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Abstract 
Genetic analyses such as linkage and genome wide association studies (GWAS) have 

been extremely successful at identifying genomic regions that harbour genetic 

variants contributing to complex disorders. Over 90% of disease-associated variants 

from GWAS fall within non-coding regions (Maurano et al., 2012). However, 

pinpointing the causal variants has proven a major bottleneck to genetic research.  

 

To address this I have developed SuRFR, an R package for the ranked prioritisation 

of candidate causal variants by predicted function. SuRFR produces rank orderings 

of variants based upon functional genomic annotations, including DNase 

hypersensitivity signal, chromatin state, minor allele frequency, and conservation. 

The ranks for each annotation are combined into a final prioritisation rank using a 

weighting system that has been parametrised and tested through ten-fold cross-

validation.  

 

SuRFR has been tested extensively upon a combination of synthetic and real datasets 

and has been shown to perform with high sensitivity and specificity. These analyses 

have provided insight into the extent to which different classes of functional 

annotation are most useful for the identification of known regulatory variants: the 

most important factor for identifying a true variant across all classes of regulatory 

variants is position relative to genes. I have also shown that SuRFR performs at least 

as well as its nearest competitors whilst benefiting from the advantages that come 

from being part of the R environment.  

 

I have applied SuRFR to several genomics projects, particularly the study of 

psychiatric illness, including genome sequencing of a large Scottish family with 

bipolar disorder. This has resulted in the prioritisation of such variants for future 

study. 
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Thesis Lay Summary 

The vast majority of our DNA sequence is identical between humans. The small 

fraction that is different reflects the differences between individuals, from how 

different you are to your siblings and parents to population level differences. Some 

of these variations in our DNA contribute to our risk of developing hereditary 

diseases. Most of the known variants that cause human disease are found in the 

regions of our DNA that encode proteins. Proteins are the building blocks of life and 

when the DNA that encodes them contains a variation or mistake, the structure of the 

protein can be altered, or the protein is not made at all, meaning it is no longer able 

to do its job, potentially leading to disease. The stretches of DNA between the 

protein coding regions, the non-coding regions, often contain molecular switches that 

control how much protein is made and when. These molecular switches are very 

important for the correct function of proteins, but our knowledge of what defines 

them is very limited. This makes it difficult to predict whether a variant is located in 

a molecular switch and if it has a functional role in human disease. However, we 

have lots of different ways of characterising and annotating DNA sequence, for 

example the extent to which a stretch of DNA is conserved between humans and 

other organisms (highly conserved DNA sequences often having important 

functions), which we can layer together to find unique patterns of annotation 

associated with different types of variants. 

The aim of my PhD was to use computational techniques to piece together some of 

the information we have on the characteristics of these molecular switches to predict 

the likelihood of a non-coding variants playing a role in human disease. To do this, I 

used a dataset of known disease-causing non-coding variants and a machine learning 

method to identify patterns associated with these variants. I used a statistical method 

called cross-validation to show that the patterns I identified are truly associated with 

the disease variants rather than being due to chance or to over-fitting of my data. I 

then used this information to build a computational tool to prioritise variants on their 

likelihood of being functional variants (and in turn likely to play a role in human 

disease). This tool is called SuRFR (SNP Ranking by Function R package) and is 
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freely available as part of a widely used computer programming language. I have run 

SuRFR on a range of test datasets, where SuRFR was correctly able to prioritise the 

known disease variant(s) above the background variants in a reproducible manner. 

This shows that SuRFR is likely to work well on novel data where the disease 

causing variant is not known. As such, SuRFR can be used in the search for 

functional and disease-causing non-coding variants. 
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Chapter 1: Introduction 

1.1 The study of human disease and complex traits 

Human genetics is the study of genetic variation in human genomes and the impact of 

this variation on phenotypes, including complex traits and disease. Fu et al. (2013) 

defined the genetic architecture of a trait as being “a comprehensive description of how 

genes and the environment conspire to produce phenotypes” (Fu et al., 2013). Improving 

our understanding of the genetic architecture and heritability of complex traits and 

diseases, and how our genotypes biologically connect to phenotypes, is a major goal of 

genomics projects. This is not a straightforward task, as there is a large amount of 

genetic complexity across different diseases and disorders.  

 

The simplest form of inheritance, commonly known as “Mendelian inheritance”, was 

discovered by Gregor Mendel at the end of the 19th century. Mendel’s laws describe the 

relationship between genotype and phenotype, where a single variant drives the 

expression of a particular phenotype or disease. Under this model, alleles follow either a 

dominant or recessive pattern of inheritance, further complicated by whether the variant 

is autosomal or X-linked. Mendel studied simple genetic traits where two alleles (A and 

a) generated three possible genotypes (AA, Aa, aa). When inheritance is dominant, the 

phenotypic effect of the dominant allele (A) will mask the phenotypic effect of the 

second, recessive, allele (a), so that both the dominant homozygous genotype (AA) and 

heterozygous genotype (Aa) will have the same phenotype. The phenotype of the 

recessive allele (a) will only be seen when the genotype is homozygous for the recessive 

allele (aa). If one parent carries an autosomal dominant disease allele, the probability is 

that 50% of the offspring will also receive the allele and be affected by the disease or 

phenotype. For a recessive disorder or trait, both parents will each have to carry a copy 

of the recessive allele. When both parents are heterozygous for the two alleles (Aa), 25% 

of the offspring will be homozygous for the recessive allele and be affected by the 

disease (aa), 25% will be homozygous for the dominant allele (AA) and so will not 

express the phenotype and 50% will be heterozygous (Aa) and will not express the 

phenotype (Aa), but will be carriers of the disease allele (and are therefore capable of 

passing it on to their own offspring). 
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An example of a disease that follows a Mendelian autosomal-recessive pattern of 

inheritance is cystic fibrosis, which is caused by large effect size (where effect size is 

defined as the ratio of the odds of disease manifestation in carriers vs. non-carriers 

(Zollner and Pritchard, 2007)) mutations in both copies of the CFTR gene. However, 

even this is not as simple an example as originally thought; to date, over 2,000 variants 

have been catalogued located in and around the CFTR gene that lead to cystic fibrosis 

(Drumm et al., 2012), with at least eight regulatory variants in the promoter region of 

CFTR also known to contribute to a cystic fibrosis phenotype (Giordano et al., 2013). 

Additional loci across the genome have also been identified that harbour variants that 

modify clinical outcomes of cystic fibrosis disease (Drumm et al., 2012). This suggests 

that even the architecture of ‘simple’ disorders is not particularly simple.  

 

A catalogue of known Mendelian diseases (genes, mutations and associated phenotypes) 

can be found in the online database, the ‘Online Mendelian Inheritance in Man’ (OMIM) 

(Amberger et al., 2015). It is estimated that there are ~7,000 rare monogenic human 

diseases. Over the past 25 years ~50% of the genes responsible for these diseases have 

been identified (Boycott et al., 2013, Deciphering Developmental Disorders, 2015). The 

advances of next generation sequencing (NGS), both whole genome and whole exome 

sequencing, are predicted to aid the identification of the remaining genes causing 

Mendelian diseases by 2020 (Boycott et al., 2013).  

 

At the other end of the spectrum are complex traits and disorders that do not follow 

Mendelian patterns of inheritance. These traits and disorders are caused by susceptibility 

variants with much smaller effect sizes that together (along with environmental factors) 

are associated with a phenotype. Such diseases have been the focus of genome wide 

association studies (GWAS), which assay the genotypes of hundreds of thousands of 

common markers (present in at least 1% of the population) across the genome, in 

thousands of cases and controls, to test for the association of variants with a phenotype 

of interest (Hardy and Singleton, 2009).  
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Height is an example of a complex trait that is affected by both an individual’s genotype 

at multiple loci and environmental factors. Heritability (h2, the proportion of phenotypic 

variation in a trait or disease that is due to genetic factors (Wray et al., 2013)) estimates 

for height range from ~70-90% (Silventoinen et al., 2003). To date, nearly 200 loci have 

been associated with height in GWASs, which together explain roughly 20% of the 

heritability (Berndt et al., 2013, Lango Allen et al., 2010). A complex disorder with a 

genetic architecture that is similar to height is type 2 diabetes (T2D). Heritability 

estimates for T2D range from 30 – 70% (Wellcome Trust Case Control, 2007). To date, 

over 70 loci have been identified that are associated with T2D (Replication et al., 2014), 

each of small individual effect size, together explaining roughly 10% of the heritability 

of T2D (Voight et al., 2010). 

 

NGS methods have led the discovery of millions of genetic variants identified through 

the sequencing of thousands of individuals. Comprehensive catalogues of human 

variation, such as the 1000 genomes database (Genomes Project et al., 2010), contain 

data on a range of variant classes in the human genome, including single nucleotide 

polymorphisms (SNPs), short insertions and deletions (indels) and structural variants 

(copy number variants (CNVs) and chromosomal rearrangements). These variants range 

in allele frequency from common to very rare or unique variants. The vast majority of 

human variation (90%) is common and ancient, dating back to before the out-of-Africa 

migration (at least 50,000 – 60,000 years ago) (McClellan and King, 2010a). In contrast, 

the majority of rare variants are very new, tend to be population, family or individual 

specific, and are more likely to be deleterious than older, more common variants (Henn 

et al., 2015). This is due to the actions of genetic drift and purifying selection, which 

work to remove deleterious variants from a population, preventing them from reaching 

high frequency. Variants causing Mendelian diseases tend to fall into this category of 

high effect-size rare variation. In contrast, variants associated with complex traits and 

variants of weaker deleterious effect can become common due to random drift (Figure 

1.1).  

 

Occasionally deleterious mutations of larger effect can become common in a population 

if a fast population expansion occurs (Henn et al., 2015), or if the disease has a later age 
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of onset (thereby not affecting reproductive fitness). An example of such a disease is 

Huntington’s disease, which segregates in an autosomal dominant fashion and presents 

later in life (~30 -50 years of age)(Gusella et al., 1983). The Huntingtin gene was 

identified through investigation of an extremely large Venezuelan family (the pedigree 

dating back to the 1800s and containing over 3,000 members all related to a single 

common ancestor).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Proportion of deleterious variants found in the average genome classified by their 
frequency in the population (common (in blue) versus rare (in purple)). This figure shows that 
the proportion of rare variants in an individual’s genome will be equally likely to have a 
medium or a large effect size. The vast majority of deleterious variants in an individual’s 
genome (70%) are common variants, most of which have only a small effect (‘moderate’). A 
very small fraction of common variants will also have extreme effects; however, the majority of 
these will have been purged by purifying selection. Taken from Henn et al., 2015 (Henn et al., 
2015).  

 

To summarise, deleterious variants contributing to disease occur across the full spectrum 

of allele frequencies and with a range of effect sizes (Figure 1.1). The genetic effect size 

of a variant is related to both the penetrance (the number of individuals who carry a 

particular genotype that also express the associated phenotype) and frequency of the 

variant (Zollner and Pritchard, 2007). Figure 1.2 summarises the relationship between 

effect size (penetrance), allele frequency and genetic architecture of disease variants. 
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Variants of different effect sizes and frequencies play different roles in human disease. 

Rare variants with high effect sizes generally lead to Mendelian diseases like cystic 

fibrosis, while more common variants with smaller effect sizes playing a role in 

susceptibility to more complex diseases and disorders, such as T2D. Variable 

penetrance, which can be due to the influence of genetic modifiers and environment, can 

make it difficult to identify susceptibility variants.  

 

 

 

Figure 1.2 This figure outlines potential classes of human disease, stratified by the frequency of 
underlying genetic variation on the x-axis and the penetrance of these variants on the y-axis. 
Taken from McCarthy et al. (2008) (McCarthy et al., 2008).   

 

 

1.2 Psychiatric illness 

Psychiatric disorders are debilitating clinical syndromes that are characterised by 

psychological symptoms that impact multiple life areas, creating distress for the person 

experiencing these symptoms as well as for their family and friends ((WHO, 2015) 

accessed June 2015). Although they have largely unknown aetiology and 

pathophysiology (psychiatric syndromes hence being referred to as ‘disorders’, as 
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opposed to ‘diseases’), such conditions are associated with high morbitity, accounting 

for roughly one-third of disability world wide, negatively impacting the lives of both 

sufferers and their families and causing considerable personal and societal burden 

(reviewed in (Sullivan et al., 2012)). In addition, such disorders are associated with 

increased mortality rates, from suicide and other causes (Eaton et al., 2008).  

 

To date, over 300 psychiatric disorders have been defined. Nine of these, described by 

Sullivan et al. (2012) as the ‘cardinal psychiatric disorders’, are summarised in Table 

1.1, taken from (Sullivan et al., 2012)). Of these, the Psychiatric Genomics Consortium 

(PGC) has defined autism spectrum disorder (ASD), attention deficit-hyperactivity 

disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), and 

schizophrenia (SCZ) as being the ‘major’ psychiatric syndromes. The aim of the PGC is 

to conduct statistically rigorous and comprehensive GWAS meta-analyses on each of 

these major psychiatric illnesses, as well comparative analyses across the five disorders 

(Sullivan, 2010). 

 

Family, twin and adoption studies have shown that there is also a strong heritable 

component to psychiatric disorders (see lifetime prevalence in table 1.1). In addition, 

several environmental risk factors have been identified for many of these disorders 

(summarised in Table 1.2, taken from the review by Uher, (2014) (Uher, 2014)). The 

genetic architecture of these disorders has yet to be determined, but is likely to be 

complex. De novo mutations, structural rearrangements, rare variants, common variants 

have all been implicated in the aetiology of these disorders. Each of these, along with 

methods to identify pathogenic variants, will be described briefly in the following 

sections. More details on the potential genetic architectures of BD and MDD can be 

found in the Introduction to Chapter 5. 
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Table 1.1 This table describes nine psychiatric disorders, defining their lifetime prevalence, 
heritability, essential characteristics and notable features. Taken from Sullivan et al. (2012) 
(Sullivan et al., 2012).  

 

Table 1.2. Summary of environmental risk factors for schizophrenia, bipolar disorder and 
major depressive disorder. Taken from Uher (2014) (Uher, 2014).  
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1.3 A summary of potential disease models 

1.3.1  De novo mutations  
There is growing evidence of the role of de novo variants (SNPs, indels and CNVs) in 

the genetics of psychiatric illness (Gratten et al., 2013). De novo CNVs have been 

implicated in a range of nervous system disorders (Lee and Lupski, 2006), including 

ASD (Marshall et al., 2008), SCZ ((Karayiorgou et al., 1995); (Xu et al., 2008); 

(International Schizophrenia, 2008); (Stefansson et al., 2008); (Vacic et al., 2011); 

(Bassett and Chow, 2008)) and BD (Malhotra et al., 2011). 

 

Two studies, in 2007 and 2008 respectively, showed that de novo variants were more 

commonly found in ASD cases than controls ((Marshall et al., 2008); (Sebat et al., 

2007)). Several additional studies have since shown an increase in the frequency 

(difference of 6%) of de novo variants in children with ASD compared to unaffected 

siblings ((Levy et al., 2011); (Sanders et al., 2011)). Most recently, two large exome 

sequencing studies (published in 2014) of thousands of families with a history of autism 

implicated over 400 genes with de novo loss of function variants, or likely gene-

disrupting variants, as contributing to ASD ((Iossifov et al., 2014); (De Rubeis et al., 

2014)). Many of the genes implicated in these studies were found to encode proteins 

involved in neuronal processes such as synaptic formation and voltage-gated ion 

channels, as well as transcription regulation and chromatin remodelling pathways (De 

Rubeis et al., 2014). A review by Ronemus et al. (2014) proposed that ASD is most 

commonly caused by parental germ line de novo mutations in a two-class risk model 

(Ronemus et al., 2014). The model suggests most cases (99%) are low-risk, with de novo 

mutations contributing risk of 0.5% for males and 0.15% for females; in contrast, for 

high-risk families, one parent carries a highly penetrant de novo mutation which confers 

a 50% risk of ASD in males and 12.5% risk in females (Ronemus et al., 2014).  

 

De novo mutations have also been shown to play a role in SCZ, being shown in one 

study to be eight times more common in patients with sporadic SCZ than in controls 

((McClellan and King, 2010b); (Xu et al., 2008)). This class of variation have been 

identified at specific loci across the genome, including chr22q11.2, chr15q13.3 and 
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chr1q.21.1 (Purcell et al., 2014) and have been shown to converge on sets of functionally 

related proteins (including synaptic proteins and genes that have been implicated in the 

study of other psychiatric conditions). This was shown by Fromer et al. (2014), who 

performed exome sequencing in 617 schizophrenia trios and an independent set of 731 

controls (Fromer et al., 2014). This study found no increase in the rate of de novo 

mutations between probands and controls. However, it did identify an enrichment 

(corrected p = 0.0007) of de novo nonsynonymous substitutions in “SCZ genes” 

(identified by independent evidence in the literature). Similarly, this study identified an 

enrichment (corrected p = 0.0098) of mutations in synaptic genes, which were defined as 

being known associates of the N-methyl-D-aspartate (NMDA) receptor or proteins that 

interact with the activity-regulated cytoskeleton-associated protein (ARC) complex.  

 

Georgieva et al. (2014), compared the role of de novo variants in SCZ versus BD (368 

BD and 76 SCZ probands respectively and all parents) (Georgieva et al., 2014). This 

study identified a significant increase in the rate of de novo CNVs in SCZ probands vs. 

BD probands, and SCZ and controls. They also concluded that although there was a 

higher rate of de novo CNVs in BD patients versus controls, the difference was not 

significant, and therefore de novo CNVs are likely play a smaller role in the aetiology of 

BD than SCZ (Georgieva et al., 2014). 

 

1.3.2 Rare variants 
McClellan and King are advocates of the common disease rare variant hypothesis 

(McClellan et al., 2007), which proposes that complex disorders such as BD and SCZ 

are caused by rare variants of intermediate or large effect size, which segregate in 

families with incomplete penetrance (Figure 1.2).  This theory suggests that these 

variants, although individually rare (often family specific), occur at multiple loci, each 

locus explaining a fraction of cases, which collectively explain a substantial proportion 

of heritability of these disorders (McClellan and King, 2010b).  

 

Most human variation is very ancient (roughly 90%), having occurred millennia before 

humans first migrated out of Africa (McClellan and King, 2010a). The recent 
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exponential growth of the human population has resulted in many rare (present in a 

specific population, sub-population or only on a family level) alleles (Keinan and Clark, 

2012). As many disease variants of intermediate and high effect confer reduced 

reproductive viability, as in SCZ (Visscher et al., 2012), these variants would be less 

likely to be transmitted down generations. Such variants could therefore be 

disproportionately rare compared to other complex traits.  

 

While Mendelian forms of AD have been identified ((Blennow et al., 2006); (Bertram 

and Tanzi, 2008)) and ASD is a co-morbid feature of over one hundred Mendelian 

diseases ((Sullivan et al., 2012); (Betancur, 2011)), no examples of Mendelian forms of 

SCZ, MDD, or BD have yet been discovered. This could be because these diseases do 

not follow that particular genetic architecture, or because limited study designs have 

prevented the discovery of this form of disease. However, examples of families multiply 

affected with psychiatric disorders have been described in the literature. Most recently, a 

study of 40 families multiply affected by BD (Ament et al., 2015) identified uncommon 

and rare variants that influence disease risk. Other examples include the study of BD in a 

large old order Amish family (Georgi et al., 2014) and a large Scottish family multiply 

affected by SCZ, MDD and BD ((Millar et al., 2000); (St Clair et al., 1990)). While the 

large Scottish family study identified a balanced translocation that segregates with 

psychiatric illness (maximum LOD = 6.0), both of the other examples require further 

work to identify the susceptibility variants. 

 

A study by Need et al. (Am J Hum Gen, 2012) analysed sequencing data (whole genome 

sequencing (WGS) and whole exome sequencing (WES) data) for 166 cases of SCZ and 

schizoaffective disorder (Need et al., 2012). 5,155 of the variants identified (restricted to 

nonsynonymous, nonsense or splice variants with MAFs < 0.05 (or <0.3 for recessive 

model)) were then genotyped in an independent cohort of 2,617 cases and 1,800 controls 

(cases and controls being of either African American or European ancestry). The first 

round association study consisted of 337,312 variants identified using sequencing in 166 

cases and 307 controls. As no SNPs passed Bonferroni correction (p < 1.5 x 10-7), the 

authors developed a two-step process: i) selecting a subset of variants (5,155) with either 

a p <0.05 or being present in >1 cases and no controls followed by ii) genotyping in 
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additional cases and controls (2,617 cases and 1,800 controls). Once again, no SNPs 

survived the Bonferroni correction; the best p-value from the combined dataset was 

0.0003, for the African American only analysis was p = 0.0006, and the best for 

European only was p = 5.9 x 10-6. However, while this study had 99% power to detect 

moderately rare (1%-5%) variants with a relative risk between 2 and 6, most very rare 

highly penetrant SCZ associated genotypes would not be expected to show a significant 

association in a dataset the size of their discovery cohort. Very rare variants will also not 

reach genome-wide significant in the expanded cohort. Need et al. concluded several 

genetic architectures for SCZ could be excluded based on their analysis: 

1. A small number of highly penetrant loci explaining the majority of cases. 

2. A moderate number (less than several hundred) of common variants with a low 

relative risk underlying most cases. 

3. Moderately rare variants that have moderate relative risk explaining most cases 

(goldilocks alleles). 

It is likely that there is a high level of locus and allele heterogeneity in SCZ. Need et al. 

suggested that the majority of SCZ associated variants will be of very low frequency and 

will be identified through common pathways and genes; however, these results could 

also imply oligogenic, polygenic or epistatic models (Need et al., 2012). 

 

Rare, family-specific variants of intermediate effect size are not identifiable using 

current GWAS methods, even with increased sample size. However, studying families, 

using techniques such as linkage analysis and WGS, can help identify the causal variants 

unique to specific families and lead to the identification of candidate genes to be studied 

in other families.  

 

1.3.3 Common variants  
The common disease, common variant model assumes that disease is caused by common 

variants of small to medium affect size (Figure 1.2). These variants are most likely to be 

identified by GWAS. A large number of psychiatric GWASs have been performed to 

date (which can be found in the NHGRI GWAS Catalogue ((Welter et al., 2014). 

Available at: www.genome.gov/gwastudies).  
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The first successful psychiatric association study was for AD. Variants in and around the 

APOE gene have been consistently identified as being significantly associated with AD, 

with a very large effect size (odds ratios 3-4) ((Strittmatter et al., 1993); (Bertram and 

Tanzi, 2008); (Jonsson et al., 2013)). To date, there are 28 AD GWAS in the NHGRI 

GWAS Catalogue (www.genome.gov/gwastudies. Accessed [14th August 2015].), 

which have identified at least 10 additional regions as being significantly associated with 

AD ((Harold et al., 2009); (Lambert et al., 2009); (Hollingworth et al., 2011); (Naj et al., 

2011); (Jonsson et al., 2013); (Perez-Palma et al., 2014)). A comprehensive database of 

AD associations can be found at www.AlzGene.org (Bertram et al., 2007). 

 

A smaller number of GWASs have been undertaken for ASD, the NHGRI GWAS 

Catalogue currently listing seven GWAS for ASD (www.genome.gov/gwastudies. 

Accessed [14th August 2015].). Of these, three identified genome-wide significant 

associations:   

1. Wang et al. (Nature, 2009) performed a GWAS on two discovery cohorts and 

two replication cohorts of European Ancestry, totalling 3,115 cases and 8,619 

controls. This study identified a genome-wide significant hit at chr5p14.1 

(combined p = 2.1 x 10-10)(Wang et al., 2009). 

2. Anney et al. (Hum Mol Genet, 2010) performed a ASD GWAS on a discovery 

cohort of 1,385 cases (from 1,369 families) and a replication cohort of 1,086 

cases (from 595 families) and 1,965 controls. A genome-wide significant 

association (p = 4 x 10-8) was found on chr20p12.1 (Anney et al., 2010). 

3. Xia et al. (Mol Psychiatry, 2014) performed a meta-analysis on two ASD 

GWASs for two Chinese cohorts (275 and 136 cases respectively, with 550 and 

984 controls respectively) and a replication cohort of European ancestry (1,299 

trios), which returned three genome-wide significantly associated variants (p 

values ranging from 3 x 10-8 – 4 x 10-8), all of which map to chr1p13.2 (Xia et 

al., 2014). 
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Figure 1.3 Manhattan plot from the largest schizophrenia GWAS to date, showing 108 genome-
wide significant loci. X-axis plots SNPs across the genome from chr1 to chrX. Y-axis plots the –
log10 p value. Bonferroni correction threshold is marked with a red line. All variants that pass 
Bonferroni correction are marked as green diamonds. All SNPs in linkage-disequilibrium with 
the significantly associated SNPs are also coloured in green. Taken from Ripke et al. 
(2014)(Schizophrenia Working Group of the Psychiatric Genomics, 2014). 

 

 

In 2014, the PGC published a SCZ GWAS, which studied 36,989 cases and 113,075 

controls, the largest psychiatric GWAS to date. This study identified 108 loci 

significantly associated with SCZ (Figure 1.3)(Schizophrenia Working Group of the 

Psychiatric Genomics, 2014). Previous to this, ~30 SCZ associated loci had been 

identified by GWAS (see references 10-23 from (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014)). While still far behind the success of the SCZ GWAS, five 

genome-wide significant loci have also been identified for BD (Muhleisen et al., 2014). 

However, to date only two loci have been associated with MD (consortium, 2015), 

which have yet to be replicated. The results of GWAS studies for BD and MDD are 

discussed in detail in the Introduction to Chapter 5.  
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The lack of any replicated-associations for MDD and the potential causes for this has 

been discussed extensively in the literature ((Flint and Kendler, 2014); (Levinson et al., 

2014); (Major Depressive Disorder Working Group of the Psychiatric et al., 2013); 

(Wray et al., 2012)). These discussions focus on three main factors, which are potentially 

applicable to all psychiatric GWASs: 

 

1.3.3.1 GWAS sample sizes are too small 

GWAS are designed to capture association signals for common variants. The number of 

samples affects the ability to detect loci with different effect sizes (Flint and Kendler, 

2014). When the effect sizes are small (less than 1.2), more samples are needed to 

achieve the power to detect significantly associated loci (See Figure 1, (Flint and 

Kendler, 2014), for a description of the relationship between effect size and sample size 

for common variants). An example of this has already been seen in the literature for 

schizophrenia, where ~9,000 cases had the power to detect five genome-wide significant 

associations. This number increased to 108 when the number of cases was increased to 

~35,000 (Levinson et al., 2014). Once the number of cases passed a critical inflection 

point, as demonstrated in Figure 1.4 (in the case of schizophrenia, this number is 

~13,000-18,000 cases), ~4 new hits per 1000 additional cases were observed (Levinson 

et al., 2014). The MDD working group postulated that a sample size 2.4 times greater 

than that used for schizophrenia (prevalence 0.007) would be needed for MDD, as this 

disorder is more common (prevalence 0.15) (Major Depressive Disorder Working Group 

of the Psychiatric et al., 2013). Furthermore, as MDD has a lower heritability than 

schizophrenia (0.37 vs. 0.81), as many as 5 times the number of samples used for the 

schizophrenia GWAS might be needed. This number is debatable; the MDD working 

group suggested that at least 100,000 MDD samples (and an equal number of controls) 

would be required (Major Depressive Disorder Working Group of the Psychiatric et al., 

2013), while Flint & Kendler (2014) suggested as few as 50,000 MDD cases would be 

sufficient to detect genome-wide significant associations. Ultimately, these estimates 

will be dependent on the level of heterogeneity of MDD. 
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Figure 1.4. A graphical representation of the critical inflection point required for significant 
associations for different diseases. This figure shows how the number of discoveries is directly 
related to sample size and that this is not a fixed relationship, but specific to each genetic 
architecture. Taken from Levinson et al., 2014 (Levinson et al., 2014).  

 

 

1.3.3.2 The causal variant is not in linkage disequilibrium with any of 
the markers on the genotyping arrays 

If the causal variants are rare variants, they may not be in sufficient linkage 

disequilibrium (LD) with genotyping variants and therefore they will be below the level 

of detection of current GWAS methods ((Sullivan et al., 2012); (McClellan and King, 

2010b)). In addition, different populations having different genomic patterns of 

recombination events and haplotypes (Flint and Kendler, 2014); if multiple causal 

variants occur in the same gene, but these variants are located on different haplotypes, 

the signal would similarly not be seen in a GWAS. Therefore, population stratification 

could result in the causal variant not being in sufficient LD with a tagging SNP for the 

association to be detected by GWAS.  
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1.3.3.3 Psychiatric disorders are a genetically heterogeneous disorder 

Based on the different rates of MDD between men and women (which suggests that 

although there are shared genetics between men and woman affected by MDD, there are 

also gender specific genetic determinants), there are likely to be genetically different 

forms of MDD. Similarly, sub-types of SCZ and BD, which differ in the combination of 

symptoms or severity of symptoms, are likely to exist.  If psychiatric disorders consist of 

yet to be established subclasses, studying them as a group could reduce power. 

Identifying a cohort of more phenotypically homogeneous cases could identify a more 

genetically homogeneous subset of cases and therefore reduce the sample size needed to 

detect significant associations. One such example would be to focus on hospital based 

MDD samples, as these individuals tend to represent a more extreme phenotype, with 

lower prevalence and higher heritability (Wray et al., 2012). Similarly, stratifying cases 

based on symptoms or shared environment (such as traumatic life events, environmental 

exposures such as pregnancy (cases of prenatal and post-partum MDD)) can potentially 

classify MDD cases into sub-types that are more genetically similar to each other. This 

has proven to be a strong strategy, as the only GWAS for MDD that has successfully 

identified genome-wide significant loci for MDD was for a homogeneous cohort, 

consisting of women with recurrent MDD of Han Chinese ancestry (consortium, 2015).  

This dataset only consisted of ~5,000 cases and ~5,000 controls, showing that a more 

homogeneous cohort can improve the ability to detect genome-wide significant loci. 

 

1.3.4 Polygenic model 
GWAS of complex diseases have identified large numbers of associated loci (over 70 

loci for diabetes (Replication et al., 2014) and over 100 loci for schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014), each of small 

individual effect size ((Voight et al., 2010); Supplementary Table 2. (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014)). Lee et al. (2012) analysed SCZ 

GWAS data (Schizophrenia Working Group of the Psychiatric Genomics, 2014) and 

calculated the variance explained by autosomal SNPs in a chromosome-by-chromosome 

manner (Lee et al., 2012).  These authors reported that the variance explained by 

chromosomes is linearly proportional to chromosome length. This is considered 
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consistent with a polygenic model (Lee et al., 2012). In a polygenic model the 

coinheritance of multiple common variants of individually small effect size can together 

push an individual above a particular ‘threshold’, leading, with environmental triggers, 

to disease phenotype. Individuals sharing some of these variants who fall below the 

threshold do not become ill.   

 

Wray et al. (2007) proposed that polygenic risk profiles could be generated from GWAS 

data, and this can be used to predict disease risk (Wray et al., 2007). Polygenic risk 

scores (PRS) are a measure of the association of a combination of markers with a trait 

within an individual. To generate a PRS, markers are selected in a training sample (often 

ranked on association p-value) using a cut-off (e.g. a p-value threshold). The weighted 

sum of associated alleles is used to calculate the PRS for each individual, based on the 

top ranked variants in an independent dataset (Dudbridge, 2013). This approach has been 

used to generate PRSs for a range of complex diseases including T2D (Lango Allen et 

al., 2010) and SCZ ((Schizophrenia Psychiatric Genome-Wide Association Study, 2011); 

(Ripke et al., 2013)). The polygenic component of SCZ has been predicted to be derived 

from large numbers (potentially over a thousand) variants, which together could account 

for roughly a third of the genetic liability of SCZ (Kavanagh et al., 2015). In addition, 

this polygenic component to SCZ has been shown to also contribute to the risk of BD 

(International Schizophrenia et al., 2009). As with GWAS, the power, sensitivity, and 

specificity of PRSs are affected by sample sizes (Dudbridge, 2013).  

 

 

1.3.5 Epistasis 
While most GWASs to date have focused on the identification of simple additive effects, 

the hypothesis being that SNPs exhibit additive, independent and cumulative effects on 

the trait or phenotype under investigation, there is a lot of debate over the contribution of 

epistasis to complex traits and diseases (Phillips, 2008). In contrast to the polygenic risk 

model, which suggests that multiple genes or variants of small effect contribute 

additively to trait variation, epistasis can be defined as the statistical or functional 

interaction between two or more loci, where the impact of a genotype at one locus is 

dependent on the genotype of another locus (or several other loci in the case of multi-
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locus epistasis) (Wei et al., 2014). A recent review by Wei, Hemani and Haley (Wei et 

al., 2014), discusses the likely contribution of epistasis to disease, current methods to 

detect epistasis in GWAS data, and provides some examples of epistatic interactions 

associated with disease phenotypes.   

 

The discrepancy between the sum of known genetic effects and the estimate of narrow-

sense heritability, also known as the problem of ‘missing heritability’, may in part be 

accounted for by epistasis, as regions which may individually fail to pass significance 

thresholds in GWASs studies, could be shown by their interaction term to contribute to 

the variance of a trait or disease (Wei et al., 2014).  However, caution must be advised 

before undertaking a search for epistatic interactions, as there are many confounding 

factors affecting such an analysis. Hypothesis-free methods, which search the full 

parameter space and compare all pair-wise interactions, are computationally intense and 

have the potential to suffer from both model complexity and the curse of dimensionality. 

The solution to both of these problems is very large sample sizes. Hypothesis driven 

approaches, in contrast, make use of biological priors (candidate gene analysis, pathway 

analysis, and subsets of GWAS SNPs chosen based on significance thresholds) and can 

reduce both the search space and the Bonferroni-corrected threshold (by reducing the 

number of multiple tests ((Carlborg and Haley, 2004); (Liu et al., 2011)). 

 

Wan et al. (2010), Liu et al. (2011), and Lippert et al. (2013) all performed hypothesis-

free studies, using the Wellcome Trust Case Control Consortium (WTCCC) study 

dataset ((Wellcome Trust Case Control, 2007)) to identify genome-wide interaction 

based associations across seven traits ((Wan et al., 2010); (Liu et al., 2013); (Lippert et 

al., 2013)). While the methods used by Wan et al. and Lippert et al. reported significant 

interactions, neither of these studies was able to replicate their findings in independent 

cohorts. However, the method implemented by Liu et al. identified several pair-wise 

interactions with Bonferroni corrected P < 0.05, which also replicated in independent 

datasets. In particular, they identified an interaction between C1orf106 and a novel 

locus, TEC, which was significantly associated with Crohn’s disease and which 

replicated in an independent dataset (Liu et al., 2013). The candidate loci approach has 
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also successfully been used to identify epistatic interactions influencing the risk of AD 

((Combarros et al., 2009); (Rhinn et al., 2013)). 

 

Prabhu & Pe’er (2012) performed a similar analysis on the Wellcome Trust bipolar 

cohort and were able to identify a significant interaction between SNPs within two genes 

encoding calcium channel subunits: RYR2 and CACNA2D4. Although they were not able 

to replicate the exact same SNP-pair interaction, the interaction between these two genes 

was replicated, suggesting epistasis may exist between these two genes and this 

interaction could play a role in the aetiology of bipolar disorder (Prabhu and Pe'er, 

2012). 

 

While these examples show the potential use of studying the role of epistasis in human 

disease, it is clear that such analyses suffer from background noise and are affected by 

large false positive rates. Either increased sample size or reduced candidate variant sets 

must be used to improve the ability of such methods to identify true epistatic interactions 

contributing to disease and trait variance (Wei et al., 2014).  

 

 

1.3.6 Overlap between psychiatric disorders  
It is becoming apparent that psychiatric disorders are aetiologically complex, with 

substantial genetic, locus and allelic heterogeneity ((Sullivan et al., 2012); (McClellan 

and King, 2010a); (Visscher et al., 2012)), leading to blurring between different 

diagnoses. Reasons for this are two-fold: firstly, phenotypic similarity and secondly, 

shared genetic aetiology ((Cardno and Owen, 2014); (Serretti and Fabbri, 2013)).  

 

Defining the phenotypes for each psychiatric illness is difficult. To date, no diagnostic 

tests, such as those available for many other illnesses (such as heart disease, diabetes and 

cancer), exist for psychiatric disorders. Instead, the diagnosis of psychiatric illness is 

based on clinical features. Furthermore, clinical features including psychosis, mood 

dysregulation and cognitive impairment are diagnostic for several psychiatric illnesses 

(including SCZ, BD and MDD) (discussed by (Cross-Disorder Group of the Psychiatric 
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Genomics, 2013)). Greenwood et al. (2012) suggest that the diagnostic systems currently 

used to define psychiatric phenotypes (such as the DSM-IV system (Wilson and Skodol, 

1994)) are not optimised for identifying genetic contributors to psychiatric illness 

(Greenwood et al., 2012). In addition, the diagnosis of a patient can change over time, 

based on changes to their symptoms.  

 

A meta-analysis of BD and SCZ (653 BD cases and 13,034 controls; 1,172 SCZ cases 

and 1,379 controls) identified two genomic loci (9q33.1 and 6q15) that reached genome-

wide significance (5.56 x 10-9 and 3.88 x 10-8 respectively), but were not significant for 

either individual GWAS (Wang et al., 2010). More recently, the Cross Disorder Group 

of the PGC performed a meta-analysis of the five major psychiatric illnesses (SCZ, BD, 

MDD, ASD, ADHD) in 33,332 cases and 27,888 controls. This meta-analysis identified 

four loci that passed genome-wide significance (p <5 x 10-8) at the chr3p21, 10q24, 

CACNA1C and CACNB2 gene regions (Cross-Disorder Group of the Psychiatric 

Genomics, 2013). A second analysis by the cross-disorder group of the PGC compared 

the genetic variation and the covariance between these five disorders (Cross-Disorder 

Group of the Psychiatric Genomics et al., 2013). This study made use of genome-wide 

genotype data for the GWAS meta-analysis of the five disorders previously described 

(Cross-Disorder Group of the Psychiatric Genomics, 2013) and reported a high 

correlation of common SNPs between SCZ and BD (0.68 ± 0.04 standard error), 

moderate correlation between SCZ and MDD (0.43 ± 0.04 standard error), BD and MDD 

(0.47 ± 0.04 standard error), and ADHD and MDD (0.32 ± 0.04 standard error). Only a 

low correlation was found between SCZ and ADHD (0.16 ± 0.04 standard error), while 

none was found between the remaining pair-wise combinations, or against Crohn’s 

disease (Cross-Disorder Group of the Psychiatric Genomics et al., 2013). Similar 

analyses have been attempted, using the polygenic component of these disorders to 

predict disease risk across different disorders with mixed success ((International 

Schizophrenia et al., 2009); (Schulze et al., 2014); (Wiste et al., 2014); (Maier et al., 

2015)). 

 

In addition to a high correlation of common variants between unrelated cases of 

psychiatric disorders, there is evidence that relations of probands affected with one 

disorder (such as SCZ) are more likely to suffer themselves from another psychiatric 
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illness (such as BD) compared to population controls ((Lichtenstein et al., 2009); (Wray 

and Gottesman, 2012)). This further supports the possibility that these disorders share 

common genetic determinants (Figure 1.5). 

 

 

 

 

 

 

Figure 1.5. This figure outlines a potential shared pathogenesis and aetiology of psychiatric 
illnesses. The top section of this figure represents six genetic profiles, containing variants that 
are specific to one profile (one colour) or shared with other profiles (different colour). These 
profiles represent individuals with different genetic susceptibility to psychiatric illness. These 
genetic factors, in combination with environmental factors, can lead to disease vulnerability. 
Different combinations of genetic and environmental factors can present as different psychiatric 
illnesses, as shown by the black arrows (BPD = bipolar disorder). Taken from (Serretti and 
Fabbri, 2013). 
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1.3.7 Complex Architecture 
As psychiatric illnesses such as SCZ are associated with increased mortality and reduced 

reproductive rates, variants with a large effect on the incidence of SCZ could be selected 

against in the population and so would remain uncommon (low allele frequency). 

However, it is more difficult to predict the allele frequency of variants with a modest 

effect on susceptibility, as these variants individually may have only a small effect on 

fitness, and could in fact have a positive effect on fitness due to their role in other traits 

(Visscher et al., 2012).  

 

Visscher et al. (2012) proposed two models that might explain the distribution of 

variants contributing to SCZ susceptibility: the neutral model and the Eyre-Walker 

model (Visscher et al., 2012). Under the first model, although most variants are rare 

(roughly 70% of variants having a MAF < 0.05), these variants only explain 10% of 

genetic variation. Therefore, the majority of variation is due to common variants of small 

effect size. In contrast, the Eyre-Walker model shows that most of the variance on fitness 

can be explained by very rare mutations of large effect size, most of which have a MAF 

< 0.05.  These two models largely encapsulate the two sides of the allelic spectrum 

argument for the genetic architecture of psychiatric illness. These two theories are not 

mutually exclusive; risk variants are likely to be both common and rare with a range of 

effect sizes. The limiting factor of current GWAS studies of psychiatric illness is sample 

size: many variants having population level effect sizes that are too small to pass 

genome-wide significance thresholds (Baker, 2014). To rectify this, the PGC has focused 

its efforts on obtaining as many cases and controls as possible. Comparing the most 

recent PGC GWAS for schizophrenia to the older GWAS study shows a marked increase 

in the number of significant loci (Schizophrenia Working Group of the Psychiatric 

Genomics, 2014), which supports the theory that additional loci will be identified for 

psychiatric disorders in the future.  

 

As can be seen from Section 1.3.3, particularly the SCZ association example, there is a 

lot of evidence suggesting that more information will be obtained from GWASs of BD 

and MDD by increasing sample sizes and/or decreasing hetergozygosity. However, the 

latest GWAS identified 108 significant loci for SCZ, the overall amount of variance 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 1: Introduction 23 

explained is still very small, the odds ratio of each locus being low (in the range of 1-

2)(Schizophrenia Working Group of the Psychiatric Genomics, 2014). Therefore, it is 

likely that only a fraction of the total variance for SCZ, BP and MDD will ever be 

explained by GWAS and alternative methods are needed to identify the other portion of 

variation (likely to be caused in part by rare variants of moderate or greater effect). 

Family studies will be particularly important for this. Linkage analysis can be combined 

with whole genome sequencing to improve the filtering of candidate variants (Ott et al., 

2015). It is also important to remember that variants identified by GWAS mark 

significantly associated regions and are not necessarily themselves risk variants. 

Therefore, these regions need to be followed up to identify the true causal variants at 

these loci.  

 

To summarise, it is very likely that psychiatric illnesses such as SCZ, MDD and BD will 

be shown to be caused by complex genetic architectures, comprising a range of genetic 

models. These disorders are likely genetically heterogeneous, consisting of both 

common and rare variants, both within the same gene (allelic heterogeneity) and across 

many genes (locus heterogeneity), with a range of effect sizes. It will therefore be 

important for the study of psychiatric illness not to focus too heavily on any single 

methodology. Both GWAS and NGS will be important and will play complementary 

roles in elucidating the aetiology of these disorders. 

 

1.4 Contribution of regulatory variants to disease  

The vast majority of variants associated with disease that have been identified by GWAS 

(over 90%) lie within non-coding regions (Maurano et al., 2012), Similarly, WGS 

projects (including the 1000 Genomes Project (Genomes Project et al., 2012) have 

shown that the vast majority of human variation is non-coding (Elgar and Vavouri, 

2008). The identification of the phenotypically causal fraction of variants is a major 

challenge to the study of the genetic basis of human disease. Cooper and Shendure state: 

“The primary roadblock faced by the field is increasingly one of variant interpretation, 

rather than data acquisition” (Cooper and Shendure, 2011).   
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Figure 1.6. This cartoon summarises the various functional classes of variants that can occur in 
the genome. Functional variants are represented as stars. The top sequence (A) shows an 
example of a protein-coding gene, containing a SNP within the promoter, two SNPs in exons and 
an intronic variant, which overlaps a transcription factor binding site. The second sequence (B) 
shows two genes, the first with a variant in the 5’UTR, the second, with a variant in the 3’UTR. 
Between the two genes is an insulator, which is modified by a SNP. The third sequence (C) 
shows an intergenic region, without any genes nearby. Within this sequence there are variants 
that overlap long-range enhancers, which modify the expression of genes elsewhere in the 
genome. The last sequence (D) shows variants within a non-coding RNA sequence as well as an 
intergenic variant shown to alter gene expression but acting via some unknown function. 
Modified from (Cooper and Shendure, 2011). 

 

 

By what means can a genetic variant be deleterious? A range of classes of functional 

variation is summarised in Figure 1.6. Changes to protein coding sequences can result in 

changes to amino acids, which can affect both the structure and function of a protein. 

Many tools exist that predict the deleterious consequence of protein changing variation 

(Table 1.3, taken from (Cooper and Shendure, 2011)). Furthermore, all variants within 

mRNA coding sequences (untranslated regions (UTRs) as well as protein coding 

sequence) can affect RNA structure, which in turn can affect RNA stability, localisation, 

translation efficiency and gene regulation by small RNAs ((Brest et al., 2011); 

(Mortimer et al., 2014)). However, as non-coding variants do not directly alter an amino 

acid in the mature protein, it is more difficult to identify the functional from benign 

variants. Some mechanisms by which non-coding variants may have a functional affect 

include: changes to exon/intron splicing ((Ward and Cooper, 2010)); or by disrupting 
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microRNA (miRNAs), long intergenic non-coding RNAs (lincRNAs) and other non-

coding RNAs ((Carbonell et al., 2012); (Kumar et al., 2013)). In addition, non-coding 

variants can function by modulating gene expression, by modifying regulatory elements 

such as promoter elements (De Gobbi et al., 2006), transcription factor binding sites 

(TFBSs) ((Zhang et al., 2012b); (Pomerantz et al., 2009)), insulators and enhancers 

((Schodel et al., 2012); (Bauer et al., 2013)).  

 

 

 

Table 1.3 Summary table of tools that predict the deleterious impact of protein variants, 
showing the name of each tool, the type of predictive method utilised, additional information on 
how the tool predicts deleterious impact and the URL. Taken from (Cooper and Shendure, 
2011) 
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 Figure 1.7 This graph shows the proportion of the genome that is covered by biochemically 
functional elements including transcribed regions, regions bound by DNA binding proteins, and 
with histone marks known to be associated with functional elements. Taken from (Kellis et al., 
2014). 

 

 

While there is substantial evidence that regulatory variants contribute to human disease 

(Li and Montgomery, 2013), our ability to detect the functional portion of the genome is 

limited by both our knowledge of what constitutes a functional non-coding variant and 

methods to identify those with a deleterious impact.  

 

In 2012 a paper was published that described 80% of genome as being biochemically 

functional (the ENCODE project Consortium, 2012), defining functional as participating 

in at least one RNA and/or chromatin associated event in at least one cell type. Kellis et 

al. (2014) discussed the merits and limitations of this and other definitions of 

functionality in greater depth (Kellis et al., 2014). Figure 1.7 summarises the proportion 

of the human genome that is covered by functional elements including transcripts 
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(RNA), DNA binding sites and histone modifications that mark sites of DNA regulation 

(including promoters and enhancers). If this data were taken to represent the fraction of 

the genome that is functional, then indeed, 80% would be an accurate estimation. 

