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Abstract

This thesis advances the state-of-the-art of randomized optimization algorithms, to efficiently

solve the large-scale composite optimization problems which appear increasingly more fre-

quent in modern statistical machine learning and signal processing applications in this big-data

era. It contributes from a special point of view, that the low-dimensional structure of the com-

posite optimization problem’s solution (such as sparsity, group-sparsity, piece-wise smooth-

ness, or low-rank structure, etc), can be actively exploited by some purposefully tailored opti-

mization algorithms to achieve even faster convergence rates – namely, the structure-adaptive

algorithms. Driven by this motivation, several randomized optimization algorithms are de-

signed and analyzed in this thesis. The proposed methods are provably equipped with the

desirable structure-adaptive property, including the sketched gradient descent algorithms, the

structure-adaptive variants of accelerated stochastic variance-reduced gradient descent and ran-

domized coordinate descent algorithms. The thesis provides successful and inspiring paradigms

for the algorithmic design of randomized structure-adaptive methods, confirming that the low-

dimensional structure is indeed a promising “hidden treasure” to be exploited for accelerating

large-scale optimization.



Lay Summary

We are now living in the era of big-data. The engineers and computer scientists are often

encountered with optimization tasks involving large-scale and high-dimensional datasets, es-

pecially in the fields of machine learning, signal processing and computational imaging. The

commonly-used computational devices we have are usually limited in speed and storage, while

the size of the data in real-world applications are growing explosively. In order to overcome

this dilemma, researchers have been endeavoured to develop efficient optimization algorithms

using randomization techniques. The randomized optimization algorithms typically either per-

form random accesses only to a small amount of the data, or compute a small-sized summary

which includes enough information about the whole dataset to solve the original optimization

task. Due to the efficiency in big-data applications, the randomized optimization algorithms are

well-studied and widely-applied in machine learning and signal processing practice.

In this thesis, a new family of randomized optimization algorithms are proposed, which takes

into account the fact that many real-world optimization tasks admit solutions which are struc-

tured, such as sparsity, piece-wise smoothness or low-rank. These algorithms are specifically

tailored to exploit the structure of solutions and achieve further reductions in computational

cost. The algorithmic improvements of the proposed algorithms are validated both theoretically

and numerically, which shed lights to the research of next-generation optimization algorithms.
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Chapter 1
Introduction

1.1 Optimization with Big-Data

We are now in an era of boosting knowledge and large data with various statistical machine

learning and signal/image processing applications which involve the problem of tackling a

huge amount of data. These applications occur in all sorts of fields associated with data sci-

ence, vary from genetic engineering, to medical imaging such as the computed tomography

(CT) and magnetic resonance imaging (MRI), marketing, computer vision, natural language

processing, robotics, and in machine learning problems where we need to train classifiers or

make predictions from a large amount of data samples. Many of these applications involve

solving optimization problems with large scales. The term “optimization” in this context, es-

sentially implies that it is a computational action of making the best possible utilization of the

given information carried by the available data, in order to provide a good solution to real world

problems.

Let us start with a simple motivating example in Figure 1.1 of how (supervised) machine learn-

ing actually works and understand why optimization plays a key role in machine learning.

Suppose we wish to make a software which can enable our computers to classify between two

(or multiple) classes of images, for example, images of two men – Billy (class 1, blue dots)

and Luke (class 2, red dots). Assume that Billy and Luke look different enough such that the

underlying statistics of their photos is distinguishable. The blue dots and red dots in figure 1.1

live in a high-dimensional feature space – if we use the raw image directly, it is in the order

of millions of dimensions. Now, suppose we have been given some examples of Billy’s and

Luke’s images as training data, and meanwhile we model our classifier and restrict it to be a

hyper-plane (black line) in the same dimension. Then, to capture the statistics behind the train-

ing data, we need to optimize the position of the hyper-plane to make it classify reasonably well

on the given examples of images1. Generally, when the number of training examples are large

1together with some additional modelling (regularization) to avoid overfitting the data
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Figure 1.1: Supervised machine learning via optimization.

enough, the optimized classifier will typically classify with a fairly good accuracy on unseen

photos.

From this example we can clearly see that, the core computational step in supervised machine

learning is the optimization of the high-dimensional classifier over the training data. In mod-

ern machine learning practice, both of the number of training data and feature dimension can

be huge. In a large data setting a desirable optimization algorithm should be able to simul-

taneously address good accuracy of the solutions and small computational costs. Similar to

the real-world applications of statistical machine learning, large-scale optimization also plays a

central role in signal and image processing, such as the reconstruction of medical images for the

inner beings of human bodies via X-ray measurements (Computed Tomography) or magnetic

resonance technology (MRI), the denoising and deblurring of images taken by digital cameras,

superresolution, etc, where we typically attempt to recover or reconstruct clean signals or im-

ages from observations and measurement data. Just like machine learning, the recovering of a

signal or image can also be cast as an optimization program where we aim to minimize the error

we make to fit the given observation. Meanwhile if the measurement data is not informative

enough because of the lack of quantity or quality, to infer a clean signal or image, one needs

to encode into the optimization program manually and mathematically the prior information
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Figure 1.2: The blurred image, and the deblurred images by some optimization algorithms

of the clean signal or image – for example, the image of a real-world object usually has sharp

edges and smooth content. In a high level, the optimization in modern machine learning and

signal/image processing can generally be summarized as finding a solution vector x? which

minimizes a composite loss function:

(Data fidelity error) + (Model fitting error)

where the first term ensures the outcome of the optimization program is derived based on mak-

ing the best usage of the information provided by given data, while the second term for “model

fitting” ensures the prior information is also exploited for deriving an improved result in practice

– in machine learning, it typically leads us to a classifier which works even better on unseen

data (formally we say that it has better “generalization” ability); while in signal/image pro-

cessing, it leads us to a better estimate of the unseen ground truth. This model fitting term is

formally named as “regularization”.

The optimization problems in modern machine learning and signal/image processing practice

are very often large-scale and high-dimensional. For instance, the standard image-classification

benchmark dataset ImageNet [1] has a size of 1.31 TB, including 14 millions of real-world

images of various classes of objects, while each of image has millions of colored pixels. It is
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exceedingly challenging for usual computational devices to obtain practically-relevant solutions

from training any of state-of-art models from this type of datasets in a reasonable amount of

time. In the field of medical imaging, we often need to perform tomographic reconstruction

of 3D images or even 4D videos of the inner-being of a patient in a high resolution in order to

ensure the clinicians to make good diagnoses. The resulting optimization task can have a very

huge dimension by nature if, for example, the 3D image we wish to reconstruct is of a standard

size 1024× 1024× 1024, while the linear measurement data we obtain is of the same order of

size of the image dimension. In clinical practice, due to the forbidding size of the optimization

problem and often very limited computational resources, we often need to restrain from solving

the optimization problem in full and hence compromise the quality of the reconstructed images,

in order to perform real-time diagnoses.

In view of these significant challenges in the real-world big-data optimization, this thesis is

pursuing a novel approach for the design of large-scale optimization algorithms.

1.1.1 Contributions

In this thesis we present a novel family of randomized first-order algorithms for efficiently solv-

ing large-scale composite optimization tasks which occur increasingly at the core of modern

machine learning, data science, computer vision and signal processing applications. Our algo-

rithms are particularly designed under the principle of exploiting the solution’s low-dimensional

structure (such as sparsity, low-rank, and piece-wise smoothness) enforced by the regularization

or constraints as the source for computational speed-up – this is exactly the key novelty of this

thesis. In the stochastic optimization literature, although numerous stochastic iterative gradient-

based algorithms have been proposed in recent years for large-scale convex/non-convex opti-

mization, very little research have been done on understanding and utilizing the effect of the

solution’s structure towards the convergence speed of an iterative algorithm. This thesis records

a detailed research to fill in this gap of understanding formally, and provides both theoreti-

cal and algorithmic contributions with several successful structure-adaptive algorithmic-design

paradigms which advance the state-of-the-art in various scenarios.

This thesis contains a background chapter (chapter 2), four technical chapters (chapter 3 - 6)

and a conclusion chapter (chapter 7). Let’s now have a brief overview on the contribution of

each technical chapter:
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Chapter 3: Sketched Gradient Algorithms for Large-Scale Constrained Optimization.

In this chapter we present a class of iterative optimization algorithms, which we call Sketched

Gradient methods, for efficiently solving large-scale constrained least-squares, based on the

combination of projected gradient descent and least-squares sketching (randomized projection)

techniques [2, 3]. In scenarios where the constraint set enforces the least-squares solution to

have low-dimensional structure, one can apply randomized projection to reduce the dimension

of the large-scale problem, and hence reduce the computation cost of (projected) gradient de-

scent by exploiting the solution’s intrinsic structure. We show theoretically that the sketched

gradient algorithms indeed have convergence rates which scale with the solution’s statistical

complexity. In numerical experiments, the proposed sketching-based algorithm demonstrates

superior performance over the state-of-the-art stochastic variance-reduced gradient methods

on constrained lasso regression and multivariate low-rank matrix regression tasks in practical

large-minibatch training settings.

Chapter 4: Structure-Adaptive Accelerated Stochastic Gradient Descent

In this chapter, we study the potential structure-adaptiveness of stochastic gradient descent al-

gorithms with momentum for acceleration, and propose an algorithm named Rest-Katyusha for

regularized empirical risk minimization. The proposed method, being an improved variant of

a state-of-the-art stochastic variance-reduced gradient method Katyusha by Allen-Zhu [4], is

provably able to exploit the low-dimensional structure of the solution for even faster conver-

gence. This algorithmic improvement is achieved by restarting the Katyusha algorithm with a

period proportional to the statistical complexity of the solution, which has been formally ex-

pressed as the restricted strong-convexity (RSC) by [5]. We also propose an adaptive variant

of the Rest-Katyusha which is able to estimate the statistical complexity of the solution on the

fly, and demonstrate the effectiveness of this approach in sparse regression tasks on various

machine learning datasets.

Chapter 5: Structure-Adaptive Accelerated Coordinate Descent

This chapter shares the same spirit of chapter 4, where we extend the restart-based algorith-

mic structure and the structure-driven theoretical analysis, to advance the state-of-the-art of a

different class of randomized optimization algorithms – randomized block coordinate descent

methods. We propose adaptive-restart variants of the accelerated proximal coordinate gradient

(APCG) algorithm proposed by [6] which can exploit the solution’s structure and accelerate the
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convergence speed on separable composite convex optimization problems which have block-

coordinate-wise smoothness on the data-fidelity term.

Chapter 6: the Limitation and Practical Acceleration Strategies of Stochatic Gradient

Methods in Inverse Problems

In this chapter we investigate the practicability of stochastic gradient descent and recently intro-

duced variants with variance-reduction techniques in imaging inverse problems, such as non-

uniform image deblurring. Such algorithms have been shown in machine learning literature to

have optimal complexities in theory, and provide great improvement empirically over the full

gradient methods. Surprisingly, in some tasks such as image deblurring, many of such meth-

ods fail to converge faster than the accelerated full gradient method (FISTA), even in terms of

epoch counts. We investigate this phenomenon and propose a theory-inspired mechanism to

characterize whether a given inverse problem should be preferred to be solved by the stochastic

optimization techniques. Furthermore, to overcome another key bottleneck of stochastic opti-

mization which is the potentially heavy computation of proximal operators while maintaining

fast convergence, we propose an accelerated primal-dual SGD algorithm and demonstrate the

effectiveness of our approach in image deblurring and tomographic image reconstruction exper-

iments. Although unlike the previous technical chapters, the chapter 6 is mainly about empirical

study, it lays foundations and provides key insights for the future work – the structure-adaptive

algorithmic design tailored specifically for the imaging inverse problems.

1.1.2 Publications

This thesis is based on the following peer-reviewed publications [7, 8, 9, 10] and preprints

[11, 12] during my PhD study:

Chapter 3:

• Junqi Tang, Mohammad Golbabaee, Mike Davies. “Gradient Projection Iterative Sketch

for Large-Scale Constrained Least-Squares”, in Proc. of 34th International Conference

on Machine Learning (ICML), 2017.

• Junqi Tang, Mohammad Golbabaee, Mike Davies. “ Exploiting the Structure via Sketched

Gradient Algorithms”, in Proc. of 5th IEEE Global Conference on Signal and Informa-

tion Processing (GlobalSIP), 2017.
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Chapter 4:

• Junqi Tang, Mohammad Golbabaee, Francis Bach, Mike Davies. “Rest-Katyusha: Ex-

ploiting the Solution’s Structure via Scheduled Restart Schemes”, in Advances in Neural

Information Processing Systems (NeurIPS), 2018.

Chapter 5:

• Junqi Tang, Mohammad Golbabaee, Francis Bach, Mike Davies. “Structure-Adaptive

Accelerated Coordinate Descent”, Submitted for publication. hal-01889990v2, 2018.

Chapter 6:

• Junqi Tang, Karen Egiazarian, Mike Davies. “The Limitation and Practical Acceleration

of Stochastic Gradient Algorithms in Inverse Problems”, in Proc. of 44th International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.
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Chapter 2

Background

2.1 Convex Optimization in Learning and Estimation

Many applications in supervised machine learning and signal processing share the same goal,

which is to estimate the minimizer of a population risk via minimizing the empirical risk [13].

To be more specific, for given n samples (a1, b1), (a2, b2), ..., (an, bn) ∈ Rd × R from some

marginal distribution ρ, we define the empirical risk function as:

f(x) :=
1

n

n∑
i=1

f̄(ai, bi, x) (2.1)

where ai, x ∈ Rd, bi ∈ R, and f̄ : Rd → R ∪ {+∞} is a convex function. In supervised ma-

chine learning, ai is often referred to as the training data sample while bi is the corresponding

label. In signal/image processing applications they may be the representation of the observa-

tions and measurements. In practice the number of data samples or measurements is limited,

and from them we attempt to infer x† ∈ Rd which is the unique minimizer of the population

risk:

x† = arg min
x

E(a,b)f̄(a, b, x) :=

∫
f̄(a, b, x)dρ(a, b). (2.2)

where the expectation is taken over all possible pairs of (a, b) ∈ Rd × R drawn from the un-

derlying distribution ρ. The ultimate goal is to get a vector x? which is a good approximation

of x† from the empirical risk, in order to generalize well on unseen data. Since in many inter-

esting applications, the dimension of parameter space d is of the same order or even larger than

the number of data samples n, minimizing the empirical risk alone will introduce overfitting

and hence leads to poor estimation of the true parameter x† [14, 15, 16]. In general, avoiding

overfitting is a key issue in both machine learning and signal processing, and the most common

approach is to add some regularization while minimizing the empirical risk [17, 18] (for the
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sake of compactness of notations, we denote fi(x) := f̄(ai, bi, x) for the rest of the thesis):

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + λg(x)

}
, f(x) :=

1

n

n∑
i=1

fi(x), (2.3)

Each fi is assumed to be convex and Lipschitz continuous, while the regularization term g :

Rd → R∪{+∞} is a simple lower semi-continuous convex function and possibly non-smooth.

Let y ∈ Rn being the target vector such that y = [b1, b2, ..., bn]T – for classification tasks in

supervised machine learning, it is consisted of the labels for each training data point. We

illustrate some popular examples of the composite optimization problem (2.3):

Lasso regression. Let f(x) := 1
n

∑n
i=1(aTi x− bi)2 = 1

n‖Ax− y‖22 and g(x) = ‖x‖1 in (2.3),

then we get the Lasso [16, 17] objective:

x? ∈ arg min
x∈Rd

1

n
‖Ax− y‖22 + λ‖x‖1, (2.4)

which is essentially a sparse least-squares regression task. With sufficiently large regulariza-

tion parameter λ, the `1 norm penalty will enforce sparse solutions of (2.4). In signal/image

processing and compressed sensing, the Lasso and its variants are classic tools for recovering

sparse or approximately sparse signals from noisy and incomplete/insufficient measurements,

with solid recovery guarantees. In machine learning, the Lasso often serves as a tool for feature

selection and model compression for better generalization.

Group-Lasso. Denote that x consists of q sub-vectors: x = [x(1), x(2), ....x(q)]. Let f(x) :=

1
n

∑n
i=1(aTi x − bi)2 = 1

n‖Ax − y‖22, and g(x) =
∑q

j=1 ‖x(j)‖2 being a `2,1 regularization in

(2.3), then we get the Group-Lasso objective:

x? ∈ arg min
x∈Rd

1

n
‖Ax− y‖22 + λ

q∑
j=1

‖x(j)‖2. (2.5)

The `2,1 regularization enforces group sparsity on the solution x? [19].

Logistic regression. Let f(x) :=
∑n

i=1 log(1 + exp(−biaTi x)) in (2.3), we obtain the class of

logistic regression which is especially tailored to binary classification tasks in machine learning

where each label bi is set to be either−1 or 1. In practice, the logistic data-fidelity term is often

optimized with additional regularization such as `1 or `2 norms, to avoid overfitting for better

generalization and/or model compression [20].
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Low-rank multivariate regression. The training of multiple classifiers takes a more general

matrix form of (2.3). For example, let X ∈ Rd1×d2 where each column denotes a classifier to a

class (d2 classes in total), Y ∈ Rn×d2 being the label matrix:

X? = arg min
X∈Rd1×d2

‖|Y −AX|‖2F + λ‖X‖?, (2.6)

where ‖.‖? denotes the nuclear norm.

The nuclear-norm regularization which enforces low-rank structure, has been shown to be ef-

fective in multi-classification tasks in distinguishing objects with high similarities [21, 22].

Support vector machine. Let the data-fidelity term be the hinge-loss:

f(x) :=
1

n

n∑
i=1

max(0, 1− bi〈φ(ai), x〉), (2.7)

with bi being the labels and a non-linear function φ(.) which maps the data points to a higher

(possibly infinite dimensional) feature space in order to train a non-linear classifier, we re-

cover the objective of the (kernel) support vector machine (SVM) [13] for classification. Most

commonly used regularization for SVMs include an `1 and `2 penalty. In the case of high-

dimensions where d� n, the `1-SVM is preferred [23].

It is worth noting that for high-dimensional statistical machine learning, an interesting “bet on

sparsity” principle has been proposed in [24] which vindicates the superiority of `1 regulariza-

tion over the `2 ridge regression penalty. In short, intuitively, in high-dimensional case d� n,

if the true parameter x† is dense, both of these regularizations are poor in performance since the

training data is insufficient for the huge dimension. However, if the true parameter x† is sparse,

then `1 will have superior performance.

Constrained optimization. In practice, one may have specific prior knowledge about the so-

lution x† such that the desired output x? of the optimization problem should satisfy certain

constraints. A constraint can also be regarded as a regularization, with g(.) := ιK(.), where

ιK(x) =

 0 if x ∈ K.

+∞ if x /∈ K.
(2.8)

being the indicator function of a constraint set K. For example, let f(x) being the least-squares
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loss ‖Ax− y‖22, we obtain the constrained least-squares regression objective [17]:

x? ∈ arg min
x∈Rd

‖Ax− y‖22 + ιK(x) = arg min
x∈K
‖Ax− y‖22. (2.9)

Total-variation regularized least-squares. Let f(x) be a least-squares loss and g(x) =

‖Dx‖1 being the Total-Variation (TV) regularization [25, 26], where D is a discrete gradient

operator, we obtain the TV regularized Least-squares objective:

x? ∈ arg min
x∈Rd

1

n
‖Ax− y‖22 + λ‖Dx‖1 (2.10)

For TV regularization in 1-D, the linear operator D ∈ R(d−1)×d has all the diagonal elements

Dj,j = 1 and Dj,j+1 = −1 (∀1 ≤ j ≤ d− 1), while the rest of the elements are all zeros. The

TV regularization enforces piece-wise smoothness structure on the solution vector x?. It has

been widely applied in many fields of statistical machine learning and signal processing [18],

and is particularly popular in imaging applications [27], since a real-world image typically has

smooth contents and sharp edges.

2.2 Convexity, Strong-Convexity and Smoothness

Before the introduction of classic convex optimization algorithms, we first formally describe

and recall from the literature the aforementioned key notions of convexity and smoothness (see

e.g. [28]) of the objective function which we wish to optimize. For the sake of simplicity and

clarity we assume the function f(.) is differentiable in this section.

Convexity. A differential function f is convex if:

f(x)− f(x′)− 〈Of(x′), x− x′〉 ≥ 0, ∀x, x′ ∈ Rd, (2.11)

which essentially means f(x) is lower bounded by linear function f(x′) + 〈Of(x′), x − x′〉
with any possible x′ ∈ Rd. It is well-known that if a function is convex, any local minimum of

f is global minimum [28, Proposition 1.2].
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Strong-Convexity. A differential function f is µ-strongly-convex if:

f(x)− f(x′)− 〈Of(x′), x− x′〉 ≥ µ

2
‖x− x′‖22, ∀x, x′ ∈ Rd, (2.12)

which means geometrically the objective function f(x) is lower bounded by quadratic function

f(x′)+〈Of(x′), x−x′〉+ µ
2‖x−x′‖22, for any x′. If a function is strongly-convex, its minimizer

is not only global but also unique.

Smoothness. A differential function f is L-smooth if:

f(x)− f(x′)− 〈Of(x′), x− x′〉 ≤ L

2
‖x− x′‖22, ∀x, x′ ∈ Rd. (2.13)

In other words, the function f is upper bounded by any quadratic function f(x′)+〈Of(x′), x−
x′〉+ L

2 ‖x−x′‖22 with any x′. More specifically, L-smoothness implies that the gradient of the

function f is L-Lipschitz-continuous:

‖Of(x)− Of(x′)‖22 ≤ L‖x− x′‖22, ∀x, x′ ∈ Rd, (2.14)

which intuitively means that the gradient changes slowly between nearby points.

Generally speaking, minimizing an arbitrary continuous function is a difficult task, but fortu-

nately a large-variety of machine learning and signal processing tasks can be either directly-

formulated, reformulated, or approximated as a well-behaved problem which is convex (or

strongly-convex) and smooth.

Moreover, note that in terms of the regularization function g(.), we only consider the choices

of lower semi-continuous convex functions [29] in this thesis:

Lower Semi-Continuity. A function g(.) is called lower semi-continuous on X if:

g(x) ≤ lim inf
y→x

g(y),∀x ∈ X , (2.15)

where the notation lim inf denotes the limit-inferior. The inequality (2.15) essentially means

that for any x ∈ X , the function value g(x) is no greater than the smallest possible g(y) where

‖x − y‖2 → 0. All the regularizers (including the indicator function of a convex set) we have

introduced so far in the previous section are lower semi-continuous functions. We denote this

class of functions as Γ0(.) throughout this thesis.
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In this thesis we will discuss in various places on the convergence rates of algorithms. We now

provide the definition of the linear convergence rate.

Linear Convergence. Let x? be one of the optima of F (·). Suppose an iterative algorithm

starts from initial point x0 and generates a sequence x1, x2, ..., xK . If for any k ∈ [1, 2, ...,K],

F (xk)− F (x?) ≤ Cqk[F (x0)− F (x?)], (2.16)

for q ∈ (0, 1) and C being a position constant, then we say that the algorithm is guaranteed to

have a linear convergence rate. If (2.16) is not satisfied, the algorithm is sublinearly convergent.

2.3 First-Order Algorithms for Convex Composite Optimization

In this section we introduce first-order algorithms which are based on only the gradient in-

formation for solving the composite optimization task (2.3) in Section 2.1. We denote the

strong-convexity parameter and the smoothness parameter of the function f as µf and Lf re-

spectively:

µf
2
‖x− x′‖22 ≤ f(x)− f(x′)− 〈Of(x′), x− x′〉 ≤ Lf

2
‖x− x′‖22, ∀x, x′ ∈ Rd. (2.17)

2.3.1 Gradient Descent

The most simple first-order method for (2.3) is the (sub-)gradient descent [30]. We define the

subgradient1 of the function F as:

∂F : x→ {z ∈ Rd | (y − x)T z + F (x) ≤ F (y),∀y ∈ Rd}. (2.18)

The (sub-) gradient descent algorithm simply takes the following form:

Gradient Descent− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K⌊
xk+1 = xk − ηkGk, Gk ∈ ∂F (xk) := Of(xk) + λ∂g(xk)

1Although f(x) may be smooth the composite cost F (x) may not, hence we need to define the subgradients.
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Dimensional reduction 

By Random projection 

Figure 2.1: Projected gradient descent algorithm for constrained optimization : red solid
arrows denote the gradient descent step on the smooth part f , while the red dashed arrows
denote the projection operation on the convex set K.

where ηk being the sequence of step-size.

With minor assumptions such as Lipschitz continuity of F , one can show that with step-size

ηk = O(1/k), the (sub-)gradient descent has a convergence rate of F (xk) − F ? ≤ O(1/
√
k),

see e.g. [31, Theorem 3.2.2]. If the regularization term g(.) isLg-smooth, then F is (Lf+λLg)-

smooth, ∂F = OF = Of + λOg, and one can show that with step-size ηk = 1
Lf+λLg

the

gradient descent has a convergence rate of F (xk) − F ? ≤ O(1/k), see e.g. [28, Theorem

3.3]. We can clearly see that the main drawback of this naive gradient descent in composite

optimization is that, as long as one of the function in the composite task (2.3) is non-smooth, it

cannot benefit from the smoothness from the smooth part for faster convergence. This key flaw

of (sub-)gradient descent motivates the developments of the proximal gradient methods.

2.3.2 The Projection and Proximal Operator for Faster Composite Optimization

In composite optimization with a smooth data-fidelity term and a non-smooth regularizer, the

(sub-)gradient descent fails to converge fast since it treats the optimization objective as a whole

and is blind to the partial smoothness of it. Intuitively, if an iterative algorithm can deal with

each part separately, it may have chance to benefit from the smoothness and achieve a faster

convergence rate. Let us start with a simple special case of (2.3) with the regularization g(x)

being an indicator function of a convex set K:

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + ιK(x)

}
, (2.19)
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which can be equivalently written simply as minimizing the smooth function f within the con-

vex set K:

x? ∈ arg min
x∈K

f(x). (2.20)

The most simple iterative scheme one can think of for solving (2.20) is that, at each iteration, a

gradient descent step on f is first performed with step-size η = 1
Lf

:

x+ = xt − ηOf(xt), (2.21)

and if x+ is outside the feasible regime marked by K, we project it back to the set in order to

make it remain feasible. A reasonable choice is the orthogonal projection since it is desirable

that we pick the closest point of x+ such that while ensuring feasibility, the update does not

drift too much from the steepest descent direction given by the gradient of f . Let us formally

define the projection operator:

Definition 2.3.1. (Projection Operator.) We define PK(x) : Rd → Rd the projection operator

of the convex set K at a point x ∈ Rd as:

PK(x) := arg min
y∈Rd

ιK(y) +
1

2
‖x− y‖22. (2.22)

With the definition of the projection, we can write the projected gradient descent (PGD) algo-

rithm (see e.g [32]) for (2.20):

PGD− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K⌊
xk+1 = PK[xk − ηOf(xk)]

Thanks to the splitting scheme, with step size η = 1
Lf

, the PGD algorithm enjoys a convergence

rate of F (xk) − F ? ≤ O(1/k) – the same rate of running gradient descent on completely

smooth functions. We visually describe the dynamic of running projected gradient descent on

a constrained optimization problem in Figure 2.1.

Motivated by the fact that the indicator function ιK(.) is only a special case of the class of lower

semi-continuous convex functions Γ0(Rd), Moreau [33] generalized the projection operator to

the case of an arbitrary function in Γ0(Rd). This extension of the projection operator is named

the proximal operator:
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Definition 2.3.2. (Proximal Operator.) We define proxg(x) : Rd → Rd the proximal operator

of the lower semi-continuous convex function g at a point x ∈ Rd as:

proxg(x) := arg min
y∈Rd

g(x) +
1

2
‖x− y‖22. (2.23)

In the next subsection we shall introduce the proximal gradient descent – a fundamental split-

ting scheme with the combination of gradient descent and generalized projection (proximal

operator) for solving the generic composite optimzation task (2.3) in Section 2.1.

2.3.3 Proximal Gradient Descent

The proximal gradient descent (Prox-GD) [34] – also known as the forward-backward splitting

in the literature, takes the following form :

Prox-GD− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K⌊
xk+1 = proxηλg[x

k − ηOf(xk)]

where η denotes the step size and a typical choice is η = 1
Lf

. We denote the proximal operator

as the following form:

proxηλg(·) = arg min
x∈Rd

1

2η
‖x− ·‖22 + λg(x). (2.24)

At each iteration of proximal gradient descent, a gradient at point xk is calculated. Since this

algorithm only uses the gradient information – a first-order oracle, to perform the updates, it is

considered as a “first-order” optimization algorithm. At iteration k, with step size η = 1
Lf

, the

update xk satisfies (see e.g. [35, Theorem 3.1]):

F (xk)− F ? ≤ O
(
Lf‖x0 − x?‖22

k

)
, (2.25)

for convex case µf ≥ 0. If f(.) is strongly-convex, which means µf > 0, a linear convergence

guarantee can be obtained [31]:

F (xk)− F ? ≤
(

1− µf
Lf

)k
[F (x0)− F ?], (2.26)
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One important attribute which makes the first-order methods superior to the higher-order meth-

ods such as the proximal Newton method [36] is that the computational cost of them is linear

with respect to the dimension d, while it is usually d2 or d3 for the higher-order methods. The

convergence rate of the proximal Newton method is super-linear only locally and requires ad-

ditional assumptions on higher-order smoothness. Meanwhile, the proximal gradient methods

provide us an efficient way to handle the non-smooth regularization, which make the first-order

methods even more highly favored in large-scale composite optimization.

2.3.4 The Acceleration of Proximal Gradient Descent

In this subsection we introduce the acceleration trick of gradient descent. With this trick, the

convergence rate of original gradient descent scheme can be significantly improved. This phe-

nomenon was first reported by Nesterov [37] in 1983, in which he proposed the very first accel-

erated gradient method for solving smooth convex problems, with a convergence rate O(1/k2)

instead of O(1/k) which is for the original gradient descent scheme. If the objective F is a

convex and smooth function, Nesterov’s accelerated gradient descent scheme can be written as:

Accelerated GD− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K yk = xk − ηOF (xk); → gradient descent step

xk+1 = yk + β(yk − yk−1);→ momentum step

The only difference between the acceleration and ordinary scheme of gradient descent is an

additional extrapolation step for momentum. Researchers in the field of optimization commonly

refer this type of scheme as Nesterov’s acceleration. Moreover, Nesterov also demonstrated

that such an accelerated gradient scheme with a convergence-rate F (xk) − F ? ≤ O(1/k2) is

worse-case optimal for convex and smooth first-order optimization. We first define formally

the function class notation:

Definition 2.3.3. For an Euclidean vector space X , we denote Fp,qL (X ) for the class of convex

functions which are p-times differentiable while the q-th derivatives of them are L-Lipschitz

continuous on X .

With this notation, we can present the lower-bound derived by Nesterov [31, Theorem 2.16]:

Theorem 2.3.4. (Lower-bound for convex and smooth optimization [31]) For any 1 ≤ k ≤
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1
2(d−1) and x0 ∈ Rd there exist a function F ∈ F∞,1L (Rd) such that for any iterative algorithm

which uses only first-order oracle OF (.), the following inequality holds:

F (xk)− F ? ≥ Ω

(
Lf‖x0 − x?‖22

(k + 1)2

)
. (2.27)

Such a lower-bound suggests that there exists at least one L-smooth convex function on which

any first-order method cannot converge faster than O(1/k2) for a limited number of iterations

which 1 ≤ k ≤ 1
2(d− 1).

For the case where F is a non-smooth function, it has been shown by Nesterov [38] in 2005

that one can run the accelerated gradient scheme on an auxiliary objective function which is

a smoothed approximation of F , and obtain a convergence rate of F (xk) − F ? ≤ O(1/k),

which although being sub-optimal for solving composite problems we are interested in (with

the same convergence of proximal gradient descent), is still better than the (sub-) gradient

descent’s O(1/
√
k) for generic non-smooth optimization. The accelerated gradient scheme has

been later extended by [39] and [35] for the composite optimization task (2.3) in which f(.)

is smooth but g(.) can be non-smooth. The accelerated gradient method developed by [35] is

known as the Beck-Teboulle proximal gradient or the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA):

FISTA− Initialize x0 ∈ Rd, a0 = 0;

For k = 0, 1, 2, ...,K
xk = proxηλg(y

k − ηOf(yk));→ proximal descent step

ak+1 = (1 +
√

1 + 4a2
k)/2;

yk+1 = xk + ak−1
ak+1

(xk − xk−1); → momentum step

With a computationally-negligible extrapolation step, the FISTA enjoys a significantly im-

proved convergence speed [35]:

F (xk)− F ? ≤ 4Lf‖x0 − x?‖22
k2

, (2.28)

which means that in order to achieve F (xk)−F ? ≤ ε, only k ≥ 4L√
ε

iterations are needed. Due

to the fast convergence, FISTA has become well-known and widely applied by practitioners

especially in the fields compressed sensing and signal/image processing applications.
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Figure 2.2: Empirical performance illustration of FISTA, periodic restarted FISTA (with ex-
act knowledge of the strong-convexity parameter µ) and adaptive restarted-FISTA (based on
enforcing monotonicity) for minimizing strongly-convex functions.

2.3.5 The Restart Schemes for Accelerated Gradient Methods

Although being a fast gradient method which is able to solve generic convex composite opti-

mization task (2.3) with a convergence rateO(1/k2), the accelerated proximal gradient method

FISTA on its own does not have a linear convergence rate when the objective function F is

strongly-convex. In contrast, the vanilla proximal gradient descent can automatically converge

at a linear rate for minimizing strongly-convex functions. In order to converge at an accelerated

linear convergence rate, FISTA need an extra periodic restart scheme [39, 40, 41], and such

a restart scheme typically requires knowledge of the strong-convexity parameter µ in order to

determine the correct restart period:

Denote T =
⌈
4
√
Lf/µ

⌉
as the restart period for FISTA, we have:

F (xT )− F ? ≤ 4Lf‖x0 − x?‖22
T 2

≤ 4Lf [F (x0)− F ?]
µT 2

≤ 1

4
[F (x0)− F ?]. (2.29)

If we reinitialize FISTA with ak = 0 and yk = xk every T =
⌈
4
√
Lf/µ

⌉
iterations, one can

easily derive that the restarted-FISTA [42, 40, 43] has an accelerated linear convergence rate:

F (xk)− F ? ≤
(

1

4

)bk/T c
[F (x0)− F ?]. (2.30)

Now we can see that, in order to achieve an accuracy of F (xk)−F ? ≤ ε for µ-strongly-convex

F , the restarted FISTA algorithm needs only k ≥ O(
√

Lf
µ log 1

ε ) iterations, while the proximal

gradient descent needs k ≥ O(
Lf
µ log 1

ε ) iterations.
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The main drawback of the restart scheme is the need for the prior knowledge about the strong-

convexity parameter µ, which is difficult in general to be estimated accurately beforehand.

To overcome this issue in practice, researchers [42] proposed two heuristic adaptive restart

schemes, the functional restart and gradient restart, which do not need to foreknow the strong-

convexity parameter. These adaptive restart schemes are all based on enforcing monotonic

descent for each iteration of FISTA, i.e.:

F (xk) ≤ F (xk−1),∀k. (2.31)

When we run FISTA with the adaptive restart scheme proposed by [42], the condition (2.31) is

examined for each iteration of FISTA. Whenever (2.31) is violated, the adaptive restart scheme

re-initializes FISTA with ak = 0 and yk = xk. Although being the most simple and intuitive

heuristic adaptive-restart schemes, they work reasonably well in practice.

