 	+ c,j , 	i=1,2,. . . ,n; j=1,2 ... J 	 (3.1) 

where iz1 is a realisation of a random variable U1 in the ith group, 

denoting group membership. The U1's are independent, identically 

distributed and the distribution of U1 is not assumed to be Normal. 

The residual terms c. are assumed to be realisations of a random 

variable which is Normally distributed, independently of U, with 

mean 0 and a variance o2  constant over all groups. 
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3.3 Assumptions and general formulation of Bayest factor 

In Chapter 2, we have already established a Bayesian approach to 

hypothesis testing. Here under the notation in Section 3.2 we have. 

by Bayes rule, the relative posterior probabilities of two 

hypotheses given the evidence E, which can be written as 

Pr(CIE) 	Pr(EC) 1 	Pr(C) 

Pr(CIE) 	Pr(EC) J 	Pr(C) 

The second factor in brackets is the prior odds ratio in favour of C. 

The data-dependent term in the first set of brackets is the "Bayes' 

factor". The evidence is said to be in favour of C relative to C if 

the Bayes' factor exceeds one, that is , if the evidence E is more 

likely under hypothesis C than it is under hypothesis C. Here only 

the evidence E is used in measuring the weight of evidence, but in 

some occasions there are other factors may be take into 

consideration. A fuller exposition is given in Evett (1984). 

The interest here is the estimation of the Bayes' factor (BF) 

	

Pr(EIC)/Pr(EIC) 
	

(3.2) 

in the particular case where the training data Z are generated by a 

random effects model with a non-Normal distribution for the random 

effects. Strictly speaking, the probabilities in (3.2) are 

conditional on Z and this is assumed implicitly in what follows. 

In the example described earlier the observations are continuous 

measurements from hairs from individual cats and the data are taken 

to be continuous with E=(X,Y). Thus, the probability operators Pr in 
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(3.2) may be replaced by probability density functions f and the 

numerator of (3.2) may be written as 

Pr(EJC) = f(x,y(C) dx dy = f(vlx,C) dy x f(xJC) dx, 

where x and y are particular realisations of X and Y, respectively. 

The denominator of (3.2) is a product of two marginal probability 

density functions. If C is true then X and Y are independent and 

Pr(EIC) = f(xIC) dx x f(yC) dy. 

Also the probability density function of X is independent of C and C 

and so 

f(xIC) = f(xIC). 

Thus, the Bayes factor (3.2) reduces to 

f(ylx,C) 

f(yIC) 
(3.3) 

which is a ratio of predictive and marginal p.d.fs. of Y. 

In order to formulate the Bayes' factor (3.3), a further 

assumption is made: under the hypothesis C it is assumed that 

measurements of X and Y are Normally distributed about the true mean 

UC of their common source and have constant variance o.  

If C holds, the parameters of interest are ti c  and o,  denoted by 

o = ( UC, 02 ). The numerator of the Bayes factor may now be written as 

f(ylx,C) = f f(yO,C) x f(elx,c) do. 

The second term of the integrand is the posterior distribution of 0 
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given x and C. This is equal to 

f(xIO.C) x f(OIC) 

f(xIC) 

Here f(OIC)  is a prior distribution of e. The term f(xIC) equals 

5 f(xe,c) x f(91C) do. 

The conditional probability density function, f(xIO,C), for a 

particular value of X is a likelihood function of 0, and f(xIC) is 

defined as a weighted or marginal likelihood. 

If C holds the denominator f(yIC) is the density of Y implied by 

the hypothesis C and may be written as 

f(YE) = 5 
f(y*) 

x f(O*IC)de* 

where 0* = (* 2) and M Is the true, unknown, mean of the source of 

the measurements of Y. 	The values of the density functions are 

independent of C and C. 	The conditioning on C or C may now be 

dropped to give the Bayes' factor, as was shown by Lindley (1977), 

.1 f(yl 0 ) f(xIe) f(e) do 

S f(x0) f(e) do 5 
f(yf*) f ( e* )  de* 	

(3.4) 
 

The density functions f(0) and f(8*)  may be assumed to be equivalent 

since the assumption is made earlier that the between group random 

factor Ui is independent and identically distributed. Notice also 

that the structure of (3.4) is such that the difference between m c  

and is not important and hence the difference is ignored and both 

are denoted by u. 
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The factor (3.4) will be evaluated under four different sets 

of assumptions for the training data and the within-group variance o2 

as follows: 

 Training data grouped, within-group variance known. 

 Training data ungrouped, within-group variance known. 

 Training data grouped, within-group variance unknown. 

Training data ungrouped, within-group variance unknown. 

3.4 Sampling distribution of the control and recovered data 

If X consists of m measurements then a sufficient statistic for 

the true mean, if the variance o is assumed known, is the sample 

mean X, which is Normally distributed about the unknown true value 

with variance o 2/m. Similarly, Y denotes the mean of r 

measurements of V. Under C, Y is also Normally distributed with mean 

u and variance o 2 /r. The density functions f(yje) and f(xle) are 

replaced by the density function of V and X for cases 1 and 2 in 

Section 3.3, namely 

Vr f r(-gi)2 1 
exp - 	 (3.5) 

(2,To2) 	1 	202 	J 

and 

m(-i) 2  
exp - 	}. 	 (3.6) 

(2iro) 	 I. 	202 	j 

However for cases 3 and 4 in the previous section, if o 2  is unknown, 

the sample mean and variance of X are jointly sufficient for u and 

02. We can write f(xle) as f(x,S,jii,o 2 ) which can *be factorised to 

43 



give 

	

f(.Su,o 2 ) = f(u,o 2 ) x f(S(o 2 ), 	 (3.7) 

using the fact that Y and Sx  2  are statistically independent. Further 

the first term on the right of (3.7) is a Normal density function and 

the second term is a x 2  density function with (n-i) degrees of 

freedom. Similarly f(ylu , o 2 ) can be expressed as f(Y , SIu,o 2 ), that 

is, 

	

f(Y,SIu,° 2 ) = f(VIu,o 2 ) x f(So 2 ). 	 (3.8) 

The joint density functions (3.7) and (3.8) are usually written in 

the form of a Normal-gamma function. 

3.5 	Estimation of the Bayes' factor 

3.5.1 Distribution of the group population mean u 

The formula of the Bayes' factor in (3.4) required the knowledge 

of the probability density function f(e) where 0 = The joint 

probability density function of the unknown parameters (u, 02 ) can be 

factorised as follows, assuming independence between the unknown 

parameters, 

f(9) = f(u,o 2 ) = f(UV) x f(o 2 ). 	 (3.9) 

where t denotes one or more nuisance parameters, either assummed 

known or unknown. If o2  is known, (3.9) reduces to 1(u). Whereas if 

0 2  is unknown, one has to specify the probability density function 

f(o 2 ) in modelling the Bayes' factor. This will be discussed where 

appropriate in the later sections. 
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As mentioned earlier the distribution of the unknwon parameter a 

is relevant in the evaluation of weight of evidence. So an 

informative prior for a is used. In Section 3.2, it is assumed that 

the distribution of U has been taken to be non-Normal so a Normal 

prior distribution for U cannot be used. Instead a kernel density 

estimate is used to construct the distribution of ,i  based on the 

training data. This method of acquiring the prior distribution for 

an unknown parameter is so called the Empirical Bayes (EB) method. 

Brief details of the EB method is described in Section 2.2.5. The 

distribution of ii is to be estimated under the assumption that the 

training data is grouped or not grouped. 

a. Assumed grouped training data 

Since the training data is grouped, the existence of a random 

structure in the training data suggests that the group means 2i .  may 

be used as the data points in constructing the kernel density 

estimate for f() where 

I J 
zi . = - E 

Jj=1 

The sample variance of the group means is given by 

1 	n 
S 2 	 r(7i . -Y .. ) ,  

(n-i) i=l 

n 
where 2..= 	2i . /n. Adopting the method due to Habbema, Hermans 

i=I 
and van den Broek (1974) (see Section 2.1.3 for details) in a 

univariate case, the kernel prior density for a, assuming the 

training data are grouped, is then given by 
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r 
-' 	 1 	n 	I 	 I 	

f ._ . 
 

f(Lt) = - 	 exp - 	 . 	 (3.10) 
1=1 (27rs2x) 	t. 	2s> 

The smoothing parameter for the kernel density estimate is denoted by 

X, and its estimate, > , is determined by the pseudo-maximum 

likelihood method. 

Note that fi .  is used as a substitute for i. The discrepancy 

in the results that this will cause is small when J is large as in 

the case discussed here where J = 10, but it may be important if .1 

were small; such as 2 or 3. Sensitivity analysis of small changes in 

to the Bayes' factor are examined later in this chapter to 

measure this importance. 

b. Assumed ungrouped training data 

If the grouping of the training data is ignored, then the 

training set may be represented as 

Z = (Z1,Z2, .... ZN)T 

where N = nxJ. 	The training data may be thought of as one 

observation from each of N items. Let the sample variance of the 

full data set ignoring grouping be given by 

1 	N 
S 1 2  = _____ E 

N-I P=1 

The estimate X of the smoothing parameter X 2  is obtained using 

pseudo-maximum likelihood techniques as in part a of this section and 

the kernel prior density for u is now given by 
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1 	N i 	I 	(iz 	1 
f(LL) = - E 	 exp - 	 . 	(3.11) 

N 21 (21Ts2X) 	I 	2s 2 X 	J 

Again the discrepancy in the results of the substitution of u1 by z 2  

is small if N is sufficiently large. 

3.5.2 Training data grouped, within-group varinace known 

Under the assumption of known within-group variance 02,  the 

parameter vector e in Section 3.3 is just a scalar u. The numerator 

of (3.4) may be represented as 

I f(ylu)  f(xI ,i) f(t) du. 

The "known" value of the within-group variance o2  is taken to be 

the sample estimate 

	

1: 	
r=  n(J-1) i1 	

(zu_j) 2 . 	 ( 3.12) 

The conditional density functions of Y and of X are given by 

(3.5) and (3.6) respectively. Upon combining (3.5), (3.6) and (3.10) 

and integrating over u, the numerator of (3.4) may be written as 

1 
exp - 

(2lTabkno) 
E ex  

(Y) 2  1 n 	I  2a22 J 1=1 	 2b 
(3.13) 

where a 2  = m 1  + r 1 , bk = 	+ ( 2/k) k = m + r, w = (m + r)/k. 

In view of Section 2.2.4, the marginal density functions of X 

and Y may be obtained by combining (3.6) with (3.10) and (3.5) with 

(3.10), respectively. The denominator of (3.4) is then the product 

of these two marginal density functions and is given by 
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1 	1 	r 	
) 2 1 	n 	 ) 

2  

I t exp 
2bmbrfl 2  [ i=1 	 2b 	I 	exp - 	2b 	I 	(3.14) 1=1 

The ratio of expression (3.13) and (3.14) is the B ayes ? factor for 

the assumptions of grouped training data and known within-group 

variance. 

3.5.3 Training data ungrouped, within-group variance known. 

It is instructive to investigate the effect of the grouping on 

the estimation of the Bayes' factor. Normally, an analysis of 

variance would be done to investigate the between- and within-group 

variances. This will be discussed in the next chapter. The 

implications of the results of such an investigation for the 

estimation of the Bayes's factor are of interest. The investigation 

of the effect of the grouping is done by evaluating the Bayes' factor 

under the assumption that the training data are not grouped. 

The "known" value of o2 is taken to be the same as (3.12) for 

direct comparison with the results of Section 3.5.2. In a similar 

manner to Section 3.5.2, the marginal density functions for f(y) 

and f(xfu) are given by (3.5) and (3.6) and f(i) is given by (3.11). 

After some simplifications and integration, the numerator of (3.4) is 

then given by 

1 	 f 	()2 
 1 	N 	I (w_z2)2 

exp - 	I E exp - 
(27rab1N) 	I. 	2a 2 ; 2  J i=1 	(. 	2b 2  

(3.15) 

where 	b2 = 	s' 2 X 	- 	(; 2 /k) and 	a, w, 	k are 	as 	before 	(see 	after 

(3.13)). The denominator of (3.4) 	is given by 
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1 	N 	I 	(-z2) 2  •i 	N 	

f 	

(-zQ)2 1 1. 	(3.16) Z exp 	 I E exp - ________ 
2irbb.N 2 	L i=1 	2b' 2 	j 1=1 	 2b 	J J m 

The ratio of expressions (3.15) and (3.16) is the Bayes' factor for 

the assumptions of ungrouped training data and known within-group 

variance. 

3.5.4 	Training data grouped, within-group variance unknown. 

Here we assume the training data have a grouped structure and 

the within-group variance 02  is unknown. For convenience alone, the 

unknown within-group variance o2  is to be replaced by a new parameter 

0- 2 called the precision which is a measure of precision for the 

within-group Normal distributions. We express the prior in terms of 

i-  and the conjugate prior density function for -r is given by 

{/2}a0/2 7(o0-2)/z 

f(r) = 	
r(0/2) 	

exp 	
2 	J 

	 (3.17) 

If the two components of 0 = (.t,o 2 ) are assumed to have independent 

priors then the prior density for 0 can be expressed as the product 

of the prior densities f(12) and f(-r) where f(z) has an estimate in 

the form of (3.10). An informative prior for -r is obtained from the 

training set Z with u and 8, estimated by 

= n(J-1) and 	
=i1 

E(z ii-ii  )2, 

respectively. Under the assumption of unknown within-group variance, 

the density function f(yz,0 2 ) in (3.4) is a joint probability 

density function of , the sample mean, and s, the sample variance. 
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Similarly we could obtain f(xI,o 2 ) as f(.su.o 2 ) (see Section 3.4 

for details). Before proceeding, some notation is required. Let 

sxx =(x 
- 	 Syy  =q1 (Yg 	V)z 

H1 = D o + 	 H2 = 	+ Syy
, 

 

H =H 1 +s~ 
a2  

n 	I 	(i - 	 .)2 

 1 
S 1 (u) = E exp  i=1 	[ 	2s 2 x z, J 

Ig(X) 
=

S1(t) FOD (1 + mH71( - 

I g (Y) = 	
() 

(1 + rH(u - 

CO 

(W) 	
S1(i) 

I g   F. {l + (r+m)IF'(,i - 

D(t,u,v) = r(t)r(u)r(v) I r(t+u+v), r(t) = ro  s t 	e 	ds. 

After tedious manipulations and simplifications, the numerator 

f(ylx,C) in (3.3), which can be summarised as 	 may 

be estimated by 

$F 3)/2  r HPD+ao )/ 2  H-(m+r+%)12 (I 9(W))- 
	 (3.18) 

[D{(m-i- 0 )/2,(r--1)/2,1/2)] x {I g (X)} 

The denominator f(yC) in (3.3) is estimated by 

s 3 )/ 2  r M Aa,/2 (2n2s2X) 

[D{( 0 /2,(r-1)/2,1/2)] x H 2 (r o )/ 2  X Ig(Y) 
	 (3.19) 

The ratio of (3.18) and (3.19) is the Bayes' factor for the 
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assumptions of grouped training data and unknown within-group 

variance. This is not the ratio of two vague priors and thus 

problems caused by undefined constants do not arise (Spiegeihalter 

and Smith (1982)). 

3.5.5 Training data ungrouped, within-group variance unknown. 

It is assumed that the training data have no grouping structure 

and the variance o , defined in Section 3.4, is assumed to be not 

known. Then strictly speaking no information is available on 02,  so 

a vague prior for -r, the precision where -r = o, is used, namely 

f(i- ) = 	
, 	 -r > 0. 

The prior density of f(u) is estimated with the estimate given by 

(3.11). 	Using a similar argument as in Section 3.5.4, we obtained 

the joint probability density function of X and S and of Y and 	in 

place of f(xlu,o 2 ) and f(yIM,0 2 ) in (3.4) with 0 = 	 After 

some simplifications the Bayes' factor (BF) can be estimated as 

BF = 
	{s2s42Nzst (2i7)Ig(NW)} 

{B(r/2 , m/2)H(m)/ 2 I g (NY)I g (NX)) 

where 	B(u,v) = 

I g (NW) = J 	S2 GO 

-w 
{1+(r+m)H_1(_w)2}(4m)h'2 

Ig(NY) 	J 	S2(i.z) = 	 du,
- {1 ~rs(,l_y)2}n/'2 

yy 

J 	S2(u) I g (NX) = F. 
 {1±ms(u_)2}m/'2 

du, 
 xx 

du, 
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Nf 	(I-z2) 2  
S2(.t) = Z exp  

2=1 	{ 	2S?2 ) 

I (V - 5)2 

Hsxx+syv+ I 	a 2  

This Bayes' factor exists only when m and r are both greater 

than 1. If either in or r equals 1, it is zero. 

3.6 	Example 

Data are available on 10 (J=10) hairs from each of 22 cats 

(n=22) to form the training set Z. The measurement taken is the 

value of the medullary fraction, the ratio of the width of the 

central core of the hair to the total width of the hair. The 

measurements are restricted to the interval (0,1). In practice, for 

cat hairs, they are sufficiently far removed from the ends of the 

interval being mainly in the interval (0.5,0.8) that this constraint 

should not be important for kernel density estimation and 

consequently the formulation of the Bayes' factor. The 22 group 

means from which the prior density of t is obtained are shown in 

Table 3.1. The kernel density estimates for the prior density of u 

described in Section 3.5.1 using the ordinary and adaptive kernel 

method under the assumption of the training data are grouped or not 

grouped are plotted in Fig. 3.1. The adaptive kernel estimate has a 

longer tail than the ordinary kernel. 

The Bayes' factor was evaluated for each of the four models 

[(3.5.2) to (3.5.5)] for different numbers of observations in the 

control and recovered measurements. In practice, we could always 
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Fig. 3.1 Kernel density estimates For the prior density of' p 
using (o) 220 car hairs (i.e. 15 are uncrouped) and 
(b) 22 group means (i.e. T5 are grouped); solid line 
represents the ordinary kernel met-hod and dash line 
represents the adaptive kernel met-hod. 
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ensure the number of control measurements is greater than the number 

of recovered measurements since we could take as many observations 

from the control as necessary, subject to constraints on laboratory 

resources. Different pairings of r and m will be chosen from, in 

this example, 1, 5 and 10. The value of m will always be at least r. 

The total number of combinations (r,m) for these chosen values is 6, 

that is (1,1), (1,5), (1,10), (5,5), (5,10) and (10,10). The results 

from the assumed known within-group variance model are presented in 

Tables 3.2 - 3.7 for these respective combinations. Tables 3.2' - 

3.7' show the results from the assumed unknown within-group variance 

model derived in Section 3.5.4 and 3.5.5. For example, Table 3.2 

refers to the situation in which there is one control hair (m=1) and 

one recovered hair (r=1) with Table 3.3 referring to the situation 

with m=5, r=1 and so on. 	For these Tables the control hair 

measurement (X) has three possible values 0.4, 0.6 and 0.8. 	The 

recovered hair measurement (Y) takes values from 0.10 to 0.90 in 

steps of 0.05. 

Table 3.1 The Ordered 22 Group means 

Group 	1 	2 	3 	4 	5 	6 	7 	8 	9 
.5096 .5854 .5920 .6057 .6360 .6401 .6572 .6582 .6702 

Group i 	10 	11 	12 	13 	14 	15 	16 	17 	18 
.6723 .6783 .6797 .6850 .6901 .6966 .7132 .7364 .7366 

Group i 	19 	20 	21 	22 
.7451 .7530 .7671 .8187 
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Table 3.2 Bayes factor (with ordinary kernel) as 	function of Y 
assuming 2  known given some values of X for r=l & m=1. 

TS 	I Grouped I Ungrouped 

X 	
i 0.4 0.6 0.8 0.4 0.6 0.8 

0.10 24.485 0.0090 0.0000 16.858 0.0118 0.0000 
0.15 	I 28.543 0.0214 0.0000 I 	18.371 0.0231 0.0000 
0.20 30.932 0.0484 0.0000 19.234 0.0452 0.0000 
0.25 	I 30.987 0.1045 0.0000 I 	19.203 0.0884 0.0000 
0.30 28.389 0.2146 0.0001 I 	18.043 0.1731 0.0000 
0.35 	I 23.336 0.4147 0.0007 I 	15.607 0.3342 0.0003 
0.40 16.717 0.7342 0.0035 I 	12.017 0.6157 0.0018 
0.45 10.090 1.1454 0.0144 I 	7.8943 1.0299 0.0085 
0.50 5.0228 1.5197 0.0488 I 	4.2407 1.4842 0.0348 
0.55 2.0765 1.6934 0.1354 I 	1.8106 1.7698 0.1144 
0.60 	I 0.7342 1.6009 0.3130 I 	0.6157 1.7245 0.2958 
0.65 	I 0.2287 1.3057 0.6170 0.1728 1.3965 0.6156 
0.70 	J 0.0638 0.9284 1.0555 0.0419 0.9629 1.0687 
0.75 0.0159 0.5771 1.5782 I 	0.0090 0.5729 1.5853 
0.80 	I 0.0035 0.3130 2.0648 I 	0.0018 0.2958 2.0299 
0.85 0.0007 0.1478 2.3608 I 	0.0003 0.1338 2.2600 
0.90 0.0001 0.0609 2.3612 	I 0.0000 0.0536 2.2003 

Table 3.3 Bayes' factor (with ordinary kernel) as _a function of Y 

assuming o2  known given some values of X for r=1 & in=5. 

TS 	I Grouped I Ungrouped 

X 	I 0.4 0.6 0.8  1 	0.4 0.6 0.8 

0.10 	I 63.087 0.0000 0.0000 I 	35.105 0.0000 0.0000 
0.15 	I 89.878 0.0002 0.0000 I 	44.233 0.0001 0.0000 
0.20 	I 108.35 0.0014 0.0000 50.175 0.0008 0.0000 
0.25 	I 109.62 0.0081 0.0000 I 	50.606 0.0044 0.0000 
0.30 	I 91.720 0.0389 0.0000 I 	44.485 0.0217 0.0000 
0.35 61.907 0.1533 0.0000 33.020 0.0918 0.0000 
0.40 32.476 0.4749 0.0000 19.755 0.3194 0.0000 
0.45 	I 12.665 1.1050 0.0002 1 	8.9830 0.8622 0.0001 
0.50 	I 3.5478 1.8642 0.0018 I 	2.9233 1.6988 0.0014 
0.55 	I 0.7094 2.2629 0.0128 I 	0.6510 2.3326 0.0115 
0.60 	I 0.1032 2.0110 0.0653 0.0982 2.2043 0.0652 
0.65 	I 0.0112 1.3393 0.2497 0.0103 1.4683 0.2598 
0.70 0.0009 0.6791 0.7266 I 	0.0008 0.7144 0.7511 
0.75 	I 0.0001 0.2637 1.6190 I 	0.0000 0.2597 1.6143 
0.80 	I 0.0000 0.0784 2.7612 I 	0.0000 0.0714 2.6111 
0.85 	I 0.0000 0.0178 3.5981 I 	0.0000 0.0150 3.2138 
0.90 	I 0.0000 0.0031 3.5873 I 	0.0000 0.0024 3.0439 
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Table 3.4 Bayes' factor (with ordinary kernel) as_a function of V 
assuming o2 known given some values of X for r=1 & m=10. 

TS 	I Grouped f Ungrouped 

X 	I 0.4 0.6 0.8 j 	0.4 0.6 0.8 

0.10 73.453 0.0000 0.0000 39.212 0.0000 0.0000 
0.15 112.13 0.0001 0.0000 52.524 0.0000 0.0000 
0.20 140.28 0.0006 0.0000 ( 	61.675 0.0003 0.0000 
0.25 	I 142.62 0.0042 0.0000 I 	62.666 0.0020 0.0000 
0.30 	J 116.07 0.0251 0.0000 53.973 0.0126 0.0000 
0.35 	I 73.749 0.1185 0.0000 I 	38.147 0.0654 0.0000 
0.40 	f 35.232 0.4225 0.0000 I 	21.101 0.2678 0.0000 
0.45 	I 12.098 1.0186 0.0001 8.6045 0.8158 0.0000 
0.50 2.8841 1.9455 0.0007 2.4327 1.7366 0.0006 
0.55 	J 0.4740 2.4095 0.0063 0.4553 2.4664 0.0059 
0.60 	I 0.0547 2.1008 0.0405 0.0558 2.3081 0.0420 
0.65 0.0045 1.3206 0.1871 0.0046 1.4586 0.2001 
0.70 0.0003 0.6082 0.6330 	I 0.0003 0.6455 0.6654 
0.75 0.0000 0.2065 1.5782 	I 0.0000 0.2049 1.5832 
0.80 	I 0.0000 0.0517 2.8996 	( 0.0000 0.0472 2.7294 
0.85 0.0000 0.0095 3.9191 	I 0.0000 0.0080 3.4491 
0.90 	I 0.0000 0.0013 3.9021 0.0000 0.0010 3.2323 

Table 3.5 Bayes' factor (with ordinary kernel) as _a function of Y 
assuming o 2  known given some values of X for r=5 & in=5. 

TS 	I Grouped I Ungrouped 

X 0.4 0.6 0.8 0.4 0.6 0.8 

0.10 	I 0.0001 0.0000 0.0000 0.0014 0.0000 0.0000 
0.15 	I 0.0139 0.0000 0.0000 0.0492 0.0000 0.0000 
0.20 0.6076 0.0000 0.0000 I 	0.8462 0.0000 0.0000 
0.25 9.9717 0.0000 0.0000 I 	7.2660 0.0000 0.0000 
0.30 61.468 0.0000 0.0000 I 	30.587 0.0000 0.0000 
0.35 141.32 0.0000 0.0000 I 	60.833 0.0000 0.0000 
0.40 118.19 0.0003 0.0000 53.087 0.0002 0.0000 
0.45 33.418 0.0189 0.0000 I 	17.197 0.0151 0.0000 
0.50 	I 27.353 0.4002 0.0000 I 	1.5716 0.3588 0.0000 
0.55 0.0556 2.2709 0.0000 I 	0.0362 2.3084 0.0000 
0.60 	I . 	0.0003 3.3696 0.0001 I 	0.0002 3.8239 0.0001 
0.65 	I 0.0000 1.4239 0.0076 I 	0.0000 1.6015 0.0072 
0.70 	( 0.0000 0.1809 0.2222 I 	0.0008 0.1943 0.2127 
0.75 0.0000 0.0069 1.9655 0.0000 0.0069 1.8308 
0.80 0.0000 0.0001 5.1782 I 	0.0000 0.0001 4.5297 
0.85 	I 0.0000 0.0000 4.0271 I 	0.0000 0.0000 3.3788 
0.90 0.0000 0.0000 0.9487 I 	0.0000 0.0000 0.8231 
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Table 3.6 Bayes  factor (with ordinary kernel) as_a function of Y 
assuming 2  known given some values of X for r=5 & m=10. 

TS Grouped Ungrouped 

X 

I 
0.4 0.6 0.8 I 	0.4 

I 
0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.15 0.0005 0.0000 0.0000 0.0028 0.0000 0.0000 
0.20 0.0989 0.0000 0.0000 I 	0.1685 0.0000 0.0000 
0.25 4.8677 0.0000 0.0000 I 	3.7403 0.0000 0.0000 
0.30 61.206 0.0000 0.0000 ( 	29.492 0.0000 0.0000 
0.35 194.83 0.0000 0.0000 78.860 0.0000 0.0000 
0.40 	( 152.49 0.0000 0.0000 ( 	65.483 0.0000 0.0000 
0.45 27.049 0.0037 0.0000 I 	13.967 0.0026 0.0000 
0.50 0.9175 0.2236 0.0000 I 	0.5603 0.1838 0.0000 
0.55 0.0050 2.2942 0.0000 I 	0.0036 2.2649 0.0000 
0.60 	I 0.0000 3.8949 0.0000 0.0000 4.4520 0.0000 
0.65 0.0000 1.2060 0.0008 I 	0.0000 1.3694 0.0008 
0.70 0.0000 0.0725 0.0838 I 	0.0000 0.0776 0.0830 
0.75 	I 0.0000 0.0009 1.6281 0.0000 0.0008 1.5356 
0.80 0.0000 0.0000 6.0745 0.0000 0.0000 5.2434 
0.85 0.0000 0.0000 4.3130 I 	0.0000 0.0000 3.4956 
0.90 	J 0.0000 0.0000 0.5992 ( 	0.0000 0.0000 0.5013 

Table 3.7 Bayes' factor (with ordinary kernel) as _a function of Y 

assuming 2  known given some values of X for r=10 & 
M=10. 

TS Grouped I Ungrouped 

X 0.4 0.6 0.8 I 	0.4 0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.15 	I 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.20 0.0000 0.0000 0.0000 f 	0.0001 0.0000 0.0000 
0.25 	( 0.0529 0.0000 0.0000 I 	0.0598 0.0000 0.0000 
0.30 9.0059 0.0000 0.0000 5.0831 0.0000 0.0000 
0.35 144.78 0.0000 0.0000 	. 59.473 0.0000 0.0000 
0.40 215.51 0.0000 0.0000 87.378 0.0000 0.0000 
0.45 27.735 0.0000 0.0000 13.189 0.0000 0.0000 
0.50 	I 0.2581 0.0323 0.0000 I 	0.1375 0.0289 0.0000 
0.55 	I. 0.0001 1.5986 0.0000 0.0001 1.6040 0.0000 
0.60 	I 0.0000 4.7781 0.0000 I 	0.0000 5.5142 0.0000 
0.65 	I 0.0000 0.9599 0.0000 I 	0.0000 1.0924 0.0000 
0.70 	I 0.0000 0.0139 0.0173 0.0008 0.0151 0.0163 
0.75 	I 0.0000 0.0000 1.3620 0.0000 0.0000 1.2453 
0.80 	I 0.0000 0.0000 7.5926 I 	0.0000 0:0000 6.4428 
0.85 	I 0.0000 0.0000 2.9701 	I 0.0000 0.0000 2.4168 
0.90 	I 0.0000 0.0000 0.0848 	I 0.0000 0.0000 0.0751 
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Table 3.2' Bayes' factor(with ordinary kernel) 
as a function of Y assuming 2  unknown 

given some values of X for r=1 & m=1. 
Grouped model 

X 0.4 0.6 0.8 

0.10 24.984 0.0199 0.0000 
0.15 28.161 0.0362 0.0000 

0.20 30.103 0.0674 0.0000 

0.25 	I 30.106 0.1266 0.0000 
0.30 	( 27.690 0.2372 0.0003 

0.35 22.879 0.4329 0.0013 

0.40 16.459 0.7432 0.0050 

0.45 	I 9.9635 1.1446 0.0176 

0.50 4.9746 1.5150 0.0539 

0.55 2.0697 1.6910 0.1410 
0.60 	I 0.7432 1.6011 0.3167 
0.65 0.2392 1.3054 0.6173 
0.70 0.0708 0.9272 1.0537 

0.75 0.0195 0.5774 1.5768 
0.80 	I 0.0050 0.3167 2.0627 
0.85 	I 0.0012 0.1539 2.3536 
0.90 0.0003 0.0672 2.3482 

Table 3.3' Bayes' factor (with ordinary kernel) 

as a function of Y assuming o2  unknown 
given some values of X for r=1 & in=5. 
Grouped model 

X 0.4 0.6 0.8 

0.10 	I 70.716 0.0002 0.0000 
0.15 	( 92.013 0.0009 0.0000 
0.20 	I 106.42 0.0035 0.0000 
0.25 106.47 0.0139 0.0000 

0.30 89.420 0.0521 0.0000 
0.35 60.827 0.1750 0.0000 
0.40 32.096 0.4969 0.0000 
0.45 	I 12.556 1.1128 0.0003 
0.50 3.5344 1.8580 0.0025 
0.55 0.7184 2.2575 0.0147 
0.60 	I 0.1092 2.0102 0.0688 
0.65 	I 0.0130 1.3381 0.2528 
0.70 	I 0.0013 0.6789 0.7265 
0.75 	I 0.0001 0.2668 1.6169 
0.80 	f 0.0000 0.0825 2.7573 
0.85 	I 0.0000 0.0204 3.5834 
0.90 0.0000 0.0042 3.5646 
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Table 3.4' Bayes' factor (with ordinary kernel) 
as a function of Y assuming o 2  unknown 

given some values of X for r=l & m=10. 
Grouped model. 

X 0.4 0.6 0.8 

0.10 	I 84.555 0.0001 0.0000 

0.15 115.93 0.0003 0.0000 

0.20 	I 138.03 0.0016 0.0000 

0.25 138.42 0.0079 0.0000 

0.30 	I 113.10 0.0353 0.0000 

0.35 72.487 0.1385 0.0000 

0.40 34.848 0.4462 0.0000 

0.45 12.004 1.0968 0.0001 

0.50 	I 2.8760 1.9395 0.0010 

0.55 0.4816 2.4036 0.0075 

0.60 	I 0.0585 2.0999 0.0432 
0.65 0.0054 1.3194 0.1901 

0.70 0.0004 0.6084 0.6332 

0.75 0.0000 0.2096 1.5762 

0.80 0.0000 0.0550 2.8959 

0.85 	I 0.0000 0.0112 3.9032 

0.90 0.0000 0.0018 3.8782 

Table 3.5' Bayes' factor (with ordinary kernel) as a_function of V 

assuming o2  unknown given some values of X for r = 5 & 
m = 5. 

TS 	I 
	

Grouped 
	

Ungrouped 

0.4 	0..6 	0.8 
	

0.4 	0.6 	0.8 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.0021 
0.0577 

1.0879 

11.836 

62.701 

140.02 

117.41 

33.241 

2.8002 

0.0657 

0.0005 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0005 

0.0224 

0.4105 

2.2657 

3.3663 

1.4215 

0.1854 

0.0081 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0090 

0.2278 

1.9614 

5.1695 

4.0145 

0.9722 

0.0491 

0.1234 

0.3785 

1.3892  

5.0196 

12.812 

14.829 

5.1156 

0.7783 

0.1037 

0.0163 

0.0032 
0.0009 

0.0004 

0.0002 

0.0002 

0.0003 

0.0019 

0.0032 

0.0054 

0.0082 

0.0100 

0.0107 

0.0163 

0.0466 

0.2003 

0.8103 

1.3917 

0.5810 

0.1120 

0.0214 

0.0055 

0.0022 
0.0015 

0.0006 

0.0007 

0.0008 

0.0008 

0.0006 

0.0003 

0.0002 

0.0003 

0.0006 

0.0017 

0.0055 

0.0227 

0.1230 

0.6636 

1.6496 

1.1455 

0.4065 



Bayes' factor (with 
assuming o z  unknown 

m 

Grouped 

0.4 	0.6 	0.8 

Ungrouped 

0.4 	0.6 	0.8 

ordinary kernel) as a_fucntion of Y 
given some values of X for r = 5 & 

Table 3.6' 

TS 

V 

	

0.10 	I 

	

0.15 	I 

	

0.20 	I 

	

0.25 	I 

	

0.30 	I 

	

0.35 	I 
0.40 I 

	

0.45 	I 

	

0.50 	I 

	

0.55 	I 
0.60 I 

	

0.65 	I 

	

0.70 	I 
0.75 

	

0.80 	I 

	

0.85 	I 

	

0.90 	I 

0.0001 

0.0052 

0.2587 

6.5203 

63.841 

193.32 

151.69 
26.969 

0.9650 

0.0068 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0049 

0.2351 
2.2911 

3.8920 

1.2053 
0.0763 

0.0011 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0011 

0.0882 

1.6268 

6.0666 

4.3040 

0.6292 

0.0027 

0.0155 

0.1106 

0.8968 

6.0852 

21.853 

24.453 

5.6768 

0.4308 

0.0243 

0.0016 

0.0001 

0.0008 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0003 

0.0005 

0.0010 

0.0029 

0.0168 

0.1436 

0.9760 

1.9515 

0.6123 

0.0636 

0.0057 

0.0007 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0007 

0.0058 

0.0682 

0.6870 

2.3037 

1.4534 

0.3370 

Table 3.7' Bayes' factor (with ordinary kernel) as a_function of Y 

assuming 2  unknown given some values of X for r = 10 & 
in = 10. 

TS 	I Grouped I Ungrouped 

X 	I 0.4 06 0.8 0.4 0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 0.0059 0.0000 0.0000 
0.15 	I 0.0000 0.0000 0.0000 0.0395 0.0000 0.0000 
0.20 	I 0.0003 0.0000 0.0000 I 	0.2706 0.0000 0.0000 
0.25 	I 0.1060 0.0000 0.0000 I 	1.3747 0.0000 0.0000 
0.30 10.226 0.0000 0.0000 6.4308 0.0000 0.0000 
0.35 144.70 0.0000 0.0000 I 	31.078 0.0000 0.0000 
0.40 214.75 0.0000 0.0000 47.386 0.0001 0.0000 
0.45 27.771 0.0001 0.0000 I 	7.5511 0.0017 0.0000 
0.50 0.2922 0.0365 0.0000 0.2250 0.0482 0.0000 
0.55 	I 0.0003 1.6028 0.0000 I 	0.0044 0.9458 0.0000 
0.60 	I 0.0000 4.7769 0.0000 I 	0.0001 3.1469 0.0000 
0.65 	I 0.0000 0.9626 0.0000 I 	0.0000 0.6480 0.0008 
0.70 	( 0.0000 0.0157 0.0196 	I 0.0000 0.0253 0.0027 
0.75 0.0000 0.0000 1.3657 0.0000 0.0008 0.7390 
0.80 	I 0.0000 0.0000 7.5877 	I 0.0000 0.0000 3.6917 
0.85 0.0000 0.0000 2.9767 	I 0.0000 0.0000 1.4134 
0.90 0.0000 0.0000 0.0961 	I 0.0000 0.0000 0.1221 

M. 



Various features of the Bayes' factor are apparent from the 

Tables 3.2 - 3.7. The results in Table 3.7 for any given model and 

value of X are much less variable than those in Table 3.2, reflecting 

the intuitive feeling that a more precise evaluation of the weight of 

evidence will be obtained due to the increasing number of control and 

recovered observations. The values of X were chosen to be of varying 

degrees of rarity for the value of the medullary fraction in cat 

hairs. The value of 0.6 is fairly common, that of 0.8 not so common 

and that of 0.4 quite rare. Suppose the control and recovered hairs 

have similar mean values for the medullary fraction measurements. It 

is desirable that a measure of the weight of evidence should give 

less weight to this similarity if the mean values are relatively 

common than if they are relatively rare. Medullary fraction values 

of about 0.6 are relatively common, those of about 0.4 are relatively 

rare. Thus, from Table 3.7, if X and Y are identical, far greater 

weight is given to the evidence if X and Y equal 0.4 than if they 

equal 0.6. A comparison of these results with those of Table 3.2 

show that more weight is given to the match if more (r=m=l0) hairs 

are involved than if few (r=in=l) hairs are involved. Notice that in 

Tables 3.2 - 3.7 and 3.2'-.3.7', there is little difference between 

the results obtained for grouped TS model from the assumed known and 

unknown within-group variance models. This is because the 

informative prior for -r used in the assumed known variance model is 

based on n(J-1) degrees of freedom, which in this case equals 198. 

However, in Tables 3.5 - 3.7 and 3.5' - 3.7' there is a substantial 

difference for ungrouped TS model between the assumed known and 

unknown within-group variance models. Such differences include 

having the maximum in different places (see Table 3.5 for example). 
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This is because a vague prior for -r is used in the assumed unknown 

within-group variance model, for the reason given in Section 3.5.5. 

The effect of ignoring the grouping structure in the training 

data is that the maximum of BF is considerably reduced when X = 0.4 

in most of the combinations of r and m. In general the values of BF 

under the urigrouped model are slightly higher than the grouped model 

when X and Y are both common. 

An adaptive kernel density estimate is also used to model the 

density function of ,.t in (3.9). This is to safeguard the possibility 

of trouble at the tails of the ordinary kernel estimate. The values 

of the Bayes' factor, using the adaptive kernel density estimate for 

ii, are shown in Tables 3.8 - 3.13. Consider the case where r=1 and 

m=1. Table 3.8 shows that there is not much difference between the 

ordinary and adaptive kernels when X equal 0.6 and 0.8. However, 

differences occur when x is rare, such as 0.4. The position of the 

maximum of the BF is being shifted to Y = 0.35 when X = 0.4, compared 

with Y = 0.25 when the ordinary kernel was used (see Table 3.2). 

Also the values of BF when X and Y are both rare are reduced by 

approximately 50% in most cases but the values of BF are still much 

larger than the values when X and Y are common. 

There is a slightly paradoxical feature of Tables 3.2 - 3.6. 

The maximum value of the Bayes' factor does not occur when X = Y. 

This is due to the effect of the training data Z. With only one 

control and one recovered hair the training data has an influence on 

the weight of the evidence. Suppose, for illustrative purposes, that 
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Table 3.8 Bayes_factor (with adaptive kernel) assuming o 2 known 
given X = 0.4. 0.6 and 0.8; r=l & m=1. 

TS 
	

Grouped 
	

Ungrouped 

Y 
	

0.4 	0.6 	0.8 
	

0.4 	0.6 	0.8 

0.10 

0.15 

0.20  

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

1.7036  

4.3569 

9.2049 

16.005 

22.503 
24.476 

19.398 

11.022 

4.7724 

1.7260 

0.5617 

0.1718 

0.0500 

0.0137 

0.0034 

0.0007 

0.0001 

0.0000 

0.0003 

0.0019 

0.0109 

0.0525 

0.2012 

0.5617 

1.0913 

1.5370 

1.7001 

1.5829 

1.2945 

0.9460 

0.6159 

0.3508 

0.1694 

0.0662 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0004 

0.0034 

0.0176 

0.0623 

0.1642 

0.3508 

0.6450 

1.0561 

1.5576 

2.0549 

2.3698 

2.2955 

1.3234 
3.4483 

7.1813 

11.917 

15.660 

16.121 

12.969 

8.2541 

4.1927 

1.6937 

0.5518 

0.1523 

0.0376 

0.0086 

0.0018 

0.0003 

0.0001 

0.0001 

0.0006 

0.0037 

0.0186 

0.0745 

0.2316 

0.5518 

1.0229 

1.5065 

1.7780 

1.7066 

1.3787 

0.9677 

0.5969 

0.3221 

0.1502 

0.0595 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0003 
0.0018 

0.0098 

0.0411 

0.1311 
0.3221 

0.6382 

1.0724 

1.5712 

2.0196 

2.2635  

2.1824 

Table 3.9 Bayes'_factor (with adaptive kernel) assuming 2  known 
given X = 0.4, 0.6 and 0.8; r=1 & in=5. 

TS 	I Grouped I Ungrouped 

X 	
i 
I 

0.4 0.6 0.8 

I 
0.4 0.6 0.8 

0.10 0.3567 0.0000 0.0000 	I 0.3663 0.0000 0.0000 
0.15 	I 1.9860 0.0000 0.0000 	I 1.9829 0.0000 0.0000 
0.20 7.7619 0.0000 0.0000 7.2205 0.0001 0.0000 
0.25 21.106 0.0007 0.0000 	I 17.596 0.0009 0.0000 
0.30 	f 38.874 0.0093 0.0000 28.405 0.0098 0.0000 
0.35 45.779 0.0793 0.0000 	I 29.919 0.0679 0.0000 
0.40 31.966 0.4002 0.0000 	.1 20.452 0.3065 0.0000 
0.45 12.863 1.1567 0.0002 	( 9.2012 0.9108 0.0001 
0.50 3.1603 2.0258 0.0024 	I 2.7650 1.8095 0.0017 
0.55 	J 0.5232 2.3674 0.0153 	I 0.5573 2.4136 0.0133 
0.60 	I. 0.0637 2.0116 0.0708 0.0767 2.2007 0.0705 
0.65 	I 0.0061 1.3159 0.2531 	I 0.0076 1.4373 0.2660 
0.70 	I 0.0005 0.6814 0.7168 0.0006 0.7054 0.7481 
0.75 	I 0.0000 0.2802 1.6161 	I 0.0000 0.2665 1.6100 
0.80 	I 0.0000 0.0900 2.8576 0.0000 0.0777 2.6620 
0.85 0.0000 0.0218 3.8362 0.0000 0.0173 3.3505 
0.90 0.0000 0.0038 3.7147 	I 0.0000 0.0029 3.1528 
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Table 3.10 Bayes'_factor (with adaptive kernel) assuming 02 known 
given X = 0.4, 0.6 and 0.8; r=1 & m=iO. 

TS Grouped I 	Ungrouped 

X 	
i 0.4 0.6 0.8 I 	0.4 0.6 0.8 

0.10 0.2229 0.0000 0.0000 0.2530 0.0000 0.0000 
0.15 	I 1.5087 0.0000 0.0000 1.6373 0.0000 0.0000 
0.20 	I 6.8718 0.0000 0.0000 I 	6.8292 0.0000 0.0000 
0.25 	I 20.859 0.0004 0.0000 I 	18.264 0.0004 0.0000 
0.30 	I 41.055 0.0063 0.0000 I 	30.993 0.0058 0.0000 
0.35 	I 49.421 0.0646 0.0000 I 	32.854 0.0498 0.0000 
0.40 33.715 0.3724 0.0000 21.635 0.2635 0.0000 
0.45 	I 12.658 1.1787 0.0001 I 	8.9732 0.8795 0.0000 
0.50 	I 2.7692 2.1688 0.0009 I 	2.3787 1.8777 0.0007 
0.55 	I 0.3894 2.5578 0.0072 I 	0.4047 2.5744 0.0067 
0.60 	f 0.0384 2.1086 0.0425 0.0450 2.3089 0.0444 
0.65 0.0028 1.2880 0.1853 0.0034 1.4207 0.2011 
0.70 	( 0.0002 0.5999 0.6162 I 	0.0002 0.6299 0.6550 
0.75 0.0000 0.2139 1.5698 0.0000 0.2065 1.5723 
0.80 0.0000 0.0575 3.0161 	I 0.0000 0.0519 2.7927 
0.85 0.0000 0.0113 4.2294 	$ 0.0000 0.0090 3.6360 
0.90 0.0000 0.0015 4.1108 0.0000 0.0012 3.4061 

Table 3.11 Bayes'_factor (with adaptive kernel) assuming o2 known 
given X = 0.4, 0.6 and 0.8; r=5 & in=5. 

TS 	I Grouped Ungrouped 

X 

I 
0.4 0.6 0.8 0.4 

I 
0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.15 	I 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.20 0.0041 0.0000 0.0000 I 	0.0034 0.0000 0.0000 
0.25 	I 0.3612 0.0000 0.0000 0.2926 0.0000 0.0000 
0.30 	I 8.4270 0.0000 0.0000 I 	6.4202 0.0000 0.0000 
0.35 51.955 0.0000 0.0000 I 	35.795 0.0000 0.0000 
0.40 	$ 79.735 0.0001 0.0000 j 	49.507 0.0002 0.0000 
0.45 26.665 0.0172 0.0000 16.256 0.0160 0.0000 
0.50 	$ 1.8818 0.4386 0.0000 $ 	1.3419 0.3806 0.0000 
0.55 0.0313 2.4958 0.0000 0.0300 2.4348 0.0000 
0.60 	I. 0.0001 3.4872 0.0001 I 	0.0002 3.9074 0.0001 
0.65 	I 0.0000 1.4150 0.0085 I 	0.0000 1.5818 0.0080 
0.70 	I 0.0000 0.1900 0.2281 I 	0.0000 0.1964 0.2200 
0.75 0.0000 0.0083 2.0740 	I 0.0000 0.0076 1.8945 
0.80 0.0000 0.0001 5.8221 	( 0.0000 0.0001 4.8722 
0.85 	I 0.0000 0.0000 4.5440 	I 0.0000 0.0000 3.6548 
0.90 0.0000 0.0000 0.8543 	I 0.0000 0.0000 0.7454 
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Table 3.12 Bayes' actor with adaptive kernel) assuming 02 known 
given X = 0.4, 0.6 and 0.8; r=5 & in=10. 