However, at the other end of the functional spectrum are regions of the genome that are 

evolutionary constrained. If a region of the genome is conserved between species it is 

said to be under purifying selection, suggestion mutations at that site will be deleterious 

(Kellis et al., 2014). If only the portion of the genome that is under evolutionary 

constraint is considered as functional, only 5% of the genome would be included. 

 

The difference between the upper and lower bounds of predicted functional genomic 

elements (80% vs 5%) is substantial and highlights our limited understanding of the non-

coding portion of the genome. In addition, as so much of the genome can be assigned as 

being “functional” based on biochemically functional, the search for disease variants 

amongst these functional candidates could be compared to searching for a needle in a 

haystack, where, once the haystack has been removed, there remains a stack of needles 

(Cooper and Shendure, 2011). These needles will need to be further whittled down to 

identify the deleterious non-coding variants. The first step (removing the haystack) is 

identifying whether a variant has a functional effect and the second, is discovering if this 

functional effect is deleterious (sorting through the needles). Therefore, currently, all 

variants implicated by both NGS methods and GWASs must be functionally evaluated, 

before their role in disease can be confirmed. Experimental methods to predict the 

functional effect of a variant include in vitro investigation to determine the molecular 

consequences of a variant (for instance, whether it alters protein structure, stability, 

localisation or expression) and in vivo modelling in another organism (Cooper and 

Shendure, 2011). However, in vivo and in vitro methods are both time-consuming and 

expensive to perform on large numbers of variants.  
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Figure 1.7. This image describes the variety of genomic features that are altered during the 
regulation of gene expression. Regulatory elements overlap a range of features including TFBSs, 
DNase HS, ChIP-seq peaks for a range of histone modifications. These data can be used to 
predict whether a variant overlaps a regulatory element and to predict the likelihood of that 
variant having a functional or deleterious consequence. Taken from (Qu and Fang, 2013). 

 

Bioinformatics methods can be used to filter candidate variants and reduce the number 

of variants to test in laboratory-based analyses. However, while predictive methods exist 
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for assessing the consequence of protein coding variation, tools to analyse the functional 

and potentially pathogenic consequence of non-coding variants are not as common and 

have been limited by our knowledge of the mechanisms regulating gene expression. We 

do know that transcriptional regulation is controlled by a complicated interaction of 

regulatory elements and that these elements are correlated with certain genomic features 

(Figure 1.8). Transcription factors and other DNA binding proteins bind to regions of 

open chromatin, marked by specific patterns of histone modifications, DNase HS sites 

and other genomic features. When a variant maps to a regulatory element, such as a 

TFBS, it can impact upon the binding ability of the transcription factor, thus altering 

gene expression, potentially leading to a deleterious effect. These genomic features can 

be used to help identify functional variants. This topic is discussed in more detail in the 

Introduction to Chapter 2. 

 

1.5 Thesis Aims 

At the time I undertook this PhD project, no suitable bioinformatics methods were 

available to prioritise non-coding variants from genomics projects.  

 

The first aim of my PhD was to develop a method that would prioritise candidate 

variants on the basis of their putative functional consequence. This will be covered in 

Chapters 2 and 3.  

 

Once this method was designed and tested, the second aim of my PhD was to perform a 

comparative analysis between my tool and the most comparable methods available from 

the literature. This analysis is described in Chapter 4. 

 

The final aim of my PhD was to apply this method to the study of psychiatric illness, 

which is detailed in Chapter 5. 
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Chapter 2: Design of a SNP prioritisation method and a 

spiking strategy 

2.1 Introduction 

2.1.1 The problem: identifying regulatory variants 
Linkage analysis and genome wide association studies (GWAS) have been extremely 

successful at identifying genomic regions that harbour genetic variants contributing to a 

phenotype of interest (Manolio et al., 2009). Technological advances such as next 

generation sequencing and genotyping arrays have aided this, allowing the fine mapping 

of regions of interest. Over 90% of disease-associated single nucleotide polymorphisms 

(SNPs) from GWAS fall within non-coding regions (Maurano et al., 2012), underlining 

the importance of the regulatory genome and the need for bioinformatics methods to 

identify regulatory variants. However, the ability to distinguish disease-predisposing 

non-coding variants from background variants is impeded by our incomplete 

understanding of regulatory architecture and the fact that genomic signals that 

characterise functional regulatory variants are not fully defined (Li and Montgomery, 

2013). In addition, the molecular consequences of such variants are more difficult to 

evaluate than those of variants that change the sequence of encoded proteins, leading to a 

bias in the characterisation of putative causal coding vs non-coding variants. 

Furthermore, the relatively lower cost of sequencing exomes rather than whole genomes 

has also played a part in biasing the identification and characterisation of disease variants 

towards coding SNPs. Nevertheless, recent improvements in sequencing platforms and 

methodologies are reducing the cost of whole genome sequencing (WGS) compared to 

exome sequencing, whilst also comparably improving its accuracy (Meynert et al., 

2014), leading to what will soon be a tipping point in favour of WGS and therefore the 

identification of a greater number of candidate non-coding variants. 

 

These technological advances put a growing pressure on our ability to characterise 

regulatory variants. In particular there will be an increased demand to prioritise 

candidate causal variants for their likelihood to be pathogenic via computational 

methodologies, as current experimental assays are too costly and time consuming to 

perform on large numbers of variants. One method commonly used to computationally 
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characterise variants is to annotate SNPs using pre-existing genome annotation data, 

from sources such as UCSC Genome Browser ((Kuhn et al., 2013)) and the Ensembl 

Genome Browser (Cunningham et al., 2015), and use this information to prioritise 

putative pathogenic variants.  

 

2.1.2 Publically available genomic annotation data  
A limiting factor within the field has been the lack of genomic and epigenomic 

annotation data to aid the identification of functional non-coding SNPs (Cooper and 

Shendure, 2011). This issue is currently being addressed; several large consortia have 

been established with the aim of developing techniques and producing data for the 

systematic identification and characterisation of functional elements on a genome-wide 

scale (Cooper and Shendure, 2011). By using a variety of biochemical techniques, such 

as ChIP-seq, in combination with novel computational approaches, these projects are 

producing annotation datasets for genomic and epigenomic markers including post 

translational modifications of histone proteins (including acetylation, phosphorylation 

and methylation) (Consortium, 2012); DNase hypersensitive sites (DNase HS) ((Degner 

et al., 2012); (Thurman et al., 2012)]; DNase footprints ((Hager, 2009, Hesselberth et al., 

2009)); transcription factor binding sites (TFBSs) ((Neph et al., 2012);(Wang et al., 

2012)]; chromatin states (Ernst and Kellis, 2010); enhancers (Ernst et al., 2011); 

conserved sequences (Davydov et al., 2010); as well as catalogues of SNPs, indels and 

copy number variants (CNVs) (Genomes Project et al., 2010). A fundamental aim of 

these projects is to provide the global scientific community with open-source, freely 

accessible data, promoting a vast wealth of downstream analyses. These data are 

available through genome browsers such as the Ensembl Genome Browser (Cunningham 

et al., 2015), the Epigenome Roadmap (Bernstein et al., 2010) and the UCSC Genome 

Browser (Kuhn et al., 2013).  

 

2.1.2.1 ENCODE ChIP-seq data 

The Encyclopedia of DNA elements (ENCODE) project was embarked on in 2003 with 

the aim of increasing our knowledge and understanding of human biology and disease by 

delineating all of the functional elements encoded by the human genome (Consortium, 
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2011)). This ambitious project began with a pilot phase, which took place over 4 years 

from 2003-2007. The aims of the ENCODE project pilot phase were to: i) functionally 

characterise 1% of the genome; ii) develop and advance methods for annotating the 

functionality of the genome; and iii) if successful, scale up for the whole genome, 

thereby improving our understanding of the genome (organisation, regulation and 

functionality).  

 

During the pilot phase, over 200 experimental and computational datasets were 

generated by 35 groups across the ENCODE consortia, with emphasis placed on the 

development and implementation of standards to ensure high data quality. This work 

provided a model for the next phase of the project and comprehensive annotation of the 

entire human genome, while also providing new tools and techniques to analyse the data 

efficiently, accurately and cost-effectively, in a high throughput approach. The 

ENCODE project provides genome-wide annotations of candidate functional elements to 

help better our ability to interpret the human genome ((Qu and Fang, 2013, Consortium, 

2012).  

 

Figure 2.1 describes the variety of methods used in the ENCODE project to characterise 

the genome, including ChiP-seq, which was used to generate data for histone 

modifications such as H3K27ac, H3K27me3 and H3K36me3, as well as RNA 

polymerases and certain transcription factors; and DNase-seq and FAIRE-seq, which 

were used to define regions of DNase hypersensitivity.  

 

These data can be used to identify putative functional elements and regulatory regions 

such as promoters, enhancers, repressors and insulators, by characterising the chromatin 

signatures of known elements, as changes to histone methylation and acetylation change 

the accessibility of the genome. These data can be used to detect putative regulatory 

elements. 
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Figure 2.1: Cartoon taken from the User’s guide to ENCODE, representing the methods used 
across the ENCODE consortia to detect functional elements (Consortium, 2011). 

 

 

2.1.2.2 UCSC genome browser: 

The University of California Santa Cruz (UCSC) genome browser 

(http://genome.ucsc.edu/) provides access to a large range of genomic, epigenomic, 

conservation and sequence annotation data through a series of annotation tracks, which 

can be used to assign function to both individual nucleotide positions and larger genomic 

regions. Many different UCSC tracks are available, including information on assembly 

data, genes, predicted genes and mRNAs, expression, regulation and comparative 

genomics, and the ENCODE project data (Karolchik et al., 2011). The UCSC table 

browser allows users to query and manipulate the Genome Browser annotation tables in 

a flexible, user-oriented manner. It also provides access to the full datasets via an ftp site 

and MySQL queries. 
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Table 2.1.  The 26 populations included in the 1000 Genomes project. These populations can be 
grouped into five super populations: African (AFR), Ad Mixed American (AMR), East Asian 
(EAS), European (EUR) and South Asian (SAS). Columns 4, 5 and 6 describe whether data is 
available or not for each population (1 = data is available, 0 = data is not available). This table 
was modified from the population table provided by the 1000 Genomes project 
(http://www.1000genomes.org/faq/which-populations-are-part-your-study). 

 

2.1.2.3 1000 Genomes Project: 

The 1000 Genomes project is a catalogue of human variation. Human genetic variation 

was mapped using whole genome and exome sequencing to sequence the genomes of 

1,092 individuals from 26 populations (see Table 2.1)(Genomes Project et al., 2012). 
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This allowed a comprehensive review of the variation that exists across population 

groups to aid our understanding of how variation contributes to human phenotypes and 

disease. These data are available through a variety of sources, including a web-interface 

(http://browser.1000genomes.org/index.html) as well as downloadable bam and vcf 

format files from the 1000 Genomes FTP site (http://www.1000genomes.org/ftpsearch) 

and from Ensemble’s FTP site (ftp://ftp.ensembl.org/pub/).  
 

 

2.1.3 Lack of an appropriate method to prioritise variants 
The genomic annotation data from these public resources can be used to make informal 

and adhoc functional predictions. However, manual interrogation of such resources for 

multiple functional annotations simultaneously does not scale well for large numbers of 

SNPs spread across a broad genomic region (or genome wide), is unsystematic, lacks 

reproducibility and is difficult to benchmark (Ryan et al., 2014). 

 

A number of tools have been developed for analysing SNPs. However, the vast majority 

focus on coding variants, incorporate limited annotation data, are designed for particular 

analyses (exome data, GWAS) and require highly specific input data (such as rs 

numbers, p-values or linkage disequilibrium (LD) data). These tools implement a variety 

of strategies to identify functional SNPs, including use of comparative genomics ((Chun 

and Fay, 2009)), predicted transcription factor binding sites (Conde et al., 2006), 

positional information ((Adie et al., 2005); (Xu et al., 2005); (Calabria et al., 2010)), 

amino acid substitutions (Yandell et al., 2011), chromatin state markers ((Ernst et al., 

2011); (Barenboim and Manke, 2013)), p-values from GWAS ((Merelli et al., 2013)) and 

linkage disequilibrium (LD)((Ward and Kellis, 2012)).   

 

SNP analysis tools can be divided into five main categories: i) variant annotation 

approaches; ii) GWAS tools; iii) gene based prioritisation methods; iv) exonic variant 

tools; and v) non-coding variant tools. Here I provide a brief description of some of the 

SNP analysis methods that were available at the start of my PhD: 
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2.1.3.1 Variant annotation: 

F-SNP: a web based database, integrating information from 16 bioinformatics tools and 

databases to allow the user to predict the function of SNPs (Lee and Shatkay, 2008). 

This method does not provide a ranking measure; instead it implements a binary logic 

where SNPs are classified as being either functional or not functional. To analyse the 

output, the user must scroll through a tabular output and look at every SNP individually 

to see their predicted effect, an impractical approach for large SNP sets. 

 

AnnTools: a toolkit for annotating novel and known SNPs and indels that integrates 15 

annotation sources (Makarov et al., 2012), including dbSNP minor allele frequencies 

(MAFs), gene annotation data from UCSC, conserved TFBSs, miRNA binding sites, and 

promoter predictions. Although this method is presented as being a fast and versatile 

approach to annotate the full spectrum of coding and non-coding variants (being capable 

of annotating both SNPs and indels), it does not prioritise variants on putative 

pathogenicity.  

 

SNPnexus: an annotation tool that links functional annotation data with SNPs across a 

range of annotation categories including gene annotation (from sources such as Refseq, 

Ensembl and UCSC); gene consequences (coding, intronic, splice site, untranslated 

regions, upstream, downstream); protein consequences (synonymous, non-synonymous, 

stop-gain/loss, frameshift); HapMap population frequencies; conservation scores; and 

whether variants overlap regulatory elements (predicted TFBSs, Vista enhancers, CpG 

islands, etc.) (Dayem Ullah et al., 2013). The output table links each query SNP (one 

SNP per row) with each annotation (series of columns), allowing SNPs to be filtered on 

any single annotation or combination of annotations. While this method provides useful 

information, the number of SNPs analysed affects the efficacy of this method: the larger 

the numbers of SNPs in the input dataset, the larger, and less manageable, the output 

table. Although filtering on annotations would make the table smaller and easier to 

handle, filtering could also potentially remove borderline SNPs that may actually be 

functional. Filtering is therefore less constructive than prioritisation.   
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HaploReg: an online resource combining conservation, histone modifications, 

chromatin states and linkage disequilibrium data with regulatory motif prediction 

algorithms to predict the impact of non-coding variants (Ward and Kellis, 2012). This 

method is designed for GWAS data, to explore the potential functionality of non-coding 

variants within disease-associated loci.  

 

rSNPBase: a database of regulatory SNPs (rSNPs) supported by experimental evidence 

(Guo et al., 2014). This online resource provides annotation data ranging from 

ENCODE-generated experimental data, TFBSs, DNase hypersensitive sites (DNase HS), 

miRNA regulatory sites, to SNPs in strong LD (r2 >0.8) with the rSNPs. This data can be 

used to identify regulatory SNPs and the genes that they regulate.  This method is useful 

on a SNP by SNP level, where the SNPs of interest are already curated in human 

variation catalogues such as dbSNP (Sherry et al., 2001). However, this approach does 

not scale well for comparing multiple variants simultaneously and cannot be used for 

novel variants. 

 

RegulomeDB: an online database integrating annotation data from six main categories 

(protein binding, motifs, chromatin structure, expression quantitative trait loci (eQTLs), 

histone modifications and related data) to assign regulatory information onto any 

variants (both from sequencing projects and GWAS) (Boyle et al., 2012). As with other 

annotation methods, this is useful for assigning functional data to SNPs, however it does 

not report which SNPs are most likely to be putative functional candidates and cannot be 

used to prioritise variants. 

 

2.1.3.2 GWAS tools: 

SPOT: a web tool for the prioritisation of GWAS SNPs for replication studies. This 

method integrates data from several biological databases and uses the genomic 

information networks (GIN) prioritisation method to combine the information from these 

databases, along with GWAS p-values, to prioritise SNPs for further investigation 

(Saccone et al., 2010). This process is performed for both the original tagging SNP and 

all LD proxies. 
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SNPselector: a web tool, designed to select the most appropriate SNPs for association 

studies (Xu et al., 2005). This method prioritises SNPs across multiple categories 

including: allele frequency; whether they are the tagging SNP in an LD block; regulatory 

potential (does the SNP overlap conserved sequences, transcription factor binding sites 

or CpG islands?); and if it is located within a repetitive element. SNPs are scored on 

these categories and others and the SNPs are prioritised on this score. 

 

FunctSNP: an R package that links SNPs with functional knowledge, scoring GWAS 

SNPs based on the functional information associated with them, the total score being the 

sum of factors including SNP location, type of amino acid substitution (Goodswen et al., 

2010). This method was trained on GWAS data, which is inherently a mixed data source, 

containing many false positives, which could affect the accuracy of the method. In 

addition, when a GWAS significant SNP does not lie within a gene, FunctSNP 

automatically links the SNP to the nearest gene and the focus is shifted to the nearest 

SNP within that gene. This method assumes that the functional variant is a coding 

variant and ignores the possibility of regulatory variants having a role in disease. 

 

ChroMoS: an integrated web tool for GWAS SNP classification, prioritisation and 

functional interpretation. This method utilises a MySQL database to provide chromatin 

state annotations for SNPs from the National Human Genome Research Institute GWAS 

catalogue. SNPs can also be passed to two additional tools, sTRAP and microSNiPer, 

which predict differential transcription factor and micro-RNA binding respectively 

(Barenboim and Manke, 2013).  

 

FunciSNP: and R package designed to move beyond GWAS tagging SNPs to identify 

candidate regulatory variants (Coetzee et al., 2012). Putatively functional surrogate 

SNPs in high LD with GWAS tagging SNPs are identified by taking all SNPs in LD with 

GWAS tagging SNPs and overlapping annotation data for a range of user-defined 

“biofeatures” (including ENCODE ChIP-seq data for transcription factors; DNase HS 

sites; CFCF binding sites and annotated promoters). 
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2.1.3.3 Gene based tools 

SNPRanker:  a data-mining tool for disease associated SNPs that focuses on target 

gene prediction (ranks SNPs associated with target genes based on functional evidence) 

(Calabria et al., 2010). This tool no longer appears to be available from the source 

website. This could either be because the method is being upgraded and they have 

removed the old version until the new one is ready, or this method is now defunct. 

 

Residual Variation Intolerance Score: a gene-based score designed for the 

assessment of how well genes tolerate functional genetic variation, to aid the 

identification of pathogenic coding mutations (Petrovski et al., 2013). This method ranks 

genes on the amount of purifying selection acting against functional variation in genes, 

taking into account both gene size and total mutation rate (both the number of common 

variants and the number of protein-coding variants), to assess if genes have more or less 

functional genetic variation than expected compared to the calculated neutral variation 

rate for that gene. 

 

2.1.3.4  Exonic variant tools: 

VAAST: a probabilistic approach that combines elements of aggregative scoring 

methods and amino acid substitution (AAS) data in a unified framework (Yandell et al., 

2011). VAAST can be used to prioritise coding and non-coding variants; however, as 

non-coding variants cannot be scored using the AAS approach (as they do not encode 

amino acids), VAAST uses two different approaches to assess the deleteriousness of 

coding and non-coding variant. Instead, non-coding variants are scored using a log-

likelihood ratio combining allele frequencies in cases and controls; an estimate of the 

impact of non-coding and synonymous substitutions called Normalized Mutational 

Proportion (NMP), based on the frequency of codons in the human genome aligning with 

primate genomes and the proportion of occurrences of each of these codon pairs 

occurring across primate alignments; conservation estimates around DNase 

hypersensitive sites; and transcription factor binding sites defined by ENCODE 

regulation data, focusing on elements conserved across primate alignments.   
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EXtasy: a ranking method for the prioritisation of non-synonymous SNPs (Sifrim et al., 

2013), making use of annotation data including but not limited to: allele frequency; 

conservation; sorting tolerant from intolerant (SIFT) scores and PolyPhen scores; 

deleteriousness prediction scores from the dbSNP database; and haplo-insufficiency 

scores. This method is available both as a web interface and as a downloadable, stand-

alone program. The developers of this method have shown that it performs well 

compared to its individual component parts, suggesting that combining multiple 

annotation data can provide better sensitivity and specificity than each annotation in 

isolation. 

 

2.1.3.5 Non-coding variant tools 

RAVEN: regulatory analysis of variation in enhancers (RAVEN) is a web-based 

application that combines phylogenetic footprinting and TFBS prediction methods to aid 

the selection of candidate regulatory variants for follow-up analysis (Andersen et al., 

2008). The user selects a gene of interest and RAVEN provides a graphical view of the 

region proximal to the chosen gene, highlighting the dbSNP variants within this region, 

as well as predicted TFBSs, conservation scores (as defined by PhastCons scores) and 

any repeat sequences in the region. This method does not rank or prioritise SNPs of 

interest. Instead, it provides information on all of the potentially regulatory SNPs within 

a selected locus.  

 

Pupasuite: a web based SNP analysis tool that prioritises SNPs on factors including 

LD, MAF, validation status, variant type, and a small selection of putative functional 

properties including if the SNPs are known to be pathological (compared against a 

reference list of confirmed pathogenic variants), or occur at exon/intron boundaries 

(Conde et al., 2006). This tool uses TransFac (Wingender, 2008) to predict if non-coding 

variants overlap TFBSs, however, this feature is limited to SNPs within 10kb upstream 

of transcription start sites. This method is therefore not suitable for the analysis of 

variants further than 10kb upstream of known genes. 
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Weka: this method was trained using machine learning and a true positive dataset of 

real, biologically active regulatory variants and a background set of non-coding variants 

to train a model for predicting regulatory polymorphisms (Torkamani and Schork, 2008). 

Torkamani and Schork (2008) were among the first researchers in the field to make use 

of the ENCODE data to predict functionality. These authors compared over three 

hundred ENCODE feature sets and used machine learning to reduce this to a smaller, 

more usable set. In this study they used a good statistical framework consisting of hold 

out datasets and cross validation; however, the true positive data set was small (104 true 

variants), affecting the accuracy of the measured performance. In addition, this method is 

not formatted as a tool for predicting the functionality of regulatory polymorphisms. 

Instead the authors provide the software platform (Weka) used in their analysis and the 

input data to allow their method to be reproduced.  This prohibits this method from 

becoming a field standard approach and makes it inaccessible to the majority of 

inexperienced scientists (particularly for bench scientists with limited bioinformatics 

experience who wish to test their data).  

 

To summarise, many bioinformatics approaches have been designed to identify (or 

prioritise) tagging SNPs from GWAS studies, exonic variants, or purely to annotate 

genomic variants. However, at the start of this project, there was no effective method for 

the prioritisation of regulatory variants from NGS projects. Nor was there a gold 

standard protocol for testing and comparing methods, making a comparison between 

different strategies subjective (focusing on limited data, biased to a particular variant 

class, genomic region, or disease).  

 

Therefore, there existed a need for a simple, robust system that can combine a range of 

annotation datasets, along with other genomic functional measures, to prioritise 

candidate variants for follow up analyses. I proposed to address this by designing my 

own method. This method would be appropriate for all genomics projects, capable of 

handling both coding and non-coding variants in a single analysis, and not be limited by 

distance to the nearest transcription start site (TSS). 
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Three questions to ask when developing any new prioritisation approach are: 

1. Which annotation features should be included in the model?  

2. How should these features be combined into a single pipeline?  

3. How can this method be tested to assess its ability to prioritise functional variants? 

The following sections will deal with these points. 

 

2.1.4 Annotation features: 

2.1.4.1 Conservation 

Regions of the genome that are conserved across species are said to be under purifying 

selection, suggesting that mutations at these sites may have a deleterious impact to the 

organism (Kellis et al., 2014). Therefore, DNA elements with important functions are 

often conserved across species (Cooper and Shendure, 2011). 

 

Many algorithms have been designed to take advantage of this feature, making use of the 

availability of fully sequenced genomes of over 46 species (Cooper and Shendure, 

2011). A key decision to be made when performing a cross-species analysis is the 

phylogenetic scope one should use . If this is too broad (e.g. humans to yeast) many true 

functional sites are likely to be missed as they are unlikely to be conserved over such a 

great evolutionary distance; if too narrow (e.g. humans to primates) many non-functional 

sites will appear to be conserved as they have had insufficient time to diverge. In 

addition, a choice must be made as to which conservation methods to use. Conservation 

algorithms can be broadly divided into two groups: those that assign a conservation 

score to individual nucleotide positions and those that use a sliding window to assign a 

score to a small region. 

 

Genomic Evolutionary Rate Profiling (GERP) calculates levels of evolutionary 

constraint on a position specific level, based on an alignment of 35 mammals to the hg19 

release of the human genome (https://genome.ucsc.edu/cgi-bin/hgTables). Candidate 

constrained elements are identified by annotating regions that show a lower number of 

substitutions than expected. Each element is assigned a rejected substitution (RS) score, 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 2: Design of a SNP prioritisation method and a spiking strategy 43 

in proportion to the magnitude of the substitution deficit obtained ((Davydov et al., 

2010); (Siepel et al., 2005)). 

 

PhastCons and PlyloP are part of the PHAST, 46way conservation package, based on 

hidden Markov algorithms. The first looks at conservation of the region containing each 

variant while the second looks at the conservation of the specific base. Both tools can be 

run on three subsets of organisms: primates, placental mammals and vertebrates (King et 

al., 2005). 

 

2.1.4.2 Chromatin States 

While the genomic signatures of each histone modification can provide a certain amount 

of data, layering them together can increase precision and specificity (Ernst et al., 

2011).However, our knowledge of how best to combine these data is limited. To 

correctly define the combinations of raw histone marker ChIP-seq data would require a 

lot of additional experimental and computational work far beyond the scope of this 

project. An alternative option was to use predefined data. One such source of data comes 

from the labs of Kellis and Berstein (Ernst et al., 2011), who systematically mapped nine 

chromatin marks across nine cell lines, and developed a multivariate hidden Markov 

model to distinguish different chromatin states, through recognition of combinatorial 

patterns of the chromatin marks. These data have been rigorously tested and confirmed 

by in vitro assays (Ernst et al., 2011). 15 chromatin states were predicted, including 

active promoter, weak promoter, strong enhancer, transcriptional elongation, polycomb 

repressed, and repetitive /copy-number-variant. 

 

2.1.4.3 DNase hypersensitivity 

DNase I hypersensitivity is a universal feature of active cis-regulatory sequence and has 

long been used to map general chromatin accessibility. The use of this method has led to 

the discovery of functional regulatory elements that include enhancers, insulators, 

promoters, locus control regions and novel elements (Thurman et al., 2012). The DNase 
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Clusters track on the UCSC Table Browser contains genome wide data assayed in 74 cell 

types, pooled together into a single value, as part of the data generated by the University 

of Washington ENCODE group (Sabo et al., 2004). 

 

2.1.4.4 Repetitive elements 

Repetitive sequences present many technical challenges for the alignment and assembly 

of next-generation sequencing data (Treangen and Salzberg, 2012). As nearly 50% of the 

human genome is derived from repeats this can be a major influence on the reliability of 

downstream analyses including SNP calling. Various tools have been designed to 

overcome this issue at the sequence alignment and assembly level and recommendations 

have been made for quality control settings to improve the accuracy of the SNP calling. 

The RepeatMasker track on the UCSC Table Browser was created using the program 

RepeatMasker, written by Arian Smit (Smit AFA, Hubley R, Green P. RepeatMasker 

Open-3.0. http://www.repeatmasker.org. 1996-2010.). This tool is used to annotate 

repetitive elements present within the query sequence. The data generated includes a 

column describing the type of repeat element identified (repClass). 

 

2.1.4.5 Mapability 

Mapability provides information on the align-ability and uniqueness of sequences based 

on the hg19 release of the human genome. Each 20bp sequence is assigned a score 

between 0 and 1: a sequence will score “1” is it is unique and “0” if it occurs four or 

more times in the genome (UCSC Table Browser Schema, (Karolchik et al., 2011)), and 

a score of 0.5 indicates the sequence occurs exactly twice, while a score of 0.33 indicates 

three times and 0.25 four times. 

 

2.1.4.6 Position 

The position of a SNP relative to that of genes is an important factor to be considered 

when scoring SNPs, as studies have shown that the position of SNPs relative to genes 

affect the likelihood of that SNP being causal: i) a regulatory site’s influence on 
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expression falls off almost linearly with distance from the TSS in a 10kb range 

(MacIsaac et al., 2010); ii) disease associated SNPs are significantly enriched within 

strong enhancers (Ernst et al., 2011); iii) non-coding disease-associated GWAS variants 

are concentrated in DNase HS sites (Maurano et al., 2012); and iv) DNase HS are known 

to overlap with regulatory elements (Vernot et al., 2012). This information can therefore 

be used to predict the probability of a variant being pathogenic.  

 

2.1.4.7 Allele frequency 

The frequency of a variant within a population or across populations can aid our 

understanding of the phenotypic impact of that SNP. For instance, a common SNP is 

unlikely to be a causal variant for a highly penetrant, Mendelian disease. Understanding 

the disease model under investigation can allow scientists to hypothesize the frequency 

of a causal variant in the population and use this information to reduce the number of 

potential variants to investigate. 

 

2.1.4.8 Chromosome region score 

Some studies, such as GWAS and linkage studies, provide information on which parts of 

the genome are most likely to contain the causal variant for a disease of interest. These 

data can be used to filter out candidate SNPs that are not located in the region of interest, 

or to give them lower priority. 

 

2.1.5 Combining features into a model framework 
Defining the features to be included in a prioritisation method is an important aspect of 

developing such a method. Equally important is the selection of a model framework to 

combine these features. Simply combining them together in a 1:1:1 ratio is not a viable 

approach, as the data are all on different scales (for instance, 0-1 versus 0-1000). The 

SNP analysis tools described in section 2.1.2 were all developed using different 

approaches and do not provide a consensus on the best way to design a variant 

prioritisation method. An aim of this chapter is to develop an appropriate model 

framework and test it. 
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2.1.6 Test datasets 
A universal challenge facing developers of new bioinformatics tools is how to test the 

performance and accuracy of their methods. Meaningful benchmarking requires test 

datasets comprising large numbers of both “true positives” and “true negatives”. For the 

development of a SNP prioritisation approach, these would be, respectively, variants that 

have been shown experimentally to be deleterious and variants that have been shown not 

to have a negative effect, both datasets containing both coding and non-coding SNPs. A 

frequent problem with designing such a dataset is that it is difficult to determine with 

absolute certainty whether a variant is a true negative.  

 

Potential sources of true positive variants for this project fall into three main categories: 

i) large-scale databases (Cooper and Shendure, 2011); ii) single locus and/or disease 

specific databases; and iii) repositories of experimentally validated variants compiled by 

single research groups. There is much debate over which type of database contains the 

best data. 

 

Many authors have argued for a focus on locus specific databases (LSDB’s) (reviewed 

by (Samuels and Rouleau, 2011)), containing variants experimentally proven to be 

associated with a specific disease. These databases are usually fully accessible to the 

public and, being primarily maintained by academic researchers, tend to be more 

comprehensive and accurate than their larger scale counterparts, which contain variants 

with mixed levels of evidence supporting their functional and pathogenic effects 

(Samuels and Rouleau, 2011). They do, nevertheless have drawbacks, most pressing 

being they tend to suffer from limited sample sizes, an unavoidable consequence of 

focusing on a single disease or locus. There is also no universal standard regulating the 

design and curation of such databases, meaning there is a lot of variability in the 

standard of these databases. As with larger databases, they are also biased towards 

coding variants. Some good examples of LSDB’s are the Cystic Fibrosis Mutation 

Database, which catalogues variants associated with the cystic fibrosis trans-membrane 

conductance regulator gene (CFTR) locus (http://www.genet.sickkids.on.ca/app); the 

HBB variants catalogued in the HbVar database of Human Haemoglobin Variants and 
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thalassaemia mutations (Giardine et al., 2007); and the Fanconi Anaemia Mutation 

database compiled by the Rockefeller University ((Samuels and Rouleau, 2011); (Cotton 

et al., 2008)).  

 

The advantages of large-scale databases such as the Online Mendelian Inheritance in 

Man (OMIM) database ((Amberger et al., 2015)) and the Human Gene Mutation 

Database (HGMD)(Stenson et al., 2003) are that they contain much larger numbers of 

variants; however a lot of variation exists between such databases, each missing some 

data (genes or variants) that the other provides. For instance, OMIM only includes select 

mutations for each gene, chosen (amongst other criteria) based on phenotypic impact, 

population frequency and historical significance. HGMD is available in two forms: a 

comprehensive, professional version, which requires a (expensive) license to access; and 

a smaller, more outdated public version. In contrast to the professional version, the 

public database cannot be downloaded as a whole from the HGMD website, most likely 

to encourage use of the professional version. Both versions report variants that are not 

necessarily disease causing, for instance GWAS SNPs and SNPs with experimental 

evidence of functionality but no known link to disease.  

 

2.1.6.1 HBB dataset 

Haemoglobinopathies, which affect the structure and function of haemoglobin 

molecules, are among the most common hereditary disorders in humans and are caused 

by mutations in the α- and β-globin gene clusters (Giardine et al., 2007). One example is 

beta-thalassaemia, a Mendelian disorder characterised by changes to the synthesis of the 

β-globin chain, causing either a structural change, affecting how it binds to α-globin, or 

by changing the quantity produced. This results in an imbalance in globin chain 

production and a reduction in the amount of mature haemoglobin A produced, leading to 

abnormal erythropoiesis (Amberger et al., 2015). Mutations at the HBB locus lead to a 

variety of phenotypes, including the Beta-thalassaemias and sickle cell anaemia.  

 

The HbVar database is a locus-specific database of human haemoglobin variants that 

underlie thalassaemias and haemoglobinopathies (Giardine et al., 2007). Developed in 
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2001, HbVar is known for being well maintained, comprehensive and simple to use 

(Samuels and Rouleau, 2011). The phenotypic heterogeneity reflects the heterogeneity of 

mutations at this locus. The variants catalogued in this database can be queried using 

several approaches including: by type of thalassaemia; gene name; globin chain; where 

the variant is located within gene (exon, intron, un-translated region (UTR); non-

coding); ethnic occurrence; or a combination of factors. Compared to other LSDBs, 

HbVar has the added advantage of allowing variants to be batch downloaded. In 

addition, the variants catalogued in HbVar are supported by extensive documentation, 

including the biochemical and phenotypic effects of each variant (including references), 

allele frequency. This database has a limited number of variants as it only focuses on a 

specific disease locus; however, as it is a highly accurate and well-maintained database, 

it is a very good candidate database for my analysis (Giardine et al., 2007).  

 

 A shortcoming of HbVar is that the majority of variants are coding variants. This is 

largely due to the genetic architecture of thalassaemias, although it is also in part due to 

acquisition bias and the greater ease in identifying coding variants. Some non-coding 

variants included within the database may have been identified concurrently with coding 

variants (i.e. being secondary or tertiary modifiers) or leading to specific functional 

effects, such as only affecting TFBSs or strong enhancers, and so may not provide a 

good representation of the global diversity of regulatory polymorphisms. 

    

2.1.6.2 RAVEN dataset 

Andersen et al. (2008) performed a literature search to identify regulatory SNPs to build 

their own training dataset to test their bioinformatics approach, RAVEN (see Section 

2.1.2)(Andersen et al., 2008). By searching for regulatory variants themselves, they were 

able to specify strict search criteria and so ensure all variants included in their dataset 

were experimentally verified (either by luciferase assay, in vitro electrophoretic shift 

assays or by showing allele-specific binding to nuclear extracts); likewise, they were 

able to restrict the variants to those within 10kb upstream of the TSS of human genes 

with available human-mouse orthologs. In this manner they identified 104 variants that 

matched their strict criteria and which could be used to train their application. In 

addition, they developed a background variant dataset, consisting of SNPs similarly 
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restricted to within the 10kb region upstream and downstream of genes with known 

mouse orthologs. All 4,000 background SNPs were common SNPs, with a MAF >0.05 

from dbSNP (Andersen et al., 2008). 

  

2.1.6.3 Spiking strategy 

The HBB and RAVEN datasets both represent very specific classes of test data. I also 

designed a strategy for building a new class of test datasets, whereby known variants 

could be spiked into an unrelated background variant set. This spiking strategy would 

allow me to assess how well the model can discriminate real functional variants against 

any arbitrary background. As I already had at my disposal two positive (known 

functional) variant datasets, I only required additional background data to spike these 

variants into.  

 

2.1.6.4 SBF2 4p background dataset 

I had access to WGS data for five individuals from a family with multiple instances of 

bipolar disorder and evidence of linkage to a locus on chromosome 4 (see Chapter 5 for 

more details): three affected carriers of the disease haplotype and two unaffected, 

married-in relations. The SBF2 linkage-region is defined as an approximately 20 Mb 

region on chromosome 4 (Le Hellard et al., 2007). Using this data as a background 

variant dataset allowed me to assess the ability of my model to prioritise the HBB and 

RAVEN variants in a novel genomic context. As this region is likely to contain at least 

one putative candidate SNP for bipolar disorder, the “known” SNPs to be spiked into 

this background set will have to compete with other functional variants. This would 

suggest that the performance of the prioritisation model on this data would be negatively 

affected and the performance measures would be lower than for the two known variant 

datasets against their own background variants.  

 

2.1.6.5 ENCODE pilot project background dataset 

The ENCODE pilot project generated annotation data across 44 genomic regions, 

covering roughly 30 Mb of DNA, 1% of the genome. These regions were chosen to 
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cover a wide range of genomic contexts. 50% were chosen around medically important 

genes (or other known sequence elements) whose biology has been well studied, while 

the other regions were selected using a stratified random-sampling strategy, based on 

two parameters: gene density and non-exonic conservation scores.  

 

I generated a background dataset consisting of all of the 1000 Genomes EUR variants 

from within the coordinate boundaries of the 44 ENCODE pilot project regions. Details 

of the 44 regions can be found in Table 2.4. Each of the 44 regions can be used 

individually as background datasets with different genomic contexts to spike true 

positive variants into. Similarly, these regions can be merged to test performance on a 

single, large, heterogeneous dataset.  

 

 

2.1.7 Summary of chapter aims 
The first aim of this chapter was to develop a method to prioritise candidate pathogenic 

variants. 

 

The second aim was to develop a performance evaluation strategy that can assess the 

prioritisation method and predict how well it will perform on novel data, across a range 

of genomic contexts. 
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2.2 Methods 

2.2.1 Annotation data sources and data management  
The annotation data pertaining to the HBB, RAVEN and Scottish bipolar family 2 

(SBF2) datasets were obtained and processed by Stewart Morris (SM) into spreadsheet 

format, the first column containing the SNP reference (coordinates based on the hg19 

build of the human genome) and each additional column containing the annotation data 

for each SNP for all of the collected annotation features. I developed a shell script 

combining MySQL, awk and bedtools commands to generate the data tables for each 

feature annotation (see Appendix A). 

 

These features were obtained from a variety of sources including the 1000 Genomes 

repository of human variation, the ENCODE project, and UCSC Genome Browser and 

included four conservation tools (GERP, PhastCons, 7xregpotential and PhyloP), DNase 

HS data, minor allele frequencies, chromatin states, repetitive elements, mapability and 

position relative to genes. 

  

2.2.2 Correlation analysis 
To select the best conservation tools to include in the prioritisation method, I performed 

correlation analysis using the statistical software R (version 2.14.0). Using the function 

cor() and the method “spearman”, I calculated Spearman’s rank correlation coefficients, 

rho scores. In addition to producing rho values for this correlation analysis, this method 

also reports p-values on the significance of the relationship. 

 

2.2.3 Data preparation 

2.2.3.1 HBB 

I searched the HbVar database (accessed: November 2011) for variants specific to the 

HBB gene using the command:  

>“name like ‘HBB’ AND any substitution”  

This returned 767 variants, which I downloaded as a tab-separated text file and 

converted into an excel spreadsheet. Of the 767 disease-associated variants available for 
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this region, I excluded roughly half because they were not SNPs (either small indels or 

other mutations), leaving 363 disease SNPs. An additional 141 background SNPs were 

identified within this region using the dbSNP archive of genetic variation, giving a total 

benchmarking dataset of 504 SNPs. Functional annotation data for these variants were 

collected and processed by SM.  

 

2.2.3.2 RAVEN 

The RAVEN dataset was made available as part of the supplementary material for the 

paper by Andersen et al. (2008), in the format described in Table 2.2. From this file, I 

extracted the “chromosome position in Hg17” column, which I separated into a 

chromosome column and a coordinate column for conversion into Hg19. Conversion 

from Hg17 to Hg19 was performed by SM. Due to changes between Human Genome 

releases, my final list of true positive regulatory SNPs was 95 and my total SNP set was 

4,085.  

 

 

 

 

 

 
 

 
 

 
Table 2.2. This table represents an example of the RAVEN SNP file format. Column 1 lists the 
gene names associated with each variant; columns 2 shows the PubMed IDs for the analyses 
where each SNP was functionally assessed; column 3 lists the dbSNP IDs for each SNP; columns 
4 and 5 describe the two alleles and the proximal sequence for each SNP; and column 6 relates 
the reference source for each SNP.  
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Table 2.3.Table of information on the ENCODE pilot regions, including information on non 
exonic conservation score (NEC), % gene density (GD), pick method, number of genes in each 
region and the number of SNPs (MAF<5% from the 1000 genomes EUR database). The 
ENCODE pilot regions cover 30Mb of the genome (~1%) and were picked either manually 
(based around well studied genes or other well-known sequence elements, in regions where a 
high amount of comparative sequence data had been collected) or according to a stratified 
random-sampling strategy so as to include representative regions varying in the number of 
genes and functional elements based on gene density score (percentage of bases covered by 
exons ) and non-exonic conservation score (sharing at least 80% base alignment with the mouse 
genome). 
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2.2.3.3 ENCODE pilot project background dataset 

To build the ENCODE datasets I extracted SNPs from the 1000 Genomes European 

(EUR) subpopulation. Table 2.3 describes each of the ENCODE pilot regions. I 

assembled the SNP functional annotations using a shell script that made use of tools such 

as mySQL, bedtools, bedops, and awk commands (The full shell script can be found in 

Appendix A). I spiked several subsets of HBB and RAVEN into the 44 ENCODE 

background datasets. 

 

2.2.3.4 SBF2 4p linkage region 

Chapter 5 describes the analysis of sequencing data from a large Scottish family (SBF2) 

with multiple cases of bipolar disorder. SM extracted variants located on the SBF2 

chr4p15-16 disease-linked haplotype (see Chapter 5 for more details). The annotations 

for the roughly 5,000 SNPs were collected and formatted into a spreadsheet as described 

in section 2.3.1. These data were used as a background spiking dataset to test the 

prioritisation model. 

 

2.2.4 Model implementation  

2.2.4.1 Perl 

The models were initially implemented in procedural Perl language (version 5.10) and 

designed to run as UNIX command-line applications. All bioinformatics work was run 

using the server “Ironhide”, which has an Intel quad core (2 threads per core) i7 

Processor running at 2.67 GHz per core, 12Gb of RAM and 5Tb of RAID storage, with a 

64 bit Fedora Linux operating system. 

 

2.2.4.2 R    

I re-implemented my prototype Perl codes in R as a series of functions. Over the course 

of this analysis, the version of R was updated from 2.14 to 2.15. 
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2.2.5 Performance measures: ROC Curves and AUCs 
The performance measures I used to assess my method were Receiver Operating 

Characteristic (ROC) curves and their corresponding Area Under the Curve. Originally 

the ROC curves and AUCs were produced using SPSS (Figures 2.3 – 2.6). However, 

later ROC curves and AUCs were produced using the R package ROCR using the 

commands: 

 

AUCs were calculated using the following R function: 

 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 2: Design of a SNP prioritisation method and a spiking strategy 56 

2.3 Results 

2.3.1 Summary 
The aim of this chapter was to design a method, combining multiple types of functional 

annotation data into a single measure, to prioritise candidate causal SNPs for further 

investigation. Central to the development of this method was the selection of appropriate 

functional annotations; the choice of model structure; and lastly, development of a 

stringent model assessment protocol to gauge model performance.  

 

2.3.2 Feature Selection 
The functional annotations I chose to assess for inclusion in the SNP prioritisation 

pipeline were: minor allele frequency (MAF); SNP position relative to gene features; 

conservation; DNase HSs; repetitive elements; mapability; and chromatin states. For 

background on each of these features see section 2.1.3.2. These annotations were chosen 

based on: i) data availability and ease of access; ii) evidence from the literature showing 

that these annotations overlap functional elements; iii) data quality (genome coverage 

and accuracy); and iv) redundancy, as there are many annotations that perfectly correlate 

with each other. 

Several conservation annotations were available from the UCSC genome browser. 

Before deciding how to combine the various annotations into an integrated pipeline, I 

first compared the different conservation annotations to identify the most informative 

data to include in the model. 

 

2.3.2.1 Correlation analysis of conservation tools 

I compared the utility of four conservation tools available from the UCSC table browser: 

GERP, PhastCons, PhyloP and 7xRegPotential ((Cooper et al., 2005); (Siepel et al., 

2005); (Kolbe et al., 2004)). As PhyloP and GERP have been shown to have similar 

performances, incorporation of both tools in the method would be redundant. As GERP 

was shown to perform marginally better (Pollard et al., 2010), I chose to only include 

GERP in the next step of my analysis. I then calculated pair-wise correlation coefficients 

for the remaining conservation tools in an all-against-all approach. The aim of this 

analysis was to identify the combination of tools with the highest individual predictive 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 2: Design of a SNP prioritisation method and a spiking strategy 57 

value, whilst controlling for redundancy. Using R, I calculated Spearman’s rank 

correlation coefficient, rho, and the associated p-values for each of the SNPs within the 

SBF2 linkage region (see section 2.2.5.1). Table 2.4 shows the rho scores and p-values 

for each of these combinations.  

The three variations of PhastCons (Primate, Placental and Vertebrate) had medium to 

high correlation with each other, ranging from ~0.68 – 0.92, with very low p-values. As 

these tools are so similar, differing only in the phylogenetic scope of their training data, 

it would be redundant to use more than one in the pipeline. PhastCons placental has the 

best phylogenetic scope of the three PhastCons methods, as it has good power (more so 

than PhastCons primate) but also captures non-coding conservation which is often 

poorly conserved when going out as far as the “vertebrate” scope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4. Correlation coefficients (rho) and associated p-values for the pair wise comparison of 
all the conservation tools I included in my analysis, ranked highest to lowest rho score. 
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GERP and PhastCons placental produced the next highest score (0.19), the remaining 

pair-wise correlations performing with rho’s ranging from 0.13 to -0.02 (Table 2.). The 

correlations of 7xRegPotential with all of the other tools (PhastCons Placental (D), 

PhastCons Primate (G), PhastCons Vertebrate (H) and GERP (I)) produced very high p-

values, making these combinations untrustworthy. This appears to be due to the low 

number of SNPs with a 7xRegPotential score and the even lower number of SNPs with 

both a 7xRegPotential score and another conservation score. 