In Figure 2.2 we describe visually the practical performance of FISTA (orange line), the FISTA

with periodic-restart using the exact knowledge of µ (red line), and the adaptive-restart heuristic

by [42] (purple dashed line) for minimizing a strongly-convex function. The FISTA algorithm

typically oscillates around the solution x? [42, 40, 44], while the adaptive restarted-FISTA de-

tects the oscillating behavior on the fly and reinitialize the momentum to avoid it. The periodic

restart scheme with the exact knowledge of µ takes the shortest route towards the solution.
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2.4 Stochastic First-Order Optimization Algorithms

2.4.1 Stochastic Gradient Descent

In modern machine learning practice, the optimization problems are often large-scale and high-

dimensional, due to the large number of available training data and features. Although the

previously introduced deterministic gradient descent methods achieve certain scalablity for

large-scale problems, there is still much room for practical improvements. A potentially more

powerful approach in practice is the stochastic gradient descent which can be dated back to [45]

and has been widely applied in machine learning and data science [46, 47]. If we assume each

fi(.) has L-Lipschitz continuous gradient:

‖Ofi(x)− Ofi(x
′)‖22 ≤ L‖x− x′‖22,∀x, x′ ∈ Rd, (2.32)

the basic form of stochastic (sub-)gradient descent for (2.3) can be formulated as the following:

SGD− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K pick ik ∈ [1, 2, ..., n] uniformly at random;

xk+1 = xk − ηkGk, Gk ∈ Ofi(xk) + λn∂g(xk)

In iteration k, SGD randomly selects one (or a subset if we use a minibatch scheme) of the

functions fi(.) and compute the gradient Ofik(.) at xk. It is obvious that the Ofik(xk) is

an unbiased estimator of Of(xk) with some variance σ2. With necessary shrinking step size

sequence ηk, the SGD and its variants typically achieves O(1/
√
k) convergence in expectation

for convex functions [28, Chapter 6]. To be more specific, if λg(.) is L′-Lipschitz continuous,

this vanilla SGD has an expected convergence rate of:

EF (xk)− F ? ≤ O
(
L

k
+
L′ + σ√

k

)
. (2.33)

Although being slower than the gradient descent (GD) in terms of the number of iterations,

each iteration of SGD is n-times cheaper than one iteration of GD, if we ignore the cost of

computing the sub-gradient of g. Because of this benefit in terms of computation, most of the

state-of-the-art and popular optimization algorithms in various applications in machine learning

are variants of SGD (even for non-convex problems) – for example the widely applied Pegasos
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algorithm [48] – a stochastic (sub-)gradient descent method for SVM, as well as the AdaGrad

[49] – a stochastic (sub-) gradient method with adaptive step-sizes for faster online learning,

and the Adam algorithm which is tailored for training deep neural networks [50, 51, 52], etc.

Inspired by the success of Nesterov’s acceleration and proximal gradient descent for determin-

istic optimization, the SGD can also be extended to have improved convergence rates. For

instance, Lan [53] proposes an accelerated (sub-) gradient descent with the Nesterov’s acceler-

ation technique, improving the convergence rate to:

EF (xk)− F ? ≤ O
(
L

k2
+
L′ + σ√

k

)
, (2.34)

which is still an O(1/
√
k) convergence rate overall. In other words, in order to achieve

EF (xk) − F ? ≤ ε, k ≥ O
(
n+L′
ε2

)
iterations are needed for the accelerated SGD method

proposed in [53]. We need to note that such a convergence-rate is worst-case optimal [53]

for the online optimization (also known as stochastic-programming) setting where we denote

ξ := (a, b) as a random variable:

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + λg(x)

}
, f(x) := Eξ f̄(x, ξ), (2.35)

where the data-samples (a1, b1), (a2, b2), ..., (ak, bk) are obtained from a data stream in a se-

quential manner. In such a setting, at t-th iteration, the SGD algorithm computes a stochastic

gradient Of̄(xk, ak, bk) + λn∂g(xk) based on the current data-sample (ak, bk) and then per-

forms the descent update.

However, although being an optimal algorithm for the generic stochastic optimization objective

(2.35), the regularized empirical risk minimization (2.3) is only a subset of this class of objec-

tives2, where such a rate is far from being optimal. Several researchers [54, 55] have derived

important lower-bounds for optimizing the finite-sum objective with stochastic gradient oracle

Ofi(.), and we present here a typical well-known result:

Theorem 2.4.1. (Lower bound for convex and smooth finite-sum optimization [54, Theorem

7].) For any randomized algorithms with access to stochastic gradient oracle Ofi(.), and any

L, R, ε ≥ 0, there exist a sufficiently large dimension d = O(L
2R6

ε2
log LR2

ε + R2n log n), and

n functions fi ∈ F1,1
L (X ) where X ∈

{
x ∈ Rd|‖x‖2 ≤ R

}
, such that in order to achieve an

2If we set ξ to be a random variable uniformly drawn from the data sample (a1, b1), (a2, b2), ..., (an, bn), we
recover the regularized ERM objective (2.3)
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output x̂ which satisfies E[F (x̂)− F (x?)] ≤ ε for the minimization task:

x? ∈ arg min
x∈X

{
F (x) :=

1

n

n∑
i=1

fi(x)

}
, (2.36)

a necessary

Ω

(
n+R

√
nL

ε

)
(2.37)

number of stochastic gradient evaluation are needed.

Meanwhile a similar result presented in [54, Theorem 8] demonstrates that if further F (x) is

µ-strongly-convex, then such a lower bound can be improved to:

Ω

[(
n+

√
nL

µ

)
log

1

ε

]
. (2.38)

As we will see in the next subsection, the convergence of SGD on (2.3) can be much improved

and can even match these lower-bounds via applying the variance-reduction techniques.

2.4.2 Stochastic Variance-Reduced Gradient Methods

Although being a huge practical success already, the SGD type methods mentioned in previous

subsection are somewhat suboptimal in principle – despite the fact that Ofik(xk) is an unbiased

estimator for the true gradient Of(xk), the variance of the gradient estimator is unchanged for

all iterations, even when xk become increasingly nearer to the optimal solution x?. Hence one

needs to either shrink the step size of SGD or increase the minibatch size to reduce this variance

– both of these approaches will slow down the convergence of SGD. This is precisely why SGD

appears to be much slower than GD in terms of iteration number.

Recently, researchers have come up with novel SGD variants which are able to achieve pro-

gressive variance-reduction on the stochastic gradient estimator with a small amount of com-

putation or memory overhead, starting from the stochastic averaged gradient (SAG) algorithm

[56, 57], to stochastic variance-reduced gradient (SVRG) algorithm [58, 59, 60], SDCA [61]

and SAGA [62], etc. Among these algorithms, researchers commonly regard the SVRG and

SAGA being the most representative ones.

We present here the proximal version of SVRG [60] for solving the composite optimization

23



Background

tasks:

Prox-SVRG − Initialize x0 ∈ Rd, x̂0 = x0, return x̂S+1

For s = 0, 1, 2, ..., S

Compute Of(x̂s)

For j = 0, 1, 2, ...,m
k = sm+ j;

pick ik ∈ [1, 2, ..., n] uniformly at random;

Ok = Ofik(xk)− Ofik(x̂s) + Of(x̂s);→ variance reduction

xk+1 = proxηλg[x
k − ηOk], → proximal SGD

x̂s+1 =
1

m

m∑
j=1

xsm+j+1.→ update the snapshot point

The Prox-SVRG algorithm adopts a two-loop structure. It introduces a sequence of “snap-

shot” points x̂s along the path towards the optima, and obtain the stochastic gradient estimator

at point xk as:

Ok = Ofik(xk)− Ofik(x̂) + Of(x̂s). (2.39)

Obviously, Ok is still an unbiased estimator of the true gradient at xk:

EikOk = EikOfik(xk)− EikOfik(x̂s) + Of(x̂s) = Of(xk), (2.40)

however, the variance of this estimation is no longer constant but dependent to the suboptimality

of xk and x̂, as shown by [58], if we assume each fi(.) has L-Lipschitz continuous gradient,

then we can have:

Eik‖Ok − Of(xk)‖22 ≤ 4L[f(xk)− f(x?) + f(x̂s)− f(x?)]. (2.41)

Intuitively, if we make the x̂s approaching closer and closer to the optima x?, then the variance

will be reduced as xk → x?. The outerloop of Prox-SVRG updates the snapshot point x̂s and

the full gradient Of(x̂s), while the inner-loop performs stochastic gradient descent using the

variance-reduced gradient estimator in the form of (2.39).

With the epoch length set to be m = O(n), the Prox-SVRG algorithm combines the merit

of both deterministic and stochastic gradient descent algorithm – the fast convergence speed
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Figure 2.3: Empirical performance illustration of deterministic GD, SGD, and SGD with
variance-reduction. The SGD usually has a fast initial convergence, but will slow down grad-
ually due to the non-decreasing variance of stochastic gradient estimator, while the variance-
reduction technique overcomes this issue.

and low computational cost per-iteration. We visually describe the superiority of the variance-

reduction technique over the vanilla SGD and deterministic gradient method by Figure 2.3.

Recently, researchers advance the SVRG-type algorithms with extending the Nesterov’s accel-

eration techniques, starting from the work of [63], [6], [64], [65] and [55], with the state-of-

the-art algorithms being: the Katyusha algorithm [4] which is an accelerated SVRG algorithm

with a delicately designed momentum step, the MiG algorithm [66] which shares the same

spirit of Katyusha, and the accelerated variants of SAGA algorithm [67, 68]. It is worth noting

that such accelerated variance-reduction methods matches the worst-case iteration complexity

lower bounds we have shown in the previous section proven by [55] and [54] for smooth and

convex/strongly-convex finite-sum optimization, hence they are so-called “optimal” algorithms.

We summarize the iteration complexity of both deterministic gradient descent methods and

stochastic variance-reduced gradient descent algorithms we have introduced thus-far for solv-

ing the composite finite-sum optimization problem (2.3) in table 2.13. Note that the iteration

complexity is measured as the number of Ofi(.) evaluations an algorithm needed to achieve

an output x̂ such that F (x̂) − F (x?) ≤ ε. If we assume L ≈ O(Lf ), which usually holds

3FISTA needs to have a periodic restart to achieve the linear rate described in the table, in the presence of
strong-convexity.
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ALGORITHMS ITERATION COMPLEXITY ITERATION COMPLEXITY
µ = 0 µ > 0

PROX-GD O
(
nLf

ε

)
O
(
nLf

µ log 1
ε

)
AGD / FISTA O

(
nLf√
ε

)
O
(
n
√

Lf

µ log 1
ε

)
PROX-SVRG/SAGA, ETC O

(
n+L
ε

)
O
(

(n+ L
µ ) log 1

ε

)
KATYUSHA/MIG, ETC O

(
n+

√
nL
ε

)
O
(

(n+
√

nL
µ ) log 1

ε

)
Table 2.1: The number of Ofi(.) evaluations needed for the first-order methods to find a solu-
tion x̂ which satisfies F (x̂)−F ? ≤ ε. We denote by µ the strong-convexity parameter of F , Lf
the Lipschitz constant of Of(.), and L the maximum Lipschitz constant of Ofi(.).

true in machine learning practice with modern datasets4, then the Prox-SVRG type methods

have strictly better iteration complexity than Prox-GD, while the accelerated stochastic gradi-

ent methods like Katyusha have strictly better iteration complexity than accelerated full gradient

method such as FISTA.

2.4.3 Randomized Coordinate Descent

Another important type of randomized first-order algorithm for convex composite optimization

is the randomized coordinate descent methods (RCD) [69, 70] for solving a subset of the convex

composite optimization task (2.3), which reads:

x? = arg min
x∈Rd

{F (x) := f(x) + λg(x)} , (2.42)

where x consists of d-variables: [x(1), ..., x(d)] and the regularization term g(x) is potentially

non-smooth but separable such that g(x) =
∑d

i=1 gi(x(i)). If we define the partial gradient

Oif(x) = ∂f
∂x(i)

(x) and assume a coordinate-wise smoothness of function f(.) which has the

following form:

|Oif(x+ hei)− Oif(x)| ≤ Li|h|, (2.43)

4However, as we will show in chapter 6, there are several important counter examples for signal/image processing
applications, such as space-varying deblurring.
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for any coordinate index i. We denote ei as a d-dimensional vector with i-th element being 1

while 0 for any other elements, x ∈ Rd and h ∈ R. The randomized coordinate descent (RCD)

algorithm typically takes the following form:

RCD− Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K − 1 pick ik ∈ [1, 2, ..., d] uniformly at random;

xk+1 = prox
L−1
ik

λgik
[xk − L−1

ik
Oikf(xk)],

where in each iteration a coordinate index is picked at random and a gradient descent step on

the chosen coordinate is performed. To achieve an output of F (xK) − F ? ≤ ε for a general

convex F (.), such an vanilla coordinate descent algorithm needs:

O

(
dmaxi Li

ε

)
, (2.44)

number of iterations [70, 71]. Note that one may easily replace the maxi Li with the aver-

age 1
d

∑d
i=1 Li via importance sampling according to the Lipschitz constants Li [69]. Since

the complexity of one evaluation of the partial gradient Oif(.) is usually O(n), to achieve

ε-accuracy the RCD needs O
(
ndmaxi Li

ε

)
FLOPs, while the gradient descent needs O

(
ndL
ε

)
.

Due to the fact that maxi Li ≤ L (and often� L in practice5), the RCD algorithm, when appli-

cable, can also achieve improved computational efficiency via randomization on the coordinate

to exploit the directional smoothness.

Like the Nesterov’s momentum trick for accelerating both the deterministic and stochastic gra-

dient descent, the convergence rate of the RCD can also be much improved by applying the

Nesterov’s acceleration, as shown by [69], [72], [6] and [73], etc. By further incorporating

importance sampling, one may yield a state-of-the-art RCD iteration complexity which is of

O

(√∑d
i=1 Li
ε

)
for convex functions, and O

(√
(
∑d

i=1 Li)/µ log 1
ε

)
for µ-strongly-convex

functions [74].

5For instance, consider the Lasso problem (2.4) in Section 2.1 where A is a random Gaussian matrix. Denote
H = ATA and σmax(H) as the largest singular value of H , then we have maxi Li = maxiHii ≈ σmax(H)

d
=

L
d
� L.
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2.5 Primal-Dual Gradient Methods

So far we have covered a variety of deterministic and stochastic gradient algorithms which

directly solve the original convex composite optimization problem (2.3). We denote the original

form of (2.3) as the primal problem. However, in many image processing and machine learning

applications, we may face scenarios which are more complex and challenging, for example:

Non-smooth data-fidelity term.

The data-fidelity term f(x) can be non-smooth, with a typical example in imaging – denoising

a (vectorized) image x# which is corrupted with salt-and-pepper noise. A successful way of

recovering such an image is to solve:

x? ∈ arg min
x
λ‖Dx‖1 + ‖x− x#‖1, (2.45)

namely the TV-`1 model [75], where the first term (TV-regularization) utilizes the prior knowl-

edge that the image to be estimated is piece-wise smooth, while the second-term aims to nullify

the salt-and-pepper noise via using the `1 norm. It is shown to have superior performance

over the traditional TV-denoising model which uses ‖x − x#‖2 as the second term. However

the TV-`1 model is the composition of two non-smooth functions, and the first-order splitting

algorithms we have introduced so far cannot be directly applied to such a problem.

Computationally expensive proximal terms.

The regularization term in (2.3) is with a linear operator: g(Dx), where D can be a pretrained

dictionary, or a differential operator (TV regularization as eqn.2.45), or a sparse graph. In

such cases, the proximal operator of the regularization term is non-trivial to compute in general

and we need to run a separate iterative procedure as a sub-loop. Due to this non-negligible

computational cost, it compromises the computational gain of stochastic gradient methods over

the full gradient methods in practice, because they need to compute the proximal operator much

more often than the full gradient methods.

Moreover, in some applications, one may wish to apply multiple non-smooth regularization

terms, in order to obtain a potentially stronger modeling of the prior knowledge and a better

estimation of the ground truth, which again limits the direct application of the fast gradient

methods such as FISTA which solve directly the primal problem.
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In these challenging scenarios, it is often more advantageous to reformulate the original primal

problem into a more flexible primal-dual saddle-point problem, which is potentially easier to

deal with. The corresponding optimization algorithms are called the primal-dual hybrid gradi-

ent methods, first proposed by Chambolle and Pock [76], and extended by various researchers

to stochastic settings [77, 78, 65]. In this section we introduce the basic concepts of the primal-

dual framework and its optimization.

2.5.1 Fenchel-Rockafellar Duality and Primal-Dual Hybrid Gradient

Following the related literature [76, 27, 79] and the notations therein, let’s now focus on the

following generic form of convex program:

x? ∈ arg min
x∈X

f(Ax) + λg(x), (2.46)

where both g and f are convex and lower semi-continuous functions on finite-dimensional

vector spaces X and Y respectively, while A is a linear operator which maps X → Y . We now

introduce the Fenchel conjugate [80] of a function f , denoted as f∗:

f∗(y) = sup
x∈X
〈x, y〉 − f(x). (2.47)

For a convex function f we can have f∗∗ = f , and hence (see e.g. [27]):

arg min
x∈X

f(Ax) + λg(x) = arg min
x∈X

sup
y∈Y

[yTAx− f∗(y) + λg(x)] (2.48)

= arg max
y∈Y

inf
x∈X

[yTAx− f∗(y) + λg(x)] (2.49)

= arg max
y∈Y

{
−f∗(y)− sup

x∈X
[−yTAx− λg(x)]

}
(2.50)

= arg max
y∈Y
−f∗(y)− λg∗(−AT y). (2.51)

The first equality yields the primal-dual saddle-point reformulation and the last equality yields

the dual reformulation. Let x? denote a solution of the primal problem (2.46), y? denote a

solution of the dual problem, and denote:

Q(x, y) = yTAx− f∗(y) + λg(x), (2.52)
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then [x?, y?] is a saddle point of Q(x, y) such that:

Q(x?, y) ≤ Q(x?, y?) ≤ Q(x, y?), ∀x ∈ X , y ∈ Y. (2.53)

Now one may alternatively solve the saddle point problem:

[x?, y?] = arg min
x∈X

max
y∈Y

[yTAx− f∗(y) + λg(x)], (2.54)

instead of solving the primal problem directly. A classic way of solving this saddle-point

problem is the Primal-Dual Hybrid Gradient (PDHG) algorithm [76, 79]. In each iteration

of PDHG, it first performs proximal gradient descent on the primal variable x and next follows

a momentum step to achieve acceleration of convergence, and then the algorithm updates the

dual variable again via proximal gradient descent:

PDHG− Initialize [x0, y0] ∈ X × Y

For k = 0, 1, 2, ...,K
xk+1 = proxηf∗

(
xk − ηAT yk

)
;→ primal descent step

x̄k+1 = xk+1 + σ(xk+1 − xk); → extrapolation step

yk+1 = proxαλg(yk + αAx̄k+1); → dual ascent step

We denote η as the primal step-size, α as the dual step-size, and σ as the momentum step-size.

By Moreau’s identity [81]:

x = proxαf (x) + αprox 1
α
f∗(

x

α
), ∀α > 0, (2.55)

the proximal operator of f∗(x) can be computed as the following:

proxηf∗(x) = x− ηproxη1
η
f
(
x

η
). (2.56)

With these step-sizes chosen such that 1
ηα ≥ ‖A‖2, σ = 1, the ergodic sequence (x̄K =

1
K

∑K
i=1 xi, ȳ

K = 1
K

∑K
i=1 yi) obtained by PDHG will satisfy the O(1/K) convergence rate

[76, 79]:

Q(x̄K , y)−Q(x, ȳK) ≤
1
η‖x− x0‖22 + 1

α‖y − y0‖
K

. (2.57)
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Moreover, if f∗ or g is strongly convex6, the convergence rate can be improved to O(1/K2)

with suitably chosen step-sizes according to the additional strong-convexity parameter.

2.5.2 Primal-Dual Gradient Methods for Multiple-Composite Optimization

In some machine learning and signal processing practices, we may wish to apply some sophisti-

cated regularization terms to improve generalization or estimation accuracy. For instance, let’s

consider the three-composite minimization task which reads:

x? ∈ min
x∈Rd

{f(x) + λg(Dx) + γh(x)} , f(x) :=
n∑
i=1

fi(x), (2.58)

where we have two convex and possibly non-smooth regularization terms λg(Dx) + γh(x)

with g : Rr → R ∪ {+∞} and h : Rd → R ∪ {+∞}, while D : Rd → Rr is a linear

operator. One important instance of (2.58) is the graph-guided fussed lasso, with g(Dx) being

a total-variation (TV) regularization which enforce piece-wise smoothness, and h(x) being an

`1 norm penalty for sparse solutions. Since by conjugacy (2.47) we have:

g∗(Dx) = sup
y∈Rr

yTDx− g(y), (2.59)

hence,

f(x) + λg(Dx) + γh(x) = f(x) + (λg(Dx))∗∗ + γh(x)

= f(x) + ( sup
y∈Rr

yTDx− λg(y))∗ + γh(x)

= f(x) + ( sup
y∈Rr

yTDx− λg∗(y)) + γh(x)

Similar to (2.54), the saddle-point formulation can be written as:

[x?, y?] = min
x∈Rd

max
y∈Rr

f(x) + γh(x) + yTDx− λg∗(y). (2.60)

With this reformulation the linear operator D and the function g(.) are decoupled and hence

one can divide-and-conquer the (potentially) expensive proximal operator on g(Dx), and mean-

while efficiently handle multiple regularization terms, with the primal-dual gradient methods.

The PDHG algorithm can be written as the following with x0 = z0 ∈ Rd, y0 ∈ Rr and (α, η, σ)

6If f∗ is µf -strongly-convex, then f is 1
µf

-smooth.
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being dual, primal, and extrapolation step sizes respectively [79]:

PDHG (Three Operator Splitting)

−Initialize [x0, y0] ∈ X × Y

For k = 0, 1, 2, ...,K
yk+1 = proxαλg∗(yk + αDzk); → dual ascent step

xk+1 = proxηµh
(
xk − η[DT yk+1 + Of(xk)]

)
;→ primal descent step

zk+1 = xk+1 + σ(xk+1 − xk); → extrapolation step

Just like the proximal gradient descent in the primal, the Chambolle-Pock algorithm can also

be further extended with randomization techniques, such as the recently introduced stochastic

primal-dual coordinate descent algorithms [82, 65, 77] and primal-dual stochastic gradient for

saddle-point problems [83, 84, 85, 78].

Finally, we briefly mention here that, there is a type of meta-algorithms named alternating di-

rection method of multipliers (ADMM) [86, 87] which share the same spirit7 of primal-dual

gradient methods and achieve a similar advantage on flexibility, as well as comparable theoreti-

cal guarantees and practical performance. Since we focus on first-order optimization algorithms

in this thesis, we choose to introduce the primal-dual gradient methods which are more relevant

for this thesis and do not redundantly present the ADMM here (we refer the interested readers

to [86] for details).

7In fact, the PDHG has been shown in [76, Section 4.3] to be equivalent to a “preconditioned” version of ADMM.
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2.6 Sketching for Reduced Computation

 

Dimensional reduction 

By Random projection 

Figure 2.4: Sketching for Faster Computation of Iterative Solvers

In this section we introduce another successful way of utilizing the power of randomization for

efficiency in large-scale optimization – the randomized projection, or rather, sketching. The

sketching techniques have been intensively studied and widely applied in the field of numerical

linear algebra in recent years, with most representative applications being the low-rank approx-

imation [88, 89, 90], matrix factorization [91, 92], and least-squares regression [93, 94, 2, 3].

The crux of the sketching idea is that, for a given data matrix A ∈ Rn×d with a huge size, one

may multiply it with a random matrix S ∈ Rm×n where m � n and construct a compressed

version SA ∈ Rm×d which is much smaller than A but preserves most of the information. In

practice, the typical computations involved, such as matrix-vector product, matrix-matrix mul-

tiplication, matrix inversion, and singular-value decomposition (SVD) can be computationally

expensive for the size of original data matrix, but may be significantly cheaper for the sketched

data matrix – hence such a scheme may lead us to a fast approximate solution to the original

tasks. Meanwhile, in modern computing devices, the memory which allows fast access is usu-

ally quite limited in size and may not fit the whole data matrix A. In this scenario, A has to be

stored in the hard-disks which are slow to be accessed. The sketching technique which directly

compresses the size will also provide us a solution for this storage issue by avoiding the fre-

quent access of the full data matrix. Therefore, the benefit provided by sketching is two-fold –

both in terms of computation and storage.
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2.6.1 Randomized Projection for Fast Least-Squares Regression

One interesting line of research focuses on accelerating the constrained least-squares regression

task, which is an important instance of the composite finite-sum optimization problem (2.3):

x? = arg min
x∈Rd

{
F (x) :=

1

n

n∑
i=1

1

2
(yi − aTi x)2 + ιK(x)

}
(2.61)

= arg min
x∈K

1

2
‖Ax− y‖22, (2.62)

where we assume K as a convex set in Rd, and the data matrix A ∈ Rn×d, with an associated

semi-norm defined as ‖x‖A := ‖Ax‖2. Suppose we use this least-squares estimator to infer a

true parameter x† ∈ K from noisy linear measurements:

y = Ax† + w, (2.63)

where the noise vector w is drawn from Gaussian distribution N (0, σ2Id). To efficiently solve

the linear regression tasks in the large data setting n � d � O(1), researchers [95, 92, 93, 2]

have focused on a classical sketched program:

xcs = arg min
x∈K

1

2
‖SAx− Sy‖22, (2.64)

where the “sketching” matrix S ∈ Rm×d is a random projection matrix which satisfies:

E
(
STS

m

)
= I, (2.65)

and is left-multiplied with the data matrix A and observation y, and reduces their dimensions

to As := SA ∈ Rm×d, ys := Sy ∈ Rm×1. When n � d, the sketched program (2.64)

is potentially much easier to solve than the original least-squares problem, both in terms of

computational cost and storage cost. For example, for the unconstrained case K = Rd and A

has full column rank, the original least-squares problem (2.61) admits a close form solution:

x? = (ATA)−1AT y. (2.66)

If we solve the unconstrained LS in this direct way, we need O(nd2 + d3) ≈ O(nd2) floating

point operations – that is, O(nd2) for computing ATA and O(d3) for inverting ATA. Mean-

while O(nd) memory is require during the computation since the full data matrix needs to be
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stored. In the same way, the sketched LS can be solve in the close form if the sketched data

matrix As has full column rank:

xcs = (ATs As)
−1ATs ys. (2.67)

If the sketch dimension m = O(d), we need O(md2 + d3) ≈ O(md2) floating point operation

and O(md) storage to solve the sketched program.

The solution of the sketched program xcs is an approximation of x?, and there is a clear trade-

off between the solution’s accuracy and the sketch size. For instance, Pilanci and Wainwright

[2] have shown that, for a general convex constraint set K, if the sketching matrix S satisfies

some concentration properties, and the sketch size m ≥ O( d
ε2

), the resulting output xcs of

the sketched program (2.64) satisfies F (xcs) ≤ (1+ε
1−ε)

2F (x?) with high probability. The basic

(sub-) Gaussian sketch operator can be defined as the following:

Definition 2.6.1. (sub-Gaussian sketch [2, Section 2.B]) We define the sub-Gaussian sketching

matrix SGauss ∈ Rm×n such that each row si, i ∈ [1, 2, ...,m] is i.i.d drawn from the σ-sub-

Gaussian distribution.

A simple special case is the standard Gaussian sketch where si ∈ N (0, Id×d). Nevertheless, the

sub-Gaussian sketch is inefficient, since computing SGaussA will involve dense matrix-vector

multiplication and demand a O(nmd) floating point operations. In practice, the sub-Gaussian

sketch is usually replaced by faster randomzied sketching operators – most representative ones

are based on efficient orthogonal transforms such as the FFT and the fast Hadarmad Transforms

[96, 97]. We will introduce these fast randomized sketching operators in subsection 2.6.2.

Variants of the sketching-based programs have been developed down through the years for

various purposes, such as better trade-offs on sketch-size and accuracy via an iterative sketching

scheme [3], sketching for fast approximate preconditioning [94, 98, 99], extending beyond the

least-squares regression [100], applying the sketching scheme to accelerate the computation in

kernel methods for non-parametric regression [101, 102, 103].

2.6.2 Fast Sketching Operators

A major computational step in constructing a sketched program is performing the sketching

operator S on A to obtain the sketched data matrix SA. The (sub-)Gaussian sketches, although
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having a strong theoretical guarantee which implies stable and reliable dimensional reduction

with a relatively small sketch size, require dense matrix-vector products and hence become

computationally inefficient – typically O(mnd) floating point operations. Due to this com-

putational drawback, it is often only of theoretical interest. In practice, fast random sketching

methods are considered. For instance, one may use the so-called randomized orthogonal system

(ROS) sketch8 [96, 97] , which combines the fast orthogonal transforms with random sign-flips

and subsampling:

Definition 2.6.2. (Randomized Orthogonal Systems [2, Section 2.C].) Let F ∈ Rn×n be a or-

thogonal matrix with entries in the interval of [− 1√
n
, 1√

n
], subsampling matrixE = [e1, e2, ...em]

be a random subset (drawn uniformly with replacement) of the rows of identity matrix In×n,

and D = diag(v) be a diagonal matrix with i.i.d Rademacher variables v ∈ {1,−1}, the

randomized orthogonal system SROS ∈ Rm×n can be defined as:

SROS =
√
n · E · F ·D (2.68)

The orthogonal transform often admits fast operations, with famous instances such as the fast

Fourier transform (FFT) and fast Hadamard transform. Since the fast Hadamard transform

and the FFT, are fast orthogonal transforms and require only O(n log n) operations, the ROS’s

complexity is of O(nd log n) which is more efficient than the Gaussian sketches for the regime

where m > O(log n).

We also wish to introduce another popular and extremely efficient sketching operator, which is

named the Count Sketch [88] – a special case of sparse embedding [104, 105, 106, 107]. The

Count-Sketch can be defined as the following:

Definition 2.6.3. (Count-Sketch [88, Definition 1.1].) For a sketch size m, the sparse embed-

ding sketching operator is defined as

Sc = ED ∈ {−1, 0,+1}m×n, (2.69)

where:

• h : [n]→ [m] is a random map such that for each i ∈ [n], h(i) = m′ for m′ ∈ [m] with

probability 1
m .

8Also known as the Fast Johnson-Lindenstrauss Transform (FJLT).

36



Background

• E ∈ {0, 1}m×n is a binary matrix with Eh(i),i = 1, and 0 elsewhere.

• D = diag(v) is a diagonal matrix with i.i.d Rademacher variables v ∈ {+1,−1}.

The count sketch computes a sketched matrix ScA in only O(nnz(A)) ≤ O(nd) time, where

we denote the number of non-zeros as “nnz”. In each column of Sc there is only 1 non-zero

element which is either +1 or −1. For example, a 4 by 7 Count-sketch matrix can take the

following form: 
0 −1 0 0 0 1 0

1 0 −1 0 0 0 0

0 0 0 0 1 0 −1

0 0 0 1 0 0 0

 (2.70)

The Count-sketch is a very efficient way of computing the sketch of the full data matrix A and

has demonstrated excellent practical performance in various applications [108, 109].

2.6.3 The Subspace Embedding Accuracy of the Fast Sketching Methods

We have thus far introduced two most popular and practical choices of fast sketching operators

compare to the naive (sub-)Gaussian sketch, however, it comes at a cost of sacrificing the sub-

space embedding accuracy, which is directly related to the accuracy of the final output of the

sketched program. We introduce the notion of subspace embedding here:

Definition 2.6.4. (Subspace Embedding.) [91] S ∈ Rm×n is a (1± ε)-subspace embedding of

the span of a matrix Ā ∈ Rn×d̄, if ∀v ∈ Rd̄, we have:

(1− ε)2‖Āv‖22 ≤ ‖SĀv‖22 ≤ (1 + ε)2‖Āv‖22. (2.71)

If we apply a sketching operator S to the constrained LS regression objective F (x) defined

in (2.61) and obtain the classical sketched program xcs ∈ arg minx∈K ‖SAx − Sy‖22, then

the approximation accuracy of xcs towards the true LS solution x? depends on the embedding

accuracy of S on the column space of matrix [A, y]:

Proposition 2.6.5. [91] If S ∈ Rm×n is a (1 ± ε)-subspace embedding of the span of matrix

[A, y] almost surely, then we have:

F (xcs) ≤
(

1 + ε

1− ε

)2

F (x?), (2.72)
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almost surely.

It is easy to derive this result: let Ā = [A, y], v? = [x?T ,−1]T , vcs = [xcsT ,−1]T in Definition

2.6.4, then we have:

‖SĀv?‖22 = ‖S(Ax? − y)‖22 ≤ (1 + ε)2‖Ax? − y‖22. (2.73)

Meanwhile since x? ∈ K, xcs ∈ K, using the fact that xcs is the optimal solution of the sketched

LS program, we have:

‖S(Ax? − y)‖22 ≥ ‖S(Axcs − y)‖22 = ‖SĀvcs‖22 ≥ (1− ε)2‖Axcs − y‖22. (2.74)

Hence we have ‖Axcs − y‖22 ≤ (1+ε)2

(1−ε)2 ‖Ax? − y‖22.

In order to achieve a (1 ± ε) subspace-embedding accuracy of a given linear subspace, the re-

quirement of the sketch size m is different for different sketching matrices. In the following

table we summarize from the literature (e.g. [91, 93]) the existing subspace-embedding results

for sub-Gaussian sketch, ROS sketch, and the Count-sketch. We also summarize the computa-

tional cost measured by number of floating point operation for computing SA for each of these

methods.

SKETCHING OPERATOR SKETCH SIZE (m) COMPUTATIONAL COST OF SA

SUB-GAUSSIAN SKETCH O( dε2 ) O(nmd)

ROS SKETCH O
(

(
√
d+

√
n)2 log d
ε2

)
O(nd log n)

COUNT-SKETCH O(d
2

ε2 ) O(nd)

Table 2.2: Necessary sketch size to achieve (1±ε) subspace embedding for a matrixA ∈ Rn×d
with high probability, and the computational cost of different sketching techniques

One can clearly observe that there is a trade-off between the computational cost of performing

the sketch and the embedding performance. The Count-Sketch method, although it only need

O(nd) floating point operations to compute SA due to the fact that it is an extremely sparse

sketching matrix, it needs a sketch size m = O(d
2

ε2
) to achieve a (1± ε)-subspace embedding.

Such a sketch size requirement appears to be inferior to the O( d
ε2

) result for sub-Gaussian
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sketch and the O( (
√
d+
√
n)2 log d
ε2

) for ROS sketch.

One simple and effective way to construct a sketching operator which interpolates between the

accurate sketching method such as SGauss and the extremely fast sparse sketching Sc is to make

a hybrid sketch based on concatenating them together [110]:

Definition 2.6.6. (Hybrid sketching.) Given the sketch size m and an intermediate sketch size

m0 ∈ (m,n], the hybrid sketch operator is defined as Shybrid = S2 · S1 ∈ Rm×n, where

S1 := Sc ∈ {−1, 0,+1}m0×n, S2 := SGauss ∈ Rm×m0 .

Intuitively, the hybrid sketch first speedily projects the huge dimension n to a moderate di-

mension m0 via the sparse sketch, and then apply an accurate sketching method such as sub-

Gaussian sketch to project from m0 to the targeted final sketch size m. With some proper

choice of the intermediate sketch size m0 for S1, the authors of [110] demonstrate that with

O(nnz(A)+m1.5d3) time, the Shybrid achieves almost the same subspace embedding accuracy

as sub-Gaussian sketch. Recall that computing SGaussA takes O(nmd) time, the hybrid sketch

is provably superior in terms of computation compared to sub-Gaussian sketch in the regime of

n >
√
md2 � d.

2.6.4 Statistical Suboptimality of Classical Sketched LS Estimators

Recall that we have introduced at the beginning of this section the classical form of sketched

LS estimator for the ground truth vector x†:

xcs = arg min
x∈K

1

2
‖SAx− Sy‖22,

as an alternative for using the original constrained least-squares estimator:

x? = arg min
x∈K

1

2
‖Ax− y‖22.

A natural question to ask is that, although the sketched version of least-squares are potentially

less demanding on computation and storage, how much do we sacrifice the statistical perfor-

mance on the estimation accuracy compare to the original LS estimator? Pilanci and Wain-

wright [3, Theorem 1] reveal that the classical sketching scheme is sub-optimal statistically.

We now describe the theorem as the following:

Theorem 2.6.7. (Statistical-Suboptimality of Classical Sketch.) [3, Theorem 1] Define the
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packing number M(K, δ) being the largest possible number of vectors {xi}Mi=1 ∈ K such that

‖xi − xj‖A := ‖A(xi − xj)‖2 > δ, ∀j 6= i. For any sketching operator S ∈ Rm×n which

satisfies:

‖E[ST (SST )−1S]‖ ≤ c0
m

n
, (2.75)

where c0 is a positive constant, then the estimation error ‖xcs − x†‖A of the sketched LS esti-

mator obeys the lower bound:

sup
x†∈K

ES,w‖xcs − x†‖2A ≥
σ2

128c0

log(1
2M(K, 1

2))

min(m,n)
(2.76)

Note that, as shown by Pilanci and Wainwright [3], the condition (2.75) is trivially satisfied by

sub-Gaussian sketches and ROS sketches which we have introduced in previous subsection9.

