
Constraints and AI Planning

Alexander Nareyek, Robert Fourer, Eugene C. Freuder,

Enrico Giunchiglia, Robert P. Goldman, Henry Kautz,
Jussi Rintanen and Austin Tate

Abstract

Tackling real-world problems often requires to take various types
of constraints into account. Such constraint types range from simple
numerical comparators to complex resources. This article describes
how planning techniques can be integrated with general constraint-
solving frameworks, like SAT, IP and CP. In many cases, the complete
planning problem can be cast in these frameworks.

1 Introduction

The purpose of this article is to explore the various aspects of the interplay
of constraints and planning, compare and highlight the differences between
constraint programming (CP), integer programming (IP) and propositional
satisfiability (SAT) in this context, and point out future directions1.

The basic planning problem is usually given by an initial world descrip-
tion, a partial description of the goal world, and a set of actions/operators
that map a partial world description to another partial world description. A
solution is a sequence of actions leading from the initial world description to
the goal world description and is called a plan. The problem can be enriched
by including further aspects, like temporal or uncertainty issues, or by re-
quiring the optimization of certain properties. In general, it is assumed that
the reader is familiar with basic planning techniques and terminology (see,
e.g., [Allen90] for basic literature).

1Note that we will not cover specialized reasoning schemes, like the management of
temporal constraint networks (e.g., see [Dechter91]).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429714627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The management of constraints is an integral part of today’s planning
systems. Not only complex problem features, like scheduling and reasoning
about numerical resources, can easily be expressed by a constraint-based
framework. Simple orderings in partial-order planning systems as well as the
exclusion relations of Graphplan-based planners can also be interpreted in
this context. Recently, even planning systems in which planning problems
are fully cast as a constraint satisfaction problem (CSP) have been developed.

Using constraints and related techniques as an underlying framework for
problem-solving tasks – such as planning – has proven successful for many do-
mains. The basic modeling units are constraints and variables. A constraint
is an entity that restricts the values of variables. In order to use efficient
solving techniques, most search frameworks use only a restricted scenario.
In propositional satisfiability, constraints are restricted to propositional for-
mulas, which constrain variables to a Boolean domain. In integer linear
programming, linear inequalities can be applied to restrict numerical vari-
ables. Finally, constraint programming is the most general framework with
no restriction on the types of constraints, although usually only variables
with finite domains are considered. Such search frameworks were increas-
ingly studied during the last several years and many successful application
areas suggest an application to planning. Sections 2 to 4 describe and com-
pare the different search frameworks and give examples how the frameworks
can be applied for planning. Special emphasis is placed on constraint pro-
gramming. The further development of this area and ideas for future research
are discussed in Section 5.

2 Planning as Propositional Satisfiability

The problem of propositional satisfiability (SAT) is to decide whether a
propositional formula is satisfiable or not. A propositional formula consists
of two-valued variables (true and false) that are related via the opera-
tors ¬ (“not”), ∨ (“or” or disjunction) and ∧ (“and” or conjunction). Most
solvers require that the problem be stated as a conjunctive normal form (a
conjunction of disjunctions).

SAT-solving techniques include refinement approaches, which are mostly
based on the Davis-Putnam procedure [Davis60], like Satz-Rand [Gomes98]
and Chaff [Moskewicz01], and local-search methods like GSAT [Selman92]
and SDF [Schuurmans00].

2



Planning as Satisfiability is a paradigm originally proposed by Kautz
and Selman [Kautz92]. The idea is simple. Suppose that we have a finite
description of the planning problem; to be specific, we assume a STRIPS
description D with finitely many objects [Fikes71]. Since the domain is
finite, it is possible to write a propositional formula TRi whose models are
one-to-one with the possible transitions in D. There are several possible ways
to write such TRi starting from a STRIPS description (see, e.g., [Kautz96]).
For our goals, it suffices to say that in TRi, there is a propositional variable
Ai for each ground action A, and two propositional variables Fi and Fi+1 for
each ground fluent2 F in D. Intuitively, Fi represents the value of F at time
i, and similarly for Ai and Fi+1.

Then, if D is deterministic and we are given a single initial state rep-
resented with a formula I, a goal state represented with a formula G is
reachable in n steps if the formula

I0 ∧ (
∧

0≤i<n

TRi) ∧ Gn (1)

is satisfiable. In the above formula, I0 is the formula obtained from I by
replacing each state variable F with F0, and Gn is obtained from G by
replacing each state variable F with Fn.

This simple idea has had a lot of impact in the planning community,
mainly because it has led to very impressive results (see [Kautz96]). Still,
it is clear that for very large values of n (say, exponential in the size of D),
the size of (1) becomes problematic, and “planning as satisfiability” may no
longer be feasible. However, in many cases, we look for short plans, and
in these cases planning as satisfiability can be a winning approach. Indeed,
similar considerations and results have been obtained also in the area of
formal verification. In this setting, TRi encodes the transition relation of the
system under analysis, ¬G is the property we want to verify, and I represents
the set of possible initial states: it is possible to violate the property in the
first n ticks if (1) is satisfiable, and systems based on this idea are far more
effective than the others if n is small (see, e.g., [Biere99]).

Given the above, it is clear that the planning as satisfiability approach
is not restricted to work with STRIPS domain descriptions. We may start
with a domain description written in any language for specifying domains,
and as long as

2The term fluent is equivalent to a state variable.

3



• the domain is deterministic and there is a single initial state, and

• we have a propositional formula TRi encoding all the possible transi-
tions,

we can determine plans of length n by satisfying Formula (1).

3 Operations Research Approaches to AI

Planning

The concept of an operations research (or OR) approach has long been in-
fluential in AI planning. Much of the early work on heuristic search was
inspired by OR methods. For example, the Nonlin hierarchical partial-order
planner [Tate77] was developed within a project entitled “Planning: A Joint
AI/OR Approach” and incorporated OR methods for temporal constraint
satisfaction. The ZENO temporal planner [Penberthy94] adopted OR data
structures and algorithms for handling linear inequality constraints. Indeed,
if “operations research” is interpreted broadly as the study of operations,
then it can encompass almost any AI planning method.

Nevertheless, for highly combinatorial problems such as AI planning,
there exists a distinctive integer programming (IP) approach that is ar-
guably the one most widely associated with OR. This approach involves
first casting the problem as the minimization or maximization of a linear
function of integer-valued decision variables, subject to linear equality and
inequality constraints in the variables. A solution is then sought through a
general-purpose branch-and-bound procedure based on the idea of a search
tree [Wolsey98]. The branching of the tree corresponds to the division of the
original problem into progressively more constrained sub-problems, with leaf
nodes representing individual solutions. A full tree search would thus involve
a complete enumeration, but in practice, an optimum is often determined af-
ter examining only a minuscule fraction of the nodes — through the use of
bounds derived from relaxations of the node sub-problems, in conjunction
with a variety of ingenious heuristic procedures.