 

Of these four tools, the two most commonly used methods are PhastCons and GERP 

(Pollard et al., 2010). As they do not correlate perfectly, I chose to include both GERP 

and PhastCons in my method. As PhastCons placental had the best correlation with 

GERP (without being redundant) and had the best phylogenetic scope of the three 

PhastCons models, I chose to use this version in my pipeline. 

 

2.3.3 Comparison of model frameworks 
I considered several models for combining functional annotation data to best prioritise 

putative functional over non-functional variants. The simplest method would have been 

to add the raw scores together in a 1:1:1 ratio. However, this method relies on the 

assumptions that all features are perfectly correlated with functionality, they are all 

equally important to the discrimination of functional vs. non-functional variants, and 

they are all independent features. This is not to the case for annotations such as the 

chromatin states, where studies have shown different combinations of histone acetylation 

and methylation mark different types of regulatory elements (Ernst et al., 2011). 

Furthermore, scoring variants on their raw scores across multiple functional categories is 

problematic, as different annotations are scored on different scales. 

 

The second method I considered was a ranking system: i.e. each SNP would be ranked 

on their score from each functional annotation and these ranks would be combined into a 

single measure, re-ranking SNPs on this score. This method avoids the use of arbitrary 

weightings and would make it easy to add new annotation data in the future. As with any 

system, there are also disadvantages to this method. By prioritising SNPs based on a 
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rank of ranks, each individual score is “smoothed” and any interesting features (such as 

uneven distribution of scores) is lost. For instance, if an annotation contains a sudden 

shift from high scores to much lower scores, the SNPs on the boundary of this shift will 

appear more closely related in a ranked system then if the actual score was included. 

Like the first method, a pure rank-of-ranks would also fail to take into account the 

relative ability of each annotation to discriminate between functional and non-functional 

variants.   

 

The third model I considered involved weighting the different features against each 

other, based on the premise that different annotation sets have different levels of 

predictive value and should therefore be weighted with respect to each other to produce a 

final prioritisation score. This is favourable compared to the blind additive method; 

however caution must be taken as to how to define weightings, as this method could be 

considered arbitrary and biased.  In addition, weighting the “raw” scores, all on different 

scales, is also problematic. 

 

I chose to implement a fourth, hybrid, model, combining the best aspects of both the 

feature weighting and ranking models. This model would rank continuous features, score 

categorical features and weight the annotations against each other and combined them 

into a final rank-of-ranks (see Figure 2.2). 
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Figure 2.2. Graphical representation of the model described and tested in this chapter. This 
model combines a ranking system for the functional annotation features conservation, 
chromatin states and DNase HS, whilst scoring SNPs on a number of other categories including 
position, frequency, chromosome region and repetitive. All these factors are then combined into 
a cumulative “rank-of-ranks” to prioritise SNPs from most to least likely to be functional. 

 

 

2.3.4 Feature scores 
In this model framework, SNPs were ranked on their scores for the features DNase HS 

and the two conservation features, GERP and PhastCons. For the other features, 

including MAF and Position, SNPs were stratified into subclasses and scored according 

to which subclass they fell into (a more detailed description of each annotation can be 

found in sections 2.3.3.3.1-5). The feature ranks and scores were then weighted against 

each other and combined into a final collective score, which was used to generate a 

“rank-of-ranks” to prioritise SNPs on the likelihood of functionality. Figure 2.2 provides 

an overview of the variant prioritisation pipeline, including the scores used for 

categorical features and the values used to weight the annotation categories. The results 

were saved to a tab-delimited output file. This process was originally performed by a 
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Perl script, but was later re-implemented in R. Model performance was assessed using a 

selection of test datasets and ROC curve analysis. 

 

2.3.4.1 MAF 

MAFs were divided into 4 bins (unique, not unique but less than 1%, greater than 1% but 

less than 3% and greater than 3%), each bin corresponding to a different score. I 

implemented a 4,2,1,0 scoring system, arbitrarily chosen based on doubling in 

importance and so doubling in score from bin to bin: anything >3% scores 0, >1% and 

<3% scores 1, <0% and <1% scores 2 and anything unique (= 0%) scores 4 (see figure 

2.3). This method was based on the assumption that unique variants (not present in the 

1000 Genomes database) are most likely to be pathogenic, and the more common a SNP 

is, the less likely it is to be pathogenic. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Graph illustrating the scores assigned by the model to SNPs with different MAFs. 
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2.3.4.2 Position 

For the position score, SNPs were binned into distinct position classes: exonic, splice 

site, promoter, 10kb upstream or down stream of a gene, within a CpG island or CpG 

shore or beyond 10kb from any gene (i.e. intergenic). These classes were assigned 

different scores based on the relative importance of each positional class and the 

likelihood of SNPs in that class being causal variants, over SNPs in other classes (see 

Table 2.5 for more details). The scores were chosen based on knowledge from the 

literature ((MacIsaac et al., 2010); (Ernst et al., 2011); (Maurano et al., 2012)) and the 

example set by other existing methods (SNPselector: (Xu et al., 2005); SNPRanker: 

(Calabria et al., 2010)).  

  

 

 

 

 

 

 

 

 

 

Table 2.5. Position scores. Each SNP is assessed using data from RefSeq and UCSC to define the 
position category it belongs to. If a SNP belongs to multiple categories (exonic variant for one 
transcript but an intronic variant for a second gene transcript), it is assigned to the highest 
scoring category (ie exonic over intronic). 

 
 

2.3.4.3 UCSC genome browser annotation data 

The conservation and DNase HS site annotations from UCSC were all ranked on the 

total number of SNPs in the dataset, the ranks normalised to a 0-1 scale, ensuring each 

analysis is comparable, irrespective of the number of SNPs in the dataset. 
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Ernst et al. showed that chromatin state classes are correlated across cell lines and that a 

region that is predicted to be a strong enhancer (or promoter) in one cell line tended to be 

an enhancer in other cell lines (although in the other cell lines, it might only be a weak 

enhancer or promoter) (Ernst et al., 2011). The Ernst-defined chromatin states were 

converted to a binary classifier: all marks of active regulation being converted to “1” and 

the marks of closed chromatin (no regulation) being scored “0”. This was done for all 

nine Ernst cell lines and the 9 binary scores were added together and used to rank SNPs 

(SNPs having active scores across all nine cell lines ranking highest and those with none 

ranking lowest). 

 

2.3.4.4 Repetitive elements 

 I included two methods in my pipeline as posterior WGS quality control settings: 

mapability and RepeatMasker data.  

Mapability: SNPs were scored on mapability, a score of “1” indicating the sequence is 

unique, a score of less than 1 indicating an increasing numbers of occurrences in the 

genome, and a score of “0” suggesting it occurs four or more times in the genome.  

RepeatMasker: SNPs were separated into two classes based on their RepeatMasker 

annotation: SNPs overlapping any repetitive element or not overlapping any repetitive 

element. SNPs not in repetitive elements were scored above those overlapping repetitive 

elements. 

 

2.3.4.5 Chromosome region score 

For studies where linkage data is available (such as from a pedigree analysis) or where 

significantly associated regions are known, I wanted to allow SNPs within the 

linkage/associated loci to be prioritised above SNPs outside of these regions, as such a 

priori information can reduce the search space for putative causal variants. Therefore, 

SNPs within known linkage regions were boosted with an additional score. However, as 

none of the test datasets provided this type of annotation, none of the studies outlined in 

later sections of this chapter benefited from this score. 
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2.3.5 Assessment of model framework 
Validation of the prioritisation method required the use of test datasets to assess model 

performance. A good benchmarking dataset is characterised by being validated, 

accessible and containing a good number of variants. I have compiled multiple test 

datasets, each of which fulfils these criteria. 

 

2.3.5.1 HBB dataset 

The first benchmarking dataset I used consisted of HBB gene mutations associated with 

Beta thalassemia (variants from the HbVar database: see section 3.2.5.2). This dataset 

contained 363 disease associated SNPs and a further 141 SNPs control SNPs (benign). 

As I was particularly interested in prioritising non-coding variants, I filtered out all 

coding variants from this dataset. This left me with 39 non-coding disease variants and 

141 background variants. I tested the prioritisation method on this data and drew ROC 

curves and calculated the AUC, shown in Figure 2.4. This result (AUC of 0.988) showed 

that my method was able to correctly prioritise the non-coding disease variants over the 

background variants with very high specificity and sensitivity.  
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Figure 2.4. ROC curve and AUC for the model run on the HBB non-coding disease variants 
against the control set of SNPs from the same HBB locus. ROC curve (blue) shows the true 
positive rate plotted against the false positive rate, the green line representing the result 
expected by chance. Both the AUC and the ROC curve show that the model is able to prioritise 
the disease variants over background variants with almost perfect specificity and sensitivity. 
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Figure 2.5 ROC curve and AUC for the model run on the RAVEN experimentally validated 
regulatory variants against the control set of SNPs matched to the true variants to within 10kb 
of human genes with mouse homologs. ROC curve shows the true positive rate plotted against 
the false positive rate, the green line representing the result expected by chance. Both the AUC 
and the ROC curve show that the model is able to prioritise the regulatory variants over 
background variants with high specificity and sensitivity. 
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2.3.5.2 The RAVEN dataset 

As functional characterisation of non-coding SNPs is particularly challenging, it was 

important that I identify an additional dataset that contained such SNPs. My second test 

dataset was constructed by Anderson et al. (2008) to assess the performance of their 

method RAVEN, and which I named the RAVEN dataset. The dataset contained 95 

experimentally validated regulatory SNPs and 3990 control (background) SNPs 

(Andersen et al., 2008). 

 

My model achieved an AUC of 0.823 on this dataset (Figure 2.4). This lower 

performance compared to the HBB dataset is to be expected for several reasons. Firstly, 

the RAVEN dataset contains a much higher proportion of control SNPs to case SNPs. 

Secondly, as the control SNPs have not been proven to be non-functional, it is possible 

that some are in fact functional. As I could not control for such false negatives, it could 

be assumed that the specificity and sensitivity achieved by the scoring methods were the 

minimum the model will achieve on these data.  

 

 

2.3.6 Spiking analysis 

2.3.6.1 SBF2 background dataset 

The first spiking background set chosen consisted of variants on a 20Mb region of 

chromosome 4p16 locus that has been shown to be linked to BP disorder in a large 

Scottish family (SBF2) (see Chapter 5). The spiking approach was first used to spike the 

39 regulatory SNPs from the HBB dataset into the SBF2 SNP file. I hypothesised that 

this would provide a greater measure of the pipeline’s performance than comparing the 

known HBB variants against the HBB background variants. My reasons were: i) the 

SBF2 background dataset consists of a much larger number of SNPs; ii) these SNPs have 

already been filtered on MAF and consist of only SNPs with a MAF < 5%, decreasing 

the advantage of the HBB variants  (which are all rare) over the background set; iii) this 

region is much larger than the HBB locus, including over 100 genes producing proteins 

and non-coding RNAs with a broad range of cellular functions and therefore likely to 

have diverse forms of regulation (and features); and iv) the pipeline would have to be 
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able to prioritise the known HBB variants over variants that may also be causal but have 

yet to be identified, thus providing competition for the highest ranking positions.  

 

As with the RAVEN dataset, this background set contained true positives that would be 

classed as false positives, which would be predicted to lower the performance of any 

tested pipeline. However, an advantage of this method was that any background SNPs 

that performed better then the true HBB SNPs could be considered excellent candidates 

for my analysis of variants segregating with illness. In addition, as the HBB regulatory 

SNPs were taken out of context, there would be no question of linkage between the case 

and control SNPs. 

 

Despite the added level of stringency and complexity, the model was still able to 

prioritise the HBB variants over the majority of the SBF2 variants, with an AUC of 

0.993 (Figure 2.6). I also spiked the RAVEN regulatory variants into the SBF2 

background set. This proved more of a challenge for the model and the performance 

dropped, with an AUC of 0.797 (Figure 2.7).  
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Figure 2.6 ROC curve and AUC for the model run on the HBB non-coding disease variants 
against the control set of SNPs from the F22 chr4p16 locus. ROC curve shows the true positive 
rate plotted against the false positive rate, the green line representing the result expected by 
chance. Both the AUC and the ROC curve show that despite being spiked against a novel 
unrelated background set, the model is able to prioritise the disease variants over background 
variants with almost perfect specificity and sensitivity. 
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Figure 2.7 ROC curve and AUC for the model run on the RAVEN non-coding disease variants 
against the control set of SNPs from the F22 chr4p16 locus. ROC curve shows the true positive 
rate plotted against the false positive rate, the green line representing the result expected by 
chance. Both the AUC and the ROC curve show that the model is able to prioritise the disease 
variants over background variants with high specificity and sensitivity and this result is not 
dissimilar to the model’s performance on the RAVEN analysis shown in Figure 2.4. 
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2.3.6.2 The ENCODE pilot project background dataset 

I also spiked various subsets of HBB and RAVEN into the 44 ENCODE background 

datasets in order to assess the impact that varying the genomic context of the background 

set would have on the model’s performance. Table 2.6 shows the full results for this 

analysis, which can also be seen in summary form in Table 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6. Table of AUCs and Average AUCs for each spiking analysis. Each ENCODE pilot 
region dataset consists of SNPs within each region with a MAF <5% based on the 1000 Genomes 
Eur subpopulation database. Bottom row (highlighted in green) shows the average AUCs for 
each spiking analysis. Across all analyses, decreasing AUCs correlate with increasing gene 
density and number of genes corrected for region size. AUC is not affected by the size of the 
pilot regions, the NEC or the number of SNPs. 
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I first used the non-coding, true positive HBB SNPs used for the initial analysis 

described in Figures 2.4 and 2.6 (see section 2.3.5.1 and 2.3.5.2). Table 2.6 shows a very 

narrow range of AUCs for this spiking set across the 44 regions, ranging from 0.950 – 

1.000, with an average AUC of 0.983. 

 

I next ran the pipeline on the full true positive HBB dataset (including coding variants) 

and tested the method’s ability to rank coding as well as non-coding true positives above 

background variants. As expected, the average AUC was higher than for the non-coding 

true variants alone, increasing to 0.996. 

 

The third spiking analysis I ran was a spiking set consisting of the 141 control, non-

disease causing, HBB SNPs (All control HBB SNPs). The average AUC produced was 

0.416, much lower than for the non-coding true positive HBB dataset and the “ALL’ 

(coding and non-coding variant dataset) spiked into the ENCODE background SNP sets. 

This result shows that disease SNPs are more likely to rank above control SNPs. An 

average AUC of less than 0.5 also implies that the control variants have ranked lower 

than expected by chance. This result may be explained by the fact that although we are 

treating while the ENCODE datasets as “control” sets, they will likely contain true 

functional variants which could be prioritised above the non-functional (non-disease 

causing) HBB SNPs. This is another indication of the method’s ability to distinguish 

functional from non-functional variants 

 

I then ran the Full RAVEN true positive set against the ENCODE background variants. 

These SNPs were used for the initial analysis described in Figure 2.5. The average AUC 

for this dataset was 0.745.  

 

One drawback of the RAVEN dataset is the proportion of ‘true’ SNPs that have a MAF 

greater than 5%. These will perform worse than the ENCODE background SNPs, which 

were selected to have a MAF less than 5%. I therefore tested a final RAVEN set 
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consisting of only true SNPs with a MAF of less than 5%. This dramatically improved 

the average AUC to 0.925, which is more comparable with the HBB true non-coding 

SNP dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.7. This table summarizes the average allele frequencies (Average DAF.G1K.EUR) and 
average AUCs for each of the spiking analyses. 
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2.4 Summary and Discussion   

2.4.1 Summary of chapter 
To prioritise candidate pathogenic variants I have designed a pipeline, which utilises a 

combination of functional annotation, frequency, and positional information for each 

variant, and combines them into a single rank score.  

 

The aims of this chapter were: i) to assess the different model designs that could be used 

for my prioritisation method, identify the most appropriate one and test how well this 

model works on a variety of test datasets; ii) to explore the wide range of functional data 

that is available and select those features which would be most informative in our model; 

and iii) discuss the availability of test datasets and different methods of constructing new 

ones. 

 

2.4.2 Comparison of different features: 
I compared functional annotation data from a variety of sources to identify those features 

that would best aid the discrimination of functional from non-functional variants. 

Features selected for this model included MAF, conservation (GERP and PhastCons 

scores), position relative to genic elements, DNase HS, chromatin states (Ernst data), 

repetitive elements, mapability and a weighting for being located within a chromosome 

region of interest.  

 

2.4.2.1 The advantages of using chromatin states versus raw histone 
data 

As described in the Introduction to this chapter, the acetylation and methylation of 

different combinations of histone markers have been shown to correlate with different 

regulatory elements. These data can be used to aid the prioritisation of functional SNPs 

by providing information on any overlaps with putative regulatory elements. Ernst et al. 

looked at the specific relationship between these markers and applied this data to predict 

whether a variant overlaps regulatory elements. This data has been made publically 

available in the form of chromatin states (Ernst et al., 2011). An advantage of this data is 

that the complex job of combining individual histone modification data has already been 
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performed, tested, peer reviewed and shown to be accurate. A disadvantage is that this 

data currently relates to a very small set of cell lines, whereas the equivalent raw data 

from the ENCODE project can be obtained for a much wider range of cell lines.   

 

As part of the prioritisation model, the chromatin state data was averaged across the nine 

cell lines to get an idea of the regulatory effect of each variant under investigation across 

all available cell lines. However, this method puts greatest emphasis on SNPs that 

overlap high scoring chromatin states across all nine cell-lines. This quantitative 

approach might not best represent nature, as a SNP that overlaps a high scoring 

chromatin state in one cell line still provides valuable information. Similarly, the 

chromatin states were divided into two bins and ranked accordingly, a method that does 

not take into account differences between the chromatin states within the two bins. I 

therefore consider in the next chapter a more justifiable method of scoring SNPs based 

on their chromatin state data.  

 

2.4.2.2 Cross-species conservation  

Conservation has historically been the most commonly used feature for identifying 

regulatory elements ((Boffelli et al., 2003); (Brugger et al., 2004); (Ghanem et al., 2003); 

(Gottgens et al., 2002); (Pennacchio and Rubin, 2001)). I used a combination of 

correlation analysis and experimental evidence from the literature to focus in on two of 

the four methods tested: GERP and PhastCons (placental). GERP calculates 

conservation at the nucleotide level, whereas PhastCons calculates a conservation score 

on a region-by-region basis, using a sliding window approach. By combining two 

contrasting approaches I hoped to identify conserved regulatory elements with even 

greater accuracy, the premise being that variants scoring highly in both approaches are 

more likely to be real than variants predicted to be conserved by only one method 

(Cooper and Shendure, 2011). 

 

A caveat in this assumption is that we know from our correlation analysis that GERP and 

PhastCons placental only correlate with a Spearman’s coefficient value of 0.18772. That 

is to say, they are only weakly correlated. This begs the question, how much is the 

method benefiting from using a combined conservation score based on both of these 
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approaches? Would it in fact perform better using only one or other of these two? In the 

next chapter, I will address this issue and look at the performance of each method 

individually. 

 

2.4.3 Model design 
The hybrid model I chose to test in this chapter combines ranking and weighting. Model 

performance was tested using a variety of datasets and ROC curve and AUC statistics. 

 

2.4.3.1 Conclusions on model performance 

My model performed very well on the HBB dataset, with an AUC of 0.998 and to a 

similar level on the HBB data spiked into the SBF2 locus (AUC of 0.993). One reason 

why the model may identify these HBB variants with almost perfect sensitivity and 

specificity, even with the change of genomic context, could be related to the type of 

variants within this dataset. Thalassemia is a highly penetrant, Mendelian disorder, 

which could be expected to be caused by variants with a high effect size and a highly 

deleterious effect on phenotype. These variants could be hypothesised to either affect 

annotation features to a greater extent than weaker variants (i.e. regulatory variants with 

no link to disease, or less penetrant, low effect, complex trait variants) and therefore 

could be more easy to identify by studying changes to annotation features.  

 

In contrast, the RAVEN variants are experimentally verified regulatory variants. As 

such, these variants may be harder to distinguish from background variants, thus 

accounting for the lower AUCs obtained in comparison to the HBB variant analyses. In 

addition, this could explain the decreased ability of the method to prioritise RAVEN 

variants over background when spiked into the SBF2 dataset, as this dataset is likely to 

contain functional variants that are competing with the RAVEN variants and have more 

distinct feature annotations than the RAVEN variants. 
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2.4.3.2 Caveats of feature and model selection method 

Although I was able to show that my model was able to prioritise the regulatory variants 

from the HBB and RAVEN datasets with high specificity and sensitivity, therefore 

showing its application to real data, questions can be raised as to the method used to 

select both the features and the model for the prioritisation method. Features were 

chosen on a relatively ad hoc basis, without formal comparison of the relationship 

between different features. Similarly, the scores (instead of ranks) assigned to the 

features MAF, Position, chromosome region score and repetitive element score, were 

chosen on how important each sub-class is relative to the others (for instance, promoter 

variants were considered more important than intergenic variants and scored 

appropriately). This was not an uninformed process as it was strongly influenced by 

evidence from the literature and general opinion in the scientific community. 

Nevertheless, this approach could have benefited from more formal model training. This 

will be the subject of the next chapter. 

 

2.4.4 Test datasets 
The development of algorithms to identify functional regulatory SNPs has been impeded 

by the lack of data on regulatory SNPs (Torkamani and Schork, 2008). The better the 

data, the more accurate the assessment; good benchmarking data can be used across 

multiple different methods, allowing a fair comparison between methods. However, very 

few sources of verified regulatory variants exist, and those that are available are mostly 

limited in number and are not available to download in bulk format.  

Time and effort are required to construct useful datasets, but the information we can get 

from these data can be limited and biased. Finding a dataset that is applicable across the 

genome and across variant classes is, therefore, very difficult. 

 

This lack of a gold standard dataset is a major issue hindering the construction and 

testing of prioritisation methods.  To overcome this, I assembled my own repertoire of 

datasets, consisting of two true positive datasets (HBB and RAVEN) and four 

background sets (HBB, RAVEN, SBF2 and ENCODE spiking background sets).  

Although each has its own caveats, they each have fundamental facets of a hypothetical 
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gold standard dataset: the HBB dataset contains SNPs from the human haemoglobin beta 

gene (coding and non-coding), the true positive SNPs being disease causing for beta 

thalassemia; the RAVEN dataset contains non-coding SNPs, all within 10kb of genes 

with mouse homologs, the true positive SNPs consisting of experimentally verified 

regulatory SNPs; the SBF2 background set provides a large number of unrelated, low 

MAF variants (all with a  MAF <5%); and the ENCODE background datasets provide an 

opportunity to test model performance across a range of genomic contexts. The 

individual aspects of a gold standard dataset presented by this collection of data, make 

these datasets, when used in combination, a good substitute for a single benchmarking 

dataset.  

   

2.4.4.1 Pros and cons of the HBB dataset  

Using these data I was able to test how well the model performs on different classes of 

regulatory variants under different genomic contexts. When the pipeline was run on 

these data it successfully ranked the known SNPs above the background (control) SNPs, 

as illustrated by the ROC curves in Figures 2.4, 2.5, 2.6 and 2.7 and the AUCs (ranging 

from 0.797 to 0.998). This showed our model was able to correctly prioritise known 

disease or functional variants over background variants with un-known function. 

 

The main caveat of the HBB dataset that it is not an unbiased dataset, as the SNPs all 

map to a very small region of the genome. Because of this, the inheritance of the disease 

SNPs and control SNPs may be under some level of linkage and not independent. It 

should also be noted that the “disease” variants are all associated with a Mendelian 

disorder, ß thalassemia, which is a very specific disease model and most likely has a 

very different genetic architecture to complex diseases. As I wanted to design a model 

that can be used for a variety of genomic projects, this dataset only provides limited 

information and needs to be supported by additional data.  
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2.4.4.2 Pros and cons of the RAVEN dataset  

The RAVEN dataset is roughly 2.5 times larger than the HBB non-coding dataset, 

thereby increasing the power of my analysis. In addition to the experimentally validated 

true positive variants, Andersen et al (2008) also compiled a dataset of ~4,000 

background variants matched to the true positive variants to within 10kb upstream of the 

transcription start site of human genes with available human-mouse orthologs. The 

advantage of this RAVEN background dataset over the HBB background variants is that 

the variants come from a range of locations across the genome. By combining know 

regulatory variants with unrelated background variants we remove the evolutionary 

context of the known variants and locus effects. This was the source of inspiration to 

extend the analysis further by developing even larger, unrelated background sets, which 

the known variants could be spiked into, thus providing more information on how well 

my method can prioritise known regulatory variants.  

 

The RAVEN dataset provides has attributes that the HBB dataset lacks; however, this 

dataset suffers from its own limitations. A disadvantage of the RAVEN dataset is that all 

the control non-coding SNPs have a MAF greater then 5%. Therefore, by ranking SNPs 

on MAF, I have biased the prioritisation against the common background variants and 

towards the much less frequent regulatory SNPs.  

 

2.4.4.3 Pros and cons of the SBF2 4p background dataset  

As both the HBB and RAVEN datasets on their own are limited, I performed an 

additional spiking analysis, whereby both true positive sets were spiked into a 

background dataset consisting of the SBF2 linkage-region dataset. As this is both an 

unrelated locus and made up of SNPs with a MAF <5%, it overcomes the drawbacks of 

testing each dataset in its native background by removing the positional (and possible 

linkage) bias between disease SNPs and control SNPs; focusing on regulatory SNPs; and 

providing a background SNP dataset consisting entirely of SNPs with a MAF <5%.  
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A drawback to this dataset is that it is likely to contain true functional SNPs that are 

categorised as control SNPs. These SNPs could potentially out perform the spiked-in 

regulatory SNPs, lowering the perceived performance of the methods tested on this 

dataset. This background spiking set describes a single genomic locus and there is no 

way of telling if it is predictive or representative of the entire genome or if it contains 

some structural or regional bias I have not accounted for.  

 

2.4.4.4 Advantages of the ENCODE background dataset 

Using the 44 regions that make up the ENCODE pilot project as spiking sets has many 

advantages, one of which is it allowed me to assess how well any prioritisation model 

can differentiate true regulatory variants from control variants over a range of genomic 

contexts. A second advantage is the size of the ENCODE dataset: as of June 2012, over 

170,000 SNPs from the 1000 Genomes EUR (release 72) dataset were annotated within 

the 30Mb across the 44 ENCODE pilot regions, potentially including a variety of SNP 

classes including coding variants and non-coding variants, some of which could be 

regulatory variants (promoters, long range enhancers; repressors, insulators, etc). 

 

As 14 of these regions were selected because they contain very well studied genes (with 

known biological and disease functions/roles), it can be assumed that these regions will 

contain annotated and characterised disease causing protein-coding and regulatory 

variants. All the regions would be expected to contain functional (non-pathogenic) 

regulatory variants in addition to non-functional background variants. The ENCODE 

pilot region dataset is therefore a stringent background dataset, as the protein-coding 

variants and regulatory variants present will compete against the spiked-in known 

regulatory variants, affecting the model’s ability to prioritise the known variants above 

the background variants.  

 

By incorporating different genomic loci with a range of non-exonic conservation scores 

and gene densities, I was able to challenge the model in two additional ways:  

1. If the background variants are highly conserved, this would challenge the 

model’s ability to discriminate variants based on conservation. In this scenario, 
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would the model be able to prioritise the spiked-in variants over the background 

variants via the other features?  

 

2. As gene-dense regions contain large numbers of background variants that are 

either exonic, splice or promoter variants, the power of the position score will be 

affected. Can the model still correctly prioritise the known functional variants 

above background variants when there are a large number of background 

variants competing for the position score? 

 

This is a very novel approach. By using these regions as an additional spiking control set 

I hoped to get a fuller understanding of the performance of my method under varying 

genomic backgrounds. 

 

 

2.4.5 Conclusions from the ENCODE spiking analysis  
The spiking of HBB and RAVEN variants into the ENCODE pilot project regions can 

tell a lot about both the performance and functionality of the model. In particular, sub-

setting the HBB and RAVEN variants into different categories allowed me to compare 

how well the model distinguishes different variant classes and to postulate what features 

might be affecting its performance. 

In particular I would like to focus attention on three particular comparisons: the HBB 

non-coding true positive variants vs. the RAVEN true positive variants; the HBB non-

functional variants set as true positives vs. the RAVEN regulatory dataset; and the Full 

RAVEN dataset vs. the rare RAVEN dataset. 

 

2.4.5.1 Disease causing vs. regulatory SNPs (HBB TP non-coding vs. 
Full RAVEN regulatory) 

Comparing the performance of the model on the HBB non-coding SNPs spiked into the 

ENCODE background datasets vs. the RAVEN non-coding regulatory variants, we see 

very similar results to the earlier analyses (HBB and RAVEN in their own background 

sets and the HBB and RAVEN spiked into SBF2), with AUCs of 0.983 and 0.745 on the 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 2: Design of a SNP prioritisation method and a spiking strategy 82 

HBB and RAVEN data respectively. This is further validation that my method is 

performing consistently across different datasets.  

 

2.4.5.2  Functional vs. non-functional SNPs (HBB All False vs. Full 
RAVEN set)  

I next questioned how well the pipeline would perform if I used background SNPs as my 

true positive SNPs, which are presumably non functional. By comparing the 

performance of the model on the HBB background variants (all False) vs. the RAVEN 

variants (full), treating the HBB background variants as true positives, we can assess the 

models ability to discriminate true positives from false positives. The HBB false positive 

dataset was compared against the RAVEN variant set as they contain similar numbers of 

variants (141 vs. 95), with a comparable average MAF of roughly 0.27. This removes 

any bias caused by number of variants or MAF. Therefore, the difference in AUC (HBB 

FP: 0.4155 vs. RAVEN: 0.745) can be attributed to the models ability to discriminate 

between functional non-coding variants and non-functional non-coding variants. It is 

interesting to note the model actually prioritised the HBB false positive variants worse 

than you would expect by chance. This could be due to the fact that the ENCODE 

background datasets all contain real, experimentally verified disease variants 

(particularly around medically important genes) as well as potentially many regulatory 

variants we know nothing about, thus a large number of false negatives which the model 

is correctly prioritising as true positives above the false positive HBB variants. 

 

2.4.5.3 Rare vs. common (Full RAVEN vs. less than 5% RAVEN sets) 

As discussed in 2.2.2.1, the AUCs from Table 2.4 show that the model is prioritising the 

HBB and RAVEN known variants consistently well across different background 

datasets. However, the question of why the model is prioritising the HBB variants better 

than the RAVEN variants remains unanswered. My final question on these data was, 

therefore, how much impact is MAF having on the ability to prioritise functional variants 

over non-functional variants? I have already shown that when MAF is removed (by 

correcting the average MAF across variants) the method can still correctly distinguish to 

a very high degree the functional from non-functional variants. However, how much 
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would the performance of the method change on the RAVEN data if only rare variants 

were considered? 

 

To address this, I generated a smaller RAVEN dataset consisting of only those variants 

that have a MAF of <5%. The average MAF of this dataset was 0.009, much more 

comparable to the HBB true positive non-coding dataset. Interestingly, when the model 

was used to prioritise these variants against the ENCODE background datasets the AUC 

(0.925) was more similar to the HBB non-coding set (0.983) than the full RAVEN 

dataset (0.745), indicating that the HBB variants are most likely being prioritised better 

than the RAVEN variants because they are rare, rather than because of some underlying 

difference in their architecture. 

 

2.4.5.4 Implications 

We can therefore conclude from these analyses that true functional variants are 

prioritised better by my model than non-functional control variants; control variants are 

prioritised worse than expected by chance; and this effect is not a by-product of 

weighting of allele frequencies (RAVEN and HBB control av. AF ~0.27). Spiking 

various subsets of the HBB and RAVEN SNPs into the ENCODE pilot regions has also 

highlighted the ability of my method to identify true functional variants over background 

variants. 

 

2.4.6 The difference between implementing in Perl vs. R 
For the sake of transparency, simplicity, portability, “market penetration” and 

adaptability, I re-implemented my prototype Perl codes in R as a series of R functions. 

Working in R has many advantages over Perl for genomic data. Firstly, R is a software 

environment as well as a programming language, structured around data frames and 

capable of dealing with large amounts of data, which can be read in and analysed 

without the need to compile and run any code. This allows complex operations to be 

performed on large datasets with speed and efficiency. R is also specifically designed for 

statistical and data-mining analyses, and has many built-in tools to perform with ease 

operations that would be quite complicated to do in Perl. As the ranking and scoring of 

SNPs in my model are all very simple to do in R, it made sense to re-implement in this 
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environment. The resulting code is shorter and simpler in R, providing a level of 

transparency beyond anything that can be achieved in Perl. Being part of the R 

environment, my code can also be linked with other functions and packages, such as 

ROCR, reducing the time wasted moving from one statistical environment to another. 

Lastly, having my code written as a series of R functions, there is the potential to 

reformat the code for it to be wrapped into an R package. This would further simplify the 

code into a single command, while still providing flexibility and allowing easy 

modification. 

 

2.4.7 Things to improve 

2.4.7.1 Datasets 

The HBB and RAVEN true positive datasets are good examples of different classes of 

regulatory variants (one a Mendelian disease set, the other a purely regulatory set), 

however the background variants they are compared against have their disadvantages: 

the HBB background set is a single locus – could have some unique feature we know 

nothing about; the RAVEN background set contains SNPs that all have a MAF > 0.5%, 

so are immediately biased against for MAF score; the SBF2 background dataset provides 

a large number of rare (MAF <0.05%) variants, but this is a locus linked to a specific 

disorder (BD) and so is likely to contain real causal variants for BD that are competing 

with our known functional variants. In addition, the SBF2 dataset is concentrated around 

a single chromosome locus, which may suffer from some unique chromosomal structural 

organisation I have not taken into account. I therefore needed an improved spiking set 

that would allow me to study the ability of my method to correctly prioritise know 

regulatory variants over background variants from a variety of different genomic 

contexts. For this reason, I developed the ENCODE background dataset. 

 

An additional problem faced when analysing and predicting the functionality of non-

coding variants is the breadth of classes of regulatory elements. This is often not taken 

into account; regulatory variants are all tarred with the same brush under the general 

descriptor “non-coding variants” or at most “regulatory variants”, when in fact 

regulatory elements can be divided into subclasses such as non-protein-coding RNAs, 

promoters, enhancers, repressors and insulators.  Similarly, variants can be subdivided 
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by their biological effect: whether they lead to a “strong” effect (highly penetrant, 

mendelian diseases); account for a small amount of variance for a complex disorder; or 

have a functional role, affecting gene expression, but not manifesting as a disease 

phenotype. 

 

The list of classes that we can use to discriminate different regulatory variants is small 

but by no means exhaustive: improvements in our understanding of the regulatory 

architecture of the genome will no doubt add additional classes to this list as we identify 

more types of regulatory elements.  

I therefore need a more comprehensive true positive variant dataset, consisting of large 

numbers of verified regulatory variants. This will be dealt with in the following chapter. 

 

2.4.7.2 Feature weightings and feature scores 

The method by which features and weightings were chosen, though based on logical 

assumptions, was arbitrary, unsystematic and potentially biased. This therefore needs to 

be addressed. The first step to correct this imbalance is to convert the various scores used 

in the model to ranks (so all features are ranked). Once this has been done, I should also 

re-assess the weightings of the ranks used in the model in a systematic, comprehensive 

manner. 

 

2.4.8 Conclusions 
I have developed a prioritisation method that makes use of a range of functional 

annotation data to rank SNPs on the likelihood of having a functional effect. This 

method makes use of a model framework that combines aspects of both a scoring model 

and a ranking model. Specific features, scores and weightings have been chosen based 

on multiple pieces of information and tested on a variety of datasets to gauge the 

model’s performance. The performance evaluation showed this method was able to 

prioritise regulatory variants above background variants with high specificity and 

sensitivity (AUCs ranging from 0.721 to 0.989). In addition, I have established a spiking 

strategy to evaluate tool performance. This in itself is a novel approach with great 

potential. However, in this context the spiking strategy could potentially lead to over-

fitting and an over estimation of model performance. Improved performance evaluation 
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methodology and additional testing is required on more diverse datasets to provide a 

better picture on how the method is performing and how I can improve it. 

 

The method used for the feature selection and assessment was adhoc and arbitrary. A 

more systematic, reproducible, unbiased evaluation method is required with: 

  1. Better training and testing data. 

  2. More statistically rigorous performance evaluation. 

  3. A more inclusive feature set.  

 

I will address these three points in the next chapter.
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Chapter 3: Model testing using cross-validation and 

development of an R-package  

3.1 Introduction  

3.1.1 Summary of Chapter 2 
At the start of my PhD, there was a need in the field of genomics for a method to 

prioritise SNPs (particularly non-coding SNPs) on the basis of putative functionality, 

making use of the wealth of genomic and epigenomic annotation data available from 

projects such as the ENCODE project (Consortium, 2012), Functional Annotation of the 

Mammalian Genome (FANTOM5) project (Consortium et al., 2014) and the 1000 

Genomes project (Genomes Project et al., 2010). I chose to develop a method to fill this 

gap. Crucially, this method would support the interpretation of data from a range of 

genomics projects including variants from genome-wide association studies (GWASs) 

and next generation sequencing (NGS) projects. The steps I undertook to construct and 

test an initial model are described in Chapter 2.   

Evaluation of this preliminary model on test data showed that it was able to prioritise 

positive variants (known disease or regulatory variants) over background variants with 

high specificity and sensitivity. However, the model building approach I used was 

unsystematic and the model relied on adhoc thresholds for some of the annotation 

measures. In addition, the model assessment made use of limited datasets and therefore 

ran the risk of being over fitted to the test data. It was important, therefore, to develop a 

more formalised approach, combining: i) systematic model selection; ii) a more rigorous 

statistical framework for stringent evaluation of model performance and prevention of 

over fitting; and iii) larger datasets, to increase power. In this chapter I describe the steps 

taken to address these issues. 

 

3.1.2 Systematic model training and validation 
Prediction methods are used across diverse fields ranging from the biosciences to 

insurance, marketing, meteorology and beyond. More pertinently, in the fields of 

epidemiology and clinical diagnostics, complex biological data are used to predict 
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phenotypes and diagnosis. For example, biomarkers are used to predict disease status 

((Liu and Albert, 2014); (Rowe et al., 2013)) and microarray data are used to forecast 

clinical cancer outcomes (Dupuy and Simon, 2007). Similarly, predictive methods are 

being used across a range of genomic data-mining projects attempting to link genes and 

proteins to pathogenicity. Although the data used in each of these scenarios differs, the 

methodologies and data requirements are similar. Two factors are critical to successfully 

build and evaluate any predictive model. The first is high quality benchmarking data; the 

second is appropriate training and evaluation methodology (Vihinen, 2012). Both of 

these factors will be discussed in the following sections. 

 

3.1.3 Defining benchmarking datasets 
Development and assessment of predictive methods is often hindered by the use of 

small, often private, datasets and limited performance evaluation measures (Vihinen, 

2012). Such model evaluation is neither comprehensive nor generalisable. A model’s 

performance assessed under these conditions cannot be fairly compared against 

predictive methods trained on other data. A better approach is to use established 

benchmarking data in a systematic, impartial analysis. This ensures that the evaluation of 

performance is consistent across all methods.  

 

Vihinen (2012) suggests that a dataset should meet a minimum set of criteria before it 

can be considered a definitive benchmarking dataset. It should be: relevant; 

representative; non-redundant; scalable; simple; reusable; consist of experimentally 

determined classes; and should contain equal numbers of positive and negative variants. 

In addition, a benchmarking dataset should be large enough to provide sufficient 

statistical power (Vihinen, 2012). This demanding set of conditions is difficult to meet in 

any single dataset. In particular, finding a dataset that contains large numbers of 

functionally validated positive and negative variants is challenging, verging on 

impossible. In the Methods and Results sections of this chapter (3.2 and 3.3 

respectively), I will describe how I constructed a benchmarking dataset by combining 

two independent datasets: experimentally verified positive variants from the Human 

Gene Mutation Database (HGMD) and the ENCODE pilot project background spiking 

variant dataset introduced in Chapter 2. 
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3.1.3.1 HGMD variants 

The HGMD database is a large scale, comprehensive archive of germline mutations that 

are implicated or are associated with human disease (Stenson et al., 2003). It contains 

over 141,000 mutations, including SNPs, indels and rearrangements, which are available 

via two databases: a public version freely accessible for all registered users from 

academic institutions and non-profit organisations; and a subscription version, HGMD 

Professional, available through the purchase of a license. A disadvantage of the public 

version is it is several years out-of-date in comparison to the professional version. It also 

cannot be batch-downloaded and the variant annotations are more limited than the 

professional version.  For these reasons, I chose to focus on the professional version and 

obtained the appropriate license. 

 

The HGMD professional database is subdivided into multiple annotation tables 

including: MUTATION (single base-pair substitutions; missense/nonsense); DELETION 

(deletions of 20 bp or less); INSERTION (insertions of 20 bp or less); INDEL (indels of 

20 bp or less); DELINS (a combined table for data on deletions, insertions and indels); 

GROSDEL (for large deletions); GROSINS (for large insertions); COMPLEX (for 

complex rearrangements); AMPLET (for repeat variations); and PROM (variants 

causing regulatory abnormalities). I focused on the PROM table, which contains non-

protein-coding variants with reported phenotypic impacts. These can be further 

categorised into the following variant subclasses: 

 

DM and DM? (Disease-causing Mutations): These variants have been reported in 

the literature to be pathogenic mutations. The ‘DM?’ subclass are variants where there is 

doubt regarding the degree of pathogenicity. Diseases represented by the DM group of 

mutations include Parkinson’s disease, glaucoma, cystic fibrosis, aplastic anaemia, 

Hirschsprung’s disease, Cowden’s disease, beta thalassaemia, Wilson’s disease, 

retinoblastoma, retinitis pigmentosa and haemophilia. 
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DP (Disease-associated Polymorphisms): These variants have been reported to be 

significantly associated with disease; however, are not supported by experimental 

evidence of functionality. 

 

DFP (Disease-associated Polymorphisms with additional supporting evidence of 

Functionality): Like the DP class of variants, these variants have been reported to be 

significantly associated with disease; the difference being they are supported by 

experimental evidence to be directly functional. Variants in this class are associated with 

diseases and disorders such as type 2 diabetes, asthma, LDL-cholesterol levels, 

hypertension, schizophrenia, coronary heart disease, myocardial infarction, rheumatoid 

arthritis, increased risk of lung cancer, neonatal respiratory distress syndrome, Crohn’s 

disease, polycystic ovary syndrome, macular degeneration, Alzheimer’s disease and 

Graves’s disease. 

 

FP (in vitro/laboratory or in vivo Functional Polymorphisms): These variants 

have been reported to have a functional consequence, but have yet to been associated 

with a disease phenotype. 

 

FTV: Polymorphic, or rare nonsense, or frame shift variants that have been predicted to 

alter the gene product (i.e. to result in the production of a truncated product), but as of 

yet with no reported disease association. 

 

The organisation of the HGMD Professional database into these classes and subclasses 

allows specific subsets of SNPs to be easily extracted. 

 

3.1.3.2 ENCODE variants 

In addition to the HGMD functional variants, a control dataset was required to assess the 

model’s ability to distinguish positive (functional) variants from negative (non-

functional) variants. An ideal control dataset would match the positive set in size, for 
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accurate model assessment (Vihinen, 2012). To my knowledge, no such large, 

experimentally verified non-functional dataset existed. I therefore chose to use the 

ENCODE pilot project spiking dataset I developed in Chapter 2 for the evaluation of the 

preliminary model’s performance. This dataset contains variants from the 1000 Genomes 

European population, restricted to within the boundaries of the 44 ENCODE pilot 

project regions. 

 

3.1.4 Training methodology  
The quality of a predictor depends largely on how the model training has been 

performed. The most common mistake, as observed by Smialowski et al. (2010), made 

during model building is the incorrect partitioning of data into training and test datasets. 

It is important to ensure the training and test data are kept separate, as leakage between 

these datasets can lead to over fitting and an over optimistic estimate of model 

performance. Furthermore, construction and evaluation of predictive models require the 

use of well-established validation methods such as cross-validation, which assesses both 

a model’s performance and its ability to generalise to independent data (Smialowski et 

al., 2010). 

 

3.1.4.1 Cross-validation  

Cross-validation is a statistical method used to assess the performance of a model and to 

predict how well it will perform on novel data. The cross-validation protocol involves 

splitting data into multiple training and validation sets and first training the model on the 

training dataset and then testing it on the validation dataset. Different forms of cross-

validation are characterised by different methods of data splitting; for example, leave-

one-out cross-validation (LOOCV), repeated random sub-sampling, and k-fold cross-

validation ((Arlot, 2010); (Hastie, 2009)). In k-fold cross-validation the dataset is split 

into k equal sub-samples. For each round of cross-validation, 1 to k, one of the k sub-

samples is used as the validation data, while the other k-1 sub-samples are combined into 

a training dataset. This is repeated until all k sub-samples have been used as the 

validation dataset (see Figure 3.1). k can be represented by any positive integer; 

however, it is most commonly set to ten, as ten-fold cross-validation is a generally 
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accepted compromise between computational complexity (running time and required 

CPU’s) and statistical power.  

Cross-validation can be used for model selection (estimating the performance of 

different models in order to choose the best one) and model assessment (having chosen a 

final model, estimating its generalisation error on new data). To perform both model 

selection and model assessment, the data is best partitioned into three parts (tripartite 

division): training, validation and test datasets. However, when an analysis is ‘data 

poor’, only a limited number of samples being available for training, validation and 

testing, the power of the cross-validation can be maximised by drawing the training and 

validation data from a single, larger dataset that is partitioned into folds (for instance, ten 

folds for ten-fold cross-validation). During each round of ten-fold cross validation, one 

fold is held out as the validation dataset and the other nine combined into the training 

dataset (Figure 3.1). Performance error is calculated as the difference in performance on 

the training and validation datasets across each fold. The best model chosen from the 

cross-validation is then tested on the hold out test dataset. The generalisation error is 

calculated as the difference in model performance on the test dataset versus the model 

training and validation performance. Crucially, the data used for training and validation 

cannot be used for the final model testing as this would lead to an over estimation of 

model performance. Similarly, once a model has been run on the test data, it cannot be 

tweaked or modified (Hastie, 2009) or rerun on the test data. 
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Figure 3.1 Cartoon outlining 10-fold cross-validation using a tripartite data split. The full 
dataset is divided into two sections: training and validation dataset and a hold out test dataset. 
The training and validation dataset is partitioned into ten folds. During each round of cross-
validation, one fold is set as the validation set and the other nine folds are joined together into 
the training fold. Each weighting model is run on the training and validation sets in each of the 
ten folds and the training and validation AUCs for each fold are calculated and recorded. 
Performance error is calculated as the difference between the training and validation AUCs 
across all ten folds. The best model from cross-validation (the highest AUC with lowest 
performance error) is then selected and run on the hold out test dataset. The difference between 
the test AUC and the average training/validation AUC for that weighting model is used to 
calculate the generalisation error. 

