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Abstract 

The human genome is highly heterogeneous in its GC composition. How codon usage affects 

translation rates has been extensively studied and exploited to increase protein expression. 

Although effects on virtually all other steps in gene expression have been reported as well, 

so far no systematic approach has been taken to quantitatively measure the contribution of 

each to overall protein levels in human cells. Here, I utilise a library of several hundred 

synonymous variants of the Green fluorescent protein (GFP) to characterise the influence of 

codon usage on gene expression in human cells. 

 

In an initial small-scale screen, I show that protein levels are largely correlated with codon-

usage and particularly GC-content. Additionally, I demonstrate that these changes can 

already be seen on the RNA level, confirming more broadly previously published data from 

our lab (Kudla et al., 2006). In order to assess the consequences of randomised codon usage 

on a larger scale, I established and validated a high-throughput approach for the phenotypic 

profiling of reporter genes. Using a pool of cells stably expressing >200 GFP variants, I 

measured multiple parameters simultaneously, such as protein levels, translational state, 

RNA levels, stability and export. Data from these experiments confirm a strong relationship 

between GC-content, protein levels, as well as RNA export, reproducibly in two cell lines. 

Low expression of especially GC-poor variants could not be rescued by splicing, but 

increased nuclear-to-cytoplasmic RNA ratio, suggesting further mechanisms important for 

efficient gene expression. These effects are even more pronounced when the distribution of 

GC is spread evenly along the coding sequence. Interestingly, our data also suggests that 

high GC within the first 200nt is more predictive of efficient gene expression, contrasting 

studies performed on bacteria, in which strong secondary folding near the ribosomal binding 

site was shown to be non-permissive for translation (Kudla et al., 2009).  

 

By relating experimentally derived parameters to sequence features known to inhibit 

expression, I demonstrate that cryptic splicing is a major factor leading to decreased levels of 

particularly GC-poor GFP variants. An attempt to quantitatively assess the relative 

contribution of several sequence features (e.g. tAI, GC3, CpG) using multiple regression 

analysis lead to inconclusive results, leaving the requirement for the exploration of 

alternative approaches in order to dissect the role of individual parameters, as well as to 

identify novel determinants of  gene expression.  
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Lay summary 

How genetic information is encoded in our DNA has been studied extensively over the last 

few decades, especially since the genetic code was solved in the 1960s. The genetic code is 

written with just 4 letters – A, T, G and C. The cell reads the code in triplets, which means 

that 3 letters together encode one amino acid, the building block of every protein. As there 

are 64 possible triplets but only 20 different amino acids, several triplets can code for the 

same amino acid, making it possible to write protein sequences in multiple ways. For long it 

was assumed that this would have no effect on protein levels, however, it has recently 

become clear that the choice of triplets can have profound consequences for a cell. 

 

In order for a gene to be made into a protein, the DNA code is first copied into a messenger 

molecule called RNA. RNA is then transported to ribosomes, the protein factories of cells, 

where the message gets translated into proteins. Besides the genetic code, which tells the cell 

what kind of protein to make, there is also a second code, the regulatory code, which defines 

how much of each protein should be made. In this PhD project, I tried to decipher this code 

to better understand the importance of being able to write the same piece of information in 

many different ways. 

 

Here, I show that the triplet choice for a particular protein can have a strong effect on how 

much RNA and protein is produced. By encoding the same model protein in hundreds of 

different ways, it is also possible to look at the various steps that lead to the expression of a 

gene, e.g. from reading the code, to transporting the message and the actual protein 

production. All this information allows us to measure how the triplet code matters. 

Interestingly, I found that the more G and C are used in a gene, especially at the beginning of 

a message, the more protein will be made.  

 

Studying this code further will help us understand diseases that are caused by proteins which 

are encoded in an alternative way, leading to either too much or too little protein being made. 

The knowledge gained from this study can thus be used to modulate protein levels in a 

controlled manner, simply by changing the triplet code. 
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1. Introduction 

1.1. The genetic code 

Soon after the discovery of the structure of DNA followed the identification of the 64 

nucleotide triplets encoding 20 amino acids, the building blocks of proteins, as well as 3 stop 

or non-sense codons which correspond to the end of a polypeptide chain (Figure 1, Crick et 

al., 1961; Watson and Crick, 1953). Since there are more codons than naturally occurring 

amino acids, 18 of the 20 amino acids are encoded by up to 6 different codons. This 

redundancy of the genetic code is termed degenerate. In most cases, changes at the third 

position of a codon do not affect the encoded amino acid and are therefore often referred to as 

‘silent’, whereas changes at the first and second position may lead to a change in the peptide 

sequence. The genetic code is almost universal which means that a given gene is most likely 

translated into the same protein in any species. However, the frequency of use of particular 

codons might vary strongly between species. With increasing data from comparative analyses 

of codon usage in different organisms, it has become clear that synonymous codons are not 

randomly distributed along genomes and genes, and that certain organisms seem to prefer 

some over others (Grantham et al., 1980; Plotkin and Kudla, 2011; Sharp and Li, 1986). 

 

 

 

Figure 1. The genetic code in form of the codon sun (from Nierhaus, 2006). 
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This phenomenon is termed codon usage bias and can be very strong in different species, with 

some avoiding certain codons almost completely (Plotkin and Kudla, 2011; Sharp and Li, 

1986, Figure 2).  Even though in most cases, base changes at the third position of a codon do 

not alter the sequence of amino acids in a protein, it has in recent years been recognised that 

synonymous changes are not as silent as once assumed. Newly emerging evidence indicates 

their importance in several steps in gene expression regulation with various studies implicating 

synonymous mutations in disease (reviewed in Sauna and Kimchi-Sarfaty, 2011). 

 

 
Figure 2. Codon usage bias within and between genomes. 
The relative synonymous codon usage (RSCU) is plotted for 50 randomly selected genes from 
each of 5 species. RSCU ranges from 0 (codon absent), through 1 (no bias) to 6 (a single 
codon is used in a six-codon family). Genes are in rows and codons in columns. (Adapted 
from Plotkin and Kudla, 2011) 
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The underlying causes of codon usage bias have been attributed to two main mechanisms: 

mutational drift and natural selection (Plotkin and Kudla, 2011). Mutational variations are 

neutral as differences in codon usage arise from underlying mutational processes, such as 

biases in DNA repair (Galtier et al., 2001) or biases in nucleotides produced by point mutations 

(Kimura, 1980), without any effects on the organism’s fitness. In contrast, processes involving 

natural selection postulate effects on fitness through synonymous codon changes, causing such 

to either be promoted or repressed within a population. In organisms with large population 

sizes and short generation times, e.g. bacteria and yeast, small deleterious mutations can 

therefore be acted on by natural selection, whereas in mammals, population sizes are much 

smaller and synonymous mutations are therefore assumed to be neutral (Kreitman, 1996). It is 

however likely that both mechanisms play a role in shaping codon usage bias between as well 

as within genomes (Chamary and Hurst, 2005). Across species, genomic GC content has been 

found to be a major determinant of codon usage (Chen et al., 2004). These are caused by 

mutational mechanisms affecting the whole genome. However in some species, such as 

mammals, mutation rates might vary depending on the sequence context, e.g. the 

hypermutability of CpG dinucleotides, in which case the often methylated cytosine is 

frequently mutated to a thymine (Bird, 1980). 

 

Within genomes, the most studied factor affecting codon usage is the selection for efficient 

gene expression. There is a positive relationship between high codon bias and high expression 

levels in prokaryotes as well as eukaryotes which cannot be explained by mutational biases 

alone (Eyre-Walker, 1991; Sharp and Li, 1987). A more selectionist explanation for such a 

correlation is the adaptation of codon usage to tRNA abundance to deliver more efficient 

and/or accurate protein synthesis (Akashi, 1994). Although it is unclear how this is applicable 

to higher eukaryotes, since codon usage of genes expressed in different tissues or 

developmental stages may vary as well as the relative tRNA levels (Dittmar et al., 2006), 

which are technically challenging to measure accurately, and their expression might not 

correlate well with gene copy number. In mammals and in particular humans, there is still 

much controversy whether coupling of codon usage with tRNA abundance is an active 

mechanism shaping gene expression patterns of particular sets of genes, or whether codon 

usage of such is mainly driven by underlying sequence features such as GC content (Gingold 

et al., 2014; Plotkin et al., 2004; Rudolph et al., 2016). 

 

Although codon bias has been primarily studied in the context of translation, it has in recent 

years become more evident that the effects of synonymous changes may already be observed 
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at the RNA level. However, due to a lack of understanding of the underlying mechanisms, it 

is difficult to predict the effect of synonymous substitutions on mRNA processing, stability or 

translation. The aim of this thesis is therefore to systematically and quantitatively characterise 

the influence of coding-sequence changes on gene expression in order to investigate sequence 

properties associated with efficient gene expression in human cells.  

 

1.2. Sequence composition of the human genome 

Long before genome sequencing allowed the visual interpretation of the compositional 

heterogeneity, experimental approaches using e.g. CsCl ultracentrifugation already showed a 

relatively high resolution picture of the base compositions of mammalian DNAs (Corneo et 

al., 1968). These gradient approaches revealed that genomes of human cells contained large 

regions (>300kb) of high GC content uniformity, termed isochores, which are absent in 

genomes of lower organisms (Bernardi, 1993). With advances in whole genome sequencing 

and the eventual release of the finished sequence of the human genome by the International 

Human Genome Sequencing Consortium, GC heterogeneity could, for the first time, be 

directly visualised along all chromosomes (Lander et al., 2001). One of the most striking 

findings is that even though the genomic GC content averages at around 38%, genes cover a 

surprisingly broad range of GC content with a significantly higher average at around 46% 

(Lander et al., 2001). When looking at the relative gene density within the different families 

of isochores, it also became clear that gene distribution is very non-uniform in the genome and 

divided into two genome spaces: the genome core, composed of the two GC-richest isochore 

families H2 and H3, which comprise more than half of the genes although only representing 

about 15% of the total genome, and the genome desert, represented by the GC-poor isochore 

families L1, L2 and H1 (Bernardi, 2012). Both spaces were associated with different basic 

characteristics, such as the correlation between isochores families with recombination, 

replication timing, location and in particular chromatin structure in interphase nuclei; the 

chromatin of the genome core is “open”, but rather “closed” in the genome desert (Saccone et 

al., 2002). A study by Constantini and Bernardi investigated the frequencies of di- and tri-

nucleotides and revealed large differences among all five isochore families which were found 

to be responsible for many of the basic properties of the human genome, such as differences 

in codon usage (Costantini and Bernardi, 2008). GC level was found to explain ~50% of 

variation in nucleosome occupancy in vitro which, considering wide-spread variation in 

nucleotide frequencies across different parts of genomes in different species, suggested the 

direct influence on chromatin structure (Tillo and Hughes, 2009). Later it was found that 

trinucleotide patterns were non-randomly distributed within the genome and strongly 
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influenced nucleosome positioning (Arhondakis et al., 2011). Furthermore, a preference for 

certain regulatory sequences such as transcriptional start sites were found between isochore 

families L1 and H3. Whereas the regulatory sequences in L1 predominantly belong in a 

“TATA-box” model, in H3 they fit rather a “GC-rich” model. Consequently, the transcription 

factors bound by either GC-poor or GC-rich isochores are very different, which indicates that 

genes in different isochore families may be functionally different. Indeed, a few decades 

earlier, it was proposed that GC-rich isochores were richer in housekeeping genes and GC-

poor isochores richer in tissue-specific genes (Mouchiroud et al., 1987, 1991). This was later 

confirmed by the finding that housekeeping genes are on average GC-richer (Vinogradov, 

2003). The nucleotide composition of an isochore is therefore the best predictor for the 

nucleotide content at the synonymous site and hence, codon usage bias across genes. 

 

1.3. Mechanisms by which codon usage affects gene expression 

Eukaryotic messenger RNA does not exist by itself but rather in large complexes consisting 

of multiple protein factors and small or long non-coding RNAs, together forming large 

messenger ribonucleotide particles (mRNPs). The combination of molecules ultimately decide 

on the fate of each transcript by influencing virtually every step in gene expression. Some of 

these mechanisms, starting from mRNA transcription, are described in more detail below. 

 

1.3.1. Transcription 

The regulation of gene expression by modulation of the transcription process has long been 

recognised, however, how codon usage within coding regions may influence protein levels has 

only recently started to emerge. It was recently shown that about 14% of codons within 86% 

of all human coding genes contain transcription factor (TF) binding sites, as determined by 

DNase I footprinting experiments across 81 different cell types (Stergachis et al., 2013). This 

was thought to provide evidence for a TF ‘regulatory’ code overlapping the genetic code, 

suggesting that codon choice is not only constraint by protein structure and function, but also 

by TF binding. However, it should be noted that this study did not address the question of how 

TF binding within exons functionally shapes gene expression and how this could 

mechanistically be achieved (Weatheritt and Babu, 2013). It was further suggested that there 

may be a synonymous codon bias, with TF-bound regions being more enriched  in G/C-ending 

codons, ultimately linking such sequence constraints to protein evolution and fitness 

(Stergachis et al., 2013). These results and the implied assumptions however, remain a topic 

of controversy (Agoglia and Fraser, 2016; Xing and He, 2015). 
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Intragenic CpG content has recently been implicated in regulating transcription rate as shown 

in run-on assays comparing CpG-enriched and CpG-depleted synonymous gene variants of 

viral and cytokine reporter genes  and correlated with long-term expression in stable human 

cell lines (Bauer et al., 2010). Later it is was found that nucleosome positioning differed 

between these variants in vitro which may also be the cause for differences in chromatin 

accessibility measured in vivo likely being the cause for differences measured in RNA 

polymerase II elongation rates (Krinner et al., 2014). Furthermore, high CpG near the 5’end 

of reporter genes was shown to correlate with gene expression, and high CpG downstream of 

the transcription start site was suggested to be a general feature of highly expressed genes. The 

number of variants utilised in these studies were, however, very low (4 per reporter gene) and 

therefore too low to distinguish between effects caused by high CpG or high GC-content. In 

case of genome-wide data presented within the same study, again no clear distinction was 

made between GC, GC3 and CpG content, nor between transcription start site and start codon, 

which may introduce a systematic skew due to fundamental differences in different genomic 

backgrounds (e.g. UTR sequences tend to be shorter in GC-rich isochores). Therefore the 

generalisability of these findings are unclear and further investigation is required. 

 

1.3.2. mRNA folding and stability 

Although most synonymous changes at the third codon position have no effect on amino acid 

sequence, in respect to mRNA folding energy and hence mRNA secondary structure, they are 

not all equivalent. The (G+C)/(A+U) ratio together with the availability of Watson-Crick base 

pairing are the two major factors determining RNA folding energies. The GC-content strongly 

affects the total folding energy (FE) of a mRNA molecule, resulting from the fact that there 

are 3 H-bonds between G and C but only two between A and U. Computational analysis of 

mRNA sequence composition and total folding energy suggest an up to 4-fold change in 

folding energy by changing only the wobble bases (Biro, 2008). Since synonymous codons 

are not used in equal frequencies and do not occur randomly (see 1.1), this suggests a 

regulatory role of wobble bases in determining mRNA folding energy and thus mRNA 

secondary structure. Indeed, sequence elements rich in adenosine and uridine, called AU-rich 

elements (AREs), although unlikely to exhibit strong secondary structures, are known to affect 

mRNA stability in mammalian cells (Fan et al., 1997). Such sequence motifs were originally 

discovered in the 3’UTR region of mRNAs and were found to cause rapid degradation through 

deadenylation (Chen and Shyu, 1995) and are primarily found in genes which require very 

tight spatial and temporal regulation, e.g in cell proliferation or as a response to environmental 
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stimuli (Barreau et al., 2005). AU-rich elements have been estimated to influence the 

expression pattern of up to 8% of human genes (Bakheet et al., 2001). 

 

The folding structure of an mRNA molecule influences the interaction with regulatory 

molecules through cis-regulatory elements modulating the transcripts stability. Several studies 

on synonymous single nucleotide polymorphisms (sSNPs) within coding-sequences highlight 

the importance of epistatic interactions between nucleotides and the dramatic consequences of 

synonymous site changes on mRNA stability and its link to disease. Duan et al. found that 

several human G protein-coupled receptor (GPCR) genes diverted in their GC3 content 

significantly from their genomic non-coding GC background, urging further investigation into 

possible reasons leading to selection at these positions (Duan et al., 2003). A particular sSNP 

(957T) in human dopamine receptor D2 (DRD2), one of the proteins identified using this 

approach, causes a dramatic change in the mRNA folding structure, affecting transcript 

stability as well as translation rate. Interestingly, it could also be shown that the co-occurrence 

of another common disease-associated sSNP (1101A) leads to a secondary structure which 

closely resembles the wild-type structure and thus compensates for the otherwise detrimental 

effects of a single sSNP (positive epistasis). More recently, a genome-wide analysis on seven 

human lymphoblastoid cell lines measured the transcript-wide RNA stability by using 4sU-

labelling of nascent transcripts. By calculating the ratio of nascent to total RNA (Duan et al., 

2013), a positive correlation of RNA half-life with coding GC (r=0.141, p=9e-10) as well as 

coding GC3 (r=0.224, p=2.8e-12) was found, suggesting a more global role of codon usage in 

determining RNA stability. Kudla et al. directly measured mRNA stability between a very 

GC-poor and GC-rich coding-sequence variants of the Green Fluorescent Protein (GFP; 

GC3=0.35 and 0.96), both encoding the same final protein product and placed in the same 

genomic context (Kudla et al., 2006). No striking changes in mRNA half-lives were observed 

after a transcriptional block using Actinomycin D. However, Actinomycin D preferentially 

intercalates into GC-dinucleotide regions of genes, which causes this standard assay to be sub-

optimal for the comparison of genes with extreme differences in GC composition, leaving the 

requirement for further investigation using an unbiased approach. 

 

Structural changes caused by sSNP within the coding region have also been shown to interfere 

with the efficiency of microRNA (miRNA) binding. miRNAs are short regulatory RNAs 

which function through the formation of a miRNA-induced silencing complex (miRISC) with 

Argonaute proteins, which is targeted to complementary miRNA binding sites on transcripts, 

leading to their decay (Bartel, 2009). Target sites of miRNA are predominantly reported in 
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3’UTR sequences, although have also been reported in coding regions of mammalian mRNAs 

but with reduced inhibitory functions (Forman and Coller, 2010). Since target inhibition is 

likely due to interference with RNA structure and/or the translation machinery, it could be 

argued that miRNA binding sites in coding-sequences were evolutionarily selected for due to 

lower substitution rates (Hurst, 2006). The biological function of coding-sequences targeted 

by miRNAs is supported by multiple examples, one of which was identified in a GWAS 

analysis. The immunity-related GTPase family M protein (IRGM) gene is an interferon 

inducible GTPase that, if not regulated properly, causes susceptibility to Crohn’s disease. A 

sSNP was found within the seed region of the miR-196 binding site which was shown to lead 

to insufficient miRNA binding and thus ineffective downregulation of IRGM, leading to a 

Crohn’s disease associated inflammatory response within the intestinal epithelia (Brest et al., 

2011). 

 

In contrast to RNA degradation pathways mediated by the binding of specific RNA-binding 

proteins, the ribosome recognises some features on the mRNA which ultimately trigger 

transcript degradation. It was recently shown in yeast that the optimality of codons is a strong 

determinant of mRNA stability (Presnyak et al., 2015). It was suggested that slow-decoding 

codons lead to the recruitment of the CCR4-NOT deadenylase complex as well as the 

decapping enzyme Dcp2, independent of other ribosome-dependent degradation pathways, 

such as nonsense-mediated decay (NMD) or no-go decay (NGD). The same group recently 

established Dhh1p (DDX6) as a sensor for codon optimality (Radhakrishnan et al., 2016). 

Dhh1p was shown to accumulate on transcripts when ribosomes progress slowly on stretches 

of non-optimal codons, leading to the recruitment of CCR4-NOT and ultimately faster mRNA 

decay (Radhakrishnan et al., 2016). A further study showed the generality of such pathways 

across eukaryotes by demonstrating that uncommon codons as well as 3’UTR length determine 

the mRNA stability of maternal transcripts in zebrafish (Mishima and Tomari, 2016).  

 

1.3.3. Pre-mRNA splicing 

Mammalian genes consist of coding (exonic) and non-coding (intronic) regions. In order for 

mRNA to mature into a functional message, multiple mechanisms are in place which combined 

are required to assure the correct removal of introns. The nucleotide sequence of pre-mRNA 

determines the affinity as well as the recognition of spliceosomal factors and thus, any 

nucleotide changes might affect the final mRNA product.  
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sSNP can create cryptic splice-sites caused by dinucleotides falsely being recognised as 

intronic ends (Eskesen et al., 2004). Other splicing-control elements have more recently gained 

higher importance as well through their effect on the recruitment of spliceosomal proteins. 

Such sequences include Exonic splice enhancers (ESEs) as well as silencers (ESSs) and have 

been shown to be required for correct exon selection (Fairbrother et al., 2002; Wang et al., 

2004). For example Pagani et al. showed that multiple synonymous mutations in exon 12 of 

the cystic fibrosis transmembrane conductance regulator (CFTR) gene disrupt a composite 

exonic regulatory element of splicing (CERES) leading to exon skipping. The same group later 

demonstrated that about 25% of synonymous changes within exon 12 result in similar exon 

skipping phenotypes (Pagani et al., 2005). To better understand the sequence determinants of 

alternative splicing, Rosenberg et al. created large synthetic mini-gene libraries with 

degenerate, alternative 5’ or 3’ splice sites and quantitatively measured the isoform ratio 

(Rosenberg et al., 2015). The data was used to train a predictive model which was shown to 

be highly predictive of naturally occurring variants, such as in case of the CFTR gene (60% of 

the effects of sSNPs could be explained). A later study used a similar high-throughput 

approach but focussed on the effects of all single and double mutants of an entire exon and 

demonstrated that >90% of base changes altered the exon inclusion ratio (Julien et al., 2016) 

but also argued that splicing regulatory features are not organised into defined motifs but 

dispersed along the entire sequence. The importance of sequence composition over larger 

sequence stretches (as opposed to short k-mers in the case of more discreet regulatory motifs) 

might therefore be directly connected to the large genomic GC variation. 

 

Several studies on the human genome in regards to its GC content heterogeneity revealed that 

gene structures differ significantly between regions of high GC and low GC content (Amit et 

al., 2012). It was found that regions of high GC contain relatively short introns, as is the case 

with e.g. human housekeeping genes. Mechanisms are therefore required to ensure correct 

splice site recognition while still remaining flexible to accommodate the varying sequence 

features between regions of differential GC content. Two different recognition models were 

proposed: the exon definition and intron definition (Figure 3). Both models primarily rely on 

the differences in exon/intron lengths in different genomic regions. As introns in GC-poor 

regions tend to be long (>250bp), it was proposed that exon-flanking introns act as “flags” to 

aid the splicing machinery in recognising the location of exons as the splicing machinery is 

unable to detect large introns directly (Robberson et al., 1990). On the other hand, in lower 

eukaryotes, introns tend to be shorter (<250bp) and are thus more likely to be recognised 

directly by the splicing machinery. A study by Amit et al. systematically studied the 
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differences between exonic and intronic GC content in GC-poor and GC-rich regions (Amit et 

al., 2012). It was shown that long introns contained a markedly higher GC content than their 

flanking exons, whereas short introns do not differ compared to their surrounding exons. This 

can be seen across all higher eukaryotes with similar genome composition to humans, however 

not in lower organisms which also do not show differences in intron lengths.  It was also 

demonstrated how splice-site mutations leading to disease-associated exon skipping or intron 

retention correlate strongly to GC-content. Since it was known that nucleosome positioning 

tends to be more precise in exons compared to flanking introns due to their preference for GC-

rich sequences (Tillo and Hughes, 2009), it was additionally shown that nucleosome 

occupancy is much higher in exons of low GC regions compared to those in high GC regions, 

further confirming a link between chromatin structure and splicing (Schones et al., 2008; Schor 

et al., 2009).  

 

 

Figure 3. Intron and Exon definition models of pre-mRNA splicing. 
The top panel illustrates the intron definition model when introns are short (<250bp) enough 
to be directly recognised by the splicing machinery. The bottom panel shows how splicing 
factors communicate across exons when introns are long (>250bp). (Adapted from De Conti 
et al., 2013). 

  



11 

 

1.3.4.  Nucleo-cytoplasmic mRNA export 

A fundamental step in the expression of mature RNA molecules is the export from the nucleus 

into the cytoplasm. All RNA species produced in the nucleus travel through the nuclear pore 

complex via export factors. This is a highly regulated process which relies on the assembly of 

large ribonucleoprotein (RNP) particles. Transcription and export are linked through the co-

transcriptional recruitment of the THO/TREX complex along with the adaptor protein 

Aly/REF. Spliced mRNA associates with the major export receptor NXF1 (TAP) and its 

heterodimeric partner NXT1 (p15) (Müller-McNicoll and Neugebauer, 2013), whereas the 

export of  naturally intronless mRNAs has been shown to occur through the TREX/NXF1 

pathway in a transcription-independent, but polyadenylation-dependent manner (Lei et al., 

2011). While this pathway is utilised by most mRNAs, a subset of endogenous mRNAs that 

encode proteins important for cell proliferation and survival, use chromosome region 

maintenance 1 protein homologue (CRM1), which is the main export factor for proteins 

(Culjkovic-Kraljacic and Borden, 2013). CRM1 cannot directly interact with RNA, but with 

adaptor proteins or other RBPs, such as Hu-antigen R, which binds to AU-rich elements 

(Brennan et al., 2000). Similar mechanisms are also required in the case of intronless viral 

RNAs which additionally rely on the interaction with either specific cellular or viral proteins 

to aid the recruitment to the cellular export machinery. 

 

The replication cycle of Human immunodeficiency virus type I (HIV-1) is divided into two 

phases, early and late. Late genes require the early viral adaptor protein Rev for efficient 

expression (Figure 4). Rev recognises an RNA-element, named Rev-responsive element 

(RRE), on all unspliced or singly spliced viral transcripts (Fischer et al., 1994; Malim et al., 

1989). Rev contains both a nuclear localisation signal which can be recognised by importins 

(Pollard and Malim, 1998) as well as a nuclear export signal which can be recognised by the 

export receptor CRM1 (Fischer et al., 1995; Ossareh-Nazari et al., 1997), allowing Rev to 

shuttle through the nuclear pore complex between nucleus and cytoplasm. Singly spliced viral 

genes should therefore theoretically be able to utilise both NXF1 and CRM1-dependent RNA 

export pathways. A study by Taniguchi et al. however showed that Rev bound to viral RNA 

actively suppresses the NXF1-dependent pathway through both the accumulation of Rev along 

the transcript and the interaction with the Cap-binding complex (CBC) which inhibits the 

association of Aly/REF to the 5’ terminus of the transcript (Taniguchi et al., 2014). Viral genes, 

especially of the lentivirus family, are remarkably rich in adenine and relatively poor in 

cytosine (van der Kuyl, 2012). Inhibiting CRM1 function with the drug leptomycin B was 

shown to have a negative effect on cytoplasmic levels of rev-dependent transcripts (Graf et al., 
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2000), suggesting CRM1-dependent nuclear export. It was later demonstrated that increasing 

the GC-content of these viral genes circumvents the requirement for Rev (Kotsopoulou et al., 

2000). Similar observations have been made with the HPV virus for which it was shown that 

it is possible to efficiently express AU-rich viral genes in the cytoplasm using vaccinia virus 

T7 RNA polymerase expression system (Sokolowski et al., 1998; Tan et al., 1995).  

 

 

 
 
Figure 4. Rev-mediated nucleo-cytoplasmic RNA export of late viral genes. 
The early viral protein Rev is required for mRNA export of late viral genes. Rev recognises the 
Rev-response element within the 3’UTR of late viral transcripts and promotes efficient nucleo-
cytoplasmic export. 

 

 

However, from this study it is not completely clear whether changing codon usage increases 

cytoplasmic RNA abundance due to increased nucleo-cytoplasmic export or whether the 

consequential removal of potentially destabilising elements, such as AU-rich elements (ARE) 

located on some viral genes (e.g. gag), leads to increased transcript stability. It was suggested 

that instability might not necessarily be conferred by the presence of AREs, but rather the 

overall AU content which may lead to increased nuclear degradation since changing the codon 

usage of certain viral genes which are not predicted to have any ARE-like motifs also increased 

transcript stability (Nguyen et al., 2004). Removing such inhibiting signals through sequence 

mutagenesis of gag removed the dependency on Rev for efficient expression (Graf et al., 2000; 

Schneider et al., 1997). Furthermore, changing the codon usage of the viral vpu and vif  genes 
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to closer resemble human genes increased their stability, as well as allowed the transcripts to 

be exported via a CRM1-independent pathway while still remaining biologically active 

(Nguyen et al., 2004). The same study also demonstrated that increased mRNA levels were 

not caused by increased transcriptional efficiency. It was furthermore shown that changing the 

codon usage of the Green Fluorescent Protein (GFP) reporter gene to mimic viral codon usage 

decreased GFP RNA levels substantially in the absence and presence of Rev without large 

effects on transcription or translation in vitro. This suggests that lowered expression is directly 

caused by the difference in codon usage introducing functionally undesirable features (Graf et 

al., 2006). A later study by Shin et al. demonstrated that differential codon usage of the viral 

glycoprotein genes gp160 (Rev-dependent) and gH (ORF57-dependent) are required for the 

correct temporal regulation of their expression (Shin et al., 2015). The authors also 

demonstrate how this dependency on adaptor proteins for efficient expression can be either 

flipped between both proteins by reversing their codon usage patterns, or can be imposed onto 

another, non-viral protein (luciferase). Overall, these finding suggest that codon usage can 

actively influence mRNA export by either affecting transcript stability, or the requirement for 

export adaptor proteins to facilitate interactions with the export machinery, however the 

driving mechanisms remain unclear and further studies are required to directly address such. 

 

1.3.5. Codon usage in translation and protein folding 

mRNA lies at the interphase between transcription and translation. Once fully processed and 

matured, mRNA is translated into protein by the ribosome. Thus, not only regulation on the 

post-transcriptional level, but also during translation plays a significant role in modulating 

protein yield. A vast amount of research around synonymous codon usage has focussed on the 

translation processes as well as the consequences on protein folding and functionality. 

Multiple different types of codon biases have been proposed to contribute to the variation of 

synonymous codon usage seen amongst genes within same genomes (Cannarozzi et al., 2010; 

Coleman et al., 2008; Tuller et al., 2010) and with further advances in methods able to explore 

translation dynamics on a genome-wide level, it has become clearer that differential codon 

usage may act as an additional layer for fine-tuning gene expression (reviewed in Quax et al., 

2015).   

 

Translation can be divided into three separate consecutive steps: Initiation, the process of 

assembly of the ribosomal subunits together with over 70 auxiliary factors; elongation, the 

actual synthesis of a peptide chain; and termination, which entails the dissociation of the full-

length protein and removal of the ribosome from the mRNA transcript. The first step in protein 
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synthesis relies on successful translation initiation. The Shine-Dalgarno sequence in 

prokaryotes and the Kozak sequence in eukaryotes are both involved in the interaction between 

mRNA and ribosomal complex. The strength of folding around the start codon can therefore 

influence the efficiency of translation initiation. In E.coli as well as S.cerevisiae it was shown 

using reporter gene libraries that a significant proportion of variation seen in protein 

expression could be explained by mRNA secondary structure formation around the start codon 

(Bentele et al., 2013; Goodman et al., 2013; Kudla et al., 2009) . In both cases, strong mRNA 

folding structures in the 5’ end of mRNAs lead to reduced translation initiation. A 

computational study by Gu et al. further demonstrated that reduced mRNA stability near the 

translation-initiation site is a universal trend that can be seen across several species of 

prokaryotes and eukaryotes (Gu et al., 2010). 

 

Although translation initiation is commonly assumed to be the rate limiting step in translation, 

several studies have also shown the involvement of synonymous codon usage in determining 

ribosomal speed in translation elongation. An essential step in protein synthesis is the 

successful base paring of the codon with the anticodon of its corresponding tRNA. However, 

no organism contains the full set of tRNAs with the complementary anticodons to all 61 

naturally occurring amino acids due to the redundancy of the genetic code. Several tRNAs are 

isoaccepting, meaning they can recognise several codons using Watson-Crick base pairing at 

the first and second position of a codon, whereas “wobbling” is possible at the third position 

(Crick, 1966). It was assumed that more frequently used codons recognised by more abundant 

tRNAs lead to more efficient translation (Berg and Kurland, 1997). Some suggested that 

codons translated by rare tRNAs are decoded slower, thus resulting in lower elongation rates 

(Dana and Tuller, 2014). A study by Tuller et al. focussed on the distribution of rare and 

frequently occurring codons to study common patterns between genes and reported an 

evolutionary conserved codon ramp of between 30-50 rare codons which was proposed to 

initially slow down ribosomes to increase the overall efficiency of protein synthesis by 

preventing ribosome traffic jams (Tuller et al., 2010). This finding emphasised the importance 

of the 5’ end of an mRNA transcript in determining translation efficiency. Several studies tried 

to address similar questions by investigating the mechanisms linking tRNA availability to 

particular patterns of codon arrangements within genes. Cannarozzi et al. suggested that fewer 

tRNA changes, i.e. increased use of multivalent tRNAs within the same gene, favours tRNA 

recycling. It was proposed that tRNAs remain in close proximity of the ribosome and their 

rapid recharging with their corresponding amino acid allows them to be readily re-used at the 

next occurrence of the same or an isoaccepting codon, leading to up to 30% faster translation 
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rates (Cannarozzi et al., 2010). An earlier study by Gutman et al. studied the frequency of non-

synonymous codon pairs and found that certain codon pairs appear more often than others, 

regardless of the frequency of the single codons (Gutman and Hatfield, 1989). The reasons for 

that are not clear, but it is thought that codon pair usage affects ribosome translocation due to 

the structural properties of different tRNAs as they are likely to interact while occupying the 

A and P sites of the ribosome (Buchan et al., 2006). Coleman et al. utilized these findings and 

synthesised a poliovirus mutant with a low codon pair bias, which could successfully be used 

to immunize mice without showing any symptoms (Coleman et al., 2008). Additionally, the 

concentration of tRNA-synthetases have been shown to oscillate between different phases of 

the human cell cycle which may explain differences in codon usage of gene sets expressed at 

different cellular stages (Frenkel-Morgenstern et al., 2012). It was later shown that tRNA 

concentrations also differ between proliferating and differentiating cell types (Gingold et al., 

2014), suggesting expression regulation of certain subsets of genes by changing the codon to 

anticodon tRNA pools. This was recently contradicted by a study showing that any given 

tRNA pools are equally well able to translate any category of genes, in both healthy and cancer 

tissues and it was suggested that previously reported differences are primarily caused by 

underlying sequence features, such as genomic GC context (Rudolph et al., 2016).  