TS 	I Grouped I Ungrouped 

X 	
i 
I 

0.4 0.6 0.8 0.4 

I 
0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 J 	0.0000 0.0000 0.0000 
0.15 	I 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.20 	I 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 
0.25 0.0663 0.0000 0.0000 I 	0.0606 0.0000 0.0000 
0.30 4.6089 0.0000 0.0000 3.8207 0.0000 0.0000 
0.35 	I 53.120 0.0000 0.0000 I 	38.307 0.0000 0.0000 
0.40 94.486 0.0000 0.0000 I 	59.203 0.0000 0.0000 
0.45 22.300 0.0035 0.0000 13.393 0.0028 0.0000 
0.50 	I 0.6659 0.2574 0.0000 I 	0.4692 0.1999 0.0000 
0.55 0.0028 2.6139 0.0000 0.0028 2.4363 0.0000 
0.60 	I 0.0000 4.0741 0.0000 I 	0.0000 4.5760 0.0000 
0.65 	I 0.0000 1.1815 0.0009 	I 0.0000 1.3384 0.0009 
0.70 0.0000 0.0744 0.0831 	I 0.0000 0.7675 0.0843 
0.75 	I 0.0000 0.0010 1.7043 0.0000 0.0009 1.5762 
0.80 	I 0.0000 0.0000 6.9294 	I 0.0000 0.0000 5.7008 
0.85 0.0000 0.0000 4.9857 	f 0.0000 0.0000 3.8777 
0.90 	I 0.0000 0.0000 0.5426 	I 0.0000 0.0000 0.4552 

Table 3.13 Bayes'_factor (with adaptive kernel) assuming c z  known 
given X = 0.4, 0.6 and 0.8; r=10 & m=10. 

TS Grouped Ungrouped 

- 	I 
X 0.4 0.6 0.8 0.4 0.6 0.8 

0.10 	I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.15 0.0000 0.0000 0.0000 I 	0.0000 0.0000 0.0000 
0.20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.25 0.0008 0.0000 0.0000 0.0007 0.0000 0.0000 
0.30 0.6951 0.0000 0.0000 I 	0.5470 0.0000 0.0000 
0.35 37.325 0.0000 0.0000 26.517 0.0000 0.0000 
0.40 119.47 0.0000 0.0000 75.750 0.0000 0.0000 
0.45 19.718 0.0000 0.0000 11.977 0.0000 0.0000 
0.50 	I 0.1576 0.0361 0.0000 	I 0.1094 0.0308 0.0000 
0.55 0.0001 1.8055 0.0000 	I 0.0001 1.7141 0.0000 
0.60 	. 0.0000 5.0692 0.0000 0.0000 5.7109 0.0000 
0.65 	I 0.0000 0.9603 0.0000 0.0000 1.0824 0.0000 
0.70 0.0000 0.0148 0.0179 	I 0.0000 0.0153 0.0170 
0.75 0.0000 0.0000 1.4703 	I 0.0000 0.0000 1.3088 
0.80 	I 0.0000 0.0000 8.8215 0.0000 0.0000 7.1030 
0.85 0.0000 0.0000 3.4354 	I 0.0000 0.0000 2.6683 
0.90 	I 0.0000 0.0000 0.0730 	I 0.0000 0.0000 0.0633 
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i is Normally distributed with mean E and variance n 2 . For the case 

of known o2 the numerator of (3.3), f(ylx,C)  may be written as 

.ff(yI,C) f(ulx,C) do. 

The second term in the integrand is the posterior p.d.f. of P, given 

x, and as was shown in Section 2.2.1, f(ulx,C)  is also Normally 

distributed with mean and variance 

op =  

and 

= 

respectively. X is defined as in Section 3.5. The maximum of this 

distribution will not be at R unless n 2  is large relative to a 2 ; the 

so-called 'shrinkage' effect in which the maximum of f(,ilx,C)  is 

shrunk towards t. Lindley (1977) assumed that o2 was small in 

comparison with n 2  and this ensured that f( ,ilx,C) had a maximum at 

the control value R. 

To illustrate this phenomenon, using Lindley's model (i.e. f(u) 

- N(,n 2 )) the numerator of the Bayes' factor, f(YIX,C), given X = 

0.0(0.2)1.0 is plotted in Fig. 3.2 for various values of r and m. 

The density function is plotted in range between 0.0 and 1.0, since 

the medullary fraction is restricted to this range. As can be 

clearly seen as m increases the maximum of f(YX,C) is shifted 

towards X for X = 0.0(0.2)1.0. Whereas, the increment of r reduces 

the variability of f(YIX,C). Similar features have also appeared 

when the numerator of the Bayes' factor under the kernel known 2 

model (see Fig. 3.3). The most significant difference between the 
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two models is when r=m=l. 	The denominators of the Bayes' factor 

under the two models (Normal and kernel known 02) are shown in Fig 

3.4 and 3.5, respectively. In practice, it is preferable that o2 be 

very small in order that there may be good discrimination between two 

objects or individuals. However, our example is based on a real data 

set for which 02=0.06572 and n 2 =0.0659 2  and are of comparable 

magnitude. The shrinkage effect may be lessened by increasing the 

number of control and recovered observations, as illustrated in Table 

3.7 when m and r = 10. Since (o 2 /m) will tend to zero as m it is 

not always practical for this to be done. 

Graphical representations of the variation in the Bayes' factor 

as X and Y vary are shown in Figs. 3.6 and 3.7. Fig. 3.6 illustrates 

the results from the model developed in Section 3.5.2, representative 

values of which are given in Tables 3.2 - 3.7. The ranges of X and 

of Y as shown in these figures are slightly different from those of 

the Tables. This emphasises the form of the surface of the BF when X 

and Y are both common which would not be illustrated fully if the 

plotting ranges were extended to rare values. Fig. 3.7 illustrates 

the case where the within group variance is assumed known and no 

grouping is assumed. 

Figs. 3.8 and 3.9 give a much clearer picture of the behaviour 

of the Bayes' factor, given the respective training data is grouped 

or not grouped, for X and Y ranging from 0.0 to 1.0 with various 

pairings of r and m. This is achieved by taking the natural 

logarithm of the Bayes' factor and consequently the enormous value of 

the BF when X and Y are uncommon is removed. In Figs 3.8 and 3.9 

MM 
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(d) - (f), a very small number (l.0x10 30 ) was added to the BF to 

avoid taking logarithm of zero. The region where the Bayes' factor 

is greater than one is the area within the contour of value 0. The 

area where X and Y indicate a support to the hypothesis C runs 

diagonally from the bottom left hand to the top right hand corner. 

This graphical presentation of the logarithm of the BF resembles a 

saddle shape. Also notice that the area for BF is greater than one 

which becomes narrower and the value of log(BF) increases as r and m 

increase. 

3.7 Sensitivity analysis of the models derived in Sections 3.5.2 and 

3.5.3 

We now consider the sensitivity of the Bayes' factor with 

respect to the smoothing parameter X, the training data Z and the 

value of 02  assumed known for the kernel group and nogroup models. 

The group and nogroup models are so called because of the assumption 

concerning the structure of the training data (see Section 3.2 for 

the definition). The BF is calculated under the assumption that the 

distribution of the unknown true mean o takes a kernel density form 

and the training data are assumed to be grouped for the group model 

or ungrouped for the nogroup model. We are interested in how the BF 

is affected when X, Z and a depart from their 'true' values. In 

other words, how sensitive is the value'of the BF to changes in these 

values? This sensitivity analysis is carried out based on the 

example given in Section 3.6. Thus the 'true' values of >.., Z and o 

are the values stated in Section 3.6. 
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3.7.1 Sensitivity of the Bayes' factor to changes in values of the 

smoothing parameter X 

The Bayes's factor is calculated. under the kernel group and 

nogroup models, with the smoothing parameter perturbed by a factor of 

two which gives 0.5X, X and 2>... The values of natural logarithms of 

(BFkX/BFX) for k =0.5,2 are plotted in Figs. 3.10 - 3.12 given some 

fixed value of X for r=1,m=1; r=1,m=10 and r=10, m=10 respectively. 

BFX is the Bayes's factor calculated using the 'true' values of X. 

The 'true' value of the smoothing parameter X is estimated using the 

pseudo-maximum likelihood method and its value is found to be 0.7855 

and 0.4079 for the kernel group and nogroup model in the example 

given in Section 3.6. When X and Y are far apart, greater 

sensitivities at the extremes become apparent as the sample sizes of 

the control data (m) and recovered data (r) increase. The value of 

the BF is most sensitive when >.. is reduced by a factor of 2 and r and 

in are equal to 10. This reflects the smoothness of the kernel prior 

in (3.10) and (3.11), that is if >.. is small the functions of (3.10) 

and (3.11) are rough and are particularly sensitive to small values 

of X. 

The sensitivity of BF when small changes in > are made is 

studied by adding a small random number, c, onto >. to give >.., say. 

The number of simulations of this sensitivity analysis carried out 

for the group and nogroup model was 50 and 25 respectively. The 

reason the number of simulations for the nogroup model is less than 

the group model is to reduce the amount of computational time 

involved under the nogroup model. The random numbers were generated 

from a Normal distribution with mean 0 and standard deviation 
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(O.Olxk) where the value of k ranges from I to 5 in steps of 2 which 

help in determining how great the changes in X is. The larger the 

value of k the further the value of >' is away from the 'ideal' X. 

The Bayes' factors evaluated using these contaminated smoothing 

parameters are denoted by BF(k). Results are shown in Tables 3.14 

3.16 for r=l,m=l; r=l,m=lO and r=10,m=10 respectively. There are no 

apparent differences in the values of BF due to small changes in the 

smoothing parameter for both grouped and nogrouped models. 

3.7.2. Sensitivity of the Bayes' factor to changes in the training 

data Z 

The training data Z1 and Z  for the kernel group and nogrouped 

model, respectively, are perturbed by adding a small value. Take the 

group case, for instance 

_* - 
zi = zi. + Yj 

* _ 	
i 	

I 
where zj (i=1,2,...,n) s the new', or contaminated, training data 

and Yj is generated from a Normal distribution with mean 0 and 

standard deviation 0.Olxk, where k takes values from 1(2)5. A large 

value,  of k means greater, changes in Yi . . 	We then calculate the 

Bayes' factor using the 	as the training data and repeat the 

procedure 50 times. 	The average of the BFs, BF(k) over these 50 

runs, the standard error of the estimated BFs and values of the 

Ilog 10 {BF/BF(k))l are shown in Table 3.17 and 3.18 given values of X 

and of Y for r=1,m=1 and r=10,m=10 .respectively. 

The same procedure is also applied to the nogrouped model. That 

is 

E1•] 



* 
Zp = ZQ + vp 

where v2 is as in the grouped case and 2 = 1,2,...,N. 

Because of the large sample (N = 220) in the nogrouped model, 

the average of BF(k)s, for each k is obtained over 25 runs. Results 

are also tabulated in Tables 3.17 and 3.18, given fixed values of X 

and of Y, again for r=1,m=1 and r=10,m=10 respectively, and are shown 

in the second column of the tables. The results are similar under 

the two models. The values of the Bayes' factor vary slightly as k 

increases but do not change much overall when r and m are small. 

When r and m are equal to 10, and the BF becomes more sensitive to 

changes in the training data Z when X and Y are least common and far 

apart. This again happened at the extremes but the BF remains 

insensitive otherwise. 

3.7.3 Sensitivity of the Bayes' factor to changes in the value of o 

which is assumed known 

As in Section 3.7.2, o is perturbed by adding a small factor v. 

This time t is chosen to be distributed as N(0.0,(0.001xk) 2 ) and k is 

taken to be ranging from 1(2)5. Tables 3.19 and 3.20 show the 

absolute logarithm to base 10 of the ratio of the standard BF to the 

contaminated BF(k) when r=1,m=1 and r=10,m=10 respectively. There 

are no drastic changes in BF(k) as k increases, though greater 

differences occur when X and Y are less common and different when r 

and m equal 10, than when r=in=l. 
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'1=0.7 	I 1.056 
k = 	1 	I 1.055 

3 	I 1.056 
5 	I 1.056 

Y=0.8 	I 2.065 
k = 	1 	$ 2.065 

3 	I 2.064 
5 	I 2.064 

Y=0.9 I 2.361 
k=1 I 2.361 

3 I 2.354 
5 	2.371 

Table 3.14 Sensitivity of BF to small changes of_the smoothing_ 
parameter X for some values of X and Y, R = BF/BF(k) 
when r=l, m=l. 

I 
I 

Group 
I 

Nogroup 

X=0.4 BF(k) 	I st.error I 	Ilog,,Rl 
I 
I 	BF(k) 

I 
I 	st.error 	I 

I 
Ilog 1 RI 

Y=0.3 28.39 	( 0 ( 18.04 J 	0 	I - 
k = 1 	I 28.39 	I 0.0441 .00000 f 	18.04  I 	0.0248 .00000 

3 	I 28.34 0.1206 .00077 17.97 I 	0.0623 	I .00169 
5 	I 

I 
27.92 	J 0.2162 	I .00725  I 	18.07  I 	0.1012 .00072 

'1=0.4 
I 

16.71 	I 
I 

0 - 
I 
I 	12.02  

I 	I 
f 	0 	I 

k = 	1 	I 16.69 0.0156 	I .00052  I 	12.00 	I 0.0093 	I .00072 
3 	I 16.79 	I 0.0607 	I .00207  I 	12.03 	I 0.0315 .00036 
5 	I 

I 
16.68 	I 

I 
0.0965 	I 

I 
.00078  I 	11.97 	I 0.0469 	I .00181 

- 
Y=0.5l 5.0231 0 	I - 

I 	I 
I 	I 

I 
0 	I 

k = 1 	J 5.017 	I 0.0054 	I .00052  f 	4.239 0.0040 	I .00020 
3 	I 5.019 	I 0.0148 	I .00035  I 	4.219 0.0148 .00226 
5 

I 
5.010 	I 

I 
0.0289 	I 

I 
.00113 4.219 	I 0.0234 	I .00226 

X=0.6 
I 	I I 

'1=0.5 	I 1.520 0 	I - f 	1.484 	I 0 	I - 
k = 1 	I 1.520 	I .00007 .00000 1.484 	I .00000 	I .00000 

3 	I 1.519 	I .00019 	I .00029  I 	1.484 	I .00002 	I .00000 
5 	I 1.519 .00035 	I .00029  I 	1.484 	I .00010 	I .00000 

- 	I 
'1=0.6 	I 

I 
1.601 	I 

I 
0 	I - 

I 	I 
I 	1.725 	I 

I 
0 	I - 

k = 1 	I 1.601 	( .00036 	I .00000  I 	1.724 	I .00048 	I .00025 
3 	I 1.600 	I .00098 	I .00027  I 	1.725 	I .00123 	I .00000 
5 	I 

I 
1.603 	I .00200 	I .00504 1.723 .00234 	I .00050 

- 
'1=0.7 	I 

I 
.9284 	I 

I 
0 

I 
- 	I 

I 
.9629 	I 

I 
0 - 

k = 1 	$ .9285 	I .00010 	I .00005 	I .9629 	I .00019 	I .00000 
. 3 	I .9287 	I .00032. 	I .00014 	I .9631 	I .00060 	I .00009 
5 	I .9289 	I .00048 	I .00023 	I .9628 	I .00080 	I .00005 

X=0.8 

0 
$ 
I 	- 

1-1 
I 	1.069 	I 0 

I 
$ 	- 

.00007 I 	.00041  I 	1.069 	I .00011  I 	.00000 

.00016 I 	.00000 1:1.068 	I .00041  I 	.00041 

.00046 
$ 
$ 	.00000 I 	1.068 	I .00066  I 	.00041 

0 $ 	-. 
I 	I 
f 	2.030 	$ 0 

$ 
- 

.00021 I 	.00000 $ 	2.030 	I .00033  I 	.00000 

.00056 	I .00021  I 	2.032 	J .00067  I 	.00043 

.00105 	I .00021  I 	2.030 	I .00104  I 	.00000 
I 

0 	$ - 
I 	I 
I 	2.200 	I 

I 
0 	$ - 

.00087 	I .00000  I 	2.200 	I .00112 .00000 

.00253 .00129 I 	2.196 	I .00418 	I .00079 

.00515 	I 
I 

.00184  I 	2.198 	I 
I 	I 

.00648 
I 

.00039 

82 



Nogroup 

st.error ! I1og10R 

0 
0.1950 
0.4826 
0.7858 

0 
0.0258 
0.0821 
0.1422 

0 
0.0026 
0.0140 
0.0176 

I 	.00137 

I 	.00608 

I 	.00297 

I 	.00021 

I 	.00041 

I 	.00267 

.00089 

I 	.00251 
.00071 

Table 3.15 Sensitivity of BF to small changes of_the smoothing_ 
parameter >.. for some values of X and Y, R = BF/BF(k) 
when r=l, m=10. 

Group 
I 

X=0.4 	I BF(k) 
I 	I 
I 	st.error 	I Ilog, ORI 

I 
BF(k) 

I 
Y=0.3 	I 116.1  

I 	I 
I 	0 	I - 

I 
I 	53.97 

k = 1 116.2 I 	0.3866 .00037 54.14 
3 	I 115.6  I 	.1.2775 	I .00187  f 	53.22 
5 	I 117.9  I 	1.9485 	I .00668  I 	54.34 

I 
Y=0.4 35.23 	I 

I 	I 
0 - 

I 
I 	21.10 

k = 1 	I 35.35 	I 0.0636 .00148 21.09 
3 35.53 	I 0.1757 .00368 I 	21.12 
5 35.24 0.3025 	I .00012  I 	21.23 

I 
Y=0.5 

I 
2.884 	I 

I 
0 - 

I 
2.433 

k = 1 	I 2.888 0.0039 	I .00060 2.428 
3 	I 2.875 0.0104 	I .00136  I 	2.419 
5 	I 2.890 0.0215 	I .00090  I 	2.429 

X=0.6 
1-1 I I 

I 
1.946 	I 

I 
0 	I - 

I 
I 	1.737 

1.945 	I .00116 .00022 I 	1.737 
1.949 .00329 	I .00067 1.738 
1.940 .00533 	I .00134 1.735 

I 
2.101 	I 

I 
0 - I 	2.308 

2.101 	I .00029 .00000 2.308 
2.104 	I .00107 	I .00062  I 	2.308 
2.103 .00181 	I .00041  I 	2.308 

I 
.6082 	I 

I 
0 	I - 

I 
I 	.6455 

.6085 	I .00018 .00021 I 	.6456 

.6085 .00062. .00021 I 	.6457 

.6085 

I 
.00090 	I 

I 
.00021 .6466 

I 

I 
.6330 	I 0 

I 
I 	- I 	.6654 

.6327 	I .00016  I 	.00021  I 	.6651 

.6340 .00058 1 	.00069 1...6659 

.6328 .00098 1 	.00014 l 	.6660 

I 
2.900 	f 0 	I 

I 
-. 

I 
I 	2.729 

2.900 	f .00028 	( .00000  I 	2.729 
2.900 	I .00112 	I .00000  I 	2.729 
2.902 	I .00182 	I .00030 2.730 

I 
3.902 

I 
0 - I 	3.232 

3.902 	I .00588 	I .00000  I 	3.234 
3.892 	I .01398 	I .00111 3.227 
3.880 .02494 	I .00246 3.239 

.5 
k= 1 

3 
5 

Y=0.6 
k= I 

3 
5 

Y=O.7 
k= 1 

. 3 
5 

X=0.8 

Y=0.7 
k= 1 

3 
5 

Y=O. 8 
k= 1 

3 
5 

k= 1 
3 
5 

0 I 	- 
.00055 .00000 
.00176 I 	.00025 
.00353 I 	.00050 

0; - 
.00029 .00000 
.00091 	I .00000 
.00137 .00000 

.00027 	I .00007 

.00075 	I .00013 

.00130 	I .00074 

0 	I - 
.00026 	I .00020 
.00068 	( .00033 
.00101 	I .00039 

0 - 
.00020 	I .00000 
.00051 	I .00000 
.00073 	I .00016 

0 	I - 
.00414 	I .00027 
.01062 	I .00067 
.02600 	I .00094 
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Table 3.16 Sensitivity of BF to small changes of_the smootjjg_ 
parameter X for some values of X and Y. R = BF/BF(k) 
when r=10 & m=10. 

I Group I Nogroup 

X=0.4 	I BF(k) 	I 
-1-1 

st.error 	I 
I 

I10910RI  
- 

I 	BF(k)  I 	st.error 	J ilog 1 Ri 

Y=0.3 9.006 	f 0 - 
1-1 
I 	5.083 	I 

I 
0 	J - 

k = 1 	I 8.950 0.1007 	I .00271  I 	5.084 0.1070 	I .00009 
3 	I 8.936 	I 0.3016 	I .00339  I 	5.124 	I 0.2500 	I .00349 
5 10.31 0.8377 	I .05873  I 	5.55 0.2299 .03778 

Y=0.4 	I 215.5 	I 0 	I - I 	87.38 0 - 
k = 1 	I 217.1 0.8900 .00321 87.15 0.3755 	I .00114 

3 	( 215.3 	I 2.7473 	I .00040  I 	87.01 	J 0.8041 .00184 
5 	I 219.3 	I 5.5148 	I .00759  I 	87.51 	I 1.5255 .00065 

Y=0.5 .2581 	I 0 - I 	.1375 	I I 
k = 1 .2586 	I 0.0011 	I .00084  I 	.1370 .00045 	I .00158 

3 	I .2604 	I 0.0030 	I .00385  I 	.1387 	I .00138 	I .00377 
5 	I .2704 0.0067 	I .02022  I 	.1402 	I .00303 	I .00845 

X=0.6 

Y=0.5 	I .0323 0 - I 	.0289 	I 0 	I - 
k = 1 .0323 .00001 	I .00000  I 	.0289 	I .00004 .00000 

3 .0322 .00004 .00135 .0290 	I .00012 .00150 
5 	I 

I 
.0322 	I .00005 	I .00135 .0287 .00011 	I .00320 

Y=0.6 	I 
I 

4.778 	I 
I 

0 - 
I 	I 

5.514 	I 
I 

0 	I 
k = 1 	I 4.778 	I .00026 	I .00000  I 	5.516 	I .00217 .00016 

3 4.780 	I .00098 	I .00018  I 	5.520 	I .00668 	I .00047 
5 	I 

I 
4.781 .00152 	I .00027  I 	5.515 	I .01572 	( .00008 

Y=0.7 
I 

.0139 	I 
I 

0 - 
I 	I 
I 	.0151 	I 

I 
I 

k = 1 .0139 	I .00000 	I .00000  I 	.0151 	I .00001 	I .00000 
3 	I .0139 	I .00000 .00000 I 	.0151 .00002 	I .00000 
5 	I .0139 .00000 . 	I .00000  f 	.0152 	I .00004 .00287 

X=0.8 

Y=0.7 	I .0173 	I 0 - I 	.0163 	I 0 	I - 
k = 1 .0173 	I .00000 	I .00000  I 	.0163 	I .00000 .00000 

3 .0173 .00001 	1 .00000 .0163 	I .00001 	I .00000 
5 	( .0173 .00001 	1 .00000 1 ! .0163 	I .00001 	I .00000 

Y=0.8 	I 
-1-1 

7.593 	I 
I 

0 	I -. 
1-1 
J 	6.443 	J 

1 	I 
0 	I - 

k = 1 7.581 	f .00381 .00069 6.443 	I .00075 	I .00000 
3 	J 7610 	I .01378 .00097 I 	6.444 	I .00223 	I .00007 
5 7.602 .02577 	I .00051 6.442 .00368 	I .00007 

Y=0.9 	I .0848 	I 0 - I 	.0751 	I 0 	I - 
k = 	1 	I .0846 	I .00022 	I .00103  I 	.0751 	I .00034 .00000 

3 .0846 	I .00066 	I .00103 .0787 .00169 .02033 
5 	I .0879 	I .00133 	I .01559  I 	.0778 	I .00284 	I .01534 
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Table 3.17 Sensitivity of BF to small changes of_.training data 
Z for some values of X and Y, R = BF/BF(k) when r=l.m=1. 

TS 	I Group f Nogroup 

X=0.4 BF(k) I 	st.error 	I Ilog,,Rl 
- 

I 	BF(k) I 	st.error 	I Jlog 10R 

Y=0.3 	I 
-1-1 

28.39 	I 
I 

0 	I - 
1-1 

18.04 
I 

I 	0 	I - 
k = I 28.17 	I 0.2949 	I .00338  ! 	17.87 0.1000 .00411 

3 23.79 	I 0.6822 	I .07677 16.19 0.1304 	f .04699 
5 	I 21.54 	I 1.1438 .11992 I 	14.20 	I 0.3609 .01039 

- 	I 
Y=0.4 

I 
16.71 	I 

I 
0 	I - 

I 	I 
I 	12.02 

I 
0 	I - 

k = 1 	I 16.15 	I 0.1196 	I .01480  I 	11.97 	I 0.0571 	I .00181 
3 	I 15.22 0.2808 	I .04056 11.29 0.1245 .02721 
5 13.00 0.3902 .10903 10.39 0.1631 	I .06329 

- 	I 
Y=0.5 	I 

I 
5.023 	I 

I 
0 	I - 

1-1 
I 	4.241 	I 0 - 

k = 1 	I 4.981 	I 0.0306 	I .00365  I 	4.206 0.0146 	I .00360 
3 	I 4.761 0.0686 .02326 3.952 	I 0.0330 	I .03065 
5 4.462 	I 0.1006 .05143 3.662 	I 0.0356 .06375 

X=0.6 

Y=0.5 	I 1.520 0 	I - I 	1.484 	I 0 	I - 
k = 1 	I 1.523 	I .00336 .00086 I 	1.485 .00180 	I .00029 

3 	I 1.496 .01057 	I .00691  I 	1.486 .00622 	I .00058 
5 	I 1.508 .01906 	I .00344  I 	1.490 	I .00768 	I .00175 

Y=0.6 1.601 	I 0 	I - I 	1.725 	I 0 	I - 
k = 1 	I 1.599 	I .00334 	I .00054 1.725 .00208 	I .00000 

3 	I 1.617 	I .00980 	I .00432  I 	1.760 	I .00403 	J .00872 
5 	I 1.690 	I .01634 .02350 1.814 .00966 .02185 

Y=0.7 .9284 	I 0 - f 	.9629 	I 0 - 
k = 1 	I .9287 	I .00091 	I .00014  I 	.9650 	I .00078 	I .00095 

3 	I .9389 	I .00263 	I .00488  I 	.9739 	I .00187 .00493 
I .9620 	I .00443. 	I .01544  I 	.9930 	I .00308 .01337 

X=0.8 

Y=0.7 1.056 	I 0 	I - 1.069 	I 0 	I - 
k = 1 	I 1.057 .00148 	I .00041  I 	1.070 	I .00074 	I .00041 

3 	I 1.068 .00598 .00491 I 	1.076 .00249 	I .00283 
5 	I 1.071 	I .00679 	I .00613 

- 
1,1.090 	I .00386 	1 .00845 

Y=0.8 	I 
-1-1 

2.065 	I 
I 

0 	I - 
1-1 
I 	2.030 	I 

I 
0 	I - 

k = 1 2.069 	I .00504 .00084 I 	2.028 	I .00209 	I .00043 
3 	I 2.064 	I .01587 	I .00021  I 	2.055 	I .00834 	I .00532 
5 	I 2.089 	J .02341 .00502 2.114 	I .00753 	I .01761 

Y=0.9 	I 2.361 	I 0 - I 	2.200 	I 0 	I - 
k = 	1 	f 2.367 	I .00969 	I .00110  I 	2.192 	I .00392 	I .00158 

3 2.299 	I .02483 	I .01156  I 	2.140 	I .01045 .01201 
5 	f 2.227 	I .04109 	I .02538  I 	2.027 	I .01344 	I .03557 
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Table 3.18 Sensitivity of BF of small changes of the training data 
Z for some values of X and Y. R = BF/BF(k) when r=10. 
M=10. 

TS Group Nogroup 

X=0.4 	I BF I 	st.error  f 	Ilog,,Rl  I 	BF I 	st.error 	I I109 1 Rf 

Y=0.3 	$ 9.006 I 	0 	I - I 	5.083  I 	0 	I - 
k = 1 11.01 $ 	0.7450 .08726 I 	4.704  I 	0.2385 	I .03365 

3 	I 16.30  I 	3.4516 	I .25766  I 	3.029  I 	0.2952 .48130 
5 	I 12.28 	I 3.5568 	I .13467  I 	1.621  I 	0.2339 .49634 

- 	I 
Y=0.4 

I 
215.5 	I 

$ 
0 	I - 

I 
I 	87.38 

I 	I 
$ 	0 	I - 

k = 1 	I 233.9 	I 11.735 	I .03558  I 	85.08  I 	1.2911 	I .01158 
3 212.4 	I 23.064 	I .00629 76.18 I 	2.7647 .05957 
5 	I 300.0 56.806 .14367 I 	65.75 $ 	2.9744 	I .12352 

Y=0.5 	I .2581 	I 0 	I - .1375 I 	0 - 
k = 1 	I .2602 	I 0.0070 	$ .00352 I 	.1335 .00253 	I .01282 

3 	I .2333 	I 0.0148 	I .04387  I 	.1191 .00381 	I .06239 
5 	$ .1865 	I 0.0198 	I .01411  I 	.0968 	I .00407 	I .01524 

X=0.6 

Y=0.5 	I .0323 	I 0 	I - $ 	.0289 	I 0 	I - 
k = 1 .0324 	I .00017 .00134 $ 	.0285 	$ .00018 	I .00605 

3 	$ .0312 	I .00065 	I .01505  I 	.0283 	I .00037 .00911 
5 .0302 .00072 	I .02920 .0275 	I .00042 .02157 

- 	I 
Y=0.6 

I 
4.778 	$ 

I 
0 - 	I 

1-1 
5.514 	I 

I 
0 	I - 

k = 1 	I 4.758 	I .02126 	I .00182 	I 5.530 .01558 .00126 
3 	I 4.818 .06263 	I .00362 	I 5.468 	I .05558 	I .00364 
5 	I 4.900 .10757 	I .01095 	I 5.347 .05002 .01336 

- 	I 
Y=0.7 	I 

I 
.0139 	I 

I 
0 	I 

I 
- 	$ 

I 
.0151 	I 

I 
0 	I - 

k = 1 	$ .0139 .00003 	I .00000 	I .0151 	I .00004 	I .00000 
3 .0141 	$ .00008 .00620 .0151 .00009 	( .00000 
5 	I .0144 	I .00016 	I .01535 	$ .0151 	I .00013 	I .00000 

X=0.8 

Y=0.7 	I .0173 	I 0 - I 	.0163 	I 0 - 
k = 1 	I .0173 .00006 	I .00000  I 	.0163 	$ .00006 I 	.00000 

3 	I .0171 	I .00014 	I .00505  I ..0166 	I .00016  I 	.00792 
5 	I .0173 	I .00021 .00000 .0169 	I .00015 .01570 

Y=0.8 	I 7.593 	I 0 	I - I 	6.443 	I 0 I 	- 
k = 1 	I 7...634 	I 0.0508 	I .00234 $ 	6.460 	I .02107 $ 	.00114 

3 	I 7.208 	I 0.1075 	I .02260  I 	6.393 	$ .06242 I 	.00338 
5 	I 7.226 	I 0.1809 	I .02152  I 	6.418 	I .08253  I 	.00169 

Y=0.9 	$ .0848 	I 0 	I - .0751 	I 0 - 
k = 	I 	I .0839 	I .00127 	I .00463 $ 	.0724 .00073 	$ .01590 

3 	I .0824 	$ .00271 	$ .01247 $ 	.0565 	I .00103 	$ .12359 
5 	$ .0729 	$ .00523 	I .06567  I 	.0461 	I .00104 	I .21193 



Table 3.19 Sensitivity of BF to small changes of the known o for 
some values of X and Y, R = BF/BF(k) when r=l, m=l. 

TS 	I Group Nogroup 

X=0.4 BF(k) 	I st.error 	I Ilog, ORI J 	BF(k) I 	st.error 	I IlogR 

Y=0.3 	I 28.39 	I 0 	I - J 	18.04  I 	0 	I - 
k = 1 	I 28.55 	I 0.1499 	I .00244  I 	17.99 0.1523 	I .00121 

3 29.26 0.5461 .01311 I 	18.18  I 	0.3463 	I .00336 
5 	I 28.68 	J 0.8379 	I .00441  I 	18.55  I 	0.7334 .01211 

Y=0.4 16.71 	I 0 - I 	12.02 	I 0 	I - 
k = 1 16.71 	I 0.1179 	I .00000  I 	12.08 0.0867 	I .00216 

3 17.06 0.3425 .00900 I 	12.56 	I 0.3005 	I .01909 
5 	I 17.50 0.5118 .02006 I 	12.19 0.2847 .00610 

- 	I 
Y=0.5 

I 
5.023 	I 

I 
0 	I - 

I 	I 
I 	4.241 	I 

I 
0 	I - 

k = 1 	I 5.025 0.0180 .00017 I 	4.257 	I 0.0107 	I .00164 
3 4.992 0.0470 	I .00269  I 	4.226 	I 0.0346 	I .00154 
5 	I 4.939 	I 0.0662 	I .00732 4.104 0.0592 	I .01426 

X=0.6 

Y=0.5 	I 1.520 	I 0 I 	- I 	1.484 	I 0 - 
k = 1 	I 1.520 	I .00031  I 	.00000  I 	1.484 	I .00015  I 	.00000 

3 	I 1.517 	I .00110  I 	.00086  I 	1.478 	I .00260  I 	.00176 
5 	I 1.511 .00178 I 	.00258  I 	1.478 	I .00258 .00176 

- 	I 
Y=0.6 

I 
1.601 0 

I 
I 	- 

I 	I 
I 	1.725 	I 0 

I 
I 	- 

k = I 	I 1.600 	I .00253  I 	.00027 1.731 .00329 .00151 
3 	I 1.597 	I .00839 .00109 I 	1.751 	I .01749  I 	.00650 
5 	I 1.604 	I .01324  I 	.00081 1.723 	I .01618  I 	.00050 

Y=0.7 	I .9284 	I 0 I 	- I 	.9629 	I 0 - 
k = I 	I .9286 	I .00096  I 	.00009 .9622 .00138 .00032 

3 	I .9276 .00283 .00037 .9618 	J .00346 	I .00050 
5 .9177 	I .00450 	I .00503  I 	.9503 	I .00611 .00572 

X=O.8 

Y=0.7 1.056 	I 0 	I - I 	1.069 0 - 
k = 1 	I 1.055 	I .00065 	I .00041 1.066 	I .00155 .00122 

3 	I 1.053 	I .00179 .00124 1.064 	I .00380 	I .00204 
5 	I 1.045 	I .00427 	I .00455 

- 
1J.073 	1 .00446 	I .00162 

Y=0.8 	I 
-1-1 

2.065 	I 
I 

0 - 
1-1 
I 	2.030 	I 

I 
0 - 

k = 1 	I 2.072 .00429 	( .00147  I 	2.026 .00462 	( .00086 
3 2...068 .01445 	I .00063 2.073 	I .01747 	I .00910 
5 	I 2.048 .02544 	I .00359 2.031 	I .03167 	I .00021 

Y=0.9 2.391 	I 0 	I - I 	2.200 	I 0 - 
k = 1 	I 2.364 	I .00308 	I .00493  I 	2.197 	I .00320 .00059 

3 	I 2.350 	I .00980 	I .00751  I 	2.191 	I .00906 	I .00178 
5 	I 2.357 .01728 .00622 I 	2.184 	I .01659 	I .00317 
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Table 3.20 Sensitivity of BF to small chang_Qf the known o for 
some values of X and Y. R = BF/BF(k) when r=10, m=10. 

TS 	I Group I Nogroup 
- 	I 
X=0.4 	I BF 
-1-1 

I 	st.error 	I 
I 
Jlog1Ri  

- 

I 
I 	BF 
1-1 

I 	st.error 	I I109 1 R 

Y=0.3 	I 9.006  I 	0 - 5.083 
I 

I 	0 	J - 
k = I 	I 9.276  ( 	0.1523 	I .01283  I 	5.165  I 	0.1347 .00695 

3 	I 9.772  I 	0.5761 	I .03545  I 	4.983 0.3959 	I .00863 
5 	I 11.62  I 	0.8670 	I .11067 5.124 0.6323 .00349 

- 	I 
Y=0.4 	I 215.5 

I 	I 
0 - 

I 	I 
I 	87.38 	I 

I 
0 - 

k = 1 	I 215.2  I 	0.7211 	I .00061 j 	87.83 	I 0.4161 	I .00223 
3 	I 217.4  I 	2.2657 	I .00381  I 	86.66 	I 1.1537 	I .00359 
5 	I 221.9  I 	4.2531 	I .01271 87.31 	I 1.6543 	I .00348 

- 	I 
Y=0.5 	I .2581 	I 

I 	 I 
0 	I - 

I 	I 
I 	.1375 	I 

I 
0 	I - 

k = 1 	I .2713 	I .00591 	I .02166 .1335 	I .00449 	I .01282 
3 	I .2851 .01989 	I .04321  I 	.1460 .01358 	I .02605 
5 	I .2667 .03120 	I .01424  I 	.1549 .01965 	I .05175 

X=0.6 

Y=0.5 .0323 0 I 	- I 	.0289 	I 0 - 
k = 1 .0314 	I .00061  I 	.01227 .0281 	I .00091  I 	.01219 

3 .0365 	f .00233 .05309 .0319 	I .00305  I 	.02340 
5 	I .0375 .00333 I 	.06483  I 	.0308 .00453 .02765 

Y=0.6 	I 4.778 0 I 	- 5.514 	I 0 	I - 
k = 1 	I 4.768 	I .01067  I 	.00091  I 	5.515 	I .01807 .00008 

3 	I 4.730 .02781 I 	.00439  I 	5.512 .04967 	I .00016 
5 	I 4.891 	I .06945  I 	.01015  f 	5.438 .08716 .00603 

Y=0.7 .0139 0 - I 	.0151 0 	I - 
k = 1 .0138 .00034 	I .00314  I 	.0150 	I .00063 	I .00289 

3 	I .0158 .00114 	I .05564 .0160 	I .00153 	( .02514 
5 .0150 	f .00142. .03308 I 	.0173 	I .00273 .05907 

X=0.8 

Y=0.7 .0173 	I 0 - f 	.0163 0 	I - 
k = 1 .0184 .00039 .02677 I 	.0155 .00056 	I .02186 

3 	I .0192 	I .00114 	I .04526 .0145 	I .00198 .05082 
5 	I .0241 	I .00200 	1 .14397 1..0188 	I .00333 	I .06197 

- 	I 
Y=0.8 	I 

I 
7.593 	I 

I 
0 	I - 

I 	I 
I 	6.443 	1 

I 
0 - 

k = I 	I 7.607 .01863 .00080 I 	6.446 	I .01948 .00020 
3 	I 7.655 .05482 	I .00353 6.459 	I .05135 .00108 
5 	I 7.653 	I .10534 	I .00342  I 	6.657 .09201 	I .01419 

Y=0.9 	I .0848 	I 0 	I - I 	.0751 	I 0 	I - 
k = I .0854 	I .00194 	I .00306  I 	.0752 	I .00155 .00058 

3 	I .1041 	I .00645 	I .08905 .0775 .00669 	I .01366 
5 	I .0965 	I .00895 	I .05613  I 	.0839 	I .01568 	I .04812 
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3.8 Simulation Studies 

3.8.1 Comparison between kernel and Normal priors 

This simulation study is designed to compare the Normal prior 

and kernel prior with respect to the performance of the model 

developed in Section 3.5.2. Lindley (1977) stated that the 

assumption of a Normal distribution for the group means when dealing 

with data concerning the refractive index of glass was unsatisfactory 

and replaced the Normal distribution with a Taylor series expansion. 

The aim is to compare the Lindley model with the kernel model when 

the grouped means are known to be non-Normal. 

Group. means were generated from each of the following 

distributions which were used as representatives of the between group 

distributions. The appropriate probability density function f(u) and 

the number (n) of group means used in the simulation is also given. 

(1). Normal distribution: 

f(m) = ( 21r)_1'2 exp (. 2 /2) 

Gamma distribution: 

f(u) = P u 1  exp (-m)/r(a) 	> 	0, 13 > 0, u > 0 

with a= 2. A = 1; n = 100. 

Uniform distribution: 

(1/6 	 -3<u<3, 

I. 0 	 elsewhere, 

n = 500. 

Mixture of two Normal distributions: 



0.5 	 f 	(u-'-1.5)2  1 	 f 	(u-1.5)2 
= 	 exp - 	} + ( 0.33) 	exp -________ 

2 	J 	 I 	2x0.33 2  

n = 300; (150 from each of the two component distitions). 

Notice that the methods are independent of the number of observations 

J in the groups in the training set. 

For each of the distributions the Bayes' factor was calculated 

under each of the three assumptions for the between group 

distributions. 

It is Normal. 

It is unknown. 

It is the true distribution. 

Note that for (a) and (b) the parameters of the distributions are 

estimated from the training data. The true, known, values are not 

used. 

Let the simulated data be denoted by (1i'•.'n) where n = 300, 

100, 500 and 300 for each of (1), (2), (3) and (4), respectively. 

For the estimation of the Bayes' factor in (a) an estimate of the 

between group variance is required. This estimate is taken to be 

I 	n 
S 2  = 	E 	)2 

n-i i=1 

rather than the usual analysis of variance estimate of the between 

group variance. This is because only group means were generated in 

the simulation study, not actual observations. The within group 

variance 02  is taken to be 1.0.. 
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Under the assumption (a) that the group means were distributed 

Normally with mean 7 and variance s 2 , the estimate of the numerator 

of (3.4) is 

I I 	(_)2 
exp {- 	 x 

ao(2r) 	I. 2o 2 a 2 	J 

1 
exp 

(wi) 2  

2 [s 2 +o 2 /(r+m)] 

where a and w are as defined after (3.13) and o2 may be taken to be 

1. 	Similarly the estimate of the denominator of (3.4) is given by 

1 
	 (_)2 

exp -
[(21r){s 2 +o 2 /m}] 
	

I 	2(s 2 +o 2 /m) 	j 

1 
exp 

[(21T){s 2 +o 2 /r}] 	 2(s 2 +o 2 /r) 

The purpose of the study was to compare the performance of the 

kernel based estimate assuming grouping and known within group 

variance of the Bayes' factor with that of the estimate obtained 

assuming a Normal distribution for the random effects. The "correct" 

result was taken to be the Bayes' factor obtained from assumption (c) 

where the true, or, standard distribution was used. 	The Bayes' 

factor based on this standard distribution is denoted BF. 	Note 

that numerical integration is required'for distribution (2) when BF 

is evaluated. 

Comparison between the kernel and Normal based estimates of the 

Bayes' factor is made using a statistic, which is called the maximum 
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absolute loge ratio statistic (MALR), defined by 

I 	I MALR = 	J loge 	
BFA 

J I 	BF 

for all (x,y) in the interval [{minj(1) -s,Jnax1()+s), i=1,2,...,n] 

and BFA  denotes the Bayes' factor based on the kernel or Normal 

model. Values of MALR close to zero are good in the sense that the 

assumed model is close to the true model. 	The results of the 

simulation study are given in Table 3.21. 	The kernel method does 

better than the Normal model when they are compared with the 

non-Normal and the kernel method is comparable with the Normal model 

when the Normal model is the correct one. 

Table 3.21 Comparison between Normal and kernel models using 
maximum absolute loge  ratio (MALR) statistics in 
the case where r=lO, in=10 and 02=1. 

Assumed Model 

Standard Kernel Normal 
True Model (3.5.2) 

N(0,1) 2.2765 1.0131 
Ga(2,1) 1.1267 4.4906 
Un(-3,3) 0.9251 2.5201 

N(1.5,0.33 2 )) 2.9715 12.1601 

3.8.2 	Aspects of comparison between models in terms of error 

probabilities 

The idea of this experiment is to estimate probabilities of Type 

EEO 



I and Type II errors. These are the probabilities of rejecting the 

null hypothesis, ( i.e. the control and recovered data are of the 

same source) given it is true and of not rejecting the null 

hypothesis given it is not true, respectively. A test set is 

generated and the Bayes factor is calculated based on these data to 

obtain an estimate of the probabilities over 20 and 50 runs of 100 

simulations under the known o2 kernel group, nogroup and normal 

models, see Sections 3.5.2, 3.5.3 and 3.8.1 respectively. The kernel 

group and nogrouped models are 'the models for which the BF is 

obtained under the assumption that the distribution of the unknown 

true mean ,2 of the group means takes a kernel density form with the 

training data assumed to have a grouping and nogrouping structure, 

respectively. The normal model assumes ii to be Normally distributed 

with some known parameters. 

Control and recovered test data are generated from a Normal 

distribution with different values of mean and variance which 

determine whether they are from the same or different sources. The 

control and recovered test data are regarded as coming from the same 

source if they were generated from a distribution with the same mean 

and as coming from a different source otherwise. This experiment is 

carried out in a view of the example given in Section 3.6. The 

distributions used are: 

Normal N(M,o) for the control test data with uX = 0.6789, 

0.8187 or 0.5095 and oX = 0.0656609; 

Normal N(SIy,o'). For the recovered test data in the same source 

case, Sly is as in (I) and oy  = 0.0656609 or 0.01. In the different 
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source case uy = 0.4923 or 0.9558, 0.7887 or 0.5395 and 0.6957 or 

0.6325: uX  and o take the values as in (I). The ny'S are chosen 

such that the are approximately 2 or 3 standard deviations from 

respectively. 

Notice that the choice of 0.01 for oy  in (ii) above is entirely 

arbitary. The reason and purpose of its choice is to show that the 

error probabilities should be smaller than those obtained using oy  

which equals 0.0656609 since the sample generated from a smaller o 

will be much closer together than those generated from a bigger o. 

Hence the chance of X and Y are being regardedcoming from different 

source is minute, after having being generated from the same mean. 

There are a total of 12 comparisons between the control and 

recovered simulated samples. Various sample sizes of the control and 

recovered data are also under consideration. Under each model, the 

numbers of misclassified cases, in terms of BF less than or greater 

than a threshold value out of the 100 simulations in each run for the 

same and different sources examples, respectively, are counted. The 

numbers of runs are 20 and 50. The estimated probabilities of Type I 

and Type II errors are then obtained. The estimated error 

probabilities under the three models are tabulated in Tables 3.22 and 

3.23, with 20 and 50 runs respectively, for a threshold value of one. 

Standard errors of the estimated probabilities are shown in 

parentheses. Since results from the two sets of independent runs are 

similar, only the results from 20 runs are discussed. The estimated 

error probabilities of both Type I and II under the Normal model are 

relatively higher than the two kernel based models. The error 

probabilities appear to be higher when X and Y are both common. As 
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Table 3.22 Estimated probabilities (shown in bold) of Type I and 
Type II errors of 20 runs of size 100 for various sample 

sizes of X and of Y under I) kernel group, ii) Normal 

and iii) kernel nogroup models; standard error (x10 3 ) 

of the estimate shown in brackets. 