For classical AI planning problems, no minimization or maximization is
required, and the branch-and-bound procedure may instead be used simply
to seek a feasible solution to the constraints. Still, the search for a solution
may be guided by constructing an objective such as minimization of the
number of actions taken.

4



Vossen et al. [Vossen01] report experiments in AI planning that are rep-
resentative of experience in combinatorial optimization via the integer pro-
gramming approach. They consider first a straightforward formulation, based
on the SAT representation employed by Blackbox [Kautz98], in terms of inte-
ger variables that take the value 1 if a certain condition holds and 0 otherwise:

Do[a,t] = 1 iff action a is taken in timestep t

True[f,t] = 1 iff fluent (assertion) f is true in timestep t

Linear constraints on these variables insure that state transitions are consis-
tent with actions. Because the variables take zero-one values rather than the
true-false values of a SAT problem (Section 2), the IP’s operators are arith-
metic rather than logical; but the assertions expressed by the IP’s constraints
correspond directly to the logical conditions in the SAT representation.

As a concrete example, consider a case of a “blocks world” having an arm
to pick up, hold or put down at least two blocks, A and B. There must be a
constraint to implement the rule that the arm may not put down block B at
timestep 3 unless it holds that block at that time:

Do['put_down_B',3] ≤ True['hold_B',3]

Another kind of constraint ensures that the arm may not hold block B at
timestep 3 unless one of the three actions compatible with holding it was
performed at timestep 2:

True['hold_B',3] ≤
Do['pick_up_B',2] + Do['unstack_B_A’,2] + Do['noop_hold_B',2]

Further constraints rule out the performance of incompatible actions in the
same timestep, such as both putting down and picking up block B:

Do['put_down_B',3] + Do['pick_up_B',3] ≤ 1

Finally, a few constraints specify the initial state and requirements for the
final state. All of the necessary constraints of these types can be derived
mechanically from the contents of a STRIPS representation of the problem.

Only the integrality of the Do variables needs to be enforced, as the True

variables may simply be constrained to lie in the interval [0,1] and will be
forced by the constraints to take only the values 0 and 1 at an optimal
solution. Even so, as reported in [Vossen01], a highly respected branch-and-
bound implementation was unable to prune the search tree sufficiently to

5



avoid prohibitive increases in execution time and memory requirements for
over half of the test problems considered.

As is often the case in integer programming, much better results may
be produced by a “tighter” representation that is considerably less intuitive
but which yields better bounds for pruning the search tree. In one such
representation, also derived by [Vossen01], the True variables are replaced
by four collections of variables similarly indexed over fluents and timesteps:

Do[a,t] = 1 iff action a is taken in timestep t

Keep[f,t] = 1 iff f is kept true in timestep t

Add[f,t] = 1 iff f is not a precondition but is added in timestep t

PreAdd[f,t] = 1 iff f is a precondition but is not deleted in timestep t

PreDel[f,t] = 1 iff f is a precondition and is deleted in timestep t

For each fluent and timestep, three constraints define the relations between
the new variables. Thus for example at most one of Keep, Add, PreDel and
one of Keep, PreAdd, PreDel can apply to the fluent that represents holding
block B at timestep 3:

Keep['hold B',3] + Add['hold B',3] + PreDel['hold B',3] ≤ 1

Keep['hold B',3] + PreAdd['hold B',3] + PreDel['hold B',3] ≤ 1

Moreover, any of Keep, PreAdd, PreDel can apply only if one of Keep,
PreAdd, Add applied at the previous timestep:

Keep['hold B',3] + PreAdd['hold B',3] + PreDel['hold B',3] ≤
Keep['hold B',2] + PreAdd['hold B',2] + Add['hold B',2]

Additional constraints relate these new variables to the Do variables, which
again are the only ones that need to be explicitly constrained to be integer.
For instance, the constraints must insure that “holds block B” can become
true at timestep 3 if and only if the arm either picks up or unstacks block B
at timestep 3:

Add['hold B',3] ≥ Do['pick up B',3]

Add['hold B',3] ≥ Do['unstack B A',3]

Add['hold B',3] ≤ Do['pick up B',3] + Do['unstack B A',3]

(2)

The branch-and-bound solver performed much more strongly on such a for-
mulation, solving all of the problems considered (though with computation
times over 1000 seconds and search trees of over 80000 nodes for the two

6



hardest cases). Even so, conventional test problems were solved even more
efficiently by use of Blackbox [Kautz98], which combines more specialized
processing of AI planning problems with propositional satisfiability solvers.

The branch-and-bound solver performed much more strongly on such a
formulation, solving all of the problems considered (though with computa-
tion times over 1000 seconds and search trees of over 80000 nodes for the two
hardest cases). Even so, conventional test problems were solved even more
efficiently by use of Blackbox [Kautz98], a package that combines more spe-
cialized processing of AI planning problems with propositional satisfiability
solvers.

The effectiveness of general-purpose IP software has improved consider-
ably, however, in the few years since the tests described above were run.
Integer programming may also be more suitable for temporal or resource-
oriented planning problems, because these involve larger numerical variable
domains that are hard to encode using propositional satisfiability approaches.
Another alternative is to combine solvers of both types for those tasks, a sys-
tem being realized by Wolfman and Weld [Wolfman99], in which a SAT solver
is used to solve the core planning problem and IP is used to take care of the
numerical relations.

The flexibility of integer programming has been further strengthened
by the development of several modeling languages [Bisschop82, Fourer83,
Kuip93] that permit general formulations to be written in a way that is con-
cise and natural for modelers, yet is capable of efficient processing by com-
puter. For example the collection of all constraints of the form (2), enforcing
the relationship between the Add and the Do variables for all combinations of
fluents and timesteps, can be written in the AMPL language [Fourer03] as

subj to DefnAddOnlyIf

{f in FLU, a in ADD[f] diff PRE[f], t in 1..T}:

Add[f,t] >= Do[a,t];

subj to DefnAddIf {f in FLU, t in 1..T}:

Add[f,t] <= sum {a in ADD[f] diff PRE[f]} Do[a,t];

This is a direct transcription of mathematical statements that appear in a
conventional formulation of the integer program. The sum operator denotes
the mathematical Σ, for example, character pairs >= and <= represent the
inequality relations ≥ and ≤, and expressions of the form {...} stand for in-
dexing sets. By providing high-level, symbolic expressions for indexed collec-
tions of constraints, modeling languages and their supporting environments

7



do much to encourage experimentation with a variety of formulations.