 

 

3.1.5 Development of an R package 

R, which was created by Ross Ihaka and Robert Gentleman (Ihaka, 1996), is both a free 

programming language and an environment for statistical computing and graphics 

(http://www.r-project.org/about.html). The advantages of this system are extensive. R is 

a flexible, modular language, which allows for effective and simple data handling. As 

the R language is simple and intuitive, it is easy to learn and is therefore used 

extensively for the analysis of genomic and epigenomic data. R is highly extendable and, 
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through the efforts of the Comprehensive R Archive Network (CRAN) and other, newer, 

distributors and repositories (such as Bioconductor), it is constantly evolving through the 

inclusion of new packages. Importantly, new R packages have to pass a peer-review 

process before being accepted by CRAN and Bioconductor, providing confidence in 

their design and functionality. The modularity of R means that R packages and functions 

can be used individually or combined into larger R codes. In addition, R allows data to 

be stored as a range of objects, each of which can be manipulated in different ways. 

Lastly, R compiles and runs on a range of platforms and systems including UNIX, 

Linux, Mac OS and Windows, making it universally accessible. 

I decided to restructure my list of R functions into an R package. An R package has the 

following advantages over a series of R functions: it is simpler and faster to run, as the 

number of commands required to achieve the same output is reduced; and it can be 

submitted to an R repository, making it easier to distribute and more widely accessible. 

Once the decision was made to restructure my R code and functions into an R package, it 

was necessary to select a package name. I chose to call the R package “SNP Ranking by 

Function R package” (SuRFR). For the rest of this chapter and this thesis I will refer to 

the prioritisation R package I have developed as SuRFR 

 

 

3.1.6 Summary of chapter aims 
The aim of this chapter was to improve the SNP prioritisation method described in 

Chapter 2. This was achieved by i) redesigning the model framework to make it more 

reproducible; ii) updating the annotation data; iii) expanding the test datasets to increase 

the power of the analysis; iv) formalising the model testing to prevent over-fitting; and 

v) restructuring the R code into an R package. 
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3.2 Materials and Methods 

3.2.1 Simplified model framework 
The model framework was restructured around the concept of a straight forward rank-of-

ranks. For each annotation category, SNPs were ranked from least likely to be functional 

through to most likely; the ranks across all of the annotation categories were combined 

using a weighting model to generate an aggregate rank (the rank-of-ranks). Equation 1 

describes this model framework: 

R = ranki  ( ∑ ( rij . wj )) 

Equation 1. 

rij is the rank of the ith variant in the jth annotation category, and wj is the weight for the 

jth annotation category (Ryan et al., 2014). 

 

A central aspect of this method is the weighting term (𝑤j) a vector of multipliers (one 

multiplier for each annotation category), which quantifies the importance attributed to 

each annotation category in the prioritisation of putative functional variants. I developed 

three different weighting models for SuRFR, for three different categories of regulatory 

variants: a model designed to be generally applicable to any analysis (“ALL”); a model 

designed specifically for the prioritisation of rare, highly penetrant disease variants 

(“DM”); and a model designed for complex trait variants (“DFP”). 

 

3.2.2 New annotation data sources 
The annotation data classes and sources used in SuRFR are summarised in Table 3.1 and 

detailed in the following paragraphs: 

 

MAF: I used an updated minor allele frequency (MAF) table for the 1000 Genomes 

EUR population (release 72). For this annotation, SNPs with the lowest MAF (i.e. rarest 

SNPs) were ranked highest. 
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Table 3.1 This table describes the annotations used in the R package, SuRFR, as well as the 
sources they were obtained from and the dates they were downloaded (Ryan et al., 2014). 
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DNase HS: SNPs were ranked on normalised peak score, taking the maximum signal 

strength across any cell line. 

 

DNase footprints: SNPs were ranked on the number of cell-lines where DNase 

footprints were observed. 

 

Position: The position score used for the model in Chapter 2 was modified to include 

annotation data for gene names, exons, introns, splice sites, CpG islands, and CpG 

shores. Data from the FANTOM5 project, characterising novel transcription start sites 

(TSSs), was used to annotate previously undocumented promoters (defined as being 

1000 bp upstream of FANTOM5 TSSs) and regions 10kb upstream of transcripts. The 

rank orders of this annotation feature were redefined based on evidence from the 

literature (see section 3.3.3.3); the new rank order of position categories can be seen in 

Table 3.2. 

 

Transcribed Enhancers: I collated CAGE-defined transcribed enhancers, identified 

using data from the FANTOM5 project (Andersson et al., 2014), into a new feature 

annotation dataset. SNPs were ranked by a binary classification, based on whether or not 

they overlapped a CAGE-defined transcribed enhancer. 

 

 

 

 

 

 

 

 

 

 

Table 3.2 Updated rank orders of position categories. This data is based on enrichment data 
presented by Hindorff et al. (Hindorff et al., 2009), and Schork et al. (Schork et al., 2013). 
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score; prior to ranking all negative RS scores were converted to zero. 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Table from the UCSC Genome Browser showing the nine cell lines used as the source 
of the experimental data produced by Ernst et al. used to define chromatin states.	
  

	
  

 

Transcription Factor Binding Sites: I identified an updated transcription factor 

binding site (TFBS) table from the UCSC Genome Browser. SNPs were ranked on the 

highest peak signal for any of the transcription factors across all of the cell lines. 

 

Conservation: SuRFR’s conservation score was based on GERP rejection substitution 

(RS) scores. SNPs were ranked from highest to lowest RS; prior to ranking, all negative 

RS scores were converted to zero. 

 

Chromatin States: The chromatin state data across nine cell lines (Table 3.3) presented 

by Ernst et al. (2011) was reassessed using multivariable regression. The new chromatin 

state rankings can be seen in Table 3.4. 
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Chromatin state classes Rank 

Promoter 10 

Strong Enhancer 9 

Weak Enhancer 8 

Repressed 7 

Insulator 6 

Repetitive/CNV 5 

Transcription Transition 4 

Transcription Elongation 3 

Weak Transcription 2 

Heterochromatin 1 

 

Table 3.4 Rankings of each of the 10 chromatin state classes (best rank: 10, worst rank: 1) 
defined by the regression analysis described in Results section: Multivariable regression. Each 
chromatin class is colour coded to reflect the individual chromatin states they represent (shown 
in full in Table 3.6.) 

 

 

3.2.3 Construction of test datasets 

3.2.3.1 HGMD variants 

The HGMD Professional data is available via MySQL.  I accessed the database via the 

command line, using the command format: 

mysql –A –h host –u username –p password 
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The data I required for each variant from the HGMD mySQL database included: 

chromosome, position, ID (HGMD Accession number), Ref base, Alt base, disease, 

gene, tag and dbSNP id. 

This information was not available from any single table; therefore I used JOIN to pull 

out the appropriate data from multiple tables into a single output. I did this in two steps: 

i) SNPs present in dbSNP; and ii) SNPs not in dbSNP. I also only extracted variants of 

the subclasses DM, DFP and FP. The command formats for each step are: 

 

1. SNPs in dbSNP: 

Select “chrom”, “pos”, “dbSNP_id”, “ref”, “alt”, “tag”, “id”, “gene”, “disease” from 

hgmd_vcf INNER JOIN prom ON (id = acc_num) LEFT JOIN dbSNP ON (id = 

hgmd_acc) where hgmd_acc IS NULL and (tag = “DM” or tag = “DFP” or tag = 

“FP”); 

 

2. SNPs not in dbSNP: 

Select “chrom”, “pos”, “dbSNP_id”, “ref”, “alt”, “tag”, “id”, “gene”, “disease” from 

hgmd_vcf INNER JOIN prom ON (id  = acc_num) INNER JOIN dbSNP ON (id = 

hgmd_acc) where (tag = “DM” or tag = “DFP” or tag = “FP”); 

 

These commands provided me with the columns I needed for a total of 1,959 SNPs 

(1,332 in dbSNP, 627 not in dbSNP). After removing 62 duplicates, this dataset 

contained 1,897 variants. 

 

A subset of these SNPs overlapped with my RAVEN variants (70 variants). I therefore 

removed these variants from the HGMD dataset before using it. This left 1,827 variants 

in the positive dataset (644 DM variants, 686 DFP variants and 497 FP variants). This 

dataset will be referred to as the ‘ALL’ dataset from this point onward. 
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The ALL SNPs were partitioned into a training/validation set (1,440 variants) and a hold 

out test dataset (387 variants). I constructed two additional training/validation/test 

datasets by further subdividing the HGMD dataset by variant subclass. These two 

datasets consisted of i) DM variants only (the DM dataset) and ii) DFP variants only (the 

DFP dataset). The DM and DFP datasets were split into tripartite subsets as for the ALL 

HGMD dataset; the DM training/validation set containing 512 SNPs; and the DFP 

training/validation set containing 534 SNPs. 

 

3.2.3.2 ENCODE variants 

The 44 ENCODE pilot project regions contain between them 170,892 variants from the 

1000 Genomes EUR population (see Chapter 2 for more details). These variants were 

divided into two sets: a training/validation set, equal in size to the positive SNP set (i.e. 

1,440 SNPs for the ALL dataset; 512 for the DM dataset; and 534 for the DFP dataset) 

and a background hold out test dataset (169,452 SNPs). All of the SNPs present in the 

training/validation datasets were excluded from the test dataset.   

 

3.2.3.3 HBB dataset 

The HBB variants described in Chapter 2 were used as an additional positive spiking set. 

The HBB non-coding variants were compared to the HGMD dataset and any SNPs 

present in both datasets were removed from the HBB dataset. This left me with a HBB 

non-coding dataset of 27 variants. 

 

3.2.3.4 RAVEN dataset 

The RAVEN variants from Chapter 2 were also used to assess the ability of the new 

models to prioritise regulatory variants. All 95 RAVEN variants were used. 
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3.2.4 Multivariable regression 
Multivariable regression was used for three separate tasks:  

i) To correlate the 15 chromatin states with the training data to identify the most 

informative chromatin state ranking to include in the model.  

ii) To compare the predictive power of the old versions of the annotation features 

(used in Chapter 2) versus the new versions (see Methods 3.2.2).  

iii) To guide the parameter boundaries for the grid search algorithm used for 

parameter optimisation. 

All three tasks were performed using the R function glm(). The following commands 

were used to prepare the data for the glm function: 

Loading the test datasets: 

HGMD_training_1440 <- read.table("HGMD_1440_training.18.12.13.txt", header=T, 

sep = "\t", stringsAsFactors = FALSE, na = "NA") 

Cross_Val_1440_Null <- read.table("cross_val_encode_1440_Training.18.12.13.txt", 

header=T, sep = "\t", stringsAsFactors = FALSE, na = "NA") 

 

Merging the positive and negative variants into one dataset: 

HGMD_All_T_F <- merge(HGMD_training_1440, Cross_Val_1440_Null,  all= TRUE) 

 

Setting the binary classifier (functional/non-functional): 

TrPos_File <- "4.12.13_hgmd_prom.final.bed" 

TrPos<-read.table(TrPos_File,header=T, sep = "\t", stringsAsFactors = FALSE, na = 

".") 

positives <- TrPos$Pos 

HGMD_All_T_F$Score <- 0 

HGMD_All_T_F$Score[HGMD_All_T_F$Pos %in% positives] = 1 
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3.2.4.1 Regression of the chromatin states on the full 
training/validation dataset 

Multivariable regression was performed on the chromatin states for all nine of the Ernst 

cell lines: GM12878, H1-hESC, K562, HepG2, HUVEC, HMEC, HSMM, NHEK, and 

NHLF (Table 3.3). 

 

HGMD_ALL_E_Gm12878 <- glm (y~ 

HGMD_All_T_F$wgEncodeBroadHmmGm12878HMM+0, family = binomial(link = 

"logit")) 

summary(HGMD_ALL_E_Gm12878) 

HGMD_ALL_E_Gm12878_summary <- summary(HGMD_ALL_E_Gm12878)$coef 

write.table(HGMD_ALL_E_Gm12878_summary, file = 

"Multivariable_regression_HGMD_ALL_Ernst_Gm12878.12.3.14.txt", append = 

FALSE, quote = TRUE, sep = "\t",eol = "\n", na = "NA", dec = ".", row.names = TRUE, 

col.names = TRUE, qmethod = c("escape", "double"),fileEncoding = "") 

 

3.2.4.2 Regression of the new and old versions of the annotation 
features on the full training/validation dataset 

Regression was performed on the normalised ranks of each individual feature using a 

command such as this one used for MAF: 

 

HGMD_ALL_MAF <- glm (y~ HGMD_All_T_F$MAF.rank_normalised, family = 

binomial(link = "logit")) 

summary(HGMD_ALL_MAF) 
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3.2.4.3 Regression of feature annotations on the full training/validation 
dataset to guide parameter boundaries for grid search algorithm 

A multivariable regression analysis was performed on the combined feature set to aid the 

choice of upper and lower weighting limits for parameter optimisation, using the 

following commands: 

 

#  Position + MAF + DNAse f + Cons + DNase c + Ernst + enhancers + TFBSs: 

y <- HGMD_All_T_F$Score 

HGMD_all_new_rank_tfbs <- glm (y~  HGMD_All_T_F$F_Position.rank + 

HGMD_All_T_F$MAF.rank_normalised + HGMD_All_T_F$DNase.foot.av.rank + 

HGMD_All_T_F$Conservation.rank +  HGMD_All_T_F$E.DNase.av.rank + 

HGMD_All_T_F$Ernst.Av.new.rank + HGMD_All_T_F$Enhancers.rank + 

HGMD_All_T_F$TFBSs.rank,  family = binomial(link = "logit")) 

summary(HGMD_all_new_rank_tfbs) 

HGMD_all_new_rank_tfbs_summary <- summary(HGMD_all_new_rank_tfbs)$coef 

write.table(HGMD_all_new_rank_tfbs_summary, file = 

"Multivariable_regression_HGMD_all_new_rank_TFBSs_summary.5.5.14.txt", append 

= FALSE, quote = TRUE, sep = "\t",eol = "\n", na = "NA", dec = ".", row.names = 

TRUE, col.names = TRUE, qmethod = c("escape", "double"),fileEncoding = "") 

 

 

3.2.5 Ten-fold cross-validation 
The known functional and pathogenic variants from the HGMD database (ALL dataset) 

were combined with the background ENCODE variants into a single training/validation 

dataset of 2,880 SNPs and a test dataset consisting of 169,839 SNPs. 

 

The training/validation dataset was further randomly subdivided into ten folds for cross-

validation. Pseudo-code for the R code that was implemented for parameter optimisation 

and ten-fold cross-validation can be seen in Figure 3.2. Parameter optimisation was 
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performed using a modified grid search algorithm. This method incorporated 

multivariable regression on the full training/validation dataset to guide the parameter 

boundaries of the grid search algorithm. This was similarly performed for the DM and 

DFP datasets.   

 

Parameter weightings were permuted using brute force permutation of all possible 

positive integer parameter values. In total over the three datasets, almost half a million 

permutations of weighting models were assessed using ten-fold cross-validation (n = 

450,000). 

 

Performance was measured using ROC curves and AUCs using the R package ROCR 

(Sing et al., 2005). The objective parameter optimised for weighting parameter selection 

was maximum AUC, with a threshold acceptable performance error of <0.005 

(calculated as the difference between the mean training and validation AUCs: ΔAUC). 

Three models were developed from this analysis, one for each dataset: ‘ALL’, ‘DM’ and 

‘DFP’. For each of these three datasets, the best model was applied to the hold out test 

dataset (similarly divided by variant class into ALL, DM and DFP test datasets). 

Generalisation errors were calculated as the difference between the test AUC and the 

mean training/validation AUC for that weighting model. 
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Figure 3.2 Pseudo code for parameter optimisation and ten-fold cross-validation 

 

 

 

 

3.2.6 Building the R code into an R package 

3.2.6.1 package-skeleton 

To build a new R package I performed the following actions in R: 

1. I cleared workspace so as to have a clean R session:  

rm(list = ls()) 
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2. I loaded each of the package functions and data objects one by one.  

 

3. To build the package, I ran the command:  

package.skeleton (“package_name”)  

 

4. I edited the package files as follows: 

i) I filled in the DESCRIPTION file and manual pages (~/package/man) 

ii) I edited the NAMESPACE file to contain look-up information for 

functions and objects within the package. 

iii) I wrote a user manual explaining how each part of the R package works, 

containing real working examples (see Appendix B). 

 

5. Lastly, I built, installed and checked the package using the commands: 

R CMD build package_name 

R CMD install package_name.0.99.tar.gz 

R CMD check package_name.0.99.tar.gz 

 

 

 

3.2.6.2 Sweave vignette  

I used R studio to write the sweave vignette for my R package (see Appendix C). 
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3.3 Results 

3.3.1 Construction of training, validation and test datasets 
I selected functional non-coding variants with experimentally verified phenotypic 

impacts from the HGMD PROM database of regulatory variants implicated in disease. 

This data was then divided into three datasets: DM (known disease causing SNPs: 644 

SNPs); DFP (disease-associated variants with functional evidence: 686 SNPs); and ALL 

(all DM, DFP and FP HGMD PROM SNPs: 1,827 SNPs). For each of these three 

datasets, an equal number of background variants was obtained by randomly sampling 

the 1000 Genomes EUR variants located within the ENCODE pilot project regions. Each 

dataset was divided into a training/validation dataset (ALL: 1,440 known functional 

variants and 1,440 background variants; DM: 512 known and 512 background variants; 

and DFP: 534 known and 534 background variants) and a hold out test dataset (387, 132, 

152 known variants (ALL, DM and DFP respectively); and 169,452 background 

variants).  

 

3.3.2 Changes to the feature annotations included in SuRFR  
The ENCODE project and other genomics projects are not static data sources, but are 

constantly being improved (due to technological advances and updated protocols) and 

expanded to contain new and extended data (e.g. additional cell lines). It was, therefore, 

important to continue checking these resources regularly to keep abreast of new 

developments and update the annotation data used by SuRFR. Several updates of 

features used by SuRFR, as well as some additional annotation features, came to my 

attention during my second year. This chapter describes the evaluation of the impact of 

these features on model performance. In addition, this chapter outlines the testing and 

optimisation of the prioritisation model using cross-validation and reports the 

performance of SuRFR on a variety of independent datasets. 

 

Some of the features described in Chapter 2 were not incorporated in the model in the 

most objective or systematic manner. In particular, the chromatin states from Ernst et al. 

(2011) were integrated into the model without taking into account differences in 

predictive power for the different chromatin states. For example, the promoter, enhancer, 
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insulator and transcription chromatin state classes and subclasses were all treated 

equally, whereas the literature suggests that certain chromatin states are more likely to 

overlap some regulatory elements more often than others (Ernst et al, 2011). In addition, 

the rank orders of the Position ranking had been chosen using out-dated data. 

Furthermore, the conservation score had not been tested systematically to measure the 

contribution of GERP and PhastCons individually. I, therefore, also re-evaluated the 

impact of these features on model performance. 

 

3.3.2.1 Updated annotation sources 

Minor Allele Frequency (MAF): A new release of the 1000 Genomes MAFs, based 

on data from 2,504 individuals (compared to 1,092 in the last release), became available.  

This data was used to rank SNPs, on the basis of MAF, from most rare to most common. 

 

DNase HS clusters: This data contains information on DNase HSs assayed across 125 

cell lines, a large increase on the previous version, which was based on 74 cell lines. I 

performed multivariable regression on the full training and validation dataset, comparing 

these data and the DNase HS data from the original model (Chapter 2). Table 3.5 shows 

that the updated DNase HS data has a higher ß coefficient than the old data, therefore 

incorporation of this data would better enable SuRFR to discriminate between functional 

and background variants. 

 

3.3.2.2 New annotation data sources 

DNase Footprints: Genomic DNase I footprinting data demarcate sequence-specific 

transcription factors binding sites within regulatory regions, at nucleotide resolution. 

This data, collected as part of the ENCODE project, consists of high confidence DNase I 

footprints from 41 cell types (45.1 million footprints in total) (Neph et al., 2012). By 

combining this data, in addition to data on DNase HS clusters, I anticipated improving 

the ability of SuRFR to better prioritise regulatory variants by identifying those that 

overlap DNA elements bound by regulatory factors. Regression of this data on the full 
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training and validation dataset showed that the DNase footprints dataset is an 

informative annotation for differentiating between regulatory and background variants in 

this dataset (with a β coefficient of 2.62; see Table 3.5). 

 

FANTOM5 CAGE data: The FANTOM5 consortium published new data early in 

2014, comprehensively mapping TSS and their promoters across 975 human samples 

(573 primary cells, 152 tissues and 250 cell lines)(Consortium et al., 2014). I 

hypothesised that inclusion of this data would lead to more accurate promoter 

identification, thereby improving the accuracy of my position ranking.  

 

Transcribed Enhancers: A by-product of the FANTOM5 project was the 

identification of CAGE defined transcribed enhancers (Andersson et al., 2014). These 

were shown to be more accurate predictors of real enhancers than ENCODE data. I 

therefore tested this feature’s ability to predict variant functionality.  

 

TFBSs: I included the wgEncodeRegTfbsClusteredV3 dataset from the UCSC Genome 

Browser in the parameter optimisation. The highest peak signal for any transcription 

factor (TF) across all cell lines was used to rank SNPs.  

 

3.3.2.3 Optimisation of the remaining annotation features 

In addition to updating the feature annotation data for MAF and DNase HS and 

incorporating several new features into the model, I also re-evaluated how the remaining 

features (position, chromatin states and conservation) contributed to the performance of 

SuRFR. 

 

Position rank:  

Hindorff et al. (2009) and Schork at al. (2013) suggested that disease associated 

variants are more likely to occur in particular position categories, such as enhancer 

elements and promoters, more often than others ((Hindorff et al., 2009); (Schork et 
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al., 2013)). Using the genomic enrichment results for disease variants from both 

these sources, I re-ordered the ranking of the position categories (see Table 3.2). I 

further modified this annotation feature by incorporating the FANTOM5 TSS data. 

 

Old data β coeff p-value  New data β coeff p-value 

Ernst 2.3776 <2e-16  New Ernst 4.458 <2e-16 

 DNase_c V2 2.406 <2e-16 DNase-c V1 2.2516 <2e-16 

 DNase_F 2.6197 <2e-16 

Position 7.888 <2e-16  New Position  11.6197 <2e-16 

Table 3.5 Comparison of the old versus new feature annotations for the Chromatin states 
(Ernst), DNase HS data (DNase HS clusters: DNase_c; and DNase footprints: DNase_F). 
Regression was performed on the normalised ranks of each annotation feature, allowing the β 
coefficients to be directly compared. 

 

Chromatin states: 

Multivariable logistic regression on the full training/validation dataset was used to assess 

the relationship between each of the 15 chromatin states and variant class; the ß 

coefficients indicating the relative correlation of each annotation category to the 

classifier (i.e. positive or background variant).  Table 3.6 shows the average ß 

coefficients for each chromatin state across the nine cell lines GM12878; H1-hESC; 

K562; HepG2; HUVEC; HMEC; HSMM; NHEK; and NHLF. 

 

The average β coefficients showed pronounced grouping of “like” categories (promoter 

with promoter, weak enhancer with weak enhancer, etc.) of chromatin states with similar 

β coefficients. Using this information I collapsed these similar categories into 10 classes 

of chromatin states. The two ‘Repetitive/CNV’ categories had high standard error rates 

and noise in the data. This class was positioned in the middle of the ranking, between 

classes that correlated positively with the data classes and those that had a negative 
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correlation. Using these data I defined the rank order for the chromatin state classes, 

shown in Table 3.4. 

 

 

Chromatin State 

Average β 

coefficient across 

nine cell lines Std. Error Pr(>|z|) 

15_Repetitive/CNV 13.399 322.129 0.966 

1_Active_Promoter 3.551 0.353 0.000 

2_Weak_Promoter 2.127 0.338 0.000 

3_Poised_Promoter 2.565 0.558 0.006 

6_Weak_Enhancer 1.099 0.278 0.008 

4_Strong_Enhancer 1.500 0.389 0.025 

12_Repressed 0.404 0.142 0.029 

9_Txn_Transition -0.051 0.401 0.729 

8_Insulator 0.030 0.412 0.585 

10_Txn_Elongation -0.363 0.191 0.140 

7_Weak_Enhancer -0.072 0.244 0.541 

11_Weak_Txn -0.532 0.110 0.000 

13_Heterochrom/lo -0.659 0.057 0.000 

5_Strong_Enhancer 0.010 0.410 0.280 

14_Repetitive/CNV -4.811 246.088 0.867 

 

Table 3.6 Multivariable regression ß coefficients (column 2), standard error rates (column 3) 
and p value (column 4) for each of the 15 chromatin states averaged across nine cell lines. 
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Conservation: 

I next compared the relative contribution of each of the two conservation methods, 

GERP and PhastCons, and their combined contribution, to the model’s ability to 

prioritise functional over non-functional variants. I did this by performing multivariable 

regression on the full HGMD/ENCODE training/validation dataset, to see how well each 

predictor could differentiate SNPs on the binary classifier (functional/non-functional). 

Table 3.7 shows the ß coefficient for the combined conservation rank (GERP + 

PhastCons) and Table 3.8 shows the ß coefficients for each tool individually. The 

combined conservation score does not correlate well with the classification of functional 

versus non-functional (p>0.5). However, GERP is positively correlated with the 

classifier, with a ß coefficient of 0.5709 (p-value < 2.78e-15), while PhastCons has a 

strong negative correlation with the classifier, with a ß coefficient of -1.6903 (p value < 

2.38e-9). This indicated that using GERP on its own would have more power than 

combining GERP and PhastCons together, and that PhastCons is a poor predictor of 

single SNP function. 

 

 

 Estimate Std. Error z value Pr(>|z|) 

(intercept) -0.05663 0.04784 -1.184 0.2365 

HGMD_ALL$Conservation.rank 0.20567 0.10895 1.888 0.0591 

Table 3.7 Multivariable regression output for the combined conservation rank (GERP + 
PhastCons) on the full training/validation dataset. 

 

 

 Estimate Std. Error z value Pr(>|z|)  

(intercept) -6.16035 0.27235 -22.619 < 2e-16  *** 

HGMD_ALL$GERP 0.57093 0.07227 7.900 2.78E-15  *** 

HGMD_ALL$PhastCons -1.69035 0.28320 -5.969 2.39E-09  *** 

Table 3.8 Multivariable regression ß coefficients on the full training/validation for the two 
conservation methods individually: GERP and PhastCons. 
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3.3.2.4 Multivariable regression to select parameter boundaries 

Multivariable regression on the training/validation dataset was used to define the upper 

and lower parameter boundaries for the modified grid search algorithm used for the 

parameter optimisation step. This was performed for each of the three training/validation 

datasets: ALL, DM and DFP (Tables 3.9, 3.10 and 3.11 respectively). Using these ß 

coefficients I chose positive, whole integer parameter ranges for each of the annotation 

categories for the parameter optimisation of SuRFR. The parameter boundaries used for 

each of the three datasets are shown in Table 3.12. 

 

 

 

ALL training/validation dataset β coefficient 

Std. 

Error z value Pr(>|z|) 

(Intercept) -4.7960 0.2198 -21.8243 0.0000 

HGMD_ALL$F_Position.rank 6.3699 0.2763 23.0509 0.0000 

HGMD_ALL$DAF.rank_normalised -1.3615 0.1732 -7.8610 0.0000 

HGMD_ALL$DNase.foot.av.rank 0.7172 0.2431 2.9504 0.0032 

HGMD_ALL$Conservation.rank 0.6396 0.1648 3.8804 0.0001 

HGMD_ALL$E.DNase.av.rank -0.0496 0.2066 -0.2402 0.8102 

HGMD_ALL$Ernst.Av.new.rank 1.9758 0.2798 7.0606 0.0000 

HGMD_ALL$Enhancers.rank -0.1061 0.6572 -0.1614 0.8718 

HGMD_ALL$TFBSs.rank 1.1599 0.2031 5.7115 0.0000 

Table 3.9 Multivariable regression ß coefficients, standard errors, z values and p-values for the 
ALL training/validation data.  
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DM training/validation dataset 

β 

coefficient Std. Error z value Pr(>|z|) 

(Intercept) -11.8927 1.2509 -9.5074 0.0000 

HGMD_DM$F_Position.rank 7.5632 0.7236 10.4527 0.0000 

HGMD_DM$DAF.rank_normalised 5.0458 0.6299 8.0101 0.0000 

HGMD_DM$DNase.foot.av.rank 0.1967 0.6003 0.3277 0.7431 

HGMD_DM$Conservation.rank 2.4449 0.4928 4.9612 0.0000 

HGMD_DM$E.DNase.av.rank -0.3372 0.5647 -0.5971 0.5504 

HGMD_DM$Ernst.Av.new.rank 2.7075 0.7680 3.5253 0.0004 

HGMD_DM$Enhancers.rank -12.5078 738.4351 -0.0169 0.9865 

HGMD_DM$TFBSs.rank 2.0049 0.5556 3.6083 0.0003 

Table 3.10 Multivariable regression ß coefficients, standard errors, z values and p-values for the 
DM training/validation data.  

 

 

DFP training/validation dataset β coefficient Std. Error z value Pr(>|z|) 

(Intercept) -2.9183 0.3479 -8.3891 0.0000 

HGMD_DFP$F_Position.rank 5.6870 0.4372 13.0080 0.0000 

HGMD_DFP$DAF.rank_normalised -3.5053 0.3330 -10.5260 0.0000 

HGMD_DFP$DNase.foot.av.rank 1.1763 0.3951 2.9772 0.0029 

HGMD_DFP$Conservation.rank 0.0569 0.2530 0.2249 0.8220 

HGMD_DFP$E.DNase.av.rank 0.2229 0.3306 0.6743 0.5001 

HGMD_DFP$Ernst.Av.new.rank 1.6903 0.4512 3.7462 0.0002 

HGMD_DFP$Enhancers.rank 1.4698 1.3626 1.0787 0.2807 

HGMD_DFP$TFBSs.rank 0.5706 0.3302 1.7279 0.0840 

Table 3.11 Multivariable regression ß coefficients, standard errors, z values and p-values for the 
DFP training/validation data. 
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Model MAF Conservation 

Chromatin 

States 

DNase 

HS Position 

DNase 

Footprints Enhancers TFBSs 

ALL 0-2 0-3 0-8 0-1 0-16 0-3 0-1 0-5 

DM 0-13 0-7 0-8 0-1 0-18 0-2 0-1 0-6 

DFP 0-1 0-1 0-6 0-1 0-15 0-6 0-6 0-3 

Table 3.12 The upper and lower boundaries of the weighting parameters chosen to be tested 
using the grid search algorithm. Column one describes the three models (ALL, DM and DFP) 
and each subsequent column shows the range of integer parameters used for the model 
parameter optimisation. 

 

 

3.3.3 Ten-fold cross-validation 
The ALL, DM and DFP training/validation sets were further partitioned into ten equal 

folds for ten-fold cross-validation, ensuring no overlap existed between any of the 

training/validation datasets and the hold out test datasets. I performed weighting model 

parameter optimisation and ten-fold cross-validation on each of these three datasets and 

assessed the performance and generalisability of SuRFR using ROC curves and AUC 

statistics. 

 

3.3.3.1 Training and validation (AUCs, errors, specificity and 
sensitivity) 

The optimum weighting model for each dataset was chosen based on the highest average 

training/validation AUC with a performance error of less than 0.005. The AUCs for the 

top 1% of weighting models were very similar, differing by less than 0.003 (∆AUC 

ALL: 0.0026; ∆AUC DM: 0.0021; ∆AUC DFP: 0.0011), suggesting a smooth parameter 

space with few fine-grained local optima. Performance errors for each model (ALL, DM 

and DFP) were calculated as the difference between the average training and validation 

AUCs. The AUCs and error rates for each model are shown in Table 3.13. Each model 
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performed well on the training/validation data, with AUCs ranging from 0.908 to 0.976 

and performance errors of less than 0.004, indicating that each model can successfully 

prioritise functional over background variants with high specificity and sensitivity. 

 

 

Model 

Training 

AUC 

Validation 

AUC 

TEST 

AUC 

Performance 

error 

Generalisation 

error 

ALL 0.944 0.944 0.909 0.000 0.035 

DM 0.976 0.976 0.956 0.000 0.020 

DFP 0.912 0.908 0.897 0.004 0.013 

Table 3.13 Average training, validation and test AUCs for the three SuRFR models run on the 
cross-validation datasets. 

 

3.3.3.2 Hold out test dataset 

The top weighting models for each of the three data classes ALL, DM and DFP, were 

next run on the hold out test dataset to establish SuRFR’s generalisation error. These 

data are shown in Table 3.13 and Figure 3.3. Again, each of the three models performed 

with high specificity and sensitivity, producing AUCs of 0.897 to 0.956 and 

generalisation errors less than 0.035. This suggests that all models are likely to perform 

equally well on novel data. 

 

 

3.3.4 Characterisation of regulatory variant classes 
The best weighting models for each of the three variant classes are shown in Table 3.14. 

This data shows that each of the three variant classes is best prioritised by a different 

combination of genomic annotations. The most informative annotation category across 

all three variant classes was position (SNP position relative to genes). MAF was a very 

useful annotation for the prioritisation of DM variants over background, but was not at 

all useful for prioritising the ALL or DFP classes of regulatory variants. In contrast, 
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Figure 3.3 ROC curves and AUCs for the three SuRFR models (ALL: green; DM: blue; and 
DFP: gold) run on the hold-out test dataset. Y-axis represents the average true positive rate; the 
x-axis represents the average false positive rate and the grey dotted line represents random 
chance. 
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conservation was a relatively uninformative annotation: it provided only a minor 

contribution to SuRFR’s ability to prioritise the DM variants, played an even smaller 

role in the prioritisation of the ALL variants and had no role in the prioritisation of the 

DFP variants. 

 

The redefined chromatin states had a variable impact on the ability of SuRFR to 

distinguish functional from non-functional variants, most effectively prioritising the DM 

variants, closely followed by DFP and being least effective at prioritising the ALL 

category of variant. In contrast, the TFBS annotation consistently added to the correct 

ranking of true variants in all three variant classes. 

Multivariable regression suggested that DNase HS and DNase footprints are highly 

correlated features, which may suggest that they provide similar input to the 

prioritisation of known regulatory variants (Table 3.5). However, when these two 

features were incorporated in the same model, the DNase footprints were more highly 

correlated with correct prioritisation of known variants than the DNase HS clusters 

(Tables 3.9, 3.10 and 3.11). This was reflected in the subsequent weightings assigned to 

the two annotation categories.  

 

 
Table 3.14 Parameter weightings for best performing weighting model for each variant class 
from the ten-fold cross-validation analysis. The first column lists the three weighting models 
(ALL, DM and DFP). Each subsequent column represents a different annotation class. The 
values represent the weightings of each annotation class defined in each weighting model. 

 

Model MAF Conservation 

Chromatin 

States 

DNase 

HS Position 

DNase 

Footprints Enhancers TFBSs 

ALL 0 1 1 0 8 0 1 3 

DM 12 2 6 1 15 1 0 5 

DFP 0 0 3 1 15 3 5 2 
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3.3.5 Additional test datasets: HBB and RAVEN 
As a further test of the generalisability of SuRFR, I tested the three models on the HBB 

and RAVEN datasets presented in Chapter 2. The HBB (27 non-coding SNPs not present 

in the HGMD dataset) and RAVEN (95 regulatory variants not in the HGMD dataset) 

true positive SNPs were spiked into the 44 ENCODE pilot regions (minus the 

training/validation SNPs). Figure 3.4 shows the ROC curves and AUCs for these two 

analyses.  

 

All three models prioritised the non-coding HBB variants with very high specificity and 

sensitivity; the DM model performed the best, with an AUC of 0.989, followed by the 

ALL (0.981) and DFP models (0.956). More variation existed in the ability of SuRFR to 

prioritise the RAVEN variants over the background ENCODE variants; the ALL and 

DFP classes generated AUCs of 0.921 and 0.937 respectively, while the DM model 

achieved an AUC of 0.797. 

 

 

3.3.6 Background variants as known functional variants 
The RAVEN background variant dataset contains 3,856 variants all located within 10kb 

of genes conserved between mice and humans (Andersen et al., 2008). As a negative 

control I performed a bootstrapping analysis, running SuRFR on 100 randomly sampled 

subsets of the RAVEN background variants against the remaining background variants. 

Each subset contained 95 variants, each of which was defined as a “known” (positive) 

variant; the remaining 3,761 background variants being classed as background (control) 

variants. The average AUC calculated across the 100 bootstrapping sets was 0.50 (Figure 

3.5), indicating that the background variants were not prioritised any better than would 

be expected by chance. In contrast, the 95 “real” true positive RAVEN variants spiked 

into the same background dataset produced AUCs of 0.83, 0.845 and 0.842 for the ALL, 

DM and DFP models respectively. This demonstrates that SuRFR is capable of 

prioritising functional variants better than non-functional variants. 
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Figure 3.4 Mean ROC curves (y-axis: True positive rate; x-axis: False positive rate) and AUCs 
for the three SuRFR models (ALL (green) DM (blue) and DFP (gold)) run on: a) HBB non-
coding pathogenic and b) RAVEN non-coding regulatory datasets spiked into the ENCODE 
pilot projact background dataset. The dotted grey line indicates random chance. 
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Figure 3.5 ROC curves and AUCs for the three SuRFR models (ALL, DM and DFP) run on i) 
100 background datasets classed as functional and ii) the true functional variants run against 
the background dataset. These results show that SuRFR does not rank the background variants 
any better than expected by chance, supporting earlier results that showed SuRFR can 
prioritise functional over background variants.   
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3.3.7 R package details 
Using the R function package.skeleton, I converted my R code into an R package, 

SuRFR. The SuRFR R package is available from: http://www.cgem.ed.ac.uk/resources/ 

 

In addition, I wrote a user manual and a sweave vignette for this R package. The user 

manual can be found in Appendix B while the sweave vignette can be found in 

Appendix C. 

 

The data presented in this chapter (and Chapter 4) were published by Genome Medicine 

in October 2014 (Ryan et al., 2014) (see Appendix D). 
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3.4 Summary and Discussion 

3.4.1 Summary of Results 
The aim of this chapter was to improve the model I developed in Chapter 2. This was 

achieved by implementing both a modified model framework and a more structured 

model assessment protocol. The new model framework was based on a rank-of-ranks, 

removing the need for arbitrary thresholds and treating each annotation category equally, 

thereby removing any bias and providing consistency across the annotations. The 

improved model assessment protocol combined a modified grid search algorithm and 

ten-fold cross validation. This protocol made use of a benchmarking dataset consisting 

of regulatory variants from HGMD and background variants from the 1000 Genomes 

EUR population located within the ENCODE pilot project regions. Performance was 

measured using ROC curves and AUCs. Three models were developed from this 

analysis: the ALL, DM and DFP models. The results of the cross-validation showed that 

each model was able to prioritise their corresponding class of regulatory variants above 

the background variants with high sensitivity and specificity (AUCs between 0.897 and 

0.976: see Table 3.12 and Figure 3.4) and low performance and generalisation errors 

(Table 3.12). These results suggest that SuRFR does not suffer from over-fitting and is 

likely to perform equally well on novel data.  

 

3.4.2 Changes to feature annotation data 
Projects such as ENCODE are continuing to provide the scientific community with 

genomic annotation data, from TFBSs, to RNA assays and a range of DNA and histone 

modifications, across an ever increasing number of cell lines. Genomic annotation data is 

therefore not static but constantly being updated and expanded. As such it was important 

to update and expand the annotations used by SuRFR to prioritise putative functional 

variants.  

 

Table 3.1 lists the annotation features used in this modified version of SuRFR. These 

features can be divided into three classes: i) annotation features from the original model 

for which new releases have become available (making use of larger numbers of cell 

lines and modified experimental design); ii) new annotation features (features that had 
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not been released at the time of the initial build of SuRFR); and iii) annotations from the 

original model of SuRFR but incorporated differently (optimised integration of related 

classes). 

 

By including updated versions of the annotations MAF and DNase HS clusters, I 

expected to improve the accuracy of my method, as the updated annotation data should 

be more accurate. Similarly, I hoped to improve accuracy by including additional 

features that I hypothesised would improve the prioritisation of functional variants over 

background variants. The new annotations I chose to include were DNase footprints, 

FANTOM5 CAGE defined promoters, FANTOM CAGE defined transcribed enhancers 

and TFBSs. Lastly, by changing the way both the position rank and chromatin state rank 

were calculated, using a more formalised approach (multivariable regression), I intended 

to optimise the information content of these features. 

 

 

 

Figure 3.6 DNase HS versus DNase footprint. Figure from (Vernot et al., 2012). 
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DNase HS data (clusters and footprints): While DNase HSs indicate regions of open 

chromatin, DNase footprints more specifically reveal single protein-binding events 

(Madrigal and Krajewski, 2012), as illustrated by Figure 3.6. I hoped, by combining 

DNase footprinting data with DNase HS data, to improve the specificity of SuRFR, as 

regions where the two features overlap are potentially more likely to mark true binding 

events than either feature on its own (Figure 3.6). 

 

I hypothesised two scenarios for these data: i) that there would be a combinatorial effect, 

each feature aiding the other and adding specificity to the prioritisation of regulatory 

variants; or ii) that the footprints, being more specific elements, demarking sequences of 

regulatory factor occupancy on a nucleotide level (in comparison to DNase HS clusters, 

which mark regions of open chromatin), would provide greater accuracy than the DNase 

HS clusters and would therefore remove the need for the DNase HS cluster feature. The 

results from the cross validation analysis surprised me. Although scenario i) appears to 

be in effect for the DM class of regulatory variants and scenario ii) is true for the DFP 

class, neither explained why the ALL class of variants required neither DNase HS cluster 

data or the DNase footprinting data. An explanation for this could be that the ALL model 

placed greater emphasis on the TFBS annotation data than any other feature, bar 

position. As the TFBS annotation and DNase HS features all provide information on the 

likelihood of a variant overlapping a protein binding domain, there is a certain amount of 

redundancy between these features, thus explaining the lack of DNase HS features in the 

ALL model. In summary, although these two features provide largely overlapping data, 

the different variant models required different weightings of these features: for the DM 

class of variants, each of these features contributes equally to the correct prioritisation of 

functional variants; while the DFP model relies more heavily on the DNase footprint 

data; and the ALL model required neither feature.  

 

Transcribed enhancers: the FANTOM5 project produced an atlas of active, 

transcribed, enhancer regions. These regions were defined by bidirectional CAGE tags, 

assayed across a range of samples, including 432 primary cells, 135 tissues, and 241 cell 

lines (Andersson et al., 2014). Using in vitro enhancer assays in HeLa cells, Andersson 
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et al. (2014) were able to show that bidirectional capped RNAs were a more accurate 

signature of active enhancers than enhancers predicted by DNase HSs or ‘strong 

enhancer’ chromatin states. This database of over 43,000 enhancer candidates was 

therefore as good a candidate annotation to test as the DNase HSs and the chromatin 

states. The cross validation analysis supported the inclusion of this feature in both the 

ALL and, particularly, the DFP model. This was in contrast to the results of the 

multivariable regression analysis (Tables 3.9, 3.10 and 3.11), which were inconclusive. 

However, I suggest that this issue derives from the fact that both the enhancer dataset 

and training/validation dataset are small. I propose this issue is one of data acquisition 

rather than a lack of correlation between this feature and regulatory effect. Larger 

numbers of known true positives are required to improve this analysis. In particular, 

there is an acquisition bias in most known regulatory variant datasets towards variants 

proximal to genes, specifically within promoter regions. This bias further reduces the 

likelihood of training data containing sufficient numbers of enhancer variants for us to 

expect a high correlation between regulatory variants and enhancer features. This feature 

is therefore an important one to retain in the SuRFR models, allowing us to detect more 

enhancer variants and reduce the bias away from promoter variants in any future 

validated regulatory datasets. 

 

TFBSs: TFBSs tend to be short (4-10 bp) DNA sequences that occur repeatedly across 

the genome. TFBSs are important components of the human regulatory network and 

changes to these binding sites can affect the ability of transcription factors to bind to 

them, thus having an effect on function and potentially leading to a disease phenotype. 

However, only a fraction of predicted sites are real, active regions of transcription factor 

occupancy that play a role in gene regulation (Cuellar-Partida et al., 2012). Predictive 

methods, therefore, that use pattern recognition to identify putative novel TFBSs tend to 

identify a large number of false positives, and so are inherently error prone. In contrast, 

experimental methods such as chromatin immunoprecipitation and high-throughput 

sequencing (ChIP-seq) have been used to identify regions of (true) transcription factors 

occupancy genome-wide. The ENCODE consortia performed an integrative analysis on 

161 transcription factors across 91 cell types to comprehensively map the human 

regulatory network ((Wang et al., 2012); (Gerstein et al., 2012)). These data are 
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catalogued and annotated by the Factorbook repository (Wang et al., 2013) and have 

been used to generate the annotation dataset wgEncodeRegTfbsClusteredV3. Based on 

this knowledge, I hypothesised that this dataset of ChIP-seq identified TFBSs would be 

an important feature to integrate into my prioritisation model. As expected, this 

annotation played an important role in prioritising functional regulatory variants over 

background variants, and this role was not variant class specific. In fact, after the 

position feature, this was the second most universally informative feature (tied with 

chromatin states). This result reinforces the rule that, wherever possible, experimental 

data should be used over predicted data, which is inherently error prone.  

 

Chromatin states: In Chapter 2, I split the chromatin states into a binary classification 

(1/0), either active states with the potential to affect regulation, or inactive states (such as 

heterochromatin). These scores were summed across the nine cell lines included in the 

analysis, with possible scores ranging from 0 - 9. However, this did not take into account 

differences in predictive power between the chromatin states within each class. This also 

assumed that a SNP overlapping an informative feature in nine cell lines was nine times 

as informative as a SNP overlapping an informative feature in a single cell line. This is 

very unlikely to be the case, particularly as Ernst et al. (2011), showed that regulatory 

regions vary in activity levels across cell types and enhancers show very high tissue 

specificity (Ernst et al., 2011).  

 

Subsequently, I used multivariable regression on the chromatin states to more accurately 

determine the correlation between the rankings of the chromatin states and the correct 

prioritisation of causal variants over background variants. This analysis highlighted a 

marked grouping of ‘like’ chromatin states (regulatory element classes: promoters, weak 

enhancers, strong enhancers, repetitive sequences, etc). This supported results from Ernst 

et al., showing that ‘like’ chromatin states correlated across cell lines: genomic regions 

annotated as enhancer states (strong or weak) and promoter states (active, weak and 

poised) in one cell line often remained the same class of state (enhancer or promoter) 

across the other cell lines (Ernst et al., 2011). I therefore used these results to group the 

chromatin states into ‘classes’ and ranked the SNPs on these classes (Table 3.3). The 
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updated chromatin class ranks showed a marked improvement in their correlation with 

regulatory status in the multivariable regression, with β coefficients increasing from 2.38 

for the original ranks to 4.46 for the new rank order. In addition, the new chromatin state 

feature was the second most universally informative feature (tied with the TFBS data) in 

the cross-validation analysis, further supporting the data of Ernst and Kellis. 