Type I error 

0.6785 0.8187 0.5095 

0.0657 0.01 0.0657 0.01 0.0657 0.01 

a) 	I) 	I 0.3130 0.1520 I 	0.1185 0.0455 0.0755 0.0270 

I (7.4020) (6.6332) I 	(8.9228) (4.6154) I 	(4.7833) (4.1738) 
 0.3645 0.1865 0.0945 0.0420 I 	0.0430 0.0210 

I (8.8398) (8.0549) I 	(6.8622) (4.6791) I 	(3.7062) (3.4717) 

I 0.2925 0.1315 I 	0.1220 0.0455 f 	0.0840 0.0280 

I 
I 

(7.2864) (6.6992) I 	(9.1075) 
I 

(4.6154) I 	(5.7308) (4.2051) 

b) 	I) 	I 0.2535 0.0140 I 	0.1105 0.0000 
I 
I 	0.0750 0.0000 

(9.2984) (2.3395) I 	(7.6940) (0.0000) I 	(4.1988) (0.0000) 

I 0.2975 0.0370 0.1000 0.0000 I 	0.0640 0.0000 
I (9.2016) (3.8458) I 	(7.2909) (0.0000) I 	(3.7975) (0.0000) 

I 0.2305 0.0095 .  I 	0.1120 0.0005 0.0750 0.0000 

I 
I 

(8.5062) (1.8460) I 	(7.9006) (0.5000) ( 	(3.9403) (0.0000) 

c) 	1) 	I 0.2350 0.0015 
I 

0.1055 0.0000 
I 
I 	0.0965 0.0000 

I (10.649) (0.8191) I 	(6.6679) (0.0000) I 	(6.1248) (0.0000) 
I 0.2765 0.0105 I 	0.1045 0.0000 0.0900 0.0000 

(9.7137) (1.6976) I 	(6.3796) (0.0000) (7.3244) (0.0000) 
I 0.2080 0.0005 I 	0.1050 0.0000 	I 0.0935 0.0000 
I 
I 

(10.198) (0.5000) I 	(6.7862) 
I 

(0.0000) 	I (5.7708) (0.0000) 

d) 	1) 	I 0.1720 0.0615 I 	0.0400 
I 

0.0085 0.0225 0.0025 
I (8.0328) (4.3695) 	I (4.1675) (1.6663) 	I (3.7608) (0.9935) 

I 0.2230 0.0905 I 	0.0230 0.0040 	I 0.0070 0.0015 
(8.6175) (5.5476) I 	(3.1705) (1.3376) 	I (2.0647) (0.8191) 

I 0.1400 0.0485 	I 0.0455 0.0085 	I 0.0290 0.0030 

I 
I 

(6.6885) (3.9918) 	I 

I 
(4.3815) (1.6663) 	I (3.8319) (1.0513) 

e) 	I) 	I 0.1355 0.0165 	I 0.0380 
I 

0.0000 0.0195 0.0000 
I (7.3081) (2.8353) 	$ (4.7903) (0.0000) 	I (3.8713) (0.0000) 
I 0.1745 0.0290 	I 0.0200 0.0000 	I 0.0080 0.0000 

(9.6374) (3.8319) 	I (2.9911) (0.0000) 	I (2.0000) (0.0000) 
I 0.1200 0.0110 	I 0.0440 '0.0000 0.0265 0.0000 

I 
(6.6885) (2.5026) 	I 

I 
(5.0991) (0.0000) 	I (4.2471) (0.0000) 

f) 	I) 	I 0.1210 0.0355 	f 0.0270 
I 

0.0020 	I 0.0145 0.0010 
I (8.7629) (5.3050) 	I (4.2364) (1.1696) 	I (3.2016) (0.6883) 

I 0.1540 0.0560 	I 0.0100 0.0010 	I 0.0025 0.0005 

I (8.9561) (6.8211) 	I (2.2942) (0.6883) 	I (1.2300) (0.5000) 

I 0.1045 0.0285 	I 0.0350 0.0020 	I 0.0200 0.0020 

I (7.5558) (4.7169) 	I (3.9403) (1.1696) 	I (3.3245) (1.1696) 
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Table 3.22 cont'd. 

Type II error 

LLX 
	

0.6785 	 1 	0.8187 
	

I 	0.5095 

0.4923 	0.9558 I 0.6325 
	

0.5395  

0.2675 0.1205 j 	0.1870 0.0225 
(8.0091) (7.1992) I 	(6.8479) (3.0672) 
0.3040 0.1620 I 	0.1865 0.0220 
(7.6227) (7.6983) I 	(8.6837) (2.7720) 
0.2610 0.1050 I 	0.1935 0.0260 
(8.6723) (7.0149) (6.6203) (2.8469) 

	

I 0.6957 	0.7887 

	

I 0.2290 	0.0250 
I (10.049) (2.7624) 

I 0.2530 0.0245 
I (8.4945) (3.6617) 

	

I 0.2270 	0.0275 

I (9.8436) (3.0672) 

uy= 

a) 	I) 

b) 	1) 

C) 	I) 

d) 	i) 

	

0.1255 	0.0130 

(7.0140) (2.9109) 

	

0.1455 	0.0265 

(7.7280) (2.9267) 

	

0.1260 	0.0105 
(7.1598) (2.1119) 

0.0980 0.0040 
(5.8759) (1.5218) 

0.1020 0.0060 

(7.5950) (1.9735) 

0.1035 0.0025 

(6.3358) (1.4281) 

	

0.0035 	0.0000 
(1.0943) (0.0000) 

0.0055 0.0000 

(1.3523) (0.0000) 

	

0.0030 	0.0000 
(1.0513) (0.0000) 

0.0865 0.0030 
(5.2453) (1.6383) 

0.0850 0.0030 
(5.1042) (1.6383) 

0.0915 0.0040 
(6.1248) (1.8353) 

	

0.0565 	0.0015 
(6.1675) (0.8191) 

0.0565 0.0015 

(5.7250) (0.8191) 

0.0580 0.0015 

(5.9647) (0.8191) 

	

0.0015 	0.0000 
(0.8191) (0.0000) 

0.0010 0.0000 
(0.6883) (0.0000) 

0.0020 0.0000 
(0.0918) (0.0000) 

0.0890 0.0030 
(6.3204) (1.0513) 

0.0970 0.0030 

(7.4020) (1.2772) 

0.0925 0.0040 
(6.3193) (1.5218) 

0.0920 0.0020 
(5.6939) (0.9177) 

0.0950 0.0015 

(5.8714) (0.8191) 

0.0970 0.0020 

(6.1601) (0.9177) 

0.0020 0.0000 

(0.9177) (0.0000) 

0.0020 0.0000 
(0.9177) (0.0000) 

0.0020 0.0000 
(0.0918) (0.0000) 

I) 

11) 

I) I 

ii) I 

III) I 

0.0005 0.0000 
(0.5000) (0.0000) 

0.0010 0.0000 

(0.6883) (0.0000) 

0.0005 0.0000 

(0.5000) (0.0000) 

	

0.0000 	0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 
(0.0000) (0.0000) 

0.0000 0.6000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 	0.0000 

(0.0000) (0.0000) 

0.0000 p0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 
(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

Note : a) for r=1,m=1; b) for r=1,in=5; 	c) for r=1,ni=10; 
d) for r=5,m=5; e) for r=5,m=10 and f) for r=10,m=10 



Table 3.23 Estimated probabilities (shown in bold) of Type I and 
Type II errors of 50 runs of size 100 for various sample 

sizes of X and of Y under I) kernel group, ii) Normal 

and iii) kernel nogroup models; standard error (x10 3 ) 

of the estimate shown in brackets. 

Type I error 

IJXUy 

oY=  

a) 	1) I 

I 

I 

b) 	j) I 

") I 

iii) I 

C) 	i) I 

I 

d) 	i) I 

") I 

I 

0.0657 	0.01 	I 0.0657 	0.01 
	

0.0657 	0.01 

0.3116 0.1582 0.1072 0.0416 0.0800 0.0290 
(6.0160) (5.5305) I 	(4.9324) (2.9187) I 	(3.4522) (2.6380) 
0.3548 0.2020 I 	0.0852 0.0366 	I 0.0522 0.0214 
(6.4158) (5.7142) I 	(4.4834) (2.6590) 	I (3.0276) (2.3905) 
0.2924 0.1388 0.1110 0.0412 	I 0.0936 0.0328 
(5.6609) (5.6397) (4.8001) (2.8376) 	I (4.1379) (2.9002) 

0.6785 
	

0.8187 
	

0.5095 

0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.2518 

(6.2184) 

0.2980 
(6.8570) 

0.2288 
(6.1587) 

0.2320 

(5.2450) 

0.2770 

(5.8011) 

0.2106 
(5.6814) 

0.0200 
(2.3733) 

0.0406 
(3.1610) 

0.0124 

(1.8857) 

0.0022 

(0.7715) 

0.0114 

(1.3999) 

0.0012 

(0.4643)  

0.1306 
(4.0883) 
0.0942 
(3.6932) 

0.1048 
(4.1031) 

0.1104 
(4.0300) 

0.1100 

(3.9795) 

0.1110 

(4.0025) 

0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000)  

0.0800 

(4.6422) 

0.0652 
(3.9095) 

0.0826 

(4.5875) 

0.0926 

(4.3967) 

0.0878 
(4.6448) 

0.0902 
(4.4947) 

0.1808 0.0522 0.0366 0.0062 0.0248 0.0020 
(5.6267) (3.0942) I 	(2.5170) (1.0257) I 	(2.4946) (0.6389) 
0.2258 0.0810 I 	0.0174 0.0030 I 	0.0070 0.0008 
(6.1881) (3.8571) I 	(1.7097) (0.8690) I 	(1.3170) (0.3875) 
0.1409 0.0422 I 	0.0452 0.0090 I 	0.0310 0.0028 
(5.2235) (2.8755) (2.6379) (1.2856) (2.6991) (0.8102) 

e) 	I) 	I 	0.1614 0.0156 I 	0.0326 0.0004 I 	0.0220 0.0006 

I 	(4.9979) (1.7879) I 	(2.2822) (0.2799) I 	(2.1571) (0.3393) 

I 	0.2042 0.0316 I 	0.0202 0.0002 I 	0.0094 0.0002 

I 	(5.4592) (2.5771) I 	(2.0302) (0.2000) I 	(1.2907) (0.2000) 

I 	0.1352 0.0102 0.0402 0.0008 I 	0.0282 0.0006 

I 	(4.4834) (1.3847) 	I (2.6261) (0.4815) I 	(2.6448) (0.3393) 

f) 	I) I 0.1204 

I (4.7462) 

I 0.1568 

I (4.9109) 

I 0.1022 

I (4.5110) 

0.0292 

(2.3183) 

0.0492 

(3.0080) 

0.0224 

(1.7510) 

0.0264 0.0030 0.0198 0.0010 
(2.5834) (0.7693) I 	(1.9057) (0.4285) 
0.0146 0.0016 	I 0.0068 0.0002 
(1.6711) (0.5237) 	I (1.0475) (0.2000) 
0.0314 0.0034 	I 0.0252 0.0018 
(2.5716) (0.7881) 	I (2.1235) (0.5489) 



Table 3.23 cont'd. 

LLX 

a; 	1) 

b) 	I) 

C) 	1) 

I) 

1) 

I) 

0.6785 

	

0.4923 	0.9558 

	

0.2532 	0.1176 

(7.1340) (4.9780) 

	

0.2976 	0.1654 

(7.3710) (5.9261) 

	

0.2400 	0.1044 
(6.5215) (4.8332) 

	

0.1236 	0.0140 

(4.2161) (2.0404) 

	

0.1416 	0.0272 
(4.3925) (2.6807) 

	

0.1232 	0.0106 
(4.7931) (1.6759) 

0.0956 0.0052 
(4.1616) (0.9578) 

0.1038 0.0106 

(4.3037) (1.3525) 

0.1030 0.0034 

(4.3542) (0.7345) 

0.0030 0.0000 
(0.7693) (0.0000) 

0.0038 0.0000 
(0.8026) (0.0000) 

0.0030 0.0000 
(0.7143) (0.0000) 

0.0002 0.0000 
(0.2000) (0.0000) 

	

0.0004 	0.0000. 
(0.3999) (0.0000) 

	

0.0002 	0.0000 

(0.2000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

Type II error 

0.8187 

	

0.6325 	0.5395 

	

0.1880 	0.0208 

(4.4447) (1.6621) 

	

0.1822 	0.0194 
(4.8763) (1.5494) 

	

0.1976 	0.0234 

(4.5315) (1.8208) 

0.0780 0.0032 
(4.3799) (0.8300) 

0.0774 0.0032 
(4.3687) (0.7794) 

	

0.0812 	0.0034 
(4.5860) (0.8857) 

0.0610 0.0014 
(4.0532) (0.6395) 

0.0576 0.0012 

(4.0159) (0.5450) 

0.0626 0.0018 

(4.0688) (0.6815) 

	

0.0014 	0.0000 

(0.6395) (0.0000) 

0.0012 0.0000 
(0.6155) (0.0000) 

0.0014 0.0000 
(0.5722) (0.0000) 

0.0002 0.0000 
(0.2000) (0.0000) 

	

0.0002 	0.0000 
(0.2000) (0.0000) 

0.0002 0.0000 

(0.2000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

I 	0.5095 

	

0.6957 	0.7887 

	

0.2254 	0.0296 

(6.5851) (2.2849) 

	

0.2470 	0.0310 
(6.7142) (2.5912) 

	

0.2232 	0.0316 

(6.4551) (2.2741) 

0.1046 0.0032 

(4.4281) (0.7251) 

0.0116 0.0036 
(4.8936) (0.7959) 

0.1078 0.0040 
(4.4656) (0.7559) 

0.0834 0.0026 
(4.1562) (0.7456) 

	

0.0872 	0.0028 
(4.1111) (0.7022) 
0.0882 0.0034 
(4.2637) (0.8383) 

0.0016 0.0000 

(0.5967) (0.0000) 

0.0022 0.0000 
(0.6572) (0.0000) 

0.0020 0.0000 

(0.7000) (0.0000) 

0.0002 0.0000 

(0.2000) (0.0000) 

0.0002 0.0000 

(0.2000) (0.0000) 

0.0002 0.0000 

(0.2000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

0.0000 0.0000 

(0.0000) (0.0000) 

Note : a) for r=1,m=1; b) for r=1,m=5; 	c) for r=i,ni=10; 

d) for r=5,m=5; e) for r=5,ni=10 and f) for r=10,ni=10 



the sample sizes of X and of Y increase, error probabilities are 

reduced greatly, especially for the Type II error. 

3.8.3 	Validation of kernel density as an estimate for the prior 

density of .t 

The simulation study is carried out to validate the assumption 

of training data in estimating the distribution of the between group 

random factor. It also examines whether the use of the group means 

as the data points to construct a kernel density estimate, f(m), will 

give a better fit to f(u) if the training data has an obvious random 

structure. If f(i) is non-Normal, will assuming the training data is 

grouped be beneficial in estimating f(u)? Thus, this simulation 

study is designed not only to measure the goodness of fit of the 

kernel density estimate, using the training data, but also the effect 

of f(z) being non-Normal indicated from the training data. Then the 

kernel density estimate obtained by the ungrouped training data might 

not be the best to represent the true density f(st), especially when 

there is an apparent random structure in the training data. 

The kernel density estimate, f(t), for f() obtained by assuming 

the training data is either grouped or not grouped (see Section 3.5.1 

for details). The goodness of fit of the kernel density estimate is 

measured by Mean Integrated Square Error (MISE). In this study, like 

the entire thesis, I restrict myself only to consider the training 

data consisted of equal within-group size, i.e every group has an 

equal number of observations. Various group sizes and numbers of 

observations within each group are also considered in this study. 

no 



Training data are generated from the model (3.1) with ui 

generated from the following mixture of two Normal distributions: 

p(ujfp,u1,LL2.o1,02) = p f , (tjlj ,o j) + ( 1 -p)fN(uiI 2 ,o 2 ), 

- < 	1 ,LL 2  < 	, 0 k< p k< 1, 0 1, 0 2 > 0. 

Random samples of oi generated from the above distribution are said 

to be from 

a Normal distribution with mean 5 and unit variance, if p is set 

to 1, and ,i = 5.0 and variance o = 1.0, 

a Skewed distribution if p = 0.95, u = -0.1, u 2  = 1.9, 0 = 1.0 

and oz = 3.0, and 

C) a Bimodal distribution if p = 0.5, ,i = -1.5, P 2  = 1.5, 0 = 1.0 

and 0 2 = 0.33. 

The density functions of the above three distributions are 

plotted in Fig. 3.13. 	Formulae for the mean and variance of the 

distributions (b) and (c) are shown in Appendix 1. 	The usual error 

term c. in the model (3.1) is generated from a Normal distribution 

with mean zero and variance o z . The within-group variance, o2, is 

set to be either equal to the between-group variance, o or 

one-hundredth of o.In the former case the training data will not 

represent an obvious or strong random effects structure. The group 

sizes are chosen to be 10, 20, 50 or 100 and the number of 

within-group observations is 1, 5 or 10. When the number of 

within-group observation is one, the assumption of the training data 

being grouped is same as the training data being ungrouped. Two 
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(a) Normal 
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(b) Skew 
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(c) Bimodal 

Fig. 3.13 Density plot of' the true underlying distribution used 
in Section 3.7.3 For a simulation study 
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kernel density estimation methods are used: they are the ordinary and 

adaptive method described in Section 2.1. 

Results of the study are shown in Tables 3.24 and 3.25 for o = 

o and o = O.lxo3 , respectively. Because of the computational time, 

only one run of the simulation for each of the above cases is carried 

out. Although one should not read too much into one set of 

simulations, the results shown in these Tables do indicate, as one 

might expect, that using the grouped sample means to estimate the 

between group distribution is more adequate when there is an obvious 

random structure in the training data (see Table 3.25). From both 

Tables, it is clear that the MISE increases as the group size 

increases. Moreover MISE, in general, decreases as the number of 

within-group observations increases, when the training data has an 

obvious random structure (Table 3.25). In this simulation study, the 

adaptive kernel method does not perform as well as the ordinary 

kernel method in terms of MISE, though the adaptive kernel method 

seems to improve the behaviour of the Bayest factor. This confirmed 

the findings by Breiman et al (1977), see remarks by Abramson (1982). 

Table 3.24 shows the results where the training data do not have 

a sufficient grouped structure since o = o. Hence the use of 

ungrouped data to estimate f(ii) seems to be better in terms of MISE. 

However if the grouped structure in the training data is strong, as 

showed in Table 3.25, then using the group means to construct f() is 

more superior to the ungrouped data. This becomes even more so when 

the underlying true distribution for ii is non-Normal. 
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0.3176 

0.3892 

0.6599 

0.5343 

0.5766 

0.6003 

0.8107 
0.7258 

0.7120 

0.5505 

0.6184 

0.6348 

distributioi 

0 . 3542  

0 . 4196  
0.7119 

0.5334 

0.6193 

0.6492 

0.8651 

0.7900 

0.7516 

0.6322 

0.6454 

0.6722 

: Bimodal 

	

0.3176 
	

0.3542 

	

0.4164 
	

0.4605 

	

0.8140 
	

0.8822 

	

0.5343 
	

0.5334 

	

0.7339 
	

0.7402 

	

0.7426 
	

0.8319 

	

0.8107 
	

0.8651 

	

0.9934 
	

1.0802 

	

1.0016 
	

1.0952 

	

0.5505 
	

0.6322 

	

0.7474 
	

0.8219 

	

0.9474 
	

1.0063 

Table 3.24 MISE of the estimate for f(u) given different group size 
(n) and within group size (J) assuming the training data 

is either grouped or ungrouped using the ordinary or the 

adaptive kernel method. o = a8  

Between group distribution: Normal 

Assume TS J 	 Ungrouped 	 I 	Grouped 

n J 

10 1 

5 

10 

20 1 
5 

10 

50 1 

5 

10 

100 1 

5 

10 

Ordinary 

0.3590 

0.7716 

0.4347 

0.2688 

0.4352 

0.3189 

0.2961  

0.3314 

0.3211 

0.3742 

0.3111 

0.3154 

Adaptive 

0.3671 

0.8323 

0.4489 

0.2769 

0.4569 

0.3434 

0.3229 

0.3516 

0.3415 

0.4073 

0.3207 

0.3313 

Ordinary 

0.3590 

1.2501 

0.5803 

0.2688 

0.5304 

0.3640 

0.2961 

0.3922 

0.4281 

0.3742 

0.3960 
0.4075 

Adaptive 

0.3671 

1.2496 

0.5885 

0.2769 

0.5391 

0.3889 

0.3229 

0.4198 

0.4437 

0.4073 

0.4102 

0.4332 

Between group distribution: Skewed 

10 1 

5 

10 

20 1 

5 

10 

50 1 

5 

10 

100 1 

5 

10 

Between grout 

10 1 	I 0.2954 I 	0.3048 I 	0.2954 I 	0.3048 
5 	I 0.4041 I 	0.4036 0.5113 f 	0.5032 

10 0.3854 I 	0.4061 I 	0.5302 0.5628 
20 1 	I 0.3956 I 	0.4047 I 	0.3956 I 	0.4047 

5 	I 0.3450 0.3551 0.3860 I 	0.3765 
10 0.3675 f 	0.3811 0.5299 0.5410 

50 1 	I 0.3508 I 	0.3711 I 	0.3508 0.3711 
5 	f 0.3516 I 	0.3664 I 	0.4364 I 	0.4588 

10 0.3869 I 	0.3936 I 	0.6134 	I 0.6542 
100 1 0.3458 I 	0.3593 I 	0.3458 	I 0.3593 

5 0.3543 I 	0.3509 0.6062 	I 0.6421 
10 0.3593 0.3644 I 	0.7461 	( 0.8057 
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Table 3.25 MISE of the estimate for f(u) given different group size 
(n) and within group size (J) assuming the training data 

is either grouped or ungrouped using the ordinary or the 
adaptive kernel method. o=O.lxo5  

Between group distribution: Normal 

Assume TS I 	Ungrouped 	 I 	Grouped 

n 	J  

10 1 

5 

10 

20 1 

5 

10 

50 1 
5 

10 

100 1 

5 

10 	I 

Ordinary 

0.4375 

0.4614 

0.2953 

0.5312 

0.5868 

0.5756 

0.5062 

0.5054 

0.5010 

0.4718 

0.5778 

0.5895 

Adaptive 

0.4613 

0.4627 

0.2961 

0.5779 

0.5877 

0.5761 

0.5426 

0.5069 

0.5022 

0.4948 

0.5804 

0.5904 

Ordianry 

0.4375 

0.4062 

0.2871 

0.5312 

0.5510 

0.4596 

0.5062 

0.4779 

0.4818 

0.4718 

0.5260 

0.5522 

Adaptive 

0.4613 

0.4156 

0.2956 

0.5779 

0.5631 

0.4901 

0.5426 

0.4962 

0.5042 

0.4948 

0.5539 

0.5709 

Between grout distributioi r: Skewed 

10 1 0.6374 	I 0.6794 0.6374 I 	0.6794 
5 1.0112 1.0523 I 	0.7156 0.7766 

10 	I 1.4931 	I 1.4703 I 	1.3269 I 	1.3499 
20 1 1.1075 	I 1.1417 1.1075 I 	1.1417 

5 1.1951 1.2069 I 	1.1865 1.1958 
10 1.3460 1.3621 I 	1.1449 I 	1.2099 

50 1 0.8914 	I 0.9585 I 	0.8914 I 	0.9585 
5 	I 0.9625 	I 0.9690 I 	0.8633 0.9220 

10 0.9534 	I 0.9618 I 	0.7941 I 	0.8750 
100 1 	I 0.9033 	I 0.9943 I 	0.9033 0.9943 

5 	I 1.0083 	I 1.0123 I 	0.9416 0.9813 
10 	I 0.9123 	I 0.9137 0.8242 I 	0.8896 

Between group distribution: Bimodal 

10 1 	I 0.7093 	I 0.7905 0.7093 0.7905 
5 	I 0.9291 	I 0.9348 0.6779 	I 0.6901 

10 	I 2.0732 	I 2.1610 	I 0.6646 	I 0.7997 
20 1 0.8628 	I 0.8973 	I 0.8628 0.8973 

5 	I 2.0845 	I 2.2018 	I 1.2963 1.7182 
10 0.9245 	( 0.9608 	I 0.6161 	I 0.6693 

50 1 	I 0.8617 	I 0.9529 	I 0.8617 	I 0.9529 
5 	I 1.3158 	I 1.3784 	I 1.2039 	I 1.3769 

10 	I 0.9943 	I 1.0193 	I 0.9842 	I 1.0844 
100 1 	I 1.1103 	I 1.2669 	I 1.1103 	I 1.2669 

5 	I 1.2719 	I 1.3456 	I 1.2534 	I 1.3766 
10 	I 1.2816 1.3086 	I 1.2126 	I 1.3454 
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3.9 Conclusions 

Four methods of evaluation of the Bayes' factor have been 

developed based on different assumptions about the structure of the 

training data and the within-group variance. The training data in 

the example given in Section 3.6 do not represent the size of the 

underlying population of the training data since only 22 groups are 

considered. The computational time can be reduced greatly when the 

grouped model is used. The effect of ignoring the grouping structure 

in the training data is that the value of Bayes' factor is reduced 

slightly. If the random structure in the training data is apparent 

then the model developed in Section 3.5.2 should be used. There is 

not a lot to choose between the assumed known and unknown variance 

models as far as the grouped data model is concerned when one is 

dealing with a large training data set. It reflects the large 

degrees of freedom in estimating the within-group variance. 

In view of the paradoxical phenomenon discussed in Section 3.6, 

an alternative approach might be to estimate the ratio of the 

densities nonparametrically rather than the densities themselves. 

This is problem because with the kernels involved, one would have the 

ratio of two sums of functions that may not be smooth. Simple 

approximations to these sums may merely lead us back to parametric 

densities. 

The siffiulation study in Section 3.8.1 shows that an improvement 

over the Normality assumption of the Bayes' factor estimates is 

obtained by using a kernel method when the random effects are not 

Normally distributed. 
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In Section 3.5.1 part a, the sample group means of the training 

data were used to construct the distribution of ii. Other estimates 

for ui may be used as the data points, for instance, one could use 

the EB posterior estimator for t.tj (see Maritz (1970), Rao (1973)), 

namely 

(1-6) Z i .  + a 

where 6 = 	/( ~J), 	= WMS, 	= Max( (BMS - 	 ), 0) (see 

Section 2.3 for example). 	It will be interesting to see how the 

Bayes' factor behaves using above instead of the 	's. 

The models developed here could be extended to take into account 

other factors and situations such as it could be possible for a 

suspect to be present at the crime scene, not to have picked up cat 

hairs there and to have picked up cat hairs from some other source. 

Also the discussion so far has centred mainly on the occurrence of a 

single item of transfer evidence. In practice, several types of 

transfer evidence will be present, for example apart from cat hair 

there might be fibres or glass fragments involved as well. Then the 

functions in (3.3) should be estimated on the basis of this 

combination of evidence. Each type of transfer evidence will require 

the determination of a set in which the origin will belong. If there 

are q types of transfer evidence, there' may be q separate sets. For 

each set, the probalilities of observing the control and recovered 

data giving they have come from the same or from different sources 

are estimated. However, the final probability required is that of a 

random selection being in the intersection of the q sets. Let D be 
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the intersection of the D1 sets (1=1 ..... q). Then we have 

P(D) = P(D 1 .D 2  ..... D q ) 

= P(D 1  ID 2 .. .D q )xP(D z ID 3 .. .Dq )x. . .xP(D q ) 	 (*) 

where D 1 ,D 2 ,. ..Dq  is the intersection of the D1 sets (1=1,. ..q), etc. 

If the properties defining the q sets are statistically independent, 

then (*) can be reduced to 

P(D) = P(D 1 )xP(D 2 )x ..... xP(Dq ). 	 (**) 

Further work is required to incorporate such possibilities into a 

measure of the strength of the evidence. 

In view of the paper given by Makov (1987) the models developed 

here could also be extended to multi-suspects or even missing suspect 

problem. The extension of the group and assumed known within-group 

variance model to the multivariate case is explored in Chapter 6. 
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CHAPTER 4 

ESTIMATION OF VARIANCE COMPONENTS 

4.1 Introduction 

In this chapter, I consider from a Bayesian viewpoint some 

aspects of a balanced one-way random effects model 

	

Zjj = Ai + Cjj 	(i=l,...,n;j=1 ..... J) 	 (4.1) 

where Zjj are the observations, u is a location parameter, A1 and nj 

are independently distributed random variables with means zero and 

variances o and o respectively. Thus, 

	

E(Zij) = L, 	Var(Z1) = 0 2 + o. 

In the usual analysis of the model (4.1), A1 and c Q are assumed 

Normal, and interest is usually centred on the estimation of the two 

variance components (0 2,  The problems of estimation and 

hypothesis testing concerning the variances have already been 

outlined in Chapter 2. Here, I consider the situation in which Ai  is 

not Normally distributed. In addition, unlike Tiao and Au (1971) 

who specified the distribution of Ai  to be a known mixture of two 

Normal distributions I assume that the distribution of Ai has an 

unknown distribution and model the sample group means by a kernel 

density. The effect of this on the inferences about the variance o 

is investigated. This effect is studied from a Bayesian viewpoint, 

and a comparison between the Normal and kernel models is made by a 

simulation study. The maximum likelihood (M.L.) and Bayesian 

estimates of the variance components under the two models are also 

108 



compared. 

4.2 The likelihood function 

To derive the likelihood function for a random effects model, 

it is convenient to work with the group means. Under the 

non-Normality assumption about the group means, the proposed density 

for the group means takes a kernel density form, namely 

	

1 	1 

	

f(tIX,o,o,) = - 	 exp -  

	

k1 [2o 	 { 	1 	(4.2) /J] 	 2o  

	

where t = j for 1=1,2,... ,n, o = X 2 o 2, 	= Jo ~ o and X is 

the 'standardised' smoothing parameter and 	= 	1'•••'1n)'• With 

the similar manner due to Tiao and All (1971), it follows from (4.2) 

and the assumption of Normality of c i, and independence of 

that 

(I) Ti .  and (Zjjj • ) are independent, 

(ii) -o 1 m 1  is distributed as 

Thus the likelihood function of the parameters is 

	

1 	f u 1 m 1  1 n 
* 

L(o,o,XIZ) 	 exp - 

2

I hf 	 (4.3) 

	

(o)iI2 	 I 	o J = 

where Z denotes the entire data, v i  is the within group degrees of 

freedom as defined in (ii) above, m 1  is the sample within mean square 

and 
f* 
 is as in (4.2) except the summation over k does not include 

k=i (The reason for this is to avoid the returning of zeros (see 

Chapter 2 for details)) and n is replaced by n (= n-i). 
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The likelihood above is a product of two factors. 	The first 

factor represents information coming from the residuals about the 

parameter o only, whereas the second factor provides information 

about all the parameters (0 
2

, coming from the group means 

Note that estimation of the smoothing parameter X is not of much 

interest as far as the variance components estimation problem is 

concerned. 

Before I proceed to discuss the estimation of the variance 

components, I would like to give some references to several data 

sets which later will be used to illustrate the method of analysis of 

the problem. 

There are six data sets, some were generated from known 

distributions and some are published data sets. The latter provide a 

direct comparison between the model I propose and models used by 

others. The simulated data are generated from the model (4.1) with 

the A1 from (a) Normal and (b) Gamma distributions. The distribution 

of 	is assumed to be Normal. The published data were taken from 

Tiao and All (1971) and are reproduced in Table 4.1. 	(N.B. it is 

denoted as Tiao's data hereafter and the model which Tiao and All 

derived and applied to these data is called Tiao's model) The other 

two published data sets, taken from Tables 5.1.2 and 5.1.4 of Box and 

Tiao (1973), are tabulated in Table 4.2 and 4.3 respectively. 

Details of all these data sets are summarised in Table 4.4. 
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Table 4.1 The Ordered Group Means Yi .  (Tiao and All (1971)) 

Group i 
	

Group i 

I I 	-3.682 	I 11 
2 -2.057 12 
3 I 	-1.780 	I 13 
4 I 	-1.238 	I 14 
5 I 	-0.797 	I 15 
6 I 	-0.671 	I 16 
7 I 	-0.646 	I 17 
8 'I 	-0.471 	I 18 
9 I 	-0.436 	I 19 

10 I 	-0.401 	I 20 

ii .  

I 	-0.378 
I 	0.000 
I 	0.112 
I 	0.791 
I 	0.923 
I 	1.571 
I 	1.712 
I 	4.223 
I 	6.415 
I 	7.072 

Table 4.2 The Ordered Group Means (Dye Data) taken 
from Table 5.1.2 of Box and Tiao (1973) 

Group 	I 	1 	2 	3 	4 	5 	6 
1470 1498 1505 1528 1564 1600 

Table 4.3 The Ordered Group Means (Generated Data) taken 
from Table 5.1.4 of Box and Tiao (1973) 

Group 	 l 	1 	2 	3 	4 	5 	6 
Zi . I 3.8252 4.6560 5.6848 6.0796 6.2268 7.5212 

Table 4.4 Summary of the data sets used in the analysis of 
variance components problem 

Data 	oT oT 	BMS 	WMS(m 1 ) 	 n J N 

Normal 1 4 21.883 0.9998 0.5043 100 5 500 400 
Gamma 1 2 27.042 0.9920 0.3872 100 10 1000 900 
TiaoV 1 4 21.368 1.1525 0.5073 20 3 60 40 
DyeA 	. - 

- 1.1x10 4  2.5x10 3  0.9572 6 5 30 24 
GeneratedA 16 4 8.3363 14.946 1.0186 6 5 30 24 

Cats - - 4.7x10 2  4.3x10 3  0.7855 22 10 220 198 

V Data taken from Tiao and All (1971); 
A " Box and Tiao (1973); 
oT & oT denote the 'True' values of o and o resp. 
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Two methods were used to obtain estimates for o and 02e. they are 

the Maximum likelihood and Bayesian methods. 

4.3 Maximum Likelihood (M.L. ) Method 

Searle (1971) derived maximum likelihood estimates for variance 

components in a balanced one-way random effects model under a 

Normality assumption about the distribution of the random factor 

For the kernel model, we obtain the estimates for the variance 

components and smoothing parameter by maximising the likelihood 

function of (4.3). The likelihood function is maximised with respect 

to all three unknown parameters simultaneously using the NAG 

maximisation routine E04JAF. 	There is a problem that different 

starting values of o z  and X yield different estimates whereas the 

estimate for o remains unaltered. This leads to a suspicion that o 

and x might be somehow related. To pursue it further I obtained a 

set of estimates for o and x, fixing o, by using different sets of 

starting values. 	Then, for the examples given in Table 4.4, the 

values of 	and 	are plotted and the relationship is shown in Fig. 

4.1. 

An analytical result confirmed the relationship implied by the 

graphs. Take the logarithm to the base e of the likelihood function 

(4.3) giving 

log L 	
{ 	

1 	

[ 

u 1 m 1 	n 
- 	 2n(o - ____ 

J 	2o 

n I 	n I 
- 2n(X 2 ) + L 2n 	Z exp - 

	 11. 
2 	 11 	k~ i 	L 	2X 2 o 2  
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x 

Fig. 4.1 Relationship between o 2  and X For (a) Normal; (b) gamma 
(c) Tiao; (d) Dye; (e) Generated and (F) cat data under 
kernel model. 
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Differentiate log L with respect to o. o and X 2  in turn to yield 

three differential equations, namely 

dlogL 	I T, 1 	f -1m1  1 	1 	n  1 
(t) 

d0
2 

	

e 	I 2oz J 	I 2 0e j 	I 2O 	J 

n 	 1 
E I t (D1 2b1 2 )/(a 2  L Dik) f = 0, 

1=1 L 2*a 	 k*i 	j 

	

dlogL 	 nJ 
(tt) 	 = 	

{ 2 J + L IJ 	(Dj.Dbj2)/(oz  Z Dj)] = 0, and 
do 	 2o 	 1=11 20 i 	 k*i 

dlogL 	 n  
  { 	

1 	
n 

I 
(ttt) 	 = 	+ t

1 
 

 

2t
i  	0; 

d>2 	i 
 

where 

Dij = exp {-b}  and 

)2 

b1 = ____________ 	for j = 2 or k. 
2 X20 2 

Multiply (t) by J/X 2  to yield, 

V j j u 1 m 1 J  nJ 
____ + 	+D=O, 	 (4.4) 
2X 2 o 	2X 2 (3 	 2>, 2 o 2  

	

where D =E[JE(Di cbi Q )/(x 2 o Z EDik), and D1 and 	are as 

after (ttt) for j = 2 or k. Multiplying (tt) by 1/x 2  and (t-t--t) by 

J1 2 , yields 

nJ 
+D=0. 	 (4.5) 

2X2o 22 

Substitute (4.5) in (4.4) to give a solution for 02  as m 1 . namely the 
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Fig. 4.2 Contour plot of' relationship between c 2  and X 2  given by 
l.h.s. of' equation (4.5) with c. 2  Fixed equal to WMS For 
(a) Normal, (b) Gamma, (c) Tioo, (d) Dye, (e) Generated 
and (F) cat- dat-a. 
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within group mean square, which confirmed the finding earlier. 

Whereas the solutions for o and x 2  are given by (4.5), hence the 

hyperbolic relationship between the two parameters. Contour plots of 

(4.5) as a function of o ,  and X 2  are shown in Fig. 4.2 for the 

examples in Table 4.4. The contours are the same as those shown in 

Fig. 4.1 as far as the relationship is concerned. The line in Fig. 

4.2 represents a set of values of o and > 2  which satisfied the 

equation (4.5). 

However this relationship is not entirely surprising since, in 

the equation (4.2), there is basically one parameter. So if we let n 

= Xo, the likelihood can be maximized with respect to o and i and 

a unique solution can be obtained for o 	and n 2  separately. 

Furthermore, let the m.l.e. of r be n 2 	then we have 2(j + ) = 

2 	Substitution of o from the maximisation of the first component 

in (4.3) will give one equation in two unknowns X and o. These two 

will be related by 

= 

+ 

If 	is small relative to J, this will be approximately 

represented as 	= 2/j;2 	The hyperbola in Fig. 4.1 agrees with 

this relationship. 

There seems to be no unique solution as far as these two 

parameters are concerned. One possible solution is to fix X. then 

maximise the likelihood function with respect to o and o only, to 

obtain M.L. estimates for them. An objective choice of X. as before. 

is determined by maximum likelihood leave-one-out method. Thus the X 
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for each data set is shown in Table 4.4 also. Conditioning on X. the 

maximum likelihood estimates for 02  and o under the kernel model are 

tabulated in Tables 4.5 and 4.6. Also shown in the table is the MLE 

under the Normal model, and the ANOVA estimate. Note that the 

maximum likelihood estimate for o 2  always has a downward bias since 

it fails to take into account the loss of degrees of freedom. Notice 

also the similarity between the ANOVA estimate and the kernel 

estimate. This is as expected since when X was obtained, the group 

means are first standardised by their sample deviation s. The sample 

variance s 2  = (n-l)t(j-, )2  is an unbiased estimator of 

(o,+o/J) since 

5 2  = BMS/J and E(BMS) = C32 	2 
e+jo,a . 

Thus, this is equivalent to obtaining X by fixing the values of o 

and o and hence of E(BMS). Notice that the fixed values of ol and 

o are the ANOVA estimates by the above properties. 

Table 4.5 Estimates fora 2  using Maximum likelihood and Bayesian 
method under the Normal and Kernel model. 

Data 	ANOVA 	Normal model 	 Kernel Model 
MLE 	.Post'r mode 	MLE 	Post'r mode 

Normal 	4.1765 4.1328 
Gamma 2.6049 2.5779 
Tiao 6.7385 6.3824 
Dye 1764.1 1388.3 

Generated -1.322 0.0000 
Cats 0.0043 0.0041 

4.08989 4.1766 3.11645 
2.55142 2.6050 2.28426 
6.06015 6.7386 5.28223 
1119.96 1764.1 578.446 
0.00000 _* 

0.00000 
0.00425 0.0043 0.00325 

* NAG routine fails to find a maximum 
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Table 4.6 Estimates for o using Maximum likelihood and Bayesian 
method under the Normal and Kernel model. 

Data 	ANOVA 	Normal model 	 Kernel Model 
MLE 	Post'r mode 	MLE 	Post'r mode 

Normal 0.9998 0.9998 0.99480 0.9998 0.99480 
Gamma 0.9920 0.9920 0.98977 0.9920 0.98977 
Tiao 1.1525 1.1525 1.09762 1.1525 1.09763 
Dye 2451.3 2451.3 2262.58 2451.2 2252.88 

Generated 14.946 13.346 12.4144 14.034 12.5234 
Cats 0.0043 0.0043 0.00427 0.0043 0.00427 

4.4 Bayesian method 

4.4.1 Prior and Posterior distribution 

For a more general case, let the prior distribution for these 

parameters be 

p(o,o,x) = p(o,ox)p(x). 	 (4.6) 

Suppose that we are in a situation that for any given X, little is 

known about o z  and o. We shall take the same prior distribution as 

used by Tiao and Ali (1971), namely 

p(o,oX) 	c,2 (o+JoY 1 	 (4.7) 

subject to the restriction of O > 0. Note that this choice of prior 

distribution was initially suggested by Tiao and Tan (1965). This 

choice of prior distribution (4.7) was criticized by Stone and 

Springer (1965). Box and Tiao (1973) showed that the vague prior on 

the expected mean squares of the analysis of variance is equivalent 

to a Jeffreys' type vague non-informative prior on the variance 

components. Nevertheless, continue with this prior meanwhile. Later 
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a more general prior is considered. 

Combining the prior distributions in (4.6) and (4.7) with the 

likelihood function in (4.3) yields the joint posterior distribution 

of (o,o,,x) as 

1 
p(o,o,XIZ) 	p(X)x 	 exp- 

1m 1  ) 

	

(o)(i/2)+1 	I 	2o I Q(o,o,XfZ) 	(4.8) 
where 

	

a(o,o,xIz) = (o+Jo)_1.T1 f*(1 	 o>O, o>O, X>O, 

and the prior. p(X), for X is independent of o, o. The joint 

posterior distribution of o z  and o, conditional on X and Z can be 

written as 

	

exp- 	Q(o , o,XIZ). 	(4.9) p(o,oJx,Z) 	
[ 	} 	 I. 2o 

Inference about o z  may be obtained from the marginal posterior 

distribution of o,, conditional on X and Z, which may be obtained by 

integrating (4.9) over o. , yielding 

JO
I

p(cIX,Z) 	
[ 0e2 	

eXPI_ 2o I Q(o,o,XJZ)do 	(4.10) 

where Q is given after (4.8). In general, we may write (4.10) as the 

expectation 

p(o,IX,Z)crEQ(x,o , XIZ) 	 (4.11) 

where u 1 m 1 Ix is distributed as x 2  with u 1  d.f. When u 1  is large, the 
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density of x is sharp around x = m 1 , so that approximately, 

p(o,jX,Z) c Q(m 1 ,o,XZ). 	 (4.12) 

It does not seem possible to express (4.9) and (4.12) in a simpler 

form. Numerical integration is required to obtain the appropriate 

normalising constants for the distributions (4.9), (4.10) and (4.12), 

which Is done by using NAG routine FO1GAF. 

4.4.2 Examples 

First of all examine the inferences concerning o. For the 

examples in Table 4.4, Fig. 4.3 shows the posterior distribution of 

Oa , conditional on X, calculated from the Kernel model (4.12) (solid 

line). Since in most cases, v is fairly large, the use of (4.10) 

would give nearly the same results. The dashed curve is obtained 

from the assumption that the random factor A1 Is Normally 

distributed. Full details of the model under the Normality 

assumption about the random factor A1 can be obtained from Box and 

Tiao (1973). 

To start with, I compared my result with the result of the 

example given by Tiao & All (1971). The Tiao data are positively 

skewed so it is not surprising that the distributions of o under the 

Normal and kernel model are different. However, the two 

distributions obtained under the kernel and Tiao model are quite 

different too, in a sense that the peak of the distribution of o 

from the keinel model is considerably lower and it has a longer tail 

than the Tiao's (see Fig. 4.3(c)). This difference could be due to 

the fact that Tiao's model makes use of the theoretical distribution, 
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i.e. the true distribution of the underlying assumption of the Ai. 

The kernel model is data dependent so it will show more variability 

than the other models. Further the distribution of o, under the 

Normal and kernel model for the Normal data, are also quite 

different. Again as shown in Fig. 4.3, the approximate posterior 

distribution of o under the kernel model has a longer tail than the 

distribution obtained from a Normal model, in general. The data for 

which the results under the kernel and Normal model are comparable, 

are the generated data taken from Box and Tiao (1973). These data 

were generated from the model (4.1) with within group variance o 

considerably greater than the between group variance o (see Table 

4.4). So the ANOVA estimate for o is negative (see Table 4.5) and 

could well be treated as zero. Therefore the entire set of 

observations of this data set may be regarded as arising from a 

Normal distribution. This will explain why the approximate posterior 

distribution of o under the kernel and Normal models are so close to 

each other. 

The posterior mode is chosen to be the Bayesian estimate for the 

parameter concerned. 	Another estimate which is used by other 

investigators is the posterior mean. 	However, in most cases the 

posterior distributions of the o are known to be skewed, so it does 

not seem sensible to use it. The posterior mode for each of the data 

sets is also shown in Table 4.5. The estimate for o z  is generally 

smaller under the kernel model than the Normal. However, the 

posterior mode is closer to the 'true' value under the kernel than 

the Normal model, when the data are from a Gamma distribution. To 

determine the reliability of the Kernel estimator for o, I generated 
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a further 25 simulations from the model (4.1), of size 500 and 1000 

for the Normal and gamma data respectively. Then I calculated the 

posterior mode under the kernel and Normal model. The position of 

the modes under the two models ranged from 0.84671 to 3.86937 and 

from 2.87588 to 4.68669 for the Normal data, and from 0.94141 to 

2.42506 and 1.42067 to 2.83299 for the gamma data. Recall that the 

'true' value of o 2  is 4.0 and 2.0 for the Normal and gamma data, 

respectively. It appears that the estimates obtained under the 

kernel model vary a lot compared with those obtained under the Normal 

model for both Normal and gamma data. It shows the kernel estimator 

is slightly less reliable and tends to be downward biased. The 

complicated form of (4.12) makes if difficult to establish the reason 

for the occurrence of the large variabilities under the kernel model. 

With regard to inference about o, the results I obtained 

confirm the Tiao and All's finding that the estimates of o2 are 

insensitive to non-Normality of the distribution of o. This can be 

seen in Table 4.7 which shows that the estimates for o2 under the 

Normal and kernel models are very similar even when the group means 

are not Normally distributed. 

Table 4.7 Mode of the joint posterior distribution of  02 and 
0. as described in Section 4.4.1 of (4.9) 

Under 	 Data 
Model 
	

Normal 	Gamma 	Tiao 	Dye 	Generate - Cats 

Normal o2 0.9948 0.9898 1.0976 2262.69 12.1328 4.2x10 3  
o 2 

	

a 4.0909 2.5516 6.0784 1157.67 	0.0000 3.9x10 3  

Kernel o2 0.9948 0.9898 1.0976 2262.72 12.2927 4.2x10 3  

	

0 3.1175 2.2845 5.3005 616.201 	0.0000 3.2x10 3  
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Another way to estimate the parameters is with the mode of the 

joint posterior distribution of o and o. Contour plots of the 

joint distribution of 02  and o, conditional on X and Z. for the 

examples shown in Table 4.4 are sketched in Figs. 4.4 - 4.9 under the 

Normal and Kernel model. And the resultant posterior modes of such 

joint distributions, are also obtained and tabulated in Table 4.8. 

4.4.3 Vague prior for >. 

Instead of estimating X separately as was done in Section 4.2 

using the Bayesian method, consider a vague prior for X. The prior 

distribution of the parameters in (4.4) is taken to be 

(2)_1 (o+Jo)'X 

Then the joint posterior distribution of the three parameters o' o 

and X can be expressed as (4.6) with 

p(X) 	>-1. 

Then the joint posterior distribution of o z. and o only, upon 

integrating out X, is given by 

1 	(v1/2)-+-i 	
1 m 1 	1 

o 
p(o,oJZ) 

	
ex{_ 

2c 	I { o+J 	

j(n/z)+i 

r n 	I 
	I J(zj. -zk.) 2  1 

U 	E J - J 	exp 	
2X 2 o 2 	J dx. 	(4.13) J00  1=1 k* i1 0 

Again numerical integration is required to solve the integral 

above. The posterior modes of the joint distribution of c and o 

are given in Table 4.8 for the examples shown in Table 4.4. Again 

the estimate for o2 remains unaltered whereas the estimate for o 
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becomes zero. This is either due to the relationships between X and 

0
2 or is a result of the improper prior being used. Contour plots of 

the unconditional joint distribution of o and o using vague prior 

for both X and o are shown in Fig. 4.10 (a) and Fig. 4.10 (b) for 

the Normal and Tiao data ,respectively. 

Table 4.8 Mode of the joint distribution for o and o with vague 
prior for X and o. 

Data 
Normal Gamma Tiao 	Dye 	Generate 	Cats 

o 2 
e 	0.9617 1.0152 1.0521 2081.6 	12.812 	.42x10 3  

0
2 
a 	0.0000 0.0000 0.0000 0.0000 	0.0000 	0.0000 

4.4.4 Informative prior for o and vague prior for x 

In Section 4.4.3, we saw that, because of the existence of a 

relationship between x and o, the introduction of a vague prior for 

both o 2 and X did not produce a reasonable result. Consider the 

adoption of an informative prior for the between group variance o. 

Thus let the prior distribution of o be proportional to 

exp 
{-2o 	

(4.14) 

where a and a are unknown. This prior is suggested by Hill (1965). 

