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Abstract

The research in distributed algorithms is linked with the developments of statistical inference

in wireless sensor networks (WSNs) applications. Typically, distributed approaches process

the collected signals from networked sensor nodes. That is to say, the sensors receive local

observations and transmit information between each other. Each sensor is capable of combining

the collected information with its own observations to improve performance. In this thesis, we

propose novel distributed methods for the inference applications using wireless sensor networks.

In particular, the efficient algorithms which are not computationally intensive are investigated.

Moreover, we present a number of novel algorithms for processing asynchronous network events

and robust state estimation.

In the first part of the thesis, a distributed adaptive algorithm based on the component-wise

EM method for decentralized sensor networks is investigated. The distributed component-wise

Expectation-Maximization (EM) algorithm has been designed for application in a Gaussian

density estimation. The proposed algorithm operates a component-wise EM procedure for local

parameter estimation and exploit an incremental strategy for network updating, which can provide

an improved convergence rate. Numerical simulation results have illustrated the advantages of

the proposed distributed component-wise EM algorithm for both well-separated and overlapped

mixture densities. The distributed component-wise EM algorithm can outperform other EM-based

distributed algorithms in estimating overlapping Gaussian mixtures.

In the second part of the thesis, a diffusion based EM gradient algorithm for density estimation

in asynchronous wireless sensor networks has been proposed. Specifically, based on the

asynchronous adapt-then-combine diffusion strategy, a distributed EM gradient algorithm that

can deal with asynchronous network events has been considered. The Bernoulli model has been

exploited to approximate the asynchronous behaviour of the network. Compared with existing

distributed EM based estimation methods using a consensus strategy, the proposed algorithm

can provide more accurate estimates in the presence of asynchronous networks uncertainties,

such as random link failures, random data arrival times, and turning on or off sensor nodes

for energy conservation. Simulation experiments have been demonstrated that the proposed

1



algorithm significantly outperforms the consensus based strategies in terms of Mean-Square-

Deviation (MSD) performance in an asynchronous network setting.

Finally, the challenge of distributed state estimation in power systems which requires low

complexity and high stability in the presence of bad data for a large scale network is addressed.

A gossip based quasi-Newton algorithm has been proposed for solving the power system state

estimation problem. In particular, we have applied the quasi-Newton method for distributed

state estimation under the gossip protocol. The proposed algorithm exploits the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) formula to approximate the Hessian matrix, thus avoiding the

computation of inverse Hessian matrices for each control area. The simulation results for IEEE

14 bus system and a large scale 4200 bus system have shown that the distributed quasi-Newton

scheme outperforms existing algorithms in terms of Mean-Square-Error (MSE) performance with

bad data.
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Chapter 1

Introduction

1.1 Overview

State-of-the-art statistical inference methods in wireless sensor networks (WSNs) and power

system networks are driven by distributed approaches [5–7]. Given that the distributed signal

processing algorithms process the gathered information from distributed sensor nodes, each sensor

generates local observation and transmits the information within the network, and thus estimation

can be improved by combining all collected signals. It is well known that centralized solutions

require a central processor to process all collected data and then give feedbacks to other nodes.

Therefore, the processors have to be robust enough to support the whole system. Distributed

solutions release the computational burdens by processing the data locally. The computation is

thus significantly reduced, and lower communication bandwidth can be applied.

The major strategies for distributed adaptive processing include the incremental, diffusion, and

consensus strategies, within which the diffusion one had been shown to have the best efficiency [4].

We will present the details of the strategies in Chapter 2. There are still a number of challenges

for state-of-the-art distributed diffusion processing. For example, the coefficients for combing

the signals from the neighbours need to be computed after the network starts to work properly,

and this process will be affected by poor connections. Furthermore, one local node would need

a wide enough communication bandwidth to support large number of neighbours. Also it is not

easy to transmit the estimations if the unknown parameters associated with latent data sets. This

issue occurs for the applications considering large scale data sets as the convergence rate would be

limited by the data dimension. It is worth mentioning that the unknowns can be sparse in particular

scenarios. If we still feed in all the data in the processing, it would be challenging to deal with the
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Introduction

increased computational burden, the slower convergence and the corrupted mean square deviation

(MSD) performance.