 

Position: Hindorff (2009) and Schork (2013) independently demonstrated enrichment of 

disease-associated variants in specific genomic locations more often than others. I, 

therefore, re-ranked the position categories to reflect the results of their analyses. 

Similarly, data from the FANTOM5 project provided more accurate data on TSSs across 

the genome, allowing more accurate mapping of SNPs to promoter and 10 kb upstream 

regions. These changes improved the accuracy of the position rank, as shown by the 

multivariable regression analysis performed on the old and new position ranks (ß 

coefficients changing from 7.89 to 11.62). Although position score had always been the 

most effective annotation in the prioritisation of functional regulatory variants over 

background, I anticipated that these changes would also improve the specificity and 

sensitivity of my model. This was indeed the case, as shown by the results of the three 

models run on the HBB and RAVEN datasets, both of which produced higher AUCs 

than the original analyses on these datasets (See section 3.4.5 for more details). 

 

Conservation: Multivariable regression was performed on the two conservation 

methods, GERP and PhastCons, and their cumulative conservation score. This allowed 

me to assess the ability of each tool, individually and combined, to predict the 

functionality of the training/validation SNPs. Surprisingly, I found that the low 

correlation of the conservation score used in the original model (from Chapter 2) was 

due to a negative correlation of the PhastCons data to the SNP functional classification, 

masking the positive correlation of GERP to this classification. Both GERP and 

PhastCons are recommended in the literature as useful tools for nucleotide sequence 

based prediction and have been shown to perform to a similar extent (Pollard et al., 

2010). This information is difficult to reconcile to the results of the regression analysis in 

section 3.3.2.3. While this incongruity is difficult to explain, the GERP regression result 
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appears to reflect previous reports of GERP’s performance while the PhastCons does 

not. This might reflect the difference in resolution of the measures used by both tools 

(GERP provides a nucleotide level measure, while PhastCons provides a multi-

nucleotide region measure). This could also suggest that the PhastCons result is an 

anomaly in the data. Additional information is needed to clarify this issue. Pending 

further investigation, I therefore chose to leave out the PhastCons annotation from all 

future analyses. 

 

Annotation weightings: The SNP rankings for each of the annotation categories were 

combined into a cumulative rank-of-ranks. Rather than arbitrarily weighting each 

annotation parameter against the others, I used a model training and assessment protocol 

to identify the most informative combination of annotation weightings, optimising their 

relative contribution to the final ranking of SNPs. Using cross-validation and a 

benchmarking dataset of non-coding disease and regulatory variants and background 

variants of unknown function provided me with the statistical framework needed for 

rigorous model assessment as well as an estimation of how well SuRFR would perform 

on novel data. 

 

 

3.4.3 Conclusions from cross-validation 
The grid search algorithm is an exhaustive search of a manually selected subset of a 

defined parameter space. This method is commonly used for hyperparameter 

optimisation, model selection, and to prevent over-fitting. In this context, a 

hyperparameter is defined as a parameter of a prior distribution, in this case, the 

weighting of an annotation ranking.  Two requirements of the grid search algorithm are: 

i) the user must manually define the search space; and ii) it must be guided by cross-

validation (Hsu, 2010). This method is designed to maximise generalisation by 

exhaustively searching for the optimum hyperparameter set (in this case, the best 

combination of annotation weightings) across the parameter space. 
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There are many practical advantage of the grid search algorithm including: i) speed, as it 

is highly parallelisable (as the parameter evaluations are independent of each other); ii) 

simple set-up, as the grid search space can be constructed by brute force permutation; iii) 

flexibility, as the parameter boundaries can be changed; and most importantly, iv) ease 

of integration into the widely used cross-validation analysis framework. This method is 

therefore well suited to the task of model selection and assessment. 

 

A disadvantage of this method is the computational cost of an exhaustive search, which 

can be outperformed by randomly chosen subsets of the parameter space (Bergstra, 

2012). To improve the performance of this method, I adapted it in two ways. Firstly, I 

performed multivariable regression on the full training/validation set to guide the 

weighting parameter boundaries, thereby reducing the grid search space. Secondly, I 

restricted the parameter values to positive integers, further reducing the number of 

weighting models to be permuted. This reduced the computational intensity of the 

analysis (the final number of permutations permuted being just under half a million; n = 

450,000). Furthermore, the performance of the modified grid search algorithm could be 

assessed by analysing the distribution of the AUCs produced during cross-validation. 

These data enabled me to evaluate how well the grid search algorithm worked in 

comparison to other machine learning approaches. 

 

The AUCs of the top 1% of weightings models (ranked on maximum AUC with a 

performance error < 0.005) were closely clustered, suggesting the models represented by 

the group all scored very similarly, arguing for smooth parameter space with few fine-

grained local optima. This suggested that the boundaries of the grid search algorithm 

were well chosen and the most informative subset of the parameter space was 

interrogated by this analysis. The low performance errors and generalisation errors from 

the ten-fold cross-validation provided additional evidence of the efficiency and success 

of this analysis, suggesting that SuRFR is able to prioritise real, functional variants over 

background variants and it will work equally well on novel data. 
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Studies have shown that no single machine learning algorithm outperforms all other 

methods on all data types and the most important factor affecting the performance and 

reliability of any machine learning algorithm is the training data used ((Tan and Gilbert, 

2003); (Vanneschi et al., 2011); (Caruana, 2006)). I am therefore confident that the 

approach I have used is as effective as any other approach and this is in large-part due to 

the rigorous benchmarking data I have used. 

 

3.4.4 Implications from characterisation of different regulatory variant 
classes 

The ten-fold cross-validation and subsequent model testing using the hold out test 

dataset showed that the three classes of functional variants (ALL, DM and DFP) were 

each best prioritised by different combinations of annotation weightings. Whether this is 

because different classes of variants are caused by combinatorial changes to genomic 

features, or because these different variant classes lead to specific combinatorial patterns 

of genomic features (i.e. cause or effect), cannot be explained by this data alone. 

However, some of these patterns intuitively make sense. For instance, the DM class of 

variants were best prioritised by parameter models that included a strong weighting for 

MAF (rare SNPs ranked higher than common SNPs). This class of variant tends to give 

rise to rare, high penetrance, Mendelian disorders, with severe phenotypes. It is therefore 

not surprising that this class are enriched for rare variants and that MAF is a good feature 

to differentiate them from background variants. Interestingly, these DM variants were 

also consistently ranked higher than the background variants for a large range of 

annotation weighting models, suggesting that these variants are associated with changes 

across many functional annotation categories and are thus identifiable by a range of 

annotation weighting models.   

 

In contrast, the DFP variants (GWAS significant SNPs with functional evidence) were 

more difficult to identify, with only a very specific subset of weighting models 

prioritising them over the background variants. This dataset consists of common SNPs 

with small effect sizes, likely to result in subtler changes to function (than the DM 

variants), which, as a result, could be more difficult to detect. This could explain why 

such a specific-combination of annotation weightings is required to correctly prioritise 
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them above the background variants. As these SNPs are from association studies, they 

are also likely to be common variants associated with lower penetrance, complex traits. 

It is unsurprising, therefore, that the DFP model does not find the prioritisation of rare 

variants to be a useful predictor. 

 

Across all three variant classes, position was found to be the most informative annotation 

feature. This is in keeping with the literature, where it has been shown that the influence 

of a regulatory site on expression drops off almost linearly with distance from the TSS in 

a 10 kb range (Manolio et al., 2009) and that disease variants are enriched in certain 

genomic positions, such as coding and promoter regions, over intronic and intergenic 

regions (Schork et al., 2013). 

 

The ranking of chromatin states (Table 3.3) was chosen based on multivariable 

regression on the full training and validation dataset, the promoter and enhancer 

chromatin state classes ranking higher than the other chromatin states. After the position 

feature, this was the second most informative annotation across all three variant classes. 

This is in keeping with the literature where it has been shown, for example, that disease 

variants are over-represented in strong enhancers (Ernst et al., 2011). 

 

The next most informative feature across the three classes was TFBSs. This is not 

surprising, as changes to TFBSs may alter the binding ability of transcription factors, 

thereby having an impacting on function and regulation. 

 

Non-coding disease associated variants are enriched in DNase HS and thus putative 

regulatory sites (Maurano et al., 2012). DNase HS clusters and DNase footprints are 

highly correlated and provide overlapping information; DNase HSs mark regions of 

open chromatin while the DNase footprints mark regions of transcription factor 

occupancy within these broader regions. Despite this, using both features in the same 

weighting model provides more information than using either feature on its own. This 

study showed both DNase HS clusters and DNase footprints to be informative markers 
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of functionality, though neither feature was weighted as strongly as I would have 

expected. An explanation for this is that DNase HSs and DNase footprints co-localise 

with many other features including enhancers, TFBSs and promoter regions, and their 

effectiveness is therefore masked by the inclusion of these other features.  

 

The remaining features had more variant-class-specific roles, being informative in the 

prioritisation of one class but not necessarily the others (as shown for MAF above). For 

instance, the transcribed enhancer class of annotation does not correlate with the DM 

variants and is only modestly informative for prioritising the ALL class above 

background. In contrast, the transcribed enhancers are highly informative for prioritising 

the DFP variant class. It is difficult to draw any conclusive hypothesis from this result, 

as the transcribed enhancer dataset is very limited (roughly 40,000 enhancers across the 

entire genome) and the p-values from the multivariable regression (Tables 3.8, 3.9, 3.10) 

were non-significant, indicating there is a lot of variability in the data. More data is 

therefore needed to validate this result. 

 

Historically, many of the tools used for discriminating functional from non-functional 

variants made use of evolution as a measure of deleteriousness (Cooper and Shendure, 

2011). Phylogenetic and constraint based approaches are designed on the premise that 

genomic sequence elements that are conserved across species, or in excess of neutral 

expectation, are likely to have important functions. Therefore, when variation is 

identified within one of these highly conserved elements, it is predicted to have an 

impact on function, potentially leading to a disease phenotype. In contrast to this view 

from the literature, this study suggests conservation is not a particularly informative 

annotation, playing a minor role in the prioritisation of DM variants, an even smaller 

contribution to the prioritisation of ALL variants and not contributing at all to the 

discrimination of DFP variants above background. This could be due to redundancy 

amongst the annotations (other annotations masking the true information content of this 

feature), or it could be highlighting the fact that these features are not as enriched in 

conserved regions as previously assumed. Indeed, some studies have shown that 

conservation is in fact a poor predictor of regulatory function (Ritchie et al., 2014) and 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 3: Model testing using cross-validation and development of an R-package 135 

there is extensive regulatory gain and loss between lineages, indicating that regulatory 

element positions fluctuate across evolution (Meader et al., 2010). 

These data suggest that many annotation categories are correlated and specific subsets of 

annotations are required to best discriminate the different functional variant classes from 

the background variants. 

 

 

3.4.5 Generalisability: performance on HBB and RAVEN 
As a further test of the generalisability of the three SuRFR models, I ran them on two 

additional datasets: the HBB non-coding dataset and the RAVEN dataset, both spiked 

into the 44 ENCODE regions. All three models performed extremely well on the HBB 

dataset, with average AUCs ranging from 0.95 to 0.989; the DM model performing the 

best. The DM model’s performance on these data is very similar to its performance on 

the cross-validation hold out test dataset, where it achieved an AUC of 0.956. This was 

not due to leakage between datasets, as SNPs present in the HGMD dataset were 

removed from the HBB dataset prior to testing. This result is unsurprising, as the HBB 

non-coding dataset contains variants that are very similar to the DM class of HGMD 

variants (disease mutations for a high penetrance Mendelian disease (beta thalassaemia)). 

The performance of the DM model is also comparable (AUCs: 0.989 vs 0.983), to the 

performance of the old model on the same data (Chapter 2, Table 2.4). This result was 

quite surprising, considering the old model was designed in an unsystematic, ad-hoc 

manner, and showed that my general premise in Chapter 2, though unjustified, was still 

good. 

 

More variation could be seen in the performances of the three models on the RAVEN 

dataset; the ALL and DFP models performing roughly equally well (with AUCs of 0.921 

and 0.937 respectively) and the DM model performing with a much lower AUC of 

0.797. These results were not unexpected as the RAVEN dataset contains variants that 

are known to be regulatory, without necessarily a disease phenotype. Therefore, these 

variants are most similar to the DFP class of variants. As such, I would not expect the 

DM model to prioritise them as well as the ALL or DFP models. All three models 
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perform much better than the old model (Chapter 2 Table 2.4, AUC: 0.745) on this 

dataset.  

 

The comparison of SuRFR’s performance on the bootstrapping RAVEN background 

dataset provided a negative control, complementing the earlier tests of SuRFR’s 

generalisability. These results showed that the positive (functional) variant datasets are 

not being ranked above background variants due to some artefact in the data, but are 

instead being truly ranked on their putative functionality.  

 

Taken together, these results suggest that the old version of the prioritisation approach 

was more similar to the DM model of SuRFR and that the parameter optimisation 

procedure and cross-validation did improve the performance and generalisability of my 

prioritisation method. Not only have I made my analysis more robust, I have improved 

the accuracy and performance of SuRFR during the process. 

 

 

3.4.6 Benefits of R package and Bioconductor 
Implementation of SuRFR as an R package has many advantages, including speed, ease 

of use and increased market penetration. Integration of SuRFR into the widely used R 

environment provides flexibility, modularity, adaptability, ease of installation and 

updates. This facilitates the incorporation of additional modules, functions and 

annotations in the future and allows it to be combined with other R packages. 

 

I have constructed the SuRFR R package in a way that allows the user to modify the 

features and parameters to suit their own requirements by specifying a custom model 

instead of the ALL, DM or DFP models. In addition, the MAF function makes use of a 

Gamma distribution to allow the optimal MAF range to be modified to suit each 

analysis. This is particularly useful for the analysis of GWAS data, which, generally 

consist of common variants, do not benefit from the default MAF setting (which 

prioritises unique and rare variants over common variants). Figure 3.7 shows three 
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examples of MAF settings: 3.7.A shows the prioritisation of unique variants above all 

others; B represents a scenario where SNPs with a MAF of 5% are prioritised highest; 

and C represents the prioritisation of variants optimised around a 20% MAF. 

 

 

Figure 3.7. Example gamma distributions for three optimum MAFs: A. 0% (unique); B. 5%; 
and C. 20%. SNPs that are ranked based on their positions on the curve. 

 

3.5 Conclusions 

Robust performance assessment requires good benchmarking data and good performance 

evaluation methodology. I have used both to build upon the work initiated in Chapter 2 

to develop a new variant prioritisation R package. I have shown that the final models and 

weightings chosen from the model assessment and parameter optimisation were able to 

prioritise known functional variants very well (with high AUCs) and also generalised 

well to novel data. This analysis also provided interesting biological insights into the 

functional annotations that correlate with different regulatory variant classes. SuRFR has 

many advantages over other methods. However, to confirm it is better than other 

comparable approaches I must do a formal comparative analysis. This will be the topic 

of Chapter 4. 
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Chapter 4: Comparison against competing approaches 

4.1 Introduction 

4.1.1 Review of SuRFR evaluation and performance  
In Chapter 3 I described how I designed and tested a new R package, SuRFR, which 

prioritises genomic variants on the basis of functional annotation. This system makes use 

of data from multiple annotation categories, ranking SNPs in each category and using a 

weighting model to combine the individual ranks into a rank-of-ranks. Three weighting 

models were trained and validated using ten-fold cross-validation: a general model 

broadly applicable to any genomics analysis (ALL); a model designed for the 

prioritisation of rare disease variants (DM); and a model for the prioritisation of complex 

disease variants (DFP). The performance of each of these models has been assessed 

using a hold out test dataset and two additional, unrelated datasets (the HBB and the 

RAVEN datasets). All three models were shown to perform with high specificity, 

sensitivity, and generalisability on the data classes for which they were designed, 

suggesting that SuRFR will accurately prioritise putative functional variants for further 

investigation. However, the usefulness of this method cannot be fully established until it 

has been compared against other related tools.  

 

During the first half of my PhD, no sufficiently comparable approach existed (see 

Chapter 2 for a summary of the tools that were available during that time); however, 

from late 2013 onwards, several new methods were published: GWAS3D (May, 2013); 

FunSeq (October, 2013); CADD (February, 2014); and GWAVA (February, 2014). In 

this chapter I will describe each of these methods; discuss their pros and cons; and 

question how well they perform against SuRFR in a comparative analysis. 

 

 

4.1.2 Update on SNP prioritisation approaches 

4.1.2.1 GWAS3D 

GWAS3D is a method designed for the interpretation of genomic variants from GWAS 

studies, but it can also be used for the prioritisation of regulatory variants independent of 
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GWAS signals (Li et al., 2013). This method was developed as a web-based tool, 

implemented with a Perl-based web framework, ‘Catalyst’, using a MySQL database to 

store the annotation data. The workflow for GWAS3D is shown in Figure 4.1. 

 Given a set of GWAS data, GWAS3D performs a preliminary filter on the data to filter 

out less significant SNPs, removing query SNPs that fall above a user defined p-value 

cut-off. If the input data is not presented in VCF format (and so lacks reference and 

alternative alleles for each SNP), any SNPs that do not map to HapMap or 1000 

Genomes are also filtered out. GWAS3D next identifies all SNPs in linkage 

disequilibrium (LD) (based on a user-defined LD standard) with each of the lead (query) 

SNPs. These SNPs are then annotated for a range of features (Figure 4.1, blue coloured 

block entitled ‘GWAS3D Signals Mapping’) including distal interactions, active histone 

marks, conservation, and user-defined data. Any SNP overlapping at least one signal is 

brought on to the next stage of the pipeline, while any SNP that does not overlap any 

signal is removed. Next, the binding affinity significance of each SNP for each of the 

transcription factor (TF) motifs from the ENCODE project is measured using position 

weight matrices of the transcription factor binding site (TFBS) motifs. The log-odds 

(LOD) of probabilities of binding for each of these motifs is then compared against the 

null distribution of binding affinity difference (calculated by permuting each ENCODE 

motif on all 52 million SNPs in dbSNP), and the p-value of each LOD calculated. 

 

 

 

 

Figure 4.1. This diagram outlines the GWAS3D workflow, and has been taken from Li et al., 
2013. See the description of the pipeline (Section 4.1.2.1) for full details (Li et al., 2013). 
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GWAS3D uses three measurements (GWAS, binding affinity and conservation) and 

their associated p-values to perform Fisher’s combined probability test to calculate a 

combined p-value (CP) for each variant. The most significant p-value for any SNP in LD 

with the original lead variant is taken as the CP for that lead variant. All of the original 

input variants are then ranked on their CP values. 

 

In contrast to the analysis of GWAS data, when a variant list without association data is 

used, the data cannot be filtered on association significance, nor can a final GWAS 

measurement be calculated and included in the CP value. In addition, during the LD 

filtering step of GWAS3Ds protocol, some of the input SNPs are likely to be replaced by 

alternative SNPs within the same LD block (as the query SNP may not be the lead SNP 

for that LD block).  Therefore, although in theory this method can be used to assess non-

GWAS data, in practice, this method is not well suited to such data. For this reason, I 

chose not to compare SuRFR against GWAS3D. 

 

4.1.2.2 FunSeq  

Function based prioritisation of sequence variants (FunSeq) is a variant prioritisation 

workflow developed to prioritise candidate non-coding cancer drivers (somatic 

mutations) based on patterns of selection, but which can also be used for personal 

genomics (germ-line mutations) (Khurana et al., 2013). Figure 4.2 describes how 

FunSeq scores variants on their predicted deleterious impact. The input SNPs are filtered 

at each level of the prioritisation workflow; only those SNPs that meet a level’s criteria 

being retained. As a SNP passes each level, it achieves a higher score; scores range from 

0 (no levels passed) to 6 (six levels passed). 

 

Khurana et al. (2013) used population-variation data across 1,092 individuals from the 

1000 Genomes (Phase 1) project to identify signatures of purifying selection. Using the 

full range of polymorphisms (SNPs, indels and structural variations) from these 

individuals, they studied patterns of purifying selection in different functional categories, 

defined by data from ENCODE. In particular, they looked at non-coding regions. The 

non-coding regions were first divided into broad categories based on their overlap with 
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functional data from ENCODE (such as TFBSs, DNase hypersensitive (DNase HS) 

regions, enhancers and non-coding RNAs). These broad categories were then further 

subdivided into 677 high-resolution categories (for instance, into different families of 

TFs). These categories were analysed to see if any were enriched for rare variants under 

very strong selection. In this way they identified 102 categories (of the 677) that showed 

statistically significant selective constraints, and specific genomic regions where variants 

are more likely to have strong phenotypic impact. Using these data, they defined the 

regions that contained a high fraction of rare variants (covering ~0.02% and ~0.4% of 

the genome) as “sensitive” and “ultra-sensitive” regions. Within these regions they found 

~40 and ~400 fold enrichment respectively of disease-causing mutations from HGMD, 

therefore providing independent validation that these sensitive and ultra-sensitive 

regions are functionally important. 

 

 The authors next examined somatic variants (cancer variants) and found that 99% of 

somatic variants occur in non-coding regions, including TFBSs, non-coding RNAs and 

pseudogenes. Analysis of somatic variants from tumour and normal tissue from the same 

individual showed an enrichment for missense (~5x), loss-of-function (~14x), sensitive 

(~1.2x) and ultrasensitive (~2x) variants. Khurana et al. showed that somatic cancer 

variants are enriched for functionally deleterious mutations and somatic variants in the 

non-coding elements under strongest selection are the most likely to be cancer drivers. 

 

Although the authors recommend that FunSeq would be best used for tumour genomics, 

they also suggest that it can be used for the identification of potentially deleterious 

variants in personal genomics. In this latter capacity, FunSeq is a comparable method to 

SuRFR. I therefore chose to include it in my tool comparison analysis. 
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Figure 4.2. This figure presents a graphical overview of the FunSeq workflow, showing the 
filtering of SNPs to identify candidate non-coding cancer drivers based on patterns of selection. 
In the first step, the somatic variants are filtered to exclude 1000 Genomes polymorphisms. In 
the second step, only variants which overlap at least one of the non-coding annotations are 
retained. In step 3, variants that are located in “sensitive” regions are retained. In step 4, 
variants are prioritised on whether they disrupt a transcription-factor binding motif, while in 
step 5, variants are filtered based on whether they reside near the centre of a biological network. 
Lastly, variants are prioritised based on whether they are located in a region that contains 
mutations found in other (or multiple) cancer samples. This figure is taken from (Khurana et 
al., 2013).  
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4.1.2.3 CADD 

Combined Annotation-Dependent Depletion (CADD) is a framework for integrating 

diverse genome annotation data, designed to score all possible SNPs and indels on 

deleteriousness (Kircher et al., 2014). This method was trained on a combination of 

observed and simulated variation. The observed data consisted of 14.9 million SNPs 

across the human genome with a derived allele frequency (DAF) ≥ 95% (1000 Genomes 

project), and, as such, are fixed or almost fixed in the population. In contrast, the 

simulated data consisted of 14.9 simulated de novo mutations derived using a custom 

empirical model of sequence evolution (motivated by parameters of the General Time 

Reversible (GTR) model (Tavaré, 1986)). The authors claimed an advantage of this 

training data was that it did not rely on catalogues of known pathogenic variants and 

therefore was not affected by the acquisition bias from which such data collections 

suffer.  

 

CADD was built on the premise that selective constraint can be used as a measure of 

deleteriousness. Linear models were used to correlate 63 genomic annotation features 

with the observed and simulated datasets. This analysis showed that nearly all of the 

annotations could be used to discriminate observed from simulated variants. The 

strongest individual annotation metrics were found to be the conservation features. Using 

features derived from these 63 genomic annotations, Kircher et al. trained a Support 

Vector Machine (SVM) with a linear Kernel. From this, ten models (each independently 

trained on observed variants and different subsets of simulated variants) were developed. 

Spearman’s rank correlations showed that these ten models were highly correlated (rho > 

0.99). These ten models were averaged into a single model, which was used to score all 

(8.6 billion) possible SNVs in the genome (each position being a potential SNP or indel 

location (Figure 4.3)). The scoring system developed was called the C score. To simplify 

the C scores, Kircher et al. computed scaled C scores, which represent a variant’s rank 

compared to the previously computed C scores for the 8.6 billion possible variants in the 

genome. Scaled C scores range in value from 0 – 99, higher scores suggesting greater 

deleteriousness than lower scores. Figure 4.3 shows that disease variants have on 

average higher scaled C scores than non-disease variants (see Table 4.3.c: “Olfactory”) 

or random background variants (see Table 4.3.c: “Other”) 
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Figure 4.3 Relationships of the CADD scaled C scores (ranging from 0 to 99) to genome-wide 
variant consequence categories: a) ratio of variants within each variant consequence category 
for each C score bin (0-1; 1-2; 2-3; … 50-51; ≥51); b) ratio of variants within each variant 
consequence category, normalised by the number of SNPs with in each category, for each C 
score bin; the legend for each variant category includes, in brackets, the median and range of 
scaled C scores for that category; c) violin plots showing the median C scores of potential 
nonsense variants for 6 classes of genes (genes with at least 5 known pathogenic variants 
(Disease); genes predicted to be essential (Essential); Genes from GWAS studies harbouring 
significantly associated variants (GWAS); genes recorded by the 1000 Genomes project as 
harbouring at least two loss-of-function mutations (LoF); genes encoding olfactory receptor 
proteins (Olfactory) and a random selection of 500 genes (Other)), showing disease and 
functional nonsense variants are more likely to have higher C scores than non-disease 
(Olfactory) or random background nonsense variants (Other). Taken from Kircher et al. (2014) 
(Kircher et al., 2014). 
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The authors used this method to prioritise pathogenic and benign variants from the 

ClinVar database of clinical variation, and showed that CADD could prioritise the 

pathogenic SNPs above the benign SNPs better than the missense and conservation 

metrics SIFT, PolyPhen, GERP, PhastCons and PhyloP (Kircher et al., 2014). I therefore 

considered this method to be an appropriate comparative tool to test against SuRFR. 

 

4.1.2.4 GWAVA 

Genome-wide Annotation of Variants (GWAVA) was developed by Ritchie et al. (2014) 

to prioritise non-coding variants on the likelihood of functionality and, therefore, 

pathogenicity (Ritchie et al., 2014). This method combines multiple annotations to 

identify variants that are likely to be functional. These annotations include: regulatory 

features (such as DNase HS, TFBSs and RNA polymerase binding); genic context 

(position of variants relative to genomic features such as exons, introns, distance to the 

nearest TSS, etc.); human variation; conservation; and sequence context (such as G+C 

content, CpGs and repetitive elements). A modified random forest algorithm was used to 

train a classifier that integrates these individual annotations into a single metric to 

discriminate functional variants from background. The classifier was trained on data 

consisting of 1,614 known disease-implicated, regulatory variants from HGMD 

(downloaded from Ensembl), and three different background datasets. These background 

datasets consisted of randomly selected variants from the 1000 Genomes project (with 

minor allele frequencies ≥ 1%): i) 161,400 variants from across the genome; ii) 16,140 

variants matched (to the HGMD regulatory variants) for distance to the nearest TSS; and 

iii) all variants within a 1 kb window of each of the HGMD variants (5,027 variants). 

From these three training datasets, three distinct classifiers were developed. Model 

training and validation was performed using ten-fold cross-validation and performance 

was measured using ROC curves and AUCs, which showed that the relative performance 

of the three models improved as the background variant datasets became less stringently 

matched to the known HGMD variants (Figure 4.4). Independent validation, using 

pathogenic variants from the ClinVar clinical variant database against non-pathogenic 

ClinVar variants and 1000 genomes background variants matched by distance to the 

nearest TSS, showed GWAVA was successfully capable of prioritising pathogenic 

variants above background variants. 
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Due to the similarities in the feature sets and model training methods used by both 

GWAVA and SuRFR, I considered this the most similar method to SuRFR. 

 

 

 

Figure 4.4 Mean ROC curves and AUCs from the ten-fold cross-validation experiments of 
GWAVA on the three training datasets. Taken from Ritchie et al., 2014 (Ritchie et al., 2014). 

 

 

4.1.3 Additional datasets 
As GWAVA was trained on HGMD data that contained variants that overlap variants 

from my hold out test dataset, the HBB non-coding dataset and the RAVEN dataset, 

GWAVA’s performance on these three datasets would be inflated due to over-fitting. 

This meant that none of these datasets could be used for the comparison of SuRFR, 

CADD, FunSeq and GWAVA. Therefore, an additional, unbiased, dataset was required. 

The most obvious data to use were the two ClinVar datasets used by Ritchie et al. (2014) 
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to evaluate GWAVA’s performance on novel data, as they had not been used to train any 

of these four models.  

 

4.1.3.1 ClinVar 

The ClinVar database is a public archive of medically important variants and 

phenotypes, officially launched in April 2013 (Landrum et al., 2014). This resource is 

funded and curated by the US National Institute of Health (NIH). An advantage of this 

database is that all submissions are categorised both by data source (whether from 

clinical tests, literature review or research) and review status (the extent of variant 

verification: single submission; multiple submissions; or reviewed by an expert panel). 

In addition, many of these variants have been functionally validated. Using these and 

other filters, users can select subsets of data that meet specific, user-defined criteria. As 

this resource is still quite new, it is more limited in size than other resources, such as 

HGMD. However, it also contains variants that are not yet present in HGMD, making it 

an excellent independent data source. 

 

4.1.3.2 1000 Genomes variants matched for distance to the TSS 

An interesting aspect of the datasets generated by Ritchie et al. (2014) for the training 

and validation of GWAVA is that the background datasets were matched to the positive 

variants by distance to the nearest TSS. This, importantly, allowed them to assess the 

performance of their method, excluding the effect of position. This allowed them to 

correct for the acquisition bias that exists in databases of regulatory variants (which tend 

to contain more variants proximal to the TSS than more distal variants). Using a similar 

method, I generated my own matched background dataset for the RAVEN regulatory 

dataset, consisting of variants from the 1000 Genomes European (EUR) dataset. 

 

4.1.3.3 Complex trait related datasets 

Projects that start with an association signal or a linkage region followed by sequencing 

or fine mapping of the region, and end with an experimentally, functionally validated 

regulatory disease variant form an important class of test dataset. It was important to 
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identify studies like these, to allow me to test the performance of each of the four 

prioritisation-methods in a less synthetic manner. The following sections describe three 

complex trait analyses that fit this criterion, which I then used to compare the 

performances of the prioritisation methods. 

 

SORT1: 

Musunuru et al. (2010) investigated a locus on chromosome 1p13 known to be strongly 

associated with low-density lipoprotein cholesterol levels (LDL-C) and cardiovascular 

disease (Musunuru et al., 2010). Fine-mapping in the genomic region responsible for 

LDL-C association, using SNPs genotyped from ~20,000 individuals of European 

descent (Kathiresan et al., 2009) identified 22 variants. Of these, the six SNPs with the 

highest association were clustered in a 6.1 kb non-coding region. Luciferase assays and 

electrophoretic shift assays (EMSA) demonstrated that one of the six, rs12740374, 

creates a binding site for the transcription factor C/EBP and alters liver-specific 

expression of the SORT1 gene.  

 

EGR2: 

A good candidate for systemic lupus erythematosus susceptibility (SLE) is the early 

growth response 2 gene (EGR2). Myouzen et al. (2010) performed a case–control 

association study for SLE, of the 80kb region around the EGR2 gene (Myouzen et al., 

2010). This study identified a single non-coding SNP with a significant p-value. 

Functional characterisation (EMSA) of the SNPs in complete LD (R2 = 1.0) with this 

tagging SNP showed that two SNPs had allelic differences in binding ability. Moreover, 

luciferase assays performed on these two SNPs showed that one (rs1412554) increased 

expression by 1.2 fold while the second, (rs1509957) repressed transcriptional activity.  

 

TCF7L2: 

In a search for variants associated with type-2 diabetes (T2D), Gaulton et al. (2010) 

identified a GWAS significant SNP (rs7903146) at the TCF7L2 locus (Gaulton et al., 

2010). This variant and five others in high LD with it were investigated using luciferase 

assays. Allelic differences in enhancer activity were observed for the tagging SNP, 

rs7903146.  
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4.1.4 Summary of chapter aims 
The aim of this chapter was to compare the performance of SuRFR against three similar 

prioritisation approaches, to show if SuRFR is a useful addition to the field.  
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4.2 Methods 

4.2.1 Running GWAVA 
GWAVA can be used either as a web based tool that provides pre-computed scores for 

all known human variants, or run locally as a python script. I chose to use the 

downloadable command-line version as some of the variants in the test datasets are not 

included in the 1000 Genomes and so could not be annotated by the online version. 

The GWAVA software requires the following python libraries (and their dependencies) 

to operate: 

- numpy (1.7.0)    

- scikit-learn (0.14.1)  

- scipy (0.11.0)    

- pybedtools (0.6.4)  

- pandas (0.12.0)    

- tabix (0.2.5)  

 

Stewart Morris (SM) installed GWAVA and its environment variables on the server 

Wheeljack. GWAVA operates via a two-step process: first building a variant annotation 

table; and second, using the annotation table to compute the classifier scores for each 

variant. 

 

 

Step 1: SNP annotation 

The input data format is a four-column bed file containing the tab-delimited columns: 

chromosome; start coordinate; end coordinate; and a unique identification number. For 

example:  

chr1    123455  123456  rs123 

 
Variants in the input were first sorted using the command format:  

sort -k1,1 -k2,2n ClinVAR_path_non_path.bed -o ClinVAR_path_non_path.sorted.bed 
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The sorted data was run through the annotation script using the command format ‘python 
annotation_script sorted_variant_file annotated_variant_file’: 

 

python gwava_annotate.py ClinVAR_path_non_path.sorted.bed 
annotated_ClinVAR_path_non_path.sorted.bed.csv 
 

 

Step 2: SNP classification 

The annotated variant file was then run through the classifier script using the command 

format ‘python GWAVA_classifier model_type annotated_variants scored_variants’, 

model types being ‘unmatched’, ‘tss’, or ‘region’. E.g. 

 

python gwava.py tss annotated_variants.csv variant_scores.bed  

 

 
4.2.2 Running FunSeq 
FunSeq is a PERL- and Linux/UNIX-based tool that is available either as a web tool or a 

downloadable command line program. The command line version of FunSeq requires the 

files listed in Figure 4.5 and has the following dependencies: 

- Bedtools  

- Tabix  

- VAT (snpMapper Module) 

- Perl 5 or higher 

- Perl package Parallel::ForkManager 

 

SM installed FunSeq and its dependencies on the server Wheeljack. The input for 

FunSeq is a bed file containing the following tab-delimited columns: chromosome; start 

coordinate; end coordinate; reference allele; and alternative allele. The general usage 

commands for FunSeq are shown in Figure 4.6 

 

For my analysis, FunSeq was run using the –m 2 option (germline mutation). 
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I ran a test comparing different MAF thresholds (0-1 in 0.1 steps) and found ‘0.1’ to be 

the best compromise between specificity and sensitivity. I therefore set the MAF 

threshold to: –maf 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Required data files for FunSeq, taken from the Funseq manual web page: 
http://info.gersteinlab.org/FunSeq 
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Figure 4.6 Usage commands for FunSeq. Taken from the Funseq manual web page: 
http://info.gersteinlab.org/FunSeq 

 

 

4.2.3 Running CADD 
CADD is available as a web tool. The input data must be in the form of the first five 

rows of a VCF file without a header row (e.g. chromosome; coordinate (+1); ID; 

reference allele; and alterative allele).     

 

4.2.4 ClinVar datasets 
I made use of multiple datasets from ClinVar in this analysis: a pathogenic dataset, a 

non-pathogenic dataset and a non-coding pathogenic dataset. The pathogenic dataset and 

non-pathogenic dataset were both downloaded from the GWAVA support website 

(ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/annotated/ accessed March 

2014). These two datasets consisted of a true positive set of 194 pathogenic variants and 

a background set of 150 non-pathogenic variants. However, the pathogenic dataset 

contained a large number of mitochondrial variants. Removing the mitochondrial 

variants reduced this dataset to 128 pathogenic variants. An additional 58 non-exonic, 

non-coding SNPs were obtained directly from the ClinVar database. 

 

 

4.2.5 1000 Genomes background variants 
A dataset of 19,400 1000 Genomes background variants matched (by distance to the 

nearest TSS) to the pathogenic ClinVar variants was downloaded from the GWAVA 

support website. SM wrote a Perl script to allow us to generate additional background 
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datasets consisting of 1000 Genomes EUR variants matched by distance to the nearest 

TSS for each positive variant dataset. The function of this script was to bin all the 

variants from the 1000 Genomes EUR database into bins of different distances to the 

nearest TSS. Using this program he was able to randomly sample the 1000 Genomes 

database for SNPs matched to a list of distances to the nearest TSS, pulling out as many 

SNPs at each distance as required for each analysis. SM used this method to construct a 

matched background set of variants for the ClinVar non-coding dataset. This dataset 

contains 5,800 variants. He repeated this for the RAVEN regulatory dataset, producing a 

matched background dataset of 9,500 variants. 

 

 

4.2.6 Complex trait related datasets 
The SNPs from both the SORT1 analysis and TCF7L2 analysis were used by Ritchie et 

al. to test the performance of GWAVA and so were available from the GWAVA support 

website. I constructed annotation tables for both of these SNP sets; the SORT1 

annotation table contained 22 variants and the TCF7L2 annotation table containing six 

SNPs. 

 

I ran the lead SNP (rs10761670) from the EGR2 analysis performed by Myouzen et al. 

(2010) through the online tool SNAP 

(https://www.broadinstitute.org/mpg/snap/ldsearch.php accessed May 2014) to identify 

all the SNPs proxy to this tagging SNP (R2 ≥ 1.0). This program returned a list of 35 

proxy SNPs (including the tagging SNP). I constructed an annotation table for these 35 

SNPs, using the 1000 Genomes Asian (ASN) population to define MAFs. In addition, I 

also generated a SNP dataset for the 80kb region surrounding the EGR2 gene. This 

larger dataset contained all the SNPs from this region present in the 1000 Genomes ASN 

database (n = 237). 
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4.3 Results 

I compared SuRFR’s ability to prioritise known pathogenic variants against three 

additional variant prioritisation approaches: FunSeq, CADD and GWAVA.  Independent 

data that had not been used for the training of any of these methods was required to 

compare their performances. This restricted the data sources at my disposal, as the tools 

were trained on different datasets. Despite this, I was able to identify data not used to 

train any of these tools (the ClinVar datasets) and used this to compare all of the 

methods against each other.  

 

 

4.3.1 Performance of SuRFR versus GWAVA, CADD and FunSeq  

4.3.1.1 ClinVar 

To compare the performances of SuRFR, GWAVA, FunSeq and CADD, I used an 

independent dataset of clinical variants from the ClinVar archive of disease variants 

(Landrum et al., 2014) (see Section 4.1). This dataset consisted of 128 pathogenic 

variants, extracted from the ClinVar archive by Ritchie et al. (2014) to test the 

generalisability of GWAVA. I had modified this dataset by removing all mitochondrial 

variants (reducing the number from 194 to 128 variants). The reasons for this were two-

fold: firstly, SuRFR has been trained on nuclear (and not mitochondrial) variants and 

therefore it cannot be assumed that SuRFR can correctly prioritise functional 

mitochondrial variants; and secondly, SuRFR relies heavily on genomic annotations that 

pertain exclusively to nuclear, and not mitochondrial, variants (in particular, histone 

modifications). As none of the other datasets used in this analysis contained 

mitochondrial variants, this task did not need to be repeated. 

 

The 128 (nuclear) pathogenic variants were compared against two background datasets: 

a background dataset of 150 “non-pathogenic” variants (also from the ClinVar archive) 

and 19,400 variants identified as part of the 1000 Genomes project, distributed across the 

genome and matched with the pathogenic variants for distance to the nearest TSS. As for 

the pathogenic variants, these background datasets were selected by Ritchie et al. for 

their analysis of GWAVA’s generalisability.  
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Closer examination of the pathogenic ClinVar dataset showed that it contained several 

synonymous, non-synonymous and UTR exonic variants. I therefore also extracted an 

additional pathogenic dataset directly from the ClinVar archive, consisting of purely 

non-exonic, non-coding variants (58 non-exonic, non-coding, clinical variants). For this 

second pathogenic dataset, I generated a background dataset matched by distance to the 

nearest TSS, 100 times the size of the pathogenic dataset (100 background SNPs 

matched to each pathogenic SNP).  

 

None of these datasets had been used to train SuRFR, GWAVA, CADD or Funseq, 

allowing these data to be used for rigorous comparison of tool performance. For the 

parameters used for each of these tools, see Section 4.2. 

 

Pathogenic ClinVar variants: 

I ran SuRFR, GWAVA, CADD and FunSeq on the 128 pathogenic variants in 

combination with i) the 150 non-pathogenic variants test dataset and ii) the 19,400 

matched 1000 Genomes variants. On these data, SuRFR was able to discriminate the 

pathogenic variants above background with AUCs of 0.80 and 0.85 respectively. On the 

same data, AUCs of 0.71 and 0.80 were achieved by GWAVA, 0.76 and 0.83 by CADD 

and 0.54 and 0.48 by FunSeq (Figure 4.8 A & B). These results show that SuRFR 

outperforms all the other methods on these data. FunSeq’s performance on both of these 

datasets was roughly what you would expect by chance. Based on this result, I chose not 

to include FunSeq in any of the downstream analyses. 

 

Non-coding versus matched 1000 Genomes background variants: 

In contrast, when the performance of SuRFR, GWAVA and CADD on the non-exonic, 

non-coding pathogenic dataset was compared, all three methods performed at a very 

similar level, with CADD just outperforming SuRFR (Figure 4.9). The AUCs measured 

in this analysis were 0.671 (SuRFR), 0.629 (GWAVA) and 0.692 (CADD), all much 

lower than for the other pathogenic ClinVar dataset (Figure 4.8 A & B). 
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Figure 4.8. Comparison of SuRFR, GWAVA, CADD and FunSeq on A. ClinVar pathogenic vs 
non-pathogenic variants and B. ClinVar pathogenic vs 19,400 matched 1000 Genomes variants. 
This plot shows the performance if these four methods via ROC curves (true positive rate on the 
y-axis, versus false positive rate on the x-axis) and AUCs against the performance expected by 
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chance (grey dotted line). SuRFR (blue line) outperforms all three models, GWAVA (red line), 
CADD (green line) and FunSeq (gold line), on both of these datasets. 

 

 

 

 

Figure 4.9 ROC curves and AUCs for SuRFR (blue), GWAVA (red) and CADD (green) run on 
the ClinVar non-exonic, non-coding pathogenic variants versus 5,800 matched 1000 Genomes 
variants. 
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4.3.1.2 HBB coding 

Of the four tools I have compared, GWAVA is the most similar tool to SuRFR, making 

use of largely overlapping annotation data to prioritise non-coding variants on predicted 

functionality. To test and compare the ability of these two methods to prioritise 

pathogenic coding variants, I ran both tools on a test dataset consisting of coding disease 

variants for the disease ß thalassemia, located within the HBB gene. Both of these 

methods were extremely successful at prioritising the coding pathogenic variants above 

background 1000 Genomes variants, with AUCs of 0.996 and 0.975 for SuRFR  (DM 

model) and GWAVA (TSS model) respectively (Figure 4.10). 

 

 

 

4.3.1.3 RAVEN versus background matched by distance to the nearest 
TSS 

As the RAVEN regulatory variants were used as part of the training and validation data 

for the development of GWAVA, this data could not be used to fairly compare 

GWAVA’s performance against the other tools (as it would give an inflated estimate of 

GWAVA’s performance). However, this data could be used to compare the performance 

of SuRFR and CADD. I generated a new background variant dataset consisting of 100 

matched variants for every RAVEN variant. This background dataset contained 9,500 

variants matched for distance to the nearest TSS. SuRFR did not perform as well on this 

dataset as it had done on the original RAVEN dataset (where the control SNPs were not 

matched by distance to the nearest TSS), achieving an AUC of 0.702 compared to the 

previous AUC of 0.94 (both for the DFP model). However, despite this large decrease in 

performance, SuRFR still performs better than CADD, which achieved an AUC of 0.608 

on this data (Figure 4.11).  
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Figure 4.10 ROC curve and AUCs showing the performance of SuRFR (blue line) and GWAVA 
(red line) on the HBB coding variant dataset, against performance expected by chance (grey 
dotted line). 
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Figure 4.11 ROC curves and AUCs for SuRFR (blue line) and CADD (green line) run on the 
RAVEN regulatory variants versus a matched control set. 
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4.3.1.4 Complex trait datasets 

I next compared the ability of SuRFR, GWAVA and CADD to prioritise known, 

functional, pathogenic variants identified by others during the study of complex traits. In 

each of these three examples, the projects started with an association signal or a 

candidate gene region. These candidate loci were then analysed in more detail. The 

outcome of each study was the identification of variants that altered gene expression or 

protein-DNA interactions, through the use of reporter assays or electrophoretic shift 

assays (EMSAs).  

 

SORT1: 

Musurunu et al. (2010) investigated a region of chromosome 1p13 associated with LDL-

C levels.  Subsequent fine mapping of this region, genotyping roughly 20,000 

individuals of European descent, identified 22 SNPs within the minimal genomic region 

associated with LDL-C in these individuals. Of these 22 SNPs, the six with the highest 

association were clustered in a 6.1kb region. Functional investigation of these SNPs 

confirmed that one of the six, rs12740374, creates a binding site for the transcription 

factor C/EBP, and functional assays indicated it altered expression of the SORT1 gene. I 

ran the 22 SNPs in high LD (R2 = 1.0) with the tagging SNP (rs10761670) through 

SuRFR, GWAVA and CADD. SuRFR prioritised the functionally validated SNP 

(rs12740374) first out of 22, while GWAVA ranked it sixth and CADD ranked it 

twentieth (Table 4.1).  

 

EGR2: 

The chr10q21 candidate locus for SLE is roughly 80kb in size and contains 237 variants 

from the 1KG Asian population database with a MAF >0.10 (as of June 2014). 

Assessment of all 237 by GWAVA and SuRFR failed to rank the functionally validated 

variant, rs1509957, in the top 10% of prioritised SNPs. However, restricting the dataset 

to the 35 proxy SNPs in high LD (R2 >= 1.0) with the most significantly associated SNP 

for SLE (Myouzen et al., 2010), the functional variant ranked very highly for both 

SuRFR and GWAVA (first and second respectively). In contrast, CADD ranked this 

variant eighteenth (Table 4.1). 
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TCF7L2:  

The last complex trait example I used to compare the performances of SuRFR, GWAVA 

and CADD was the TCF7L2 locus associated with T2D. This locus contains six variants 

that were functionally assessed, of which one was shown to significantly increase 

enhancer activity (rs7903146). Prioritisation of these six variants using SuRFR, 

GWAVA and CADD showed that all three tools ranked rs7903146 second out of six. 