The priors for oz and >.. are as in Section 4.4.3. Upon combining the 

likelihood function of (4.3) with the prior distibutions and 

integrating over X we obtain 
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1 1 (/2) ~ 1 I 	1 f 	(fl1)12 

	

p(o,oZ) = w 

[ 0e2 j 	
exp 	

2o J [ 	J 
1 	1 1(/2)+1 	I 	is 	-I 

exp - - 
L 	2o'  J 

1 	J(z -zk) 2  1 
TI 	E I 

- ] 	

exp 	
2X2o 2 	J dx, 	(4.15) t'*  1=1 k~ iI

0 	 I. 

where w 1  is the normalising constant. 

This formula is applied to Tiao's data and the Normal data. 

However, for the Normal data the number of groups has to be reduced 

to 20 groups and 5 observations in each group. This is because of 

the enormous computational time involved (the normalised constant is 

evaluated via numerical integration over the three parameters). The 

numerical integration is done by using the NAG routine F01GAF. 

Results of the joint posterior modes of oz and o for the Tiao's 

and Normal data are shown in Tables 4.9 and 4.10, respectively, given 

different values of a and 0 . The choicesof a and 13 are arbitrary. 

The contours of the joint posterior distribution of the variance 

components under (a) the Kernel and (b) the Normal models are plotted 

in Figs. 4.11 - 4.13 and Figs. 4.14 - 4.16 for the Normal and the 

Tiao data, respectively given three sets of selected hyperparanieters. 

The results obtained under the Normal model are computed with the 

same prior distributions for o 2 and o 2 as in the kernel model, and in 

addition a vague prior for u is also used. The nuisance parameter u 

is integrated out to leave the joint posterior distribution of the 

variance components, 
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{ 

ij1m1 1 	I 	2/2 

p(o,oIZ) = W2 I _i 11/2)-3-1 
	

j { 	- J ex p -____ 
i0J 	 2o 

f u 2 m 2  
exp 

t20 z  J exp  f- 	} {

I ](a/2)+l 

where w 2  is the normalising constant, i is the between-group degrees 

of freedom and m 2  is the between-group mean square. Note that 

results obtained under the Normal model are shown in italics. 

Table 4.9 Mode of the joint distribution of o2 and o, with 
vague prior for X and informative prior for o; 
Kernel model: Normal data. Figures shown in italic 
are obtained under the Normal model. 

a f(o,o) 

4 0.1 0.980325 0.016796 11480.916 
0.978558 2.977850 1.018985 

4 0.5 0.975924 0.084378 122.1364 
0.978424 2.996057 1.013918 

4 1 0.974513 0.167830 20.68925 
0.978262 3.018777 1.007679 

4 2 0.973938 0.333805 4.515323 
0.977950 3.064088 0.995503 

4 4 0.973880 0.666720 1.543080 
0.977374 3.154226 0.972261 

4 5 0.973879 0.833352 1.227689 
0.977109 3.199069 0.961142 

5 10 0.973879 1.428564 0.932395 
0.976682 3.276051 0.966671 

5 20 0.973878 2.856775 0.472703 
0.974876 3.697524 0.874121 

10 50 0.973878 4.166097 0.492735 
0.973756 4.092371 0.891840 

10 100 0.973877 8.352436 0.248821 
0.971752 5.770662 0.643084 

20 50 0.973878 2.272690 1.353088 
0.978133 3.037165 1.355918 

20 100 0.973878 4.545188 0.673330 
0.973273 4.322678 0.999269 

50 100 0.973879 1.923071 2.790225 
0.985052 2.432314 2.152473 

50 200 0.973878 3.846030 1.303797 
0.974263 3.894596 1.501666 

40 200 0.973878 4.761800 0.934263 
0.972887 4.550114 1.187946 

80 400 0.973878 4.878009 1.307147 
0.972633 4.730647 1.498238 

134 



Table 4.10 Mode of the joint distribution of ae2  and o, with 
vague prior for X and informative prior for o; 
Kernel model: Tiao data. Figures shown in italic 
are obtained under the Normal model. 

f(o,o) 

4 0.1 1.098427 0.016671 7680.0894 
1.109413 4.952661 0.374500 

4 0.5 1.097979 0.083377 77.48322 
1.109207 4.971240 0.373461 

4 1 1.097764 0.166737 12.87128 
1.108953 4.994432 0.372169 

4 2 1.097648 0.333389 2.789022 
1.108459 5.040721 0.369604 

4 4 1.097621 0.666682 0.952257 
1.107520 5.132921 0.364558 

4 5 1.097620 0.833340 0.757603 
1.107075 5.178842 0.363530 

5 10 1.097619 1.428568 0.035404 
1.107150 5.170998 0.372085 

5 20 1.097613 2.856450 0.291587 
1.013537 5.605152 0.348914 

10 50 1.097606 4.164628 0.303701 
1.103046 5.674948 0.386139 

10 100 1.097703 8.384539 0.153474 
1.095680 7.403836 0.305404 

20 50 1.097617 2.272676 0.835103 
1.121568 4.156973 0.587107 

20 100 1.097605 4.544087 0.415250 
1.104331 5.498424 0.469876 

50 100 1.097618 1.923072 1.721904 
1.164478 2.994077 0.990543 

50 200 1.097607 3.845796 0.804736 
1.114838 4.537219 0.757649 

40 200 1.097606 4.761158 0.576437 
1.105732 5.326740 0.607099 

80 400 1.097607 4.877668 0.806643 
1.106938 5.193237 0.818796 

First consider the example concerning the Normal data: Note the 

ill-conditioning which occurred in the previous section has 

disappeared. The joint posterior mode for the parameter with 

various choices of a and 13 is similar under the two models. 	It 

suggests that the joint posterior mode for o is insensitive to the 

135 



I .0 

o .s 

o . 

0.7 

0.6  

C.2 0.5 

0.1 

0.3 

0.2 

0.1 

-0. C 
.8 
	

1.2 	1.6 	.0 

a. 	 CONTOUR HEIGHT 
I AXIS *10 

By 

too so 

1 .0 

0.5 

0 .E 

0 . 

0 .E 

2 C,. 	v.,C 

0.1 

0.Z 

0 . 

0.1 

-0 .0 
0.0 	0.4 	0.8 	1.2 	1.6 	2.0 

a. 

2 
	CONTOUR HEIGHT 

I AXIS 110 

Fig. 4.11 Contours of the joint distribution of the variance 
components (o,c) under (a) Kernel model as in 
Section 4.3.4 with a = 10 & A = 50 and (b) Normal 
model; the Normal data. 

(b) 

0 

136 



 
1.1 

0.1 

0. 11 

0.( 

2 V. 
a 

o 

o. 	
100 

M 

0.1 

-0 .0 
0.0 	0.4 
	

[IA:] 
	

1.2 	1.6 
	

2.0 

0. 2 
	

CONTOUR HEIGHT 
Y AXIS 110 

 
I . 

0.!  

0.1 

0 . 

0.1 

ac 
2  

0. 

0 .:: 

0 . 

0.1 

-0. C 
.0 	0.4 	.8. 	1.2 	1.6 	.0 

CONTOUR HEIGHT N10 -3 
Y AXIS 110 

Fig. 4.12 Contours of the joint distribution of the variance 
components (o,o) under (a) Kernel model as in 
Section 4.3.4 with cc = 20 & a = 100 and (b) Normal 
model; the Normal data. 

137 



0 

0 

0 

0 

0 

0. 

0. 

0 . 

-0. 

BE 

C 

C 

0 

0 

a 2  0 

0 

0 

-o 

CONTOUR HEIGHT 
I AXIS 110 

(b) 

.'., 

I AXIS 110 	
0 2 	CONTOUR HEIGHT iio 2  

Fig. 4.13 Contours of the joint distribution of the variance 
components (o,o) under (a) Kernel model as in 
Section 4.3.4 with 	= 80 & A = 400 and (b) Normal 
model; the Normal data. 

138 



(a) 

1 .0 

o .8 

0.7 

0.8 

C.2 0. 

0.1 

0.3  

0.2 

0.1 

-0. C 

/ 	 '%\ 

13XD 	100 

.0 	0.4 	 .8 
	

1.2 	1.6 
	

RA 

CONTOUR HEIGHT 910 -3  

Y AXIS 110 

[ci' 
I .0 

0 . 

0.8 

0.7 

0.8 

0. 

0.1 

0-1.  

0.2 

0.1 

-0 .0 
0.0 	0.4 
	

0.8. 	1.2 	1.6 
	

PH 

0.2 	CONTOUR HEIGHT 
I AXIS '10 

Fig. 4.14 Contours of the joint distribution of the variance 
components (o,o) under (a) Kernel model as in 
Section 4.3.4 with a = 10 & A = 50 and (b) Normal 
model; the Tiao data. 

139 



(C) 

1 .00-i 

0.90. 1  

0.80-

0.70-

0.60- 

	

a'2 0.50 	 CD 
0.40-

0.30-

0.20-

0.10- 

-0 .00 
0.0 	0.4 	0.8 	1.2 	1.6 	 .0 

CONTOUR HEIGHT iio 
Y AXIS 110 

(b) 

1 

0.90- 

0.80- 

0.70- 

0.60- 8 

a.2 0.50 

0.40 "  

0.30- 

0.20- 

0.10- 

	

-0.00 	 I 	 I 

	

0.0 	0.4 	0.8 	1.2 	1.6 	 .0 

CONTOUR HEIGHT 
Y AXIS 110 

Fig. 4.15 Contours of the joint distribution of the variance 
components (o,o) under (a) Kernel model as in 
Section 4.3.4 with a = 20 & 13 = 100 and (b) Normal 
model; the Tiao data. 
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Fig. 4.16 Contours of the joint distribution of the variance 
components (o,o) under (a) Kernel model as in 
Section 4.3.4 with a = 80 & 0 = 400 and (b) Normal 
model; the Tiao data. 
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prior distribution for o. However the posterior mode for o, varies 

with a and 13 and is quite different under the two models. The 

posterior nodes for o under the Normal and Kernel models are closest 

when a and a equal to 10 and 50, respectively. Also notice that the 

shapes of the joint distribution of the variance components are 

dissimilar. When a and 13 equal to 20 and 100, respectively, which 

are twice the former chosen values, the posterior modes under the two 

models are still close. The shape of the joint posterior 

distribution changes in the Y-direction and becomes very similar 

under the two models when a = 80 & 13 = 400. 

4.5 Discussion 

The result obtained from Section 4.3 shows that the ML 

estimators for (o,o)  obtained from the Kernel model by estimating 

the smoothing parameter X in advance are equivalent to the ANOVA 

estimators. 

In Section 4.4, the results show that the modes of the joint or 

marginal posterior distributions of the variance component parameters 

(o,o) from the noninfomative prior (4.7) are viable estimators, 

though the posterior distribution of o under the kernel model shows 

more uncertainty. This is understandable as mentioned before since 

the kernel method is data dependent. 'Although one should not read 

too much into one or two results, the estimates obtained under the 

kernel model, for the Tiao and Gamma data, are closer to the 'true' 

value. This study also suggests the Bayesian estimators, under 

either the Normal or the Kernel model, are generally better than the 

ML and the ANOVA estimators. 
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One problem which is not completely resolved is the relationship 

between the smoothing parameter, >>, and the between group variance. 

o. I suspect that during the computation of the posterior 

distribution of o 2  by numerical integration, some values of o have 

to be assigned and it is taken to be ranging from 0.0 upward. This 

affects the density function of (4.2) with >.. estimated by the M.L. 

leave-one-out method. Then I investigated the differences between 

the density function of the group means under the Normal and kernel 

model. The density function, (4.2), for the Normal data is plotted 

in Fig. 4.17 with fixed X and o, and c taken to be ranging from 0.0 

and 10.0 in a step of 2.0. It can be seen that the density function, 

(4.2), becomes extremely rough as oz is close to zero, in contrast to 

the density function (see Fig. 4.18) under the Normal model. And, as 

o2 approaches 10, the differences between the density function under 

the two models is negligible. So the kernel density of the group 

means is no longer a smooth function when o is around zero. This 

may explain why the posterior modes of o under the kernel model are 

generally smaller than those under the Normal model. Further 

investigation into this area is needed. 
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CHAPTER 5 

MODELLING THE BAYES' FACTOR FOR A PARTICULAR FORM OF MIXTURE DATA 

5.1 Introduction 

The problem considered in this chapter is motivated by a set of 

data which has a finite probability at a particular value and is a 

continuous positive random variable otherwise. 	For the example 

discussed in this Chapter, the particular value is 'zero'. 	The 

modelling of the Bayes' factor in a forensic context is to take into 

account this special feature. Two models are suggested - one is 

adapted from Evett el al (1987), which does not utilise the random 

structure in the data. The other one is an adaptation of the model 

developed in Chapter 3 to modelling this particular feature in 

measuring the weight of evidence. 

5.2 Distribution and structure of the mixture data 

The data set in question is similar to the cat hairs data (see 

Section 1.3) which consists of hair measurements, namely hair width 

and medullary fraction (medullary width/hair width). However, some 

hairs obtained from dogs have no medulla in which case the medullary 

fraction takes the value zero. As in Chapter 3, we consider a 

univariate problem so the hair width variable is not included in the 

formulation of the problem. 

So we are faced with the problem of a distribution specified by 

I) a non-zero probability that the variable assumes a zero value, 

together with 
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II) a conditional distribution for the positive value of the 

variable. 

Aitchison (1955) discussed unbiased estimators for the 

parameters concerned with this type of data. Our aim is not so much 

concerned with obtaining unbiased estimators for the unknown 

parameters but to model the distribution of this type of data. 

Such problems lead us to consider a random variable U with the 

following properties. There is a non-zero probability 0 that U is 

zero and hence a probability 1-0 that U is not. The distribution of 

the non-zero part of U is in this chapter that of a positive 

variable, either continuous or discrete. Thus we may write: 

Pr(U = 0) = 0, Pr{U > 0) = 1 - 0. 

and for the continuous case, 

P(U c (u,u+du)Iu>O) = g(u)du. 

where g(u) is the conditional probability density function; and so 

P{U c (u,u+du)) = (1-e)g(u) du, u>O. 

Suppose we have a random sample S which consists of t zero 

values and (n-t) other 'positive' values u1,u2,. . And suppose 

a and 13 are the mean and variance (respectively) of the non-zero 

positive part of U. Then assume an unbiased estimator a(n_t) of a 

exists for a sample of n-t values. If the distribution of U depends 

on parameter A in addition to 0 and a, then the likelihood function L 

of the sample may be written in the form 
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L(s;e.o:.) = ()et(j_e)fl-t xh(a_tI,) Xf(SI) 

where h and f are probability density functions containing the sample 

values only in the form of tin, a(fl_t)  and S. Thus tin, a(n_t)  and S 

are jointly sufficient estimators of e, u and 0, respectively. See 

Appendix 5 for details. 

5.3 Estimation of the Bayes' factor: single hair problem 

Recall from Chapter 3 that the Bayes' factor is a ratio of two 

probability (density) functions. The numerator of the Bayes' factor 

is a predictive distribution of Y given X and the denominator is an 

unconditional marginal distribution of Y. Unlike Chapter 3 where we 

allowed more than one observation in the recovered data Y, here we 

consider only one observation from the recovered data, i.e. r=l. The 

model developed here can easily be extended to the case where there 

is more than one observation from the recovered data. 

In a preliminary investigation of modelling the Bayes' factor of 

this particular mixture data, we adapt a model originated from Evett 

et al (1987), who estimated the denominator of the Bayes' factor by a 

kernel form density, i.e no distributional assumptions were made 

about the recovered data Y given C. Effectively their model involved 

using all individual observations in the training data, hence the 

random structure in the training data is not utilised. Later in this 

section a more thorough treatment will be discussed to make use of 

the random structure in the training data in modelling this type of 

mixture data. This model is known as the Kernel model (see Chapter 

3). Before we proceed, some notation and assumptions are required 
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modelling the Bayes' factor. 

5.3.1 Notation and assumptions 

In addition to the notation used for the cat data analysis in 

Chapter 3, let T(x) and T(y) be random variables representing the 

number of zeros found in the sample X and Y and let t(x) and t(y) 

denote the realisation of T(x) and T(y); Rm-t(x) denotes sample means 

of the m-t(x) non-zero positive observations from the control sample; 

and g(. Ia,) denotes a density function with parameters a and A. It 

is assumed that g is defined by two parameters. Further note that if 

g(. I .) is a Normal density then the parameters a and 13 are the mean 

and variance respectively. 

When deriving the numerator of the Bayes' factor, we assume the 

non-zero positive observations are Normally distributed with unknown 

mean u and known variance 02. If X consists of m items of which 

m-t(x) are not equal to zero, then the sufficient statistic for the 

true mean s.L (conditional on x > 0) is the sample mean Xm....t(x). This 

is also Normally distributed about the unknown true u with variance 

0 2 /[m-t(x)]. Given one observation from the recovered data Y, and if 

Y is not equal to zero, then under C, Y is also Normally distributed 

with LL and variance 02. Using an informative prior for the unknown 

mean i., we assume for the present that u is also Normally distributed 

with mean E and variance n 2 . The parameters C and n 2  are so-called 

hyper-parameters and are assumed known. Note that Evett et al (1987) 

used vague priors for the group population mean a and within-group 

variance o2. Here we assume throughout this chapter that the 

within-group variance o2 is known. 
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5.3.2 Preliminary analysis - ECA model 

	

Here we modify the ECA 	model to incorporate the possibility 

that Y and some, or all, of the X's may take a value zero. The 

probability density functions of X and of Y are written in a two-fold 

definition. We now consider the denominator and numerator in turn. 

The denominator of the BF 

Under C, that is the situation in which the recovered hair comes 

from an unknown source other than the control data, the distribution 

of the random variable Y can be summarised in the following two-fold 

definition, 

- 	0, 	 y=0 	 (5.1) 
f(YC) = 

f 

I (1-0)xk(y) 	 y*O. 	 (5.2) 

In (5.1) and (5.2), 0 is the probability that Y is zero. 	Suppose 

that the training data Z = 	..,zN) where N is the total sample 

size of the training data Z. And let Z = { z,.. .zt(z)} be the 

training data after extracting the zero values from Z, where t(z) is 

the total number of zeros in the training data Z. Modifying the ECA 

model, the density function, k(y), in (5.2) may be written as 

1 	N-t(z) 	I 	f (y-z)  

	

k(y) = _______ Z 	 exp 

	

N-t(z) 2=1 	(21r)Xs 	I 	2X 2 s 2  

where X is the 'standardised' smoothing parameter, 

S 2  is. the sample variance of the altered training data Z*  

The numerator of the BF 

Here we consider the formulation of the numerator of the Bayes' 

150 



factor for the following two Cases: 

Case (I) : Both X and Y consist of one measurement only (i.e. r=l; 

m=l), and 

Case (ii.) : Y COnSiStS of one measurement but X has in measurements 

with a non-zero probability there are t(x) zeros in the 

sample. 

5.3.3 Case (I) Both X and Y consist of one observation 

Random variables X and Y can take the values zero or non-zero. 

Thus X and Y can be summarised by the random variables T(x) and T(y) 

which denote the number of zeros in the sample. In this particular 

case, T(x) and T(y) can only take the values zero or one. Thus, T(x) 

and T(y) have a binomial distribution with parameter 0, the 

probability of obtaining a zero (i.e Pr(T(x)=l)=o etc). There are 

four possibilities from this case, that is (a) both x and y are zero; 

(b) y is zero but x is not; (c) y is not zero but x is and (d) both x 

and y are not zero. 

First of all let us specify a prior distribution for the unknown 

parameter 0. The conjugate prior for 0 is a beta function with 

parameters a and b, namely 

f(e) = [Be(a,b)]1 81 (l_e)1 	 (53) 

where a and b are assumed to be known. From Section 5.3.1, assuming 

the between group random factors are identically Normally 

distributed, then the probability density function f(,) can be 

specified as 
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I 	 I 	(u) 
f(u) = 	 exp 

(2v)ri 	t 	2 n  2 
(5.4) 

Let us now consider these four possibilities in turn. 

Both x and y are zero 

We may consider the numerator of BF as a discrete predictive 

distribution with random variables T(x) and T(y). From Table 2.2 of 

Aitchison and Dunsmore (1975), the predictive distribution of T(y) 

given T(x) is a Beta-Binomial distribution. Hence 

Pr(T(y)=flT(x)=l,C) is 

Be(a+2 , b) 
	

a+l 
(5.5) 

Be(a+1 ,b) 	a+b+l 

And the denominator of BF is defined in (5.1). 

y is zero but x is not 

Here we have, 

Pr(T(y)=1C) = 0 

and 

f(xJC) = (1-e)xg(x,0 2 ), 

where g(xjii,o 2 ) = (27o2) 	exp{(x-) 2 /(-2o 2 )). 	Combining with the 

priors, which are assumed independent namely f(0)xf(,.i), 	and 

integrating over 0 and ii the numerator of BF can be written as 

a 
Pr(T(y)=lfX,C) = _______ . 	 ( 5.6) 

a+b+1 

The denominator of BF is given as in (a). 
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(C) y is not zero but x is zero 

Here we have the opposite case of (b), the density of Y under C 

is 

f(ylC) = ( l-e) x  g(yJ,o 2 ). 

And the probability of X being zero is given by 

Pr(T(x)=l) = e. 

Then the numerator of BF can be written as 

b 
f(ylt(x)=1,C) = 	 xg(yE,(n 2 +o 2 )). 	 (5.7) 

a+b+l 

The denominator of BF is given in (5.2). 

(d) Both x and y are not zero 

Now both X and Y have the density function described earlier, 

they are 

f(xJC) = (1-0) x g(xlit,0 2 ) 

and 

f(YIC) = (1-0) x g(yfu,o 2 ). 

Then, after some simplification , the numerator of BF is given as 

b-+-1 	g(x-yJO,o) x g(w,o) 
f(ylx,C) = _________ x 	 (5.8) 

a-+-b+1 	 'C' 23 

where o2 = 20 2 ,  

= n2-ro2/2 

o = T• 2 +O 2  and 
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w = (x+y)/2. 

And the denominator of BF is given as in case (c). 

There are some interesting features from the above result. 

First, note that the predictive distribution of Y given X can be 

summarised in the following two fold definition, i.e., 

V, 	 Y=O 

f(yIx=0) = I 
	

(5.9) 
I. (l-ir)xg(y.) 	y#0. 

and 

Y=O 
f(yIx*O) = 	 (5.10) 

I. (l-t 1 )xg'(yx,.) 	y#0. 

where t and t' are the probabilities of y being zero given x is and 

is not zero respectively. The functions g and g' are the respective 

predictive functions of the non-zero samples. 

5.3.4 Case (ii) Y consists of one measurement and X consists of m 

measurements with a non-zero probability of t(x) zeros in the sample 

Let us now consider case (ii), for r=1 there are two 

possibilities that is (a) y is zero (i.e. t(y)=1) and (b) y is not 

zero (i.e. t(y)=0). 	If X consists of t(x) zeros and (m-t(x)) other 

values 	 then the likelihood function L of this sample 

is 

f (t)) 0t(x) (l_e)mt(X) 

f(XIO, 	- 	
mt(x) 	 t(x)<m 

0m ,  t(x)=m. 

Note that the two-fold definition is required since Rm-t(x) is not 
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defined when t(x)m. The prior density for the unknown parameters 0 

and ji are given as in case (I). And all the hyper-parameters are 

assumed known and as before their values are obtained from the 

training data. Let us first consider case (a), that is y is zero, 

then Pr(T(y)=1)=e and the predictive distribution of T(y) given X can 

be written as 

t(x) -s-a 
Pr(T(y)=1IX) = _________. 	 (5.11) 

a+b+m 

When y is not zero the probability operator becomes a density 

function, so under C the conditional density function of V is given 

by 

(1-0) x g(yf,i,o 2 ). 

Then the predictive distribution of V given X can be written as 

b+m-t(x) 
	

g( m_t( x )-yIO,c) x g(wE,o) 
x 	 (5.12) 

a+b+m 

where oz 

o 2 = 

n 2 +o 2 /[m-t(x)] and 

w = ([m-t(x)]+y}/[m-t(x)+l]. 

And the denominator of BF is given by (5.1) and (5.2) for case (a) 

and (b), respectively. 

For the degenerate case when t(x)=m, a general form of the 

predictive distribution of T(y) given T(x)=m can be obtained from 
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Aitchson and Dunsmore (1975) which is given as 

f(T(y)=t(y)T(x)=t(x)) = 

r1 	Be{a+t(x)+t(y),b+r-t(y)+m-t(x)) 
I 

t(y) 	 Be(a+t(x),b+m-t(x)) 

Hence the predictive numerators of BF for case (a) and (b) are 

Be(a+m+1,b) 	a+Jn 
Pr(T(y)=1T(x)=m) = _____________ = 	 (5.14) 

Be(a+m,b) 	.a+b+rn 

and 

Be(a+m,b4-1) 
f(vIT(x)=m) = 	 x g(yIE,t 2-'- o 2 ) 

Be(a+m,b) 

b 
x g(yE,r 2 +o 2 ), 	 (5.15) 

respectively. 

Note that for m=1, (5.11) and (5.12) reduce to (5.5) or (5.6) and 

(5.7) or (5.8), respectively. 

Similar to Section 5.3.1, the predictive distribution of Y given X 

can be summarised in the following two fold definitions, namely 

Y=O 
f(yIt(x)<m) = 	 (5.16) 

I. (1-y)xg(y) 	y*O. 

and 

f 7', 	 Y=O 
f(ylt(x)=m) = 	 (5.17) 

I. (1-y')xg'(y.) 	y*O. 

where y and y' are the probabilities that y is zero given the number 



of zeros t(x) in the sample of X is less than or is equal to m. 

respectively. The functions g and g' are the respective predictive 

functions of the non-zero positive observations. 

Notice the similarity of this analysis with the cat data 

analysis, so it is possible to use the kernel prior instead of the 

Normal prior for the unknown parameter u as in the cat data analysis. 

This is to be considered in the following section. 

5.4 Kernel model: Single hair problem 

In view of the results of the preliminary formulation of the 

Bayes' factor in the previous section, we can now adapt the model 

developed in Chapter 3 of Section 3.5.1 to utilise the grouping 

structure in the training data. The model adapted from Section 3.5.1 

in Chapter 3 is the simplest one where the within-group variance is 

assumed known. The effect of ignoring the grouping in the training 

data is not investigated here but it is worth investigating in future 

research. 

Here, instead of assuming the population group means are 

independent identically Normal distributed with hyper-parameters 

estimated from the training data as assumed in Section 5.3, we use a 

kernel prior for the unknown population group mean, which is a 

(non-zero) positive random variable, namely 

1  
n 	1 	 r 	I 	_*,2 

E 	 exp {- 	 , 	(5.18) 
1=1 	'(27T)s'>' 	I 	2s ' 2 X' 2  

where n is the number of groups in the training data, 
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Z z, is the th  sample group mean of the training data 
Ji j=l 

Z * from Section 5.3.2 part A. 

s' is the standard deviation of the sample group means; 

>..' is the 'standardised' smoothing parameter. 

5.4.1 Case (I) of Section 5.3 

This section provides formulae of the Bayes' factor for the case 

where X and Y only consist of one observation. From equations (5.5), 

(5.6), (5.7) and (5.8) the formulae for the numerator of the Bayes' 

factor using a kernel prior shown in (5.18) for the unknown group 

population mean, can be summarised in the Table 5.1. 

Table 5.1 The numerator of the Bayes' factor given various cases of 
X and of Y: 

X is zero 

Xisnot 

zero 

Y is zero 

a+1 

a+b-4-1 

a 

a+b+1 

Y is not zero 

b 
 

k(yIz1 's ' 021) 
a+b+1 

b+1 	0( (x-y) 102)k(wIz1's,o3
2 

) 

x 
a+b+1 	 k (xz1's,o 12  

) 

Notes: a and b are the hyper-parameters of the prior for the 
parameter 0, and their values are obtained from the 
training data; 

k is the kernel density; 
o is the standard Normal density; 
X is the 'standardised' smoothing parameter; 
s is.the standard deviation of the group sample means of the 

training data; 
are the sample group means of the training data 

w = (x+y)/2 
0 = S 2 X 2 +o 2  
0 2 = 

o 2 = s 2 X 2 +(o2 /2) 
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Similary, the denominator of the Bayes' factor using the kernel 

prior for the unknown population group mean is summarised in the 

Table 5.2. 

Table 5.2 The denominator of the Bayes' factor given Y is zero or 
not zero.: 

Y is zero 	 I 	 Y is not zero 

	

a 	 j 	 b 
_* 	z I 	 k(yIz1's,oj) 

a-f-b 	 I 	 a+b 

	

Notes: a, b, k, 	's and o are as in Table 5.1 

5.4.2 Case (ii) of Section 5.3 

Here we suppose that the recovered data Y consist of one 

observation and that there are t(x) non-zero positive 

values out of m observations in the control data X. The denominator 

of the Bayes' factor is the same as Case (I) above. The formulae for 

the numerator of the Bayes' factor using a kernel prior for the 

unknown group population mean, can be summarised in the Table 5.3. 

There are some features of interest which are worth a mention 

from the Tables illustrated. First of all, in Case (I) given X is 

zero, the Bayes' factor is constant over all non-zero positive values 

of Y since the kernel density functions in the numerator and the 

denominator of the Bayes' factor cancel each other out. Similarly, 

in Case (ii) given all m observations of the control data X are zero, 
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the Bayes' factor is also constant when y is not zero. This means if 

a non-zero positive value of V is observed, it does not matter what 

value y takes, the Bayes' factor is the same for all non-zero 

positive values of V given X is zero. 

Table 5.3 The numerator of the Bayes' factor for T(x)<m and T(x)=m, 
where T(x) is the number of zeros in the control data X 

Y is zero 

I 	a+t(x) 
T(x)<m I 

I 	a+b+m 

I 	a+m 

T(x)=m I 
I 	a+b+in 

V is not zero 

b+m-t(x) 
	 -* 

X 

k(
-
x' 1z 1 's,0 24 ) 

-* 
x k(yz1's,o) 

Notes: R' = X[m.t(x)J 
w' = 
Oz = o.'[1+(m-t(x)'] 

= s 2 X 2 +{o 2 /[1+(m-t(x))]} 
o = s 2 X 2+[o 2/m-tx)] 
and a, b, k, o, 	o, X and s are as in Table 5.1. 

5.5 Determination of the hyper-parameters and within-group variance 

values from the training data 

From equation (5.3), i.e. e follows a beta distribution and from 

Appendix 1, then the expectation of 8 is given by 

a. 

a+b 

Also, from the training data the average number of zeros occurring 

can be evaluated as below, 
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i 	n t1 	1n 	t(z) 

	

- ___ = 	tti= 
j 1=1 	N 

Thus we may take a = t(z) and b = N - t(z). 

In evaluating the Bayes' factor described in Section 5.3 certain 

values for the hyper-parameters and n 2 , and the within-group 

variance o2  are required. We cannot use the usual formulation for 

the ANOVA estimates as in the balanced case as we did in Chapter 3, 

since the training data are no longer balanced. 

The formula of the estimates for E can be taken as either 

	

1 	N_t(z) 	 1 

	

E z2 	or 	 Z Y.. (5.19) 

	

N-t(z) 	2=1 	 fl 	i1 

The latter is known as the unweighted mean. In the example below the 

unweighted mean is used. Formulae of the ANOVA estimates for o 2  and 

2 may be obtained from the ANOVA table shown in Table 2.1. The only 

change necessary in Table 2.1 is accomplished by replacing the EMS 

for the between groups by o2+J0o 2  where 

(N-t(z)) - J 1 /(N-t(z)) 

	

Jo  = 	 (J0=J if each 
n-i 

	

n 	 n 
where 	N-t(z) =t J1 	and 	j 1  =t Jj 2  

Hence o 2  is estimated as usual by MSE, 

= WSS/[n(J-l)] 

and 
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BMS - WMS 
0 	= 	 ( 5.20) 

J o  

An alternative estimate for 0*2  exists, which is derived from the 

unweighted sum of squares of deviations between groups, namely 

- lu) 2  

where l 	is given as in the R.H.S. of (5.19). 	If BMS' = 

E(11-lu ) 2 /(n-1), its mean value is 

E(BMS') = 	+ ( o 2 /n)((1/J) = o + 02 /Jh. 

Hence, the quantity BMSt_o Z /Jh  is an alternative unbiased estimate of 

Oa , where the harmonic mean Jh = n/[Z(1/J1)]. Note that these 

estimates of o , as stated in Section 2.3, have the awkward feature 

that they can take negative values; biased estimators that are always 

positive may be superior. 

These estimators are chosen because they do not require a 

Normality assumption. Before showing the results of the models just 

described, first consider the problem of kernel density estimation in 

the dog data. 

5.6 Problem of kernel density estimation for the dog data 

The medullary fraction is a ratio of two measurements, and like 

the cat data mentioned earlier in Chapter 3 is restricted to lie 

between 0 and 1. In the cat data, the measurements of medullary 

fraction lie well away from the boundaries, and thus it does not pose 
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a problem as far as the kernel density estimation is concerned. 

However, unlike the cat data, the measurement of the medullary 

fractions of the dog data are close to the lower boundary, namely 

near zero. The problem is that the density estimate obtained when 

this boundary condition is ignored, will give weight to negative 

numbers which is unacceptable. One possible way of ensuring that 

f(v) is zero for negative v is simply to calculate the estimate for 

positive v ignoring the boundary conditions, and then to set f(v) to 

zero for negative v. A drawback of this approach is that if we use a 

method, which usually produces estimates which are probability 

densities, the estimates obtained will no longer integrate to unity. 

To make matters worse, the contribution of the points near zero will 

be much less than that of the points well away from the boundary. So 

the weight of the distribution near zero will be underestimated. 

Silverman (1986) suggested several ways to tackle this problem. One 

of which is the reflection method, the argument of which is as 

follows. Suppose we augment the data by adding the reflections of 

all the points in the boundary, to give the set 

If a kernel estimate 
f* 
 is constructed from this data set of size 2n, 

then an estimate based on the original data can be given by putting 

f 2xf(v) 	for v O 
f(v) = 

1 0 	 for v<0. 

Fig. 5.1(a) and 5.1(b) shows the kernel density estimate using 

the original method and the reflection method, respectively. In Fig. 

5.1(a), the non-zero density estimate is clearly shown when the 

x-axis is extended beyond zero. Note that the density estimates near 

zero are slightly higher when the reflection method was used, than 
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the original method. The dotted line is fitted by an adaptive kernel 

method (see Section 2.1 for details). The reason that the adaptive 

method is used also is that the Bayes' factor obtained using the 

ordinary kernel density to estimate the denominator in the ECA model 

of Section 5.3.2 might produce a problem at the tails. The problem 

is that the ordinary kernel estimate tends to zero much faster than 

the function on the numerator of the BF. That is, the BF behaves 

reasonably well when we observe measurements well within our previous 

experience. The problem posed a question, 'Can we make a reasonable 

judgement when we observed a measurement which is even slightly 

outside our previous experience?' This leads to deriving a new 

kernel density function which will be discussed in Chapter 7. 

In the example given in the next section, the reflection method 

is used. 

5.7 Illustration 

The models developed in Sections 5.3 and 5.4 are applied to the 

dog data. The numbers of observations in each group as well as the 

ordered sample group means are tabulated in Table 5.4. Histograms of 

the 20 dogs, ten hairs from each dog are plotted in Fig. 5.2. It can 

be seen that Dogs 1, 6, 10 and 20 have zero values of medullary 

fraction. 
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Table 5.4 Ordered sample group means and number of observations 3 
in each group 

Group I 	i .  
I 

I 
I 

I 	Group 
I 

j 
I 

I 
I 

I 0.1182 3 I 	11 I 	0.4081 I 	10 
2 0.1482 I 	6 J 	12 0.4253 I 	10 
3 0.2349 I 	10 	I 13 0.4614 10 
4 	I 0.2564 I 	9 	J 14 I 	0.4633 I 	10 
5 0.2599 I 	10 15 I 	0.4666 I 	10 
6 	I 0.2822 I 	7 16 I 	0.4880 I 	10 
7 	J 0.2846 10 17 0.4908 I 	10 
8 0.3422 I 	10 18 I 	0.4990 10 
9 	j 0.3597 I 	10 	I 19 0.5263 I 	10 

10 	I 0.3884 I 	10 	I 20 0.6032 10 

WMS = 	= 0.00506; BMS = 0.13169. 

5.7.1 Results of the modified ECA model 

Results from the model established in Section 5.3.2. are 

tabulated in Table 5.5 (1) and (ii) for r=1,m=1 and for r=1,m=5 with 

different values of t(x), respectively. The results shown here are 

obtained by using the ordinary kernel estimate and the reflection 

method. Results from the adaptive kernel with the reflection method 

are shown in Table 5.6 (1) and (ii) for r=l,m=1 and r=1,m=5, 

respectively. There is little difference between the two kernel 

density estimate methods. The values of BF are slightly smaller when 

the ordinary kernel is used. 

Because of the reason given in Section 5.6, we only concentrate 

on the results obtained from the adaptive and reflection methods. If 

and Y are equal, the value of BF decreases as the number of zeros 

in the sample of X increases. For instance, when R and Y are both 

0.2, then SF decreases from 6.0958 to 4.9673. Other interesting 
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points from the Table 5.6(11) are that BF appears to be larger when 

and V are close to zero and the t(x) is small. This suggests if most 

of the control sample are non-zero, the least common value of the 

medullary fraction is 0.2 and the next least common is 0.6 which is 

clearly shown in Fig. 5.2. However, when all of the control sample 

are zeros, the least common value is 0.6. 

Graphical presentation of the BF given some values of X (either 

zero or non-zero) over the range of non-zero part of Y is shown in 

Fig. 5.3 for r=1,m=l. Figs. 5.4 and 5.5 show the case when t(x)=0 

and t(x)=3 respectively, for r=1,m=5 of the non-zero part of X. The 

red solid line in these Figures represents the Bayes' factor equal to 

one. Notice that in Fig. 5.3(b) there is a slight irregularity in 

the behaviour of BF when x0. This is the case (i)c of Section 5.3, 

of which BF is a ratio of a normal function and the slightly less 

smooth kernel density estimate. We have already seen from Fig. 5.2 

that the kernel density estimate is slightly irregular. So it is not 

surprising that the irregular behaviour occurred. However, one might 

expect this irregular behaviour would disappear if a kernel prior 

were used. So further research should be done in this aspect. A 

similar feature also happened in the ordinary kernel case but it does 

not show in the graph because of the dominant part at the tail. 

Figs. (a) of 5.3, 5.4 and 5.5 confirmed fears of the unreasonable 

behaviour of BF at the tail when the ordinary kernel was used. This 

problem does not arise when the adaptive kernel estimate is used, as 

shown in Figs. (b) of 5.3, 5.4, and 5.5. Therefore it is advisable 

to use the adaptive kernel estimate to avoid complications when we 

observe an extremely rare value of X and of Y. 
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5.7.2 Results of the Kernel model 

Results from the Kernel model derived in Section 5.4 are shown 

here in Tables 5.7 and 5.8 using the respective ordinary and adaptive 

kernel methods. For instance, Table 5.7 (i), (ii) and (iii) are for 

the case where r=l&ni=l, r=l&m=5 and r=l&m=10, respectively. The 

Bayes' factor is plotted as a function of (positive, non-zero) Y 

given X = 0.2 (0.2) 0.6 and are shown in Fig. 5.6 for r=l,m=1. Figs. 

5.7 - 5.8 illustrate the case where r=l,m=5 for t(x)=0 and t(x)=3, 

respectively. 

There is not much difference between the ordinary and adaptive 

kernel methods. Though the adaptive kernel method produces slight 

larger values of BF when both positive non-zero values of X and Y are 

observed. The values of BF increase slightly as m increases. 

5.8 Conclusion and discussion 

The modified ECA and Kernel models are entirely different since 

they are based upon different assumptions about the recovered data 

and the training data. So direct comparison between the two models 

will be inappropriate. A simulation study will be required to 

distinguish between the merit of the two models. However, the kernel 

model is more desirable than the modified ECA model because it makes 

use of the random structure in the data. Also the distribution of 

the populatipn group mean is relevant in modelling the forensic data. 

The ordinary and adaptive kernel methods produce similar results 

of the Bayes' factor in the Kernel model but from the results of the 
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modified ECA model, the adaptive kernel method appears to be better 

in terms of the behaviour of the BF. That is, the Kernel model does 

not pose a problem when a rare value of X or of Y is observed as 

illustrated in Figs. 5.3 - 5.5. 

Further work could be done on the extension to the r-samples 

case (see Appendix 5) and examining the effect of ignoring the zero 

features in the sample. The effect, if any, of the degree of 

unbalancedness of group sizes in the training data should also be 

investigated in the context of modelling the Bayes' factor. 
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Table 5.5(1) Bayes' factor of the analysis of dog data 
given some values of X and of Y for r=1,ni=l. 

Modified ECA model. Reflection and ordinary 
kernel method. 

X 0.00 0.20 0.40 0.60 

0.0 	I 1.0614 0.9950 0.9950 0.9950 
0.2 	I 1.1763 3.9705 0.4949 0.0054 
0.4 	f 1.0767 0.4530 1.5873 0.4862 
0.6 	I 0.8015 0.0037 0.3619 3.1168 

Table 5.5(11) Bayes' factor of the analysis of dog data 

given some values of X and of Y for r=1,m=5 

with t(x) = 0(1)5, number of zeros in the 

data X. Modified ECA model. Reflection and 
ordinary kernel method. 

x 

Y t(x) 0.00 0.20 0.40 0.60 

0.0 0 - 1.4387 0.0001 0.0000 
I - 1.4777 0.0002 0.0000 
2 - 1.5372 0.0003 0.0000 
3 	I - 1.6505 0.0009 0.0000 
4 	I - 2.0178 0.0063 0.0000 
5 	I 1.3008 - - - 

0.2 0 	I - 5.6145 0.2015 0.0000 
1 - 5.4935 0.2206 0.0000 
2 	I - 5.3291 0.2516 0.0001 
3 	I - 5.0767 0.3084 0.0004 
4 	I - 4.5751 0.4350 0.0055 
5 1.1533 - - - 

0.4 0 - 0.1064 1.8987 0.1106 
I - 0.1264 1.8455 0.1323 
2 	I - 0.1624 1.7680 0.1719 
3 	I - 0.2398 1.6370 0.2585 
4 	I - 0.4639 1.3473 0.5178 
5 	I 1.0557 - - - 

0.6 0 	I - 0.0000 0.1566 4.5352 
1 	I - 0.0000 0.1704 4.4424 
2 	I - 0.0000 0.1926 4.3188 
3 - 0.0003 0.2329 4.1342 
4 	I - 0.0036 0.3223 3.7839 
5 	I 0.7858 - - - 
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Table 5.6(1) Bayes' factor of the analysis of dog data 
given some values of X and of Y for r=l,m=l. 

Kernel model. Reflection and adaptive kernel 
method. 

X 0.00 0.20 0.40 0.60 

0.0 1.0614 0.9950 0.9950 0.9950 
0.2 1.2771 4.3109 0.5373 0.0059 
0.4 1.0548 0.4438 1.5550 0.4763 

0.6 	I 0.9454 0.0043 0.4269 3.6767 

Table 5.6(u) Bayes' factor of the analysis of dog data 

given some values of X and of Y for r=1,m=5 

with t(x) = 0(1)5, number of zeros in the 

data X. Kernel model. Reflection and 
adaptive kernel method. 

x 

Y t(x) 	I 0.00 0.20 0.40 0.60 

0.0 0 - 1.4387 0.0000 0.0000 
1 - 1.4777 0.0002 0.0000 
2 - 1.5372 0.0003 0.0000 
3 	J - 1.6505 0.0009 0.0000 
4 	I 2.0178 0.0063 0.0000 
5 	I 1.3008 - - - 

0.2 0 - 6.0958 0.2187 0.0000 
1 - 5.9644 0.2395 0.0000 
2 - 5.7860 0.2732 0.0001 
3 	I - 5.5119 0.3348 0.0005 
4 	I - 

4.9673 0.4723 0.0059 
5 	I 1.2522 - - - 

0.4 0 - 0.1043 1.8601 0.1083 
1 - 0.1239 1.8079 0.1297 
2 - 0.1591 1.7320 0.1684 
3 - 0.2349 1.6037 0.2533 
4 - 0.4545 1.3199 0.5073 
5 	I 1.0342 - - - 

0.6 0 - 0.0000 0.1848 5.3497 
1 - 0.0000 0.2011 5.2403 
2 	I - 0.0001 0.2272 5.0945 
3 	I - 0.0004 0.2748 4.8768 
4 - 0.0043 0.3802 4.4636 
5 	I 0.9270 - - - 
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Table 5.7(1) Bayes' factor of the analysis of dog data 
given some values of X and of Y for r=1,in=1. 

Kernel model. Reflection and ordinary kernel 
method. 

X 	0.00 	0.20 
	

0.40 
	

0.60 

0.0 	j 1.0614 0.9950 0.9950 0.9950 
0.2 	f 0.9950 2.9539 0.3533 0.0024 
0.4 	$ 0.9950 0.3533 1.7970 0.4695 
0.6 0.9950 0.0024 0.4695 3.5626 

Table 5.7(11) Bayes' factor of the analysis of dog data 

given some values of X and of Y for r=l,ni=5 

with t(x) = 0(1)5, number of zeros in the 

data X. Kernel model. Reflection and 

ordinary kernel method. 

x 

V 	 (v 	I 	 fl nn 	A ')fl 	 A AA 	 A QA 

- 1.8624 0.0001 0.0000 
- 2.0032 0.0002 0.0000 
- 2.2223 0.0003 0.0000 
- 2.6176 0.0011 0.0000 

3.6273 0.0102 0.0000 
1.3008 - - - 

- 3.7983 0.1339 0.0000 
- 3.7010 0.1472 0.0000 
- 3.5627 0.1698 0.0001 

• 	 - 3.3373 0.2145 0.0002 
- 2.8673 0.3290 0.0024 

0.9756 - - - 

- 0.0980 2.2356 0.1182 
- 0.1119 2.1765 0.1387 
- 0.1362 2.0913 0.1746 
- 0.1873 1.9494 0.2493 
- 0.3395 1.6382 0.4554 

0.9756 - - - 

- 0.0000 0.1814 4.8230 
- 0.0000 0.2006 4.7114 
- 0.0000 0.2320 4.5560 
- 0.0002 0.2904 4.3079 
- 0.0023 0.4217 3.7879 

0.9756 - - - 

	

0.0 	0 

1 

2 

3 
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5 

	

0.2 	0 
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5 

	

0.4 	0 
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5 

	

0.6 	0 

1 

2 

3 

4 

5 
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Table 5.7(111) Bayes' factor of the analysis of dog data 
given some values of X and of Y for r=l,m=10 

with t(x) = 0(2)10, number of zeros in the 

data X. Kernel model. Reflection and 
ordinary kernel method. 

x 

Y t(x) 	I 0.00 0.20 0.40 0.60 

0.0 0 - 1.5502 0.0000 0.0000 
2 - 1.6363 0.0000 0.0000 
4 	I - 1.7682 0.0001 0.0000 
6 	I - 2.0080 0.0002 0.0000 
8 	I - 2.6233 0.0011 0.0000 

10 	I 1.5873 - - - 

0.2 0 - 3.9762 0.1064 0.0000 
2 	I - 3.8911 0.1121 0.0000 
4 	I - 3.7808 0.1222 0.0000 
6 - 3.6128 0.1437 0.0000 
8 	I - 3.2578 0.2094 0.0002 

10 0.9524 - - - 

0.4 0 - 0.0711 2.3432 0.0795 
2 	I - 0.0768 2.2925 0.0878 
4 	I - 0.0870 2.2264 0.1027 
6 - 0.1092 2.2125 0.1354 
8 	I - 0.1828 1.9030 0.2434 

10 	I 0.9524 - - - 

0.6 0 	I - 0.0000 0.1408 5.0281 
2 	I - 0.0000 0.1495 4.9249 
4 - 0.0000 0.1647 4.7934 
6 	I - 0.0000 0.1958 4.5992 
8 	I - 0.0002 0.2835 4.2054 

10 	I 0.9524 - - - 

Table 5.8(1) Bayes' factor of the analysis of dog data 

given some values of X and of Y for r=1,m=1. 

