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Abstract 

This work is concerned with the molecular analysis of ascomycete mating type genes of 

various Sordaria species. Work previously published has reported the cloning and 

characterisation of mating type genes from several Neurospora species. In heterothallic 

species the genotype at the mating type locus (mtA or mta) determines the mating type. 

Homothallic species, which proceed through the sexual cycle without the need to mate, 

have no obvious mating types but molecular analysis has been used to demonstrate the 

presence of mating type genes in species with this life cycle. 

Neurospora species and Sordaria species both belong to the Sordariaceae and are 

closely related. Several ? clones containing putative Sordaria mating type genes from 

heterothallic and homothallic species had been isolated previously using N. crassa mtA 

and mta probes. In this study the mtA- 1 gene of the heterothallic species S. scierogenia 

was subcloned from a ?. clone and sequenced. The equivalent gene from S. equina (a 

homothallic species containing only the mtA sequence) was also subcloned and 

sequenced. A ? clone for the species S. fimicola was found to hybridise with both the 

mtA and mta probes. S. JImicola is a homothallic species containing mtA and mta in the 

same nucleus. On sequencing the lambda clone it was found that the mtA and mta genes 

are linked in this species. 

All the Sordaria mtA- 1 genes contained putative DNA binding domains, a domains. 

The mta-1 gene sequenced from S. firnicola contained a putative HMG box. The S. 

equina mtA- 1 gene was expressed in a sterile N. crassa mta mutant and was found to 

restore mating type function to the mutant. The mtA-1 gene did not however confer 

homothallic behaviour on the recipient mutant. 

S. equina and S. scierogenia contain a 59bp common region following on from the 

mtA-1 gene which is conserved in both these species and in Neurospora species. A 

variable region continues on from the common region in S. equina and S. scierogenia 

and in Neurospora species. The variable region can differ between species and between 

mating types. 

The evolutionary relationships between Sordaria species and Neurospora species were 

examined also although the limited amount of data available means any conclusions 

reached are tentative. 
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I Introduction 

This thesis is concerned with the analysis of mating type genes of various species of 

Sordaria. In this introductory chapter what is known about the mating types of other 

fungi will be reviewed. The budding yeast Saccharomyces cerevisiae is considered 

because this was the first mating type system to be described at the molecular level and 

because, although some of the details are not relevant to the organisation of mating type 

in Sordaria species, the mechanism of action of the gene products has been conserved 

throughout evolution. The yeast system provides a starting point towards understanding 

other systems. The mating type genes of the filamentous ascomycetes are described next. 

These are of direct relevance to the research carried out in this thesis. Finally the more 

complex basidiomycetes are considered, the mating type systems within this fungal 

group constitute the most complex mating type systems investigated to date. 
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1.1 	The Budding Yeast Saccharoinyces 
cerevisiae 

How mating type genes control cell type and mating in S.cerevisiae has been 
researched extensively. This first section will briefly cover points, namely mating type 

proteins which can act as transcriptional activators/repressors, which are of relevance to 

control of the sexual cycle in the filamentous ascomycetes. 

1.1.1 Proliferation and Transitions in the S. cerevisiae Cell Cycle 

When plenty of nutrients are available, S. cerevisiae will proliferate in the mitotic cell 

cycle. A haploid cell duplicates its 17 chromosomes and distributes them between the 

mother cell and a daughter cell which is budded off. Two mating types, a and a, exist in 

S. cerevisiae and cells of opposite mating type readily fuse with each other. Proliferation 

is abandoned temporarily when cells of opposite mating type communicate via 

pheromones. a cells produce a-mating type factor, a pheromone which consists of 12 

amino acids (Betz et al, 1987). a cells produce a—mating type factor, a pheromone 

consisting of 13 amino acids (Stotzler et al, 1976). The a-mating type factor informs a 

cells, which have a receptor for the a-mating type factor on their surface, of the a cells' 

presence and induces the a cell to prepare for mating. Conversely the a—mating type 

factor prepares a cells, which have a receptor for the a-mating type factor, for mating. 

The two cells fuse to produce an a/a diploid cell. Under appropriate envirornental 

conditions a/a cells can form an ascus from which the four spores, the haploid products 

of meiosis, are produced (Reviewed in Herskowitz, 1988; Rine, 1986 and Sprague et al 
1983a). 

1.1.2 Structure of the Mating Type Locus and Mating Type Switching 

Whether a cell is a or a depends on which allele is resident at the mating type locus 

(MAT locus) on chromosome ifi. MATa and MATh have been cloned (Hicks et a!, 1979 

and Nasmyth and Tatchell, 1980) and sequenced (Astell eta!, 198 1) and a 747 bp region 

called Ya was found to be unique to MATa and a 642 bp region called Ya was found to 

be unique to MATa. Ya and Ya are surrounded by regions found in both mating types. 

From left to right, as conventionally written, the mating type cassette segments are the W 

(723 bp) and X (704 bp) regions, Ya!Ya, and the Z  (239 bp) and Z2 (88bp) regions. 
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To the right and left of the MAT locus some distance away there are the HMR and HML 

loci respectively. HMR usually contains silent Ya information and HML usually has 

silent Ycx information. The Ya and Ya elements at HMR and HML again are surrounded 

by regions homologous to both mating types, although HMR has no W or Z2 segments 

(Nasmyth and Tatchell, 1980). The purpose of these HML and HMR regions is to 

provide 'storage loci which enable an a cell to switch mating type to an a cell, or vice-

versa. The a or a cassette at MAT is removed and replaced by information from HML or 

HMR via a transposition event. The composition of HML/HMR is not affected by this 

transposition event, the transfer of information is non-reciprocal. This switching" ability 

will not be discussed in detail here as the filamentous ascomycetes which are investigated 

in this study do not have the ability to switch mating type (mating type interconversion is 

reviewed in Sprague el at, 1983a and in Hicks et a!, 1979). 

1.1.3 The al-a2 Hypothesis 

In a MATa cell, a pheromone is produced and a receptor for the a pheromone is 

expressed. MATa cells produce a pheromone and a receptor for the a pheromone. 

These products enable the cells to mate and form a MATa/MATa diploid cell in which 

receptors and pheromones are not produced so hence the diploid cell cannot mate. Unlike 

a haploid cell the diploid cell can undergo meiosis and produce spores. The specific 

characteristics of each cell were proposed by MacKay and Manney (1974) to be a result 

of factors encoded at the MATa and MATa loci which control the expression of genes 

unlinked to the MAT locus necessary for mating. 

MacKay and Manney (1974) found sterile (ste ) mutations which were: a) linked to 

MATa (ste!); b) unlinked to the MAT locus but specific for MATa cells (ste2); c) 

unlinked to the MAT locus but specific for MAT(x cells (ste3) and d) unlinked to the 

MAT locus but non-specific for mating type (ste415). Significantly, no class of Ste 

mutants were found where the mutation is linked to MATa. Ste2 and ste3 mutants were 

unable to respond to the pheromone produced by the opposite mating type, but the ability 

to produce pheromone was retained along with the ability to sporulate. One could see 

here how these mating type specific mutations are in genes that code for the receptors to 

pheromones from the opposite sex. Mutations linked to the MATa locus abolish the 

ability to respond to a pheromone and to produce a pheromone. This suggests a positive 

regulatory role for the MATa locus in expressing the a pheromone and a receptor genes. 

15 



Sterile a and a mutants that are incapable of sporulating were proposed to be the result 

of mutations at the MAT locus. One non-sporulating mutant derived from MATa was 

able to mate at a low frequency to a wild-type MATa to produce a non-sporulating 

diploid, unusually this could mate as an a strain. This diploid was mated with a diploid 

homozygous for a to produce a tetraploid with two normal a alleles, a normal a allele 

and the MAT allele from the original mutant. This tetraploid was able to sporulate. 

MacKay and Manney (1974) pointed out that if the original mutation was not at MAT and 

had its effect through a cytoplasmic product to produce the non-sporulating phenotype in 

the diploid, then the same phenotype should be apparent in the tetraploid. If this mutation 

was not at MAT and had a recessive action then the non-sporulating phenotype would 

not be present in both the diploid and the tetraploid. The non-sporulating phenotype here 

was proposed to be a result of a mutation carried at MATa. Tetraploids made by mating a 

diploid formed from a non-sporulating mutant derived from MATa and a normal MATa 

to a diploid homozygous for MATa were also found to sporulate. 

MacKay and Manney (1974) proposed that the mating type alleles are regulatory in 

function and regulate most if not all of the genes necessary for mating. Genes under the 

control of MAT were split into four groups, those expressed only in MATa cells, those 

expressed only in MATa cells, genes expressed in both MATa and MATa cells and 

genes expressed only in heterozygous diploids. 

Four mutations of the MATa locus isolated by MacKay and Manney (1974) were 

investigated in greater detail by Strathern et al (1981). Three of the mutations led to 

sterility but in those rare diploids formed, sporulation could take place. The fourth 

mutation also led to sterility but rare diploids were unable to sporulate. The two types of 

mutation at MATa were found to define two complementation groups, al and a2. al 

mutants are able to sporulate when part of a diploid, do not secrete (X-pheromone or 

respond to a-pheromone. a2 mutants are unable to sporulate when part of a diploid, do 

not produce a-pheromone or respond to a-pheromone but in contrast to al mutants, 

they display some MATa cell characteristics. a2 mutants respond to (X-pheromone and 

produce a-pheromone. 

Mutations at MATa appear to have no effect on the mating activity of MATa haploids but 

do cause a failure of sporulation when a cell mutant at MATa forms a diploid with the 

opposite mating type. This results in the diploid mating as an a cell. Mutations at MATa 

were classed as a 1 mutations. From the observed phenotypes of MATa and MATa 
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mutations a model, the al-a2 hypothesis, was proposed (Strathern et at, 198 1) for the 

control of cell type by the MAT loci. 

MATa 1 is a positive regulator of a-specific genes like a-pheromone and a-specific 

STE genes. Mutations of MATa1 cause sterility because MATa1 specific genes are no 

longer expressed. 

MATa2 encodes a negative repressor of a-specific genes. Mutations at MATa2 cause 

the MATa cell to have a phenotype similar in some ways to a MATa cell but a-specific 

functions will still be expressed due to the presence of a functional MATa I. The 

antagonism between the a and a-specific functions is probably the reason why MATa2 

mutants are deficient in mating. If a MATa/MATa diploid carries a mutation at MATa2 

then the diploid will be deficient in sporulation functions. MATa2 plays a regulatory role 

necessary for sporulation to take place. 

MATaI is also necessary for sporulation function in diploids. This makes MATa and 

MATa co-dominant alleles as both al and a2 must be present for sporulation in 

diploids. Together MATa1 and MATa2 also block mating in diploids by inhibiting 

MATa1 expression. MATa cells have a MATa phenotype due to the absence of 

MATa2. 

The al-a2 hypothesis is summarised in figure 1.1.3. 
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FIGURE 1.1.3 

MAT genes as master control loci in a haploid , a haploid and a/a diploid cells. The effect of the proteins on a-

specific genes. a-specific genes and haploid-specific genes is shown. Where a protein has a positive effect on a 

target gene is denoted by an arrow. Vertical bars denote blocked processes. a2/al blocks the expression of 

haploid-specific genes allowing sporulation to take place. czsg=a-specific genes, asg=a-specific genes, 

hsg=haploid specific genes. 
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1.1.4 The Mutations at the MAT Alleles can be Mapped to Transcripts 

Expressed at the MAT Alleles. 

The a 1 -a2 hypothesis proposes that MATx and MATa encode proteins that regulate the 

transcription of genes that play a role in mating and sporulation. At MATa there are two 

mRNAs transcribed divergently. One, a!, is transcribed from the a—specific sequence 

Ya and the other, a2, is encoded at the X region common to both mating types. At 

MATa an a 1 mRNA is encoded at the a-specific DNA sequence, Ya, but a second 

mRNA, a2, is transcribed from the X region common to both MATa and MATa (Astell 

et a!, 198 1). Tatchel! eta! (198 1) have connected the MAT loci transcripts with the 

MATa1, MATa2 and MATa1 complementation groups. Using in vitro mutagenesis 

new Xhol restriction sites were introduced into cloned DNA containing either the MATa 

or the MATa locus. This technique resulted in deletions and duplications being produced 

at the site of the new restriction site. 

Twelve MATa plasmids containing Xho linker mutations were tested for their ability to 

complement a MATa 1 mutant strain which had a failure in sporulation when part of a 

diploid and allowed the diploid to mate as an a strain. Each of the twelve plasmids were 

used to transform a mutant MATa 1 diploid, mata 1/MATa. Four of the mutant plasmids 

with mutations in the al gene failed to restore sporulation functions in the diploid and 

failed to stop the diploid mating as an a strain, so it was concluded that the a! protein is 

involved in activating sporulation and repressing a mating in diploids. To assign a 

possible function to the a2 transcript, the twelve plasmids with mutations within MATa 

were transformed into MATa/MATa diploids to see if the plasmids could complement 

the sporulation and mating repression defects. Unlike those plasmids with mutations in 

al the plasmids with mutations within a2 were able to complement the defects, even 

those plasmids with large deletions at a2. No function could be assigned to a2 by this 

complementation assay. 

Thirty-nine MATa mutant plasmids were tested for their ability to complement MATa1 

and MATa2 mutations. Thirty-three of the mutants complemented MATa! mutations, 

the remaining six mutant plasmids, which failed to complement, all had mutations in the 

a! coding region. Eight mutant plasmids failed to complement the sporulation defect in 

MATaImata2 diploids and failed to complement the mating defect in mata2 haploids. All 

eight plasmids had mutations in the a2 coding region. The al protein is responsible for 

expression of a-specific genes necessary for mating, while the a2 protein represses a- 
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specific genes in haploids and along with the al protein, activates sporulation in 

diploids. 

1.1.5 The MAT Proteins Regulate the Transcription of Cell Type Specific 

Genes 

The STE3 gene was cloned when a yeast genomic clone bank was screened and a 

plasmid found that contained the information to complement the mating defect of ste 3 
mutants (Sprague et a!, 1983b). The STE3 gene is thought to encode the a-specific 

receptor for the a-factor (Hagen eta!, 1984). A matct2/matal mutant cell would mate as 

an a-cell as the mutant al cannot express a-specific genes and the mutant a2 cannot 

repress a-specific genes. The same phenotype was shown in a mata2/MATa1 ste3 cell. 

This suggested that STE3 is positively regulated by al and that STE3 is required for a-

specific mating activity. Sprague et a! (1983b) used the STE3 gene as a probe to find out 

if mutant matal cells produce STE3 RNA. The STE3 probe showed the presence of 

STE3 RNA in MATh1 cells but not in mutant matal cells. No STE3 RNA was detected 

in a or ala cells. STE3 is expressed only in a-cells and requires the MATaI product for 

expression. 

The STE2 gene was cloned by complementation of the ste2 mating defect. Using the 

STE2 gene as a probe, STE2 RNA was only detected in a or mata2 cells (Hartig et a!, 

1986). The MATa2 gene product represses expression of STE2 so no STE2 RNA was 

found in a or a/a cells. STE2 RNA levels were increased in a cells that had been 

exposed to a-factor. STE2 has been proposed to encode the a-specific receptor for the 

a—factor (Jenness et a!, 1983). 

The STE12 gene was cloned by complementation of the stel2 mating defect. The STEI2 

protein is required by both a and a cells to mate. The STE 12 recognition sequence on 

DNA is called a pheromone response element (PRE) and STEI2 upregulates a and a-

specific genes in response to pheromone stimulation (Dolan and Fields, 1991). STE12 

transcripts were present in a, a and a/a cells but at a reduced level in a/a cells. a/a 

strains mutant at a2 oral were probed for STE 12 RNA and the repression of STEI2 

expression was found to be abolished in these strains. In the diploid state the combined 

activity of the MATaI and MATa2 products represses STE 12 expression (Fields and 

Herskowitz, 1987). 
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1.1.6 The MAT Proteins Regulate the Transcription of Cell-Type Specific 

Genes as Part of Protein Complexes Formed with Other Regulatory 
Proteins 

1.1.6.1 The Yeast Transcriptional Activator MCM1 is Involved in Both a 
and cc-Specific Gene Expression. 

Jarvis et at (1987) found that the control region of the a-specific gene STE3 contains a 

26bp sequence found at the control regions of other a-specific genes. The 26bp 

sequence has a P element, 16bp and an imperfect palindrome, and a Q element, a lObp 

sequence thought to be the binding site for al (Bender and Sprague, 1987). The al 

protein was shown by Bender and Sprague (1987) to bind to the QP element only in 

conjunction with MCM1. MCM1 and al bind cooperatively to the QP element, the 

complex formed as a dimer of MCM1 and a single molecule of a! (Primig eta!, 1991). 

MCMI on its own binds only weakly to the imperfect palindromic P elements found at 

a-specific genes, a! allows tighter binding. P elements at a-specific genes were found 

to be more symmetrical, like the palindromic 14bp version of the P element [P(PAL)] 

synthesized by Jarvis eta! (1987). [P(PAL)] was used to replace the upstream activation 

sequence (UAS) of the CYC1-lacZ gene to see if the gene could be expressed in a and a 

cells, which it was. In contrast the P element of STE3 had no UAS activity in a and a 

cells. MCM1 interacts with P(STE3) in conjunction with al but can recognize P 

elements that are perfectly palindromic, like those found at a-specific genes. ElbIe and 

Tye (1991) have shown that a mutant allele of MCM1 affected both the activation and 

repression of a-specific genes. It was originally thought that the a2 protein caused 

repression of a-specific genes by blocking the MCM1 binding sites (Bender and 

Sprague, 1987). At a-specific genes the MCM1 binding sites is flanked by a2 binding 

sites and Keleher eta! (1988) showed that MCM1 and a2 bind cooperatively to the a2 

operator. 

1.1.6.2 STE12 is Involved Also in a and cc-Specific Gene Expression 

Errede and Ammerer (1989) found, using band-shift assays, that the STE12 protein 

along with MCML bound to the STE2 UAS. In DNA protection assays STE12 left a 

footprint at the PRE element present at the STE2 UAS. Through weak protein-protein 

contact STE 12 and MCM1 bind cooperatively to the DNA (Bruhn and Sprague, 1994). 

At a-specific genes no good matches for the PRE element were found so it was difficult 
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to explain how activation by STE 12 occurred. Yuan et al (1993) showed that bacterially 
expressed STEI2 and a! could associate in vitro so STE12 could act through a protein-

protein interaction with a 1. 

1.1.6.3 SSN6 and TUP1 are Part of the Complexes that Repress a-

Specific Genes and Haploid Specific Genes 

Haploid specific genes like STE 12 are repressed in the diploid state by the cooperative 

binding of a 1 and a2 proteins to the haploid-specific gene operator (Goutte and 

Johnson, 1993). Keleher et al (1992) showed that diploid cells homozygous for either 

SSN6 or TUP1 mutations sporulated poorly due to haploid specific genes not being 

repressed. Disruption of the SSN6 or TUPI genes in a cells lead to the inappropriate 

expression of a-specific products. SSN6 and TUPI are important in the repression of a-

specific and haploid-specific genes. 

The regulation of a, a and haploid specific genes as currently understood is described in 

figure 1.1.6 taken from Johnson (1995). 
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Cell type regulation of a-specific genes, a specific genes and haploid specific genes. 
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1.2 The Filamentous Ascomycetes 

The two species of Ascomycetes which will be discussed in detail in this section are 

Neurospora crassa and Podospora anserina. The life cycle of N. crassa will be 

described as an example of a fungal Ascomycete life cycle (Fincham, 1983). 

1.2.1 Life Cycle of N. crassa 

Haploid branched coenOcytiC mvce. 

multinucieate 

Asexual 	IF 
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FIGURE 1.2.1 

The life cycle of the filamentous Ascomycete N. crassa. The protoperithecium and pet -ithecium are shown as if 

they are sectioned vertically. 
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N. crassa is a heterothallic species, that is individuals are either A mating type or a 

mating type with A cells mating to a cells (Shear and Dodge, 1927). N. crassa forms 

branching filaments or hyphae in its vegetative state during the asexual cycle. The 

hyphae are made up of multinucleate cells. If the hyphae of opposite mating type fuse 

during the asexual cycle then a process called heterokaryon incompatibility occurs which 

results in protoplasmic incompatibility (Beadle and Coonradt, 1944). This process was 

described in detail by Garnjobst and Wilson (1956). Hyphae differing in mating type 

were fused on slide preparations. Protoplasmic exchange in the vicinity of the fusion 

was followed by death of the the fused cells. Garnjobst and Wilson (1956) suggested 

that this protoplasmic incompatibility between mtA and mta individuals of different 

species may have contributed to speciation in Neurospora. The mating type factors A and 

a are incompatibility factors and it was noted by Garnjobst and Wilson (1956) that 

protoplasmic incompatibility only occurred during the vegetative stages. 

For the sexual cycle to be initiated, A and a cultures must come together under suitable 

conditions. Conditions of nitrogen starvation and a low temperature of 25° induce the 

formation of the female reproductive structure, the protoperithecium. Both mating types 

are hermaphroditic and can form male and female structures. The protoperitheciurn has a 

specialised hypha, the trichogyne, which grows towards the male cell. The trichogyne is 

attracted to the male cell of opposite mating type by a diffusible pheromone-like 

substance secreted from the male cell. (Bistis, 1981; Bistis, 1983) The protoperithecium 

also contains a coiled cell called the ascogonium. The nucleus from the male conidium 

passes via the trichogyne into the ascogonium where it associates with a nucleus of 

opposite mating type. After a period of synchronized nuclear division the paired nuclei 

fuse (karyogamy) to give diploid cells. This is immediately followed by meiosis to give 

four haploid nuclei which undergo a mitotic division to give eight nuclei. Eight 

ascospores contain the haploid products of meiosis. Mature ascospores are induced to 

germinate after heat shock which returns the fungus to the vegetative state (reviewed in 

Fincham, 1983; Metzenberg and Glass, 1990). 
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1.2.2 Structure and Functions of the Mating Type Idiomorphs 

1.2.2.1 Neurospora crassa 

Whether a heterothallic organism is A or a is determined by the allele carried at the 

mating type locus. The mating type genes were cloned by Glass et a! (1988). MtA DNA 

was cloned on the basis that un-3, a temperature-sensitive mutation, is the closest 

selectable marker to mtA. Tansformation with cosmid pSV6: 1OA from a genomic mtA 

library (Vollmer and Yanofsky, 1986) allowed the un-3 recipient to grow at the 

restrictive temperature. Sterile cultures of N. crassa , carrying a mutation at the mating 

type locus, were transformed with pSV6: lOA and the recipient fungi were able to mate 

as mtA cells showing that a functional mtA gene was present on pSV6:IOA. A 4.4kb 

fragment from pSV6: 10A was found to be unique to mtA cells. Transformation 

experiments showed that the fragment contained all the information needed to confer mtA 

activity on a mating type mutant recipient. A ? library made from randomly sheared 

fragments from a mta strain was probed with pSV6: 1 OA and sequences that were 

common to mtA and mta and flanked the DNA unique to mtA were detected. DNA that 

bound to the probe was found to confer mta mating type behaviour to a mutant mtA 

recipient. Mta DNA unique to mta cells and responsible for conferring mta mating type 

behaviour was found to reside on a 4.5kb fragment. Not all of the mta and nitA specific 

DNA is required for mating. A 1.7kb Pst I-Sal I fragment from the 4.4kb mtA-specific 

fragment was found to be sufficient to confer mtA mating type function on a sterile 

recipient. Similarly a 2kb Eco RV-Bam HI fragment from the 4.5kb mta-specific 

fragment was able to confer mta mating type function on a sterile recipient. Probes were 

made from the A-specific and a-specific mating type regions which would not hybridise 

to genomic DNA from the opposite mating type. Thus the genome of each mating type 

does not contain silent mating type genes as found in S. cerevisiae (Glass eta! 1988). It 

was suggested that the two mating type genes be termed "idiomorphs' as one is not 

derived from the other by simple mutation as is the case with alleles. 

Glass eta! (1990a) and Staben and Yanofsky (1990) have sequenced the mtA and mta 

mating type regions respectively. The mtA idioniorph was found to be 530 lbp long and 

the mta idiomorph 3235bp long. A 928bp long open reading frame, mtA-1, was 

identified in the A idiomorph. The a idiomorph has an ORF, mta-1,which is 1260bp 

long. The polypeptides encoded by these ORFs were shown by transformation 

experiments to contain the mating and vegetative incompatibility functions. Ectopic 

integration of fragments containing the mtA- 1 and mta- 1 genes conferred on the recipient 
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the ability to mate as a mtA or mta strain, but if the transformants were crossed no 

ascospores are produced. Vegetative incompatibilty functions can be assayed by 

transforming mta-1 into mtA cells and vice-versa. When a transforming construct 

contains the ability to cause vegetative incompatibility then the transformation efficiency 

is at least 20-fold lower than when transforming mtA- I into mtA cells and mta- 1 into 

mta cells (Glass eta!, 1988). Figure 1.2.2.1 a) shows the relationship between the mta 

idiomorph and the mtA idiomorph with respect to their highly conserved flanking DNA 

(Glass et al. 1990a). 
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FIGURE 1.2.2.1a) 

Comparison between the mtA idiomorph and the mta idiomorph. The transition from the dissimilar 

idiomorphs to conserved flank is abrupt. The checked boxes indicate the mtA-1 and mta-1 open reading frames. 

Their orientation is shown by arrows. 



The mt A-i polypeptide consists of 288 amino acids and amino acids 45-59 show 

similarity to amino acids 90-104 of the MAT al polypeptide. This region has been called 

the cc-domain, a DNA binding domain (Glass et al, 1990a). This suggests that mtA-1 

may be a transcription factor. The amino terminal half of the mta-1 polypeptide shows 

similarities to the shorter Schizosaccharoinyces pombe Mat-Mc polypeptide. This 

region of S.pombe contains an HMG box motif found in the human nucleolar 

transcription factor hUBF (Jantzen et a!, 1990). 

The functional regions of mtA-1, the incompatibility and mating functions, have been 

separated by Saupe et a! (1996). A new mutant, A 99 , was obtained which had lost 

the vegetative incompatibility function but had retained the ability to mate as the 

protoperithecial "female parent. The DNA sequence of the mutant was determined and it 

was found that the mtA- 1 of the mutant was truncated after the first 85 amino acids, 

suggesting that the N-terminal region is sufficient for female fertility functions. MtA-1 

deletion constructs were also made and assayed for fertility functions via transformation 

experiments. Transformants containing constructs which retained amino acids 1-227 

were able to mate as mtA cells. Male mating function was lost for a construct which was 

truncated at amino acid 184, indicating a requirement for amino acids 184-227 for full 

mating activity. A"' mutant alleles that had been previously characterised were cloned by 

PCR and transformed onto mta cells so it could be determined if the mutant gene elicits 

an incompatibility reaction. A'' 64  and A' 54  constructs were found to give lower 

transformation efficiencies with a mta strain, which was interpreted as originating from 

the vegetative incompatibility function. A" 54  has a frameshift mutation after the first 

163 amino acids and A' 64  after the first 111 indicating that the first 111 amino acids 

contain the information to produce an incompatibility reaction when mtA- 1 and mta- 1 

reside in the same nucleus. Afl142,  which has a frameshift mutation after the first 100 

amino acids, does not elicit an incompatibility reaction when transformed into a mta 

strain which suggests a region between amino acid 100 and ill is required for the 

incompatibility process. Specific amino acids could be mutated to confirm this region is 

required for the vegetative incompatibility but these experiments have yet to be reported. 

Phiiley and Staben (1994) conducted in vivo and in vitro functional studies on mta-1 

and mutant derivatives. The mta-1 polypeptide was expressed in E-coli and tested for 

binding to the A and a idiomorphs by gel mobility shift assays. Surprisingly the 

polypeptide was found to bind to fragments within and surrounding both idiomorphs. 

The mta-1 polypeptide was found to protect a CTTTG element from DNaseI digestion, 

an element found in the binding sites of other HMG box polypeptides. Seven CTTTG 
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sequences cluster between nucleotides 2750 and 3250 of mtA, the region that bound 

mta- 1 in mobility shift assays. This region of mtA corresponds to the transcript mtA-2 

(see below). Perhaps mta-1 regulates the expession of mtA-2. Mta-1 mutations were 

tested for their binding properties in Vitro and it was found that all mutants that retained 

an intact HMG box retained the ability to bind DNA. An a" 30  mutant, where the HMG 

box contains a large insertion knocking out mating ability, was transformed with wild-

type mta- 1 and also with mutant derivatives of mta- I and scored for ability to mate with 

mtA. It was found that those transformants with both an intact HMG box and a portion 

of the carboxyl terminal region were able to mate. It is proposed that, as the carboxyl 

terminal region is acidic and proline rich and that mutant polypeptides lacking acidic tails 

do not confer mating activity, the acidic tails must have a function required for mating. 

Mutations within the HMG box did not interfere with vegetative incompatibility in vivo. 

Deleting amino acids 216-220, downstream of the HMG box, eliminated vegetative 

incompatibility but did not interfere with mating or DNA binding. The vegetative 

incompatibility process therefore functions via a mechanism separate to that of mating 

and DNA binding. 

MtA-1 resides in a 1kb portion of the 5.3kb mtA idiomorph. It was possible the 

idiomorph contained other regions with functional importance, given the size of the 

idiomorph. Mta-1 is the only ORF encoded in the mta idiomorph and contains all the 

necessary information for completion of the sexual cycle. Glass and Lee (1992) used 

repeat induced point (RIP) mutation to identify other regions in mtA which are required 

in the sexual cycle. RIP works in N. crassa by mutating duplicated stretches of DNA in 

the haploid nuclei of the heterokaryotic tissue formed after fertilisation (Selker, 1990). 

The mutations are in the form of G-C to A-T transitions and often sequences altered by 

RIP are methylated. 

Since most transformants in N. crassa are ectopic i.e they do not replace the resident 

DNA sequence but instead form an additional copy, RIP forms an experimentally 

convenient method for mutating any given stretch of DNA and thus analysing the 

consequences of the mutation. Glass and Lee (1992) took a fragment of the mtA 

idiomorph 3.0kb in length containing sequences upstream of mtA-l. This fragment was 

transformed into mtA spheroplasts so the 3.0kb fragment would be duplicated. The 

transformants were then crossed to a mta strain to produce mtA RIP mutants. These mtA 

mutants were capable of mating but very few ascospores were produced as a result of 

crossing the mutant with mta. Ferreira et al (1996) identified two genes, mtA-2 and 

mtA-3, upstream of mtA-l. The 3.0kb DNA stretch affected by RIP in the mutant was 
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sequenced and it was confirmed that the affected area encompassed all of mtA-2 and 

700bp of mtA-3. Fifty-two G-C to A-T transition mutations were identified in mtA-2 but 

only six RIP mutations were found in mtA-3. It is likely that the ascospore deficient 

phenotype of the RIP mutant is due to the mutations in mtA-2. 