This result suggests that, in order to achieve the same statistical accuracy of the original LS

estimator, the sketch size has to be m = O(n). For instance, let K = B being a ball in Rd with

a unit radii, we have M(B, 1
2) = 2d, hence we have:

sup
x†∈B

ES,w‖xcs − x†‖2A ≥ O
(

σ2d

min(m,n)

)
, (2.77)

while it is well-known that the statistical error of the original LS solution can be upper bounded

by:

sup
x†∈B

Ew‖x? − x†‖2A ≤ O
(
σ2d

n

)
, (2.78)

at the worse case. We can conclude that, the classical sketch itself can only serve as a fast way

of getting an initial approximation of the least-squares solution x?, but applying it alone will not

provide an accurate estimation of the ground truth x†. This suboptimality motivates the research

of the iterative sketching technique which we are going to present in the next subsection.

2.6.5 Iterative Hessian Sketch

We wish to particularly highlight an inspiring iterative sketching meta-algorithm named Iter-

ative Hessian Sketch (IHS) proposed by Pilanci and Wainwright [3] for the constrained least-

squares. Let’s first have a closer look on the constrained least-squares objective (we denote x0

9Recent (not yet published) results from some researchers show that the condition (2.75) is also satisfied for
Count-Sketch.
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as an arbitrary vector in Rd):

x? = arg min
x∈K

1

2
‖Ax− y‖22

= arg min
x∈K

1

2
‖A(x− x0 + x0)− y‖22

= arg min
x∈K

1

2
‖A(x− x0)− (y −Ax0)‖22

= arg min
x∈K

1

2
(x− x0)TATA(x− x0)− (x− x0)TAT (y −Ax0)

which is consisted of two parts: one linear term associates with AT (y − Ax0) – the gradient

of the least-squares loss at point x0, the other associates the Hessian matrix ATA of the least-

squares. With some trivial algebra one can show that the classical sketch program (2.64) can

be written as:

xcs = arg min
x∈K

1

2
(x− x0)T (SA)TSA(x− x0)− (x− x0)T (SA)T (Sy − SAx0). (2.79)

In this form one can clearly see that the classical sketch performs compression on both the

Hessian and gradient information. The classical sketch builds an estimation only based on

the compressed information provided by (SA, Sy) and leads to statistical suboptimality. It is

intuitive that if a sketching scheme can be developed based on the information of (SA, y) which

only performs sketching on the data matrix and does not perform sketching on the observation

y, then it may have chance to overcome this suboptimality. Consider the following form of

sketched LS, which is named the Hessian Sketch:

xHS = arg min
x∈K

1

2m
‖SA(x− x0)‖22 − (x− x0)TAT (y −Ax0). (2.80)

Although the gradient information is preserved in a single-shot Hessian sketch, Pilanci and

Wainwright [3, Proposition 1] show that it suffers from the same inefficiency of classical sketch.

However, they propose the iterative hessian sketch (IHS) which constructs a sequence of hessian

sketch objective function using the solution of previous sketch programs:

Iterative Hessian Sketch−Initialize x0 ∈ Rd

For k = 0, 1, 2, ...,K Compute Of(xt) = AT (y −Axt) and Ats = StA

xt+1 = arg minx∈K 1
2m‖Ats(x− xt)‖22 − 〈x− xt,Of(xt)〉;
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In each iteration of IHS, a full gradient Of(xt) = AT (y − Axt) and a sketched matrix

Ats = StA is computed for the construction of the Hessian-sketch objective function. As-

sume that the sketched programs are solved exactly, the IHS scheme is able to provide a so-

lution approximation of ‖xt − x?‖A ≤ ε in log 1
ε iterations – that is, a linear convergence

rate to an arbitrary accuracy. Moreover, the convergence rate of IHS scales gracefully with the

low-dimensional structure of the constrained least-squares problem. We will demonstrate the

structure-adaptive convergence rate of the IHS in the next subsection.

2.6.6 The Structure-Adaptive Convergence Rate of Iterative Hessian Sketch

In order to formally describe the intrinsic statistical dimension of the constrained LS problem

(2.61) which is enforced by the constraint set K, we first introduce the notion of the tangent

cone of the solution x? and its associated Gaussian Width.

Definition 2.6.8. (Tangent cone.) [111] The cone Cx? is said to be the tangent cone of x? w.r.t

the convex constraint set K, if:

Cx? =
{
p ∈ Rd| p = c(x− x?),∀c ≥ 0, x ∈ K

}
. (2.81)

From the definition of the tangent cone associated with the solution x?, we can see that it in-

cludes all the descent directions in the constraint set towards the solution x?. If the constraint set

enforces a structured solution, the size of this cone will be relatively small. Next we introduce

the definition of Gaussian width measure associated with the cone:

Definition 2.6.9. (Gaussian Width.) [112, 111] Let Sd−1 be the unit sphere in Rd, then the

Gaussian Width of the set Cx? ∩ Sd−1 is defined as:

W(Cx? ∩ Sd−1) = Eg

(
sup

v∈Cx?∩Sd−1

vT g

)
, (2.82)

where g ∈ Rn is draw from i.i.d. normal distribution.

The Gaussian width effectively measures the range of directions of the cone Cx? , and the sta-

tistical complexity of the solution x? enforced by the constraint set K. For example, if the

constraint set is a `1 ball K := ‖x‖1 ≤ R where the radii R is sufficiently small such that the
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站在大海边 才发现自己是多渺小 

Figure 2.5: Illustration of the geometry of composite optimization. Left: ERM with strict
constraint g(.) := ιK(.); right: generic regularized ERM

solution x? is made to be an s-sparse vector, then the Gaussian width can be upper bounded as:

W(Cx? ∩ Sd−1) ≤
√

2s log(
d

s
) +

5

4
s, (2.83)

as shown in [112].

We present here informally the convergence theorem of IHS:

Theorem 2.6.10. (Convergence result for iterative hessian sketch [3]) If the sketching opera-

tors St are sub-Gaussian sketches or ROS sketches, the solution sequence of IHS sub-programs

obeys:

‖xt − x?‖A ≤
[
O

(W(ACx? ∩ Sn−1)√
m

)]t
‖x0 − x?‖A, (2.84)

almost surely.

As shown by Pilanci and Wainwright [3], the Gaussian Width W(ACx? ∩ Sn−1) which asso-

ciates with the transformed cone AC can be upper bounded by
√
d and also scales proportion-

ally to the statistical dimension of the solution. For instance, for `1-constrained LS with an

s-sparse solution we may haveW(ACx? ∩Sn−1) = O(
√
s log d), and then the sparser the solu-

tion is, the faster the IHS will converge towards the solution x? for a fixed suitable sketch size

m ≥ O(W(ACx? ∩ Sn−1)).

With the convergence result of IHS towards the LS solution x?, one can easily derive the con-

vergence result on the estimation error regarding x†. Due to the triangle inequality, we have:

‖xt − x?‖A = ‖xt − x† − (x? − x†)‖A ≥ ‖xt − x†‖A − ‖x? − x†‖A. (2.85)
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Then according to (2.84), we have:

‖xt − x†‖A ≤
[
O

(W(ACx? ∩ Sn−1)√
m

)]t
‖x0 − x?‖A + ‖x? − x†‖A, (2.86)

which means that the estimation error of the updates xt obtained by IHS converge exponentially

towards the same statistical accuracy ‖x? − x†‖A which is achieved by the constrained LS

solution x?.

As a meta-algorithm, the iterative Hessian sketch has a desirable structure-adaptive conver-

gence rate. However, the convergence guarantee requires we solve each of the sketched pro-

grams exactly, whereas in practice, it is often more tractable to solve the sketched programs

approximately using an iterative algorithm. Hence a further research on combining the IHS

meta-algorithm with iterative solvers such as projected gradient descent is essential for this line

of research. This motivates the research work we will present in Chapter 3.

2.7 Exploiting the Solution’s Structure for Faster First-Order Op-

timization

In many interesting large-scale optimization problems in machine learning and signal/image

processing, the solution x? in (2.3) has some low-dimensional structure such as sparsity [17],

group-sparsity [113], low-rank [114] or piece-wise smoothness [18], enforced by the non-

smooth regularization. It is intuitive that an optimal algorithm for this type of problem should

take into account and exploit such solution’s structure. When being utilized properly, this prior

information of the solution will facilitate the convergence of an iterative algorithm.

One important theoretical cornerstone is the restricted strong convexity (RSC) framework pre-

sented by [5]. In the context of statistical estimation with high-dimensional data where the

usual strong-convexity assumption is vacuous10, these authors have shown that the proximal

gradient descent method is able to achieve global linear convergence up to a point x which

satisfies ‖x − x?‖2 = o(‖x? − x†‖2), the accuracy level of statistical precision. Moreover,

the results based on this restricted strong-convexity framework indicate that the convergence

10For example, for a lasso problem x? ∈ arg minx∈Rd F (x) := ‖Ax − y‖22 + λ‖x‖1, if the matrix A ∈ Rn×d
has more columns then rows (i.e. n < d), then F (x) cannot be strongly-convex.
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rate of the proximal gradient, introduced in section 2.3.3, becomes faster when the statistical

complexity of the solution is lower.

2.7.1 Restricted Strong-Convexity and the Solution’s Structure

Let’s now have a brief overview on the RSC framework and the structure-adaptive convergence

result for proximal gradient descent on composite optimization provided by Agarwal et al.[5].

Note that, in order to restrict early iterations of proximal gradient method and yield a global

convergence result, an extra side constraint g(x) ≤ R is added on (2.3) in the original work:

x? ∈ arg min
x∈Ω|g(x)≤R

f(x) + λg(x), (2.87)

where R is assumed to be large enough such that the solution of (2.3) remains unchanged.

2.7.1.1 From Decomposability to Restricted Strong-Convexity

The work of Agarwal et al [5] focuses on a class of decomposable regularizer:

Definition 2.7.1. (Decomposable Regularizer.) DenoteM being a subspace in Rd, a regular-

izer g(.) is decomposable with respect to a subspace pair (M,M⊥) if it satisfies

g(a+ b) = g(a) + g(b), ∀a ∈M, b ∈M⊥. (2.88)

This condition is satisfied for a variety of structure-inducing regularization such as `1 norm,

`2,1 norm and nuclear norm penalty11, while for a more generalized version of it will cover the

analysis priors like the total-variation semi-norm [115]. The subspaceM is named the model

subspace while the orthogonal subspaceM⊥ is called the pertubation subspace.

This class of decomposable regularizers have a strong directional restriction ability, and is in-

tuitively good for the structure-adaptive analysis of the proximal splitting schemes. Due to the

triangle inequality, let x? ∈M and a vector v ∈M⊥, we can always have:

g(x? + v) ≤ g(x?) + g(v). (2.89)

11The nuclear-norm satisfies a slightly more complicated form of (2.88) on (M,M̄⊥) whereM∈ M̄.
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for any convex g. But if further g is decomposable, we have equality g(x?+v) = g(x?)+g(v),

which means that this regularization term enforces the maximal penalization on the perturbation

direction of the subspace where the solution x? lives in. For a decomposable regularizer g and

a specified subspaceM, the subspace compatibility [5] can be defined as:

Definition 2.7.2. The subspace compatibility of a model subspaceM is defined as:

Φ(M) := sup
v∈M\{0}

g(v)

‖v‖2
, (2.90)

whenM 6= {0}.

The subspace compatibility Φ(M) provides a direct link to the intrinsic dimension of subspace

M. For example if g(.) = ‖.‖1 andM is a subspace which is on a s-sparse support in Rd, we

will have Φ(M) =
√
s.

Now we are ready to present the restricted strong-convexity condition which is at the core of

the analysis:

Definition 2.7.3. (Restricted Strong Convexity.) With curvature parameter γ and tolerance

parameter τ , the restricted strong convexity condition is defined as:

f(x)− f(x′)− 〈Of(x′), x− x′〉 ≥ γ

2
‖x− x′‖22 − τg2(x− x′), ∀x, x′ ∈ Ω. (2.91)

Different to the usual strong-convexity assumption, the RSC actively encodes the direction

restriction effect prompted by the regularization through the term τg2(x − x′). Next we will

show that, with sufficiently large regularization parameter, the RSC condition will lead to fast

linear convergence rate of proximal gradient descent towards an optimal statistical accuracy,

and meanwhile this convergence rate scales with the low-dimenisonal structure of the solution.

2.7.1.2 Sufficient Regularization for Statistical Optimality and Effective RSC

Now recall that the ultimate goal of finding a solution x? via solving the regularized optimiza-

tion program is to give a good estimation of the minimizer of the expected risk x†. In order

to achieve this, the regularization parameter λ needs to be sufficiently large in order to achieve

statistical optimality and avoid over-fitting – that is, the statistical error ‖x? − x†‖22 diminish
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optimally w.r.t the number of data sample n. Meanwhile, purely from the viewpoint of opti-

mization, a structured solution is always the result of sufficient regularization.

Driven by this motivation, the work of Negaban et al [116] and Agarwal et at [5] jointly demon-

strate that with λ ≥ 2g?(Of(x†)), one can address both of the statistical optimality and also

the optimization efficiency in one go.

Proposition 2.7.4. [116, Theorem 1, informal] Under the assumption of RSC, if furthermore

the curvature parameter γ, tolerance parameter τ and the subspace compatibility Φ(M) satisfy

τΦ2(M) < γ
64 , then for any optima x?, the following inequality holds:

‖x? − x†‖22 ≤ O
(
λ2

γ2
Φ2(M) +

λ

γ
g(x†M⊥)

)
, (2.92)

where O(.) hides deterministic constants for the simplicity of notation.

Such a bound reveals desirable properties of the regularized ERM when the range of λ satisfies

λ ≥ 2g?(Of(x†)). For instance, if x† is the s-sparse ground truth vector of a noisy linear

measurement system y = Ax† + w, where w denotes the zero-mean sub-Gaussian noise (with

variance σ2) and the measurement matrix A satisfies a certain restricted eigenvalue condition

[116, 117], and we use a Lasso estimator x? ∈ arg minx
1

2n‖Ax−y‖22 +λ‖x‖1. In such a case,

letM be a subspace in Rd on s-sparse support where x† ∈ M and hence g(x†M⊥) = 0, then

with the choice of λ = O[g?(Of(x†))], from this proposition we can have:

‖x? − x†‖22 ≤ O
(
λ2s

γ2

)
≈ O

(
σ2

γ2

s log d

n

)
, (2.93)

which implies the optimal convergence of the statistical error in terms of sample size and di-

mension. The details of this claim are presented in [116, Corollary 2].

Now due to the sufficient regularization condition, Agarwal et al [5] show that one can derive

the desirable fast structure-adaptive convergence rate result for the proximal gradient algorithm

via the Effective RSC parameter which is defined as the following:

µc = γ − 64τΦ(M) > 0, (2.94)

such that for a sufficiently large regularization parameter λ ≥ 2g?(Of(x†)) which secures
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statistical optimality, as shown by [5, Lemma 11], one can have:

F (x)− F (x?) = f(x) + λg(x)− f(x?)− λg(x?) ≥ µc‖x− x?‖22 − δ2. (2.95)

where the slackness residual term δ2 is associated with the statistical error ‖x?−x†‖22. The Ef-

fective RSC lemma which we informally presented in (2.95), means that due to the directional

restriction by the regularization, the objective F behaves just like a strongly-convex function for

the regime where ‖x− x?‖22 ≥ O(‖x? − x†‖22). Since the Effective RSC parameter µc is asso-

ciated with the model complexity quantified by the subspace-compatibility Φ(M), it provides

a direct link to the convergence result which will depend on the solution’s low-dimensional

structure.

Moreover, in the same spirit of the RSC, the authors of [5] also consider a restricted smoothness

(RSM) assumption, which leads to the convergence result of proximal gradient descent with a

greedy step-size which also scales with the solution’s intrinsic dimension.

Definition 2.7.5. (Restricted Smoothness.) The restricted smoothness condition is defined with

parameter (Lu, τu):

f(x)− f(x′)− 〈Of(x′), x− x′〉 ≤ Lu
2
‖x− x′‖22 + τug

2(x− x′), ∀x, x′ ∈ Ω. (2.96)

Then with a contraction factor12:

α :=

{
1− µc

4Lu
+

64Φ2(M)τu
µc

}
/

{
1− 64Φ2(M)τu

µc

}
, (2.97)

[5, Theorem 2] demonstrates that, for the proximal gradient descent algorithm13, the number of

iterations needed to achieve a objective gap error F (xK)− F ? ≤ ε is14:

K ≥ 1

log( 1
α)

log
F (x0)− F ?

ε
+O

(
log log

1

ε

)
≈ 4Lu

µc
log

F (x0)− F ?
ε

, (2.98)

which is a linear convergence rate scales with the low-dimensionality of the solution quantified

in µc. To be more specific, we present here a concrete example for sparse regression:

12Note that if τu → 0 then the RSM condition reduces to ordinary smoothness assumption, andα = 1− µc
4Lu
≤ 1.

13In this case the proximal operator is defined as proxg(x) := arg miny∈Ω g(x)+ 1
2
‖x−y‖22 due to the presence

of the additional side-constraint set Ω to restrict early iterations
14Until a statistical accuracy is achieved, see [5] for details.
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Corollary 2.7.6. (Quantification of Effective RSC parameter µc.) For a lasso problem x? ∈
arg minx∈Rd F (x) := ‖Ax− y‖22 + λ‖x‖1, if λ ≥ 2g?(Of(x†)) and ‖x?‖0 = s, then we have

µc = γ − 64τs (2.99)

for (2.98). Moreover if the rows of A are i.i.d drawn from a distribution N (0,Σ), where the

covariance matrix Σ has smallest and largest singular value rmin(Σ) and rmax(Σ), then we

can have γ ≥ rmin(Σ)
16 and τ ≤ rmax(Σ)81 log d

n , such that:

µc ≥ O
(
rmin(Σ)− rmax(Σ)

s log d

n

)
(2.100)

almost surely (see e.g. [117]).

Under the same RSC framework, researchers have recently provided fast structure-inspired

convergence analysis for stochastic variance-reduced algorithms such as SVRG [118], SAGA

[119], and SDCA [120], revealing that such stochastic gradient methods can also automatically

achieve a linear convergence rate which scales with the intrinsic dimension of the solution.

2.7.2 Activity Identification and Local Fast Convergence

The RSC framework introduced in the previous subsection is a powerful theoretical framework

to be exploited for the structure-adaptive analysis of first-order methods, and has been sucess-

fully applied for deriving global linear convergence results for both deterministic and stochastic

gradient methods. Nevertheless, although it provides great insights to link statistical complexity

with convergence and serves as theoretical cornerstone in ours and the other related previous

works, it is still imperfect in several ways, such as, the convergence guarantee is up to the

statistical accuracy but not an arbitrary accuracy. Although in statistical machine learning and

signal processing applications, convergence guarantees towards a statistical accuracy should be

the most important, but studying the local convergence towards an arbitrary accuracy is still of

great interest.

In this subsection we very briefly introduce at high-level an interesting line of work [121, 44,

122, 123] which is complementary to the RSC framework of Agarwal et al [5]. This line of

research focuses on the local linear convergence rates of first-order algorithms on the convex

optimization problems with non-smooth regularization terms. They show that, under certain
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assumptions, the proximal gradient methods, primal-dual gradient methods, and the stochas-

tic variance-reduced gradient methods (SAGA and SVRG), can have local linear convergence

after the iterate have arrived on a low-dimensional manifold15 where the solution lies – such

phenomenon is named the activity identification.

To be more specific, this line of work focuses on a wider class of partially smooth regularizers.

Many popular non-smooth regularizers such as `1 norm, nuclear norm and TV semi-norm are

partially smooth functions w.r.t a Riemannian manifold. For a formal mathematical definition

of the partial smoothness, we refer the interested reader to [124] for details. If the regularizer

g is partially smooth w.r.t a manifoldMx? which contains the solution x?, then under further

technical assumptions16 on the solution x?, Liang et al [121] shown that the proximal gradient

descent scheme

For k = 0, 1, 2, ...,K⌊
xk+1 = proxηλg[x

k − ηOf(xk)]

identifies the manifoldMx? after a finite number (K0) of iterations, that is, xk ∈ Mx? for all

k ≥ K0. Meanwhile, under the same technical assumptions in [121], the optimization problem

is shown to be strongly-convex locally – in the original work of Liang et al, it is named local

quadratic growth. They show that, there exists a (local) strong-convexity parameter α > 0 and

a radius r > 0, such that:

F (x)− F ? ≥ α‖x− x?‖22, ∀x : ‖x− x?‖22 ≤ r. (2.101)

Then they are able to show a linear local convergence of the proximal gradient method, and

similar results also holds for primal-dual gradient methods [122] and some stochastic gradient

methods such as proximal SVRG [123]. The local quadratic growth condition is a very nice

complement to the Effective RSC condition described previously. The effective RSC (2.95) is

active for the regime which is ‖x − x?‖22 ≥ O(‖x? − x†‖22) – “far enough” from the solution,

while in contrast the local quaratic growth is active for the regime ‖x − x?‖22 ≤ r which is

nearby the solution.

15For example, for lasso regression, if the solution is s-sparse, then the manifold is referred as the s-dimensional
subspace on the support set.

16The non-degeneracy condition and the restricted injectivity condition, we refer to [123] for details
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In short, the RSC framework of Agarwal et al [5] serves as a cornerstone for the structure-

adaptive convergence analysis up to the statistical accuracy, while the partial smoothness/local

quadratic growth framework of Liang et al [121, 44, 122, 123] provides the mathematical foun-

dation of local structure-adaptive convergence analysis, but such local fast convergence rate

can only be established after a finite (but usually unknown) number of iterations for activity

identification. This two frameworks are mutually complementary to each other.

2.8 Summary

In this chapter we provided the necessary background knowledge for the forthcoming technical

chapters of this thesis. We started by introducing the basic and general concepts of convex com-

posite optimization (Section 2.1 and 2.2) for machine learning and statistical inference. Then

Section 2.3 introduced the classic deterministic first-order algorithms for solving the composite

optimization problems, with a focus on the concepts of projection operator and proximal oper-

ator, and the proximal gradient algorithms which are able to efficiently handle the non-smooth

regularization in composite optimization. All the algorithms we proposed in the technical chap-

ters are variants of the proximal gradient scheme.

In Section 2.4 we have presented the concepts of randomization techniques in optimization and

some paradigms of stochastic gradient methods and randomized coordinate descent methods

which are efficient for large-scale problems. This section was aimed at giving the readers

the necessary background knowledge for Chapter 4 where we proposed the Rest-Katyusha

algorithm – the structure-adaptive variant of a state-of-the-art stochastic gradient algorithm

(Katyusha), and Chapter 5 where we advance the accelerated coordinate descent method.

In Section 2.5 we briefly introduced the primal-dual gradient method which is able to provide

flexibility and efficiency in solving the optimization problems which have multiple regulariza-

tion terms and also the regularizers with linear operators (such as TV semi-norm). In Chapter

6, we utilize the flexibility of primal-dual splitting to design fast stochastic gradient methods

for imaging inverse problems.

In Section 2.6 we have presented a different type of randomization technique, sketching, from

the field of numerical linear algebra. We highlighted the recently introduced iterative Hessian

sketch (IHS) for efficiently solving the constrained large-scale least-squares regression which is
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an important instant of composite optimization. If the sketched sub-problem is solved exactly,

the IHS has a linear convergence which scales with the intrinsic dimension of the solution.

In Chapter 3, we propose and analyze a family of sketched gradient algorithms which are the

combination of the IHS and the projected gradient descent.

Finally, in Section 2.7 we described the restricted strong-convexity framework by Agarwal et

al [5] which is the theoretical cornerstone for the design and the structure-adaptive conver-

gence analysis for the randomized algorithms proposed in Chapter 4 and 5. This Section was

mainly concerned about providing high-level insights and understandings about this theoretical

framework. We will revisit this RSC framework formally and provide mathematical details in

Chapter 4. Meanwhile, we also introduced a complementary theoretical framework proposed

by Liang et al [121, 44, 123]. Although we do not apply this framework here, it is of great

interest for the future work – we believe that our proposed algorithms in Chapter 4 and 5 can

be also analyzed in this framework and yield accelerated linear convergence rate locally to an

arbitrary accuracy.
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Chapter 3
Sketched Gradient Algorithms for
Constrained Convex Optimization

3.1 Sketching for Faster Constrained Optimization

Recent advances in the field of randomized algorithms have provided us with powerful tools for

reducing the computation for large scale optimization. From the latest literature we can clearly

see two streams of randomized algorithms, the first stream is the stochastic gradient descent

(SGD) [45, 46, 47] and its variance-reduced variants [58, 125, 62, 4]. The stochastic variance-

reduced gradient techniques are based on the computationally cheap unbiased estimate of the

true gradients with progressively reduced estimation variance, and demonstrate state-of-the-art

performance on large-scale convex optimization tasks.

This chapter follows a second line of research and uses sketching techniques we have introduced

in chapter 2, the crux of which is reducing the dimensionality of a large scale problem by

random projections (e.g., sub-Gaussian matrices, Randomized orthogonal Systems (ROS) / Fast

Johnson-Lindenstrauss Transforms (FJLT) [96, 97], the Count Sketch [88], the Count-Gauss

Sketch [110]) so that the resulting sketched problem becomes computationally tractable. The

meta-algorithms Classical Sketch (CS)[92, 93, 2] and the Iterative Hessian Sketch (IHS) [3]

have been recently introduced for efficiently solving large scale constrained LS problems which

utilize the random sketching idea combined with the fact that solutions have low-dimensional

structure such as sparsity in a properly-chosen dictionary, low-rank, etc. In this chapter, we

propose a class of sketched gradient algorithms based on the sketching techniques, for the

constrained least-squares regression tasks.

This chapter makes the following contributions:

• Novel first order solvers based on iterative sketches for constrained Least-squares

We propose a basic first order algorithm Gradient Projection Iterative Sketch (GPIS)

based on the combination of the projected gradient descent and Iterative Hessian Sketch
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[3] for efficiently solving the constrained Least-squares, and also an accelerated variant

by applying Nesterov’s acceleration scheme [39, 126].

• Theoretical analysis for the sketched gradient algorithms

As we have discussed in the previous chapter, although there exists established conver-

gence result of iterative Hessian sketch [3] which describes its linear convergence rate

of solution approximation under the assumption that each of the sketched programs are

solved exactly, there is no theoretical analysis of the use of first order methods within this

framework, where each of the sketched programs are only approximately solved. This

type of convergence results are essential for the iterative Hessian sketch scheme, since

in practice, the sketched subproblems of IHS can only be computationally tractable in

general if we solve them approximately, via some iterative optimization algorithms. The

work presented in this chapter is the first one to provide such a convergence analysis.

• Structure-adaptive first-order algorithms via sketching

In related theoretical works in sketching [2, 3], convex relaxation [112], and the conver-

gence analysis of projected gradient descent (PGD) [127] for constrained Least-squares,

researchers have discovered that the low-dimensional structure of the solution enforced

by the constraint set is able to be exploited to accelerate computation. In this chapter, we

will show that, the sketched gradient algorithms we propose, are able to actively exploit

the solution’s structure of the constrained Least-squares problem for faster convergence

rate, due to the dimensional-reduction properties of the randomized sketching techniques.

• Practical implementations of the sketched gradient algorithms

The proposed sketched gradient algorithms draw a different line of research for first order

randomized algorithms from the SGD and its recently introduced variance-reduced vari-

ants such as SVRG [58] and SAGA [62] by utilizing randomized sketching techniques

and deterministic inner-loop iterations instead of the stochastic iterations. This approach

leads to convenience in optimally choosing the step size by implementing line search be-

cause it follows the classical results and techniques in first order optimization. Numeri-

cally, we have designed experiments to show the computational efficiency of the sketched

gradients with Count-sketch [88] and an aggressive line-search scheme for near-optimal

choice of step size each iteration [39] compared to a mini-batched version of the SAGA

algorithm [62] and the accelerated full gradient method [128] in large scale constrained

least-square problems.
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3.1.1 The Classical Sketch and Iterative Hessian Sketch

In this subsection we briefly recall and summarize the concepts of the classical sketch and

iterative Hessian sketch we have introduced in chapter 2. Consider a constrained Least-squares

regression problem in the large data setting. We have the training data matrix A ∈ Rn×d with

n > d and observation y ∈ Rn. Meanwhile we restrict our regression parameter to a convex

constrained set K to enforce some desired structure such as sparsity and low-rank1:

x? = arg min
x∈K

{
f(x) := ‖y −Ax‖22

}
. (3.1)

Then we define the error vector e as:

e = y −Ax?. (3.2)

As we have introduced in section 2.6.2, throughout the past decade researchers proposed a

basic meta-algorithm for approximately solving the Least-squares problem that we call the

Classical Sketch (CS), see e.g. [129, 93, 2], which compresses the dimension of the Least-

squares and makes it cheaper to solve. The Johnson-Lindenstrauss theory [130, 131] and the

related topic of Compressed Sensing [132, 133, 134] revealed that random projections can

achieve stable embeddings of high dimensional data into lower dimensions and that the number

of measurements required is proportional to the intrinsic dimensionality of data (as opposed

to the ambient dimension) which is manifested in the set of constraints K. This motivates

replacing the original constrained Least-squares problem with a sketched approximation [2]:

x̂ = arg min
x∈K

{
f0(x) := ‖Sy − SAx‖22

}
, (3.3)

(see Section 2.6.1), where the sketching matrix S ∈ Rm×n,m � n is a random projection

operator which satisfies (2.65) and (2.75).

When the embedding dimension m is larger than a certain factor of the true solution’s intrinsic

dimension measured through the Gaussian Width (see Definition 2.6.9) of the tangent cone Cx?

1In scenarios where we do not know the exact constraintK, we may wish to use regularized least-squares instead
of strict constraint. This chapter focuses on the constrained case and leaves the extension for the proximal setting as
future work.
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which is the smallest cone containing the set K − x? (see Definition 2.6.8) – that is, if,

m ≥ c0W2(ACx? ∩ Sn) (3.4)

where c0 ≥ O(1), then the Classical Sketch (3.3) ensures a robust estimation of x? with a noise

amplification factor compared to the estimator given by solving the original LS problem (3.1),

and it has been shown that the smaller the embedding dimension m is, the bigger the noise

amplification factor will be. To get a sketching scheme for the scenarios where a high accuracy

estimation is demanded, we briefly recall here, a new type of meta-algorithm Iterative Hessian

Sketch (IHS) proposed by [3]:

xt+1 = arg min
x∈K
{ft(x) :=

1

2m
‖StA(x− xt)‖22 − xTAT (y −Axt)}. (3.5)

(See Section 2.6.5). At the tth iteration of IHS a new sketch of the data matrix StA and a

full gradient AT (y − Axt) at the current estimate xt is calculated to form a new sketched

least-square problem. By repeating this procedure the IHS will converge to the solution of the

original problem (3.1) in typically a small number of iterations. However, the fast convergence

rate guarantee of IHS which we have presented in Theorem 2.6.10 is based on the assumption

that each of the subproblems are solved exactly, while in general, it is often more practical to

only solve the sketched programs approximately.

3.2 Gradient Projection Iterative Sketch

3.2.1 The Proposed Algorithms

Our proposed GPIS algorithm which we describe in Algorithm 1 applies the projected gradient

descent (PGD) to solve a sequence of sketched LS, starting with a CS step for a fast initializa-

tion, and then is followed by further iterations of IHS. To be more specific, in the initialization

stage of GPIS, we consider the combination of classical sketch (CS) with the PGD algorithm:

xi+1 = PK(xi − η(S0A)T (S0Axi − S0y)), (3.6)
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Algorithm 1 Gradient Projection Iterative Sketch — G([η], [k])

Initialization: x0
0 = 0, m > d

—————- Run GPCS iterates (Optional) ———————————————-
Generate a random sketching matrix S0 ∈ Rm×n and compute S0A, S0y
for i = 1 to k0 do

x0
i+1 = PK(x0

i − η0,i(S
0A)T (S0Ax0

i − S0y))
end for
x1

0 = x0
k0

—————- Run GPIHS iterates ———————————————————–
for t = 1 to N do

Calculate g = AT (Axt0 − y)
Generate a random sketching matrix St ∈ Rm×n and compute Ats = StA
for i = 1 to kt do

xti+1 = PK(xti − ηt,i(At
T

s A
t
s(x

t
i − xt0) +mg))

end for
xt+1

0 = xtkt
end for
Output: xN+1

0

we refer this stage as Gradient Projection Classical Sketch (GPCS). Then for the main loop of

GPIS, we apply PGD to solve the IHS subproblems (3.5):

xi+1 = PK(xi − η((StA)T (StA)(xi − xt) +mAT (Axt − y)). (3.7)

We name this second stage of GPIS as the Gradient Projection Iterative Hessian Sketch (GPIHS).

Note that thanks to the sketching each inner iteration of GPIS is n
m times cheaper than a full

PGD iterate in terms of matrix-vector multiplication, so intuitively we can see that there is

potential in Algorithm 1 to get computational gain over the standard first order solver PGD.

Since it is well-known that in convex optimization the standard first order method proximal

gradient descent can be accelerated by Nesterov’s acceleration scheme [39, 126, 128], our Al-

gorithm 1 has potential to be further improved by introducing Nesterov’s acceleration. Here we

propose Algorithm 2 – Accelerated Gradient Projection Iterative Sketch (Acc-GPIS) which is

based on the combination of the accelerated PGD and iterative sketching.

One of the benefits that deterministically minimising the sketched cost function can bring is

that the implementation of the line-search scheme can be easy and provably reliable since the

underlying sketched cost function in each iteration of the outer loop is fixed. For example

[39] provides a simple line-search scheme for gradient methods to make the step size of each
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Algorithm 2 Accelerated Gradient Projection Iterative Sketch — A([η], [k])

Initialization: x0
0 = 0, τ0 = 1, m > d

—————- Run GPCS iterates (Optional) ————————————————
Generate a random sketching matrix S0 ∈ Rm×n and compute S0A, S0y
for i = 1 to k0 do

x0
i+1 = PK(z0

i − η0,i(S
0A)T (S0Az0

i − S0y))

τi = (1 +
√

1 + 4τ2
i−1)/2

Extrapolate z0
i+1 = x0

i+1 + τi−1−1
τi

(x0
i+1 − x0

i )
end for
x1

0 = z1
0 = x0

k0

—————- Run GPIHS iterates ———————————————————-
for t = 1 to N do

Compute g = AT (Axt0 − y)
Generate a random sketching matrix St ∈ Rm×n and compute Ats = StA
τ0 = 1
for i = 1 to kt do

xti+1 = PK(zti − ηt,i(At
T

s A
t
s(z

t
i − xt0) +mg))

τi = (1 +
√

1 + 4τ2
i−1)/2

Extrapolate zti+1 = xti+1 + τi−1−1
τi

(xti+1 − xti)
end for
xt+1

0 = zt+1
0 = xtkt

end for
Output: xN+1

0

iteration to be nearly optimal, with rigorous convergence theory and also an explicit bound

for the number of additional gradient oracle calls. The line-search scheme is described by

Algorithm 3. On the other hand in the stochastic gradient literature there are no practical

strategies for efficient line search in the case of constrained optimization. To the best of our

knowledge, only the SAG paper [57] addresses the issue of line-search and their implementation

is only for unconstrained optimization.
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Algorithm 3 line-search scheme for GPIS and Acc-GPIS — L(xi, ft(x),Oft(xi), γu, γd) [39]

Input: update xi, sketched objective function ft(x), gradient vector Oft(xi), line search
parameters γu and γd, step size of previous iteration ηi−1.
Define composite gradient map mL:
mL := ft(xi) + (x− xi)TOft(xi) + 1

2η‖x− xi‖22
η = γdηi−1

x = PK(xi − ηOft(xi))
While ft(x) ≥ mL do

η = η/γu
x = PK(xi − ηOft(xi))

End while
Return xi+1 = x and ηi = η

3.3 Convergence Analysis

In this section we provide the convergence analysis of the proposed GPIS algorithm and Acc-

GPIS algorithm.