Kernel model. Reflection and adaptive kernel 
method. 

X 	I 0.00 0.20 0.40 0.60 

0.0 1.0614 0.9950 0.9950 0.9950 
0.2 0.9950 3.0948 0.3558 0.0029 
0.4 	I 0.9950 0.3558 1.7178 0.4971 
0.6 	I 0.9950 0.0029 0.4971 3.6589 
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Table 5.8(11) Bayest factor of the analysis of dog data 
given some values of X and of Y for r=1,m=5 

with t(x) = 0(1)5, number of zeros in the 

data X. Kernel model. Reflection and 
adaptive kernel method. 

x 

Y t(x) 0.00 0.20 0.40 0.60 

0.0 0 - 1.8008 0.0001 0.0000 
1 - 1.9312 0.0002 0.0000 
2 - 2.1400 0.0003 0.0000 
3 	I - 2.5394 0.0010 0.0000 
4 - 3.6544 0.0090 0.0000 
5 	I 1.3008 - - - 

0.2 0 	I - 4.0372 0.1389 0.0000 
1 - 3.9354 0.1520 0.0000 
2 - 3.7917 0.1743 0.0001 
3 - 3.5601 0.2182 0.0003 
4 	I - 3.0870 0.3295 0.0030 
5 	I 0.9756 - - - 

0.4 0 - 0.0958 2.1150 0.1221 
1 - 0.1100 2.0582 0.1453 
2 	I - 0.1348 1.9763 0.1860 
3 	I - 0.1876 1.8389 0.2708 
4 	I - 0.3481 1.5358 0.5001 
5 	I 0.9756 - - - 

0.6 0 - 0.0000 0.1968 5.2065 
1 	I - 0.0000 0.2174 5.0989 
2 	I - 0.0001 0.2506 4.9528 
3 	I - 0.0002 0.3106 4.7248 
4 	I - 0.0028 0.4391 4.2441 
5 	I 0.9756 - - - 

175 



Table 5.8(111) Bayes' factor of the analysis of dog data 
given some values of X and of Y for r=1.m=l0 

with t(x) = 0(2)10, number of zeros in the 

data X. Kernel model. Reflection and 
adaptive kernel method. 

x 

Y t(x) 	I 0.00 0.20 0.40 0.60 

0.0 0. - 1.5176 0.0000 0.0000 

2 	I - 1.5956 0.0000 0.0000 

4 	I - 1.7151 0.0001 0.0000 
6 - 1.9359 0.0002 0.0000 

8 	I - 2.5449 0.0010 0.0000 

10 1.5873 - - - 

0.2 0 	I - 4.2238 0.1115 0.0000 
2 	I - 4.1339 0.1171 0.0000 
4 	I - 4.0177 0.1272 0.0000 
6 - 3.8417 0.1484 0.0000 
8 - 3.4753 0.2130 0.0003 

10 	I 0.9524 - - - 

0.4 0 	I - 0.0686 2.2178 0.0792 
2 - 0.0744 2.1700 0.0884 

4 - 0.0848 2.1067 0.1050 
6 	I - 0.1073 2.0092 0.1418 
8 - 0.1831 1.7952 0.2644 

10 0.9524 - - - 

0.6 0 - 0.0000 0.1525 5.4045 

2 	I - 0.0000 0.1621 5.2985 

4 	I - 0.0000 0.1787 5.1663 
6 - 0.0000 0.2122 4.9775 
8 - 0.0002 0.3032 4.6123 

10 0.9524 - - - 
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CHAPTER 6 

MODELLING THE BAYES FACTOR FOR MULTIVARIATE DATA 

6.1 Introduction 

In Chapter 3 we considered the case where observations were 

univariate. In this chapter the modelling and estimation of the 

Bayes' factor assuming the within-group variance is known is extended 

to the multivariate case of p-dimensional observations. 

Multivariate data consist of observations on several different 

variables for a number of individuals or objects. In the spirit of 

Chapter 3 the measurements taken from a material of interest found at 

the scene of a crime or on the suspect will be multivariate, 

consisting of two or more dimensions. For example, as in Chapter 3, 

in addition to the variable medullary fraction measurements on the 

cat hair we could also have the measurements for the hair width or 

indeed medullary width. Using the same notation as in Chapter 3, a 

formula for the Bayes' factor is now derived below. 

First consider the data structure of the training data. 

Suppose we have n populations or groups from which observations are 

drawn independently. Evett et al (1987) considered a bivariate 

problem in which the population means u i  are assumed to have come 

from a noninformative prior distribution. This chapter deals with 

the case where the population means a1 have been randomly selected 

from the same parent population in advance. 
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More specifically, assume that the elements within any randomly 

selected population i are Normally distributed with mean vector u 1  

and common covariance matrix t, denoted by N(uj,E), and that each 

for il.2 .... n, is drawn independently from the same parent 

population. In the usual random effects model, the uj has a Normal 

distribution with mean vector £ and covariance matrix T. However, 

the assumption of the between populations SLLi  being Normally 

distributed is often unrealistic. Also, the multivariate data are 

usually multimodal. In high dimensions, non-Normality of the data is 

extremely difficult to detect. Thus the initial interest in this 

chapter is in the estimation of the distribution of u1 using the 

training data available. 

In the next two sections a method of estimating the probability 

density function of ai is proposed and expressions for the predictive 

and marginal densities will be derived under the random effects 

model. The method, involving the use of the past or selected 

representative data to estimate the probability density function of 

an unknown parameter is called the empirical Bayes method. Details 

of such a method have been described in Section 2.2. In Section 6.4 

the computational aspects of evaluating the Bayes' factor are 

discussed. In the final section the results are applied to the cat 

data to evaluate the weight of evidence in a forensic context. 

6.2 Probability density function of uj 

A set of p-dimensional training data Z.,, (1=1,2,.. .,n; 

j=1,2, . .. ,J) is taken to be a representative sample from some 

population of interest. The training data consists of n groups with 
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J observations within each group. 	Adopting the empirical Bayes' 

method the distribution of a is estimated by the ordinary and 

adaptive kernel methods under the assumptions that the training data 

are grouped or ungrouped. For the definition of 'grouped' and 

'ungrouped' see Chapter 3. A multivariate Gaussian kernel is used 

for mathematical convenience. 

6.2.1 The ordinary kernel method 

Analogously with Section 2.1.2, the ordinary kernel density 

estimate for f(u) using the group sample means as the data point for 

the assumed grouped training data case is given by 

1 	 n 	 .1 
E exp - 	(-1)'S 1 (,i-1) 	(6.1) 

- 	(27T)P/2 Ix 2 sl 	n 1=1 	1 	2X 2 	 j 

where S is the p x p sample covariance matrix of the group mean 

vectors with the jkt  (j,k = 1,2,...,p) entries defined as 

Sk (6.2) 
(n-I) .t1 

  

As in Chapter 3, X is the 'standardised' smoothing parameter which 

determines the smoothness of the density function. The kernel 

density estimate shown in (6.1) is slightly different from the one 

used by Habbema et al (1974) who used a robust version of the sample 

covariance matrix. Habbema et al (1974), standardising the variables 

by a simple tranformation and assuming the variables are independent, 

obtained an estimate for X. I will denote this estimate by XD.  This 

is equivalent to assuming the sample covariance matrix S in (6.1) is 

diagonal. Silverman (1986) quoted a suggestion of Tukey and Tukey 
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(1981), that a robust sample covariance matrix should be used. 	Let 

matrix D be such a diagonal matrix so that from (6.1) above another 

kernel density estimate of f(u) may be given by 

= 
n 
E exp - 

(21r7)P/2 IXDI 	n 	1=1 

	

1 	 1
ID1(u_.)(6.3) 

	

2X 	- -  

 diagonal entries of D, dk  (for k = 1, 2, . . . , p)  are the sample 

variance of the kth  variable as defined in (6.2). The smoothing 

parameters X and XD  are estimated using the pseudo-maximum likelihood 

leave-one-out method as described in Section 2.1.3. The formulae of 

the Bayes' factor derived from (6.1) and (6.3) will be denoted by BF 

and BFD,  respectively. 

Similarly the distribution of f.L for the ungrouped training data 

case can be obtained by replacing Ri with z1 and n with N (= nxJ) in 

(6.1) and (6.3) for the diagonal and non-diagonal sample covariance 

matrix case respectively. The sample covariance matrix of the 

ungrouped data is given by 

1 	N 

= 	(N-i) 	1 22.)•)'. 	 (6.4) 

6.2.2 The adaptive kernel method 

A general derivation of the adaptive kernel method has already 

been described in Section 2.1.2. From the experience of Chapter 3, 

the adaptive kernel method may be used to improve the evaluation of 

the Bayes' factor. The ordinary kernels (6.1) and (6.3) are used as 

a pilot estimate to obtain the smoothing factors k for the diagonal 

and non-diagonal case. The sensitivity parameter 6 in Section 2.1.2 
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is set to a half. 	Thus, from (6.1) and (6.3) adaptive kernel 

estimates for the distribution of ii, may be written as 

1 	n 	IS_1Ii 

	I 	1 (u) = - 	 exp - 
n 1=1 (2, X 2X,Z)P/Z 	 20X1 - 	- J 	(6.5) 

and 

1 n 	D_' 1-"  
= - z 	 exp 

n i=l (2X2k1)P/2 	{- 	(u_i)tD_1(_!i)}. 	(6.6) 
A similar expression for the ungrouped training data case is shown in 

Appendix 6. 

6.2.3 A simulation study 

A Simulation study was carried out to examine the assumption 

that the training data are grouped or not grouped when they are used 

to estimate the distribution of the unknown between groups random 

factor u proposed in the previous sections. Here a bivariate 

situation is considered. 	Random )ivariate observations z 	are 

generated from the following model 

= 	 ,i = l,...,n; j=1,...,J. 

Random vectors generated from the underlying distribution of uj are 

either to be a bivariate Normal or a bivariate non-Normal 

distribution. The random error vector c is distributed as a 

bivariate Normal with mean vector zero and identity covariance 

matrix. 

The between group random observations are generated from the 

following mixture of two Normals distribution: 
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f(u) = q [f 2  ( ii  f 1 .z 1 ] + ( I -q)[f2("I2. 2 )J. 	 (6.7) 

where f 2  is a bivariate Normal density function with appropriate mean 

vectors 4,, E and covariance matrices E, , L. The covariance 

matrices L and E 2  are denoted by 

I o 	o] 	 1 	0 2 

L O 	
o 

and a 	C z 	 L 0 2 	0 2 ], 

respectively, where o 1 =p 1 o 11 o 12  and 02=P2021°z2. 

Different choices of the values for q and covariance matrices 

determine whether the distribution of ui is Normal or non-Normal. In 

the Normal case, the value of q is set to 1. 	Without loss of 

generality, the mean vector £ is chosen to be (0.0,0.0)'. 	The 

values of the elements in the covariance matrix 1 are given in Table 

6.1 below. The density of the five bivariate Normal distirbutions 

are plotted in Fig. 6.1. In the non-Normal case, q is set to 0.5 and 

the respective mean vectors £ and E2  are set to (-1.5,-1.5)' and 

(1.5,1.5)'. The values of the covariance matrices E 1  and E. are also 

given in Table 6.1. 	Different values for E 1  and E 2  determine 

different shapes for f(w) 	The first three bivariate densities shown 

in Table 6.1 are plotted in Fig. 6.2 which show that they are 

bimodal. The last three densities (d) - (f) are plotted in Fig. 6.3 

which show that f(M) is skewed. Note that the values for the 

covariance matrix given in the Table are arbitrary. The main theme 

is to investigate the assumption that the training data are grouped 

or not grouped in estimating the distribution of u. Further the 

choices of different covariance matrices provide a measure of the 

effect of non-Normality of the distribution of ii on the test of the 
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assumption. 

Table 6.1 Summary of the choices of covariance matrices given in 
(6.7) 

Part A. The distribution of sij is Normal 

I £2 I Remarks 

Case 
I 

oz, 	oh 
I 

I 
I 	o 
I 

oh P 1 

I 
I 
I 

a I 	1 	1 	0.0  
b I 	1 	5 	0.0  
C I 	1 	5 	0.8 I 	- - - } 

Unimodal 
d I 	1 	5 	0.5 - - 

- 

e 1 	5 	0.2 	I - - - I 	J 

Part B. The distribution of ui is non-Normal 

a I 	1 	1 	0.0 	I 2 2 0.0 I 	1 
b I 	1 	1 	0.5 	I 2 2 0.7 	I I Bimodal 
c I 	1 	1 	0.5 2 2 0.3 	I J 
d I 	1 	1 	0.0 	I 5 5 0.7 1 
e I 	1 	1 	0.5 	I 5 5 0.7 	I } 

Skewed 
f 1 	1 	0.5 10 5 0.7 	I J 

Similar to the simulation study carried out in Chapter 3, the 

number of group sizes (n) are chosen to be 20, 50 and 100. The 

chosen number of within-group observations (J) are 1, 5 and 10. 

Integrated Square Error (ISE) is used as a measure of goodness of fit 

of the kernel density estimates. The ISE is chosen in favour of MISE 

(see Chapter 3) to reduce excessive computational time. Again, one 

simulation from each case described above is carried out. 

The ISE of the kernel density estimate using the ordinary kernel 

and the adaptive kernel methods given the training data are grouped 
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and not grouped for the Normal case. are shown in Tables 6.2 - 6.6. 

Although one should not read too much into one set of simulation the 

Tables do suggest that in most cases the adaptive kernel method 

outshone the ordinary kernel method. In general using the group 

means to estimate f(u) gives smaller ISE, especially when n is large. 

The values of ISE decrease as number of within-group observations 

increases. Also that ISE decreases as group size increases. Note 

that when J = 1, the values of ISE are the same for the training data 

are grouped and not grouped. 

Table 6.2 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. The 
underlying between groups distribution is a bivariate Normal with 
parameters as shown in Case (a) of Section 6.2.3. 

Assume TS lJngrouped I 	Grouped 

n J Ordinary Adaptive I 	Ordinary  I 	Adaptive 

20 1 2.5712 I 	2.2107 I 	2.5712 I 	2.2107 
5 I 	2.4920 I 	1.8711 I 	1.7647 I 	1.4479 

10 2.2915 1.9549 I 	2.0022 I 	2.0922 
50 1 I 	1.7385 I 	1.2206 1.7385 I 	1.2206 

5 2.6722 I 	2.2474 I 	1.7243 I 	1.2737 
10 I 	2.3280 	I 1.9194 I 	1.0947 I 	0.7471 

100 1 2.2862 1.5953 2.2862 I 	1.5953 
5 2.0037 	I 1.4805 I 	0.8317 	I 0.5396 

10 I 	1.8798 	I 1.4539 0.8247 	I 0.7582 
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Table 6.3 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. The 
underlying between groups distribution is a bivariate Normal with 
parameters as shown in Case (b) of Section 6.2.3. 

Assume TS I 	Ungrouped I 	Grouped 

n J Ordinary I 	Adaptive Ordinary Adaptive 

20 1 0.4397 I 	0.3520 0.4397 I 	0.3520 
5 0.3313 0.3650 I 	0.3421 ( 	0.2741 

10 f 	0.1997 I 	0.2705 I 	0.1113 0.1294 
50 1 I 	0.0411 0.0573 I 	0.0411 	I 0.0573 

5 0.1316 I 	0.1258 	I 0.1310 	J 0.1040 
10 0.1034 I 	0.1271 	I 0.0788 0.0623 

100 1 I 	0.1175 0.1284 0.1175 	I 0.1284 
5 I 	0.0442 I 	0.0653 	I 0.0279 0.0731 

10 f 	0.0691 0.0639 	I 0.0732 	I 0.0508 

Table 6.4 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. The 
underlying between groups distribution is a bivariate Normal with 
parameters as shown in Case (C) of Section 6.2.3. 

Assume TS I 	Ungrouped ( 	 Grouped 

n J I 	Ordinary  I 	Adaptive  I 	Ordinary  I 	Adaptive 

20 1 I 	0.7725 I 	0.8146 I 	0.7725 I 	0.8146 
5 I 	0.4279 0.3760 ( 	0.5033 0.3812 

10 I 	0.3807 0.3293 I 	0.6224 	I 0.5028 
50 1 I 	0.4737 I 	0.3416 I 	0.4737 	I 0.3416 

5 I 	0.2149 0.1920 I 	0.1782 	I 0.1783 
10 I 	0.3144 I 	0.2589 I 	0.3155 	I 0.2359 

100 1 0.4838 I 	0.4111 I 	0.4838 	I 0.4111 
5 I 	0.3213 0.2255 	I 0.2895 0.1762 

10 I 	0.1894 	I 0.1627 0.1503 	I 0.1435 
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Table 6.5 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 

matrix using the ordinary and adaptive kernel methods. The 

underlying between groups distribution is a bivariate Normal with 

parameters as shown in Case (d) of Section 6.2.3. 

Assume TS J 	 Ungrouped 	 Grouped 

n 	J 	I Ordinary  I Adaptive  I Ordinary 	Adaptive 

20 	1 I 	0.3265 I 	0.3267 I 	0.3265 I 	0.3267 
5 I 	0.2519 I 	0.2947 I 	0.2646 0.1872 

10 0.3873 0.5217 I 	0.2743 0.3209 
50 	1 I 	0.0934 I 	0.0615 I 	0.0934 	I 0.0615 

5 I 	0.1611 I 	0.1805 I 	0.2141 	I 0.3912 
10 0.0909 0.0960 0.0838 	I 0.0819 

100 	1 0.2110 I 	0.1551 I 	0.2110 0.1551 
5 	I 0.0621 I 	0.0571 0.0619 	I 0.0551 

10 0.1309 0.1346 I 	0.1272 	I 0.1189 

Table 6.6 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 

matrix using the ordinary and adaptive kernel methods. The 

underlying between groups distribution is a bivariate Normal with 

parameters as shown in Case (e) of Section 6.2.3. 

Assume TS I 	Ungrouped I 	Grouped 

n .1 I 	Ordinary  I 	Adaptive  I 	Ordinary  I 	Adaptive 

20 1 I 	0.2292 I 	0.3217 I 	0.2292 I 	0.3217 
5 0.2575 I 	0.2885 I 	0.2180 f 	0.2195 

10 I 	0.3193 I 	0.3553 0.2700 I 	0.2558 
50 1 I 	0.1432 0.0852 I 	0.1432 I 	0.0852 

5 I 	0.1351 I 	0.1429 I 	0.1250 0.1031 
10 0.1816 I 	0.1943 I 	0.1742 I 	0.1799 

100 1 0.1154 I 	0.0707 I 	0.1154 I 	0.0707 
5 I 	0.0880 I 	0.0778 I 	0.0896 I 	0.0593 

10 0.0549 I 	0.0759 I 	0.0493 0.1072 

The results of the simulation study for the non-Normal case are 

shown in Tables 6.7 - 6.12. The superiority of the adaptive kernel 
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method over the ordinary kernel method is dearly shown in most 

cases. The use of group means to estimate f(u) produces a smaller 

ISE when the group size is large. When n is small, the ungrouped 

model is better than the grouped model. This is probably due to the 

difference in the number of data points in constructing the kernel 

density estimate for f(u). For example, when n=20 and J=10 there are 

only twenty data points to estimate f(ii) in the grouped model, 

comparing 200 data points used in the ungrouped model. 

Table 6.7 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. The 
underlying between groups distribution is non-Normal as shown in Case 
(a) of Section 6.2.3. 

Assume TS I 	Ungrouped I 	Grouped 

n J I 	Ordinary Adaptive Ordinary Adaptive 

20 1 J 	1.2562 1.0492 	I 1.2562 I 	1.0492 
5 	I 0.4881 I 	0.4183 	I 0.3509 0.6676 

10 	I 0.7233 J 	0.6895 	I 0.6870 	I 0.6714 
50 1 0.7987 I 	0.7467 0.7987 	I 0.7467 

5 0.7657 I 	0.5931 	( 0.6003 	I 0.4050 
10 0.4373 0.3140 	I 0.2059 	I 0.1540 

100 1 	I 0.7563 I 	0.5108 	I 0.7563 	I 0.5108 
5 0.6671 I 	0.5839 	I 0.4315 	I 0.3939 

10 	f 0.4632 I 	0.3293 	I 0.2177 	I 0.1794 
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Table 6.8 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. 	The 
underlying between groups distribution is non-Normal as shown in Case 

of Section 6.2.3. 

Assume TS I 	Ungrouped I 	Grouped 

n J Ordinary Adaptive I 	Ordinary  I 	Adaptive 

20 1 I 	2.2577 2.0224 2.2577 2.0224 
5 1.3120 1.1187 1.0104 j 	1.2547 

10 I 	1.9345 	I 1.9327 I 	1.8439 2.1272 
50 1 I 	1.8202 1.5782 I 	1.8202 1.5782 

5 ( 	1.2173 	I 1.0170 I 	0.9856 I 	0.9735 
10 1.0767 	I 0.9393 0.5166 I 	0.4258 

100 1 1.3346 	I 1.1913 ( 	1.3346 1.1913 
5 	I 1.0350 0.8105 	I 0.3630 	I 0.2723 

10 	I 1.0701 	I 0.9142 	I 0.5936 	I 0.5210 

Table 6.9 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. 	The 
underlying between groups distribution is non-Normal as shown in Case 

of Section 6.2.3. 

Assume TS I 	Ungrouped Grouped 

n J I 	Ordinary  I 	Adaptive  I 	Ordinary  I 	Adaptive 

20 1 1.2438 I 	1.1948 I 	1.2438 1.1948 
5 I 	1.2295 	I 1.0624 I 	1.0694 I 	1.0319 

10 0.7478 	I 0.6790 I 	0.8649 I 	1.1449 
50 1 I 	1.5687 1.4843 I 	1.5687 	I 1.4843 

5 	I 1.2725 	I 1.1709 	I 0.8929 	I 0.8465 
10 	I 0.9810 	I 0.8130 	I 0.4872 	I 0.3201 

100 1 	I 1.2540 	I 1.1557 	I 1.2540 	I 1.1557 
5 	I 0.7652 0.5505 0.4159 	I 0.2733 

10 	I 0.7089 	I 0.5569 	I 0.3802 0.3329 
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Table 6.10 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. 	The 
underlying between groups distribution is non-Normal as shown in Case 

of Section 6.2.3. 

Assume TS Ungrouped Grouped 

n 3 Ordinary Adaptive I 	Ordinary ( 	Adaptive 

20 1 	I 1.1636 1.0038 ( 	1.1636 I 	1.0038 
5 	( 0.9956 	I 0.7641 I 	1.0341 0.7059 

10 	I 1.1489 	I 1.0909 j 	1.2002 	I 1.1168 
50 1 1.2881 	I 0.9251 I 	1.2881 	I 0.9251 

5 	I 0.8712 	I 0.7121 	I 0.8796 0.6433 
10 0.6280 	I 0.4906 	I 0.4546 0.3544 

100 1 0.6609 	I 0.4103 	I 0.6609 	I 0.4103 
5 0.6402 	I 0.5136 	I 0.4410 	I 0.4372 

10 	I 0.5756 	I 0.4696 	I 0.2098 0.1523 

Table 6.11 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. 	The 
underlying between groups distribution is non-Normal as shown in Case 

of Section 6.2.3. 

Assume TS I 	Ungrouped I 	Grouped 

n J I 	Ordinary  I 	Adaptive  I 	Ordinary  I 	Adaptive 

20 1 I 	1.4533 I 	1.1390 I 	1.4533 I 	1.1390 
5 I 	1.4808 1.4216 1.4260 I 	1.4504 

10 I 	1.1965 I 	1.0940 I 	1.3046 I 	1.1918 
50 1 I 	1.2815 	I 1.0737 I 	1.2815 1.0737 

5 	I 1.0452 	I 0.7214 	I 0.5088 I 	0.2630 
10 1.1598 0.9671 	I 0.9257 I 	0.8844 

100 1 	( 1.1182 	I 0.8526 1.1182 I 	0.8526 
5 	I 1.0059 	I 0.7642 	I 0.9169 	I 0.5460 

10 	I 0.7844 	f 0.6341 0.4184 	I 0.1823 
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Table 6.12 	ISE (x10 2 ) of the kernel density estimate given the 
training data is grouped and ungrouped, with diagonal covariance 
matrix using the ordinary and adaptive kernel methods. The 
underlying between groups distribution is non-Normal as shown in Case 
(f) of Section 6.2.3. 

Assume TS Ungrouped I 	Grouped 

n 3 Ordinary Adaptive I 	Ordinary  I 	Adaptive 

20 1 1.4577 I 	1.5653 I 	1.4577 I 	1.5653 
5 I 	1.0329 I 	0.7964 I 	1.7628 I 	1.4650 

10 0.7685 0.6709 I 	1.0320 I 	0.7552 
50 1 1.3003 I 	1.1834 1.3003 I 	1.1834 

5 	I 0.8935 f 	0.6784 I 	0.8412 I 	0.7412 
10 0.7530 I 	0.5755 0.5362 	I 0.2769 

100 1 1.2405 	I 0.9351 I 	1.2405 0.9351 
5 	I 0.9014 	I 0.6095 I 	0.8257 	I 0.4388 

10 	I 0.8027 	I 0.6406 I 	0.5356 0.2369 

6.3 Predictive distribution 

Estimation of the Bayes' factor (3.3) in a multivariate case 

involves the derivation of a p-dimensional predictive distribution. 

In this section the predictive distribution will be derived for the 

grouped training data case using the ordinary kernel method under the 

random effects model with non-Normal random factor. 

The predictive distributions under the 'fixed effects' model 

have been derived by Geisser (1964,1966) under various assumptions 

and are widely applied in Discriminant analysis. Fatti (1982) 

adopted the Geisser method and derived expressions for the predictive 

distribution under the random effects model in a discrimination 

problem. He applied the usual assumptions of the random effects 

model, that is, the within group population is characterised by a 

p-dimensional Normal distribution N(tii,E), where ,i has been 

199 



randomly selected from a N(,T) distribution. This is in contrast 

to the "fixed effects" model where the distribution of ,i1 is assumed 

to be vague. 	Fatti also assumed that £ and the two 

"hyper-parameters" 	and T are unknown and have a joint 

noninformative prior distribution. 	In the following section the 

predictive distribution of an observation or a summary of a set of 

observations is derived under the random effects model without the 

assumption that f(,.j) comes from a specific parametric family. The 

formulae for the Bayes' factor for the other cases such as ungrouped 

training data and adaptive kernel method will be given in Appendix 6. 

6.3.1 Derivation of the predictive distribution 

The predictive distribution is derived without the assumption 

that the random factor ui is Normally distributed. The distribution 

of mi is estimated by the method discussed in Section 6.2 under 

various assumptions about the training data. Estimation or 

determination of the distribution of the hyper-parameters £ and T, 

arising from the Normality assumption about the distribution of the 

between population means, is no longer required. The within group 

covariance matrix is assumed known and its known value is obtained 

from the training data and is given by 

1 	n 	j 
r 	E 

n(J-1) 1=1 j1 	 - 

With a similar situation and terminology as in Chapter 3, 

suppose tht the control and recovered data consist of a set of 

p-dimensional vector observations. Let Y = (y,y 
..... y1.)' and X = 

{x,x.. .. ,x}' denote r x p and m x p data matrices of the recovered 
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and control samples, respectively. 	Suppose the Y's and Xi'S are 

independent identically distributed p-dimensional Normal with unknown 

mean vector U 	and ,i, and covariance matrices 	and 

respectively. 

Under the hypothesis C, that Y and X are from the same source, 

and Xi's are p-dimensional Normally distributed with unknown 

common mean vector uc,  say and covariance matrix r , say. Let Y and X 

denote the mean vector of samples of sizes r and in of the recovered 

and control data respectively. Extension of the model developed in 

Section 3.5.2 shows that the numerator of the BF in (3.3) is a 

p-dimensional predictive distribution of Y given X and is 

proportional to 

S t'p('I"c) fp(Ic) p(c) dc 

where, assuming the within group covariance matrix E is known, 

Ir'I 	

{ 	

r 
f(YIi.t) = 	 exp - 	(-u)'E '(y u) 

(2)PI2 	 2 - - 	- :- } 	
(6.8) 

and 

ImE'I 	

- { 	

m - 
f(XkL) = 	 exp - —(x-)'t 1 (x j.z) 

(2)P12 	 2 - - 	
- :- J. 	(6.9) 

are the sampling distributions of Y and,of X respectively. Combining 

(6.1), (6.8) and (6.9), using the identity (which is reproduced here 

in Appendix.. 6) given by Box and Tiao (1973) for combining two 

quadratic forms and the fact that S and E are positive definite, and 

by integrating over u the predictive distribution of Y given X, 

f(YIX,C), is proportional to 
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1 	1 	 1 

	

exp i - 	(_y)'1() 
Ia 2 LJ 	I 	2a2 	 J 

	

1 	 11  
L exp - —(w-1)'A'(w- 1 )

1 
	(6.10) 

IA w I 	fl 	i = 1 	2 	- 	 - 	-' 

where Aw = (L + S)' a 2  = ( ni 1 +r 1 ), S>, = > 2 S, L = ( m+r)'E and w = 

(m + r)/(m+r). 

The normalising constant can be obtained by combining (6.1) and (6.9) 

and integrating over ii to give 

1 	 1 	1 
f(XIC) = 	 exp 	- _( 	•)?A1(i)1 	(6.11) 

	

(217)P/2 IAxI 	i=1 	I. 	2 

where Ax = (E + S>), E x  = m 1 L and S>  as above. 

Similarly, the denominator of the BF, f(YIC) is given by 

1 	 f 	1 
f(I) = 	 exp 	- -(V_j)IAj1(Y_i)J 	(6.12) 

	

(21r)1/'2 IAyI 	i=1 	1 	2 

	

where A = ( L + S>,), L 	r 1 E and S>, as above. 

Note that if (6.3) is used in place of (6.1) then the matrix S>, 

after the equations (6.10), (6.11) and (6.12) will be replaced by D X  

	

as defined in Section 6.2. 	It is • easily seen that a similar 

expression of the Bayes' factor for the assumed 'ungrouped' training 

data case can be obtained simply by replacing the group means 

(i=1 .....n), by z 2  (2=l....,N), S>, by S, with the appropriate 

smoothing parameter estimate. 
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6.4 Interpretation of the Bayes' factor 

In Chapter 3 the behaviour of the Bayes' factor could easily be 

presented as a function of the control and recovered data. However 

in the multivariate situation inspection of the behaviour of the 

Bayes' factor is difficult even in the bivariate case. 

Since the Bayes' factor is a measure of evidence provided by 

the data for the hypothesis C against C we can use a similar 'order 

of magnitude' suggested by Jeffrey (1939/83) to interpret the Bayes' 

factor based on the logarithm scale. The ordering below shows a 

verbal scale for the order of magnitude in favour of C, a converse of 

the one given by Jeffery (see Section 2.2.6) which showed the order 

of magnitude against the hypothesis C: 

BF < 1 evidence against C 

1 < BF < 10 very slight evidence for C 

109  < BF < 10 moderate evidence for C 

10 < BF < 3VIO strong evidence for C 

.'1O < BF < 10 2  very strong evidence for C 

102 < BF decisive evidence for C 

These orderings are used to represent the scale of support for the 

hypothesis C implied by the evidence in the example below. 

6.5 Examples 

Suppose there is available a set of bivariate hair measurements 

from 22 cats with 10 samples from each cat. 	The two variables of 
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interest are hair width and medullary fraction. 	Fig. 6.4 shows a 

bivariate dot plot of (a) the 220 observations and (b) the 22 group 

means. Figs. 6.5 and 6.6 show contours of the bivariate density 

estimate for the observations displayed in Fig. 6.4 using the 

respective ordinary and adaptive kernel methods described in Section 

6.2 with the two separate assumptions that the sample covariance 

matrix S is non-diagonal or diagonal. From Figs 6.5 and 6.6, the 

estimated distribution of the parameter vector i have slight 

differences when the training data are assumed grouped and then not 

grouped. There are also small differences in the estimated 

distribution of .& when assuming the covariance matrix S is diagonal 

or non-diagonal. There are not significant differences between the 

ordinary and adaptive kernel methods. Note that the contour heights 

in Fig. 6.5 is multiplied by lO and in Fig. 6.6, the multiplier is 

In the next two sections the values of the Bayes' factor are 

shown as a function of a vector Y given some vector values of X. The 

values for the first and second variables of X are chosen to be in 

this case 10.0(30.0)100.0 and 0.4(0.2)0.8, respectively. 

6.5.1 The ordinary kernel method 

This section describes the results of the evaluation of the 

Bayes' factor presented in Section 6.3 using the ordinary method. 

The cases when the training data- are grouped and not grouped are 

considered and also when the covariance matrix is diagonal and 

non-diagonal. 
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Using the grouping of the BF as in Section 6.4 the values of 

the Bayes' factor given the training data is grouped and assuming 

that the covariance matrix S is non-diagonal (Fig. 6.7) and diagonal 

(Fig. 6.8) are illustrated in a graphical form for r=1,m=1. Figs 6.9 

and 6.10 show the behaviour of the Bayes' factor given the training 

data are ungrouped and assuming that the covariance matrix S is 

non-diagonal and diagonal respectively for r=l,m=1. From Fig. 6.7, 

it appears that only slight or moderate evidence in support of the 

hypothesis C (i.e. there is a contact between the suspect and the 

crime scene) occurs when X' = (10.0,0.6), (40.0,0.6), (40.0,0.8), 

(70.0,0.8), (70.0,0.6) and (100.0,0.8). From Fig. 6.5(b), these 

values are relatively common, especially X' = (40.0,0.6) which is 

most common. There is little difference between the cases when the 

covariance matrix S non-diagonal and diagonal. Moreover, the 

assumption of matrix S being diagonal seems to improve the behaviour 

of the Bayes' factor as far as the location of the maximum of the BF 

is concerned. There also seems to be more indecisive support in the 

hypothesis C when common values of X and of Y are observed. The area 

of weak evidence can be seen clearly from Figs. 6.7 and 6.8. 

When the number of control and recovered data increase to ten 

each, given the training data are grouped, Figs 6.11 and 6.12 show 

the behaviour of the Bayes' factor assuming the covariance matrix S 

is non-diagonal or diagonal, respectively. The most significant 

feature between the different values of r and m is that it is 

difficult to find evidence in favour of the hypothesis C. But when 

the evidence in favour of the hypothesis C is found the values of the 

Bayes' factor are extremely large. The region of doubt in supporting 
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the hypothesis C is almost non-existent. 	The results suggest that 

when r and in are large, the evidence implied by the control and 

recovered observations is conclusive either for or against the 

hypothesis C. Figs 6.13 - 6.14 show the behaviour of the BF, given 

the training data are not grouped, assuming the covariance matrix S 

is non-diagonal and diagonal, respectively. 

6.5.2 The adaptive kernel method 

This section describes the results of the evaluation of the 

Bayes' factor described in Section 6.3 using the adaptive method. 

The cases when the training data are grouped and not grouped are 

considered and also when the covariance matrix is diagonal and 

non-diagonal. 

Again using the ordering presented in the Section 6.4, the 

behaviour of the Bayes' factor given the training data are grouped 

and assuming that the covariance matrix S is non-diagonal (Fig. 6.15) 

and diagonal (Fig. 6.16) are illustrated in a graphical form for 

r=1,m=1. When these graphs are compared with Figs 6.7 and 6.8 for 

Section 6.5.1 it is found that the adaptive kernel method improves 

the behaviour of the Bayes' factor with regard to the position of the 

maximum of the BF. Similarly the adaptive kernel method provides 

improvement for the behaviour of the Bayes' factor when the training 

data is assumed ungrouped. See Figs 6.17 and 6.18 for this case. 

Figs 6.19 and 6.20 show the behaviour of the Bayes' factor given 

the training data are grouped and assuming the covariance matrix S is 

non-diagonal and diagonal respectively for r=10,in=10. Comparing 
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Figs. 6.19 and 6.20 with Figs. 6.11 and 6.12 respectively, there is 

no significant difference between the two kernel methods except when 

the value of XI is least common. When X' = (40.0,0.6) and 

(70.0,0.8), the evidence implied by the control and recovered 

observations shown in the graphs is least convincing. 

Generally, the area which shows slight or moderate evidence for 

supporting the hypothesis C does not appear to exist when r=10 and 

in=10. Finally, note that when r=10 and m=10 there are many values of 

the Bayes' factor of less than one. 	This suggests that it is 

difficult to find evidence to support the hypothesis C. 	In a 

forensic context, this implies that the probability of the material 

found at the crime scene and also on the suspect originating from the 

same source is small. But when such an event occurs, the weight of 

the evidence suggested by the control and recovered data is 

considerable. The weight of evidence depends on the rarity of the 

control and/or of the recovered data. 

The values of Y where the maximum of the Bayes factor occurred 

for the grouped model corresponding to the Figs. 6.7, 6.8, 6.11, 

6.12, 6.15, 6.16, 6.19 and 6.20 are tabulated in Tables 6.13 and 

6.14. Ideally one would prefer that the maximum occur where X and V 

coincide. Note that the values X takes such as (10.0, 0.4), (10.0, 

0.6), (10.0, 0.8), (40.0, 0.4), (70.0, 0.4) and (100.0, 0.4) are not 

in the training data, and hence are outside our experience. Thus, it 

is not surprising that the maximum does not occur where X and V are 

equal. 
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Table 6.13 The values of Y where the maximum of the Bayes' factor 
occurred, given some values of X. The value of the 
maximum is given in bold. Grouped model; r=l,m=a. 

Method: 	 Ordinary 	 I 	 Adaptive 

Case I Non-diagonal I 	Diagonal 	I Non-diagonal I 	Diagonal 

a 15.0 	0.20 0.0 	0.20 J 	10.0 	0.30 0.0 	0.30 
I 	3.4x10 1  I 	3.8x10 1  3.0x10 1  3.8x10' 

b I 	0.0 	0.60 0.0 	0.60 I 	0.0 	0.60 I 	0.0 	0.55 
I 	3.6 I 	3.6 3.6 I 	3.8 

c J 	0.0 	1.00 I 	0.0 	0.95 I 	0.0 	0.95 0.0 	0.90 
I 	3.1x10 1  I 	3.3x101 I 	4.0x10 1  3.1xl0' 

d I 	120.0 	0.05 I 	50.0 	0.15 I 	80.0 	0.30 I 	40.0 	0.30 
I 	1.3x102 I 	9.4x101 I 	1.1x102 I 	5.5x10' 

e I 	40.0 	0.55 I 	35.0 	0.55 I 	40.0 	0.30 I 	35.0 	0.55 
I 	1.9 1.9 1.9 1.9 

f I 	5.0 	0.95 I 	25.0 	0.90 I 	10.0 	0.90 I 	25.0 	0.85 
I 	6.8 I 	5.1 I 	6.3 I 	4.7 

g 150.0 	0.00 I 	130.0 	0.15 I 	145.0 	0.25 I 	100.0 	0.35 
I 	2.7x103 I 	1.1x103 I 	3.0x10 3  3.9x10 2  

h I 	125.0 	0.45 I 	95.0 	0.50 I 	110.0 	0.50 90.0 	0.55 
I 	6.2 I 	4.6 I 	5.3 I 	4.1 

I 75.0 	0.90 I 	90.0 	0.90 	I 75.0 	0.85 I 	85.0 	0.90 
I 	2.7 I 	3.1 	I 2.7 I 	3.0 

j 150.0 	0.00 150.0 	0.10 	I 150.0 	0.20 I 	150.0 	0.40 
I 	4.3x104 I 	7.0x10' 2.3x105 I 	1.0x10 4  

k I 	150.0 	0.40 I 	150.0 	0.50 150.0 	0.50 I 	150.0 	0.55 
I 	7.2x101 I 	6.3x101 	I 9.0x101 I 	5.2x10 1  

I I 	150.0 	0.85 I 	150.0 	0.90 	I 140.0 	0.80 145.0 	0.90 
I 	7.9 I 	9.6 	I 7.9 I 	9.5 

Notes: 	a. 	X' 	= 	(10.0,0.4), 	b. 	X' = 	(10.0,0.6), 	C. 	X' = 	(10.0,0.8) 
d. 	2 1 	= 	(40.0,0.4), 	e. 	' = 	(40.0,0.6), 	f. 	' = 	(40.0,0.8) 
g. 	' 	= 	(70.0,0.4), 	h. 	R' = 	(70.0,0.6), 	1. 	X I  = 	(70.0,0.8) 
j 	t 	= 	(100.0,0.4), 	k. 	X 1  = 	(100.0,0.6), 	1. 	' = 	(100.0,0.8) 
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Table 6.14 The values of Y where the maximum of the Bayes factor 
occurred. given some values of X. The value of the 
maximum is given in bold. Grouped model; r=10,m=10. 

Method: Ordinary I 	 Adaptive 

Case Non-diagonal I 	Diagonal I 	Non-diagonal I 	Diagonal 

a 	I 10.0 	0.40 I 	0.0 	0.35 f 	10.0 	0.40 I 	10.0 	0.40 
3.9x10 2  I 	1.1x10 3  I 	3.1x10 2  4.5x10 2  

b 	I 5.0 	0.60 5.0 	0.60 I 	5.0 	0.60 5.0 	0.60 
6.0xl0' I 	8.4x10 1  6.lxl0' I 	6.9x10' 

c 	J 0.0 	0.85 I 	5.0 	0.80 I 	5.0 	0.80 0.0 	0.80 
I 4.0x10 5  3.7x10 3  I 	4.1x10 4  2.1x10 3  

d 45.0 	0.35 I 	45.0 	0.40 45.0 	0.40 I 	40.0 	0.40 
4.3x10 3  2.1x10 5  6.7x10 3  ( 	6.4x10 2  

e 40.0 	0.60 I 	40.0 	0.60 I 	40.0 	0.60 I 	40.0 	0.60 
9.6 1.1xl0' I 	9.3 I 	1.2x10 1  

f 35.0 	0.80 40.0 	0.80 I 	35.0 	0.80 I 	40.0 	0.80 
1.2x102 I 	5.3x10' I 	1.1x10 2  I 	5.8x10' 

g 	I 85.0 	0.35 I 	75.0 	0.40 I 	80.0 	0.40 75.0 	0.40 
I 1.7x10 11  3.6x106  I 	7.3x106 	I 1.0xl0' 

h 	I 75.0 	0.60 I 	75.0 	0.60 I 	75.0 	0.60 	I 75.0 	0.60 
I 1.8x10 2  5.4x10 1  I 	1.8x102 	I 6.4x10 1  

I 	I 70.0 	0.80 I 	70.0 	0.80 I 	70.0 	0.80 	J 70.0 	0.80 
1.8x10 1  2.1x10 1  I 	2.2x10 1  2.7x10 1  

j 	I 125.0 	0.35 1 	105.0 	0.35 	I 115.0 	0.40 	I 105.0 	0.40 
I 1.4x10 20  I 	8.2x10 10 	I 4.2x10 1 ' 1.6x106  

k 110.0 	0.55 110.0 	0.60 	( 110.0 	0.60 	I 105.0 	0.60 
I 3.5x106 	I 1.2x10' 3.6x10 5 	I 2.8x10 3  

1 	I 105.0 	0.80 	I 105.0 	0.80 	I 105.0 	0.80 	I 105.0 	0.80 
8.5x101 	I 1.4x10 2 	I 8.3x10 1  1.1x10 2  

Notes: 	a. 	XI 	= 	(10.0,0.4), 	b. 	X' = 	(10.0,0.6), 	C. 	X' = 	(10.0,0.8) 
d. 	R' 	= 	(40.0,0.4), 	e. 	3P = 	(40.0,0.6), 	f. 	' = 	(40.0,0.8) 
g. 	' 	= 	(70.0,0.4), 	h. 	R I  = 	(70.0,0.6), 	1. 	' = 	(70.0,0.8) 
j. 	= 	(100.0,0.4)., 	k. 	V = 	(100.0,0.6), 	1. 	' = 	(100.0,0.8) 

6.5.3 Transformation of the variables 

As In Chapter 3, the hair width can only take positive values 

and the medullary fraction can only take values between 0 and 1. 

These values conflict with the parameter range of the unknown mean 

vector u and the support of the kernel density estimate which are 
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both the real line. 	Transforming the variables may be more 

appropriate so that the transformed variables can take values over 

the whole real line. Natural logarithms of hair width and a 

109{MF/(1-MF)) transformation of medullary fraction are taken. Fig. 

6.21 shows the bivariate dot plot of the transformed data for (a) 220 

cat hairs and (b) 22 group means. The effect of transforming the 

data has reduced the skewness of the variables, especially the hair 

width. Observations which are far distant from the main group of 

observations before transformation are pulled towards the centre of 

the group. 

The Bayes' factor is calculated under the assumption that the 

training data are grouped or ungrouped with a diagonal covariance 

matrix. The ordinary kernel method is used. Figs. 6.22 and 6.23 

show the Bayes' factor as a function of Y given some values of X 

under the grouped model for r=l, in=1 and r=10, m=10, respectively. 

Figs. 6.24 and 6.25 show the Bayes' factor as a function of Y given 

some values of X under the ungrouped model for r=l, m=1 and r=10, 

m=lO, respectively. The range of the axes for these graphs are 

approximately the same as those shown in Figs 6.7 - 6.20 except for 

the left hand side of the x-axis. The values of vector X are the 

transformed values corresponding to the values of X shown in Figs 6.7 

- 6.20. There is no obvious distinction between the grouped and 

ungrouped models. This is due to the effect of the transformation as 

discussed above. 

6.6 	Conclusions and Discussion 

From the results found in the previous section it is advisable 
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to use the adaptive kernel method. 	The use of a robust covariance 

matrix is also favourable. Other robust forms of covariance matrix 

can be used to replace S or D, such as instead of the use of (n-i) 

degrees of freedom in the equating S in (6.2) one would use (n-p-1) 

degrees of freedom. Like Chapter 3, it is required to validate the 

assumption of homogenous within-group variance among the groups. 

Alternatively, one could modify the model to accommodate such a 

possibility. 
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CHAPTER 7 

STUDENT-t KERNEL 

7.1 Introduction 

It is generally accepted that the choice of kernel function in a 

density estimation problem is less crucial than the value given to 

scale parameter X. 	The latter is usually better known as the 

smoothing parameter or window width. 	There is a considerable 

literature devoted to estimating the smoothing parameter X. Many 

studies involved the use of a Gaussian kernel to compare different 

methods of estimating the smoothing parameter. In this chapter, a 

Bayesian method is employed to estimate the smoothing parameter by 

introducing a prior distribution for X. As the result a new kernel 

is formed. Methods of estimating the parameters involved are 

discussed. 

7.2 Student-t kernel 

A general background of the kernel function has already been 

outlined in Chapter 1. In brief, given a data set D = (u1,u2, .... uN) 

a Gaussian kernel is used for mathematical convenience, then the 

kernel density estimate for the data u1,u2,. .. ,u, is given by 

	

N 	 I 	
/ - iI 

	

f(uu1 ,X) = - Z 	 exp - 	 . 	(7.1) 
N 1=1 	(27Tx2) 	I. 	2x 

Without ambiguity, the dependence on sample size N of the density 

estimate (7.1) is dropped. Note that, unlike the previous chapters, 

this kernel density estimate of (7.1) has not been standardised. 

234 



This enables us to adapt some results given by Silverman (1986) which 

will be used later in this Chapter. 

As remarked by Cover (1972), the method of Loftsgaarden and 

Quesenberry (1965), later better known as the nearest neighbour 

method, allows the smoothing parameter, X, to depend on the 

data. Loftsgaarden and Quesenberry 's method, required X to be the 

distance to the Knth  nearest point to u among the samples u 1 , u 2 ,..., 

UN. Thus X is a random variable depending on the data. In addition 

it is obvious that different samples drawn from the unknown density 

f(u), will yield different values of X. From a Bayesian viewpoint, 

one could assign a prior density to X. So if we let -r = >T 2 , then 

an intuitive choice of prior for -r is 

(/2)/2 -r(a/2)-1 	 -r 1 

	

g(-r(a,) = 	 exp - - 1 	(7.2) 
r(a/2) 
	

2J 

where a and A are usually unknown. The choice of prior for >.. of the 

form (7.2) is a natural choice from a Bayesian point of view since, 

from Chapter 2, X is the variance of a kernel located at a value u1 

and here the kernel is chosen to be Gaussian. Of course, other 

choices of prior for x can be used, but the form of (7.2) leads to 

simple form of a new kernel density estimate. 