 

However, with the development of high-throughput techniques allowing the monitoring of 

ribosome density on a genome-wide level (Ingolia et al., 2009), it is now possible to study 

translational dynamics and its link to codon usage more globally. Ingolia et al employed a 

pulse-chase strategy to measure translation elongation rates globally. By combining the drug 

harringtonine, which stalls ribosomes at the initiation codon, followed by a short run-off period 

and cycloheximide treatment, stalling actively translating ribosomes, they acquired several 

snapshots of the global translational landscape in mouse embryonic stem cells (Ingolia et al., 

2011). In contrast to previous studies which concluded that the decoding speed for different 

codons varies strongly and affects elongation, no similar relationships could be found, as no 

translational pauses at rare codons were observed, leading to overall very little effects of codon 

usage on elongation rates. Although this does not exclude the possibility that for particular 

genes this may still be the case. Another study by Pop et al. further investigated the relationship 

of tRNA abundance and sequence features using existing ribosome profiling data under 

physiological conditions in yeast and could not find a significant correlation with microarray 

tRNA measurements (Pop et al., 2014) nor with the tRNA adaptation index, a measure of 

codon usage based on tRNA gene copy number (dos Reis et al., 2004). Since these experiments 

were mostly conducted under physiological conditions, it is possible that in previous studies 
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which utilised overexpression-based systems, the abundance of particular tRNAs may become 

rate-limiting in elongation and thus, codon choice might gain more weight in its importance 

for overall expression patterns. 

 

Ribosomal speed also influences co-translational protein folding (Zhang et al., 2009). 

Differential translational speed caused by rare codon usage was suggested to influence protein 

secondary structure in both computational and experimental analysis. In the Multi-drug 

Resistance 1 (MDR1) gene, a SNP at a synonymous site alters the conformation of its protein 

product, the P-glycoprotein (P-gp), without affecting mRNA or protein levels (Kimchi-Sarfaty 

et al., 2007). It was suggested that the change from the more frequently used codon GGC 

(relative synonymous codon usage (RSCU) = 22.4) to the less frequently used GGT (RSCU = 

10.8), leads to a translational pause site which affects the timing of co-translational folding, 

resulting in an altered protein structure. Other studies showing similar effects of abnormal 

codon usage on protein function were able to demonstrated that non-optimal codon usage can 

be required for normal protein function (Xu et al., 2013; Zhou et al., 2013, 2015) which was 

further underlined by computational studies defining the key role of optimal and non-optimal 

codon usage in certain mRNA transcripts as essential for correct domain folding (Pechmann 

and Frydman, 2013) as it was found that β sheets are enriched in frequent codons, whereas 

both rare and frequent codons are required for proper α loop formation (Pechmann and 

Frydman, 2013). Furthermore, it was shown that clusters of rare codons found in genes coding 

for membrane and secretory proteins cause translational pausing to allow binding site 

recognition by signal recognition particles required for membrane translocation of the protein 

(Fluman et al., 2014; Pechmann et al., 2014). 

 

1.4. Codon optimisation and biomedical applications 

Several protein defects are associated with human complex diseases. Over the last few 

decades, recombinant proteins and protein therapeutics have become a common approach in 

treating such. The originally preferred method was the purification of proteins directly from 

plant, animal or human tissue, but the rise of recombinant DNA technology has largely 

replaced such practices. The huge variation in preferred codon usage between different species 

was one of the major hurdles that had to be overcome in order to improve protein yield and to 

make the purification process more time and cost efficient. 
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1.4.1. Recombinant protein expression 

Many host organisms can be used to produce heterologous proteins, yet up to today, the most 

preferred choice is E.coli due to is its well understood genetics, fast growth rate and low-cost 

maintenance. A major area that utilises heterologous protein expression is biomedical 

research. Fluorescent protein bio-markers are now a commonly used tool for the visualisation 

of proteins and/or protein-interactions in vivo. One particularly well-known example of such 

a protein is the Green fluorescent protein (GFP) isolated from the jellyfish Aequoerea victoria 

which was first established as a novel reporter in prokaryotes and animals (Chalfie et al., 

1994). Due to large differences in optimal codon usage, expression levels of heterologous 

proteins can often be very poor. The most commonly known approach to circumvent this issue 

is to alter rare codons in a target gene so that they more closely reflect the codon usage of the 

host, without modifying the amino acid sequence of the encoded protein. For example, 

Zolotukhin et al. modified the nucleotide sequence of GFP heavily by introducing 92 base 

substitutions in 88 codons to adjust the sequence to more preferentially used codons in the 

human genome which led to efficient expression in human cells (Zolotukhin et al., 1996).  

 

Recombinant protein expression has also gained more and more importance in the production 

of human therapeutics. The first mammalian peptide to be successfully expressed in E.coli was 

Somatostatin, a 14 amino-acid residue (Itakura et al., 1977). This was achieved without the 

actual knowledge of the mRNA sequence but by reverse-translating the amino acid sequence 

into codons most frequently used in E.coli. However, protein expression in bacteria also 

harbours multiple disadvantages. Limitations for protein size, complexity and the lack of 

certain post-translational modifications restrict the production to smaller peptides or single 

protein domains. For this reason, human therapeutics are often produced in cultivated 

mammalian cell lines. To achieve efficient expression, several gene optimisation methods with 

the aim to adjust sequence parameters that were previously shown to be unfavourable for 

expression, have been proposed. Two of the most common measures of codon optimality, the 

Codon Adaptation Index, CAI (Sharp and Li, 1986), and the tRNA Adaptation Index, tAI (dos 

Reis et al., 2004), are often applied in an attempt to increase the translational yield. The CAI 

is a species-specific measure of codon frequency which is derived from a set of highly 

expressed reference genes. The assumption is that those genes are highly adapted to the tRNA 

pool and therefore allow more efficient translation and thus, higher protein yield. As 

alternative to the CAI, a further translation-related score, the tAI, was proposed (dos Reis et 

al., 2004). The tAI was suggested based on the finding that available tRNA pools within the 

cell are highly correlated with their respective gene copy numbers within a given genome, 
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which would therefore allow to score each codon independently of a group of reference genes 

(Duret, 2000; Percudani et al., 1997). Although both measures were shown to correlate with 

expression data, this is not always the case (Kudla et al., 2009). Some studies evaluated the 

relationship between codon usage and expression levels in mammalian cells and concluded 

that there are functional differences in codon usage between protein-coding genes (Gingold et 

al., 2014; Ma et al., 2014; Plotkin et al., 2004). In stark contrast however, other recent work 

challenged this view by concluding that variation in codon usage is primarily driven by the 

underlying genomic sequence composition, arguing that mammals are better optimised for 

more complex, multi-layered regulatory mechanisms and therefore do not rely on translational 

efficiency as a major regulatory mechanism (Rudolph et al., 2016). These opposing views 

emphasize the need for more thorough investigation into codon usage and its link to gene 

expression control important for the enhancement of biomedical research purposes. 

 

1.4.2. Gene therapy and DNA/RNA vaccines 

More recently, codon optimisation has also been in the focus of research into novel vaccines 

based on DNA and RNA rather than protein antigens from disease-causing microorganisms. 

Immunisation by DNA/RNA vaccines relies on the ability of the produced protein to stimulate 

a humoral and cellular response. Since high immunogenicity depends on effective 

transcription and translation of the antigen, increasing protein production by optimising the 

codon usage is desirable. This has been successfully employed in several studies, leading to 

enhanced T-cell responses (Gao et al., 2003) and antibody production (Narum et al., 2001).  

 

Another area of intense medical research which relies on similar principles is gene therapy. 

The general idea of gene therapy is to either replace a faulty copy of a gene, or to supplement 

with a functioning version with the objective to counteract the adverse effects of the defective 

gene. Many mutated and disease causing genes utilise a high number of less favourable codons 

and are expressed at low levels. Merely reintroducing a wild-type copy might therefore not be 

sufficient to compensate for the lack of functionality of the mutated gene product, in particular 

since the transfection efficiency is the limiting factor and often very poor. Mutations in the 

CFTR gene affect the function of the encoded ion channel which controls the flow of H2O and 

chloride ions in and out of lung cells, causing cystic fibrosis. To tackle the issue of poor 

expression, Varathalingam et al. incorporated 1010 synonymous base changes into the CTFR 

sequence, creating a novel cDNA that shares only 77.4% sequence identity with the standard 

CFTR cDNA (Hyde et al., 2008; Varathalingam et al., 2005) but encodes the same protein and 

exhibits higher expression levels. In addition to modifying the codon usage, it has also been 
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reported as beneficial to deplete transgene sequences of CpG dinucleotides as it was shown to 

minimise inflammation and maintain prolonged gene expression (Chevalier-Mariette et al., 

2003; Dalle et al., 2005; Hyde et al., 2008; Mitsui et al., 2009). However, one study 

demonstrated that codon optimisation of the model gene murine erythropoeitin (mEPO) 

containing 20 CpGs increased expression levels as well as prolonged expression in mice 

compared to a CpG-depleted version of the wild type gene (Kosovac et al., 2010), leaving the 

requirement for further investigation into the underlying mechanisms. 

 

1.5. Aims of this thesis 

The GC content varies greatly across genomes and also across genes, leading to large 

differences in codon usage between and within genes. The knowledge of the various factors 

affecting gene expression level have for many decades been exploited to enhance protein 

abundance for research and/or therapeutic purposes and codon optimisation has become a 

common approach in enhancing protein levels of otherwise poorly expressed genes.  In recent 

years it has become apparent that although most approaches to optimise expression levels 

usually aim to enhance a genes translational rate, it is even more crucial to ensure high 

transcript levels. Findings by Kudla et al. have shown that differences in expression levels 

between GC-poor and GC-rich coding-sequence variants can already be seen on the mRNA 

level (Kudla et al., 2006). To date, only few systematic and quantitative analyses of sequences 

features and their relative contributions in several steps in gene expression have been 

conducted on a single-gene level in a controlled human cell line system. 

 

The PhD project presented here aims to address this with the following two objectives: 

 

1) Systematically and quantitatively measure the molecular phenotypes of 

several hundred coding-sequence variants of a fluorescent reporter gene in 

vivo in human cells  

 

2) Investigate the coding sequence properties of genes that are associated with 

high mRNA stability, mRNA export, translation and protein yield 
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1.5.1. Experimental system 

In order to be able to directly compare the consequences of synonymous changes within the 

coding region of a gene, I utilised a cDNA library of the Green Fluorescent Protein (GFP) 

(Kudla et al., 2009). This library consists of several hundred synonymous coding sequence 

variants which differ only at the third position of each codon, encoding the exact same protein 

(Figure 5a). The synthetic GFP constructs differ between 1 to 180 silent base substitutions 

with an average of 114 substitutions between pairs of variants. The library was designed to 

span a wide range of GC3 content, varying between 25% - 97%, which compares well with 

the GC content variation of coding-sequences in human cells (Figure 5b+c).  

 

 

Figure 5. A synthetic library of gene variants of GFP with random codon usage. 
a, Partial sequence alignment of several synonymous GFP variants which only differ at the 
third position of each codon (from Kudla et al., 2009) . b, Distribution of GC-content at the third 
codon position (GC3) for all GFP variants in the library or c, all human consensus coding 
sequences (CCDS). 
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2. Materials and Methods 

2.1. Tissue culture 

2.1.1. Cell lines used 

HeLa (J. Caceres lab, MRC HGU); HeLa Flp-in (A. Jackson lab, MRC HGU); Hek293T (J. 

Caceres lab, MRC HGU); Hek293T Flp-in (Life Techologies); Hek293 Flp-in GFP000 & 

GFP001 (L. Lipinski, Warsaw). All cells were tested negative for Mycoplasma. 

 

2.1.2. Maintenance of cell lines 

All cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) 

supplemented with 10% Fetal Calf Serum (FCS, Life technologies). HeLa Flp-in and HeK293 

Flp-in cell lines were grown with Tetracycline-free FBS (Clontech). Cells were passaged 

regularly and were maintained at subconfluency (~70%). 

For passaging, cells were washed with Phosphate buffered saline (Dulbecco’s A, Oxoid) prior 

to treatment with 1x Trypsin/EDTA (Sigma) to detach cells before transferring into fresh 

culturing vessels. Generated Flp-in cell lines were maintained in media complemented with 

HygromycinB (HeLa Flp-in: 400mg/ml; Hek293 Flp-in: 100mg/ml; Life technologies) and 

10ng/ml Blasticidin S (HeLa and Hek293 Flp-in; Thermo Fisher) to maintain selection for the 

Flp-in site as well as gene integration. Any cells used for fluorescence based assays were 

grown in phenol red-free media to lower background fluorescence (Biochrom DMEM F0475, 

supplemented with 2mM L-Glutamine, 10% Tetracycline free FBS (Clontech) and 1% 

Penicillin/Streptamycin). All cell lines were cultured at 37°C, 5% CO2. 

 

2.1.3. Plasmid Transfections 

2.1.3.1. Reverse transfections 

For GFP fluorescence screen: 

Per well in a 96 well plate (Greiner), 70ng plasmid (GFP cloned into pCM3 or pCM4) were 

used in reverse transfections in triplicate. Enough transfection mix was made up for 4 wells. 

In brief, 280ng plasmid DNA was diluted in 40ul OptiMEM (Gibco). 1ul Lipofectamine2000 

(life tech, 0.25ul per well) was diluted in in 40ul OptiMEM and incubated for 5min at RT. 

Both plasmid and Lipofectamine2000 dilutions were then mixed by pipetting up and down 

(total volume: 80ul) and incubated for 20-30min at RT. 20ul of the transfection complex was 

pipetted in 3 wells before adding 200ul of HeLa cells (45 000 cells/ml; 9 000 cells/well) grown 

in phenol red-free media (Biochrom, F0475, see also 2.1.4). Media was exchanged 3h post-

transfection to reduce toxicity. Cells were incubated 48h at 37°C, 5% CO2 before cell lysis. 

For RNA isolation: 
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Cells were transfected as above in 24 well plates with 300ng plasmid DNA and 4ul 

Lipofectamine2000. Cells were incubated for 24h before harvesting RNA. 

 

2.1.3.2. Stable transfection of Flp-in cell lines 

Cells were grown in 6 well plates to 80% confluency. pOG44 and pCDNA5 were mixed in a 

9:1 ratio to give 2ug DNA in total (e.g. 1.8ug pOG44 + 0.2ug pCDNA5). 9ul/well 

Lipofectamine 2000 (LifeTechnologies) were mixed with 91ul Opti-Mem (Gibco) in an sterile 

1.5ml tube and incubated at RT for 5’. Plasmid DNA was then added, mixed well and 

incubated at RT for 15’. After incubation, transfection mix was added dropwise to cells and 

incubated for 4h before changing media. Cells were incubated for 48h before chemical 

selection. 10ng/ml Blasticidin S (Thermo Fisher) and Hygromycin B (HeLa Flp-in: 400mg/ml; 

Hek293 Flp-in: 100mg/ml; Life technologies) were routinely added every 3rd passage for 

selection of cells with successful gene integrations. Clonal colonies were picked once they 

reached a reasonable size by picking them with a pipette and transferring them into 96 well 

plates. GFP pool cell lines were not clonally selected and stocks frozen once no significant 

cell death could be observed (complete selection).  

 

2.1.4. Single GFP fluorescence screen 

Plasmids expressing GFP variants were transfected into HeLa cells as described in 2.1.3.1 in 

96 well plates (Greiner). Different standard media formulations were tested: 

1) DMEM, high glucose; Gibco, cat no. 11965 

2) DMEM, without phenol red; Biochrom, cat. no. F0475 

3) DMEM, high glucose, HEPES, no phenol red; Gibco, cat. no. 21063 

4) Fluorobrite DMEM; Gibco, cat. no. A18967-01 

Due to low background fluorescence, media 2) was used for all subsequent experiments. 

 

8h post-transfection, media was removed and cells lysed with 200ul cell lysis buffer. Recipes 

of cell lysis buffers tested are listed below. Buffer 1 was used in the final protocol. 

Buffer 1: 25mM Tris (pH 7.4), 150mM NaCl, 1% Triton X-100, 1mM EDTA (pH 8). 

Buffer 2: 30mM Tris (pH 7.4), 150mM NaCl, 1mM EDTA (pH 8), 1% Triton X-100, 

  1mM DTT, 10mM NaF. 

Buffer 3: 150mM NaCl, 20nM Tris (pH 7.5), 2mM EDTA (pH 8), 10% (v/v) glycerol, 

1% (v/v) Triton X-100. 

Cells in lysis buffer were incubated under gentle shaking for 15 min prior to fluorescence 

measurments. Fluorescence readings were obtained on a Tecan Infinite M200pro multimode 

plate reader. GFP: Ex 486nm/Em 515nm; mKate2 Ex 588nm/Em 633nm; Reading mode: 

bottom; Number of reads: 10 per well. Background subtraction: measurements from 
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untransfected cells were subtracted from all other wells. This is followed by fluorescence 

normalisation: GFP signal was calculated relative to mKate2 signal. To compare plates from 

different days, GFP000, GFP001 and GFP034 were transfected on every plate to normalise 

data relative to these controls. 

 

2.1.5. Transcription inhibition assay 

Cells were grown to 80% confluency either in 6 well plates (GFP and EGFP cell lines) or 

10cm plates (GFP pool cell lines). Media was replaced with fresh media containing 500mM 

Triptolide (Company name) or the equivalent volume of DMSO (Sigma, Cat). Cells were 

collected at multiple time points by removing media and adding Trizol reagent (Ambion; 1ml 

for 6 well plates or 3ml for 10cm plates). RNA was then extracted as outlined in (2.2.2). 

 

2.1.6. Cell viability assay 

Cell viability was assessed using alamarBlue (Thermo Fisher) containing resazurin, a blue, 

non-fluorescent compound. Upon uptake into cells, resazurin is converted to resofurin, a red, 

fluorescent compound. 9000 HeLa cells were reverse transfected in 96 well plates (2.1.3.1) 

and cell viability assessed 24 and 48hrs post-transfection by adding 20ul of 10x alamarBlue to 

each well. Cells were incubated for a further 4hrs before measuring fluorescence (Ex 

560nm/Em 590nm). To calculate cell viability as percentage, the relative fluorescence value 

obtained from alamarblue added to media only was subtracted from all wells and viability 

calculated relative to the result of untreated cells (100%). 

 

2.1.7. Polysome Profiling  

Hek293 Flp-in GFP pool cell lines were grown to 90-95% confluency on 15cm dishes. Cells 

were treated for 20min with 100ug/ul Cycloheximide. After incubation, media was removed 

and plates washed 2x with ice-cold PBS before scraping cells into 1.5ml tubes. Cells were 

pelleted at 7000rpm, 4°C for 1min and cells carefully resuspended in 250ul RSB (10x RSB: 

200mM Tris pH 7.5, 1M KCl, 100mM MgCl2) containing 1/40 RNasin (40U/ul, Promega) 

until no clumps are visible. 250ul of Polysome extraction buffer are then added (1ml 10x RSB 

+ 50ul NP-40 + 9ml H2O + 1 complete mini EDTA-free protease inhibitor pill (Roche)) and 

lysate passed 5x through a 25G needle avoiding bubble formation. Lysate is then incubated on 

ice for 10min before spinning 10min at 10000g at 4°C. The supernatant is then transferred into 

a fresh 1.5ml tube and the OD measured at 260nm as RNA. Sucrose gradients (10–45%) 

containing 20 mM Tris, pH 7.5, 10 mM MgCl2, and 100 mM KCl were made using the 

BioComp gradient master. 100ug of Lysate were loaded on sucrose gradiants and spun at 41 

000rpm for 2.5h in a Sorvall centrifuge with a SW41Ti rotor. Following centrifugation, 

gradients were fractionated using a BioComp gradient station model 153 (BioComp 
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Instruments, New Brunswick, Canada) measuring cytosolic RNA at 254 nm and 18 fractions 

collected. The resulting fractions were pooled into 4 samples: Fractions 1- (A) Free 

Ribonucleoprotein (RNP) complexes, (B) monosomes, (C) light polysomes (2-4) and (D) 

heavy polysomes (5+) (Figure 36). RNA from all 4 samples was prepared for high-throughput 

sequencing and resulting reads processed and filtered as before (described in X.X). RNA was 

precipitated using 1 volume 100%EtOH and 1ul Glycoblue, before extracting RNA using the 

Trizol method described below (2.2.2). 

 

2.2. Molecular Biology/Biochemical techniques 

2.2.1. Agarose gel-electrophoresis 

20xTBE: Tris Base (216g/l), Boric Acid (110g/l), 0.5M EDTA (pH 8) 80ml/l 

A standard 1% agarose gel is prepared using 1g/100ml Agarose (life technologies) in 1xTBE 

(20xTBE stock: Tris Base (216g/l), Boric Acid (110g/l), 0.5M EDTA (pH 8) 80ml/l) and 3ul 

Ethidiumbromide (VWR) per 100ml gel. The percentage of gels varies depending on the size 

of fragments to be analysed. 

 

2.2.2. Isolation of total RNA 

Total RNA was isolated using Trizol reagent (Life tech) according to manufacturer’s manual. 

Cells are lysed directly in the cell culture vessels after removal of cell culture media. 1ml 

Trizol is used per well in a 6 well plate or 500ul for wells of 24 well plates. Trizol samples are 

transferred into 1.5ml microtubes. 200ul Chloroform (Sigma) are added and tubes shaken 

vigorously for 15s before incubation on ice for 20min. For complete phase separation, tubes 

are spun at max speed for 20min at 4°C in a microcentrifuge. The upper (clear) phase is 

carefully removed and transferred into a fresh 1.5ml tube containing 1volume 100% 

Isopropanol and 15ug Glycoblue (Thermo Fisher, AM9515). Tubes are vortexed briefly. RNA 

is then precipitated for 20min at -20°C before pelleting by spinning 20min at max speed at 

4°C. RNA pellets are washed twice with 1ml 75% Ethanol to avoid Phenol carryover. RNA 

pellets are then air-dried to remove all Ethanol before resuspension in sterile RNAse-free 

dH2O. RNA is then incubated for 10min at 55°C followed by quick-chilling on ice to remove 

secondary structures before storage at -80°C. 

 

2.2.3. Subcellular fractionation of cells 

This protocol is based on the cellular fractionation protocol published by Gagnon et al. (2014) 

but includes a further clean-up step using a sucrose cushion as described by Zaghlool et al. 

(2013) as well as a second lysis step as described by Wang et al. (2006). Cell lysis and nuclear 

integrity was monitored by Light Microscopy following Trypan blue staining. When starting 

using this protocol and it is recommended to monitor successful subcellular fractionation by 
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fluorescence microscopy as described in Gagnon et al. (2014). Cells were grown in 10cm 

plates to about 90% confluency. Cells were then washed with PBS and trypsinised briefly 

using 1ml of 1xTrypsin/EDTA. The reaction was then stopped with 5ml of DMEM and cell 

suspension transferred into 15ml falcons. Cells were collected by spinning at 100g for 5min. 

Cell pellets were resuspended in 500ul ice-cold PBS and transferred into 1.5ml reaction tubes 

and spun at 500g for 5min at 4°C. The supernatant was then discarded and cells resuspended 

in 250ul HLB (10mM (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.5% (v/v) NP40, 10% (v/v) 

Glycerol, 0.32M sucrose) containing 10% RNase inhibitors (RNasin Plus, Life Tech) by gently 

vortexing. Samples were then incubated on ice for 10min. After incubation, samples are 

vortexed gently and spun at 1000g for 3min at 4°C. Proceed to step a) and b) with the 

supernatant and pellet from this step. 

 

a) Cytoplasmic extract: 

The supernatant was carefully layered over 250ul of a 1.6M sucrose cushion and spun at 21 

000g for 5min. The supernatant was then transferred into a fresh 1.5ml tube and 1ml Trizol 

added and mixed by vortexing.  

 

b) Nuclear extract: 

The pellets were washed 3 times with HLB containing RNase inhibitors by gently pipetting 

up and down 10 times followed by a spin at 300g for 2min. After the 3rd wash, nuclei were 

resuspended in 250ul HLB and 25ul (10%) of detergent mix (3.3% (wt/wt) sodium 

deoxycholate/6.6% (vol/vol) Tween 40) dropwise added while vortexing slowly (600rpm). 

Nuclei were then incubated for 5min on ice before spinning at 500g for 2min. The supernatant 

was discarded and pellets resuspended in 1ml Trizol by vortexing. 10ul 0.5M EDTA are added 

to each nuclear sample in Trizol and tubes heated to 65°C for 10min to disrupt very strong 

Protein-RNA and DNA-RNA interactions. Tubes are then left to reach room temperature. 

 

RNA from tubes with cytoplasmic and nuclear extracts was then extracted as described in 

2.2.2. 
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2.2.4. Oligonucleotide sequences 

qPCR primers 5'  3' 

pcDNA5-UTR_F GTTGCCAGCCATCTGTTGTT 

pcDNA5-UTR_R CTCAGACAATGCGATGCAATTTCC 

pCI-UTR_F CTTCCCTTTAGTGAGGGTTAATG 

pCI-UTR_R GTTTATTGCAGCTTATAATGGTTAC 

pCI-mRNA_F GCTAACGCAGTCAGTGCTTC 

pCI-mRNA_R ACACCCAGTGCCTCACGAC 

pCI-premRNA_F GAGGCACTGGGCAGGTAAGTATC 

pCI-premRNA_R GTGGATGTCAGTAAGACCAATAGGTG 

Gapdh_F GGAGTCAACGGATTTGG 

Gapdh_R GTAGTTGAGGTCAATGAAGGG 

Neo_F CCCGTGATATTGCTGAAGAG 

Neo_R CGTCAAGAAGGCGATAGAAG 

LysCTT_F TCAGTCGGTAGAGCATGAGAC 

LysCTT_R CAACGTGGGGCTCGAACC 

Malat1_F CAGACCCTTCACCCCTCAC 

Malat1_R TTATGGATCATGCCCACAAG 

U6_F ATCTGATACGTCCTCTATCCGA 

U6_R GCAATACCAGGTCGATGCGT 
  

MiSeq library + sequencing  

PE_PCR_left 
AATGATACGGCGACCACCGAGATCTACACGCTGGCACGCGTA
AGAAGGAGATATAACCATG 

S_index1_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index2_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index3_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index4_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index5_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index6_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index7_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

S_index8_right_PEPCR 
CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTATGTGCAGGGCCGCGAATTC 

Read1_seq_primer_GFP GCTGGCACGCGTAAGAAGGAGATATAACCATG 
  

cloning primers  

pCI_del_int_F (phospho) GTGTCCACTCCCAGTTCAAT 

pCI_del_int_R (phospho) CTGCCCAGTGCCTCACGACC 

attB1_EG_F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAGCTCAAGCT
TCGAATTCTG 

attB2_E_R 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGCCGCTTTACTT
GTACAGCTC 

attB2_G_R 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGCCGCTTTACTT
GTATAGTTC 

mkate2_gibs_F GATCCGCGTATGGTGGCCTTAAGATACATTGATGAG 

mkate2_gibs_R TGTAAGCGGATGCCGCACATGTTCTTTCCTGCG 

pCI_gib_F CGGCATCCGCTTACAGACAA 

pCI_gib_R CACCATACGCGGATCCTTATC 
  

other primers  

pGK8_T7_F TGCGTCCGGCGTAGAGGATC 

pGK8_T7_R GCCTCTTGCGGGATATCC 

pCM_seq_F CTGGGCTTGTCGAGACAGAG 

pCM_seq_R TGCAGCTTATAATGGTTACA 
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2.2.5. In vitro transcription assay 

GFP variants 400, 403, 407, 412, 417 and 422 were in vitro transcribed from pGK8 which 

contains a T7 promotor upstream of the coding sequence, using the MEGAscript T7 

transcription kit (Ambion). First, GFPs including the T7 promoter were PCR amplified using 

primers “pGK8_T7_F” and “pGK8_T7_R” and 0.5ng pGK8-GFPXXX as template. PCR 

products were column-purified using the Qiagen PCR purification kit. For in vitro 

transcription reaction, 0.1-0.2ug DNA was mixed with 8ul nucleotide mix (equimolar ratios; 

75mM each), 2ul 10x buffer, 2ul enzyme mix and made up to 20ul total volume with H2O. 

Reaction buffer was added last, before mixing gently and incubating samples at 37°C for 4hrs. 

1ul of Turbo DNase was added, mixed and incubated for 15’ at 37°C before adding 115ul H2O 

and 15ul Ammonium acetate stop solution. Samples were mixed thoroughly before extracting 

RNA using an equal volume of acid phenol/chloroform, followed by a second extraction using 

chloroform only. The aqueous phase was recovered and transferred into a fresh tube before 

precipitating RNA by adding 1 volume isopropanol. Samples were chilled for at least 15’ at -

20°C before spinning at maximum speed for 15’. Resulting RNA pellets were dried and 

resuspended in RNAse-free water. RNA quality and product length was assessed by agarose 

gel electrophoresis. 

 
2.2.6. cDNA synthesis 

cDNA prepared for qRT-PCR and semi-quantitative PCR analysis was synthesised by reverse 

transcribing 500ng RNA using SuperScript III (Life Technologies) and 500ng random 

hexamers (Promega). cDNA prepared from RNA after polysome profiling was prepared with 

oligo-dTs (Promega) to avoid reverse transcription of primarily ribosomal RNA. Generally,  

cDNA prepared for sequencing library preparation was synthesised using SuperScript III (Life 

tech) and 2 nmol gene specific primers (‘S_indexX_right_PEPCR’). In addition, a new 

commercially available enzyme, TGIRT III, was additionally tested for high throughput 

experiments as it has been shown to be able more efficient in processing highly structured and 

highly modified RNAs (Mohr et al., 2013; Qin et al., 2015). 500ng RNA were mixed with 

1uM gene-specific primer and heated at 70C for 10min. The reactions were quick chilled, and 

4ul of 5x buffer, 

 

2.2.7. Real-time Polymerase Chain Reaction (PCR) 

All qRT-PCRs were carried out on a Roche LightCycler 480 using LightCycler480 SYBR 

Green I Master Mix according to manufacturer’s protocol using 0.3uM gene-specific primers. 

Samples were analysed in 20ul reactions in triplicates. DNA was first denatured for 5min at 

95°C before entering a cycle (50-65x) of denaturing for 10sec at 95°C, annealing for 7sec at 
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55-60°C (depending on primers used), extension for 10sec at 72°C and data acquisition. DNA 

was then gradually heated up by 2.20 °C/s from 65 to 95°C for 5sec each and data continuously 

collected (Melting curve analysis). The data from transient transfection experiments was 

analysed using the Pfaffl method (Pfaffl, 2001). All other data was evaluated using the 

comparative Ct method (Livak and Schmittgen, 2001). 

 

2.2.8. Polymerase Chain Reaction (PCR) 

PCR amplification from plasmid DNA was generally conducted using 0.5ng template and 

either Q5 Polymerase (NEB) or Accuprime Pfx (NEB) according to manufacturer’s 

specifications. For PCR amplification during all next-generation sequencing library 

preparations, Accuprime Pfx (NEB) was used. 

 

2.2.9. Sanger sequencing 

All DNA cycle sequencing reactions were performed using the BigDye Terminator Kit 

(LifeTech) and are set up in 0.5ml thick-walled tubes using. 200ng Plasmid DNA, 0.8uM 

primer, big dye terminator mix and reaction buffer are made up to 20ul and placed into a 

thermocycler. Cycling program: Initial denaturation at 96°C for 3min, followed by 25 cycles 

of denaturing for 30sec at 96°C, primer annealing at 50°C for 15sec and extension at 60°C for 

2min. Products are then precipitated by mixing reactions with 2ul of 3M Sodium acetate (pH 

4.6) and 50ul of 100% Ethanol at incubation for 15min out of bright light before pelleting at 

maximum speed in microcentrifuge for 20min. Resulting pellets are washed with 150ul 75% 

Ethanol and spun again for 2min. Pellets are then air-dried out of light. The prepared 

sequencing reactions are processed by the in-house technical service on applied Biosystems 

Genetic analyser.  