4 Applying Constraint Programming to Plan-

ning

The constraint programming approach is characterized by more natural or
convenient formulations than those described in the previous sections. Prob-
lems are described as so-called constraint satisfaction problems (CSPs). A
CSP consists of

• a set of variables x = {x1, . . . , xn}

• where each variable is associated with a domain d1, ..., dn

• and a set of constraints c = {c1, ..., cm} over these variables.

The domains can be symbols as well as numbers, continuous or discrete
(e.g., “block A”, “13”, “6.5”). Constraints are relations between variables
(e.g., “xa is on top of xb”, “xa < xb ×xc”) that restrict the possible value as-
signments. Constraint satisfaction is the search for a variable assignment that
satisfies the given constraints. Constraint optimization requires an additional
function that assigns a quality value to a solution and tries to find a solution
that maximizes this value.

The CSP structure of variables and constraints can be represented as a
graph with variables and constraints as nodes. A variable node is linked by
an edge to a constraint node if the corresponding constraint relation includes
the variable. We will often refer to this constraint graph instead of a CSP in
the following.

Advantages of the constraint programming framework become apparent
in slightly more complex settings, e.g., when incorporating resources and
time. As an example scenario for the following comparison, a number of
tasks with specific durations share a resource and their overlap is thus to be
prevented.

The mathematical framework of integer linear programming and the propo-
sitional formulas of SAT are highly restricted, and a problem must be trans-
lated into a very specific form, which can often only be done by experts.
For the SAT approach, representing the numerical aspects of the task dura-
tions of the non-overlap example above is already hardly possible because the

8



propositional SAT variables can represent only qualitative differences – un-
like CP and IP, which can also represent quantitative information. Of course,
discrete numbers can also be modeled in SAT by using a propositional vari-
able for each value of the discrete domain. But this is a highly unsuitable
approach, not only because of its immense costs but also because this de-
stroys the information about the values’ ordering relation, which should be
exploited during search.

For an IP approach, the inherent disjunction in the non-overlap problem
(task A may precede task B or task B may precede task A) blows up the size
of a representation by inequalities enormously. Constraint programming, by
contrast, enables to use higher-level (so called “global”) constraints. A formu-
lation could simple look like nonoverlap(taskA begin, taskA duration,

taskB begin, taskB duration). Add-on languages like the already men-
tioned AMPL for IP relax this statement only slightly because many problem
aspects cannot be adequately translated to the linear inequality context.

Global constraints do not only simplify modeling. The IP and SAT ap-
proach will break the problems down into their specific frameworks and may
then scan the resulting specifications for structures on which to apply spe-
cific solution strategies. But – although many efficient methods have been
developed – the propositional clauses of SAT and the linear inequalities of
IP are scarcely able to exploit the higher-level domain knowledge anymore to
support search (see also [Milano00]). This is not the case for constraint pro-
gramming, whose high-level constraints are able to capture domain-specific
dependencies. The availability of such global constraints and correspond-
ing solution techniques has been a very important factor in the success of
constraint programming.

Another advantage of using CP for planning is that there are lots of plan-
ning decisions with discrete alternatives, and the performance of OR meth-
ods declines sharply as the number of integer variables increases. However,
there are ongoing efforts to combine constraint programming with integer
programming [Hooker00, Milano00, Refalo99].

We adopt a model-based point of view here, defining constraint-based
planners by the way the planning problem is cast — using explicit con-
straints. The types of these constraints are, as discussed before, not bound
to propositional clauses or linear inequalities. By contrast, a widely used
solution method for constraint satisfaction problems — propagation tech-
niques — are sometimes seen as the essential ingredient of constraint pro-
gramming, and planners applying this technique in one form or another are

9



called constraint-based. From this point of view, however, nearly all plan-
ning systems would fall into this category because even the procedure of
conventional total-order planners can be interpreted as excluding infeasible
refinements by “propagating” state information.

The very first appearance of a system involving constraints was the MOL-
GEN planner [Stefik81]. More recent planners based on this idea include
Descartes [Joslin96], parcPLAN [Lever94, Liatsos00], CPlan [Beek99], the
approach of Rintanen and Jungholt [Rintanen99], GP-CSP [Do00], the ap-
proach of Jacopin and Penon [Jacopin00], MACBeth [Goldman00], the Ex-

calibur agent’s planning system [Nareyek01a] and EUROPA [FrankTA].
They can be grouped into categories, which are described in the following
subsections:

• Planning with Constraint Posting:

– CP is used for subproblems of planning

– limited interaction between CSP solving and the actual planning
process

• Planning with Maximal Graphs:

– a large CSP is constructed, involving all possible planning options
up to a specific plan size

– full interaction between value- and structure-based problem as-
pects

– does not scale well

• Completely Capturing Planning within Constraint Program-
ming:

– expresses the complete planning problem with the CP framework

– requires an extended CP framework to cover different possible
graph structures

– full interaction between value- and structure-based problem as-
pects

However, we start with a section describing popular search techniques
applied in constraint programming.

10



4.1 Search Techniques

Different search techniques can be employed for solution extraction – most
common is a tree-based refinement search. In contrast to the branch-and-
bound search mechanisms of Section 3, no continuous relaxations are applied.
Instead, a variety of branch selection, domain tightening, and simplification
procedures are applied at all nodes to reduce the extent of the tree that must
be searched.

The first central component are variable/value selection techniques. A
variable is selected for being assigned with a specific value and then the
value itself is determined. This assignment process is called labeling and
is iterated until all variables are assigned with values. Numerous variable
and value ordering heuristics have been proposed, such as smallest-domain-
first or smallest-value-first [Sadeh96]. In the case of an inconsistency (i.e., a
constraint is violated), backtracking is triggered [Kondrak97].

The second important component is so-called propagation or consistency
techniques. After each labeling step, reductions of the other variables’ do-
mains can be deduced, which may in turn lead to further domain reductions.
For example, we have two variables A and B with domains of {1...10} and
a constraint B > A. In the case of a labeling of A to 5, the propaga-
tion will entail a domain reduction of B to {6...10}. Generic propagation
techniques vary in which detail consequences are considered, trading off de-
duction costs against search costs. Examples of propagation techniques are
AC-7 [Bessière95] and PC-4 [Han88].

A special type of constraints are the already mentioned global constraints.
These are higher-level constraints and usually provide functionality to per-
form highly specialized and very efficient propagations.