Hence, the kernel density of u given the data D only, can be 

obtained by combining (7.1) and (7:2), and integrating over i - , namely 

fg (UID) = .1 f(uI -r,D) g(T) dT 

1 	 N 	 1 

Be(u/2,1/z) N V P 1=1 [1+_1(u_ui)2(1)/2 
	(7.3) 
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Since, in general, the Bayes solution depends on g(-r), the Bayes 

kernel density estimate is denoted by g (U) to indicate this 

dependence. Essentially, we have replaced one parameter, namely x, 

by two parameters which are a and D. The form of (7.3) involves the 

choice of a and A. They are so-called hyperparamters in a Bayesian 

context. Now the density estimate of (7.3) may be written as 

1 	N 	1 (u-ui) 

N 1=1 	I12 	
[

vis 
K 

where 

1 
K(t) = 

Be(a/2,1/2) (l+t2)(1)/2 
	 (7.4) 

Then K(t) is a scaled Student-t distribution so let us denote it by 

Kt and call it, a Student-t kernel. The kernel Kt  has a longer tail 

than the Gaussian kernel and the peakedness is determined by a. A 

small value of a gives a flat kernel and a large value of a gives a 

spiky kernel. So it is in a sense we can choose the choice of 

peakedness of the kernel to be placed over each observation 

initially. Then further adjustment may made when 0 is determined 

As an illustration, there are measurements on 185 dog hairs. 

This data set has already been described in detail in Chapters 1 and 

5, where there are 200 dogs hairs instead of 185. Fifteen zeros were 

excluded because they caused problems when the parameters were 

estimated later. The measurements are in the form of the ratio of 

the width of a central core, known as the medullary width and the 

width of the hair. Figs. 7.1, 7.2 and 7.3 show the estimated 
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density of the dog data (excluding the zeros where no central core 

was present) with a equal to 10, 50 and 100 respectively, and with 

different values of A. 	It is quite clear from the plots that the 

degree of roughness of the density estimate increase as a decreases 

when a is fixed. Similarly, when a is fixed the degree of smoothing 

decrease as a increases. Also, notice that the density estimate with 

a=50 & =0.5 and a=100 & =1.0 yield a similar fit to the data. This 

could be explained by noting the fact that from (7.2) the expected 

value of i- , the precision of X 2 , is a/a. Thus in the above cases, 

they both yield the same value of Ia. 	For the present if one 

ignores the Bayesian context, one could obtain a density estimate of 

the data u1's by putting in appropriate values of a and A. Since 

(7.3) is a p.d.f in its own right, one could use an empirical Bayes 

procedure to estimate the values of a and 0. In fact (7.3) can be 

seen as a predictive distribution of x, given the 'past' data D. 

Later we shall discuss these objective ways of choosing a and A. 

7.3 Efficiency of the Student-t kernel 

In this section the efficiency of the 'new' kernel function 

obtained in the previous section is compared with the other kernels. 

Silverman (1986) gives a table of some existing kernels and their 

efficiencies relative to the Epanechnikov kernel (Ke) defined as 

I [3(1-(t 2 /5))]/(415) 	-15 	t ig /5 
Ke (t) = 

I. 0 	 otherwise. 

Define the efficiency of K to be 

eff(K) = {C(Ke)/C(K)}" 
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= 3 [5i5] 	{ft2K(t)dt}_ 1 ' 2  (fK(t) 2 dt 1 . 	 ( 7.5) 

In (7.5) C(K) is a constant and, for any kernel K, is given by 

C(K) = k 2 2 " 5  {fK(t) 2  dt}', 

where k 2  is defined as ft 2K(t)dt and is not equal 0. For K = Kt, the 

first integral in (7.5) is just the variance of a scaled Student-t 

distribution defined in (7.4) and is equal to a-i. The second 

integral can be simplified as 

Be(1/2, (2a+1)12) 

.fKt(t) 2 dt = 	
[Be(a/2 ,1/2)]2 

Thus the efficiency of the Student-t kernel, Kt, relative to the 

EpanechnikOV kernel is 

3.',T,'(u-2)r(c(+1)r(a/2) 2  
eff(Kt) = 	

5 1.15 r[(a-i-l)12] 2 r[(2a+l)/21 

The efficiency of the kernel Kt is dependent on the value . o: but 

independent of 0. The value of a represents how much we know about 

the smoothing parameter X. One will expect the eff(Kt) will increase 

as a increases. Eff(Kt) is plotted in Fig. 7.4 as a function a. The 

scale along the x-axis is in logarithm to base 10. The value of 

eff(Kt) increases sharply when a jumps from 3 to 20 and then it 

levels off at around 0.9512, which suggested that the limit of 

eff(Kt) as a tends to infinity, is around 0.9512. Incidentally the 

Gaussian kernel also has an efficiency value of 0.9512. This is not 

surprising at all since a Student-t with degree of freedom u, say, 

tends to Normality as v i w . 	The value of a, when eff(Kt) is 

approximate 0.9512, is 10000. 	It gives an indication that, for the 
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we do require a lot of information about the smoothing parameter 

prior to an experiment. This seems reasonable since the kernel 

density estimate of the form (7.3) does not involve the estimation of 

the smoothing parameter X at all. 
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Fig. 7.4 Efficiency of the Student-t kernel, Kt relative 
to Epanechnikov kernel Ke. 

7.4 Estimation of the hyperparameters 

The problem we now face is the determination of appropriate 

values for cc and 13. 	The estimation procedure is based on an 



empirical 	Bayes 	approach 	(See 	Maritz 	(1970)), 	since 	the 

hyperparameters are chosen objectively by the data under 

consideration. Two methods are considered: the method of moments and 

a maximum likelihood method. 

7.4.1 The method of moments 

The idea of the method of moments is simple and is based on the 

assumption of the prior distribution of X. That is, if the prior 

distribution of -r is of the form shown in (7.2), then after 

reparàmeterisation, x 2  has a prior density proportion to 

[ ,X2 j(/2)+1 •exp {-/2x 2 ). 

The expectation and variance of X 2  are easily found by remarking that 

since D/Xz  is x 2  with a degrees of freedom. And if x = /2Xz then X 

is r(/2,1) with density e_Xx(/ 2 )_h/[( cc/2)_1]! and hence 

E(X 2 ) = 
	

(7.6) 

and 

Var(Xz) = 2 2 /(x-2) 2 (x-4), 	 (7.7) 

where E(.) is the expectation operator. Therefore, if one knows the 

expected value and variance of X 2 , then one could solve the above two 

equations to yield an objective choice for a and L Now suppose 

E(x 2 ) and Var(XZ)  are known and are taken to be a and b, 

respectively. From (7.6), it is easily seen that 

13 = a(c-2). 	 (7.8) 

Thus, a can be obtained by substituting a of (7.8) into (7.7) namely, 

cc = 2a 2 /b + 4. 
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In practice, a and b are not known and have to be estimated. 

Since we do not have any previous data as such to estimate the 

moments of this problem, one could obtain such a sample by a 

bootstrap technique. A sample is generated by successively selecting 

uniformly with replacement from the data set D {u 1 ,u 2 ,. ..,uN}  to 

construct a bootstrap sample, say {UI*, U2
*
,...,U

*
N}. For each bootstrap 

sample, the estimate of X 2  is calculated. There are a number of ways 

of which Xz  can be estimated. One of the quick objective ways of 

obtaining a rough estimate for X 2  involves the minimum MISE 

criterion. 

Recall that the Gaussian kernel involves only one parameter, 

namely X. An optimal value of > Xopt say, can be obtained using the 

minimum Mean Integrated Squared Error (MISE) criterion. Silverman 

(1986) gives an ideal value of X, based on minimising the approximate 

mean integrated squared error under suitable conditions, namely that 

iX 4 k ff"(u)du + N 1 X 1 fK(t) 2 dt, 	 (7.9) 

is, by simple calculus, to be equal to X01 , where Xopt is given as 

k 2 1 5  (IK(t) 2 dt) 1 / 5  (ff1(u)Zdu)_h/5 N 11 . 	 (7.10) 2 

In both (7.9) and (7.10) k 2  is defined as after (7.5) and f(x) 

denotes the underlying true density function. However, we are 

interested in getting a rough estimate for X. So by differentiating 

(7.9) with respect to Xz, >'pt  is shown to be the square of the 

expression in (7.10). Unfortunately. Xopt  being the square of Xopt 

depends on the unknown density being estimated. With a Gaussian 
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kernel, Silverman (1986) provides a simple expression for (7.10) 

assuming the true underlying density is Normal with variance 02, 

namely, 

(7.11) 

Because of the simple form of (7.11), it is used as a pilot estimate 

for X When the square of (7.11) is computed to givept' 0 is 

replaced by the sample standard deviation of the data concerned. 

Hence we can now obtain estimates for E(X 2 ) and Var(X 2 ) using the 

following iteration procedure: 

Step 1 : Randomly select a sample of size Nsa m  with replacement, 

from the data (u 1 ,.. .uN). Then evaluate 	of (8.11) 

with o replaced by the standard deviation of the selected 

sample. 

Step 2 : Repeat Step 1 several times, Nrep say. 

Step 3 : Calculate sample mean and sample variance of the Nrep 

opt 	These provide estimates for E(X 2 ) and Var(X 2 ). 

Then solve for cc and 0 as described above. 

Note that later on in a simulation study, Nrep is taken to be 100. 

However, satisfactory results for 	will only be expected ifP't 

the data did come from a Normal distribution, since Xpt is obtained 

under the assumption that the true density is Normal. Nevertheless 

other expressions for 	may be obtained to safeguard this, for 
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example, o may be replaced by a robust measure of spread. For a wide 

range of distributions, Silverman (1986) suggests the following 

robust estimate A for a, given by 

A = mm (standard deviation, interquartile range/1.34). 

Let us call the pilot estimate for XZ  based on A, a robust estimate 

and the former, i.e., the estimate for > 2  based on s, (s is the 

sample standard deviation of the nsa m  observations), a Normal 

estimate since it is based on the Normality assumption about the true 

density. Note that these two estimates are obtained from a Gaussian 

kernel. An optimal X 2  using a Student-t kernel can be. obtained but 

the expression is complicated because it depends on the parameter cc 

since .fKt(t)2dt  of (7.10) is 

r(x 1 /2) 2  r(cc+1/2) 

r(c/2) r(1/2) r(x 1 ) 

where cx = +1. 	Note also that in order to satisfy certain 

conditions given by Silverman (1986), the minimum value of a is 3. 

7.4.2 Modified Maximum Likelihood method 

The Student-t kernel density estimate for the data U1,..-,UN  is 

given in (7.3). The likelihood function of the parameters, given the 

data ui's  is 

TI fg(u2icx , 8 , ui) 2=1 

	

N 	1 	 N 	 1 

	

=11 	 E 	 . 	( 7.12) 
21 Be(cz/2,1/2)./ N  

Wi 



As in Chapter 2, to get rid of the zeros when 2=i, we use a 

leave-one-out modification of the M.L. method. The density estimator 

at the point u2 will be based on all the sample except element U2. 

Thus, the maximum likelihood estimate for cc and 0 is obtained by 

maximising (7.12) with N replaced by (N-i) to give & and A. 

However, we know from (7.6) that a and a are related if we know 

E(X 2 ). Thus, maximising the likelihood function with respect to the 

parameters will not yield a unique solution for cc and 0. One way 

round' this is to predetermine the value of one parameter, then 

maximise the likelihood function with respect to the other since the 

parameter a is interpreted as the degree of knowledge about the 

smoothing parameter X. So predetermining cc seems reasonable. Any 

value for a greater than 2 may be chosen. A value of cc which 

represents vague information in X is one which tends to zero. If we 

let cc equal zero, then certain conditions cannot be satisfied. 

Perhaps a more automatic way to do this, is to use a two stage 

procedure namely a combination of the method of moments and the M.L. 

method and is simply as follows: 

Stage 1 : Carry out the method of moments as described in the 

previous section. Thus obtaining a value for , say 

Stage 2 : Maximise the likelihood function with respect to 

subject to oc = 	m 

As an example, kernel density estimates for the dog data are 

shown in Fig. 7.5 using the two estimation methods described above. 
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Fig. 7.5 Kernel density estimates oF the dog data (excluding zeros) 
using SKO, GKO, 5KM, GKM and adaptive kernel methods. 
(see Section 7.4 For del-ails) 
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The Student-t kernel is being compared with the Gaussian kernel. The 

abbreviations GKO, SKO, GKM and SKM denote, respectively, the 

Gaussian kernel with the Normal optimum estimation procedure (7.11) 

for K, the Student-t kernel with the method of moments estimation 

procedure described in Section 7.4.1, the Gaussian kernel with the ML 

estimation procedure mentioned in Chapter 1 and the Student-t kernel 

with the modified ML estimation procedure described in Section 7.4.2. 

Note that these abbreviations will be used throughout the rest of 

this chapter. As mentioned earlier the fifteen zeros from the dog 

data are removed because ML leave-one-out method will not provide 

sensible result. From Fig. 7.5 there is little to choose between the 

Student-t and Gaussian kernels and the different estimation 

procedures. This is because the data are pretty symmetric. The 

adaptive kernel method is also employed to fit the data, it seems to 

be over cautious in the term of having heavy tails and a higher peak. 

7.5 A Simulation Study 

The small sample performances of the Student-t kernel can be 

studied by simulating data from a few well-chosen distributions. In 

a different context, Bowman (1984) compares two procedures of 

estimating the smoothing parameter and selected four distributions 

namely, standard Normal, a bimodal mixture of two Normals, a 

Student-t with 5 degrees of freedom and the standard Cauchy, in a 

simulation study. The first two are chosen to test for sensitivity 

to changes of shape in the main body of the distribution. The latter 

two distributions serve to indicate the relative performance with 

respect to long-tailed distribution. In order to examine how the 

Student-t kernel relates to skewness I also include the standard 
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log-normal distribution. 

7.5.1 Three measures of discrepancy 

A criterion is required to assess the performance of the 

Student-t kernel when it is compared with the Gaussian kernel. 

Various measures have been employed to study the discrepancy of the 

density estimator k from the true density f and were briefly 

described in Section 2.1. A measure over a range of u values is more 

appropriate as it gives a general picture of how the two kernels and 

the methods of estimation procedure compare with each others. So the 

following three measures are chosen, Mean Integrated Square Error 

(MISE), Expected Mean Integrated Square Error (EMSE) and Integrated 

Square Error (ISE). Details of these can be found in Section 2.1.4. 

Evaluation of the measure ISE is quite straight forward. Whereas, 

Computation of MISE and EMSE is slightly more complicated. These 

measures are evaluated for the Student-t kernel and the Gaussian 

kernel in comparison with each of the five distributions listed 

above. All the integrations involved in evaluating the three 

measures are done numerically. 

7.5.2 Results of the simulation study 

Initially, one sample of size 100 (=N) was generated from each 

of the distributions mentioned above. Four methods of estimation are 

compared. Tables 7.1a, 7.1b and 7.1c give the MISE, EMSE and ISE, 

respectively, of the density estimates of the simulated data using 

the methods GKO, GKM, SKO and SKM with the Normal criteria . Tables 

7.2a, 7.2b and 7.2c give the results of the corresponding three 

measures of the density estimates with optimal smoothing parameter 
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Table 7.1a MISE (x10 2 ) of the density estimates from simulated data 
using standard deviation as an estimate for o in (7.11). 
N100, Nsam Nxk. 

Method 	k Normal Student-t 
with 5 d.f. 

Lognormal Cauchy Bimodal 

GKO 	- 0.5413 0.5636 15.6346 13.6761 0.5748 
SKO 	1 0.5440 0.5650 14.6579 13.3248 0.5751 

2 0.5430 0.5640 15.0378 13.5220 0.5739 
5 0.5420 0.5628 15.4131 13.6280 0.5738 

10 0.5417 0.5618 15.5282 13.6505 0.5729 
50 0.5415, 0.5623 15.5830 13.6548 0.5719 

GKM 	- 0.5708 0.6789 20.0251 14.3922 0.4967 
SKM 	1 0.5721 0.6769 6.5583 5.2073 0.4970 

2 0.5714 0.6780 8.0758 6.6125 0.4968 
5 0.5710 0.6785 11.2667 10.5677 0.4968 

10 0.5709 0.6787 14.9542 12.5472 0.4967 
50 0.5708 0.6789 18.9658 13.9685 0.4967 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - " 	 the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKM - " 	 the ML estimation procedure 

Table 7.1b EMSE (x10 2 ) of the density estimates from simulated data 
using standard deviation as an estimate for o in (7.11). 
N=100, N5 =Nxk. 

Method 	k Normal Student-t 
with 5 d.f. 

Lognormal Cauchy Bimodal 

GKO 	- 0.1403 0.1382 8.7676 3.3146 0.0839 
SKO 	1 0.1411 0.1386 8.2690 3.2281 0.0839 

2 0.1408 0.1383 8.4656 3.2772 0.0837 
5 0.1405 0.1379 8.6578 3.3037 0.0837 

10 0.1404 0.1375 8.7149 3.3088 0.0836 
50 0.1404 0.1377 8.7409 3.3090 0.0835 

GKM 	- 0.1492 0.1759 11.0535 3.5004 0.0738 
SKM 	1 0.1496 0.1752 3.6172 1.2652 0.0738 

2 0.1494 0.1756 4.5301 1.5915 0.0738 
5 0.1493 0.1758 6.3772 2.5178 0.0738 

10 0.1492 0.1758 8.4071 3.0056 0.0738 
50 0.1492 0.1759 10.5127 3.3940 0.0738 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - ' 	 the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKM - " 	 the ML estimation procedure 
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Table 7.1c ISE (x10 2 ) of the density estimates from simulated data 
using standard deviation as an estimate for o in (7.11). 
N100, Nsam NXk. 

Method k 	Normal Student-t Lognormal 	Cauchy 	Bimodal 
with 5 d.f. 

GKO 	- 0.7338 0.3761 16.8529 13.7225 0.4174 
SKO 	1 0.7367 0.3768 16.0125 13.4024 0.4180 

2 0.7353 0.3757 16.3406 13.5826 0.4160. 
5 0.7343 0.3731 16.6642 13.6796 0.4159 

10 0.7341 0.3705 16.7623 13.6997 0.4145 
50 0.7339 0.3721 16.8082 13.7027 0.4130 

GKM 	- 0.7680 0.5822 20.7516 14.4050 0.2322 
SKM 	1 0.7695 0.5780 8.7266 5.6547 0.2323 

2 0.7687 0.5802 10.1040 6.9978 0.2323 
5 0.7682 0.5814 12.9900 10.8082 0.2323 

10 0.7681 0.5817 16.2578 12.6779 0.2322 
50 0.7680 0.5821 19.7991 13.9992 0.2322 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - " 	 the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKM - 

It 	the ML estimation procedure 

Table 7.2a MISE (x10 2 ) of the density estimates from simulated data 
using robust estimate for a in (7.11). N=100, N=Nxk. 

Method 	k Normal Student-t 
with 5 d.f. 

Lognormal Cauchy Bimodal 

GKO 	- 0.5413 0.5609 5.9527 0.8391 0.5748 
SKO 	1 0.5486 0.5565 5.3997 0.8606 0.5751 

2 0.5465 0.5560 5.4691 0.8173 0.5739 
5 0.5428 0.5563 5.6706 0.8059 0.5738 

10 0.5419 0.5565 5.7994 0.8000 0.5729 
50 0.5415 0.5562 5.8755 0.8296 0.5719 

GKM 	- 0.5708 0.6789 20.0251 14.3922 0.4967 
SKN 	1 0.5727 0.6739 9.7423 7.2553 0.4970 

2 0.5717 0.6765 12.8286 9.3714 0.4968 
5 0.5710 0.6776 16.9252 12.2474 0.4968 

10 0.5709 0.6782 18.7921 12.9061 0.4967 
50 0.5708 0.6783 19.8.193 14.2587 0.4967 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKN - " 	 the ML estimation procedure 
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Table 7.2b EMSE (x10 2 ) of the density estimates from simulated data 
using robust estimate for 0 in (7.11). N100, Nsam Nxk. 

Method k Normal Student-t Lognormal Cauchy Bimodal 
with 5 d.f. 

GKO - 0.1403 0.1372 3.2322 0.1858 0.0839 
SKO 1 0.1424 0.1344 2.8931 0.1920 0.0839 

2 0.1417 0.1347 2.9340 • 0.1798 0.0837 
5 0.1407 0.1351 3.0581 0.1765 0.0837. 

10 0.1405 0.1352 3.1375 0.1748 0.0836 
50 0.1404 0.1351 3.1845 0.1831 0.0835 

GKM - 0.1492 0.1759 11.0535 3.5004 0.0738 
SKM 1 0.1498 0.1742 5.5064 1.7385 0.0738 

2 0.1495 0.1751 7.2494 2.2342 0.0738 
5 0.1493 0.1754 9.4536 2.9279 0.0738 

10 0.1492 0.1756 10.4235 3.1017 0.0738 
50 0.1492 0.1757 10.9489 3.4681 0.0738 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - 	 " the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKM - 	 " the ML estimation procedure 

Table 7.2c ISE 1(xlO_ 2 ) of the density estimates from simulated data 
using robust estimate for 0 in (7.11). N=100, N5 =Nxk. 

Method 	k Normal Student-t 
with 5 d.f. 

Lognormal Cauchy Bimodal 

GKO 	- 0.7338 0.3681 8.0940 1.0776 0.4174 
SKO 	1 0.7400 0.3342 7.6094 1.1092 0.4180 

2 0.7378 0.3420 7.6596 1.0501 0.4160 
5 0.7348 0.3475 7.8377 1.0336 0.4159 

10 0.7341 0.3503 7.9539 1.0252 0.4145 
50 0.7339 0.3492 8.0225 1.0648 0.4130 

GKM 	- 0.7680 0.5822 20.7516 14.4050 0.2322 
SKM 	1 0.7702 0.5718 11.6163 7.6011 0.2323 

2 0.7690 0.5771 14.3829 9.6427 0.2323 
5 0.7683 0.5794 17.9898 12.4010 0.2323 

10 0.7681 0.5806 19.6439 13.0083 0.2322 
50 0.7680 0.5810 20.5657 14.2765 0.2322 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
5KM - " 	 the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum criterion procedure 
GKM - " 	 the ML estimation procedure 
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Xopt obtained using a robust estimate for a. In the Tables, Nsam 15 

the bootstrap sample size as mentioned in Section 7.4.1, and k is a 

factor from which Nsam  is obtained. 

All three measures give a similar result. As expected, the 

method GKO comes out best when the data are Normal. The method SKO 

comes second when k equals 50. When the data are bimodal, methods 

GKM and SKN (with k 10 & 50) perform better than SKO and GKO. 

However, for the long-tailed and skew distributions the Student-t 

kernel is superior to the Gaussian kernel. This is illustrated in 

Fig. 7.6. Note that an adaptive Gaussian kernel method is also 

employed to fit the data. Details of the adaptive kernel method are 

discussed in Section 2.1. It is designed to fit long tailed and 

skewed distributions better. However, it does not perform as well as 

expected in a univariate dimension (Breiman (1977)). All the methods 

are compatible with each other when the data come from Normal, 

Student and Bimodal densities (see Fig. 7.6 (a), (b) and (e) 

respectively). The Student-t kernel is a better fit for the 

Lognormal and Cauchy distributions than the adaptive method. 

When a robust estimate for o is used, the values of the ISE do 

not change much for the Normal and bimodal distributions but are 

reduced slightly for the Student distribution. However, for the 

Lognormal and Cauchy distributions, the ISE is reduced considerably 

and the density estimates for these distributions using SKO and GKO 

fit better than SKM and GKM which have a slight fluctuation around 

the tails (see Fig. 7.7 (C) and (d)). 
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Estimates of the parameters corresponding to the methods are 

shown in Tables 7.3 and 7.4 for the normal and robust criteria 

respectively. One interesting feature in the Tables, is that is 

considerably smaller for the skewed and long-tailed distributions 

than the symmetric ones. It seems to suggest that there is 

uncertainty about these long tailed and skewed distributions since. 

is interpreted as the degree of knowledge about the smoothing 

parameter >.., which consequently reflects on the uncertainty about the 

distribution. However, when the robust criteria is used a increases 

slightly for the two afore-mentioned skewed and long-tailed 

distributions. This suggests a slight gain in confidence of X, since 

a more cautious estimate is used for o in (7.11). 	The prior 

densities of X with 	and 13 estimated by the two procedures 

described in Section 7.4 given k=1 under the Normal and robust 

criteria are plotted in Figs 7.8 - 7.9 and 7.10 - 7.11, respectively. 

To examine the reliability of these methods, more thorough 

simulations were performed. The sample sizes N were chosen to be 25, 

50 and 100, and the number of simulations are 100, 50 and 25 

respectively. Again all three measures give similar results, so only 

those of the ISE are discussed here. 

Results of the other two measures are also presented in Tables 

which are given in the Appendix 7. Results of the ISE under the 

normal criterion are shown in Table 7.5 with (a) k=1, (b) k=2, (c) 

k=5, (d) k=10 and (e) k=50. Similar results are also obtained using 

the robust criterion and are shown in Table 7.6 with (a) k=1, (b) 

k=2, (C) k=5, (d) k=10 and (e) k=50. In general, SKO with a robust 
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Table 7.3 Esitmates of the parameters X0p' Xmax, (XI), crar(x 2 ) 

and OM corresponding to the results shown in Tables 7.1. 

Parameter k Normal Student-t 
with 5 d.f. 

Lognormal Cauchy Bimodal 

Xopt - 0.4387 0.5071 1.7241 23.8683 0.7730 

>max - 0.5133 0.6161 2.5203 39.7239 0.5763 

1 0.1930 0.2583 3.0571 548.072 0.6005 
2 0.1896 0.2571 3.0324 575.654 0.5965 
5 0.1901 0.2552 3.0244 590.616 0.5960 

10 0.1911 0.2534 2.9950 580.328 0.5938 
50 0.1908 0.2544 2.9620 562.147 0.5914 

c ar (X 2 ) 1 1.2x10 3  1.5x10 3  4.4330 2.4x10 5  3.3xl0 3  
2 5.3x10' 7.1x10' 2.3290 l.lxlO 5  1.3x10 3  
5 1.6x10 4  2.9x10' 0.8814 4.6x10 4  7.0x10 4  

10 8.6x10 5  1.8xl0' 0.3771 2.2x10' 2.9xl0' 
50 1.8x10 5  2.8x10 5  0.0737 4.9xl0 3  6.2x10 5  

cc 1 67 91 8 6 224 
2 139 191 12 10 540 
5 445 455 25 19 1021 

10 850 730 52 35 2463 
50 4122 4686 242 134 11261 

13 1 1.25x10 1  2.30x10' 1.83x10 1  2.19x10 3  1.33x10 2  
2 2.60xlO t  4.86x10' 3.03x10 1  4.61x10 3  3.21xlO 2  
5 8.42x10' 1.16x10 2  6.96x10 1  1.00x10 4  6.07x10 2  

10 1.62x10Z  1.84x10 2  1.50x1O Z 
 1.92x10' 1.46x10 3  

50 7.86x10 2  1.19x10 3  7.11 x lOZ 7.42x10 4  6.66x10 3  

1 1.71x10' 3.37x10 1  3.32x10°  3.83x10' 7.39x10 1  
2 3.61x10' 7.17x10 1  7.62x10 0  1.13x10 2  1.79x10 2  
5 1.17xl0 2  1.72x10 2  3.25x10 1  1.11x10 3  3.39x10 2  

10 2.23x10 2  2.76x10 2  1.35 xlOZ 6.60x10 3  8.18x10 2  
50 1.09x10 3  1.78x10 3  1.28x10 3  1.11xl0 5  3.74x10 3  
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Table 7.4 Esitmates of the parameters >sopto >max, E(X 2 ), ' rar(X 2 ) 

and OM corresponding to the results shown in Tables 7.2. 

Parameter k Normal Student-t Lognormal Cauchy Bimodal 
with 5 d.f. 

Xopt - 0.4387 0.5017 0.6252 0.7596 0.7730 

>'max - 0.5133 0.6161 2.5203 39.724 0.5763 

1 0.1799 0.2282 0.3532 0.6425 0.6005 
2 0.1791 0.2337 0.3491 0.5821 0.5965 
5 0.1862 0.2375 0.3638 0.5580 0.5960 

10 0.1897 0.2394 0.3754 0.5475 0.5938 
50 0.1907 0.2385 0.3823 0.5688 0.5914 

O ar (X 2 ) 1 1.6x10 3  3.OxlO 3  1.8x10 2  l.0x10 1  3.2x10 3  
2 7.0x10' 1.5x10 3  8.2x10 3  5.2x10 1.3x10 3  
5 1.9x10' 8.8x10 4  3.2x10 3  2.4x10 2  7.OxlO' 

10 8.5x10 5  4.9x10' 1.4x10 3  1.5x10 2  2.9x10' 
50 1.8x10 5  3.8x10 4  2.4x10' 1.8x10 3  6.2x10 5  

cc 1 46 39 18 12 224 
2 96 75 34 17 540 
5 366 132 86 30 1021 

10 850 237 209 44 2463 
50 4040 307 1208 368 11261 

13 1 7.92x10 0  8.44x10 0  5.65x10 0  6.42x10 0  1.33X10 2  
2 1.68x10' 1.71x10 1  1.12x10 1  8.73x10 °  3.21 X102 

5 6.78x10 1  3.09x10' 3.06x10 1  1.56x10 1  6.07x10 2  
10 1.61x10 2  5.63x10 1  7.77x10' 2.30x10 1  1.46x10 3  
50 7.70x10 2  7.28x10 1  4.61x10 2  2.08x10 2  6.66x10 3  

1 1.16x10' 1.40x10 1  1.70x10' 1.74x10 2  7.39x10 1  
2 2.48x10 1  2.77x10 1  6.00x10 1  5.77x10 2  1.79x10 2  
5 9.59x10' 4.93x10 1  3.17x10 2  4.55x10 3  3.39x10 2  

10 2.23x10 2  8.92x10 1  1.07x10 3  1.12x10' 8.18x10 2  
50 1.06x10 3  1.16x10 2  7.40x10 3  4.68x10 5  3.74x10 3  
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Table 7.5a ISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO ) in 
brackets. Normal criterion. Nsain=k*N where k1. 

Data Methods N=25 N=50 N=100 
Nsin=100 NsimSO Nsim25 

Normal SKO 1.6247 0.9290 0.5047 
(0.1354) (0.0819) (0.0685) 

GKO 1.5815 0.9149 0.5031 
(0.1337) (0.0815) (0.0686) 

SKM 2.2019 1.3037 0.5310 
(0.2145) (0.1432) (0.0744) 

GKM 2.1450 1.3046 0.5314 
(0.1921) (0.1442) (0.0748) 

Student-t SKO 1.5986 1.1658 0.5714 
with 5 d.f. (0.1288) (0.1210) (0.0795) 

GRO 1.6149 1.1767 0.5681 
(0.1346) (0.1241) (0.0795) 

SKM 2.0325 1.3391 0.8121 
(0.1980) (0.1191) (0.1107) 

GKM 2.1993 1.5792 0.8685 
(0.2307) (0.2089) (0.1241) 

Lognormal SKO 9.3680 9.1156 8.1226 
(0.4527) (0.4750) (0.4572) 

GKO 9.9444 9.6319 8.3490 
(0.4808) (0.5139) (0.4755) 

SKM 7.6655 6.3188 4.3899 
(0.3850) (0.3909) (0.4313) 

GKM 9.9869 8.5040 6.6310 
(0.6375) (0.7023) (0.8766) 

Cauchy SKO 6.8323 7.1344 7.9671 
(0.3940) (0.5710) (0.8115) 

GKO 7.2645 7.5431 8.3391 
(0.3987) (0.5815) (0.8080) 

SKM 4.9446 4.5460 3.2142 
(0.2314) (0.3198) (0.2559) 

GKM 8.1896 8.9297 8.6324 
(0.4252) (0.6004) (0.8277) 

Bimodal SKO 1.1945 0.7538 0.6184 
(0.0771) (0.0463) (0.0596) 

GKO 1.2072 0.7614 0.6222 
(0.0749) (0.0457) (0.0594) 

SKM 1.4667 0.9881 0.6707 
(0.1072) (0.1088) (0.0809) 

GKM 1.4635 1.0642 0.6710 
(0.1063) (0.1540) (0.0811) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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N=50 
NsirnSO 

0.9910 
(0.1463) 
0.9852 
(0.1459) 
1.2017 
(0.1653) 
l.251_ 
(0.1667) 

N00 
Ns im25 

0.5857 
(0.0887) 
0.5841 
(0.0886) 
0.6654 
(0.1105) 
0.6650 
(0.1107) 

Ph17.5b ISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xl0) in 
brackets. Normal criterion. Nsam=k*N where k=2. 

Data 	Methods N25 
NsimlOO 

Normal 	SKO 1.5462 
(0.1151) 

GKO 1.5184 
(0.1148) 

SKM 1.8189 
(0.1652) 

KM 1.8197 
(0.1659) 

Student-t SKO 1.4087 0.8704 0.6670 

with 5d.f. (0.1031) (0.0920) (0.0940) 
GKO 1.4202 0.8812 0.6734 

(0.1027) (0.0970) (0.0936) 
SKM 1.9029 1.1690 1.2501 

(0.1399) (0.1155) (0.1597) 
GKM 2.0495 1.2944 1.4062 

(0.1557) (0.1799) (0.2111) 

Lognormal SKO 10.1611 9.3413 8.6779 
(0.4079) (0.5082) (0.6035) 

GKO 10.5754 9.6181 8.9695 
(0.4220) (0.5212) (0.6386) 

SKM 8.5943 6.7365 5.5722 
(0.4202) (0.4039) (0.5248) 

GKM 9.7740 8.8232 9.0828 
(0.5423) (0.7867) (1.2760) 

Cauchy SKO 6.7638 6.7711 6.9978 
(0.3979) (0.6296) (0.7032) 

GKO 7.0665 7.0195 7.2386 
(0.4011) (0.6334) (0.7059) 

SKM 5.6628 4.7947 4.7311 
(0.2716) (0.3246) (0.3367) 

GKM 8.1661 8.0798 8.0702 
(0.4236) (0.6145) (0.6819) 

Bimodal SKO 1.2130 0.8250 0.4694 
(0.0650) (0.0535) (0.0436) 

GKO 1.2227 0.8314 0.4719 
(0.0633) (0.0535) (0.0436) 

SKM 1.4965 0.9699 0.4491 
(0.1130) (0.0849) (0.0510) 

GKM 1.5272 1.0079 0.4490 
(0.1166) (0.0953) (0.0510) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table 7.5c ISE (xl0 2  of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Normal criterion. Nsam=k*N  where k5. 

Data Methods N=25 N=50 N100 
Nsim=lOO NsimSO Nsim25 

Normal SKO 1.5354 0.8783 0.5706 
(0.1213) (0.0993) (0.0732) 

GKO 1.5116 0.8710 0.5696 
(0.1194) (0.0993) (0.0733) 

SKM 1.9031 1.1055 0.6610 
(0.1819) (0.1468) (0.0S38) 

GKM 1.9025 1.1056 0.6610 
(0.1823) (0.1468) (0.0938) 

Student-t SKO 1.6119 1.0329 0.6352 
with 5d.f. (0.1136) (0.1018) (0.0785) 

GKO 1.6199 1.0340 0.6375 
(0.1148) (0.1024) (0.0786) 

SKM 2.1740 1.3166 1.0662 
(0.1893) (0.1073) (0.1327) 

GKM 2.1953 1.3475 1.0896 
(0.1901) (0.1075) (0.1392) 

Lognormal SKO 10.7028 9.6026 8.0979 
(0.4806) (0.5011) (0.3980) 

GKO 11.0328 9.7862 8.2103 
(0.4951) (0.5123) (0.4049) 

SKM 9.7631 8.1680 6.0121 
(0.4862) (0.5657) (0.5868) 

GKM 11.0616 9.1657 6.7202 
(0.6571) (0.7228) (0.7211) 

Cauchy SKO 7.0309 8.1700 8.3874 
(0.4500) (0.5298) (0.6406) 

GKO 7.2073 8.3547 8.5738 
(0.4508) (0.5286) (0.6475) 

SKM 6.8289 6.4511 5.7613 
(0.3517) (0.3481) (0.3939) 

GKM 8.0861 9.4782 9.7104 
(0.4514) (0.5223) (0.7209) 

Bimodal SKO 1.2325 0.8786 0.4966 
(0.0631) (0.0673) (0.0383) 

GKO 1.2421 0.8833 0.4999 
(0.0620) (0.0665) (0.0382) 

SKM 1.4872 0.9389 0.5789 
(0.1157) (0.0730) (0.0648) 

GKM 1.5068 0.9388 0.5790 
(0.1154) (0.0730) (0.0648) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 



SKO 1.1759 0.8048 
(0.0674) (0.0483) 

GKO 1.1830 0.8106 
(0.0659) (0.0479) 

SKM 1.6650 0.9059 
(0.1602) (0.0734) 

GKM 1.6648 0.9606 
(0.1600) (0.0843) 

Bimodal 

Table 7.5d ISE (xl0 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Normal criterion. Nsam=k*N where k=10. 

Data 	Methods N25 N=50 N=100 
NsimlOO Nsirn=50 Nsim=25 

Normal 	SKO 1.2755 0.9571 0.5633 
(0.1086) (0.1033) (0.0691) 

GKO 1.2605 0.909 0.5616 
(0.1073) (0.1032) (0.0692) 

SKM 1.7153 1.1476 0.6143 
(0.1666) (0.1239) (0.0778) 

KM 1.7646 1.1475 0.6142 
(0.1694) (0.1237) (0.0777) 

Lognormal 	SKO 

GKO 

SKM 

GKM 

1.6875 
(0.1489) 
1.6851 
(0.1466) 
2.3781 
(0.1941) 
2.3940 
(0.1948) 

9.4455 
(0.4331) 
9.6642 
(0.4386) 
9.0565 
(0.5057) 
9.4629 
(0.5571) 

0.8061 
(0.0801) 
0.8126 
(0.0804) 
1.2228 
(0.1038) 
1.2516 
(0.1083) 

8.7484 
(0.4000) 
8.8779 
(0.4076) 
7.3645 
(0.5594) 
7.6904 
(0.6382) 

0.5968 
(0.0708) 
0.5996 
(0.0712) 
0.9275 
(0.1062) 
0.9341 
(0.1078) 

9.4546 
(0.7080) 
9.5626 
(0.7169) 
8.4267 
(0.8741) 
10.3178 
(1.3439) 

Student-t 	SKO 
with S d.f. 

GKO 

SKM 

GKM 

7.0196 
(0.3828) 
7.1566 
(0.3846) 
7.5021 
(0.3749) 
8.0578 
(0.4144) 

.7. 4545 
(0.5674) 
7.5564 
(0.5679) 
7.2947 
(0.4681) 
8.3452 
(0.5943) 

9.4609 
(0.7307) 
9.5548 
(0.7268) 
7.0624 
(0.3962) 
10.4242 
(0.6830) 

Cauchy 
	SKO 

GKO 

SKM 

GK.M 

0.5645 
(0.0567) 
0.5670 
(0.0565) 
0.6623 
(0.0997) 
0.6623 
(0.0997) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Nor-.al optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table 7.5e ISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 

brackets. Normal criterion. Nsam=k*N where k50. 

Data Methods N25 N=50 N100 
Nsim=100 Nsirn=50 Nsim25 

Normal SKO 1.4949 0.9594 0.5469 
(0.1007) (0.0903) (0.0811) 

GKO 1.4738 0.95.57 0.5461 
(0.0991) (0.0902) (0.0812) 

SKM 1.6794 1.3371 0.6670 
(0.1266) (0.1545) (0.0937) 

GKM 1.6831 1.3371 0.6670 
(0.1264) (0.1545) (0.0937) 

Student-t SKO 1.4532 0.8315 0.6166 
with 5 d.f. (0.1042) (0.0913) (0.0870) 

CR0 1.4594 0.8380 0.6183 
(0.1049) (0.0924) (0.0872) 

SKM 2.1031 1.4142 0.9339 
(0.1534) (0.1843) (0.1077) 

GKM 2.1084 1.4265 0.9348 
(0.1541) (0.1894) (0.1079) 

Lognormal SKO 9.9947 8.8099 7.8561 
(0.4782) (0.3934) (0.6794) 

GKO 10.1616 8.9044 7.9040 
(0.4833) (0.3973) (0.6823) 

SKM 9.7568 8.3394 6.7553 
(0.5942) (0.6839) (0.9584) 

GKM 9.8392 8.4915 6.9071 
(0.6060) (0.7152) (1.0314) 

Cauchy SKO 7.5312 7.3573 8.0882 

(0.4170) (0.5965) (0.8581) 
GKO 7.6205 7.4102 8.1196 

(0.4160) (0.5964) (0.8580) 
SKM 8.4658 7.8428 8.3867 

(0.4253) (0.6244) (0.8781) 
GKM 8.5513 7.9678 8.7975 

(0.4285) (0.6377) (0.9547) 

Bimodal SKO 1.3019 0.7568 0.5104 
(0.0694) (0.0589) (0.0396) 

GKO 1.3082 0.7619 0.5135 
(0.0677) (0.0584) (0.0395) 

SKM 1.5006 0.8419 0.5074 
(0.1070) (0.0827) (0.0635) 

GKM 1.5007 0.8419 0.5074 
(0.1070) (0.0827) (0.0635) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-c kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table 7.6a ISE (x10) of density estimates from simulated data. 

Averages over simulations, with standard errors (cl0 ) in 

brackes. Robust estimate for 0 Nsamk*N where k1. 

Data Methods N25 N50 N100 

Nsim=100 Nsim50 Nsim=25 

Normal SKO 1.6487 .0169 0.5660 

(0.1324) (0.1197) (0.0786) 

GKO 1.6166 1.0329 0.5593 

(0.1325) (0.1297) (0.0782) 

SKM 1.7728 1.0715 0.7861 

(0.1645) (0.1186) (0.1155) 

GKM 1.7694 1.0737 0.7881 

(0.1637) (0.1206) (0.1163) 

Student-t SKO 1.6294 0.9362 0.5738 

with 5 d.f. (0.1031) (0.0844) (0.0708) 

GRO 1.5865 0.9253 0.5754 

(0.1064) (0.0841) (0.0700) 

SKM 1.9766 1.3341 0.8536 

(0.1959) (0.1017) (0.1211) 

GKM 2.0711 1.4397 0.9645 

(0.2054) (0.1158) (0.1506) 

Lognormal SKO 7.2876 4.9391 4.7197 

(0.3266) (0.2860) (0.3648) 

GKO 7.5031 4.9973 4.7511 

(0.3424) (0.2922) (0.3652) 

SKM 8.1321 5.4954 5.1839 

(0.4075) (0.3469) (0.4914) 

GKM 11.3421 8.9552 6.8002 

(0.6289) (0.7628) (0.8336) 

Cauchy SKO 1.9826 1.2077 0.8793 

(0.1292) (0.0996) (0.1205) 

GKO 1.8770 1.1997 0.8726 

(0.1147) (0.1006) (0.1214) 

SKM 4.2665 4.9059 5.2300 

(0.1995) (0.3081) (0.4030) 

GKM 7.8574 9.0951 10.4384 

(0.3988) (0.6418) (0.8154) 

Bimodal SKO 1.2710 0.8784 0.5377 

(0.0723) (0.0698) (0.0445) 

GKO 1.2710 0.8852 0.5426 

(0.0678) (0.0684) (0.0443) 

SKM 1.6508 1.0432 0.4989 

(0.1500) (0.0985) (0.0570) 

GKM 1.6541 1.0447 0.4990 

(0.1531) (0.0985) (0.0570) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 

GKO - Gaussian kernel with the Normal optimum estimation procedure 

GKM - Gaussian kernel with the ML estimation procedure 



Table _76b  ISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO 2 ) in 
brackets. Robust estimate for Q Nsam=k*N where c=2. 

Data Methods N25 N50 N100 
Nsim=100 Nsim50 Nsim25 

Normal SKO 1.6034 1.0594 0.5886 
(0.1438) (0.1087) (0.0827) 

GKO 1.5508 1.0495 0.5925 
(0.1384) (0.1073) (0.0829) 

SKM 1.8034 1.2284 0.6807 
(0.1508) (0.1865) (0.1071) 

GKM 1.8251 1.2280 0.6812 
(0.1528) (0.1871) (0.1075) 

Student-t SKO 1.5866 0.9373 0.5263 

with S d.f. (0.1062) (0.0991) (0.0644) 

GKO 1.5324 0.9415 0.5203 
(0.1048) (0.1010) (0.0630) 

SKM 2.2466 1.3625 0.8895 
(0.2608) (0.1375) (0.1179) 

GKM 2.4289 1.4171 0.9431 
(0.2700) (0.1430) (0.1324) 

Lognormal SKO 6.9655 5.8697 4.2589 
(0.3447) (0.3284) (0.2184) 

GKO 7.2453 6.0474 4.2655 
(0.3601) (0.3403) (0.2194) 

SKM 8.1601 7.0197 6.2648 
(0.3932) (0.5336) (0.5955) 

GKM 10.3692 8.5683 8.6283 
(0.5875) (0.6823) (0.8936) 

Cauchy SO 2.2237 1.0555 0.8643 
(0.1341) (0.0900) (0.0891) 

GKO 2.2327 1.0545 0.8669 
(0.1287) (0.0880) (0.0915) 

SKM 5.2997 5.9970 6.6285 
(0.2740) (0.4272) (0.4946) 

GKM 7.9823 8.7719 9.3773 
(0.4293) (0.6221) (0.7398) 

Bimodal SKO 1.1184 0.7729 0.5606 
(0.0571) (0.0447) (0.0386) 

GKO 1.1190 0.7798 0.5636 
(0.0537) (0.0443) (0.0383) 

SKM 1.6374 0.9261 0.6439 
(0.1166) (0.0722) (0.0814) 

GKM 1.6375 0.9265 0.6441 
(0.1168) (0.0722) (0.0816) 

Notes: - 

SKO - Student-t kernel with the method of moments Drocedure 

SKM - Student-t kernel with the modified ML estimation procedure 

GKO - Gaussian kernel with the Normal optimum estimation procedure 

GKM - Gaussian kernel with the ML estimation procedure 
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Table 7.6c ISE (x1T 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Robust estimate forø. Nsam=k*N where k=5. 

Data Methods N=25 N50 N100 
NsimlOO Nsim=50 Nsim25 

Normal SKO 1.4612 1.0083 0.5519 
(0.1181) (0.1457) (0.0557) 

GKO 1.4229 0.9790 0.5529 
(0.1141) (0.1408) (0.0560) 

SKM 1.6715 1.0987 0.8043 
(0.1378) (0.1937) (0.1082) 

GKM 1.6751 1.0972 0.8032 
(0.1383) (0.1941) (0.1083) 

Student-t SKO 1.6344 1.0408 0.6594 
with 5 d.f. (0.1203) (0.0986) (0.1027) 

GKO 1.6032 1.0391 0.6631 
(0.1175) (0.0964) (0.1027) 

SKM 2.1942 1.5198 1.1972 
(0.1913) (0.1203) (0.1639) 

GKM 2.2488 1.5722 1.2638 
(0.1970) (0.1296) (0.1795) 

Lognormal SKO 6.5934 5.7284 4.7440 
(0.3251) (0.3717) (0.3325) 

GKO 6.7981 5.9101 4.8481 
(0.3273) (0.3763) (0.3324) 

SKM 8.1107 7.2256 7.4559 
(0.4675) (0.5684) (1.1558) 

GKM 9.0780 8.0549 8.1791 
(0.5392) (0.6636) (1.3013) 

Cauchy SKO 1.8954 1.1328 0.7205 
(0.1215) (0.0947) (0.0873) 

GKO 1.9327 1.1375 0.7336 
(0.1244) (0.0911) (0.0884) 

SKM 5.7175 7.9851 7.8657 
(0.2958) (0.4742) (0.6588) 

GKM 7.2143 9.8515 9.1775 
(0.3926) (0.5533) (0.7864) 

Bimodal SKO 1.2840 0.8248 0.5979 
(0.0770) (0.0575) (0.0484) 

GKO 1.2797 0.8292 0.6003 
(0.0738) (0.0570) (0.0483) 

SKM 1.6003 1.0280 0.6448 
(0.1418) (0.0944) (0.0728) 

GKM 1.5993 1.0282 0.6448 
(0.1419) (0.0944) (0.0727) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
CR0 - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table 7.6d ISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 

brackets. Robust estimate for 0. Nsamk*N where k10. 