The relative positions of mtA-2 and mtA-3 to mt A-i are shown in figure 1.2.2.1b) 

(Ferreira et al, 1996). The 70bp between the two genes contains repeated sequences 

which may indicate that the two genes are coordinately controlled by specific factors. 

The mt A-2 peptide is 373 amino acids long and the mt A-3 peptide is 324 amino acids 

long. Mt A-3 has an HMG domain. It is likely that mt A-2 and mt A-3 are transcription 

factors controlling post-fertilisation events necessary for ascospore production. Northern 

and RT-PCR analyses have revealed however that mt A-2 and mt A-3 are constitutively 

expressed during the vegetative and sexual cycles. Upstream of the mt A-2 and mt A-3 

transcripts there are small upstream ORFs (uORFs) which may affect translation. So 

perhaps there is mechanism which allows mt A-2 and mt A-3 to be selectively translated 

during the sexual cycle. Other regulatory uORFs have been described in N. crcissa, in 

Cpc-1, the homolog of GCN4 (Paluh et a!, 1988) and in arg-2 (Orbach eta!, 1990). 

Alternatively perhaps the products of mtA-2 and mtA-3 interact with other proteins in the 

perithecia to regulate post-fertilization events. 

N. crassa 

mtA-3 
ORF 972 bp 

2.4 kb 

mtA (5.3kb) 

mtA-2 
OAF 1119 bp 

1.6 kb 

mtA-1 

ORF 879 bp 

1.5 kb 

FIGURE 1.2.2.1b) 

The three genes of the mtA idiomorph of N. crassa. The orientation of the three transcripts is indicated by the 

arrows. Flanking DNA is shown as hatched boxes. 
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Nelson and Metzenberg (1992) have identified fourteen genes involved in sexual 

development (sexual development [sdv] genes)), most of which require a functional mt 

A-1 mating product for expression. To isolate these genes strains of N. crassa were 

grown under conditions (nitrogen starvation, 250, bright light) which encourage the 

development of the female reproductive structure. Strains were harvested after 2-4 days 

so that transcripts specific to sexual development would be present. Polyadenylated 

RNA was isolated and labelled cDNAs were synthesised using random primers and M-
MLV reverse transcriptase. The labelled cDNAs were hybridised with an excess of 

mRNA isolated from a vegetatively growing culture so that any single-stranded cDNAs 

would not correspond to transcripts present during vegetative growth. These single-

stranded cDNAs were used to probe a cosmid library containing large inserts of genornic 

Neurospora DNA. Fifty strongly hybridising cosmids were selected for further study. 

These cosmids were used to probe mRNA from a vegetatively growing strain and 

mRNA from a strain grown under crossing conditions. Thirty five of the cosmids were 

shown to encode transcripts whose levels were increased and sometimes only present 

under crossing conditions. These 35 cosmids were found in turn to contain about 30 

sexual development genes. Many of the genes appear to be clustered as some of the 

cosmids contain two or three genes that are expressed only in conditions favouring 

sexual development. Fourteen of the sdv genes were subcloned, and their expression in 

a mutant An244  strain, grown under crossing conditions, was examined. The A44 

strain has a frameshift mutation in mtA- 1 which inactivates the mating type function of 

the protein (Glass et al, 1990a). The sdv genes were not expressed in significant 

amounts in A"" which indicates that expression of these genes is dependent on a 

functional mtA-1 product. It is not known whether mtA-1 acts on the sdv genes directly 

or acts through intermediate genes. The effect of rnta- I on the expression of the sdv 

genes is under investigation (Nelson and Metzenberg, 1992). 
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1.2.2.2 Podospora anserina 

P. anserina is closely related to N. crassa. The sexual cycle of P. anserina is almost 

identical to that of N. crassa. except nuclei of opposite mating type are 

compartmentalised within a single ascospore so that a single ascospore gives rise to a 

self fertile culture following germination. The mating type locus of P. anserina therefore 

does not show vegetative incompatibility function. 

The two mating types genes of P. anserina are called mat+ and mat- (Fincham et at, 

1979) . Mat- was cloned using the mtA mating type probe from N. crassa under non-

stringent conditions and mat+ cloned on the basis that the mat- flanking sequence will 

bind that of mat+ as they share highly homologous flanking DNA (Picard et at, 1991). 

Mat+ and Mat- regions were found to be 3.8kb and 4.7kb respectively. Like A and a of 

N. crassa, mat- and mat+ are unlike in sequence and so can be termed idiomorphs. 

Single ORF's are encoded at mat+ and mat- that can restore mating type function when 

transformed into sterile mutants. The mat- ORF was named FMR I, for fertilisation 

minus regulator and was proposed to encode a polypeptide of around 305 or 349 amino 

acids depending on where the intron splice sites are located. As the N. crassa mtA- I 

gene was used to clone mat-, similarities between the two genes were expected. FMR1 

and mtA-1 share 106 identical amino acids out of 196 amino acids at the N-terminus but 

the polypeptides are completely dissimilar at the C-terminal end. FMR I like mtA- 1 also 

shows similarities to the yeast a-i protein indicating that FMR1 could be a transcription 

factor. The shared region of homology for these three proteins was termed the a-domain 

and was proposed to control genes involved in mating (Debuchy and Coppin, 1992; 

Glass and Kuldau, 1992). 

The mat+ ORF was called FPRI for fertilisation plus regulator. The 365 amino acid 

FPR1 protein shows homology to N. crassa mta-1 over a stretch of DNA encoding an 

HMG domain. This suggests FPR1 is also a transcription factor. 

Transformation experiments using subclones derived from the mating type regions of a 

mat- strain showed that FMR1 determined mating type identity but that additional 

sequences were required for the development of mature fruiting bodies. Debuchy and 

Coppin (1992) suggested that there were at least two other genes, encoded at mat-, 

controlling post fertilization events. FPR1, like mta-1, seems to encode all the 

information necessary for post fertilization events; there seems to be no additional 

information found in the mat+ idiomorph. Debuchy et al (1993) have characterised two 
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more genes encoded at mat- along with FMRI. These genes were called SMR1 

(Sporulation Minus Regulator 1) and SMR2 (Sporulation Minus Regulator 2). 

Experiments showed that FMR1 is also required for post fertilization events. A deletion 

covering the 3' end of FMR1 and the downstream portion of mat- did not cause 

infertility but impaired ascospore formation. The defect in ascospore formation could 

have been the result of the deletion at the 3' end of FMR1 or a deletion in a gene 

downstream of FMR1. The defect was localised to the 3' end of FMR1 by 

cotransforming a sterile mutant, deleted for the mat locus, with a plasmid carrying 

SMR2, SMR1 and FMRI deleted at the 3' end along with a plasmid carrying the 

complete FMR I. The cotransformation resulted in the mutant behaving like a wild type 

strain, the complete FMR 1 was enough to correct the defect in ascospore formation. So 

it is FMR1, not a gene adjacent to its 3' end that is involved in post-fertilization events. 

Mutational analysis demonstrated that SMR I and SMR2 were necessary for post 

fertilisation events. The gene product of SMRI has an acidic domain found in other 

transcription factors. An HMG domain was found to be present in the deduced SMR2 

polypeptide. SMRI showed 23% identity to mtA-2 and SMR2 showed 22% identity to 

mtA-3 at the amino acid level (Ferreira et a!, 1996). The positions of the genes of mat - 

compared with the positions of the genes of mtA in N. crassa are shown in figure 

1.2.2.2 (Ferreira eta!, 1996) 
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FIGURE 1.2.2.2 

The positions of the genes in the N. crassa mtA idiomorph compared with the position of the genes in the 

P.anserina mat- idiomorph. Arrows show the orientation of the transcripts. Hatched and scalloped boxes 

indicate flanking DNA. 



Zickler et al (1995) investigated the post fertilization role of the mat+ and mat- genes. 

Mutant versions of the four mat genes of mat- and mat+ were transformed into a strain 

deleted for its mat locus so that some transformants carried the mat+ mutated gene and 

the other transformants carried all three mat- genes, but with only one of the three genes 

mutated. The mat- FMR1-1, SMR1-1, SMRI-2 and SMR2-1 mutations were frameshift 

mutations. The FPRI-1 mutation corresponds to a deletion at the 3' end of the gene. 

FPR 1-1 and FMR 1-1 still retained their fertility functions. Each mat mutant transformant 

was crossed to a strain carrying the wild-type compatible mating type and the crosses 

observed for their effect on post fertilisation events. In mutant X wild type crosses, 

some croziers contained only one haploid nucleus. Croziers are always binucleate in wild 

type crosses (see Figure 1.2.1). Where a mutant X wild type cross did result in a 

binucleate crozier, the crozier sometimes contained two nuclei from the mutant parent. 

Uninucleate croziers result in a haploid meiosis and abnormal spore formation. So 

during post fertilisation events an important step is the cellularisation of two nuclei, one 

from each parent, in the crozier. Mutations in the mating type genes can result in selfish 

behaviour of the mutant nucleus so it ignores its wild type partner. The mat genes ensure 

the resulting spores are dikaryotic and biparental. When the mat- mutant strains were 

crossed to a wild type strain, SMRI mutants showed the strongest effects on events. 

Uniparental progeny were always produced. SMR2 and FMR1 mutants still produced 

biparental progeny although at a lower frequency than that found in wild type crosses. 

The cytoskeleton has been proposed to play a part in the control of nuclear isolation 

(Thompson-Coffe and Zickler, 1994). Zickler et al (1995) suggested that the wild type 

nucleus does not migrate to the crozier cortex as it cannot establish a microtubule bridge 

with the mutant nucleus. The mutant nucleus however can migrate alone to the cortex 

without the aid of the bridge. 

Regardless of the precise mechanics of the action, it is evident that the mtA- 1 mtA-2 and 

mtA-3 genes in N. crassa and FMR1, SMR1 and SMR2 in P. anserina play an 

important role in both fertilization and post-fertilization events. These roles are essential 

in ensuring the organised segregation of nuclei into spores. 
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1.2.3 Homothallism in Neurospora Species 

1.2.3.1 The Absence of Strains Containing only Mta 

There are homothallic, self-fertile Neurospora species where no clear mating type 

seemed to exist. Homothallic species lack trichogynes and conidia and individuals 

develop perithecia and go through the sexual cycle without the need for interaction with 

other individuals. An ascus containing eight self-fertile spores is the end product of a 

homothallic sexual cycle (Raju, 1977). Following the cloning of mtA and mta of N. 
crassa, Glass et a! (1990b) were able to probe the genomic DNA from five homothallic 

species with mtA and mta probes to establish whether these species contained genes with 

homology to the heterothallic mating type genes. Four out of the five species hybridised 

to mtA only. The remaining species, N. terricola, hybridised with both probes 

establishing that this species contained both mta and mtA in the same nucleus. Glass et al 
(1990b) isolated seventy new strains of Gelasinospora and five new homothallic strains 
of Neurospora from soil samples taken from sites round the world. Thirty five of the 

Gelasinospora strains and all of the Neurospora strains were probed with mtA and mta. 
The Neurospora strains hybridised with mtA only and the homothallic Gelasinospora 

strains hybridised with both mtA and mta. No strain was found that hybridised to mta 

only. Genomic DNA from two homothallic Sordaria species (S. fimicola and S. 
inacrospora), one homothallic Anixiella species (A. sublineata) and three Gelasinospora 
homothallic species (G. calospora, G. reticulospora and Gelasinospora S23) were 

probed with mtA and mta probes and all six species hybridised with both probes. 

1.2.3.2 Conservation of A and a Idiomorphs in Homothallic Species 

Beatty et a! (1994) wished to establish to what degree the A and a idiomorphs are 

conserved in homothallic Neurospora, Anixiella and Gelasinospora species. N. crassa 

probes spanning the entire length of the A and a idiomorphs were used to probe 

homothallic species. A diagram showing the position of the probes in relation to the 

idiomorphs is shown in figure 1.2.3.2. The mtA probes, A2-A6, hybridised to the 

Gelasinospora species and A. sublineata but only A3-A6 hybridised to N. terricola. 

The A2 probe is taken from the 800bp that lie adjacent to the left flank of the mtA 

idiomorph. A2 includes the mtA-3 ORE, implying that N.terricola does not require this 

gene for functional homothallism. A probe from the right portion of the a idiomorph (a4) 

failed to hybridise with any of the homothallic species. This means the homothallic 



species are missing 700bp of the N. crassa a idiomorph. Probes a 1-3 and a5 hybridised 

with all the homothallic species tested. 
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FIGURE 1.2.3.2 

The mtA and mta idiomorphs and the clones used as probes with homothallic species. A2-A6 designate probes 

in the mtA region, al-a5 designate probes in the mta region. The mtA-1 and mta-1 open reading frames are 

shown. RFI, RF2 and LFI are cloned portions of the centromere proximal and distal regions respectively that 

flank the mating type locus. The size of each probe in base pairs is shown. 
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Probes from the right and left flanking DNA of mta and mtA were also used to probe 

the homothallic species. All the homothallic species hybridised with the probe from the 

left flank. Hybridisation could not be detected in any of the homothallic species using a 

2kb probe from the right flank. The significance of this will be discussed later in section 

1.2.4. 

The A and a probes hybridise to a unique band in OFAGE gels of N. terricola 

chromosomes and this suggests that the A and a idiomorphs are present on the same 

chromosome, leading to the possibility that they are linked. N. terricola may then have 
evolved via an unequal crossover event leading to both idiomorphs being adjacent to one 

another. 

It is interesting that mtA- I and mta- 1 remain highly conserved in homothallic species 

when they are required to bring about fertilisation between individuals of opposite 

mating type. Homothallic species have no need for this function so perhaps the 

conservation of mtA-1 and mta-1 reflects their role in post-fertilisation events (Griffiths 

and Delange, 1978; Griffiths, 1982). One should consider however that fusion of 

genetically identical nuclei must occur in homothallic species to produce the diploid state. 

It is possible that mtA-1 and mta-1 remain highly conserved as they are required to bring 

about this fusion. 

1.2.3.3 The Structure and Function of mtA-1 of the Homothallic Species 

N. africana 

N. africana is a homothallic species which contains mating type sequences which only 

hybridise to mtA. Glass and Smith (1994) have cloned, sequenced and analyzed the 

function of the N. africana mtA-1 gene. The probes used by Beatty eta! (1994), A2-

A6, hybridised to N. africana genomic DNA establishing that the composition of mtA in 

N. africana is similar to that found in N. crassa. The 2kb probe taken from the right 

flank of N. crassa did not hybridise with N. africana DNA. The amino acid sequences 

of the N. africana mtA- I ORF and N. crassa mtA- I showed 88% amino acid identity. 
The N. africana mtA-1 also encoded a region similar to the S. cerevisiae MAT al 

proposed DNA binding domain. A single intron 55bp in length is present in N. africana 

mtA- 1. The position of the intron is conserved in relation to the position of the intron in 

N. crassa. Glass and Smith (1994) wished to establish if the N. africana mtA-1 gene 

could restore fertility to a sterile N. crassa and whether the homothallic mtA- 1 would 

confer homothallism on the recipient mutant N. crassa. The mating function of N. 
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africana mtA- 1 was assessed by transforming the gene into sterile A M 64  and a'' which 

had lost their vegetative incompatibility function also. The transformants behaved as mtA 

strains when crossed to mta strains. Successful mating was seen with the formation of 

perithecia, however ascospore formation was a rare event as this required the 

transformed mtA-1 gene to directly replace the mutant gene at the mating type locus. As a 

control the am ]  and A64  mutants were also transformed with vector alone and the 

transformants used in crosses with A and a. No perithecia were observed as a result of 

these crosses. The mtA-1 transformants were plated individually onto mating medium 

and observed for signs of self-fertilisation. No perithecia were formed hence the N. 

africana mtA- 1 gene did not confer homothallic behaviour on the transformants. The 

mtA- 1 gene did however confer vegetative incompatibility. This is significant bearing in 

mind that N. africana as a species never comes into contact with the mta idiomorph. As 

N. africana evolved, the species retained its mtA mating function and also its vegetative 

incompatibility function as part of the overall package. 

1.2.3.4 Molecular Basis for Homothallism 

The observation that N. africana mtA- 1 does not confer homothallic behaviour on N. 

crassa sterile mutants allows one to conclude that it is not some change to the mtA-1 

gene itself which allows N. africana to go through the sexual cycle without the need for 

mta-l. One possibility is that an unidentified second mating type gene exists in N. 

ajricana which could act in a similar manner to mta but be completely non-homologous 

to mta (Metzenberg and Glass, 1990). Another possibility could be that the upstream 

regions of target genes have been altered in N. africana allowing these genes to respond 

to mtA-1 without the need for mta-l. In N. terricola, where mtA and mta are present in 

the same nucleus, perhaps only mtA-1 is expressed in some nuclei and mta-1 in others. 

This would mean only functionally dissimilar nuclei can fuse making the species 

functionally heterothallic. 

1.2.3.5 Was the Ancestor of Neurospora Species Heterothallic or 
Homothallic? 

Metzenberg and Glass (1990) have proposed that heterothallic Neurospora species are 

the most ancient. Pseudohomothallic species exist like N. tetrasperma where the asci 

have four spores instead of eight and each of the four spores contain two nuclei of 

opposite mating type. Each ascospore gives rise to a self-fertile heterokaryotic culture but 



conidia from the self-fertile culture can often produce self-sterile, cross fertile cultures. 

The first step in the process to hornothallism could have resulted in the formation of 

species like N. terricola, where a second mating type idiomorph was acquired, perhaps 

by aberrant meiosis in a pseudohomothallic strain. The need for the rnta idiomorph could 

have been lost resulting in a species containing mtA only like N. africana. Reversing 

this evolutionary scenario would require the appearance of mta in N. terricola and also 
in a number of related genera, which seems unlikely. One could imagine the situation 

where enviromental conditions have made it difficult for two individuals of opposite 

mating type to be brought together. From this homothallism may have been selected for, 

where species enjoy the benefits of producing resistant spores without the drawbacks of 

biparental sex. Heterothallic species however have the benefit of genetic variation being 

introduced as a result of two individuals contributing to the progeny. 

1.2.4 Variation in the Flanking DNA of Neurospora Species 

Randall and Metzenberg (1995) have returned to the issue of the 2kb N. crassa probe, 

taken from the right flank, which does not hybridise with the genomic DNA of 

homothallic strains originally investigated by Beatty et al (1994). Eight probes, the first 

probe being taken from the centromere-distal or left flank with the rest from the 

centromere-proximal or right flank, were taken from N. crassa flanking DNA. The 

sequential order of these probes in relation to their position in the flanking DNA is 

shown in figure 1.2.4a) (taken from Randall and Metzenberg, 1995). Each probe used is 

defined by its individual fill-pattern. These probes were used to probe the DNA of other 

heterothallic Neurospora species. The species tested are shown in figure 1.2.4a) and 

where a species lit up with a N. crassa probe is seen as a fill-pattern characteristic to the 

probe. Probe 1 as before was found to hybridise with all the species tested whereas 

probe 4 showed species-specific and mating type-specific hybridisation. Column I 

contains "floating boxes" representing N. crassa and N. intermedia mta probes (shown 

as probe Q. Here no assumption is made about the order of the probes. Some of the N. 

crassa and N. inrermedia probes did not light up with other species, indicating that a 

particular species could lack a region of N. crassa and N. intermedia DNA from its 

genome entirely. This is shown as the absence of a particular box in column I. Probes 

from the centromere-proximal flanking DNA of N. tetrasperma mtA, N. intermedia 

mtA and N. discreta mtA were also used in the hybridisation analysis. Column II shows 

the hybridisation patterns of probes A and B, taken from N. discreta mtA and N. 

intermedia mtA repectively. Column III shows a DNA fragment taken from N. 
tetrasperma mtA which does not hybridise to DNA of any of the other species. 
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FIGURE 1.2.4a) 

Hybridisation differences in the centromere proximal regions of heterothallic iVeurospora species. The 

narrow boxed regions, solid black for mtA and dotted for mta represent the idiomorphs. Thin continous 

lines represent hybridisation with the corresponding N. crassa mtA probe. Probes 2-5 are represented by 

distinct fill-patterns; hybridisation to these N. crassa mtA probes is indicated by the presence of the 

appropriate fill pattern attached to the idiomorph or by a floating box in column 1. Floating boxes are 

represented as such because no presumption is made as to their actual position in the variable region. 

Column II represents hybridisation with probes from other species (see text for for origin of probes). 

Column Ill is a region that is unique to N. tetrasperma mtA. 
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These results show that a 3-5kb region of DNA exists in the centromere-proximal flanks 

of the Neurospora species investigated contains species-specific and/or mating-type 

specific sequences. These sequences were classed as "variable regions" and were found 

to be separated from the conserved idiomorph by a "common region', 57-59 bp long 

which is conserved in all the species examined, both in mtA and mta. The variable 

region is bordered at its other side by DNA conserved in all the species examined. This 

is shown as a black line in figure 1.2.4a). A diagram representing the positions of the 

common and variable regions with respect to the mtA and mta idiomorphs is shown in 

figure 1.2.4b). 

A idiomorph 5.3kb 

0 
Ns, 

40 
Common 	Variable Region 
Region 	3-5kb 

Nsi I 

a idiomorph 3.2kb 

FIGURE 1.2.4b) Schematic diagram of the common and variable regions and their relationship to the mta 

and mtA idiomorphs. The mtA-1 and mta-1 ORFs are shown as striped boxes. The common regions are shown 

as checked boxes. The common regions of mtA and mta have a 57-59bp region conserved between both 

mating types. In mtA the variable region follows directly on from this 57-59bp region but in mta the common 

region extends for another 80bp making the mta common region approximately 140bp long. The variable 

regions are shown as black boxes. 
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The eight probes from N. crassa centromere-proximal flank were also used to probe the 

homothallic species N. africana, N. lineolata, N. dodgei and N. galapagosensis. These 
species all contain mtA only. No hybridisation with any of the N. crassa probes was 

found. A 9kb EcoRl fragment containing the centromere-proximal flank which did not 

hybridise to N. crassa was cloned from N. africana and a portion of it used to probe the 

other heterothallic and homothallic species. All the homothallic species hybridised with 

this fragment, none of the heterothallic species showed hybridisation, making it a 

homothallic-specific variable region. 

The first 1kb of the variable region of each of the heterothallic species was sequenced. 

The rntA variable region and the mta variable region was found to be very similar when 

compared in N. crassa . The same result was found in N. sitophila. The other species, 
N. discreta, N. intermedia and N. tetrasperma , were very dissimilar in their variable 

regions when mtA and mta within each species were compared. On comparing the 

variable region sequences between species, N. crassa and N. sitophila mtA and mta are 
very similar to one another. N. intennedia and N. tetrasperma. mtA variable regions are 

similar to each other as are their mta variable regions when compared. However" Islands 

of homology" exist between species over short stretches of their variable regions. For 

example an island of homology about 300-400bp long exists in the variable regions of 

N. africana, N. intermedia mtA and N. discreta mtA. The variable region data 

suggested that in evolutionary terms N. crassa and N.sitophila are closely related and 

form a subgroup. Likewise N. tetrasperma and N. interinedia appear to be related and 

form a subgroup. Randall and Metzenberg (1995) discovered that the mtA-1 sequences 

of these Neurospora species gave a similar evolutionary pattern when compared. 

Figurel.2.4c) shows the tree they obtained using PAUP 3.0, a maximum parsimony 

method. N. africana and N. discreta are distant from the more closely related group of 

N. crassa, N.sitophila, N. intermedia and N. tetrasperma. The tree does confirm the 

conclusion from the variable sequence data, that N. sitophila and N. crassa are more 

closely related than was previously thought. The same conclusion was also drawn about 

the relationship between N. tetrasperina and N. intermedia. 
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FIGURE 1.2.4c) 

Phylogenetic tree compiled using the mtA- 1 ORFs of all A mating types. The mtA- 1 genes were aligned 

using PILEUP on the Wisconsin GCG programme. The tree shown was obtained using PAUP version 3 

using the ORF and intron for each mtA- 1 gene. All characters were unordered and weighted equally. The 

numbers shown in brackets at the branch points are the confidence levels for bootstrapping of 500 

replicates. The branch lengths shown reflect the number of sequence differences. 
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In the region of the AccI-AccI-EcoRI interval shown in figure 1.2.4a) it has been found 

that A and a produce a transcript, differing in size between the two mating types (Randall 

and Metzenberg, unpublished results). The transcripts increase in concentration under 

conditions favouring mating. The A variable region transcript was not produced in a 

strain carrying a frameshift mutation in mtA-1 indicating the transcript is indirectly or 

directly controlled by mtA-l. 

What mechanism accounts for a shift from a highly conserved area (the mtAlmta 

idiomorph with common region) to a dissimilar variable region? As a Genbank search 

using the variable sequences did not show the sequences having any homolgy to known 

transposable or viral elements, then horizontal transfer of transposable or viral elements 

to account for the variable region seems unlikely. If all the variable regions of different 

species evolved from a common ancestor then the mutations must have been fixed at a 

very high rate and also been aimed specifically at the variable regions leaving bordering 

DNA conserved. So the mechanism by which the variable regions arose must be subject 

to speculation. A possible function of the variable region could be one involved in 

speciation, species-specific genes may be found within the variable regions. Randall and 

Metzenberg (1995) found that there were homothallic specific variable regions which 

might give an insight into the mechanisms by which homothallic species speciate. 
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1.3 	The Basidiomycetes 

Members of the Basidiomycete group produce four basidiospores as products of 

meiosis, which takes place inside special cells called basidia. Classification of the 

Basidiomycetes is based mainly on the form of the basidium, one-celled in the 

Homobasidiomycetes and transversely or longitudinally septate in the 

Heterobasidiomycetes. The Homobasidiomycetes are divided further into two groups, 

the Hymenomycetes (which includes Coprinus cinereus and Schizophylluin commune) 

and the Gasteromycetes. Similarly the Heterobasidiomycetes are divided into two 

groups, the Uredinales (rusts) and the Ustilaginales (smuts, which includes Ustilago 

maydis) (Fincham eta!, 1979). 

1.3.1 Life Cycles of the Hymenomycetes and the Ustilaginales 

1.3.1.1 Coprinus cinereus 

Mating in C'oprinus cinereus is controlled by two unlinked multiallelic loci called A and 

B (Raper, 1966). For two strains to mate they must differ at both A and B. Figure 

1.3. 1 . 1 describes the life-cycle of C. cinereus. When a compatible mating takes place the 

hyphae from each monokaryon fuse, nuclei are exchanged and migrate to the tip cells so 

apical tip cells contain the resident and migrating nuclei (Buller, 1931). A clamp cell 

forms on the side of the apical cell and the two nuclei divide. One of the resulting four 

nuclei becomes trapped in the clamp cell and is released after the clamp cell fuses with 

the sub-apical cell. Two nuclei from each parent remain in the terminal cell and the 

nucleus trapped by the clamp cell joins the fourth nucleus in the sub-apical cell. Each cell 

in the dikaryotic mycelium will contain two nuclei of opposite mating type (Mutasa et 

at, 1990). A dikaryon must have different A alleles for formation of the clamp cell 

(Tymon et al., 1992). Different B alleles allow nuclear migration and clamp cell fusion 

(Swiezynski and Day, 1960). The two nuclei of the daughter cells fuse and undergo 

meiosis in a basidium on the undersurface of the mushroom which forms under specific 

light and temperature conditions (Casselton, 1978). 
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FIGURE 1.3.1.1 

Life cycle of Coprinus cinereus (Casselton et al. 1995) 
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1.3.1.2 Ustilago maydis 

Ustilago maydis is a heterothallic corn smut fungus and a parasite in its dikaryotic 

phase. The life cycle of U. maydis is described in figure 1.3. 1.2. The life cycle of the 

organism is under the control of the unlinked a and b mating type loci, the two 

organisms must differ at both a and b for a pathogenic filamentous dikaryon to be 

produced. The a mating type locus has only two alleles as opposed to the b locus which 

has at least 33 different alleles (Holliday, 1961). The a locus controls mating through a 

pheromone recognition system rather like that previously described for S.cerevisiae 

(Bolker et al., 1992). Like mta and mtA of N. crassci the a 1 and a2 alleles are 

completely dissimilar and are flanked by homologous DNA regions but unlike N. crassa 

the a locus directly encodes the elements of the pheromone system. al contains rnfal, 

which encodes the a 1 mating factor, and pral, which encodes the receptor for the a2 

mating factor. The a2 mating factor is encoded by rnfa2 and pra2 encodes the receptor 

for the a 1 mating factor. For pathogenic development, the dikaryon must carry two 

different b alleles (Rowell and Devay, 1954, Puhalla, 1970). In the host plant a 

dikaiyotic mycelium develops which produces galls. Karyogamy takes place in the galls 

to give diploid teliospores (Holliday, 1961). Germination occurs to form a promycelium 

in which meiosis takes place and haploid basidiospores are budded off. 
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FIGURE 1.3.1.2 

The life cycle of Usrilago maydis (Banuett, 1992). 
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1.3.2 Molecular Organisation of the A Mating Type Locus of Coprinus 
cinereus and the b Mating Type Locus of Ustilago maydis. 

1.3.2.1 Coprinus cinereus 

Day (1960) demonstrated by recombinational analysis that the C. cinereus A locus is 
composed of linked multiallelic genes called a and 13  separated by 0.07 map units. About 

160 different A-mating types exist (Raper, 1966). For A-regulated development to take 

place after mating, strains must differ at either a or 13  at A. The complexity of the A 

factor has been investigated following the cloning of the A42 mating type factor of 

Coprinus cinereus. The A genes of A42 were cloned by first isolating the pab-I gene 

that is linked to the A mating factor and then initiating a chromosome walk from pab-] 
over the 50kb of DNA between pab-1 and A42 Strains carrying the A5 ((tl13l) or the 

A6 (a2132) factors, which contain different A alleles to A42, were transformed with two 

non-overlapping cosmid clones isolated from the chromosome walk. Both 

transformations produced unfused clamp cells which indicated that the two non-

overlapping clones each contained A genes that were expressed following transformation 

along with the host A genes to induce A-regulated clamp cell formation. The two clones 

were proposed to contain the a and 13 genes (for A42 a3133). a and 13  were estimated to 

be about 1-2kb apart, in contrast to the 7kb estimated by recombinational analysis. 