 

2.2.10. Determination of nucleic acid concentrations and quality 

The concentrations of DNA and RNA were generally determined spectrophotometrically by 

measuring the optical density at 260nm using a NanoDrop (Thermo Scientific). DNA 

concentration of samples for high-throughput sequencing were determined using an Agilent 

Bioanalyzer 2100 and/or using Qubit Fluorometric Quantitation (Thermo Fisher). RNA 

quality and concentration of samples for high-throughput sequencing library preparation were 

assed using the Agilent Bioanalyzer system. 
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2.3. Plasmids and GFP library 

2.3.1. GFP library 

GFP000 (‘GFP’) and GFP001 (‘EGFP’) are taken from Kudla et al, 2006. The GFP library 

was published in Kudla et al., 2009. 

 

2.3.2. Preparation of competent DH5α cells 

A single colony of DH5α is picked from an LB agar plate (for 500ml: 5g NaCl, 5g Tryptone, 

2.5g yeast extract, 7.5g Agar, dH2O to 500ml) and used to inoculate 2.5ml of LB (no agar). 

The culture is incubated overnight at 37°C with shaking at 220rpm. The subculture is then 

diluted 1:100 by inoculating 2.5ml into 250ml of LB supplemented with 20mM MgSO4. Cells 

are then grown until the OD600 reaches between 0.4-0.6. The culture is then split into two 

250ml centrifuge bottles and pelleted by centrifugation at 4500g for 5min at 4°C. The cell 

pellet is gently resuspended in 0.4 original volume of ice-cold TFB1 (50ml/bottle). The 

resuspended cells are then combined in one bottle and cells kept on ice for all following steps. 

Pipettes, tubes and flasks are pre-chilled on ice. Resuspended cells are incubated on ice for 

5min at 4°C before centrifugation at 4500g for 5min at 4°C. The resulting cell pellet is 

resuspended in 1/25 of original volume of ice-cold TFB2 (10ml for a 250ml subculture). Cells 

are then incubated on ice 15-60min before snap-freezing in a dry-ice bath for long-term storage 

at -80°C. 

 

2.3.3. Bacterial transformation for general plasmid propagation 

50ul of competent DH5α are transformed with either 2ul of 10ul ligation reactions, 1ul of 5ul 

Gateway ligations or <1ng plasmid DNA. Competent bacteria and DNA are carefully mixed 

in a tube and incubated on ice for 15min, then heat-shocked for 45’ at 42°C followed by quick-

chilling on ice for 2min. Cells are diluted by adding 950ul SOC rich media and shaken at 

230rpm at 37°C for 1h. For In case of plasmid transformations, 100ul are spread on LB-agar 

plates containing appropriate antibiotics. For transformations of ligation reactions, cell 

suspension are spun for 3min at 3000rpm, then resuspended in 100ul SOC and all spread on 

agar plates.  

 

2.3.4.  Expression vectors for single GFP transfections (pCM1-4) 

pCM1-4 are plasmids based on pCI-neo (Promega). pCI-neo contains a CMV immediate-early 

enhancer/promoter region allowing strong and constitutive expression in mammalian cells. 

Upstream if the multiple cloning site is a chimeric intron composed of the 5’-donor site from 

the first intron of the human beta-globin gene and the branch and 3’-acceptor site from the 

intron of immunoglobulin gene heavy chain variable region (pCI-neo vector technical bulletin, 
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Promega). The Gateway-destination cassette (RfA) containing the attR1 and 2 recombination 

sites as well as the ccdB gene and chloramphenicol resistance cassette was cut enzymatically 

from 1ug pBluescript-RfA using 1ul EcoRV (NEB) and SmaI (NEB). pCI-neo was cut with the 

same enzymes which have their restriction site in correct orientation within the multiple 

cloning sites. The enzymatic digests were stopped by heat inactivation for 20min at 65°C. 

Digest products of pBluescript-RfA were dephosporylated using 1U Antarctic phosphatase 

(NEB) for 30min at 37°C followed by heat inactivation for 5min at 65°C. Ligation reactions 

were set up in a 3:1 insert to vector ratio using T4 DNA ligase (NEB) in 10ul reactions by 

incubation for at least 1h at RT before transformation of DH5α and selection on Ampicillin 

(50ug/ml) and Chloramphenicol (1ul/ml) LB-agar plates. The chimeric intron contained within 

the 5’UTR of the pCI-neo expression cassette was deleted by Phusion site-directed deletion 

mutagenesis (ThermoFisher) using Phusion-Taq and primers ‘pCI_del_int_F’ and 

‘pCI_del_int_R’. The resulting plasmid is referred to as pCM2. 

The mKate2 gene expression cassette from pmKate2-N (Evrogen) was cloned into the 

backbone of pCM1 and pCM2 using Gibson assembly cloning (NEB) according to 

manufacturer’s instructions: pCM1/2 were linearised using primers ‘pCI_gib_F’ and 

‘pCI_gib_R’. Homologous ends were added to mKate2 using primers ‘mkate2_gibs_F’ and 

‘mKate2_gibs_R’ in an PCR step followed by PCR purification (Qiagen PCR purification kit). 

The mKate2 PCR product was recombined into linearised pCM1/2 using the Gibson assembly 

cloning kit (NEB) according to the manufacturer’s instructions. Resulting plasmids were 

amplified in DH5α and colonies screened for the correct insert. This resulted in both pCM3 

(no intron, with mKate2) and pCM4 (with intron, with mKate2). Since all four versions of the 

pCM vector contain the Gateway RfA destination cassette, any sequence contained within a 

Gateway entry vector can be sub-cloned into these vectors using the Gateway LR clonase 

reaction described in 2.3.5 (ThermoScientific). 

GFP and EGFP were cloned from pGFP-N2 and pEGFP-N2 respectively into pCM1 by cutting 

the gene sequences from each vector using restriction enzymes XhoI and NotI (both NEB, 1ul 

each per 1ng plasmid DNA) for 1h at 37°C. pCM1 was digested in the same manner. Enzymes 

were heat-inactivated at 65°C, 20min. Resulting DNA digests were resolved on a 1% 

Agarose/TBE and bands corresponding to GFP and EGFP cut out and gel-purified (Qiagen gel 

purification kit) before desphosporylation using 1U Antarctic Phosphatase (NEB) for 30min 

at 37°C followed by heat inactivation at 65°C, 5min. Purified GFP and EGFP were ligated into 

pCM1 using 200 U DNA ligase (NEB) in a 3:1 ratio according to manufacturer’s instructions 

for 1h at RT. 2ul of the ligation mixed were transformed into DH5α as described in 2.3.3. 

Resulting colonies were screened for the presence of the correct insert and sequence-verified. 
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2.3.5. Gateway cloning 

50ng gateway entry vector and 50ng gateway destination vector are mixed with 0.5 ul LR 

Clonase mix (Thermo fisher). The volume is adjusted to 4.5ul using TE and the reaction 

incubated at room temperature for 1hr. 0.5ul of Proteinase K are then added and incubated for 

30min at room temperature. 1ul of the reaction is used to transform chemically competent 

bacteria. 

 

2.3.6.  Gateway Entry vectors containing GFP or EGFP 

GFP (here referred to as ‘GFP000’) and EGFP (‘GFP001’) were enzymatically cut from 

pGFP-N2 and pEGFP-N2 (both Promega) using BamHI and EcoRI and ligated into pGK3, a 

gateway entry vector cut with the same enzymes. pGK3-GFP and EGFP respectively can be 

sub-cloned into any gateway destination vector, such as any pCM plasmid. 

 

2.3.7. pcDNA5 gateway destination vectors 

pcDNA5/FRT/TO/Dest was obtained from Ewelina Macech (Cancer Centre, Warsaw, Poland) 

and contains the Gateway-compatible attB destination cassette for subcloning the gene of 

interest from a gateway-entry vector. I modified this vector to additionally have a version 

containing the same 5’UTR intron vector sequence as in pCI-neo to allow direct comparison 

between expression experiments. 

1ug pcDNA5/FRT/TO/Dest was digested with 1ul AflII (NEB) for 1h at 37°C followed by 

reaction clean-up using the Qiagen Purification kit according to the manufacturer’s manual. 

The intronic sequences was amplified from pCI-neo by PCR using the primers ‘Gib_intr_F’ 

and ‘Gib_intr_R’ using Q5 High-Fidelity Polymerase (NEB) using the following reaction 

conditions: 1ng pCI-neo were mixed with 0.5ul 25mM dNTPs, 2.5ul 10uM Primer-mix, 35ul 

H2O and 1ul Q5 Polymerase. A PCR was performed using an annealing temperature of 59°C. 

The primers contain a 15nt overhang that is homologous to the ends of pcDNA5/FRT/TO/Dest 

when linearised with AflII.  

 

2.3.8. Plasmid DNA preparation 

Single bacterial colonies were picked from LB-agar plates and resuspended in 2ml of LB-

broth containing appropriate antibiotics in 12ml snap-cap tubes and incubated overnight 

(~16h) at 37°C in a shaking incubator at 230rpm. Plasmid DNA is extracted from the bacterial 

overnight culture using the Qiagen Minispin Plasmid kit according to the manufacturer’s 

instructions. Cells are collected by spinning 3min at 6000g in a 1.5ml microtube. The cell 

pellet is then resuspended in 250ul buffer PI before addition of 250ul buffer P2 and mixing by 

vigorously inverting the tube 4-6 times until the solution becomes clear. 350ul of buffer N3 

are added and mixed immediately by inversion of the tube 4-6 times. Lysates are spun for 
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10min at max speed in a microcentrifuge. The supernatant is then applied to a QIAprep spin 

column and spun at max speed for 1min. The flow-through is discarded and the column washed 

by addition of 750ul of buffer PE and spinning for 1min at max speed. The flow-through is 

again discarded and the column spun an additional time to assure it is completely dry. The 

column is then transferred into a fresh 1.5ml tube and DNA eluted by adding 30-50ul of EB 

or H2O directly to the membrane, incubation for 1min at RT and spinning at max speed for 

1min. Concentrations are assessed using a Nanodrop (2.2.10). 

 

2.3.9. Multiplex Gateway LR reaction 

Since all GFP variants are stored in gateway-compatible entry vectors, I modified the standard 

gateway LR reaction protocol to multiplex the recombination of 217 different GFP-containing 

entry vectors with 1 of 2 destination vectors (pCDNA5/FRT/TO/Dest and 

pCDNA5/FRT/TO/Dest+intron). In a standard LR reaction using (as described in 2.3.5) about 

100-200 colonies would be expected in total when transforming all 5ul into 5x 50ul chemically 

competent DH5α. I scaled this reaction up by 10x to ensure all 217 GFP variants will enter the 

destination vectors. A pool of all 217 entry vectors was prepared with a concentration of 

0.06ng of each GFP variant (total DNA concentration: 13.02ng/ul). For each destination 

vector, a separate multiplex LR reaction was set-up using 500ng destination vector, 5ul LR 

Clonase, 38ul entry-vector pool and TE (pH 8) up to 45ul in total. The reactions were incubated 

at 25°C overnight. 5ul of Proteinase K were then added to each and incubated for 10min at 

37°C. The total 50ul reaction mix was then used to transform 2.5ml of DH5α in a 15ml Falcon 

by heat shocking cells for 2min 30s at 42°C before adding 10ml SOC medium and incubating 

while shaking for 1h at 37°C. After incubation, cells were spun down at 3000g for 3min. 

Resulting bacterial pellet was resuspended in 1ml SOC medium and 100ul plated onto 10x L-

Ampicillin agar plates. Plates were incubated at 37°C overnight. After incubation, each plate 

contained >800 colonies each. Bacterial colonies were scraped off the plates and collected in 

a falcon tube. 2x 2ml LB-Amp cultures were inoculated with 200ul of cell pool for later 

preparation of glycerol stocks (11.5% glycerol in LB). Total plasmid DNA was extracted using 

a Qiagen Midiprep kit according to the manufacturer’s instructions.  

 

2.3.10. Restriction digest of single pcDNA5 clones 

Successful integration of the GFP sequence into pCDNA5/FRT/TO/Dest was confirmed by 

restriction digest. NotI restriction sites are present just downstream and upstream of the 

gateway attB sites. 500ng Plasmid DNA was mixed with 0.5ul NotI (NEB) and 1ul buffer 1 

(NEB) in a total reaction volume of 10ul. Samples were incubated for 1h at 37°C. 2ul of 6x 

orange gel loading dye (NEB) were added and fragments resolved by gel electrophoresis on a 
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1% agarose/TBE gel. In addition, 96 clones were picked and plasmid DNA used in Sanger 

sequencing to confirm the presence of several different variants. 

 

2.3.11. Amplicon-library preparation for high-throughput sequencing 

Libraries from genomic DNA were generated by PCR using primers specific for the GFP 

UTRs. These primers also contain the required adaptor sequences for MiSeq-sequencing, as 

well as a 6nt index for multiplexing multiple samples in one run of sequencing. Between 6-

10ug of total genomic DNA were used in multiple PCR reactions (200ng per 50ul reaction). 

After PCR, all reactions of the same template were pooled together, and 1/3 of the reaction 

purified using the Qiagen PCR purification kit according to the manufacturer’s instructions. 

DNA was eluted in 50ul. Size selection of the PCR products was performed using the 

Invitrogen E-gel system (Clonewell gels, 0.8% agarose). After gel purification, samples were 

purified using the Qiagen MinElute PCR purification kit according to the manufacturer’s 

instructions. Sizes of the selected fragments were confirmed and quantified using the Agilent 

Bioanalyzer 2100. Up to 8 different libraries were multiplexed for 1 run of sequencing by 

mixing individual libraries in equimolar ratios. 

 

2.4. Fluorescence activated cell sorting (FACS) 

GFP expression of cells was induced for 24h prior to cell harvesting. Data was acquired on a 

BD FACS AriaII cell sorter or BD LSRFortessa cell analyser and a minimum of 50.000 events 

were recorded. 

 

2.4.1. Flow-Seq 

80x15cm cell culture plates of HeLa Flp-in GFP pool cells and 40x15cm cell culture plates of 

Hek293 Flp-in GFP pool cells were induced with 1ug/ml Doxycyline (Sigma, D9891) for 24h 

or 48h in phenol red-free DMEM (Biochrom, F0475) supplemented with 10% FCS (Sigma, 

F-7524) and 2mM L-Glutamine. After 24h or 48h cells were harvested by trypsinisation and 

cells sorted into 8 fluorescence bins. Polypropylene collection tubes were coated with 

1%BSA/PBS and cushioned with 200ul 20%FBS/PBS. 107 cells were collected in each tube. 

Cell suspensions were decanted into 15ml Falcon tubes and spun for 5’ at 500g. The 

supernatant was transferred into a fresh 15ml falcon and precipitated using 2volumes of 

EtOH/0.1 volume Sodium Acetate pH 5.3 and 10ul Glycoblue (Ambion). Tubes were shaken 

vigorously for 10s and then incubated at -20C for 15min before spinning at 3000g for 20min. 

Resulting pellets were air-dried and resuspended in 1ml digest buffer before combining with 

cell pellets which were also resuspended in 1ml digest buffer. 10ul/ml of RNase A (Qiagen) 

were added, lids sealed with parafilm and tubes rotated at 37C. After 1h, 10u/ml Proteinase K 

(20mg/ml, Roche) were added to sample before rotating a further 2h at 55C. DNA was then 
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extracted using three times using 1 volume Phenol:Chloroform:Isoamyl alcohol (PCI, 25:24:1, 

Sigma). Each time samples were shaken vigorously for 10s after the addition of PCI and spun 

at 3000 g for (first) 20min or (following) 5min. The bottom layer including interphase were 

discarded before each PCI addition. After the last PCI extraction, the upper layer was 

transferred into a fresh 15ml tube and one extraction using 1 volume chloroform:Isoamyl 

alcohol (CI, 24:1, Sigma) was performed to ensure removal of all Phenol. After a 5min spin at 

3000g, the upper layer was transferred into a fresh 15ml tube and DNA precipitated using 

2volumes EtOH (100%) and 0.1 vol Sodium Acetate pH 5.3. After a 5min incubation on ice, 

tubes were spun for 30min at 3000g. The resulting DNA pellets were washed 2 times with 

75% EtOH before being air-dried and resuspended in a suitable amount of Tris-EDTA (10mM) 

(~200ul). The quality of genomic DNA was assessed on a 0.8% Agarose/TBE gel. 

 

2.5. High-throughput Sequencing and bioinformatics 

High-throughput sequencing was conducted by Edinburgh Genomics (University of 

Edinburgh) and Imperial BRC Genomics facility (Imperial College London) using the 

Illumina MiSeq platform (2x300nt paired-end reads). Raw sequencing files (fastq files) were 

demultiplexed by 6nt indices by the respective genomics facility. To remove the plasmid 

sequence from the second read, reads were trimmed using flexbar (-as 

ATGTGCAGGGCCGCGAATTCTTA -ao 4 -m 15 -u 30). Reads were then mapped to the 

GFP library using bowtie2 (-X 750) and filtered using samtools (-f 99). 

For Flow-seq data, only variants with a minimum of 1000 reads across all 8 sequencing bins 

were used for further analysis. For cell fractionation experiments, data with a minimum of 

1000 reads across both fractions were used. 

Open-source packages available for R were used for generating correlation matrices (corrplot), 

heatmaps (ggplot2), boxplots (graphics/ggplot2), Venn diagrams (VennDiagram) and multiple 

regression analyses (relaimpo). The GC3 of all human CCDS (assembly: GRCg38_hg38; only 

CDS exons) was calculated using R package ‘seqinr’. 

The minimum free energy of predicted mRNA secondary structure for GFP variants or their 

portions was calculated using the hybrid-ss-min program version 3.8 (default settings: NA = 

RNA, t = 37, [Na+] = 1, [Mg++] = 0, maxloop = 30, prefilter = 2/2 ). 

Assignment of Geneart sequence parameters to each GFP variant was performed by G. Kudla. 
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3. Dissecting the effects of coding-sequence GC content on protein 

expression 

Codon usage has previously been reported to have extensive effects on multiple steps in gene 

expression. Here, I first describe the optimisation and validation of a fluorescence-based assay 

that allows reliable and reproducible measurements of GFP expression in human cells by 

spectrophotometry and present the results obtained from this screen. Additionally, I investigate 

the effects of codon usage on the RNA level in transiently and stably transfected HeLa and 

Hek293 cells and present data linking codon usage to RNA export as well as stability.  
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3.1. Plasmid design 

To study the effects of codon usage on protein expression, I utilise a library of several hundred 

synonymous sequence variants of the Green Fluorescent Protein GFP published in Kudla et 

al.  (Kudla et al., 2009) which has previously been used for expression studies in E.coli and 

yeast (Shah et al., 2013). The objective for the following experiment was to establish a reliable 

fluorescence-based assay to quantitatively measure GFP expression in human cells. 

Throughout this report I utilised two reference GFPs which were previously described (Kudla 

et al., 2006) and tested in similar experiments: GFP_000 (, same as “GFP” in Kudla et al., 

2006; GC3=35%; poorly expressed) and GFP_001 (, same as “EGFP” in Kudla et al., 2006; 

GC3=96%; highly expressed). 

 

For expression experiments in human cells, selected GFP variants were sub-cloned into pCI-

neo¸ a commercially available mammalian expression vector for high expression (Promega). 

GFP expression is driven by a CMV promoter, allowing high and constitutive expression in 

human cells. This vector also contains a chimeric intron in the 5’UTR upstream of the GFP 

insertion site. The intron is composed of the 5’-donor site from the first intron of the human 

beta-globin gene and the branch and 3’-acceptor site from the intron of immunoglobulin gene 

heavy chain variable region (pCI-neo product manual, Promega). It is thought that the presence 

of introns enhances expression levels by increasing transcript stability and facilitating efficient 

RNA processing (Choi et al., 1991; Nott et al., 2003). Since not all human genes contain 

introns, about 12% are estimated to be intronless (Louhichi et al., 2011), I modified pCI-neo 

by removing the intronic sequence by site-directed mutagenesis to allow the separate 

assessment of codon usage on expression in both spliced and unspliced genes. Immediately 

downstream of the GFP sequence is a SV40 late polyadenylation signal. A neomycin 

resistance cassette is also present on the vector backbone, and is used as internal control in 

some data presented later on in this chapter. As the GFP variant library is stored in Gateway-

compatible Entry vectors, I modified both versions of pCI-neo for convenience to Gateway 

Destination vectors which allows easy sub-cloning of GFP variants by homologous 

recombination (see methods 2.3.5 for details). For simplicity, the expression vectors will be 

referred to as pCM3 (no intron) and pCM4 (with intron) throughout this report. An outline of 

the basic protocol for this screen is depicted in figure 6. The development of the final assay 

protocol is described in detail in the following section. 
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Figure 6. Outline of the protocol to measure expression of GFP variants with and 
without intron. 
a, GFP variants are cloned into CMV-driven expression vectors either containing a chimeric 
intron in the 5’UTR (pCM4) or without intron (pCM3). b, Plasmid DNA from 3 GFP clones is 
purified and transiently transfected into HeLa cells in 96-well plates. GFP fluorescence is 
measured >24hrs post-transfection using a microplate spectrophotometer. 

 

 

3.2. Assay optimisation 

In order to establish a reliable and highly reproducible expression assay, I optimised multiple 

key parameters and conditions. Various transfection protocols were tested to achieve highest 

gene expression without trading in cell viability. The most commonly used transfection 

protocol requires the cells to be seeded one day prior to DNA transfection in order to have an 

actively dividing population of cells at the time of transfection. This method is commonly 

referred to as ‘forward transfection’ (Figure 7a). Although this approach works well for most 

adherent cell lines, for suspension cells and for high-throughput applications, a different 

protocol, termed ‘reverse transfection’, is preferred. In this protocol, cells are transfected at 

the time of seeding which reduces hands-on cell culture time by one day (Figure 7c). This also 

eliminates the common occurrence of uneven expression levels of the gene of interest within 

the culture well. Forward transfection efficiency tends to be highest around the area where the 

DNA-transfection complex first touches the cells which can lead to strong intra-well variation. 
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This can be an important factor to consider when assays are to be conducted in multi-well 

plates such as 96- or 384-well plates, as the highest expression efficiency would then usually 

correspond to the well centre due to the limited area size (schematically depicted in Figure 7b 

and d). This may cause strong well-to-well variation if only one or few fluorescence readings 

are taken from each well. For these reasons, I chose to optimise and implement a reverse 

transfection approach. 

 

 

Figure 7. Comparison of forward and reverse transfection. 
a, In forward transfections, cells are seeded on day 1 and transfections performed on day 2, 
whereas in b, reverse transfections, cells are transfected at the time of seeding on day 1, 
cutting down the assay time by one day.  

 

To achieve high reproducibility, I optimised further parameters, such as the ratio of DNA to 

transfection reagent, to ensure high expression without strong effects on cell viability, various 

culture media and cell lysis buffers to reduce background noise caused by auto fluorescence 

of buffer components, as well as the incubation time to increase the dynamic range of this 

assay. An overview of optimised parameters and tested conditions is shown in table 1. 
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Table 1. List of optimised parameters.  

 
 
A commonly faced issue in fluorescence-based assays is the signal-to-noise ratio caused by 

buffer components exhibiting auto fluorescence. I first tested whether such noise could be 

reduced by testing various commercially available standard DMEM (Dulbecco’s Modified 

Eagle Medium) formulations. Media often contains phenol red to allow monitoring of the pH 

of a growing culture, however, it also strongly interferes with fluorescence measurements due 

to auto fluorescence. Therefore, I tested several other DMEM formulations that do not contain 

phenol red to avoid this issue (Figure 8a). Expression levels of GFP_000 were measured in 

cells grown in four different standard media: a, DMEM containing phenol-red (“Red”), b, 

DMEM buffered with HEPES, no phenol-red (“HEPES”), c, similar formulation as  a, no 

phenol-red (“Biochrom”), and d, DMEM marketed as particularly good for imaging 

applications, no phenol-red (“Fluorobrite”). The signal-to-noise ratio for mKate2 fluorescence 

is highest when measurements are taken in Biochrom media (Figure 8a, black bars). For GFP, 

the signal-to-noise ratio is higher when measured in Biochrom and Fluorobrite compared to 

the other tested media (Figure 8, grey bars). I therefore decided to use Biochrom media for all 

following experiments as well as due to its reduced cost (about 50% below Fluorobrite). 
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Fluorescence measurements are also strongly depended on the distribution of cells across the 

entire well; e.g. since cells are not grown to 100% confluency to avoid contact inhibition, if 

no cells happen to be attached in the particular area that is excited by the light beam, the 

obtained result would not necessarily be representative of the entire well. The multiwell plate 

reader used in this study allows to make multiple independent measurements across the well 

which I utilised to obtain an average result for each well. Another possible method to avoid 

the effects of uneven growth is to lyse cells before measuring fluorescence which will release 

most protein from the cells and, with the inclusion of a shaking step, aids the even distribution 

of GFP molecules in solution across the well. I tested three standard cell lysis buffers to see 

whether the sensitivity of measurements would increase. I transfected cells grown in Biochrom 

media with the poorly expressed GFP_000 and highly expressed GFP_001 variants. 

Background fluorescence was subtracted from transfected wells and the resulting fluorescence 

values used to measure the dynamic range of this assay using the ratio between GFP_001 and 

GFP_000 before and after lysis (Figure 8b). A low dynamic range could be indicative of e.g. 

high experimental background. The dynamic range was consistently increased after lysis, 

confirming that the addition of a cell lysis step can increase the sensitivity of this assay further. 

No prior wash-step is included before the addition of lysis buffer to reduce cell-to-cell 

variation caused by cells detaching in the process. For this reason, using media with low auto 

fluorescence is still a crucial feature of the overall protocol. 

 
 

Figure 8. Optimisation of fluorescence measurements. 
a, HeLa cells were transfected with GFP_000 and fluorescence measured 24h post-
transfection in different culture media (see materials and methods 2.1.4). Bars represent the 
ratios between GFP or mKate2 signal and their respective background (media only) 
measurements. Error bars denote the standard deviation. n=3. b, The dynamic range was 
calculated as the ratio of GFP_000 and GFP_001 signal after background normalisation as 
measured in HeLa cells 24h post-transfection, either measured in media or after 15min lysis 
using 3 different lysis buffers (see materials and methods 2.1.4). Shown are the means of n=3.  
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Despite all the optimisation that was undertaken, some variability between replicate wells 

persisted, in particular between different plasmid preparations (Figure 9a). This is most likely 

caused by differences in DNA amounts, impurities and/or general transfection efficiency 

caused by e.g. uneven cell growth. To be able to account for such variation, I cloned a further 

fluorescent reporter gene into the backbone of the expression vectors as an internal control for 

transfection efficiency. I chose mKate2 (Evrogen), a far-red fluorescent protein unrelated to 

GFP, which allows very good spectral separation from GFP and does not cause any cross-

excitation during photometric measurements (Figure 9b+c). Normalising GFP expression to 

mKate2 levels significantly decreases the noise between replicate transfections and thus 

further increases the dynamic range of this assay (Figure 9d). 

 

A further important parameter for expression-based screens is the actual transfection 

procedure. The optimisation of transfection protocols is a constant compromise between high 

expression levels and cell viability as due to the nature of the procedure a certain degree of 

toxicity is always expected. I therefore conducted a cell viability assay on cells 24h and 48h 

post-transfection to assess the effects of the transfection procedure on cell health. Figure 10 

shows the results obtained for one of such optimisation experiments in which I varied plasmid 

DNA amount to assess the trade-off of viability for higher GFP expression. 

 

To decrease variation of measurements, I tested three DNA preparations of each GFP variant 

in triplicate transfections in a 96-well plate (9 wells measured in total per variant). The 

fluorescence was measured 48h post-transfection and data from all wells was averaged to 

obtain a relative fluorescence score for each GFP variant. To ensure comparability between 

different assay plates, three GFP variants were selected and transfected on every plate. By 

normalising the relative fluorescence values of all measured variants on one plate to these 

controls, it is possible to directly compare all assayed plates to one another, decreasing error 

due to technical differences between experiments. 
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Figure 9. Decreasing well-to-well variability using an internal control.  

a, Variability in fluorescence levels between replicates of transfected Hek293 cells. Three 

separate plasmid preparations of GFP and EGFP were transfected into 3 wells each. Each 

bar represents the fluorescence measured in one well. b, Excitation and Emission spectra of 

GFP and mKate2. Dotted vertical lines indicate bandwidths used for measurements in this 

study (GFP Ex/Em: 480-490/505-525; mKate2 Ex/Em: 583-593/623-643). c, mKate2 

fluorescence of cells transfected with plasmids carrying either GFP only (pCM3∆mKate2-

GFP034), mKate2 only (pCM3) or both (pCM3-GFP034). Error bars=SEM. d, Standard error 

of fluorescence averaged of data from 4 different plasmid preparations of GFP034 and 

GFP169 in pCM3 or pCM4, each transfected in triplicate. The proportion of the standard error 

of the mean was calculated as percentage of the average fluorescence value (%SEM) 

obtained from all measured wells with (white bars) and without normalisation to mKate2 (black 

bars).  
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Figure 10. Fluorescence and cell viability optimisation. 
9 000 HeLa cells were reverse transfected with indicated amounts of pCM3 and 0.25ul 
Lipofectamine 2000 in 96 well plates (3 wells each condition). GFP (white) and mKate2 
(pattern) fluorescence was assessed a, 24h or b, 48h post-transfection in media (Biochrom) 
before assessing cell viability (black line) using alamarBlue (Invitrogen). Error bars denote the 
standard deviation. 

 

 

3.3. High GC content increases protein levels of GFP with and without 

introns 

For an initial screen, I selected 38 synonymous GFP variants which cover a very broad range 

of GC3 content (0.27-0.97%). Individual GFP variants were cloned into pCM3 and pCM4. To 

assess expression of each, plasmid DNA from three individual bacterial clones was purified 

and used in transient transfections in 96-well plates. For each plasmid preparation, three wells 

of HeLa cells were transfected. Cells were incubated for 48hrs post-transfection before lysing 

cells and measuring GFP fluorescence using a microplate spectrophotometer to obtain an 

average expression score for each variant (Figure 11). The tested variants cover a very broad 

range of expression levels, varying up to 140-fold. Notably, the highest expression was seen 
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for GFP_001 (Figure 11, denoted with an asterisk), which is a highly codon- and expression-

optimised version of GFP (“EGFP” in Kudla et al., 2006). None of the other tested variants 

reached similar levels. A clear trend between GC content and protein levels can be seen. 

 

 

 

Figure 11. Fluorescence levels of 38 GFP coding-sequence variants. 

Variants are arranged by their GC3 content from low to high. The asterisk indicates GFP001. 

3 plasmid preparations for each variant were prepared and each measured in 3 wells. Error 

bars = SEM. 

 

GFP is a naturally intronless gene, however, the vast majority of transcripts encoded in the 

human genome contain at least one intron. The process of splicing has been well established 

as an important step in efficient gene expression, primarily due to its significant role in gene 

regulatory steps such as transcript stabilisation and nucleo-cytoplasmic mRNA export (Furger 

et al., 2002; Gupta et al., 2013; Valencia et al., 2008). For this reason, I also expressed the 

same GFP variants from a modified version of the original vector which additionally contains 

a chimeric intron in the 5’UTR (pCM4, see Figure 6a in 3.1). The objective of this experiment 

is to test whether the large differences in the expression of unspliced GFP variants can be 

rescued by the inclusion of an intron as it would be expected to increase expression of 

particularly poorly expressed variants. As can be seen in figure 12, inclusion of an intron 

exhibits varying effects on fluorescence levels, ranging from no change to an up to 10-fold 

increase in expression. Overall, the strong relationship between GC content and protein levels 

remains (R2=0.5395, p=3e-8).  
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Figure 12. Protein levels of 36 GFP variants. 
HeLa cells were transfected with plasmids a, pCM3 (no intron, black circles) or b, pCM4 (with 
intron in 5’UTR, white diamonds) encoding 36 GFP variants using the protocol outlined above 
and fluorescence used as proxy for protein levels plotted against GC3 content. c, The effect 
of an intron in the 5’UTR on protein levels of GFP. The diagonal line illustrates x=y. Error bars 
= SEM. n=9. 

 

As the above experiments are based on strong overexpression of GFP from plasmids, it was 

important to confirm that these effects can also be seen in a stable cell line system under more 

physiological conditions, and to confirm that previously published data is reproducible (Kudla 

et al., 2006). To do so, I established stable HeLa and Hek293 cell lines expressing two GFP 

variants – GC-poor GFP_000 (GC3=0.33) and GC-rich GFP_001 (GC3=0.97), both with or 

without an intron from the same genomic locus, to avoid context-dependent effects. As shown 

in figure 13, both variants exhibit similar differences in expression levels as would be expected 

from transient transfection experiments, both in HeLa and Hek293 cells. The presence of an 

intron increases expression of GFP_000 in both cell lines, whereas in case of GFP_001, protein 

levels are either unaffected (HeLa) or slightly decreased (Hek293). 
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Figure 13. Expression of GFP_000 and GFP_001 in stable cell lines. 
Stable Hek293 (top row) and stable HeLa Flp-in (bottom row) expression GC-poor GFP_000 
and GC-rich GFP_001 without (left column) or with (centre column) intron in their 5’UTR. 
Expression measured 24hrs post-induction by Flow-cytometry. 