A different paradigm to search for solutions is that of local search. In
local search, the domains of the variables are not stepwise reduced, but con-
crete assignments for the variables are changed in an iterative way. How-
ever, in respect to constraint programming, search techniques based on local
search are not very popular so far. This may be due to the traditional logic-
programming framework for constraint programming. Nevertheless, many
new methods have been proposed, especially in the last years. Some exam-
ples are the min-conflicts heuristic [Minton92], GENET [Davenport94] and
an approach based on global constraints [Nareyek01b].

11



4.2 Planning with Constraint Posting

This section describes an approach of utilizing constraint programming for
planning by posting/adding (and retracting in case of backtracking) con-
straints during a conventional planning process. Constraint satisfaction is
used here as an add-on for planning to check the satisfaction of restric-
tions such as numerical relations. For example, MOLGEN [Stefik81], MAC-
Beth [Goldman00] and the planning procedure of Jacopin and Penon [Ja-
copin00] apply this scheme. A more integrated approach is implemented in
the Descartes [Joslin96] and parcPLAN [Lever94, Liatsos00] systems, which
use constraint postings not only for numerical values, but also for postpon-
ing some of the decisions of action choice. In a wider context, also systems
like I-Plan/O-Plan [Currie91, Tate94, Tate00], IxTeT [Laborie95] and HSTS
[Muscettola94] fall into this category. In the following, we give an exam-
ple how constraint posting can be integrated in hierarchical task network
planning.

Hierarchical Task Network (HTN) planning [Erol94a] (sometimes referred
to as decomposition planning) often provides an alternative to the more con-
ventional means/ends or “first principles” planning, in particular, when plan-
ning problems involve the application of standard operating procedures (or
other well-established process fragments), rather than the “puzzle mode”
planning that characterizes domains like the Blocks world. Besides plan
generation, HTN systems also address the problem of modeling domains in
which planning takes place, make it easy to understand, control and commu-
nicate tasks, plans, intentions and effects between agents [Paolucci00], and
allow users and computer systems to cooperate and work together using a
“mixed initiative” style [Goldman00, Tate00]. Finally, HTNs provide a natu-
ral way to stipulate global constraints on plans, meshing well with the needs
of systems that combine planning and constraint satisfaction [Erol94b].

Military small unit operations, emergency medical treatment, civilian avi-
ation under free flight, and some team robotics applications fit this model.
For lack of a better term, these problems are called “tactical planning” prob-
lems. While tactical planning problems involve application of previously
known procedures, that does not mean they are easy to solve. Typically,
these problems include a rich and diverse set of constraints from the applica-
tion domain, which can strongly restrict the solution space. These constraints
may be available only through ancillary “black box” problem solvers.

An HTN least commitment planning approach has been used for many

12



years in practical planning systems such as NOAH [Sacerdoti75], Nonlin
[Tate77] and SIPE [Wilkins88]. Two existing planners that involve a com-
bination of HTN planning and constraint satisfaction techniques are AIAI’s
I-Plan/O-Plan and Honeywell Laboratories’ MACBeth system. When HTN
planning is joined with a strong underlying constraint-based ontology of plans
it can provide a framework in which powerful problem solvers based on search
and constraint reasoning methods can be employed and still retain human
intelligibility of the overall planning process and the plan products that are
created.

The main job of a tactical planner is to select and map appropriate pro-
cedures or processes onto different situations. In the process, the planner
must explore and compare multiple options, and allow users to explore and
compare multiple options. This is shown for O-Plan in figure 1. The planner
must check ancillary constraints involved and where possible use the informa-
tion to restrict the solution space. The human user must be able to intervene
freely during the planning process, both in heuristic guidance (“I suggest to
try at first to fly in formation during the ingress phase of the mission”) and
constraints (“I want you to fly over this point”).

HTN planners differ from conventional first principles planners in the
way they generate sub-goals. First principles planners generate sub-goals in
order to satisfy unsatisfied preconditions of operators they would like to ex-
ecute. For example, in blocks world, the desire to stack block A on block B
might cause a first principles planner to generate a sub-goal to clear block B.
Sub-goaling continues until all of the sub-goals have been satisfied by adding
operators or by the initial conditions (in our example above, if block B is
already clear in the starting state). On the other hand, an HTN planner
decomposes complex goals into simpler and simpler goals, building a tree 3

from the initial complex goals down to leaves that are all executable primi-
tives. At each level, additional constraints can be posted/added to refine the
feasibility testing.

For example, an HTN planner for military air missions might start with
a “perform reconnaissance” top-level goal, whose parameters indicate what
location is to be surveyed. Matching this goal would be a task network
(or method) that would decompose the top-level goal into three sub-goals:
“perform ingress,” “overfly objective,” and “perform egress.” There would
be additional constraints that indicated that the three sub-goals should be

3or graph, if operators may be used for more than one purpose.

13



achieved in the order listed, and that constrained the ingress phase to bring
the aircraft to an appropriate staging location, the overflying phase to carry
the aircraft from staging location over the target and the egress phase to
carry the aircraft back to base from the target area. Additional constraints
might be added for resource use, perhaps to ensure that the aircraft not
exceed its fuel allowance, or complete its mission by a given deadline.

Figure 1: Interaction with the O-Plan system.

An advantage of HTN planning that makes it particularly suited to plan-
ning with constraints, is that HTN planning makes it convenient to specify

14



constraints that cover sub-spaces of a plan. For example, it is trivial to cre-
ate a plan for air travel that specifies that the airport used for departure
and the airport used for return must be the same. This is non-trivial for a
conventional STRIPS-style planner, particularly if the initial position of the
agent and its desired ending points are not at the airport. Indeed, it is dif-
ficult to use a conventional STRIPS planner to create plans where an agent
starts in an initial position (or state), achieves some goal, and then returns
to the initial position (or state). Again, this is trivial in an HTN planner.
In order to build such plans, a STRIPS planner would have to state-encode
the constraint in some way, for example, adding a “takeoff airport” fluent.
This is feasible, of course, but imagine what happens if one wishes to take
two flights, or four, or eight, possibly with multiple agents, and interleaved.

Related to the above point, it is simple for an HTN planner to represent
resource use over sections of a plan. For example, a flight plan operator
might have three sections of the plan, each of which would have an associated
variable for its fuel use. Overall fuel use would be stipulated to be the sum
of these variables, for example:

FuelUse = IngressFuelUse + OverDestFuelUse + EgressFuelUse

In turn, the operators for the three phases of the flight would provide further
equations on fuel use. This would make for efficient constraint propagation
even when planning occurs at arbitrary points in the chronological sequence.
For example, if a reconnaissance aircraft were required to loiter over a partic-
ular Destination for a certain amount of time, the planner might be able to
determine OverDestFuelUse early in the planning process. The equations
specified in the HTN would make it easy to propagate the effects of that con-
straint over the entire plan. In contrast, conventional STRIPS-style planners
would find it difficult to reason about such resources except from plan pre-
fixes or suffixes. The HTN planners expressive advantage could translate
into greater search efficiency by allowing planning and constraint solving
more freedom to apply most-constrained-first sorts of heuristics.