  

 

 

 

  

Total number of 

variants 

SuRFR ranking of 

functional variant 

GWAVA ranking of 

functional variant 

CADD ranking of 

functional variant 

SORT1 22 1st out of 22 6th out of 22 20th out of 22 

EGR2  35 1st out of 35 2nd out of 35 18th out of 35 

TCF7L2 6 2nd out of 6 2nd out of 6 2nd out of 6 

 

Table 4.1 Ranking of functionally validated variants versus background from three complex 
trait studies. 

 

 

In conclusion, SuRFR was best able to prioritise known, functionally verified complex 

trait variants above background variants better than both GWAVA and CADD. In 

addition, this analysis showed that although CADD may be as good a method for 

identifying some classes of functional variants, it is not as good as either SuRFR or 

GWAVA at prioritising validated functional variants for complex traits. 
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4.4 Summary and Discussion 

4.4.1 Pros and Cons of GWAVA, CADD and FunSeq 
I compared SuRFR’s ability to prioritise pathogenic variants against three tools 

(GWAVA, FunSeq and CADD) which were also designed to prioritise non-coding 

variants and all of which were published near the end of my PhD. Although they are all 

designed to perform the same task, they were developed based on different frameworks: 

GWAVA being written in Python and making use of a modified random forest algorithm 

(Ritchie et al., 2014); CADD providing a single measure (C score), based on the 

integration of a range of annotations, pre-computed for the entire genome (Kircher et al., 

2014); and FunSeq scoring variants on the pattern of functional annotations they overlap 

(Khurana et al., 2013). 

 

4.4.1.1 GWAVA 

Of these three, the method that most closely resembles SuRFR is GWAVA. There are 

two aspects of GWAVA that make it very similar to SuRFR: the feature set incorporated 

into its prioritisation model; and the training methodology implemented during its 

development. Like SuRFR, GWAVA was designed to make use of the annotation 

features conservation, histone marker data, and allele frequency, amongst others. 

Although the black box nature of GWAVA prevents us from making a proper 

comparison of the features used by GWAVA versus SuRFR, or the weighting of the 

features within GWAVA’s model, several conclusions can be drawn based on the data 

presented in the GWAVA paper. While not identical, the functional annotations used by 

these two methods are similar enough to explain why both methods perform to a similar 

level on several datasets: the HBB coding dataset (Figure 4.11) and the EGR2 and 

TCF7L2 complex trait datasets (Table 4.1). However, in this chapter I have also shown 

that SuRFR performs better than GWAVA on several other datasets, including the three 

ClinVar datasets (Figure 4.9 A. & B. and Figure 4.10), as well as the SORT1 complex 

trait dataset. This could potentially either be due to the differences in the functional 

annotation used by each method (for instance, GWAVA includes GC content and 

SuRFR uses FANTOM CAGE data and transcribed enhancer data) or due to the way 
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each method combines the annotation data into a unified model (ranking versus random 

forest approach).  

 

Another possible explanation for the difference in performance between the two 

approaches could be training methods used for each tool. GWAVA was trained and 

validated using a bipartite split of the training data (into training and validation folds for 

cross-validation). In contrast, SuRFR was trained using a tripartite data split: training, 

validation and hold out test datasets. Tripartite splitting of the training data allows both 

performance and generalisation errors to be calculated, quantifying the level of over-

fitting to the training data and providing a measure of the generalisability of the method. 

Bipartite splitting, in contrast, does not allow the amount of over-fitting to be assessed. 

GWAVA could, therefore, be over-fitted to the training data, explaining why it performs 

worse on independent datasets.  

 

A final explanation for the difference in performance between SuRFR and GWAVA 

could be the differences in training data. Although both methods make use of data from 

HGMD, the data used to train GWAVA is an older release of HGMD, from 2012. This 

data was not obtained directly from HGMD, but instead from Ensembl, and was less 

well annotated than the same data obtained directly from HGMD. In contrast, to train 

SuRFR I used a more recent, professional release of HGMD (2014), which was well 

annotated and sub-categorised into variant classes (DM, DFP, etc. see Chapter 3 for 

more details). Using this additional classification data, I was able to filter the PROM 

table to remove any ambiguous SNPs (removing SNPs that were not verified as disease 

mutations (the DM? variants) and removing SNPs that had been identified from GWAS 

but had not been followed up with functional validation (the DP variants)). By only 

using SNPs that had a proven disease or functional role, I was able to train SuRFR on a 

much cleaner dataset than the full HGMD regulatory dataset, potentially improving the 

signal to noise ratio in my data and fitting my weighting model more accurately to 

disease (and functional) variants.  
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4.4.1.2 CADD 

CADD was developed using a support vector machine learning approach, trained on 14.7 

million high-frequency human-derived alleles and an equal number of simulated variants 

(Kircher et al., 2014). This framework combines a range of 63 annotations 

(Supplementary Tables 1 and 2 (Kircher et al., 2014)) into a single measure, known as a 

C score, for each variant. This measure can be viewed as an estimate of deleteriousness 

and can be used to rank variants on their deleterious effect.  

 

In my comparative analysis of CADD and SuRFR’s performances, SuRFR either out-

matched or performed as well as CADD on all of my test datasets. This may be because 

CADD has been trained to differentiate high-frequency alleles from simulated variants 

of equal frequencies, whereas the datasets I have used contain variants with a range of 

allele frequencies. This may also be due to biases in the data used to train CADD. For 

instance, the authors claim the best features were conservation metrics; however, the 

training data contains positive variants that are fixed or almost fixed in the human 

population (DAF > 95%), whereas the simulated variants are de novo variants (therefore 

unique variants) that are likely to overlap many unconstrained regions of the genome, 

biasing towards conservation metrics.  

 

4.4.1.3 FunSeq  

FunSeq’s model framework is built on the enrichment of rare variants in particular 

annotation categories to estimate levels of purifying selection. Although this approach 

can be used for personal genomics, the authors make a point of highlighting that it is 

most useful and effective for cancer genomics. This is particularly apparent from my 

analysis of its performance on the ClinVar datasets, where it was not able to distinguish 

pathogenic variants from background variants any better than would be expected by 

chance (Figure 4.8). FunSeq’s poor performance on these data is likely to be explained 

by the manner in which it filters SNPs. In its default mode (for the identification of 

cancer drivers), FunSeq filters out all variants that occur in the 1000 genomes project, as 

any variant that is not unique is unlikely to be a cancer driver. For the analysis of 

germline mutations, FunSeq instead allows the user to define a cut-off MAF; all SNPs 
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with MAFs above this threshold being discarded. When no threshold was used (setting 

the MAF cut-off to 1.0), FunSeq could not distinguish the background variants from 

pathogenic variants, leading to a very high false positive rate. I went on to test a range of 

potential MAF cut-offs (0.1 to 1.0 in 0.1 steps) and found the best cut-off (producing the 

best AUC) to be a MAF of 0.1. Using this cut-off, however, many variants within my 

test datasets were discarded (as they had MAF’s greater than 0.1), increasing the false 

negative rate. In conclusion, although using a MAF cut-off of 0.1 maximised the 

specificity and sensitivity of this tool, both measures were still very low. 

 

4.4.2 Importance of the ClinVar dataset 
As each method was trained on different datasets, it was crucial to find a dataset that had 

not been used to train any of the models under comparison, as this would lead to an 

unrealistically exaggerated estimate of that method’s performance (due to over-fitting). 

The ClinVar database, which was not used to train any of the methods, was therefore 

essential to the fair assessment of each model’s performance. Similarly, creating 

multiple test datasets from this data source allowed me to draw different conclusions 

from the analysis. 

 

4.4.2.1 Pathogenic versus non-pathogenic 

Combining the pathogenic variants with the non-pathogenic variants from ClinVar 

allowed me to assess how well each method could prioritise known-functional variants 

against a background set of truly null variants. This was a very rare opportunity, as very 

few datasets of functionally assessed non-functional, non-disease causing variants exist. 

However, these variants might yet prove to be functional as they could have a functional 

role we don’t yet have a test for. 

 

The results of this analysis (Figure 4.9A.) showed that SuRFR can prioritise functional 

versus non-functional variants at least as well as (and marginally better than) CADD and 

GWAVA and all three greatly outperform FunSeq, which does not perform much better 

than random chance. 
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4.4.2.2 Pathogenic versus matched Thousand Genomes background 
variants 

In Chapter 3 I showed that a SNP’s position relative to genes (Position annotation) is the 

most important feature for prioritising functional variants over background variants. A 

background variant dataset matched to the functional variants with respect to position to 

the nearest TSS removes positional bias. The prioritisation of variants in such a dataset 

would be based on their rankings and scores for other features. As SuRFR relies heavily 

on positional information, such a background dataset would therefore put SuRFR at a 

disadvantage. In contrast, this type of background dataset is most advantageous to 

GWAVA, as the TSS model was trained on variants matched by distance to the nearest 

TSS, and therefore relies more on the other features in its model. This type of data 

neither positively nor negatively affected CADD’s performance, as it was trained on 

genome-wide data, unlimited by position relative to genes  

 

Although this dataset was in many ways more stringent than the first ClinVar dataset, the 

results are very similar: SuRFR performs at least as well as GWAVA and CADD and all 

three tools greatly outperform FunSeq. As FunSeq performed so poorly on both of these 

datasets I excluded it from all future comparisons. 

 

4.4.2.3 Non-coding, matched background 

As discussed in Section 4.4.2.2, background datasets matched by distance to the nearest 

TSS are specifically designed to be the toughest dataset for SuRFR, as they remove the 

advantage of the position score (SuRFR’s best performing feature). Combining this style 

of background data with a positive dataset consisting of only non-coding (disease 

causing / functional) variants creates the most stringent dataset of all, as all three 

methods prioritise exonic and coding variants above all other variants. Therefore, this 

dataset truly tests how well each method can prioritise non-exonic, non-coding 

functional variants. 

 

Although this dataset handicaps SuRFR compared to the other two methods, SuRFR still 

performs as well as CADD and GWAVA (Figure 4.10), and this result is likely to be a 
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lower estimate of SuRFR’s performance. It is highly unlikely that any real-world 

scenario would exist where the causal variant (within a region of interest) is matched, by 

exactly the same distance to the nearest TSS, by such a large number of control variants. 

Therefore, in any real-world scenario we would expect the position score to have more 

of an effect and improve the ranking of the causal variant versus background. This 

observation is justified by the performance of SuRFR on the data from the three complex 

trait studies outlined in section 4.3.1.4. 

 

 

4.4.3 Ability to prioritise coding variants: HBB coding 
Although GWAVA and SuRFR were designed for the prioritisation of non-coding 

variants, I chose to test how well these two methods perform when prioritising coding 

variants in additional to non-coding variants. This analysis verified the fact that while 

both methods have been trained on non-coding datasets, they can both correctly 

prioritise coding pathogenic variants over background variants (Figure 4.11). This 

information is useful, as it is an important advantage over other methods to be able to 

prioritise coding and non-coding variants simultaneously. Currently one drawback to 

SuRFR is that is not capable of distinguishing between different classes of coding 

variants (3’UTR, 5’UTR, synonymous, and non-synonymous substitutions), as it does 

not make use of annotations that could prioritise these variant sub-classes.  

 

 

4.4.4 Matching by distance to TSS 
Rerunning SuRFR on the RAVEN functional variants and a new background dataset, 

matched by distance to the nearest TSS, allowed me to once again assess the lower limit 

of SuRFR’s performance, as well as to determine how well CADD performs on the same 

data. Although SuRFR is at a greater disadvantage on this data than CADD, it still 

outperforms it (Figure 4.12, AUCs of 0.702 and 0.608 for SuRFR and CADD 

respectively).  This suggests that SuRFR is better suited to the prioritisation of functional 

non-coding variants (not necessarily with a role in disease) than CADD. The difference 

in SuRFR’s performance on this data versus the first RAVEN dataset (Figure 3.5.) once 
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again highlights the importance of the Position weighting to SuRFR’s ability to prioritise 

functional variants. 

 

4.4.5 Complex trait datasets 
Developing datasets composed of large numbers of real, experimentally verified, 

functional and/or disease-causing variants is crucial to establishing the performance of a 

prioritisation approach.  Such datasets provide the power required to predict with a 

reasonable amount of certainty how well a predictive approach will perform on novel 

data. However, such datasets are also highly synthetic and not representative of the 

numbers and types of variants likely to be present in a “real world” analysis. For 

instance, these datasets are enriched for large numbers of pathogenic variants that would 

not normally be seen in a single disease analysis. In addition, the genomic background 

that these variants would normally be found in has been altered, loosing the genomic 

context, local structural information, LD, and the array of allele frequencies, replacing 

them with random variants. The genomic background for disease variants could have 

both epistatic and polygenic effects, which would not be seen in curated databases of 

disease variants.  

 

Experimental approaches to identifying the causal variant(s) for a disease or complex 

trait often start with either an association signal or linkage data from a family analysis. 

This information allows investigators to focus on a specific region of interest. Follow-up 

analysis such as fine-mapping, sequencing, genotyping etc., can then be used to prioritise 

a subset of variants for functional investigation (using luciferase assays, EMSA shift 

assays etc.), which can lead to the discovery of variant(s) that alter gene expression and 

can result in a pathogenic phenotype. 

 

4.4.5.1 Positive attributes 

The three complex trait studies used in section 4.3.1.4 provided an opportunity to test 

how well the three tools SuRFR, GWAVA and CADD perform on single 

phenotype/single locus datasets. These three different examples of complex trait 

analyses each represent a different type of study: i) each of these datasets represents a 

different complex traits (LDL_C) and diseases (SLE and diabetes); ii) the causal variants 
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have different functional roles (the LDL-C variant creates a binding site for the 

transcription factor C/EBP while the diabetes variant affects enhancer activity); and iii) 

the regions under investigation range in size from a 6 kb to 80 kb. 

 

4.4.5.2 Negative attributes 

These are only three examples representing the search for causal variants associated with 

complex disease; I have no examples of Mendelian diseases. This means I can test the 

performance of the ALL and DFP models of SuRFR, but do not have appropriate data to 

test the DM model. In addition, the regions under investigation are all less than 100 kb; 

therefore, the number of SNPs included in each study is limited. When the full region 

around the SLE locus was investigated, the number of SNPs increased from 35 to 237. 

When this larger SNP set was run through GWAVA and SuRFR, neither method 

prioritised the causal variant in the top 10% (GWAVA ranked this variant 162nd and 

SuRFR ranked it 118th out of 237). This suggests that this region therefore contained 

many variants, which, in addition to the causal variant, have functional roles identifiable 

from the annotation data (active enhancers, regulatory variants etc.) but not associated 

with SLE.  

 

Caution should therefore be taken when searching for candidate causal variants, as many 

variants in the genome will also have regulatory functions and will be identifiable by the 

functional annotation data used to prioritise disease variants. This highlights the 

importance of reducing the list of candidate variants to be prioritised using any available 

a priori information, such as linkage and association signals.  

 

4.4.6 Conclusions 
In this chapter I have compared the performance of SuRFR, GWAVA, CADD and 

FunSeq on a variety of test datasets. I have shown that SuRFR performs at least as well 

as its nearest competitors, and in some instances out performs them.  

 

The differences in performance between these four methods are likely to be due to a 

combination of differences in model design as well as differences in the training data 

used. Furthermore, differences in performance for some of these methods can be 
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accounted for by the fact that they are designed with a different main purpose (FunSeq is 

designed for the cancer genomics; CADD is a measure of deleteriousness rather than 

functionality).  

 

In addition to SuRFR performing better on these data than the other three methods, 

SuRFR also has the advantage of being implemented as an R package and being part of 

the R environment. This is an advantage over CADD, which is a web-based method, as it 

does not limit the number of variants that can be analysed at one time (and is also better 

than the downloadable version of CADD which requires a large amount of free memory: 

79 Gb). This is also an advantage over GWAVA, which is written in Python, as R is a 

statistical framework, allowing downstream analysis without exporting to another 

software. At every point during the running of the R package, users can understand the 

extent to which the various annotations contribute to the variant rankings, allowing 

construction of hypotheses based on the data obtained.  

 

The most important advantage SuRFR has over these other methods is its flexibility, 

allowing the user to change the weighting vector used to suit their own hypotheses and 

also allowing additional annotation sources to be included in its framework. For these 

reasons, SuRFR is an excellent addition to ranks of variant prioritisation methods and I 

am confident it will hold its own against its competitors. Plans for future developments 

will be discussed in Chapter 6 (Discussion). 
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Chapter 5: Application of SuRFR to the study of 

psychiatric illness 

5.1 Introduction 

There has been considerable success in the search for genetic determinants of Mendelian 

diseases. In contrast, it has proven very difficult to identify the genetic variants 

contributing to complex diseases and disorders. Factors that might contribute to this are 

the differences in genetic architecture and the greater environmental contribution to 

complex disease (see Chapter 1: section 1.4). The genetics of psychiatric illness have 

proven particularly difficult to unravel; it is only within the last two years that the first 

major successes in the field of psychiatric genomics have been achieved, with the 

Psychiatric Genomics Consortium (PGC) identifying 108 loci associated with 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics, 2014). 

Similarly, in 2014 a genome-wide association study (GWAS) combining PGC bipolar 

disorder samples (Psychiatric, 2011) and samples derived from the MooDS (Systematic 

Investigation of the Molecular Causes of Major Mood Disorders and Schizophrenia) 

consortium identified five loci that showed genome wide significant association with 

bipolar disorder (Muhleisen et al., 2014). Three of these loci had been previously 

reported ((Ferreira et al., 2008); (Psychiatric, 2011); (Chen et al., 2013)) and two were 

novel loci.  The smaller number of loci identified in the bipolar disorder GWAS 

compared to the schizophrenia GWAS is likely to reflect, in part, the difference in 

sample sizes of these two GWASs (Chapter 1: Section 1.5).  

 

Although these successes are important and pave the way for similar discoveries for 

other psychiatric illnesses, GWASs are only the first step in identifying variants, genes 

and pathways that contribute to illness. Further investigation of these findings, such as 

functional investigation of candidate variants (Muhleisen et al., 2014) and pathway 

analysis (Nurnberger et al., 2014) are needed to link association data to the underlying 

biology (Shinozaki and Potash, 2014).  

 

Some disorders are unlikely ever to be aided by GWAS, mainly due to an insufficient 

number of affected individuals (as limited numbers means insufficient power for true 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 5: Application of SuRFR to the study of psychiatric illness  174 

associations to reach genome-wide significance). In such cases, methods such as whole 

genome sequencing (WGS), family studies and linkage analysis, will be important in 

identifying risk variants and elucidating candidate genes. On the other hand, genomics 

projects (GWAS, WGS, etc.), which function on a genome-wide scale, are implicating 

an ever-increasing number of variants. The experimental assays currently available to 

characterise putative susceptibility variants are too costly and time consuming to 

perform on large numbers of SNPs. Bioinformatic prioritisation of candidate variants is 

an essential aid to the analysis of these data, as it allows experimental follow-up to be 

focused on those SNPs with the highest likelihood of being functional based on the 

currently available evidence.  In this chapter, I will describe the application of SuRFR to 

two family-based psychiatric illness analyses, investigating the genetics of bipolar 

disorder and major depressive disorder.  

 

5.1.1 Bipolar disorder 
Bipolar disorder (BD) is a major psychiatric condition with a lifetime prevalence of 1% 

(Mülheisen et al., 2014). It is characterised by an episodic, recurrent change in mood that 

ranges from severe depression to elation (mania) (Craddock and Sklar, 2009).  The 

World Health Organisation (WHO) has classified BD as one of the top ten leading 

causes of global disease burden for the 15-44 year old age group (Muhleisen et al., 

2014). Family, twin and adoption studies have shown that there is a strong heritable 

component to this disorder, with studies suggesting between 60-85% of risk variance 

being attributable to genetic factors ((Smoller and Finn, 2003); (Nothen et al., 2010)). 

The aetiology of BD is complex: multiple genetic and environmental factors contribute 

to disease risk ((Lichtenstein et al., 2009); (Shinozaki and Potash, 2014)). Although, 

traditionally, BD and other psychiatric disorders were considered to be clinically 

distinct, there is growing evidence for shared phenotypes across many psychiatric 

disorders, in particular BD, schizophrenia, schizoaffective disorder and major depressive 

disorder ((Lichtenstein et al., 2009); (Shinozaki and Potash, 2014)). This overlap in 

clinical features may reflect overlapping genetic causes ((Barnett and Smoller, 2009); 

(Cross-Disorder Group of the Psychiatric Genomics et al., 2013)). Similarly, it is 

recognised that several clinical subtypes of BD exist, including bipolar disorder type I, 

bipolar disorder type II, and bipolar type schizoaffective disorder (Craddock and Sklar, 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 5: Application of SuRFR to the study of psychiatric illness  175 

2009). Taken together, these factors make studying the genetics of BD complicated. 

Despite the large amount of effort that has gone into linkage, sequencing and association 

studies of BD, there are no confirmed, functionally validated susceptibility variants for 

BD. In addition, the handful of loci that have been implicated in GWAS as being 

significantly associated with BD only explain a small proportion of the heritability. A 

number of next generation sequencing (NGS) projects have been undertaken to identify 

rare variants that contribute to disease susceptibility ((Chen et al., 2013); (Georgi et al., 

2014);(Ament et al., 2015)); however, as with GWAS, additional validation and 

functional investigation of these data are required to confirm the role of these variants in 

disease aetiology. Table 5.1 outlines some of the largest BD studies that have been 

performed over the last decade (GWAS with ~1,000 or more cases; sequencing of over 

200 individuals).  

There are a number of strategies that together should result in the discovery of 

susceptibility variants for BD. These include analysis of larger GWAS cohorts and 

whole genome sequencing. A complementary strategy is to reduce heterogeneity. This 

can be achieved by sub-typing diagnoses ((Lee et al., 2011); (Greenwood et al., 2012)), 

stratifying illness by co-morbid conditions (Kerner et al., 2013) and/or using family 

studies (Georgi et al., 2014).   
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Study	
   Details	
  of	
  project	
  design	
   Results	
  

(Baum	
  et	
  al.,	
  
2008)	
  

GWAS	
  of	
  BD	
  in	
  two	
  independent	
  case-­‐controls	
  sets	
  of	
  
European	
  ancestry,	
  with	
  461	
  cases	
  and	
  563	
  controls;	
  and	
  
772	
  cases	
  and	
  876	
  controls	
  respectively.	
  Roughly	
  550,000	
  
SNPs	
  within	
  genes	
  were	
  genotyped	
  in	
  these	
  samples.	
  

No	
  variant	
  reached	
  genome-­‐wide	
  significance	
  in	
  
the	
  individual	
  studies;	
  however	
  the	
  combined	
  
study	
  returned	
  one	
  significantly	
  associated	
  
variant	
  (p=	
  1.5	
  x	
  10-­‐8),	
  located	
  in	
  an	
  intron	
  of	
  
the	
  gene	
  DGKH.	
  The	
  authors	
  considered	
  this	
  a	
  
good	
  candidate	
  gene,	
  as	
  it	
  plays	
  a	
  role	
  in	
  the	
  
lithium	
  sensitive	
  phosphatidyl	
  inositol	
  pathway.	
  

(Wellcome	
  
Trust	
  Case	
  
Control,	
  2007)	
  

GWAS	
  of	
  seven	
  common	
  diseases,	
  including	
  BD,	
  in	
  a	
  
British	
  case-­‐control	
  set.	
  The	
  BD	
  GWAS	
  was	
  performed	
  on	
  
1,868	
  cases	
  and	
  3,000	
  controls,	
  using	
  the	
  Affymetrix	
  
GeneChip	
  500K	
  Mapping	
  Array	
  Set.	
  

No	
  genome-­‐wide	
  significant	
  association	
  was	
  
observed	
  for	
  BD.	
  However,	
  KCNC2,	
  GABRB1,	
  
GRM7	
  and	
  SYN3	
  all	
  showed	
  association	
  at	
  P<	
  5	
  
×	
  10-­‐7.	
  	
  

(Sklar	
  et	
  al.,	
  
2008)	
  

GWAS	
  of	
  samples	
  from	
  the	
  Systematic	
  Treatment	
  
Enhancement	
  Program	
  for	
  Bipolar	
  Disorder	
  (STEP-­‐BD)	
  
study	
  (1,461	
  cases	
  and	
  2,008	
  controls).	
  

No	
  variant	
  reached	
  genome-­‐wide	
  significance;	
  
however,	
  the	
  strongest	
  association	
  was	
  seen	
  for	
  
a	
  variant	
  in	
  MYO5B	
  (P=1.66	
  x	
  10-­‐7).	
  In	
  addition,	
  
comparison	
  of	
  top	
  associated	
  SNPs	
  from	
  this	
  
study	
  and	
  the	
  WTCCC	
  showed	
  that	
  there	
  was	
  a	
  
concordance	
  of	
  signals	
  for	
  SNPs	
  in	
  the	
  gene	
  
CACNA1C.	
  	
  	
  

(Ferreira	
  et	
  al.,	
  
2008)	
  

GWAS	
  of	
  BD	
  in	
  a	
  dataset	
  referred	
  to	
  as	
  the	
  ED-­‐DUB-­‐
STEP2	
  dataset,	
  consisting	
  of	
  cases	
  and	
  controls	
  from	
  the	
  
University	
  of	
  Edinburgh,	
  Trinity	
  College	
  Dublin	
  and	
  the	
  
STEP-­‐BD	
  study.	
  In	
  total,	
  this	
  dataset	
  consisted	
  of	
  4,387	
  
cases	
  and	
  6,209	
  controls.	
  	
  

This	
  analysis	
  identified	
  two	
  strongly	
  associated	
  
regions.	
  The	
  first,	
  rs10994336	
  (P=	
  9.1	
  x	
  10-­‐9)	
  
was	
  in	
  the	
  gene	
  ANK3	
  and	
  the	
  second,	
  
rs1006737	
  (P	
  =	
  7.1	
  x	
  10-­‐8),	
  was	
  in	
  the	
  previously	
  
reported	
  gene	
  CACNA1C.	
  	
  	
  

(Ollila	
  et	
  al.,	
  
2009)	
  

GWAS	
  replication	
  study.	
  The	
  authors	
  took	
  the	
  strongest	
  
associated	
  SNPs	
  from	
  two	
  GWAS	
  studies	
  (WTCCC,	
  2007;	
  
and	
  Baum	
  et	
  al,	
  2008)	
  and	
  genotyped	
  these	
  26	
  variants	
  in	
  
a	
  Finnish	
  BD	
  family	
  cohort	
  (723	
  individuals	
  from	
  180	
  
families).	
  

Confirmed	
  six	
  associations:	
  DFNB31	
  
(rs10982256),	
  SORCS2	
  (rs4411993,	
  rs7683874,	
  
rs10937823),	
  SCL39A3	
  (rs4806874),	
  and	
  DGKH	
  
(rs9315885).	
  

(Smith	
  et	
  al.,	
  
2009)	
  

The	
  authors	
  conducted	
  two	
  GWAS,	
  one	
  on	
  samples	
  of	
  
European	
  ancestry	
  (EA:	
  1,001	
  cases	
  and	
  1,033	
  controls)	
  
and	
  one	
  of	
  African	
  ancestry	
  (AA:	
  345	
  cases	
  and	
  670	
  
controls).	
  	
  

No	
  signal	
  reached	
  genome-­‐wide	
  significance;	
  
however	
  the	
  top	
  two	
  variants	
  from	
  each	
  study	
  
(EA	
  and	
  AA)	
  were:	
  an	
  intergenic	
  region	
  of	
  Xq27	
  
and	
  NAP1	
  (EA);	
  and	
  DPY19L3	
  and	
  NTRK2	
  (AA).	
  

(Wang	
  et	
  al.,	
  
2010)	
  

Performed	
  a	
  genome-­‐wide	
  meta-­‐analysis	
  of	
  two	
  cohorts	
  
of	
  combined	
  BD	
  and	
  SCZ	
  cases	
  (653,	
  1172	
  cases	
  and	
  
1034,	
  1379	
  controls	
  respectively).	
  

Identified	
  five	
  loci	
  associated	
  with	
  both	
  BD	
  and	
  
SCZ:	
  NAP5,	
  chr6q15	
  (near	
  GABRR1),	
  CNTNAP2,	
  
chr9q33.1	
  (near	
  ASTN2)	
  and	
  NALCN.	
  

(Howrigan	
  et	
  
al.,	
  2011)	
  

Used	
  prior	
  findings	
  from	
  genome-­‐wide	
  linkage	
  analysis	
  to	
  
re-­‐analyse	
  the	
  GWAS	
  data	
  from	
  the	
  STEP-­‐BD.	
  Using	
  this	
  
linkage	
  data,	
  they	
  implemented	
  a	
  weighted	
  FDR	
  
approach.	
  

No	
  SNPs	
  reached	
  genome-­‐wide	
  significance.	
  

(Psychiatric,	
  
2011)	
  	
  

GWAS	
  of	
  7,481	
  BD	
  cases	
  and	
  9,250	
  controls	
  and	
  a	
  
replication	
  cohort	
  of	
  4,496	
  BD	
  cases	
  and	
  42,422	
  controls.	
  

Confirmed	
  the	
  previously	
  identified	
  association	
  
for	
  CACNA1C	
  and	
  identified	
  a	
  new	
  association	
  
with	
  an	
  intronic	
  variant	
  in	
  ODZ4.	
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Study	
   Details	
  of	
  project	
  design	
   Results	
  

(Smith	
  et	
  al.,	
  
2011)	
  

GWAS	
  of	
  BD	
  on	
  samples	
  from	
  the	
  Bipolar	
  Genome	
  Study	
  
(BiGS),	
  consisting	
  of	
  2,191	
  cases	
  and	
  1,434	
  controls.	
  

No	
  variants	
  reached	
  genome-­‐wide	
  significance;	
  
however,	
  the	
  authors	
  noted	
  that	
  the	
  variant	
  
rs2367911,	
  near	
  the	
  gene	
  CACNA2D1	
  had	
  
suggestive	
  association	
  (P = 5.9	
  ×	
  10-­‐6).	
  This	
  gene	
  
is	
  related	
  to	
  the	
  previously	
  reported	
  gene	
  
CACNA1C.	
  

(Cichon	
  et	
  al.,	
  
2011)	
  

GWAS	
  of	
  BD	
  in	
  a	
  German	
  cohort	
  (MooDS).	
  Discovery	
  
cohort	
  consisted	
  of	
  682	
  cases	
  and	
  1,300	
  controls;	
  total	
  
number	
  of	
  samples	
  between	
  the	
  discovery	
  cohort	
  and	
  
two	
  replication	
  cohorts	
  were	
  6,030	
  cases	
  and	
  31,749	
  
controls.	
  	
  

This	
  study	
  identified	
  rs1064395	
  as	
  a	
  risk	
  factor	
  
for	
  BD.	
  This	
  variant	
  is	
  located	
  in	
  the	
  3’UTR	
  of	
  
the	
  gene	
  NCAN,	
  encoding	
  an	
  extracellular	
  
matrix	
  glycoprotein,	
  thought	
  to	
  play	
  a	
  role	
  in	
  
migration	
  and	
  cell	
  adhesion.	
  	
  	
  

(Lee	
  et	
  al.,	
  
2011)	
  

GWAS	
  of	
  a	
  sub-­‐set	
  of	
  BD	
  (bipolar	
  I)	
  in	
  a	
  Han	
  Chinese	
  
cohort.	
  The	
  discovery	
  cohort	
  consisted	
  of	
  1,000	
  cases	
  and	
  
1,000	
  controls;	
  the	
  replication	
  cohort	
  contained	
  409	
  
cases	
  and	
  1,000	
  controls.	
  

Although	
  no	
  genome-­‐wide	
  associated	
  regions	
  
were	
  identified,	
  several	
  suggestive	
  loci	
  were	
  
found	
  (P<	
  10-­‐6):	
  SP8,	
  ST8SIA2,	
  KCTD12	
  and	
  
CACNB2.	
  	
  

(Greenwood	
  et	
  
al.,	
  2012)	
  

The	
  authors	
  attempted	
  to	
  counteract	
  the	
  genetic	
  
heterogeneity	
  of	
  BD	
  by	
  using	
  temperament	
  as	
  a	
  
quantitative	
  trait	
  to	
  define	
  subtypes	
  of	
  BD.	
  Genotyping	
  
was	
  performed	
  on	
  1,263	
  BD	
  cases	
  and	
  1,434	
  controls.	
  

Using	
  five	
  subscales	
  of	
  temperament	
  
(hyperthymic,	
  dysthymic,	
  cyclothymic,	
  irritable	
  
and	
  anxious),	
  the	
  authors	
  identified	
  three	
  
significantly	
  associated	
  regions:	
  chr1	
  (INTS7	
  
gene),	
  chr12	
  (MDM1)	
  and	
  chr22	
  (FBLN1).	
  	
  	
  

(Kerner	
  et	
  al.,	
  
2013)	
  

Exome	
  sequencing	
  study	
  of	
  individuals	
  from	
  a	
  family	
  with	
  
BD	
  and	
  co-­‐morbid	
  anxiety	
  spectrum	
  disorders.	
  This	
  study	
  
compared	
  the	
  exomes	
  of	
  three	
  affected	
  sisters	
  against	
  
one	
  unaffected	
  brother	
  and	
  200	
  population	
  controls.	
  

Exome	
  sequencing	
  identified	
  very	
  rare,	
  
heterozygous	
  variants	
  in	
  eight	
  brain	
  expressed	
  
genes:	
  IQUB,	
  JMJD1C,	
  GADD45A,	
  GOLGB1,	
  
PLSCR5,	
  VRK2,	
  MESDC2	
  and	
  FGGY.	
  Predicted	
  by	
  
at	
  least	
  one	
  functional	
  predictive	
  algorithm	
  (out	
  
of	
  three:	
  SIFT,	
  PolyPhen	
  and	
  Mutation	
  Taster)	
  
to	
  be	
  potentially	
  protein	
  damaging.	
  

(Chen	
  et	
  al.,	
  
2013)	
  

Meta-­‐analysis	
  of	
  a	
  cohort	
  consisting	
  of	
  cases	
  and	
  controls	
  
of	
  European	
  and	
  Asian	
  ancestry.	
  This	
  analysis	
  combines	
  
two	
  GWAS;	
  the	
  first	
  (phase	
  I)	
  based	
  on	
  6,658	
  cases	
  and	
  
8,187	
  controls,	
  the	
  second	
  (phase	
  II)	
  tested	
  in	
  a	
  sample	
  of	
  
484	
  cases	
  and	
  1,823	
  controls.	
  Together,	
  this	
  combined	
  
dataset	
  comprised	
  	
  ~17,000	
  samples.	
  

The	
  discovery	
  phase	
  of	
  this	
  study	
  identified	
  one	
  
genome-­‐wide	
  significant	
  result	
  near	
  TRANK1	
  
(rs9834970,	
  P=	
  2.4	
  x	
  10-­‐11).	
  In	
  addition,	
  there	
  
was	
  suggestive	
  evidence	
  of	
  association	
  for	
  a	
  
variant	
  near	
  ANK3	
  (P	
  <	
  10-­‐6).	
  These	
  associations	
  
were	
  replicated	
  in	
  the	
  phase	
  II	
  data.	
  

(Muhleisen	
  et	
  
al.,	
  2014)	
  

In	
  the	
  largest	
  BD	
  GWAS	
  to	
  date,	
  the	
  authors	
  genotyped	
  
2.3	
  million	
  SNPs	
  in	
  a	
  cohort	
  of	
  24,025	
  patients	
  and	
  
controls.	
  These	
  samples	
  were	
  a	
  combination	
  of	
  samples	
  
from	
  the	
  BGC-­‐BD	
  and	
  MooDS	
  consortia	
  (9,747	
  cases	
  and	
  
14,278	
  controls).	
  

This	
  analysis	
  identified	
  five	
  genome-­‐wide	
  
significantly	
  associated	
  loci:	
  ANK3,	
  ODZ4,	
  
TRANK1,	
  DCY2	
  and	
  an	
  intergenic	
  region	
  on	
  
6q16.1.	
  Three	
  of	
  these	
  regions	
  had	
  previously	
  
been	
  reported,	
  while	
  the	
  other	
  two	
  were	
  novel.	
  	
  	
  

(Xu	
  et	
  al.,	
  
2014)	
  

GWAS	
  performed	
  on	
  Canadian	
  and	
  UK	
  population	
  
cohorts,	
  consisting	
  of	
  950	
  BD	
  cases	
  and	
  950	
  controls.	
  

No	
  genome-­‐wide	
  significant	
  results.	
  However,	
  
this	
  study	
  identified	
  several	
  suggestive	
  
associations	
  with	
  variants	
  in	
  regions	
  previously	
  
implicated	
  in	
  other	
  GWAS	
  studies	
  (including	
  
SYNE1	
  on	
  chr6q25,	
  PPP2R2C	
  on	
  chr4p16.1,	
  
ZNF659	
  on	
  chr3p24.3,	
  CNTNAP5	
  on	
  chr2q14.5	
  
and	
  CDH13	
  on	
  chr16q23.3).	
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Study	
   Details	
  of	
  project	
  design	
   Results	
  
(Georgi	
   et	
   al.,	
  
2014)	
  

WGS	
  analysis	
  of	
  a	
  genetic	
   isolate	
   (large	
  old	
  order	
  Amish	
  
pedigree)	
  with	
   BD.	
  Of	
   the	
   497	
   individuals	
   in	
   this	
   family,	
  
the	
   genomes	
   of	
   50	
   	
   (consisting	
   of	
   18	
   parent-­‐child	
   trios)	
  
were	
  sequenced	
  and	
  a	
  further	
  388	
  family	
  members	
  were	
  
genotyped.	
  

Using	
  a	
  combination	
  of	
  linkage,	
  association	
  and	
  
WGS	
   analysis,	
   this	
   study	
   identified	
   five	
  
nominally	
   significant	
   linkage	
   regions:	
  
chr2p25.3-­‐p25.1,	
   chr4p16.3,	
   chr7q21.11-­‐
q31.33,	
   chr16p13.3-­‐13.12	
   and	
   chr18p11.22-­‐
q13.1.	
   Analysis	
   of	
   the	
   variants	
   located	
   under	
  
these	
   peaks	
   identified	
   several	
   amish-­‐specific	
  
putative	
   damaging	
   exonic	
   missense	
   variants;	
  
however,	
   no	
   evidence	
   strongly	
   implicated	
   any	
  
one	
  locus	
  or	
  a	
  common	
  pathway.	
  

(Nurnberger	
  et	
  
al.,	
  2014)	
  

Meta-­‐analysis	
   of	
   four	
   published	
   GWAS	
   to	
   identify	
  
biological	
   pathways	
   that	
   contribute	
   to	
   BD.	
   966	
   genes	
  
with	
  two	
  or	
  more	
  variants	
  associated	
  with	
  BD	
  (P	
  <	
  0.5)	
  in	
  
three	
  of	
  four	
  GWAS	
  were	
  included	
  in	
  this	
  analysis.	
  	
  

17	
  pathways	
  were	
  implicated	
  in	
  this	
  analysis,	
  of	
  
which	
   6	
   were	
   associated	
   with	
   BD	
   in	
   both	
   the	
  
initial	
  and	
  replication	
  samples.	
  These	
  pathways	
  
included:	
   hormonal	
   regulation,	
   calcium	
  
channels,	
   second	
   messenger	
   systems	
   and	
  
glutamate	
  signalling.	
  

(Ament	
   et	
   al.,	
  
2015)	
  

Whole	
   genome	
   sequencing	
   of	
   200	
   individuals	
   from	
   41	
  
families	
  multiply	
  affected	
  with	
  BD.	
  This	
  study	
  focused	
  on	
  
3,087	
  genes	
  with	
  i.	
  evidence	
  of	
  association	
  from	
  GWAS	
  or	
  
ii.	
  with	
  know	
  synaptic	
   functions.	
  Targeted	
  sequencing	
  of	
  
a	
  subset	
  of	
  these	
  candidate	
  genes	
  (26)	
  was	
  performed	
  in	
  
an	
  additional	
  3,014	
  cases	
  and	
  1,717	
  controls.	
  

The	
   aim	
   of	
   this	
   study	
   was	
   to	
   identify	
  
uncommon	
   and	
   rare	
   variants	
   that	
   might	
  
influence	
  risk	
  for	
  bipolar	
  disorder.	
  This	
  analysis	
  
focused	
   on	
   genes	
   with	
   a	
   priori	
   functional	
   or	
  
GWAS	
  association	
  evidence.	
  BD	
  pedigrees	
  were	
  
shown	
   to	
   have	
   an	
   increased	
   burden	
   of	
   rare	
  
variants	
   in	
   genes	
   and	
   pathways	
   that	
   regulate	
  
neuronal	
  excitability,	
  particularly	
  in	
  ion	
  channel	
  
genes.	
  Most	
  of	
  the	
  risk	
  variants	
  identified	
  were	
  
non-­‐coding	
   variants	
   predicted	
   to	
   have	
  
regulatory	
   functions,	
   suggesting	
   an	
   important	
  
role	
  for	
  the	
  regulation	
  of	
  gene	
  expression	
  in	
  BD.	
  	
  	
  

 

Table 5.1. Summary of large-scale analyses of BD performed over the last decade.  

	
  

5.1.2 Major depressive disorder 
Major depressive disorder (MDD), also known as major depression and unipolar 

depression, is a debilitating psychiatric disorder, characterised by a persistent depressive 

mood, loss of interest or pleasure in normally enjoyable activities and changes to sleep 

and appetite (Verbeek et al., 2013). MDD is one of the most common psychiatric 

disorders, with a lifetime prevalence of ~15% (Kessler et al., 2005). In 1996 the World 

Health Organisation predicted MDD would be the second leading cause of disability 

worldwide by 2020 (after ischemic heart disease) (Murray and Lopez, 1996). Almost 

twenty years later, this prediction is on track; MDD is the third leading cause of 

disability in Europe and in the US is reported as being the greatest cause of disability of 

any biomedical disease (Flint and Kendler, 2014). 
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Family studies have shown there is a genetic component to MDD, with heritability 

estimated to be 0.37 (95% confidence intervals 31-42%)(Sullivan et al., 2000). Both 

early onset and recurrence of depression are associated with higher familial aggregation 

((Wray et al., 2012); (Sullivan et al., 2000); (Kendler et al., 2005)). This disorder is twice 

as common in women as men ((Wray et al., 2012); (Wilhelm et al., 2003)). 

 

To date, ten GWASs have been published (see Table 5.2). Only two of these have 

returned genome-wide significant associations ((Kohli et al., 2011); (consortium, 2015)). 

The first, by Kohli et al. (2011) identified a ~450kb region associated with MDD. Two 

tagging SNPs within this region were found to be associated with altered expression of 

SLC6A15. The second, by the CONVERGE consortium (2015), attempted to reduce 

genetic heterogeneity by focusing on women with recurrent MDD, of Han Chinese 

ancestry (all four grandparents were Han Chinese). This study used low-coverage whole 

genome sequencing of 5,303 cases and 5,337 controls (also Han Chinese women). After 

quality control, the SNP set for GWAS consisted of 6,242,619 SNPs. This study 

identified, and later independently replicated, two genome-wide significantly associated 

regions for MDD. The first variant, rs12415800 (P = 2.53 x 10-10), is located near the 

SIRT1 gene on chromosome 10; the second variant, rs126244970 (P = 6.45 x 10-12), is 

also on chromosome 10, in an intron of the LHPP gene. 

 

	
  

Study	
   Details	
  of	
  project	
  design	
   Results	
  

(Sullivan	
  et	
  al.,	
  2009)	
   GWAS	
  of	
  435,291	
  SNPs	
  genotyped	
  in	
  1,738	
  
MDD	
  cases	
  and	
  1,802	
  controls	
  from	
  a	
  
Dutch	
  cohort.	
  	
  

No	
  SNP	
  reached	
  genome-­‐wide	
  significance.	
  However,	
  of	
  
the	
  top	
  200	
  ranked	
  SNPs,	
  11	
  localised	
  to	
  a	
  167	
  kb	
  region,	
  
which	
  overlaps	
  the	
  gene	
  PCLO.	
  The	
  protein	
  encoded	
  by	
  
this	
  gene	
  is	
  known	
  to	
  be	
  involved	
  in	
  neurotransmission.	
  

(Lewis	
  et	
  al.,	
  2010)	
   GWAS	
  of	
  471,747	
  SNPs	
  genotyped	
  in	
  a	
  UK	
  
cohort	
  of	
  1,636	
  MDD	
  cases	
  and	
  1,594	
  
controls.	
  

No	
  genome-­‐wide	
  significant	
  results	
  were	
  identified	
  in	
  this	
  
study.	
  A	
  SNP	
  in	
  BICC1	
  achieved	
  suggestive	
  evidence	
  of	
  
association	
  (P	
  <	
  10-­‐6),	
  but	
  this	
  finding	
  has	
  not	
  been	
  
replicated.	
  

(Muglia	
  et	
  al.,	
  2010)	
   The	
  authors	
  performed	
  GWAS	
  on	
  two	
  
independent	
  European	
  cohorts:	
  first	
  1,022	
  
cases	
  of	
  MDD	
  and	
  1000	
  controls	
  
(genotyped	
  using	
  the	
  Illumina	
  550	
  
platform);	
  and	
  second	
  492	
  MDD	
  cases	
  and	
  
1052	
  controls	
  (genotyped	
  using	
  the	
  

Neither	
  of	
  the	
  two	
  separate	
  GWASs,	
  nor	
  the	
  meta-­‐
analysis,	
  identified	
  any	
  genome-­‐wide	
  significant	
  
associations.	
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Affymetrix	
  5.0	
  platform).	
  These	
  
independent	
  datasets	
  were	
  also	
  studied	
  
together	
  in	
  a	
  meta-­‐analysis.	
  

(Rietschel	
  et	
  al.,	
  2010)	
   GWAS	
  of	
  604	
  patients	
  with	
  MDD	
  and	
  1,364	
  
controls	
  from	
  a	
  German	
  cohort.	
  

No	
  SNPs	
  reached	
  genome-­‐wide	
  significance.	
  Two	
  SNPs	
  
showed	
  nominally	
  significant	
  association,	
  one	
  of	
  which	
  is	
  
located	
  in	
  a	
  putative	
  regulatory	
  element	
  for	
  HOMER1.	
  
Evidence	
  from	
  animal	
  studies	
  and	
  human	
  imaging	
  studies	
  
support	
  the	
  hypothesis	
  that	
  HOMER1	
  may	
  play	
  a	
  role	
  in	
  
the	
  aetiology	
  of	
  MDD	
  through	
  a	
  dysregulation	
  of	
  
cognitive	
  and	
  motivational	
  processes.	
  

(Shyn	
  et	
  al.,	
  2011)	
   GWAS	
  of	
  1,221	
  cases	
  and	
  1,636	
  controls	
  
from	
  a	
  US	
  cohort.	
  The	
  authors	
  also	
  
conducted	
  a	
  meta-­‐analysis	
  of	
  three	
  
European-­‐ancestry	
  GWAS	
  datasets	
  totalling	
  
3,957	
  cases	
  and	
  3,428	
  controls.	
  