 

3.4. High GC content increases mRNA levels of GFP 

Previous published data established that the GC content of genes not only increases protein 

yield but also correlates with increased mRNA levels (Kudla et al., 2006). To test whether 

these changes can be seen across the GFP library, I selected 24 GFP variants which cover a 

broad range of GC-content and for which protein levels were previously quantified (see 3.3). 

These were transiently transfected into HeLa cells and mRNA levels assessed by quantitative 

Real-time PCR using primers schematically depicted in figure 14a.  
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Figure 14. RNA levels of GFP variants. a, Schematic representation of annealing sites of 
primers used to measure the abundance of 5’UTR (orange), 3’UTR (green), spliced RNA 
(blue) and unspliced RNA (red). b + c, Correlations of results obtained with either 5’UTR or 
3’UTR primers of 24 GFP variants. d, Relative RNA levels of 24 GFP variants expressed from 
pCM3 (black circles) or pCM4 (white diamonds) using primers annealing in the 5’UTR 
(indicated by orange arrows in a). 
 
 

Similarly as with protein levels, high GC3-content correlates with high mRNA levels (Figure 

14d, R2=0.36, p=4.51e-4). The same variants were expressed and quantified in an intron-

containing version of the expression vector as before (see Figure 12), to test whether the 

inclusion of an intron could rescue the low mRNA levels of particularly GC-poor GFPs. 

However, the correlation with GC content remains (R2=0.60, p=1.11e-6). 

In order to visualise the correlation between RNA and protein levels, I plotted data for those 

variants, for which I obtained measurements for both parameters, in figure 15. For both 
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variants expressed with and without intron, the data correlates, however only marginally 

significantly for those without intron (R2=0.2093, p=0.04259) and insignificantly for those 

with intron (R2=0.184, p=0.05916). To further illustrate the effect of an intron on expression 

level, the fold change in translational yield (fluorescence/mRNA) that occurs when an intron 

is introduced, is depicted in figure 15c. The effects vary across all tested variants and no clear 

trend is visible; however, most variants with a positive fold change are in the upper GC3 range. 

 

 

 

 
Figure 15. Relationship between RNA and protein levels of 20 GFP variants. 
a, b, RNA levels are plotted against fluorescence measurements shown in figure 11 for 20 
variants expressed without intron (a) or with intron (b). c, Shown is the fold change in 
translational yield (fluorescence/mRNA) that occurs when an intron is present. Variants are 
arranged by their GC3 content as indicated by the triangle. 
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To confirm previously published results on GFP_000 and GFP_001 showing a comparable 

decrease in mRNA levels as on protein levels (Kudla et al., 2006), I quantified mRNA 

expression of those variants in HeLa and Hek293 cells. Results in figure 16 confirm that in 

both cell types GFP_001 shows several-fold higher mRNA levels than GFP_000. In addition, 

I also measured expression in the presence of an intron which shows an increase of overall 

mRNA levels of GFP_000 in both HeLa and Hek293 by 2-fold, however only increases 

GFP_001 in HeLa, but not Hek293. Semi-quantitative PCR of plasmid preparations using 

primers specific for spliced (Figure 14, blue arrows) or unspliced RNA (Figure 14 , red arrows) 

showed similar PCR amplification efficiencies of GFP_000 (GC3=0.33) and GFP_001 

(GC3=0.97), confirming that the previous results are not influenced by a potential bias in PCR 

amplification efficiency (Figure 17). 

 

  

 
 

 
Figure 16.  RNA levels of GFP_000 and GFP_001 in HeLa and Hek293 cells. 
RNA expression levels of GFP_000 and 001 with (white bars) or without (black bars) intron in 
5’UTR, measured in a, HeLa and b, Hek293 cells 24hrs post-transfection. Splicing increases 
expression in HeLa cells (GFP_000: p=3e-4, GFP_001: p=3e-3), but only for GFP_001 in 
Hek293 cells (GFP_000: p=3.96e-5). Error bars = StDev; n.s.= not significant. n=3. 

 

 
 

Figure 17. PCR amplification from vectors used in transfection experiments. GC-poor 
GFP_000 and 001 were cloned into pCM3 (-int) or pCM4 (+int) and 3 separate plasmid 
preparations of each used as template in PCR amplification using primers used for mRNA and 
pre-mRNA quantification in figure 14. The neomycin resistance gene (neo) is used as internal 
control. PCR products were resolved on a 2% agarose/TBE gel. The result is representative 
of three experiments.  
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3.5. GC content does not affect pre-mRNA levels of spliced GFP variants 

The differences in RNA levels between GFP variants could indicate changes in transcription 

initiation and/or elongation rates. To further investigate the possibility of differential 

transcription rates, pre-mRNA levels of several additional variants containing an intron were 

measured using intron-specific primers (Figure 18). No large differences between GFP 

variants and no correlation between GC-content and pre-mRNA levels can be seen. These 

results suggest that transcription is not the main factor contributing to overall mRNA levels. 

However, these results could be interpreted as showing the abundance of intron-containing 

transcripts only and not full-length GFP transcripts. Therefore, these results do not take into 

account the possibility of 5’ and 3’ truncated transcript populations. To test this, I previously 

compared the correlation of transcript measurements using primers specific for either 3’UTR 

or 5’UTR (Figure 14b+c) which correlated well for unspliced variants (r2=0.88, p=0.0105) as 

well as spliced variants (R2=0.6624, p=0.0102), suggesting that there is no over-abundance of 

5’ or 3’ truncated RNA species. Similar measurements were conducted with GFP_000 and 

001 in HeLa and Hek293 cells (Figure 18b+c). In both cell lines, pre-mRNA levels of 

GFP_001 are significantly increased by 1.5-fold in HeLa (p=0.0262) and 2.8-fold in Hek293 

(p=2.576e-12), similarly to some of the transiently expressed variants shown in figure 18a. 

Overall the results from these experiments suggest that changes in GC-content leave pre-

mRNA levels largely unaffected. 
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Figure 18. Pre-mRNA levels of GFP variants. 
a, HeLa cells were transfected with pCM4 encoding 24 GFP variants. 24h post-transfection, 
total RNA was extracted and pre-mRNA levels analysed by qRT-PCR using primers as 
depicted in figure 14 (red arrows). Variants are arranged by their GC3 content as indicated by 
the triangle from low to high. b, RNA from HeLa and Hek293 cells transfected with either 
GFP_000 or GFP_001 with introns was extracted 24h post-transfection and analysed by qRT-
PCR as in a. Error bars = SEM. 

 

3.6. GC content affects RNA localisation of GFP_000 and GFP_001 mRNA 

Several studies have previously shown that the expression of very GC-poor late viral genes 

requires the activity of an early viral adapter protein, Rev, which facilitates nuclear RNA 

export (Malim et al., 1989). This requirement can be circumvented by increasing the GC-

content of those genes (Kotsopoulou et al., 2000; Tan et al., 1995). We therefore hypothesised 

that this is a more universal effect and that mRNA export could be a rate-limiting step in the 

expression of particularly GC-poor GFP variants. 
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One assumption that can be made when considering mRNA export as a bottleneck in gene 

expression is that the nuclear to cytoplasmic ratio for a particular RNA will be higher 

compared to RNA which is not limited by export. Therefore, I performed cellular fractionation 

of Hek293 cells stably expressing either GC-poor GFP_000 (GC3=0.33) or GC-rich GFP_001 

(GC3=0.97) prior to RNA extraction and quantification by qRT-PCR (Figure 19). Two 

endogenous genes were used as controls to account for the quality of the cell fractionation: U6 

snRNA, which is mainly localised in the nucleus, and tRNA-Lys(CTT), which is pre-

dominantly localised to the cytoplasm. GFP mRNA levels were normalised to the respective 

controls in each fraction. The fold difference between GFP_000 and GFP_001 is greater in the 

cytoplasmic fraction (5-fold, p=1.378e-5) than in the nucleus (n.s., p=0.0717).   

 

 

 

Figure 19. Subcellular localisation of GFP000 and GFP001 RNA. 
Stable Hek293 cells expressing either variant were induced for 24h before cellular fraction and 
qRT-PCR analysis. a, No difference between GFP_000 and GFP_001 can be seen in the 
nuclear fraction (p=0.0717). b, GFP_001 is 5-fold more abundant than GFP_000 in the 
cytoplasmic fraction (p=1.378e-5). Error bars = SEM. n.s. = not significant. n=3. 

 

3.7. GC content affects RNA stability of GFP_000 and GFP_001 

RNA stability assays on GFP_000 and GFP_001 were previously published and reported no 

significant difference in half-lives (“GFP” and “EGFP” in Kudla et al., 2006). However, these 

assays were conducted by blocking transcription using Actinomycin D, which is known to 

intercalate with GC-rich sequences and is therefore not suitable for comparing GC-poor genes 

with very GC-rich genes (Bailey et al., 1993). Because of the known sequence bias, as well as 

to verify previous results, I repeated these experiments using Triptolide, a sequence-

independent reagent (Titov et al., 2011). Unlike previous published data, RNA stability of GC-

rich GFP_001 (t1/2=8.6h) is about 3.5-fold higher than of GC-poor GFP_000 (t1/2=2.4h) (Figure 

20).  
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Figure 20. RNA stability GFP_000 and 001 in stable Hek293 cell lines. 
Cells were induced for 24h before treatment with 500mM Triptolide. At the indicated times, 
RNA was isolated and quantified by qRT-PCR. RNA levels were normalised to 7sk, a RNA 
polymerase III transcribed gene which remains unaffected by Triptolide. RNA levels of c-Myc 
(triangles) are shown as an unstable RNA control (t1/2=1.2h). The half-life of GC-rich GFP_001 
(t1/2=8.6h, black squares) is about 3.5-fold longer than of GC-poor GFP_000 (t1/2=2.4h, circles). 
Error bars = SEM. n=2. 
 

3.8. Changes in codon usage can lead to aberrant splice-site recognition 

As synonymous codon changes are often associated with splicing defects, it is possible that 

similar effects could be seen across our GFP library. To study this, I performed a semi-

quantitative RT-PCR using primers which are specific for the 3’ and 5’UTR of GFP to amplify 

all transcripts which contain both UTR sequences. This should lead to the amplification of full 

length GFP only, however, if varying codon usage causes cryptic splicing of GFP, more than 

one product will be amplified. When analysing PCR products by agarose electrophoresis, for 

most GFP variants tested, additional smaller products are visible, indicating the presence of 

splice isoforms (Figure 21a). To verify that these products are indeed GFP and not unspecific 

by-products, some of these products were Sanger-sequenced (Figure 21b). A sequence 

alignment confirms that these products are derived from GFP but noticeably often seem to 

lack the same part, starting just after the start codon and reaching up to roughly 217nt into the 

sequence. These sites happen to coincide with regions that are conserved in most GFP variants 

at these positions. When looking at sequence features around these sites more closely, a 

similarity to the consensus exon-intron and intron-exon boundary sequence can be seen. This 

finding suggests that variation in codon usage around those conserved sites strongly affects 

their false recognition as exon-intron boundaries. 
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Figure 21. Cryptic splicing of GFP variants. 
a, Hek293 Flp-in cells were transfected with pCM3 encoding several GFP variants. RNA was 
extracted 24h post-transfection and analysed by RT-PCR using GFP UTR specific primers. 
Products were resolved on a 1% TBE/agarose gel. b, Sequence alignment of transcript 
isoforms of several GFP variants. Indicated are the conserved nucleotides directly at the 
cryptic splice site boundaries. N = any.   
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3.9. Discussion 

In this chapter I describe experiments that show the effects of codon usage on several stages 

of expression in a set of synonymous variants of the naturally intronless GFP gene in human 

cells. Data presented here confirm and expand results from a previously published study 

(Kudla et al., 2006) by demonstrating that high GC content leads to increased RNA levels, 

likely due to increased transcript stability, and ultimately higher protein expression across 

many coding-sequence variants of GFP. I additionally show that by introducing an intron into 

the 5’UTR, the poor expression of particularly GC-poor GFP variants can only partially be 

rescued. I also provide evidence that codon variation leads to cryptic splicing at defined sites. 

 

 The effects of splicing on GFP expression 

Fluorescence measurements of 36 GFP synonymous coding variants show a high correlation 

between GC3 content and protein levels (Figure 11). One possible explanation for the low 

expression of particularly GC-poor GFP variants could be the lack of an intron as it has often 

been suggested that mRNA splicing is required for efficient gene expression. The presence of 

introns has been demonstrated to significantly contribute to gene expression through transcript 

stabilisation (Choi et al., 1991; Nott et al., 2003). It would therefore be expected that the 

presence of an intron should at least rescue the low RNA levels of poorly expressed variants. 

Although splicing does increase mRNA levels of some variants, the majority of effects are 

very small (Figure 14). GC-content remains highly correlated with RNA levels across all tested 

variants, despite the presence of an intron. It should be noted that the qRT-PCR quantifications 

of mRNA levels shown here do not take into account the possibility of truncated transcript 

populations as only the presence of UTR sequences is measured. The measurements of 5’UTR 

and 3’UTR fragments for unspliced variants were highly correlated (R2=0.8911, p=0.0105, 

Figure 14b), however there is considerably more variation for spliced GFPs (R2=0.6624, 

p=0.0102, Figure 14c). The observed differences in the abundance of 5’UTR and 3’UTR 

sequences might be indicative of transcript degradation. It is likely that the amount of 

degradation products will also vary as individual sequence features would be expected to lead 

to changes in mRNP composition and thus differences in stability. It is unclear however, 

whether the trends seen here are due to a general increase in transcript stability with increasing 

GC-content, or whether this is directly coupled to an increase in ribosome occupancy (Nott et 

al., 2004). 
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It was previously shown that the deposition of the exon-junction complex (EJC) on an mRNA 

promotes the assembly of mRNPs which either inhibit the association with translational 

repressors, or alternatively promote the formation of translationally more active mRNP which 

e.g. facilitate translation initiation (Abaza and Gebauer, 2008; Nott et al., 2004). By 

introducing an intron into the 5’UTR of the GFP gene, the low protein levels of some variants 

could partially be rescued, but still remain relatively low compared to those that already 

exhibited medium to high expression (Figure 12c, R2=0.7716). No clear trend can be seen 

when comparing translational yields between variants expressed with and without intron as 

effects vary from moderate positive or negative effects to up to 3- fold differences. However, 

variants with high GC3 seem more likely positively affected by the intron compared to those 

with low GC3 (Figure 15c), although many exceptions are visible, such as GFP_236, which 

has the highest increase in translational yield (2.17-fold) but is only moderately GC-rich 

(GC3=0.51), as well as GFP_422, which is the variant with highest GC3 of the tested variants 

(GC3=0.95) but has a negligible decrease in translational yield (-0.03-fold). Taken together, it 

is not clear whether these results are caused by a general effect of GC on the translational 

yield. Northern blotting with probes targeted to 3’UTR and 5’UTR could provide a better 

overview of all RNA species present for particular variants. Combining these results with 

polysome profiling to observe changes in the translational state of unspliced compared to 

spliced variants, may provide a more comprehensive insight of the effects of splicing on GFP 

expression. Overall, these results suggest that splicing may increase the translational output of 

already highly expressed GC-rich variants but not of overall poorly expressed GC-poor 

variants. It is possible that poor expression of these variants in particular is caused by 

undesirable sequence features already affecting processes further upstream (addressed in 

chapter 5). 

 

Since splicing occurs co-transcriptionally, the possibility of decreased transcription rates 

leading to lower mRNA levels cannot be excluded. For this reason I assessed pre-mRNA levels 

for variants expressed with an intron which showed no large changes across the 24 variants 

tested (Figure 18a). In this experiment, the amount of intronic sequence was quantified, not 

the full length pre-mRNA transcript. Nonetheless, this data suggests that transcription of all 

variants is actively initiating, regardless of sequence-composition. In vitro testing of the ability 

of DNA polymerases to amplify a GC-poor and a GC-rich variant showed no obvious 

differences, indicating that DNA topology of the plasmid constructs is not significantly 

obstructing transcription (Figure 17). In contrast, transcription of several GFP variants 

covering a broad range of GC-content in vitro lead to significant differences in the RNA yield 
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obtained for each (data not shown) suggesting that for at least some variants, there might be 

effects on either transcription initiation or elongation that could possibly also affect RNA 

levels in vivo. It has been shown that transcriptional silencing of transgenes is a common 

occurrence in stable cell line systems which is of particular interest for gene replacement 

studies. It was demonstrated that expression downregulation is coupled to nucleosome re-

positioning towards the 5’end of transgenes, leading to a less accessible chromatin structure 

prohibiting efficient transcription (Bauer et al., 2010). In the same study, it was also suggested 

that this process is linked to CpG content, with a CpG depleted GFP variant (CpG=0; 

GC3=0.8) exhibiting 1.6 to 2-fold lower protein levels compared to a CpG enriched variant 

(CpG=60; GC3=0.96) in Hek293 cells. In contrast, I present data of two GFP variants with 

same CpG contents as in the study by Bauer et al., though differing significantly stronger in 

GC3 (GC3=0.33 vs GC3=0.96) which results in an up to 20-fold difference in protein 

expression (Figure 13). qRT-PCR data for pre-mRNA levels suggest only a 2.5-fold difference 

(Figure 18b) whereas Bauer et al. observed an 7-fold increase in newly synthesised mRNA in 

nuclear run-on assays. Whether transcription is indeed a major contributing factor of 

differential expression of GFP variants used here, a nuclear run-on assay should be performed 

in order to assess the transcription dynamics further and to test whether any differences are 

facilitated by either GC3 or CpG content, or a combination of both. Taken together, these 

results suggest that differences in transcription may be involved in differential expression of 

GFP variants, however, since no large variation could be seen on the pre-mRNA level in 

transiently transfected cells, changes on GFP expression are unlikely to be mediated by the 

same mechanisms, i.e. nucleosome re-positioning, as suggested by Bauer et al. To further 

confirm my findings however, Northern blotting should be performed to assess full-length pre-

mRNA levels more quantitatively ideally in stable cell lines. 

 

 Codon usage and cryptic splicing 

The effects of single synonymous nucleotide polymorphisms (sSNPs) on splicing have been 

extensively studied as well as the effects of the local GC content on alternative splicing (Amit 

et al., 2012). In case of stable Hek293 cell lines expressing GFP_001, the introduction of a 

5’UTR intron leads to a decrease in fluorescence. This is surprising as so far no study has 

shown any negative effects of splicing on gene expression. In this particular case, the splicing 

process could either be interfering with other mechanisms, e.g. structural changes and the 

binding of splicing factors could lead to spatial competition with other RNBPs important for 

high expression, or, the presence of cryptic splice acceptor sites within the coding region could 

in combination with the strong splice donor site of the 5’UTR intron be acting as alternative 
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splice site, leading to non-functional transcript isoforms. Evidence for the latter scenario is 

given by my finding that for various GFP variants more than one transcript isoform can be 

detected by RT-PCR (Figure 21), suggesting that cryptic splicing is indeed occurring. I 

observed that for many of those the same sequence fragment is often missing (Figure 21b). 

This fragment is located between two sites that are preserved across most of the GFP 

sequences: the 5’ splice site is located right after the ATG and the 3’ splice site overlaps with 

an XbaI restriction site which was utilised for the initial assembly of the variant library (Kudla 

et al., 2009). These sites happen to weakly resemble consensus splice donor and splice acceptor 

sequences (GU/AG) and are therefore likely the cause of the aberrant removal of this particular 

sequence fragment. Since this particular transcript isoform is not observed in all variants and 

also varies in the extent of occurrence (e.g. for GFP_020 it represents the majority of 

transcripts, see Figure 21b), the codon choice surrounding these sites are possibly mediating 

the strength of the cryptic splice site recognition. 

 

A study by Amit et al. (2012) focussed on the importance of GC-content between exons and 

introns for splice site selection and more specifically how exon skipping and intron retention 

is controlled by defined GC-boundaries (Amit et al., 2012). I hypothesise that similar 

mechanisms are acting in my system and in order to further investigate the causes for aberrant 

GFP splicing, it would therefore be interesting to select GFP variants that primarily differ in 

GC-content within the fragment that is most often removed. If GC content is the main driver 

of the cryptic splice phenotype, variants with low and high GC should exhibit clear differences. 

Due to the high overall expression levels of GC-rich variants, I would expect those variants to 

be less likely spliced cryptically than others. This does not exclude the possibility of particular 

sequence motifs playing an additional role in splice site selection. Amit et al. further describe 

a link between chromatin architecture and the recruitment of the splicing machinery by 

demonstrating how nucleosome positioning correlates with GC content and ultimately with 

splice site recognition (Amit et al., 2012). It is however unclear whether the here presented 

observation could be mediated by similar mechanisms as despite literature suggesting that 

transfected plasmid DNA could be assembled into nucleosome-like structures, it is not known 

to what extent these structures reflect a stable cellular genomic DNA context (Jeong and Stein, 

1994; Mladenova et al., 2009; Reeves et al., 1985).  

 

 Codon usage and mRNA export 

Several studies have previously investigated the effects of codon usage on mRNA export, 

primarily in the context of viral gene expression. Cellular spliced mRNA is exported via the 
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NXF1 export receptor aided by the Aly/REF adaptor proteins. Viral late-expressing genes 

however, rely on early-expressed viral export adaptor proteins, such as Rev, which recognises 

a particular RNA-element (RRE) on the viral transcript and mediates mRNA export via the 

CRM1-dependent pathway normally used for nuclear export of unspliced RNA (Fischer et al., 

1994; Malim et al., 1989). It could be shown that increasing the GC-content of usually very 

AT-rich viral genes circumvents the requirement for Rev (Kotsopoulou et al., 2000). We 

hypothesised that this could be a more general effect and potentially a bottleneck for the 

expression of particularly GC-poor genes. Subcellular fractionation and quantification of GC-

poor GFP_000 and GC-rich GFP_001 showed that there are indeed differences in RNA 

localisation. Quantification of nuclear RNA levels showed no difference in GFP_000 and 

GFP_001 levels (Figure 19), further indicating that overall poor expression is not necessarily 

caused only by lower rates of transcription (Bauer et al., 2010). 

 

When comparing RNA levels in the cytoplasm, GFP_001 is 5-fold more abundant than 

GFP_000 (p=1.378e-5). This is in contrast to data obtained on CpG-variants by Bauer et al. 

who could not find any significant differences in RNA localisation (Bauer et al., 2010). It is 

not clear whether the differences observed here are due to lower nucleo-cytoplasmic export 

rates of GFP or caused by differences in RNA turnover rates. I therefore measured RNA half-

lives of both variants (Figure 20) to re-assess previously published data from our lab which 

concluded that there is no difference in transcript stability between GFP_000 and GFP_001 

(Kudla et al., 2006). Similar conclusions were drawn by Bauer et al (2010). However, in both 

studies, the experiments were conducted using Actinomycin D which exhibits its function by 

intercalating in DNA with a strong sequence-preference for GC-rich regions. It is therefore 

not possible to reliably compare the stability of genes with very different GC content. I 

repeated these experiments with an alternative, sequence-independent reagent, Triptolide, 

which acts at the level of transcription initiation rather than elongation (Leuenroth and Crews, 

2008; Titov et al., 2011; Wang et al., 2011). Results show that there is indeed a significant 

difference of about 3.5-fold between GFP_001 (t1/2=8.6h) and GFP_000 (t1/2=2.4h), suggesting 

that increased GC-content also leads to increased transcript stability (Figure 20). This 

difference however seems unlikely to be sufficient to explain the much larger difference 

between these two variants on the protein level (34-fold). The experiment presented here was 

conducted on total RNA, but considering the previous differences in RNA localisation 

between variants, it would be interesting to repeat such stability measurements followed by 

subcellular fractionation to monitor RNA decay in separate cellular compartments, to further 

explore the possibility of differential recognition of sequence features by different components 
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of the RNA degradation machineries. Furthermore, information from this would be useful in 

determining whether the GFP RNA export rate is decreased or whether the observed changes 

are mainly due to differential RNA stability. These experiments could also be performed on 

cells expressing GFP variants with an intron as this would give further clues about the role of 

splicing and how it might be exhibiting positive effects on expression levels (if any at all), i.e. 

through transcript stabilisation or by facilitating export, and why a complete rescue of 

expression levels cannot be achieved.  
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4. A high-throughput approach for the phenotypic profiling of reporter 

genes 

The previous chapter described the systematic investigation of the effects of GC content by 

measuring several molecular phenotypes of coding-sequence variants of GFP. To be able to 

identify more general and possibly more subtle effects and to relate such to various sequence 

properties, the number of measured variants needs to be high enough for meaningful statistical 

analyses. Therefore, we designed a high-throughput sequencing-based approach which allows 

the measurement of multiple parameters of many GFP variants simultaneously in stable human 

cells lines. The following chapter describes the experimental outlines, assay design and data 

validation.   
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4.1. Phenotypic profiling of fluorescent reporter genes 

Several previous studies that were interested in how codon choice affects gene expression did 

so using high-throughput approaches. Most of these studies were performed in bacteria 

(Goodman et al., 2013; Kosuri et al., 2013; Kudla et al., 2009) or yeast (Dean and Grayhack, 

2012; Gamble et al., 2016; Presnyak et al., 2015; Shah et al., 2013) that readily allow the 

screening of thousands of variants. Short life cycles, large population sizes and easy genetic 

manipulations make such organisms perfect for high-throughput studies. Fewer studies tried 

to approach similar questions in mammalian systems (Gingold et al., 2014; Rudolph et al., 

2016) and primarily did so by assessing global gene expression changes, focussing 

predominantly on effects on the translational level. However, few used a controlled 

experimental set-up in mammalian cells to measure the consequences of codon usage directly 

on a single-gene level across the whole coding sequence for several hundred synonymous 

variants simultaneously at multiple stages in gene expression. Here, I outline the experimental 

design and validation of a human cell line system which allows the measurement of multiple 

molecular phenotypes for over 200 GFP sequence-variants quantified using next-generation 

sequencing (Figure 22). Due to the large variation in sequence features of the genes to be 

tested, e.g. ranging from the lower to the upper end of GC-content, as well as the various 

phenotypes to be measured (from RNA to protein), the experimental design required the 

careful consideration of a few key aspects which are outlined and discussed in the following 

sections.     
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Figure 22. Overview of experiments measuring various phenotypes of many GFP 
sequence variants. 
Cells expressing many GFP variants can be used to measure multiple molecular phenotypes 
simultaneously, starting from RNA or gDNA. 

 

 

4.1.1. Choosing and establishing a human cell line system 

One of the main considerations for the phenotypic screening of codon usage variants is which 

type of cellular expression system to use. This strongly depends on the purpose and types of 

measurements that are to be conducted. For example, if protein levels are to be measured, it 

must be ensured that each cell is only expressing one particular variant at a time to allow 

protein quantification for each variant independently rather than the cumulative effect of many 

within one cell. This rules out transient transfection systems in which multiple copies of 

plasmids and hence, multiple variants are introduced into each cell. In contrast, if the main 

focus is on RNA phenotypes, this would not necessarily be a limitation as RNA levels could 

be normalised to the total DNA content (genomic or plasmid) as e.g. in a study by Puchta et 

al., 2016, in which unique 20nt barcodes were placed in an untranscribed region just 

downstream of the gene variants, or, in case of transient transfections, total RNA expression 

can be normalised to total DNA transfected. Here however, the aim is to build an overview of 
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the effects of codon usage on many stages in gene expression, both on the RNA as well as 

protein level. This led to the conclusion that a stable cell line system would be the most 

appropriate approach for the purpose of this study. 

 

Classical approaches for stable gene integration include infection with viruses produced by 

viral packaging cell lines, which are used to modify the virus genome to carry the gene of 

interest and produce the viral particles, or by utilising the “copy and paste”-mechanism of 

retrotransposon sequences, such as the piggyback (Ding et al., 2005) or sleeping beauty 

systems (Ivics et al., 1997, 2009). Although both approaches are highly efficient, the 

integration into the genome is not targeted to a specific locus and will occur, in respect to 

transcriptionally active regions in the genome, close to random (Yant et al., 2005). 

Additionally, such integration events are not limited in their frequency of occurrence per cell, 

leaving the possibility of multi-copy insertions. As a consequence, a genetic screen would 

have to follow to a, assess successful integration, usually using antibiotic markers, b, verify 

that only one gene copy is present in the genome and c,  ensure the integration site is indeed 

transcriptionally active. 

 

Over the last decades, several more targeted approaches have emerged, revolutionising 

genome engineering. Zinc finger nucleases (ZFNs, Urnov et al., 2010) as well as transcription 

activator-like effector nucleases (TALENs, Joung and Sander, 2013) are able to cut double-

stranded DNA in vivo at specific sites. Both are made up of multiple modules, each recognising 

either three to four bases (in case of ZFNs) or single nucleotides (TALENs), making it possible 

to target any particular sequence by mix-and-matching. The gene insertion, replacement or 

deletion is mediated by the cell’s own DNA repair mechanisms by homologous recombination. 

More recently, another genome editing system has become a widespread method of choice for 

genome engineering: the CRISPR/Cas9 system (Cong et al., 2013; Jinek et al., 2013). 

CRISPR, which is the acronym for “Clustered regularly interspaced short palindromic 

repeats”, does not rely on a protein-DNA recognition interface, as in case of TALENs and 

ZNFs, but instead uses a short RNA to guide the Cas9 nuclease to a specific genomic sequence. 

Cas9 cleaves the DNA and the repair is again mediated via homologous recombination if a 

repair template is provided. However, nucleases such as Cas9 and TALEN can exhibit off-

target effects by cutting in unwanted places (Fu et al., 2013; Hsu et al., 2013) and can also 

suffer from low repair efficiency (Mao et al., 2008), requiring rigorous single-clone screening. 

 



65 
 

To overcome such time-consuming limitations, several commercial cell systems have become 

available which allow efficient stable integration into a single defined genomic locus, without 

the need for genotyping, as off-target integrations are rare and successful integration can be 

ensured by chemical selection. Such cell lines were engineered to carry flags in a defined, 

highly transcriptionally active genomic site, suitable for homologous recombination-based 

insertions. By placing the gene into a plasmid with sites homologous to the genomic target 

region and co-transfection with a vector carrying a site-compatible DNA recombinase, the 

gene will be integrated by homologous recombination into this particular locus only, providing 

that both vectors are successfully delivered into the same cell. One example of such a system 

is the “Flp-in” system by Invitrogen (www.invitrogen.com) which I utilised in the following 

experiments and is described in more detail in the following section.  

 

4.1.1.1.  Generating a pool of Flp-in cell lines 

To be able to dissect the sequence effects of a large cDNA library on gene expression, it is 

crucial that positional effects caused by random genomic integration sites can be eliminated 

as a source of error (as discussed above). I utilise the ease of the Flp-in system (Invitrogen) 

for establishing stable cell lines which expresses a gene of interest from one specific locus 

from a tetracycline inducible promoter (Figure 23). To establish such stable Flp-in cell lines, 

a standard plasmid transfection with a mix of 2 plasmids is performed: The plasmid carrying 

the gene of interest cloned between recombination sites homologous to the “Flp-in” sites in 

the genome of the parental Flp-in cell line (in this case: pcDNA5), and another carrying the 

expression cassette of the required Flp-in recombinase which mediates the homologous gene 

cassette exchange (pOG44). Whereas the usual procedure would involve the integration of just 

one gene per stable transfection, for the purpose of this study, the integration of several 

different gene variants, i.e. different variants integrating into different cells, was required. As 

the main limitation for the successful genomic integration is the successful delivery of the 

plasmid carrying the gene of interest as well as the vector carrying the recombinase and its 

efficient expression, theoretically, vectors carrying any number of different genes can be co-

transfected.  
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Figure 23. Schematic of the Flp-in expression system. 
Flp-in host cell lines contain an FRT site, which serves as binding and cleavage site for the 
Flp recombinase, and a Zeocin resistance cassette. Cells are co-transfected with the Flp 
recombinase expression vector pOGG44 and pcDNA5/FRT/TO/Dest/GFP for the expression 
of a pool 217 GFP variants. pcDNA5 also carries a Hygromycin resistance cassette. Stable 
integration into Flp-in host cell lines results in Flp-in expression cell lines with constitutive 
expression of the Hygromycin and Zeocin resistance cassettes, as well as inducible GFP 

expression under the control of a tetracycline-regulated CMV promoter. 

 

 

 

To be able to achieve several hundred different gene integrations, all variants had to be cloned 

into pcDNA5. To achieve this, I made use of the Gateway cloning system, which is a different 

homologous recombination-based system, commonly used to facilitate the sub-cloning of 

genes between Gateway-compatible vectors. Since the GFP cDNA library is conveniently 

stored within Gateway-Entry vectors (pGK3), I modified the Flp-in vector pcDNA5 to be a 

compatible Destination vector to easily multiplex the Gateway cloning procedure and sub-

clone many different sequences into pcDNA5 in one reaction (outlined in Figure 24a). 