HTN planning is a promising domain for an application of constraint-
posting techniques because the expressive power of HTNs makes it easy to
specify global constraints and make them available to constraint solvers.

15



4.3 Planning with Maximal Graphs

In contrast to the approach of the previous section – in which constraints
were stepwise posted/added depending on the current plan refinement state
– the techniques described in this section require that all constraints of the
domain are posted at once.

Similar to SAT/IP approaches, a restricted planning problem is encoded
as so-called “conditional” CSP4. The CSP is constructed such that it in-
cludes all possible plans up to a certain number of actions. Actions and
related sub-parts of the CSP can be activated or deactivated. Activation
and deactivation can be interpreted as SAT’s TRUE and FALSE values for
the ground actions/fluents (0 or 1 values in case of IP). More compact repre-
sentations, like the one given below, are possible as well. We call approaches
like this to be based on maximal graphs/structures because a representation
that encompasses all possible options must be constructed.

Planning systems like CPlan [Beek99], the approach of Rintanen and
Jungholt [Rintanen99], and GP-CSP [Do00] follow this line. The advantage
of constructing a structure with all possibilities is that decisions can easily be
propagated through the whole CSP, and future decision options that become
infeasible in consequence can be eliminated. For planning problems, the
optimal size (e.g., the number of actions) is not known in advance, so that a
stepwise extension of the CSP structures must be performed if no solution can
be found. Similar to SAT and IP formulations, which can also be classified
as approaches based on maximal graphs, maximal structures can soon result
in an unmanageable size of the CSP if a planning problem is slightly larger.

A constraint programming variation on the formulations of Section 3
could define fewer Do variables but with larger domains, taking members
of the set of actions, rather than 0 and 1, as their values:

Do[t] = the action performed at timestep t

Also a number of logical conditions, such as set membership and equiva-
lence, that would have to be translated to numerical inequalities for integer
programming, can be expressed directly in a constraint programming model.
For example, if we write ADD[f] and PRE[f] for the subsets of actions that
add fluent f and that have fluent f as prerequisite, respectively, then the

4This type of CSP was formerly also called “dynamic” CSP [Mittal90]. What many
people today understand as a dynamic CSP is however different, and we therefore use the
term “conditional”here.

16



three integer programming constraints that relate the Add and Do variables
for holding block B at timestep 3 can be subsumed by one more straightfor-
ward and general constraint:

Add['holding_B',3] <=>

Do[3] in ADD['holding_B'] & Do[3] not in PRE['holding_B']

In many modeling languages for constraint programming, such as the
OPL language [VanHentenryck99], these constraints can very conveniently
be expressed. Consider again the relationship between the Add and Do vari-
ables; the entire collection of constraints that enforce this relationship, for
all combinations of fluents and timesteps, can be written in OPL as

forall (f in FLU, t in 1..T)

Add[f,t] <=> Do[t] in ADD[f] & Do[t] not in PRE[f];

As a note for actually solving the CSP specified above, for best results
the search should focus on the Do variables, since they effectively define all
of the others, but this information may have to be conveyed explicitly to the
solver by someone familiar with the model.

4.4 Completely Capturing Planning within Constraint
Programming

The approaches of using maximal graphs that restricts to a finite number
of variables might be suitable for small problems that belong to the com-
plexity class NP. As the complexity of planning problems increases, repre-
sentation becomes difficult or impossible (same for the related SAT and IP
approaches). Such computational limitations arise for example in simplest
forms of planning with uncertainty and incomplete information, conformant
and conditional planning. These are complete problems for the complexity
class Σp

2, even when restricted to plans of polynomial size, and there does
not appear to be natural ways of restricting these problems so as to force
them to NP. For example, probabilistic planning with the same plan size

restriction is complete for NPPP. This means that CSP representations for
these problems cannot be generated in polynomial time.

For many simple cases, if the approach of maximal graphs is applicable,
the sizes of the CSP graphs, even when they are polynomial, may not be
practical because even a linear increase in the number of variables in the
representation may translate to an exponential increase in the time needed

17



in solving the problem. And most frustrating, the stepwise necessary graph-
structure extension phases (if no plan was found for the current CSP struc-
ture) imply a given exploration path of the problem space thereby. This does
not really fit the general idea of constraint programming – that a specifica-
tion of a problem should not be mixed with search control, which makes CP
solutions so easily adaptable and widely applicable.

The core of the problem for approaches that try to completely capture
planning within constraint programming is that the CP paradigm must some-
how be extended such that the CSP graph can be changed dynamically in-
stead be being built a priori. Section 4.2 presented an approach in which the
CSP graph was built stepwise by an external planning process. However, only
a subproblem of planning is covered within CP thereby, separating value- and
structure-based problem aspects. In the approach discussed in the following
[Nareyek01a], an extended CP framework is used to seamlessly integrate the
satisfaction/optimization of both aspects.

In this approach, the structure of the CSP is not created in advance to
cover all possible plans. So-called structural constraints, which represent re-
strictions on the possible constraint graphs, are defined and the search then
includes the search for a correct constraint graph as part of the optimization
process. The search process can seamlessly interleave the satisfaction and/or
optimization of variables’ values and graph structure, and search can freely
move around in the full planning problem’s search space. In addition, the
approach allows one to drop the closed-world assumption, i.e., it is not re-
stricted to handle only a pre-defined number of objects in the world. The
approach was developed for the Excalibur agent’s planning system, which
uses a local-search approach for solving the problems cast this way.

A structural constraint can for example test the relation that a state-
change task, which is a collection of variables representing an event to change
the state of a specific property, is always connected to exactly one action
constraint. The role of the action constraint is to ensure that connected
precondition/operation/state-change tasks together form a valid action. If
this structural constraint holds for all state-change tasks that exist in a con-
straint graph (and potential other structural constraints hold as well), the
graph is called structurally consistent. Figure 2 shows the structural con-
straint and a part of a constraint graph (variables are shown as circles, con-
straints as rectangles), which is structurally inconsistent because the state-
change task of adding 100 units of money at time 692 is not part of an action,
i.e., is not connected to an action constraint as required by the structural

18



constraint.

Action Constraint

State-Change Task :1State-Change Task :1
State-Change Task :1

State Resource Constraint

State-Change Task

692

Action Constraint

+100 money
Contribution

Resource Type

Temporal

Reference

Resource Type

An example of a structural constraint. The constraint applies at any

part of the graph where the left side matches, and is fulfilled if the right 
side matches then as well (the dark area of the right side describes a 
“negative” match, i.e., exactly one action constraint is required to be

connected to the state-change task).