3.3.1 General Theory

We start our theoretical analysis by specifying some necessary definitions. While we have

introduced generically the concepts of strong-convexity and smoothness in Section 2.2, here

we explicitly define the strong-convexity parameter µ and the smoothness parameter L for

the Least-squares objective we consider in this chapter. For least-squares objective, the strong-

convexity parameter and smoothness parameter corresponds to the smallest and largest singular

value of the Hessian matrix ATA respectively:

Definition 3.3.1. The Lipschitz constant L and strong convexity µ for the LS (3.1) are defined

as the largest and smallest singular values of the Hessian matrix ATA:

µ‖zd‖22 ≤ ‖Azd‖22 ≤ L‖zd‖22, (3.8)

for all zd ∈ Rd, where 0 ≤ µ < L (µ = 0 means the LS (3.1) is non-strongly convex).

We also define three important quantities which we will need throughout the analysis:

Definition 3.3.2. Let Cx? be the smallest closed cone at x? containing the set K − x?:

Cx? =
{
p ∈ Rd| p = c(x− x?),∀c ≥ 0, x ∈ K

}
, (3.9)
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Sd−1 be the unit sphere in Rd, Bd be the unit ball in Rd, z be an arbitrary fixed unit-norm

vectors in Rn. The contraction factors α(η, StA), ρ(St, A) and σ(St, A) are defined as:

α(ηt, S
tA) = sup

u,v∈Bd
vT (I − ηtATSt

T
StA)u, (3.10)

ρ(St, A) =
supv∈ACx?∩Sn−1 vT ( 1

mS
tTSt − I)z

infv∈ACx?∩Sn−1
1
m‖Stv‖22

, (3.11)

σ(St, A) =
supv∈range(A)∩Sn−1 ‖Stv‖22
infv∈range(A)∩Sn−1 ‖Stv‖22

, (3.12)

For convenience, we denote each of this terms as: αt := α(ηt, S
tA), ρt := ρ(St, A) and

σt := σ(St, A). The contraction factor αt is associated with the convergence rate for the

inner loop, while ρt is the contraction factor for the outerloop. The third contraction factor σt

is related to the subspace embedding accuracy of the sketching matrix St. Our theory hangs

on these three factors and we will show that they can be bounded with exponentially high

probabilities for Gaussian projections.

Definition 3.3.3. The optimal points xt? of the sketch programs ft(x) are defined as:

xt? = arg min
x∈K

ft(x). (3.13)

We also define a constant R that measures the largest distance from the constraint setK towards

the solution x?, for the simplicity of the theorems:

R = sup
x∈K
‖x− x?‖22 (3.14)

Following [3], we use the notation ‖v‖A = ‖Av‖2 to describe the A-norm of a vector v in our

theory. After defining these properties we can derive our first theorem for GPIS when f(x) is

strongly convex, e.g, µ > 0 :

Theorem 3.3.4. (Linear convergence of GPIS when µ > 0) For fixed step sizes ηt ≤ 1
‖StA‖22

,

the following bounds hold: for t = 0 (the initialization loop by GPCS),

‖x1
0 − x?‖A ≤ (α0)k0

√
L

µ
‖x0

0 − x0
?‖A + 2ρ0‖e‖2, (3.15)
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for t ≥ 1 and xt0 := xt−1
kt−1

(the consecutive loops by GPIHS),

‖xt0 − x?‖A ≤
{

N∏
t=1

ρ?t

}
‖x1

0 − x?‖A; (3.16)

where we denote:

ρ?t = (αt)
kt

[
(1 + ρt)

√
L

µ

]
+ ρt (3.17)

From Theorem 1 we can see that when we have strong convexity, aka µ > 0, by choosing

a appropriate step size the GPCS loop will linearly converge to a sub-optimal solution, the

accuracy of which depends on the value of 2ρ0‖e‖2; and the following GPIHS iterations enjoy

at a rate associated with linear convergence towards the optimal point.

When the least-squares solution is relatively consistent (‖e‖2 is small), the GPCS loop will

provide excellent initial convergence speed, otherwise it is not beneficial – that’s why we say

that the GPCS loop is optional for our GPIS / Acc-GPIS algorithm.

For the cases where the strong convexity is not guaranteed (µ ≥ 0) we show the sub-linear

convergence rate for GPIS algorithm:

Theorem 3.3.5. (Convergence guarantee for GPIS when µ ≥ 0) If we choose a fixed number

(k) of inner-loops for t = 1, ..., N , the following bounds hold: for t = 0,

‖x1
0 − x?‖A ≤

√
βLσ0R

2k0
+ 2ρ0‖e‖2, (3.18)

for t ≥ 1 and xt0 := xt−1
k

‖xt0 − x?‖A ≤
{

N∏
t=1

ρt

}
‖x1

0 − x?‖A +
maxt

√
σt

1−maxt ρt

√
βLR

2k
, (3.19)

where β = 1 for fixed step sizes ηt = 1
‖StA‖22

, β = γu for a line search scheme described by

Algorithm 3 with parameter γu > 1 and γd = 1.

For the Accelerated GPIS algorithm we also prove an accelerated convergence rate:

Theorem 3.3.6. (Convergence guarantee for Accelerated GPIS when µ ≥ 0) If we choose a
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fixed number (k) of inner-loops for t = 1, ..., N , the following bounds hold: for t = 0 ,

‖x1
0 − x?‖A ≤

√
2βLσ0R

(k0 + 1)2
+ 2ρ0‖e‖2, (3.20)

for t ≥ 1 and xt0 := xt−1
k

‖xt0 − x?‖A ≤
{

N∏
t=1

ρt

}
‖x1

0 − x?‖A +
maxt

√
σt

1−maxt ρt

√
2βLR

(k + 1)2
, (3.21)

where β = 1 for fixed step sizes ηt = 1
‖StA‖22

, β = γu for a line search scheme described by

Algorithm 3 with parameter γu > 1 and γd = 1.

We include the proofs of these results in this chapter’s appendix, where we use standard proof

techniques for the projected gradient descent on the sketched objectives. We have discussed

in section 2.3.5 that for the case µ > 0, the accelerated gradients can potentially enjoy the

improved linear rate O((1 −
√

µ
L)) via a periodic restart scheme but it demands the exact

knowledge of the value µ (which is often unavailable in practical setups). In our implementation

for the Acc-GPIS method in the experiments, we use the adaptive gradient restart scheme

proposed by [42].

3.3.2 Explicit Bounds for Gaussian Sketches

The theorems above provide us with a framework to describe the convergence of GPIS and Acc-

GPIS in terms of the constants α, ρ and σ. For Gaussian sketches, these constants find explicit

bounding expressions in terms of the sketch size m and the complexity of the constraint cone

Cx? . For this, we use the Gaussian width argument [111]. We recall here the definition of

Gaussian width we have introduced previously:

(Definition 2.6.9) The Gaussian widthW(Ω) is a statistical measure of the size of a set Ω:

W(Ω) = Eg

(
sup
v∈Ω

vT g

)
, (3.22)

where g ∈ Rn is draw from i.i.d. normal distribution. The value ofW(Cx? ∩ Sd−1) is an useful

measure of the tightness of the structure of x?. For example, if x? is s-sparse and we model the

sparsity constraint using an `1 ball, we will haveW(Cx? ∩ Sd−1) ≤
√

2s log(ds ) + 5
4s, which
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means the sparser x? is, the smaller the W(Cx? ∩ Sd−1) will be [111]. We now quantify the

bounds in our general theorems in terms of the sketch size m and the Gaussian width of the

transformed coneW(ACx? ∩ Sn−1) ≤
√
d, and the ambient dimension of the solution domain

(d). Now we are ready to provide the explicit bounds for the factors αt, ρt and σt for the

general theorems (we denotes bm :=
√

2
Γ(m+1

2
)

Γ(m
2

) ≈
√
m [127] andW :=W(ACx? ∩ Sn−1) for

the following lemmas):

Proposition 3.3.7. If the step-size ηt = 1
L(bm+

√
d+θ)2

, sketch size m satisfies bm >
√
d, and

the entries of the sketching matrix St are i.i.d drawn from a Normal distribution, then:

αt ≤
{

1− µ

L

(bm −
√
d− θ)2

(bm +
√
d+ θ)2

}
, (3.23)

with probability at least (1− 2e−
θ2

2 ).

Proposition 3.3.8. If the entries of the sketching matrix St are i.i.d drawn from a Normal

distribution, then:

ρt ≤
m

(bm −W − θ)2

(√
2bm(W + θ)

m
+ |b

2
m

m
− 1|

)
, (3.24)

With probability at least (1− e− θ
2

2 )(1− 8e−
θ2

8 ).

Proposition 3.3.9. If the entries of the sketching matrix St are i.i.d drawn from a Normal

distribution, and the sketch size m satisfies bm >
√
d, then:

σt ≤
(bm +

√
d+ θ)2

(bm −
√
d− θ)2

(3.25)

with probability at least (1− 2e−
θ2

2 ).

We include the proofs of these explicit bounds in the appendix of this chapter, where we utilize

the concentration properties of the Gaussian projection matrices. We would like to point out

that our bound on factor ρt in proposition 3.3.8 has revealed that the outer-loop convergence

of GPIS and Acc-GPIS relies on the Gaussian Width of the solution x? and the choice of the

sketch size m:

ρt .

√
2 W√

m

(1− W√
m

)2
. (3.26)
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We can then observe that the larger the sketch size m is with respect toW , the faster the outer

loop convergence of GPIS and Acc-GPIS can be, but on the other hand we should not choose

m too large otherwise the inner-loop iteration become more costly – this trade-off means that

there is always a sweet spot for the choice of m to optimize the computation.

Our theory is conservative in a sense that it does not support a sketch size which is below the

ambient dimension d since the factors αt and σt which are related to the inner loop prohibit

this. Numerically, for large data regressions (n � d) we are interested in, we observe that a

choice of m � O(d) typically provides the best overall performance.

Although the Gaussian sketch provides us strong guarantees, due to the costly computation

of dense matrix-multiplication, it is not computationally attractive in practice. In the liter-

ature of randomized numerical linear algebra and matrix sketching, people usually use the

random projections with fast computational structures such as the Fast Johnson-Lindenstrauss

Transform [96, 97], Count sketch [88] and Count-Gauss sketch[110], which costO(nd log(d)),

O(nnz(A)) and O(nnz(A) +m1.5d3) respectively. These fast sketching methods provide sig-

nificant speed up in practice compared to Gaussian sketch when n� d.

3.4 Improved Convergence Analysis of Gradient Projection Clas-

sical Sketch

The previous section describes our convergence results for GPIS/Acc-GPIS. However the con-

vergence rate of the inner-loop is conservative due to the technical difficulties with the analysis

of iterative sketches. To be more specific, let us first recall the expression of the contraction

factor αt by Definition 3.3.2 which is αt = supu,v∈Bd v
T (I − ηtATStTStA)u. In view of the

proof of Theorem 3.3.4, the result for the linear convergence rate of GPIS will still hold true if

we replace this compromised definition with an improved form:

αt = sup
u,v∈C

xt?
∩Bd

vT (I − ηtATSTSA)u (3.27)

where the cone Cxt? denotes the smallest cone at the intermediate solutions xt? of IHS objective

ft(x), containing the set K− xt?. However, the widths of these cones associated with the inter-

mediate solutions are usually unknown and difficult to be analyzed generically without strong
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assumptions. This is precisely the reason that we can only derive a compromised convergence

result for the GPIS algorithm so far.

Nevertheless, we are able to provide an improved analysis on the convergence rate of the GPCS

step by improving this contraction factor and also a cone-restricted strong convexity condition.

We start by defining some properties of the operator A, sketching scheme S, and its interaction

with the signal model (constraint set), in a similar manner to the analysis in [127] and [2]:

Definition 3.4.1. Let Cx? be the smallest closed cone at x? containing the set K − x?, Sd−1 be

the unit sphere in Rd, Bd be the unit ball in Rd, z be an arbitrary fixed unit-norm vector in Rn.

The contraction factor α?(η, SA) and the error amplification factor β(S,A) are defined as:

α?(η, SA) = sup
u,v∈Cx?∩Bd

vT (I − ηATSTSA)u, (3.28)

β(S,A) = sup
v∈ACx?∩Bn

vT
STS

m
z. (3.29)

For the convenience of the presentation of the result, we shall denote these two key factors

defined in Def.3.4.1 as α? := α?(η, SA) and β := β(S,A), respectively.

Definition 3.4.2. The cone-restricted strong convexity constant µ?c is defined as the largest

positive constant which satisfies: for all zc ∈ Cx?

‖Azc‖22 ≥ µ?c‖zc‖22. (3.30)

The cone restricted strong-convexity defined here can be viewed as a recovery/inversion sta-

bility measure which ensures that the original Least-squares estimator is reliable and robust to

noise: ‖x† − x?‖2 ≤ 2‖w‖2
µ?c

, see [111, Proposition 2.2]. Note that we always have µ?c ≥ µ

which is the ordinary strong-convexity parameter for least-squares which we have defined in

Def. 3.3.1.

Now we are ready to present our main result on linear convergence of the GPCS:

Theorem 3.4.3. Starting from x0, if the step size η, the sketching operator S ∈ Rm×n and

sketch size m are properly chosen such that α?(η, SA) < 1, the following error bound holds:

‖xk − x?‖2 ≤ αk?‖x0 − x?‖2 +
mηβ

1− α?
‖e‖2, (3.31)
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Theorem 3.4.3 reveals that as long as the step size, the sketching matrix and sketch size are

chosen properly, the updates sequence x1, x2, ..., xk generated by the GPCS iterations con-

verge linearly towards the Least-squares solution x? up to an accuracy scales with ‖e‖2. In the

forthcoming subsection we explicitly quantify the two factors α? and β in Theorem 3.4.3 when

S is a Gaussian sketch, and hence demonstrates the structure-exploiting property of the GPCS

stage.

3.4.1 Explicit Analysis Results of GPCS for Gaussian Sketches

Theorem 3.4.3 has provided us a general framework to describe the convergence of GPCS in

terms of α and β. We can derive expressions of these terms in terms of the Gaussian Width

of the set W := W(ACx? ∩ Sn−1) and the sketch dimension m when we choose S to be a

Gaussian sketching matrix.

Similar to the step size choices described in [127] (which is about the PGD convergence anal-

ysis on solving the original LS problems where A is a Gaussian map), our analysis covers a

greedy choice and a conservative choice of the step size η. For the greedy choice, we can

bound α? as described in Lemma 3.4.4.

Lemma 3.4.4. (Greedy step size) If the step-size η = 1
b2mL

, and the entries of the sketching

matrix S are i.i.d drawn from Normal distribution, then:

α? ≤ (1− µ?c
L

)(1 +
(W + θ)2

b2m
) +

√
8(W + θ)

bm
, (3.32)

with probability at least 1− 8e−
θ2

8 .

However, Lemma 3.4.4 does not ensure α < 1 since it inherently demands a sketch size m &(
W L

µ?c

)2
. This sketch size requirement can be moderated, at the cost of a more conservative

stepsize:

Lemma 3.4.5. (Conservative step size) If the step-size η = 1
L(bm+

√
d+θ)2

, and the entries of

the sketching matrix S are i.i.d drawn from Normal distribution, then:

α? ≤
{

1− µ?c
L

(bm −W − θ)2

(bm +
√
d+ θ)2

}
. (3.33)

with probability at least (1− 2e−
θ2

2 ).
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From Lemma 3.4.5 we can see that when the conservative step size is used, the sketch size we

need to ensure α < 1 is only m &W2.

Lemma 3.4.6. (Bound on noise amplification factor β) If the entries of the sketching matrix S

are i.i.d drawn from Normal distribution, then:

β ≤ 1 +

√
2bm(W + θ)

m
+ |b

2
m

m
− 1|, (3.34)

with probability at least (1− 2e−
θ2

2 ).

Lemma 3.4.5 and 3.4.6 reveals that the sketch size m has an impact on both the convergence

speed and the noise amplification. For the convergence speed, the larger the sketch size m w.r.t

the Gaussian widthW is, the faster this convergence can be, but on the other hand we should

not choose the sketch size to be too large since each iteration will become more expensive

to compute hence there exists a trade-off between sketch size and computation. The noise

amplification is a decreasing function w.r.t the sketch size m, which means the larger sketch

size we choose, the more the accuracy of the GPCS output will increase.

3.5 Implementation for GPIS and Acc-GPIS in Practice

In this section we describe our implementation of GPIS and Acc-GPIS algorithm in the exper-

iments:

• Count sketch.

In this section we choose the Count Sketch as our sketching method since it can be

calculated in a streaming fashion and we observe that this sketching method provides

the best computational speed in practice. A MATLAB implementation for efficiently

applying the Count Sketch can be found in [135].

• Line search.

We implement the line-search scheme given by [39] and is described by Algorithm 3

for GPIS and Acc-GPIS in our experiments with parameters γu = 2, and γd = 2.

Such choice of line-search parameters simply means: whenever we find the condition

ft(PK(xi−ηOft(xi))) ≤ mL does not hold, we shrink the step size by a factor of 2; and
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then at the beginning of each iteration, we increase the step size chosen at previous iter-

ation by a factor of 2, then do backtracking again. Hence our methods are able to ensure

we use an aggressive step size safely in each iteration. This is an important advantage of

the sketched gradient method since we observe that for stochastic gradient methods such

as SAGA a heuristic backtracking method similar to Algorithm 3 may work but it will

demand a very small γd (tends to 1) otherwise SAGA may go unstable, and an aggressive

choice like our γd = 2 is unacceptable for SAGA. Hence we see that stochastic variance-

reduced gradient methods such as SAGA are unable to benefit from line-search schemes

as much as our sketched gradient methods do.

• Gradient restart for Acc-GPIS.

We choose an efficient restarting scheme gradient restart proposed by [42] which is used

to ensure that the iterates of accelerated gradient methods are monotonically reducing

the objective function. The authors of [42] have proposed two heuristic adaptive restart

schemes - gradient restart and function restart for the accelerated gradient methods and

have shown significant improvements without the need of the knowledge of the functional

parameters µ and L. Such restart methods are directly applicable for the Acc-GPIS due to

its sketched deterministic iterations. Here we choose the gradient restart since it achieves

comparable performance in practice as function restart but costs only O(d) operations.

3.6 Numerical Experiments

3.6.1 Settings for Environments and Baseline Algorithms

We run all the numerical experiments on a DELL laptop with 2.60 GHz Intel Core i7-5600U

CPU and 1.6 GB RAM, MATLAB version R2015b.

We choose two recognized algorithms to represent the the full gradient methods and the (in-

cremental) stochastic gradient method. For the full gradient, we choose the Accelerated pro-

jected gradient descent [128, 31] with line-search method described in Algorithm 3 and gradient

restart to optimize its performance. For the stochastic gradients we choose a mini-batched ver-

sion of SAGA [62] with various batch sizes (b = 10, b = 50 and b = 100). We use the step size

suggested by SAGA’s theory which is 1
3L̂

. The code for the minibatch SAGA implementation
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can be found in (https://github.com/mdeff/saga). We get the estimated value for L̂ by averaging

the largest singular value of each batch (note that we do not count this in the elapsed time and

epoch counts for SAGA). The sketch size of our proposed methods for each experiment are

listed in Table 3.1. We use the `1 projection operator provided by the SPGL1 toolbox [136] in

the experiments.

SYN1 SYN2 SYN3 MAGIC04 YEAR
800 800 400 475 1000

Table 3.1: Sketch sizes (m) for GPIS and Acc-GPIS for each experiments

3.6.2 Synthetic Data Sets

We start with some numerical experiments on synthetic problems (Table 3.2) to gain some

insights into the algorithms. We begin by focusing on `1 norm constrained problems . We

generate synthetic constrained least-square problems by first generating a random matrix sized

n by d, then perform SVD on it and replace the singular values with a logarithmically de-

caying sequence. (The details of the procedure can be found in the appendix of this chapter.)

Similarly we generate a synthetic problem (Syn3) for low-rank recovery using a nuclear-norm

constraint. This is also called the multiple response regression with a generalized form of the

Least-squares:

X? = arg min
‖X‖?≤r

‖|Y −AX|‖2F . (3.35)

3.6.3 Real Data Sets

We first run an unconstrained least-squares regression on the Year-prediction (Million-song)

data set from UCI Machine Learning Repository [137] after we normalize each column of the

data matrix. We use this example to demonstrate our algorithms’ performance for unconstrained

problems.

Next we choose Magic04 Gamma Telescope data set from [137] to generate a constrained

Least-square regression problem. The original number of features for Magic04 are 10 , and we

normalize each columns of the original data matrix and additional irrelevant random features

in the same way as the experiments in [104, 138] to the data sets so that the regressor x? can be

chosen to select the sparse set of relevant features by again solving (3.1). For this case we first
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DATA SET SIZE (**)s L
µ Φ

SYN1 (100000, 100) 10 107 I
SYN2 (100000, 100) 10 107 (*)U
SYN3 (LOW RANK) (50000, 100) 5 104 -

Table 3.2: Synthetic data set settings. (*) U denotes the dense dictionary which is a orthogonal
transform. (**) s denotes sparsity or rank of the ground truth xgt

DATA SET SIZE RFS Φ
YEAR (500000, 90) 90 -
MAGIC04 (19000, 10 + 40) 10 I

Table 3.3: Chosen data sets for Least-square regression, RFs: number of relevant features

precalculate the `1-norm of the original program’s solution and then set it as the radius of our

`1 constraint. The details of the real data sets can be found in Table 3.3.

3.6.4 Discussion

We measure the performance of the algorithms by the wall-clock time (simply using the tic

toc function in MATLAB) and the epoch counts. The y-axis of each plot is the relative error

log(f(x)−f(x?)
f(x?) ). The values below 10−10 are reported as exact solutions of the least-square

problems.

In all the experiments, our methods achieve the best performance in terms of wall-clock time.

We show that in many cases the sketched gradient methods can outperform leading stochastic

gradient methods. Both sketched gradients and stochastic gradients can achieve reduced com-

plexity compared to the (accelerated) full gradient method, but since the sketched method has

inner-loops with deterministic iterations, the line-search scheme of the classic gradient descent

method can be directly used to make each iteration’s step size be near optimal, and unlike the

stochastic gradient, our methods do not need to access new mini-batches from memory each

iteration, which can save operational time in practice.

SAGA performs competitively in terms of epoch counts (right hand figures) which is generally

achieved using a small batch size of 10. Unfortunately the additional cost of the projection per

iteration can severely impact on the wall clock time performance2. The experiments on Syn1

2For the unconstrained case (Million-song data set, sized 5 × 105 by 90), we also observe that, SAGA with
b = 10 is unattractive in wall-clock time since it does not benefit from the vectorized operation of MATLAB as
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Figure 3.1: Experimental results on Million-song Year prediction data set (unconstrained LS
regression experiment)

and Syn2 are similar but in Syn2 we put the constraint on a dictionary U , hence in Syn2 the

projection operator has an additional cost of performing this orthogonal transform. In Syn1’s

wall-clock time plot we can see that SAGA with b = 10 has the fastest convergence among

all the batch size choices, but in Syn2 it becomes the worst batch size choice for SAGA since

it demands more iterations and hence more calls on the projection operator. In Syn3 we have

a more expensive projection operator since our constraint is on the nuclear-norm of a matrix

X ∈ R100×100, and we can observe that the real convergence speed of SAGA with b = 10 is

much slower than any other methods in terms of wall-clock time. In this scenario the full gra-

dient method is much more competitive. However even here as the error reduces the sketched

gradient methods exhibit a computational advantage.

3.7 Concluding Remarks

We propose two sketched gradient algorithms GPIS and Acc-GPIS for constrained Least-square

regression tasks. We provide theoretical convergence analysis of the proposed algorithms

for general sketching methods and high probability concentration bounds for the Gaussian

sketches. The numerical experiments demonstrates that for dense large scale overdetermined

larger choices of batch size and takes too many iterations.
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Figure 3.2: Experimental results on (from top to button) Syn1 and Syn2 data sets. The left
column is for wall-clock time plots, while the right column is for epoch counts

data sets our sketched gradient methods perform very well compared to the stochastic gradient

method (mini-batch) SAGA and the Accelerated full gradient method in terms of wall-clock

time thanks to the benefits of sketched deterministic iterations, the efficient implementation of

the Count-sketch and the use of aggressive line-search methods.

3.A Appendix

3.A.1 The Proof for Theorem 3.3.4

Proof. At first we denote the underlying cost function of GPIS as ft(x):
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Figure 3.3: Experimental results on (from top to button) Syn3 and Magic04 data sets. The left
column is for wall-clock time plots, while the right column is for epoch counts

For t = 0, we have the cost function of the classical sketch (CS):

f0(x) :=
1

2
‖Sy − SAx‖22. (3.36)

For t = 1, 2, ..., N we have the the cost function of Iterative Hessian Sketch (IHS):

ft(x) =
1

2
‖St+1A(x− xt)‖22 −mxTAT (y −Axt). (3.37)

We denote the optimal solution of ft constrained to set K as xt? and ‖rti+1‖2 = ‖xti+1 − xt?‖2
and we have:

‖rti+1‖2 = ‖xti+1 − xt?‖2 = ‖PK(xti − η∇f(xi))− xt?‖2. (3.38)

We denote cone Cxt? to be the smallest close cone at xt? containing the setK−xt?, again because
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of the distance preservation of translation by Lemma 6.3 of [127], we have:

‖rti+1‖2 = ‖PK−xt?(x
t
i − η∇f(xi)− xt?)‖2

= sup
v∈C

xt?
∩Bd

{
vT (xi − xt? − µ∇f(xi))

}
.

(3.39)

Then because of the optimality condition on the constrained LS solution xt?, we have:

‖rti+1‖2 = sup
v∈C

xt?
∩Bd

{
vT (xi − xt? − η∇f(xi))

}
≤ sup

v∈C
xt?
∩Bd

{
vT (xi − xt? − η∇f(xi)) + ηvT∇f(xt?)

}
= sup

v∈C
xt?
∩Bd

{
vT (xi − xt?)− ηvT (∇f(xi)−∇f(xt?))

}
= sup

v∈C
xt?
∩Bd

{
vT (I − ηATSTSA)rti

}
≤ sup

u,v∈C
xt?
∩Bd

{
vT (I − ηATSTSA)u

}
‖rti‖2.

(3.40)

Now since Cxt? ∈ Rd, we can have the following relaxation:

‖rti+1‖2 ≤ sup
u,v∈Bd

{
vT (I − ηATSTSA)u

}
‖rti‖2. (3.41)

We denote:

αt = sup
u,v∈Bd

vT (I − ηATSTSA)u. (3.42)

By recursive subsitution we have:

‖rti+1‖2 ≤ αit‖rt0‖2. (3.43)

Suppose we run GPIHS inner loop kt times, we have:

‖rtkt+1‖2 ≤ {αt}kt ‖rt0‖2, (3.44)

and consequently:

‖rtkt+1‖A ≤ {αt}kt
√
L

µ
‖rt0‖A. (3.45)

From the main theorems of the Classical sketch [2] and Iterative Hessian Sketch [3], we know
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that the following relationships hold true:

‖x0
? − x?‖A ≤ 2ρ0‖Ax? − y‖2 = 2ρ0‖e‖2, (3.46)

and,

‖xt? − x?‖A ≤ ρt‖xt0 − x?‖A. (3.47)

Then by applying triangle inequality we can have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2, (3.48)

and,

‖xt+1
0 − x?‖A ≤ ‖xt+1

0 − xt?‖A + ρt‖xt0 − x?‖A. (3.49)

Then for t = 0 we can have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2

≤ {αt}kt
√
L

µ
‖x0

0 − x0
?‖A + 2ρ0‖e‖2,

(3.50)

and for t = 1, 2, ..., N we have:

‖xt0 − x?‖A ≤ ‖xt0 − xt−1
? ‖A + ρt‖xt−1

0 − x?‖A

≤ {αt}kt
√
L

µ
‖xt−1

0 − xt−1
? ‖A + ρt‖xt−1

0 − x?‖A

≤
{
{αt}kt

(
(1 + ρt)

√
L

µ

)
+ ρt

}
‖xt−1

0 − x?‖A.

(3.51)

The last inequality holds because:

‖xt−1
0 − x?fN−1

‖A ≤ ‖xt−1
0 − x?‖A + ‖xt−1

? − x?‖A
≤ {1 + ρt} ‖xt−1

0 − x?‖A.
(3.52)

Then we denote:

ρ?t = {αt}kt
(

(1 + ρt)

√
L

µ

)
+ ρt, (3.53)
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and via recursive substitution we obtain:

‖xt0 − x?‖A ≤
{

N∏
t=1

ρ?t

}
‖x1

0 − x?‖A. (3.54)

Hence we finish the proof of Theorem 1.

3.A.2 The Proofs for Theorem 3.3.5 and 3.3.6

Proof. From the theory of the Classical sketch and Iterative Hessian Sketch we have following

relationships:

‖x0
? − x?‖A ≤ 2ρ0‖Ax? − y‖2 = 2ρ0‖e‖2, (3.55)

and,

‖xt? − x?‖A ≤ ρt‖xt0 − x?‖A. (3.56)

Then by triangle inequality we have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2, (3.57)

and,

‖xt+1
0 − x?‖A ≤ ‖xt+1

0 − xt?‖A + ρt‖xt0 − x?‖A. (3.58)

The remaining task of this proof is to bound the term ‖xt+1
0 −xt?‖A for both GPIS and Acc-GPIS

algorithm and then chain it. For all the sketched objective functions ft(x) , t = 0, 1, ..., N , and

any pair of vectors x, x′ ∈ K we have:

ft(x)− ft(x′)− 〈Oft(x′), x− x′〉 = ‖StA(x− x′)‖22 (3.59)

If we set x′ = xt?, by using first order optimality condition [139] we immediately have:

ft(x)− ft(xt?) ≥ ‖StA(x− xt?)‖22

= ‖St A(x− xt?)
‖A(x− xt?)‖2

‖A(x− xt?)‖2‖22

≥
{

inf
v∈range(A)∩Sn−1

‖Stv‖22
}
‖x− xt?‖2A.

(3.60)

76



Sketched Gradient Algorithms for Constrained Convex Optimization

Hence we have:

‖x− xt?‖A ≤
√
ft(x)− ft(xt?)

infv∈range(A)∩Sn−1 ‖Stv‖2
. (3.61)

From the established results in [128], for GPIS inner iterates we can have:

ft(xk)− ft(xt?) ≤
βLR supv∈range(A)∩Sn−1 ‖Stv‖22

2k
, (3.62)

and for Acc-GPIS inner loop we have:

ft(xk)− ft(xt?) ≤
2βLR supv∈range(A)∩Sn−1 ‖Stv‖22

(k + 1)2
. (3.63)

Hence for GPIS we have:

‖xt+1
0 − xt?‖A ≤

√
βLσtR

2k
, (3.64)

and also for Acc-GPIS:

‖xt+1
0 − xt?‖A ≤

√
2βLσtR

(k + 1)2
. (3.65)

Then by recursively substituting the inequalities we shall obtain the desired results.

3.A.3 The Proofs for Quantitative Bounds of αt, ρt and σt for Gaussian Sketches

To prove the results in Proposition 3.3.7, 3.3.8 and 3.3.9 we need the following concentration

lemmas as pillars:

Lemma 1. For any g ∈ Rd, we have:

sup
v∈Cx?∩Bd

vT g = max

{
0, sup
u∈Cx?∩Sd−1

uT g

}
(3.66)

Proof. By the definition for cone projection operator we have:

sup
v∈Cx?∩Bd

vT g = ‖PC(g)‖2 ≥ 0. (3.67)

If supv∈Cx?∩Bd v
T g > 0:

sup
v∈Cx?∩Bd

vT g = sup
v∈Cx?∩Bd

‖v‖2
vT g

‖v‖2
≤ sup

u∈Cx?∩Sd−1

uT g, (3.68)
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and meanwhile since Cx? ∩ Sd−1 ∈ Cx? ∩ Bd we have:

sup
v∈Cx?∩Bd

vT g ≥ sup
u∈Cx?∩Sd−1

uT g. (3.69)

Hence we have:

sup
v∈Cx?∩Bd

vT g = sup
u∈Cx?∩Sd−1

uT g. (3.70)

Lemma 2. If supu,v∈Cx?∩Bd v
TMu > 0, we have:

sup
u,v∈Cx?∩Bd

vTMu = sup
u,v∈Cx?∩Sd−1

vTMu (3.71)

Proof. Since u, v ∈ Cx? ∩ Bd, ‖u‖2 and ‖v‖2 are both less than or equal to 1, we can have the

following upper bound:

sup
u,v∈Cx?∩Bd

vTMu = sup
u,v∈Cx?∩Bd

(
vTMu

‖v‖2‖u‖2
)‖v‖2‖u‖2

≤ sup
u,v∈Cx?∩Sd−1

vTMu,

and meanwhile since Cx? ∩ Sd−1 ∈ Cx? ∩ Bd we have:

sup
u,v∈Cx?∩Bd

vTMu ≥ sup
u,v∈Cx?∩Sd−1

vTMu. (3.72)

Hence we have:

sup
u,v∈Cx?∩Bd

vTMu = sup
u,v∈Cx?∩Sd−1

vTMu. (3.73)

Lemma 3. If the entries of the sketching matrix S are i.i.d drawn from Normal distribution and

v ∈ Cx? , we have:

‖SAv‖2 ≥
√
µ(bm −W − θ)‖v‖2, (3.74)

‖SAv‖2 ≤
√
L(bm +W + θ)‖v‖2, (3.75)

with probability at least 1− e− θ
2

2 . (bm =
√

2
Γ(m+1

2
)

Γ(m
2

) ≈
√
m,W :=W(ACx? ∩ Sn−1))

Proof. This Lemma follows the result of the simplified form of the Gordon’s Lemma [Lemma
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6.7][127]:

‖SAv‖2 ≥ (bm −W(ACx? ∩ Sn−1)− θ)‖Av‖2
≥ √

µ(bm −W(ACx? ∩ Sn−1)− θ)‖v‖2

‖SAv‖2 ≤ (bm +W(ACx? ∩ Sn−1) + θ)‖Av‖2
≤
√
L(bm +W(ACx? ∩ Sn−1) + θ)‖v‖2

3.A.3.1 The Proof for Proposition 3.3.7

Proof. Let’s mark out the feasible region of the step-size η:

α(η, StA) = sup
u,v∈Bd

vT (I − ηATSTSA)u

≥ sup
v∈Bd

vT (I − ηATSTSA)v

= sup
v∈Bd

(‖v‖22 − η‖SAv‖22)

≥ sup
v∈Bd

((1− ηL(bm +
√
d+ θ − ε)2)‖v‖22).

So if we choose a step size η ≤ 1
L(bm+

√
d+θ)2

we can ensure that with probability 1−e− (θ−ε)2
2 (ε >

0) we have α(η, StA) > 0 and the Lemma 2 become applicable:

α(η, StA)

= sup
u,v∈Bd

vT (I − ηATSTSA)u

= sup
u,v∈Sd−1

vT (I − ηATSTSA)u

= sup
u,v∈Sd−1

1

4
[(u+ v)T (I − ηATSTSA)(u+ v)− (u− v)T (I − ηATSTSA)(u− v)]

= sup
u,v∈Sd−1

1

4
[‖u+ v‖22 − η‖SA(u+ v)‖22 − ‖u− v‖22 + η‖SA(u− v)‖22]

≤ sup
u,v∈Sd−1

1

4
[(1− ηµ(bm −

√
d− θ)2)‖u+ v‖22 + (ηL(bm +

√
d+ θ)2 − 1)‖u− v‖22].
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The last line of inquality holds with probability at least 1−2e−
θ2

2 according to Lemma 3. Then

since we have set η ≤ 1
L(bm+

√
d+θ+ε)2

, and meanwhile notice the fact that ‖u + v‖22 ≤ 4 we

have:

α(η, StA) ≤ sup
u,v∈Sd−1

1

4
(1− ηµ(bm −

√
d− θ)2‖u+ v‖22

≤ (1− ηµ(bm −
√
d− θ)2)

If we chose η = 1
L(bm+

√
d+θ)2

we have:

α(η, StA) ≤
(

1− µ

L

(bm −
√
d− θ)2

(bm +
√
d+ θ)2

)
. (3.76)

Then let ε→ 0, we shall get the result shown in Proposition 3.3.7.