Digested genomic DNA from AS and A6 was probed using A42 probes and no cross 

hybridisation was found between alleles of these A factors. The A42 factor is embedded 

in 9kb of unique sequence. This 9kb sequence was found to encode three mRNAs, one 

of which derived from the region adjacent to the 13 gene. A possible third gene in the A 

factor complex was proposed (Mutasa et a!, 1990). 

The A43 mating type factor was cloned from a 35kb cosmid clone by May et a! (199 1). 

Three non-overlapping fragments were found to produce clamp cell formation following 

transformation into a recipient strain carrying the A3 mating type factor. It was 

concluded that the A43 factor was composed of three subunits which were called A(a), 

A(b) and A(c). All three fragments were used to probe other strains and it was found that 

some strains failed to show hybridisation to a probe but in contrast strains from different 

parts of the world would hybridise with the same probe. 

A sequence of 40kb from A42, extending into the region flanking the previously 

discovered two genes, was examined for the presence of new transcripts. Probes 

covering the 40kb region were used to identify A42 factor-specific mRNAs in Northern 
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blots of poly (A) RNA isolated from an A42 monokaryon (Kues et al, 1992). Seven 

transcripts were discovered in two clusters of genes, two transcripts in one cluster and 

the other cluster containing five transcripts. The two gene clusters were separated by 7kb 

of DNA which produced no transcripts so it was concluded that the two clusters 

corresponded to the a and 13 loci identified by classic genetic analysis. The two gene 

cluster closest to the pab-1 locus is the a locus and the five-gene cluster the 13 locus. 

The a genes were designated al - i and a2-1. The five 13 genes were called 131-i, 132-1, 

133-1, 134-1 and [35-1 and it was 131-1, 132-1 and 133-1 that had been identified in the 

previous study as a and P. None of the genes were found to cross hybridise. 

Only four of the A42 genes, a2-1, 131-1, 132-1 and 134-1 were found to induce A-

regulated development in transformation experiments using A43, A6, A3 and A5 as 

hosts. (x-2-1 did not produce clamp cell formation in an A6 host and further investigation 

showed that a2-1 hybridised strongly with A6 DNA indicating that both strains shared 

the a2-1 allele. Likewise 134-1 did not produce clamp cell formation in the A6 and A43 

hosts. Hybridisation analysis showed that A42, A43 and A6 strains share the 134-1 

allele. 133-I appears to have no function in transformation assays. These experiments 

demonstrate that different strains can have shared a and 13 alleles but still retain a 

different overall specificity (Kues et al, 1992). The genes of A42 known as al -I and 

135-1 were found from hybridisation analysis to be shared amongst all A factors tested 

(A3, A5, A6 and A43). al-I was renamed a-fg for a-flanking gene and encodes a 

metal loendopeptidase, 135-1 was called 13-fg for 13-flanking gene and was found to 

encode a protein of unknown function (U. Kues, unpublished data. Quoted in Casselton 

et al, 1995.) 

Kues et al (1994b) identified three a genes and four 13 genes in the A43 complex, 

separated by 7kb of non-coding sequence. Restriction fragments covering the entire A43 

factor were used in Northern blots to identify coding regions. The a complex was found 

to contain a-fg, al-2 and a2-2. In the [3 locus 13 1-2, 132-2, 134-2 and 13-fg were 

identified. The A43 genes were transformed separately into three hosts, A42, A3 and 

A5, so it could be observed which of these genes elicit clamp cell formation in hosts with 

different specificities. Only al-2, 131-2 and 132-2 induced clamp cell formation in all 

three hosts. Consistent with this result is the lack of hybridisation of these genes to 

genomic DNAs of the three host strains. The 134-1/4-2 allele is shared between A42 and 

A43 so failed to induce clamp cell development in an A42 host, but was active in A3 and 

A5. a2-2 is not shared by the host strains tested yet failed to produce clamp cell 
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development in all three host strains. The a, b and c fragments identified by May et al 
(199 1) contained ul-2, 131-2 and 134-2 respectively. 

Kues et a! (1992) have shown that a2, $31, $32 and $34 encode proteins containing 

homeodomains, putitive DNA binding domains (Scott et al, 1989) . $33-I encodes a 

homeodomain which is non-functional in transformation assays. On comparison with S. 

cerevisiae a2 and a! proteins, which also contain homeodomains, 131-1, $33-1 and $344 

are more similar to a2 and cx2-1 and $32-1 are more similar to a! of S. cerevisiae. This 

data suggests that the four genes encode transcription factors. $31-i, P3-1 and P4-1 have 

been called the HD  genes and a2-1 and $324 the HD2 genes. The HD  and HD2 genes 

were found to have transcript sizes of approximately 2.5kb and 2.1kb respectively. In 

A43 (Kues eta!, 1994b) al-2, 131-2 and 134-2 have HD  homeodomains and a2-2 and 

P2-2 have HD2 homeodomains, although 2-2 is non-functional in transformation 

assays. Most homeodomains are made up of three helical structures, the third helical 

structure being the recognition helix which makes contact with the DNA target site. The 

other two helices have a stabilizing effect (Kissinger eta!, 1990). Tymon eta! (1992) 

analysed sequence data from $31-i and showed that unlike most homeodomain motifs, 

where the most conserved amino acids are WF.N.R found at the recognition helix, in the 

homeodomain of 131-1 the N is replaced by D which is a conservative change. The N 

missing from the homeodomain is thought to hydrogen bond to an adenine in every 

homeodomain-DNA complex (Wolberger eta!, 199 1) so perhaps the homeodomain of 

$3 1-1 does not bind DNA strongly. Comparisons to other homeodomain proteins 

indicates that $31-i does not seem to have helix II. N-terminal to the 131-1 homeodomain 

two large helical regions were found which were designated COPsA and COPsB. These 

helical regions showed 30-35% homology to a POU domain, a DNA binding and 

dimerization domain of a family of transcription factors (Aurora and Herr, 1992). The 

POU domain is known to be involved in protein-protein interactions (Ingraham et a!, 

1990) so the COPs domain is a possible dimerization interface. $344 also seems to have 

an unusual homeodomain with a helical region related to the $31-1 COPs domain. 

Comparison of the A42 and A43 complexes led Kues and Casseiton (1993) to propose 

the archetypal A gene complex. Two classes of genes, the HD 1 and HD2 genes, are 

found at an A gene complex which can be distinguished by transcript size. In the 

archetypal gene complex there are four pairs of divergently transcribed genes, each pair 

containing a HD 1 gene and an HD2 gene. These four pairs of genes have been called the 

a, b, c and d gene pairs (Kues and Casselton, 1992). The A42 a2-1, $31-i, $32-I, $33-I 

and $34-1 were renamed a2- 1, b 1-1, b2- 1, c  - 1 and d 1-1 respectively according to this 
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nomenclature. Likewise the A43 ctl-2, a2-2, 3l-2, p2-2 and p4-2 were renamed al-2, 

a2-2, b 1-2, b2-2 and dl - !. A42 does not contain all the eight genes of an archetypal A 

complex, the HD2 gene is deleted at the c and d pairs and the HD! gene at the a pair. 

A43 does not contain all eight genes either, there is no c gene pair and an HD2 gene has 

been deleted at the d gene pair. Figure 1.3.2.1 shows a comparison of the A42 and A43 

mating-type factors with the archetypal A complex. 
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FIGURE 1.3.2.1 

Schematic diagram of the A42, A43 and hypothetical A archetypal loci. From the diagram one can see that A42 

and A43 do not contain four HDI and four HD2 genes like the archetypal A locus. Arrows indicate the drection 

of transcription. (From Kues and Casselton. 1993). 
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1.3.2.2 Ustilago maydis 

The b  and b2 alleles of U. maydis were first cloned by Kronstad and Leong (1989). 

Diploid strains homozygous for b are nonpathogenic and form yeast-like colonies on 

agar whereas strains heterozygous for b are pathogenic and form mycelial colonies (Day 

et a!, 1971). Kronstad and Leong (1989) transformed a cosmid library derived from a b  

strain into a diploid strain homozygous for b2. Transformants carrying the bi allele 

should be pathogenic. Transforming activity was found on an 8.5kb Barn HI fragment 

which was used to probe a b2 cosmid library. Another 8.5kb Barn HI fragment was 

found to contain the b2 allele. The b3 and b4 alleles were cloned using the b2 fragment 

to probe genomic libraries (Schulz eta!, 1990). On sequencing these alleles it was found 

that all four have a single ORF encoding a putitive polypeptide of 410 amino acids.The 

first 110 amino acids of the ORF vary between alleles (63% identity) and this was called 

the variable region. The rest of the polypeptide is highly conserved (90% identity 

between alleles) and was called the constant region (Shulz et al, 1990, Kronstad and 

Leong, 1990). A homeodomain motif was found in the constant region suggesting that 

the b proteins have a regulatory role. The homeodomain motif contains the conserved 

WF.N.R amino acids. The b2 protein sequence also showed that, like 131-1 of C. 

cinereus, b2 has a bipartite DNA binding domain with some homology to POUs at the 

variable region. 

Gillissen eta! (1992) deleted most of b2 leaving only the N-terminal 10 amino acids 

and introduced the deletion construct into b  and b2 strains to determine the functional 

role of this regulatory protein. Transformants were selected where the resident allele had 

been replaced by the construct and these transformants crossed with b I and b2 strains 

carrying the opposite a allele. Both transformants were unexpectedly able to mate as b2 

strains. Gillissen et al explained this by postulating the presence of a second gene 

upstream of the b alleles. The known b alleles were renamed bE genes and the new allele 

called the bW gene. There are as many bW alleles as there are bE alleles. The bW gene 

has an ORF encoding a protein of 626 amino acids. The bW alleles also have a variable 

region comprising of the first 130 amino acids (46% identity) with the remaining amino 

acids making up the contant region (96% identity) encoding a homeodomain. The bE and 

bW polypeptides are completely dissimilar except for WF.N.R and a few other residues 

at the homeodomain motif. The organisation of the b locus is shown in figure 1.3.2.2 

(Banuett, 1992). 
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FIGURE 1.3.2.2 

Organistaion of the b locus of U. maydis. The b locus is comprised of two genes, bW and bE. At the 

homeodornain in the constant region similarities at the amino acid level are found when the two genes are 

compared. The rest of the genes are very dissimilar in sequence, but at a structural level bE and bW are similarly 

organised with constant and variable regions. 
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1.3.3 Different Alleles of LID! and HD2 Proteins from the Same Gene 

Pair at the A locus of C. cinereus Form Heterodimers. 

The cloning and molecular characterisation of the A locus allows the role of the mating 

type genes to be interpreted in molecular terms. When the a al-2 (HD 1) gene of A43 is 

introduced into an A42 host, A-regulated development is induced. This does not happen 

when the a a2-2 (HD2) gene of A43 is transformed into A42, although this gene is 

likely to be non-functional (Kues et al, 1994b). Classical genetic analysis has shown that 

the Au and A13  genes act independently in inducing A-regulated development (Day, 

1960) so it is possible that the single a host gene, the HD2 gene a2-1, is interacting with 

the A43 a HD 1 gene, like the dimerization of a 1 and a2 of S. cerevisiae. Likewise 

introduction of the A5 a HD I gene a 1-3 into an A42 host generates a compatible HD 1-

HD2 protein interaction but introducing the AS a HD2 gene a2-3 into A42 does not 

promote clamp cell development (unpubl. data quoted in Casselton and Kues, 1994 and 

Casselton et al, 1995). It is probable that the compatible mating here comes from the 

formation of a heterodimer composed of an a HD  and an a HD2 protein but for 

interaction to occur the HD  and the HD2 proteins have to be from different alleles of the 

same gene pair. Otherwise mating would not have to take place, the HD1 and the HD2 

genes are constitutively expressed (Richardson et al, 1993) so heterodimers could form 

in the monokaryon if self-recognition did not occur. Figure 1.3.3 (Casselton and Kues, 

1994) shows the compatible HD  and HD2 heterodimers that would be formed after a 

mating between hypothetical Ax and Ay factors. In reality, as no A factor has yet been 

found to contain all 8 genes, the number of compatible heterodimers will depend on 

which genes are present and how many have different alleles. 
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Coprinus cinereus 

al-1 a2-1 	bi-i b2-1 	cl-i c2-1 	dl-i 	d2-1 

::x::x ::: 
al-2 a2-2 
	

b1 -2 b2-2 	ci-2 c2-2 
	

dl-2 d2-2 

ACTIVE DIM ERS 

al-1 /a2-2 
	

bi -1 /b2-2 
	

ci -i/c2-2 
	

d1-1/d2-2 

al -2/a2-1 
	

bl -2/b2-1 
	

ci -21c2-1 
	

dl -2/d2-1 

FIGURE 1.3.3 

Heterodimer formation of mating type proteins after a compatible mating in C. cinereus. Only one successful 

heterodimerization is required to trigger A-regulated development. 
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Mutations within the A factor have led to to the generation of self compatible alleles, 

resulting in homokaryons showing A-regulated development. A mutation in A6 (A6m11t) 

has given insight into how the need for different alleles of the same gene pair to induce 

A-regulated development can be overcome. Kues et al (1994a) cloned the self-

compatible A6mut locus by constructing a cosmid library from A6mut genomic DNA 

and probing the library with common flanking sequences from another cloned A locus. 

Only the self-compatible A6 would be able to promote A-regulated development when 

transformed into a wild type A6 host. The A6mut locus was found to hybridise to both 

the a2-1 and dl -! genes in the wild-type A6. These two genes normally are 12kb apart 

and encode HD2 and HD  proteins respectively. The A6rnur locus has a deletion when 

compared to the wild-type A6 which has brought the a2-1 and dl -! genes together to 

encode a fusion protein. The fusion point occurs within a region where a 4bp homology 

exists between a2-1 and dl-1. The fusion protein only has one homeodomain derived 

from the HD2 protein. The N-terminal region of the dl-! protein has been deleted, it is 

this region that is thought to be the dimerization interface for the HD 1 and HD2 proteins 

(Tymon et al, 1992). Yee and Kronstad (1993) have shown that the N-terminal regions 

of an HD1 protein of Ustilago niaydis (see section 1.3.5 ) also determine allele 

specificity. Tymon et al (1992) suggested that even though there is structural homology 

at the COPs domains when comparing bl-1 and dl-! for example, the amino acid 

sequence is variable and therefore might be a way of determining allele specificity. 

Normally the dl-! and a2-1 proteins would be identified as self-proteins and 

dimerization would not occur. The N-terminal region of dl -1 in this case is not required 

for dimerization or protein-protein recognition. The I-1D2 protein seems to be sufficient 

for correct binding activity although based on the S.cerevisiae al-a2 model normally 

the DNA would be bound via both homeodomains. It was interesting to note that a self-

incompatible phenotype was restored when the fusion gene was truncated at the 3' end, 

the C-terminal region of dl-1. This region is a potential activation domain (Tymon et a!, 

1992) and is essential for the fusion protein and hence the heterodimer to function as a 

transcription factor. 
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1.3.4 A bE and a bW Protein From Different Alleles can Cause 

Pathogenic Development in Heterokaryons of U. inaydis. 

It was known that different b alleles were required for pathogenic development. Did this 

mean that two different bW alleles caused pathogenic development ? Or two different bE 

alleles ? Or a combination of bE and bW from different alleles ? Gillissen et a! (1992) 

took haploid strains with bl and b2 alleles, bWl bEl or bW2 bE2, or with deletion 

derivatives where only bWl, bW2, bEl or hE2 were intact and crossed them as shown 

in Table 1.3.4 Strains were crossed with compatible a alleles. 

Table 1.3.4 Deletion Analysis of the b locus 

Strains Pathogenic Development 

1 bWl bEl 	+ bW2 bE2 + 

2 bWl bEl 	+ bW2 bE2z + 

3 bW2 bE2A + bW2 bE2A - 

4 bWl bElA + bW2 bE2A - 

5 bWI bEl 	+ bW2A bE2 + 

6 bW2A bE2 + bW2A bE2 - 

7 bWIA bE! + bW2A bE2 - 

8 bWl bElA + bW2A bE2 + 

+ indicates filament formation on charcoal medium and tumour induction on corn 

plants. A A sign next to a genotype e.g (bW2- bE2) indicates that particular allele 

has been deleted (Gillissen et a!, 1992, Banuett, 1992) 

From the table one can see that matings between different bW alleles were unsuccessful 

in producing pathogenic development, as were matings between different bE alleles. 

Combinations of bE and bW proteins from different alleles did initiate pathogenic 

development however. Gillissen et al (1992) proposed that, like the HD1 and HD2 

proteins in Coprinus cinereus, the bE and bW proteins interact to form a heterodimer. 
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1.3.5 A Region at the N-terminus of bE Genes Determines Allelic 

Specificity. 

Like the HD1 and HD2 proteins from different alleles of the same gene pair in C. 
cinereus , the bE and bW proteins have to be able to distinguish whether they are from 

the same alleles or different alleles. Yee and Kronstad (1993) identified sequences which 

determined allelic specificity by constructing chimeric bE alleles. DNA fragments 

covering a range of deletions in the variable part of the b 1 E allele (and also carrying the 

b 1W gene inactivated by the selectable marker hygromycin B) were transformed into a 

b2E strain. Targeted gene replacement occurs at a high frequency in U. maydis so 

chimeras between blE and b2E were created. Recombination takes place within bW but 

the recombinant gene is inactive due to the hygromycin B marker. Three classes of 

transformants carrying a chimeric gene were determined from whether the transformant 

produced a white, ariel mycelium (compatible reaction) or a flat nonmycelial colony 

(incompatible reaction) when mixed with albi or alb2 strains. Class I transformants had 

retained the ability to mate as a b2E strain as indicated by the incompatibility reaction 

with albi; that is the intergration into the b2E gene had not interrupted the region 

determining specificity. Class II transformants were able to mate with both bl and b2 

strains. Class III transformants behaved as a blE strain, mating with the alb2 strain. 

PCR products from the transformants were sequenced to determine the positions of the 

recombination events that accounted for the phenotype of each transformant. Class I 

transformants had recombination points in the region between codons 28 and 39. 

Recombination at codons 48, 49, 51, 60, 70 and 79 gave alleles that differed in 

specificity to blE and b2E so that Class II transformants could mate with bi and b2 

strains. Class III transformants had recombination points in the region between codons 

87 and 156. The results indicated that a region between codons 39 and 87 determines 

allelic specificity. One could predict that recombination during meiosis in this region 

could result in alleles with altered specificity when compared to the parental specificities. 

So a domain that determines allele specificity is found in the N-terminal portion of the bE 

gene of U. maydis. 
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1.3.6 The 5' Ends of A genes Determine Gene Specificity 

Kues et a! (1994c) confirmed that the variable 5' ends of C. cinereus A genes 

determine gene specificity.The 5' ends of of A42 genes were exchanged so that two 

chimeric genes were generated, an HD2 gene with the 5' end of b2-1 and the 3' end of 

a2-1, and an HD  gene with the 5' end of bl - l and the 3' end of dl - !. The chimeric 

genes were introduced into A42, A6 and A5 hosts. A42 and A6 share a2-1 and dl -1 but 

have different alleles of b 1 and b2, hence if the 5' ends of the genes determine specificity 

then the chimeric genes will cause clamp cell development when transformed into an A6 

host. A5 and A42 do not share any specificity genes so all four A42 genes should 

promote A-regulated development in an A5 host. The chimeric genes failed to promote 

clamp cell development in an A42 host showing no new specificity had been created. 

The chimeric genes were functional as both initiated A-regulated development in the A5 

host. Both chimeric genes behaved as b gene alleles in the A6 host indicating that the 5' 

ends of the genes determined gene specificity. The chimeric genes were not identified as 

new a2-1 or dl -1 alleles. These experiments did not show that the N-terminal regions 

determined allele specificity. 

1.3.7 Protein Structure of Four A42 Gene Products 

In section 1.3.2.1 the protein structure of bl-1 (fl-l) was mentioned, its unusual 

homeodomain with D replacing the N in the recognition helix and the presence of helical 

COPI and COP2 regions N-terminal to the homeodomain, potential dimerization 

interfaces (Tymon eta!, 1992). Kues eta! (1994 c)) examined the complete sequences 

of the four A42 specificity genes and predicted from these which regions are of 

functional significance when HD  and HD2 interact. bi - ! and dl-1 are HD  genes, a2-1 

and b2-1 HD2 genes as mentioned before. dl -! was found to have a similar predicted 

protein structure when compared to b 1-1, two a-helical regions were proposed to be N-

terminal to the homeodomain and another helical region was found C-terminal to the 

homeodomain. This helical region is similar to the short charged C-terminal tail of cx2 of 

S. cerevisiae which is proposed to play a part in dimerization with al (Mak and Johnson, 

1993). There is another predicted helical region at the C-terminus of dl-1, but this can be 

deleted and have no affect on promoting A-regulated development in vivo (Tymon et a!, 

1992). dl-! was found to have the atypical WF.D.R in the homeodomain region. 
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The HD2 genes, a2-1 and b2-1, were found to have homeodomains conserved for 

WF.N.R. The predicted helical structures on either side of the homeodomains were 

present too in the HD2 proteins. The C-terminus in HD2 proteins was found to have an 

overall positive charge due to a high lysine and arginine content. This is unlike the C-

terminal ends of HD1 proteins which are rich in serine and threonine and partially proline 

rich and negatively charged near the C-terminus. The C-terminal regions of HD1 

proteins have been proposed to play a role in activation (Tymon eta!, 1992, Kues et a!, 

1994a). Kues et a! (1994c) found that much of the 3 end of HD2 genes can be deleted 

without loss of function. Regions close to the 3' ends of HD 1 genes are not dispensable, 

the minimal functional HD 1 protein contained 594 amino acids out of a possible 632 in 

bl-1. 

Figure 1.3.7 shows the predicted organisation of HD1 and HD2 proteins (Kues eta!, 

1994c) 
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FIGURE 1.3.7 

Representation of the predicted structure of the HDI and HD2 A proteins of C cinereus. The homeodomains are 

shown as black boxes and the helical regions shown as striped boxes. Other patterns in the figure refer to the 

characteristics of the c-terminal regions. These regions were truncated without loss of function as far as the 

arrows indicate. Numbers on the diagram refer to the amino acids. 
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1.3.8 HD1 and HD2 Proteins of C. cinereus Dimerize Via an N-Terminal 
Domain. 

Banham et al (1995) determined that the N-terminal domain of an HD2 protein was not 

required for regulating gene transcription in the A6 mutant fused heterodimer. As 

mentioned the fusion protein lacks the N-terminal region of the HD I protein, including 

the homeodomain, hence this region is not essential for regulating transcription of genes 

targeted by the mutant fusion protein. 5' deletions were made to the HD2 part of the 

fusion protein, the homeodomain was left intact. Two fusion proteins with HD2 5' 

deletions, amino acids 2-61 and amino acids 2-143, were transformed into an A6 host 

and both transformations resulted in the formation of clamp cells. It was concluded that 

the N-terminal domain of the H132 portion of the fused heterodimer was not required for 

constitutive activity of the fused heterodimer. 

The most likely function of the N-terminal domains of HD2 and HDI proteins other 

than to determine allele specificity is to form the dimerization domains. The COP 

domains are found at the N-terminal regions of HD I and HD2 proteins, these are the 

putitive dimerization domains. Banham et a! (1995) used the in vitro glutathione S-

transferase (GST) association assay to show dimerization between A proteins. Six 

different proteins from A6 and A42 were expressed in Escherichia coil as GST fusion 

proteins. The fusion proteins were bound to glutathione S-Sepharose beads and full 

length HD 1 proteins , 5S labeled by translation in vitro, adsorbed to the bound fusion 

proteins. Bound HD2 fusion proteins contained the entire N-terminal region and the 

homeodomain, with varying amounts of C-terminal sequences. The A6 HD2 b2-3 fusion 

protein retained its compatible HD 1 partner from A42, b 1-1. None of the HD2 fusion 

proteins from A42 retained bl -l. Likewise the A42 HD2 b2-1 fusion protein retained its 

compatible HD  partner from A6, bl-3. The 5' ends of the bl - l and bl-3 HD  genes 

were exchanged and the in vitro glutathione S-transferase assay repeated as before. The 

bl-1:bl-3 protein was retained by b2-3 and the bl-3:bl-1 protein retained by b2-1, 

showing that the area that determines whether a compatible dimerization takes place lies 

within the region where the the 5' ends were exchanged, that is within the first 158 

amino acids of HD1 proteins. This experiment also demonstrated that the 5' ends of A 

genes determine allelic specificity. The first 163 amino acids of bl-1 and the first 63 

amino acids of bl-3 were sufficient for dimerization in vitro with their compatible HD2 

partners. The truncated b 1-3 protein did not contain the homeodomain. 



Incompatible proteins are distinguished from compatible proteins in that they are unable 

to heterodimerize. COP coiled-coil motifs are found at the N-termini of A proteins and it 

is likely that variable amino acids at these motifs determine whether two proteins will 

dimerize. 

1.3.9 bE and bW Dimerize if They are From Different Alleles 

Using the two-hybrid system, Kamper et a! (1995) have shown that the bE and bW 

proteins from different alleles dimerize. The coding regions of bW 1, bW2, bE 1 and bE2 

were fused to either the C terminus of the GAL4 DNA binding domain (GB) or the N 

terminus of the GAL4 DNA activation domain (GA). Different combinations of the GB 

and GA fusion proteins were transformed into S. cerevisiae strain Y153 with the 

expectation that if the fusion plasmids were compatible, dimerization would take place. 

This would be seen as f3-Galactosidase activity, bE and bW proteins from different 

alleles were found to interact, for example pGB-El combined with pW2-GA could 

activate transcription of the lacZ reporter gene. bE and bW proteins from the same 

alleles did not interact in the two-hybrid system. Recognition of self/non-self functions at 

the level of protein-protein interaction. C-terminal deletion derivatives of the bE and bW 

proteins were fused to either GA or GB and tested in the two-hybrid system. The N-

terminal fragments of the variable domains showed differing levels of interaction, shown 

as 13-Galactosidase activity, or lost the ability to interact altogether depending on the the 

length of the fragment and allelic combination. Contacts between the variable domains of 

bE and bW are necessary for heterodimer formation. The homeodomains can be deleted 

without interfering with heterodimer formation. 

The variable region of bE2 was mutated using misincorporating polymerase chain 

reaction. Several different point mutations of bE2 were recovered which were able to 

form heterodimers with bW2 in the two-hybrid system. Plasmids carrying the mutant 

bE2 alleles were transformed into a b2 strain and tumours were induced on corn plants 

after 5-8 days indicating that the mutant alleles were functioning in combination with 

bW2. 

Five single point mutations in bE2, allowing bE2 to function in combination with bW2, 

resulted in an increase of hydrophobicity. Kamper eta! (1995) proposed a model for bE 

and bW interaction that takes this and the data from Yee and Kronstad (1993) into 

account. Interactions between bE and bW proteins may occur through hydrophobic as 
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well as polar interactions. N-terminal fragments of the variable region show different 

levels of interaction depending on their length indicating that there is more than one 

contact point. An N-terminal fragment of bE I and bE2 (consisting of the first 77 amino 

acids) can be of the same size yet in the two hybrid system only the truncated bEl/bW2 

combination was active. This indicates that contact sites are located in different positions 

in different allelic combinations. Failure to form heterodimers in allelic interactions 

results from having interfering amino acids at corresponding contact sites in bE and bW. 

In non-allelic combinations an interfering amino acid in one protein would not be 

opposed to an interfering amino acid in the other protein so there is no repulsion and 

heterodimerization can occur. For dimerization not to occur, several amino acids at 

corresponding contact sites in both proteins have to interfere. A single amino acid change 

in bE2 created a hydrophobic interaction that allowed heterodimerization with bW2. The 

behaviour of the chimeric bEl/bE2 polypeptides (Yee and Kronstad, 1993) can be 

explained by the model too. The chimeric bE1/bE2 polypeptide that behaves like bE2 

does so because all its critical contacts are provided by the bE2 portion of the protein so 

the chimera will only interact with bWl. Interaction with corresponding contact sites in 

the hW2 protein results in repusion between the chimera and bW2. The bE 1 /bE2 chimera 

with new specificity has a fusion point between the critical cohesive residues in bE 1 and 

bE2 so the chimeric polypeptide can interact with bW 1 and bW2. 



1.4 Scope of Thesis 

X clones containing putative Sordaria mating type genes were available for use in this 

project. As these clones had been isolated with N. crassa probes it was of interest to see 

how closely related Sordaria and Neurospora species are to each other. The aims of the 

project were as follows: 

1 To subclone and sequence as many Sordaria mating type genes as time permitted. 

2 To express a homothallic S. equina mtA- 1 gene in a sterile heterothallic Neurospora 

mutant. Could the Sordaria mtA-1 gene restore mating type and vegetative 

incompatibility function on the mutant? Could the S. equina mtA-1 gene confer 

homothallism on the recipient mutant? 

3 To construct a phylogeny to establish the relationships between Sordaria and 

Neurospora species. 
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Chapter 2 

Materials and Methods 
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2.1 Materials 

2.1.1 Solutions for DNA work. 

TBE lox stock solution 

108g Tris Base 

55g Boric acid 

9.5g EDTA 

distilled water to 1 litre 

TE 
	

10mM Tris-HCL pH 8.0 

1 m EDTA pH 8.0 

6X Loading buffer 1.75g Ficoll 

imi 1M Tris pH8 

2m1 0.5M EDTA 

0. 1  Bromophenol blue 

distilled water to lOmi. 

50X Denhart's reagent 

Hybridisation solution 

5g Ficoll 

5g Polyvinylpyrrolidone 

5g Bovine serum albumin 

distilled water to 500m1 filtered, diluted to 5X for 

use. 

1mM EDTA 

O.5M NaP, 

(1M Na2HPO4, 72rnl; 1M NaH2PO 4, 28m1) 

7% SDS 

Wash Solution 	 40mM NaP (as for hybridisation solution) 

1% SDS 

1mM EDTA 
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Spermidine-SDS buffer 
	

4mM spermidine 

10mM EDTA 

0.IM NaC1 

0.5% SDS 

10mM B-mercaptoethanol 

40mM Tris HC1 pH 8.0 

Extraction buffer for use 

in fungal DNA extractions 1% CTAB 

0.7M NaC1 

50mMTrispH8 

10mM EDTA 

1% —mercaptoethano1 

STET 	 8% Sucrose 

0.5% TritonX 100 

50mM EDTA pH 8.0 

50mM tris HC1 pH 8.0 

GTE buffer (used for alkaline 	50mM glucose 

lysis method of preparing plasmid 25mM Tris pH8 

DNA) 	 10mM EDTA pH8 

Denaturing solution 
	

2M NaCl 

0.5M NaOH 

Neutralising solution 
	

1M Tris HC1 pH 7.5 

3M NaC1 

SSC 20X Stock solution. 

l75g NaCl 

88g Sodium Citrate 

adjusted to pH 7.0 

distilled water to ilitre 
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2.1.2 Media for growth and manipulation of bacteria and phage. 