This	
  study	
  failed	
  to	
  identify	
  any	
  variants	
  that	
  reached	
  
genome-­‐wide	
  significance.	
  The	
  strongest	
  evidence	
  for	
  
association	
  in	
  this	
  analysis	
  was	
  observed	
  for	
  three	
  
intronic	
  SNPs	
  in	
  SP4,	
  ATP6V1B2	
  and	
  GRM7.	
  Prior	
  
biological	
  evidence	
  suggested	
  GRM7	
  to	
  be	
  a	
  strong	
  
candidate	
  gene	
  for	
  MDD.	
  However,	
  this	
  has	
  yet	
  to	
  be	
  
replicated	
  in	
  any	
  other	
  GWAS	
  study.	
  	
  

(Shi	
  et	
  al.,	
  2011)	
   GWAS	
  on	
  a	
  US	
  cohort	
  consisting	
  of	
  1,020	
  
MDD	
  cases	
  and	
  1,636	
  controls.	
  

No	
  genome-­‐wide	
  significant	
  results	
  were	
  identified	
  in	
  this	
  
study.	
  The	
  strongest	
  evidence	
  of	
  association	
  was	
  
observed	
  on	
  chr18q22.1.	
  

(Kohli	
  et	
  al.,	
  2011)	
   Discovery	
  set	
  consisted	
  of	
  353	
  MDD	
  cases	
  
and	
  366	
  controls	
  from	
  a	
  clinic	
  in	
  Munich	
  
Germany.	
  The	
  replication	
  set	
  consisted	
  of	
  
3,738	
  cases	
  and	
  10,635	
  controls	
  from	
  six	
  
independent	
  cohorts	
  of	
  German,	
  Dutch,	
  UK	
  
and	
  African	
  American	
  origin.	
  

This	
  study	
  identified	
  a	
  single	
  genome-­‐wide	
  significant	
  
association	
  with	
  a	
  variant	
  on	
  chr12q21.31.	
  This	
  variant	
  
appears	
  to	
  be	
  part	
  of	
  a	
  haplotype	
  containing	
  seven	
  
additional	
  common	
  variants	
  in	
  LD	
  with	
  the	
  tagging	
  SNP,	
  
covering	
  a	
  region	
  of	
  ~450kb.	
  This	
  region	
  is	
  a	
  gene	
  desert,	
  
the	
  closest	
  gene	
  to	
  which	
  is	
  SLC6A15	
  (a	
  further	
  287kb	
  
distal	
  to	
  the	
  associated	
  region).	
  Gene	
  expression	
  showed	
  
that	
  two	
  of	
  the	
  common	
  variants	
  in	
  the	
  associated	
  region	
  
altered	
  the	
  expression	
  of	
  SLC6A15	
  in	
  the	
  hippocampus.	
  

(Wray	
  et	
  al.,	
  2012)	
   GWAS	
  of	
  the	
  MDD2000+	
  cohort,	
  consisting	
  
of	
  2,431	
  cases	
  and	
  3,673	
  controls.	
  In	
  
addition,	
  the	
  authors	
  performed	
  a	
  meta-­‐
analysis	
  including	
  two	
  additional	
  datasets	
  
(totalling	
  5,763	
  cases	
  and	
  6,901	
  controls).	
  

No	
  SNPs	
  in	
  either	
  the	
  MDD2000+	
  study	
  nor	
  in	
  the	
  meta-­‐
analysis	
  reached	
  genome-­‐wide	
  significance.	
  

(Major	
  Depressive	
  
Disorder	
  Working	
  
Group	
  of	
  the	
  
Psychiatric	
  et	
  al.,	
  2013)	
  

This	
  is	
  the	
  largest	
  GWAS	
  for	
  MDD	
  to	
  date,	
  
consisting	
  of	
  9,240	
  cases	
  and	
  9,519	
  
controls	
  of	
  recent	
  European	
  ancestry.	
  In	
  
addition	
  to	
  a	
  large	
  replication	
  cohort	
  
(6,783	
  cases	
  and	
  50,695	
  controls),	
  this	
  
study	
  stratified	
  cases	
  by	
  phenotypes	
  
including	
  sex,	
  recurrence	
  and	
  age	
  of	
  onset	
  
amongst	
  others.	
  

No	
  SNP	
  reached	
  genome-­‐wide	
  significance.	
  

(consortium,	
  2015)	
   This	
  study	
  focused	
  on	
  a	
  cohort	
  of	
  Han	
  
Chinese	
  women,	
  5,303	
  with	
  recurrent	
  MDD	
  
and	
  5,337	
  controls.	
  Low-­‐coverage	
  whole-­‐
genome	
  sequencing	
  was	
  used	
  to	
  genotype	
  
the	
  cohort;	
  6,242,629	
  SNPs	
  were	
  used	
  for	
  
the	
  GWAS.	
  	
  

Two	
  genome-­‐wide	
  significant	
  loci	
  were	
  identified:	
  
rs12415800	
  (P	
  =	
  2.53	
  x	
  10-­‐10),	
  located	
  near	
  the	
  SIRT1	
  gene	
  
on	
  chromosome	
  10;	
  and	
  rs126244970	
  (P	
  =	
  6.45	
  x	
  10-­‐12),	
  
in	
  an	
  intron	
  of	
  the	
  LHPP	
  gene.	
  	
  Neither	
  of	
  these	
  
significantly	
  associated	
  variants	
  were	
  replicated	
  in	
  a	
  
comparison	
  against	
  the	
  PGC	
  MDD	
  GWAS	
  data	
  (2013).	
  

Table 5.2 Summary of the ten MDD GWAS studies performed to date.  
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So far, candidate gene approaches have analysed almost 200 genes in the search for 

genes and pathways that might function in the aetiology of MDD. So far, these studies 

have had limited success, and many groups working on the same gene report contrary 

and conflicting findings. A meta-analysis of 26 genes yielded significant results for 7 

genes (Flint and Kendler, 2014). However, the mean effect size across these studies was 

shown to be 1.35, and the variants tested were shown to be common. These two facts 

together suggest that these associations, if real, should have been identified by at least 

one of the ten MDD GWASs published to date. As they have not, it is possible that these 

are false positive findings (Flint and Kendler, 2014). However, increased genetic 

heterogeneity of GWAS samples might have masked the association with a subtype of 

illness. Similarly, rare variants or variants with a lower effect size, which would also be 

missed by GWAS, may still contribute to MDD (Flint and Kendler, 2014). 

 

Although GWASs have yet to identify replicated variants associated with MDD, we 

have still learnt something from these analyses, as the lack of results provide clues to the 

genetic architecture of MDD: 

1. Large numbers of common variants of small effect sizes (odds ratios of less than 

1.2) could account for a large portion of the genetics of MDD.  If this is the case, 

increased sample sizes will be needed to identify these variants, as increasing the 

number of cases of MDD used for GWAS will improve the power to detect 

common variants of small effect sizes (<1.2) (Levinson et al., 2014). 

 
2. The limited success of GWAS could also point to the role of individually rare 

variants with higher effect sizes in causing complex traits such as MDD 

(McCellan and King, 2010). Although each of these variants might only occur in 

a small subset of cases, collectively they could contribute a significant portion of 

the genetics of MDD. These rare variants are unlikely to be indentified by 

current GWAS approaches (Flint and Kendler, 2014). 

 
3. The environmental component for MDD is quite substantial. Sullivan et al. 

(2000) showed that variance in liability to MD is mostly due to individual 

specific environmental effects (95% confidence interval 58%-67%)(Sullivan et 

al., 2000). Focusing analyses on cases of MDD with more homogenous 
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environmental backgrounds could be a way of reducing heterogeneity in the 

data; for instance, studying women with perinatal and post-partum MDD (Wray 

et al., 2012).   

 
4. Genetic heterogeneity, coupled with phenotypic homogeneity, could reduce the 

power of association studies. In their 2014 paper, Flint and Kendler (Flint and 

Kendler, 2014) described the following scenario: if two unrelated pathways lead 

to MDD and 50 variants contribute to disease aetiology through one pathway and 

another 50 contribute through the second pathway (both sub-types of MDD 

presenting with the same phenotypes), the power to detect either pathway is 

reduced by half. They suggested that without prior knowledge of these two 

pathways, the results of such an analysis would be difficult to decipher. 

 

Sub-setting cases based on additional phenotypes (for instance, by sex, co-morbid 

psychiatric traits, severity of symptoms, combination of symptoms, biomarkers (e.g., 

MRI data), early-onset, or other co-morbid illnesses) could provide more homogenous 

datasets. Similarly, family studies of psychiatric illness provide a level of genetic 

homogeneity, as cases share genetic factors contributing to disease susceptibility. 

 

 

5.1.3 Collaborative efforts with Cold Spring Harbour Laboratories 
Our group has been working in collaboration with Prof. Dick McCombie’s group at Cold 

Spring Harbour Laboratories (CSHLs) to investigate the genetic causes of several 

psychiatric illnesses using family studies. I have worked on two of these projects as part 

of my PhD project:  the Scottish BD family project; and a second Scottish family, 

presenting with both MDD and idiopathic oedema. 
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5.1.4 The Scottish bipolar family project 

5.1.4.1  Background 

In 1996 a linkage analysis was performed on twelve Scottish mood disorder families 

(Blackwood et al., 1996). One of these families, from now on referred to as “SBF2” 

(Figure 5.1), with multiple cases of BD and MDD, generated a significant two-point 

LOD score (LOD >= 3.3; (Lander and Kruglyak, 1995)) of 4.1 (at recombination 

fraction θ = 0) with the marker D4S394 on chromosome 4p, under the narrow diagnostic 

model (BD cases only; MDD coded as ‘unknown’). Little change was seen in the linkage 

to this marker when the broad model (BD and MDD) was used (LOD 3.95, θ = 0), 

showing evidence of linkage to BD and MDD in this region (Blackwood et al., 1996). 

Re-analysis of this family, using an extended pedigree and additional microsatellite 

markers, increased the LOD score to 4.41 at marker D4S394 (under the narrow 

diagnostic model) (Le Hellard et al., 2007). Additional investigation of this region using 

a robust variant components analysis method (Visscher et al., 1999), showed very strong 

evidence for a quantitative trait locus in this region affecting both bipolar disorder and 

MDD, achieving a maximum LOD of 5.9 and explaining roughly 25% of variance for 

these traits in this pedigree. This region has failed to be identified as significantly 

associated to BD by GWAS; however, a variant at the centromeric end of this linkage 

region (rs215411) was significantly associated with SCZ in a recent GWAS 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014). In addition, there is 

tentative association evidence suggesting chr4p15-16 is a putative locus for 

susceptibility for BD  ((Christoforou et al., 2007); (Baum et al., 2008); (Ollila et al., 

2009)), as well as tentative linkage evidence (Georgi et al., 2014). These, together with 

the linkage analysis, suggest that the region may contain a rare genetic risk variant for 

psychiatric illness, segregating in this family under a dominant model with reduced 

penetrance 
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5.1.4.2 Collaboration with CSHLs on the SBF2 project 

Based on the linkage analyses (which showed strong evidence of linkage to this region 

under a dominant model ((Blackwood et al., 1996); (Le Hellard et al., 2007))) and the 

variance components analysis (which suggested the association is unlikely to be due to a 

polygenic component (Visscher et al., 1999)), we hypothesised that the genetic risk 

variant for BD and MDD in SBF2 would be a rare variant, segregating with incomplete 

penetrance, located within the linkage region on chromosome 4.  

 

Our collaborator at CSHLs, Prof. Dick McCombie, set out to generate sequencing data 

from the 4p locus in this family. At the time this project was initiated (2009), several 

sequencing options were available. Whole genome sequencing was chosen as the most 

effective method to achieve sufficient coverage at lowest cost.  

CSHLs sequenced the whole genomes of five individuals from SBF2, three affected-

carriers of the disease-linked haplotype on chromosome 4p15-16 (ID 17 (MDD), ID 21 

(BD) and ID 29 (BD)) and two unaffected, married in individuals (ID 33 and ID 39). 

Samples were sequenced on the Illumina GAIIx platform. The mean sequencing depth 

across the five individuals ranged from 36x to 58x. These data were processed using the 

Illumina pipeline v1.5/v1.6 for base calling. Sequence alignment was performed using 

BWA (Li and Durbin, 2009), and the Genome Analysis ToolKit (GATK)(McKenna et 

al., 2010) was used to analyse the sequencing data. SNPs were filtered using the 

following GATK filtering thresholds: 

• Filter out SNPs which have a phred-scaled Qscore >= 30 

• Filter out SNPs within clusters (3 SNPs within 10bp of each other) 

• Filter out SNPs which have <10X coverage 

• Include SNPs which are found in chrM and chrRandom 

• Include SNPs in repeat regions 

 

This analysis focused on the SBF2 disease-linked haplotype, defined as an 

approximately 20Mb region on chromosome 4p (Le Hellard et al., 2007).  CSHLs 

transferred files containing the SNPs from the linkage region as VCF files. The 

downstream analysis of this data is described in more detail in section 5.3.1. 
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Prior to my PhD project, the Evan’s group had performed an initial investigation of the 

SNP data from the disease-linked chromosome, focusing on the coding SNPs. No 

unique, putatively functional, non-synonymous or missense SNPs were identified in the 

cases, suggesting that the causal variant might be a non-coding variant. It was therefore 

important to be able to functionally interpret and compare non-coding variants 

(regulatory variants in untranslated regions (UTRs), introns, promoters and intergenic 

regions; splice variants, etc). I therefore aimed to use SuRFR to prioritise these variants 

on the likelihood of functionality. 

 

5.1.5 Co-morbid major depressive disorder and idiopathic oedema  

5.1.5.1 Idiopathic Oedema 

Idiopathic oedema (IO) is also known as cyclical oedema, periodic oedema, the fluid-

retention syndrome, and, less formally, unexplained swelling (Denning et al., 1990). 

This disorder is characterised by intermittent swelling symptoms, often occurring at two 

or more sites simultaneously, including the face, hands, fingers, feet, breasts, abdomen 

and limbs. These symptoms also include fluid retention and an increase in body weight 

from the morning to the evening (diurnal weight variation). The amount of weight 

change considered clinically significant is still under debate. Thorn’s operational 

criterion (Thorn, 1968), suggests a diurnal weight variation exceeding 1.4 Kg to be 

diagnostic for IO. This is still commonly used for the diagnosis of this disorder; 

however, a study of ‘normal’ fluid retention versus that experienced by women with IO 

did not find this diagnostic measure capable of discriminating between cases and 

controls (Denning et al., 1990). This is supported by the most recent assessment of the 

community prevalence of swelling symptoms (Dunnigan et al., 2004), which reported a 

median self-recorded daily weight gain for patients with severe IO to be 0.89 Kg. This 

study also found that the severity of discomfort experienced by individuals with IO is 

disproportionate to the amount of swelling observed by clinicians, and changes in 

swelling are often more obvious to those suffering from IO and their close relatives 

(Dunnigan et al., 2004). 
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In recent years, it has become more commonly accepted that symptoms of IO often form 

a clinical triad consisting of swelling symptoms, functional-autonomic symptoms 

(irritable bowel syndrome, urge frequency, and incontinence of micturition, vasomotor 

symptoms with pallor, faintness and syncope) and affective disturbances (anxiety and 

life-event stress)(Dunnigan and Pelosi, 1993). IO is also associated with obesity, 

diabetes and hypothyroidism (Pelosi et al., 1986). Many patients also suffer from 

psychological symptoms including depression; patients with IO were shown to be 

significantly more likely to have MDD than a cohort of female hospital outpatients 

(Pelosi et al., 1986). Despite increased knowledge of the symptoms and clinical 

manifestation, IO remains a poorly understood condition. 

 

5.1.5.2 F224: a family multiply affected my idiopathic oedema 

This condition mostly affects women, although a few cases have been reported in men 

(Hoffman et al., 1998). Until 1993 this disorder had not been seen in adolescents or 

children. At that time a study published by Dunnigan and Pelosi (1993) reported 18 

cases of pre-pubescent idiopathic oedema, 15 girls and 3 boys, from 13 families. Apart 

from the usual triad of symptoms (swelling, autonomic and affective disturbances), all 

18 children in the study by Dunnigan and Pelosi appeared healthy; laboratory tests 

excluded allergic, obstructive, cardio-vascular, and hypoproteinaemic causes of oedema. 

Treatment with drugs, such as chlorpropamide and spironolactone, ephedrine, captopril 

and bromocriptine produced no consistent improvement. However, all but one of the 

eighteen children showed a marked improvement in symptoms on administration of a 

carbohydrate-limited diet (120-140g carbohydrates per day). Relapses in diet were 

associated with a return of IO symptoms, which were also brought on and exacerbated 

by stressful life events (Dunnigan and Pelosi, 1993).  

 

Five of these children were related through their mothers, four sisters, all of whom also 

suffered from IO, as did their mother (see pedigree for F224, Figure 5.2). These five 

children showed symptoms of IO as early as three months of age. The early onset of the 

disorder in these individuals and the family history of IO suggest this to be a case of 
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early-onset, familial IO. This family will be identified as F224 for the remainder of this 

thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Pedigree of family F224, multiply affected by idiopathic oedema (IO). Individuals 
affected with IO are drawn in purple, unaffected individuals are coloured grey. The five 
affected offspring (47,48,49,50 and 51) were all included in the study of IO by Dunnigan and 
Pelosi, 1993. 

 

5.1.5.3 Linkage analysis of four families with IO and MDD 

In 2008, an extended pedigree of F224 was reported with multiple cases of IO and MDD 

(Anderson et al., 2008). Of the 28 affected individuals in this family, 18 had both MDD 

and IO, 7 were affected with MDD only and the remaining 3 suffered from IO only.  

F224, along with three additional, smaller families (F225, F226 and F364), were used in 

a genome-wide linkage analysis to identify regions of the genome associated with both 

MDD and IO. The primary aim of this analysis was to use the co-occurrence of IO and 

MDD in these cases to delineate a sub-phenotype, to identify regions of the genome 

harbouring causative variants for MDD. 
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Two disease definitions were used in this analysis: a narrow (individuals affected with 

MDD) and a broad (individuals with MDD and IO) definition. Parametric linkage and 

non-parametric multipoint variance component analysis were performed using 371 

microsatellite markers in the four families. Four parametric linkage models were run, 

autosomal dominant and autosomal recessive models (with corresponding disease allele 

frequencies of 0.012 and 0.300 respectively) being fitted to both the narrow and broad 

disease definitions. Table 5.3 shows the markers with the maximum LOD scores for 

each model for both F224 (F224 LOD) and the cross-family linkage analysis (Total 

LOD). 

 

 

 
Narrow 

Dominant  
Broad 

Dominant  
Narrow 

Recessive  
Broad 

Recessive  

F224 LOD: 0.91 0.92 0.85 ? 

Total LOD: 1.73 1.55 2.2 1.2 

Marker: D14S275 D14S275 D8S260 D7S516 

Chromosome: Chr14q Chr14q Chr8q Chr7q 

 

Table 5.3. Markers with the highest LOD scores from the marker specific analysis performed by 
Anderson et al. (2008) on the four families with co-morbid IO and MDD.  

 

 

Although this analysis failed to identify any regions of the genome significantly linked 

to MDD and IO (LOD >= 3.3; (Lander and Kruglyak, 1995)), several regions were 

identified with suggestive evidence of linkage (LOD >= 1.9; Lander and Kruglyak, 

1995): 

Chr8q: the marker D8S260 achieved the highest marker specific LOD across all four 

families. This LOD was with the narrow recessive model, suggesting this locus to be 

linked to MDD and not IO.  
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Chr14q: the marker D14S275 achieved the second highest LOD (1.73) with the narrow 

dominant model, as well as the highest LOD (1.55) for the broad dominant model. Both 

of these models are based on autosomal dominant form of inheritance, implicating a 

single, high penetrance variant in this region. This marker also had the highest family 

specific (F224) LOD (0.92) for the broad dominant model, suggesting a risk variant for 

both IO and MDD in this region. 

 

Chr7q: the best result for the broad recessive model was a LOD of 1.2 with marker 

D7S516 on chr7q.  

 

The linkage results for the two disease definitions used (narrow (MDD only) and broad 

(MDD and IO)), suggest that although there might be a common locus contributing to 

both disorders, MDD and IO might also be caused by variants on different loci. 

Specifically, chr8q is the most likely locus for a susceptibility variant for MDD, while 

chr7p and chr14q may contribute to both disorders.  

 

5.1.5.4 F224 as a family case study for idiopathic oedema and 
depression 

The relationship between these two conditions in this family is not clear, but intriguing.  

What is clear is that there is a high burden of IO in this family and a large number of 

individuals suffering from depression, many in the form of MDD. As this family appears 

to suffer from an early onset, familial form of IO, with more severe swelling symptoms 

and functional-autonomic symptoms (Dunnigan and Pelosi, 1993), these individuals 

might also suffer from more severe affective disturbances than more common forms of 

IO, which could be diagnostically similar to MDD. Therefore, the psychiatric symptoms 

used to diagnose MDD in these co-morbid individuals might be part of the depressive 

symptoms known to contribute to IO aetiology. In addition, the cases of MDD without 

IO in this family might be sporadic, or the IO symptoms may be very minor in nature. 

Based on a lifetime prevalence of ~15% for MDD (Kessler et al., 2005), the number of 
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expected cases in a family of 61 individuals would be ~ 9 cases; the number of cases of 

MDD without IO in this family (7) falls within this expected range.  

MDD and IO in this family might be two separate phenotypes with a common (or 

overlapping) cause, or MDD in individuals with IO might be a component part of the 

(severe) IO phenotype. Either way, this indicates the presence of a variant or variants 

that can predispose to MDD. The IO and MDD phenotype in this family can therefore be 

used to select a phenotypic subtype of MDD in a genetically homogeneous background. 

It can be hypothesised that under such circumstances of reduced phenotypic and genetic 

heterogeneity, it might be easier to identify a functional variant than looking for common 

variants within a genetically and phenotypically diverse group of individuals. 

Furthermore, any genetic risk factors for depression identified from this study might be 

generalisable in the population. 

 

5.1.5.5 Potential mechanisms of action for IO and MDD 

Although the biological mechanisms underlying IO and MDD are not yet known, several 

theories have been put forward based on the phenotypes and aetiology of IO: 

 

Immune response:  

In a study of four cases of adult IO, serum levels of cytokines were shown to be 

abnormal; an increased serum concentration of SIL-2R was observed and TNF-alpha, 

IFN-gamma and IL-2 were found to be transiently elevated (Hoffman et al., 1993). The 

authors suggested that in these individuals, the formation of oedema could be a 

consequence of activation of T cells, resulting in the production of cytokines, and a 

cytokine induced alteration of the function of endothelial cells. However, they could not 

postulate the source of the stimulus leading to T cell activation. There is also a potential 

role for an activated immune system, and by extension autoimmunity, in the 

pathogenesis of psychiatric illnesses ((Maes et al., 2008); (Miller, 2010); (Davison, 

2012)). 
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Abnormal neurotransmitter function:  

Abnormal neurotransmitter function could cause both the functional-autonomic 

symptoms of IO (via the autonomic nervous system) and the affective disturbances 

associated with both IO and MDD (Dunnigan and Pelosi, 1993). 

 

Insulin:  

IO shares common symptoms with diabetic oedema. The high co-occurrence of a 

diabetic family history, obesity and weight gain with IO suggests a potential link 

between IO and an insulin-mediated abnormality of carbohydrate metabolism (Dunnigan 

and Pelosi, 1993). This is supported by the positive effect of a carbohydrate-restricted 

diet. Similarly, this link suggests a potential role for insulin in the aetiology of this 

disorder. More specifically, as insulin levels have been shown to be normal in many 

incidences of IO, there might be a variation in the function of insulin receptors in 

individuals with this condition (Dunnigan and Pelosi, 1993). In addition, acute, sub-

acute and chronic diabetic oedema, are clinically similar to IO, suggesting a common 

cause (Dunnigan and Pelosi, 1993). This could suggest a pathogenic role of insulin, or a 

variation in the function of insulin receptors.  

Furthermore, there is a very strong link between diabetes and MDD (Vancampfort et al., 

2015b), BD (Vancampfort et al., 2015a) and schizophrenia (Foley et al., 2015). 

Insulin has also been reported to multiply effect the transport of water and electrolytes 

(Dunnigan and Pelosi, 1993) including but not limited to stimulating the sympathetic 

nervous system (Landsberg and Young, 1985) and by regulating membrane ion 

transport, modifying calcium exchange and thereby modulating arteriolar tone 

(Blaustein, 1977). 

 

Ion channels:  

Changes to the structure and function of ion channels could be responsible both for the 

fluid retention symptoms of IO (as described by the potential effect of insulin in the 

previous section) and depression (ion channels being consistently implicated in 

psychiatric illness)((Ament et al., 2015); (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014)).  
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Vasculature leakage: 

There is some evidence for the role of capillary leakage, leading to an increased 

diffusion of fluid into the extra vascular space, in the aetiology of IO (Dunnigan et al., 

2004). It has also been shown that when an individual suffers from emotional stress, 

neurological vasodilator pathways are activated, leading to increased blood flow to the 

skin and muscles (Greenfield, 1966). Variation in vasculature could provide a link 

between the fluid retention symptoms of IO and stress. Similarly, it has been 

hypothesised that increased permeability in the blood-brain barrier can lead to 

psychiatric illness through an inflammation response ((Maes et al., 2008); (Shalev et al., 

2009)). Vascular degeneration in the brain, leading to changes in the blood brain barrier 

and impaired amyloid beta-peptide clearance, has also been implicated in the 

pathogenesis of Alzheimer’s disease (Bell and Zlokovic, Acta Neuropathol, 2009 (Bell 

and Zlokovic, 2009)).  

 

Stress and environmental factors:  

The impact of stress on the symptoms of both IO and MDD adds to the evidence that 

there is a strong environmental component to both of these disorders. Genes and variants 

that interact with environmental factors could play important roles in the pathogenicity 

of both IO and MDD. 

 

5.1.5.6 Collaboration with CSHLs  on the F224 project 

We have also collaborated with Prof. Dick McCombie’s CSHLs group to study the co-

occurrence of MDD with IO in F224 (Figure 5.3). Five individuals from this family were 

sequenced; a parent-offspring triad (IDs 25, 26 and 50 from the pedigree shown in 

Figure 5.3), the child being one of the children from the original early-onset IO analysis 

described in section 5.1.4, and two additional affected individuals, a mother and 

daughter pair (IDs 31 and 53). All four affected individuals suffer from both MDD and 

IO. The whole genomes of these five individuals were sequenced with an average depth 

of 31-40X, 90% of the genome being covered by a read depth of at least 20X. The 
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GATK quality control thresholds described in section 5.1.4.2 were also used on these 

data. 
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After quality filtering each genome was represented by roughly ~3.4 million SNPs. 

These data were sent to us by CSHLs as VCF files. Stewart Morris (SM) identified all 

heterozygous SNPs common to the affected individuals but not present in the control 

individual. This filtered dataset contained 142,374 SNPs. 

 

The aim of this project was to perform prioritisation analysis of the variants identified. A 

plausible model for the genetic risk variant in this family would be a rare variant of 

moderate effect, lying within one of the linkage regions. This is however by no means 

the only potential model; risk variant(s) of any minor allele frequency could exist 

anywhere in the genome, functioning on their own or in combination, affecting gene-

gene interactions. I therefore chose a two pronged approach for this analysis: i) focusing 

on the three genomic loci with suggestive evidence of linkage to MDD and IO and ii) a 

whole genome analysis.  

 

5.1.6 Summary of chapter aims 
The aim of this chapter was to use SuRFR to prioritise variants from two projects 

studying psychiatric illness in families: bipolar disorder and MDD in family SBF2 and 

depression and MDD in the F224 family, co-occurring with idiopathic oedema. 
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5.2 Methods 

5.2.1 SuRFR Annotation: 
Using the coordinates of the Family SBF2 and F224 variant datasets (based on the 

GRCh37/hg19 assembly of the human genome), I annotated these variants using the 

annotation function, “Denovo_anno_table”, from the R package SuRFR, using the 

following command format:  

 
ann_table <- Denovo_anno_table(file, pop="EUR", threads=1) 

 

I used this annotation data to rank the variants on the basis of predicted function. I also 

used these annotation tables to identify all of the exonic variants in the SBF2 and F224 

datasets, which I extracted and saved as VCF files.  

 

5.2.2 SuRFR prioritisation: 
I ran the annotation data through SuRFR’s prioritisation function, 

”SuRFR_analysis_tab_file”, to prioritise the full variant sets for SBF2 and F224 (using 

SuRFR’s DM model): 

 

SBF2_DM <- SuRFR_analysis_tab_file(filename, DM, unique) 

 
F224_DM <- SuRFR_analysis_tab_file(filename, DM, unique) 

 

5.2.3 Ensembl’s Variant Effect Predictor: 
I ran the exonic datasets for SBF2 and F224 through the online version of Ensembl’s 

Variant EffectPredictor (http://www.ensembl.org/Homo_sapiens/Tools/VEP, accessed 

15/6/15) (McLaren et al., Bioinformatics, 2010). For this, I used the following options: 

 

Assembly: GRCh37.p13  

Species: Human (Homo sapiens) 

Data format: Ensembl default:  

          chr end end disease allele/ref allele (e.g., 1 818046 818046 T/C ) 
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5.3  Results 

5.3.1 Whole genome sequencing study of SBF2  
As previously described, linkage analysis performed on SBF2 identified a region of 

chromosome 4 that co-segregated with disease status, making this a good candidate 

region to search for a putative susceptibility variant for BD and MDD. The population 

frequency of a variant with a large effect size would be expected to be very low, as BD is 

rare (~1%) and no variants on chromosome 4p reach genome-wide significance in 

GWAS. I therefore hypothesised that the disease predisposing variant for BD and MDD 

in SBF2 to be either a rare or unique variant. 

  

Our collaborators at CSHLs provided us with whole genome sequencing data for five 

members of SBF2, three affected (two with BD and one with MDD) and two unaffected 

married-in individuals. SM processed the GATK SNP file and extracted SNP position, 

reference base and alternative allele. He then identified the SNPs that were unique to the 

disease-linked chromosome (within the five individuals) by identifying those SNPs that 

were heterozygous in all the cases and homozygous in the two controls. The script 

written by SM also allowed for sequence failure of one affected and one unaffected 

individual at any position that would otherwise qualify as a disease-chromosome-linked 

SNP. In this way SM extracted all the SNPs present on the disease-linked haplotype 

(defined as chr4: 6,534,951 – 26,495,592).  

 

Once the list of variants on the disease-linked chromosome was generated, SM identified 

the variant frequencies using data from the thousand genomes project (1KG) and 

HapMap. Only SNPs with a Minor Allele Frequency (MAF) below 5% in the 1KG 

European population were included in the next step as the goal was to search for a 

dominant rare variant (one that is present on the disease-linked chromosome of family 

SBF2 and only found rarely, if at all, in public databases). This dataset consisted of 739 

variants. 

 

I annotated the 739 variants using the annotation function of my R package SuRFR. 

Table 5.4 shows the distribution of these variants across the genomic position categories 
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used by SuRFR. This table shows that the majority of variants in this dataset are 

intergenic (i.e. at least 10kb away from a gene). Only nine variants were found to be 

located in exons or splice sites.  

 

Score Genomic Feature Number of 
variants 

0 intergenic 467 

1 intron 190 

2 CpG islands and CpG 
shores 1 

3 10 kb upstream and 
downstream of genes 67 

4 promoter 5 

5 exon, splice site 9 
Table 5.4 Location of variants relative to genomic features. Column 1 contains the scores used 
by SuRFR; column 2 describes the type of position category associated with that score; and 
column 3 shows the number of variants mapping to each genomic feature. 

 

5.3.1.1 SuRFR analysis 

I ranked these variants on the basis of their estimated functional potential using the 

“DM” model of SuRFR.  Table 5.5 shows the results for the top 37 variants (top 5%) 

from this analysis (full dataset can be found in Appendix E). Of these 37 variants, 2 are 

exonic (position score 5) and two are located in putative promoter regions (1kb upstream 

of the TSS). In addition, 29 of these variants have not been observed in the 1KG EUR 

dataset, suggesting they might be unique to this family. 12 variants overlap high DNase 

HS peak signals (>500) and 10 overlap high TFBS peak signals. 13 variants overlap 

DNase footprints in at least one cell line. The SNPs in this list are within or nearby 

several interesting candidate genes, which are either associated with or functional 

candidates for BD (see Section 5.4.2).  
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5.3.1.2 VEP analysis of exonic and splice variants 

I next analysed all the exonic and splice variants within the full set of 739 SNPs. As 

SuRFR has not been designed to discriminate between different types of exonic variants, 

I used Ensembl’s Variant Effect Predictor (VEP) to analyse these variants. VEP predicts 

the effect of a variant on gene transcripts (McLaren et al., 2010).  

 

The VEP output comes in two forms: i) a summary panel and pie chart (Figures 5.4 and 

5.6) giving a brief overview of the VEP job (including the number of variants included, 

whether they overlap genes or regulatory features (transcription factor binding sites), and 

the proportion of types of consequences VEP predicts the variants to cause, based on the 

total number of transcripts affected) and ii) a table, detailing the effect of each variant on 

each transcript. This table contains details on the location of the genomic locations of the 

variants, any genes they overlap, whether they are existing variations (known from 

dbSNP or 1000 Genomes), what their predicted consequence is and the predicted impact 

of this consequence (Modifier, Low, Moderate, or High. See the description on the VEP 

website: 

http://www.ensembl.org/info/genome/variation/predicted_data.html#consequences), and 

whether SIFT and PolyPhen predict them to have a deleterious effect on protein structure 

and function.  

 

Figure 5.4 and Table 5.6 summarise these data. All nine variants are found in variant 

databases such as the 1000 Genomes project, dbSNP and the HapMap project. Two 

variants are coding and one lies within a splice site. Only one variant was shown to be a 

non-synonymous substitution, changing a glutamic acid residue (E) to a lysine residue 

(K) in the protein CC2D2A. VEP predicted this variant to have a moderate impact on 

protein function. In addition, SIFT and PolyPhen respectively predicted this variant to be 

deleterious and possibly damaging. The other coding variant, in MRFAP1, is a 

synonymous substitution, predicted by VEP to have a low likelihood of pathogenic 

consequence and by SIFT and PolyPhen to be benign. Variant rs3733510 overlaps a 

splice site; however, VEP did not predict it to have a pathogenic consequence. The 

remaining six exonic variants were found to overlap 5’ and 3’UTRs.  Re-sequencing of a 
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subset of the 739 variants by J.C. Yao et al. at CSHLs validated five of the nine exonic 

variants. The remaining four were not tested. 

 

 

 

 

 

 

 

 

 

Figure 5.4 Summary statistics from VEP for the nine exonic / splice site variants from the SBF2 
disease-linked haplotype. The summary table reports the number of variants included in the 
VEP job, how many of these were known variants, and whether any of these overlapped genes, 
transcripts or regulatory features (TFBSs). The two pie charts summarise the proportion of 
consequences for all of the transcripts these variants overlap; the pie chart on the left reported 
all consequences; the one on the right showing the consequences to the protein coding part of 
the transcripts. 

 

 

 

Table 5.6. Summary of VEP results for the eight exonic and single splice site variant in the SBF2 
dataset. This table shows the gene the variant overlaps (column 1), the genomic position of the 
variant  (column 2), the disease and reference alleles (columns 3 and 4 respectively), the rs 
number associated with that genomic position (column 5), the minor allele frequency (MAF) of 
the variants (column 6), the main consequence type VEP predicts the variant to have across all 
transcripts (column 7) and the predicted impact of this consequence (Low, Modifier, Moderate, 
High. Column 8). In addition, I have included a description of whether this variant has been 
validated.  
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5.3.1.3 Investigation of variants in LD with the schizophrenia GWAS 
variant rs215411 

A recent GWAS identified a variant within the chr4p15 locus as being significantly 

associated with schizophrenia. This variant is located in an intergenic region (the nearest 

gene is ~35kb away), suggesting it might function as an enhancer or other long range 

regulatory element. I identified the linkage disequilibrium block (D’ = 0.8) around this 

variant using HaploView (HapMap V2, Release 24, population CEU, solid spine of 

LD)((Barrett et al., 2005)). This region spans the chr4 region from 23,323,427 to 

23,446,949 bp. The SBF2 sequencing data (MAF <0.5) contains six variants that lie 

within this region (Figure 5.5). Any of these six variants could be hypothesised to 

function as long-range enhancers. The highest ranking of these SNPs ranked 366th out of 

the SBF2 SuRFR ranking data. Excluding all variants with a position score > 0 (i.e. only 

ranking intergenic variants), reduced this dataset to 467 intergenic variants. The highest 

ranking variant from the rs215411 linkage region ranked 94th out of the intergenic 

variants.  

 

 

 

Figure 5.5. Screen shot of the UCSC genome browser showing the linkage block (D’ = 0.8) 
around the SZC GWAS variant rs215411. The top track, “SBF2 WGS variants”, is a custom 
track, showing the locations of the six SBF2 rare variants (MAF <0.5) that are located in this 
region. The GWAS variants rs215411 is coloured green and can be seen to the right hand side of 
the region. 
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5.3.2 Whole genome sequencing study of F224  
Our collaborators at CSHLs generated WGS data for a family with rMDD and co-

occurring IO (F224). From these data, SM extracted the heterozygous variants that were 

present in the four cases and absent from the married-in control. I annotated the 142,374 

SNPs in this dataset using the annotation function of SuRFR. I did not use a MAF cut-

off for this dataset as it was unclear what minor allele frequency to expect for the risk 

variant. I used the DM model to prioritise the rare variants over common variants as I 

hypothesised the susceptibility variant(s) to be of moderate to high effect size (best 

identified by the DM model), potentially uncommon or rare in the general population. 

 

5.3.2.1 SuRFR analysis 

I ranked all 142,374 variants using the DM model of SuRFR. The top 30 variants from 

this analysis are shown in Table 5.7, along with the nearest gene and their MAFs. In 

addition, I extracted subsets of this ranked data for each of the three loci implicated by 

linkage analysis: chr7p (chr7: 1-59,000,000), chr8q (chr8: 47,000,000-147,000,000) and 

chr14q (chr14: 19,000,000-68,000,000). The top 30 variants from each of these regions 

are shown in Table 5.9 A, B and C, along with the nearest gene and their MAF. Only one 

of the top 30 whole genome variants lies in a linkage region: the SNP at chr8: 82754557 

ranks 7th. The highest ranked variant from the chr7q locus ranks 243rd and the best 

variant from chr14q ranks 56th.  
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Table 5.7. The top 30 ranked variants from the full F224 dataset (142,374 SNPs). Column 1: the 
DM rank of each variant; column 2: the coordinates of the variants; column 3: the gene 
associated with that variant; column 4: the MAF of the variant based on the 1KG EUR dataset. 

 

 

 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 5: Application of SuRFR to the study of psychiatric illness  205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.8. The top 30 DM ranked variants from the three F224 linkage regions: chr7q (A), 
chr8q (B) and chr14q (C). For each table, column 1 shows the rankings of these SNPs against 
the full F224 dataset, column 2 shows their position (coordinates in Hg19 format), column 3 
contains the gene associated with the variant (if blank, this variant is intergenic) and column 4 
contains the variant MAFs. 

C. 

A. B. 
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5.3.2.2 Analysis of exonic variants using VEP 

Using the annotation data from SuRFR, I was able to identify all of the variants in the 

WGS dataset that overlapped exons. I extracted this subset of 2,912 variants from the 

full dataset and ran it through the Variant Effect Predictor (VEP) to identify any variants 

with deleterious effects (missense, stop loss, stop gain and frameshift mutations). The 

summary statistics from VEP on this dataset can be seen in Figure 5.6. Of these 2,912 

variants, 180 are novel (not seen in the 1000 Genomes database or dbSNP).  

 

 

 

 

 

 

 

 

 

  
Figure 5.6. Summary statistics from VEP for the full exonic F224 dataset. 

  WGS 7q 8q 14q 
Total variants 142,374 3,817 4,692 1,775 

exonic 2,912 163 78 81 
missense 477 27 8 11 
stop lost 3 0 0 0 
stop gain 4 0 0 0 
frameshift 2 0 0 0 

 
Table 5.9 Breakdown of the types of deleterious exonic variants present in the full F224 dataset 
(across the whole genome (WGS)), and within each of the three linkage regions (chr7q, chr8q 
and chr14q). 
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Of these 2,912 variants, 477 were missense mutations, 3 were stop lost mutations, 4 were 

stop gain mutations and 2 were frameshift mutations (Table 5.9). None of these were 

located in the linkage regions. All nine of the stop-loss, stop-gain and frameshift 

mutations were predicted by VEP to have a high impact on protein structure (Table 

5.10). Six of these variants are not found in the 1000 Genomes database or other human 

variation databases, suggesting they are unique to F224. 

 

The other 2,903 variants were predicted to have either a moderate or low risk of 

pathogenicity. However, 141 of these variants were predicted by either SIFT or 

PolyPhen (or both) to be potentially deleterious, (See Appendix F for a summary of the 

VEP output table for these 141 variants). Of these 141 variants, 46 had a MAF <= 0.05, 

of which 44 had a MAF <= 0.01. Only one of the 141 variants (rs351855) was annotated 

by VEP as having clinical significance (highlighted in the table in Appendix F).  

 

Using the annotation data generated by SuRFR I extracted the subset of exonic variants 

within the three linkage regions (chr7p, chr8q and chr14q)(Figure 5.7, Table 5.9).  All 

322 variants were missense variants or synonymous variants. 39 of these missense 

variants were predicted by VEP to have a moderate impact on protein structure and 

function (Table 5.11), of which 11 were predicted by SIFT and/or PolyPhen to be 

potentially damaging (highlighted in pink). 

 

 

 

Table 5.10 Summary data from VEP for the nine exonic variants predicted to have high impact 
on protein structure and function (IMPACT column). Six of these variants have not been seen in 
the 1000 Genomes EUR database, suggesting they are unique to family F224. 
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Figure 5.7 Summary statistics from VEP for the subset of exonic variants that overlap the three 
linkage regions (chr7q, chr8q and chr14q). All the protein coding variants were identified by 
VEP as being either synonymous substitutions or missense variants. 
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5.4 Discussion 

5.4.1 Summary 
SuRFR was designed to aid in the analysis of variants from a range of genomics projects, 

including WGS data. To that effect, I have used SuRFR to prioritise variants from two 

WGS projects: the Scottish BD family (SBF2) project and the F224 project, a family 

with major depressive disorder and idiopathic oedema. The goal was to prioritise the 

putative functional variants for further investigation.  This analysis focused on single 

nucleotide polymorphisms, as SuRFR has not been trained to prioritise indels or CNVs.  

 

I have trained three different SuRFR models, each designed for specific analysis types, 

for prioritising causal variants for diseases with different genetic architectures. I 

previously showed that the ALL model is capable of prioritising known disease variants 

from a range of disease architectures above background variants. However, when the 

mode of inheritance is known to be Mendelian-like (rare variants of large effect), using 

the DM model improves the likelihood of correctly prioritising the causal variants above 

background variants. It is therefore important to correctly identify the disease model of 

the variants under investigation. For both SBF2 and F224 I hypothesised the 

susceptibility variants to be variants of large effect with medium to high penetrance, that 

are either rarely seen in the general population, or are unique to these families. I 

therefore used the DM model of SuRFR for both of these analyses. However, as the 

linkage results for F224 were less informative that for SBF2, I did not pre-filter the F224 

dataset on MAF, allowing more common variants of high effect to also be evaluated by 

SuRFR. 

 

 

5.4.2 SBF2  

5.4.2.1 Candidate genes: 

Amongst the top ranking SuRFR output variants from the ~20Mb disease-linked 

haplotype, there were several that were within or nearby interesting candidate genes:  

 

 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 5: Application of SuRFR to the study of psychiatric illness  211 

C1QTNF7:  

Conduct disorder (CD) is one of the most prevalent childhood psychiatric disorders, 

characterised by aggressive behaviour, persistent rule breaking, and associated with 

alcohol problems (Dick et al., 2011). The C1q and tumour necrosis factor-related protein 

7, C1QTNF7, is an extracellular protein of unknown function. Two variants in this gene 

showed genome-wide significant associations (P<5 x 10-8) with CD in a study of 872 

cases of CD and 3,091 controls (Dick et al., 2011). As CD is a psychiatric condition that 

can co-morbidly occur in youth with BD (Joshi and Wilens, 2009) and there is evidence 

of genetic overlap between psychiatric disorders (see Chapter 1: 1.4), this gene is an 

interesting candidate for BD.  

 

The top two ranking C1QTNF7 variants (ranking 3rd and 4th overall) are unique variants, 

not seen in the 1000 genomes database. These two SNPs are located one base pair apart 

and overlap both a DNase HS cluster and three TFBSs, including c-FOS (Figure 5.7). c-

FOS is known to be expressed in the brain (Herrera and Robertson, 1996) and to play an 

important role in regulation of synaptic plasticity (Cohen and Greenberg, 2008). Variants 

associated with both schizophrenia risk and protection, have been identified in the c-FOS 

gene (Boyajyan et al., 2015). GABAB receptors, which have been implicated in 

psychiatric disorders (de Bartolomeis and Tomasetti, 2012), have also been shown to be 

linked to stress-induced c-FOS activation in the hippocampus (O'Leary et al., 2014).  

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Image from the UCSC genome browser, showing the location of the two intronic 
C1QTNF7 variants and their overlap with a binding site for the brain-expressed transcription 
factor c-FOS.  
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Two additional C1QTNF7 variants are in the top 5% table (Table 5.4). These variants, 

both with MAFs of 0.03 in the 1000 genomes EUR dataset, are located 3 base pairs apart 

from each other ~7kb upstream of the C1QTNF7 transcription start site. These two 

variants also overlap a DNase HS cluster and several TFBSs (POLR2A, BCL11A, 

PAX5, YY1 and EP300).  

 

KCNIP4:  

The protein encoded by this gene is a member of the family of voltage-gated (Kv) 

channel-interacting proteins (KCNIPs). Members of this protein family are small 

calcium binding proteins and interaction partners of the voltage-gated potassium channel 

subunit Kv4 family (Weissflog et al., 2013). A candidate gene based association study 

(594 adult attention-deficit/hyperactivity disorder (ADHD) cases, 630 BD cases and 974 

controls) showed KCNIP4 to be associated with both ADHD (best p = 0.0079) and BD 

(best p = 0.0043) (Weissflog et al., 2013). However, the power of this study was limited 

due to the small number of samples.  

 

Voltage-gated calcium channels and their binding partners have been implicated 

consistently in GWAS of psychiatric illness (Lee et al., 2012). In particular, the 

potassium voltage gated protein KCNC2, along with its interaction partner ANK3 (Judy 

et al., 2013)(which helps to regulate the localisation of voltage-gated ion channels 

(Garrido et al., 2003)) have both been implicated in multiple GWASs of BD ((Wellcome 

Trust Case Control, 2007); (Ferreira et al., 2008); (Muhleisen et al., 2014)). These 

calcium-binding proteins, including KCNIP4, are therefore excellent biological 

candidates for conferring risk of BD and depression. Together, these results suggest 

KCNIP4 may play a role in conferring risk for BD and psychiatric illness. Two intronic 

variants for KCNIP4 are present in the top 5% of ranked variants (9th and 20th 

respectively). 