3.A.3.2 The Proof for Proposition 3.3.8

Proof. Recall that ρt is defined as:

ρ(St, A) =
supv∈ACx?∩Sn−1 vT ( 1

mS
tTSt − I)z

infv∈ACx?∩Sn−1
1
m‖Stv‖22

. (3.77)

We start by lower-bounding the denominator. Using the simplified Gordon’s lemma [Lemma

6.7][127] we directly have:

inf
v∈ACx?∩Sn−1

1

m
‖Sv‖22 ≥

(bm −W − θ)2

m
, (3.78)

with probability at least (1− e− θ
2

2 ).Then we move to the upper bound for the numerator:

vT

(
St

T
St

m
− I
)
z =

1

4
{(v + z)T (

St
T
St

m
− I)(v + z)− (v − z)T (

St
T
St

m
− I)(v − z)}

=
1

4
{ 1

m
‖St(v + z)‖2 − ‖v + z‖2 + ‖v − z‖2 −

1

m
‖St(v − z)‖2},

(3.79)
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and,
W(ACx? ∩ Sn−1 − z) = Eg( sup

v∈ACx?∩Sn−1

gT (v − z))

= Eg(gT z + sup
v∈ACx?∩Sn−1

vT g)

=W(ACx? ∩ Sn−1).

(3.80)

Hence we have the following by [Lemma 6.8][127]:

vT

(
St

T
St

m
− I
)
z ≤ 1

4

{
1

m
(bm‖v + z‖2 +W + θ)2 − ‖v + z‖22

}
+

1

4

{
1

m
(bm‖v − z‖2 +W + θ)2 − ‖v − z‖22

}
=

1

4

{
(
b2m
m
− 1)‖v + z‖22 +

2bm(W + θ)

m
‖v + z‖2

}
+

1

4

{
(1− b2m

m
)‖v − z‖22 +

2bm(W + θ)

m
‖v − z‖2

}
,

(3.81)

with probability at least (1− 8e−
θ2

8 ). Note that ‖v + z‖2 + ‖v − z‖2 ≤ 2
√

2 and ‖v + z‖22 +

‖v − z‖22 ≤ 4, we have:

vT

(
St

T
St

m
− I
)
z ≤ 2bm(W + θ)

m

‖v + z‖2 + ‖v − z‖2
4

+ |b
2
m

m
− 1|

≤
√

2bm(W + θ)

m
+ |b

2
m

m
− 1|

(3.82)

thus finishes the proof.

3.A.3.3 The Proof for Proposition 3.3.9

Proof. Recall that σt is defined as:

σ(St, A) =
supv∈range(A)∩Sn−1 ‖Stv‖22
infv∈range(A)∩Sn−1 ‖Stv‖22

. (3.83)

By simply applying again the Gordon’s lemma [Lemma 6.7][127], withW(ASd−1) ≤
√
d, we

obtain the upper bound on the numerator:

sup
v∈range(A)∩Sn−1

‖Stv‖22 ≤ (bm +
√
d+ θ)2, (3.84)
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and the lower bound:

inf
v∈range(A)∩Sn−1

‖Stv‖22 ≥ (bm −
√
d− θ)2, (3.85)

both with probability at least 1− e− θ
2

2 .

3.A.4 The Proof for Theorem 3.4.3

We can start by:

‖hi+1‖2 = ‖xi+1 − x?‖2 = ‖PK(xi − η(ATSt
T
StAxi −ATSt

T
Sty))− x?‖2.

Because of the distance preservation of translation [127, Lemma 6.3], we have:

(a)
= ‖PK−x?(xi − x? − η(ATSt

T
StAxi −ATStTSty))‖2.

We apply [127, Lemma 6.4], where Cx? is the smallest close cone containing the set K − x?:

(b)
≤ ‖PCx? (xi − x? − η(ATSt

T
StAxi −ATStTSty))‖2

= ‖PCx? (hi + ηATSt
T
Sty − η(ATSt

T
StA(hi − x?))‖2

= ‖PCx? ((I − ηATStTStA)hi + ηATSt
T
St(y −Ax?)‖2

= ‖PCx? ((I − ηATStTStA)hi + ηATSt
T
Ste‖2.

Then because of the definition of the cone-projection operator [127, Lemma 6.2] we have:

(c)
= sup

v∈Cx?∩Bd
vT [(I − ηATStTStA)hi + ηATSt

T
Ste)]

≤ { sup
v∈Cx?∩Bd

vT (I − ηATStTStA)hi

+η sup
v∈Cx?∩Bd

vT (ATSt
T
Ste))}.
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Next we tidy up these terms by the definition of α(η, StA) and β(St, A) in Definition 1:

≤ { sup
v∈Cx?∩Bd

(vT (I − ηATStTStA)
hi
‖hi‖2

)‖hi‖2 + η sup
v∈Cx?∩Bd

(vTATSt
T
St

e

‖e‖2
)‖e‖2)}

≤ { sup
u,v∈Cx?∩Bd

(vT (I − ηATStTStA)u)‖hi‖2 + η sup
v∈Cx?∩Bd

(vTATSt
T
St

e

‖e‖2
)‖e‖2)}

≤ { sup
u,v∈Cx?∩Bd

(vT (I − ηATStTStA)u)‖hi‖2 + ηL sup
v∈ACx?∩Bn

(vTSt
T
St

e

‖e‖2
)‖e‖2)}

= α?(η, S
tA)‖hi‖2 + ηmLβ(St, A)‖e‖2.

Then we do recursive substitution:

‖hi+1‖2 ≤ αi?(η, S
tA)‖h0‖2 +mηβ(St, A)

1− αi?(η, StA)

1− α?(η, StA)
‖e‖2

≤ αi?(η, S
tA)‖h0‖2 +

mηLβ(St, A)

1− α?(η, StA)
‖e‖2.

Thus finishes the proof.

3.A.5 The Proofs for the Explicit Bounds of GPCS

3.A.5.1 Proof for Lemma 3.4.4

From the results in [127, Lemma 6.8] we can have the following bounds with probability at

least 1− 4e−
θ2

8 :

‖SA(u+ v)‖2 ≥ bm‖A(u+ v)‖2 − 2
√
µ?c(W + θ)

≥
√
µ?c(bm‖u+ v‖2 − 2(W + θ)),

‖SA(u− v)‖2 ≤ bm‖A(u− v)‖2 + 2
√
L(W + θ)

≤
√
L(bm‖u− v‖2 + 2(W + θ)).
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Then we can have:

α? ≤
1

4

{
‖u+ v‖22 − η‖SA(u+ v)‖22 − ‖u− v‖22 + η‖SA(u− v)‖22

}
≤ 1

4
{‖u+ v‖22 − ηµ?c(bm‖u− v‖2 − 2(W + θ))2

−‖u− v‖22 + ηL(bm‖u− v‖2 + 2(W + θ))2}

≤ 1

4
{‖u+ v‖22 − ηµ?c(b2m‖u− v‖22 + 4(W + θ)2 − 2bm(W + θ)‖u+ v‖2)− ‖u− v‖22

+ηL(bm‖u− v‖2 + 4(W + θ)2 + 2bm(W + θ)‖u− v‖2)}

≤ 1

4
{(1− ηµ?cb2m)‖u+ v‖22 + (ηLb2m − 1)‖u− v‖22 + 4η(W + θ)2(L− µ?c)

+2ηbm(W + θ)(L‖u− v‖2 + µ?c‖u+ v‖2)}.

Now we set η = 1
b2mL

. Since L ≥ µ?c , ‖u+ v‖22 ≤ 4, ‖u− v‖22 ≤ 4 and ‖u− v‖2 + ‖u+ v‖2 ≤
2
√

2, we have:

α? ≤
1

4
{4(1− µ?c

L
) +

4(W + θ)2

b2m
(1− µ?c

L
) +

8
√

2(W + θ)

bm
}

= (1− µ?c
L

)(1 +
(W + θ)2

b2m
) +

2
√

2(W + θ)

bm
,

with probability at least 1− 8e−
θ2

8 . Thus finishes the proof.

3.A.6 The Proof for Lemma 3.4.5

In this proof we first state two inequalities which are extented the from [127, Lemma 6.7]:

‖SA(u+ v)‖2 ≥
√
µ?c(bm −W − θ)‖u+ v‖2, (3.86)

‖SA(u− v)‖2 ≤
√
L(bm +

√
d+ θ)‖u− v‖2, (3.87)

with probability at least 1− e− θ
2

2 . Then we can have:

α? ≤
1

4

{
‖u+ v‖22 − η‖SA(u+ v)‖22 − ‖u− v‖22 + η‖SA(u− v)‖22

}
≤ 1

4
{‖u+ v‖22 − ηµ?c(bm −W − θ)2‖u+ v‖22
−‖u− v‖22 + ηL(bm +

√
d+ θ)2‖u− v‖22}.
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DATA SET SIZE S Φ
SYN4 (20000, 100) - I

Table 3.4: Synthetic data set for step size experiment

Let η = 1
L(bm+

√
d+θ)2

we have:

α? ≤
1

4
{1− µ?c(bm −W − θ)2

L(bm +
√
d+ θ)2

}‖u+ v‖22

≤ {1− µ?c(bm −W − θ)2

L(bm +
√
d+ θ)2

}

with probability at least (1− 2e−
θ2

2 ).

The proof for Lemma 3.4.6 is almost the same as the proof of Proposition 3.3.8 hence we have

not included it here.

3.A.7 Details of the Implementation and Numerical Experiments

3.A.7.1 Procedure to Generate Synthetic Data Sets

The procedure we used to generate a constrained least-square problem sized n by 100 with

approximately s-sparse solution and a condition number κ strictly follows:

1) Generate a random matrix A sized n by 100 with i.i.d entries drawn from N (0, 1).

2) Calculate A’s SVD: A = UΣV T and replace the singular values diag(Σ)i by a sequence:

diag(Σ)i =
diag(Σ)i−1

κ
1
d

(3.88)

3) Generate the ”ground truth” vector x† sized 100 by 1 randomly with only s non-zero entries

in an orthogonal transformed domain Φ, and calculate the `1 norm of it (r = ‖Φx†‖1). Hence

the constrained set can be described as K = {x : ‖Φx‖1 ≤ r}.

4) Generate a random error vector w with i.i.d entries such that ‖Ax
†‖2

‖w‖2 = 10.

5) Set y = Ax† + w
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Figure 3.4: Experimental results on the average choices of GPIS’s step sizes given by line-
search scheme

DATA SET SIZE (*)s L
µ

SYN-SLI (100000, 1500) 50 106

SYN1 (10000, 100) 5 106

SYN2 (100000, 100) 5 106

SYN3 (200000, 100) 5 106

Table 3.5: Experiment settings. (*) s denotes sparsity of the ground truth x?

3.A.7.2 Extra Experiment for Step Size Choice

We explore the step size choices the GPIS algorithm produced through using the line-search

scheme with respect to different sparsity levels of the solution. The results we shown come

from the average of 50 random trials.

The result of the step-size simulation demonstrates that the step sizes chosen on average by

the line-search scheme for the GPIS algorithm is actually related with the sparsity of the

ground truth xgt: at a regime when the xgt is sparse enough, the step size one can achieve

goes up rapidly w.r.t the sparsity. While in our Proposition 2 we revealed that the outerloop of

GPIS/Acc-GPIS can benefit from the constrained set, and here surprisingly we also find out nu-

merically that the inner loops can also benefit from the constrained set by aggressively choosing

larger step sizes. Such a result echos the analysis of the PGD algorithm on constrained Least-

squares with a Gaussian map A [127]. Further experiments and theoretical analysis of such

greedy step sizes for sketched gradients and full gradients on general maps is of great interest.
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3.A.8 Additional Numerical Experiments on GPCS

We first test the behaviour of GPCS algorithm with various sketch sizes in sparse linear in-

version task which recovers a sparse vector x† from noiseless measurements y = Ax. The

`1 norm of x† is assumed known as a prior hence hence we construct the constraint set K ={
∀v : ‖v‖1 ≤ ‖x†‖1

}
.

The details of the experimental setting can be found in Table 3.5, and meanwhile the procedure

of generating the synthetic data matrix A with a condition number κ:

1) Generate a random matrix A sized n by d using MATLAB command Randn.

2) Compute the Singular Value Decomposition of A: A = UΣV T and modify the singular

values ei = diag(Σ)i by:

ei =
ei−1

κ
1
d

, (3.89)

to achieve the condition number of Lµ = 106.

The performance of the Projected Gradient and fast gradient method (FISTA) for SYN-SLI

is shown in figure 3.5. The step sizes for all the algorithms are generated by the line-search

given by [39]. Although in this work we analyze the explicit convergence speed and noise

amplification for the Gaussian Sketch as a motivational theory, this type of sketches are costly

to compute. In practice, instead of using directly the Gaussian sketch, people use faster sketches

such as the Fast Johnson-Lindenstrauss Transform (FJLT) [96][97], the sparse JLT [105] and

the Count Sketch [88]. We choose to use the Count-Sketch [88] for the GPCS to speedily

produce the sketched matrix SA.

This experimental result confirms that for noiseless inversion y = Ax†, the GPCS converges

towards the solution with a linear rate as our theory predicts, and also the best convergence

is given by appropriate median sketch size choices (m = 700, 1100), which are some factors

larger than the sparsity s = 50, but less than the ambient dimension d = 1500. The GPCS

provides significant computational benefits over the full gradient methods PGD and FISTA on

this large scale inversion task.

We then turn to the noisy set up for SYN-SLI y = Ax† + w (Fig. 3.6). The Gaussian noise

vector w satisfies ‖Ax
†‖2

‖w‖2 = 30. Here we find out that as our theory predicted, the GPCS

converges to a vicinity of the solution x?, meanwhile the larger the sketch size is, the more
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Figure 3.5: Large scale noiseless sparse linear inversion experiment (Syn-SLI), y = Ax†
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Figure 3.6: Large scale noisy Least-squares regression experiment (Syn-SLI), y = Ax† + w

accurate the solution is. That is, the GPCS converge to an approximated solution of the Least-

squares, and the approximation accuracy is determined by the noise level and the sketch size

m. As discussed, if one needs to solve the LS to machine precision in the presence of noise

‖w‖2 > 0, one can use the GPCS as a fast initialization step and then continue by GPIHS which

is based on the ”iterative” sketches [3].

3.A.9 Computational and Sketch-Size Trade-off

We finally examine the computational cost of GPCS on the linear inversion task y = Ax

through different choices of sketch size on three synthetic examples (Syn1, Syn2 and Syn3).

Here we test GPCS on both the Gaussian Sketch and the Count-Sketch which is more com-
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putationally efficient. We run GPCS with sketch size from 10 to 1000 until a fixed accuracy

‖xt−x?‖2 ≤ 10−4 is achieved, or when the computational budget has run out. We average the

results of 20 random trials.

From the experimental results in Figure 3.7 we can observe a sharp trade-off phenomenon as

our theory predicted. When the sketch size is too near to the intrinsic dimension, the GPCS

takes a huge cost to achieve the targeted accuracy; but if we increase the sketch size by a small

amount, the computational cost drops radically to a ”sweet spot”, then if we continue to in-

crease the sketch size, the cost increases again since each iteration’s cost is more expensive for

a large sketch size. We can also observe that the optimal choice of sketch size is not a function

of the data sample size n, as our theory predicted. Surprisingly we see that the larger the n is,

the behavior of the Gaussian Sketch and Count Sketch become more similar as shown in the

right hand figures in Fig 3.7. It would be an interesting future research direction to investigate

in theory the relationship between the performance of the practical sparse embedding schemes

such as the Count Sketch, and the properties of A, e.g. the sample size n, the parameter di-

mension d and the conditioning L
µ , the distribution of its singular values and singular vectors,

etc.
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Figure 3.7: Computational and sketch size trade-off experiments for GPCS on `1 constrained
linear system y = Ax. From top to bottom : Syn1, Syn2 and Syn3; from left to right: average
curve (on 20 trials) and error bar (the maximum and minimum epoch counts in these 20 trials)
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Chapter 4
Structure-Adaptive Accelerated

Stochastic Gradient Descent

4.1 Towards the Structure-Adaptive, Variance-Reduced and Ac-

celerated Stochastic Optimization

While the previous chapter proposes sketched gradient algorithms for constrained optimization

and studies in great detail of the structure-adaptive property of this class of algorithms, there is

very little research on the structure-adaptive algorithmic design and analysis of the stochastic

gradient methods. We consider the generic empirical risk minimization (2.3) in this chapter:

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + λg(x)

}
, f(x) :=

1

n

n∑
i=1

fi(x),

which we have introduced in Section 2.1. In the “big data” and “big dimension” regimes,

stochastic gradient-based iterative algorithms are very often considered. The most basic one is

often referred to as stochastic gradient descent (SGD) [46, 47], in every iteration of which only

one or a few functions fi are randomly selected, and only their gradients are calculated as an

estimation of the full gradient. However, the convergence rate of SGD is sub-linear even when

the loss function F is strongly-convex.

To further accelerate the stochastic gradient descent algorithm, researchers have recently de-

veloped techniques which progressively reduce the variance of stochastic gradient estima-

tors, starting from SAG [56, 57], SDCA [61], then SVRG [58, 60] and SAGA [62]. Such

methods enjoy a linear convergence rate when the cost function F described in (2.3) is µ-

strongly-convex and each fi has L-Lipschitz continuous gradients, that is, to achieve an out-

put x̂ which satisfies F (x̂) − F (x?) ≤ δ, the total number of stochastic gradient evaluations

needed is O
(
n + L/µ

)
log 1

δ . Nesterov’s acceleration [37, 39, 31] has also been successfully

applied to construct variance-reduced methods which have an accelerated linear-convergence
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rate [6, 74, 63, 55, 65, 4, 67, 140]:

O

(
n+

√
nL

µ

)
log

1

δ
. (4.1)

It is worth noting that this convergence rate has been shown to be worst-case optimal [55].

However, all of these algorithms need explicit knowledge of the strong-convexity parameter µ

to achieve the optimal convergence rate [141]. Since in general the strong-convexity is hard

to be estimated accurately, researchers proposed adaptive restart schemes [42, 142, 43, 143,

140, 144] for accelerated first-order methods, either by the means of enforcing monotonicity on

functional decay, or by estimating the strong-convexity on the fly.

In this chapter we extend the theoretical framework of restricted strong-convexity [5] to design

and analyse a structure-adaptive variant of Katyusha [4]. Our proposed method Rest-Katyusha

is a restarted version of the original Katyusha method for non-strongly convex functions, where

the restart period is determined by the restricted strong-convexity (RSC). The convergence

analysis for Rest-Katyusha algorithm is provided, wherein we prove linear convergence up to a

statistical accuracy with an accelerated convergence rate characterized by the RSC property.

Like all other accelerated gradient methods which require the explicit knowledge of strong-

convexity parameter to achieve accelerated linear convergence, the vanilla Rest-Katyusha al-

gorithm also needs to explicitly know the RSC parameter. We therefore propose a practical

heuristic (adaptive Rest-Katyusha) which estimates the RSC parameter on the fly and adap-

tively tune the restart period, and we show that this adaptive scheme mimics the convergence

behavior of the vanilla Rest-Katyusha. Finally we validate the effectiveness of our approach

via numerical experiments.
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Algorithm 4 Katyusha (x0,m, S, L)

Initialize: y0 = z0 = x̂0;
for s = 0, . . . , S − 1 do

θ ← 2
s+4 , calculate Of(x̂s), z0 ← zs, y0 ← ys;

for k = 0, 1, 2, ...,m

xk+1 = θzk + 1
2 x̂

s + (1
2 − θ)yk; → linear coupling

Ok+1 = Of(x̂s) + Ofi(xk+1)− Ofi(x̂s);
→ variance reduced stochastic gradient

zk+1 = arg minz
3θL

2 ‖z − zk‖22 + 〈Ok+1, z〉+ λg(z);→ proximal mirror descent

yk+1 = arg miny
3L
2 ‖y − xk+1‖22 + 〈Ok+1, y〉+ λg(y);

→ proximal gradient descent

x̂s+1 =
1

m

m∑
j=1

yj , y
s+1 = ym, z

s+1 = zm;

end for
Output: x̂S

4.2 Restarted Katyusha Algorithm

The Katyusha algorithm [4] listed in Algorithm 4 is an accelerated stochastic variance-reduced

gradient method extended from the linear-coupling framework for constructing accelerated

methods [145]. This algorithm is an accelerated variant of the proximal SVRG algorithm we in-

troduced in Section 2.4. It is one of the state-of-the-art methods for empirical risk minimization

and matches the complexity lower-bound for minimizing smooth-convex finite-sum functions,

proven by [55]. Most notably, it is a primal method which directly1 accelerates stochastic

variance-reduction methods.

Recall that in Section 2.3, we have introduced Nesterov’s acceleration technique for gradient

descent. We need to note that, naively applying Nesterov’s acceleration on stochastic gradi-

ent cannot yield optimal speed up of convergence, since the momentum step is sensitive to

the noise of stochastic gradient estimator [147]. To achieve acceleration in the sense of Nes-

terov, Katyusha introduces the three-point coupling strategy which includes a combination of

Nesterov’s momentum and a stabilizing negative momentum which cancels the effect of noisy

updates due to stochastic gradients. However, its accelerated linear convergence is only estab-

lished when the regularization term g(x) is strongly-convex, and fails to benefit from the strong

convexity from the data-fidelity term [144], or the intrinsic restricted strong-convexity [12].

1On the other hand, one can indirectly accelerate SVRG/SAGA via Catalyst [146].
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Algorithm 5 Rest-Katyusha (x0, µc, S0, β, T, L)

Initialize: m = 2n, S =
⌈
β
√

32 + 24L
mµc

⌉
;

First stage —- warm start:

x1 = Katyusha (x0,m, S0, L)

Second stage —- exploit the restricted strong-convexity via periodic restart:

for t = 1, ..., T do

xt+1 = Katyusha (xt,m, S, L)

end for

Output: xT+1

Restart to rescue: as we have mentioned in section 2.3.5, it is well-known that if the cost

function F (x) is µ-strongly convex, one can periodically restart the accelerated full gradient

method [39], and improve it from a sublinear convergence rate F (xk)− F ? ≤ 4L‖x0−x?‖22
k2 to a

linearly convergent algorithm. For instance if we set k =
⌈
4
√
L/µ

⌉
, then one can show that

the suboptimality can be reduced by 1
4 :

F (xk)− F ? ≤ 4L‖x0 − x?‖22
k2

≤ 4L[F (x0)− F ?]
µk2

≤ 1

4
[F (x0)− F ?]. (4.2)

Then we can recursively apply this statement (algorithmically speaking, we restart the algo-

rithm every
⌈
4
√
L/µ

⌉
iterations), and only k ≥

⌈
4
√

L
µ

⌉
log4

1
δ iterations are needed to make

F (xk) − F ? ≤ δ. Hence an accelerated linear rate is achieved. The restart scheme has

been recently applied to improve the convergence of the accelerated coordinate descent method

[40, 143] and accelerated variance-reduced dual-averaging method [140] for strongly-convex

functions.

Inspired by [39] we first propose the Katyusha method with periodic restarts, and meanwhile

demonstrate that when the restart period is appropriately chosen, the proposed method is able

to exploit the restricted strong-convexity property to achieve an accelerated linear convergence,

even when the cost function itself is not strongly-convex. We propose to warm start the algo-

rithm prior to the periodic restart stage, by running the Katyusha algorithm for a number of

epochs, which in theory should be proportional to the suboptimality of the starting point x0.

We present our Rest-Katyusha method as Algorithm 5.
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4.3 Convergence Analysis of Rest-Katyusha

4.3.1 Generic Assumptions

We start by formally listing out the assumptions we shall engage with in our analysis on Rest-

Katyusha’s convergence for solving the regularized ERM described in (2.3), Section 2.1. These

generic assumptions are necessary for applying the RSC framework [5]. We have briefly in-

troduced these important concepts in Section 2.7.1 of the background chapter, and we recall

them here for coherency of this chapter. Meanwhile, we will see some slight changes we make

on the assumptions compared to what we have introduced previously. These changes are made

due to the fact that we choose not to consider the additional side-constraint on the composite

optimization task as the original work of Agarwal et.al. [5] did.

A. 1. (Decomposable regularizer) [5] Given a orthogonal subspace pair (M,M⊥) in Rd, g(.)

is decomposable which means:

g(a+ b) = g(a) + g(b), ∀a ∈M, b ∈M⊥. (4.3)

In this chapter we focus on cases where the regularizer is decomposable, which includes many

popular regularizers which can enforce low-dimensional structure, such as `1 norm, `2,1 norm

and nuclear norm penalty2. The subspaceM is named the model subspace, while its orthog-

onal complementM⊥ is called the perturbation subspace. A similar notion of decomposition

would extend the scope of this work to more general gauge functions g(.), such as the so-called

analysis priors, e.g., total variation regularization (for more details see [115]).

A. 2. (Restricted strong convexity) [5] The function f(.) satisfies restricted strong convexity

with respect to g(.) with parameters (γ, τ ) if the following inequality holds true:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ γ

2
‖x− x?‖22 − τg2(x− x?), ∀x ∈ Rd. (4.4)

Note that compared to Definition 2.7.3, this RSC assumption does not have the additional side-

constraint. In [5], γ is referred as the lower curvature parameter, while τ is named the tolerance

parameter. It is clear that if τ = 0, A.2 reduces to usual strong-convexity assumption. While

2The nuclear-norm penalty satisfies a slightly more complicated form of decomposibility on subspace pair
(M,M̄⊥) whereM∈ M̄.
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in the high-dimensional setting, the strong-convexity often does not hold, but it has been shown

in literature that such a milder assumption of RSC does hold in many situations. This notion

of RSC is distinctively different from other forms of weak strong-convexity assumption based

on the Polyak-Lojasiewicz inequality [148] for the purpose of this work, because it encodes

the direction-restricting effect of the regularization, and hence has been shown to have a direct

connection with the low-dimensional structure of x?.

A. 3. Each fi(.) has L-Lipschitz continuous gradient:

‖Ofi(x)− Ofi(x
′)‖2 ≤ L‖x− x′‖2,∀x, x′ ∈ Rd. (4.5)

As we have previously introduced in section 2.4, this form of smoothness assumption is classic

for variance-reduced stochastic gradient methods.

A. 4. Recall the definition of x† by (2.2) in Section 2.1. The regularization parameter λ and x†

satisfies:

λ ≥ (1 +
1

c
)g∗(Of(x†)), (4.6)

with constant c ≥ 1.

Assumption A.4 with the choice of c = 1 is the fundamental assumption of the analytical

framework developed by Agarwal et al. [5] and Negahban et al. [116]. We relax the requirement

to c ≥ 1 for more general results. It is seemly a sophisticated and demanding assumption but

indeed is reasonable and suits well the purpose of this work, which is to develop fast algorithms

to speedily solve structured problems – which is always the result of sufficient regularization.

We can also see more insights of this condition from another perspective: recall that the goal

of finding the solution x? via optimizing the regularized empirical risk is to get a meaningful

approximation of the true parameter x† which is the unique minimizer of the population risk.

Especially in the high dimensional setting where d > n, the choice of regularization is rather

important since there is no good control over the statistical error ‖x† − x?‖ for an arbitrarily

chosen λ. Because of this issue, in this work we only focus on the “meaningful” regularized

ERM problems which are able to provide trustworthy approximation. Similar to A.4, [116]

has shown that λ ≥ 2g∗(Of(x†)) provides a sufficient condition to bound the statistical error

‖x? − x†‖22, as presented in the background chapter.
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4.3.2 Main Results

Based on the assumption of the restricted strong convexity on f(.) w.r.t g(.), and also with the

definition of subspace compatibility (see Definition 2.7.2):

Φ(M) := sup
v∈M\{0}

g(v)

‖v‖2
,

one can further derive a more expressive form of RSC, which is named Effective RSC [5] which

has a direct link to the structure of solution.

Lemma 4.3.1. (Effective RSC) 3 Under A.1, A.2 , A.4, while x satisfies F (x)− F (x?) ≤ η for

a given value η > 0 and any minimizer x?, with ε := 2Φ(M)‖x†−x?‖2 + 4g(x†M⊥) we have:

F (x)− F ? ≥ µc‖x− x?‖22 − 2τ(1 + c)2v2, (4.7)

where µc = γ
2 − 8τ(1 + c)2Φ2(M) and v = η

λ + ε.

Here we refer µc as the effective restricted strong convexity parameter, which will provide us

with a direct link between the convergence speed of an algorithm and the low-dimensional

structure of the solution. Note that this lemma relaxes the condition on λ in [5, Lemma 11],

which is restricted to c = 1. Our main theorem is presented as the following:

Theorem 4.3.2. Under A.1 - 4, if further A.2 holds with parameter (γ, τ) such that τΦ2(M) <

γ
16(1+c)2 , denote ε := 2Φ(M)‖x†−x?‖2+4g(x†M⊥),D(x0, x?) := 16(F (x0)−F ?)+ 6L

n ‖x0−
x?‖22, µc = γ

2 − 8τ(1 + c)2Φ2(M), if we run Rest-Katyusha with

S0 ≥
⌈(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

⌉
, S =

⌈
β

√
32 +

12L

nµc

⌉
with β ≥ 2 (4.8)

then the following inequality holds:

E[F (xT+1)− F ?] ≤ max

{
ε,

(
1

β2

)T D(x0, x?)

(S0 + 3)2

}
(4.9)

with probability at least 1− ρ.

3This Lemma is first proven in our earlier preprint [12, Lemma 3.3], and is an extension of [5, Lemma 11]. In
Appendix 5-A, we provide the proof of a more general version of this Lemma, which includes it as a special case.
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Corollary 4.3.3. Under the same assumptions, parameter choices and notations as Theorem

4.3.2, the total number of stochastic gradient evaluations required by Rest-Katyusha to get an

δ > ε accuracy is:

O

(
n+

√
nL

µc

)
log

1

δ
+O(n)S0. (4.10)

Proof technique. We extend the proof technique of Agarwal et al. [5] to the proximal gradient

descent and also the proof technique of Qu and Xu [118] for SVRG which are both based on

applying induction statements to roll up the residual term of (4.7) which is the second term

at the RHS. The complete proofs of Theorem 4.3.2 and Corollary 4.3.3 can be found in the

appendix of this chapter.

Accelerated linear convergence. Under the RSC assumption, Theorem 4.3.2 and Corollary

4.3.3 demonstrate a local accelerated linear convergence rate of Rest-Katyusha up to a statistical

accuracy δ > ε. To the best of our knowledge, this is the first structure-adaptive convergence

result for an accelerated incremental gradient algorithm. Note that this result can be trivially

extended to a global accelerated linear convergence result (with S0 = S) with the same setting

of Agarwal et al. [5] where a side constraint g(x) ≤ R for some radii R is added to restrict

the early iterations with additional re-projections unto this constraint set4. Starting from the

objective-gap convergence result (4.9) and the effective RSC (4.7), with some additional algebra

one can easily derive the accelerated linear convergence on the optimization variable of the

form:

E‖xT+1 − x?‖22 ≤ O
(

1

β2

)T
D1 + o(ε2), (4.11)

where we denote D1 := 2D(x0,x?)
µc(S0+3)2 .

Structure-adaptive convergence. The effective RSC µc = γ
2 − 8τ(1 + c)2Φ2(M) links

the convergence speed of Rest-Katyusha with the intrinsic low-dimensional structure of the

solution which is due to the regularization. For instance, if F (x) := 1
2n‖Ax − b‖22 + λ‖x‖1,

‖x?‖0 = s and (A.4) holds with c = 1, then we have µc = γ
2 − 32τs, meanwhile for a wide

class of random design matrices we have τ = O( log d
n ) and γ > 0. More specifically, if the

rows of the random design matrix A are drawn i.i.d. from N (0,Σ) with covariance matrix

Σ ∈ Rd×d which has largest singular value rmax(Σ) and smallest singular value rmin(Σ), then

4In [5], a side constraint is manually added to the regularized ERM problem, hence in their setting, the effective
restricted strong-convexity is valid globally. They provide global linear convergence result of proximal gradient
descent (with additional re-projection steps) at a cost of additional side-constraints.

98



Structure-Adaptive Accelerated Stochastic Gradient Descent

γ ≥ rmin(Σ)
16 and τ ≤ rmax(Σ)81 log d

n with high probability as shown by Raskutti et al. [117].

High probability statement. Since our proofs utilize the effective RSC which holds in a neigh-

borhood of x? as demonstrated in Lemma 4.3.1, we need to bound the functional suboptimality

F (xt)−F ? in the worst case instead of in expectation. Hence inevitably the Markov inequality

has to be applied to provide the convergence statement with high probability (details can be

found in the main proof).

Optimizing the choice of β. Theorem 4.3.2 shows that the complexity of the main loop of Rest-

Katyusha is
⌈
β
√

32 + 12L/(nµc)
⌉

logβ2
1
δ , which suggests a trade-off between the choice of

β and the total computation. With some trival computation one can derive that in theory the

best choice of β is exactly the Euler’s number (≈ 2.7). Numerically, we observe that slightly

larger choice of β often provides better performance in practice (illustrative examples can be

found in the appendix of this chapter).

4.4 Adaptive Rest-Katyusha

Motivated by the theory above, we further propose our practical adaptive restart heuristic of

Rest-Katyusha which is able to estimate the effective RSC on the fly. Based on the convergence

theory, we observe that, with the choice of restart period S =
⌈
β
√

32 + 12L/(nµ0)
⌉

with a

conservative estimate µ0 ≤ µc, then we are always guaranteed to have:

Eξt\ξt−1
[F (xt+1)− F ?] ≤ 1

β2
[F (xt)− F ?], (4.12)

due to the fact that an underestimation of the RSC will lead to a longer restart period than

we actually need5. The intuition behind our adaptive restart heuristic is: if we overestimate

µc, the above inequality will be violated. Hence an adaptive estimation of µc can be achieved

via a convergence speed check. However the above inequality cannot be evaluated directly in

practice since it is in expectation and demands the knowledge of F ?. In [43, Prop. 4], it has

been shown that with the composite gradient map:

T (x) = arg min
q

L

2
‖x− q‖22 + 〈Of(x), q − x〉+ λg(q), (4.13)

5An inaccurate estimate of the RSC will lead to a compromised convergence rate. Detailed discussion and
analysis of Rest-Katyusha with a rough RSC estimate can be found in the Appendix.
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the value of F (x)− F ? can be lower bounded:

F (x)− F ? ≥ 1

2
‖T (x)− x‖22, (4.14)

and also it can be approximately upper bounded by O(‖T (x)− x‖22) if local quadratic growth

is assumed, which reads:

∃α > 0, r > 0, F (x)− F ? ≥ α‖x− x?‖22,∀x s.t. ‖x− x?‖22 < r. (4.15)

Hence in our adaptive restart heuristic we check the convergence speed via evaluating the

composite gradient map at the snapshot points where full gradients have already been calcu-

lated. Because of this, the only main additional computational overhead of this adaptive restart

scheme is the proximal operation of g(.) at the restart points.

Algorithm 6 Adaptive Rest-Katyusha (x0, µ0, S0, β, T, L)

Initialize: Epoch length m = 2n; Initial restart period S =
⌈
β
√

32 + 12L
nµ0

⌉
;

x1 = Katyusha (x0,m, S0, L)
Calculate the composite gradient map:
T (x1) = arg minx

L
2 ‖x− x1‖22 + 〈Of(x1), x− x1〉+ λg(x).

for t = 1, . . . , T do
xt+1 = Katyusha (xt,m, S, L)
—–Track the convergence speed via the composite gradient maps:
T (xt+1) = arg minx

L
2 ‖x− xt+1‖22 + 〈Of(xt+1), x− xt+1〉+ λg(x).

—– Update the estimate of RSC and adaptively tune the restart period
if ‖T (xt+1)− xt+1‖22 ≤ 1

β2 ‖T (xt)− xt‖22
then µ0 ← 2µ0, else µ0 ← µ0/2. S =

⌈
β
√

32 + 12L
nµ0

⌉
end for

The adaptive Rest-Katyusha method is presented in Algorithm 6. We highlight the heuristic

estimation procedure of RSC parameter, which is additional to the original Katyusha algorithm.