1.2 Motivation

Energy efficiency, reliability, high estimation accuracy, and fast convergence are significant factors

to evaluate the performance of estimation algorithm for WSNs. However, most exist algorithms are

used in a centralized way for WSNs, which require the central process unit has the strong ability

to process all the data. On the other hand, some parameters of interest can be estimated upon the

network using the distributed estimation to leverage the local estimations and the links between

nodes. The Expectation-Maximization (EM) algorithm are widely used in WSNs for solving

the mixture model estimation problem [1]. However, the most documented problem associated

with EM is its possibility of slow convergence. All existing algorithms [8] in WSNs require to

update parameters simultaneously during the iteration procedure. They are only effective when the

mixtures are well-separated. If the mixtures become complex or overlapping, they suffer from a

slow convergence. Therefore, decomposition of the mixture parameter into component parameter

and updating only one component at one iteration could be a better solution for this scenario. As

a result, the decoupling of parameter updates implies the use of the smallest admissible missing

data space and leads to faster convergence.

It is a common practice that the estimation in WSNs are interfered by asynchronous network

behaviors . The conventional estimation algorithms like the EM, which are based on consensus

and incremental strategies, can not continuous evolve in presence of asynchronous network events.

But in the literature few adaptive algorithms have been reported based on asynchronous network

[9–11]. Thus, there is a need to develop distributed version of EM estimation algorithm which

will provide improved performance to deal with asynchronous network behaviours.

Distributed state estimation is important for power system and smart grid [6]. But it is not

practicable in presence of bad data, which results in large residual in power system and impacts on

the accuracy of state estimation. The conventional methods are to test the large residual in power

system and remove it before estimating the state of system. The second processing is to suppress
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the effects of bad data on state estimation in stead of removing it [12]. In addition, existing works

for distributed state estimation are effective for small scale power system networks, which are

difficult to apply into large scale networks for the reason of high computation complexity and

slow convergence. To reduce the requirement of computation and speed up convergence, second

order optimization are considered in this research.

1.3 Contribution

The contributions presented in this thesis are summarised as follows:

• Based on the fact that the component-wise EM algorithm has a faster convergence rate [8]

than the standard EM algorithms, a component-wise EM for Gaussian mixture model

based on distributed incremental solution is reported. In detail, we develop a distributed

component-wise EM algorithm (DCEM) and analyse the convergence properties in both

local processing and network updating. This algorithm can be used for defence, such as

battlefield intelligence, movement estimation and detection, and distributed target tracking.

• The diffusion-based EM gradient method for asynchronous network problems is proposed

and studied. Specifically, we develop an EM gradient algorithm that can exploit the

asynchronous adapt-then-combine diffusion strategy among the sensor nodes. The proposed

algorithm applies the Bernoulli model to describe the asynchronous behaviour of wireless

sensor network. The proposed algorithm results in improved estimation performance in

terms of the mean square deviation (MSD) associated with the estimates. In contrast to

previously reported techniques, a key feature of the proposed algorithms is that they involve

only EM procedure associated with the perfect synchronous network condition.

• The design of an approach, namely distributed quasi-Newton (DQN) scheme, that exploits

Broyden-Flethcher-Goldfarb-Shanno (BFGS) formula [13] to update the estimates under a

gossip protocol, improves the mean square error (MSE) performance in the presence of bad

data and large scale network setting is proposed. We also present a design procedure and

develop an algorithm to optimize the line search method, which can find a suitable step

size to coordinate the whole network. In addition, we have demonstrated its convergence
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properties under the network gossiping strategy.

1.4 Thesis Outline

This thesis is organized as follows:

• Chapter 2 presents an overview of the theory relevant to this thesis and introduces the system

models that are used to present the work in this thesis. The topics of distributed signal

processing, incremental and diffusion strategies, optimization methods and power system

state estimation are covered with an outline of previous work in these fields and important

applications .

• Chapter 3 presents the design of distributed algorithm for Gaussian mixture model in

a wireless sensor networks based on component-wise EM procedure. The incremental

version is proposed, alongside a convergence analysis and the application to mixture density

estimation.

• In Chapter 4, EM gradient algorithm for density estimation and its application to

asynchronous WSNs is proposed. The derivation of the proposed algorithm is presented

in terms of adapt-then-combine diffusion strategy and asynchronous network behaviour.