67 
 

 

Using this approach, I established a pcDNA5 vector pool with 217 different GFP variants. I 

also generated a version of pcDNA5 which contains the same chimeric intron in the 5’UTR of 

the expression cassette as previously used in single GFP experiments discussed in chapter 3 

(Figure 12) to further study the involvement of splicing on expression. Using this approach, it 

is theoretically possible to create a plasmid pool with any number of sequence variants, 

providing an efficient recombination reaction in an appropriate scale. This vector pool was 

then used to establish stable Flp-in cell lines. To which extent the established cell lines 

represent the original vector pool depends not only on the copy number of plasmids in the 

pool, which I kept at equimolar ratio in the Gateway-reaction, but also on high transfection 

efficiency, delivering both GFP vector as well as the Flp-recombinase encoding vector 

pOGG44 into cells, and lastly, on successful homologous recombination events. Using the 

pcDNA5 GFP vector pool, I established several batches of Hek293 and HeLa Flp-in cell lines. 
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Figure 24. Multiplex Gateway cloning. 
a, 217 variants of GFP stored in Gateway-Entry vectors are mixed in equimolar ratio and 
simultaneously recombined into Gateway-compatible Destination vectors pcDNA5 and 
pcDNA5+intron. The LR-recombination mixture is used to transform DH5α, followed by 
overnight incubation on LB-agar plates containing 50mg/ml ampicillin at 37°C. Plasmid DNA 
from resulting colonies was extracted and used in co-transfections with the Flp-in recombinase 
carrying vector pOG44 to establish stable HeLa and Hek293 GFP pool cell lines. b, Plasmid 
DNA from 8 colonies from large-scale LR transformations described in a, were screened for 
the presence of  GFP by restriction digest with NotI to confirm successful integration. Products 
were resolved on a 1% TBE/agarose gel.  
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4.1.2. Sequencing library design and optimisation 

For experiments in which the main focus lies in changes on a single gene level rather than 

global gene expression changes, targeted amplicon libraries for high-throughput sequencing 

can be prepared. However, multiple technical considerations should be made for the library 

design, taking current technical limitations and possibilities in sample preparation and data 

generation into account. To avoid the necessity to obtain the full gene sequence, some studies 

utilise short barcode sequences that are added to the sequence of interest. However, whether 

this is appropriate depends on the types of experiments to be conducted. For experiments 

looking at RNA or protein phenotypes, barcodes included in transcribed regions of the gene 

might affect the folding structure of the molecule, thus likely influencing stability, regulation, 

as well as functionality. If however the experimental design allows conclusions to be made by 

deep sequencing of DNA as starting material, barcodes can be included in untranscribed 

portions of the locus as done in e.g. Puchta et al., 2016, in which the influence of random 

sequence mutations in an essential RNA on cell fitness was measured by the frequency of gene 

copies in the cell pool. Whether or not barcodes should be used will also strongly depend on 

the length of the studied gene as amplicon length is a factor that needs to be considered when 

choosing the sequencing platform. Current technologies allow either single-end or paired-end 

reads. Paired-end reads will give higher confidence in low frequency variation and can also be 

used when the amplicon length exceeds the maximum read length. The two resulting reads 

from either end of the amplicon can then be paired and used to map the sequence back to a 

reference. If large numbers of samples are to be sequenced, it might be possible to multiplex 

samples for sequencing runs using different short indices. Whether this can be done, depends 

on how many variants are expected and how many reads for each are needed (sequencing 

depth) to be confident. 

 

Besides the library design, experimental factors for the actual library preparation need to be 

considered, as well as technical biases that are likely to be introduced at several stages. 

Regardless whether the starting material is gDNA or cDNA, the target sequence is amplified 

in a PCR reaction. For this, a high-fidelity (HF) DNA polymerase should be used to avoid 

amplification-induced sequence variation. However, many studies have shown that HF-

polymerases do not all perform equally well in library preparations, probably due to varying 

degrees of processivity, allowing some to proceed through strong secondary structures more 

readily than others (Aird et al., 2011; Cline et al., 1996; Dabney and Meyer, 2012; Miura et 

al., 2013; Oyola et al., 2012). This tends to affect very AT- or GC-rich sequences more 

strongly, leading to lower read coverage of such. 
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If the starting material for library preparation is RNA, its quality should first be measured 

using a Bioanalyzer (Agilent) to obtain the RNA integrity number (RIN; Schroeder et al., 

2006) to assess the degree of RNA degradation before proceeding with the cDNA synthesis 

step. Since this step relies on the enzymatic activity of a reverse transcriptase (RTase), it can 

further introduce sequence-specific biases due to the lack of proof-reading ability and/or low 

processivity (Mohr et al., 2013). However, in the last few years, RTases have been genetically 

engineered to exhibit higher processivity and to be able to perform at higher temperatures, 

decreasing the likelihood of secondary structure formation (Mohr et al., 2013; Nottingham et 

al., 2016; Qin et al., 2016). The library design chosen in this study and the optimisation for 

library preparation steps that I have performed are described in the following sections. 

 

4.1.2.1.  Amplicon library design and data analysis 

As some of the measurements that are to be conducted with the pool cell lines are focussed on 

the RNA-phenotype without the possibility to quantify genomic DNA content as a proxy (e.g. 

in sub-cellular fractionation experiments), the GFP sequences were not barcoded to avoid 

interference of such additional sequences with RNA expression. To uniquely identify each 

GFP variant, we use the Illumina MiSeq sequencing platform which can generate up to 

20million 300nt reads from the 5’ and 3’end (paired-end). We chose this platform because of 

the combination of read lengths, accuracy, number of read counts and cost. As GFP is 720nt 

long, it is consequently not possible to cover the full length sequence using this approach. 

Among the >400 GFP variants available in the lab, 217 can be uniquely identified by 

sequencing 300nt from each end, and I therefore only selected these variants for establishing 

the cell line pools as described above. I introduced appropriate sequencing adaptors required 

for the attachment of sequences to the flow cell, sequencing primer binding sites, as well as 

indices for multiplexing libraries as overhangs on primers used in first strand synthesis and 

subsequent PCR amplification (schematic representation in Figure 25). Following high-

throughput sequencing, raw reads are processed using an analysis pipeline outlined in figure 

26. 
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Figure 25. Schematic of amplicon library and sequencing primers. 
GFP sequences are amplified from gDNA or cDNA using PCR primers with overhangs 
attaching the P5 and P7 adaptor sequences required for annealing to complementary oligos 
on the flow cell surface, as well as primer annealing sites (PE) for both paired-end read primers 
and index read primer (reverse complement to read 2 primer).  
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Figure 26. GFP amplicon library sequencing and data analysis pipeline. 
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4.1.2.2. Reducing DNA amplification bias 

When  preparing  sequencing  libraries, one  of  the  main  concerns  are  biases that can  arise  

due  to  sequence composition. Several published studies investigated the effects of various 

DNA polymerases on the sequence complexity of sequencing libraries and showed a dramatic 

drop in the abundance of particularly GC-rich reads after PCR amplification (Aird et al., 2011, 

Dabney and Meyer, 2012). As it is crucial for the purpose of this study to reduce any biases 

that can be introduced in course of the sequencing library preparation, since such could skew 

or even mask relevant relationships, conditions minimising sequence-related biases had to be 

determined. 

 

To assess whether sequence biases are introduced during the PCR step, I selected 3 GFP 

variants with varying GC content (GFP_400=36%, GFP_407=43%, GFP_422=59%) as 

templates in semi-quantitative PCR using different DNA polymerases. I chose the enzymes 

based on their performance in published studies (e.g. Herculase II (Agilent) and AccuPrime 

Pfx (ThermoFisher) were the best performers in Dabney and Meyer, 2012), or because they 

are marketed as highly efficient in the amplification of difficult and GC-rich templates (Q5, 

NEB). I tested these against the polymerase most commonly used for high-throughput library 

preparations, Phusion HF (NEB), as this is the polymerase recommended by Illumina 

(Illumina paired-end sample preparation guide, www.support.illumina.com). 

 

 
 

Figure 27. Comparison of PCR efficiency of various DNA polymerases on GFP variants. 
GFP variants 400 (GC=36%), 407 (GC=43%) and 422 (GC=59%) were amplified from pCM3 
using equal amounts of template in all reactions. Various numbers of PCR cycles were chosen 
to better assess the efficiency. All reactions were set-up and performed in the conditions 
specified by the manufacturers. Resulting PCR products were resolved on a 1% agarose/TBE 
gel. Note: for Phusion HF primer dimers are visible on higher exposure which indicates that 
the reactions did not fail, but rather that the amplification of the template was not efficient.  
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As can be seen in figure 27, different DNA polymerases exhibit various amplification 

efficiencies. It should be noted that no particular positive control was included in this 

experiment as all templates could be considered as positive controls since all were sequence-

verified and vary only in the GFP sequence, not at the primer-annealing sites. The 

recommended polymerase for sequencing library preparation by Illumina is Phusion HF 

polymerase. Therefore it is surprising that the amplification failed and no products are visible, 

not even after an excessive 40 cycles (Note: primer dimers are visible on a higher exposure, 

indicating that the PCR reaction per se did not fail; data not shown). In other published studies, 

the use of various available variations of Phusion polymerase led to a decrease in average 

library length as well as a marked increase in average %GC compared to polymerases from 

other manufacturers (Dabney and Meyer, 2012). This indicates that Phusion does suffer from 

a severe sequence-preferences which can, in worst case, introduce large biases when 

amplifying a mix of templates in the same reaction, such as in this experiment. Q5 polymerase 

shows a distinct bias towards templates with higher GC content. This is not unexpected as Q5 

is marketed as performing well with GC-rich templates (Q5 High-fidelity DNA polymerase 

manual, www.neb.com). Herculase II and Accuprime Pfx were both polymerases which 

performed very well in the study by Dabney and Meyer (Dabney and Meyer, 2012). However, 

Herculase II also failed to amplify all 3 templates efficiently. A product for GFP_400 can only 

be detected after 40 cycles (a faint band is also visible in the pool after 40x at higher exposure), 

but none for any other GFP. The only polymerase in this test that amplified all GFPs equally 

well with no strongly visible biases and high product yields is Accuprime Pfx (ThermoFisher). 

Hence, I chose to use this polymerase for all library preparations. 

 

4.1.2.3.  Increasing reverse transcription efficiency 

The starting material for the sequencing library preparation for some of the here described 

experiments is RNA. In such cases, a first strand synthesis reaction needs to be performed first 

to yield cDNA which is then used as PCR template. However, since this reaction also relies 

on the activity of an enzyme, this step could potentially be biased by difficult sequence 

features, similar as in PCR, which may lead to pre-mature termination of the cDNA synthesis 

reaction. I therefore compared 2 commercially available enzymes, Superscript II and 

Superscript III (both ThermoFisher), in regards to their processivity. To do so, I selected 6 

different GFP variants spanning a broad range of GC content (36-59%) and in vitro transcribed 

those using T7 polymerase. Equal amounts of RNA were used in first strand synthesis 

reactions with GFP-specific primers using the different enzymes, followed by PCR 

amplification with Accuprime Pfx. The rationale is that any biases that will be seen after the 
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PCR reaction should reflect the combined ability of both reverse transcriptase and DNA 

polymerase to efficiently yield the relevant product. As can be seen in figure 28a, Superscript 

II exhibits less efficient reverse transcription ability than Superscript III, as the product yield 

decreases gradually with increasing GC content. This can be explained by the lower incubation 

temperature, which is likely not high enough to break strong secondary structures between or 

within RNA molecules, however, is the optimal for this particular enzyme. Superscript III was 

tested at two different temperatures, 50°C and 55°C, as recommended by the manufacturer 

(ThermoFisher). At 50°C, the obtained yields are more comparable between templates. 

 

 
 
Figure 28. Optimisation of PCR amplification of several GFP variants. 
a, Superscript II and Superscript III were compared for processivity and optimal conditions and 

resulting cDNA used in PCR amplification with Accuprime Pfx (Agilent). Optimal recommended 

incubation temperature for SSII is 42°C, whereas SSIII can be used at higher temperatures. 

Only 50°C (lowest) and 55°C (highest) were tested. Equal amounts of RNA were used to make 

cDNA and equal volumes were then used in subsequent PCR amplification. b, RNA of GFP 

variants was reverse transcribed using Superscript III at 50°C and either treated with RNase 

H for 20min at 37°C (bottom) or left untreated (top) before PCR amplification with Accuprime 

Pfx. PCR products were resolved on a 1% TBE/agarose gel.  

 

Following on from this experiment, I also tested whether the inclusion of an RNase H digest 

before PCR could have a positive effect on PCR yield (Figure 28b). RNase H specifically 

degrades the RNA strand in RNA:DNA hybrids that might form after cDNA synthesis. It is 

thought that strong binding of complementary RNA to the DNA template can negatively affect 

PCR efficiency (Jeanty et al., 2010; Kitabayashi and Esaka, 2003) and I would expect that 

such effects are greater in GC-rich sequences due to the stronger binding kinetics. I therefore 

used the same RNA templates as above in first strand synthesis with Superscript III at 50°C 

and compared yields with or without treatment with RNase H. The additional RNase H digest 

resulted in overall higher yield (Figure 28b). 
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4.2. Assay Validation 

4.2.1. A fluorescent reporter cell line pool 

After establishing stable GFP cell lines, it needs to be validated whether the integrated 

sequences indeed include all expected variants and also whether each is present in roughly 

equal frequency across the cell pool as this is important to assure that sequencing results 

obtained with these pools will be statistically useable and that results for some variants will 

not have to be dismissed due to stochastic limitations. 

In first instance, I tested whether the cells are indeed inducible. To do so, I performed a 

Doxycycline induction time course to quantify the inducibility of the cells and their mean 

fluorescence using Fluorescence-activated cell sorting (FACS). Representative data for a 

HeLa GFP pool cell line is plotted in Figure 29a. I also analysed the fluorescence range of all 

established cell line pools (HeLa, Hek293, each with or without intron) in comparison to two 

clonal GFP cell lines, GFP_000 (GC3=0.27) and GFP_001 (GC3=0.95) (Figure 29b). These 

two variants define the likely lower and upper fluorescence limits that would be expected to 

be covered if the established pool cell lines do contain a range of different GFP variants. It 

should be noted that these two variants are not themselves included in the pool. Indeed, as can 

be seen in figure 29b, all pool cell lines cover a broad fluorescence range, covering both the 

lower as well as the upper fluorescence boundaries as defined by the clonal cell lines. Since 

this is not a confirmation but rather a positive indication that these cells actually express all 

217 variants included in the original transfection mix, I proceeded to confirm this via high-

throughput sequencing. I amplified the genomic locus of the GFP integration site of about 107 

cells and prepared sequencing libraries as described previously (Figure 25). The sequencing 

results were analysed computationally using the pipeline described in figure 26. Several major 

observations could be made from this analysis: Most importantly, all 217 GFP variants could 

be detected by sequencing, both in vector pools, as well as cell lines, suggesting the successful 

integration into cells. The proportion of each variant present in the cell pools however varies 

strongly across cell lines (Figure 30). Since the frequency of variants within the HeLa pool 

without intron is very broad, this pool was in first instance not considered for any further 

experiments or analysis. For this reason, I prepared multiple batches of Hek293 as well as 

HeLa cell line pools. A summary of all GFP pool cell lines that I established in due course, as 

well as which experiments I conducted with each, is shown in table 2. 
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Figure 29.  GFP expression of stable GFP pool cell lines. 
a, GFP induction time-course of HeLa Flp-in GFP pool cell line. GFP expression was induced 
using 1ug/ml Doxycycline and assessed post-incubation by FACS. Plotted are the fractions of 
GFP-positive cells at each time point and the respective mean GFP fluorescence. b, Stable 
HeLa (top row) and Hek293 (bottom row) Flp-in cells expressing either GC-poor GFP000 
(blue), or GC-rich GFP001 (orange), or a pool of 217 GFP coding variants (green). GFPs are 
expressed without (left column) or with (right column) an intron in the 5’UTR. GFP_000 and 
GFP_001 without introns are shown for comparison. Cells were induced for 24h prior to FACS-
analysis. 
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Figure 30. Proportion of GFP variants within plasmid and cell line pools. 

Both pcDNA5 vector pools (-/+intron), as well as all established Flp-in GFP pool cell lines were 

sequenced to calculate the proportion of each variant within the pools. The distribution varies 

strongly between cell lines.  
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Table 2. GFP pool cell lines and experiment documentation. 
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Figure 30 shows modest differences in GFP variant copy numbers in the vector pool, and large 

differences of GFP variant copy numbers in the cell line pools. The variation could represent 

stochastic differences in cloning and/or genomic integration of GFP variants, or systematic 

biases, possibly resulting from different sequence composition. To analyse the origins of this 

variation, I correlated total read counts of all GFP variants found in the vector pool to their 

respective GC content (Figure 31a). All GFP variants were added in equal ratios to the 

recombination mix, so it would be expected that sequence biases would lead to a skew in the 

total read counts obtained for all variants. However, no significant correlation can be seen, 

suggesting that no particular sequence bias was introduced during library preparation and 

sequencing run. To test whether all GFPs are integrated equally well into vectors, as well as 

integrated to similar extends into cell lines, I correlated total read counts for both vector pools 

to each other (Figure 31b), as well as the read counts of established cell lines to their respective 

vector pools (Figure 31c+d). Both vector pools, with and without intron, correlate well to each 

other (Figure 31b, R2=0.5283, p<10e-5) which is expected since the same Gateway entry vector 

pool was used in both reactions. The GFP read counts in each of the Hek293 pool cell lines 

correlate weakly with the vector pool (Figure 31c+d; no intron: R2=0.0539, p=5.33e-4; with 

intron: R2=0.0244, p=2.07e-2). This is also expected since the variation in the cell pool is 

mostly dependent on random integration rather than on the variation in the vector pool, though 

variants with low coverage in the vector pool also have low coverage in pool cell lines. 
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Figure 31. Comparison between sequenced vector pools, GC3 and pool cell lines. 

a, Read counts of the sequenced pcDNA5 vector pool are plotted against the GC3 of GFP 

variants. b, Both pcDNA5 vector pools, with and without intron, are correlated (R2=0.5283, 

p<10e-5). c, and d, GFP read counts from sequenced cell line pools do not correlated well with 

their respective vector pools(c, vec=without intron: R2=0.0539, p=5.33e-4; d, vec+int=with 

intron: R2=0.0244, p=2.07e-2). 
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4.2.2. Estimating protein levels by Flow-seq 

To obtain estimates of protein levels for each GFP variant, we used an approach based on 

Flow-Seq, a method published by Kosuri et al. (2013) used to screen for novel regulatory 

sequences in a large library of ribosomal binding site (RBS) and promoter variants in E.coli. 

Protein levels are first estimated by FACS and cells sorted into several tubes according to their 

fluorescence properties. Genomic DNA from the collected cells is then extracted and high-

throughput sequencing libraries prepared to detect the frequency of each variant in every 

collection tube. The schematic outline of the adapted method is shown in figure 32.  

 

 

 
 
Figure 32. Overview of adapted Flow-seq method. 
Stable cell lines expressing many GFP variants are analysed by FACS and sorted into 8 bins 
according to their fluorescence levels from low to high. Each bin corresponds to 8-11% of the 
total log-fluorescence range. Genomic DNA is extracted from collected cells and used as 
template to create indexed sequencing libraries. The frequency of each GFP is calculated for 
all bins and the mean localisation calculated as a score for protein expression. 

 

 

For initial experiments, GFP expression was induced in both Hek293 and HeLa pool cell lines 

without introns for 24h hours prior to FACS analysis. The fluorescence range covered in both 

cell lines is similarly broad, differing by up to 100 fold (Figure 33). GFP-positive cells were 

sorted into 8 expression bins, from low to high fluorescence, each gate comprising roughly 

equal numbers of cells. For each bin, I collected 1x106 cells and extracted genomic DNA which 

was then used as template to create indexed high-throughput sequencing libraries.  
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Computational analysis assigning sequencing reads to respective GFP sequences confirmed 

that all 217 variants were present in varying frequencies across all 8 collected bins (Figure 34). 

As in the GFP histograms above (Figure 33), most variants exhibit intermediate fluorescence 

levels, in both Hek293 and HeLa data (Figure 34). Most variants show well-defined peaks in 

neighbouring bins. In some cases the distribution is relatively broad and in fewer exceptions 

even U-shaped (Figure 34c). For later data analysis, these variants might therefore have to be 

filtered out as calculating an average fluorescence score for such might potentially introduce 

more noise into the data. To obtain a fluorescence value for each variant, I multiply the number 

of reads (n) within each bin with their respective bin number (i) before taking the sum and 

dividing by the total number of reads across all bins (equation shown below). 
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Figure 33. Fluorescence binning using Fluorescence-activated cell sorting (FACS).  
Hek293 (a) and HeLa (b) GFP pool cells were induced with 1ug/ml Doxycycline for 24h before 
FACS analysis. Cells were sorted into 8 fluorescence bins and roughly equal numbers of cells 
collected (~1x106). GFP negative cells (‘neg’) were excluded. 
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Figure 34. Fluorescence levels of GFP variants in Hek293 cells. 
a + b, Distribution of GFP variants across all 8 fluorescence bins. For every bin, the frequency 
of each variant is shown as the proportion (%) of reads relative to the total number of reads 
for this variant across all bins. Shown are only variants with more than 1000 reads in total 
across all bins. The fold change in fluorescence between the lowest and highest bin is about 
100-fold. c, GFP variants generally fall into well-defined bins. In a few cases, variants have 
unusual distribution patterns (d).   
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For HeLa cells, I acquired multiple Flow-seq data sets after 24h GFP induction denoted as 

24_A, 24_B and 24_C. 24_A and 24_B are technical replicates, i.e. the same batch of cells 

FACSed twice on the same day followed by independent library preparations. 24_C is a 

biological replicate, i.e. a different batch of cells FACSed on a different day followed by 

independent library preparation. The prepared library of sample 24_A was sequenced twice; 

Figure 35a shows the high reproducibility of sample re-sequencing for this library 

(R2=0.9989). The reproducibility between the FACS sorting experiments and library 

preparations are very high, as can be seen when comparing data from both technical replicates 

24_A and 24_B (Figure 35b, R2=0.9843). Furthermore, the reproducibility of data between 

different batches of cells FACSed on different days is high as well (Figure 35c; R2=0.8583).  

To further validate the Flow-Seq results, I compared the Flow-seq data with plate-reader 

fluorescence measurements of single GFP variants (see chapter 3.3). Since the relationship 

between FACS results and bin number is exponential (Figure 35d, R2=0.9426), I compared 

Flow-seq results with the plate reader data by fitting an exponential curve which shows that 

both data sets correlate (Figure 35d; R2=0.7965, y=41.679e0.627x). I therefore proceeded to 

transform data for all GFP variants measured by Flow-seq by using the coefficient given by 

this exponential fit (y=0.0011e1.193x) in order to calibrate the data of all variants and to convert 

them into a linear scale.  
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Figure 35. Flow-seq reproducibility within and between experiments. 
Correlations between a, sequencing runs (R2=0.9989), b, technical replicates (R2=0.9316) as 

well as between c, biological replicates (R2=0.8583) are highly correlated. d, Fluorescence 

midpoints of the 8 FACS bins show an exponential fit (R2=0.9426, y=41.679e0.627x). e, 

Correlation between plate reader measurements and Flow-seq data (R2=0.7965, 

y=0.0011e1.193x). 
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4.2.3. Investigating translation dynamics using polysome profiling  

To study translational dynamics, I performed polysome profiling followed by high-throughput 

sequencing. Polysome profiling utilises sucrose gradient centrifugation to allow the separation 

of light and heavy molecular weight molecules (Figure 36). As ribosomal RNA is the most 

abundant RNA species in cells, fractionation and the simultaneous monitoring of the UV 

absorption profile allows the visualisation of ribosomal subunits, as well as monosomes and 

polysomes along the gradient. Using this distribution profile, the translation dynamics of 

mRNA molecules can be studied by visualisation of their association with ribosomal proteins 

(same sedimentation rate), by e.g. Northern blotting, RT-PCR or, in case of transcriptome-

wide studies, using microarrays or high-throughput sequencing (Arava et al., 2003; Ingolia et 

al., 2011). Quantifying the association of ribosomes to mRNAs may give hints to the 

translational state of a particular transcript. 

 

Hek293 GFP pool cells were treated with cycloheximide to immobilise elongating ribosomes 

on transcripts (Schneider-Poetsch et al., 2010). Cytoplasmic cell lysates were then subjected 

to polysome profiling as outlined in figure 36. The UV absorption profile shows good peak 

separation between ribosomal subunits and polysomes. RNA extracted from all collected 

fractions further recapitulates the separation of RNA species by molecular weight – small 

RNA species (e.g. tRNA, 5S rRNA) are found almost exclusively in low sucrose fractions, 

whereas 18S and 28S rRNA are only present in medium to high sucrose fractions. To further 

assess the quality of fractionation, the distribution of GAPDH mRNA was measured using 

quantitative RT-PCR. As a highly abundant housekeeping gene, GAPDH would be expected 

to be primarily associated with polysomes. The results show that the vast majority of GAPDH 

RNA is indeed found in heavier polysomal fractions. The same qRT-PCR analysis was 

performed using primers specific for the 5’ UTR of GFP to monitor the distribution of GFP 

mRNA across all fractions. The distribution of GFP is broader compared to GAPDH, with 

some RNA not associated with assembled ribosomes, and the bulk associated along all 

polysomal fractions, which most likely reflects the variation in translational states between 

different variants within the pool.  

 

  



88 
 

 
 
Figure 36. Measuring translation dynamics of GFP variants using polysome profiling. 
a, Schematic overview of sucrose gradient centrifugation. Cells are treated with 100ug/ml 
cycloheximide for 20min at 37°C, 5% CO2 to freeze actively elongating ribosomes. Ribo-
/Polysomes are separated through sucrose gradient centrifugation (10%-45%) to allow 
separation of molecules by their specific sedimentation rate from low (top) to high (bottom) 
molecular weight. b, Output of polysome profiling. The UV absorption profile is measured for 
gradients described in a, starting from top (low molecular weight) to bottom (heavy molecular 
weight). Peaks corresponding to ribosomal subunits, as well as mono- and polysomes are 
indicated. The gradient is collected as 18 fractions, followed by RNA isolation. Relative RNA 
level of GAPDH and GFP are measured for all fraction using qRT-PCR. 
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4.2.4. Measuring RNA localisation  

Many viral transcripts have been shown to rely on viral adaptor proteins, such as Rev, to 

mediate efficient nucleo-cytoplasmic export and expression (Malim et al., 1989). The 

requirement for such adaptors can be circumvented when the usually very AT-rich viral genes 

are codon optimised to closer reflect the preferred codon usage of the host cell, which for 

human cells consequently also implies an increase in average GC-content (Kotsopoulou et al., 

2000; Shin et al., 2015; Tan et al., 1995). We therefore hypothesised that RNA export might 

be a bottleneck in the expression of particularly GC-poor GFP variants. 

 

To estimate RNA export, I performed subcellular fractionations to measure cytoplasmic and 

nuclear RNA levels separately. Cellular fractionation protocols that rely on one or more cell 

lysis steps and which can be easily performed in small-scale are notoriously prone to cross-

contamination between both fractions, either due to insufficient lysis leading to nuclear 

fractions containing large amounts of cytosolic components (e.g. ER), or damage to the nuclear 

membranes causing leakage of nuclear content into the cytoplasmic fraction, often leading to 

large variation in fractionation quality amongst replicates. More sophisticated protocols that 

allow the separation into different organelles are technically very challenging, require very 

large amounts of cells, and do not easily allow the processing of multiple samples at a time. I 

therefore optimised existing protocols to ensure reliable separation, yet allow multiple samples 

to be processed simultaneously in a technically reasonable manner. The method is described 

in detail in Materials and Methods 2.2.3 and is based on the cellular fractionation protocol 

published by Gagnon et al. (Gagnon et al., 2014), but modified to be performed in small-scale 

(1.5ml tubes) and includes a further clean-up step using a sucrose cushion as described by 

Zaghlool et al. (Zaghlool et al., 2013) to avoid nuclei carryover into the cytoplasmic fraction. 

I also added a second, stronger lysis step as described by Wang et al. (Wang et al., 2006) to 

ensure the more efficient removal of ER components surrounding nuclei. I assessed the quality 

of fractionation by monitoring the presence (or absence) of ribosomal precursor RNA (nuclear) 

and tRNAs (cytoplasmic) using the Agilent Bioanalyzer as well as by qRT-PCR by measuring 

the relative abundance of particular marker RNAs (as shown in Figure 37).  
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Figure 37. Validation of subcellular fractionation of Hek293 cells. 
Subcellular fractionation was performed on Hek293 cells according to the protocol outlined in 
2.2.3. RNA from both nuclear and cytoplasmic fractions was isolated and analysed using an 
Agilent bioanalyzer. The presence of ribosomal pre-cursor RNAs (52s and 56s) in the nuclear 
fraction (a), as well as an enrichment of tRNAs (26s) in the cytoplasmic fraction (b) are 
indicative of successful fractionation. M denotes the 25nt marker. qRT-PCR analysis is 
additionally used to measure the relative abundance of specific RNAs, e.g. chromatin 
associated non-conding RNAs such as Malat1 (c) or particular tRNAs (d, lysine tRNA-CTT). 

 

 

 

GFP expression of Hek293 GFP pool cells was induced for 24hrs before performing cellular 

fractionation. Both nuclear and cytoplasmic fractions were prepared for high-throughput 

sequencing followed by data processing. For each GFP variant, the relative cytoplasmic 

concentration of its mRNA (RCC) was calculated as the ratio of cytoplasmic read counts to 

the sum of reads from both fractions (��� � ����� �
����� �!��"#��; Figure 38). A value of 0 therefore 

indicates 100% nuclear retention, whereas a value of 1 indicates 100% cytoplasmic 

localisation. Variants were filtered by read counts (>1000) and an RCC score calculated for 

each. In Hek293, scores ranged from 0.17 to 0.77, with the majority being more cytoplasmic 

than nuclear (RCC > 0.5, 62.8%). No variants localise exclusively to one or the other fraction 

only. Fractionations were also performed on HeLa pools with and without intron in the 5’UTR 

(2 replicates each). For fractionations of cells expressing GFP without an intron, the two 

replicates correlate (r=0.69) but show variation in the distribution pattern of RCC scores 

(Figure 38b, c and d). The replicate fractionations of the intron-containing pools also correlate 

(r=0.71) and cluster together (Figure 38b). 
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Figure 38. Relative cytoplasmic concentration of RNA of GFP variants expressed in 
Hek293 cells. 
The RCC for each variant is the ratio of cytoplasmic read count to the sum of reads from both 
cytoplasmic and nuclear fraction. Histograms show the frequency of RCC scores for a, 
Hek293, c+d, Hela and e+f, Hela + intron cell line pools. b, Spearman correlation matrix of all 
HeLa replicates. Rep1/2 = no intron, Rep1int/2int = with intron.  



92 
 

4.2.5. Measuring RNA levels and stability 

Codon usage has recently been shown to be a factor determining RNA stability and steady-

state levels in yeast (Presnyak et al., 2015; Radhakrishnan et al., 2016) as well as zebrafish 

(Mishima and Tomari, 2016). Furthermore, I previously showed for two sequence variants of 

GFP with varying GC content that RNA half-life was increased with high GC (chapter 3.7, 

Figure 20). I therefore wanted to first test how GFP mRNA abundance varies across all GFP 

variants. To do so, GFP expression in the Hek293 GFP pool was induced for 24h followed by 

genomic DNA and RNA extraction and sequencing library preparation. Since the copy 

numbers of GFP variants vary within the pool, the read counts resulting from the RNA-seq 

were normalised to the read count from the gDNA sequencing. By doing so, the resulting 

normalised RNA levels between GFP variants vary by up to 1300-fold. 

 

To analyse possible bias in RNA-seq library preparation (as discussed above), I transfected 12 

GFP variants individually into Hek293 Flp-in host cell lines in order to validate the results 

obtained from high-throughput sequencing by qRT-PCR. As shown in figure 40a, RNA 

measurements between RNA-seq and qRT-PCR do not correlate, suggesting that either of the 

two quantification methods is biased. Results from qPCR analysis may not necessarily be 

representative of full-length mRNA measurements since the primers used anneal within the 

3’UTR, whereas for RNA-seq library preparation, primers used anneal to both 5’ and 3’UTR. 

On the other hand, bias could also arise in RNA sequencing due to differences in the efficiency 

of cDNA synthesis which may vary depending on RNA structure (discussed in 4.1.2.3). 

Recently, several studies utilised a novel reverse transcriptase enzyme called TGIRT (inGex), 

a thermostable group II intron reverse transcriptase, for the synthesis of  particularly highly 

structured RNAs, such as tRNAs (Mohr et al., 2013; Qin et al., 2016). I therefore prepared two 

sequencing libraries from the same RNA sample, either using SuperScriptIII or TGIRT, to 

directly compare RNA levels obtained with each enzyme. The correlations between read 

counts obtained from both sequencing runs are shown in figure 39. Despite data overall 

correlating (R2=0.7572), some variation is visible, suggesting that at least some of the 

discrepancy between high- and low-throughput experiments could indeed be caused by 

sequence biases. Since the genomic DNA sequencing of this particular set of RNA sequencing 

experiments was not available at the time of writing this thesis, results obtained using TGIRT 

could not be directly compared with qPCR results in order to address the question of sequence 

bias further. 
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Figure 39. RNA levels measured by RNA-seq 
a,  RNA levels of 12 GFP variants as determined by RNA-seq of Hek293 pool cell lines using 

SuperScriptIII and normalised to gDNA, plotted against qRT-PCR results of transient 

transfected Hek293 Flp-in cells (R2=0.0001, p=0.9189). b,  Normalised read counts of RNA-

seq data of HeLa GFP pool cells, prepared using either SuperScript III or TGIRT (R2=0.7275).  

 

Since RNA levels vary between GFP variants, it is likely that this is, at least in part, caused by 

differential RNA stability. To measure whether this is the case, I induced GFP expression for 

24h before performing a transcription-block time course experiment using 500mM Triptolide. 

Unlike other more commonly used agents, such as Actinomycin D, which preferably 

intercalates into GC-rich DNA (Bailey et al., 1993), Triptolide is sequence-independent. 