A partial view of a structurally inconsistent constraint graph. The

structural constraint above matches the state-change task but does
not find a connected action constraint.

Figure 2: Extending the CP framework by structural constraints.

The inconsistency resolution (and optimization) of the local-search-based
approach of the Excalibur agent’s planning system does not only involve
changing values of variables, but changes the constraint graph as well. For
example, a state resource constraint, which projects a specific property’s
state over time and checks if related precondition tasks are fulfilled, may add
a new state-change task to the constraint graph to resolve an unsatisfied pre-
condition. The previously described structural constraint will be unsatisfied
in consequence because the new state-change task is not connected to any

19



action constraint (as in the figure above). Search might then in turn trigger
the addition of a new action constraint in order to get back to structural
consistency.

A similar approach in the direction of completely capturing planning
within constraint programming has been presented by Frank and Jónsson
[FrankTA]. It is more focused on specific interval elements than on general
structural constraints. So-called compatibilities are defined, which represent
implicative relations among interval elements. This enables to require the
existence of further intervals and constraints in specific situations.

5 Future Directions

In the previous sections, we have tried to give the reader an overview of
methods to apply constraint techniques to planning. Interest in the use of
constraint techniques for AI planning problems has grown considerably in the
recent years, and we believe that the area has a great potential for the future.
One reason is that the use of more general modeling techniques for planning
will promote an easy extendibility toward additional problem aspects.

5.1 Feature Integration

The principal advantage, but also their principal disadvantage, lies in the
generality of constraint-based methods. Many kinds of additional require-
ments can be introduced into the AI planning problem, e.g., in case of IP, by
simply adding linear inequalities to an integer program and re-applying the
general branch-and-bound solver. Comparable additions tend to necessitate
more substantial changes to specialized planning systems.

An example of incorporating additional problem aspects is the area of
integrating planning with resource and scheduling features. The complex
numerical and logical relations involved make it hard to add such features
in conventional planning systems. By contrast, many of the previously men-
tioned planning systems based on constraint handling already offer it. They
often profit from the enormous body of scheduling and resource research that
has already been done in the IP and CP communities, and the open nature
of the solvers enables an easy integration. An overview of related solving
techniques can be found in [Laborie01].

20



Another interesting direction is the synthesis of constraint-based and first-
order planning technology. A large body of work was developed based on
turning first-order logic into a tool for practical programming. GOLOG and
its successors [Levesque97] pushed the expressive power of logic-based plan-
ning and control languages. While retaining the formal semantics of the
situation calculus, GOLOG has come to include partial knowledge, sensing
actions, conditionals, iteration, interrupts, and other constructs. Recently
[Boutilier00] added the ability to handle quantitative probabilistic informa-
tion and decision-theoretic control.

The greater expressive power of GOLOG comes at a computational cost:
although GOLOG includes non-deterministic choice operators, they must
be used with great care to avoid a combinatorial explosion. GOLOG’s infer-
ence engine is simple Prolog-style chronological backtracking. In practice the
GOLOG user needs to write a nearly-deterministic logic program. In short:
GOLOG excels at representing open-ending domains and expressing explicit
control knowledge about planning, while many constraint-based approaches
excel at combinatorial search in large state-spaces.

A promising future research direction is therefore to develop a synthesis
of constraint-based and first-order planning. One approach would build upon
the insight that at a high enough level of abstraction many planning domains
are essentially propositional. Algorithms based on Graphplan [Blum97] and
satisfiability testing could be used to search very large state-spaces of can-
didate abstract plans. First-order logic programming and decision-theoretic
techniques could then be used to expand the abstract plans to executable
specifications.

An alternative (complementary) approach to synthesizing the two would
build upon Ginsberg’s suggestion that the role of “commonsense knowledge”
is to transform a real-world problem instance into a small propositional core
that can be solved by brute-force search [Ginsberg96]. The planner would
use a rich set of first-order problem reformulation rules to identify relevant
objects and operators and abstract away irrelevant parts of the problem
statement. The instantiation of the relevant pieces creates the propositional
core.

In either case, the goal is the same: to harness the raw computational
power of constraint-based reasoning engines with the expressive power of
first-order logic programming, thus expanding the range and size of planning
problems that can efficiently be solved.

To wrap up — getting back from the technology level to the application

21



level — there are dozens of features that are worth being integrated into
planning, ranging from resource handling to configuration and design. But
not only such “revolutionary” extensions should be considered. As planning
will make its way into applications, many people will realize that every real-
world problem is a bit different, and changes/additions to the engine will
nearly always be necessary – promoting the use of planning approaches that
are based on general solvers instead of highly specialized planning systems.

5.2 Extensions of Constraints Research

Motivated by needs in planning, constraints research will also be pushed to
explore many new areas. Techniques like structural constraint satisfaction
were already mentioned, but many other will get more attention for advanced
planning features. The following list mentions a few:

• Interactivity:
Planning customers may want to work interactively with their planning
systems. Work on dynamic constraint satisfaction [Verfaillie94], which
addresses changing problems, can support the corresponding evolving
environment. Work on explanation of constraint reasoning [Sqalli96],
which illuminates both success and failure, can support iterative evo-
lution toward an acceptable alternative. Work on constraint solving
advice can aid the user in responding to opportunities and difficulties.

• Impreciseness:
Many planning problems involve unknown or imprecise information.
Work on “partial”, “soft” and “over-constrained” constraint satisfac-
tion [Freuder92, Ruttkay94, Bistarelli99], which express preferences and
uncertainty, can provide a richer language to express these planning
needs. Stochastic constraint satisfaction [Walsh02], which enables to
handle variables that follow some probability distributions, and ap-
proaches like structural constraint satisfaction [Nareyek01a] that en-
able to drop the the closed-world assumption, may provide important
starting points here as well.

• Distribution:
Planning customers may want to cooperate with other customers in
joint planning operations. Planning can proceed in groups and through
software agent representatives. The planning problems or the solution

22



process can be distributed. Increasingly customers will want to plan
over the internet and through wireless communication. Work on dis-
tributed constraint satisfaction [Yokoo01] and on constraints and agents
can support cooperative planning.

• Ease of Use:
Planning customers will want software that can be used by non-spe-
cialists. Work on automating constraint modeling and synthesizing
constraint solving will be useful here. Ease of use is desirable on a large
scale, where the broader relevance of constraint satisfaction methods
can assist in enterprise integration, from the design stage on through
manufacturing, marketing, distribution, and maintenance. Ease of use
is also desirable on a small scale, where personal planners can embody
an understanding of their users in the form of constraints.