• Chapter 5 presents a novel distributed quasi-Newton scheme for distributed state estimation

in power system network. A distributed BFGS algorithm joint synchronous gossip protocol

is developed and compared with existing techniques.

• Chapter 6 presents the conclusions of this thesis, and suggests directions in which further

research could be carried out.
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Chapter 2

Background

In this chapter, an introduction of fundamental algorithms and techniques related to the research

carried out during the preparation of this thesis, including the properties of wireless sensor

networks, strategies for cooperation, optimization algorithms, state estimation in power system

are presented.

2.1 Wireless Sensor Networks

A sensor network is a group of sensor nodes which have communication and sensing capabilities.

The sensors function together as a cooperative network for the purpose of monitoring the

environment. Practically, sensor nodes are often formed in different modalities, such as radar,

acoustic and thermal, based on specific sensing applications. Common features for these

sensors include low-power, memory-constrained and communications. The development of

WSNs [14–16] was driven by the battlefield applications such as area monitoring and military

reconnaissance. WSNs appears to be developed into a powerful tool to observe and understand

the regional phenomena. The sensors in a typical WSN share local observations via wireless

links, and cooperatively pass the data to a main site to analyse and understand the state of

the environment. The sensing systems are often integrated with signal processing techniques,

such as the environmental parameter estimation and target classification, to extract the high-level

information for further applications. In particular, the estimation of environmental parameters

offers us further insight into describing the environment, and the classification of moving targets

is necessary for general battlefield monitoring. State-of-the-art wireless sensor networks have been

widely used in a variety of fields, e.g. battlefield surveillance, environmental monitoring, health

care. The followings are the main characteristics of WSNs [17]:
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• Low expenditure: Numerous sensor nodes are distributed in the environment to set up the

WSN. The cost of sensors have to be low to support such a large network.

• Energy consumption: The computation, communication and storage are the main sources of

consuming the energy. Since in general there is not route to charge the sensors, we should

take account of the energy consumption factors in the algorithms.

• Computational load: All the sensor nodes are constrained by their computational power and

energy need to be considered.

• Communication abilities: The wireless communications in WSNs are usually limited by the

short range and narrow bandwidth. Also it is hard for the WSNs to work properly within

unattended areas. The reliability, security and resiliency need to be considered in design.

• Security and privacy: In a number of scenarios, the sensors are required to be able to

prevent from unauthorised access and intentional attacks. Privacy policies also need to be

considered.

• Distributed sampling and processing: WSNs often consist of thousands of deployed sensors

and each of them is designed to observe, communicate and process information. Such a

system can benefit from the distributed processing.

• Dynamic topology: Typical WSNs are not static. Sensors can be eliminated and added

which result in the changes on the topology. Consider this context, the nodes should be

equipped with the reconfiguration, self-adjustment capabilities.

• Self-organization: Especially in hostile environments, the sensors are required to organize

them selves to set up the network. They should be able to cooperatively adjust themselves

and work automatically.

• Robustness: Since the sensors should be able to work in tough environments, they need to

be error tolerant. Ideal nodes should be equipped with the self-calibrate ability.

• Tiny outlook: Most sensor nodes are required to be small in the physical sizes. Also the

energy consumption and communication power will be limited due to the small sizes.
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2.1.1 Centralized and Decentralized approaches in Sensor Networks

Collaborative parameter estimation in a sensor network can be carried out in two ways - centralized

or decentralized [18–20], as shown in Figure 2.1. In the centralized approaches, the sensor nodes

transmit their data or local statistics to a centralized unit, named a fusion center, which has the

ability of processing the data centrally. The fusion center then sends the results back to the

each nodes [20, 21]. In this scheme, centralized unit has a powerful processing capacity and

the local sensor does not need the computational capability. However there exist some limitations

in this kind of scheme. In real-time scenarios where each nodes collect data continuously, the

exchange of information between the sensor nodes and the centralized fusion center require a

large communication bandwidth. In addition, when the central processor fails to process the data,

it will render the whole network impossible to use.

With the decentralized methods, the sensor nodes exchange summary statistics among neighbors

to evaluate the global objective functions under a distributed manner. The continuous diffusion

of summary statistics across the network enables nodes to adapt their performance in terms

of network conditions. Distributed methods are of interest in scenarios in which a centralized

unit is either unavailable or prohibitively costly; such examples include military or agriculture

monitoring applications in which the nodes are deployed over a wide region and also energy

constrained [20, 22].