Data Methods N25 N50 N100 
Nsim=100 Nsim=50 Nsim=25 

Normal SKO 1.4754 0.9081 0.7002 
(0.1042) (0.0955) (0.0867) 

GKO 1.4196 0.809 0.6989 
(0.1007) (0.0939) (0.0867) 

SKM 1.9445 1.1380 0.7160 
(0.2399) (0.1400) (0.0898) 

GKM 1.9524 1.1228 0.7153 
(0.2387) (0.1306) (0.0897) 

Student-t SKO 1.7906 0.9407 0.5424 

with 5d.f. (0.1311) (0.0903) (0.0504) 
GRO 1.7345 0.9394 0.5434 

(0.1279) (0.0897) (0.0510) 
SKM 2.2371 1.3670 . 	 1.1593 

(0.1681) (0.1223) (0.1814) 
GKM 2.2971 1.3752 1.1847 

(0.1739) (0.1227) (0.1890) 

Lognormal SKO 6.5757 5.5660 4.1423 
(0.3101) (0.3241) (0.2525) 

GKO 6.8974 5.7437 4.1982 
(0.3207) (0.3262) (0.2555) 

SKM 9.3937 7.9390 7.1303 
(0.5688) (0.6347) (0.8930) 

GKM 10.4080 8.7325 7.7377 
(0.6522) (0.7393) (0.9817) 

Cauchy SKO 1.8795 .0.9959 0.8214 
(0.1186) (0.0858) (0.0926) 

GRO 1.9261 1.0206 0.8292 
(0.1227) (0.0893) (0.0943) 

SKM 7.3734 7.3900 8.8535 
(0.3837) (0.5616) (0.8955) 

GKM 8.5460 7.9925 9.5898 
(0.4323) (0.5830) (0.9229) 

Bimodal SKO 1.2766 0.8856 0.5438 
(0.0721) (0.0562) (0.0453) 

GKO 1.2805 0.8911 0.5471 
(0.0701) (0.0555) (0.0454) 

SKM 1.7305 1.0015 0.5481 
(0.1441) (0.0889) (0.0646) 

GKM 1.7301 1.0016 0.5481 
(0.1441) (0.0889) (0.0646) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation orocedure 
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1.9069 
(0.1307) 
1.9864 
(0.1336) 
7.4241 
(0.4265) 
7.9669 
(0.4477) 

1.3050 0.7718 
(0.1054) (0.0897) 
1.3300 0.7779 
(0.1083) (0.0911) 
8.2291 8.8246 
(0.5347) (0.7624) 
8.4056 8.9104 
(0.5468) (0.7671) 

Cauchy 
	SKO 

GKO 

SKM 

GKM 

Table 7.6e ISE (x10 2) of density estimates from simulated data. 
Averages over simulations, with standard errors (xl( 2  ) in 
brackets. Robust estimate fore.. Nsarn=k*N where k50. 

Data Methods N=25 N50 N100 
Nsim=100 Nsim=50 Nsim=25 

Normal SKO 1.8165 0.8636 0.5258 
(0.1985) (0.0969) (0.0720) 

GRO 1.7269 0.84.91 0.5163 
(0.1894) (0.0950) (0.0705) 

SKM 2.1409 1.0309 0.6443 
(0.2224) (0.1125) (0.1019) 

GKM 2.1446 1.0305 0.6449 
(0.2217) (0.1121) (0.1021) 

Student-t SKO 1.8123 1.0162 0.6422 
with 5 d.f. (0.1425) (0.1114) (0.0946) 

GKO 1.7429 1.0035 0.6390 
(0.1375) (0.1120) (0.0947) 

SKM 2.1724 1.4160 1.2251 
(0.1597) (0.1685) (0.2135) 

GKM 2.1921 1.4189 1.2298 
(0.1605) (0.1690) (0.2145) 

Lognormal 	SKO 

GKO 

SKM 

GKM 

7.6618 
(0.3422) 
8.0282 
(0.3523) 
10.1978 
(0.5449) 
10.6217 
(0.5897) 

5.5157 4.8877 
(0.3050) (0.3911) 
5.6519 4.9415 
(0.3092) (0.3952) 
7.6759 7.8797 
(0.5470) (1.0330) 
7.9166 7.9957 
(0.5749) (1.0501) 

Bimodal 	SKO 1.2486 
(0.0635) 

GKO 1.2396 
(0.0588) 

SKM 1.6607 
(0.1354) 

GKM 1.6638 
(0.1363) 

0.8714 0.6144 
(0.0703) (0.0484) 
0.8774 0.6168 
(0.0699) (0.0482) 
0.9503 0.6980 
(0.0942) (0.0741) 
0.9503 0.6980 
(0.0942) (0.0742) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
CR0 - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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estimate for o shows an improvement over the GKO method for skewed 

and long tail distributions. The Student-t kernel is slightly 

superior to the Gaussian kernel for most of the distributions 

considered here, so far as the Maximum likelihood procedure is 

concerned. However, the optimal criterion procedure based on the 

Normality assumption is better than the Maximum likelihood 

leave-one-out (ML for short) method. This is consistent with the 

simulation study done by Bowman (1985) who also found that the normal 

optimal solution for the smoothing parameter works exceptionally well 

for most distributions. 

The standard errors of the estimates in the Tables show that 

Student-t kernel is more reliable than the Gaussian kernel as far as 

the ML estimation procedure is concerned. And the choice of Nsam 

does not seem to matter too much and generally gives similar results 

for the Student-t kernel method. Nevertheless, it appears in most 

cases that MISE, EMSE and ISE all increase as Nsam increases for the 

SKM method. This is in contrast with the results obtained for SKO. 

Overall when the moments and ML procedures are compared using the 

Student kernel, the former procedure always gives a smaller MISE, 

EMSE and ISE. 

In summary, the simulation results show that the Student-t 

kernel fits the data better in terms of MISE, EMSE and ISE for skewed 

and long-tailed distributions. Also that, the Student-t kernel 

density estimate is more reliable than the Gaussian kernel when the 

ML leave-one-out estimation procedure is used. It is easily seen 

that the Student-t kernel can be extended to the multivariate case. 
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However, the Gaussian kernel density estimate with X estimated by the 

ML leave-one-out procedure is known to be less reliable for the 

long-tailed distributions. So it would be interesting to compare the 

Student-t kernel with other kernel density estimates using various 

methods of estimation for the smoothing parameter X. These other 

kernel density estimates with different estimation methods of 

obtaining X were extensively compared by Bowman (1985) in a 

simulation study. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Introduction 

This thesis has discussed a kind of nonarametric empirical 

Bayes modelling method. The main field of application has been in 

forensic problems and random effects model. Here in this chapter, 

conclusion of the estimation of the Bayes' factor in a forensic 

context, Bayesian approach to variance components estimation and 

density estimation will be drawn. Future research on these topics 

will also be suggested. 

8.2 Conclusions 

The following subsections conclude the main topics in the 

thesis. 

8.2.1 Estimation of the Bayes' factor 

In a simulation study, the adaptive kernel method for estimation 

of the density of the random factor in a bivariate case appeared to 

be better, in terms of ISE, than the ordinary kernel method. 

However, in a similar study for a univariate case, the performance of 

the adaptive kernel method was not so good as the ordinary kernel. 

This confirms the findings by Breiman et al (1977). Results from 

these simulation studies suggested that the sample means of the 

groups in the random effects model are preferred to individual 

observations in the training data for estimation of the distribution 

of the random factor, especially when there is a clear random 
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structure in the training data and the random factors are not 

Normally distributed. 

However, in spite of the afore-mentioned simulation studies, the 

adaptive kernel method seemed to improve the behaviour of the Bayes' 

factor. 	The adaptive kernel method allowed for the longer tail, 

where little information was available. 	This good property was 

demonstrated in Chapter 5 using the ECA model. 

8.2.2 Analysis of Variance 

The problem encountered here is the identifiability between the 

between-group variance and the smoothing parameter, when the maximum 

likelihood estimation method was used. However, with the smoothing 

parameter fixed at an objective pre-determined value, the within- and 

between-group variance estimates using the proposed kernel model' were 

shown to be equivalent to the usual ANOVA estimates. 

Within the Bayesian framework, posterior distributions for the 

variance components with vague priors for the parameters were derived 

incorporating kernel density functions. There is no specific 

analytical form of the posterior distributions under the kernel 

model. The structure is complicated hence numerical integration was 

used to carry out most of the evaluations. The modes of these 

posterior distributions were used as estimates for the variance 

components. Results from a small simulation study suggested that the 

proposed kernel model underestimated the between groups variance. 

The posterior distributions obtained from the proposed kernel model 

and the estimates derived from them were sensitive to an unknown 
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factor. Exactly what is causing the problem and further improvement 

of the model is a matter for further research. 

8.2.3 Student-t kernel 

A Student-t kernel was derived within a Bayesian framework after 

introduction of a prior for the smoothing parameter. The efficiency 

of the Student-t kernel was shown to be equivalent to the Gaussian 

kernel when the degrees of freedom, one of the hyperparaineters, tends 

to infinity. Two methods of obtaining an objective choice of the 

hyper-parameters were suggested. They were the modified 

leave-one-out maximum likelihood and the method of moments which was 

based on the optimum smoothing parameter determined from Normality 

assumption. In an extensive simulation study, the Student-t kernel 

with the modified leave-one-out ML method performed better in terms 

of MISE, ISE and EMSE than the Gaussian kernel with a similar ML 

estimation method when the underlying true density was skewed and 

long-tailed. The simulation studies also suggested that the 

Student-t kernel with the hyper-parameters estimated by the method of 

moments performed better, in terms of MISE, ISE and EMSE, than with 

the modified leave-one-out ML estimation method. 

8.3 Further research 

In addition to future work suggested in the discussion section 

of each chapter, the following list of further research is outlined: 

i) The Bayes' factor or the likelihood ratio, f(YIX,C)/f(YIc), may be 

estimated directly (see Silverman (1978c)). However, interpretation 

of such method may not be apparent in a Forensic context since the 
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distribution of the unknown group population means are relevant in 

modelling the Bayes' factor. 

ii) The problem of more than one suspect and one item of material of 

interest has been dealt with by Makov (1987) using a Bayesian 

approach. However the case of more than one susect problem can be 

viewed as a discrimination problem by considering 

f(YIX 1 ) 

>k 
f(Y(X 2 ) 

for some positive value of k. 	Once the most likely suspect , say 

suspect 1, is identified, then the evidence relative to the suspect 1 

could be weighed using the method developed in Chapter 3 for an 

univariate case or in Chapter 6 for the multivariate case. For 

example let suppose there are three suspects and let X 1 , X 2  and X. 

represent the control data corresponding to Suspects 1, 2 and 3. In 

view of Fig. 3.3, the predictive distributions of Y given the three 

values of X may look something like the following. 

f (Y X) 

Y 
YO 



Then if Y 0  is observed, for k = 1 a feasible conclusion may be drawn 

from the diagram that the recovered data Y is most likely coming 

from the same source as X 3  since 

f(YX 1 ) > f(Y(X), 

f(YIX 3 ) > f(YIX 1 ), 

and 	 f(YIX 3 ) > f(YX 2 ). 

Then to evaluate the strength of the evidence against suspect 3 

simply consider the following ratio 

f(YIX 3 , C) 

f (Y I C) 

Derive the error probabilities theoretically for the proposed 

model. 	In Section 3.8.2, Type I and II error probabilities were 

estimated via a simulation study for an example given in Chapter 3. 

Lindley (1977) provided the theoretical Type I and II error 

probabilities given some threshold values under the Normal model. 

The derivation of the error probabilities under the proposed model 

would be complicated but it would be worthwhile. 

Within-group variances are not homogenous over all groups. 	In 

Chapters 3, 5 and 6, when the Bayest factor was modelled it was under 

the assumption that the within-group variances are known. So, when 

the Bayes' factor is evaluated the pooled estimate of the 

within-group variance from the training data was used to substitute 

the exact 'known' value. If tests for homogeneity of variance show 

that there is significant difference among the group variances then 

perhaps the pooled estimate may not be a sensible estimate to use. A 

few words about the tests for homogeneity: If there are only two 
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groups, standard F ratio test can be used to test for HO: o = 	vs 

Hi: o # o. For there are more than two groups, Bartlett (1937) has 

provided such a test. However, there is a set back of this test, 

which is that it gives too many significant results with observations 

that come from a long-tailed distribution, i.e. distribution with 

positive kurtosis. To avoid this complication, one could use 

Levene's (1960) approximate test which is much less sensitive to 

non-Normality in the within-group data. More concise details of the 

two test statistics can be found in Snedecor and Cochran (1981). 

If the test significantly rejects HO, one solution to the 

problem is to use another estimate for the within-group variance, 

which would take into account of the heterogenity of variance among 

the groups. Another solution to this is to apply the unknown 

within-group variance model with hyperparameter of the prior 

distribution for the within-group variance estimated from the 

training data using the method of moments described in Chapter 7. 

Unbalanced nature of the training data. 	The effect of the 

unbalanced nature of the training data has not been considered. If 

the training data were very unbalanced, it could lead to homogenous 

variance over all groups. Moreover the use of sample group means 

might not be the best estimate for the random factors since the 

sample group means 7i .  may no longer be a 'good' estimate for z1. 

Bayesian estimates may be applied, which depend on the values of the 

within- and between group variances (see Section 3.8 for discussion). 

Application.of the Student-t kernel in the ECA model. In Chapter 

5, we considered a single hair problem for a particular mixture data, 
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in which the ECA model was modified. The ECA model concerns the use 

of kernel density to estimate the denominator of the Bayes' factor. 

The ordinary kernel method is well known to produce density function 

which tends to zero much quicker than one would like especially in 

the estimation of a ratio situations and this would lead to spurious 

behaviour of the Bayes' factor. The adaptive kernel method has 

provided a solution to this problem. It would be interesting if the 

Student-t kernel could do the same so that it might establish its 

value in this already well elaborated density estimation field. 
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APPENDIX 1 

NOTES ON VARIOUS DISTRIBUTIONS 

The material in this appendix contains distributions which are 

used throughout the thesis. 	Some of which were used as prior in 

Chapter 3, for instance. 	Most of them were used in simulation 

studies. Each of the distributions is defined by a density function, 

and some of their properties are outlined., 

The Cauchy distribution 

Let U be a real random variable with probability desnity 

function 

1 
f(ula , b) = 
	 us R 

7rb{1+[(u-a)/b] 2 ) 

where a is the location parameter and b is the scale parameter. 

The Gamma distribution 

Let U be a positive random variable with probability density 

function 

3c 

f(uI,) = 	 U > 0, 
r(c) 

where a > 0 and A > 0, thus U is said to have a Gamma distribution 

with parameters cc and A. This is denoted by U - Ga(x,) and it can 

be shown that 

E(U) = 
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Var(U) = 

Var(tF 1 ) = 	 x > 1 

and 

Var(U') = 	/( x-1) 2 (x-2), cc > 2. 

Lognormal distribution 

A real random variable U is said to have a lognormal 

distribution with parameters i and 02  if the density of U is 

1 	f 	{10g(u)-ti}2  1 
f(uJiL,o 2 ) = 	 exp - ___________ 	0 < u 

uo(2ir) 	1 	202 	j 

where u 0, and 0 > 0. It can be shown that 

E(U) = exp(,.) exp(o 2 12), 

and 

Var(U) = exp(2u)exp(o 2 )(exp(o 2 )-1). 

The univariate Normal 

Let U be a real random variable with probability density 

function 

r 	 1 
f(uI,.z,r) = 	exp 	- - ( u-1A) 2  }, 	U 6 

I  
2t. J 

thus U is said to have a Normal distribution with mean u 6 R and 

precision r > 0 (variance -r) and this relationship is denoted by U 

- 

284 



The Normal-Gamma 

Let U be a real random variable and V a positive random 

variable, then U and V are said to have a Normal-gamma distribution 

if the density of U and V is 

TV 
exp{- 	(u-s.L) 2 } v 1  e", 	u e IR, v > o; 

2 

where .t e IR, T > 0, a > 0, and A > 0. 

This is a four-parameter density and is a member of the class 

which is conjugate to the two-parameter normal family. Thus, the 

prior and predictive analysis of a two-parameters Normal population 

depends on the Normal-gamma distribution. 

The univariate Student-t distribution 

A real random variable U is said to have a t distribution with 

parameters t and u if the density of U is 

f(uIu,M) 	[1 + (u_ ti ) 2 /.u ]_( 3+t)/ 2 ; 	u 

where u € R, and ii > 0. It can be shown that 

E(U) = j.L, 	j ) 1 

and 

Var(U) = ,,/(ii-2), 	u > 2. 

Mixture of two Normals 

A real random variable U is said to have a mixture of two 

Normal distributions with parameters p, ,, t.2, o and o, if the 

density of U is 
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p 	f 	(u_ui)2  1 f(uI 1 ,4 2 ,0 1 ,0 2 ) = 	 exp 	
- 	 F ~ 

	

'/(21T) 	1 	 2o 	J 

I 
exp- 

f(2ir) ° 	2o 	J 

where u, ju z  e OZ , and 0 1, 0 2 > 0. It can be shown that 

E(U) = pu 1  + (1-p)u 2 , 

and 

Var(U) = p(o ~u) ~ [(1-p)(o+u)} - [pu 1 +(1-p)u 2 ] 2  

Proof of (1): 

E(U) = r u p(u) du 

p 	f -(u-111) 2 1 	(1 -P) I 
-(u-u 2 ) 2  1 

	

= I u 	 exp 	 + 	exp 	 f du 

	

2o 	.1 	(21jr)O 	2o 	J 

u 	 _(u_uj)2 1 
=l 	exp I 
	

du+ 
J_ 	(2i)o 1 	 2o 	.1 

ía' 	 u 	I -(u-u 	1 
(1-p) 	 exp 	 du 

	

(2v)o 2  	2o 	J 

= pu 1  + (1-p)u 2  (=u) 

Proof of: (ii) 

Var(U) = E(u 2 ) - [E(u)] 2  

E(u2) = f u 2  p(u) du 

.CO 	 I -(u-u1)2  1 	(l-p) 	I -(u-u)2  11 

	

= I u 2 	 exp 	 + 	 exp 	 du 
(2i)o 	L 	2o 	j 	(2ir)o 	I 	2o 	ii 

_(u_41)2 11 
 U Z 

	

=I p 	exp I 
	

}Idu +  
i_a, 	(21T)o 	 2o 	jj 

tc-000I 

	u 	fu-t.i) 	11 
(1-p) 	 exp 	 du 
 I (2ir)o 	I 	2o 	JJ 



Let v 1  = ( u-p 1 )/o 1  and v 2  = (u-1A2)/o 2 , then u = v 1 o 1  + si and u = 

+ 	and du = o 1 dv 1  and o 2 dv 2 , respectively. 

	

F 100 
(V101+402i I exp i- 

v 	
o1dv 	

+I _0, 	(2ir)o 	 1 	2 

[co 	(v2o+i.c2)2 	I 
(l-p) J 	 exp - 

	
} o2dv2 

I 	(2ir)o 2 	1 	2 

	

(v1o1)Z+2v11o1+, 	I 	v 4 	 1 

	

= 
P [ J_co 	(2ff) 	

exp t 	2 	J 
dv1  J + 

1co 	(vzoz)2+2v2,.j2o2+i.L v 	1 
(l-p)  I J_co 	 (2) 	

exp 	
2 	

j dv2 J 
r JCD (v1o1)2 f V1 

p 	 exp 
1
- 

2 	
-}dvi+uJ+ 

I _co (21T)  

(VO) 	
1-- 

V  
(1-p) 

 [ 	
exp

} dv
2  + 4 J (2v 	2 

r f  
2 00 	V 2 

=PIo{ 	exp- 2 
	

Jdvl+LJ+ 
I 	i_co (2ir) 

(lp)[

v 	f 	v 	1 

	

- 	o 	 exp - 
	

dv + 42 
i_a, (2ir) 	 2 	J 	 J 

=p C of + of ]+(l-p) [o+j] 

Thus Var(U) = p [ o + ,i ] +( l-p)  [ o + 	] - [p,.t 1 + ( l-p)u] 2  

h. The multivariate Normal distribution 

We say that a p-dimensional random variable U follows the 

multivariate Normal distribution if its joint p.d.f. is of the form 
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f (U) =  

	

1 1 	1 
exp 	- 	( u-")'E1(u-u) 

(21r )P1' 2  IEI 	 1 	2 	 J 

where t is any (pxp) symmetric positive definite matrix. Moreover, 

if U ...... U, are independent random variables where Uj - 

then their joint p.d.f. is simply the productof the appropriate 

(marginal) density functions, so that 

1 	 1 	1 p 1 ui-Ali 121 
flu ...... u 	

1. 	1  
) = 
	 /2 01 

exp - 2 I -  
(271)P 

i= 1  

In this case U' = [U 1P ....U] has mean ii' = [,z 1  ...... ,] and 

covariance matrix 

oO.O ... 0 
o Oz 0 ... 0 

0 0 0 ... o 

But of course the components of U do not generally need to be 

independent and so t does not have, to be diagonal, provide that it is 

symmetric and positive definite. The requirement that E be positive 

definite van be thought of as the multivariate equivalent of the 

condition that O z  > 0 in the univariate case. It is clear that f(u) 

0 for every u, and it is also straightforward, thought 

algebraically tedious, to check that fu  f(u) du 1  ... du = 1 for every 

jL and for every E which is symmetric and positive definite. After 

some algebra, it is also possible to show that E(U) = u and that E is 

the covariance matric for U. Thus the parameters u and E have an 

immediate interpretation, and we write U - N(u,t), where p denotes 

the dimension of U, u denotes the mean vector and t denotes the 



covariance matrix. 	The definition of the multivariate Normal 

distribution via the equation above also requires the covariance 

matrix to be non-singular so that 	exists. 
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APPENDIX 2 

RESULTS OF THE CONVOLUTION OF NORMAL DENSITY FUNCTIONS 

These results are used in Chapter 3. 

Define the function N( ... ) by 

N(a,b 2 ) = (b./2ir) 	exp {- a 2 /(2b 2 )} 

the following identities hold: 

(1) f N(u-a 1 ,b)xN(u-a 2 ,b) du 

= N(a 1 -a 2 ,b ~b) 

and (ii) f N(u-a 1 ,b)xN(u-a 2 ,b)xN(u-a 3 ,b) du 

= N(a 1 -a 2 ,b 1 2 +b 2 2 ) x 
S 

___-------j' 

f 1 	1 	f a 1 	a2 1 
where w

= { 	 + 
- I I - + 

1 	bj 	b 1 	b2  

or 

= (2n) 

Proof of (i): 

N(u-a 1 ,b) x N(u-a 2 ,b) 

1 	f (u-a1)2  1 
= 	 exp - 	 exp - 

2ii-b 1 b 2 	L 	2b 2 J 

1 	f 	1 	(u-a 1 ) 2  
= 	 expj-- 	 + 

2irb 1 b 2 	I. 	2 	b 

1 	f 	1 	u2-2ua 1 +a 
= 	 exp-___f 

2n-b 1 b 2 	1 	2 L 	b 

(u-a2) 2  

2b  22 	1 
(u-a2 )2  

b z  2 

u2-2ua2+a 	1 

2 

4II 



1 	r 	1 	f 1 	1 1 a 1 	a2  1 	af 	a zz  
exp-- f--'-----tu2-2u __-f_+__+_ 

2irb 1 b 2 	t. 	2 	1 b 	b j 	 b 	b J 	b 	b 	J 

1 	f 	1 	i 	1 1 	a 1 	a2 1 
= 	 exp - - - + - (uz - 2u - + - 

2irb 1 b 2 	1 	2 It b 	b I 	b 	b 

f 	1 	a 2, 	a  2. 
exp - - -  + - 

I 	') 	 2 	2 . 	'• 	 "1 	2 

1 	1 1 -1 	a 1 	a21 
Let w = - + - I - + - 

2 	2 	' 	 1.2 	kZ 
1 	"2 ' 	 1 	2 

1 	 1 	1 	11 	1 
= 	 exp - - + - (u - w)2 } x 

2irb 1 b 2 	1. 	2 	b 	b J 	i 

f 	1 

 

al 	al 	 a 1 	a2 2 

exp J -  - - + - 	- +  
I. 	2 	b 	b 	b 	b 	b 	b 

1 	f 1 	1 	1 

	I 
= 	 exp - - + - (u - w) 2  x 

2vb 1 b 2 	1 	2 	b 	b  

f 	1 	1 	1

LI 	

a 1 2  + a 2 2  - 2a 1 a 2  

C. 

exp - - - + -  

	

i.2 	1,2  1
-1 ~ 

 I. 	 j bzbz 
1 	f 	1 	1 	1 	 1 

= 	 exp - - + - (u - w) 2  x 

2irb 1 b 2 	I. 	2 	b 	b 	 J 

	

11 	1 

	

exp 	- 	 (a 1  - a 2 ) 2  
1 	2 	b+b 

I(b+b) 	f 	1 	1 	1 	 1 
= 	 exp - - + - (u - w)2 } x 

(21r)b 1 b 2 	1. 	2 	b 	b 	 J 

	

1 	 1 	1 	1 
exp 	- 	 (a1 - a 2 ) 2  

(2)I(bb) 	1 	2 	b+b 

Hence (1) follows. 

Proof of (11): 

From (1) above, N(u-a 1 ,b) x N(u-a 2 ,b) x N(u-a3,b) 



1 	 fl 	1 	 1 
= 	 exp 	- 	 (a1 - a 2 ) 2  x 

	

2irb 1 b 2 	1 	2 	b+b 	 J 

1r 	1 	f 1 	1 1 	1 	f 	(u_a3)21 
exp - - + 

- 
I (u - w)2 I x exp 

	

(21r)b 3 	t 	2 	1 b 	b i 	 1 	2b 	j 

1 	11 	
1I 	

1 
= 	 exp - - 	 (a1 - a 2 )2 

	

2 7rb 1 b 2 	1 	2 	b+b 	3 

	

1 	 f 	1 1 	1 	1 	 u2-2ua3+a32 11 
exp - - - + - (u 2 -2uw+w 2 ) + 

(27r)b 3 	t 	2 	L 	b 	b 	 2b 	JJ 

1 	1 
Let b= -+- 

1,2 	1 
U
,2 

I 	2 

1 	fi 	1 	 1 
= 	 exp 	- 	 (a 1  - a 2 )2 

	

2nb 1 b 2 	t 	2 	b+b 	 J 

	

1 	 ( 	1 	1 	1 	1 	 a3tl 
exp 1- — — + — + — u 2 -2u bw + — [ x 

(27r) Jib I. 	2 	b 	b 	b 	 b J j 

- 	 1 	1 	 a 
exp-- bw2 + 

1 	2 	 b 

1 	1 	 a3 
Let v= b+_— 	bw+— 

1,2 	 1,2 
"3 	 1J3 

1 	111 	1 
= 	 exp -- l 	 (a1 -a2 )2 x 

	

2irb 1 b 2 	1 	2 I. b~b 

1 	 f 	1 	1 	 1 
exp-- b+— [u -v] 2  x 

(21r)b 3 	1 	2 	b 	 J 

I 	I 	 a 	 1 	-i 	 a 	2 

exp - — bw 2 +  ___ - b+— 	bw+ —  

	

 
2 	 b 	 b 	 b 

1 	f 	if 	1 	 .1 
= 	 exp {- — I 	(a 1  - a 2 ) 2  

	

2ivb 1 b 2 	1 	2 1 b~b 	 J 

1 	111 	11 	1 
exp

- I b + — [u - v]Z I x 
(21T)b 3 	1 	2 	1 	b z  

	

3 J 	i 
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f 	1 	1 	b(w - a 3 ) 2  

	

exp------- 	b~ ___  

1 	2 	b 	 b  23 

1 	fi 	1 	 1 
= 	 exp - - 	 (a1 - a2)2 

I 

	

(2i),'(b+b) 	1 	2  

	

1 	 11 	1 	 1 
exp - b + - [u - v] 2  x 

(21T)d(b 2 +b) 	1 	2 	bz  3 	 3 J 

1 	 1 	1 	1 
exp 	- 	 (w - a 3 ) 2  

	

(2)''(b 4b') 	1 	2 	b + b 

Note t(b 2 +b) = 

and 

+ bb + bb) 

b 1 b 2 b 3  

4'(b 3 2+b) = 
+ bb + bb) 

Hence (Ii) follows. 
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APPENDIX 3 

NOTES ON CONJUGATE PRIOR DENSITY FOR o2 

The conjugate prior density for the parameter o2 is  

I _____ 	i 
t 	

if 

= 	

02 jo/2_1 	

it 	}•
U0/2 exf_ 202 IL r(0/2) }

VO 

Let a = v o oz and =u0 , then p(o 2 ) becomes 

X/2 

J 'X/ z  
 1 
exp 	

_} [r(/2) J 
11 = {J/Z 

{} 	
ex p  f_-} {r(/2) 1 

Then let r = 	2 d-r=-(a') 2do 2  which implies do 2 =i 2dr. Thus 

p(-r) = (/2)`/ 2  T21 exp{--r/2} [r(/2)y 1  

which Is Gamma distribution with parameters /2,/2. 

The following properties hold: 

I) 	E(o 2 ) = 13/(-2) since E(/o 2 ) = a and var(/o 2 ) = 2. 

Var(o 2 ) = 2D2/[(-2)2(--4)] 

E(a4) = 

If a is large, E(o 2 ) and var(o 2 ) are approximately /c and 213 

respectively. 	Hence the two numbers at our disposal, 	and 

enable us to alter the mean and variance of the prior distribution: 

/x is approximately the mean. 	(Large values of a correspond to 

rather precise knowledge of the value of X prior to the experiment. 
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The two quantities /x and a therefore allow considerable variation 

in the choice of prior distribution within this class of densities. 

Note that prior distribution of 02, like x 2 , tends to normality as oc 

-, 	. 
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APPENDIX 4 

MEAN AND VARIANCE OF M WHEN ITS DENSITY TAKES A KERNEL FORM 

If a density function of a random variable M takes a kernel form 

density, namely 

	

1 	 1 	 { 	1 
f(s.L) = - Z 	 exp - _______ 

n 1=1 	(2 7r ) 56s>, 	 2s2x2 	

_)2} 

n 
where s 	(n-1) 1  Z ()2  

1=1 

then (i) E(,.z) = 	and (ii) Var() = S 2 (XZ+l). 

Proof of (i): 

E(IL) = fm f(u) do 

= 
In 	1 	 f 	1 	 1 f - 	 exp - 	('--) 2 F du 

	

cc, 	n 1=1 d(2ff) SX 	I 	2s 2 x 2 	J 

Without lost of generality, we interchange the integral and summation 

sign 

	

n 	1A 	 1 1 
z 

	

n i=1 	I(2) 	
exp [ - ______ 	 d 

2s 2 ) 2  

I 

	

=- 	i (=.) 
i=1 

Proof of (ii): 

Var(u) = E(ii2) - [E()] 2  

First we evaluate E(u 2 ) 	o z  f(i) d 
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= 	- 	 exp  

	

n i=l (2)sx 	 2s 2 X 2 	} d J 
W.1.o.g. we interchange the integral and summation sign, 

1 

1=1 [ fco  (2);sx exp { - (
AA 	

)2 

25ZX2 	
jduj 

Let uj = (s.-1)/sX then ju = usX + 	and du = sxdu1. 

E 	 exp 

	

____________ 	
1 n  1 	(u1sX-i-1 	 u 1)2 	

J sxdu1 
1=1 J_a 	(2ii-)sX 	 2 

1 f
CO [(usx) 2+2ujs>+] 	I 	u 

=- E 
1=1 	 (27r) 	

exp 1.- 	2 J   dui 

1(u1sX) 2 	- 	
} dui + 	

] 
=_ t 	

tco 	

exp 
n 1=1 	(2) 	1 	2 
1 u 	If 

t 	
I 	u 

(sX) 2 	 exp 	} dui + 	
] 

=- 
1=1 	to-*.( 2) 	1 	2 

1 n 
= - r( ( sX)2 + 

n 1=1 

n 
= ( sX)Z + n 1 L 

i=1 

Var($A) = E(9 2 ) - 

n 
= (sX)z+nlEi_ 

1=1 

In 
= (sX) 2  + n' 	• 	- n2 1 1 1 = 1  
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= (sX) 2  + n' I 1g1t1 - 	) 2 I 
= (sX) 2  + n 1 (n-1)s 2  

= 	2 [ )2 + n'(n-i)] 

- S 2  I xz + 1 ] as n 4 

So if Var() = o, then X 2  = 	- 1 subject to o > s 2 . 
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APPENDIX 5 

NOTES ON DERIVING THE PREDICTIVE AND MARGINAL DISTRIBUTIONS FOR A 

PARTICULAR MIXTURE DATA 

This appendix provides details of the formulae for the numerator 

of the Bayes' factor given in Chapter 5. First let T(y) and T(x) 

denote the number of zeros in the Y and X data and p the probability 

of X or Y is being zero. 

A5.1 Assumptions: 

ECA and Kernel models - Positive non-zero values of X or of y is 

Normally distributed. So, the probability density of X, for instance, 

may be represented as 

r 	 x=O 
f(X.) = 

I (l-p) g(xJu,c,) 	x*O. 

where g is assumed to be Normal density function with parameters u 

and o. Similarly, two-fold definition is assumed for f(YI.). 

A5.1.1 Priors for p and the unknonw true popluation mean u: 

Assuming the prior densities are independent of each other, then 

(I) ECA model with informative prior for ,.i - f(p,u) = f(p) x f(p) 

where f(p) = [Be(a,b)]1 pa 	(1...p)b_1, f() = g((j,Z} and g is a 

Normal density function with parameters 5 - and 5 2 . 

(ii) Kernel model -- f(p,t) = f(p) x 

where f(p) as in the ECA model and f(u) = k(jiI's,.), kernel density 
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function with smoothing parameter X, 	's are sample group means of a 

training data set Z. 

A5.2 Predictive distribution (with informative prior for Li and 

assumed known 2 

A5.2.1 Single hair problem (see Chapter 5) 

Both x and y are zero 

Pr(T(y)=1JT(x)=1) 
f Pr(T(y)=lIp) Pr(T(x)=1p) f(p) dp 

J Pr(T(x)=lIp) f(p) dp 

f p  p  [Be(a,b)] 1  pa-' (1.p)b1 dp 

f p [ Be(a,b)]' pa-' (i_p)b 	dp 

f (Be(a,b)] 	p(a+z)l (1-p)b_1 dp 

S [Be(a,b)] 	p(a+l)1 (1_p)_ 1  dp 

Be(a+2,b) 

Be(a+l,b) 

r(a+2) r(b) 	r(a+b+l) 

= 	 x 
r(a-i-b+2) 	 r(a-L-l) r(b) 

(a+l)! (a+b)! 

(a-i-b+l)! a 1  

a+l 

a+b+1 

y is zero but x is not 

Pr(T(y)=lJx) = 
5 Pr(T(y)=lIp) f(xlu) f(i) du 

5 f(xju) 1(u) du 

55 p(1-p)g(xjLi,o 1 )[Be(a,b)] 1  pa_1(1_p)b_1g{iiI5,z} dpdu 

lW] 



then, 

JO1 

	
(a+1)-1(1_)(b+1)-1 	

JCO CO 

	(x-ti)2

Pr(T(y)=1x) a 	 dp x 	 exp 
Be(a,b) 	 ( 2ir)o 	L 	202 j 

exp 	 ds.i 
(217) 3 	L 	25 2  J 

(by the results in Appendix 1) 

Be(a+l,b+l) 	 1 f 	(x- i) 2  

= 	 x 	 exp - 
Be(a,b) 	(2)(o2+2) 	 I. 	2(o+) 

ab 	 1 f 
x 	 exp- 

(a+b+1)(a+b) 	( 2r)(o2+2) 	 2(o+) 

To obtain the normalised constant we evaluate this quantity, 

I f(x) f(M) du 

	

= If (1-p)g{xu,o 2 }[Be(a,b)] 1 	 dpdM 

	

Be(a,b+1) 	 1 	 f 
f(x) = ___________ x 	 exp 4 - 

	

Be(a,b) 	(2)(02+2) 	 1. 	2(o+) 

b 

	

x 	 exp 4- 
(a+b) 	 r. 	2(o2+2) 

Thus, 

Pr(T(y)=lIx) = a/(a+b+1) 

(C) y is not zero but x is 

f f(y1) Pr(T(x) = lIp) f(a) du 

f(yIT(x) =1 ) =  
f Pr(T(x)=lIp) f(p) dp 
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I
l fco (1-p) g (y-u,o 2 ) p 	(1_p)L_i g (u!Z,2) 

o -CO Be(a,b) 

Again, using the result in Appendix 1, 

	

Be(a+1,b+1) 	 1 	 (y-1) 2  
f(YIT(x) 1 	 x 	 exp (- 

	

Be(a,b) 	
2(02Z) 

ab 	 1 	 1 	(y-ii)2 
- 

	

(a+b+l)(a+b) 

x 	 exp- 
(2)(o2+2) 	 L 	2(c 2 + 2 ) 

Now, f Pr(T(x)=lIp) f(p) dp = f p [Be(a,b)] 	pa-' (1...p)bi dp 

Be(a+1,b) 	a 

Be(a,.b) 	a+b 

Hence 

b 1 
 

I 

(y-5)  
f(YIT(x)=1) = 	 x 	 exp 

	

(a+b+1) 	(2)(cZ ~ 2)J 	2(o2+) 

(d) X and y both are not zero 

£ f(yIu) f(xIi) f(ti) du 
f(yIx) =  

f f(xlu) f(2) du 

11 
II 
ii 	 Be(a,b) 

11 	a1(1..)(b+z)1 cc 

 I 	 dp x 1CO 

g ( ysi,o 2 )g ( xI,i,o 2 )g ( tzii, 2 ) du 
J 0 	Be(a,b)  

Be(a,b+2) 	

-00 

dp x 	g{yIu,a 2 }g{xI,o 2 }g{(I5, 2 ) du 
Be(a,b) 

ddp 

dizdp 

Using the results in Appendix 1, 
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b(b+1) 	 1 1 (x-y)2 1 
f(yIx) 
	

x 	 exp 	 x 

(a+b+l)(a+b) 	(2ii-).'2o 	J 	4,2 	J 

1 	 1 	(w_ii)2 

exp 
(2,,) 56 ((,'/2)+5z)14' 2ir)((o2/2)+) 	I_ 	2((o2/2)+2) 

To obtain the normalised constant, we evaluate f f(x) f() d 

which is given as in (b) above, namely 

b 
	

1 	 1 	(ci)z 
x 	 exp - 

a+b 
	(2)(o2+2) 	I 	2(o+) 

Thus 

b+1 	 1 	 f (x-y)2  1 
f(yIX) = _______ x 	 ex 	 x 

a+b+1 	(2ii')v'2o 	 4,Z  J 

	

1 1 	(w_)2 	1 

	

exp - 	 I x 
(21)((o2/2)+) 	I 	2((o2/2)+)  J 

1(x-R) 2  I- exp {- 
I 	2(o2+2) 

A5.2.2 Case where m > 1 and r = 1 

Controlled data X consists of t(x) zero values and (m-t(x)) 

other values X  ...... xm_t(x). Let j.L and a 2  be the mean and variance 

respectively of the positive non-zero population of X and let 

'[m-t(x)] be a sufficient unbiased estimator of u for the m-t(x) 

observations. Then, assuming the variance o z  is known f(XIp,u,o 2 ) 

may be factorised as follow: 

f(XIp,,o2) = f(T(x),XIp,u,o 2 ) = f(XIT(x),u,o 2 ) x f(T(x)Ip). 
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This is assuming X and p are conditional independent, i.e. 

f(XIT(x),p,r.L,o2) = f(XIT(x),u,o 2 ). 

Now, the probability density function of X conditional on T(x)=t(x) 

is taken to be 

f([m_t( x)JIO 2 t(X)), 

and f(t(x)Ip) is taken to be 

I 	
m  

t(x) .1 	t(x) (l_)m-t(x) 

Hence, assuming the non-zero positive observations of X are Normally 

distributed, the likelihood function of the data x is 

I t(x) J t(x) (l_)m-t(x) 

where g is a Normal density function containing the non-zero positive 

values in the form X[m...t(x)]. 

To evaluate the predictive distribution of Y given X in the m >1 

case, we consider the two possibilities i.e (a) y is zero and (b) y 

is not zero. 

(a) Pr(T(y)=lX) 	f Pr(T(y)=lo) f(XI8) f(0) de 

where e = (p,) and f(0) is given in Section A5.1. 

Assuming the true values of the population mean of the positive 

non-zeros observations has no effects on the phenomenon that '1 is 

zero, i.e. Pr(T(y)=1e) = Pr(T(y)=lp) = p, and since 
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f(Xo) =I 	I 	t(x) (I)m-t(x) 

then it can be shown that 

t(x)+a 
Pr(T(y)=1IX) = 

m-t-a-*-o 

(b) f(yIX) 	I f(YIe) f(XIO) f() do 

From Section A5.1, the conditional density function of y, f(yJo) 

= (1-p) g(yI,°).  Whereas f(xIO) is given as in (a) above, then 

m-t(x)+b 
f(YIX) = __________ 

m+a+b 

{[m_t(x)]IY0) g{wI,o} 

([m_t(x)] Io) 

where o z 
	0 2 [1+(l/(m-t(x)))] 

	

0 2 
 = 	+ (o 2 /(1+(m-t(x)))] 

	

= 	+ (o 2 /(m-t(x))] 

w = [y + 

A5.2.3 Case where m and r are both greater than 1 

Here, Y consists of r measurements and X consists of in 

measurements, so the predictive distribution of Y given X is as 

follow 

MIX) 	I f(YIo) f(XIe) f(o) de 

where f(YI°) 	 and 

f(Xe) is as in Section A5.2.2. 

Thus, 
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MIX) 	ff ((y)) t(y) (1_)r-t(y) g(Y[r-t(y)]I9,02[r_t(y)]) x 

((x)) t(X) (I_p)m-t(X) 	 x 

[Be(a,b)1' pa -1  (1-p) 1' 	g(uJ5, 2 ) dpdu 

9 ((y)) ((x)) [Be(a,b)]1 

f t(Y)±t(x)+a-i(1_)r-t(y)+m-t(x)+b-1  dp 

I {[ r_t( y )}Iu0 2 [ r_t( y )]) 	 x 

g{ITh} du 

= (€(y)) ((x)) [Be(a,b)] 1  Be(a+t(y)+t(x),b+r-t(y)+m-t(x)) x 

x 

g{w, [ 2 +(o 2 /(r-t(y)+m-t(x) ) ) 1) 

The normalised constant is the marignal density function of X, i.e. 

f(X) = ((x)) [Be(a,b)] 1  Be{a+t(x),b+m-t(x)} x 

{[m_t(x)] I,[+(o2/[mt(x)])]) 

Thus 

f(YIX) = (€(y)) Be(a+t(y)+t(x),b+r-t(y)+m--t(x)] 

x 

{Y[r_t(y)][m_t(x)] IO [o 2 ((m-t(x)) 1 +(r-t(y)) 1 )]} x 

[ Be(a+t(x),b+m-t(x)) g{[m_t(x)]1,[2+(o2/(m-t(x)))]) ]_. 

The marginal density of Y is given by 

f()rC) = { t(y)J 

Be(a+t(y) ,b+r-t(y)) 

Be(a,b) 
x 

{Y[r_t(y)] Ii,[ 2- (o 2 /(r-t(y)))]) 

A5.3 Evaluation of the Bayes' factor for the r > 1 and m> 1 

If t(y)=r, i.e. all observations from V are zeros, then 
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Be(a+r+t(x) ,b+m-t(x)) 
Pr(T(y)=rIX) = 

Be(a+t(x) ,b+m-t(x)) 

r(a -t-r+t(x))r(b-i-in-t(x)) 	 r(a-i-b+m) 
x 

r(a+b+m) 	 r(a+t(x)) r(b+m-1-t(x)) 

r(a+r+t(x)) r(a+b+m) 

r(a+b+m+r) r(a+t(x)) 

(a+t(x)+r-l)! (a+b+m-I)! 

(a+b+m+r-l)!(a+t(x)-l)! 

r 
TI [a+t(x)+(s-l)} 

s=1 
= and 

r 
TI [a+b+m+(s-1)] 

s=l 

Pr(T(y)=r) = [Be(a,b)]' Be(a+r,b) 

r(a+r) r(b) 	r(a+b) 

r(a+b+r) 

r(a+r) r(a+b) 

r(a+b+r) r(a) 

(a+r-l)! (a+b-i) 

(a+b+r-l)! (a-l)! 

r(a) r(b) 

r 
if 

s=i 

r 
R (a+b+(s-l)] 

s=i 

Ratio of the above Pr(T(y)=rX) and Pr(T(y)=r) gives the Bayes' 

factor for the special case where t(y) = r when m > i. 

If T(y)<r, i.e. some of the observations of Y are zero, then the 

Bayes' factor can be simplified as 

Be(a+t(y)+t(x) ,b+r-t(y)+m-t(x)) Be(a,b) 
x 

Be(a-i-t(x),b+m--t(x)) Be(a+t(y),b'-r-t(y)) 
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f 	g{wi, {Z+(oZ/(r_t(y)+m_t(x)))]} 	1 
x I 	 I 

L 	g{( rn_t( x ))I4,1 2 +(o 2 /(m-t(x)))1} j 

F 	 1 
Im t 2 +(o 2 /(r-t(y)))fl 

which can be simplified further as 

r(a+t(y)+t(x) )r(b+r-t(y)+m-t(x))r(a+b+m)r(a)r(b)r(a+b+r) 
= 	 - 	 x 

r(a+b+r+m)r(a+t(x))r(b+m-t(x) )r- (a+b)r(a+t(y))r(b+r-t(y)) 

g{wii, [ 2 +(o 2 /(r-t(y)+m-t(x)))]} 

For the Kernel method, formulae can be easily obtained by 

substituting a kernel density form in place of the Normal density 

functions, g, in the formula given above. 
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APPENDIX 6 

NOTES ACCOMPANY CHAPTER 6 

6.1 Some useful results in combining quadratic forms 

The following two useful lemmas for combining quadratic forms 

are taken from Box and Tiao (1973): 

Lemma 1. Let u, a and b be p x 1 vectors, and A and B be p x p 

symmetric matrices such that the inverse (A + B) 1  exists. Then, 

(u - a)TA(u - a) + (u - b)TB(u_ b) = (u - c)T(A + B)(u - C) + 

(a - b)TA(A + B)1B(a - b) 

where C = ( A + B)'(Aa + Bb). 

Note that if both A and B have inverse, then 

A(A + B) - 'B = (K 1  + B 1 )'. 

If sometimes happens that we need to combine two quadratic forms for 

which the matrix (A + B) has no inverse. In this case, Lemma 1 may 

be modified as follows: 

Lemma 2. Let u, a and b be p x 1 vectors, and A and B be two p x p 

positive symmetric matrices.. Suppose the rank of the matrix A + B is 

q (< p). Then, subject to the constraints Gu = 0, 

(u - a)TA(u - a) + (u - b)TB(u - b) = (u - c*)T(A + B + M)(u - c*) 

+ (a _b)TA(A + B + M 1 B(a - b) 

where 6 is any (p - q) x p matrix of rank p - q such that the rows of 

6 are linearly independent of the rows of A + B, M = GTG and 

C = ( A + B + M)(Aa + Bb). 
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The proof of these two Lemmas can be found in Box and Tiao (1973) 

6.2 Formulae of the Bayes' factor in multivariate case using the 

kernel models developed in chapter 3 

This appendix contains formulae for the predictive and marginal 

distributions discussed in Chapter 6, assuming ungrouped training 

data. Similar expressions are also given using the adaptive kernel 

method assuming the training data is grouped. 