Triptolide acts by inhibiting XPB, a subunit of TFIIH, which makes it highly selective for the 

inhibition of RNA polymerase I and II transcription initiation, allowing normalisation of any 

mRNA to RNA transcribed from RNA polymerase III. The exponential decay of c-Myc 

normalised to 7sk, a RNA polymerase III transcribed RNA unaffected by Triptolide treatment, 

is shown as a control for a successful block of RNA polymerase II transcription (Figure 39b). 

To be able to normalise GFP read counts between time points, equal amounts of GFP_000 and 

GFP_001 RNA (5% each) were spiked into every sample before cDNA synthesis. 

 

As can be seen in figure 39a and c, GFP expression levels decrease with prolonged treatment 

with Triptolide in both Hek293 and HeLa cells. Results between HeLa cell lines are directly 

comparable and highlight the much higher, initial amount of total GFP (0h time point) when 

expressed with an intron. In order to analyse the sequencing results, the data needed to be 

normalised between time points for which I utilised the GFP_000 and 001 spike-ins. However, 

the ratio between these two variants varied up to 10-fold between samples, causing the 

normalisation between time points to be unreliable and data from this experiment not useable 

at the time of writing this thesis. 
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Figure 40. Transcription block time course using Triptolide to measure GFP half-life. 
a, Hek293 GFP pool cells and c, HeLa GFP pool cells with or without intron were induced for 
24h before addition of 500mM Triptolide to block transcription. Cells were harvested at 
indicated time points and RNA extracted. 500ng total RNA was used in cDNA synthesis and 
equal volumes used in subsequent PCR amplification. b, Exponential decay of c-Myc 
(t1/2=1.29h). c-myc levels were measured using qPCR and data normalised to 7sk levels, a 
RNA Polymerase III transcribed RNA unaffected by Triptolide treatment. 
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4.3. Discussion 

In this chapter, I describe the methods used to establish a human cell line-based system to 

monitor the phenotypic effects of codon usage on gene expression on many coding variants of 

GFP simultaneously. I discuss important considerations that had to be taken into account 

during the experimental design and present data of various control and validation experiments 

to establish this experimental system as a valid method that could be applied in similar 

phenotypic screens in the future. 

 

4.3.1. A human cell line system for the phenotypic profiling of 

fluorescent reporter genes 

I utilised the Flp-in system to establish a pool of cell lines in which each cell contains a stable 

integration of one of 217 GFP synonymous variants in the same genomic locus under the 

control of a tetracycline/doxycycline-inducible CMV promoter. I established Hek293 as well 

as HeLa GFP pool cell lines to be able to compare and contrast possible cell-specific effects 

seen across different cell lines, and additionally established cell pools expressing GFP with 

the same chimeric intron in the 5’UTR as previously used in single GFP transfection 

experiments presented in chapter 3. Inducibility of GFP expression of all pool cell lines was 

measured by FACS before the integration frequency of each GFP variant was confirmed by 

high-throughput sequencing of genomic DNA. However, not all GFP variants were detected 

in all cell line pools. One possible explanation is the poor transfectability of Flp-in Hek293 

and Flp-in HeLa cell lines which seems to be different from ordinary Hek293 and HeLa cells 

respectively. Both lines are very sensitive to the transfection procedure as substantial cell death 

can be seen after transfection, as well as during chemical selection. For this reason, I prepared 

multiple batches of pool cell lines in the process (Table 2) after optimising the transfection 

protocol and upscaling the number of cells to be transfected, to be able to recover a high 

enough number of transfectants and to ensure the distribution of GFP variants is more 

representative of the frequency within the respective vector pool. The cell lines presented in 

this chapter are those that were used in all further experiments. 

 

Since the preparation of high-throughput sequencing libraries can be subject to bias, I 

optimised all protocols to reduce noise that could be introduced due to the varying sequence 

features. Most polymerases do not cope well with extremely AT- or GC-rich templates, often 

leading to large differences in sequence coverage. This might not necessarily be a limitation 

in studies in which expression of particular genes is compared across various conditions, but 
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in our case, could lead to the underestimation of transcript abundance of variants with more 

extreme sequence composition. To decrease such sequence biases, I selected a few GFP 

variants representative of the full range of possible GC to AT ratios present in the total variant 

pool, for optimisation experiments. In agreement with other published studies that directly 

compared various DNA polymerases and their effects on library compositions (e.g. %GC, 

average library size, Aird et al., 2011; Dabney and Meyer, 2012), I show that all tested 

enzymes exhibit different degrees of amplication efficiencies for different templates (Figure 

27) and thus, chose the most unbiased polymerase, Accuprime Pfx, for all future experiments. 

Another possible source of error lies within the cDNA synthesis step. Using in vitro 

transcribed RNA of variants covering a broad range of GC content as template, as well as 

introducing an RNase H digest, I was able to reduce the amplification bias notably (Figure 

28). Despite optimisation, the results of total RNA sequencing of Hek293 GFP pool cells divert 

strongly from qRT-PCR measurements of single GFP constructs in transfected cells. One 

possible reason could be that during library preparation, PCR products are size-selected to 

ensure only full length GFP amplicons will be sequenced. Furthermore, as discussed in more 

detail in chapter 3.8, some GFP variants are subject to cryptic splicing, which can also be seen 

in figure 40a and c. This may lead to further errors if RNA quantification is performed by 

qRT-PCR, as it is not possible to measure expression of such splice isoforms separately, since 

their sequences are unknown. To validate RNA-seq results, it would therefore be helpful to 

quantify RNA levels of either only full-length transcripts by semi-quantitative PCR, or utilise 

Northern blotting by using probes specific for 3’ or 5’ UTR to quantify RNA of the correct 

length only. This may lead to much better correlations, as well as provide a better picture of 

the possible transcript isoforms formed from each GFP variants. Likewise, it would be 

interesting to perform RNA-seq without size-selection to sequence splice isoforms regardless 

of their length. By mapping these back to the parent GFP, it would be possible to further 

investigate the sequence-features leading to this aberrant splicing phenotype. 

 

Difficult sequence features, as well as the lack of 3’ to 5’ proof-reading ability of commonly 

used RTases, might lead to additional error being introduced during reverse transcription. 

Recently, a new class of enzymes, thermostable group II intron reverse transcriptases 

(TGIRTs), has become available (Mohr et al., 2013). It was shown that TGIRT can operate at 

higher temperatures and has higher processivity and fidelity than conventional RT enzymes, 

such as SuperScript III used in the described experiments above, and therefore gives a more 

uniform 5’ to 3’ coverage, as well as better coverage of small and highly structured RNA 

species, such as tRNAs (Mohr et al., 2013; Nottingham et al., 2016; Qin et al., 2016). Since it 
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is likely that some GFP variants will have strong secondary structures due to their sequence 

composition, I made additional sequencing libraries from total RNA of the HeLa GFP pool 

cells using TGIRT to be able to directly compare differences in variant frequencies. Although 

the required gDNA results for RNA level normalisation was not available at the time of writing 

this thesis, the direct comparison of the total RNA sequencing results prepared with either 

SuperScript III or TGIRT shows that despite data overall correlating well (Figure 39b, 

R2=0.7572), variation is clearly visible, confirming that both enzymes indeed have varying 

processing activities. Whether TGIRT provides a less biased view of RNA levels, will require 

data normalisation (once possible) which can then be compared to low-throughput 

measurements as described above. Recently, the Ellington group synthetically re-engineered 

a proof-reading DNA transcriptase, ‘reverse transcriptase xenopolymerase’ (RTX), to accept 

DNA as well as RNA as templates, abolishing the need for separate RT and PCR reactions 

altogether (Ellefson et al., 2016). However, since this is a very novel publication, no direct 

comparisons between RNA-seq results obtained with RTX, TGIRT and other standard 

enzymes have been published as yet. 

 

4.3.2. Flow-seq data validation 

I show that the here optimised and used Flow-seq approach for measuring the fluorescence of 

many GFP variants is highly reproducible by sequencing several technical replicates from the 

same day, as well as biological replicates from different days, which are all highly correlated 

(Figure 35b+c, R2=0.9843 and R2=0.8583 respectively). The obtained average fluorescence 

scores for each variant are also correlated to fluorescence measurements independently 

acquired on a plate reader (Figure 35e, R2=0.7965), further confirming this method as a valid 

approach to measuring fluorescence levels. Due to the good exponential fit between plate 

reader and Flow-seq data, I applied an exponential transformation to all Flow-seq data using 

the obtained exponential coefficient, to recalibrate and fit the data to a linear scale. The 

resulting values represent the protein expression scores for every individual GFP variant used 

for any further data analysis.  

 

The original Flow-seq method published by Kosuri et al. (2013) utilises mCherry expressed 

from a bidirectional promoter as an internal control to further reduce experimental noise. 

Fluorescence bins were defined by the mCherry-to-GFP ratio, similarly as in other studies 

(Dean and Grayhack, 2012; Noderer et al., 2014). The advantage of having a second reporter 

gene is that quantification can be independent of the copy number of expressed genes and 

allows to filter out cells in which expression is e.g. not fully initiated. In the cell line system 
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used here, every cell contains only one integration site, restricting gene copy number to one, 

which should in theory abolish the need to correct for varying expression levels using a second 

reporter. In Hek293 cells, the fluorescence range covered by single GFP variants is relatively 

narrow already, whereas in HeLa cells, expression is much broader (Figure 33). In a study by 

Gamble et al. (Gamble et al., 2016), normalisation was also performed using the ratio of GFP 

to mCherry to reduce transcriptional noise, despite only a single gene copy being present in 

each cell. The correlation between Flow-seq data of different batches of HeLa cells which 

were induced on different days is very high (Figure 35c, R2=0.8583), suggesting that the 

normalisation to another fluorescent marker is not required, but may still be useful. 

 

When comparing the total number of reads of each variant to its respective GC3-content, no 

correlation was found (R2=0.04), confirming that our protocol for library preparation indeed 

prevents the introduction of a systematic AT-skew. The distribution range of fluorescence 

varies about 100-fold for both Hek293 and HeLa cell lines, with the majority of variants 

exhibiting intermediate fluorescence levels with peaks in well-defined neighbouring bins 

(Figure 34c). During FACS-sorting, it was noticed that cells falling into the highest 

fluorescence bin were being sorted with a markedly lower sorting efficiency than all other bins 

(about 15% lower) which could not be attributed to any technical reasons (e.g. position of 

selected sorting stream). One common reason for low sorting efficiency are morphological 

differences within the cell population, either leading to issues with droplet formation and 

separation important for single cell analysis, or too many cells being discarded due to user-set 

size-gating. I speculated that high protein levels within the cells may lead to bulging of cells 

due to protein aggregations, however, neither cell size nor cell granularity were notably 

different (data not shown) suggesting that cell bulging is not the main cause for lower sorting 

efficiency. This observation could be followed up by a more qualitative assessment of 

differences in cell morphology by live cell imaging as more subtle changes in cell shape may 

not have been possible to filter efficiently by FACS due to the population mix. 

 

Some variants exhibit a broad fluorescence distribution across all collected bins, more so in 

HeLa than Hek293, and a small number of variants display a U-shaped distribution (Figure 

34d). The relatively broad fluorescence range of some variants could be the sign of partial 

gene silencing. Since all GFP variants are integrated into the same genomic context, this 

observation is unlikely to be caused by positional effects similar to what can be seen when 

transgenes are integrated into random genomic contexts (such as transcriptionally silenced 

heterochromatin). Partial silencing can also often be attributed to contact-inhibition. This 
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mechanism acts to prevent adherent cells growing in monolayers, such as the here used HeLa 

and Hek293 cell lines, to overgrow. As a result, if cells become too densely grown, cell 

proliferation, and thus gene expression in general, will be inhibited. Throughout the 

experiments presented here, cells were grown at sub-confluency to avoid such effects leading 

to heterogeneous expression patterns. Since Flow-seq data obtained for independent batches 

of cells is highly correlated (Figure 35c), it is unlikely that this is a major issue in the 

experimental set-up. The unusual U-shaped fluorescence phenotypes of some GFP variants 

could however also hint towards a more permanent silencing state. DNA methylation is a 

highly dynamic process which has been shown to vary even within homogenous populations 

of cells (Smallwood et al., 2014). In the context of gene therapy, this is one of the major hurdles 

that needs overcoming for successful and prolonged transgene expression. A study by Bauer 

et al. investigated the role of CpG dinucleotide content and methylation on transgene 

expression, also using GFP synonymous sequence variants. By expressing CpG variants of 

GFP in Hek293 Flp-in and CHO Flp-in cells, it was shown that under selective pressure, 

expression of GFP remained constant for more than one year (Bauer et al., 2010). However, if 

the selection pressure was removed, expression would gradually decrease after 50 days. This 

was attributed to increasing CpG methylation. It was further suggested that due to the close 

proximity of the hygromycin resistance gene to the transgene-driving promoter, the constant 

and high expression of hygromycin under selective pressure keeps the chromatin directly 

downstream unmethylated and thus, in an open and accessible state. The loss of transgene 

expression after prolonged abolishment of selective pressure was shown to be linked to 

differential nucleosome positioning and a decrease in transcriptional activity (Bauer et al., 

2010). In case of the Flow-seq experiments presented here, the passage number of GFP pool 

cell lines was kept as low as possible and cells were constantly grown under selective pressure. 

This suggests that the mechanisms leading to the very broad or even U-shaped distribution 

patterns are either different from the mechanism previously proposed, or are acting despite 

high expression of hygromycin, suggesting some sequences are more prone to methylation-

mediated gene silencing than others. To test whether these observed phenotypes are indeed 

caused by gradual DNA methylation, the Flow-seq experiment could be repeated using cells 

passaged for a prolonged period of time (weeks to months) with or without selective pressure, 

similar as presented by Bauer et al. Results from these experiments could be directly compared 

to each other as well as to the results presented here. This would allow us to identify variants 

which are silenced more readily than others, as well as identify those that maintain high 

expression in both conditions. Those two groups could be further compared to each other in 

terms of their methylation status, e.g. through bisulphite sequencing, or within each other, as 
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similar molecular behaviour could be caused by common sequence features between variants. 

Those variants could be characterised further to determine the causes for slow vs fast gene 

silencing. The results of such experiments would greatly benefit the design of transgenes for 

which high expression is desirable over a prolonged period of time (e.g. gene therapy). 

 

It was further suggested that transgene expression driven by non-endogenous promoters, such 

as the here used CMV promoter, are more prone to methylation-induced silencing than when 

endogenous housekeeping promoters are used, such as A2UCOE (Ubiquitous Chromatin 

Opening Element derived from the human HNRPA2B1-CBX3 locus) which allows efficient 

expression even in the absence of selective pressure or when integrated into heterochromatin 

(Zhang et al., 2010). In section 4.1.2.2 I demonstrate that there is no visible PCR Polymerase 

amplification bias between two GFP variants varying strongly in their GC content in vitro  

(Figure 17) and also do not exhibit any significant differences in nuclear transcript abundance 

(Figure 19a). However, this does not exclude the possibility that on a larger scale, some 

variants could be limited by their transcription rate. Performing transcription run-on assays to 

monitor this directly is technically challenging for the number of GFPs to be compared, as 

well as due to common sequence fragments making high-throughput approaches with this set 

of variants difficult to analyse. Hence, by utilising an A2UCOE-driven expression system, it 

might be possible to circumvent this limitation as the comparison to previous experiments 

could allow us to discover a subset of variants that is inhibited either due to general low-levels 

of transcription, or due to the accumulation of methylation, eventually leading to complete 

transcriptional silencing. Additionally, this would allow the more reliable dissection of 

transcriptional noise from all other experimentally determined parameters and improve 

fluorescence measurements. Alternatively, it could also be possible to repeat similar 

experiments in DNMT3 knock-out cell lines. DNMT3 DNA methyltransferases are essential 

for de novo methylation and their inactivation should allow efficient expression of transgenes 

without the influence of methylation-induced gene silencing (Okano et al., 1999). This could 

be selectively tested only on those variants which are likely being silenced due to DNA 

methylation. 

 

A recent paper suggests that transcription factors also bind to protein-coding regions 

of the human genome, with a potential preference for highly expressed genes 

(Stergachis et al., 2013). However, whether and how potential TF-binding affects expression, 

remains controversial. Data from Flow-seq experiments could therefore also be analysed in 

regards to the potential of particular GFP variants to interact with TFs. By performing DNA-
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footprinting assays and correlating expression with TF binding, this approach could shed 

further light on the involvement of coding-sequence TF-binding in  modulating gene 

expression and how his might interplay with other regulatory codes (Weatheritt and Babu, 

2013). It would be in particular interesting to measure correlations between GC-content, TF-

binding and expression, as it was previously suggested that coding-sequencing binding TF 

exhibit a preference for GC-rich sequences. This was however disputed by another study 

claiming this result may be due to the types of computational methods applied, which might 

introduce sequence-bias (Agoglia and Fraser, 2016). So far, no other experimental studies have 

followed up on this issue. The methods applied here could therefore directly address this 

question further. 

 

4.3.3. Monitoring changes in translational states using polysome 

profiling 

To study the translational dynamics of all GFP variants in our system, I performed polysome 

profiling on cytoplasmic lysates of Hek293 GFP pool cells (Figure 36). This method allows to 

measure the abundance of transcripts in ribosome-associated fractions after sucrose gradient 

centrifugation. Even though it is not possible to reliably infer translational efficiency from this 

technique, as ribosome association is generally poorly correlated to protein yield, it can 

nonetheless provide an idea of the translational state of a particular transcript, e.g. is a 

transcript associated to ribosomes or never at all (Arava et al., 2003; Newman et al., 2016). 

 

In the experiment presented here, I utilised cycloheximide as a ribosome inhibitor. More 

specifically, it inhibits ribosomal translocation, freezing actively elongating ribosomes to the 

DNA template. As can be seen in figure 36, I collected 18 different fractions from the sucrose 

gradient and isolated RNA from each. By qRT-PCR, I initially observed the distribution of 

GFP across the samples to firstly confirm that the method works and secondly, to observe how 

it relates to a highly expressed gene such as GAPDH. The results show that the GFP RNA 

distribution is very broad, with many transcripts sedimenting at a faster rate than 80S 

monosomes, suggesting that not all transcripts are actively being translated at a time. However, 

the majority is found in light and heavy polysomal fractions. To distinguish the translational 

states of GFP variants, I prepared sequencing libraries from different fractions. Since this was 

an initial test experiment, I pooled RNA from multiple fractions to overall obtain four different 

sequencing libraries: unassociated free mRNPs, monosomes, light polysomes (2-4) and heavy 

polysomes (5+). In later experiments, it could be considered to change the concentration of 

the sucrose gradient to obtain a finer separation of polysomes which would also allow us to 
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sub-divide fraction pools further to obtain a better resolution picture for each variant. Overall, 

the results shown here confirm that this method can be used to measure differences in the 

translational state between genes, demonstrated by differences in distribution obtained for a 

control gene, GAPDH, and the total GFP pool. A study by Presnyak et al. utilised polysome 

profiling to measure the effects of codon optimality on ribosome translocation in yeast 

(Presnyak et al., 2015). By comparing the polysomal retention of optimal and non-optimal 

transcripts, it was demonstrated how codon optimality modulates translational elongation 

rates. The results from this experiment here can in first instance be used to analyse the effects 

of codon optimality on ribosome association. In addition, a similar experiment utilising e.g. 

harringtonine to block translation initiation followed by ribosomal run-off could be used to 

assess whether differences in elongation rates can be observed, similarly as shown in yeast 

(Presnyak et al., 2015). 

 

Recently, more sophisticated protocols have been developed to study translational dynamics 

more globally with techniques such as Ribosome profiling (Ribo-seq) revolutionising the field 

(Ingolia et al., 2009, 2012). Ribosome profiling is a method which creates a footprint view of 

ribosome protected fragments (RPFs) on a nucleotide levels. By freezing ribosomes on the 

RNA, ribosome isolation and the partial digest of any associated RNA, followed by high-

throughput sequencing, this method can be used to infer ribosome movements along genes in 

a global manner by comparing the density of associated ribosomes associated, as well as their 

distribution along the CDS (Ingolia et al., 2009). Since Ribo-seq relies on the assignment of 

RPFs to their respective RNA template, gene sequences need to be diverse enough to be able 

to accurately map the reads. In case of the GFP library used in the experiments here, some 

variants contain common sequence fragments or differ only by a few nucleotides. Therefore, 

back-mapping of the footprint reads to the respective GFP variant might not be reliable enough 

for meaningful analyses. With a different, i.e. larger and more complex library design, this 

current limitation could be circumvented and Ribo-seq could further our understanding of 

differences in ribosome movements along particular variants, by revealing differences in 

decoding speeds in individual codons (Tuller et al., 2011) or translational pause sites (Ingolia 

et al., 2011). However, comparing translational efficiency between variants is only possible 

when translation elongation rates are similar. Another possible limitation could be the short 

length of RPFs which might complicate data analysis if several distinct mRNA subpopulations 

are present, such as alternative splice forms. Thus, Ribo-seq combined with Polysome 

profiling may be required to build a more comprehensive and complete view of codon content 

and its effect on translation. 
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4.3.4. Investigating RNA phenotypes 

Several studies have implicated codon usage as an important determinant of RNA export and 

subcellular localisation. I therefore performed nuclear-cytoplasmic fractionation of both 

Hek293 and HeLa GFP pool lines to measure potential differences in RNA localisation (Figure 

38). To do so, I calculated the relative cytoplasmic concentration (RCC) of each GFP variant 

which indicates whether a particular transcript is either more enriched in the nucleus or 

cytoplasm, or whether it is roughly equally distributed. Furthermore, this experiment can also 

be used to study the effects of splicing on RNA localisation. 

 

The calculated RCC values for all variants in the pool differ but correlate well between 

replicates. For HeLa, it is also noticeable that none of the variants expressed without intron 

have an RCC above 0.6, whereas on introduction of an intron, the histogram is shifted to the 

right with some variants now becoming more cytoplasmic (>0.6). This is an expected result 

since splicing is known to increase transcript stability as well as to facilitate nuclear-

cytoplasmic export by mediating interactions between transcript and export machinery (Choi 

et al., 1991; Valencia et al., 2008). It is however unclear whether changes in the localisation 

ratio are exclusively caused by differences in mRNA export since splicing may also increase 

transcript stability (Gupta et al., 2013). 

 

Recently published studies in yeast and zebrafish demonstrate a strong link between codon 

usage and RNA stability (Mishima and Tomari, 2016; Presnyak et al., 2015). To study effects 

on transcript stability, I performed a transcription block time course experiment with both 

Hek293 and HeLa GFP pool cell lines in order to be able to measure differences in RNA half-

lives between GFP variants (Figure 40). As is already evident from semi-quantitative RT-PCR 

results of such a time course (Figure 40c), GFP levels are overall elevated for those constructs 

expressing GFP with an intron compared to those without. This suggests higher total RNA 

expression either due increased RNA export and/or stability. To be able to reduce sequencing 

noise caused by strongly varying transcript populations within samples from each time point, 

I used two reference variants, GFP_000 and GFP_001, as spike-ins for each sample to be able 

to normalise read counts across the entire time course. However, in the sequencing results of 

this experiment, the ratio between the reference variants changed between time points by about 

10-fold, suggesting that this approach by itself might not be sufficient for normalisation and 

further adjustments have to be made.  
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5. Sequence determinants of gene expression in human cells 

In the previous chapter I described the development and validation of a method to assess the 

effects of codon usage on the expression of several hundred synonymous variants of GFP by 

measuring multiple experimental phenotypes. Here, I present the results of previously 

described experiments. I compare and contrast results from two tested cell lines, highlight the 

relationship between various experimentally derived parameters, as well as relate results to 

calculated and predicted sequence features. 
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5.1. GFP expression varies between cell lines  

To investigate the effects of synonymous codon usage on GFP expression, I used an approach 

based on Flow-Seq to estimate protein expression by GFP fluorescence (described in detail in 

chapter 4).  I established GFP pool cell lines expressing 217 variants of GFP in two different 

host cell line backgrounds to test whether this approach is a valid method to measure general 

effects of codon usage on gene expression, as well as cell type specific differences. The Flow-

seq experiments were conducted with Hek293 and HeLa GFP pool cells. From the resulting 

read count distribution across all fluorescence bins, the mean bin localisation of each GFP 

variant was calculated and data calibrated to previously obtained data from single GFP 

fluorescence measurements (described in chapter 3). Since not all GFP variants were equally 

well represented in both cell line pools, some variants were filtered out due to low read counts 

across all bins (<1000). Data representing measurements in HeLa cells in this and in the 

following sections are the average of 3 replicate experiments (R2 = 0.82–0.96 between 

experiments); Hek293 data represents results from one experiment. After data filtering, 169 

GFP variants were observed in both Hek293 and HeLa data sets (Figure 41). GFP expression 

correlates between both cell lines (R2 = 0.267; p = 6.4e-13) but large variation is also visible.  

 

 
 
 
Figure 41. Comparison of GFP fluorescence levels between Hek293 and HeLa pool cells. 
Shown are the mean bin scores for 169 GFP variants observed in both HeLa and Hek293 data 
sets. HeLa data points represent the mean of 3 experiments, Hek293 data points are 
representative of 1 experiment. All cell lines were induced for 24h prior to FACS-sorting into 8 
fluorescence bins. 
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5.2. GC3 as a determinant of GFP expression 

Previously published studies showed a strong correlation between GC3 content and protein 

expression (Kudla et al., 2006). In chapter 3 of this thesis, I demonstrate that this can also be 

observed across a larger set of GFP variants and I expected to observe similar correlations in 

Flow-seq experiments. Since protein measurements between Hek293 and HeLa data show 

significant variation (Figure 41), this was done separately for each cell line to assess whether 

variation related to GC content is more pronounced in a particular cell type (Figure 42). 

 

 

 
 
 
Figure 42. Comparison of GFP fluorescence with GC3 content. 
Shown are the average bin localisations for 169 GFP variants observed in both a, Hek293 and 
b, HeLa data sets. Hek293 data is representative of one experiment, HeLa data points 
represent the mean of 2 experiments. All cell lines were induced for 24h prior to FACS 
analysis. c + d, Fluorescence distribution within defined GC3 bins for variants measured in 
Hek293 (c) and HeLa (d). Triangles indicate outliers. 
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A correlation can be seen in Hek293 (R2=0.2008, p=8.018e-11) and also, but to a much lesser 

extent, in HeLa (R2=0.0705, p=2.06e-4). This is surprising since I previously observed very 

strong correlations in single GFP transfection experiments conducted in HeLa cells (R2=0.599, 

p=3.4e-7 for 36 variants; section 3.3.). Besides fundamental differences in the experimental 

methods, another possible explanation for the lower than expected correlation could be 

differences in sequence composition of some of the GFP sequences (discussed in the following 

section). 

 

5.2.1. GFP expression is influenced by GC distribution 

The majority of GFP variants used in the cell line pools were assembled from three  distinct 

parts with an approximate length of 1/3 each (assembly described in Kudla et al., 2009, see 

Supplementary Figures 1-3). These ‘thirds’ can vary substantially in their GC content, leading 

to an overall uneven/heterogeneous GC distribution along the coding sequence (‘uneven GC 

variants’, Figure 43a). For this reason, 23 further sequences were designed to cover a very 

broad range of GC3 (0.26-0.95) with a more even/homogeneous distribution of GC along their 

sequences and were acquired as synthetic gene fragments (gBlock Gene Fragments, IDT; 

‘even GC variants’, Figure 43a). As illustrated in Figure 43b, the fluorescence range covered 

by this set of variants is representative of the overall range covered by the entire library. As 

the sequences of all variants are known, it is possible to investigate whether differences in 

sequence composition can have an effect on expression. I therefore treated each group of GFP 

variants separately to assess if GC distribution is a relevant factor in determining protein 

levels.  

 
 
Figure 43. GC distribution varies across all GFP sequences. 
a, 195 of 217 GFP variants present in the pool are made up of three thirds with varying GC 
composition, leading to an overall heterogeneous distribution of GC along their sequences. In 
contrast, 23 variant sequences were designed to cover a very broad GC3 range and to be 
homogenously distributed. b, GFPs with homogenous GC distribution are representative of 
the total fluorescence range covered by all other GFP variants in HeLa cells. Data shown are 
the means of 2 experiment conducted on HeLa cells.  
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When plotting protein levels against GC3 separately for each variant group, significant 

correlation can be observed for both groups (Figure 44a-d), however the correlation is stronger 

for variants with even GC distribution, both in HeLa and Hek293 cells. This observation 

indicates that the distribution of GC along the coding sequence is important for protein 

expression. For example, if high GC in a specific part of the gene was an important determinant 

of expression, then one would expect a high correlation of total GC with expression among 

even GC but not uneven GC variants. Alternatively, the discrepancy between even and uneven 

GC variants could be the result of experimental and/or computational biases, as discussed 

below. 

 
 

Figure 44. The effect of GC sequence composition on protein levels  

GFP variants were separated into two groups according to their GC distribution: even (left 

column) or uneven (right column). a-d, Protein levels for each group are plotted individually 

against their total GC3 content for both Hek293 (a+b) and HeLa cells (c+d). e+f, Comparison 

of GFP expression between cell lines for different variant groups individually. 



109 

 

 

Noticeably, the number of data points for each group is very different. Variants with a 

homogenous GC make-up are underrepresented in the Hek293 data set, which leads to many 

of those being omitted from this analysis due to low read counts. Additionally, the total GC3 

range covered by either group varies distinctly as the higher extremes of GC3 are absent in the 

heterogeneous GC3 group, whereas variants of the other group were specifically designed to 

cover a very broad range. When comparing expression between both cell lines individually for 

each variant group, data correlates between variants with even distribution (R2=0.6304), but 

only weakly for those variants with uneven GC (R2=0.038; Figure 44e+f). Overall, these 

results suggest that the GC distribution pattern is a factor contributing to GFP expression. 

 

5.2.2. High GC at the beginning of the GFP gene increases protein 

expression 

Since the relationship between high GC3 content and efficient protein expression potentially 

also depends on the overall distribution of GC along the sequence, I tested whether the position 

of GC rich sequences was important for efficient expression by correlating protein levels with 

the GC3 of each individual sequence third, separately for each GC distribution group. In 

Hek293 cells, the correlation is the highest with the first third (Figure 45, left column) whereas 

in HeLa cells, the correlation is highest with the second third (Figure 45, right column).  

 

To further test the importance of GC3 of individual sequence thirds, I used multiple regression 

analysis to assess the relative contribution of each individual third to protein expression 

(Figure 46).  In Hek293 cells, the GC3 content of the first third contributes the most to the 

overall variation seen on protein levels (R2=0.2187, p=5.594e-10), whereas the contributions of 

the other thirds become decreasingly insignificant. In HeLa cells, no clear difference in the 

contributions of different thirds can be seen as only the GC3 of the second third results in a 

marginally significant p-value (p=0.0438). The overall p-value however is significant 

(p=3.385e-3), suggesting that the total GC3 is important, but might be independent of the 

position within the GFP sequence. 
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Figure 45. The influence of GC3 of three sequence thirds on GFP protein levels. 
Plotted are the protein levels as measured by Flow-seq in Hek293 (left column) and HeLa 
(right column) against the GC3 calculated for each sequence third individually. 
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Figure 46. The relative contribution of GC3 of different sequence parts on protein 

expression. 

Bar plots represent the relative weights of the GC3 content for each sequence third of GFP 

sequences. The sum of weights for all three thirds equal to 100% of the total variation observed 

in a particular cell line. Hek293 (black bars): R2=0.2187, p=5.594e-10; HeLa (white bars): 

R2=0.0707, p=3.385e-3. 

 

To test the hypothesis that high GC3 at the beginning of the gene is of greater importance for 

protein expression, we created various fusion constructs composed of one GC-poor and one 

GC-rich genes in various orientations (Figure 47a). The following described experiment was 

conducted by Jeanne Bazile, a visiting MSc student who was working on this project under 

my daily supervision. We chose two variants of GFP that are very different in GC-content, 

GFP_000 (GC=0.40) and GFP_001 (GC=0.62). These are the same variants used in chapter 3 

and were also used in other published studies investigating the role of GC content on gene 

expression (Kudla et al., 2006). In addition, we chose a second fluorescent reporter gene, 

mKate2, and used two similarly GC poor (GC=0.39) and GC rich (GC=0.58) variants of this 

protein to create translational gene fusions between one GFP and one mKate2 variant in all 

possible combinations (8 in total, Figure 47). The objective was to quantitatively assess 

differences in expression levels between these constructs and to verify that these could be 

explained by the orientation of the fused genes. The fusion constructs were cloned into CMV-

driven mammalian expression vectors and reverse transfected into HeLa cells for 24h. 

Expression of the fusion proteins was estimated by measuring red fluorescence (shown in 

Figure 47b) and green fluorescence (similar results, data not shown). 