In the distributed networks, any node can connect to other nodes directly, which increase reliability

[23–25]. Different from central network, there are some advantages in distributed sensor networks.

First, if the center crashes, the whole network is still working, as there is no a central processor.

Second, nodes are connected to each other in a distributed network so that multiple paths can

be selected for data transmission in the network. Also, influenced by the network topology,

each node collects the information of the target, and shares this information with other nodes,

to give estimations on the parameters of interest. A number of methods have been developed for

distributed wireless networks, e.g. the EM algorithm, EM variant algorithms, and Least-Mean-

Square method.
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Fusion Center

(a) A centralized network

(b) A decentralized network

Figure 2.1: Network Topology

2.2 Cooperation Strategies for Exchange of Information

As introduced previously, there are three cooperation strategies: incremental, diffusion and

consensus [26]. In this section, each cooperation strategy is analysed for information exchange

between sensor nodes. For simplicity, we illustrate these strategies based on linear regression

model [27]. Considering a network with M nodes over a spatial domain for the incremental

strategy, each node takes a scalar measurement dtm at each time scale t, according to linear

regression model:

dtm = xtmω0 + etm (2.1)

where xtm represents the 1×N input data, N denotes the length of data and etm is the zero mean

noise sample at each node with the variance σ2
m. In order to approximate ω0 in a distributed

manner, each nodes is required to minimize the local cost function [26]

Jω(ωtm) = E|dtm − xtmω0|2 (2.2)
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where E is the expectation and ωtm stands for the estimated vector at node m with time scale t.

Then, the global cost function for the entire network can be described as:

Jω(ω) =
M∑
m=1

E|dtm − xtmω0|2 (2.3)

In the following, this global cost function can be minimized by the least mean square method

(LMS) in different cooperation strategies.

2.2.1 Incremental Strategy

The simplest cooperation is incremental strategy [5, 28], following a Hamiltonian cycle. These

nodes receive the information from adjacent node, and re-transmit the information to next node in

a pre-determined direction. In the incremental scheme, the scalar measurement dtm at node m, the

input signal vector xtm, and the local estimate ψtm−1 from adjacent nodes are used to construct

the local estimate ψtm of the network through a distributed estimation strategy [5]. Then, the local

estimate ofψtm is passed to the next nodem+1 in one direction. The final node’s estimate is equal

to the final estimation of the network. Based on the traditional LMS algorithm, the incremental

LMS algorithm updates the estimate at node m as [5]:

ψtm = ψtm−1 + am(xtm)∗[dtm − xtmψtm−1] (2.4)

where am is a constant of step size. The incremental strategy is briefly illustrated in Figure 2.2.

2.2.2 Diffusion Strategy

Different from incremental strategy which obtains information from neighbor nodes, each node

in the diffusion network has some linked neighbors. Two diffusion estimation strategies are

presented: Adapt-then-Combine (ATC) strategy and Combine-then-Adapt (CTA) strategy [29].

In the ATC strategy, optimization algorithms are used in each node to obtain a local estimate of
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Node 1

Node m+1

Node m
Node m-1

Node M

Figure 2.2: Incremental Strategy

ψtm. Then, each nodes collect the estimates from neighbor nodes and then combine them through

ωt+1
m =

∑
n∈Nm

bt+1
n,mψ

t+1
n , (2.5)

where bn,m is the combination coefficients and calculated through the Metropolis rules, the

Laplacian or the nearest neighbor rules [30], n is the neighbour node n linked to node m and

Nm is the set of neighbors node m. The Metropolis rule can be implemented as [31]

bm,n =



1/(max{|Nm|, |Nn|}), n ∈ Nm and n 6= m

1−
∑

k∈Nm\{m} bn,m, m = n

0, otherwise.