The algorithm starts with an initial guess µ0 and the restart period S, meanwhile we calculate

the composite gradient map T (x1) at x1 and record the value of ‖T (x1) − x1‖22 which we

use as the estimation of F (x1) − F ? (and so on). Then after S outer-loops, we restart the

algorithm and then evaluate again the composite gradient map. If ‖T (x2)−x2‖22 ≥ 1
β2 ‖T (x1)−

x1‖22, then we suspect that the RSC parameter has been overestimated, and hence we reduce

µ0 by a half, otherwise we double the estimation. We also update the restart period by S =⌈
β
√

32 + 12L/(nµ0))
⌉

with the modified µ0. The forthcoming iterations follow the same

updating rule as described.
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4.5 Numerical Experiments

In this section we describe our numerical experiments on our proposed algorithm Rest-Katyusha

(Alg.5) and also the adaptive Rest-Katyusha (Alg.6). We focus on the Lasso regression task:

x? ∈ arg min
x∈Rd

{
F (x) :=

1

2n
‖Ax− b‖22 + λ‖x‖1

}
. (4.16)

To enforce sparsity on regression parameter we use the `1 penalty with various degrees of

regularization parameters chosen from the set λ ∈ {1 × 10p, 2 × 10p, 5 × 10p, p ∈ Z}. For

comparison, the performance of (proximal) SVRG and the original Katyusha method is also

shown in the plots. We run all the algorithms with their theoretical step sizes on Madelon and

REGED dataset, while on RCV1 dataset we use minibatch scheme for all the algorithms and

grid-search the step sizes which can optimize these algorithms’ performance.

DATA SET SIZE (n, d) MINIBATCH REF.

(A) MADELON (2000, 500) 1 [137]

(B) RCV1 (20242, 47236) 80 [137]

(C) REGED (500, 999) 1 [149]

Table 4.1: Datasets for the Experiments and Minibatch Size Choice for the Algorithms

In all our experiments we set β = 5 and S0 = S for convenience. We first do a grid-search

on the estimate of µc for Rest-Katyusha which provides the best convergence performance, and

denote it as “Rest-Katyusha opt” in the plots. Meanwhile we also run Rest-Katyusha with a

RSC estimation which is 20 times larger or smaller than the optimal one, which we denote as

“Rest-Katyusha opt*20” and “Rest-Katyusha opt/20” respectively. At the 5th plot in Figure

1 the curves for Rest-Kat opt, opt*20 and opt/20 are indistinguishable which shows that in

these particular experiments their performance can be almost identical. For the adaptive Rest-

Katyusha we fix our starting estimate of µc as 10−5 throughout all the experiments.

From these experiments we observe that as our theory has predicted, the Rest-Katyusha achieves

accelerated linear convergence even when there is no explicit strong-convexity in the cost func-

tion (RCV1 and REGED dataset), and the convergence speed has a direct relationship with the

sparsity of solution. For the lasso experiments when the solution is sparser, the linear conver-

gence speed of Rest-Katyusha indeed becomes faster. Meanwhile when we run Rest-Katyusha
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(A) λ = 5× 10−5, ‖x?‖0 = 42
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(A) λ = 2× 10−5, ‖x?‖0 = 159
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(B) λ = 1× 10−4, ‖x?‖0 = 902
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(B) λ = 1× 10−5, ‖x?‖0 = 6315

Figure 1: Lasso Experiments on (A) Madelon and (B) RCV1

1

Figure 4.1: Lasso experiment results on (A) Madelon and (B) RCV1, comparing the conver-
gence performance of the proposed algorithms (Rest-Katyusha and Adaptive Rest-Katyusha)
with the baseline algorithms SVRG and Katyusha.

with an inaccurate RSC estimate, we still observe a compromised linear convergence, as pre-

dicted by our theory. In all the experiments, we have observed that the adaptive Rest-Katyusha

indeed achieves a good estimation of the RSC parameter and properly adapts the choice of

restart period automatically on the fly, hence its performance is often comparable with the best

tuned Rest-Katyusha. Similar to the experimental results shown in [5, 118, 12], the linear con-

vergence we observe is towards an arbitrary accuracy instead of a threshold nearby the solution.

This conservative aspect of the theory is inherently due to the artifact of the RSC framework [5]

and we include the extension for arbitrary accuracy regime as our future work. We also include

additional experimental results in the appendix of this chapter.
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4.6 Concluding Remarks

We developed a restart variant of the Katyusha algorithm for regularized empirical risk mini-

mization tasks, which is provably able to actively exploit the intrinsic low-dimensional structure

of the solution for the acceleration of convergence. Based on the convergence result we further

constructed an adaptive restart heuristic which aimed at estimating the RSC parameter on the

fly and adaptively tuning the restart period. The efficiency of this approach is validated through

numerical experiments. In future work, we aim to develop more refined and provably-good

adaptive restart schemes for Rest-Katyusha algorithm to further exploit the solution’s structure

for acceleration.

4.A Appendix

In this appendix we include the proof of our main result which establishes the structure-adaptive

and accelerated linear convergence rate for Rest-Katyusha algorithm. Further, we also extend

our analysis to the case where we underestimate the RSC parameter. We also provide an addi-

tional numerical result for testing the convergence rate of Rest-Katyusha with different choices

of the input parameter β.

4.A.1 The Proof of Theorem 4.3.2 and Corollary 4.3.3

We first state the convergence result of Katyusha algorithm for non-strongly convex functions:

Lemma 4.A.1. [4, Theorem 4.1] Under A.3, starting at x0, with epoch length m = 2n, denote

D(x0, x?) := 16(F (x0)−F ?)+6L
n ‖x0−x?‖22, the s-th snapshot point x̂s of Katyusha algorithm

satisfies:

E[F (x̂s)]− F ? ≤ D(x0, x?)

(s+ 3)2
. (4.17)

Now based on the effective RSC by Lemma 4.3.1 in the main text we are able to provide the

proof of our main result.

Proof. At each iteration, the algorithm chooses an index i uniformly at random to perform the

calculation of one stochastic variance-reduced gradient. The update sequences yk+1 and zk+1

within t-th outer-loop of Rest-Katyusha depend on the realization of the following random
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variable which we denote as ξtk:

ξt = {itm, itm−1, ..., i
t
1, i

t
0, i

t−1
m , ..., it−1

0 , ..., i0m, ..., i
0
0}, (4.18)

and for the randomness within a single outer-loop of Rest-Katyusha we specifically denote

ξt\ξt−1 as

ξt\ξt−1 = {itm, itm−1, ..., i
t
1, i

t
0}. (4.19)

According to Lemma 4.A.1, setting m = 2n, for the first stage t = 0:

Eξ0 [F (x1)]− F ? ≤ ε1 :=
4

n(S0 + 3)2

[
4n
(
F (x0)− F ?

)
+

3L

2
‖x0 − x?‖22

]
.

Then, applying Markov’s inequality, with probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (4.20)

Now we define three sequences εt, ρt and vt: εt+1 = 1
β2 εt > ε, ρt+1 = 1

βρt (with ρ1 := ρ),

vt = 2εt
λρt

+ ε. Next we use and induction argument to upper bound Eξt−1F (xt)− F ?.

Induction step 1: We turn to the first iteration of the second stage, note that due to the effective

RSC, we can write:

‖x− x?‖22 ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
. (4.21)

Hence we can have the following:

Eξ1\ξ0 [F (x2)− F ?] ≤ 16

(S + 3)2
[F (x1)− F ?] +

6L

nµc(S + 3)2

[
F (x1)− F ? + 2τ(1 + c)2v2

1

]
≤

16 + 6L
nµc

(S + 3)2
[F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v2

1.
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Next we take the expectation over ξ0 and we have:

Eξ1 [F (x2)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξ0 [F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v2

1

=
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε1

)2

.

Now we set:
12Lτ(1 + c)2

nµc

[(
2

ρλ
+ 1

)
ε1

]2

≤
(

16 +
6L

nµc

)
ε1, (4.22)

equivalently: (
2

ρλ
+ 1

)2

ε1 ≤
8nµc + 3L

6Lτ(1 + c)2
. (4.23)

Denoting D(x0, x?) := 16[F (x0)− F ?] + 6L
n ‖x0 − x?‖22, we have:

ε1 :=
D(x0, x?)

(S0 + 3)2
≤ 8nµc + 3L

6Lτ(1 + c)2( 2
ρλ + 1)2

. (4.24)

Hence in order to satisfy inequality (4.22), it is enough to set:

S0 ≥
⌈(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

⌉
. (4.25)

By this choice of S0, according to inequality (4.22) we can write:

Eξ1 [F (x2)− F ?] ≤
32 + 12L

nµc

(S + 3)2
ε1. (4.26)

To get Eξ1 [F (x2)− F ?] ≤ 1
β2 ε1 = ε2, it is enough to set:

S =

⌈
β

√
32 +

12L

nµc

⌉
. (4.27)

Induction step 2: For the (t+ 1)-th iteration, according to the induction hypothesis, we have
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Eξt−1F (xt)− F ? ≤ εt−1

β2 = εt, and hence with probability 1− ρt
2 we have:

Eξt [F (xt+1)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξt−1 [F (xt)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v2
t

=
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ εt

)2

.

Then we set:
12Lτ(1 + c)2

nµc

[(
2

ρtλ
+ 1

)
εt

]2

≤
(

16 +
6L

nµc

)
εt, (4.28)

equivalently: (
2

ρtλ
+ 1

)2

εt ≤
8nµc + 3L

6Lτ(1 + c)2
. (4.29)

Now because ρt = 1
βρt−1, εt = 1

β2 εt−1, we have:

(
2

ρtλ
+ 1

)2

εt =

(
2

ρt−1λ
+

1

β

)2

εt−1 ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤ ... ≤
(

2

ρλ
+ 1

)2

ε1.

(4.30)

Hence by the same choice of S0 given by (4.25), inequality (4.28) holds and consequently we

can have:

Eξt [F (xt+1)− F ?] ≤
32 + 12L

nµc

(S + 3)2
εt. (4.31)

To get Eξt [F (xt+1)− F ?] ≤ 1
β2 εt = εt+1, it is enough to set:

S =

⌈
β

√
32 +

12L

nµc

⌉
. (4.32)

Hence we finish the induction – by the choice of:

S0 ≥
⌈(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

⌉
, S =

⌈
β

√
32 +

12L

nµc

⌉
, (4.33)

then we will have:

Eξt [F (xt+1)− F ?] ≤ εt
β2

(4.34)

where εt+1 = 1
β2 εt and ε1 = D(x0,x?)

(S0+3)2 = 4
n(S0+3)2

[
4n
(
F (x0)− F ?

)
+ 3L

2 ‖x0 − x?‖22
]
, with

probability 1−∑t
i=1

ρi
2 ≥ 1− ρ

2
β
β−1 ≥ 1− ρ (since β ≥ 2). Now we have finished the proof
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of Theorem 4.3.2.

Proof of Corollary 4.3.3. Finally we make a summary of this result for the proof of Corollary

3.5. First we write the number of snapshot point calculation we need to achieve Eξt−1F (xt)−
F ? ≤ δ at the second stage:

Ns =

⌈
β

√
32 +

12L

nµc

⌉
logβ2

F (x1)− F ?
δ

. (4.35)

When 2nµc
L ≤ 3

4 , Ns = O
(√

L
2nµc

log F (x1)−F ?
δ

)
; when 2nµc

L ≥ 3
4 , Ns = O

(
log F (x1)−F ?

δ

)
.

Hence it is enough to runO
(

(1 +
√

L
2nµc

) log F (x1)−F ?
δ

)
≥ O

(
max(1,

√
L

2nµc
) log F (x1)−F ?

δ

)
epochs. Since we set the epoch length m = 2n and hence the number of stochastic gradient

Ofi(.) calculation is of O(n). Therefore with some more straightforward calculation we con-

clude that the complexity of the Rest-Katyusha algorithm is:

N ≥ O
(
n+

√
nL

µc

)
log

1
ρ(S0+3)2

[
16(F (x0)− F ?) + 6L

n ‖x0 − x?‖22
]

δ
+O(n)S0. (4.36)

4.A.2 Rest-Katyusha with an Underestimation of µc

It is generally not guaranteed that any accelerated stochastic variance-reduced gradient method

designed for strongly-convex functions can be directly applied in our modified restricted strong-

convexity setting, even when the RSC parameter can be exactly known. It is true that for

strongly-convex functions with known strong-convexity parameter, that the convergence rates

for a restarted version of non-strongly-convex accelerated gradient descent and the strongly-

convex accelerated gradient descent are the same, and we believe that this may be the case

for Katyusha as well if the objective is strongly-convex. However, it is still an open question

for an objective which only satisfies restricted strong-convexity. One may heuristically replace

our algorithm’s second stage with the strongly-convex version of Katyusha and this seems to

have a comparable result empirically for some datasets if the RSC is accurately given (this is

necessary for this method). However, the Rest-Katyusha is superior to this alternative – (1) in

terms of theory, as it is a provably convergent algorithm, (2) in terms of practice, Rest-Katyusha

appears to be much more robust to the inaccurate estimation of RSC. This section we provide
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Algorithm 7 Rest-Katyusha with a rough RSC estimate (x0, µ0, β, S0, T, L)

Initialize: m = 2n, S =
⌈
β
√

32 + 12L
nµ0

⌉
;

x1 = Katyusha (x0,m, S0, L)
for t = 1, ..., T do

xt+1 = Katyusha (xt,m, S, L)
end for

an analysis for Rest-Katyusha where we underestimate the RSC parameter.

We have already established the convergence result for Rest-Katyusha algorithm when it is

restarted at a frequency S =
⌈
β
√

32 + 12L
nµc

⌉
, but in practice the effective RSC parameter µc is

usually unknown and difficult to estimate accurately. We need to find some practical approaches

to estimate µc and determine whether to restart or not on the fly. To lay down the basics, we

now warm up with the analysis for Rest-Katyusha when only an underestimation of µc is given,

to see how the convergence rate of the algorithm will change.

We present the rough RSC estimate version of Rest-Katyusha. The only difference is that

the restart period has changed from
⌈
β
√

32 + 12L
nµc

⌉
to
⌈
β
√

32 + 12L
nµ0

⌉
, where µ0 is a rough

(under-)estimate of the effective RSC constant µc and β ≥ 2 is a constant which controls

the robustness of possible overestimation. With this restart period, we are able to establish

accelerated linear convergence result in the regime where 0 < µ0 < β2

4 µc. In other words,

with this restart period, as long as µc is no more than β2/4 times overestimated by µ0, the

Rest-Katyusha is guaranteed to achieve accelerated linear convergence w.r.t. µ0.

Theorem 4.A.2. Under A.1 - 4, denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), D(x0, x?) :=

16(F (x0)−F ?)+ 6L
n ‖x0−x?‖22, µc = γ

2−8τ(1+c)2Φ2(M), and 0 < µ0 <
β2

4 µc, with β ≥ 2,

if we run Rest-Katyusha with S0 ≥
⌈(

1 + 2
ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
, S =

⌈
β
√

32 + 12L
nµ0

⌉
,

then the following inequality holds:

E[F (xT+1)− F ?] ≤ max

{
ε,

(
µ0

µcβ2

)T D(x0, x?)

(S0 + 3)2

}
, (4.37)

with probability at least 1− ρ.

Corollary 4.A.3. Under the same assumptions, parameter choices and notations as Theorem

4.A.2, the total number of stochastic gradient evaluation required by Rest-Katyusha to get an
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δ-accuracy is:

O

(
n+

√
nL

µ0

)
log β2µc

µ0

1

δ
+O(n)S0, (4.38)

The proofs of Theorem 4.A.2 and Corollary 4.A.3 follow a very similar procedure as the proofs

of Theorem 4.3.2 and Corollary 4.3.3, hence we do not include them here but refer the interested

readers to [9, Appendix B] for details.

4.A.3 Numerical Test for Different Choices of β

In this section we provide additional experimental results on different choices of β. We choose

to use the REGED dataset in this experiment as an example.

We test the Rest-Katysuha and Adaptive Rest-Katyusha on regularization level λ = 2 × 10−5

with 4 different choices of β including the theoretically optimal choice which is approximately

2.7. However we found out that the choice of β which provides the best practical performance

is often slightly larger in experiments for real datasets. For this specific example, we can see

that the best choice for β is 5 or 10 for both Rest-Katyusha and Adaptive Rest-Katyusha.

4.A.4 More Additional Results on High-Dimensional Datasets

To show the need of high precision optimization for large-scale datasets, we provide here an

additional large-scale sparse regression result on the benchmark News20 dataset (class 1, the

version by J. Rennie. [150]) whose size is 15935 by 62061, as well as the Sector dataset which

is 6412 by 55197, both of these datasets are available online (LIBSVM website). We also plot

the `2 distance towards a solution x? to which after a large number of iterations both of the

algorithms will actually converge. We can clearly see that for this specific case, minimizing the

objective in a low precision is not enough to ensure that we are close to the solution, i.e. a 10−5

objective gap accuracy means only 10−1 accuracy on the optimization variable.
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Figure 2: Lasso Experiments on (C) REGED Dataset
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2

Figure 4.2: Lasso experiment results on (C) REGED dataset, comparing the convergence per-
formance of the proposed algorithms (Rest-Katyusha and Adaptive Rest-Katyusha) with the
baseline algorithms SVRG and Katyusha.
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Figure 4.3: Comparison of different choices of β
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Figure 4.4: Additional Lasso regression experiment results on News20 dataset, with regular-
ization parameter λ = 1× 10−4
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Figure 4.5: Additional Lasso regression experiment results on Sector dataset, with regulariza-
tion parameter λ = 5× 10−4
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Chapter 5

Structure-Adaptive Accelerated
Proximal Block Coordinate Descent

5.1 Towards the Structure-Adaptive Fast Coordinate Descent

In the previous chapter we have studied the structure-adaptive algorithmic design of the stochas-

tic variance-reduced gradient method for regularized empirical risk minimization in the form

of finite-sums. In this chapter we instead consider a different stochastic approach for solving

the block-coordinate-wise separable convex composite minimization task which reads:

x? ∈ arg min
x∈Rm

{F (x) := f(x) + λg(x)} , g(x) =

d∑
i=1

gi(x(i)) (5.1)

where x consists of d-blocks of subvectors: [x(1), ..., x(d)] and the regularization term g(x)

is potentially non-smooth but separable such that g(x) =
∑d

i=1 gi(x(i)), and f(x) is differ-

entiable with Lipschitz-continuous gradients. When the minimization task is large-scale and

high-dimensional, the traditional deterministic gradient methods typically fail to achieve scal-

ablilty. To address this, randomized coordinate descent (RCD) [69, 70, 151] has been intensely

studied and widely applied due to its efficiency in solving many types of high-dimensional

problems [152, 153, 154, 155]. To further improve the convergence speed of the coordinate

descent method, researchers have successfully combined it with Nesterov’s acceleration tech-

nique [37, 39, 31], and developed accelerated coordinate descent algorithms [69, 72, 73, 6, 64]

which enjoy optimal worst-case convergence speed in theory, and much improved practical per-

formance over vanilla coordinate descent. Very recently researchers have even proposed several

successful variants of accelerated coordinate descent which are based on various schemes such

as restart [40, 143], non-uniform sampling [74, 156] and Gauss-Southwell greedy selection

rules [157].
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5.1.1 Faster Coordinate Descent via Exploiting the Structure

While researchers have developed the so-called optimal coordinate descent algorithms for the

composite optimization tasks (5.1), these algorithms do not take advantage of the prior in-

formation brought forth by the regularization term g(x). Popular non-smooth regularization

applied in machine learning and signal processing applications enforce the solution to have

low-dimensional structure, for example the sparsity, group-sparsity or low-rank. In this work,

by introducing a simple variant of the accelerated proximal coordinate gradient (APCG) al-

gorithm of [6], we show that one can significantly improve the convergence speed of these

methods if the prior information is properly exploited.

In chapter 4, we proposed and analyzed a structure-adaptive stochastic gradient method Rest-

Katyusha [9] for more efficiently solving the large-scale composite optimization problems in

the form of (2.3) in Section 2.1, by restarting the original Katyusha algorithm [4] at a period as-

sociated with the Restricted Strong-Convexity parameters. In this chapter, we extend the spirit

of chapter 4 to design structure-adaptive variants of accelerated coordinate descent methods

[6, 73, 72]. We highlight the following contributions of this chapter.

Theoretical Contributions.

We analyze the relationship between the solution’s low-dimensional structure and the conver-

gence speed of accelerated coordinate descent methods in the primal form. We choose to use

the accelerated proximal coordinate descent method APCG [6, 64] as the foundation to build

up our novel “Two-Stage APCG” method which is dedicated to actively exploit the intrinsic

low-dimension structure of the solution prompted by the (non-smooth) regularization. The

convergence analysis shows that our method exhibits global convergence: in the first stage,

the method converges sublinearly to the vicinity of the solution, while in the second stage the

method converges towards the solution with an accelerated linear rate with respect to the modi-

fied restricted strong convexity (RSC) [5] which scales with the solution’s intrinsic dimension.

Algorithmic Contributions.

We propose an adaptive restart variant of our Two-Stage APCG algorithm which is motivated by

our underlying theory and does not need explicit knowledge of the restricted strong convexity

(RSC) parameter but still provides excellent practical performance, just like our Adaptive Rest-

Katyusha in chapter 4. In practice the strong convexity and also restricted strong convexity
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parameter cannot be easily obtained beforehand in general practical setups, which is necessary

for the accelerated methods to achieve an accelerated linear convergence rate [69, 71, 141].

To overcome this issue we propose an adaptive variant of the two-stage APCG method which

is based on a simple heuristic scheme to estimate the RSC on the fly. Tested on a number of

high-dimensional datasets, our experiments demonstrate the effectiveness of our algorithm.

5.2 Two-Stage APCG

We start by introducing the vanilla accelerated coordinate method APCG developed by [64],

and then our new method which has the desirable structure-adaptive property. We first list some

standard notations following the accelerated coordinate descent literature [73, 6, 64].

Definition 5.2.1. (Block Coordinate Structure and Partial Gradients.) We split the full space

Rm into d blocks of subspaces, that is, for any vector x ∈ Rm with

{x(i) ∈ Rmi , i = 1, ..., d,
∑
i

mi = m}, (5.2)

there is a permutation matrix U ∈ Rm×m with submatrices,

{U = [U1, ..., Ud], Ui ∈ Rm×mi , i = 1, ..., d} (5.3)

such that x =
∑d

i=1 Uix(i). We also define the partial gradient of the smooth function f(.) w.r.t

x(i) as:

Oif(x) = UTi Of(x). (5.4)

The regularization term is assumed to have a block-coordinate-wise separable structure:

g(x) =

d∑
i=1

gi(x(i)). (5.5)

We assume that f(.) has block-coordinate-wise Lipschitz continuous gradient with parameter

Li for each block of coordinates i ∈ [1, d], and define a weighted norm

‖x‖L =
( d∑
i=1

Li‖x(i)‖22
)1/2

. (5.6)
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We list the details of the APCG algorithm [64, Alg. 2] for strongly-convex functions:

APCG(x0,K, α)− Initialize z0 = x0, α =

√
µ

d

For k = 0, 1, 2, ...,K

yk = xk+αzk
1+α ;

pick ik ∈ [1, 2, ..., d] uniformly at random;

zk+1 = arg minx∈Rd
αd
2 ‖x− (1− α)zk − αyk‖2L + 〈Oikf(yk), x(ik)〉+ λgik(x(ik))

→ proximal coordinate descent

xk+1 = yk + dα(zk+1 − zk) + dα2(zk − yk); → momentum step

Return xK+1.

with initialization z0 = x0, α =
√
µ
d , and we take the result of the last iterate (xK+1) as

the output. If the objective function F is strongly-convex, then the APCG algorithm enjoys a

Nesterov-type accelerated linear convergence rate. Similarly we also provide the details of the

APCG algorithm for minimizing non-strongly-convex functions [64, Alg. 3], which we denote

as APCG0, with initialization z0 = x0 and α−1 = 1
d :

APCG0(x0,K)− Initialize z0 = x0, α−1 =
1

d

For k = 0, 1, 2, ...,K

αk = 1
2(
√
α4
k−1 + 4α2

k−1 − α2
k−1),

yk = (1− αk)xk + αkzk.

pick ik ∈ [1, 2, ..., d] uniformly at random;

zk+1 = arg minx∈Rd
αd
2 ‖x− zk‖2L + 〈Oikf(yk), x(ik)〉+ λgik(x(ik))

→ proximal coordinate descent

xk+1 = yk + dαk(zk+1 − zk); → momentum step

Return xK+1.

If the objective function is convex but non-strongly-convex, the APCG0 has an O(1/k2) ac-

celerated sublinear convergence rate. These convergence rates match the optimal worse-case

rates of Nesterov’s accelerated gradient method [39] for d = 1 and improve upon the proximal

coordinate descent [70] for d > 1.

To exploit the structure of the solution for even faster convergence, we propose variants of
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Algorithm 8 Two-Stage APCG

Inputs: x0 and restricted strong-convexity parameter µc, number of iterations K0 for the
first stage; T ≥ 1; β ≥ 2
1. First stage, start without µc:

x1 = APCG0(x0,K0) (5.7)

2. Second stage – exploit local accelerated linear convergence given by µc
Option 1: with K =

⌈
2dβ

√
2 + 1

µc
− 2d

⌉
for t = 1, . . . , T do

xt+1 = APCG0(xt,K) (5.8)

end for
Output: xT+1

Option 2: with K =

⌈
log 16

log 1
1−√µc/d

⌉
for t = 1, . . . , T do

xt+1 = APCG(xt,K, µc) (5.9)

end for
Output: xT+1

accelerated coordinate descent algorithms base on the APCG in a similar manner to the work

in chapter 4, under a two-stage splitting framework inspired by the RSC: at the first stage for

warm-starting, we run the non-strongly-convex APCG0 algorithm to a neighborhood of the so-

lution; at the second stage, since a linear convergence rate is expected due to the RSC, we have

two choices: (1) periodically restart the non-strongly-convex APCG0 at a certain frequency

w.r.t the RSC parameter µc, which leads to our Option 1, (2) run the APCG algorithm with the

momentum parameter α =
√
µc
d and a restart period also w.r.t µc, which leads to Option 2. We

describe the two-stage APCG as Algorithm 8, where we use superscript t to index outer-loop

and subscript k to index inner-loop of our algorithms.

We need to point out that our algorithm with Option 1 is a two-stage variant of the Restarted-

APPROX algorithm of [40] which is also based on restarting the accelerated coordinate descent.

This algorithm was originally designed for minimizing functions which satisfy a quadratic error

bound condition – a condition which is also weaker than strong-convexity but does not encode

the solution’s structure enforced by regularization. The Restarted-APPROX algorithm currently

on its own does not have theoretical convergence result under the RSC framework of [5] which

is relevant to the purpose of this work.
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5.2.1 Generic Assumptions

In this section we list out the assumptions which we required in our convergence proofs. Similar

assumptions have been used in the previous chapter. However, some of these assumptions are

tailored for the analysis of coordinate descent and hence appear to be slightly different.

A. 5. (Block-Coordinate Smoothness.) Assume that f(x) has block-coordinate-wise Lipschitz

continuous gradient:

‖Oif(x+ Uihi)− Oif(x)‖2 ≤ Li‖hi‖2, (5.10)

∀hi ∈ Rmi , i = 1, ..., d, x ∈ Rm.

This smoothness assumption is a classic assumption for RCD methods [158].

A. 6. (Restricted Strong-Convexity.) With respect to the weighted norm:

‖x‖L =

√√√√ d∑
i=1

Li‖xi‖22, (5.11)

the function f(.) and g(.) satisfies the following inequality with lower curvature parameter γ

and tolerance parameter τ :

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ γ

2
‖x− x?‖2L − τg2(x− x?), (5.12)

Note that, assumption (A.6) is a more general form of RSC condition1 presented in (A.2) of the

previous chapter.

Next, for the sake of self-consistency of this chapter, we recall the basic assumptions of RSC

[5] on the regularization term in chapter 4:

A. 7. (Subspace Decomposability.) Given a orthogonal subspace pair (M,M⊥) in Rm, g(.)

is decomposable such that:

g(a+ b) = g(a) + g(b), ∀a ∈M, b ∈M⊥. (5.13)

A. 8. (Sufficiency of Regularization.) Recall the definition of x† by (2.2) in Section 2.1. The

1The RSC was originally defined in the `2 norm in [5]. We slightly generalize it here by using a weighted norm
for the sharper analysis of the coordinate descent algorithms.
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regularization parameter λ satisfies the following inequality with some constant c ≥ 1:

λ ≥ (1 +
1

c
)g?(Of(x†)). (5.14)

For the analysis of Option 2, we need a further assumption namely the “Non-blowout” property

in the literature [159, 43, 160]:

A. 9. (Non-blowout Iterations.) If we start the APCG algorithm at a point x0, and we assume

that there exist a positive constant 1 ≤ ω <∞, such that the update sequence {xk} generated

by the algorithm obeys the following inequality almost surely:

F (xk)− F ? ≤ ω (F (x0)− F ?) , ∀k (5.15)

We assume a relaxed non-blowout property of the APCG iterates, which essentially means

that the iterates generated by the algorithm will have optimality gap bounded by that for the

first iteration. This assumption hold true for accelerated full gradient and also non-accelerated

coordinate descent with ω = 1 which means the iterates are strictly non-blowout. However for

accelerated coordinate descent such a result has not been shown and hence we provide it here

as a relaxed assumption. Note that the analysis of our Option 1 does not need this assumption.

5.2.2 Preliminaries for the Analysis

Since we use a more general form of RSC condition associates with the weighted norm ‖ · ‖L,

we also need to slightly generalize the definition of subspace-compatibility for this chapter:

Definition 5.2.2. (Subspace compatibility.) [5] With predefined g(x), we define the subspace

compatibility of a model subspaceM as:

Φ(M) := sup
v∈M\{0}

g(v)

‖v‖L
, (5.16)

whenM 6= {0} and Φ({0}) := 0 .

The subspace compatibility leverages the low-dimensional structure of x? into our analysis, for

example, if g(.) = ‖.‖1, m = d, ‖x?‖0 = s, Li = L̄ ∀i andM is an s-dimensional subspace

in Rm, then we have Φ(M) =
√
s/L̄.
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With this new notion of subspace compatibility we are able to provide a generalized version

of effective RSC (Lemma 4.3.1) tailored specifically for our analysis of coordinate descent

algorithms, which enables us to link the solution’s structure with the convergence behavior and

quantify their dependence (we provide the proof of this lemma in the appendix of this chapter):

Lemma 5.2.3. (Generalized Effective RSC) Under A.5-8, if further A.6 holds with parameters

(γ, τ) such that τΦ2(M) < γ
16(1+c)2 , then with given (x?, x†) and a value η > 0, and denote

ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥) , for any x satisfies F (x) − F (x?) ≤ η for any optima

x?, we have:

F (x)− F ? ≥ µc‖x− x?‖2L − 2τ(1 + c)2v2, (5.17)

where µc = γ
2 − 8τ(1 + c)2Φ2(M) > 0 and v = η

λ + ε.

We also list the convergence result of the APCG0 which has been proven by [64]:

Lemma 5.2.4. [64, Theorem 2.1] Under A.5, the K0-th iteration of APCG0 algorithm obeys:

EF (xK0)− F ? ≤
(

2d

2d+K0

)2

D(x0, x?) := ΩK0 , (5.18)

where D(x0, x?) := F (x0)− F ? + 1
2‖x0 − x?‖2L.

5.2.3 Main Results

Now we are ready to present our main theorems for the two-stage APCG algorithm with Option

1 and Option 2 in this section, based on the RSC framework.

5.2.3.1 Convergence Results of Option 1.

We start by our theorem on the objective gap convergence speed of Option 1 which is based on

the periodic restart scheme:

Theorem 5.2.5. Under A.5 – 8, if further A.6 holds with parameters (γ, τ) such that τΦ2(M) <

γ
16(1+c)2 , and we run the two-stage APCG algorithm (Option 1) withK =

⌈
2dβ

√
2 + 1

µc
− 2d

⌉
,

K0 ≥
⌈
d
(

1 + 2
ρλ

)√
8τ(1+c)2D(x0,x?)

2µc+1

⌉
with β ≥ 2, then the following inequality holds:

E[F (xt+1)− F ?] ≤ max

{
ε,

(
1

β2

)t
ΩK0

}
(5.19)
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with probability at least 1− ρ.

We can now summarize the iteration complexity of Option 1 as the following:

Corollary 5.2.6. Under the same assumptions and parameter choices of Theorem 5.2.5, the

total number of coordinate gradient evaluation of the Two-Stage APCG (Option 1) algorithm

will need in order to achieve a δ > ε objective gap accuracy is:

O

(
d√
µc

)
log

1

δ
+K0. (5.20)

We can make the following observations.

(Accelerated Linear Convergence under RSC Framework.) The technical result presented

in Theorem 5.2.5 and Corollary 5.2.6 demonstrates accelerated linear convergence rate for our

two-stage APCG algorithm with Option 1 up to a statistical accuracy under the RSC assumption

from [5].

(Structure-Adaptive Convergence.) The effective RSC µc = γ
2 −8τ(1+c)2Φ2(M) provides

us a way to link the convergence speed of an algorithm with the structure of the solution. For

example, if c = 1, m = d, Li = 1 ∀i, g(x) = ‖x‖1 and ‖x?‖0 = s, then Φ2(M) = s

and hence µc = γ
2 − 32τs. Further if F (x) is a Lasso problem, then for a wide class of

random design matrix we have τ = O( log d
n ) and γ > 0. Moreover, [117] have shown that if

the data matrix is a correlated Gaussian design matrix such that each row of it is i.i.d drawn

from distribution N (0, H) where H is the covariance matrix and we denote its largest and

smallest singular value as rmax(H) and rmin(H), then it can be shown that γ ≥ rmin(H)
16 and

τ ≤ rmax(H)81 log d
n with high probability.

(The Early Iterations and High Probability Statement.) From Theorem 5.2.5 we can see

that the probability statement of the convergence result hangs on the choice of the number

of iterations on the first stage. Such dependence is natural and within our expectation – the

Effective RSC condition presented in Lemma 5.2.3 is non-vacuous only at a neighborhood of

the solution, where the first-stage of our algorithm is aimed to reach.

(Convergence on the Optimization Variable.) Due to the RSC condition we can bound the

solution distance to the global optimum by the objective optimality gap (aka, the convergence

on the optimization variable). Such results demonstrate that the optimization error on the op-
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timization variable also decays linearly up to a statistical accuracy scaled by a well-behaved

constant factor as discussed by [5, 116]:

Corollary 5.2.7. (Convergence of the Iterates) Under the same assumption and parameter

choice of Theorem 5.2.5, the iterates generated by Two-Stage APCG (Option 1) obey the fol-

lowing inequality:

E‖xt+1 − x?‖2L ≤
(

1

β2

)t ΩK0

µc
+

(
1

β4

)t 2τ(1 + c)2Ω2
K0

λ2µ2
c

+
2τ(1 + c)2

µc
ε2. (5.21)

(Connection with Structure-Adaptive Convergence Result for Finite-Sum Optimization.)

It is worth noting that this extends the spirit of the Rest-Katyusha algorithm we proposed in the

previous chapter, which is also inspired by and developed under the same RSC framework. The

Rest-Katyusha algorithm is a restarted version of an accelerated variance-reduced SGD method

of [4] for efficiently solving regularized empirical risk minimization with a finite-sum struc-

ture where f(x) :=
∑

i fi(x) with a smoothness assumption on each fi, while our coordinate

descent method two-stage APCG is dedicated to minimizing block-coordinate-wise separable

functions with a smoothness assumption on the blocks of coordinates (i.e. A.5). Because of this

fundamental distinction, we provide here a different complexity result with the RSC framework

which complements the contribution provided by the previous chapter.

(The Optimal Choice of β.) For Option 1 of our Two-Stage APCG there is a user defined

parameter β. In theory, any β ≥ 2 will provide us an accelerated linear rate. To be specific, to

achieve an δ-accuracy, the second stage algorithm needs to have:⌈
2dβ

√
2 +

1

µc
− 2d

⌉
logβ2

1

δ
(5.22)

coordinate gradient oracle calls, and hence there is a clear trade-off on β. Similar to Rest-

Katyusha, with some standard calculation one can conclude that the best choice of β to achieve

the optimal iteration complexity is roughly the Euler’s number (≈ 2.71). We use this choice for

our algorithm in the numerical experiments.

5.2.3.2 Convergence Results of Option 2.

With the additional non-blowout assumption A.9, we are also able to provide a similar result

for our second approach (with Option 2, we provide the proof of this theorem in the appendix
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of this chapter):

Theorem 5.2.8. Under A.5 – 9, and if further A.6 holds with parameters (γ, τ) such that

τΦ2(M) < γ
16(1+c)2 and we run the Option 2 of the two-stage APCG algorithm with K =⌈

log 16

log 1
1−√µc/d

⌉
and K0 =

⌈
8d(1 + ω

λρ)

√
(
√

1
µc

+ 1)τ(1 + c)2D(x0, x?)