Phage Buffer 0.3% KH2HPO4  

0.7% Na2HPO4 

0.5% NaC1 

1mM MgSO4 

0.1mM CaC12 

0.11 % gelatin solution 

Luria-Bertoni medium 	1% Bacto-tryptone 

(LB) 	 0.5% Bacto-yeast extract 

1% NaCI 

adjusted to pH 7.2 with NaOH 

LB agar 	 LB medium supplemented with 1.5 % agar 

BBI Top agar 	 1% Baltimore Biological Laboratories trypticase 

0.5% NaCl 

0.65% agar 

LB-amp 	 LB supplemented with ampicillin (50ig/ml) 

2.1.3 Media for growing, crossing and transforming fungi. 

Vogels growth 

medium 
	

1.5% Difco Bacto Agar 

2% glucose 

1X Vogels salt solution 

Growth medium for 

germinating conidia 
	

IX Vogels N salt solution 

1.5% sucrose 

0.1 mg/mi adenine 
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Underlay agar 	 0.05% glucose 

0.05% fructose 

2% sorbose 

2% agar ( Difco Bacto) 

IX Vogeis salt solution (Nitogen free where selecting 

for Ignite resistance) 

0.1 mg/ml adenine 

(0.5% proline as a nitrogen source where selecting for 

Ignite resistance) 

(Ignite at a concentration of 200.tg/.tl for selection plates) 

Overlay agar for 	As for non-selective underlay except bacteriological agar 

checking for 	 was used instead of Difco Bacto agar. 

spheroplasts 

Overlay agar for 

viability plates 	 As for non-selection underlay except 1M Sorbitol was 

added to provide osmotic protection and bacteriological 

agar was used instead of Difco Bacto agar. 

Growth medium for 

regeneration of 	0.05% glucose 

spheroplast cell walls 	0.05% fructose 

1 X Vogeis salt solution (N-free) 

1M Sorbitol 

0.5% proline 

0.1mg/nil adenine 

Medium for selective 

slants 	 2% sucrose 

2% Difco bacto agar 

0.5% proline 

IX Vogels salt solution (N-free) 

0.1mg/mi adenine 

Ignite at 200tg4tl 
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Crossing medium 	2% sucrose 

2% Difco bacto agar 

Westergaard and Mitchell salt solution 

0.1/mg/mi adenine 

2.1.4 Bacterial Strains, Bacteriophage and Plasmid Vectors 

E-coli strains used in the course of this project. 

E-coli strain 	Genotype 	 Reference 

Q358 	 supE hsdR 0  80' 	 Maniatis et at 

(1989) 

XL-1 Blue 	recA 1, endA 1, gyrA 46,thi, hsdR 17, 	Bullock eta! 

supE 44, relA 1, lac, [F'proAB lacI qzM/J15 	(1987) 

TnlO(Tetfl j 

JM109 	 recA 1, endA 1, gyrA 96, hsdR 17, 	 Yanisch-Perronet 

(rk,mk+), telA 1, supE 44,2, thi, A(lac-proAB), al (1985) 

[F, traD 36, proAB, lacI q  ZAMI5] 

Bacteriophage 	 Reference 

EMBL3 	 Frischauf et at. (1983) 

EMBL4 	 Frischauf et at. (1983) 

Plasmids used in the course of this project 

Plasmid 	 Reference 

pTZ18R 	 Pharmacia P-L Biochemicals 

Molecular and Cell Biology 

Catalogue 

p Bluescript SK+/KS+ 	 Stratagene Cloning Systems 

Catalogue 

pBARGRG 1 	 Pall and Brunelli (1994) 

pGEM®T vector 	 Promega Technical Bulletin No 

150. 
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2.2 Methods 

2.2.1 	Manipulations of Bacteria and Phage 

2.2.1.1 	Plating Cells 

A single colony from a Q358 streaked plate was picked and grown up overnight, 

shaking at 37°C, in lOml of L-Broth. The overnight culture was then diluted 1:10 in L-

Broth + 0.2% maltose and grown for 1 hour. The culture was spun down at 3000 rpm 

for 10 minutes and the supernatant poured off. 5m1 of sterile 10mM MgCl2  were added 

and the cells resuspended ready for infection with lambda. 

Maltose improves the efficiency of bacteriphage adsorption as it induces the lambda 

receptor (lamB protein) and Mg2+  ions play an important part in the maintenance and 

integrity of lambda phage particles and aid phage adsorption. 

2.2.1.2 	Competent Cells 

A single colony from a plate streaked with XL-1 Blue was picked and grown up 

overnight, shaking at 37°C, in lOinIs of L-Broth. The overnight culture was diluted 1:20 

with L-Broth and grown to a 0D550=0.5. The cells were spun down at 3000 rpm for 10 

minutes and resuspended in lOmis of sterile 50mM CaCl2. The cells were left on ice for 

20 minutes and spun down again. This time the cells were resuspended in 2mls of CaCl2. 

The cells were then ready to be used in transformations. 

2.2.1.3 	Transformations 

100R 1  of XL-! Blue competent cells with 2.tl of ligated DNA (concentration 0.1-lOng) 

were placed on ice for 30 minutes. The cells were heat shocked for 2 minutes at 42°C and 

placed back on ice for 90 seconds. 50p1 of L-Broth were added to the cells and the 

mixture incubated at 37°C for 30-60 minutes. The cells were then plated out onto L-Amp 

plates and incubated at 37°C overnight. 

2.2.1.4 Sordaria mating type gene clones 

Genomic libraries were available for several Sordaria species in either cloning vector 

lambda EMBL3 or EMBL4 (Frischauf eta!, 1983). Fragments between 8 and 21kb in 
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length can be cloned in these vectors. The desired recombinant phage were identified 

using a radiolabelled probe (Benton and Davis, 1977), the probes used here being 

subclones of the Neurospora crassa mating type genes mtA and mta. All Sordaria 

lambda clones were produced as part of the Genetics Honours cloning practical. 

	

2.2.1.5 	Plating out lambda phage 

100.tl of Q358 plating cells were transferred to a test tube. Depending on the titre of the 

phage lysate, lOt.tl of a particular dilution (the phage diluted in phage suspension buffer) 

was added to the plating cells and the tube was incubated at 37°C for 20 minutes to allow 

for attachment of phage particles. While waiting a 3m1 aliquot of BBL top molten agar 

was transferred to a test tube in a 55°C waterbath. After 20 minutes, the top agar tube 

was removed from the waterbath, flamed, and the agar poured into the tube containing 

the infected plating cells. The contents of this tube were then poured over a dried L-Broth 

plate and the top agar allowed to set. The plate was incubated at 37°C overnight. 

	

2.2.1.6 	Lambda lysates 

To obtain a 500rn1 lysate from which lambda DNA can be extracted, the Q358 cells must 

be infected with phage at a titre of 1010  pfu. Plate lysates were made to obtain this high 

titre. 5m1 of phage suspension buffer were poured over an L-plate where confluent lysis 

of the plate had occurred after plating out 10 pfu of phage. After 4 hours of gentle 

shaking the 5m1 of phage suspension buffer were poured into a Falcon tube and the tube 

was spun to pellet any debris. The supernatant was removed and 100tl of chloroform 

added to free any phage from intact cells. After another spin the supernatant was 

recovered and a drop of chloroform added. The lysate was stored at 4°C. The lysate was 

approximately 1010  pfulml. imi of overnight Q358 cells were then added to 500m1 of 

pre-warmed L-Broth + 0.2% maltose. The cells were grown to an 0D600=0.5. The 

flasks were then innoculated with lml of plate lysate and 10mM MgCl2  also added. The 

culture was shaken at 37°C till lysis occurred which is apparent by the presence of cell 

debris. Chloroform was added to the lysate to a final concentration of 1 % and the lysate 

spun down at 4°C for 10 minutes at 10000 rpm. The supernatant was then removed ready 

for DNA extraction. 
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2.2.2 	DNA Manipulation, Preparation and Detection 

2.2.2.1 	Phenol/Chloroform Extractions and Ethanol Precipitations 

DNA was usually purified with phenol, followed by phenol/chloroform and finally 

chloroform on its own. To the DNA in TE an equal volume of phenol, equilibrated 

against TE, was added and the solution mixed and spun down in a microcentrifuge 

briefly. The upper band containing the purified DNA was removed to a fresh Eppendorf. 

To the DNA an equal volume of 1: 1 phenol/chloroform solution was added and the 

procedure repeated as before. Finally the DNA was extracted using an equal volume of 

chloroform. This final stage allows the removal of any phenol residues. The DNA was 

precipitated by adding 0.1 volume of 3M Na Acetate and 2 volumes of absolute ethanol. 

The Eppendorf was incubated at -70°C for 10 minutes followed by a 10 minute spin in 

the microcentifuge. The supernatant was removed and the DNA pellet rinsed in 70% 

ethanol, dried under vacuum and resuspended in TE. 

2.2.2.2 	Agarose Gel Electrophoresis 

Agarose (0.7-1%) gels were used to analyse restriction digests of DNA and the integrity 

of the DNA. Gels were prepared and run in 1X TBE buffer with ethidium bromide 

included in the gel at a concentration of 0.5tg/mI. The sample of DNA was loaded in IX 

stop buffer into the wells of the submerged gel. Gels were generally run at 90V and the 

DNA visualised using short wave-length UV light. 

2.2.2.3 	DNA Restriction. 

Restriction enzymes were supplied by Boehringer Mannheim. DNA was digested at 

37°C using the buffer appropriate to the enzyme. Genomic DNA was left to digest 

overnight, lambda DNA for 3-4 hours and plasmid miniprep DNA for 1-2 hours. 

2.2.2.4 	Extraction of DNA from agarose 

The desired DNA fragment was cut out of a low melting point agarose gel using long-

wave UV light and an equal volume of IX TBE/0.2M NaCl was added to the gel slice. 

After melting the agarose for 10 minutes at 65°C a 3/4 volume of phenol buffered in lx 
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TBE/0.1M NaCl was used to extract the DNA from the agarose. Two phenol extractions 

were required in total and if the DNA remained in a volume greater than 400tl, butanol 

was used to reduce the volume. The DNA was ethanol precipitated and resuspended in 

lOpi of TE. 

	

2.2.2.5 	Ligations 

DNA fragments were ligated into the vector of choice using T4 DNA ligase supplied by 

Boehringer Mannheim. The DNA fragment and digested vector have complementary 

overhanging ends. 40ng of digested vector were added to the DNA fragment, which 

should be in excess concentration, along with lOX ligase buffer (Ipi in a lOpi total) and 

the T4 DNA ligase (1 pJ, 1 U4.tl). The ligation mix was left at 16°C overnight. 

	

2.2.2.6 	DNA preparations 

2.2.2.6.1 Lambda DNA preparations 

X DNA was prepared using methods as described by Aber et al. (1983). The X lysate 

was divided into 250m1 Sorval bottles. X bacteriophages were precipitated in the lysate by 

adding NaCl to 6% and PEG6000 to 11 %. The bottles were inverted repeatedly to ensure 

the solids dissolved. The bottles were stored on ice for 1 hour and then spun at 10000 

rpm for 10 minutes to pellet the phage. The phage/debris pellet was resuspended in lOmi 

of phage suspension buffer and the liquid transferred to a Falcon tube. 0.25 vols of 20% 

PEG, 2.5M NaCl solution were added to the phage and the Falcon tube stored on ice for 

5 minutes. After another spin, the pellet was resuspended in 0.5ml of phage suspension 

buffer and DNase 1 and RNase A added. The tube was incubated at 37°C for 15 minutes 

and a chloroform extraction carried out. The supernatant was then adjusted to 0.2% SDS, 

20mM EDTA and mixed carefully. The SDS breaks up the phage protein capsid and the 

EDTA chelates divalent cations necessary for the function of nucleases. After heating the 

tube at 65°C for 5 minutes a phenol chloroform extraction was carried out followed by a 

chloroform extraction. The supernatant was then precipitated using 3M NaAc and 

isopropanol and the lambda DNA pellet washed with 70% ethanol, dried and 

resuspended in lOOpJ of TE. 
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2.2.2.6.2 	Fungal genomic DNA preparations 

Fungal genomic DNA for use in Southern Blots was extracted by two methods. 

METHOD 1 

The first method used was that of of Borges et al. (1990). 0.5-2g of freeze-dried 

mycelium were ground up and the powder divided between two Sorvall tubes containing 

15m1 of cold spermidine-SDS buffer. The tubes were shaken and the mixture extracted 

twice with phenol followed by a chloroform extraction. The DNA was ethanol 

precipitated, washed with 70% ethanol, dried and resuspended in 1 ml TE. 

METHOD 2 

The second method used was one adapted from a protocol by Xu et al (1994). 200mg of 

freeze-dried mycelium were divided into 10 tubes and coarsely ground. In a fume 

cupboard 600tl of extraction buffer were added to each tube. The tubes were left for 30 

minutes and then an equal volume of chloroform- isoamyl alcohol 24:1 was added to each 

tube. The tubes were mixed vigorously for 5 minutes then spun at 13000 rpm for 5 
minutes. After this, the DNA was precipitated using 550tl of cold isopropanol and spun 

again for 1 minute. The pellets were dried by inverting the tubes on absorbant paper and 

then dissolved in 100.il of TE. The tube contents were then pooled into two groups. 

Three extractions were carried out using phenol, then phenol-chloroform and finally 

chloroform-isoamyl alcohol 24:1 to remove residual nucleolytic activity. The DNA was 

then precipitated using 90tl of 7.5M NH4Acetate and 900.0 of cold 100% ethanol. The 

DNA pellets were washed with 70% ethanol, dried and then dissolved in an appropriate 

volume of TE, depending on the size of pellet obtained. Method 2 was found to remove 

the carbohydrate from the DNA more effectively than the first method of DNA extraction. 



2.2.2.6.3 	Plasmid DNA preparations. 

METHOD 1 Alkaline Lysis 

DNA for performing automated sequencing was prepared by this method. It is based on 

the alkaline lysis method of Birnboim and Dolly (1979). Using the host strain XL-1 

Blue, single colonies containing a plasmid were picked and grown up overnight shaking 

at 37°C in lOmi of L-Amp. 4ml of overnight culture in total were spun down in an 

eppendorf tube. The bacterial pellet was resuspended in 200il of GTE buffer. 300111 of 

freshly prepared 0.2M NaOHJ 1% SDS were added, the tube mixed by inversion and 

incubated on ice for 5 minutes.The solution was neutralised by adding 300ml of 3M 

potassium acetate, pH4.8, and the tube again mixed by inversion. The tube was 

incubated on ice for a further 5 minutes. Cellular debris were removed by spinning the 

tube for 10 minutes at room temperature, then transferring the supernatant to a clean tube. 

The preparation was RNased at 37°C for 20 minutes and the supernatant extracted using 

400.il of chloroform. This extraction step was repeated. The DNA was precipitated using 

an equal volume of 100% isopropanol and the preparation immediately centrifuged for 10 

minutes at room temperature. The DNA pellet was washed using 50041 of 70 % ethanol 

and dried under vacuum for 3 minutes. The pellet was dissolved in 32tl of deionized 

water and the plasmid DNA precipitated by adding 8tl of 4M NaCl first followed by 

40tl of autoclaved 13% PEG8000. The preparation was mixed thoroughly and incubated 

on ice for 20 minutes. The plasmid DNA was pelleted by centrifugation for 15 minutes at 

4°C. The pellet was rinsed with 5001.tl of 70% ethanol, dried for 3 minutes under vacuum 

and resuspended in 20p1 of deionized water. 

METHOD 2 Boiling method 

This method uses the protocol of Holmes and Quigley (1981). 4m] of overnight culture, 

XL-1 Blue again was the host strain, were spun down in an Eppendorf tube. The pellet 

was resuspended in 200111 of STET and 20111 of lyzozyme (lOmg/ml). The suspension 

was boiled for 40 seconds and centrifuged for 10 minutes. The flocculent pellet obtained 

was removed with a Gilson tip. The supernatant was then precipitated using 3M NaAc 

and 200111 of isopropanol. After placing the tube at -70°C for 10 minutes, the pellet was 

rinsed with ether and dried before resuspension in 50111 of TE. 



2.2.2.7 	Southern Blots 

Southern Blots were carried out using the protocol of Southern (1975). The gel from 

which DNA was to be transferred was soaked in 0.2M HCl for 20 minutes, which aids 

transfer of fragments above 15kb as the HCl depurinates the DNA. The gel was then 

soaked in denaturing solution for 30 minutes followed by a soak in neutralising solution 

for 1 hour. 20X SSC was used as the transfer buffer, this solution providing a high ionic 

strength to ensure efficient binding of small fragments to the nitrocellulose filter. Two 

pieces of blotting paper were soaked in 20X SSC and put on a glass sheet on a tray 

containing 20X SSC so that the ends of the blotting paper dipped into the liquid and acted 

as wicks. The gel was then placed on the blotting paper and the nitocellulose membrane 

soaked in 2X SSC carefully placed on top. This was covered with a sheet of blotting 

paper also soaked in 2X SSC and several dry sheets. A pad of paper towels held down 

with a weight was placed on top of the blotting paper. The gel was left to transfer 

overnight, then the membrane was rinsed in 2X SSC and left to bake for 2 hours at 80°C. 



2.2.2.8 	Preparation of probes 

Subclones of the mtA and mta N.crassa mating type genes were cloned into pMTAG2 

and pCSN4 respectively. The mating type specific fragments are shown below. 

A mating type specific: 1 .2kb Eco RI/Barn HI fragment 

Pst I 	Hind III 	 Sst II 	Sst II 

EcoRl 	 I 	I 	I 
pUC19 	 Blunt 

pMTAG2 	 Xba I 
Sal I 
Pst I 

SphI 
Hind Ill 
pUC19 

a mating type specific: 1.9kb Eco RV fragment 

Pst I Sal I 	Sal I Barn HI 	Sal 

Barn HI Eco RV 
BgI II Hind 	III 
Xba I 	 pCSN4 CIa I 
Hind III Sal I 
Eco RV Xho I 
Eco RI Kpn I 
Pst I 
Barn HI 
Xba I 
Sac II 
Sac I 

Digestion of pMTAG2 with Eco Ri/Barn Hi gives a fragment of 1.2kb which is A 

mating type specific. Digestion of pCSN4 with Eco RV gives a fragment of 1.9kb which 
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is a mating type specific. The bands were excised from agarose as described in 2.2.2.4 

and the DNA pellet resuspended in lOpJ of TE. 

	

2.2.2.9 	Labelling the probes 

Labelling of the probes was carried out using the Pharmacia Biotech Oligolabelling kit. 

50ng-ltg of DNA was first denatured by heating at 1000 and placed on ice. 25pJ of 

distilled water were added to the DNA along with l0il of reagent mix. The reagent mix 

contains hexadeoxyribonucleotides of random sequence which anneal to random sites on 

the DNA and serve as primers for DNA synthesis by the Kienow fragment of E.coli 
DNA polymerase I. 4p1 of 32P dCTP probe were added so labelled nucleotides were 

incorporated during the DNA synthesis. The ltl of Kienow was added last to make a 

total of 50.tl. The mixture was left overnight at room temperature to allow the label to 

incorporate into the DNA. 

Unincorporated radioactivity was removed from the probe by passing the 50j.tl down a 

Stratagene Nuctrap column. The probe was then denatured by boiling before being added 

to the hybridisation mixture. 

	

2.2.2.10 	Hybridisations 

Hybridisations were carried out in Techne hybridisation cylinders placed in Techne 

ovens. 1-lybridisations were carried out overnight. Lambda and plasmid DNA blots were 

generally hybridised at 62°C and washed at 57°C. Genomic DNA blots were usually 

hybridised at 58°C and washed a few degrees lower, depending on background levels of 

radioactivity present on the filter. Hybridisations were carried out in a hybridisation mix 

as described in the materials section. 10% dextran sulfate was added to accelerate the rate 

of hybridisation and 5X Denhart's reagent added to reduce background when carrying 

out hybridisations with genomic blots. After hybridising overnight the blots were washed 

three times at 30 minute intervals using the wash solution described in the Materials 

section. 



	

2.2.2.11 	Colony screening 

Many vectors carry a segment of E.coli DNA that contains the regulatory sequences and 

amino-terminal coding information for the B-galactosidase gene (lac Z). In the coding 

region there is a polylinker site into which a desired insert can be cloned. A vector like 

this is used in a host cell which codes for the carboxy-terminal portion of lac Z. The host 

encoded fragment and the vector encoded fragment can associate to form an enzymatically 

active protein. The Lac+  bacteria resulting from this complementation are blue in the 

presence of IPTG and X-gal. Those vectors into which the desired insert has been cloned 

are identified as white colonies, they are unable to complement with the host fragment 

due to the presence of the insert in the polylinker site. 

For those vectors not carrying a segment of lac Z, a colony lift can be taken using 

nitrocellolose and the colonies denatured and neutralised (Benton and Davis, 1977). The 

filter can then be probed using hybridisation techniques described previously so colonies 

with the desired insert are recognisable on an autoradiograph. 

	

2.2.2.12 	Sequencing 

MANUAL SEQUENCING 

Sequencing was carried out using the Sequenase Version 2.0 DNA sequencing kit 

supplied by United States Biochemicals. The method this kit uses follows the protocol of 

Sanger et al (1977). Approximately 3.tg of DNA are required for each reaction. DNA 

templates were double stranded so the DNA first had to be denatured in a total of 10Oil 

using 0.2M NaOH and 0.2mM EDTA. The DNA was left to incubate at 37°C for 30 

minutes and then ethanol precipitated. The DNA was resuspended in 641 of TE. The 

primer being used was then annealed to the DNA template. lj.tl of primer, approximately 

lpmol in concentration, was added to the DNA along with 2tl of Reaction buffer as 

supplied and lp.l of DMSO. This mixture was left to incubate at 37'C for 30 minutes. 

The labelling reaction was carried out next where 1.tl of 0.1M DTI, 2j.tl of Labelling mix 

diluted 1:5 with distilled water, 0.5tl of 35S dATP and 241 of Sequenase Version 2.0 

diluted 1:8 in Sequenase dilution buffer were added to the annealed template-primer. The 

reaction was left to incubate for 2-5 minutes at room temperature after which 3.5j.il were 

removed and added to an Eppendorf containing 2.5p1 of ddGTP. The same procedure 

was carried out again using tubes containing ddATP, ddTTP and ddCTP. The Sequenase 

Version 2.0 synthesises a DNA strand using the primer as the initiation site. The 



synthesis reaction is terminated by the incorporation of the ddNTPs so a population of 

chains of different lengths is generated. For example in the case of ddTTP DNA 

synthesis will halt at each thymine generating a population of chains of different lengths. 

The four separate reactions with each ddNTP will give the complete information needed 

for the DNA fragment being sequenced. The termination reactions were incubated at 37° 

for 5 minutes and 4.t1 of Stop solution were added. When the gel on which the samples 

are to be run was ready to be loaded, the samples were heated at 75-80°C for 2 minutes 

and 3tl loaded. 

AUTOMATED SEQUENCING 

Automated Sequencing was carried out using the ABI PRISMTNI Dye Terminator Cycle 

Sequencing Ready Reaction Kit supplied by Perkin Elmer. In a 0.5mJ tube the following 

reagents were added: 8j11 of Terminator Ready Reaction Mix as supplied, 1.5-2.5j0 of 

template, 3.2pmol of primer and distilled water to 20jil. The Terminator Ready Reaction 

Mix contains A, C, G andT-Dye Terminators, dITP, dATP, dCTP and dTTP, Tris-HC1 

pH9, MgCl2 thermal stable pyrophosphatase and AmpliTaq DNA polymerase, FS. The 

mixture was overlayed with a drop of mineral oil. A Hybaid OmniGene programmable 

PCR machine was programmed for thermal cycling following the instructions in the 

User's Manual. Extension products were purified as follows: the 20t1 from the reaction 

tube was transferred to a tube containing 2tl of 3M Sodium acetate, pH 4.6, and 50R'  of 

95% ethanol. This tube was vortexed, placed on ice for 10 minutes and centrifuged at 

maximim speed for 15-30 minutes. After removing the supernatant the pellet was rinsed 

with 2501il of 70% ethanol and dried in a vacuum centrifuge. The pellet was resuspended 

in loading buffer containing 5 parts deionized formamide to 1 part 25mM EDTA, pH8 + 

50mg/ml Blue dextran. The sample was vortexed and spun, heated at 90° for 2 minutes 

and placed on ice before loading. The sample was run on an ABI PRISM 377 DNA 

Sequencer. 

2.2.2.13 	Acrylamide gels and equipment used for manual sequencing 

Stock Acrylamide was bought pre-made from Scotlab.The Easigel mix consists of 6% 

acrylamide/0.3% w/v bis acrylamide, 7M Urea and IX TBE. Biorad sequi-gen 

sequencing cells were used to run the sequencing samples. The sequencing gels were run 

using 1X TBE buffer. 



2.2.2.14 	Polymerase Chain Reaction 

The Polymerase Chain Reaction was used to amplify mtA- 1 of Sordaria equina.. The 

following table describes the concentration and volume of the components used. The taq 
DNA polymerase (5U/pi) was supplied by GIBCOBRL. The components were added on 

ice. 

l.t1 

Control 

Template (lOOng/pi) 0 

lox PCR buffer 10 

dNTP(lOOmM) 0.7 

Upstream primer 10 

(2Ong/pi) 

Downstream primer 10 

(20ng411) 

Taq DNA polymerase 0.5 

Mg2  (50mM) 3 

Distilled water to 65.8 

100 p1 

RI p1 p1 

Control 1/10 dilution 1/100 dilution 

of template of template 
1 1 1 

10 10 10 

0.7 0.7 0.7 

10 10 10 

- 10 10 

0.5 0.5 0.5 

3 3 3 

74.8 64.8 64.8 

The mixture in each tube was then covered with 751i1 of mineral oil to prevent 

evaporation. The following specifications were used during 21 cycles of PCR 

amplification. Reactions were carried out using a Hybaid OmniGene PCR machine. 

Denaturation Annealing Polymerisation 

950 Smins 550 	1mm 70°C 2mins 

93° 3mins 55° 	1mm 70°C 2mins 

93° 3mins 55° 	lniin 70°C 2mins 

cycles 4-20 

21 70°C Smins 

The amplification product was checked by running a small quantity of the PCR reaction 

against molecular weight standards on an agarose gel. 



TaqI polymerase adds a 3' terminal adenine to both strands. The pGEM-T Vector 

Systems (Promega) takes advantage of this and following the manufacturer's directions, 

the S. equina mtA- 1 PCR product was "TA" cloned into the pGEM-T Vector. 

2.2.3 	Fungal Manipulations 

2.2.3.1 	Making spheroplasts from conidia 

30m1 of sterile distilled water were added to a "swirl flask" of N. crassa. The water was 

swirled gently to harvest the conidia. The suspension was poured through two layers of 

cheesecloth into a sterile 50m1 tube. The tube was spun at 3000 rpm for 10 minutes and 

the supernatant removed. The pellet was resuspended in 30m1 of sterile distilled water. 

Once more the conidia were spun down at 3000 rpm for 10 minutes and the pellet 

suspended in 5m1 of sterile distilled water. The conidia were counted on a 

haemocytometer and 2X 10 9  conidia innoculated into 150m1 Vogels N medium + 1.5% 

sucrose + adenine. The conidia were allowed to germinate overnight at 200 rpm while 

shaking at 15°C. The next day the conidia were spun down at 3000 rpm for 5 minutes 

and the supernatant removed. The conidia were washed by resuspending in 50m1 of 

distilled sterile water and the centrifugation repeated. This time the pellet was 

resuspended in lOmi 1M Sorbitol and 4m1 of filter sterilised Novozyme (5mg/mi in 1M 

Sorbitoi) were added to digest the cell walls of the conidia. The Sorbitol prevents the 

spheroplasts bursting. The conidia with the Novozyme were incubated with shaking at 

100 rpm, 30°C for 1 hour. 50m1 of IM Sorbitol were added after the 1 hour period and 

the spheroplasts centrifuged and resuspended in 50m1 of LM Sorbitol three times to wash 

the spheroplasts free of Novozyme. The spheroplasts were suspended in a final volume 

of 2m1 of 1M Sorbitol. The spheroplasts were then ready for electroporation. The 

spheroplasts were also diluted serially (10-2-10-5)  and added to overlay medium without 

Sorbitol (this checks that the spheroplasts have no cell wall as they should not grow) and 

to overlay medium with Sorbitol (this checks the viability of the spheroplasts). The 

overlay was then poured onto plates containing non-selective underlay medium as 

described in section 2.1.3. 

2.2.3.2 	Electroporation of Spheroplasts. 

40tl of the spheroplast suspension was gently mixed with 0.14g of plasmid 

pBARGRG1JN and left on ice for 5 minutes. The BIORAD Gene Pulser apparatus was 

set to 1.5kV and 25pF with the pulse controller at 200. The spheroplastlDNA mixture 
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was then transferred to a 0.2cm electroporation cuvette and the cuvette placed in the 

safety slide. The slide was pushed into the chamber and a pulse applied. The 

spheroplast/DNA mixture was immediately transferred into lml of cell wall regeneration 

mixture (see section 2.1.3) and the mixture allowed to shake at 200rpm for 3 hours at 

30°C. After this period of time the mixture was directly plated onto selective medium and 

incubated at 28°C. Any colonies that grow should be transformants which are then 

transferred onto selective slants. 

2.2.4 	Computer Analysis 

2.2.4.1 GCG programmes. 

Programmes from the Wisconsin package GCG version 9 were used to analyse DNA 

and protein sequences and compare them to homologous sequences present in the DNA 

and protein databases. 

2.2.4.2 Phylogenetic analysis. 

The CLUSTALW programme (Thompson et a!, 1994) was used to carry out the multiple 

alignment of the mtA-1 DNA and protein sequences. The DNA sequence data contains 

more information than the protein sequence so the phylogeny shown in chapter 6 was 

based on the DNA sequence data. However the phylogeny based on the protein sequence 

data (not shown) had the same topology. The phylogenetic analysis was carried out under 

the guidance of Dr. Frank Wright (Biomathematics and Statistics Scotland, based at the 

Scottish Crop Research Institute in Dundee). 