(2.6)

where|Nm| is the cardinality of Nm. The weight matrix by Laplacian rule is given by [30]

B = IM − βL (2.7)
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where IM denotes aM ×M identity matrix and B is theM ×M matrix of combining coefficient,

with entries {bm,n} and β = 1/|Nmax|. The Laplacian matrix is defined as

L = D−A (2.8)

with D = diag(A1M ) denoting the degree matrix, and A being the M ×M network adjacent

matrix as

Am,n =


1, {m,n} ∈ ε

0, otherwise

(2.9)

where ε is the edge of network. The combining coefficients bm,n satisfies

∑
n∈Nm

bm,n = 1 (2.10)

The ATC diffusion strategy is described in Figure 2.3(a). Based on the LMS algorithm, the

diffusion LMS ATC strategy is performed as follows:

ψt+1
m = ωtm + am(xtm)∗[dtm − xtmωtm], (2.11)

ωt+1
m =

∑
n∈Nm

bn,mψ
t+1
n , (2.12)

The CTA strategy can operate in a reverse way. By collecting the estimates of their neighbors in

previous time slot, and combining them together through

ψtm =
∑
n∈Nm

bn,mω
t
n, (2.13)

After ψtm is generated, ψtm is employed at node m together with dtm and (xtm), to generate ωt+1
m .

Based on the LMS algorithm, the diffusion LMS CTA strategy is given by:

ψtm =
∑
n∈Nm

bn,mω
t
n, (2.14)

ωt+1
m = ψtm + am(xtm)∗[dtm − xtmψtm], (2.15)

The CTA process is described in Figure 2.3(b).
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Node 1

Node m+1

Node m

Node m-1

Node M

Combine and get

(a) ATC Strategy

Node 1

Node m+1

Node m

Node m-1

Node M

Combine and get

Adapt with and get

(b) CTA Strategy

Figure 2.3: Diffusion Strategies
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Node 1

Node m+1

Node m

Node m-1

Node M

Combine and get

Adapt and getwith

Figure 2.4: Consensus Strategy

2.2.3 Consensus strategy

As shown in Figure 2.4, each node in the consensus strategy collects the previous estimate from its

neighbours, and combines them together through the Metropolis rules and the Laplacian matrix to

generate ψtm. Each node can update the local estimate of ωt+1
m through adaptive algorithms with

the estimate of ψtm and its local estimate of ωtm .

According to the traditional LMS algorithm, the LMS consensus strategy [32] is given as:

ψtm =
∑
n∈Nm

bn,mω
t
n, (2.16)

ωt+1
m = ψtm + am(xtm)∗[dtm − xtmωtm], (2.17)

Gossip algorithm has been well investigated for network processing as a solution to consensus

strategies [33–35]. A consistent agreement can be achieved among sensor nodes by exchanging

information locally. Gossip algorithms can be classified as synchronous and asynchronous. In

synchronous gossip algorithms [31], node m collects information from all of its neighbours, and

combines with its own information to update the estimates at each iteration. In a randomized

network setting, asynchronous gossip algorithms are assumed as the Poisson random process in

[35,36]. In this model, each node has its own Poisson clock. When nodems clock ticks, it activates
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and randomly selects one neighbour node to pair with, and then performs an averaging between

the pairwised nodes [34]. Gossip algorithms for consensus problem have also been extended to the

power systems [12], we will discuss an application of synchronous gossip algorithms for electric

power system in Chapter 5.

2.2.4 Comparison of Diffusion and Consensus Strategies

To simplify the comparison of consensus, ATC diffusion, and CTA diffusion strategies, the

recursions for each strategies can be rewritten as [4]:

Consensus:

ωt+1
m =

∑
n∈Nm

bn,mω
t
n + am(xtm)∗[dtm − xtmωtm], (2.18)

ATC Diffusion:

ωt+1
m =

∑
n∈Nm

bn,m

(
ωtn + an(xtn)∗[dtn − xtnωtn]

)
, (2.19)

CTA Diffusion:

ωt+1
m =

∑
n∈Nm

bn,mω
t
n + am(xtm)∗

[
dtm − xtm

( ∑
n∈Nm

bn,mω
t
n

)]
, (2.20)

The weight-error vectors in consensus and diffusion networks are affected by the different orders

of computations. Also, extra information can be included into the processing chain by the diffusion

strategies introducing no extra computational complexity, compared to the consensus strategy.

As proven in [4, 26], the diffusion strategy can provide a better performance than the consensus

strategy, with the same computational load and data throughput, as shown in Table 2.1. The

diffusion strategies introduce one intermediate variable used in subsequent computations. As

shown in [4, 26], the computing orders have impact on the steady state performance of different

strategies.
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Table 2.1: [4] For the node m, the numbers of the complex multiplications, additions, and
exchanged N × 1 vectors within each iteration are compared. nm is the degree of node k which
indicates the size of its neighborhood Nm.