 

Due to the good spectral separation, no mKate2 signal can be detected for either of the two 

GFP variants when expressed as individual coding sequences (Figure 47b). The GC-poor 

variant of mKate2 exhibits no detectable fluorescence on its own, whereas the GC-rich variant 

of mKate2 shows over 60-fold high fluorescence. This confirms that differences in expression 
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levels caused by differences in GC can also be seen for mKate2, a fluorophore unrelated to 

GFP. Overall, the expression levels of all fusion constructs vary strongly. The main 

observation is that GC-poor mKate2, which by itself does not show any measureable 

expression, can, however, be detected if fused to the 3’ end of GC-rich GFP, but not if fused 

to the 5’ end. The opposite can be observed for GC-rich mKate2 – when fused to the 3’end of 

GC-poor GFP, expression is decreased compared to mKate2 alone or when fused to GC-rich 

GFP. To test whether similar effects can be seen on the RNA level, HeLa cells were transfected 

with some of these constructs and RNA isolated after 24h for qRT-PCR analysis. As can be 

seen in figure 47c, similar effects can be seen on the RNA level: Expression is decreased when 

GC-poor mKate is fused to the 5’ end of GC-rich GFP, but not when in reverse order. Taken 

together, these results suggest that high GC at the beginning of a gene is important for efficient 

protein expression. 
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Figure 47. Expression levels of mKate2 and GFP fusion constructs.  

a, Translational fusion constructs were created between GC-poor or GC-rich variants of GFP 

(%GC=0.4 and 0.62) and mKate2 (%GC=0.39 and 0.58). Variants were fused in all 8 possible 

combinations: constructs with an N’ terminal GFP are linked via a 7 amino acid linker, 

constructs with an N’ terminal mKate2 are linked via an 8 amino acid linker. b, Constructs were 

transfected into 3 wells of a 96-well plate and fluorescence measured 24h later using a plate 

reader as previously described (chapter 3). Bar plots represent the averages of 3 wells 

transfected with the same plasmid preparation. Error bars denote the standard deviation. Data 

shown are representative of 3 independent experiments. c, Fusion constructs were expressed 

in HeLa cells and RNA isolated 24h post-transfection followed by qRT-PCR analysis. Shown 

are the relative RNA levels of the fusion RNA constructs normalised to Gapdh. Error bars 

denote the standard deviation of 3 technical replicates.  
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5.2.3. Codon usage affects GFP translation 

Since codon usage is usually studied in the context of translation, I utilised polysome profiling 

to assess the translation dynamics of GFP coding-sequence variants in Hek293 cells. As 

described in 4.2.5, I used the translation elongation inhibitor cycloheximide to block actively 

elongating ribosomes from translocating, and thus freeze them at their particular location. Four 

fraction pools were sequenced: (A) Free Ribonucleoprotein (RNP) complexes, (B) 

monosomes, (C) light polysomes (2-4) and (D) heavy polysomes (5+) (Figure 48a). 

 

 
 
 
Figure 48. Polysome profiling of Hek293 GFP pool cell lines. 
a, UV profile of polysomal separation after sucrose gradient centrifugation. 18 fractions in total 
were collected and pooled as indicated by the coloured boxes into 4 samples and prepared 
for high-throughput sequencing: Free RNPs (red), monosomes (yellow), light (light green) and 
heavy (dark green) polysomes. b, Correlations between Protein levels and Ftranslated or c, 
Fassociated as described below. n=1. 
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To study GFP translation, I defined two different scores: 

(a)  Fassociated =
��������	
��
�
���

����	���
 

- which is the fraction of transcripts that is associated with fully assembled 80S 

ribosomes and therefore theoretically translatable, and  

(b) Ftranslated =

�
��

��	
��	�����
�
��
   

- which scores the translational state of a transcript, i.e. what is the fraction of transcripts 

that are actively being translated. 

 

When correlating both scores to protein measurements obtained by Flow-seq, some of the 

variation in the data can be explained (Ftranslated: R2= 0.0561 and Fassociated: R2=0.104), but both 

are not very strong predictors for GFP protein levels (Figure 48b). 

Since I had previously observed differences in phenotypic behaviour for different groups of 

variants depending on their GC distribution, I correlated GC3 content to Fassociated and Ftranslated 

separately for each group (Figure 49). For both variant groups, GC3 correlates with Fassociated 

(uneven GC: R2= 0.4554, p=1.136e-26; even GC: R2= 0.8557, p=0.02436) and also with 

Ftranslated, however only significantly for those with uneven GC distribution (R2= 0.0231, 

p=0.0394). This suggests that the GC distribution pattern has a stronger influence on the 

amount of transcripts that are associated to fully initiated 80S ribosomes, but to a lesser extent, 

if at all, influences the translational state of a given variant. 
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Figure 49. The effect of GC distribution on GFP translation in Hek293 pool cells. 
For each variant group (left column: uneven GC; right column: even GC), Fassociated (a + b) and 
Ftranslated (c + d) are plotted against GC3. 
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5.2.4. GC-content affects mRNA subcellular localisation of GFP 

Some reports have implicated codon usage as a factor contributing to nucleo-cytoplasmic RNA 

export efficiency (Kotsopoulou et al., 2000; Malim et al., 1989; Nguyen et al., 2004). Using 

two GFP variants with very different GC content, I previously demonstrated that high GC-

content leads to an increase of cytoplasmic RNA levels (see 3.6). To test whether similar 

effects can be seen across many variants, I performed cellular fractionation followed by RNA 

extraction of Hek293 and HeLa GFP pool cell lines after 24h of GFP induction. For each GFP 

variant, I calculated the Relative Cytoplasmic Concentration (RCC) from normalised read 

counts in each fraction (described in 4.2.4). Variants with an RCC below 0.4 are considered 

as mostly nuclear, whereas those with an RCC above 0.5 are regarded as more cytoplasmic 

(Figure 50+51). In Hek293 cells, the average GC3 of more cytoplasmic variants is 

significantly higher compared to more nuclear variants for both variants group (Figure 50a+c) 

which is also reflected in the correlations between RCC and GC3 (Figure 50b+d, even GC: 

R2=0.8108, p=2.0707e-5 ; uneven GC: R2=0.1606, p=7.732e-7).  

 

 

 
Figure 50. The effect of GC3 on the RCC of GFP RNA in Hek293 pool cells. 
GFP variants were divided into more nuclear (RCC<0.4) and more cytoplasmic (RCC>0.5). a, 
Boxplots of variants with even GC distribution separated by localisation (p=2.9e-4). b, 
Scatterplot of the RCC for all variants with even GC distribution plotted against their respective 
GC3. c, Boxplots of variants with uneven GC distribution separated by localisation (p=6.205e-

5). d, Scatterplot of the RCC for all variants with uneven GC distribution plotted against their 
respective GC3. n=1. 
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Similar observations can be made from data from HeLa GFP pool cells (Figure 51, left 

column). I also performed the same experiment with HeLa expressing GFP with an intron in 

their 5’UTR (Figure 51, right column). Interestingly, the difference in mean GC3 between 

more nuclear and more cytoplasmic variants loses its significance. Additionally, the GC3 

scores of cytoplasmic variants with even GC distribution cover the full range of possible GC3 

values (Figure 51, top right). 

 

 

 
 
Figure 51. The effect of GC3 on the RCC of GFP RNA in HeLa pool cells. 
Boxplot representations of RCC scores and their link to GC3 content of GFP variants grouped 
by even (top row) and uneven (bottom row) GC distribution. GFP variants were expressed in 
the absence (left column) and presence (right column) of a 5’UTR intron. n=2. 

 

 

One of the expectations for the comparison of RNA levels between variants expressed with 

and without intron would be that splicing enhances the expression of at least a subset of 

variants due to its stabilising effect on transcripts. Indeed, the presence of a 5’UTR intron 

causes a significant increase in the mean RCC score for GFP variants with low GC content  

(%GC<0.4; compare Figure 52a+b). On the other hand, splicing does not increase the RCC 

for variants with high GC content any further (%GC>0.7).  
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Figure 52. The effect of splicing on the RCC of GFP variants. 
Boxplot representation of the distribution of RCC scores for a, unspliced or b, spliced GFP 
variants with low GC3 (<0.4; white) or high GC3 (>0.7; grey) in HeLa cells. c, Log2 fold-change 

of 23 GFP variants with significant differences in RCC scores (p<0.05) when expressed with 

intron (+int) compared to no intron (-int). Variants are arranged by increasing GC3 content 
(GC3 range = 0.29 – 0.95). 

  

 

Since these box plot representations only provide an overview across different variant 

populations, I was also interested in the effects on a single-variant level. To do so, I selected 

only those variants for which the fold change in RCC changed significantly when variants 

were expressed with an intron (cut-off p<0.05; n=23) and plotted those in order of increasing 

GC3 (Figure 52c). This analysis indicates that splicing primarily increases the cytoplasmic 

localisation of GC-poor variants, whereas it leads to an increase in nuclear levels in case of 

GC-rich transcripts. 

 

I previously demonstrated by qRT-PCR that increasing GC3 content also increases total RNA 

levels (chapter 3.4, Figure 14). I expected that variants with overall high RNA levels should 

also have high RCC scores as prolonged nuclear retention will lead to transcript degradation. 

I therefore correlated the RCC scores against qRT-PCR data for variants with even GC 
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distribution as these represented the majority of variants previously tested by qRT-PCR 

(Figure 53). Variants expressed without intron show a significant correlation between RNA 

levels and cytoplasmic localisation (R2=0.3502, p=0.0258; figure 53a) whereas when these 

variants are expressed with an intron, the correlation loses significance (p=0.0558), suggesting 

that splicing strongly reduces the total variation in RCC (compare to Figure 52b). 

 

 

 
Figure 53. Correlation between RCC and RNA levels for variants with even GC 
distribution. 
The RCC for variants with even GC distribution expressed in HeLa cells a, without intron and 
b, with intron are plotted against RNA levels as measured by qRT-PCR (see 3.4). 
 

5.2.5. Determining the relative importance of experimental phenotypes 

As an overview of the overall correlations between experimentally measured parameters as 

well as GC content, all data from Hek293 experiments are shown in a correlation matrix below 

(Figure 54). As I demonstrated in previous sections that GC distribution is a factor contributing 

to expression phenotypes, I also created such matrices separately for variants with even and 

uneven GC distribution (Figure 54, middle and bottom row). Similar matrices are also shown 

for data obtained from HeLa pool cells. 

 

Multiple aspects that were described in previous sections are reflected in the overall results, 

such as the correlations between total GC3 and all measured parameters. For variants with 

uneven GC distribution, overall GC3 and the GC3 of the first third are correlated with protein 

levels in Hek293, whereas in HeLa only the overall GC3 is significantly correlated. In Hek293, 

Fassociated strongly correlates with GC3 (r=0.67), in particular with the 2nd and 3rd thirds (r=0.59 

and 0.52 respectively). The RCC correlates similarly well with GC3 in both cell lines (Hek293 

r=0.28; HeLa r=0.3), with the GC3 of the first third showing the highest correlation. Quite 

strikingly different is the picture for variants with even GC distribution. All measured 
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parameters are strongly correlated to each other, as well as to GC3 content, in both Hek293 

and HeLa cells. In Hek293, some of the parameters are not significant despite high r values. 

This is most likely caused by the low number of useable data points due to the 

underrepresentation of this GFP variant group in this particular cell line pool. The correlations 

between Fassociated and RCC still persist, whereas some previously positive correlations become 

insignificant (e.g. RCC with Ftranslated). Overall, protein levels correlate strongly with 

translational scores, RCC as well as GC3.  

 

These correlations are based on simple linear regression and therefore do not take into account 

the possibility that some variables might be highly correlated with each other 

(multicollinearity). In order to dissect the individual contributions of each experimentally 

derived parameter, I used multiple regression analysis in order to obtain the relative 

contribution of each to overall GFP protein levels in Hek293 cells (Figure 55). By fitting both 

translation scores and RCC into the model with protein as the response variable, an overall 

32.33% of variation can be explained (p=5.029e-12). Both Fassociated and Ftranslated are almost 

equally weighted (41.93% and 42.6% respectively), however, when RCC is added to the 

model, its relative weight is not significant (p=0.183).  
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Figure 54. Pearson correlation matrix of experimentally measured parameters and 

GC3 of GFP. 

Shown are various experimental data and calculated features of GFP variants measured in 
Hek293 and HeLa cells. Each entry in the matrix shows the correlation between 
measurements of a pair of samples for all variants together (top row), variants with uneven 
GC distribution (middle row) or even GC distribution (bottom row). White crosses indicate 
p>0.05. 
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Figure 55. The relative contribution of translational scores and RNA localisation on GFP 
protein levels. 
Shown are the relative weights of Fasociated, Ftranslated and RCC with GFP protein levels 
measured in Hek293 cells as response variable. Total variation explained: 32.33%, p=5.029e-

12 based on 146 observations. 
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5.3. The relative contribution of calculated sequence features in GFP 

expression 

In the previous section, I quantified the relative contribution of experimentally obtained 

measurements to overall protein levels. In this section, I will attempt to explain the observed 

variation in terms of sequence features thought to influence expression levels. A common area 

of application for such calculations is gene sequence optimisation or ‘codon optimisation’. 

Since codon usage varies strongly across genes, the expression of transgenes often results in 

poor efficiency due to unfavourable sequence features. It might therefore be beneficial to 

replace codons with synonymous codons to better match the host cell’s codon preferences. 

Many computational tools for coding sequence optimization are now available. These use a 

gene sequence as input, scan it for undesirable sequence features and re-design the sequence 

in order to optimise the gene for high protein expression in a particular species. One such tool 

offered by GeneArt/ThermoFisher, called GeneOptimizer, generates from one input sequence 

thousands of variants optimised for high expression in human cells. It takes various sequence 

properties into account, such as cryptic splice sites, destabilising RNA elements or rare codons. 

Based on my experiments, I would like to calculate or predict sequence features that can 

explain the variation that I observe in GFP expression data. We therefore established a formal 

collaboration with GeneArt to be able to use their knowledge of undesirable sequence features 

to individually score each GFP variant, and quantitatively assess the contribution of such 

features to overall expression. GeneArt provided us with a list of 21 sequence annotations and 

their motifs. All parameters with their descriptions and motifs are listed in table 3. Since the 

sequences of all GFP variants are known, G. Kudla used the provided information to score the 

occurrence of such features in all GFP sequences. Additionally, we also calculated other 

sequence properties, such as the codon optimisation index (CAI), tRNA adaption index (tAI), 

the effective number of codons (NC), as well as folding energy (Gibbs free energy) and the 

frequency of CpG dinucleotides. The Pearson correlation matrix below contains all 33 

parameters and illustrates their relationships (Figure 56). Most features cluster with other 

similar features, e.g. parameters scoring splice donor motifs, or features that score related 

parameters such as GC3 and CpG. As would be expected, parameters describing very opposing 

features, such as GC related parameters and AU-centric ones (e.g. poly(A) or ARE motifs), 

are negatively correlated with each other. Since many of these parameters score similar or 

same sequence features (e.g. motif count vs motif maxScore), some of these are highly 

correlated. For this reason, I omitted some of these parameters that are arranged in highly 

correlated clusters in later data analyses, but retained at least one parameter for each sequence 

feature in addition to those that are of particular interest for this study, such as the GC3 of 

individual sequence thirds. 
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Table 3. Description of sequence parameters 

Feature name Feature definition Note Reference 
 

GeneArt_ARE_1_count ATTTA (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10826  

GeneArt_ARE_1_maxScore ATTTA (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10827  

GeneArt_ARE_2_count ATTTTA (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10828  

GeneArt_ARE_2_maxScore ATTTTA (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10829  

GeneArt_AT_stretch_count [AT]{9} (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10830  

GeneArt_AT_stretch_maxScore [AT]{9} (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10831  

GeneArt_GC_stretch_count [GC]{9} (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10832  

GeneArt_GC_stretch_maxScore [GC]{9} (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10833  

GeneArt_PolyA_ANRU_PSSM_count 
Position-specific 
scoring matrix 

(a)(c) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10834 
 

GeneArt_PolyA_ANRU_PSSM_maxScore 
Position-specific 
scoring matrix 

(b)(c) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10835 
 

GeneArt_polyPurine_PSSM_count [AG]{22} (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10836  

GeneArt_polyPurine_PSSM_maxScore [AG]{22} (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10837  

GeneArt_Splice_acceptor_PSSM_count 
Position-specific 
scoring matrix 

(a)(d) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10838 
 

GeneArt_Splice_acceptor_PSSM_maxScore 
Position-specific 
scoring matrix 

(b)(d) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10839 
 

GeneArt_Splice_donor_consensus_count RGGTNNGT (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10840  

GeneArt_Splice_donor_consensus_maxScore RGGTNNGT (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10841  

GeneArt_Splice_donor_cryptic_count RSGTNNHT (a) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10842  

GeneArt_Splice_donor_cryptic_maxScore RSGTNNHT (b) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10843  

GeneArt_Splice_donor_PSSM_count 
Position-specific 
scoring matrix 

(a)(e) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10844 
 

GeneArt_Splice_donor_PSSM_maxScore 
Position-specific 
scoring matrix 

(b)(e) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10845 
 

GeneArt_PolyA_generic Regular expression (f) Graf M. et al (2000), J Virol 2000 Nov; 74(22): 10822–10826  

GC3 
GC content in third 
position of codons 

   

1
2
5
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Feature name Feature definition Note Reference 
 

CpG 
number of CpG 
dinucleotides 

   

 
CpG_1st_third 

number of CpG 
dinucleotides (nt 1-216) 

   

CpG_2nd_third 
number of CpG 
dinucleotides (nt 217-
489) 

  
 

CpG_3rd_third 
number of CpG dinucleotides (nt 490-
720) 

   

GC3_1st_third GC content in third position of codons (nt 1-216)    

GC3_2nd_third GC content in third position of codons (nt 217-489)    

GC3_3rd_third GC content in third position of codons (nt 490-720)    

dG_-4_38 mRNA folding energy (nt -4 - 38)  Markham NR, Zuker M, Methods Mol. Biol. 453 (2008) 3–31.  

dG_-40_40 mRNA folding energy (nt -40 - 40)  Markham NR, Zuker M, Methods Mol. Biol. 453 (2008) 3–31.  

HsCAI Codon Adaptation Index (H.sapiens)  Sharp and Li (1987), Nucl Acids Res 15(3): 1281-1295  

HsAllGenesCAI Codon Adaptation Index (H.sapiens)  Sharp and Li (1987), Nucl Acids Res 15(3): 1281-1295  

Nc Effective number of codons  Wright F (1990), Gene. 1990 Mar 1;87(1):23-9  

tAI tRNA adaptation index  dos Reis et al. (2003) Nuc. Acids Res. 31:6976  

  

 
(a), number of times motif was identified in each GFP sequence, calculated by FIMO (http://meme-suite.org/) 

 

 
(b), top score of motif match in each GFP sequence, calculated by FIMO (http://meme-suite.org/) 

 

 
(c), ((47,3,0,50)(18,6,9,67)(53,12,12,23)(59,6,0,35)(70,6,6,18)) 

 

 
(d), 
((11,37,10,39);(13,31,10,41);(3,19,15,57);(5,23,13,56);(13,35,9,42);(9,40,10,41);(17,35,17,31);(17,41,5,37);(13,41,3,44);(10,37,6,48);(26,33,14,27);(6,68,0,25);(100,0,0,0);(0,0,100,0);(21,8,62,8)) 

 

 
(e), ((60,13,13,14)(9,3,80,7)(0,0,100,0)(0,0,0,100)(53,3,42,3)(71,8,12,9)(7,6,81,6)(16,17,21,46)) 

 

 
(f), 
ATGAAA|ACTAAA|ATTAAA|AACCAA|ATATAA|AATTAA|AATACA|AAAATA|AATATA|ATACTA|ATTGTA|ATAAA|AATAA|ATTTA|ATTAAT|ATACAT|AAGCAT|ATATATTT|ATTGTT|GTTAAA|TTTG
CA|TACATA|TATATA|TTTATA|TTTGTA|TTTTTATA|TAGTAGTA 
 

 

1
2
6
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Figure 56. Pearson correlation matrix of 33 sequence features for 217 GFP variants.   

1
2
7
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5.3.1. Comparisons between HeLa and Hek293 

To study the sequence determinants of protein abundance across the GFP library, I correlated 

25 parameters of the list above to protein levels measured in both Hek293 (Figure 57 a,c,e) 

and HeLa (b,d,f), either for all variants together, or individually for the two variant groups 

with differing GC distribution pattern.  

 

In Hek293 as well as HeLa data, GC3 is highly correlated with protein levels across all variants 

(r=0.21–0.75). As expected, other sequence features related to GC content, such as CpG 

content and GC stretch count, also strongly correlate with protein levels. Parameters measuring 

features with high A or AT, such as AREs or AT-stretches, are negatively correlated with 

expression, which is expected due to their role in transcript destabilisation. Commonly used 

codon optimality measures, such as the CAI and tAI, are positively correlated with expression, 

whereas the Nc is expectedly negatively correlated, as the Nc reaches its minimal value when 

codon usage is the most biased, i.e. not random or constraint, and therefore decreases with e.g. 

increasing GC3 content. For variants with uneven GC distribution, overall results are similar, 

however, correlation strengths are generally weaker and often result in insignificant p-values. 

Variants with homogenous GC distribution on the other hand, exhibit more extreme 

correlation patterns compared to those with uneven GC patterns. Similarly as with correlations 

to experimental data, a possible explanation could be the lower number of variants measured 

for this variant group (Hek293 - 9; HeLa – 23) compared to all others (He293 – 181; HeLa – 

170). Overall, most patterns are very similar between both cell lines and trends tend to be the 

same. Some groups of sequence features stand out more than others (marked by black boxes; 

groups 1 - 3) and will be discussed in more detail in the following sections. 
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Figure 57. Pearson correlations between calculated and predicted parameters and GFP 
protein levels in Hek293 and HeLa cells.  
Correlations were calculated for GFP variants in groups with differential GC distribution, even 
(right) or uneven (middle), or all together (left). Shown are correlations for protein data 
obtained from Hek293 (a, c and e) and HeLa cells (b, d and f). Parameters of interest were 
grouped into (1) measures of codon optimality and GC, (2) splicing and (3) folding energy. 
Observations used in correlations: HeLa – 23 even/170 uneven; Hek293 – 9 even/181 uneven. 
White crosses indicate p>0.05. 
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5.3.1.1.  Measures of codon optimality and GC content (group 1) 

The codon adaptation index (CAI), tRNA adaptation index (tAI) and effective number of 

codons (Nc) are very commonly used measures of codon usage and often applied to predict or 

optimise a gene’s expression level. To see how these measures relate to one another, to GC 

content and to my experimental data, they are visualised in the correlation matrices below 

(Figure 58a+b). All are highly correlated and as expected, Nc is negatively correlated to the 

others, as unlike CAI and tAI, this measure is based on the coding sequence only, without 

taking other parameters other than codon usage into account, and will become lower with 

increasing codon bias (e.g. because of increasing GC content). All three measures are also 

strongly correlated to both CpG and GC3. For CAI, this could be explained by how it is 

calculated. The CAI is determined relative to a set of highly expressed reference genes (dos 

Reis et al., 2004). To analyse the origin of the correlation between CAI and GC3, I compared 

the range of GC3 in the reference genes to the GC3 distribution of all human coding genes 

(Figure 58c). Since there is no significant difference in the mean GC3 for both gene sets, the 

correlation between CAI and GC3 cannot be explained simply by the nucleotide composition 

of the used reference genes. In summary, all measures of codon optimality used here are 

strongly positively correlated with RCC, translational state, as well as protein levels of GFP, 

in both Hek293 and HeLa cells. Interestingly, when GFPs are expressed with an intron 

(RCC_int), all previous positive correlations are lost, suggesting that the contribution of these 

parameters to overall protein expression is strongly decreased in the presence of a splicing 

event. 
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Figure 58. Pearson correlation matrix of experimentally derived parameters for GFP 
variants compared to measures of codon optimality. 
Correlations were calculated with all GFP variants measured in a, Hek293 or b, HeLa cells. c, 
The GC3 distribution of highly expressed human genes used as reference for CAI calculations 
(‘ref’, n=192) compared to the GC3 distribution of all human genes (‘all’, n=30,455). 
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5.3.1.2.  Splice site prediction (group 2) 

In figure 57 described in 5.3.1, all splice donor related parameters are correlating to varying 

extents with protein expression in Hek293 (denoted as group 2). I previously observed a 

cryptic splicing phenotype for some GFP variants (chapter 3.8, Figure 21) and noticed that 

often the first third of the GFP sequence is spliced out. This led me to speculate that sequence 

variation primarily within this region must cause this particular sequence to be falsely 

recognised as intron. Some of the GFP variants used in these experiments only vary in the first 

third of their sequence and are identical otherwise (n=51). I correlated the same parameters as 

above to the expression of this particular subset of variants with the assumption that any 

significant correlations would primarily arise due to differences in sequence composition 

within the first third of the GFP sequence (Figure 59a). Only two parameters correlate 

significantly with expression: ‘Splice donor consensus count’ in Hek293 (r= -0.3; p=3.316e-2, 

Figure 59b) and ‘ARE2 maxScore’ in HeLa (r=-0.31; p=3.067e-2, Figure 59c). ‘Splice donor 

consensus count’ is negatively correlated with GC3 (r=-0.36, p=0.0320) and CpG (r=-0.40, 

p=4.851e-3). These observations prompted me to do a multiple regression analysis to test 

whether 'Splice donor consensus count' influences expression independently of GC3 and CpG. 

The calculated beta coefficient for GC3 becomes negative when CpG is added to the regression 

model, although it is established that the relationship between GC and protein is positive. 

Additionally, the overall p-value of this analysis is not significant (p=0.5088; R2=0.0277). This 

result indicates that due to the very high correlation between these two parameters, it is not 

possible to reliably dissect their individual contributions using this approach for this particular 

set of variants. 

Since I have previously demonstrated that the first sequence third of GFP is of higher 

importance for efficient protein expression, I was interested in how this might reflect in the 

cellular localisation of RNA of this particular subset of GFP variants (Figure 59d). The results 

show that ‘Splice donor consensus count’ is negatively correlated with RCC in Hek293. All 

GC-linked parameters are positively correlated with RCC in HeLa (e.g. GC3, CpG) but not 

significant in Hek293, although trends are similar. When GFP variants are expressed with an 

intron in the 5’UTR, none of the parameters is significantly correlated with RCC. 
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Figure 59. Pearson correlations between protein levels of GFP variants with identical 
2nd and 3rd thirds and sequence features. 
a, Correlations of protein levels with sequence features in Hek293 (top) and HeLa (bottom). b 
+ c, Correlations of Splice_donor_consensus_count and ARE_2_maxScore with protein levels 
in HeLa and Hek293 respectively. d, Correlations of RCC with sequence features in Hek293 
(top) and HeLa (middle and bottom). ‘RCC’ = GFP expressed without intron, ‘RCC_int’ = GFP 
expressed with intron in 5’UTR.  
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5.3.1.3.  High folding energy at the beginning of GFP correlates  

with high expression (group 3) 

Gibbs free energy (dG) is commonly used as a measure of folding energy of RNA molecules 

and strongly connected to sequence composition due to the fact that 3 hydrogen bonds are 

required for forming G:C base pairs whereas only 2 are needed for A:T pairs. It is therefore 

expected that dG is strongly correlated to GC3 (boxes denoted with ‘3’ in figure 57). Previous 

published studies demonstrated that strong RNA folding near the ribosomal start site inhibit 

protein expression in E.coli (Kudla et al., 2009). However, the data presented here suggests 

the opposite is the case in human cells, since folding energy correlates not only with GC3 

content (r= -0.91, p=5.47e-78) but also positively with protein expression (Hek293: r= -0.54 

p=1.47e-15, HeLa: r= -0.28, p=7.47-5). I have previously shown that GC3 at the beginning of 

the gene is of greater importance (see 5.2.2) and therefore expected to see similar effects for 

folding energy. Using multiple regression analysis with protein level as predictor variable, the 

amount of variation that can be explained by folding energy differs between cell types 

(Hek293: R2=0.1287; HeLa: R2=0.0595) but in both cases, folding energy of the first two thirds 

have a greater relative weight than the last third in determining overall GFP protein levels 

(Figure 60). 

 

 
 

 
Figure 60. The relative importance of folding energy on protein expression. 
Shown are the relative weights of folding energy individually for all three thirds with protein 
expression as response variable. Results are shown for both Hek293 (R2=0.1287, p=2.014e-

5, 181 observations) and HeLa (R2=0.0595, p=0.01826, 167 observations).  
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5.3.2. The link between RCC and protein levels 

 

To compare whether the same GFP variants show similar phenotypic behaviour in both 

Hek293 and HeLa cells, I divided the number of variants for which I obtained RCC scores into 

thirds and compared the top third (preferential cytoplasmic localisation) and the bottom third 

(more nuclear) between both cell lines (Figure 61a+b). Out of 60 variants in HeLa, and 52 in 

Hek293, 25 variants with high RCC and 25 with low RCC are common in both cell lines 

(Figure 61a+b). Since for this particular analysis, I did not separate GFP variants by their GC 

distribution pattern, I was interested whether there are general differences in the average GC3 

for those variants found in the top and bottom third within each cell line, irrespective of their 

absolute RCC value. If GC3 generally increases the nuclear to cytoplasmic ratio, it would be 

expected that results of this analysis should reflect previously shown data in which I utilised 

defined RCC cut-offs for comparison between nuclear and cytoplasmic variants (Figure 

50+51, 5.2.4). As expected, in both cell lines, the average GC3 of variants with high RCC 

scores is overall higher (Hek293: p=9.25e-7; HeLa: p=1.65e-12). 

 

 
 
Figure 61. Comparison of GFP variants with highest or lowest RCC between cell lines. 
Venn diagrams show the intersect between the top (a) or bottom (b) third of variants between 
both cell lines (high RCC: p=0.0027; low RCC: p=0.0027; Fisher’s exact test). The mean GC3 
for variants in the top third is significantly higher compared to the bottom third in both Hek293 
(c, p=9.25e-7) and HeLa (d,  p=1.65e-12). 
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As some variants are common in both cell lines, and therefore behave phenotypically similar 

in terms of their nucleo-cytoplasmic distribution, I probed whether these two groups differ 

fundamentally in sequence parameters other than GC3 (Figure 62). The groups differ 

significantly in most sequence features, in particular in those related to AT/GC content. Those 

with low RCC values score higher in parameters which are generally associated with transcript 

destabilisation, such as ‘AT_stretch_count’ (p=2.23e-4), ‘PolyA_generic’ (p=7.33e-3),  

‘ARE_1_count’ (p=1.83e-3) and ‘ARE_2_maxScore’ (p=1.03e-3). Additionally, the low RCC 

group scores on average higher in two splicing related parameters; 

‘Splice_donor_PSSM_count’ (p=8.97e-4) and ‘Splice_acceptor_PSSM_count’ (p=3.15e-2). 

 

Following on from this result, I performed a similar analysis as above focussing on the highest 

and poorest expressed variants in regards to protein levels (Figure 63a): 36 highly expressed 

variants are common between both cell types, as well as 32 poorly expressed variants. Within 

the poorly expressed variants, 12 variants were previously also found to have consistently low 

RCC scores (intersect in Figure 61b). Within the 36 highest expressed variants, 8 were also 

found within those variants with the highest RCC scores. To investigate how sequence features 

might contribute to the differences in protein levels, I compared each variant group in terms 

of their sequence features as before (Figure 63c). As expected, all GC-related features are 

significantly increased in highly expressed variants. Only two other features are significantly 

different between the two groups, ‘Splice_donor_consensus_count’ (p=2.72e-3) and 

‘Splice_donor_PSSM_count’ (p=2.77e-5), which are both increased in poorly expressed 

variants, once more suggesting cryptic splicing as a major factor influencing GFP protein 

levels across all variants.  
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Figure 62. Comparison of sequence features between GFP variants with highest and 
lowest RCC in HeLa and Hek293 cells. 
For variants expressed in each cell line, variants with the 1/3 highest and 1/3 lowest RCC 
scores were intersected (see Figure 61 a+b; n=25 each) and sequence properties compared. 
Data presented in boxplots represents normalised values. n(high)=25; n(low)=25.  
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Figure 63. Comparison between highest and lowest expressed GFP variants in HeLa 
and Hek293 cells. 
For variants expressed in each cell line, the 1/3 highest (a) and 1/3 lowest (b) expressed 

variants were intersected (high protein: p=4e-4; low protein: p=1e-4; Fisher’s exact test) and 

for common variants sequence properties compared (c). Data presented in boxplots 

represents normalised values. n(high)=36; n(low)=32.  
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5.4. Discussion 

In this chapter I present experimental data from various experiments conducted on Hek293 

and HeLa cell lines expressing 217 GFP variants with the aim to study the relationship between 

codon usage, RNA localisation and protein levels, as described in chapter 4. I correlate 

experimentally derived parameters with various calculated and predicted sequence features, in 

order to explain variation seen in the data. I further establish GC content as a strong 

determinant of GFP expression and demonstrate that high GC at the beginning of GFP is of 

greater importance for high protein levels. Directly linked to this observation is also the finding 

that, unlike in bacteria and yeast, high folding energy is positively correlated with GFP protein 

expression in human cells. Additionally, I show evidence that a cryptic splice event is likely a 

major factor contributing to poor GFP expression.  