Huelsenbeck (1995) reviewed the three classes of method for constructing phylogenetic 

trees, maximum parsimony, distance methods and maximum likelihood, and concluded 

that all three methods were successful when the true phylogenetic tree contained no long 

branches and when the rate of evolution did not vary among sites i.e all the positions in 

the sequence evolve at the same rate. When these two conditions occur then the best 

method to use is maximum likelihood, if the model of evolution assumed is correct. The 

model used should allow for different rates of transitions from transvertions and for a 

variable rate of evolution at different sites along the sequence. 

The maximum likelihood method was therefore used to analyse the DNA alignment. The 

DNA Maximum Likelihood program (DNAML) was available on the PHYLIP 3.6 
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package. A paper discussing the methodology and the DNAML program has also 

appeared in the literature (Felsenstein and Churchill, 1996). 

The DNAML programme was used to estimate the relative rates of transitions and 

transvertions. This is summarised as "the expected transition/transvertion ratio" and a 

value of 1.5 was obtained for the dataset. The three codon positions and the intron are 

likely to evolve at different rates (although the third position and the intron may have 

similar rates). The relative rates of these four categories were estimated by splitting the 

alignment into four subalignments containing only one category of sites in each, then 

calculating the average pairwise genetic distance (using the DNADIST program in 

PHYLIP 3.5) for each category. The ratios of these average distances were calculated 

relative to the second codon position. This produced relative rates of 1.61 : 1 : 2.33 

2.31 for the first, second and third codon positions and the intron, respectively. 

Most of the among site variation may be due to between category rate variation. 

However it is likely that there is additional rate variation. One can imagine for example 

that a protein coding region of a sequence may be more conserved than an intron. 

DNAML can fit different rates to different "regions". With the number of regions chosen 

the relative rates of these regions and the probability that a particular site belongs to that 

region can be calculated. Two classes of regions were chosen, with relative rates 5: 1 and 

probabilities of 0.5 and 5.0. The relative rate values (for categories and regions) plus the 

optimised transitionitransvertion ratio were used to do a final run of the DNAML program 

with a careful search for the most likely tree. 

To test the robustness of the tree, a statistical procedure called nonparametric 

bootstrapping was carried out. The bootstrap method places a level of support for each 

dade in the tree and values greater than 70% are generally thought to provide good 

support for the dade (see Swofford et a!, 1996 for further discussion). The bootstrap 

analysis was carried out using the SEQBOOT and DNAML programs from PHYLIP 

version 3.6. 



Chapter 3 

The Sub-Cloning and 
Sequencing of Sordaria 

scierogenia MtA -1. 
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3.1 Introduction 

S. scierogenia is a heterothallic species where mtA individuals mate with mta 

individuals. A lambda EMBIA clone from a S. scierogenia miA genomic library probed 

positive with the N. crassa mtA probe (see Materials and Methods). L.Bisoni carried out 

the first stages of sub-cloning the mtA-1 gene from the lambda clone. MtA-1 was then 

sequenced as was the common region and part of the variable region. 

3.2 Results 

3.2.1 The Sub-Cloning of MtA-1 of S. scierogenia. 

Figure 3.2.1 a) shows how an Eco RL/Xho I fragment which hybridised with the N. 

crassa mtA probe was subcloned into a pBluescript KS+ plasmid digested with Ecu RI 

and Xho I. Further subcloning to enable mtA- 1 to be sequenced was carried out by L. 

Bisoni and myself taking advantage of the Pst I, Hind III and Xho I sites as shown in 

figure 3.2.1 b). Fragments to be sub-cloned were cut from low-melting point agarose 

gels, phenol extracted and ligated into appropriately digested pBluescript KS+. The 

plasmid was then transformed into XL-1 Blue competent cells and plasmids with inserts 

selected using blue-white selection. 
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for S.sc/erogenia MtA 
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pBluescript KS+ 
LBscIE/X 

FIGURE 3.2.1 a) Initial work carried out by L. Bisoni. The 2.8 kb Eco RI/Xho I fragment which hybridised 

with N. crassa MIA probe is shown as a black rectangle. The subcloning of this fragment from lambda is 

represented schematically here. 
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FIGURE 3.2.1 b) Schematic diagram of the sub-cloning of MtA-1 of S. scierogenia. The position of the 

MtA-I coding region is shown. 

01, 



3.2.2 Sequencing of S. scierogenia MtA-1, Common Region and Variable 
Region. 

Double-strand sequencing was performed on DNA prepared by the boiling method. 

Automated sequencing was performed on DNA prepared by alkaline lysis. Standard 

pBluescript KS+ primers were used +11 as primers ordered from Oswel which 

annealed to the MtA sequence. Figure 3.2.2 a) shows the DNA sequence of MtA-1, the 

common region and part of the variable region of S. scierogenia. Figure 3.2.2 b) shows 

the deduced amino acid sequence of mtA- 1. 
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1 tttttcccaa cattagcctc gcaatcgaat ctcgcctgca cttcctcacg 

51 tgttgaaccc tcaccattca agaactcgaa cgccagaaac gcgatgtcac 

101 gcgtccTatca patcgtcapa acgttcgcca atctcgcrtga gggcgatcgt 

Hind III 
151 gaagcggcca tcTaaagcttt cttagcgatg atgcccgtga gcaacgaaac 

201 tgtcgccgaa cctctcccca aagcccctcc cgcgaagaag aacigtcaacg 

251 ccttcatpqc tttcagatgt aagtcagatc tgagtcaatc tcgtggacag 

301 tccatactaa ttgttttttc ttcagcgtac tattccccgc tcttctctta 

351 ccttccacaa aagatgaggt cgcctttcat gaccattctc tccTcagtacg 

401 atccctacca caccgaatgg gatttcatgt gttccTqttta ttcctcaatc 

Pst I 
451 cgcaccgacc tagcragga gaagttaca c!qcagctct ggattcacta 

501 tgctatcggc cagatgcigat tgattgaccg cgaccactac atggcatct 

551 ttcTcrctgccT cctcggtcg pctcgcaacg gcactaccga cctttttcgc 

601 actgcgattc ccatgttag ciccrcaagctt cagcccatga acqcctttg 

651 cctgctcatt apgtgtctcc agagcqqatt ciaacaagcat cttaccaatc 

701 ctcatcctgt tattgccaag ctgcaagatc ctagcttcga catgatttgg 

751 atcaacaagc cttctcacca tcagcaggga cacaccgatc aagctgacaa 

801 ttctgaactc agaatgccct catcttccc taacaatcac gcagtcgctg 

ccttcctc Icfcacattg 

851 ccigacigtaga tpgcatcgcc aaccttcctc tctcacattg ciactcapcag 

901 ggpatttcg gcapggagcc tggattctcg pcccacrtttg ataccatgtt 

951 gcattcpctt cttgagaatg gaaacgacac cagcaatcat cactacaaca 

1001 tcrgctctggc tptggatctt cccatcratacr gttactggaa gacgaggcac 

1051 catgtcgctt acgttcaacc cgtgtgctga ccatttggca ggatttaatg 

1101 gaggagcata aaagcacggc gcagttacgg tttcttttcc tttgtcacat 

1151 ttgggtttcg tggttcaggc atacaaagcg agggcgaaaa ggggtctagt 

1201 tgggtttctt tgtgcattca cttggggcaa atcataggac ttcagaatcg 

1251 aacgttgtgg aataggcaat taaacggcag acaggtagct agctgcctaa 

Mol 



1301 ctagatggca agagcaaatg aAATCAATga cagtcaacag cgtccactat 

1351 ctggtttagg atggtcttca ctagtgaatc gatatgaacg tactgtgtaa 
gcgLctgcgg t3tcgttg 

1401 gcgtctgcgg tatcgttgcc gaatttgca !crlcgtccrag atagaactqt 
Nsi I 

1451 gcztccgccac tcracgcca.t gcttabgcat gcagccttac gctagtgcga 

1501 atccgtcgct gggcagtacc tgcctcgtgc atgacaaaat taagggaacc 

1551 accaaaccgg tttcctccct gttgatgatg agatctgccg tgagctcgta 

1601 gaggaaggct gggctgctct ctctcaagaa cggataaatt attggataga 

1651 tatgatccct caaatcctcc aagatggtat agatctaggg ggagcattaa 

1701 cagctcacta aagcgatgaa aacgaagtct tttggtaaag aaacggccga 

1751 gttctggctc atcaaagtct ggggtggcct gtgcacggtt cccatgattt 

1801 tgtcttgaac gagcctgcgt atgtacgcta gtgtagaagc cgtgcccctc 

1851 atttatggat cttgttcctt gacctgcagg 

FIGURE 3.2.2 a) The sequence of S. scierogenia mtA-1, the common region and part of the variable region. 

The mtA-1 coding region is shown underlined. The putative mtA-1 intron, nucleotides 269-325, is shown in 

plain text. The common region, nucleotides 1423-1480. is shown underlined in italics The variable region 

follows directly on from the common region in plain text. Primers which were ordered (Oswel) to complete the 

sequencing are shown in italics above the corresponding sequence. Standard pBluescript KS+ primers were used 

elsewhere. Restriction sites are shown also in italics. The putative polyadenylation signal is underlined in 

upper case. 
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1 MSGVDQIVKT FANLGEGDRE AANKAFLAMM PVSNETVAEP VRKAPAAKKK 

51 VNGFMGFRSY YSPIFSYLPO KMRSPFMTIL WQYDPYHTEW DFMCSVYSSI 

101 RTDLEEEKVT LQLWIHYAIG QMGLIDRDHY MASFGWRLGQ TRNGTTDLFR 

151 TAIPMVRRKL QPMNGLCLLI KCLQSGLNKH LTNPHPVIAK LQDPSFDMIW 

201 INKPSFIHQQG HTDQADNSEL RMPSIFPSNH AVAAEVDGIA NLPLSHWTQQ 

251 GDFGKEPGFS TQFDTMLDSL LENGNDTSNH HYNMALANDL PMIG* 

FIGURE 3.2.2 b) The deduced amino acid sequence of S.sclerogenia mtA-l. The region proposed to be a 

DNA binding domain with similarities to the a domain of S. cerevisiae MATaI and N. crassa mtA-1 is shown 

underlined. 

3.3 Discussion 

The Sordaria scierogenia mtA-1 gene, using the definition of mtA-1 by Glass et a! 

(1990a) comprises of two exons separated by an intron 57bp long which is found 176bp 

downstream of the first ORF ATG start site. The position of the intron is conserved in 

relation to the position of N. crassa mtA-1 intron (see chapter 6). The intron has a 5' 

splice site GTAAGT and 3' splice site CAG. A putitive polyadenylation sequence is 

located at nucleotide 1322, AATCAAT. Polyadenylation signals are usually 1 l-3Obp 

upstream of the polyadenylation site and have a consensus sequence of AAUAAA. If the 

putative intron were spliced out, the first and second exons would code for a translational 

product encoding a 294 amino acid polypeptide. Comparison of the S. scierogenia miA-

1 DNA and polypeptide sequences to Neurospora mtA- 1 sequences is shown in chapter 

6. 

Recent work by Saupe et al (1996) has identified the presence of a second intron in the 

N. crassa mtA- 1 ORF by 3' RACE experiments. This intron was found to be 60bp long 

with a 5' splice sequence GTTAGT and 3' splice sequence CAG. When this intron is 

spliced from mtA-1, five amino acids are added to the 288 amino acid mtA-1 ORF as 

previously defined by Glass et al (1990a). Using a primer located in the second intron 

the mtA- 1 cDNA encoding the 288 amino acid polypeptide was amplified by RT-PCR 



(Glass et a!, 1990a) suggesting that the second intron is not removed in all of the mtA- 1 

transcripts. Saupe et a! (1996) proposed that this reflects the multi-functional nature of 

mtA-1 in mating and in post-fertilization functions. In S. scierogenia the 5' splice 

sequence of this second intron is conserved (GTTAGT, nucleotides 1031-1036 figure 

3.2.2 a)) as is the 3' splice sequence (CAG, nucleotides 1089-1091 figure 3.2.2 a)). The 

second intron is 61bp long. Five amino acids can be added to the S. scierogenia mtA-1 

ORF when this intron is spliced out. The stop codon is located at nucleotides 1109-111, 

TAA. In this chapter S. scierogenia mtA- 1 is defined as a 293 amino acid ORF as 

opposed to a 298 amino acid ORF because it is not known what percentage of the 

transcripts have this second intron spliced out. 



Chapter 4 

The Sub-Cloning, 
Sequencing and Expression 
of Sordaria equina MtA-1. 
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4.1 Introduction 

S. equina is a homothallic species containing mtA only. A A. EMBL4 clone from a S. 

equina genomic library probed positive with the N. crassa mtA probe. S. Liddle 

subcloned a 1kb Xho I fragment from the lambda clone which probed positive with the 

mtA probe. MtA- 1 was further subcloned and sequenced as was the common region and 

part of the variable region. MtA-1 was cloned into an expression vector, pBARGRG1, 

and transformed into sterile mta N. crassa spheroplasts to observe whether the S. equina 

mtA-1 could restore mating type function. 

4.2 Results 

4.2.1 The Sub-Cloning of MtA-1 of S. equina. 

Figure 4.2.1 shows how the mtA-1 gene of S. equina was sub-cloned into plasmid 

vectors for sequencing. Originally the 1kb Xho I fragment sub-cloned from the lambda 

clone by S. Liddle was further sub-cloned by myself taking advantage of the Sal I site 

which cut the Xho I fragment and made sequencing the fragment easier. The sequencing 

data obtained from the Xho I fragment showed that approximately 360bp of the 

downstream portion of mtA-1 was not present on the fragment. A 0.28kb Xho I 

fragment and a 3kb Xho I! Barn HI fragment were sub-cloned to obtain the missing 

sequence data. Fragments were sub-cloned as described in figure 4.2.1. 
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FIGURE 4.2.1 Schematic diagram of the sub-cloning of MtA-! of S. equina. The position of the MtA-1 

coding region is shown. 
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4.2.2 Sequencing of S.equina mtA-1, Common Region and Variable 

Region. 

Double-strand sequencing was performed using DNA prepared by the boiling method. 

Standard pBluescript SK+ and pTZ18R primers were used aswell as primers ordered 

from Oswel which annealed to the mtA sequence. Figure 4.2.2a) shows the sequence of 

MtA-1, the common region and part of the variable region of S. equina. Figure 4.2.2b) 

shows the deduced amino acid sequence of mtA- 1. 

103 



1 acatacaatg CtagbttCta gcaaggaatg aaatcataat tcgatcaaat 

51 tgctttcact tttacctgtc aaattcacaa ggctgcacgt cttatgtaat 

a agcagcaaac ctacccg 

101 ccaaaagccc ttgtgaagtt gcgcccccaa agcagcaaac ctacccgcct 

151 tctccctccc ccgcctcccc gtccctcggt ccgtaagtga atggaaagga 

201 gacagaaaac gcgcccaccC AAATtaacag tcaaccccat gtctcctatt 

251 taggaaagcc gtggtcatct ttcccgcctt cacccaaact tcccaccact 

301 tttttcccaa catcagcctc gtaatcgaaa LcccgLct.gc acttcctcac 

351 gtgttgaact catcattcaa gaactcaaac gccagaaacg cgatgtcagg 

401 cctcgatcaa atccitcaaaa agttcgccpa tctcggtgag ggtgatcgtg 

451 aagcggccat gaaagctttc ttagcgptga tgccccrtgag caacgaacct 

501 gtcgctgaac ctgtccgcaa pgcccccpcc gcaaacaaca aggtcaacgp 

Sal I 

551 cttcatggct ttcagatgta agtcagatct gagtcaatct tgtcgacagt 

601 ctatgctaat tgtttttcct tcagcgaact attccccgct cttctcttac 

651 cttccgcaaa aatgapgtc gcctttcatg accattctct cgcagtacga 

701 cccctaccac aacgaatgpg atttcatcTtg ttcggtgtat tcttcaatcc 

751 ccaccgacct ggpggagcag aatcTttacac tgcagctctg ciattcactpt 

801 gctatcggcc apatgggatt gattgaccgc gaccactaca tccatcgtt 

851 tggctgcrcgc ctccgtcaga ctcccaacgg cactacccipc ctttttcgca 

901 ctgcgattcc gatggttacc cccaaccttc accccatcaa ccgcctttgc 

Xho I 
951 ctgctcatta acrtctctcga gagcggattg acrcaagcatc ttaccaatcc 

1001 ccatcctptt atcciccaagc tcaacatcc tagcttcgac atcatctcrca 

1051 tcaacapgcc tcctcaccat cacacac acacceacca pgctgacaat 

1101 tccgaactcg caatgccgtc actcttccct ggaaatcatg cactcctac 

1151 ggaggtagat ggcatcgcca accttcctct ctcacatcgg actcagcagg 

1201 gagatttccc caccgagcct ggattctcga ctcagtttga taccatgttg 

Xho I 
1251 gattcaattc tcgaqaatgg apaccatccc accaatagtc actacaacat 

1301 gtctctccct atggatcttc ctatgacggg ttagtggaag acgaggcacc 

1351 atctcgttta cgttcaactc gtgtgctttc acttggggca aatcatggga 
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1401 cttcagaatc gaacggtgtg gaatggacaa tcaaacggca gacaggtagc 
gcgt 

1451 tacctaacta gatggcaaga gcaAATAAAA tcaatgacag tcaacagcgt 

ccactatctg gttt 
1501 ccactatctg gtttaggatg gtcttcacta gtgaatcgat atgaacgtac 

1551 tgcttaagcg actgcgtatc gttgccggat ttciacatgtc gtcgagptpa 

Nsi I 
1601 pgcbgtgcytc cgccactgac cxccaacgctt atgctacaa cctcacgcta 

1651 gcgtaaatcc gtcgctgggc agtacctgcg tatgtacact agcgtagaag 

1701 ctgtgcccct catttatgga tctgctaatg tttcttgacc tgcagttt.c 
ggagatccgc atcagtcc 

1751 ggagatccgc atcagtccat tggagaagcc gcataccgtc ttcatttcac 

1801 tagtacttct acacagtcga gcccgttgca aaatcgaagt gtacttaaca 

1851 gtcagagtga ctaaatgagc cgagcgtcgg gcaaaggtgt aagactcccg 

1901 tcaatagaat gatcagataa ggattaaagg tagttcaata ttaagcttag 

1951 cgttagggcc gattagggtt cgaccaaaag cgcaggagac attatgaggt 

2001 acttgtagga ggcttgagag gcgcccgcgt atcgatcgag atttgagtga 

2051 gattgt 

FIGURE 4.2.2a) The DNA sequence of S.equina mtA-I, the common region and part of the variable region. 

The mtA-1 coding region is shown underlined. The putative mtA-I intron. nucleotides 568-624, is shown in 

plain text. The common region. nucleotides 1579-1636, is shown in italics underlined. The variable region 

follows on directly after the common region. Primers ordered (Oswel) are shown in italics above the 

corresponding sequence. Standard pBluescript and PTZ18R primers were used elsewhere. Restriction sites are 

shown in italics. The putative polyadenlyation signal and CAAT box are shown underlined in upper case. 
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1 MSGVDQIVKK FANLGEGDRE AAMKAFLAMM PVSNEPVAEP VRKAPTAKKK 

51 VNGFMGFRSN YSPLFSYLPO KNRSPFMTIL WQYDPYHNEW DFMCSVYSSI 

101 RTDLEEQNVT LQLWIHYAIG QMGLIDRDHY MASFGWRLGQ TRNGTTDLFR 

151 TAIPMVRRNL QPMNGLCLLJI KCLESGLSKH LTNPHPIIAK LQDPSFDMIW 

201 INKPPHHQQG HTDQADNSEL GNPSLFPGNH AVAAEVDGIA NLPLSHRTQQ 

251 GDFGTEPGFS TQFDTMLDSI LENGNHPSNS HYNMSLANDL PNTG* 

Fl(,URE 4.2.2 b) The deduced amino acid sequence of S. equina mtA-l. The region proposed to be a DNA 

binding domain with similarities to the a domain of S. cerevisiae MATed and N. crassa mtA-1 is shown 

underlined. 

4.2.3 Transformation of S. equina mtA-1 into sterile N. crassa 

spheroplasts. 

Arnaise et al (1993) showed that the P.anserina mat+ and mat- mating type genes 

conferred mating activity when transformed into sterile N. crassa mutants, but not 

vegetative incompatibility or post-fertilization functions. P. anserina, unlike N. crassa 

does not display vegetative incompatibility as opposite mating type nuclei are 

compartmentalized in a single ascospore. P. anserina and N. crassa are closely related 

filamentous ascomycetes. As described in detail in Chapter 1 FMR 1 and mtA- 1 have each 

an a domain and FPRI and mta-1 have an HMG domain. 

S. equina and N. crassa are closely related and the mtA- 1 proteins of both species have 

an a domain. In equivalent experiments to those of Arnaise eta! (1993) transformation 

experiments using the cloned S. equina mtA- I sequence were carried out. Three main 

questions were to be addressed in these experiments. (i) Could S. equina mtA- 1 confer 

mating activity to sterile N. crassa mutants? (ii) Could S. equina mtA-1 confer 

homothallism to sterile N. crassa mutants that would make them self-fertile? (iii) Would 

the introduced mtA- 1 gene confer the heterokaryon incompatibility function on the 

recipient mutant? 

To answer these questions the mtA- I gene of S. equina was amplified by PCR and 

cloned into expression vector pBARGRG 1. This plasmid contains a glucose-repressible 

promoter, grg-1, and the bar gene which gives resistance to Ignite (Pall and Brunelli, 
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1994). The strategy used for this cloning experiment is outlined in figure 4.2.3a). Figure 

4.2.3b) shows a schematic diagram of plasmid pBARGRG 1JN. 

PCR 

Barn HI 	 5' 	 3' 

gcggatccgtctgcacttcctcacgtgttgaa 	equina mtA- 1 

accttctgctccgtggtagagcaacctagggc 

	

3 ' 	 5' 	
Barn HI 

TA CLONING 

DIGEST WITH Barn HI AND LIGATE 
INTO pBARGRG1 

FIGURE 4.2.3a) Strategy for cloning S. equinci mtA-1 in pBARGRGI. The PCR product, a band 

approximately 1kb in length was phenol extracted from a low-melting point agarose gel and TA cloned into the 

pGEM-T Vector. The plasmid was digested with Barn HI to cut out the mtA-I gene, the fragment extracted from 

the gel and ligated into pBARGRGI and the plasmid transformed into E. coli cells. 
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Barn Hi 

3am Hi 

pBARGRG1 JN 
7.35 kb 

FIGURE 4.2.3b) Schematic diagram of plasmid pBARGRGIJN. The orientation of the S. equina mtA-1 gene 

was checked using a unique Eco RI sight from the polylinker and a unique Sal I sight from the mtA-1 gene inton, 

near the N-terminus of the gene. For the MtA-1 gene to be in the correct orientation then a Eco RI/Sal I digest 

should give a band 0.7 kb in size. 

To test the ability of S. equina mtA-1 to confer mating activity onto sterile N. crassa 

mutants, the pBARGRG1JN plasrnid was transformed by electroporation into N. crassa 

am 1 spheroplasts. am!  mutants have a 1-base deletion causing a frameshift in the mta- 1 

coding region resulting in a loss of mating and vegetative incompatibility functions. 

Electroporation of the spheroplasts is described in 2.2.3.2. As a control in this 

experiment some spheroplasts were electroporated without pBARGRG1JN DNA. The 

transformed spheroplasts were allowed to regenerate their cell walls and then plated onto 

selective ignite medium. Two transformants grew on the plate onto which conidia 

electroporated with pBARGRG1JN had been plated. The control plate also had a colony 

growing on the selective medium, this colony does not contain pBARGRG1JN and 

therefore could not be resistant to Ignite. Genomic DNA was extracted from the three 

transformants, digested with Eco RI and ran on an agarose gel along with Eco RI 

digested genomic DNA from N. crassa mtA and X Hind III size markers. The gel was 

Southern blotted and probed with N crassa mtA probe to look for the integration of the 

pBARGRG 1 JN plasmid. Figure 4.2.3c) shows the result of this experiment. 
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FIGURE 4.2.3 c) Southern blot of genomic DNA extracted and digested with Eco RI from 

the Control, Transformant I, Transformant 2 and N. crassa mtA. The blot was probed with 

the N. crassa mtA probe and a ? probe. Fragments that hybridised with the mtA probe are 

indicated. 



The genomic Southern blot shown in figure 4.2.3c) demonstrates that the N. crassa mtA 

probe did not hybridise to the digested genomic DNA from the control sample. Bands 

corresponding to the pBARGRG 1JN plasmid are only observed in transformant 1 and 

transformant 2. The bands in lane 5 correspond to mtA and not the pBARGRG1 plasmid 

itself. Clearly the control colony growing on Ignite containing medium was a 

spontaneous resistant. 

Transformants 1 and 2 and the control transformant were crossed to N. crassa mta to 

observe whether plasmid pBARGRG1JN conferred mating activity to the transformants. 

Wild type N. crassa mtA was crossed to mta as a control. Figure 4.2.3d) shows the 

result of these crosses. 
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FIGURE 4.2.3 d) The result of crossing transformants I and 2 and the 

control with N. crassa mta. A wild type cross was included in the 

experiment and one can see perithecia were formed as a result of this 

cross. The crosses involving transformants I and 2 resulted in perithecia 

being formed. No perithecia were produced in the control cross. 
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From figure 4.2.3d) one can see that in the wild type cross perithecia are formed 

indicating that mating has taken place. The crosses involving transformants 1 and 2 also 

show the presence of perithecia. The plasmid pBARGRG1JN containing the S. equina 

mtA- 1 gene has conferred mating type activity on the sterile N. crasscz mta mutant. The 

cross involving the control resulted in no perithecia being formed. 

A second transformation experiment was undertaken as a further control to show that it 

is expression of the S.equina mtA-1 gene that is conferring mating type activity to the 

sterile N. crassa mta mutant, not the expression vector itself. The plasmid 

pBARGRG1JN was transformed once again into the am   spheroplasts as was plasmid 

pBARGRG 1, the expression vector without the S. equina mtA- 1 gene. Transformants 

were plated onto the selective ignite medium and pBARGRG1 and pBARGRG1JN 

transformants crossed to N. crassa mta and mtA. Figure 4.2.4e) shows the result of 

these crosses. 
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FIGURE 4.2.3 e) The results of crossing transformant pBARGRG, a transformant containing the plasmid 

without the S. equina mtA- I gene, and transformant pBARGRGeqA with N. crassa mtA and mta. No 

perithecia are formed on the plate where pBARGRG was crossed to both mating types. On the plate where 

pBARGRGeqA was used in the crosses, no perithecia are produced in the mtA cross but perithecia are 

produced in the mta cross. This indicates that the S. equina mtA-1 gene is conferring the ability to mate on 

the sterile transformant. 
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Figure 4.2.3e) shows the formation of perithecia only on the plate where 

pBARGRG1JN (labelled pBARGRGeqA in figure 4.2.3e)) was crossed to N. crassa 

mta. No perithecia were produced when pBARGRGeqA was crossed to mtA. For the 

control crosses involving pBARGRG1, pBARGRG1 x mtA/mta, no perithecia were 

produced as a result of either of these crosses. S. equina mtA- 1 confers mating type 

activity when transformed into a sterile N. crassa mta mutant. 

pBARGRG1JN transformants were plated onto crossing medium (Westergaard and 

Mitchell, 1947) and examined for homothallic behaviour. No perithecia were formed 

under these conditions. 

Examination of perithecia produced by the pBARGRG1JN x N. crassa mta cross 

revealed that no asci or ascospores were observed as a result of this cross. 

The original N. crassa mating type mutant used in these transformation experiments had, 

in addition to a mutation at the mating type locus, a requirement for adenine brought 

about by a mutation at the ad-3B locus. It should have been possible to test the 

Neurospora transformants to observe whether or not the S. equina mtA- I sequence had 

conferred vegetative incompatibility function as well as mating type function. An 

experiment was set up in which the ad-3B mutation was used as a forcing marker to see 

if heterokaryons could be formed with pan-1 al-2 strains of either mating type. The latter 

strains were chosen so that they were compatible at all other heterokaryon incompatibility 

loci so any incompatibility between the transformants and tester strains would be due to 

the S. equina mtA-1 sequence. Both the transformants and the non-transformed controls 

unfortunately were found to be prototrophic and showed no sign of adenine requirement. 

This meant the incompatibility function of the S.equina mtA- 1 could not be assessed in 

the Neurospora transformants. A small scale experiment to try and recover the ad-3B 

mutation from the strains, using the fact that the mutation confers a purple phenotype on 

mutant colonies, was not successful and therefore the experiment was abandoned. 
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4.3 Discussion 

The Sordaria equina mtA-1 gene, using the definition of mtA-1 by Glass et a! (1990a), 

comprises of two exons separated by an intron 57bp long which is found 176bp 

downstream of the first ORF ATG start site. The position of the intron is conserved in 

relation to the N. crassa mtA-1 intron (see chapter 6). The intron has a 5' splice site 

GTAAGT and 3' splice site CAG. A putative CAAT box is located at nucleotide 220 and 

a putative polyadenylation signal located at nucleotide 1474. If the putative intron were 

spliced out, the first and second exons would code for a translational product encoding a 

294 amino acid polypeptide. 

The presence of a second intron in S. equina mtA-1 is more difficult to determine from 

the sequencing data. The 5' splice sequence is conserved (GTTAGT, nucleotides 1330-

1335 figure 4.2.2a)) but no 3' splice sequence appears to be conserved after 60bp. A 3' 

splice sequence CAG is found 75bp downstream of the 5' splice sequence but no in-

frame stop codon exists after this CAG. When the mtA- I gene was amplified by PCR for 

expression studies the 3' primer used was taken from the proposed second intron and 

therefore did not include any of the additional amino acids which would have been 

present if the second intron was spliced out. 

The expression studies of S. equina mtA- 1 have demonstrated that this gene encodes a 

functional polypeptide. This is interesting considering that S. eqi.iina does not mate with 

a strain of opposite mating type as only one mating type sequence (A) is present in the 

genome of the species. Introducing S. equina mtA- 1 into N. crassa did not confer 

homothallism. Likewise when N. africana mtA-1 was introduced into N. crassa, 

homothallism was not conferred (Glass and Smith, 1994). It is likely that differences 

elsewhere in the genome of a homothallic species are responsible for homothallic 

behaviour. Glass and Smith (1994) performed mRNA analysis to obtain evidence for 

mtA- 1 transcription in N. africana itself. This experiment was not performed for S. 

equina but as the cDNA of mtA- I was detected in N. africana, it seems likely that mtA- 1 

is expressed in S. equina. Expression of mtA-1 in homothallic species might reflect the 

need for the gene for post-fertilization functions. 