ATC diffusion CTA diffusion Consensus

Multiplications (nm + 2)M (nm + 2)M (nm + 2)M

Additions (nm + 1)M (nm + 1)M (nm + 1)M

Vectorexchanges nm nm nm

2.2.5 Asynchronous Diffusion Strategy

A perfect synchronous manner is assumed in the discussion of all the strategies in the WSNs.

However, this is not always practical, as the measurement data might not arrive timely. Also,

sensor nodes might randomly turn on and off to save energy. Since there may be failure of

communication links between nodes, distributed solutions are not allowed to work properly.

Therefore, the diffusion strategy is considered under the imperfections.

There have been a number of investigations on the consensus and gossip strategies under the

asynchronous scheme [34,35,37]. Some methods focus on changing topologies [38–41]. However,

only few studies exist for diffusion strategies [9–11,42,43]. Compared with diffusion scheme, the

early studies focused on the averaging algorithms which did not deal with streaming data. These

can lead to issues when data is flowing in as the noise always exists and the adaptation will be shut

down by the use of diminish step-size. In this thesis, we only investigate the asynchronous ATC

strategy [9–11]. To present the ATC procedure in an asynchronous network, the asynchronous

ATC strategy can be modified as follows:

ψt+1
m = ωtm + at+1

m (xtm)∗[dtm − xtmωtm], (2.21)

ωt+1
m =

∑
n∈N t+1

m

bt+1
n,mψ

t+1
n , (2.22)

where the at+1
m , bt+1

n,m are random step-sizes and combination coefficients with time, and N t+1
m

stands for the random neighbours of node m at time t + 1. The at+1
m and bt+1

n,m are non-negative

and random to control the step-size and combination coefficients respectively. In particular, bt+1
n,m
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needs to follow:

bt+1
m,n =


> 0, n ∈ Nm

0, otherwise.

(2.23)

The asynchronous strategy (2.21) and (2.22) is capable of dealing with most scenarios in practice.

2.3 Optimization Algorithms

So far, a number of optimization methods have been developed for distributed networks. In this

section, a few of related optimization algorithms are introduced.

2.3.1 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm was introduced in 1977 by Dempster in [44],

and is a well-developed method to provide the solution to problems of maximum likelihood

(ML) estimation. An important aspect of the EM algorithm is the cost function with optimized

likelihood, comprising of observed y data and unobserved z data. The unobserved data can

be included, as missing data might be in the practical application or they are required for the

likelihood computation. There a number of two steps for The EM procedure: Expectation (E-)

and Maximization (M-) step. In the E-step, the likelihood estimation is calculated by using the

observed data and the ML estimates, while the likelihood function data is maximized to refine

the estimate of parameters in the M-step. In this thesis, we assume that each sensor in a WSN

senses an environment that can be described as a mixture of components, these measurements of

each sensor can be modeled with a mixture of Gaussian components, thus, we can present the

procedure of EM algorithm for Gaussian mixture model as follows.

Let P(y|µ,Σ) denote the evaluation of a Gaussian density with at the data sample y =

{y1, · · · ,yN}, y is a N -dimensional continuous-valued data vector. The measurements are
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assumed to obey a Gaussian mixture distribution with J components

P(y|µ,Σ) =
1

2πd/2|Σ|1/2
exp
{
− 1

2
(y − µ)TΣ−1(y − µ)

}
(2.24)

and

yi ∼
J∑
j=1

αjP(µj ,Σj), i = 1, · · · , N (2.25)

where αj is mixing probability and P(µ,Σ) denotes the Gaussian density function with mean

µ and covariance matrix Σ. The formulation of the mixture problem in the EM framework is

achieved by augmenting the observed data vector y with the associated component-label vectors

z = {zi}Ni=1. Each zi takes on a value from the set {1, . . . , J}, where zi = j indicates that yi is

generated by the jth mixture component

yi ∼ P(µj ,Σj). (2.26)

The complete data log-likelihood Lc(θ) is then given by

Lc(θ) = log p(y, z|θ) (2.27)