 

SORCS2:  

SORCS2 is a member of the sortilin family of mammalian type-I transmembrane 

receptors containing a Vsp10p domain ((Hermey, 2009); (Willnow et al., 2008)). The 

sortilins are fundamental for development and maintenance of neuronal synaptic 
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properties, signalling characteristics, morphology and growth ((Jansen et al., 2007); 

(Hermey, 2009); (Lane et al., 2012)). Five members of the sortilins are found in 

vertebrates (SORL1, SORT1, SORCS1, SORCS2 and SORCS), all of which are 

expressed in the brain (Willnow et al., 2008). There is growing evidence that this family 

of receptors are potential neuronal disease genes, SORL1 and SORCS1 being implicated 

in Alzheimer disease (Reitz et al., 2013). 

 

SORCS2 is a neuronal receptor involved in protein trafficking. This gene was implicated 

by a GWAS (best p value = 0.000014) ((Wellcome Trust Case Control, 2007); (Baum et 

al., 2008); (Ollila et al., 2009)) and an association study comparing 576 schizophrenia 

patients and 506 BD patients with 607 controls from the Scottish population (p = 

0.0003)(Christoforou et al., 2007). However, despite these early suggestive findings, 

associations with this gene have failed to reach genome-wide significance in the largest 

BD GWAS to date by Mülheisen et al. (2014) (Table 5.1). This does not mean that rare 

variants within this gene are not associated with BD. Nor does it preclude the possibility 

of Scottish specific variation playing a role in the aetiology of BD in SBF2, as has been 

suggested for variants in Neuregulin and DISC1 ((Walker et al., 2010); (Hennah et al., 

2009)). 

 

The top 5% of ranked variants from family SBF2 included 8 non-coding variants around 

this gene and within its introns. In addition, two variants within the 3’UTR of SORCS2 

were found. VEP classifies all 3’ and 5’ UTR variants as “modifiers”, implying they may 

function through a regulatory function affecting gene expression, or mRNA stability or 

localisation (Duan et al., Hum Mol Genetics, 2003).  

 

DRD5:  

This gene encodes a dopamine receptor. There exists a lot of evidence implicating 

dopamine receptors in the aetiology of psychiatric conditions, in particular schizophrenia 

((Brisch et al., 2014); (Hoenicka et al., 2007)). Most recently, the 2014 PGC 

schizophrenia GWAS identified the locus containing the DRD2 gene as a genome-wide 

significantly associated region with schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014). However, the mechanisms by which dopamine receptors 

might contribute to psychiatric disorders are still being investigated ((Laruelle, 2014); 
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(Grace, 2012); (Lodge and Grace, 2011)).  We do know that neurotransmitter systems 

are closely linked, with interactions occurring between dopamine, glutamate (de 

Bartolomeis and Tomasetti, 2012) and serotonin (de Bartolomeis et al., 2013). In 

addition, all effective antipsychotic drugs (both classical and current drugs) for 

schizophrenia function through mechanisms that include dopamine and related 

neurochemical pathways (Brisch et al., 2014).  A variant 5’ to the DRD5 gene ranked 

27th in the DM rankings. This variant appears to be unique to family SBF2.  

  

SLIT2:  

The SLIT2 protein acts as a molecular guidance cue in neuronal migration. The 

Drosophila homolog of this protein was shown to be a neuronally expressed protein that 

plays a role in axon guidance (Itoh et al., 1998). Although this gene has not been shown 

to be associated with any of the major psychiatric illnesses, this gene was identified in an 

association with anger in suicide attempts (Sokolowski et al., 2010). This, along with its 

function as an axon guidance molecule, important for neuronal wiring, makes it an 

interesting candidate gene for BD. 

 

The 24th best ranking variant from the family SBF2 was a unique, intronic SLIT2 variant, 

located 7 base pairs from an intron-exon boundary and predicted by VEP to be located in 

a splice site, though not to affect splicing.  

 

CC2D2A:  

This gene encodes a coil-coil domain protein. Mutations in CC2D2A have known to 

cause Joubert syndrome and Meckel syndrome, two forms of ciliopathies, which 

encompass a range of symptoms including mental retardation (Bachmann-Gagescu et al., 

2012). This protein interacts with CEP290 (Gorden et al., 2008), which in turn has been 

shown to interact with DISC1 (Millar et al., 2003). CEP290 has been implicated as an 

autism candidate gene (Cukier et al., 2014), while DISC1 (disrupted in schizophrenia 1) 

has been implicated in several psychiatric illnesses ((Bradshaw and Porteous, 2012); 

(Brandon and Sawa, 2011); (Millar et al., 2001)), suggesting CC2D2A may be part of a 

larger network of proteins involved in psychiatric illness.  
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This gene harbours the only non-synonymous substitution (rs144439937) in the set of 

rare (MAF <0.05) variants from the SBF2 disease-linked chromosome. This variation 

results in a lysine residue (K) being replaced by a glutamate (E) at amino acid position 

507. VEP reported this variant to be moderately likely to have a negative consequence to 

protein function. This variant changes a basic amino acid (K) to an acidic amino acid 

(E), which might alter the electrostatics of the surface of the protein, affecting how it 

interacts with other proteins. The population frequency of rs144439937 (MAF 0.008) 

meant it was excluded from the initial analysis of coding variants described in section 

5.1.4.2 (as it was not unique to family SBF2). However, it is possible that this variant 

confers risk of illness via an interaction with other variants.  

 

Intergenic variants within the rs215411 linkage region: 

Six variants from SBF2 were found to be in LD with a genome-wide significant variant 

for schizophrenia, rs215411. On its own, the rank of the highest ranking variant (94th out 

of the 467 intergenic SBF2 variants) may not be sufficient to include this SNP in any 

follow-on experimental analysis; however, the independent evidence from the 

schizophrenia GWAS, suggesting a susceptibility variant for psychiatric illness may be 

located in this region, adds additional weight. 

 

 

5.4.2.2 Potential future work on the SBF2 project  

Experimental follow up: 

SuRFR is a predictive method, designed to be an aid to genomics projects, prioritising 

variants from most likely to be functional (and therefore the best starting point for 

follow-up analysis), to least likely to be functional. Experimental analysis is needed to 

verify the functionality of high-ranking variants. Methods to functionally validate 

variants in the lab include luciferase assays and EMSA shift assays or other related 

approaches, which can be used to show changes in gene expression or in the binding 

ability of transcription factors. Several reviews discussing the various options available 

to experimentally establish the functional consequence of regulatory variants have been 

recently published ((MacArthur et al., 2014); (Li et al., 2015); (Knight, 2014)). 



The design and application of SuRFR: an R package to prioritise  

candidate functional DNA sequence variants 

Chapter 5: Application of SuRFR to the study of psychiatric illness  216 

Validation of sequencing: 

No sequencing platform has been shown to be 100% accurate (Lam et al., 2012). Based 

on cross-platform comparative analysis and our own sequencing validation experiments, 

it appears that rare or unique variants have the lowest validation rates and are most likely 

contain erroneous variants (Lam et al., 2012). Several courses of action are available to 

deal with this: i) The GATK SNP filtering steps chould be re-evaluated (more stringent 

thresholds should be used); ii) All high-ranking SNPs chould be re-sequenced in these 

individuals to show they are real variants.  

 

Confirm association of causal variants with illness in additional cases/controls: 

Candidate SNPs identified in the affected individuals should be followed up in additional 

family members to confirm that these variants segregate with illness. High-ranking 

common SNPs chould also be genotyped across a large number of individuals from the 

Scottish population (including other individuals with BP) to see if they are associated 

with BP on a population level. This is particularly relevant for the K507E variant in 

CC2D2A.    

 

Consider additional disease model hypothesis: 

I have hypothesised a dominant disease model, and have predicted the chr4p locus 

identified through linkage analysis to harbour a highly penetrant, rare susceptibility 

variant. However, the LOD generated by the linkage analysis (LOD = 4.1) does not 

negate the possibility of risk variants occurring elsewhere in the genome. Therefore, 

there could be other interpretations for genetic risk of BD in this family. For instance, 

the chr4p locus might harbour several variants that interact and together lead to illness. 

Similarly there might be a number of variants across the genome that could each 

individually have a small effect but together concert a polygenic risk.  

 

5.4.2.3 Active projects on the Family SBF2 data 

Our collaborators at CSHLs are sequencing the genomes of additional individuals from 

family SBF2. Another collaborator, Prof. Andrew McIntosh and his group, have 

genotyped over 50 individuals from family SBF2 and are calculating a polygenic risk 
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score for the family members. In addition, Andrew McIntosh’s group is re-assessing the 

linkage in SBF2 using additional individuals and genotyping data. These data should be 

available in the next few months. 

 

 

5.4.3 F224 
Early onset cases of any disorder tend to be more severe than late-onset versions and are 

more likely to have a strong genetic component ((Gogtay et al., 2011); (Agopian et al., 

2012); (Childs and Scriver, 1986)). Familial, highly penetrant disorders are therefore 

good candidates for gene identification. The related individuals with IO identified by 

Dunnigan and Pelosi, shown to also be affected by depressive symptoms, frequently 

diagnosed as MDD, are therefore potentially useful in the discovery of the genetic 

factors linked to IO and MDD. 

 

The disease model for MDD and IO in F224 is less clear than for BD and MDD in 

family SBF2. The linkage analysis, although suggestive, did not point to any region of 

the genome with sufficient significance to focus the search on any one locus. This could 

be due to: heterogeneity across the four families; a multi-locus interaction model; a more 

polygenic model; and/or a large environmental component to illness. I used SuRFR to 

rank all 142,374 variants on the basis of predicted function. I then used VEP to identify 

proteins predicted to have a deleterious impact on protein structure and function.  

 

5.4.3.1 Candidate genes from the SuRFR ranking analysis 

Due to the lack of clarity from the linkage data, I have analysed the variants identified by 

whole genome sequencing in four datasets: the whole genome data; the chr7q linkage 

region; the chr8q linkage region; and the chr14q linkage region. The following section 

summarises the best candidate genes from these datasets. 

 

QRICH1:  

Little is known about the glutamate rich protein 1 (QRICH1) gene or its encoded protein. 

However, this protein is predicted to contain a caspase activation recruitment domain 
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(CARD) (from UniprotKB, 27th July 2015). The CARD family of proteins play an 

important role in regulating apoptosis, inflammation signalling and NF-kB signalling 

(Kao et al., 2015).  

 

A non-coding variant in the promoter region of QRICH1 ranked second out of the 

whole-genome SuRFR ranking data. This variant overlaps a range of strong regulatory 

features including the chromatin state active promoter, DNase HS in 125 cell lines; 37 

TFBSs; and has a high conservation score. Due to the potential role of inflammation in 

the aetiology of IO and psychiatric illness, this is an interesting gene for further 

investigation.  

 

 ICA1: 

The islet cell auto antigen (ICA1) gene has been associated with type I diabetes and 

plays a role in glucose regulation (Arvan et al., 2012). ICA1 has also been implicated as 

an autoimmune gene (Johar et al., 2015). The link between IO and diabetic oedema 

implicates genes such as ICA1. This gene would therefore be an interesting gene to 

investigate further.  

 

Two intronic ICA1 variants were in the top 30 chr7q linkage region variants, ranking 2nd 

and 9th (311th and 891st out of the whole-genome data).  

 

AQP1: 

Aquaporin 1 plays a critical role in water transport across the peritoneal membrane, 

which forms the lining of the abdominal cavity, containing the blood vessels, lymph 

vessels and nerves (Morelle and Devuyst, 2015). Increased expression of AQP1 in 

peritoneal capillaries leads to increased water permeability (Devuyst and Ni, 2006).  

 

An intronic variant of this gene ranked 5th of the variants in the chr7q linkage region and 

624th out of the whole genome data. This variant is an excellent candidate for the 

capillary leakage phenotype seen in IO, which might also confer risk to psychiatric 

illness via inflammatory response due to abnormal blood-brain barrier communication 

((Maes et al., 2008); (Shalev et al., 2009)). In addition, Aquaporin 4 (AQP4) is known to 
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be expressed in the brain (Amiry-Moghaddam et al., 2004) and has been proposed to 

function in concert with the potassium channel Kir4.1 (Nagelhus et al., 2004), suggesting 

a functional link between aquaporins, and potassium gated ion channels and a novel 

pathway involved in the aetiology of psychiatric illness. 

 

CAMK2B: 

Increased expression of the Calcium/calmodulin-dependent protein kinase II B 

(CAMK2B) protein in the frontal cortex has been shown in patients with schizophrenia 

and depression (Novak et al., 2006). Furthermore, increased expression of this protein 

was reported in the prefrontal cortex of suicide victims (Choi et al., 2011). This gene is 

therefore a good candidate for both the psychological symptoms of IO and MDD. 

 

An intronic CAMK2B variant ranked 20th out of the chr7 linkage region variants (1360th 

overall). This variant overlaps the binding sites of over 20 transcription factors (by ChIP-

seq data) and DNase HS in 110 cell lines. 

 

DDC: 
DDC: 

The Dopa Decarboxylase (DDC) gene is also known as Aromatic L-Amino Acid 

Decarboxylase (AADC). AADC is a key component of the serotonin and dopamine 

synthesis pathways ((Deneris and Wyler, 2012); (Cenci, 2014)). This protein is also 

expressed in blood vessel associated cells (Bertler et al., 1966). Mutations of this gene 

(homozygous and compound heterozygous mutations) lead to AADC deficiency, which 

negatively affects neurotransmitter metabolism, which in turn leads to a deficiency of 

both serotonin and dopamine (Brun et al., 2010)) clinically characterised this disorder as 

consisting of vegetative symptoms, oculogyric crises (a prolonged involuntary upward 

eye movement), dysteria (uncontrollable repetitive muscle movements) and severe 

neurological dysfunction which usually begins in infancy or early childhood. Other 

symptoms reported by Swoboda et al. (2003) include emotional lability and irritability, 

as well as gastrointestinal problems such as reflux disease, constipation and diarrhoea 

(Swoboda et al., 2003).  
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Some of these symptoms appear related to IO (motional lability, irratibility, 

gastrointestinal problems), although the overall aetiology is much more extreme. A 

regulatory variant could be hypothesised to lead to a less severe disorder than AADC, 

such as the intronic DDC variant which ranks 22nd out of the chr7q variants and 1492th 

out of the whole-genome ranked data.  

 

KCNS2: 

This gene encodes a potassium voltage gated channel. As described earlier in this 

discussion (5.4.2.1), potassium voltage gated channels are widely expressed in both the 

central and peripheral nervous system, mediate neuronal excitability ((Yellen, 2002); 

(McKeown et al., 2008)), and have been implicated via multiple lines of evidence to play 

a role in the pathology of psychiatric illness (Brisch et al., 2014).  

 

A variant less than 1.5kb upstream of the KCNS2 gene ranked 5th out of the chr8 linkage 

region variants and 246th out of the whole-genome ranked data.  

 

NCALD: 

A variant in the NCALD gene on chromosome 8 has been reported to be a risk variant for 

coeliac disease (Monten et al., 2015). In the same report, the authors suggest a link 

between NCALD, coeliac disease and nutrient signalling.  

 

An intronic NCALD variant ranked 18th in the chr8q linkage region and 957th out of the 

whole genome ranking. This variant overlaps binding sites for nine transcription factors 

(UCSC genome browser, ENCODE ChIP-Seq track, accessed 27th July 2015): POLR2A, 

ATF2, FOXM1, EZH2, WRNIP1, STAT1, RELA, CHD1 and IKZF1. Of these, ATF2 

responds to stress-related stimuli and plays a role in inflammation (Yu et al., 2014). Both 

IO and this transcription factor has been linked with obesity ((Pelosi et al., 1986); 

(Miyata et al., 2013)). In addition, the most successful treatment of IO is a reduced 

carbohydrate diet, which would include a reduction in gluten containing foods. Taken 

together these data suggest a potential overlap in function for NCALD in celiac disease 

and IO and a link between IO, obesity, ATF2 and NCALD. 
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SSTR1: 

This gene encodes the somatostatin receptor 1, which Egerod et al. (2015) showed plays 

a role in somatostatin secretion in gastric somatostatin cells (Egerod et al., 2015). They 

also showed that this action is regulated by a combination of hormones, 

neurotransmitters, neuropeptides and metabolites (Egerod et al., 2015). A closely related 

protein, SSTR2, has also been implicated in the pathogenicity of Alzeihmer’s disease 

(Adori et al., 2015). 

 

Two variants for this gene were included in the top ranking variants for the chr14 

linkage region. The first, which ranked 2nd (291st in the whole-genome data) lies within 

the 3’ UTR of SSTR1; the second, ranking 28th (4270th in the whole-genome data) is 

located downstream of this gene. 

 

5.4.3.2 Analysis of coding variants using VEP: 

As with the SBF2 data, I also focused on the variants that overlapped exons. Because 

SuRFR cannot discriminate between different classes of exonic variants (synonymous, 

non-synonymous, UTR, etc), I used VEP to search this list of variants for ones that 

potentially have a deleterious effect on protein structure and function. 

 

Nine variants were predicted by VEP to have a high impact, located in the genes: 

MORN4, ZNF214, TRIM48, OR812, OR5M11, LEPREL2, ZNF717 and CER1. Of these, 

the most interesting candidate genes are CER1 and MORN4. The CER1 gene encodes a 

cytokine that may play a role in anterior neural induction and somite formation during 

embryogenesis (Uniprot, 27th July, 2015). MORN4 has been shown through Drosophila 

and Mouse models to have a role in axon degeneration (Bhattacharya et al., 2012). Little 

is known in the literature about ZNF717 (a pseudogene), ZNF214 (a zinc finger protein), 

OR812 and OR5M11 (two olfactory receptor genes), TRIM48 (a RING finger protein) or 

LEPREL2 (a collagen prolyl hydroxylase). 

 

Only one variant from this dataset was reported by VEP to have a clinical significance 

(although only predicted by VEP to have a moderate impact). This variant, rs351855 is a 

missense variant of the Fibroblast Growth Factor Receptor 4 (FGFR4) gene. This SNP is 
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associated with susceptibility to ischemic stroke ((Zhang et al., 2012a); (Yin et al., 

2014)) and has been shown to modulate the association of a variant in the Klotho Beta 

(KLB) protein (expressed in the digestive system, regulates bile acid production and 

associated with diarrhoea (Camilleri et al., 2014)) with colonic transit in irritable bowl 

syndrome with diarrhoea (IBS) (Wong et al., 2011). According to UniProt 

(http://www.uniprot.org/uniprot/P22455#section_comments, accessed 12th August 

2015), GO terms associated with FGFR4 include cell migration, signalling pathways 

(including insulin receptor signalling and nerotrophin TRK receptor signalling pathway), 

and glucose homeostasis (see Figure 5.8 for the full list of GO terms reported by 

UniProt). Many of these terms support a potential biological link between this gene and 

IO and MDD. 

  

 

 

Figure 5.8 Screen shot from the UniProt webpage for the FGFR4 protein, showing the gene 
ontology terms associated with FGFR4.  
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5.4.3.3 Summary of implicated mechanisms 

The strongest hypothesis for IO in the literature is vascular leakage in the capillary bed. 

The capillary bed and vasculature system work in tandem with the lymphatic system, 

both being integral parts of vasculature structure, regulating fluid release and uptake 

from the blood into the interstitial fluid and back into the blood 

(http://anatomyandphysiologyi.com/lymphatic-system/ accessed July 2015). Furthermore 

there is evidence in the literature of shared swelling symptoms between IO and lymph 

vessel diseases (characterised by lymphedema, swelling of the limbs due to a build up of 

lymph fluid in soft tissue), such as Elephantiasis ((Babu and Nutman, 2014). See also the 

WHO report on elephantiasis: http://www.who.int/mediacentre/factsheets/fs102/en/).  

The dysregulation of either part of this vascular mechanism could explain the swelling 

symptoms observed in IO. In addition, the neurovasculature is an important component 

of the brain; defects in the mechanism of the blood-brain barrier and lymphatic 

vasculature have been implicated in neurological disorders ((Shalev et al., 2009); (Bell 

and Zlokovic, 2009)). The lymphatic system is also an important element of the immune 

system (Liao and von der Weid, 2015), which has recently been implicated as a common 

pathway for schizophrenia, BD and MDD (Network and Pathway Analysis Subgroup of 

Psychiatric Genomics, 2015). Taken together, these results suggest there might exist a 

common mechanism contributing to the range of phenotypes (swelling symptoms, 

functional-autonomic and affective disturbances) associated with IO and depression in 

F224. This hypothesis is supported in this analysis by the high-ranking variant identified 

in AQP1, which suggests a mechanism combining vasculature, lymphatic system and a 

potential immune/inflammatory response in the aetiology of IO and MDD.  

 

There could also be a neurological cause for both IO and MDD in this family. The 

evidence that stress worsens both the swelling and affective symptoms of IO also 

supports the theory of a neurological component. Among some of the highest-ranking 

variants from SuRFR were variants involved in neuronal processes. These included the 

potassium channel protein KCNS2, the calcium/calmodulin dependent protein CAMK2B 

and the serotonin/dopamine synthesis protein DDC (which, being expressed in the 

blood-brain barrier, points back to the first hypothesis). 
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Interestingly, although drugs had very little effect, a change in diet from a normal diet to 

low carbohydrate diet has been shown to have greatest effect on IO swelling symptoms 

(Dunnigan and Pelosi, 1993). In cases with successful treatment, symptoms only 

returned when the diet restrictions were not followed or stressful life events occurred.  

This suggests that both diet and stress are important factors in the pathophysiology of 

IO, potentially implicating a carbohydrate metabolism/ insulin related cause to this 

disorder. The variant in the NCALD gene, which has been linked to coeliac disease, as 

well as a SNP in ICA1, which plays a role in glucose metabolism, are good candidates to 

follow-up this particular theory. 

 

This analysis has highlighted several mechanisms that might play a role in the aetiology 

of IO and depression. It should be noted that none of these three mechanisms are 

mutually exclusive and some of the genes impacted may be involved in more than one 

pathway/mechanism.  

 

5.4.3.4 Future work on the Idiopathic oedema data 

One major drawback to my analysis of the IO data was its size, as the raw WGS data 

contained over 12 million variants, a number of which are likely to be sequencing errors. 

Before further analysis is done on these data, variants should be filtered as follows: 

 

1. As with the SBF2 data, the GATK quality control step could be repeated using more 

stringent thresholds to improve the signal to noise ratio and increase our chances of 

identifying the true causal variants. 

 

2. WGS of additional individuals from F224 would allow additional variants not present 

in all cases to be excluded, further reducing the number of SNPs to be analysed. 

 

3. The linkage analysis performed by Anderson et al. (2008) included three other 

families. Analysing sequencing data from these families could allow us to filter variants 

further. Across these families there could be genes and/or pathways that harbour 

different variants, all contributing to disease risk.  
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Once a filtered set of SNPs has been produced and re-analysed (using the methods 

described in this chapter), candidate variants should be validated by Sanger sequencing.  

Many experimental methods are available to functionally characterise these variants. 

Some examples include: i) obtain gene expression data in appropriate cell lines and test 

whether these variants are eQTLs; ii) perform luciferase assays and EMSA shift assays 

to test if variants are regulatory variants and if they directly alter TFBSs; iii) use genome 

editing techniques such as CRISPR to recreate these variants in cell lines and use these 

cultured cells to test if variants alter the stability or localisation of mRNA or proteins.  

 

   

5.5 Conclusion 

I have used SuRFR to prioritise putative causal variants associated with two different 

psychiatric illnesses in two different projects. These two prioritised lists of variants will 

be used to guide the selection of variants for experimental and genetic investigation as 

part of a major international collaboration. 

 

I have also discussed several drawbacks to the project design, and ways of improving the 

quality of the data to be analysed using SuRFR. I showed in Chapter 4 that the more 

refined the variant data, the better SuRFR performs. These points will be discussed 

further in Chapter 6. 
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Chapter 6: Discussion 

6.1 Summary of thesis 

Whole genome and whole exome sequencing methods have generated large amounts 

of data on human genetic variation. As these methods become more affordable they 

are likely to become routine tools in the investigation of the genetic basis of human 

disease (Wang et al., 2015). As “Big Data” continues to get bigger, we need tools to 

identify the signal of true pathogenic variation over the background noise generated 

by benign variation. This task is particularly challenging for non-coding variants, as 

our knowledge of what defines functional and pathogenic non-coding variation is 

limited. In this chapter I will summarise the aims of my PhD and my progress 

towards achieving them. I will also discuss limitations of this project and suggest 

directions this project could be taken in the future. 

 

6.1.1 Aim 1 
The first aim of my PhD was to develop a bioinformatics tool to prioritise variants on the 

basis of their putative functional and pathogenic roles. I have addressed this aim in 

Chapter 2 and Chapter 3, where I outlined the development and testing of my method, 

SuRFR, an R package for the ranked prioritisation of candidate causal variants. The 

modular design and tuneable parameterisation of SuRFR allows for simple and efficient 

incorporation of publically available data and prior biological knowledge into the 

ranking scheme. In Chapter 2, I introduced: i) the annotations used to prioritise known 

functional and pathogenic variants over background variants; ii) the training datasets I 

constructed for this analysis and iii) the principles behind the initial model I 

implemented. In Chapter 3, I expanded on the topics introduced in Chapter 2 and 

presented the formalised model training protocol used to develop SuRFR. 

 

SuRFR produces rank orderings of variants for each of a wide diversity of functional 

genomic measures and annotations. These include: minor allele frequency (MAF); 

position of SNPs relative to genic elements (exons, introns, promoters, etc.); DNase 

hypersensitivity sites (DNase HS); chromatin states; transcription factor binding sites 
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(TFBSs); enhancers; and conservation. These individual ranks are then combined into a 

final rank using a weighting system parameterised and tested through ten-fold cross-

validation. Central to the success of the parameterisation and testing of this approach is 

the quality of the training data. Known regulatory variants were obtained from the 

Human Gene Mutation Database (HGMD), while background variants were obtained by 

randomly sampling SNPs from the 1000 Genomes project located within the ENCODE 

pilot regions. Known and background variants were randomly assigned to 

training/validation sets and a hold out test set. Performance was measured using 

Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUCs) 

statistics. Performance and generalisation errors were calculated to estimate the 

generalisability of the method and to predict its performance on novel data. 

 

In Chapter 3 I showed that the AUCs from the optimum combination of weightings run 

on the hold out test dataset were very high (0.90-0.95), indicating that the method works 

well to prioritise known regulatory variants over background variants on an independent 

dataset. In addition, the performance and generalisation errors were low (0.004-0.030), 

indicating the likelihood of the pipeline performing equally well on novel data.  

 

This analysis has provided insight into the extent to which different classes of functional 

annotation are most useful for the identification of known regulatory variants. I have 

shown that known regulatory variants tend to overlap some functional categories more 

than others: the most important factor for identifying a true variant across all regulatory 

classes of regulatory variant is position relative to genes (upstream proximity to the 

transcription start site (TSS) strongly affects the likelihood of a SNP being functional). 

However, this could reflect the acquisition bias that exists in all databases of known 

pathogenic variants, which are enriched for variants proximal to genes. Additional 

training data, for variants with a known disease role located in all genomic regions, is 

needed to rectify this imbalance. Unfortunately, such data is not currently available in 

the numbers needed to provide sufficient power.  
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6.1.2 Aim 2 
The second aim of my PhD was to perform a comparative analysis between SuRFR and 

other prioritisation tools. In Chapter 4 I compared the performance of SuRFR against 

three related tools which were all published near the end of my PhD: GWAVA, CADD 

and FunSeq. In this chapter I showed that SuRFR performs equally well when applied to 

novel data (data that had not been used to train any of these methods). These data 

included variants from the ClinVAR database of clinical variation, a novel non-coding 

dataset (the RAVEN dataset), and coding variants from the HbVar database. In addition, 

when GWAVA, CADD and SuRFR were run on three datasets consisting of SNPs 

identified from the investigation complex traits ((Musunuru et al., 2010); (Myouzen et 

al., 2010); (Gaulton et al., 2010)), SuRFR outperformed both GWAVA and CADD. 

Whilst SuRFR performs as well as these other methods, it also has several additional 

advantages in its design and implementation. These are detailed below: 

 

6.1.2.1 Integration  

Being an R package, SuRFR is a component of the R environment and can be used in 

combination with other R packages without the need for additional data formatting. R is 

becoming an increasingly important tool in genomics, mainly due to the advances and 

improvements being made to the R software project Bioconductor. The aim of this 

project is to provide a comprehensive suite of tools for the analysis of high throughput 

genomics data (Huber et al., 2015). The R packages provided and maintained by 

Bioconductor are individually useful, but collectively have even greater merit as they 

allow the analysis and interpretation of genomics data in a unified framework. In 

addition, any other R packages (either private or from other repositories such as CRAN) 

can be used in conjunction with those curated by Bioconductor.  

 

6.1.2.2 Modularity  

SuRFR has been constructed in such a way as to allow the user to incorporate additional 

data in the future. One example would be to include expression data generated in a 

specific cell line to add greater discriminatory power to the ranked list of variants. 
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6.1.2.3 Flexibility  

Although I have trained three models (ALL, DM and DFP), SuRFR can also be run 

using custom models defined by the user, based on the weightings they feel most 

appropriate to their data. For instance, MAF can not only be up-weighted or down-

weighted according to the user’s preferences, but also the optimal MAF (in the default 

mode, set to unique, “0”) can be specified by the user (for example, if the best associated 

SNP from a GWAS has a MAF of 0.3, the user may wish to set the optimum MAF to 

0.3). 

 

6.1.3 Aim 3 
The third aim of my PhD was to apply SuRFR to the study of psychiatric illness. In 

Chapter 5, I analysed whole genome sequencing data from a large Scottish family with 

bipolar disorder (SBF2) and a second family with major depressive disorder (MDD) and 

idiopathic oedema (IO)(F224). Using SuRFR to prioritise these data I have highlighted 

several plausible candidate genes and variants for follow-up analysis. These include 

variants in pathways previously implicated in psychiatric illness including calcium 

channels and synaptic proteins, as well as high ranking variants from novel genes and 

pathways. One of the advantages of SuRFR is that the features that contribute to the 

rankings are easy to identify and investigate further. For instance, two high ranking 

variants from the SBF2 analysis (ranking 3rd and 4th overall), which lie within an intron 

of C1QTNF7 (itself a candidate psychiatric gene – see section 5.4.2 for further 

information), appear to have ranked highly because they were: unique to the family; had 

high DNase HS scores; overlapped DNase footprints in a large number of cell lines (16 

and 11 respectively); had high chromatin state scores (Chromatin state score of 9, 

suggesting strong enhancers); and overlapped  several TFBSs (including a binding site 

for c-Fos , a brain expressed transcription factor known to play a role in synaptic 

plasticity (Cohen and Greenberg, 2008)). These data together support the potential 

pathogenicity of these variants whilst also suggesting a potential mechanism of action.   

 

These two family projects, involving international collaborations, are on-going. More 

information is currently being gathered on the variation present within these families and 

the segregation of variation with illness (additional linkage data, inclusion of additional 
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individuals, etc), which should become available in the near future. This will allow us 

the opportunity to finalise the subset of high ranking variants to be taken forward for 

follow-on experimental investigation. 

 

6.2 Project limitations 

6.2.1 Acquisition bias of training data 
Methods that rely on catalogues of know pathogenic variants, including GWAVA and 

SuRFR, are limited by the number of variants within these catalogues. These datasets 

also suffer from acquisition bias, and tend to over represent variants near to or within 

genes. This issue particularly affects our ability to identify signals associated with long-

range enhancers.  

 

A new computational method was published in August 2015 which attempted to 

overcome this issue by implementing a sequence-based approach (Lee et al., 2015). This 

method predicts the functional effects of regulatory variants by training a gapped k-mer 

support vector machine (gkm-SVM) using cell-type specific sequence features of 

regulatory elements, including DNase HSs and putative TFBSs. The premise for this 

method is that cell-type specific regulatory elements can be identified using cell-type 

specific genomic features and that these data can be used to predict the effect of SNPs on 

these features in their native genomic contexts. The gkm-SVM produces a regulatory 

sequence vocabulary by generating scores for all unique 10-mer sequences, which it 

compares against the known regulatory sequences. The difference in gkm-SVM score 

between the wild-type variant and the SNP, termed deltaSVM, is used to predict how big 

a functional effect the SNP has. The larger the score (either positive or negative), the 

greater the SNP effect.  

 

The authors trained the gkm-SVM using DNase HS data from specific cell types to 

identify genomic sequences that are likely to also have regulatory activity within those 

specific cell types and therefore predict the likelihood of novel variants affecting 

regulatory activity, thus identifying DNase quantitative trait loci (dsQTLs) (SNPs that 

are highly correlated with DNase-seq read depth (Degner et al., 2012)). This method was 

compared against GWAVA, CADD and GERP (Lee et al., 2015) using a dataset of 
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known dsQTL SNPs and non-dsQTL SNPs with comparable levels of DNase HS. The 

gkm-SVM was shown to predict SNPs associated with dsQTLs more accurately than the 

other methods (AUCs of 0.75, 0.63, 0.69 and 0.56 for gkm-SVM, CADD, GWAVA and 

GERP respectively).  

 

An additional experiment reported in this paper to support gkm-SVM’s performance 

(Lee et al., 2015) made use of the analysis of SORT1 by Musurunu et al. (Musunuru et 

al., 2010). This analysis investigated a region of chromosome 1p13 associated with 

LDL-C levels and identified a single SNP, rs12740374, as altering the hepatic expression 

of the SORT1 gene. I also used the data from this analysis to compare the performances 

of SuRFR, CADD and GWAVA in Chapter 4 (Section 4.3.1.4). In their study, Lee et al. 

showed that the deltaSVM for the functional SNP rs12740374 was only higher than for 

the surrounding SNPs when the gkm-SVM was trained on data from an appropriate cell-

type (HepG2). When other cell-types were used (MEL and LNCaP) the gkm-SVM could 

not prioritise rs12740374 better than the background SNPs. This highlights that the 

performance of this method is very sensitive to the training data used and if the 

appropriate cell-type specific data is unavailable, its performance suffers. In contrast, 

SuRFR identified this variant 1st out of 22 SNPs, without requiring cell-type specific 

data, suggesting SuRFR may compare favourably with the gkm-SVM method on other 

data. 

 

6.2.2 Limitations of family-based sequencing projects 
There are many advantages to using next generation sequencing (NGS) methods to study 

variation contributing to the full spectrum of human disease types and associated genetic 

architectures.  One of the greatest advantages of whole genome sequencing is that it 

detects common and rare variants, both within protein coding sequences and non-coding 

sequences, in the same assay. In addition, it is not limited to the study of single 

nucleotide polymorphisms, also being capable of identifying indels, CNVs and 

translocation events. However, there are several challenges facing the application of 

NGS.  
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The first relates to sequencing accuracy and sensitivity. Lam et al. (2012) compared the 

performances of the two leading sequencing platforms (Illumina and Complete 

Genomics) (Lam et al., 2012). This study showed that while there was an 88% 

concordance between platforms (with a sensitivity of 99.34%), there existed platform 

specific variation (2.7% for Complete Genomics and 9.2% for Illumina). The platform 

specific variation was also shown to be enriched for novel variants and was shown to 

have a false positive rate of at least 35%, suggesting many of these variants are likely to 

be errors. The concordance of indels was even lower between platforms, only 26.5% 

being common to both Complete Genomics and Illumina. The platform specific indels 

were also more difficult to validate as they were found to be more likely to overlap 

repeats, making them difficult to amplify by PCR for Sanger sequencing. These results 

suggest that care should be taken when using NGS methods to identify putative disease 

variants, as real variants will be missed and false positives will be included. Lam et al. 

further suggested that comprehensive variation detection could be better achieved by 

using at least two platforms. However, they also recognise that this would not always be 

possible due to the added expense.  

 

The second challenge to be faced is base-calling and sequence alignment, which can also 

affect the sensitivity and specificity of sequencing data. Failure to accurately align 

sequence data to a reference genome can lead to large portions of the sequencing data 

being missed. Similarly, the quality control thresholds used by base-calling algorithms 

can leading to large error rates: too lax and they can lead to the inclusion of false 

positives; too severe and true SNPs can be left out as false negatives)(Nielsen et al., 

2011). These should also therefore be considered carefully before sequence data is 

analysed.  

 

While issues concerning the accuracy of sequencing data can affect whether a true 

variant is identifiable, there are other reasons why a causal variant may not be found in a 

family study. One reason is that the proposed genetic architecture is wrong, leading to 

incorrect filtering of pathogenic variants. In the analysis of the SBF2 disease-linked 

haplotype, I used a MAF threshold of 0.05, so only the uncommon, rare and unique 
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variants were included in my analysis. However, if my hypothesised disease model is 

incorrect, I might have missed susceptibility variants.  

 

A second reason why a causal variant may not be identified could be within-family locus 

heterogeneity, where multiple variants are responsible for disease, but in different 

branches of the family. Bilineal inheritance would confound traditional methods, such as 

focusing on variants shared in cases but absent in controls, and linkage analysis. This has 

been shown by Rehman et al. (2015), who studied the effect of familial locus 

heterogeneity in a large number of families with various forms of hereditary hearing 

impairment (Rehman et al., 2015). In this analysis, the authors identified a large 

difference between the expected maximum LOD (mLOD) (calculated based on a fully 

penetrant, autosomal recessive marker) and the genome-wide LOD scores, suggesting 

that multiple loci are contributing to this disease in different parts of the family. To 

overcome this, Rehman et al. proposed splitting a heterogeneous family into smaller 

units, calculating new mLODs for each unit, and comparing this to the LODs generated 

for each unit. In addition, affection status of individuals within each unit can also be 

modified (cases alternately set to unknown) to compensate for heterogeneity within each 

family sub-unit, thereby identifying the affected individuals that are likely to segregate 

the same causal variants (for the full workflow, see Figure 4 from (Rehman et al., 

2015)). Rehman et al. identified linkage regions using this approach and performed 

exome sequencing to confirm segregation of causal variants with the phenotype of 

interest.  

 

The low LOD scores generated for F224 might indicate that this family is an example of 

familial heterogeneity. The linkage analysis could therefore be repeated, splitting the 

family into sub-units and comparing the mLOD for each sub-unit against the actual 

LODs achieved to identify individuals that segregate the same causal variant. In 

addition, this analysis could be performed for different phenotypes (idiopathic oedema 

only, major depressive disorder only and both diagnoses) to identify causal variants that 

segregate with one diagnoses but not the other. 
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6.3 Potential improvements to SuRFR 

While I have shown SuRFR is capable of prioritising candidate SNPs with high 

specificity and sensitivity, there are several ways that I could improve SuRFR’s 

functionality and usefulness in the future: 

 

6.3.1 Coding variants 
Many methods are available that are capable of differentiating between different classes 

of coding variants (UTR vs. protein coding; synonymous, non-synonymous, missense, 

splice variants, etc.), including Ensembl’s Variant Effect Predictor (McLaren et al., 

2010), SIFT (Ng and Henikoff, 2001), polyPhen (Adzhubei et al., 2010), SNAP 

(Bromberg and Rost, 2007), FATHMM (Shihab et al., 2013) and PANTHER (Thomas et 

al., 2003). Any one of these methods can be used separately to predict the 

deleteriousness of the coding variants identified during SuRFR’s annotation step. 

However, it would be useful to have a unified framework that incorporates all the 

relevant data to prioritise different classes of coding variants and non-coding variants in 

a single pipeline. One method to do this would be to include the output of one or several 

of these protein-coding prediction methods into SuRFR’s annotation table. This would 

allow SuRFR to discriminate between non-synonymous, synonymous, frame-shift, UTR, 

etc, while still incorporating all the previous genomic features.  

 

Earlier this year, Dong et al. published a comparison of 18 deleterious-scoring methods, 

including three conservation scores, eleven functional prediction scores and four 

ensemble methods (combining multiple methods in a single output) (Dong et al., 2015). 

Using three independent datasets, this study found that the novel ensemble method being 

presented in this paper outperformed all the other methods. FATHMM was found to be 

the best performing individual tool, while the next best performing ensemble method 

(combining SIFT, PolyPhen-2, LRT, MutationTaster and PhyloP scores) was KGGSeq 

(Li et al., 2012). One of the main conclusions from this analysis was that ensemble 

methods can perform better than their individual component scores and that ensemble 

methods that included protein-specific features only perform better than methods that 

utilise general genomic annotation data (Dong et al., 2015). 
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This analysis suggests that the best way to incorporate a protein-level deleteriousness 

measure into SuRFR would be to incorporate an ensemble method into SuRFR’s 

annotation data and train an additional model using protein-coding data from HGMD. 

 

6.3.2 Indels 
SNPs represent a large proportion of human variation, but are not the only class of 

variant that has been implicated in human disease. Indels are also known to have 

pathogenic roles ((Mullaney et al., 2010)). However, few prioritisation methods are 

designed to functionally interpret the deleteriousness of indels. One exception is the 

gkm-SVM method described in section 6.1.2 (Lee et al., 2015). This method allows 

indels to be analysed by summing the deltaSVM score across all affected nucleotides.  

 

Although SuRFR is not currently trained to analyse indels, gkm-SVM suggests a 

framework that could be used to modify SuRFR’s SNP functionality: by summing scores 

across all affected base positions.  This, however, fails to take indel length into account, 

biasing the method in favour of longer indels. There is currently insufficient evidence 

suggesting that longer indels are more likely to be deleterious than short indels. 

 

Deletions could alternatively be scored by summing and averaging the scores across all 

deleted bases (thus taking into account indel length). However, a deletion that overlaps 

both a single highly functional variant and many non-functional variants would not be 

prioritised by this method, as the average signal would be low. Instead, indels could be 

prioritised based on the highest functional score of any base affected by the indel. 

Possible approaches to scoring insertions is less obvious. One option would be to 

combine the scores of the bases either side of the insertion.  

 

As with designing a SNP prioritisation method, the best way to resolve these options 

would be to use known pathogenic indels and background indels as a model training set. 

The HGMD database contains a catalogue of pathogenic indel data, while the 1000 
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genomes project also contains large numbers of indels. These data could be used to train 

an indel-specific version of SuRFR. 

 

6.3.3 Variant interactions 
As discussed in Chapter 1, there is a lot of evidence suggesting that some diseases are 

caused by multiple interacting variants. When two or more variants affect disease 

susceptibility, the performance of the predictive method can be increased by allowing for 

interactions between variants (Krzywinski and Altman, 2014). It would be interesting to 

look into the possibility of generating a two-point or multi-point version of SuRFR, 

which could take into account multiple interacting variants. However, the development 

of such a method would be limited by the availability of appropriate training data, as few 

validated epistatic interactions are catalogued. 

 

6.3.4 Expression and methylation data  
Disease risk variants are known to be enriched in expression quantitative trait loci 

(eQTLs) and methylation quantitative trait loci (meQTLs) ((Nicolae et al., 2010); 

(Gamazon et al., 2013); (Richards et al., 2012); (Westra et al., 2013)). See Albert and 

Kruglyal (2015) for a review of recent human eQTL datasets and the disease/trait studied 

(Albert and Kruglyak, 2015). Furthermore, there is evidence of cross-talk between DNA 

and histone methylation, gene expression being controlled by both forms of methylation, 

both together or independently (Du et al., 2015). Similarly, DNA methylation regions 

have been shown to overlap promoter regions and to be enriched for disease variants 

(Ma et al., 2015). 

 

While DNA methylation data may be prioritised by SuRFR (by substituting the 

coordinates of SNPS in the input file with the coordinates of differentially methylated 

CpGs), it would be a useful extension to SuRFR’s remit if it could be modified to 

function as a formal add-on to methylation packages to prioritise differentially 

methylated probes with similar p-values. In addition, databases of eQTL data, such as 

the Genotype-Tissue Expression (GTEx) project (Consortium, 2013), and meQTLs 

(Lemire et al., 2015) could be tested as additional prioritisation features. 
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6.3.5 Increased flexibility  
SuRFR has been designed to make use of locally stored annotation data, constructing an 

annotation table from these data. In addition to R, this process relies on methods 

including bedtools and vcftools. The resulting annotation table is a simple dataframe, 

which is then used by the ranking function to create a second output table containing the 

individual ranks for each feature as well as the overall rank of these ranks, combined 

using user-specified weighting parameters. 

 

I hope to submit SuRFR to the Bioconductor project for integration into their database of 

R packages. To this end, I have been in contact with the Bioconductor package 

development support team to discuss the restructuring that is needed before they can 

accept SuRFR. Earlier this year, the Bioconductor team published a paper outlining their 

future plans for genomic analyses projects (Huber et al., 2015). Their main aim for the 

future is to have a single universal system to store and manipulate genomic data. As part 

of this, Bioconductor have developed a new R object class called GRanges, a 

standardised format for storing all data pertaining to genomic coordinates and annotation 

data. For SuRFR to be accepted by Bioconductor I will have to reformat the data into a 

GRange object. An advantage of restructuring SuRFR into a GRange object is that all 

GRanges are compatible with other GRange objects, therefore increasing the flexibility 

of SuRFR further.  

 

An additional requirement for SuRFR to be accepted is that all of the annotation data 

used by SuRFR (currently stored locally) must be added to AnnotationHub, a centralised 

annotation database that is updated and controlled by Bioconductor. 

 

6.3.6 Tissue/cell type specificity  
SNPs associated with complex traits have been shown to have tissue dependent effects 

on gene expression (Fu et al., 2012), suggesting that tissue specificity plays an important 

role in disease.  Similarly, eQTLs are largely context dependent, being active in specific 

cell types at specific time points ((Nica et al., 2011); (Grundberg et al., 2012)).  
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Although tissue and cell-type specific annotation data is available for many features 

(including histone modifications, DNase HS, DNase footprints, enhancers, tissue 

specific promoters), the development of tissue/ cell-type specific versions of SuRFR is 

limited by the lack of sufficient cell-type specific and disease specific training data (the 

data that is available for single traits/diseases being limited in size). Despite this caveat, 

it could still be useful to incorporate cell-type or tissue specific data into the output of 

SuRFR. These data can be used in addition to the weighted rank of ranks for users to 

discriminate between variants. For instance, it would be interesting to identify brain-

specific features that overlap variants of interest for psychiatric illness. 

 

6.4 Conclusions 

In this thesis I have described the development, testing and application of a novel 

computational approach for the functional investigation of putatively deleterious 

variants. This method filled a niche that was not covered by other tools. Since then, other 

tools have been developed that perform the same role; however, I have also shown that 

SuRFR compares favourably with these other approaches, confirming its continued 

relevance (Ryan et al., 2014)(Appendix D).  

 

All prioritisation approaches are stepping-stones on the path to identifying true risk and 

causal disease variants. As such, their usefulness is in directing future research efforts 

towards a subset of variants to be followed up further, rather than being the end point of 

an analysis. In this context, the potential future plans of this project can be divided in 

two directions: the first, following up the candidate variants identified in Chapter 5; the 

second, expanding SuRFR’s remit to allow the investigation of additional variant types 

in an improved model. These two directions are equally exciting and present the 

possibility of furthering our understanding of what constitutes a deleterious variant and 

how these variants function in disease.  
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