Transformation of the mtA- 1 gene for the expression study of S. equina mtA- 1 resulted 

in ectopic integration of the gene into the N. crassa genome because the bands in the 

Southern blot shown in figure 4.2.3c) were not the same as for wild type N. crassa mtA. 

The S. equina mtA-1 gene confers the ability to mate upon the recipient but no 
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ascospores are produced as a result of this mating. The obvious answer to this 

observation is that one is only transforming mtA-1 into N. crassa sterile mta. MtA-2 and 

mtA-3 are required for post-fertilization functions also in N. crassa mtA (Ferreira et a!, 

1996). However ectopic integration of N. crassa mta- 1, a gene which has mating and 

post-fertilization functions, into mtA strains suppressed for vegetative incompatibility 

results in mta mating type activity being conferred but no ascospore production when the 

transformants are crossed to mtA (Staben and Yanofsky, 1990). Chang and Staben 

(1994) showed that if mtA was directly replaced by mta DNA in N. crassa, effecting a 

mating type switch, then this mta strain when crossed to mtA will produce ascospores. 

Therefore mating type DNA may function properly only when it is present at the correct 

chromosomal location. 

116 



Chapter 5 

The Sub-Cloning and 
Sequencing of Sordaria fimicola 

mtA-1 and mta-1 
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5.1 Introduction 

Sordaricifimicola is a homothallic species with morphological similarities to Sordaria 

equina. With heterothallic strains it would be customary to try and cross two strains to 

deduce if they belong to one species or are two distinct species. With homothallic species 

being self-fertile this is not possible. Figure 5.1 shows a genomic Southern blot where 

genomic DNA from N. crassa mta and mtA, S. fimicola and S. equina has been 

digested and probed with N. crassa mta. This result is consistent with the taxonomic 

conclusion that S. fin2icola and S. equina are two distinct species. 

Bands indicating hybridisation are clearly seen in lanes 1, 2 and 3 where digested N. 

crassa mta genomic DNA is present. Bands are also present in lanes 4 and 5 indicating 

that S. fimicola hybridises with the mta probe. No hybridisation with the mta probe is 

seen for S. equina, lanes 7, 8 and 9. Some background signal is present in the N. crassa 

mtA digests, lanes 10, 11 and 12 but the strong signals obtained from the N. crassa mta 

digests are satisfactory as a control. No bands are seen in lane 6, S. flinicola genomic 

DNA digested with Xho I. The genomic DNA seemed resistant to digestion with Xho I 

in this case hence no bands are distinct. A 4.7kb Ba,n HI band is highlighted, this 

fragment was present in a ?. EMBL3 clone obtained from the honours cloning practical. 

Sub-cloning of this fragment and others is described in 5.2. The plaque from which the ? 

clone was obtained hybridised to both mtA and mta. 
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FIGURE 5.1 

Genomic Southern blot of DNA exctracted and digested from N. crassa mta and mtA, S. firnicola and S. equina. The 

blot was probed with the N. crassa mta probe. Enzymes used are indicated above the figure. The 4.7 kb Barn HI 

fragment which hybridised with the probe is indicated also. 
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5.2 Results 

5.2.1 Sub-cloning of S. fimicola mtA-1 and mta-1. 

Figures 5.2.1a) and b) show a Southern blot of digested S. fimicola ? EMBL3 DNA 

probed with mtA (a) and mta (b). Figure 5.2. 1c) shows the restriction map of the S. 

timicola A. EMBL3 clone isolated using the N. crassa mtA and mta probes. The sub- 

cloning strategy is shown also. 
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FIGURE 5.2.1 a) 

Southern blot of S. fimicola ?. DNA digest probed with mtA probe. Enzymes used are indicated 

above the figure. The 4.7 kb band which hybridised with the mtA probe is indicated also. 
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FIGURE 5.2.1 b) 

Southern blot of S. fimicola ?. DNA digest probed with N. crassa mta probe and ? probe. Enzymes used 

are indicated above the figure. The 4.7kb band which hybridised with the mta probe is indicated also. 
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JNfimB/X 	 JNfimXho 

FIGURE 5.2.1c) Restriction map and sub-cloning strategy for S. fimicola ? EMBL3. The positions of the 

mta-1 and mtA-1, mtA-2 and mtA-3 ORFs are shown as is the location of the mta-mtA junction. 
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The two blots photographed in figures 5.2.1 a) and b) were superimposable and show 

that the 4.7kb Barn HI fragment hybridises with both mtA and mta. A partial digest can 

be seen for the Eco RV and Xho I digests in figure 5.2. ib). Blot a) was stripped and 

reprobed with mta and a X probe. S. firnicola mtA-1 and mta-1 are linked. 

Figure 5.2.1 c) describes the sub-cloning strategy so that mtA-1 and mta-I of S. 

firnicoia could be sequenced. Most of the of mta-1 gene was not present on the 4.7kb 

Barn HI fragment. A 4kb Barn HI fragment whch hybridised to the mta probe only (see 

figure 5.2.1 b) ) was subcloned from the X clone, this fragment is adjacent to the 4.7kb 

Barn HI fragment on the clone and contains the rest of the mta- 1 coding region. Plasmids 

JNfimB/X and JNJYrnXho were constructed to sequence the junction between the mtA 

and mta S. fimicola idiomorphs. The 2.1kb Sal I/Barn HI fragment was sub-cloned 

also and from this sequence data from mtA-2 was obtained. An Nsi I site is present on 

the clone, this is most likely to indicate the presence of the mtA common region (Randall 

and Metzenberg, 1995) although this region of the clone would need to be sequenced to 

confirm this. 

5.2.2 Sequencing of S. firnicola mtA-1 and mta-1. 

Double-strand sequencing was performed on DNA prepared by the boiling method. 

Automated sequencing was performed on DNA prepared by alkaline lysis. Primers used 

were either standard pBluescript KS+ primers or primers ordered from Oswel which 

annealed to the mtA or mta sequences. Figure 5.2.2a) shows the DNA sequence of mtA-

1. Figure 5.2.2b) shows the deduced amino acid sequence of mtA-l. Figure 5.2.2c) 

shows the DNA sequence of mta- 1 and figure 5.2.2d) shows its deduced amino acid 

sequence. Figure 5.2.2e) shows upstream sequences and part of the coding sequence of 

MtA-2. 
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1 atgtccapcg tcgatcpaat cgtcaagacc ttcgccaacc tccctciaqcrg 

51 cgagcgcaac gcagcagtca atctatctt agccatgatg ccccccQcrcc 

101 ctaatcctat tcctccaaatc ccccTaacctcr ttccacaaac ccccaccrcca 

151 aagaagaagg tcaacgpctt catgggtttc agatgtaagt caaatctgaa 

3 gal: 

201 ttaatcttga cgacgatcca tactgattgc ctttctattt cagcgtacta 

aaggagcgag aagag 5 

251 ttcctcgctc ttctctcacrt ttcctcagaa agcgccatcg cccttcatga 

301 ccatcctctcr pcaqcacgat ccctttcaca acgaatqqga tttcatctgc 

Xho I 

351 tcgqtcrtatt cgtcaptccg caactacctc gagcactttga acgcgcpgcg 

401 gacraagaag attaccctoc aatactict tcactttact crtccccatca 

451 tqqatct tggtcgcgaa aactacttgc ccacgcttgg ctgggacctc 

501 Qtcacgatgc ccaaccac tatcgacctt atcicgcatcg ctatgccttt 

551 cttttagaaag aacctccagc ccatggacgc cctatgcctg ttcaccaagt 

Sal I 

601 gtcagcraggg ccqattgcaa gl:cgacaacc agcacttcgt cattgccaacr 

651 ctttcagatc çtacrccacga catgatctgg ttcaacaagc gccctcacta 

3ctct gtgcggcggg ttLg 5 

701 tcpctcactaga cacgcccccc aaaccgacag ttctgaactc gggggg 

751 cgctcttccc tcgcaatcac gcaqttgctg cagaggcacra tcrcrcgtcgcc 

801 actottcaac tccctcattg gatgcagcag ggagatttcg gcaccgagtc 

851 ccgatactca cctcagtttcr agaccttgtt gggttccata cttgagpatg 

901 ctaaacgccac cactaatcat tcctacaaca tggctctggc tatggatgtt 

951 cctptgptgg gttagtggat gatgaagtgc catgtcactt agctttacta 

1001 gtgtgctgac gatttggcag gattcaatgg aggagcatag aagtacggca 

1051 cagtcacaac tttcctttcc tttcctttgt caaatctggt ttcgtggtat 

1101 gtgcatacaa agcgatggcg aaaagggtct agttaggttt ctttgtgcat 

1151 tcattcga 

FIGURE 5.2.2a) The DNA sequence of S.fimicola mtA-l. The coding region is shown underlined. The 

putative mtA-1 intron, nucleotides 185-243, is shown in plain text. Restriction sites are shown in italics. 

Primers ordered (Oswel) are shown in italics above the corresponding sequence. 
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1 MSSVDQIVKT FANLPEGERN AAVNAILAMM PPGPGPVRQI PEPVPQAPAP 

51 KKKVNGFMGF RSYYSSLFSO FPOKARSPFM TILWQHDPFH NEWDFNCSVY 

101 SSIRNYLEQL NAQREKKITL QYWLHFAVPV MGVLGRENYL PTLGWDIJVTM 

151 PNGTIDLMRI ANPLFRKNLQ PMDGLCLFTK CQEGGLQVDN QHFVIAKLSD 

201 PSHDMIWFNK RPHYQQP.HAA QTDSSELGVS ALFPP.NHAVA AEADGVATVQ 

251 LPHWMQQGDF GTESGYSPQF ETLLGSILEN GNATSNDSYN MALAMDVPIVIN 

301 G* 

FIGURE 5.2.2b) Deduced amino acid sequence of mtA-l. The region proposed to be a DNA binding domain 

with similarities to the S. cerevisiae a domain is shown underlined. 

1 atccaaaacp acttgatgcp ccccgctcgg acgtcagcgg aactcagcxgt 

51 caccatggct tggtctgca tctcgaacca gcttctggcac tcrctaacgacc 

101 gcaacratcat tcrccattcct ctgaptgact tcactatccrc ccaccctgac 

151 attcptgctp ccatcgtcctc cgaatacaag taagtgtcct cacccatctc 

201 tcaccttacc ttatactgac catttgcatt aggaaagcga ctggtgaacra 

251 crgcatgttt gctcQccrata ccgagcact crgaaatcatg ctgcttggcc 

301 ccgccaagct gtttaaagcc gatagtgtcg ttqttQa aaa caatctgttt 

Barn HI 
351 tgggatccca agggcatcca tgctgagaca cctaagcagc agcaciaagaa 

401 gaaccrccaag attcctcgtc cgcccaatcc ctacatctta taccccaacrg 

451 accatcatcg tcagatccgc gagcagaacc ctggactgca caacaatgag 

501 atctgtaggt ctcttgtcac tatgatctat attggttgac cctgagacta 

caacat gtggcgtgat ga 

551 acctcactta gccgtcattg ttcrgcaacat gtggccitcrat gagcacccctc 

601 acattcgcga caaatatttc agcatggcca atgaggtcaa ggctagattg 

651 ttgctggaca atcccacta tcgctacaat gcccgtcggt ctcaggacat 

701 tcgcaggcgc gtttccccgt atctcaacrat caacictcctc aattatgacg 

751 tcaacggcaa ccttctttgct ggcpccgtca acgccgagga tgccgcgcta 
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CCCgtC 

.Itc 
tctgaggaag ac 

1051 ppaacccttc cccccctctc accaacatcc acacactcct caattttt 

1251 tcra 

FIGURE 5.2.2c) DNA sequence of S. fimicola mta-l. The coding region is shown underlined. The putative 

introns, nucleotides 180-232. 505-561, are shown in plain text. Restriction sites are shown in italics. Primers 

ordered are shown in italics above the corresponding sequence. 

1 MENNLMH PAR 

51 IHAGIVAEYK 

101 DPKGIHAETP 

151 AVIVGNMWRD 

201 VSPYLKIKLL 

251 VCRPVAGSRK 

301 FFPMNEHLWG 

351 IMTLPLLPPL 

TSAELRVTMA WSGISNQLGH WNDRKIIAIP LSDFTIAHPD 

KATGEEGNFA RDTEALEIML LGPAKLFKAD SVVVESNLFW 

KQQQKKKAKI PRPPNAYILY RKDHHRQIRE QNPGLHNNEI 

EQPHIRDKYF SMANEVKARL LLDNPDYRYN ARRSQDIRRR 

NYDVNGNLLW GTVNAEDAAL IRTHFHGVVR VEETDEGCRI 

LRAANVDTWM PRYTVDANPV SEEDEAAQGT LFNFNDTLDG 

TATQNPSPAL ANIHALLDFG HPNSVQAITQ NIQNITQVH 

RLPSIWSWLT IPSTQRSFPL * 

FIGURE 5.2.2d) Deduced amino acid sequence of S. fitnicola mta-l. The region thought to he a DNA binding 

domain with similarity to the high mobility group (HMG) proteins is shown underlined. 
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1 gtcaaggact tCtgcCaaCC tcacgggaga taacaagaac ttggacaaaa 

51 tttggcatgc aataccccac aggtcaagtg atacccgccc caagtctcac 

101 aggagaacaa taggacggac ctgagattga aaccgacacg caagccgccc 

151 gaaagagttt gggaacctga gtccttaagt tgttcacttc ttcgaaatgt 

201 cctgtcggca aaacttctcc tgctacccag cggtcttctt gtagcttcct 
Xho I 

251 cgagcactca ctgttgagtc ttccttttcg ttagcgaccg acatcgagct 

301 catcaacacg caacctcacct cgggccagaa aggacaggat ctcgaaatgg 

351 tgtpcaaggt aacaacatgt ctaccctcga tacactcatt tacttatcgc 

401 tgatgaactg gccagaaact ccatcagtta caggctagctc tttctcgttc 

451 atatctttca cpctctcaatca aggagttcga agacrpacctt cagtcrtcttt 

501 ttcatgaagc caagatcttg ctatgcacpa aaaciaacgaa cttatcctccaa 

551 agctcrtttg crcitctactcaa cgaggtcgpg cctaacaacg agqpaaaaat 

601 catcaactctca gcatgctgcg 

FIGURE 5.2.2e) DNA sequence of upstream regions and part of the coding region of S. jl,nicola mtA-2. 

Coding sequences are underlined. The first intron in the gene (one of four), nucleotides 359-415, is shown in 

plain text. Restriction sites are shown in italics. 

5.2.3 Discussion 

The Sordaria fimicola mtA- I gene, using the definition of mtA- 1 by Glass et at, 

(I 990a), comprises of two exons separated by an intron 59 bp long which is located 185 

bp downstream of the first ORF ATG start site. The intron has a 5' splice site GTAAGT 

and 3 splice site CAG. The position of the intron is conserved in relation to the position 

of the intron in N. crassa mtA- 1 (see chapter 6). If the putative intron was spliced out the 

first and second exons would code for a translational product 301 amino acids long. 

The 5' splice sequence of the proposed second intron (Saupe et a!, 1996) is conserved 

in S.fimicola mtA-1 (GTTAGT, nucleotides 961-966 figure 5.2.2 a)) as is the 3' splice 

sequence (CAG, nucleotides 1018-120 figure 5.2.2 a)). A putative second intron 60bp 

long exists in the mtA-1 gene. If this intron were spliced out then five amino acids would 



be added to the S. jlmicola mtA- 1 ORF making it a 306 amino acid long polypeptide 

with a stop codon, TAG, at nucleotide 1040 in figure 5.2.2 a). 

The Sordaria fimicola mta- 1 gene comprises of three exons separated by two introns. 

The first intron is 53bp long situated 1 8Obp downstream of the first ORF ATG site. The 

second intron is 57bp long and 505bp downstream of the first ORF ATG site. The first 

intron has a 5' splice site GTAAGT and 3' splice site TAG. The second intron has a 5' 

splice site GTAGGT and a 3' splice site TAG. The positions of both introns are 

conserved in relation to the position of the introns in N. crassa mta- 1 (see chapter 6). If 

the putative introns were spliced out the first, second and third exons would code for a 

translational product 380 amino acids long. 

The Sordariafiinicola mtA-2 gene was only partially sequenced but the first intron is 

shown, 57bp long with a 5' splice site GTAACA and 3' splice site CAG. The intron is 

situated 67 bp downstream of the first ORF ATG site. The position of the intron is 

conserved in relation to the position of the first intron of N. crassa mtA-2. Upstream 

sequences of S. firnicola mtA-2 are shown, these are proposed to be important in 

transcriptional and translational control of N. crassa mtA-2 and mtA-3 (Ferreira et a!, 

1996). The upstream sequences of S. firnicola and N. crassa are compared in chapter 6. 

The Sordaria fimicola mtA- 1 and mta- 1 genes are linked. JNfinzBiX and JNfimXho 

were constructed so the junction between the two genes could be sequenced (see figure 

5.2.1c)). The Xho I end of plasmid JNflrnB/X was sequenced and corresponded to 

region approximately 0.9kb upstream of N. crassa mta- 1. One of the Xho I ends of 

plasmid JNfi,nXho should follow on directly from the sequencing data obtained from 

JNfimBIX as both fragments lie adjacent to each other. Both ends of JNfirnXho were 

sequenced, one end corresponded to the Xho I site in MtA-2 seen in figure 5.2.2e) at 

nucleotide 296. The other end followed on from JNfirnB/K for 17 nucleotides in mta 

and then proceeded into a region of N. crassa mtA-3, approximately 0.4kb downstream 

of the ATG start site of the gene. 

The mtA-2 and mtA-3 genes are transcribed divergently to each other as shown in figure 

5.2.1c). When the mtA-3 end of JNflmXho was sequenced, the direction of sequencing 

was 3-5' with respect to mtA-3 when the data was compared with the N. crassa mtA-3 

sequences. The junction between S. firnicola mta-1 and mtA-"\cuts out approximately 

0.8kb of the downstream portion of the mtA-3 ORE. Beatty et al (1994) probed genomic 

DNA from N. rerricola , a homothallic species containg mtA and mta, with probes A2- 
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A6 and al-a5 as described in section 1.2.3.2. The A2 probe, 0.8kb long, covers part of 

mtA-3. This probe did not hybridise with N.terricola genomic DNA indicating that this 

species like S. fimicola is missing part of the mtA-3 gene. Probe a4, 0.4kb long, covers 

a region adjacent to the right flank upstream of the mta- 1 gene. a4 does not hybridise 

with N. terricola. The position of the mta/mtA junction in S. fimicola means that this 

species is also missing a substantial portion of the the region upstream of mta-1, 

approximately about 1kb. S. fimicola appears to be missing the mta common region and 

variable region due to the junction between mtA and mta. 

Figure 5.2.3a) shows the S. fimicola mtA-mta junction in relation to its location at N. 

crassa mtA and mta. 

1603 mtA N. crassa 

mta-1 	 mtA-3 	 mtA-2 
4121 mtA N. crassa 

 - 

 

nHI 

2330 mta N. crassa 	1278 mtA N. crassa 

FIGURE 5.2.3a) Schematic diagram of the mtA-mta junction of S.firnicola in relation to mtA-1, mtA-2, 

mtA-3 and mta- I. Numbers shown represent the equivalent position in N. crassa. 
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Figure 5.2.3b) shows the sequence of the junction of mtAlmta in S. fimicola compared 

to the respective sequences in N. crassa. 

mta mtA-3 
TGTTCGGCTCTCACAGAGCTCTTCCGTAAGG/GACACTCGTACAGTGTCAAAGGGGTAAGG 

S. Jimicola 

TATTrG(;TrcTcAcAGAGcTcTTCCATCAGGATcGAGcA TCTGCCTTGGAGC77'CTCTCGTCTCGC7TT 

N. crassa mta 

CCCCCGGG7TA CAAA CCA CTTGAA TGTTCCCCCGCTTTGACGCTCATACAGGGTCAAAGGGGTAAGG 

N. crassa mtA-3 

FIGURE 5.2.3b) The sequence at the junction of mtA/mta at S. fimicola compared to the corresponding 

sequences in N. crassa mtA and mta. The nucleotides in bold show the nucleotides relevant to S. fimicola, those 

nucleotides in italics do not have corresponding sequence in S. fitnicola. 

Ideally the sequences of mta and mtA in the ancestor of S. fimicola would be examined 

to get a clearer idea of how the mtA and mta idiomorphs recombined at this point. A 

small region of limited homology, for example, might facilitate an unequal crossing over 

event which would bring the idiomorphs together. A comparison of S. fimicola with its 

immediate ancestor is obviously not possible so the mta and mtA-3 sequences of N. 

crassa were used instead. As the idiomorphs are under evolutionary constraints it is not 

impossible that the N. crassa sequences may give insight into the recombination event. 

However there are no obvious reasons for recombination taking place at the junction site, 

such as homologous sequences which could have paired to give unequal crossing over. 

The fact that the S. flinicola mtA-3 and mta- 1 ORFs are transcribed in the same direction 

as each other, which is the case when the two idiomorphs are observed separately in 

heterothallic species, suggests that it could have been an unequal crossing over event that 

recombined the idiomorphs in this fashion. At the end of S. fimicola mta- 1 sequences 

corresponding to centromere distal sequences were found (see chapter 6) and although 

centromere proximal sequences were not obtained for S. fimicola, an Nsi I site is present 

downstream of mtA- 1 indicating that centromere proximal sequences are possibly 

present. Again this is evidence that the mtA and mta chromosomes in the ancestor of S. 

fimicola could have aligned in such a manner to produce unequal crossing over and so 
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maintain the idiomorphic flanking sequences in their correct positions relative to the 

centromere. 

MtA-3 in S. fiinicola runs into mta 5-3. The sequencing data for mta was examined 

for stop codons and an in frame TGA stop codon was found 77 nucleotides downstream 

of the junction site (data not shown). It is possible that MtA-3 is a non-functional protein 

and not required for post-fertilization events in S. fimicola. 
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Chapter 6 

Evolution Within the 
Sordariaceae 
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6.1 Introduction 

The mating type genes of the Sordariaceae contain several distinct regions which are of 

interest when drawing up comparisons in an evolutionary context. In this chapter the 

DNA sequence data detailed in chapters 3, 4 and 5 are compared. Section 6.2.1 details 

the alignments of the DNA sequences and amino acid sequences of the mtA- 1 and mta- 1 

Sordaria genes sequenced in this project and the mtA- 1 and mta- 1 Neurospora genes 

available from the database. From the mtA-1 alignment a phylogenetic analysis was 

carried out to establish the evolutionary relationships between the species examined. 

Interesting features from available sequence data upstream and downstream of the mating 

type genes are commented on in section 6.2.2. The common regions of S. equina and S. 

scierogenia were compared to the common regions of Neurospora species and the 

variable regions compared to see if any sequence similarity exists between the 

Neurospora and Sordaria species. 

6.2 Results 

6.2.1 Comparisons Between mtA-1 and mta-1 genes of Sordaria and 

Neurospora Species. 

In figure 6.2.1 a) the DNA sequences of the mtA- 1 genes from N. sitophila, N. crassa, 

N. intermedia, N. tetrasperma, N. discreta, N. africana, S. firnicola, S. equina and S. 

scierogenia are aligned using CLUSTALW. One can see that the position of the intron in 

the mtA- I gene in all the species is conserved. Seven out of the nine species have a 5 

splice sequence of GTAAGT. N. crassa and N. sitophila both have the 5 splice 

sequence of GTGAGT. The 3' splice sequence is CAG in all species except for N. 

inter,nedia which has TAG. The alignment of the species between positions 125 and 145 

is of interest as all the species appear to have a deletion in this region when compared to 

S. firnicola. (or S. firnicola has an insert in relation to the other species). A similar 

feature is seen between positions 390 and 407, S. fimicola here has an extra 18 

nucleotides compared to the other species. Between positions 620 and 625 all the 

Neurospora species and S. firnicola have a 6 nucleotide deletion when compared to the 

remaining Sordaria species (or S. equina and S. scierogenia have a 6 nucleotide insert 

compared to the other species). These inserts/deletions are all in multiples of three so do 

not disrupt the open reading frame. 
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1 N. crassa 	ATGTCGGGTGTCGAT CAAATCGTCAAGACG TCGCCGACCTCGCT GGGACGACCGAA GCGGCAATGAGAGCT T1'CTCAAGGATGATG 

2 N. si tophi la ATCGGGAGTCGAT CAAATCGTCAAGACG 'PI'CGCCGACCTCGCT GAGGACGACCGTGAA GCGGCAATGAGAGCT TI'CTCAACGATGATG 

3 N. in terznedia ATGTCGGGTGTCGAT CMATCGTCAPGACG TI'CGCCGACCTCGCT GAGGACGACCGTGAA GCGGCAATGAGAGCT TTCTCAACGATGATG 

4 N. tetraspenna ATGTCGGGTGTCGAT CAAATCGTCAAGACG rI'CGCCGACCTCGCT GAGGACGACCGTGAA GCGGCAATGGAGCT TTCTCAACGATGATG  

5 N. discreta 	ATCTCGGGCGTCGAC CAAMPGTCAAGPCG TI'CGCCGACCTCGCT GAGGACGACCGCGAA G- - - CAATGAGAGCT 	TCACGA3A3 
6 N. afri cana 	ATGTCGCGTCGAT CAAATCGAAGACG TTCGCCGACCTCACT GAGGGTGATCG3AA GCGGCAATGAGAGCI' PCTCAATGATGATG 

7 S. fimi cola 	ATGTCCAGCGTCGAT CAAATCGTCAAGACG TTCGCCAACCTCCCT GAGGGCGAGCGCAAC GCAGCAGTCAATGCT AAGCCAA3 

8 S. sd erogeni a ATGTCAGGCGTCGAT CAAATCGTCAAAACG ¶VPCGCCAATCTCGGT GAGGGCGATCGTGAA GCGGCCMAAAGCT TTCTTAGCGATGATG 
9 S. ecpiina 	ATGTCAGGCGTCGAT CA ATCGTCAAAAAG CGCCAATCTCGGT GAGGGTGATCGTGAA GCGGCCAAAAGCT TCFAGCGAPGATG 

91 	 105. 106 	 120 121 

1 N. crassa 	CGTAGAGGT ------ --------------- ACCGAACCTGTrCGC CGAATCCCCGCGGCA AAGAPGAAGGTCAAC GGCPrCA3GGTFC 

2 N. si tophi la CGT ------------ --------------- ACCGAACCThGC CGAATCCCCGCGGCA AAGAAGAAGGTCAAC GGCCAGGFC 

3 N. interrnedia CGT ------------ --------------- ACCGAACCPGIVICGC CGAATCCCCGCGGCA AAGAAGAAGGTCAAC GGCITCATGGGTTTC 

4 N. tetraspex-ina CGT ------------ --------------- ACCGACCI\3ThGC CGAATCCCCGCGGCA AAGAAGAAL3GTCAAC GGCTPCATGGGPPPC 

5 N. discreta 	CGT ------------ --------------- ACCGAACCTCGC CAAATCCCCGCGACA AAGAAGAAGGTAAC ccirrrc 
6 N. africana 	CGC ------------ --------------- ACCGAACCTGTCGC CAAACCCCCGCGGCA AAGAAGAAGGTCAAC GGCATGAG'NTC 
7 S. fixni cola 	CCCCCCGGCCCTGGT CCTGPTCGCCAAATC CCCGAACCTTCCA CAAGCCCCCGCGCCA AAGAAGAAGGTCAAC GGCPTCATGGG1FC 

- 	 8 S. sd erogenia CCCGTGAGCAACGAA ACT---------GTC GCCGAACCTGTCCGC AAAGCCCCTGCCGCG AAGAAGAAGGTCAC GGCrCA13GGN"It 
9 S. equina 	CCCGTGAGCAACGAA CCI' --------- GTC GCTGAACCTGTCCGC AAAGCCCCCACCGCA AAGAAGAAGGTCA1C GGCN'CA3GGPrPC 	

( 

1 N. crassa AGATgtgagtCAMT CTGAATCAACATTGT C=-GATCCAC 7A7rGCTCrC-AT TThagCGTACTAPI'C CCCGCTCN'CTCPCA 
2 N. si tophi la AGATgtgagtCMAT CTGA4TCMCATTGT c 	T-GTCC4TGGC TGATTGCTC11'C-AT TItagCGTACTAT1'C CCCGCPC1FCI'CTCA 
3 N. in tennedia AGATgtaagtCA4AT CVJXAATCAACATTGT CGTT-CATCCTGGC TAAr1YCTCTTC-AA 'rtagCGTACrArC CCCGCTCPI'CTCPCA 
4 N. tetrasperrria AGATgtaagtCMAT CflAATCAACA2'2YT C2AT'C42C TMTT3CTCTT'-AT ?ItagCFACTArC CCCGCTCTI'CTCTCA 
S N. discreta AGATgtaagtTAMT C7GAATCAATC7vlGT CYAT-AATCCATv.-C TGACTCTC'7'TC-AT ThagCGTACTAT1'C CCCGCTCTPCTCTCA 
6 N. a fri cana AGATgtaagtCAAAT C GATCAATCTTGT 2A-AACA2r-C TAAT'JYCCTTTT-AT TItagCGTACTATTC CCCGCrCTIXTCrCA 
7 S. fimi cola AGATgtaagtCMA7' CTGAA1'TAA1tTTGA CGAC-GATCCATA-C I1A71CCIVPTCTAT ?ItagCGTACTAT1'C CTCGCTCTI'CTCTCA 
8 S. sd erogenia AGATgtaagtCAGAT d 	AG7AA7IY2GT GGAC-AGTCCATA-C TAATIrP2TT- -c TItagCGTACTA'N'C CCCGCTCFFCTCTPA 
9 S. equina AGATgtaagtCAGAT CTGAGTCAATC7 17W CGAC-AGTCTATG-C TAA2 	nrit'- -c TTCagCGAACTATrC CCCGCTCT1'CTCTrA 



I N. crassa GCTCCCGCAAAAGGA GGATCGCCCTTCAT GACTAP1'CTCTGGCA GCA'IXATCCCTTCCA CAATGAGTGGGA 	CATGTGCTCGGTGTA 
2 N. si tophi la GCTCCCGCAAAAGGA GAGATCGCCcTTCAT GACCMWrCTCTGGCA GCATGATCCCTCCA CAATGAGTGGGATTT CATGTGCTCGGTGTA 