⌉
, then the following

inequality holds:

E[F (xt+1)− F ?] ≤ max

{
ε,

(
1

4

)t
ΩK0

}
(5.23)

with probability at least 1− ρ.

Our convergence result for Option 2 provided by Theorem 5.2.8 is slightly weaker than Theo-

rem 5.2.5 which is for Option 1, since Theorem 5.2.8 requires an additional assumption A.9.

Again, based on the convergence result on the objective we can summarize the iteration com-

plexity of the Two-Stage APCG algorithm with Option 2 as the following corollary:

Corollary 5.2.9. Under the same assumptions and parameter choices of Theorem 5.2.8, the

total number of coordinate gradient calculations the Two-Stage APCG (Option 2) algorithm

needs in order to achieve a δ > ε objective gap accuracy is:

O

 1

log 1

1−
√
µc
d

 log
1

δ
+K0. (5.24)

The contraction factor 1−
√
µc
d occurs in (5.24) in a logarithmic term 1

log 1
1−√µc/d

which scales

nearly as 1
1−(1−√µc/d) = d√

µc
. Hence we conclude that under the assumptions above, the

Two-Stage APCG (Option 2) has a local accelerated linear convergence O( d√
µc

log 1
δ ).

Because of the RSC condition, the convergence of the iterates can be again easily derived for

Option 2 similar to Corollary 5.2.7 and we do not illustrate this here.

5.3 Adaptive Two-Stage APCG

To the best of our knowledge, all the state-of-the-art accelerated randomized algorithms for

solving the composite minimization task (5.1) in Section 5.1 require the explicit knowledge of

the strong convexity parameter to run with an Nesterov-type accelerated linear convergence rate
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exactly. For the case where the data fidelity term f(.) is strongly convex, it is difficult in general

to calculate the strong convexity parameter before running the accelerated algorithms, let alone

in our case, the restricted strong convexity. Here we propose an adaptive restart scheme for

Two-Stage APCG based on a heuristic procedure for estimating µc on the fly with a small

fraction of computational overhead. Similar ideas of adaptive restart have been applied in

[42, 142, 43] and also our chapter 4 for deterministic and stochastic gradient algorithms with

Nesterov’s acceleration.

(Adaptive Variant of Option 1.). First we observe that for K =
⌈
2dβ

√
2 + 1/µc − 2d

⌉
, the

convergence speed of the second stage algorithm reads:

Eξt\ξt−1
F (xt+1)− F ? ≤ 1

β2
[F (xt)− F ?]. (5.25)

It has been shown by [43, Prop. 4] that F (x)− F ? can be lower bounded as O(‖G(x)− x‖22),

where G(x) is the composite gradient map:

G(x) = arg min
u∈Rd

dmaxi Li
2

‖x− u‖22 + 〈Of(x), u− x〉+ λg(u). (5.26)

Meanwhile we can upper bound this objective gap by O(‖G(x) − x‖22) under some mild as-

sumptions [43]. Inspired by such a property, we would like to exploit it as a tool to track the

convergence speed of the objective gap, in order to evaluate the accuracy of the RSC param-

eter of the current iteration. If ‖G(xt+1) − xt+1‖22 ≤ 1
β2 ‖G(xt) − xt‖22 at t-th iteration, it is

likely that we have underestimated the RSC parameter since if µ0 ≤ µc, (5.25) will always be

satisfied. Hence we double the estimate. If otherwise, it is likely that the RSC parameter is

overestimated and then we shrink the estimate.

In order to implement the tracking of the objective gap, an extra full gradient is needed to be

calculated which will introduce a computational overhead compared to Algorithm 8. However

such overhead is durable since the restart period K is lower-bounded2 by 6d , while the cost of

a full gradient is at most d times that of one coordinate gradient calculation, hence the overhead

amounts 1
6 of total iteration complexity at worst.

(Adaptive Variant of Option 2.) The Option 2 of the Two-Stage APCG algorithm can also be

made adaptive with a similar idea of utilizing the composite gradient map to estimate the µc

2By A.5 and the definition of ‖.‖L, we have γ ≤ 1.
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Algorithm 9 Adaptive Two-Stage APCG

Inputs: (x0, µ0,K0, β, T )
Initialize: K =

⌈
2dβ

√
2 + 1

µ0
− 2d

⌉
;

x1 = APCG0 (x0,K0)
Calculate the composite gradient map G(x1) by eq:(5.71).
for t = 1, . . . , T do

xt+1 = APCG0 (xt,K)
—–Track the convergence speed :

Calculate G(xt+1) by eq:(5.71)
—– Update the estimate of RSC

if ‖G(xt+1)− xt+1‖22 ≤ 1
β2 ‖G(xt)− xt‖22

then µ0 ← 2µ0, else µ0 ← µ0/2.
—–Adaptively tune the restart period :
K =

⌈
2dβ

√
2 + 1

µ0
− 2d

⌉
end for

on the fly. We include the details of the adaptive variant of Option 2 in the appendix of this

chapter.

5.4 Numerical Experiments

This section provides the details of numerical results of our proposed algorithms for solving

the Lasso regression problem [17, 16]:

x? ∈ arg min
x∈Rm

{
F (x) :=

1

2n
‖Ax− b‖22 + λ‖x‖1

}
, (5.27)

DATA SET SIZE (n, m) REFERENCE

MADELON+ (2000, 4000) [137]
MARTI2 (500, 1024) [161]
RCV1 (20242, 47236) [137]
NEWS20 (15935, 62061) [150]

Table 5.1: Chosen Datasets for Lasso Regression

We set all our examples with A ∈ Rn×m where n < m, hence there is no explicit strong-

convexity. We compare our algorithms with state of the art variance-reduced stochastic gradient

algorithm Katyusha [4, Algorithm 2] which has an accelerated sub-linear convergence rate for

non-strongly convex functions, and also the vanilla APCG method for non-strongly-convex
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Figure 4: Lasso Regression on RCV1 Dataset
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Figure 5: Lasso Regression on Madelon Dataset with 3500 Additional Random Features

3

Figure 5.1: Sparse regression experimental results comparing the proposed algorithms (two-
stage APCG and its adaptive variant) with the vanilla APCG and Katyusha algorithm on RCV1
Dataset

functions [64, Algorithm 3] as a comparison. We also include the Rest-Katyusha algorithm

which also has provable structure-adaptive convergence. For the Rest-Katyusha algorithm and

the two choices of our Algorithm 8 which need the explicit knowledge of the RSC parameter,

we grid search to estimate it for the best practical performance. We use the theoretical step

sizes for our algorithms as well as the APCG in all experiments. For the large datasets (RCV1

and News20) we use minibatch/block-coordinate versions, which are more relevant in parallel-

computing scenarios. For the Katyusha and Rest-Katyusha we use the same minibatch size and

grid-search the best possible step-sizes to provide the best performance.

EXPERIMENT K0/d MINIBATCH µ0 FOR ALG.9
MADELON+ 20 1 0.1
MARTI2 20 1 0.1
RCV1 20 80 0.1
NEWS20 20 100 0.1

Table 5.2: Parameter Setting for Alg. 8 and Alg. 9

For the Madelon dataset we add 3500 random features to its original 500 features. This repre-

sents the scenario where one may wish to use sparse regression via an `1 penalty to nullify the

effect of irrelevant features [104]. For all the four chosen datasets, the Two-Stage APCG algo-

rithm and the adaptive-restart variant significantly outperform the original non-strongly-convex

APCG in Lasso regression tasks, and often have superior performance over the Katyusha al-
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Figure 4: Lasso Regression on RCV1 Dataset
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Figure 5: Lasso Regression on Madelon Dataset with 3500 Additional Random Features

3

Figure 5.2: Sparse regression experimental results comparing the proposed algorithms (two-
stage APCG and its adaptive variant) with the vanilla APCG and Katyusha algorithm on Made-
lon Dataset with 3500 Additional Random Features

gorithm. From the results we see that while the original APCG method initially exhibits good

objective reduction it has very slow final convergence – this demonstrates the necessity of our

two-stage algorithmic structure for the accelerated coordinate descent.

Unlike experiments on the other datasets, for RCV1 dataset, the Katyusha and Rest-Katyusha

appear competitive with two-stage APCG. This raises a practical question – for a given dataset,

how to choose between the families of primal RCD and SGD (e.g. columns vs. rows). [162]

provide an analysis comparing the primal RCD and the dual RCD (which also extends to the

SGD-type methods in the primal, see [163]). Although restricted to `2 regularization, their anal-

ysis suggests that the complexity of primal RCD and dual RCD is dependant on the dataset’s

characteristics such as the density and the distribution of the features. Using their complexity
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Figure 6: Lasso Regression on MARTI2 Dataset
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Figure 7: Lasso Regression on the News20 Dataset (Class 1).

4

Figure 5.3: Sparse regression experimental results comparing the proposed algorithms (two-
stage APCG and its adaptive variant) with the vanilla APCG and Katyusha algorithm on
MARTI2 Dataset

bounds we found that in theory the RCV1 and News20 dataset prefer dual RCD for `2 regu-

larized ERM, while the Madelon and Marti2 prefer primal RCD, which is in broad agreement

with our Lasso results.

These numerical results on real data sets have demonstrated the effectiveness of our approaches

for accelerating the APCG method via actively exploiting the low dimensional structure of the

solution. Non-structure-adaptive accelerated methods like Katyusha and APCG are blind to the

restricted strong convexity. Hence when the solution is relatively sparse, or rather, the regular-

ization parameter is relatively large for the data set, the two-stage APCG algorithms enjoy local

linear convergence and often significantly outperform these baselines. For example, in Figure

5.1 where we present the numerical result for RCV1 dataset, while the solution is sufficiently

sparse (s = 902), we can observe significant convergence-rate superiority of our two-stage

APCG method. However, when the solution is not that sparse (s = 1653), we do not observe

significant computational benefit of our methods for RCV1 dataset. Moreover our adaptive

two-stage APCG algorithm appears to be very successful in estimating the RSC parameter and

adaptively tuning the restart period on the fly such that it achieves comparable convergence

speed to the two-stage APCG methods which need a reliable RSC estimate beforehand.

127



Structure-Adaptive Accelerated Proximal Block Coordinate Descent

0 100 200 300 400 500 600

# Epochs

-14

-12

-10

-8

-6

-4

-2

0

O
b
je

c
ti
v
e
 G

a
p
 (

lo
g
)

λ = 2× 10−5, ‖x?‖0 = 48

0 100 200 300 400 500 600

# Epochs

-8

-6

-4

-2

0

2

O
b
je

c
ti
v
e
 G

a
p
 (

lo
g
)

λ = 5× 10−6, ‖x?‖0 = 119

Figure 6: Lasso Regression on MARTI2 Dataset

0 100 200 300

# Epochs

-14

-12

-10

-8

-6

-4

-2

0

O
b

je
c
ti
v
e

 G
a

p
 (

lo
g

)

λ = 5× 10−5, ‖x?‖0 = 267

0 200 400 600 800 1000 1200

# Epochs

-10

-8

-6

-4

-2

0

2

O
b

je
c
ti
v
e

 G
a

p
 (

lo
g

)
λ = 1× 10−5, ‖x?‖0 = 1837

Figure 7: Lasso Regression on the News20 Dataset (Class 1).

4

Figure 5.4: Sparse regression experimental results comparing the proposed algorithms (two-
stage APCG and its adaptive variant) with the vanilla APCG and Katyusha algorithm on the
News20 Dataset (Class 1).

5.5 Concluding Remarks

In this chapter, we provide theoretical and algorithmic contributions to coordinate descent op-

timization. We analyze the structure-adaptive convergence of a simple variant (namely the

Two-stage APCG) of accelerated RCD based on the RSC framework of [5]. Moreover, we

propose an adaptive-restart that does not require the explicit knowledge of RSC but estimates it

on the fly. We validate the effectiveness of our approach via numerical experiments on sparse

regression tasks. This work opens up the potential to develop even faster structure-adaptive

accelerated coordinate descent methods incorporating importance sampling [74] for better iter-

ation complexity, screening-rules [164] to predict the zero-elements for sparse regression and

skip redundant updates, and continuation methods [159] for even faster initial convergence, etc.
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5.A Appendix

5.A.1 The Proof for Option 1

5.A.1.1 The Proof for Lemma 5.2.3

Let us denote ∆ = x − x†. Since we have assumed F (x) − F (x?) ≤ η, then we also have

F (x)− F (x†) ≤ η, hence:

f(x† + ∆) + λg(x† + ∆) ≤ f(x†) + λg(x†) + η, (5.28)

then substract both side with 〈Of(x†),∆〉 and rearrange:

f(x† + ∆)− f(x†)− 〈Of(x†),∆〉+ λg(x† + ∆)− λg(x†) ≤ −〈Of(x†),∆〉+ η. (5.29)

Due to the convexity of f(.) we immediately have:

λg(x† + ∆)− λg(x†) ≤ −〈Of(x†),∆〉+ η

≤ g∗(Of(x†))g(∆) + η

≤ λ

1 + 1
c

g(∆) + η.

Hence by dividing both sides with λ and then applying the decomposability of g we have:

g(x† + ∆)− g(x†) ≤ 1

1 + 1
c

[g(∆M) + g(∆M⊥)] +
η

λ
. (5.30)

Meanwhile a lower bound on the left-hand-side has been provided in [5], which reads:

g(x† + ∆)− g(x†) ≥ g(∆M⊥)− 2g(x†M⊥)− g(∆M). (5.31)

By combining these two bounds we have:

g(∆M⊥) + g(∆M) +
(1 + 1

c )η

λ

≤ (1 +
1

c
)g(∆M⊥)− 2(1 +

1

c
)g(x†M⊥)− (1 +

1

c
)g(∆M).

(5.32)
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Then we have:

1

c
g(∆M⊥) ≤ (2 +

1

c
)g(∆M) + 2(1 +

1

c
)g(x†M⊥) +

(1 + 1
c )η

λ

g(∆M⊥) ≤ (1 + 2c)g(∆M) + 2(1 + c)g(x†M⊥) +
(1 + c)η

λ

g(∆) ≤ (2 + 2c)(g(∆M) + g(x†M⊥)) +
(1 + c)η

λ
.

Now let ∆x := x − x? where x satisfies F (x) − F (x?) ≤ η, and ∆? := x? − x†. Due to the

fact that x? is the optimal point, η can be set as 0 if x = x?, then:

g(∆?) ≤ (2 + 2c)(g(∆?
M) + g(x†M⊥)). (5.33)

Now we are able to bound g(∆x):

g(∆x)

≤ g(∆) + g(∆?)

≤ (2 + 2c)g(∆M) + (2 + 2c)g(∆?
M) + (4 + 4c)g(x†M⊥) +

(1 + c)η

λ

≤ (1 + c)
[
2g(∆M) + 2g(∆?

M) + 4g(x†M⊥) +
η

λ

]
.

By the definition of the subspace compatibility Φ(M) := supv∈M\{0}
g(v)
‖v‖L we can write:

g(∆x) = g(x− x?)

≤ (1 + c)[2Φ(M)‖x− x?‖L + 2Φ(M)‖x† − x?‖L + 4g(x†M⊥) +
η

λ
]

≤ (1 + c) [2Φ(M)‖x− x?‖L + v] ,

where we denote ε := 2Φ(M)‖x† − x?‖L + 4g(x†M⊥) and v := η
λ + ε. Then because of the

fact that (a+ b)2 ≤ 2a2 + 2b2 we have:

g2(x− x?) ≤ (1 + c)2
[
8Φ2(M)‖x− x?‖2L + 2v2

]
. (5.34)
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Due to A.6 we can write:

f(x)− f(x?)− 〈Of(x?), x− x?〉

≥ γ

2
‖x− x?‖2L + τ(1 + c)2

[
8Φ2(M)‖x− x?‖2L + 2v2

]
≥

[γ
2
− 8τ(1 + c)2Φ2(M)

]
‖x− x?‖2L − 2τ(1 + c)2v2,

Then because g(.) is convex, we can write:

g(x)− g(x?)− 〈∂g(x?), x− x?〉 ≥ 0, (5.35)

and also:

F (x)− F ? − 〈Of(x?) + ∂g(x?), x− x?〉

≥
[γ

2
− 8τ(1 + c)2Φ2(M)

]
‖x− x?‖2L − 2τ(1 + c)2v2.

By first order optimality condition we have 〈Of(x?) + ∂g(x?), x− x?〉 ≥ 0, hence we justify

the claim.

5.A.1.2 The Proof for Theorem 5.2.5, Corollary 5.2.6 and 5.2.7

We first define a sequence of random variable ξt which is the realization of the random choices

of coordinates from the 0-th iteration to the end of t-th iteration of Two-stage APCG (Option

1). According to the convergence result of APCG, after the first stage we have:

Eξ0F (x1)− F ? ≤ ε1 := ΩK0 . (5.36)

Then with Markov inequality, at a probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (5.37)

Now we define three sequences through which we will achieve the proof via induction: εt+1 =

1
β2 εt, ρt+1 = 1

βρt with ρ1 := ρ, and vt = 2εt
λρt

+ ε.

Induction step 1: we first reformulate the effective RSC presented in Lemma 5.2.3 as the
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following:

‖x− x?‖2L ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
, (5.38)

and we can have:

Eξ1\ξ0F (x2)− F ?

≤
(

2d

2d+K

)2

[F (x1)− F ?] +

(
2d

2d+K

)2 1

2µc
[F (x1)− F ? + 2τ(1 + c)2v2

1]

=
4d2 + 2d2

µc

(k + 2d)2
[F (x1)− F ?] +

4d2τ(1 + c)2v2
1

µc(2d+K)2
.

By taking expectation on both sides over ξ0, we have:

Eξ1F (x2)− F ?

≤
4d2 + 2d2

µc

(2d+K)2
ε1 +

4d2τ(1 + c)2v2
1

µc(2d+K)2

≤
4d2 + 2d2

µc

(2d+K)2
ε1 +

4d2τ(1 + c)2

µc(2d+K)2

(
2ε1
ρλ

+ ε1

)2

,

where the second inequality holds due to εt > ε ∀t . Then we set:

4d2τ(1 + c)

µc

(
2ε1
ρλ

+ ε1

)2

≤ (4d2 +
2d2

µc
)ε1. (5.39)

Hence: (
2

ρλ
+ 1

)2

ε1 ≤
2µc + 1

2τ(1 + c)2
. (5.40)

Since ε1 = 4d2D(x0,x?)
(2d+K0)2 , it is enough to set:

K0 =

⌈
d

(
2

ρλ
+ 1

)√
8τ(1 + c)2D(x0, x?)

2µc + 1

⌉
, (5.41)

to ensure that:

Eξ1F (x2)− F ? ≤
8d2 + 4d2

µc

(K + 2d)2
ε1. (5.42)

Then if we choose:

K =

⌈
2dβ

√
2 +

1

µc
− 2d

⌉
, (5.43)
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we can ensure that:

Eξ1F (x2)− F ? ≤ 1

β2
ε1. (5.44)

Induction step 2: At iteration t+ 1, due to the induction hypothesis Eξt−1F (xt)− F ? ≤ εt =

εt−1

β2 we have:

EξtF (xt+1)− F ?

≤
4d2 + 2d2

µc

(2d+K)2
Eξt−1 [F (xt)− F ?] +

4d2τ(1 + c)2v2
t

µc(2d+K)2

=
4d2 + 2d2

µc

(2d+K)2
εt +

4d2τ(1 + c)2v2
t

µc(2d+K)2

≤
4d2 + 2d2

µc

(2d+K)2
εt +

4d2τ(1 + c)2

µc(2d+K)2

(
2εt
ρtλ

+ εt

)2

,

Then we set:
4d2τ(1 + c)

µc

(
2ε1
ρtλ

+ εt

)2

≤ (4d2 +
2d2

µc
)εt, (5.45)

and reformulate it as: (
2

ρtλ
+ 1

)2

εt ≤
2µc + 1

2τ(1 + c)2
. (5.46)

Since we have chosen ρt = 1
βρt−1, εt = 1

β2 εt−1 with β ≥ 2,

(
2

ρtλ
+ 1

)2

εt ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤
(

2

ρλ
+ 1

)2

ε1. (5.47)

Hence with the same choice of K0 and K in induction step 1, with probability at least (due to

the choice β ≥ 2):

1−
t∑
i=1

ρi
2
≥ 1− ρβ

2(β − 1)
≥ 1− ρ, (5.48)

we can ensure:

EξtF (xt+1)− F ? ≤ 1

β2
εt. (5.49)

Thus finishes the proof of Theorem 5.2.5.

In summary, to achieve EξtF (xt+1)−F ? ≤ δ, the coordinate gradient calculation at the second

stage should be: ⌈
2dβ

√
2 +

1

µc
− 2d

⌉
logβ2

1

δ
, (5.50)

and we justify the claim in Corollary 5.2.6.
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We can also provide the convergence result of the optimization variable by the Effective RSC

given by Lemma 5.2.3. At point xT+1, we set η = F (xT+1)− F ?, and we have:

‖xT+1 − x?‖2L
≤ F (xT+1)− F ? + 2τ(1 + c)2v2

µc

≤ F (xT+1)− F ? + 2τ(1 + c)2[( ηλ)2 + ε2]

µc

≤ F (xT+1)− F ?
µc

+
2τ(1 + c)2

λ2µc

(
F (xT+1)− F ?

)2
+

2τ(1 + c)2ε2

µc

≤
(

1

β2

)T ΩK0

µc
+

2τ(1 + c)2Ω2
K0

λ2µ2
c

(
1

β4

)T
+

2τ(1 + c)2

µc
ε2.

Hence we have finished the proofs for both Theorem 5.2.5, Corollary 5.2.6 and Corollary 5.2.7.

134



Structure-Adaptive Accelerated Proximal Block Coordinate Descent

5.A.2 Convergence Proof for Option 2

First we present a key lemma for two-stage APCG with Option 2, which is extended from the

convergence proof of [6, 64]:

Lemma 5.A.1. Given (x?, x†), and denote ε := 2Φ(M)‖x† − x?‖L + 4g(x†M⊥). Assume A.5

- 9, the updates of the second stage of the Two-Stage APCG obey:

EξtK\ξt−1
K

[F (xt+1
0 )]− F ? ≤

(
1−
√
µc

d

)K
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2,

(5.51)

where µc = γ
2 − 8τ(1 + c)2Φ2(M), v = η

λ + ε, F (xtk)− F (x?) ≤ η for all t ≥ 1 and k.

Proof. At each iteration, the APCG algorithm chooses a coordinate uniformly at random to per-

form updates. The update sequences xtk+1 and ztk+1 depend on the realization of the following

random variable which we denote as ξtk:

ξtk = {itk, itk−1, ..., i
t
1, i

t
0, i

t−1
k , ..., it−1

0 , ..., i0k, ..., i
0
0}, (5.52)

and for the randomness within a single outer-loop of Two-Stage APCG we specifically denote

ξtk\ξt−1
k as

ξtk\ξt−1
k = {itk, itk−1, ..., i

t
1, i

t
0} (5.53)

We achieve the proof of this lemma by extending the original proof for strongly-convex APCG

[64, Theorem 2.1]. By replacing the original strong-convexity in [64, equation 3.21] with the

effective RSC we immediately have the following:

Eitk [f(xtk+1) + λĝtk+1 − F ? +
µc
2
‖ztk+1 − x?‖2L]

≤
(

1−
√
µc

d

)
Eitk−1

[f(xtk) + λĝtk − F ? +
µc
2
‖ztk − x?‖2L] +

2τ(1 + c)2

d
v2,

(Due to the complicated notations in the original work of [64], we refer the readers to [64,

Lemma 3.3] for the detailed definition of ĝtk, which is a convex combination of g(zt0), g(zt1),
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g(zt2) ..... g(ztk)). Then we roll up the bound:

Eξtk\ξt−1
K

[f(xtk+1) + λĝtk+1 − F ? +
µc
2
‖ztk+1 − x?‖2L]

≤
(

1−
√
µc

d

)k
[F (xt0)− F ? +

µc
2
‖xt0 − x?‖2L] +

1− (1−√µc/d)k−1

1− (1−√µc/d)

2τ(1 + c)2

d
v2

≤
(

1−
√
µc

d

)k
[F (xt0)− F ? +

µc
2
‖xt0 − x?‖2L] +

2τ(1 + c)2

√
µc

v2

≤
(

1−
√
µc

d

)k
[2F (xt0)− 2F ? + 2(1 + c)2τv2] +

2τ(1 + c)2

√
µc

v2

≤
(

1−
√
µc

d

)k
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2,

where we utilize the effective RSC again to bound the term µc
2 ‖xt0 − x?‖2L.

Since ĝtk+1 ≥ g(xtk+1) as shown in [64, Lemma 3.3], by simplifying the left hand side we can

have:

Eξtk\ξt−1
K

[F (xtk+1)]− F ? ≤
(

1−
√
µc

d

)K
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2.

(5.54)

Thus finishes the proof since F (xt+1
0 ) = F (xtK+1).

5.A.2.1 Proof of Theorem 5.2.8 and Corollary 5.2.9

Now we are ready to present the proof of Theorem 5.2.8.

Proof. We follow a similar procedure in [5] and [118] to roll up the residual term v2. According

to [64] for the first stage of the algorithm we have:

Eξ0 [F (x1)]− F ? ≤ ε1 :=

(
2d

2d+K0

)2

D(x0, x?),

whereD(x0, x?) := [F (x0)−F ?+ 1
2‖x0−x?‖2L. Then with Markov inequality, at a probability

at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (5.55)

Next we derive the complexity of the second stage. We define three sequences through which

136



Structure-Adaptive Accelerated Proximal Block Coordinate Descent

we will achieve the proof via induction: εt+1 = 1
4εt, ρt+1 = 1

2ρt with ρ1 := ρ, and vt = ωεt
λρt

+ε.

Induction part 1: We turn to our first outer iteration in the second stage of the algorithm. by

Lemma 5.A.1 we have:

Eξ1\ξ0 [F (x2)]− F ? ≤ (1−√µc/d)K · 2(F (x1)− F ?)

+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2

1.
(5.56)

Now we take the expectation over ξ0
K :

Eξ1(F (x2)− F ?) ≤ (1−√µc/d)K · 2Eξ0
K

(F (x1)− F ?)

+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2

1,
(5.57)

where we set:

2τ(1 + c)2

(√
1

µc
+ 1

)
v2

1 ≤
ε1
8
. (5.58)

Note that v1 = ωε1
λρt

+ ε and ε1 > ε it is enough if the following inequality is satisfied:

2τ(1 + c)2

(√
1

µc
+ 1

)(
ωε1
λρt

+ ε1

)2

≤ ε1
8

(5.59)

equivalently:

2τ(1 + c)2

(√
1

µc
+ 1

)(
ω

λρ
+ 1

)2 4d2D(x0, x?)

(2d+K0)2
≤ ε1

8
. (5.60)

Hence it is enough to set:

K0 =

8d(1 +
ω

λρ
)

√
(

√
1

µc
+ 1)τ(1 + c)2D(x0, x?)

 (5.61)

Then if we choose:

K =

⌈
log 16

log 1
(1−√µc/d)

⌉
, (5.62)

we can ensure that:

Eξ1(F (x2)− F ?) ≤ ε1
8

+
ε1
8

=
ε1
4

= ε2. (5.63)

Induction part 2: For (t+ 1)-th outer iteration, by induction hypothesis for t-th outer iteration
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which reads: Eξt−1F (xt)− F ? ≤ εt−1

4 = εt, we can write:

Eξt\ξt−1(F (xt+1)− F ?) ≤ (1−
√
µc

d
)K · 2(F (xt)− F ?)

+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2
t ,

(5.64)

with probability at least 1− ρt
2 . Then we take the expectation over ξt−1

K :

Eξt(F (xt+1)− F ?) ≤ (1−
√
µc

d
)K · 2Eξt−1(F (xt)− F ?)

+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2
t ,

(5.65)

where we need:

2τ(1 + c)2

(√
1

µc
+ 1

)
v2
t ≤

εt
8
. (5.66)

Since we have chosen that ρt = 1
2ρt−1 and εt = 1

4εt−1, then vt ≤ vt−1 ≤ .. ≤ v1, the above

inequality is satisfied by our choice of K0.

Again if we choose:

K =

⌈
log(16)

log 1
(1−√µc/d)

⌉
, (5.67)

we can ensure that:

Eξt(F (xt+1)− F ?) ≤ εt
8

+
εt
8

=
εt
4

= εt+1. (5.68)

with probability at least 1 −∑t
i=1

ρi
2 ≥ 1 − ρ, , for δ ≥ ε. Hence we finish the induction and

the proof of Theorem 5.2.8.

In summary for Two-Stage APCG if we choose K :=

⌈
log 16

log 1
(1−√µc/d)

⌉
, if the number of coor-

dinate gradient oracle calls N satisfies:

N := tK +K0 ≥
⌈

log 16

log 1
(1−√µc/d)

⌉
log4(

[F (x1)− F ?]
δ

) +K0, (5.69)

we have Eξt−1F (xt)− F ? ≤ δ , which is claimed in Corollary 5.2.9.
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5.A.3 Adaptive Two-Stage APCG (Option 2)

In this appendix we provide a heuristic approach of estimating µc for the two-stage APCG

(Option 2).

We describe the intuition of this procedure. First we observe that for F (xt) − F ? < 1, the

convergence speed of the second stage algorithm reads:

EξtK\ξt−1
K

[F (xt+1)]− F ?

≤
(

1−
√
µc

d

)K
2
[
F (xt)− F ?

]
+ 2τ(1 + c)2

(√
1

µc
+ 1

)
v2
t

≈
(

1−
√
µc

d

)K
2
[
F (xt)− F ?

]
+ o

[
F (xt)− F ?

]
≈

(
1−
√
µc

d

)K
2
[
F (xt)− F ?

]
.

Directly using this relationship to check the convergence speed is impossible because F ? is

unknown beforehand, but it has been shown in [43, Prop. 4] that F (x) − F ? can be lower

bounded as:

F (x)− F ? ≥ O(‖G(x)− x‖22), (5.70)

where T (x) is the composite gradient map:

G(x) = arg min
q∈Rd

dmaxi Li
2

‖x− q‖22 + 〈Of(x), q − x〉+ λg(q), (5.71)

and meanwhile there is also upper bound : F (x)− F ? ≤ O(‖G(x)− x‖22).

Hence our heuristic procedure’s checking condition is built based on a simplified version of the

above relationship:

‖G(xt+1)− xt+1‖22 . C

(
1−
√
µc

d

)K
‖G(xt)− xt‖22 (5.72)

where the variable C represent the strictness of the condition. In the adaptive algorithm we

check the condition (5.72) every K =

⌈
log 16

log 1
(1−√µt/d)

⌉
of iterations where µt is the current

estimate of µc, if it is violated we suspect that our estimation of µc is too large and hence

we shrink it by a factor of 2 and then restart the second stage algorithm, otherwise we double

the estimate to ensure that we choose the estimation of µc as aggressively as possible. If we
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Algorithm 10 Adaptive Two-Stage APCG - 2 (x0, µ1,K0, C, T )

x1 = APCG0 (x0,K0)
Calculate the composite gradient map G(x1) by eq:(5.71).
for t = 1, . . . , T do

xt+1 = APCG (xt,K, µt)
—–Track the convergence speed :

Calculate G(xt+1) by eq:(5.71)
—– Update the estimate of RSC

if ‖G(xt+1)− xt+1‖22 . C
(

1−
√
µt
d

)K
‖G(xt)− xt‖22

then µt+1 ← 2µt, else µt+1 ← µt/2.
—–Adaptively tune the restart period :

K =

⌈
log 16

log 1
(1−√µt/d)

⌉
if µt+1 ≤ 2−5µt−4 then C ← 2C
if µt+1 ≥ 25µt−4 then C ← max(1, C2 )

end if
end for

observe that the algorithm is shrinking the µc for a number of times in a row, we suspect that

the algorithm’s checking condition is too strict and hence we double C to relax the condition.

5.A.3.1 Additional Experimental Results for the Adaptive Variant of Option 2

In this section we present an additional lasso experimental result with the Adaptive Two-Stage

APCG-2 algorithm (pink lines) on Madelon dataset with extra 3500 random features. We set

the initial guess of the RSC parameter µ1 = 0.1, the same as the adaptive variant of Option 1

described in the main text. We see that the adaptive variant of the two-stage APCG’s option 2

also can achieve comparable results without the explicit knowledge of µc but estimate it on the

fly:
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Figure 8: Lasso regression on Madelon dataset with additional random features (A ∈
R2000×4000)

5

Figure 5.5: Additional sparse regression results for the Option 2 of adaptive two-stage APCG
on Madelon dataset with additional random features (A ∈ R2000×4000)
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Chapter 6
Limitation and Practical Acceleration
of Stochastic Gradient Algorithms in

Inverse Problems

6.1 Stochastic Optimization in Imaging Inverse Problems

While having been a proven success both in theory and in machine learning applications, there

are very few convincing results so far in the literature which report the performance of the

stochastic gradient methods in imaging applications (except for tomography reconstruction

[165, 166, 77]), which also involve large-scale optimization tasks in the same form as (2.3)

in Section 2.1. In this chapter we investigate the practical performance of such methods, using

space-varying deblurring as a running example. Such tasks can be generally formulated as the

following:

x? ∈ arg min
x∈X

{
F (x) :=

1

n

n∑
i=1

fi(x) + λg(x)

}
, (6.1)

where X ∈ Rd is a closed convex set and we denote:

f(x) =
1

n

n∑
i=1

fi(x) :=
1

n

n∑
i=1

f̄(ai, bi, x), (6.2)

as the data fidelity term. In imaging tasks, the variable x represents the vectorized image, while

(a1, a2, ...an) represent the forward model/measurements, (b1, b2, ..., bn) denote the observa-

tions. One of the most typical examples would be the X-ray CT imaging, where we use vectors

(a1, a2, ...an) to discretely model the X-ray measurements come out from the beam source, and

meanwhile (b1, b2, ..., bn) will be the observation data collected at the X-ray sensor array.

In (6.1), each fi(x) := f̄(ai, bi, x) is assumed to be convex and smooth, while the regular-

ization term g(x) is a simple convex function and is possibly non-smooth. With Nesterov’s

acceleration [37, 39], researchers [55, 4, 140] have developed several “optimal” algorithms

which can provably achieve the worse-case optimal convergence rate for (6.1).
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We make the following contributions:

(Evaluating the limitation of stochastic gradient algorithms.) We investigate the fundamen-

tal limit of possible acceleration of a stochastic gradient method over its full gradient counter-

part by measuring the Stochastic Acceleration (SA) factor which is based on the ratio of the

Lipschitz constants of the minibatched stochastic gradient and the full gradient. We discover

that the SA factor is indeed able to characterize the potential of an optimization task being

speedily solved by applying randomization techniques.

(Breaking the computational bottleneck of expensive/multiple proximal operators for mo-

mentum SGD.) Another factor in image processing practice which significantly affects the

SGD-type methods’ actual performance is the frequent calculation of the costly proximal oper-

ator for the regularization terms which have a linear operator, such as the TV semi-norm – SGD

methods need to calculate it much more frequently than full gradient methods. Moreover most

of the fast SGD methods can not cope with more than one non-smooth regularization term. To

overcome these we propose an accelerated primal-dual SGD algorithm which can efficiently

handle (1) regularization with a linear operator, (2) multiple regularization terms, while (3)

maintaining Nesterov-type accelerated convergence speed in practice.

6.2 A Deblurring Experiment

Image deblurring is an important type of inverse problem in the field of image processing and

have been studied intensely during the recent decades. For uniform deblurring, due to the cyclic

structure of the deconvolution, FFT-based ADMM1 variants have shown to be remarkably effi-

cient [87, 167, 168] when compared to classic gradient-based solvers such as FISTA [35]. Such

techniques, although being computationally efficient and exceedingly practical, are specifically

tailored to a restricted range of problems where the observation models are diagonalizable by

a DFT. For image deblurring, it is often not realistic to assume that the images observed by the

imaging devices are uniformly blurred [169]. If the blurring is different across the image, then

the efficient implementation of ADMM is not applicable in general, while the standard ADMM

and deterministic gradient methods such as FISTA can be computationally burdensome if the

1The computation-demanding sub-problems of alternating direction method of multipliers (ADMM) at this case
can be solved with an efficient matrix inversion by FFT due to the cyclic structure of the uniform deconvolution
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Figure 6.1: The estimation error plot for the deblurring experiment. The plots correspond to
the estimation error of the central part (100 by 100) of the image.

image to be deblurred has a large size. In this work we focus on the space-varying deblurring

where the stochastic gradient based solvers can have potential and possibility to provide better

convergence over the deterministic algorithms.