6.2.1 Ungrouped training data 

The equivalent expression of f(YIX,C) shown in (6.9) for the 

ungrouped training data is proportional to 

1ç 	1 
exp 	 (_y) ! z_ 1 (_y)1 x 

Ia 2EI 	I 	2a 2 	- - 	- - J 

1 	N 	11 	 1 
E exp - - (w-z2)'Aj 1 (w-z2) I 	(A6.1) 

IAwIN 	' 	I. 	2 	- - 	 J 

where Aw = ( 	+ Si)' a 2  = (m'+r 1 ), S = X 2 S', Ew = (m) 1 E, w = 

(m + r)I(m+r) and 5' are given by (6.4). 

Similarly expressions (6.10) and (6.11) f(XIC) and f(YIC) for the 

ungrouped training data is given by 

1 	N 
f(XIC) = 	 E exp 

(2 7 )1' 2 	N 2=1 	f - - 	(A6.2) 
where Ax = ( Ex + Si), E x  = m 1 E and S )  is as above, and 

1 	N 	f 	1 
E exp 	- - (Y_z 2 )?A 1 (Vz 2 )} 	(A6.3) 

(27T)1)'2 IAy I 	N 2=1 	1 	2 
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where A = ( E + Si), L y  = rtE and Sj is as above, respectively. 

6.2.2 The adaptive kernel method 

With f(,) estimated by (6.6), the expression of f(YIX,C) is 

proportional to 

	

1 	1 	1 
exp  

	

Ia 2Zl 	I 	2a 2 	 - - 	 - - 

1 	1 
-  
n 	

____ 
IAwiI 

exp 
 {- 	

(w_i)'A!(w_i)} 	(A6.4) 

	

where Awi = 	+ Sx±)' a 2  = ( m 1 +r 1 ), S>j = (>1) 2S, Ew  

and w = (m + r)/(m-s-r). 

Then combining ( 6.1) and (6.5) gives the constant factor namely, 

	

in 	1 

	

f(XIC) = - E 	 exp 

	

1=1 (2 1r )11 2  IAil 	- 	
(A6.5) 

where Ai = (r + Sx), Ex  = m 1 Z and S 1  as above. 

Similarly, the denominator of the BF, f(YIC) is given by 

	

in 	1 

	

E 	 exp 

	

n 11 (2 IT )P/ 2  IA 1 I 	{ - -
i.- (!_!I)'A1(!_!l)} (A6.6) 

where A1 = ( E + S1), E = r 1t and S ),1 is as above. 

Note that the determinant of the matrices A, Ax and A all have 

index i and so are inside the summation in (A6.4), (A6.5) and (A6.6), 

respectively. 

311 



APPENDIX 7 

TABLES TO ACCOMPANY CHAPTER 7 
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Table A7.1 EMSE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2) in 
brackets. Normal criterion. Nsam=k*N where k1. 

Data Methods N=25 N=50 N=100 
Nsim=100 Nsim=50 Nsim25 

Normal SKO 0.3889 0.2313 0.1438 
(0.0061) (0.0017) (0.0007) 

GKO 0.3775 0.2284 0.1430 
(0.0056) (0.0015) (0.0007) 

SKM 0.4982 0.2940 0.1530 
(0.0327) (0.0232) (0.0044) 

GKM 0.4843 0.2937 0.1530 
(0.0282) (0.0234) (0.0046) 

Student-t SKO 0.3771 0.2527 0.1455 

with 5 d.f. (0.0170) (0.0138) (0.0022) 
GKO 0.3837 0.2577 0.1458 

(0.0208) (0.0169) (0.0023) 
SKM 0.4878 0.3102 0.2320 

(0.0320) (0.0156) (0.0193) 
GKM 0.5338 0.3733 0.2491 

(0.0465) (0.0508) (0.0250) 

Lognormal SKO 4.8934 4.8817 4.4661 
(0.2286) (0.2338) (0.2150) 

GRO 5.2442 5.1755 4.6056 
(0.2458) (0.2549) (0.2261) 

SKM 3.8077 3.0823 2.0484 
(0.2024) (0.1842) (0.2032) 

GKM 5.1126 4.3374 3.4581 
(0.3518) (0.3855) (0.4969) 

Cauchy SKO 1.6237 1.7200 1.9320 
(0.0938) (0.1336) (0.1921) 

GKO 1.7182 1.8076 2.0084 
(0.0948) (0.1358) (0.1917) 

SKM 1.1674 1.0963 0.7991 
(0.0510) (0.0679) (0.0525) 

GKM 1.9406 2.1494 2.0750 
(0.1024) (0.1416) (0.1973) 

Bimodal SKO 0.1747 0.1197 0.0834 
(0.0004) (0.0004) (0.0007) 

GKO 0.1752 0.1205 0.0839 
(0.0004) (0.0005) (0.0008) 

SKM 0.2145 0.1473 0.0855 
(0.0073) (0.0101) (0.0054) 

GKM 0.2143 0.1578 0.0856 
(0.0073) (0.0160) (0.0054) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 

SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.2 EMSE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10) in 
brackets. Normal criterion. Nsamk*N where k2. 

Data Methods N=25 N=50 N=I00 
Nsim=100 NsimSO Nsim=25 

Normal SKO 0.3788 0.2354 0.1457 
(0.0043) (0.0031) (0.0015) 

GKO 0.3710 0.23.35 0.1452 
(0.0038) (0.0030) (0.0014) 

SKM 0.4424 0.2891 0.1555 
(0.0197) (0.0260) (0.0034) 

GKM 0.4419 0.3000 0.1554 
(0.0200) (0.0278) (0.0034) 

Student-t SKO 0.3630 0.2395 0.1617 
with 5 d.f. (0.0073) (0.0117) (0.0066) 

GKO 0.3661 0.2428 0.1635 
(0.0081) (0.0139) (0.0070) 

SKM 0.47.28 0.3153 0.3111 
(0.0183) (0.0183) (0.0364) 

GKM 0.5067 0.3495 0.3520 
(0.0268) (0.0413) (0.0518) 

Lognormal SKO 5.2029 4.9901 4.5677 
(0.2023) (0.2622) (0.3286) 

GKO 5.4534 5.1482 4.7392 
(0.2113) (0.2710) (0.3500) 

SKM 4.2013 3.3564 2.6191 
(0.2119) (0.2168) (0.2614) 

GKM 4.9174 4.5378 4.6739 
(0.2975) (0.4482) (0.7245) 

Cauchy SKO 1.6002 1.6299 1.6875 
(0.0960) (0.1491) (0.1643) 

GRO 1.6661 1.6838 1.7381 
(0.0968) (0.1499) (0.1651) 

SKM 1.3387 1.1674 1.1352 
(0.0615) (0.0721) (0.0702) 

GKM 1.9377 1.9517 1.9396 
(0.1025) (0.1470) (0.1609) 

Bimodal SKO 0.1746 0.1211 0.0826 
(0.0003) (0.0005) (0.0006) 

GRO 0.1749 0.1218 0.0829 
(0.0003) (0.0006) (0.0006) 

SKM 0.2115 0.1366 0.0819 
(0.0092) (0.0056) (0.0034) 

GKM 0.2149 0.1406 0.0819 
(0.0098) (0.0070) (0.0034) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.3 EMSE (x10) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Normal criterion. Nsam=k*t1 where k5. 

Data Methods N25 N50 N100 
NsimlOO Nsim=50 Nsini=25 

Normal SKO 0.3812 0.2330 0.1437 
(0.0056) (0.0016) (0.0006) 

GKO 0.3753 0.23.15 0.1433 
(0.0051) (0.0015) (0.0006) 

SKM 0.4522 0.2777 0.1599 
(0.0257) (0.0110) (0.0059) 

GKM 0.4518 0.2776 0.1599 
(0.0259) (0.0110) (0.0059) 

Student-t SKO 0.3590 0.2265 0.1487 

with 5d.f. (0.0066) (0.0030) (0.0031) 
GKO 0.3628 0.2276 0.1494 

(0.0075) (0.0032) (0.0032) 
SKM 0.5065 0.3200 0.2715 

(0.0398) (0.0155) (0.0259) 
GKM 0.5118 0.3291 0.2779 

(0.0394) (0.0182) (0.0285) 

Lognormal SKO 5.5825 4.9636 4.3151 
(0.2520) (0.2546) (0.1879) 

GKO 5.7727 5.0722 4.3849 
(0.2603) (0.2606) (0.1928) 

SKM 4.9392 4.0720 2.8553 
(0.2773) (0.3015) (0.3543) 

GKM 5.6099 4.6288 3.2748 
(0.3730) (0.3994) (0.4457) 

Cauchy SKO 1.6823 1.9589 2.0032 
(0.1063) (0.1261) (0.1517) 

GKO 1.7216 1.9979 2.0424 
(0.1065) (0.1258) (0.1533) 

SKM 1.6409 1.5610 1.3813 
(0.0800) (0.0776) (0.0909) 

GKM 1.9459 2.2712 2.3218 
(0.1065) (0.1251) (0.1744) 

Bimodal SKO 0.1748 0.1211 0.0823 
(0.0003) (0.0006) (0.0005) 

GKO 0.1751 0.1218 0.0827 
(0.0003) (0.0006) (0.0005) 

SKIM 0.2077 0.1334 0.0872 
(0.0081) (0.0040) (0.0040) 

GKM 0.2110 0.1334 0.0872 
(0.0087) (0.0040) (0.0040) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.4 EMSE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in  

brackets. Normal criterion. Nsamk*N where k=lO. 

Data Methods N25 N=50 N=lOO 
Nsim=lOO Nsim=50 Nsim25 

Normal SKO 0.3747 0.2315 0.1436 
(0.0049) (0.0017) (0.0007) 

GKO 0.3700 0.23p 3 0.1433 
(0.0046) (0.0016) (0.0006) 

SKM 0.4448 0.2822 0.1650 
(0.0208) (0.0195) (0.0117) 

GKM 0.4617 0.2823 0.1650 
(0.0262) (0.0194) (0.0117) 

Student-t SKO 0.3603 0.2358 0.1474 

with 5 d.C. (0.0056) (0.0050) (0.0030) 
GRO 0.3629 0.2379 0.1482 

(0.0058) (0.0053) (0.0031) 
SKM 0.5135 0.3550 0.2315 

(0.0259) (0.0239) (0.0216) 
GKM 0.5176 0.3626 0.2334 

(0.0265) (0.0262) (0.0224) 

Lognormal SKO 5.0216 4.5228 5.0797 
(0.2057) (0.2110) (0.3629) 

GKO 5.1563 4.6000 5.1406 
(0.2090) (0.2153) (0.3681) 

SKM 4.7578 3.8913 4.3753 
(0.2704) (0.3858) (0.4851) 

GKM 4.9788 4.0768 5.4050 
(0.3006) (0.4219) (0.7492) 

Cauchy SKO 1.6572 1.7855 2.2745 
(0.0908) (0.1325) (0.1767) 

GKO 1.6889 1.8078 2.2946 
(0.0911) (0.1326) (0.1759) 

SKM 1.7844 1.7429 1.6880 
(0.0879) (0.1081) (0.0925) 

GKM 1.9173 2.0015 2.5011 
(0.0983) (0.1409) (0.1681) 

Bimodal SKO 0.1749 0.1215 0.0815 
(0.0003) (0.0005) (0.0006) 

GRO 0.1750 0.1221 0.0818 
(0.0003) (0.0006) (0.0006) 

SKM 0.2370 0.1402 0.0887 
(0.0156) (0.0067) (0.0078) 

GKM 0.2369 0.1477 0.0887 
(0.0156) (0.0101) (0.0078) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 

GKO - Gaussian kernel with the Normal cptimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.5 EMSE (x10 2 ) of density estimates from simulated data. 
Ave!ags over simulations, with standard errors (xlC 2 ) in 
brackets. Normal criterion. Nsam=k*N  where k50. 

Data Methods N=25 N=50 N=lOO 
Nsim=lOO NsimSO Nsim=25 

Normal SKO 0.3796 0.2329 0.1428 
(0.0050) (0.0023) (0.0005) 

GRO 0.3749 0.23.19 0.1426 
(0.0045) (0.0021) (0.0005) 

SKM 0.4196 0.2901 0.1652 
(0.0167) (0.0190) (0.0107) 

GKM 0.4229 0.2901 0.1652 
(0.0168) (0.0190) (0.0107) 

Student-t SKO 0.3611 0.2425 0.1484 
with 5d.f. (0.0057) (0.0111) (0.0035) 

GKO 0.3640 0.2446 0.1492 
(0.0062) (0.0114) (0.0036) 

SKM 0.5Q93 0.4076 0.2330 
(0.0248) (0.0430) (0.0fl5) 

GKM 0.5107 0.4109 0.2333 
(0.0252) (0.0446) (0.0186) 

Lognormal SKO 5.2952 4.7594 4.0303 
(0.2403) (0.2198) (0.3346) 

GKO 5.3999 4.8146 4.0594 
(0.2426) (0.2220) (0.3363) 

SKM 5.1161 4.4198 3.3862 
(0.3247) (0.3998) (0.5300) 

GKM 5.1605 4.4977 3.4690 
(0.3310) (0.4163) (0.5685) 

Cauchy SKO 1.7766 1.7598 1.9475 
(0.1004) (0.1425) (0.2046) 

GKO 1.7985 1.7722 1.9550 
(0.1001) (0.1424) (0.2046) 

SKM 1.9985 1.8855 2.0238 
(0.1046) (0.1498) (0.2108) 

GKM 2.0187 1.9160 2.1285 
(0.1055) (0.1532) (0.2304) 

Bimodal SKO 0.1751 0.1209 0.0825 
(0.0003) (0.0006) (0.0007) 

GKO 0.1753 0.1215 0.0829 
(0.0003) (0.0006) (0.0007) 

SKI'! 0.2006 0.1317 0.0835 
(0.0052) (0.0045) (0.0029) 

GKI4 0.2006 0.1317 0.0835 
(0.0052) (0.0045) (0.0029) 

Notes: 
SKO - Student-t kernel with the 	!thod of moments procedure 
SKI'! - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Tab leA7.6 MISE (xl(T 2  ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xl0) in 
brackets. Normal criterion. Nsam=k*N  where k1. 

Data Methods N=25 N=50 N=100 
NsimlOO Nsim=50 &sim=25 

Normal SKO 1.5499 0.9071 0.5542 
(0.0224) (0.0061) (0.0028) 

GRO 1.5101 0.8970 0.5514 
(0.0204) (0.0056) (0.0026) 

SKM 1.9349 1.1289 0.5857 
(0.1165) (0.0826) (0.0157) 

GKM 1.8879 1.1283 0.5856 
(0.1005) (0.0833) (0.0163) 

Student-t SKO 1.5912 1.0270 0.5877 
with 5 d.f. (0.0586) (0.0463) / 	(0.0062) 

GKO 1.6094 1.0431 0.5879 
(0.0732) (0.0585) (0.0064) 

SKM 1.9776 1.2158 0.8773 
(0.1255) (0.0522) (0.0652) 

GKII 2.1419 1.4458 0.9380 
(0.1729) (0.1826) (0.0861) 

Lognormal SKO 9.0896 8.8135 8.0011 
(0.3808) (0.3961) (0.3650) 

GRO 9.7040 9.3349 8.2480 
(0.4167) (0.4388) (0.3861) 

SKM 7.5139 5.8992 4.0723 
(0.3543) (0.2825) (0.3223) 

GKM 9.8446 8.0735 6.4504 
(0.6068) (0.6538) (0.8416) 

Cauchy SKO 6.8181 7.1628 8.0198 
(0.3825) (0.5508) (0.7957) 

GKO 7.2559 7.5798 8.3856 
(0.3884) (0.5621) (0.7934) 

SKM 4.9499 4.5687 3.2930 
(0.2037) (0.2816) (0.2162) 

GKM 8.1889 8.9893 8.6631 
(0.4157) (0.5834) (0.8158) 

Bimodal SKO 1.2361 0.8304 0.5717 
(0.0032) (0.0037) (0.0056) 

GKO 1.2451 0.8367 0.5755 
(0.0036) (0.0040) (0.0057) 

SKM 1.4741 0.9910 0.5734 
(0.0459) (0.0641) (0.0341) 

GKM 1.4740 1.0585 0.5737 
(0.0456) (0.1019) (0.0343) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
CR0 - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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TablA7.7 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10) in 
brackets. Normal criterion. Nsaink*N where k2. 

Data Methods N=25 N=50 N100 
Nsim=100 Nsiin=50 Nsim25 

Normal SKO 1.5142 0.9224 0.5612 
(0.0160) (0.0112) (0.0054) 

GKO 1.4862 0.9164 0.5594 
(0.0139) (0.0110) (0.0053) 

SKM 1.7361 1.1105 0.5953 
(0.0705) (0.0924) (0.0122) 

0KM 1.7355 1.1493 0.5950 
(0.0715) (0.0989) (0.0123) 

Student-t SKO 1.5404 0.9839 0.6394 
with 5 d.f. (0.0240) (0.0396) (0.0208) 

GKO 1.5453 0.9945 0.6451 
(0.0267) (0.0481) (0.0223) 

SKM 1.994 1.2488 1.1597 
(0.0625) (0.0647) (0.1256) 

GKM 2.0378 1.3741 1.3086 
(0.0959) (0.1487) (0.1830) 

Lognormal SKO 9.5605 9.0159 8.2082 
(0.3347) (0.4541) (0.5633) 

GKO 9.9961 9.2978 8.5141 
(0.3540) (0.4735) (0.6054) 

SKM 8.0427 6.3457 4.9888 
(0.3352) (0.3411) (0.4173) 

GKM 9.3283 8.4601 8.6146 
(0.4981) (0.7819) (1.2731) 

Cauchy SKO 6.7247 6.8089 7.0303 
(0.3919) (0.6177) (0.6828) 

GKO 7.0261 7.0584 7.2723 
(0.3963) (0.6222) (0.6869) 

SKM 5.6564 4.8812 4.7156 
(0.2510) (0.3003) (0.2950) 

GKM 8.1509 8.1515 8.1146 
(0.4178) (0.6052) (0.6670) 

Bimodal SKO 1.2360 0.8419 0.5656 
(0.0027) (0.0046) (0.0044) 

GKO 1.2426 0.8479 0.5678 
(0.0031) (0.0049) (0.0045) 

SKM 1.4583 0.9236 0.5491 
(0.0581) (0.0350) (0.0214) 

GKM 1.4805 0.9489 0.5490 
(0.0616) (0.0443) (0.0214) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.8 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Normal criterion. Nsam=k*N  where k=5. 

Data Methods N=25 N50 N100 
Nsim=100 Nsim=50 Nsim=25 

Normal SKO 1.5236 0.9141 0.5537 
(0.0205) (0.0061) (0.0024) 

GKO 1.5021 0.90.88 0.5524 
(0.0187) (0.0057) (0.0022) 

SKM 1.7710 1.0720 0.6111 
(0.0919) (0.0395) (0.0211) 

G.KM 1.7701 1.0720 0.6110 
(0.0923) (0.0396) (0.0211) 

Student-t SKO 1.5279 0.9385 0.5959 

with 5 d.f. (0.0208) (0.0086) (0.0094) 
GRO 1.5357 0.9407 0.5978 

(0.0238) (0.0091) (0.0096) 
SKM 2.0492 1.2631 1.0106 

(0.1582) (0.0514) (0.0903) 
GKM 2.0685 1.2958 1.0338 

(0.1561) (0.0614) (0.0999) 

Lognormal SKO 10.2550 8.9710 7.7496 
(0.4348) (0.4474) (0.3129) 

GKO 10.5904 9.1613 7.8696 
(0.4530) (0.4601) (0.3218) 

SKM 9.4185 7.5786 5.3995 
(0.4632) (0.4985) (0.5718) 

GKM 10.6941 8.5825 6.1201 
(0.6525) (0.6836) (0.7304) 

Cauchy SKO 7.0846 8.1911 8.3844 
(0.4354) (0.5231) (0.6359) 

CR0 7.2597 8.3733 8.5697 
(0.4368) (0.5218) (0.6433) 

SKM 6.9258 6.5412 5.7702 
(0.3292) (0.3232) (0.3843) 

GKM 8.1780 9.5033 9.7009 
(0.4358) (0.5155) (0.7226) 

Bimodal SKO 1.2386 0.8419 0.5632 
(0.0028) (0.0049) (0.0037) 

GKO 1.2442 0.8471 0.5662 
(0.0031) (0.0052) (0.0038) 

SKM 1.4293 0.9040 0.5822 
(0.0511) (0.0249) (0.0255) 

GKM 1.4500 0.9042 0.5823 
(0.0546) (0.0250) (0.0256) 

Notes: 
SKO - Student-t kernel with the method of moments orocedure 
SKM - Student-t kernel with the modified ML estimation procedure 

GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.9 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO 2 ) in 
brackets. Normal criterion. Nsam=k*& where k10. 

Methods 	N=25 	N=50 	N=100 
Nsim=100 Nsim=50 Nsim=25 

1.5004 0.9086 0.5535 
(0.0179) (0.0062) (0.0024) 
1.4829 0.9041 0.5525 
(0.0167) (0.0057) (0.0024) 
1.7440 1.0873 0.6292 

(0.0743) (0.0692) (0.0418) 
1.8046 1.0876 0.6290 

(0.0934) (0.0691) (0.0416) 

Student-t SKO 1.5383 0.9641 0.5920 

with 5 d.f. (0.0211) (0.0155) (0.0089) 

CR0 1.5420 0.9701 0.5941 
(0.0213) (0.0165) (0.0093) 

SKM 2.0834 1.3732 0.8924 
(0.1005) (0.0843) (0.0751) 

GKM 2.0986 1.4009 0.8992 
(0.1026) (0.0926) (0.0779) 

Lognormal SKO 9.2716 8.2191 9.0941 
(0.3488) (0.3513) (0.6350) 

CR0 9.4971 8.3510 9.2030 
(0.3563) (0.3598) (0.6458) 

SKM 9.0315 7.4140 7.9587 
(0.4476) (0.6873) (0.8155) 

0KM 9.4392 7.7524 9.8840 
(0.5083) (0.7530) (1.3270) 

Cauchy SKO 6.9969 7.4781 9.4690 
(0.3716) (0.5498) (0.7234) 

CR0 7.1360 7.5796 9.5630 
(0.3734) (0.5506) (0.7197) 

SKM 7.5234 7.3232 7.0721 
(0.3611) (0.4531) (0.3906) 

GKM 8.0676 8.3755 10.4193 
(0.4025) (0.5830) (0.6853) 

Bimodal SKO 1.2377 0.8450 0.5570 
(0.0024) (0.0045) (0.0045) 

CR0 1.2422 0.8499 0.5595 
(0.0027) (0.0048) (0.0046) 

SKM 1.6180 0.9488 0.5907 
(0.0992) (0.0424) (0.0498) 

GKM 1.6180 0.9967 0.5907 
(0.0990) (0.0639) (0.0498) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
CR0 - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 

Data 

Normal 	SKO 

CR0 

SKM 

0KM 
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Tab leA7.1O MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Normal criterion. Nsamk*N where k50. 

Data Methods N25 N=50 N100 
Nsirn=100 Nsim50 Nsiin=25 

Normal SKO 1.5185 0.9134 0.5506 
(0.0182) (0.0084) (0.0018) 

GKO 1.5007 0.9Q98 0.5498 
(0.0166) (0.0079) (0.0018) 

SKM 1.6547 1.1164 0.6294 
(0.0596) (0.0679) (0.0380) 

GKM 1.6666 1.1164 0.6294 
(0.0602) (0.0679) (0.0380) 

Student-t SKO 1.5398 0.9911 0.5956 

with 5 d.f. (0.0186) (0.0374) (0.0104) 

GKO 1.5446 0.9973 0.5979 
(0.0199) (0.0387) (0.0109) 

SKM 2.0580 1.5598 0.8847 
(0.0904) (0.1534) (0.0626) 

GKM 2.0629 1.5717 0.8856 
(0.0918) (0.1592) (0.0629) 

Lognormal SKO 9.7698 8.6163 7.3224 
(0.4141) (0.3728) (0.5760) 

GKO 9.9447 8.7101 7.3714 
(0.4195) (0.3775) (0.5797) 

SKM 9.7279 8.2314 6.3528 
(0.5561) (0.6765) (0.9149) 

GKM 9.8120 8.3766 6.5100 
(0.5692) (0.7094) (0.9942) 

Cauchy SKO 7.4839 7.3613 8.1099 
(0.4113) (0.5889) (0.8449) 

GRO 7.5751 7.4143 8.1424 
(0.4103) (0.5887) (0.8447) 

5KM 8.4001 7.8764 8.4195 
(0.4265) (0.6169) (0.8701) 

GKM 8.4846 8.0010 8.8367 
(0.4302) (0.6306) (0.9479) 

Bimodal SKO 1.2417 0.8403 0.5650 
(0.0026) (0.0050) (0.0052) 

GRO 1.2464 0.8449 0.5676 
(0.0030) (0.0052) (0.0053) 

SKM 1.3863 0.8919 0.5580 
(0.0326) (0.0286) (0.0185) 

GKM 1.3864 0.8919 0.5580 
(0.0326) (0.0286) (0.0185) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 

SKM - Student-t kernel with the modified ML estimation procedure 

GKO - Gaussian kernel with the Normal optimum estimation procedure 

GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.11 EMSE (x10) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO) in 
brackets. Robust estimate for C'.  Nsamk*N where k=l. 

Data Methods N25 N50 N100 
Nsim=100 Nsim=50 Ns1m25 

Normal SKO 0.4091 0.2426 0.1460 
(0.0070) (0.0035) (0.0009) 

GKO 0.3926 0.23•92 0.1438 
(0.0073) (0.0045) (0.0007) 

SKM 0.4386 0.2541 0.1896 
(0.0201) (0.0076) (0.0199) 

KM 0.4378 0.2547 0.1896 
(0.0201) (0.0084) (0.0201) 

Student-t SKO 0.3622 0.2189 0.1362 
with 5d.f. (0.0047) (0.0012) (0.0010) 

GKO 0.3518 0.2183 0.1358 
(0.0045) (0.0016) (0.0011) 

SKM 0.4795 0.3385 0.2262 
(0.0284) (0.0159) (0.0233) 

GKM 0.5097 0.3650 0.2583 
(0.0326) (0.0249) (0.0362) 

Lognormal SKO 3.3104 2.4384 2.1522 
(0.1142) (0.0923) (0.1286) 

GKO 3.4121 2.4727 2.1851 
(0.1213) (0.0970) (0.1335) 

SKM 4.0106 2.8306 2.4579 
(0.1860) (0.1819) (0.2474) 

GKM 5.8355 4.7965 3.4559 
(0.3424) (0.4407) (0.4548) 

Cauchy SKO 0.4223 0.2427 0.1608 
(0.0219) (0.0095) (0.0090) 

GRO 0.3678 0.2329 0.1581 
(0.0156) (0.0110) (0.0103) 

SKM 1.0275 1.1820 1.2447 
(0.0442) (0.0702) (0.0925) 

GKM 1.8602 2.1841 2.5039 
(0.0977) (0.1547) (0.2016) 

Bimodal SKO 0.1753 0.1209 0.0831 
(0.0004) (0.0006) (0.0007) 

GKO 0.1751 0.1220 0.0837 
(0.0003) (0.0006) (0.0007) 

SKM 0.2244 0.1358 0.0821 
(0.0107) (0.0045) (0.0033) 

GKM 0.2239 0.1358 0.0821 
(0.0109) (0.0045) (0.0033) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GEM - Gaussian kernel with the ML estimation procedure 
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TableA7.12 EMSE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Robust estimate for 0 	Nsam=k*N where k=2. 

Data Methods N=25 J50 N=100 
Nsim=lOO Nsim50 Nsim=25 

Normal SKO 0.4095 0.2371 0.1452 
(0.0090) (0.0027) (0.0011) 

GKO 0.3928 0.2329 0.1446 
(0.0086) (0.0023) (0.0012). 

SKM 0.4511 0.2789 0.1649 
(0.0214) (0.0209) (0.0087) 

GKM 0.4611 0.2787 0.1648 
(0.0229) (0.0211) (0.0089) 

Student-t SKO 0.3621 0.2191 0.1354 
with 5 d.f. (0.0056) (0.0018) (0.0008) 

GKO 0.3557 0.2199 0.1350 
(0.0050) (0.0025) (0.0009) 

SKM 0.5665 0.3440 0.2531 
(0.0431) (0.0216) (0.0247) 

GKM 0.6137 0.3593 0.2680 
(0.0466) (0.0246) (0.0299) 

Lognormal SKO 3.1710 2.5948 1.9897 
(0.1201) (0.1295) (0.0556) 

GKO 3.3567 2.7141 1.9964 
(0.1310) (0.1407) (0.0597) 

SKM 4.1196 3.5365 3.2301 
(0.1931) (0.2838) (0.3480) 

GKM 5.3546 4.4617 4.6471 
(0.3206) (0.3848) (0.5155) 

Cauchy SKO 0.4002 0.2180 0.1567 
(0.0186) (0.0078) (0.0069) 

GKO 0.3952 0.2187 0.1569 
(0.0158) (0.0077) (0.0080) 

SKM 1.2639 1.4495 1.5819 
(0.0604) (0.0994) (0.1149) 

GKM 1.8985 2.1075 2.2455 
(0.1026) (0.1489) (0.1789) 

Bimodal SKO 0.1749 0.1206 0.0826 
(0.0004) (0.0006) (0.0007) 

GKO 0.1750 0.1213 0.0830 
(0.0003) (0.0006) (0.0007) 

SKM 0.2310 0.1411 0.0896 
(0.0098) (0.0056) (0.0068) 

GKM 0.2309 0.1412 0.0897 
(0.0098) (0.0056) (0.0068) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GRO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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TableA7.13 EMSE (x10 2  ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO 2 ) in 
brackets. Robust estimate for C •  Nsamk*N where k5. 

Data Methods N=25 N50 N=100 
Nsiin=100 Nsim=50 Nsim=25 

Normal SKO 0.3927 0.2492 0.1435 
(0.0062) (0.0053) (0.0007) 

GKO 0.3789 0.2450 0.1429 
(0.0054) (0.0048) (0.0007) 

SKM 0.4310 0.2723 0.1980 
(0.0166) (0.0183) (0.0215) 

GKM 0.4317 0.2719 0.1977 
(0.0168) (0.0184) (0.0215) 

Student-t SKO 0.3632 0.2232 0.1380 
with 5 d.f. (0.0053) (0.0035) (0.0022) 

GKO 0.3580 0.2226 0.1382 
(0.0054) (0.0033) (0.0023) 

SKM 0.5130 0.3839 0.3041 
(0.0267) (0.0276) (0.0361) 

GKM 0.5265 0.3978 0.3226 
(0.0295) (0.0316) (0.0430) 

Lognormal SKO 2.9604 2.5630 2.1149 
(0.1172) (0.1333) (0.0873) 

GKO 3.1565 2.6813 2.1893 
(0.1225) (0.1401) (0.0867) 

SKM 4.3172 3.6569 3.7839 
(0.2469) (0.3058) (0.6296) 

GKM 4.8863 4.1430 4.2077 
(0.2901) (0.3682) (0.7150) 

Cauchy SKO 0.3538 0.2266 0.1433 
(0.0136) (0.0086) (0.0069) 

GKO 0.3683 0.2303 0.1454 
(0.0153) (0.0087) (0.0077) 

SKM 1.3830 1.9104 1.8782 
(0.0662) (0.1102) (0.1551) 

GKM 1.7357 2.3614 2.2044 
(0.0919) (0.1316) (0.1889) 

Bimodal SKO 0.1762 0.1215 0.0818 
(0.0009) (0.0006) (0.0007) 

GKO 0.1758 0.1221 0.0822 
(0.0007) (0.0006) (0.0007) 

SKM 0.2101 0.1381 0.0834 
(0.0078) (0.0052) (0.0056) 

GKM 0.2100 0.1381 0.0834 
(0.0078) (0.0052) (0.0056) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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TableA7.14 EMSE (x10) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 

brackets. Robust estimate for 0 . Nsamk*N where k10. 

Data Methods N25 N50 N=100 
Nsim=100 Nsim50 Nsim=25 

Normal SKO 0.3977 0.2454 0.1483 
(0.0064) (0.0041) (0.0021) 

GKO 0.3827 0.216 0.1477 
(0.0052) (0.0037) (0.0021). 

SKM 0.4575 0.2819 0.1694 
(0.0306) (0.0135) (0.0128) 

GKM 0.4614 0.2806 0.1693 
(0.0308) (0.0131) (0.0128) 

Student-t- SKO 0.3686 0.2172 0.1347 

with 5 d.f. (0.0063) (0.0016) (0.0007) 

GKO 0.3604 0.2173 0.1351 
(0.0056) (0.0016) (0.0009) 

SKM 0.5.455 0.3434 0.2992 
(0.0302) (0.0170) (0.0446) 

GKM 0.5600 0.3458 0.3060 
(0.0329) (0.0173) (0.0468) 

Lognormal SKO 3.0952 2.5333 1.8276 
(0.1077) (0.1036) (0.1122) 

GKO 3.3245 2.6549 1.8674 
(0.1184) (0.1106) (0.1157) 

SKM 4.9448 4.2391 3.8214 
(0.3105) (0.3504) (0.5228) 

GKM 5.5040 4.6708 4.1696 
(0.3592) (0.4106) (0.5740) 

Cauchy SKO 0.3435 .0.2145 0.1479 
(0.0125) (0.0090) (0.0068) 

GKO 0.3638 0.2225 0.1501 
(0.0145) (0.0102) (0.0072) 

SKM 1.7467 1.7764 2.1313 
(0.0914) (0.1333) (0.2131) 

GKM 2.0336 1.9203 2.3139 
(0.1047) (0.1386) (0.2215) 

Bimodal SKO 0.1751 0.1216 0.0832 
(0.0003) (0.0006) (0.0006) 

GKO 0.1752 0.1222 0.0836 
(0.0003) (0.0006) (0.0006) 

SKM 0.2321 . 	 0.1310 0.0824 
(0.0131) (0.0045) (0.0030) 

GKM 0.2321 0.1310 0.0824 
(0.0131) (0.0045) (0.0030) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 

SKN - Student-t kernel with the modified ML estimation orocedure 

GKO - Gaussian kernel with the Normal optimum estimation procedure 

GK4 - Gaussian kernel with the ML estimation procedure 
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Tab leA7.l5 EMSE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 
brackets. Robust estimate for C . Nsam=k*N  where k=50. 

Data Methods N25 N50 N100 
Nsim=100 Nsim=50 Nsim25 

Normal SKO 0.4179 0.2409 0.1492 
(0.0107) (0.0039) (0.0015) 

GKO 0.4008 0.2376 0.1480 
(0.0092) (0.0034) (0.0013) 

SKM 0.4767 0.2748 0.1717 
(0.0262) (0.0152) (0.0093) 

GKM 0.4803 0.2748 0.1717 
(0.0263) (0.0152) (0.0093) 

Student-t SKO 0.3620 0.2209 0.132 
with 5d.f. (0.0049) (0.0021) (0.0016) 

GKO 0.3551 0.2195 0.1362 
(0.0042) (0.0019) (0.0016) 

SKM 0.5030 0.3301 0.3107 
(0.0228) (0.0249) (0.0456) 

GKM 0.5078 0.3306 0.3119 
(0.0235) (0.0251) (0.0459) 

Lognormal SKO 3.2502 2.5173 2.0671 
(0.1170) (0.1115) (0.1102) 

GKO 3.5584 2.6229 2.1049 
(0.1280) (0.115) (0.1131) 

SKM 5.1512 3.9583 3.9454 
(0.2898) (0.3154) (0.5816) 

GKM 5.3918 4.0982 4.0120 
(0.3159) (0.3327) (0.5915) 

Cauchy SKO 0.3472 0.2307 0.1505 
(0.0124) (0.0095) (0.0085) 

GRO 0.3752 0.2400 0.1529 
(0.0144) (0.0104) (0.0088) 

SKM 1.7678 1.9545 2.1046 
(0.1019) (0.1290) (0.1821) 

GKM 1.8958 1.9970 2.1255 
(0.1078) (0.1320) (0.1834) 

Bimodal SKO 0.1751 0.1217 0.0823 
(0.0003) (0.0006) (0.0007) 

GRO 0.1747 0.1224 0.0826 
(0.0003) (0.0006) (0.0007) 

SKM 0.2161 0.1354 0.0876 
(0.0072) (0.0046) (0.C.)32) 

GKM 0.2163 0.1354 0.0876 
(0.0072) (0.0046) (0.0032) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKN - Gaussian kernel with the ML estimation procedure 
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TableA7.16 MISE (xl0) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10) in 
brackets. Robust estimate for U. Nsamk*N where k1. 

Data Methods N=25 N50 N100 
Nsim=100 Nsim50 t'sim=25 

Normal SEW 1.6228 0.9483 0.5621 
(0.0254) (0.0127) (0.0035) 

GKO 1.5650 0.9363 0.5541 
(0.0264) (0.0163) (0.0027) 

SKM 1.7202 0.9864 0.7163 
(0.0717) (0.0271) (0.0709) 

GKM 1.7207 0.9897 0.7163 
(0.0717) (0.0300) (0.0715) 

Student-t SKO 1.5856 0.9334 0.5692 
with 5 d.f. (0.0212) (0.0055) (0.0032) 

GKO 1.5370 0.9300 0.5678 
(0.0202) (0.0065) (0.0039) 

SKM 1.9394 1.3293 0.8603 
(0.1122) (0.0571) (0.0798)' 

GKM 2.0473 1.4251 0.9750 
(0.1255) (0.0886) (0.1271) 

Lognormal ' SKO 6.5112 4.8491 4.2309 
(0.1682) (0.1412) (0.2035) 

GKO 6.7012 4.9259 4.2945 
(0.1803) (0.1476) (0.2108) 

SKM 7.7012 5.4917 4.7376 
(0.2913) (0.2841) (0.4001) 

GKM 10.9240 8.8871 6.4300 
(0.5882) (0.7538) (0.7710) 

Cauchy SKO 2.0317 1.1734 0.7610 
(0.0790) (0.0329) (0.0307) 

GKO 1.8776 1.1516 0.7546 
(0.0552) (0.0383) (0.0359) 

SKM 4.3669 4.9359 5.1902 
(0.1741) (0.2914) (0.3896) 

GKM 7.8571 9.1048 10.4050 
(0.3960) (0.6358) (0.8279) 

Bimodal 51<0 1.2357 0.8404 0.5694 
(0.0027) (0.0052) (0.0051) 

GKO 1.2413 0.8496 0.5734 
(0.0029) (0.0053) (0.0053) 

SKM 1.5355 , 	 0.9182 0.5496 
(0.0676) (0.0279) (0.0205) 

GKM 1.5340 0.9187 0.5495 
(0.0689) (0.0280) (0.0207) 

Notes: 
SEW - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.17 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10) in 
brackets. Robust estimate for C . Nsam=k*N where k=2. 

Data Methods N25 N50 N=100 
Nsim=100 Nsim=50 Nsim25 

Normal SKO 1.6256 0.9286 0.5591 
(0.0324) (0.0097) (0.0041) 

GKO 1.5662 0.91.35 0.5571 
(0.0310) (0.0084) (0.0045) 

SKM 1.7651 1.0751 0.6279 
(0.0765) (0.0745) (0.0:10) 

KM 1.8034 1.0750 0.6278 
(0.0818) (0.0750) (0.0317) 

Student-t SKO 1.5835 0.9365 0.5674 
with 5 d.f. (0.0253) (0.0070) (0.0039) 

GKO 1.5461 0.9378 0.5638 
(0.0220) (0.0087) (0.0034) 

SKM 2.2555 1.3421 0.9578 
(0.1708) (0.0773) (0.0859) 

GKM 2.4280 1.3973 1.0105 
(0.1803) (0.0875) (0.1043) 

Lognormal SKO 6.3267 5.1122 3.9763 
(0.1789) (0.1988) (0.0872) 

GKO 6.6276 5.3116 3.9929 
(0.1987) (0.2176) (0.0934) 

SKM 7.8949 6.6794 6.0046 
(0.3010) (0.4645) (0.5797) 

GKM 10.0836 8.2782 8.4325 
(0.5503) (0.6484) (0.8877) 

Cauchy SKO 1.9707 1.1043 0.7435 
(0.0663) (0.0247) (0.0230) 

GKO 1.9709 1.1054 0.7454 
(0.0553) (0.0242) (0.0276) 

SKM 5.3308 6.0789 6.6285 
(0.2469) (0.4143) (0.4860) 

GKM 7.9799 8.8165 9.3802 
(0.4204) (0.6135) (0.7376) 

Bimodal SKO 1.2346 0.8372 0.5656 
(0.0025) (0.0049) (0.0054) 

GKO 1.2412 0.8437 0.5685 
(0.0027) (0.0053) (0.0055) 

SKM 1.5736 0.9525 0.5978 
(0.0616) (0.0353) (0.0432) 

GKM 1.5736 0.9527 0.5980 
(0.0617) (0.0353) (0.0433) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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TableA7.18 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10) in 
brackets. Robust estimate for Cy. Nsam=k*N where k5. 

Data Methods N=25 N=50 N100 
Nsim=100 Nsim50 Nsim=25 

Normal SKO 1.5659 0.9728 0.5530 
(0.0226) (0.0191) (0.0027) 

GRO 1.5162 0.9575 0.5510 
(0.0196) (0.0173) (0.0025) 

SKM 1.6935 1.0511 0.7464 

(0.0593) (0.0652) (0.0765) 

GKM 1.6972 1.0502 0.7454 

(0.0600) (0.0654) (0.0765) 

Student-t SKO 1.5912 0.9495 0.5791 

with 5 d.f. (0.0236) (0.0161) (0.0097) 

GKO 1.5603 0.9444 0.5789 
(0.0227) (0.0150) (0.0103) 

SKM 2.0773 1.4789 1.1333 

(0.0997) (0.0966) (0.1267) 

GKM 2.1282 1.5293 1.2004 

(0.1093) (0.1113) (0.1522) 

Lognormal SKO 6.0564 5.0725 4.1776 

(0.1704) (0.2055) (0.1370) 

GKO 6.3473 5.2616 4.2967 

(0.1804) (0.2163) (0.1362) 

SKM 8.2881 6.9077 7.0602 
(0.4030) (0.5007) (1.0849) 

GKM 9.2713 7.7523 7.8275 
(0.4865) (0.6160) (1.2442) 

Cauchy SKO 1.8346 1.1314 0.7035 
(0.0472) (0.0286) (0.0223) 

GKO 1.8829 1.1427 0.7119 

(0.0539) (0.0290) (0.0254) 

SKM 5.8462 8.0110 7.8721 

(0.2732) (0.4596) (0.6498) 

GKM 7.3184 9.8714 9..L945 

(0.3767) (0.5432) (0.7787) 

Bimodal SKO 1.2422 0.8448 0.5596 

(0.0053) (0.0047) (0.0054) 

GRO 1.2442 0.8502 0.5621 

(0.0045) (0.0050) (0.0055) 

SKM 1.4463 0.9311 0.5592 

(0.0491) (0.0330) (0.0355) 

GKN 1.4464 0.9312 0.5592 

(0.0492) (0.0330) (0.0355) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Table A7.19 MISE (x10 2 ) of density estimates from simulated data. 
Averages over simulations, with standard errors (xlO ) in 
brackets. Robust estimate for C7. Nsam=k*N where k=10. 

Data Methods N25 N50 N100 
Nsim=100 Nsim=50 Nsiin25 

Normal SKO 1.5845 0.9592 0.5704 
(0.0233) (0.0149) (0.0078) 

GKO 1.5299 0.9455 0.5683 
(0.0191) (0.0136) (0.0076) 

SKM 1.7900 1.0879 0.6441 
(0.1091) (0.0482) (0.0457) 

GKM 1.8048 1.0835 0.6436 
(0.1096) (0.0470) (0.0456) 

Student-t SKO 1.6170 0.9264 0.5635 

with 5 d.f. (0.0284) (0.0076) (0.0029) 
GKO 1.5728 0.9233 0.5640 

(0.0249) (0.0068) (0.0035) 
SKM 2.1825 1.3368 1.1222 

(0.1115) (0.0619) (0.1572) 
GKM 2.2366 1.3450 1.1468 

(0.1210) (0.0629) (0.1655) 

Lognormal SKO 6.2239 5.0167 3.7284 
(0.1573) (0.1568) (0.1771) 

GKO 6.5709 5.2076 3.7933 
(0.1769) (0.1687) (0.1827) 

SKM 9.3899 7.9189 7.0573 
(0.5268) (0.5931) (0.8847) 

GKM 10.4071 8.6915 7.6669 
(0.6193) (0.7046) (0.9791) 

Cauchy SKO 1.7932 1.0955 0.7153 
(0.0419) (0.0297) (0.0223). 

GKO 1.8522 1.1205 0.7230 
(0.0499) (0.0348) (0.0239) 

SKM 7.3483 7.4352 8.8875 
(0.3764) (0.5520) (0.8853) 

GKM 8.5303 8.0417 9.6218 
(0.4280) (0.5733) (0.9146) 

Bimodal SKO 1.2392 0.8460 0.5701 
(0.0025) (0.0051) (0.0042) 

GKO 1.2442 0.8512 0.5729 
(0.0029) (0.0054) (0.0044) 

SKM 1.5801 0.8883 0.5510 
(0.0829) (0.0282) (0.0188) 

GKM 1.5801 0.8883 0.5510 
(0.0829) (0.0282) (0.0188) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 
SKM - Student-t kernel with the modified ML estimation procedure 
GKO - Gaussian kernel with the Normal optimum estimation procedure 
GKM - Gaussian kernel with the ML estimation procedure 
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Tab1eP7.20 MISE (x10 2) of density estimates from simulated data. 
Averages over simulations, with standard errors (x10 2 ) in 

brackets. Robust estimate for CZ Nsam=k*N where k50. 

Data Methods N=25 N50 N=100 
Nsim=lOO Nsim=50 Nsim=25 

Normal SKO 1.6573 0.9431 0.5741 

(0.0384) (0.0141) (0.0056) 

GKO 1.5952 0.9389 0.5696 

(0.0330) (0.0124) (0.0047) 

SKM 1.8595 1.0611 0.6530 

(0.0935) (0.0542) (0.0331) 

GT<M 1.8728 1.0610 0.6531 

(0.0940) (0.0542) (0.0332) 

Student-t SKO 1.5825 0.9464 0.5700 

with 5 d.f. (0.0214) (0.0092) (0.0058) 

GRO 1.5409 0.9372 0.5686 

(0.0171) (0.0080) (0.0055) 

SKM 2.0165 1.3049 1.1710 

(0.0804) (0.0921) (0.1644) 

GKM 2.0339 1.3070 1.1756 

(0.0828) (0.0925) (0.1658) 

Lognormal SKO 6.4496 4.9966 4.1056 

(0.1762) (0.1712) (0.1731) 

GKO 6.9114 5.1593 4.1658 

(0.1995) (0.1750) (0.1778) 

SKM 9.6432 7.3914 7.2948 

(0.4936) (0.5208) (1.0154) 

GKM 10.0852 7.6347 7.4119 

(0.5482) (0.5536) (1.C333) 

Cauchy SKO 1.8167 1.1502 0.7273 

(0.0432) (0.0309) (0.0287) 

GKO 1.8963 1.1798 0.7351 

(0.0513) (0.0348) (0.0297) 

SKM 7.4519 8.1840 8.8004 

(0.4164) (0.5325) (0.7570) 

GKM 7.9831 8.3628 8.8868 

(0.4397) (0.5449) (0.7620) 

Bimodal SKO 1.2374 0.8472 0.5628 

(0.0028) (0.0050) (0.0054) 

GKO 1.2392 0.8526 0.5653 

(0.0030) (0.0053) (0.0055) 

SKM 1.4828 0.9133 0.5846 

(0.0452) (0.0290) (0.0199) 

GKM 1.4839 0.9133 0.5846 

(0.0453) (0.0290) (0.0199) 

Notes: 
SKO - Student-t kernel with the method of moments procedure 

SKM - Student-t kernel with the modified ML estimation procedure 

GRO - Gaussian kernel with the Normal optimum estimation procedure 

GKM - Gaussian kernel with the ML estimation procedure 
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