3 N. intermedia GCTCCCGCAAAAGGA GAGATCGCCCTCAT GACCACTCTGGCA GCAATCCC'ITPCA CAATGAGTGGGATrT CAGCTCGGTGTA 

4 N. tetraspenna GCTCCCGCAMAGGA GAGATCGCCCFCAT GACCACTCTGGCA GCAATCCCTPCCA CAMANIX3GGA'TTT CATGCTCGGTGTA 
S N. discreta GCPCCCGCAAAAGGA GAGATCGCCCTrCAT GACCAIrCTPrGGCA GCACGATCCCPTCCA CAACGAATGGGATIP CACGGTGTA 

6 N. africana GCrCCCGCAGAAGGA GAGATCACCCPICAT GACCATTCTCTGGCA GCACGATCCCTPCCA CAACGAATVGAATTT CATGTGCTCGGTGTA 

7 S. fimi cola GP11'CCTCAGAI..GGC GCGATCGCCCPTCAT GACCATCCTCTGGCA GCACGATCCC1TPCA CAACGAATGGGAIrr CATGOCTCGGTCTA 
8 S. sd erogenia CC11CCACAAAAGAT GAGG'IXGCCP11CAT GACCATCTCTGGCA GTACGATCCTACCA CACCGAATGGGATIT CA1PCGGITTA 
9 S. equina CCTCCGCAAAAGAT GAGGTCGCCTI'TCAT GACCATTCTCTGGCA GTACGACCCCTACCA CAACGAATGGGA'rTr CATGTGIVICGGTGTA 

390 391 	 405 406 

1 N. crassa 	TTCGTCAATCCGGAC CTACCTGAGCAGGA G -------------- ----AJGGACCT GCAACTCrGGAPTCA CTATGC3TCGGCCA 
2 N. si toph.i la 1GTCAATCCGGAC CTACCTTGAGCA3GA G -------------- ---- AAGGI'TACrCT GCAACTCTGGATI'CA CTATGCTGTCGGCCA 
3 N. interxnedia PrCGTCAATCCGGAC CTACCTrGAGCAGGA G -------------- ---- AGGTrACTCT GCAACTCTCGATrCA CTACTCTCGGCCA 
4 N. tetrasperina TCGTCAATCCGGAC CTACCTIGAGCAGGA G -------------- ---- AAGGrACTCT GCAACTCTGGAN'CA CTATGCTGTTCGCCA 
5 N. di screta 	TTICGTCAATCCGTAC CTATeI'TGAGCAGGA G -------------- ---- AP.GG'11ACrCT GcAACTI'rGGA'r'rcA CTATGCGTCGGCCA 
6 N. africana 	TI'CGTCGATCCGCAC CTACCTrGAGCAGGA G -------------- ---- AAAGTACCCT GCAACrCI'GGATrCA CTATCGTGTCCGCCA 
7 S. fimi cola 	TTCGTCAATCCGCAA CTACCTCGAGCAGPr GAACGCGCAGCGGGA GAAGAAGA'PTACCCT GCAATAOTGGCCA CN'GCTGTCCCCGT 
8 S. sd erogenia TTCCTCAATCCGCAC CGACCTGGAGGAGGA G -------------- ---- AAGGTTACACT GCAGCTC3GAKA CTATGCTATCGGCCA 
9 S. ecjuina 	TTCTrCAATCCGCAC CGACC3GAGGAGCA G -------------- ---- AATGTPACACT GCAGCTCTGGATTCA CTATGCTATCGGCCA 

1 N. crassa TCTGGGAGTGATrAT CCGCGACAACTACAT GGCATCCTTGGCTG GAACCTGTCCG'ITr TCCCAACGGCACA CGACCCGAGCGCAC 
2 N. si tophi la TCTGGGAGTGATAT CCGCGACAACTACAT GGCATCC7FrGGC3 GAACCTCGTCCGPP TCCCAACGGCACTCA CGACCTCGAGCGCAC 
3 N. intermedi a TCTGGGAGTGATTAT CCGCGATAACTACAT GGCATCGqTPGGTPG GAACCTCGTCCGPrF TCCCAACGGCACTCA CGACCTCGAGCGCAC 
4 N. tetrasperma TCTGGGTGATFAT CCGCGACAACTACAT GGCATCGTPGGCTG GAACCTCGTCCGTTT TCCCAACGGCACPCA CGACCTCGGCGCAC 
5 N. discreta TCTGGGAGTGATTAT CCGCGACAACTACAT GGCATCGTq'IV7GCM GAACCTCGTCCATCT GCCCAACGGCACGCA CGACCTCGAGCGCAC 

6 N. a fri dana TCrGGGAGTGATrAT CCGCGACAACTACAT GGCATCGTPGGCTG GAACCTCGTCCAGCT GCCCAACGGCACTCA CGACCTCGAGCGCAC 
7 S. fixni cola CA3GGAGTGCTGG TCGCGAAAACTACPT GCCCACGCTIX3GCTG GGACCTCGTCACGAT GCCCAACGGCACTAT CGACCPTATGCGCAT 
8 S. sd erogenia GATGGGATI'GATTGA CCGCGACCACTACAT GGCATCGGGCTG GCGCCTCGGTCAGAC TCGCAACGGCACTAC CGACCTNTFCGCAC 
9 S. equina GATGGGATATTGA CCGCGACCACTACAT GGCATCGTTTGGCTG GCGCCTCGGTCN3AC TCGCAACGGCACTAC CGACCTNTFCGCAC 



616 	 630 

1 N. crassa GGCTCTTCCITrGGT TCAGCACAATCTCCA GCCCATGAACGGCTP ATGCCTGCCACCAA GTGCCTCGAGAGCGG ATFGCC'r 	 - cr 

2 N. Si tophi la GGCTCTTCCITIGGT TCAGCACAATCCCA GCCCATGAACGGCCP ATGCCTGCTCACCAA GTGCCTCGAGAGCGG A3CCT 	-Cl' 

3 N. interrnedj a GGCTCPrCCITTGGT TCAGCCCAATCCCA GCCCATGAACGGCI'r ATGCCTGCTCACCAA GTGCCTCGAGAGCGG ATI'GCCT ------ CT 

4 N. tetrasperzna GGCTCICTI'TGGT TCAGCACAATCTCCA GCCCAT3AACGGCTT ATGCCTGCTCACCAA G3CCTCGAGAGCGG A'VI3CCT ------ Cl' 

5 N. discreta CGCTCTrCCCrrGGT TAGGCACAATC1'CCA GCCCA1AACGGCCT ATGCCTGCTCACrAA GTGCCN'GAGP.GCGG ATI'ACCT ------ CT 

6 N. afri cana CGCTCTrCC'IrGGT TCAGCATAACCICCA GCCCATGACGGCCT ATGCCTGTTCACCAA G3CCTCGAGAGCGG ATGCCT ------ CT 
7 S. fimi cola CGCTATGCCTrrr TAGAAAGAACCPCCA GCCCATGGACGGCCT ACCTGTl'CACCAA GTCAGGAGGGCGG ATI'GCAA ------ CT 

8 S. sd erogenia TCCGAVrCCGPTGGT TAGGCGCAAGCTTCA GCCCATGAACGGCCT Pl'GCCTGCTCATl'AA GTCTCCAGAGCGG ATGACAAGCATCT 
9 S. equina TGCGArCCGATGGT TAGGCGCAACCTI'CA GCCCATGAACGGCCT TTGCCTG=ATTAA GTCTCGAGAGCGG ATI'GAGCAAGCATCT 

1 N. crassa TGCCkkTCCTCACrC TGTCATCGCCAAGCT TTCAGATCCTAGCTA CGACA13A7CTGGl' CA1CAAGCGTCCTCA CCGTCAGCAGGGACA 

2 N. si tophi la TGCCAATCCKAITC TGTCATCGCCAAGCT Tl'CAGATCCTAGCTA CGACATGATCTGG'rF CAACAAGCGTCCI'CA CCGTCAGCAGGGACA 

3 N. intermedia TGCCAATCCTCACTC TGPCATCGCCAAGCT TTCAGATCCTAGCIT CGACATGATCrGGI'r CAAQAAGCGCTCA CCGTCAGCAGGGAC. 

4 N. tetrasperina TGCCAATCCTCACl'C TGTCATCGCCAAGCr rrrcAGATccTAGcTA TGAcATGATcTGG7 ,r CAACAAGCGTCCTCA CCGTCAGCAGGGACA 

5 N. discreta TGCCAATCCTCACTC TGTCATCGCCAGCT TTCAGATCCTAGCTA CGACATGATCTGGTr CAACAAGCGTCCTTA CAGTCAGCAGI3ACA 

6 N. a fri cana TGCCAATCCTCACCC TGTCATCGCCAAGCT q=GATCCTAGCTA CGACTGATCTGGrr CAACAAGCGTCCTCA CCGTCAGCAGGGACA 

7 S. fiini cola CGACAACCAGCACrr CGTCNPTGCCAAGCT TTCAGATCCTAGCCA CGACATGAPCTGGIVP CAACAGCCCCCTCA CTATCAGCAGN3ACA 

8 S. sd erogenia TACCAP.TCCTCATCC TGTl'ATPGCCAAGCT GCAAGATCCTAGCTr CGACATGATGGAT CAACAAGCCTl'CTCA CCATCAGCAGGGAC 
- 	 9 S. equina TACCAATCCCCATCC TAPATCGCCAAGCT GCAAGATCCTAGCP CGACATGATCTGGAT CACAAGCCTCCTCA CCATCAGCAGGGACA 

1 N. crassa CGCCGTFCAAACTGA TGATCTGAAGTIG AG1TrCGGCGATGTr CCCTCGCAATCACAC GGTCGCCAGAGGT AGATGGCATCATCAA 

2 N. si tophi Ia CGCCG?FCAAACTGA TGGATCTGAAG7rGG AGN'CGGCGATGTr CCCTCGCAATCACAC GGTCGCTGCAGAGGT AGAGCATCATCAC 

3 N. in termedia CGCCGGTCAAACTGA TGAATCTGAAGTGG AGTTFCGGCGATGPl' CCCTCGCAATCACAC GGTCGCTACAGAGGT AGATGGCATCATCAA 

4 N. tetraspenna CGTCGGTCAAACA TGAATCTGAGGTTGG AGITPCGGCGATGPI' CCCTCGCAATCACAC GGTCGCTGCcGAGGT AGATGGCATCATCAA 
5 N. discreta AGTCGGCCAAACTGA CGAFCTGAACTCGA AG3TCGGCGATGrF CCCACAATl'ACGC AGTCGCCGCAGAGGC AGATGGTATCGCCAA 
6 N. a fri cana CGCCGGCCAAACFA CAAT1'CTGAACTTGG AG1XTCGGCGCTCPT CCC'I'PGCAAPCACGC AGTCGCTGCACGGT CGATGGCATCACCGA 
7 S. fitni cola CGCCGCCCAAACCGA CAGTI'CTGAACrCGG TGTGTCGGCGCTCTl' CCCTCGCAATCACGC AGrrGCCAGAGGC AGATGGCGTCGCCAC 

8 S. sd erogenia CACCGATCAAGCTGA CAATITGAACl'CAG APGCCGTCGATCPr CCCTAGCAATCACGC ACTCGCTGCGGAGGT AGATGGCATCGCCAA 
9 S. equina CAQCGACCAA3CTGA CAATl'CCGAACTCGG AA3CcGTCGCTCTr CCCTGGAAATCATGC AGTCGCTGCGGAGGT AGATGGCATCGCCAA 



1 N. crassa TCTI'CCTCTCTCCCA PrGGATCAGCAGGG AGAAPCGGTACCG1 GTCTGG1TACTCAGC TCAG'ITIGAGACCTI' GTGGACAATI'CT 

2 N. si tophi 1 a --- TCCTCTCTCCCA  T1'GGATTCAGCAGGG AGAATrCGGTACCG. GTC3GATACTCAGC TCAG17I'GAGACCr G1GA7rCAAT1'CT 

3 N. interrnedi a TCITCCTCTC1'CCCA IVIXGATrCAGCAGGG AGAATI'CGGTACCGA GTCTGGATACCAGC TCATI'GAGACATF GTI\3GArCAATCCr 

4 N. tetrasperma TCflCCTCTCFCCCA TrGGATI'CAGCAGGG AGAATI'CGGTACCGA GTCTGGTACICAGC TCAGITrAGACCrT GPI'GGNIrCAATCCr 
5 N. discreta TCTFCCTCTCTCCCA 1I'GGAI1CAGCAGGG AGA1TPCGGTACTGA CCCCGGATACTCAGC TCAATIVI.GAGACITr G7]GGAT11CTAr1VFCT 

6 N. africana CCICTCTCCCCA ThGCIFCAGCAGGG AGACGGCACCGA GGCCGGAPTCTCACC TCAG'ITI'GAGACCrr GGGMFCGATCCT 

7 S. flail cola TGTCAACTCCCTCA 7X3GATGCAGCAGGG AGA'N'TCGGCACCGA GTCCGGATACTCACC TCAGm'GAGACCTr GTI'GGGTI'CCATACT 

8 S. sd erogenia CCTPCCTC'FCTCACA ¶VIN3GACTCAGCAGGG GGAIPCGGCAAGGA GCCTGGATrCTCGAC CCAG'rNGATACCAT G13GAPI'CAC'N'CT 
9 S. equina CCTPCCTCTCACA TCGGACTCAGCAGGG AGATPCGGCACCGA GCCTGGNI'TCTCGAC TCAG'ITflATACCAT GTGGAPCAACT 

1 N. crassa CGAGAATGGACACGC CTCCAGCAATGACCC rrrACAACATGGCTCT GGCTATCGATGPTCC CATGATGGGTTAG 

2 N. si tophi la CGAGAAGACACGC CCCAATGACCC TACAACATGGCTCT GGCTATCGATGPTCC CATGA3GGPTAG 

3 N. intennedia CGAGAATGGACACGC CTCCAGCAATGACCC TrACA1C1TGGCTCT GGCTATCGATGPrCC CAA7GGG'I1AG 

4 N. tetrasperma CGAGAATGACACGC CTCCAGCAATGACCC CTACAACATGGCTCT GGCTATCGATGTTCC 	AG-IFAG 
5 N. di screta TGAGGATGGACACGC CTCCAGCAATGACCC CTACA1CATGGCTCT GGCTATGGATGPTCC CAAGG'I1AG 
6 N. a fri cana TGAGAATGGAAACGC CTCTATCAATGACCC CTACAATATGGCTCT TGGTATGGGTG'N'CC CATGATGGGTTAG 
7 S. flail cola TGAGAAGAAACGC CACCAGTAATGATPC CTACAACATGGCTCT GGCrATGGATGTI'CC TAATGGGPAG 

8 S. sd erogenla TGAGAATGGAAACGA CACCAGCAATCATCA CTACAACATGGCTCT GGCTATGGATcT1'CC CATGATAGGTrAG 
9 S. equina CGAGAATGGMACCA TCCCAGCAATAGTCA CTACAACATGTCTCT GGCTATGGATCTTCC PATGACGGGTTAG 

FIGURE 6.2.1a) 

Multiple alignment of the mtA-1 genes from N. crassa N. sitophila, N. iniermedia, N. tetrasperma, N. discreta, S. fitnicola, N. africana, S. scierogenia and 

S. equwa using CLUSTALW. The 5 and 3 intron splice sites are shown in lower case. The intron is shown in italics and underlined. 



31 	 45 
1 N. Si tophi la MSGVEIVKTFADLA EDDREMNRAFSTNM R 	-TEPVR RIP4AK K/MF7&F RSYYSPLFSOLPOKE RSP1FILWQHDPFH 
2 N. crassa 	MSGVDIVKTFADLA EDDREAAFSR11M RRG-------TEPVR RIPAAIKKVNGFF RSYYSPLFSOLPOKE RSPFMFILWQHDPFH 
3 N. intermedia NSGVIIVKTFADLA EDDREAPNRAFSTMM R---------TEPVR RIPAAKKKVAIGFNGF RSYYSPLFSQLPOKE RSPFNFILWQHDPFH 
4 N. tetraspenria MSGVDQIVKTFADLA EDDREMNRAFSThIM R---------TEPVR RIPAAKKKTWGF?4F RSYYSPLFSOLPOKE RSPF?.fFILWQHDPFH 
5 N. discreta 	MSGVDQIVKTFADLA EDDR-EANRAFSTMM R---------TEPVR QIPATK VMF?43F RSYYSPLFSOLPOKE RSPF1'JTILWQHDPFH 
6 N. africana 	MSCVIIVKTFADLT EGDREAANRAFSMMM R---------TEPVR QTPAAKKKVNGFMSF RSYYSPLFSOLPOKE RSPFNFILWQHDPFH 
7 S. firni cola 	MSSVIIVKTFANLP EGERNAAVNAILAMM PPGPGPVRQIPEPVP QAPAPK KVNGF7fGF RSYYSSLFSOFPOKA RSPF?2I'ILWQHDPFH 
8 S. equina 	MSGVDIVKKFANW EGDREAM4KAFLANM PVSNEP --- VAEPVR KAPTA KWF?F RSNYSPLFSYLPQJc2I RSPF7II'ILWQYDPYH 
9 S. sclerogenia MSGVDQIVKTFANLG EGDREANKAFLPNM PVSNET --- VAEPVR KAPAAKFCKVNGFNGF RSYYSPLFSYLPOKM RSPF7iILWQYDPYH 

106 	120 
1 N. si tophila NEDFMCSVYSSIRT YLEQE------KVTL QLWIHYAVGHLGVII RDNYMASFGWNLVRF PNGTHDLERTALPLV QHNLQPMNGLCLLTK 
2 N. crassa 	NE7'1DFMCSWSSIRP YLEQE------KVTL QLWIHYAVCHLGVI I RDNYMSFGWNLVRF PNGTHDLERTALPLV QFflJLQPMNGLCLLTK 
3 N. in terrnedia NEWDFMCSVYSSIRP YLEQE------KVTL QLWIHYAVGHLGVI I RDNYMASFGWNLVRF PNGTHDLERTALPLV QPNLQPMNGLCLLTK 
4 N. tetrasperma NEWDFMCSVYSSIRT YLEQE------KVTL QLWIHYAVRHLGVI I RDNYMASFGWNLVRF PNGTHDLERTALPLV QHNLQPMNGLCLLTK 
5 N. discreta 	NEWDFMCSVYSSIRT YLEQE------KVTL QLWIHYAVGHLGVII RDNYMASFGWNLVHL PNGTHJJLERTALPLV J}1NLQPMNGLCLLTK 
6 N. africana 	NEWNFMCSVYSSIRT YLEQE ------ KVTL QLWIHYRVRHLGVII RDNYNASFGWNLVQL PNGTHDLERTALPLV QHNLQPMNGLCLFTK 

- 	 7 S. fimi cola 	NEIDFMCSVYSSIRN YLEQLMAQREKKITL QYWLHFAVPV3VL3 RENYLPTLGWDLVTM PNGTIDLMRIAMPLF RKNLQPMtX3LCLFWK 
8 S. eguina 	NEDFMCSWSSIRT DLEEQ ------ NV'TL QLWIHYAIGQMGLID RDHYMASFGWRLGQT RNGTDLFRTAIPMV RRNLQPMNGLCLLIK 
9 S. sd erogeni a TEWDFMCSVYSSIRT DLEEE------KVTL QLWIHYAIGQMGLID RDHYMASFGWRJXQ'F RNGTDLFRTAIPNV RRKLQPMNGLCLLIK 

1 N. si tophila CLESGLP--LANPHS VIAKLSDPSYJ4IWF NKRPHRQQGHAVQTD GSEVGVSANFPRNHT VAAEVIXIITP-LSH WIQQGEFGTESGYSA 
2 N. crassa 	CLESGLP--LANPHS VIAKLSDPSYilWF NKRPHRQQGHAVQTD ESEVGVSMIFPRNHT VAAEVIXII INLPLSH WIQQGEFGTESGYSA 
3 N. intermedia CLESGLP--LANPHS VIAKLSDPSFD14IWF NKRPHRQQGHAGQTD ESEVGVSAPRNHT VATEVLX3IINLPLSH WIQQGEFGTESGYSA 
4 N. tetrasperma CLESGLP- -LPNPHS VIAKLSDPSYIIWF NKRPHRQQGHVGQTD ESEVGVSMFPRNHT VAAEVtX3IINLPLSH WIQQGEFGTESGYSA 
5 N. discreta 	CLESGLP- -LPNPHS VIAKLSDPSY14IWF NKRPYSQQRQVGQTD DSELEVSANFPHNYA VAAEADGIANLPLSH WIQQGDFGTDPGYSA 
6 N. a fri cana 	CLESGLP- -LPNPHP VIAKLSDPSYLI'UWF NKRPHRQQGHAGQTZ NSEWVSALFPCNHA VAAAVIXITDLPLSH WLQQGDFGTEAFSP 
7 S. finii cola 	CQEGGLQ--VDNQHF VIAKLSDPSI-IDMIWF NKRPHYQQRHAAQTD SSEWVSALFPRNHA VAAEADGVATVQLPH WMQQGDFGTESGYSP 
8 S. equ ma 	CLESGLSKTNPHP I IAK1DPSFDMIWI NXPPFIIQQGHTAD NSEISLFPGNHA VAAEVIANLPLSH RTQQGDFGTEFST 
9 S. sclerogenia CLQSGLNKHLTNPHP VIAKLQDPSFDMIWI NKPSHHQQGHTDQAD NSELRNPSIFPSNI-iA VAAEVtLANLPLSH WTQQGDFGKEPGFST 



I N.sitophila QFETLLDSILENGHA SSNDPYNMALIDVP NMG 
2 N. crassa 	QFETLLDSILENGHA SSNDPYNMALAIDVP 4(3 
3 N. intermedia QFETLLDSILENGHA SSN1JPYNMALAIDVP NMG 
4 N. tetrasperrna QFETLLDSILENG}{A SSNDPYNMAL.AIDVP NMV 
5 N. discreta 	QFETLLDSILEIXHA SSNDPYNMALPNDVP MMG 
6 N. africana 	QFEFLLDSILENGNA SINDPYNMALGMGVP MMG 
7 S. fimi cola 	QFETLLGSILECNA TSNDSYNMALAVP MMG 
8 S. eguina 	QFUI'MLDSILENGNH PSNSHYNMSLANDLP MTG 
9 S. scierogenia QFDTMLDSLLENGND TSNHHYNMALANDLP MIG 

FIGURE 6.2.1b) 

Multiple alignments of the amino acid sequences of the mtA-1 genes from the species examined in figure 6.2.1 a). The putitive DNA binding domain, the a 

domain is shown in italics and underlined. 



Figure 6.2.1b) shows the multiple alignment of the amino acid sequences of the mtA-1 

genes from the species compared in figure 6.2.1 a). Again the multiple alignments were 

produced using the CLUSTALW programme. As expected from the DNA sequence S. 

fimicola has extra amino acids between positions 32-40 and 111-116 when compared to 

the other species. The extra amino acids between position 111-116 in S. flmicola 

interrupts a region shown by Saupe et al (1996) to be involved in vegetative 

incompatibility function. This is of interest because S. fi,nicola contains both mating 

types in the same nucleus so some change to the region involved in vegetative 

incompatibility could have made this scenario possible. Amino acid changes between the 

species at the a domain are conservative and the a domain is well conserved. 

Codon usage in the Sordaria mtA- 1 genes sequenced was typical of codon usage in 

Neurospora. 

The multiple alignments of the mtA- 1 DNA sequences were used to build a phylogeny to 

see how the various Sordaria and Neurospora species are related (for methodology see 

section 2.2.4.2). This phylogeny is shown in figure 6.2.1c). A phylogeny constructed 

using the amino acid alignments of the species produced a tree with the same topology as 

that shown in figure 6.2. lc)(not shown). 
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(82) 
 LN. intermedia 

_N. discreta 

________S. fimicola 

Between 
	And 	 Length 

6 	 fimicola 0.14778 
6 	 7 0.12241 
7 	 sclerogenia 0.02974 
7 	 equina 0.02772 
6 	 5 0.02807 
5 	 africana 0.04622 
5 	 4 0.01895 
4 	 1 0.03474 
1 	 tetrasperma 0.00656 
1 	 3 0.00243 
3 	 2 0.00556 
2 	 sitophila 0.00549 
2 	 crassa 0.00224 
3 	 intermedia 0.01128 
4 	 discreta 0.04217 

FIGURE 6.2.1c) 

An unrooted tree demonstrating the evolutionary relationships between Sordaria and Neurospora species. 

The branch lengths, corresponding to the rate of nucleotide substitutions per base, are shown in the table 

underneath. The numbers in brackets indicate the number of times the group consisting of the species 

which are to the right of the forks occurred among the trees, out of 100 trees, during bootstrapping 

analysis. Values over 70 provide good support that the dade is accurate. 
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The phylogeny shown in figure 6.2.1c) shows that S. fimicola is only distantly related 

to the other Sordaria species used in the analysis, S. scierogenia and S. equina , which 

appear to be closely related. Both S. fimicola and S. equina are homothallic species and 

one can see from this phylogeny that these two species appear to have evolved separately. 

Metzenberg and Glass (1990) proposed an evolutionary scenario where a species like S. 

equina might evolve from a species like S. fimicola by loss of the mta idiomorph. This 

doesn't appear to be the case judging from the phylogeny shown in figure 6.2.1c). 

However one must be cautious interpreting this tree as a limited amount of data was used 

in its production. Obviously more sequence data from other Neurospora and Sordaria 

species would make the tree more accurate. Other problems with basing a phylogeny on 

mating type idiomorph data will be discussed later. 

Figure 6.2.ld) shows the N. crassa mta-I DNA sequence aligned with the S.fimicola 

mta- 1 DNA sequence. N. crassa mta- 1 is the only mta- I Neurospora gene available 

from the database. 
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3227 ATGGACGGTAACTCGACACACCCCGCT ......... CCAAACCTCAAGAC 3267 
IIIII 	111111 	111111111 	I 	111111 

1 atggaaaacaacttgatgcaccccgctcggacgtcagcggaactcagggt 50 

3268 TACTATGGCTTGGTCGCGCATATCAAACCAACTCGGTCACTGGAATGACC 3317 

11 	11111111111 	liii 	II 	11111 	II 	II 	11111111 	liii 
51 caccatggcttggtctggcatctcgaaccagcttgggcactggaacgacc 100 

3318 GCAJGGTCATTGCCATTCCTCTGAGCGACTTCCTTAACACCCACCCTGAC 3367 

IIIII 	 HIM 	11 	1 	11111111111 
101 gcaagatcattgccattcctctgagtgacttcactatcgcccaccctgac 150 

3368 ATTCAGTCTGGCATCATCGCCGAGTTCAAGTAAGTGTCCTCACCCATTTC 3417 

1111 	I 	111111 	JIll 	I 	I 	III I/II///IIIII//II// 	/- 
151 attcatgctggcatcgtcgccgaatacaacxtaacitcrtcctcacccatctc 200 

3418 TCACCCTACCTTGTACTGACCATTTGCACTAGGAAAGCGACTGGCGAAGA 3467 

Ill/I 	Ill//I 	Ill/I/Ill/Ill/I 	I/Il 1111 	111111 	Hill  
201 tcaccttaccttatactcraccatttcTcatLaggaaagcgactggtgaaga 250 

3468 GGGCATGTTTGCCCGCGATCCTGAATCATTGGGAATCATGCTTCTTGGTC 3517 

II 	Ill 	111111111 	111111 
251 gggcatgtttgctcgcgataccgaggcactggaaatcatgctgcttggcc 300 

3518 CCGTCA1GCTGTTCAPGCCCGACAGTGTCGTCGTCGACGGCAACCTGTTC 3567 

III 	111111111 	11 	1111 	11111111 	II 	II 	111111111 
301 ccgccaagctgtttaaagccgatagtgtcgttgttgagagcaatctgttt 350 

3568 TGGGATCCCAAGGGCATCCATGCTTCGGCACCCAAGGAGCAGCAG ... AA 3614 

II 
351 tgggatcccaagggcatccatgctgagacacctaagcagcagcagaagaa 400 

3615 GAAGGCCAAGATCCCTCGCCCTCCCAATGCCTACATCTTGTACCGTAAGG 3664 

401 gaaggccaagattcctcgtccgcccaatgcctacatcttgtaccgcaagg 450 

3665 ACCATCATCGTGAGATCCGCGAGCAGAATCCCGGACTTCACAATAACGAG 3714 

IIIIIIIIIII 	1111111111111111 	11 	Hill 	Hill 	11 	111 
451 accatcatcgtcagatccgcgagcagaaccctggactgcacaacaatgag 500 

3715 ATTTGTAAGTTTCTTGTCATCATGATCGAPAATCTTTGGCCTTGAGACTA 3764 

II 	Il/I 	II 	Il/Il//I 	I//Il! / 	/ 	/ 	I/I 	II 	Ill//I/I 
501 atctgtac,rgtctct tcT tcactatcTatctatattggttgaccctgagcta 550 

3765 ACCTCACTTAGCGGTCATCGTCGGCAACATGTGGCGTGATGAGCAGCCGC 3814 

I/Ill//Il//I 	111111 	II 	111111 	III 	111111111111111 	I 
551 acctcacttagcggtcattgttggcaacatgtggcgtgatgagcagccgc 600 

3815 ACATTCGCGAGAAATATTTCAACATGTCCAATGAGATCAAGACCAGACTG 3864 

1111111111 	1111111111 	1111 	11111111 	111111111 	II 
601 acattcgcgacaaatatttcagcatggccaatgaggtcaaggctagattg 650 

3865 TTGCTGGAGAATCCCGACTATCGCTACAATCCGCGTCGGTCTCAAGACAT 3914 

11111111 	IIIIIIIIIIIIIIIIIIIII 	I 	IIIIIIIIIII 	11111 
651 ttgctggacaatcccgactatcgctacaatgcccgtcggtctcaggacat 700 
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3915 TCGCAGGCGCGTCTCGCCGTATCTCAAGATCAAGCTCCTCAACTACGACG 3964 

liii 
701 tcgcaggcgcgtttcgccgtatctcaagatcaagctcctcaattatgacg 750 

3965 TTAATGGCAACCTTCTTTGGGGCACCGTCAACGCCGAGGATGCTGCGCTG 4014 

751 tcaacggcaaccttctttggggcaccgtcaacgccgaggatgccgcgcta 800 

4015 ATTCGGACTCACTTCCATGGAC-TCGTTCGTGTTGAGGAAATGGATGATGG 4064 

11 	11 	11111111 	11111111111 	11111 	1111111 	111 	11 	11 
801 atccgcactcactttcatggagtcgtccgtgtcgaggaaacggacgaagg 850 

4065 TTGCAGAATCGTCTGCCGTCCCGTCGCAGGATCTAGAAAACTTCGCGCCG 4114 

IIIIIIII 	11111111111111111111111111 	11 	1111111111 
851 ctgcagaattgtctgccgtcccgtcgcaggatctaggaagcttcgcgccg 900 

4115 CCGTTGTCGACACTTGGATGCCTCGCTACACGGTTGACACAACCCCCGTC 4164 

II 	11111111 	11111111111111 	II 	111111 
901 ccaacgtcgacacatggatgcctcgctatacggttgatgctaatcccgtc 950 

4165 ACCGAGGACGACGATGCA ......... CAGGCTTTCAACTTCAATGATCC 4205 

111111 	11111 	III 	 I 	1111111111 	II 	I 
951 tctgaggaagacgaggcagcccagggtacgctctttaacttcaacgacac 1000 

4206 CTTGGGCGGTGCTTATTTCCCTTTGAATGAGCACCTCTGGATCACTGTCA 4255 

	

I 	1111 	IlIllIllIllIlIll 	1111 	I 
1001 cttggacggt ... ttctttcccatgaatgaacacctctggggcaccgcta 1047 

4256 ACCAAAACCCTCCCTTCAATGCCCCTCCCCCCAATCCCAACCCACACCTG 4305 

1111111111 	1111111111 	1111111111 
1048 cccaaaaccct ......tcccccgctctcgccaacatccacgcactcctg 1091 

4306 GATTTCGTTCACCCCGACGGCATGGAGGCAGTTGTTCACAACGTTCAGAA 4355 

1092 gattttggtcaccccaacagcgtgcaggcaatcacccaaaacattcagaa 1141 

4356 CATGATCGCTCAGGTCCAGGAGGCTAACGAGGCTGCTGCGCTAACGCTAC 4405 

111111 	HIIIIIH 	 1111111 
1142 catgattacccaggtccat ..................atcatgacgctgc 1173 

4406 CACCGCCACCACCGCTGCGTCTGCTGTCACTCAGGTTATGGCTGATGATA 4455 

1 	1 	11 	11111 	11111 	1111 	1111 	11 	111 	11111111 	1111 
1174 cgctgctgccacctctgcgcctgccgtcaatctggtcatggctgacgata 1223 

4456 CCATTAACCCAGCTCTCATTCCCACTGTGA 4485 

1224 ccatcaacccagcgctcattcccactgtga 1253 

FIGURE 6.2.1d) DNA sequence comparison of the mta-1 genes from N. crassa (shown as the top 

line in the figure) and S. firnicola. The introns are shown in italics and underlined. 
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Figure 6.2.1e) shows the alignment of the N. crassa and S.fimicola mta-1 amino acid 

sequences. 