 

5.4.1. Comparative analysis of GFP expression in Hek293 and HeLa 

cells 

I quantified protein levels of 217 GFP variants using a method based on Flow-seq (as described 

in detail in chapter 4). I conducted this experiment using two different cell lines, Hek293 and 

HeLa, in order to validate this method as a novel approach for the phenotypic profiling of 

fluorescent reporter genes in human cell lines. The fluorescence profiles of both cell lines are 

correlated (Figure 41, R2=0.267, p=6.4e-13), but some GFP variants also show strikingly 

different patterns of expression. For example, GFP_126 reproducibly identifies as highly 

expressed in HeLa, but poorly in Hek293, whereas GFP_253 shows an opposite pattern. The 

comparative analysis of tRNA expression levels in different tissues has shown significant 

differences in the abundance of tRNA species (Dittmar et al., 2006), suggesting that tRNA 

levels may play a role in regulating protein synthesis. Some more recent studies have 

suggested that codon usage is coupled to functional differences in subsets of mammalian genes 

through adaptation to the tRNA pool (Gingold et al., 2014; Plotkin et al., 2004). However, a 

follow-up study has found that such differences are most likely driven by the underlying 

genomic context, such as GC content, and that tRNA pools of any cell type are equally efficient 

at translating any transcript population (Rudolph et al., 2016; Sémon et al., 2006). Since the 

expression of GFP variants in the experiments shown here is driven from the same locus within 

each cell line, it is unlikely that differences in genomic context, such as GC content around 

the insertion sites, could account for opposing effects on particular variants when comparing 

expression patterns between cell lines. This would therefore suggest that differences in the 
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tRNA pools between Hek293 and HeLa cells might be a likely cause for the observed 

intercellular variation in GFP expression. 

 

5.4.2.  GC content and even distribution increase GFP expression 

GFP protein levels correlate with high GC3 content in plate reader and FACS experiments, 

and the distribution of GC content along the sequence influences this correlation (Figure 44). 

This is also reflected in the comparison of protein levels between cell lines, as the correlation 

becomes better when only comparing variants with even GC distribution, but not between 

those with an uneven distribution (Figure 44e+f). This suggests that for variants with more 

varying GC distribution along their sequence, factors important for efficient expression either 

vary or act to different degrees in different cell lines. This led to the question whether a specific 

region within the CDS was of greater importance for determining protein levels. I used 

multiple regression analysis to address this question, as well as to get an estimate of the relative 

importance of any particular sequence segments (Figure 46). For Hek293, the results suggest 

that high GC3 within the first third of the sequence is of greater importance than in the 2nd or 

3rd third and that GC3 can overall explain 21.87% of the variation in protein levels. In contrast, 

results for HeLa cells do not seem to suggest a particular segment to be of bigger importance, 

but rather the overall GC content, which contributes to 7.07% of variation in expression. We 

confirmed the greater importance of high GC in the first part of the gene as a more general 

effect by obtaining similar results using translational gene fusion of GC-poor and a GC-rich 

gene variants of GFP and mKate2 described in 5.2.2. (Figure 47).  

 

In several studies it has been shown that changing codon usage can decrease protein 

functionality, likely by affecting the maturation process in which e.g. translational pauses, 

caused by varying decoding speeds of codons, allow chaperones to assist peptide segments to 

fold into their correct secondary structure (Fu et al., 2016; Kimchi-Sarfaty et al., 2007; Zhou 

et al., 2015). Removal of such pause sites could therefore result in protein misfolding. If this 

was the case in our experiments, this could lead to a decrease in fluorescence signal due to a 

potential loss of GFP functionality. In the gene fusion experiments described in 5.2.2, some 

highly fluorescent speckles in cells expressing protein fusions of GC-rich variants of GFP and 

mKate2 could be observed (Jeanne Bazile, unpublished). This indicates that proteins are 

aggregating due to a failure to adopt their correct conformational structure, which likely also 

explains their decreased expression compared to single gene controls (Figure 47b). We did not 

make such observations for any other expressed fusion constructs. Since qRT-PCR analysis 

showed that RNA levels are decreased as well, the results we obtain for constructs with a GC-
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poor gene at the beginning of the fusion protein, are in line with my previous findings showing 

that GC-poor GFP variants generally have lower RNA expression (see 3.4), and further 

underlines the finding that high GC near the 5’end of a gene leads to increased expression. It 

will be interesting to see whether similar effects can be observed for RNA levels across the 

GFP library, in particular those variants with uneven GC distribution.  

A possible explanation for low RNA levels could be a decrease in transcript stability. Recent 

studies have reported codon usage as a major determinant of RNA stability in yeast (Presnyak 

et al., 2015), zebrafish (Mishima and Tomari, 2016) and across other species (Bazzini et al., 

2016), mediated by the DEAD-box helicase Dhh1 (DDX6) accumulating along the mRNA 

transcript when ribosomes are progressing slowly or are stalled. This is followed by transcript 

deadenylation through the CCR4-NOT complex (Radhakrishnan et al., 2016). I conducted a 

stability time course on HeLa GFP pool cell lines (see 4.2.5) which should be able to provide 

clues on whether high GC near the beginning of GFP also exerts a positive effect on overall 

stability or whether other mechanisms are involved. Differences in transcript stability between 

variants can be seen, however, due to problems with control spike-ins, the data could not be 

normalised and therefore not further analysed (4.2.5). 

 

Transcript stability can also vary between different cellular compartments as the major 3’-5’ 

decay machinery, the RNA exosome complex, associates with different cofactors and adaptors 

in different cell compartments (Kilchert et al., 2016). It could therefore be interesting to 

additionally measure transcript half-lives separately in the nuclear and cytoplasmic fraction of 

cells to study if particular sequence features are also involved in the differential recognition 

by exosomal subunits, mediated for example through differential binding of particular mRNA 

binding proteins, such as DDX6 (Radhakrishnan et al., 2016). A knock-down of DDX6 could 

provide further insight into its role in codon-dependent transcript stabilisation in human cells, 

as so far, this has only been studied in yeast (Radhakrishnan et al., 2016). This experiment 

could be complemented with a series of knock-down experiments, e.g. targeting the exosomal 

subunit RRP6, to see whether poor GFP expression of some variants can be rescued. A related 

project aiming to identify further proteins specifically involved in the regulation of GC-poor 

and GC-rich genes using a siRNA knock-down approach, is currently ongoing and may shed 

further light onto the roles of DDX6 and RRP6, as well as other key regulators of RNA 

metabolism (Miriam Pedron, Christine Mordstein, in collaboration with the Dziembowski lab, 

Warsaw, unpublished). 

Another possible explanation for sequence-specific differences in molecular phenotypes could 

potentially be attributed to other properties that are directly linked to GC content. A study by 
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Bauer et al. investigated the influence of intragenic CpG dinucleotide distribution on gene 

expression (Bauer et al., 2010). By comparing the expression profiles of synonymous gene 

variants of GFP, one containing no CpGs (GC=55%), one containing 60 CpGs (GC=61%), the 

authors demonstrate that protein expression is about 29-fold reduced in stable Hek293 Flp-in 

cells and suggest that this is not caused by reduced mRNA stability or export, but rather by 

differences in transcriptional activation. However, the authors used Actinomycin D as reagent 

to block RNA polymerase II mediated transcription which is known to act by intercalating into 

GpC dinucleotides (Lo et al., 2013), hence, this particular drug is not suitable for comparing 

variants specifically designed to differ in this particular feature. I addressed a similar issue in 

section 3.7 in which I show that using a sequence-independent reagent a marked decrease in 

stability can be observed between two sequence-variants of GFP which only differ in their 

GC-content, rectifying a previous study which used Actinomycin D and reported no difference 

(Kudla et al., 2006). It is therefore very likely that differences in transcript stability are also 

contributing to the overall expression levels. Bauer et al. however also demonstrate differences 

in nucleosome positioning in vitro which might also occur in vivo (Bauer et al., 2010). 

Comparable conclusions were drawn from another study using a similar approach but with 

cytokines as model genes (Krinner, 2012). Interestingly, the question of positional importance 

of CpG dinucleotides was addressed using gene variants with enrichments in 5’, 3’ or central 

regions of the coding sequence, comparable to the GFP sequence thirds used here to 

investigate the effect of GC-content variation along the gene. The results suggest that close 

proximity of CpG dinucleotides to the transcription start site increase gene expression 

(Krinner, 2012), similar as to what I can observe in my data set as well (Figure 45+46). From 

the finding that CpGs are enriched around the TSS of the top 5% highest expressed genes 

compared to bottom 5% lowest expressed genes, the authors concluded that high CpG density 

close to the TSS is a general feature of highly expressed genes. However, no clear distinction 

between CpG and GC3 was actually made. Overall, my findings that high GC3 and high CpG 

correlate with high GFP expression agree with this study. I attempted to address the question 

of whether GC3 or CpG content is of greater importance by conducting a multiple regression 

analysis in order to calculate their relative contributions to observed protein expression. 

However, since the results of this analysis are not significant (p=0.5088; R2=0.0277), I 

conclude that it is not possible to dissect the individual contributions of GC3 and CpG by using 

the current set of GFP variants as both parameters are highly correlated (r=0.9, p=1.53e-82). In 

the future, this question could be addressed by designing a different set GFP constructs 

specifically enriched or depleted for either parameter, as well as with different distribution 

patterns along the coding sequence. A similar phenotypic screen as presented in this thesis 
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could then be used to study the effects of both GC3 and CpG individually, and to further dissect 

and investigate the underlying mechanisms. 

 

Directly linked to GC-content is also the strength of the folding energy of molecules. I 

demonstrate that higher folding energy at the beginning of a gene is also correlated to and 

important for high protein expression. This is in direct contrast to studies performed in E.coli 

showing that strong folding structures near the translation start site inhibit protein production 

(Goodman et al., 2013; Kudla et al., 2009). In bacteria, ribosomes directly recognise the 

ribosomal binding site at which translation initiates, whereas in eukaryotes, ribosomes 

associate to the 5’UTR and start scanning the transcript for the start codon. Therefore, it is not 

unexpected that structured RNA can be permissive for efficient translation initiation in 

eukaryotes, but not in bacteria. In addition, considering the importance of correct 5’end 

processing on several RNA processing steps, including the nucleo-cytoplasmic translocation 

of mRNA in eukaryotes, it could be speculated that strong folding structures may serve as 

binding sites important for the recruitment of additional factors, either required for e.g. the 

interaction with the 5’ cap complex in promoting efficient transcript expression, or for 

transcript stabilisation. 

  

5.4.2.1. GC content affects RNA localisation 

To study differences in RNA localisation between GFP variants, I performed cellular 

fractionation on Hek293 pool cells, followed by high-throughput sequencing of RNA isolated 

from both nuclear and cytoplasmic compartments. To study the effects of GC3 on GFP mRNA 

localisation, I compared the average GC3 content of variants that are more nuclear (RCC<0.4) 

with those that are more cytoplasmic (RCC>0.5) (Figure 50a+b). The results suggest that high 

GC leads to an increase in cytoplasmic RNA levels, which can also be seen when correlating 

GC with the corresponding RCC in each variant group: GFPs with even GC distribution are 

highly correlated with cytoplasmic RNA abundance, whereas all others show a more subtle, 

but still significant correlation (Figure 50+51). This further suggests that high GC content, in 

addition to even GC distribution, correlates with high cytoplasmic RNA levels. Whether this 

can be attributed to increased RNA export or differences in RNA stability, cannot be concluded 

from this experiment. The results from an RNA stability time course in combination with 

cellular fractionation experiments could therefore provide a better insight into the role of 

codon usage in determining transcript stability. Another potential method to test the 

involvement of RNA export could be to exploit an expression system used by viruses. Studies 

on HIV genes have shown that the expression of certain late viral transcripts depends on the 
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early viral protein Rev (Malim et al., 1989). Rev recognises the Rev-response element (RRE), 

an RNA sequence found on several viral mRNAs encoding structural proteins. Rev binds the 

viral mRNA in the nucleus and promotes efficient nucleo-cytoplasmic export. It was shown 

that increasing the GC-content of these viral genes circumvents the requirement for Rev 

(Kotsopoulou et al., 2000). We therefore hypothesise that low expression of particularly GC-

poor GFPs could be due to inefficient RNA export. To test this, the RRE could be cloned into 

the 3’ UTR of GFP constructs and expression measured in the presence or absence of Rev (e.g. 

by co-transfection of a Rev-expression plasmid). Comparing RNA levels between both 

conditions should reveal a subset of variants limited primarily by RNA export. As the outcome 

of this experiment would strongly depend on the successful introduction of the Rev plasmid 

into cells, it might be useful to express another fluorescent reporter gene on the Rev-expression 

plasmid, which could be used to FACS sort cells according to the expression of this reporter. 

This experiment could be followed either by cellular fractionation, to detect a subset of variants 

limited by RNA export which should be reflected in an increased RCC, and/or followed by 

Flow-seq, as this could further help to identify variants which are limited by RNA export, 

and/or translation. Since Rev-dependent RNA export has been shown to be mediated via 

CRM1, it could also be possible to block CRM1 mediated nuclear export using Leptomycin 

B. Leptomycin B is a drug which inhibits nuclear export of signal-containing proteins, such as 

Rev, by directly binding to CRM1 (Wolff et al., 1997). Since it is likely that different GFP 

variants adopt very different RNA structures, each facilitating the interaction with different 

sets of RNA-binding proteins (RBPs), treatment with Leptomycin B could be used to identify 

those variants, which depend on adaptor proteins to mediate CRM1-dependent RNA export, 

similar as e.g. snRNAs require PHAX to target CRM1 to the Cap-binding complex (CBC) 

(Müller-McNicoll and Neugebauer, 2013). CRM1 has also been shown to be involved in the 

export of some ARE-containing mRNAs (Gallouzi and Steitz, 2001). Such sequences could 

be targets for particular adaptor proteins, such as HuR (López de Silanes et al., 2004), which 

can ultimately link transcripts to the CRM1 export pathway. ARE-like sequences are 

negatively correlated with RCC scores in HeLa cells (Figure 59d, r= -0.38), suggesting that 

their presence affects the cytoplasmic-to-nuclear RNA ratio negatively. Whether this is 

through transcript destabilisation or through the interaction with particular RBP inhibiting 

efficient export, is, however, not clear.  

 

In HeLa, more parameters are significantly correlated with calculated RCC scores than with 

protein levels (compare figure 59d with 59a). GC3 as well as CpG are highly correlated with 

high RCC scores when variants are expressed without an intron. This contrasts protein 
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measurements for the same set of GFPs, for which GC3 and CpG are not significantly 

correlated with expression, suggesting that high GC3/CpG content may be primarily required 

for efficient cytoplasmic export. Trends in Hek293 are similar, though not significant, possibly 

due to the lack of replicate experiments (n=1 vs n=2 in HeLa). Quite dramatically different are 

the results when an intron is introduced into the 5’UTR. None of the calculated parameters are 

significantly correlated with RCC, indicating that the occurrence of a controlled splicing event 

may overwrite the influence of other sequence features. This is expected since splicing is 

known to facilitate efficient expression by mediating various steps in gene expression, as well 

as enhancing transcript stability (Choi et al., 1991; Nott et al., 2003). This is supported by the 

finding that the range of RCC covered by variants with even GC distribution is much tighter 

compared to variants expressed without an intron, which is mostly caused by an increase of 

RCC of those variants, with otherwise low RCC scores (Figure 53). This finding is also 

reflected in the increase of GC3 range covered by variants with more cytoplasmic localisation 

in the presence of an intron (Figure 51), indicating that GC-poor variants are more likely to 

benefit from a controlled splicing event, whereas with increasing GC3, RCC scores may not 

improve any further and are more likely to decrease instead (Figure 52c). This is in agreement 

with a previous finding in stable Hek293 and HeLa, in which the introduction of an intron 

markedly decreases protein levels of a very GC3-rich variant (GFP_001; GC3=0.97; Figure 

13, section 3.3), further demonstrating that splicing does not necessarily improve the protein 

output. For this particular variant, protein expression is already thought to be at its maximum 

and it would therefore not be expected to significantly improve due to splicing. To put this 

result in relation to my previous findings on single GFP variants showing that RNA levels do 

increase with increasing GC3, even in the presence of an intron (Figure 14e, chapter 3.4), this 

indicates that here, the primary effect of splicing is on transcript stabilisation in both cellular 

compartments, leading to an overall unchanged cytoplasmic-to-nuclear RNA ratio. However, 

I previously also observed that visibly more variation in transcript populations occurs in the 

presence of an intron as assessed by qRT-PCR using primers specific for either 3’UTR or 

5’UTR (Figure 14b+c, chapter 3.4), which suggests that some transcripts are indeed truncated. 

Since the sequencing library preparation requires the presence of both UTR sequences for PCR 

amplification, truncated mRNAs are therefore selected against and the experiments presented 

here will only take full-length GFP transcripts into account. The potential effect of splicing on 

transcript stability should be further studied by Northern Blotting to validate the high-

throughput RNA measurements, but also to confirm that splicing indeed does not rescue the 

expression of particularly GC-rich variants. This could be complemented with Flow-seq 

experiments using cell lines expressing GFP with an intron to further elucidate the role of 
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underlying sequence features and splicing. I would expect that for normally highly expressed 

variants, the presence of an 5’UTR intron might further contribute to a cryptic splice phenotype 

as the presence of a strong splice donor site might also lead to the utilisation of other, 

alternative acceptor sites, which otherwise might not have an effect at all. This could 

potentially by mediated by differences in GC-content (Amit et al., 2012) leading to the removal 

of essential coding fragments and thus, a decrease in protein levels.  

 

5.4.2.2.  High GC increases ribosome association with GFP mRNA 

A vast amount of studies investigating the functional consequences of codon usage focusses 

on effects on translation, but the correlations between transcript abundance and protein levels 

are often poor (Ingolia, 2014). To study translational dynamics, I performed polysome 

profiling on Hek293 GFP pool cells (Figure 48). In this experiment I used Cycloheximide, 

which is an agent that blocks ribosomes from translocating, effectively freezing them at their 

current location on the transcript. I was interested in the fraction of transcripts that are 

associated with fully assembled 80S ribosomes, termed Fassociated, as this can indicate whether 

a particular variant could in theory, due its association with 80S, be translated. I found that 

increasing GC3 leads to an increase in this fraction (Figure 49a, R2=0.454, p=1.136e-26). 

Additionally, I assessed the change in the translational state by scoring the abundance of a 

transcript occurring in those fractions, that could be considered as actively translating, termed 

Ftranslated, which, however, does not correlate with GC3 very well (Figure 49c+d). Both 

measures correlate to protein levels to varying degrees (Fassociated: R2=0.104; p=0.0394; 

Ftranslated: R2=0.0561, p=0.00117) but not particularly strongly. This is expected since it was 

previously shown that ribosome density is highly variable on endogenous genes in yeast 

(Ingolia et al., 2009) and inferring translational efficiency might therefore not be meaningful. 

The results shown here confirm that for a pool of sequence variants, translational dynamics 

vary strongly and the interpretation of a transcripts individual translational state might be 

difficult to directly relate to protein yield. The relationship between GC3 and Fassociated suggests 

that with increasing GC-content, more ribosomes associate to transcripts. Whether this is due 

to an increase in transcript abundance, e.g. through higher cytoplasmic localisation, allowing 

an increase in ribosome association, or whether an increase in ribosome binding leads to higher 

transcript stability, is not clear. For variants with uneven GC distribution, high Ftranslated scores 

correlate with protein levels (r=0.25, p=0.0384). No correlation can be observed with even GC 

variants, suggesting that despite an increase of monosome-associated transcripts, no other 

general shift in the translational state can be observed. 
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If, for any given GFP transcript, translation is inhibited during elongation, the abundance of 

RNA molecules would be expected to be shifted to heavier fractions, as slowly or inefficiently 

decoding ribosomes would be more abundant (Presnyak et al., 2015). It is, however, difficult 

to infer this from the data presented here due to the lack of resolution. In the future, it could 

be considered to increase such by subdividing polysomal fractions further. In the case that 

expression is limited by translation initiation, lower amounts of ribosome association would 

be expected, shifting RNA molecules rather towards lighter fractions (Bulmer, 1991). Since 

my data shows a stronger correlation with ribosome association, it would be interesting to 

repeat this experiment using a reagent that specifically blocks translation at the initiation stage, 

such as Harringtonine (Fresno et al., 1977; Ingolia et al., 2012). Comparing the results from 

both experiments could further elucidate the role of GC3 in modulating the translation 

dynamics by revealing variants, that are either limited at translation initiation or elongation. 

Overall, these findings suggest that GC3 is a determinant for ribosome association, but not 

necessarily of the translational state of a transcript. 

Studies utilising ribosome-profiling to investigate the relationship between codon usage and 

translation are not always conclusive. On the one hand, no correlations between frequently 

used codons and high translation elongation were found (Ingolia, 2014), and more frequent 

codons were reported to be translated with the same speed as rare codons (Pop et al., 2014; 

Qian et al., 2012). On the other hand, some studies suggest that rare codons are decoded slower 

due to lower levels of cognate tRNAs (Dana and Tuller, 2014; Gardin et al., 2014) or wobble 

pairing (Stadler and Fire, 2011). Therefore, the role of codon usage in translation modulation 

is still unclear. On the basis that elongation speed does vary between codons, an analysis of 

the distribution patterns of rare and frequent codons revealed a ramp sequence immediately 

downstream of the ATG consisting of stretches of rare codons (Tuller et al., 2010a, 2010b). It 

was suggested, that slow elongation caused by low folding energy at the beginning would help 

maximise protein yield in yeast and bacteria (Goodman et al., 2013; Shah et al., 2013; Tuller 

et al., 2010b). It would therefore be interesting to investigate whether similar effects can be 

seen across the GFP library, although so far, the data suggests that strong mRNA folding is 

beneficial for high expression, at least on the mRNA level. To address this question properly, 

more variants would have to be designed to specifically vary within the region of the predicted 

ramp (first ~50nt). Another observation that was made, was the overproportional co-

occurrence of certain codons. It was suggested that codons, that are recognised by the same 

tRNA, are more likely to occur in clusters, facilitating tRNA recycling in order to increase 

translation speed (Cannarozzi et al., 2010). This could also be tested by specifically designing 

variants, in which codons are arranged to either minimise or maximise tRNA recycling.   
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5.4.3.  Low GFP expression is partially caused by cryptic splicing 

To explain more variation seen in my data, I utilised a set of sequence features, either 

calculated or predicted, from a list of negative sequence motifs obtained from GeneArt, in 

order to correlate those to the expression patterns observed across all GFP variants. By doing 

so, I show that poor RCC scores of variants which only differ in the first sequence third can 

partially be explained by the higher occurrence of splice donor consensus sequences and ARE-

like motifs (Figure 59d). Splicing donor consensus motifs are also amongst the most enriched 

when comparing the highest with poorest expressed variants across the entire GFP pool 

(Figure 62 and 63). This is in line with my previous observation, that for some GFP variants, 

a cryptic splice phenotype can be seen, in which often the first sequence third is removed (see 

section 3.8, figure 21). This is likely caused by conserved sites that weakly resemble splice 

acceptor/donor sites. I suspect that certain differences in sequence composition within this 

region greatly contribute to this segment being falsely recognised as an intronic sequence, 

followed by splicing. Differences in intron vs exon GC-content have been shown to play a 

major role in correct splice-site recognition, and changes in GC-composition of exons may 

result in altered splicing patterns, with lower GC leading to increased splicing (Amit et al., 

2012). I therefore speculate that the observed cryptic splicing phenotype might directly be 

linked to the decreased GC content within this particular region. To test this, it would be 

required to specifically pick variants that are either very GC-poor, or very GC-rich within this 

region, but do not differ otherwise. If similar mechanisms are acting here, it would be expected 

that those variants with low GC in this region, would more likely lead to the false removal of 

this segment. However, this experiment does not exclude the possibility that other short motifs, 

such as splice enhancer or silencer motifs, might be present in this region as well, which could 

further complicate the splicing pattern, possibly leading to even more splice isoforms. Variants 

specifically lacking such sequences could be designed to further elucidate the role of codon 

composition on splice site recognition. 

 

5.4.4.  Quantifying the influence of sequence features on expression 

Most of the analyses presented here tried to elucidate the relationship between individual 

transcript properties and total protein levels. A common approach for dissecting the 

contributions of individual variables to an observation is by applying multiple regression 

analysis (e.g. Qian et al., 2012; Tuller et al., 2010). The general approach of this analysis is to 

feed multiple predictor variables (e.g. GC-content, CAI) into a model, in order to explain the 

observed variation in a particular response variable (e.g. protein levels) as the relative 

contribution of each predictor to the overall variation (R2). By doing so, I demonstrate the 
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higher importance of strong folding energy (Figure 60) and high GC3 (Figure 46) within the 

first GFP sequence third. However, this approach may not work well depending on how 

closely certain predictor variables are related. When applying multiple regression analysis to 

obtain the relative weights of translation scores and RCC in predicting protein levels, overall 

32.33% of the variation could be explained by Fassociated and Ftranslated (p=5.029e-12), however 

RCC lost its significance completely. This is partially expected since cytoplasmic abundance 

is inherently coupled to translation, as RNA binding proteins, acting as e.g. translational 

enhancers, usually do so indirectly by stabilising the transcripts and thus, differences in 

translation dynamics would also be expected to influence the translational yield. On the other 

hand, it would also be expected that poor cytoplasmic localisation should, at least in part, 

determine protein levels due to the depletion of the available and translatable RNA pool. This 

demonstrates the issues in identifying causative factors when predictor variables are strongly 

correlated to each other, such as in case of many calculated sequence features used in this 

study (Figure 56). When all parameters are included in a regression model, previously strongly 

positive factors, such as GC content, either become negative predictors, or result in 

insignificant p-values (data not shown). A study by Neymotin et al. (2015) tried to overcome 

such hurdles by two similar approaches: either by pre-selecting predictors in pair-wise 

correlations to only include significant ones into a multiple regression model, by step-wise 

deletion of those, with the highest p-value to retain only significant predictors, or, by building 

a model with predictors with the lowest p-values in pair-wise correlations, and with each new 

predictor added, the model is re-run to monitor changes in significance, to only retain those 

that explain the most variation (Neymotin et al., 2015). Relying on the statistical significance 

of relative weights is a popular approach, but has also been argued to not be meaningful due 

to issues in partitioning shared variance of heavily correlated predictors (Tonidandel et al., 

2009). It was therefore suggested that the significance of relative weights should be tested via 

bootstrapping, i.e. the repeated sampling with replacement from the existing data set to create 

a larger data set with which a confidence interval can be built around each relative weight 

(Tonidandel et al., 2009). On applying this strategy to the data presented here, the issue of 

insignificance of the majority of predictors could not be resolved. Several reasons could 

account for this, such as the relatively small number of variants tested (in comparison to 

genome/transcriptome-wide data sets), as well as the required parameter standardisation, 

which might lead to data skewing. In the future, the method of data normalisation needs to be 

reconsidered to accommodate the very different scales between parameters. Additionally, 

alternative modelling approaches, which may not need extensive normalisation, such as 

decision based modelling (e.g. Random Forests), could be explored as well.  
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6. Conclusion and outcome of this thesis 

Codon usage has been extensively studied, in particular in bacteria and yeast, but only a few 

studies attempted to quantitatively measure the contribution of synonymous codon usage on 

gene expression in human cells. By expressing a library of a reporter containing random 

synonymous substitutions, I systematically studied the effects of coding-sequence variation on 

expression of a protein-coding gene.  

 

I expressed several synonymous coding variants of GFP in transient and stable expressing 

human cell lines and could demonstrate the positive correlation of GC3 with protein 

expression.  Using a transcription inhibitor acting independent of GC-content, Triptolide, I 

could show a link between increased transcript stability and higher protein levels, a finding 

supplementing previous published data from our lab (Kudla et al., 2006). In order to study 

phenotypic effects of codon usage variants on a larger scale, I established and validated the 

use of stable Flp-in cell lines for the expression of several hundred GFP variants from the same 

genetic locus, a system which allows the simultaneous measurements of several molecular 

phenotypes via high-throughput sequencing, without the influence of positional effects or 

differences in gene regulatory regions (same promoter, same UTRs). Highly reproducible data 

from Flow-seq experiments confirm GC content as a determinant of gene expression and 

additionally reveal the positional importance of GC distribution as a novel factor influencing 

protein levels, with high GC3 within the first ~200nt leading to higher expression, regardless 

of the downstream sequence composition. This finding is in agreement with other studies 

suggesting high CpG near the 5’end is important for more efficient expression (Bauer et al., 

2010). This result is reproducible within two tested cell lines, Hek293 and HeLa, however, 

clear dissimilarities in expression patterns can also be observed, possibly caused by tissue-

specific differences in codon adaptation. The positional effect of high GC near the 5’ end is 

also directly linked to the observation that strong secondary structure formation near the 

translation start site is highly permissible for efficient gene expression in human cells. This 

result directly opposes results obtained in bacteria, for which high folding energy is non-

permissive for translation initiation due to ribosome occlusion (Kudla et al., 2009).  

 

Several sequence features are correlated with GC content, however the underlying 

mechanisms are not clear. In yeast, it was recently shown that codon adaptation is strongly 

correlated with RNA stability, mediated through the binding of the RNA helicase Dhh1 on 

transcripts with low ribosome density, leading to transcript destabilisation and reduced 
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expression (Presnyak et al., 2015; Radhakrishnan et al., 2016). I demonstrate that low GC 

content is correlated with poor gene expression, however it is unclear whether this is caused 

by reduced RNA stability, export or translation, and whether trans-acting factors, similar as to 

Dhh1 in yeast, are involved. A systematic siRNA screen of >200 candidate factors involved 

in RNA metabolism is currently underway and may shed light on the differential regulation of 

GC-poor and GC-rich genes (in collaboration with the Andrzej Dziembowski lab, Warsaw). 

This screen could be further expanded to a genome-wide scale using e.g. genome-wide siRNA 

or shRNA libraries. Alternatively, any potential trans-activating regulators, such as the human 

orthologue of Dhh1 (DDX6), could be directly tested in knock-down experiments using the 

established GFP pool cell lines followed by Flow-seq measurements. 

 

The most studied phenotypic consequences of synonymous mutations in human disease are 

related to splicing, and the generality of this was recently highlighted in a series of high-

throughput studies (Julien et al., 2016; Rosenberg et al., 2015). It remain, however unclear, 

how splicing affects other directly linked RNA processes, such as e.g. RNA stability and 

export, and how these effects may be modulated through synonymous changes. I observed the 

occurrence of a cryptic intron within many of the GFP variants, but the frequency of splicing 

varies for each. Using similar high-throughput sequencing approaches as described in this 

thesis, the probability of splicing could be quantified and correlated to the nucleotide sequence. 

A further related questions that I addressed, is, whether gene expression regulation varies 

between genes that are unspliced or spliced. By placing an intron in the 5’UTR of the GFP 

expression constructs, I demonstrated that splicing increases the cytoplasmic localisation of 

particularly GC-poor variants, but not of GC-rich variants, which generally already have high 

transcript levels. To be able to study and quantify the differences in regulation on multiple 

steps in gene expression further, the high-through put methods established in this thesis will 

aid uncover the sequence properties of variants for which expression depends e.g. on splicing.  

 

Recent published data shows that synonymous substitution rates are lower in exonic splice 

enhancer elements (ESEs) due to stronger purifying selection (Cáceres and Hurst, 2013; 

Savisaar and Hurst, 2016). Such elements however, are often not removed in the design of 

heterologous gene expression systems, in which intronless versions of genes are often 

preferred. A collaboration between the Kudla and Hurst group aims to further understand the 

regulation of splicing mediated by ESEs in combination with the underlying sequence 

composition, in order to develop new algorithms for codon optimisation of genes. To establish 
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the generalisability of novel findings, experiments will be conducted using variants of genes 

relevant in biomedicine. 

 

By using a list of sequence parameters utilised by GeneArt’s commercially available codon 

optimisation tool, I further demonstrated that cryptic splice site recognition is a major factor 

leading to decreased GFP levels of especially GC-poor variants. Whether this is caused by the 

introduction and/or disruption of splicing regulatory sequences, or directly linked to changes 

in sequence composition potentially enhancing the usage of weak splice sites, is, as yet, 

unclear and will require further investigation. In an attempt to quantitatively measure the 

contribution of several sequence features thought to be beneficial for expression, such as tAI, 

GC3 and CpG, by correlating experimentally derived data using multiple regression analysis, 

the issue of multicollinearity between several parameters led to inconclusive results, leaving 

the requirement for the exploration of alternative, e.g. machine-learning approaches, to 

decipher more complicated relationships between variables. A collaboration between the 

Kudla lab and GeneArt will further investigate and quantify the involvement of common 

codon optimisation features on gene expression by utilising a much larger GFP variant library 

of (~50,000 variants) in Flow-seq experiments. Results from this screen could be integrated 

into already existing algorithms for codon optimisation and tested in proof-of-concept 

experiments using biomedically relevant genes. 

 

Taken together, the methods established and the results presented in this thesis add to the 

current understanding of how synonymous substitutions affect gene expression by exploring 

the effects of codon usage on RNA export, stability, splicing and translation, as well as protein 

yield. Knowledge gained from this project, as well as ongoing work, will greatly benefit 

biomedical research by improving heterologous gene design for gene therapy, therapeutic 

protein production, DNA/RNA vaccines and synthetic biology. 
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7. Appendix 

 

Supplementary Figure 1. Distance tree of the first sequence third of synthetic GFP 

genes. An un-rooted tree generated by neighbour-joining, based on the pairwise hamming 

distance among 168 synthetic GFP genes. Trees generated for nucleotides 1-216 (of 720). 
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Supplementary Figure 2. Distance tree of the second sequence third of synthetic GFP 

genes. An un-rooted tree generated by neighbour-joining, based on the pairwise hamming 

distance among 168 synthetic GFP genes. Trees generated for nucleotides 217-489 (of 720). 
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Supplementary Figure 3. Distance tree of the third sequence third of synthetic GFP 

genes. An un-rooted tree generated by neighbour-joining, based on the pairwise hamming 

distance among 168 synthetic GFP genes. Trees generated for nucleotides 490-720 (of 720). 
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