We start by a simple space-varying deblurring [169] example where the central part (sized 128

by 128) of the “Kodim05” image from Kodak Lossless True Color Image Suite [170] is blurred

with a space-varying blur kernel which imposes less blurring at the center but increasingly

severe blurring towards the edge. For the shape of the blur kernel, we choose the out-of-focus

kernel provided in [167]. We also add a small amount of noise to the blurred image.

We test the effectiveness of several algorithms by solving the same TV-regularized least-squares

problem, to get an estimation of the ground truth image. The algorithms we test in the experi-

ments include the accelerated full gradient method FISTA [35], SGD with momentum [53], the

proximal SVRG [60] and its accelerated variant, Katyusha [4]. Perhaps surprisingly, on this

experiment we report a negative result for the randomized algorithms. The most efficient solver

in this task is the full gradient method FISTA both in terms of wall clock time and number of

datapasses. The state-of-the-art stochastic gradient method Katyusha even cannot beat FISTA

in terms of epoch counts. For all the randomized algorithms we choose a minibatch size which

is 10 percent of the total data size. For stochastic gradient methods, a smaller minibatch size

in this case did not provide better performance in datapasses and significantly slowed down

running time due to the multiple calls on proximal operator.

We are aware that [147] have run a uniform image deblurring example where they compare

their stochastic variance-reduced gradient algorithm – minibatch S2GD with the full gradient

method FISTA [35]. However their result does not actually indicate superior performance of
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stochastic gradient methods for the following reasons: (1) Their convergence plot is only in

epoch counts and they did not provide the plot in terms of actual run time. The epoch counts

does not reflect the computational cost of the proximal operator which usually cannot be ne-

glected in image processing applications, such as the proximal operators for `1 penalty on the

wavelet domain, total-variation penalty and the nuclear-norm penalty. The real performance of

stochastic gradient methods are usually limited at these cases, since they need much more calls

on the proximal operator than the full gradient methods. (2) Even in terms of epoch counts, the

experiment does not shown significant improvement of mS2GD over the full gradient method

FISTA in uniform image deblurring task.

6.3 Limitations of Stochastic Optimization

The previous example appears to be contrary to the popular belief among the stochastic op-

timization community, that stochastic gradient methods are much faster in terms of iteration

complexity than deterministic gradient methods in solving large scale problems: to be specific

– to achieve an objective gap suboptimality of F (x)− F (x?) ≤ ε, optimal stochastic gradient

methods needs only Θ
(
n+

√
nL/ε

)
evaluations of Ofi, while Θ

(
n
√
L/ε

)
for optimal full

gradient methods. Where is the loophole?

It is often easily ignored that the complexity results above are derived under different smooth-

ness assumptions. For the convergence bound for full gradient, the full smooth part of the cost

function f(.) is assumed to be L-smooth, while for the case of stochastic gradient, every in-

dividual function fi(.) is assumed to be L-smooth. Now we can clearly see the subtlety: to

compare these complexity results and make meaningful conclusions, one has to assume that

these two Lipschitz constants are roughly the same. While this can be true, and is true for many

problems, there are exceptions – image deblurring is one of them.

Given a minibatch index [S0, S1, S2, ..., SK ] such that:

f(x) =
1

K

K∑
k=1

fSk(x), fSk(x) :=
K

n

∑
i∈Sk

fi(x), (6.3)

In order to identify the potential of a certain optimization problem to be more efficiently solved

using stochastic gradient methods, we start by deriving a motivating theorem comparing gener-
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ically the convergence of the optimal full gradient methods as well as the optimal stochastic

gradient methods.

6.3.1 Analysis

We start with the standard smoothness assumption:

A. 10. (Smoothness of the Full-Batch and the Mini-Batches.) f(.) is Lf -smooth and each fSk
is Lb-smooth, that is:

f(x)− f(y)− Of(y)T (x− y) ≤ Lf
2
‖x− y‖22, ∀x, y ∈ X , (6.4)

and

fSk(x)− fSk(y)− OfSk(y)T (x− y) ≤ Lb
2
‖x− y‖22, (6.5)

∀x, y ∈ X .

We consider comparing two classes of algorithm: the optimal deterministic gradient methods

which meet the lower bound presented in Theorem 2.3.4 and the optimal stochastic gradient

methods which are able to match the lower bound presented in Theorem 2.4.1. The FISTA al-

gorithm and the Katyusha algorithm are typical instances from these two classes of algorithms.

Definition 6.3.1. (The class of optimal deterministic gradient algorithms.) A deterministic

gradient method Afull is called optimal if for any s ≥ 1, the update of s-th iteration xsAfull

satisfies:

F (xsAfull
)− F ? ≤ C1Lf‖x0 − x?‖22

s2
, (6.6)

for some positive constant C1.

It is know that the FISTA algorithm satisfies this definition with C1 = 4 [35]. We also define

the class for optimal stochastic gradient methods:

Definition 6.3.2. (The class of optimal stochastic gradient algorithms.) A stochastic gradient

method Astoc is called optimal if for any s ≥ 1 and m ≥ 1, after a number of s ·m stochastic

gradient evaluations, the output of the algorithm xsAstoc
satisfies:

EF (xsAstoc
)− F ? ≤ C2[F (x0)− F ?]

s2
+
C3Lb‖x0 − x?‖22

ms2
, (6.7)
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for some positive constants C2 and C3.

Note that the accelerated stochastic variance-reduced gradient methods such as Katyusha [4],

MiG[66] and Point-SAGA [67] satisfy this definition with different values of C2 and C3.

Now we are ready to present the main theorem, which follows from simply combining the

existing convergence results of the lower bounds for the stochastic and deterministic first-order

optimization [31, 54].

Theorem 6.3.3. Under A.10, let g(.) = 0, m = K. Denote an optimal deterministic algorithm

Afull which satisfies Def. 6.3.1, and an optimal stochastic gradient algorithm Astoc which

satisifes Def. 6.3.2. For a sufficiently large dimension d and X =
{
x ∈ Rd : ‖x‖22 ≤ 1

}
, as-

sume that there exists a set of convex and smooth functions fi ∈ F1,1
Lb

(X ), such that 1
K

∑K
i=1 fi =

f ∈ F1,1
Lf

(X ) simultaneously satisfies the lower bounds provided by Theorem 2.3.4 and 2.4.1,

and all minimizers of it live in the relative interior of X , then for this function f we can have:

c0 ·
Lb
KLf

≤
Ef(xsAstoc

)− f?
f(xsAfull

)− f? ≤ c1 ·
Lb
KLf

+ c2 (6.8)

for some positive constants c0, c1, c2 which do not depend on Lb, Lf and K.

From this theorem we can see that with the same epoch count, the ratio of the objective-gap

sub-optimality achieved by Afull and Astoc can be upper and lower bounded by Θ( Lb
KLf

) at

the worst case. Although the constants seem pessimistic, it is within our expectation since the

lower bounds on the convergence speed of both algorithms are derived on the worst possible

function which satisfies A.10. Motivated by the theory, we propose to evaluate the potential of

stochastic acceleration simply by the ratio Lb
KLf

which dominates our upper and lower bounds

in Theorem 6.3.3.

6.3.2 Evaluating the Limitation of SGD-type Algorithms

We introduce a heuristic metric called the Stochastic Acceleration (SA) factor. The curve for SA

factor as a function of the minibatch numberK (for a given minibatch pattern) is able to provide

a way of characterizing inherently whether for a given inverse problem and a certain minibatch

sampling scheme, randomized gradient methods should be preferred over the deterministic full

gradient methods or not.
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Figure 6.2: Left: Stochastic Acceleration (SA) factor of inverse problems with different forward
operators, Right: Empirical observation comparing the objective gap convergence of Katyusha
and FISTA algorithm in 15 epochs.

Definition 6.3.4. For a given data-partitioning index S̄ = [S1, ...SK ], the Stochastic Accelera-

tion (SA) factor is defined as:

Υ(S̄) =
KLf
Lb

(6.9)

We test the least squares loss function f(x) = ‖Ax − b‖22 with different types of forward

operator. In this case we have

f(x) = ‖Ax− b‖22 =
1

K

K∑
k=1

fSk(x), (6.10)

fSk(x) := K‖ASkx− bSk‖22, (6.11)

The examples of forward operatorAwe consider include the space-varying deblurring (Ablur ∈
R262144×262144), a random compressed sensing matrix with i.i.d Guassian random entries (with

a size Arand ∈ R500×2000), a fan beam X-ray CT operator (ACT ∈ R91240×65536), and linear

regression problem on two machine learning datasets: RCV1 dataset (Arcv1 ∈ R20242×47236),

and Magic04 (Amagic04 ∈ R19000×50). For the X-ray CT image reconstruction example and

deblurring example we use TV regularization, while for the rest of the examples we use `1 reg-

ularization. The data-partition we choose is the interleaving sampling, where the k-th minibatch

is formed as the following:

fSk(x) :=
K

n

bn/Kc∑
i=1

fk+iK(x) = K

bn/Kc∑
i=1

(aTk+iKx− bk+iK) (6.12)

From the result demonstrated in the Figure 6.2 we find that indeed the stochastic methods have
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a limitation on some optimization problems like deblurring and inverse problems with random

matrices, where we see that the curve for SA factor of such problems stays low and flat even

when we increase the number of minibatches. For the machine learning datasets and X-ray

CT imaging, the SA factor increases rapidly and almost linearly as we increase the number

of minibatches, which is in line with observations in machine learning on the superiority of

SGD and also the observation in CT image reconstruction of the benefits of using the ordered-

subset methods [171]. The curves for the SA factor on the left figure qualitatively predict

the empirical comparison result of the Katyusha and FISTA algorithms shown on the right,

where we observe that Katyusha offers no acceleration over the FISTA on either the deblurring

or the Gaussian random inverse problem, but significantly outperforms FISTA on the other

cases. Indeed, positive results for applying SGD-type algorithms on these problems are well-

known already [47, 60, 171]. Hence we have shown that the SA factor we propose is useful

in characterizing whether an inverse problem is inherently a suitable candidate for stochastic

gradient methods.

6.4 Practical Acceleration for SGD

The previous section suggests that stochastic gradient methods do not always offer an intrinsic

advantage for some problems. There are also several other causes for this failure. The most

obvious one is that stochastic gradient methods in the primal need to calculate the proximal

operator many more times than full gradient methods and hence slow down dramatically the

run time. Moreover, in image processing practice often more than one non-smooth regular-

ization term is used, where most of the existing fast stochastic methods such as Katyusha are

inapplicable.

To avoid the frequent oracle call on the TV proximal operator, we can first reformulate the orig-

inal optimization problem as a convex-concave saddle-point form. To be specific, we consider

the following optimization problem:

x? ∈ min
x∈Rd

{f(x) + λg(Dx) + γh(x)} , (6.13)

where f(x) = 1
n

∑n
i=1 fi(ai, x) is the data-fidelity term, g(Dx) is a regularization term with a

linear operator – for example the TV regularization (g(.) = ‖.‖1, D ∈ Rr×d is the differential
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Algorithm 11 Accelerated Primal-Dual SGD (Acc-PD-SGD)

Initialization: x0 = v0 = v−1 ∈ dom(g), the step size sequences [α], [η], [θ], l = 0.
for t = 1 to N do

xt ← (3t−2)vt−1+txt−1−(2t−4)vt−2

2t+2 , x0 ← xt,
z0 ← xt, y0 ← Dx0 → Katyusha-X Momentum
for k = 0 to K − 1 do

l← l + 1
yk+1 = proxαlλg∗(yk + αlDzk) → Dual Ascent
Pick i ∈ [1, 2, ...K] uniformly at random
Ok = OfSi(xk) ;
xk+1 = proxηlγh

(
xk − ηl(DT yk+1 + Ok)

)
→ Primal Descent

zk+1 = xk+1 + θl(xk+1 − xk) → Innerloop Momentum
end for
vt ← xK

end for
Output: xt

operator), and h(x) is a second convex regularizer. As we have shown in Section 2.5 the saddle-

point formulation can be written as:

[x?, y?] = min
x∈Rd

max
y∈Rr

f(x) + h(x) + yTDx− λg∗(y) (6.14)

The most famous algorithm for solving this saddle-point problem is the primal-dual hybrid

gradient (PDHG, also known as the Chambolle-Pock algorithm) [76, 79], which interleaves

the update of the primal variable x and the dual variable y throughout the iterates. With this

reformulation the linear operator D and the function g(.) are decoupled and hence one can

divide-and-conquer the expensive TV-proximal operator with the primal-dual gradient meth-

ods. The stochastic variant of the PDHG for the saddle-point problem (6.14) has been very

recently proposed by Zhao & Cevher [78, Alg.1, “SPDTCM”] and shown to have state-of-the-

art performance when compared to PDHG, stochastic ADMM [172] and stochastic proximal

averaging [173].

Additionally, since the effect of acceleration given by Nesterov’s momentum appears to be very

important 2, we also need to consider a way to ensure that our method is accelerated. Since the

SPDTCM method does not have Nesterov-type acceleration, we propose a variant of it which

adopts the outerloop acceleration scheme given by the Katyusha-X algorithm [174], which is

2For instance, in the experiment from Section 6.2, the non-accelerated methods like SVRG perform badly com-
pared to all the accelerated methods.
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a simplified variant of the Katyusha algorithm [4]. We observe that such a momentum step is

important for the stochastic primal-dual methods in this application. We present our method as

Algorithm 11. One can directly choose the same step-size sequences [α], [η], [θ] as suggested

in [78, Section 2.3].

6.5 Numerical Experiments

6.5.1 Space-Varying Image Deblurring Experiment

We test our algorithm and compare with FISTA [35] and the SPDTCM [78] on a space-varying

deblurring task for images sized 512 by 512, with a space-varying out-of-focus blur kernel, and

TV-regularization. All algorithms are initialized with a backprojection. We use a machine with

1.6 GB RAM, 2.60 GHz Intel Core i7-5600U CPU and MATLAB R2015b.

100 200 300 400 500

the blurred image

100

200

300

400

500

100 200 300 400 500

deblurred by Accelerated Primal-Dual SGD (10 subsets)

100

200

300

400

500

0 5 10 15 20

Wall-clock time (s)

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

lo
g
 e

rr
o
r 

(c
e
n
te

r)

FISTA

SPDTCM (10 subsets)

Acc-PD-SGD (10 subsets)

0 20 40 60

# Datapass

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

lo
g
 e

rr
o
r 

(c
e
n
te

r)

FISTA

SPDTCM (10 subsets)

Acc-PD-SGD (10 subsets)

Figure 6.3: The estimation error plot for the deblurring experiment with TV-regularization.
Image: Kodim05, with an additive Guassian noise (variance 1).

We plot the estimation error log10 ‖x−x†‖22 in Figure 6.3 for each algorithm, where x† denotes
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the ground truth image. We observe a roughly 4× improvement in run time compared to FISTA

since our algorithm can avoid the heavy cost of the TV proximal operator3 while maintaining

the fast convergence provided by Nesterov-type momentum and randomization. We also report

a significant improvement over the SPDTCM algorithm both in time and iteration complexity.

In terms of datapasses (number of epochs), the SPDTCM does not show any advantage over the

deterministic method FISTA, while our Acc-PD-SGD with 10 minibatches is able to achieve 2

times acceleration over FISTA.

We also report that in this experiment, if we further increase the number of subsets of SPDTCM

and Acc-PD-SGD, we do not observe faster convergence for these algorithms. In other words,

no matter how we increase the number of subsets, this 2-time acceleration (in terms of number

of datapasses) is the limit of our algorithm – such a trend is successfully predicted by the SA

factor shown in the Figure 6.2 (left), where we can see that the curve of the SA factor for

deblurring task goes flat instead of increasing after the number of minibatches K > 10.

6.5.2 X-Ray Computed Tomography Image Reconstruction Experiment

In the first experiment, we have demonstrated the superior performance of the proposed Acc-

PD-SGD algorithm compared to the deterministic algorithm FISTA, and the state-of-the-art

stochastic primal-dual gradient method SPDTCM on a space-varying deblurring problem, al-

though it is not inherently favorable for the application of stochastic gradient methods. In this

subsection, we turn to another imaging inverse problem – the computed tomography image re-

construction. As suggested by the curve of the SA factor, the X-ray CT image reconstruction is

a nice application for stochastic gradient methods, where we expect them to achieve significant

speed-ups over the deterministic methods.

In this experiment we consider a 2D fan-beam CT imaging problem, where we aim to recon-

struct a 256 × 256 head image from 92532 noisy X-ray measurements (hence the forward op-

erator A ∈ R92532×65536), using TV-regularization. Denoting x† to be the (vectorized) ground

truth image and w ∈ Rn to be an additional random noise vector drawn from an exponential

Poisson distribution, we have the observed measurement as b = Ax† + w. The signal-to-noise

ratio of the X-ray measurement in this example is set to be: log10
‖Ax†‖22
‖w‖22

≈ 3.16. In Figure

3For the computation of the TV proximal-operator for FISTA algorithm, we use the popular implementation
from the UnLocBox toolbox [175] which is available online (https://epfl-lts2.github.io/unlocbox-html/).
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Figure 6.4: The estimation error plot for the X-ray CT image reconstruction experiment with
TV-regularization.
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Figure 6.5: The estimation error plot for the X-ray CT image reconstruction experiment with
TV-regularization and `1 regularization on Haar-wavelet basis.

6.6, we first demonstrate the reconstructed image by the classic filtered-backprojection (FBP)

[176] which is a direct method without considering regularization. From the result of FBP, we

can clearly see that the reconstructed image contains a large amount of noise.

From the convergence results of the iterative algorithms in Figure 6.4 we can observe that for

this experiment, the stochastic methods SPDTCM and Acc-PD-SGD converges significantly

faster than the full gradient method FISTA both in terms of number of datapasses and wall-

clock time. Meanwhile, we can also see that, our proposed method Acc-PD-SGD converges

faster than the SPDTCM which does not use Katyusha-X momentum for acceleration.

Moreover, in some scenarios (such as the cases where we use low-dose X-ray measurements),

we may wish to use more than just one regularizer for a better modelling of the ground truth, in

order to ensure an accuracy estimation via additional prior information. In the following exper-

iment, we reduce a half of the dosage of the X-ray measurement, such that log10
‖Ax†‖22
‖w‖22

≈ 2.86,
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Figure 6.6: The reconstructed images by the compared algorithms with TV-regularization.

and use two regularization terms jointly for the reconstruction task – the TV regularization and

`1 regularization on the Haar-wavelet basis. The FISTA algorithm cannot be directly applied

for this three-composite optimization task, hence we choose the Chambolle-Pock (PDHG) algo-

rithm as a baseline representing the full gradient methods, and SPDTCM as the representative

baseline for the state-of-the-art stochastic gradient methods for the three-composite problems.

We present the results of this experiment in Figure 6.5 and 6.7, where we can again clearly

observe the superior performance of the proposed method over the baselines on this experiment

where we use multiple non-smooth regularization terms.
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Figure 6.7: The reconstructed images by the compared algorithms at termination using joint
TV-`1 regularization.
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6.6 Concluding Remarks

In this work we investigated the value of the state-of-the-art stochastic gradient methods in

imaging inverse problems where we chose image deblurring as a running example. We firstly

reveal a surprisingly negative result on existing SGD-type methods, and propose a heuristic

metric (SA) to explain such failures and evaluate the possible computational advantage of us-

ing stochastic techniques for a given task; finally we combine several practical ideas and pro-

pose the Accelerated Primal-Dual SGD to cope with multiple regularizers (potentially) with a

linear operator while maintaining the fast convergence, and demonstrate its effectiveness via

experiments on space-varying deblurring and X-Ray CT image reconstruction.

Although the work presented in this chapter is mainly empirical and preliminary, and we have

not yet done the convergence analysis of the proposed Acc-PD-SGD algorithm, we believe that

it provides important insights for the algorithmic design of fast stochastic gradient methods

tailored specifically for imaging inverse problems, from understanding the inherent limitation,

to the practical algorithmic framework. The future work of this chapter will also be focused on

enhancing these two aspects:

Firstly, we will endeavor to better understand the distinguishing features of the inverse problems

which have good SA factors, and also the deeper reason for the bad SA factors for some inverse

problems. Very recently, we have observed empirically that the inverse problem which has bad

SA factors often has a Hessian ATA which is closer to a diagonal matrix compared to the ones

with good SA factors. We have not yet formally analyzed this effect but leave it as a good open

direction for further research.

Secondly, in terms of the theoretical analysis and the structure-adaptive algorithmic improve-

ment of Acc-PD-SGD, we wish to apply the RSC framework [5] for analyzing the convergence

of this algorithm, and deriving the optimal structure-adaptive variants of it using the restart

schemes as we have done in chapters 4 and 5. The analysis of Acc-PD-SGD under the RSC

framework will be highly non-trivial and of great interest, since there is no structure-adaptive

convergence results using the RSC condition so far for the class of primal-dual algorithms

which are often very practical and flexible in imaging inverse problems.
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6.A Appendix

6.A.1 The Proof for Theorem 6.3.3

Proof. The proof of this theorem is straight forward and is based on combining the existing

results since we have assumed that f satisfies simultaneously the lower bounds in Theorem

2.3.4 and 2.4.1 and the dimension d is large enough for both of the lower-bounds to hold on a

domain:

X =
{
x ∈ Rd : ‖x‖22 ≤ 1

}
. (6.15)

By the convergence-rate lower bound for full gradient we have presented in Theorem 2.3.4, we

can have:

f(xsAfull
)− f? ≥ Ω

(
Lf‖x0 − x?‖22

(s+ 1)2

)
:=

CfullLf‖x0 − x?‖22
s2

. (6.16)

where we denote Cfull being a positive constant. Meanwhile, for optimal stochastic algorithm

we have the upper bound of convergence by Def. 6.3.2 with setting m = K:

Ef(xsAstoc
)− f? ≤ C2(f(x0)− f?) + C3Lb

K ‖x0 − x?‖22
s2

(6.17)

Combining the two bounds we can have:

Ef(xsAstoc
)− f?

f(xsAfull
)− f? ≤

C2

Cfull
· Lb
KLf

+
C3(f(x0)− f?)
CfullLf‖x0 − x?‖22

. (6.18)

Recall the definition of smoothness, we can have:

f(x0)− f? − 〈Of(x?), x0 − x?〉 ≤ Lf
2
‖x0 − x?‖22, (6.19)

and using the assumption that any solution x? lives in the relative interior of X , we can have

Of(x?) = 0, and hence f(x0)− f? ≤ Lf
2 ‖x0 − x?‖22. Consequently, we can have:

Ef(xsAstoc
)− f?

f(xsAfull
)− f? ≤

C2

Cfull
· Lb
KLf

+
C3

2Cfull
. (6.20)

Similarly, according to the lower bound for the stochastic gradient we have presented in The-

orem 2.4.1 [54, Theorem 7], there exist a positive constant Cstoc, such that in order to achieve
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an output Ef(xsA)− f? ≤ ε, any stochastic gradient algorithm must take at least:

Cstoc

(
K +

√
KLb
ε

)
(6.21)

calls of the stochastic gradient oracle Ofi(). In other words, for this worst case function, if we

run any stochastic gradient method with only Ks calls on the stochastic gradient oracle such

that:

Ks = Cstoc

√
KLb
ε
, (6.22)

Ef(xsAstoc
)− f? ≥ ε can be guaranteed. Hence, we have:

Ef(xsAstoc
)− f? ≥ C2

stocLb
Ks2

(6.23)

Meanwhile, starting from x0 ∈ X , by Def. 6.3.1, for any optimal full gradient methodAfull we

can have:

f(xsAfull
)− f? ≤ C1Lf‖x0 − x?‖22

s2
≤ 4C1Lf

s2
. (6.24)

Combining these two bounds we can have:

Ef(xsAstoc
)− f?

f(xsAfull
)− f? ≥

C2
stocLb

4C1KLf
. (6.25)

Finally, by setting c0 =
C2

stoc
4C1

, c1 = C2
Cfull

and c2 = C3
2Cfull

we yield the claim.
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Chapter 7
Conclusion and Future Perspectives

7.1 Summary

In this thesis we have advanced the state-of-the-art of large-scale optimization by developing it-

erative randomized algorithms which are able to actively exploit the solution’s low-dimensional

structure enforced by regularization within the optimization task.

In chapter 3 we focus on the sketched gradient algorithms, which essentially combine the

sketching meta-algorithms and projected gradient descent, for efficiently solving constrained

least-squares in the big-data regime n � d � O(1). Our convergence analysis shows that

the sketched gradient algorithms enjoy a fast convergence rate which scales desirably with the

intrinsic dimension of the solution. In practice, by implementing the efficient sparse random

projection, the tailored line search scheme for aggressive step-sizes, and the adaptive restart

scheme, we found that our methods significantly outperforms the state-of-the-art stochastic

variance-reduced gradient methods at scenarios where large minibatch-sizes are used (which

is very common in modern machine learning practice), in large-scale constrained least-squares

regression and low-rank multivariate regression tasks.

The main intuition behind the sketched gradient algorithm is that, the randomized projection

preserve the statistical dimension of the optimization problem while massively reduce the com-

putation, and meanwhile the projected gradient descent provides the scalability to the high-

dimensions and efficiency in handling the constraints. Moreover, it has been shown that non-

accelerated deterministic first-order solvers themselves such as projected/proximal gradient de-

scent achieves automatic adaptiveness towards the intrinsic-dimension of the solution without

any further algorithmic enhancement, under a restricted strong-convexity (RSC) framework

which links the solution’s intrinsic dimension with the convergence speed of a gradient-based

algorithm [5, 127]. Under the same RSC framework of [5], researchers [118, 119] derived the

structure-adaptive convergence analysis of non-accelerated stochastic gradient methods SVRG

and SAGA. However, for first-order methods with Nesterov-type acceleration scheme, which
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typically enjoy state-of-the-art and worst-case optimal convergence results, such structure-

adaptiveness cannot be directly achieved, but requires some more tailored modifications.

In our chapters 4 and 5, we aimed at studying how to maximize the potential structure-exploiting

capability of the stochastic first-order methods. We focus on developing structure-adaptive vari-

ants of accelerated stochastic first-order algorithms – the accelerated stochastic gradient descent

with variance-reduction [4], as well as the accelerated block-coordinate descent [6]. This prov-

able algorithmic improvement is done by adaptively restarting these algorithms according to

the RSC parameter. We demonstrate both theoretically and experimentally that, the proposed

schemes achieve significant speed up over the vanilla accelerated methods on regularized em-

pirical risk minimization tasks with solutions which have intrinsic low-dimensional structure.

While being the de-facto techniques in machine learning practice, the randomized first-order

methods have not been very widely applied in signal and image processing applications (ex-

cepting a few applications such as tomographic image reconstruction). Hence in chapter 6, we

demonstrate some preliminary but insightful empirical ideas on the practicability of stochastic

gradient methods for imaging inverse problems such as image deblurring.

There are several issues hindering the application of stochastic methods in imaging inverse

problems: (1) some inverse problems are indeed inherently not suitable for SGD-type methods

– for example, the space-varying deblurring task we have discussed in Section 6.2 – in such

problems we cannot expect stochastic methods to be significantly better than deterministic gra-

dient methods, such as image deblurring; (2) the regularization term with a linear operator

(such as TV-regularization) requires a proximal operator which is non-trivial to compute and

the stochastic methods typically need many more frequent calls on the proximal operator than

the deterministic methods, (3) multiple terms of regularization are desired for some scenarios.

In chapter 6, we provide a numerical scheme to characterize whether an imaging inverse prob-

lem is inherently suitable for the application of stochastic gradient methods. For overcoming

the issues (2) and (3) of complicated regularization terms, we propose an efficient accelerated

primal-dual SGD method and demonstrate its effectiveness in space-varying image deblurring

and tomographic imaging. Although seemly being a side-contribution to the main theme of the

thesis (structure-adaptive optimization) as compared to chapter 3 - 5, we believe that, the em-

pirical work we presented in chapter 6 provide us important insights and practical algorithmic

framework for a crucial line of future research – the design of structure-adaptive algorithms

tailored specifically for the imaging applications.
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7.2 Future Directions and On-Going Research

The technical results of this thesis suggest many interesting and promising future directions.

We list a few critical and immediate ones here:

7.2.1 Proximal and Primal-Dual Sketched Gradient Methods.

Inspired by the primal-dual saddle-point algorithmic framework and the potential computa-

tional benefits which variable metric schemes can bring forth in practice, we wish to extend

the algorithms we developed in [7] (which directly solve the primal optimization problem, and

restrict to only the constrained least-squares) to the primal-dual and variable metric setting.

Since via the primal-dual framework we can presumably perform sketching on both 2 dimen-

sions of the data matrix, we expect to have a sketching based first-order method which is able

to : (1) solve the generic regularized empirical risk minimization task (2.3), and being scalable

to graph-guided regularization (such as TV) regularization and multiple regularization terms;

(2) being efficient when the data matrix is nearly square or even highly under-determined.
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Figure 7.1: Some preliminary results of applying Proximal-GPIS and Proximal-Acc-GPIS on a
fan-beam computed tomography (CT) image reconstruction experiments (Total-Variation Reg-
ularized least-squares)

In terms of theory, we could apply the RSC framework [5] to analyze the structure-adaptive

convergence of the proximal sketched gradient methods. Moreover, under the same theoretical

framework, we will be able to effectively compare the structure-adaptiveness of the two distinct

type of randomized algorithms we have considered in this thesis (the sketched gradient and

stochastic gradient methods), in a unified and systematic manner. Hence, future research in this

direction may also provide us with practical guidance as to how to choose between the sketched

gradient algorithms or the stochastic gradient algorithms for different scenarios.
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7.2.2 Universal Structure-Adaptive Restart Scheme.

The idea of using restart schemes to exploit the RSC which we have successfully applied in

chapters 3 and 4 [9, 11] can be extended to any stochastic or deterministic gradient methods with

Nesterov-type acceleration. We wish to provide a unified universal structure-adaptive analysis

of restarted first-order methods under the RSC framework, viewing the restart scheme as a

meta-algorithm. Moreover we wish to develop a practically and provably good adaptive restart

scheme which does not need to know (or accurately estimate) the RSC parameter beforehand.

7.2.3 The Local Convergence and Acceleration of Rest-Katyusha and Two-Stage

APCG

As we have mentioned in the background chapter, there is another framework [44, 121, 122]

which is complementary to the RSC, and can also be applied for local convergence analysis

of first-order algorithms, using finite activity-identification of gradient-based methods and lo-

cal partial-smoothness structure of the composite optimization problems. Recent breakthroughs

[123] show that the stochastic gradient methods with variance-reduction have the finite activity-

identification property and achieve local linear convergence, hence opening the door for the

local sharp structure-adaptive convergence analysis of stochastic first-order methods. We be-

lieve that, if we further analyze the proposed Rest-Katyusha and two-stage APCG algorithms

under this local convergence framework, we will not only be able to enhance these algorithms’

convergence guarantees up to an arbitrary accuracy, but also, derive even faster variants, which

utilize greedier step-sizes using local smoothness of the composite optimization tasks.

7.2.4 Structure-Adaptive Stochastic Approximation for Online Learning

The current work presented in this thesis focuses on the off-line settings where the data samples

are obtained beforehand. In many signal processing and machine learning applications, the data

samples arrive on the fly, and such online settings can not be described as a finite-sum but as a

stochastic programming problem. Extending and developing the randomized structure-adaptive

gradient methods in the online setting will also be of great interest. One immediate example of

applications would be the sparse adaptive-filtering, where we wish to learn adaptively a tracking

filter in order to denoise audio or video sequences in real time, with a random noise having a

time-varying statistics [177].
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7.2.5 Stochastic Structure-Adaptive Methods for Non-Convex Optimization

One important future direction of this thesis could be the extension towards the non-convex

optimization problems, such as the training of deep neural networks. In view of the success

of structure-exploiting algorithms in the convex optimization tasks, we have enough reason to

believe that the low-dimensional structure is a hidden treasure waiting to be discovered and

exploited for faster local convergence speed in non-convex optimization.

7.2.6 Acc-PD-SGD with Lazy Denoising Schemes for Fast and Accurate Image

Processing

In chapter 6 we have presented a preliminary result on applying an accelerated primal-dual SGD

method to a space-varying deblurring task, using a TV regularization. In our on-going work

we aim at extending Acc-PD-SGD to a more general plug-and-play form, which is not only

able to use classic priors efficiently such as the TV regularization, but can also cooperate with

the state-of-the-art denoisers such as BM3D [178, 179], TNRD[180], NLM [181] and DnCNN

[182] to achieve better estimation accuracy in imaging inverse problems. Directly applying the

expensive denoisers with stochastic gradient will lead to slow convergence in time due to the

multiple number of calls on the denoiser, and hence we propose a lazy update scheme (inspired

by recently introduced gradient-sliding schemes [183, 184, 185, 186]), which only call the

denoiser once at the beginning of each epoch and record such a denoising direction. Then in

each innerloop iteration, instead of calling the denoiser again, we use this pre-recorded sliding

direction as the denoising step.

We present some of our very recent experimental results here, where we consider space-varying

deblurring tasks where the blurred image is corrupted by a large amount of Gaussian noise. In

the high-noise regime, using TV regularization alone is not enough to provide us a good estima-

tion of the ground truth image, so we apply our algorithm not-only with TV regularization, but

also jointly with the BM3D denoiser which enforces an implicit regularization. The experimen-

tal setting is the same as the numerical experiment section in chapter 6, but this time we make

the noise variance 5 times larger. These preliminary results demonstrate the practicability and

efficiency of this generalized plug-and-play version of Acc-PD-SGD. In our on-going work,

we also aim to formally analyze the convergence of Acc-PD-SGD as well as this plug-and-play

variant. Moreover, we believe that, from a detailed study of the structure-adaptive convergence

theory for Acc-PD-SGD, using the RSC framework [5, 116] we have considered throughout
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this thesis, we can derive the optimal step-size strategy, the tailored adaptive-restart scheme

and also the optimal lazy-denoising scheme for the plug-and-play Acc-PD-SGD algorithm.
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Figure 7.2: Convergence results for the compared algorithms for deblurring Kodim05 image
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Figure 7.3: Convergence results for the compared algorithms for deblurring Kodim06 image
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Figure 7.4: Deblurred images for Kodim05

165



Conclusion and Future Perspectives

100 200 300 400 500

the blurred image

100

200

300

400

500

100 200 300 400 500

deblurred by PnP-FISTA (BM3D)

100

200

300

400

500

100 200 300 400 500

deblurred by SPDTCM (lazy BM3D)

100

200

300

400

500

100 200 300 400 500

deblurred by Acc-PD-SGD (TV)

100

200

300

400

500

100 200 300 400 500

deblurred by Acc-PD-SGD (lazy BM3D)

100

200

300

400

500

100 200 300 400 500

deblurred by Acc-PD-SGD (lazy BM3D + TV)

100

200

300

400

500
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tien,” Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol. 255,
pp. 2897–2899, 1961.

[34] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,”
SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979, 1979.

[35] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems,” IEEE Transactions on Image Processing,
vol. 18, no. 11, pp. 2419–2434, 2009.

[36] J. D. Lee, Y. Sun, and M. A. Saunders, “Proximal newton-type methods for minimizing
composite functions,” SIAM Journal on Optimization, vol. 24, no. 3, pp. 1420–1443,
2014.

[37] Y. Nesterov, “A method of solving a convex programming problem with convergence
rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27, pp. 372–376, 1983.

[38] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical program-
ming, vol. 103, no. 1, pp. 127–152, 2005.

[39] Y. Nesterov, “Gradient methods for minimizing composite objective function,” tech. rep.,
UCL, 2007.

[40] O. Fercoq and Z. Qu, “Restarting accelerated gradient methods with a rough strong con-
vexity estimate,” arXiv preprint arXiv:1609.07358, 2016.

[41] J. Liang and C.-B. Schönlieb, “Improving fista: Faster, smarter and greedier,” arXiv
preprint arXiv:1811.01430, 2018.

[42] B. O’Donoghue and E. Candes, “Adaptive restart for accelerated gradient schemes,”
Foundations of computational mathematics, vol. 15, no. 3, pp. 715–732, 2015.

[43] O. Fercoq and Z. Qu, “Adaptive restart of accelerated gradient methods under local
quadratic growth condition,” arXiv preprint arXiv:1709.02300, 2017.
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