1 MDGNSTHPA. . . PNLKTTMAWSRISNQLGHWNDRKVIAIPLSDFLNTHPD 47 

1:1 	III 	I:IIIIIIHIIIIIIIII:HIIIIII 	II! 
1 MENNLMHPARTSAELRVTMAWSGISNQLGHWNDRKIIAIPLSDFTIAHPD 50 

48 IQSGI IAEFKKATGEEGMFARDPESLGIMLLGPVKLFKPDSVVVDGNLFW 97 

1 	-11:11:1111111111111 	1.1 	111111 	1111 	IIIH: 	liii 
51 IHAGIVAEYKKATGEEGMFARDTEALEIMLLGPAKLFKADSVVVESNLFW 100 

98 DPKGIHASAPKEQQ . KKAKIPRPPNAYILYRKDHHREIREQNPGLHNNEI 146 

111111 	11:11 	11111111 	1111111 	1111:1 	1111 	III 	I 
101 DPKGIHAETPKQQQKKKAKIPRPPNAYILYRKDHHRQIREQNPGLHNNEI 150 

147 SVIVGNNWRDEQPHIREKYFNMSNEIKTRLLLENPDYRYNPRRSQDIRRR 196 

I 	I 	I 	II 	11111:111. 	.11:1 	III 	:11111 	II 	11111 
151 SVIVGNMWRDEQPHIRDKYFSMANEVKARLLILDNPDYRYNARRSQDIRRR 200 

197 VSPYLKIKLLNYDVNGNLLWGTVNAEDAALIRTHFHGVVRVEEMDDGCRI 246 

II 	lIlt 	111111111 	III 	11111111111 	I 	II 	III 	1:1111 
201 VSPYLKIKLLNYDVNGNLLWGTVNAEDAALIRTHFHGVVRVEETDEGCRI 250 

247 VCRPVAGSRKLRAAVVDTWMPRYTVDTTPVTEDDDA.. .QAFNFNDPLGG 293 

11111111111111 	11111111111 	11.1:1:1 
251 \TCRPVAGSRKLRAANVDTWMPRYIVDANPVSEEDEAAQGTLFNFNDTLDG 300 

294 AYFPLNEHLWITVNQNPPFNAPPPNPNPHLDFVHPDGMEAVVHNVQNMIA 343 

:11:111111 	HI 	I. 	III 	11. 	.:1: 	1:1111 
301 . FFPMNEHLWGTATQNP. . SPALANIHALLDFGHPNSVQAITQNIQNMIT 347 

344 QVQEANEAAALTLPPPPPLRLLSLRLWLMIPLTQLSFPL 382 

II 	:111 	111111: 	11 	11 	11 	1111 
348 QVH ......IMTLPLLPPLRLPSIWSWLTIPSTQRSFPL 380 

FIGURE 6.2.1e) Amino acid sequence alignment of the mta- I proteins from N. crassa (shown as the 

top line in the figure) and S. fimicola. The putative DNA binding domain is shown underlined. Identical 

residues are denoted by vertival lines. Conservative changes are shown by either one dot or two, 

depending on the degree of similarity. Blank spaces indicate non-conservative amino acid differences 

between the two species. 
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Figure 6.2.1 d) demonstrates that the positions of the mta- 1 gene introns are conserved 

between N. crassa and S. flinicola.. In the first intron the 5' and 3' splice sequences are 

conserved between the two species. In the second intron the 3' splice sequence, TAG, is 

conserved between the two species. The 5' splice sequence varies by one base between 

N. crassa and S. fimicola, GTAAGT vs GTAGGT respectively. Gaps to align the two 

species are in multiples of three and hence do not interrupt the open reading frame. The 

alignment was produced using GCG9 Bestfit. 

Figure 6.2.1e) shows that the putative DNA binding domain, proposed to be an HMG 

box (Staben and Yanofsky, 1990), is perfectly conserved between the two species. Most 

of the the differences between the N. crassa and S. flinicola mta- 1 amino acid sequences 

reside in the carboxyl-terminal portion of ORFs. Philley and Staben (1994) deleted amino 

acids 216-220 in N. crassa mta-1 and found that this mutation eliminated vegetative 

incompatibility function. Amino acids 216-220 in N. crassa mta-1 correspond to amino 

acids 220-224 in S. fimicola mta-1 and are conserved between the two species. 

Changing the Arginine at position 258 in N. crassa mta-1 to Serine abolishes vegetative 

incompatibility function (Griffiths and Delange, 1978). There is a corresponding 

Arginine at position 262 in S. flinicola mta- 1. The residues mentioned seem to be 

important for vegetative incompatibility functions and are conserved between the two 

species. As S. firnicola contains both a mtA and a mta idiomorph it seems likely that 

mutations leading to the loss of vegetative incompatibility function are not found at mta in 

S. fiinicola. The alignment was produced again using GCG9 Bestfit. 

Codon usage in the S. fimicola mta- 1 ORF is typical for Neurospora genes. 

6.2.2 Comparing Regions in Neurospora and Sordaria Outwith the 

Mating Type Gene ORFs. 

6.2.2.1 Comparing the N. crassa and S. flinicola mtA-2/mtA-3 gene 

Upstream Sequences. 

Ferreira et al (1996) identified mtA-2 and mtA-3, two divergently transcribed genes, in 

N. crassa. MtA-2 and mtA-3 may have overlapping promoters. Figure 6.2.2.1 shows the 

272 bp immediately upstream from the mtA-2 ATG ORF start site compared between N. 
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crassa and S. firnicola. These 272 bp are 467bp upstream of the mtA-3 ATG ORF start 

site. 

2071 CTCACAGGAGAACAATAGGAATAACTTGGGATGAATCTCAGCATGCAGTG 2120 

II 	II 	Il/I 	III 	II 	Ill/I III 	II 	I 	I//I//I I 
20 ctcacgggag .... ataacaagaactt . ggacaaaatttggcatgcaata 64 

2121 CCCCTC. . GTCAAGTAATCTCCACCTCAAGTTTCACAGGAGAACAATAGG 2168 

I/Il 	I 	1111111 	II 	I 	II 	II 	11111 I/I//I/Il//Il 
65 ccccacaggtcaagtgatacccgccccaagtctcacaggagaacaatagg 114 

2169 AAGGACCTGGATTGGAAACCTGCCAGGCAATGTCCCTCGAAAGATATTTT 2218 

I 	I//I/Il 	/ 	I/I/Il 	/ 	II 	I/Il 	/ 	I 	I 	/11111 	I 	III 
115 acggacctgagattgaaacc.gacacgcaa.gccgcccgaaag. .agttt 160 

2219 GGAACCCTGTGT . CTTTGTTGGTTCACTTCTTCGAA.ACTCCGTGTCAACA 2267 

11 	1 	1111 	11 	111 	1 	IIIIIIIIIIIHIII 	11111 	II 
161 gggaacctgagtccttaagttgttcacttcttcgaaatgtcctgtcggca 210 

2268 AAACTTCTCTCCATACTTAGCAGTCGCIGCAGCTTTCTCAAGCGTTCA  2317 

111111111 	III 	111111 	IIIIII 	III 	III 	III 
211 aaacttctcctgctacccagcggtcttcttgtagcttcctcgagcactca 260 

2318 TTGTTGAGGTTTCCTTTTCGTCAGCTGTCGAC 2349 

1111111 	IIIHIHIIIIH 	liii 

261 ctgttgagtcttccttttcgttagcgaccgac 292 

FIGURE 6.2.2.1 DNA sequence comparison of the 272 bp immediately upstream of the mtA-2 ATG 

ORF start site in N. crassa (shown as the top line) and S. fimicola. ATG start codons in N. crassa 

upstream of the translational start site are shown underlined. The repeated sequences in N. crassa are 

shown in italics. 

Figure 6.2.2.1 shows the start codons for three untranscribed ORFs (uORFs), 22, 29 

and 9 amino acids in length, present in the 5 leader sequence before the proposed 

translational start site for N. crassa mtA-2. These uORFs have been proposed by 

Ferreira et al (1996) to affect the translation of mtA-2 and mtA-3. This could provide a 

developmentally regulated translation system where mtA-2 and mtA-3 are transcribed 

constitutively but translation is restricted to post-fertilization stages. These uORFs 

however do not appear to be well conserved in S.fimicola.. 

The distal start sites for mtA-2 and mtA-3, not shown in the figure, are separated by only 

70bp. Within these 70bp is the first 50bp sequence that contains a repeated sequence. 

Figure 6.2.2.1 highlights two 51bp regions present in N. crassa that are 64% identical 

with the first SObp and contain a lSbp region that is perfectly conserved. The 
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transcription of mtA-2 and mtA-3 has been proposed to be coordinately controlled by 

specific factors and the repeated sequences may play a part in this process. In the region 

of S. firnicola that is aligned with the first 51 bp sequence of N. crassa in the figure one 

can see that the 15bp repeat, ggagaacaataggaa, is not conserved in S. fimicola . At the 

second 51 bp sequence in S. fimicola the 1 5bp repeat is conserved. 

6.2.2.2 Analysis of the Centromere Proximal Flanking Regions 

6.2.2.2.1 Comparing the Common Regions of N. africana, N.crassa, N. 

sitophila, N. intermedia , N. discreta, N.tetrasperma, S. equina and S. 

scierogen ia. 

N. africana ATTTGACATGTCGACGAGAATAAA 

N.crassa ATTTGACATGTCGTTGAGA TAAA 

N. sitophila ATTTGACATGTCGTTGAGA TAAA 

N. intermedia ATTTGACATGTCGTCGAGA TAAA 

N. discreta ATTTGACATGTCGTCGAGA TAAA 

N. tetrasperma ATTTGACATGTCGTCGAGA TAAA 

S. equina ATTTGACATGTCGTCGAGA TAAA 

S. scierogenia ATTTGACATGTCGTCGAGA TAAA 



N.qfricana GCTAT GGCCCGCCGCCAACGCCA 

N. crassa GAAACAGGCCCGCCGCTGACGGCA 

N. sitophila GAAACAGGCCCGCCGCTGACGGCA 

N.intermedia GCCAT GGCC GCCGCTGACGCCA 

N.discreta GCTAT GGCC GCCGCTGACGCCA 

N. tetrasperma GCCAGGGGCC GCCGCTGACGCCA 

S.equina GCTGT GGTCCGCCACTGACGCCA 

S.scierogenia GCTGT GGTCCGCCACTGACGCCA 

N. africana ACGCTTATGCAT 

N. crassa ACGCTTATGCAT 

N. sitophila ACGCTTATGCAT 

N. intermedia ACGCTTATGCAT 

N. discreta ACGCTTATGCAT 

N. tetrasperma ACGCTTATGCAT 

S. equina ACGCTTATGCAT 

S. scierogenia ATGCTTATGCAT 

FIGURE 6.2.2.2.1 DNA sequence alignment of the common regions of the above species. 
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Figure 6.2.2.2.1 shows that the S. equina and S. scierogenia have common regions 

that are very well conserved when compared to the common regions of Neurospora 

species. The restriction site for Nsi I, ATGCAT, is perfectly conserved in all the above 

species. The Nsi I site was used by Randall and Metzenberg (1995) to identify the start 

of the variable region in Neurospora species. 

6.2.2.2.2 Comparison of the S. equina and S. scierogenia Variable 
Regions with the Variable Regions of N. crassa, N. africana, N. 

sitophila, N. discreta, N. intermedia and N. tetrasperma. 

The S. equina variable region DNA sequence produced in this project were used for a 

gcg9 fasta search to see if any sequences in the database showed homology with these 

variable regions. Figure 6.2.2.2.2a) shows the result of the fasta search with the S. 

equina variable region sequence available. 

S. eguina vs N. tetrasperma. 

69.4% identity in 173 bp overlap 

1640 	1650 	1660 	1670 	1679 
equinacomple 	 ACP.ACCTCACGCTAGCGTAAATCCGTCGCTGGGCAGTACCTGC 

Iii 	I 	I 	I 	ill 	I 	1 	II 	ii 
NTMTA1AJ 	TAATGGTGCAAAACACGcTTAAAGAGATGCAGCCTCACACTAGCGCGGTCCCGT- -CTAT 

1540 	1550 	1560 	1570 	1580 	1590 

1680 	1690 	1700 	1710 	1720 	1730 

equinacomple GTA-TGTACACTAGCGTAGAAGCTGTGCCCCTCATrATGGATCTGCTAATGTrrCTrGA 

III 	Hill 	111 	111111111111111 	HIM 	111111111 	11 	111 	1 	1 	1 
NTMTA1AJ 	GTAGTGTAC-CTACAGTAGAAGcGCCC'IrCATrIX3TGGATCTGCCAAAGrGCCTAA 

1600 	1610 	1620 	1630 	1640 	1650 

1740 	1750 	1760 	1770 	1780 	17 	1790 
equinacomple CCTGCAGC-TGGAGATCCGCATCAGT-CCATrGGAGAA-CCGCATACCGT ----- C 

I 	III 	Hill 	11 	1111111111 	11 	111 	111 	III 	lit 	liii 	I 
1, TMTA1AJ 	CTTGCGGTTrCGGGGGGATCCGCATCGGTCCCAGTGGGCAAGTGCCCCTCCCGTCTCTGC 

1660 	1670 	1680 	1690 	1700 	1710 

1800 	1810 	1820 	1830 	1840 	1850 
equinacomple 

NTMTA1AJ 	TACCTCTCCCAAGAArCTACATGCAGGCATGTACCCG.AAACTCCGCAGAATACCTAT 
1720 	1730 	1740 	1750 	1760 	1770 
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S. eguina vs N. intermedia 

81.5% identity in 81 bp overlap 

	

1660 	1670 	1680 	1690 	1700 	1710 
equinacon1e CCGTCGCrGGGCAGTACCCGTATGTACAcTAGCGTAGAAGCTGTGCCCCTCATrrATG 

	

III 	111111111111111 	HIM 	11 
NIMTA1AH 	 CCTTCATTMTG  

	

1580 	1590 	1600 	1610 	1620 	1630 

	

1720 	1730 	1740 	1750 	1760 	1770 
equinacornple GATCI'GCrAATGITrCTACCTGCATrrCT-GGAGATCCGCATCAGTCCATrGGAGAA 

1111111 	11 	111 	1 	1 	11 	111 	HIM 	11 	1111 	11111 	1111 
NIMTA1AH 	GATCrGCCAAAGTGCCTAACGCGGrCTcGGGGATcrGCATCGGTcCCAGCGGCTA 

	

1640 	1650 	1660 	1670 	1680 	1690 

1780 	1790 	1800 	1810 	1820 	1830 
equinaconiple GCCGCATACCGTC1CAITI'CCTAGTACITCPACACAGTCGAGCCCGTTGCAAAATCGA 

NIMTA11H 	CCTCTCCAAGAAATCTACATGCAGGGCATGTACCCGAAPACTCCCGCAGAATATGTGGA 

	

1700 	1710 	1720 	1730 	1740 	1750 

S. eguina vs N. discreta 

71.3% identity in 122 bp overlap 

1640 	1650 	1660 	1670 	1680 	1689 
equinacomple 	ACAACCI'CACGCTAGCGTAAATCCGTCGCTGGGCAGTACCTGCG --- TATGTACAC 

11111111 
NDMTA1AG 	CCAACGCTrATGCACAACCrCACACTAGCGCGGTTCCGTCGCTGGGCGCTATGTAC-C 

1340 	1350 	1360 	1370 	1380 	1390 

	

1690 	1700 	1710 	1720 	1730 	1740 

equinacomple TAGCGTAGAAGCTGTGCCCCTCATTATGGATCTGCTAATG'ITrCrrG1CCTGCAGT--- 

	

I 	IltIllIllIllIll 	111111 	111111111 	II 	111 	II 	11 	111 	11 
NDMTA1AG 	CACAGTAGAAGCTGCCCTrCAGTGGATCTGCC.AAGTTGCTCAACTI'GCGGTI'CC 

	

1400 	1410 	1420 	1430 	1440 	1450 

1750 	1760 	1770 	1780 	1790 	1800 
equinacornple -TrCTGGAGATCCGCATCAG-TCCATrGGAGAAGCCGCATACCGTC'I'TCATrrCACTAGT 

	

11111111 	1111111 	111 	1111 	1 
NDMTA1AG 	ATICrGGGGAATCGCATCGGCCCCAGTGGACAC3GACAGCTGCCTCCCGTCTCTGcTAT 

	

1460 	1470 	1480 	1490 	1500 	1510 

1810 	1820 	1830 	1840 	1850 	1860 
equinaconpie ACTACACGTCGAGCCCGTI'GCAAMTCGAACTGTACTrAACAGTCAGN3TGACTAA 

NDMrA1AG 	GCACTAGGTAcGMTGCATGCGGGCArACCGAGAACrCCGCAGAATGTGTGG 

	

1520 	1530 	1540 	1550 	1560 	1570 
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S. eguina vs N. africana 

90.7% identity in 43 bp overlap 

1670 	1680 	1690 	1700 	1710 	1720 
equinacomple TCGCTGGGCATACCGCGTATGTACACTAGCGTAGAAGCCCCCTCATITAGAT 

11111111111 	II 	1111111111111 
MPTA1AA 

610 	620 	630 	640 	650 	660 

1730 	1740 	1750 	1760 	1770 	1780 
equinacomple CCrATGTrTCI'GACCTGCAGIT1'CTGGAGATCCGCATCAGTCCATTGGAGAAGCCG 

liii 	11 	111 	I 
NAMTA1AA 	CTGCCAAAGTI'GCCcTCCCAGTGGGCAGCTGCCTCCCGTCrCTACAAGGAATGTACATAC 

670 	680 	690 	700 	710 	720 

FIGURE 6.2.2.2.2a) The results of the fasta search using the partly sequenced S. equina variable 

region. The above figure shows the four best scores for homology with the S. equina variable region 

were sequences from the variable regions of N. tetrasperFna, N. intermedia, N. discreta and N. africana 

In figure 6.2.2.2.2a) one can see that a small part of the variable region of S. equina 

shows homology with a small part of the variable region in N. tetrasperma, N. 

intermedia, N. discreta and N. africana. Randall and Metzenberg (1995) demonstrated 

that the variable regions of the mtA mating types of N. crassa and N. sitophila are very 

similar to one another but completely dissimilar to the variable regions of the other 

Neurospora species included in the study. The variable regions of the mtA mating types 

of N. intermedia and N. tetrasperma are similar. N. africana, N. interinedia and N. 

discreta have an 'island of homology" -300-400 nucleotides long and 50-60% similar to 

one another. Different islands of homology are present between individual pairs of 

variable regions. It is interesting that the fasta search using the variable region of S. 

equina placed this Sordaria species with the N. intermedia, N. tetrasperina, N. discreta 

and N. africana group and no homology was found with the N. crassa and N. sitophila 

group. It seems that S. equina shares an island of homology with these species. The 

functional significance of the variable region and the islands of homology is not known. 

The sequenced portions of the variable regions of S. equina and S. scierogenia were 

compared using GCG9 bestfit. The result of the comparison is shown in figure 6.2.2.2.2 

b). 
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S. scierogenia vs S.eguina 

94% identity in 70bp overlap 

1814 cctgcgtatgtacgctagtgtagaagccgtgcccctcatttatggatct. 1862 
1111111111111 	1111 	11111111 	111111111111111111111 

1675 cctgcgtatgtacactagcgtagaagctgtgcccctcatttatggatctg 1724 

1863 . . . . tgttccttgacctgcag 1879 

1111 	111111111111 
1725 ctaatgtttcttgacctgcag 1745 

FIGURE 6.2.2.2.2b) DNA sequence comparison of the variable region of S. scierogenia (top line) 

and the variable region of S. equina. 

Figure 6.2.2.2.2b) shows that the region with which S. equina shows homology to the 

variable regions of the Neurospora species shown in figure 6.2.2.2.2a) is also the region 

with which S. equina shows high homology to the variable region of S. scierogenia. S. 

scierogenia shows no sequence homology with the variable regions of N. crassa and N. 

sirophila. 

6.2.2.3 Analysis of the Centromere Distal Flanking Region in S. fimicola 

mta. 

Some sequence data was obtained for a region downstream of the end of the S. Jimicola 

mta- 1 gene. The centromere distal flank starts 216 bp downstream of the end of mta- 1 in 

N. crassa. The sequence data obtained from S. fimicola mta was compared to the N. 

crassa mta sequence using GCG9 bestfit. The result of this analysis is shown in figure 

6.2.2.3. 
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4 54 ACAAGACTTTGACACCGGCATGGAT .... ACAGCGCCACGGTCTC 4899 
III 	111111 	111111 

1 acaagacttgggtaccggcatggatatgcacacacagcaac. . gggtctc 48 

4900 GGTTTC. .TTTTTCTCATGGTTCGCATTTCC. . . .TTATTTGTTCTTTGT 4943 

II 	II 	111 	111111 	111111111111 	II 	II 	I 	11111 
49 ggcttcgttttctctcatcgttcgcatttccttggttcgttatattttgt 98 

4944 CAGAGTCACAGCAAGCACA. . . CATCTTCCTCGACAGTCGGCGCTG. - TC 4988 

III 	II 
99 caaagtcacagcaagcacacaccatcttcctcgacagtcgcacctgtctc 148 

4989 TCATCGGCACTAACCCATCCATACTTTGGGCGTCAGTTTTCTTCTTCGTC 5038 

	

III 	111111 
149 tcat tggcaccgactcatccatactgttggcgttt tctctcgccttcgac 198 

5039 ATCTCACCGT ....... TCACGGTAAAGGGATCTTAGCAGMGG 5075 

11111111 	II 	III 
199 atctcaact tttctccctcttcgtgtgggatcttagctgaagg 242 

FIGURE 6.2.2.3 DNA sequence comparison of N. crassa mta centromere distal sequences (top line) 

vs S. firnicola mta sequences. 

Figure 6.2.2.3 demonstrates that the S. fimicola sequence downstream of the mta- 1 

gene shows high homology (81%) to centromere distal flanking sequence in N. crassa 

mta. The mta idiomorph in S. fimicola and the mta idiomorph in N. crassa appear to be 

located at equivalent centromere distal chromosomal locations. 

6.3 Discussion 

The phylogeny shown in figure 6.2.1c) supports the tree constructed by Randall and 

Metzenberg (1995) in that N. crassa and N. sitophila are more closely related to each 

other than to other species and N. intermedia and N. tetrasperma are related. This 

supports the evidence from the variable region data which also suggested a close 

relationship between N. crassa and N. sirophila. Figure 6.2.1c) also supports the 

proposal that the pseudohomothallic N. tetrasperma arose after the divergance of the N. 

crassa, N.intermedia, N. sitophila and N.tetrasperma subgroup from its common 

ancestor with the heterothallic N. discreta (Randall and Metzenberg, 1995). 
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There have been previous studies to try and resolve the evolutionary history of the 

Neurospora genus using data from other genes. Taylor and Natvig (1989) examined the 

distribution of restriction-endonuclease sites among mitochondrial DNAs (mtDNAs) to 

construct a phylogeny. Natvig eta! (1987) used restriction-site analysis of anonymous 

nuclear-DNA fragments to infer evolutionary relationships among Neurospora species. 

Most recently Skupski et a! (1997) used restriction fragment polymorphisms derived 

from cosmid probes and sequence data from the upstream regions of two genes, al-i and 

frq to build a phylogeny for five heterothallic Neurospora species. Maximum likelihood 

and parsimony trees were constructed. All the studies, including that of Randall and 

Metzenberg (1995) place N. discreta relatively distant from the other Neurospora 

species. Trees based on mtDNAs and the Skupski eta! (1997) study place N. crassa and 

N. intermedia as sister taxa and may even be incompletely resolved sister taxa. All the 

trees in previous studies except for that of Randall and Metzenberg (1995) and the frq tree 

support N. tetrasperma and N. sitophila as the closest relatives of one another. Using a 

Maximum Likelihood test to compare the frq and mtA-1 trees, Skupski et al (1997) 

showed that these two trees are significantly different. There is evidence that different 

genes have different evolutionary histories leading to conflicting trees. 

One of the cosmids used in the Skupski et a! (1997) study, 16:4F, mapped near the 

centromere on the right arm of linkage group I. The mating type locus maps to the left 

arm of this linkage group. Using the restriction fragment data from 16:4F, trees were 

built to establish whether they would give a phylogeny similar to that based on the mtA- 1 

data. This was not the case, only the mtA-1 tree groups N. crassa with N. sitophila and 

N. tetrasperina with N. interinedia.. Similarity between these species is limited 

apparently to the mating type idiomorph. 

How can different genes have different evolutionary histories? The most plausible theory 

is that of ancestral polymorphism where one must realize that a node in a tree represents a 

group of individuals among which variation can exist. The polymorphism in a group of 

individuals could have existed before the evolution of the population from a distant 

ancestor. This of course can result in inaccurate phylogenetic trees. Again it must be 

stressed that inaccuracies can also occur as a result of limited data being available from 

which to construct a phylogeny. 

The shift from a well conserved common region to a dissimilar variable region is 

intriguing. No function has been assigned to the common and variable regions. Perhaps 

the common region may have a role as a pairing site for homologous chromosomes 
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during meiosis (Randall and Metzenberg, 1995). The variable region may have arisen by 

a similar mechanism to which the mtA and mta idiomorphs evolved, they too are regions 

of complete dissimilarity. The variable region could be important in the process of 

speciation and as homothallic variable regions appear to be conserved from homothallic 

species to species, the variable region may be part of the distinction between 

homothallism and heterothallism. Randall and Metzenberg (1995) suggested that a study 

to try and establish the existance of other variable regions at other loci within the 

Neurospora genus may identify species-specific genes in these variable regions. 

In conclusion the mating type genes of Neurospora and Sordaria species are conserved 

reflecting their important role in the sexual cycle as transcription factors. A homothallic S. 

equina mtA gene is functional with respect to mating type activity in a mutant 

Neurospora strain but cannot confer homothallic behaviour on the recipient indicating 

that it is not a change to the mtA gene itself that results in homothallic behaviour. The 

evolutionary relationships between homothallic and heterothallic species have yet to be 

conclusively established. 
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Further Work 
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7 Further Work 

Ideally with more time more Sordaria species could have been sequenced to be included 

in the analysis. Of particular interest would have been the sequencing of the mtA 

idiomorph of S. brevicollis which is a heterothallic species. MtA individuals in this 

species show homothallic behaviour at a low frequency (Robertson et al, manuscript 

submitted to Mycological Research). Sequencing and expression of the mtA- I gene 

would show if it is changes to this gene that are responsible for the homothallic 

behaviour displayed. 

The inclusion of more species would have led to a more informative phylogeny for 

establishing evolutionary relationships. Sequence data from N. terricola would be of 

interest to see what the relationship is between the mtA and mta idiomorphs in that 

species. A ? clone is available for S. macrospora which hybridises to both mating type 

probes indicating that in this species the mtA and mta mating type idiomorphs are linked. 

Sequencing the junction between the idiomorphs in S. inacrospora would show if they 

have been recombined in a similar way to the idiomorphs in S. fimicola. Obviously 

comparing Sordaria species to Neurospora species to find a region of homology that 

could result in unequal crossing over is not ideal. Obtaining more sequencing data from 

Sordaria species could reveal a site of homology between the two idiomorphs which 

might have led to unequal crossing over. 

The ability of S. equina mtA to confer vegetative incompatibility in N. crassa was not 

tested due to the unexplained loss of the ad-3B. forcing marker. It would be of interest to 

establish whether S. equina does have vegetative incompatibility function bearing in 

mind that this species never comes into contact with a mta idiomorph. Testing the S. 

fimicola mtA and mta idiomorphs for vegetative incompatibility function by 

transformation into a sterile heterothallic species would be worthwhile considering that 

both idiomorphs reside in the one nucleus. 
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