6 Conclusion

We hope that this article has provided a better understanding of the inter-
play of constraints and planning, and that it helped to increase awareness of
constraint-based methods in the planning community as well as awareness of
the action-planning domain in the communities of constraint-based search.
Bringing both together has great potential, scientifically as well as from an
application point of view, and we would be happy if this article contributes
to increased interaction of those communities.

Acknowledgments

We would like to thank the reviewers for many improvement suggestions, as
well as Kate Larson and Vincent Conitzer for a final check.

The work described in this article is supported by a number of research
sponsors and organizations. The authors and their sponsors are authorized
to reproduce and distribute reprints for their purposes notwithstanding any
copyright annotation hereon. The views and conclusions contained in this
article should not be interpreted as views of the research sponsors or organi-
zations involved.

23



Bibliography

[Allen90] Allen, J.; Hendler, J.; and Tate, A. (eds.) 1990. Readings in
Planning. Morgan Kaufmann Publishers.

[Beek99] Van Beek, P., and Chen, X. 1999. CPlan: A Constraint Pro-
gramming Approach to Planning. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), 585–590.

[Bessière95] Bessière, C.; Freuder, E. C.; and Régin, J.-C. 1995. Using
Inference to Reduce Arc Consistency Computation. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-
95), 592–598.

[Biere99] Symbolic Model Checking without BDDs. 1999. Biere, A.; Cimatti,
A.; Clarke E. M.; and Zhu, Y. 1999. In Proceedings of the Fifth International
Conference on Tools and Algorithms for the Analysis and Construction of
Systems (TACAS’99), 193–207.

[Bisschop82] Bisschop, J. J. and Meeraus, A. 1982. On the Development of
a General Algebraic Modeling System in a Strategic Planning Environment.
Mathematical Programming Study 20: 1–29.

[Bistarelli99] Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; Verfaillie, G. 1999. Semiring-Based CSPs and Valued CSPs: Frameworks,
Properties, and Comparison. Constraints 4(3): 199–240.

[Blum97] Blum, A. L., and Furst, M. L. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90: 281–300.

[Boutilier00] Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S. 2000.
Decision-Theoretic, High-Level Agent Programming in the Situation Calcu-
lus. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), 355–362

[Currie91] Currie, K. and Tate, A. 1991. O-Plan: The Open Planning
Architecture. Artificial Intelligence 52(1): 49–86.

[Davenport94] Davenport, A.; Tsang, E.; Wang, C. W.; and Zhu, K. 1994.
GENET: A Connectionist Architecture for Solving Constraint Satisfaction
Problems by Iterative Improvement. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), 325–330.

[Davis60] Davis, M., and Putnam, H. 1960. A Computation Procedure for
Quantification Theory. Journal of the ACM 7(3): 201–215.

[Dechter91] Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint

24



Networks. Artificial Intelligence 49: 61–95.

[Do00] Do, B., and Kambhampati, S. 2000. Solving Planning Graph by
Compiling it into a CSP. In Proceedings of the Fifth International Conference
on Artificial Intelligence Planning and Scheduling (AIPS-2000).

[Erol94a] Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A Sound and
Complete Procedure for Hierarchical Task Network Planning. In Proceedings
of the Second International Conference on AI Planning Systems (AIPS-94),
249–254.

[Erol94b] Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN Planning: Com-
plexity and Expressivity. In Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94), 1123–1128.

[Fikes71] Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artificial Intelli-
gence 5(2): 189–208.

[Fourer83] Fourer, R. 1983. Modeling Languages versus Matrix Generators
for Linear Programming. ACM Transactions on Mathematical Software 9:
143–183.

[Fourer03] Fourer, R.; Gay, D. M.; and Kernighan, B. W. 2003. AMPL: A
Modeling Language for Mathematical Programming, 2nd edition. Reading,
Thomson Brooks/Cole, Pacific Grove, CA.

[FrankTA] Frank, J., and Jónsson, A. Constraint-based Attribute and In-
terval Planning. Constraints, Special Issue on Planning, to appear.

[Freuder92] Freuder, E. C., and Wallace, R. J. 1992. Partial Constraint
Satisfaction. Artificial Intelligence 58: 21–70.

[Ginsberg96] Ginsberg, M. L. 1996. Do Computers Need Common Sense?
In Proceedings of the Fifth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’96): 620–626.

[Goldman00] Goldman, R. P., Haigh, K. Z.; Musliner, D. J.; and Pelican,
M. 2000. MACBeth: A Multi-Agent Constraint-Based Planner. In Papers
from the AAAI-2000 Workshop on Constraints and AI Planning, Technical
Report, WS-00-02, 11–17. AAAI Press, Menlo Park, California.

[Gomes98] Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting Com-
binatorial Search Through Randomization. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), 431–437.

[Han88] Han, C., and Lee, C. 1988. Comments on Mohr and Henderson’s

25



Path Consistency Algorithm. Artificial Intelligence 36, 125–130.

[Hooker00] Hooker, J.; Ottosson, G.; Thorsteinsson, E. S.; Kim, H.-J. 2000.
A Scheme for Unifying Optimization and Constraint Satisfaction Methods.
Knowledge Engineering Review 15(1): 11–30.

[Jacopin00] Jacopin, É, and Penon, J. 2000. On the Path from Classical
Planning to Arithmetic Constraint Satisfaction. In Papers from the AAAI-
2000 Workshop on Constraints and AI Planning, Technical Report, WS-00-
02, 18–24. AAAI Press, Menlo Park, California.

[Joslin96] Joslin, D. 1996. Passive and Active Decision Postponement in
Plan Generation. PhD thesis, University of Pittsburgh, Pittsburgh, PA.

[Kautz92] Kautz, H., and Selman, B. 1992. Planning as Satisfiability.
In Proceedings of the Tenth European Conference on Artificial Intelligence
(ECAI-92), 359–363.

[Kautz96] Kautz, H., and Selman, B. 1996. Pushing the Envelope: Plan-
ning, Propositional Logic, and Stochastic Search. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI-96), 1194–1201.

[Kautz98] Kautz, H., and Selman, B. 1998. BLACKBOX: A New Approach
to the Application of Theorem Proving to Problem Solving. In Working
Notes of the AIPS-98 Workshop on Planning as Combinatorial Search, 58–
60.

[Kondrak97] Kondrak, G., and van Beek, P. 1997. A Theoretical Evaluation
of Selected Backtracking Algorithms. Artificial Intelligence 89: 365–387.

[Kuip93] Kuip, C. A. C. 1993. Algebraic Languages for Mathematical Pro-
gramming. European Journal of Operational Research 67(1): 25–51.

[Laborie95] Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), 1643–1649.

[Laborie01] Laborie, P. 2001. Algorithms for Propagating Resource Con-
straints in AI Planning and Scheduling: Existing Approaches and New Re-
sults. In Proceedings of the 6th European Conference on Planning (ECP-01).

[Lever94] Lever, J. M., Richards, B. 1994. parcPLAN: A Planning Architec-
ture with Parallel Action, Resources and Constraints. In Proceedings of the
Nineth International Symposium on Methodologies for Intelligent Systems
(ISMIS 1994), 213–222.

[Levesque97] Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and

26



Scherl, R.B. 1997. GOLOG: A Logic Programming Language for Dynamic
Domains. Journal of Logic Programming 31(1-3): 59–83.

[Liatsos00] Liatsos, V. 2000. Scaleability in Planning with Limited Re-
sources. PhD Thesis, IC-Parc, Imperial College, submitted December 2000.

[Milano00] Milano, M.; Ottosson, G.; Refalo, P.; and Thorsteinsson, E. S.
2000. The Benefits of Global Constraints for the Integration of Constraint
Programming and Integer Programming. In Working Notes of the AAAI-
2000 Workshop on Integration of AI and OR Techniques for Combinatorial
Optimization.

[Minton92] Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird, P. 1992.
Minimizing Conflicts: a Heuristic Repair Method for Constraint Satisfaction
and Scheduling Problems. Artificial Intelligence 58: 161–205

[Mittal90] Mittal, S., and Falkenhainer, B. 1990. Dynamic Constraint Sat-
isfaction Problems. In Proceedings of the Eighth National Conference on
Artificial Intelligence (AAAI-90), 25–32.

[Muscettola94] Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M., and Fox, M. S. (eds.), Intelligent Scheduling,
Morgan Kaufmann, 169–212.

[Moskewicz01] Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an Efficient SAT Solver. In Proceedings
of the 38th Design Automation Conference (DAC 2001), 667–672.

[Nareyek01a] Nareyek, A. 2001. Constraint-Based Agents – An Architec-
ture for Constraint-Based Modeling and Local-Search-Based Reasoning for
Planning and Scheduling in Open and Dynamic Worlds. Reading, Springer
LNAI 2062.

[Nareyek01b] Nareyek, A. 2001. Using Global Constraints for Local Search.
In Freuder, E. C., and Wallace, R. J. (eds.), Constraint Programming and
Large Scale Discrete Optimization, American Mathematical Society Publica-
tions, DIMACS Volume 57, 9–28.

[Paolucci00] Paolucci, M.; Shehory, O.; and Sycara, K. 2000. Interleav-
ing Planning and Execution in a Multiagent Team Planning Environment.
Electronic Transactions on Artificial Intelligence, 4(2000), Section A, 23–43.
http://www.ep.liu.se/ej/etai/2000/003/.

[Penberthy94] Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning
with Continuous Change. In Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94), 1010–1015.

27



[Refalo99] Refalo, P. 1999. Tight Cooperation and Its Application in Piece-
wise Linear Optimization. In Proceedings of the Fifth International Confer-
ence on Principles and Practice of Constraint Programming (CP99), 375–389.

[Rintanen99] Rintanen, J. 1999. Constructing Conditional Plans by a
Theorem-Prover. Journal of Artificial Intelligence Research (10): 323–352.

[Rintanen99] Rintanen, J., and Jungholt, H. 1999. Numeric State Vari-
ables in Constraint-based Planning. In Proceedings of the Fifth European
Conference on Planning (ECP-99).

[Ruttkay94] Ruttkay, Z. 1994. Fuzzy Constraint Satisfaction. In Proceed-
ings of the Third IEEE International Conference on Fuzzy Systems, 1263–
1268.

[Sacerdoti75] Sacerdoti, E. D. 1975. The Nonlinear Nature of Plans. In
Proceedings of the Fourth International Joint Conference on Artificial Intel-
ligence (IJCAI-75), 206–214.

[Sadeh96] Sadeh, N., and Fox, M. 1996. Variable and Value Ordering
Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem. Ar-
tificial Intelligence 86, 1–41.

[Selman92] Selman, B.; Levesque, H.; and Mitchell, D. 1992. A New
Method for Solving Hard Satisfiability Problems. In Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI-92), 440–446.

[Schuurmans00] Schuurmans, D., and Southey, F. 2000. Local search char-
acteristics of incomplete SAT procedures. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), 297–302.

[Sqalli96] Sqalli, M. H., and Freuder, E. C. 1996. Inference-Based Con-
straint Satisfaction Supports Explanation. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), 318–325.

[Stefik81] Stefik, M. J. 1981. Planning with Constraints (MOLGEN: Part
1). Artificial Intelligence 16(2): 111–140.

[Tate77] Tate, A. 1977. Generating Project Networks. In Proceedings of
the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77),
888–893.

[Tate94] Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An Open
Architecture for Command, Planning, and Control. In Zweben, M., and
Fox, M. S. (eds.), Intelligent Scheduling, Morgan Kaufmann, 213–239.

[Tate00] Tate, A., Levine, J., Jarvis, P. and Dalton, J. 2000. Using AI Plan-

28



ning Technology for Army Small Unit Operations. Poster Paper in Proceed-
ings of the Fifth International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-2000), 379–386.

[VanHentenryck99] Van Hentenryck, P. 1999. The OPL Optimization
Programming Language. Reading, MIT Press.

[Verfaillie94] Verfaillie, G., and Schiex, T. 1994. Solution Reuse in Dynamic
Constraint Satisfaction Problems. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), 307–312.

[Vossen01] Vossen, T.; Ball, M.; Lotem A.; and Nau, D. 2001. Applying
Integer Programming to AI Planning. Knowledge Engineering Review 16:
85–100.

[Yokoo01] Yokoo, M. 2001. Distributed Constraint Satisfaction - Founda-
tions of Cooperation in Multi-agent Systems. Reading, Springer Series on
Agent Technology.

[Walsh02] Walsh, T. 2002. Stochastic Constraint Programming. In Pro-
ceedings of the Fifteenth European Conference on Artificial Intelligence (ECAI
2002).

[Wilkins88] Wilkins, D. 1988. Practical Planning: Extending the Classical
AI Planning Paradigm. Reading, Morgan Kaufmann Publishers.

[Wolfman99] Wolfman, S. A., and Weld, D. S. 1999. The LPSAT Engine
& its Application to Resource Planning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI-99), 310–316.

[Wolsey98] Wolsey, L. A. 1998. Integer Programming. Reading, Wiley.

29