=

N∑
i=1

J∑
j=1

zi,j(logαj + logP(yi|µj ,Σj))

where p(y, z|θ) denotes the joint density of y and z with parameter θ. Starting from an initial

estimate θ0, the standard EM algorithm alternates iteratively between the E- and M- step. In the E-

step, given the current estimate θt, the conditional expectation of the complete data log-likelihood

is computed as follows

Q(θ;θt)= E[Lc(θ)|y,θt]

=

N∑
i=1

J∑
j=1

wt+1
i,j (logαj + logP(yi|µj ,Σj)), (2.28)

where

wt+1
i,j =

αtjP(yi|µtj ,Σt
j)∑J

j=1 α
t
jP(yi|µtj ,Σt

j)
(2.29)

is the posterior probability that the ith sample belongs to the jth component given the observed

value yi.
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In the M-step, the parameters are computed by maximizing the complete data log-likelihood

function (2.27)

θt+1 = arg max
θ

Q(θ;θt), (2.30)

leading to the following update formula for j = 1, · · · , J .

αt+1
j =

1

N

N∑
i=1

wt+1
i,j , (2.31)

µt+1
j =

∑N
i=1w

t+1
i,j yi∑N

i=1w
t+1
i,j

, (2.32)

Σt+1
j =

∑N
i=1w

t+1
i,j (yi − µt+1

j )(yi − µt+1
j )T∑N

i=1w
t+1
i,j

(2.33)

The E-step and M-step repeat iteratively until converge to a local maximum likelihood.

2.3.2 Component-Wise EM Algorithm for Mixtures

Component-wise EM for Mixtures (CEMM) is one of EM-variant algorithms [8]. The mixture

problem arises, when the sum of mixing proportions is equal to one. By defining an appropriate

log-likelihood function, the Lagrangian dualization approach can change the initial problem into

an unconstrained maximization. The CEMM algorithm is a natural coordinate-wise variant of EM

algorithm. Considering mild regularity conditions, the EM algorithm can converge to a fixed point

of the likelihood. The standard EM procedure updates all parameters simultaneously, which results

in slow convergence in the presence of overlapping mixture densities. However, the parameters can

be decoupled and updated by component-wise EM algorithm, achieving a faster convergence. For

a Gaussian mixture model with J components, each iteration of CEMM consists of J cycles and

the conditional expectation is computed and the parameter vector associated with jth component

is updated at each cycle. The procedure of CEMM in a single iteration is presented as follow:

In the E-step, the conditional expectation is computed as:

wt+1
i,j =

αtjP(yi|µtj ,Σt
j)∑j−1

k=1α
t+1
k P(yi|µt+1

k ,Σt+1
k ) +

∑J
k=j α

t
kP(yi|µtk,Σt

k)
. (2.34)
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The M-step is then

αt+1
j =

1

N

N∑
i=1

wt+1
i,j , (2.35)

µt+1
j =

at+1
j

wt+1
j

, (2.36)

Σt+1
j =

bt+1
j

wt+1
j

− µt+1
j µt+1′

j , (2.37)

As pointed out in [8], the decoupling of parameter updates means the use of the smallest admissible

missing data space and provides a higher convergence rate than the standard EM algorithm. In

Chapter 3, the application of CEMM will be introduced for a distributed WSN.

2.3.3 EM Gradient Algorithm

For a number of maximum likelihood based methods, it is impossible to perform the M-step within

the EM algorithm . Solving the the M-step in the EM algorithm is realised with one iteration of

Newton’s method in the EM gradient algorithm. Thus, the EM gradient algorithm share some

common local features with the EM algorithm. Similar with EM algorithm, the conditional

expectation log-likelihood function with respect to complete data is calculated using (2.28) in

the E-step of EM gradient algorithm. The current parameter column vector θt can be updated

using a single iteration of Newton’s method in the M-step as

θt+1 = θt −∇20Q(θt,θt)−1∇10Q(θt,θt), (2.38)

= θt −∇20Q(θt,θt)−1∇L(θt)

where ∇20Q(θt,θt) and ∇10Q(θt,θt) denote the Hessian matrix and gradient vector of the

conditional log-likelihood function Q(θt,θt), respectively. When L(θ) − Q(θ,θt) has the

minimum at θ = θt, there is the equality as ∇10Q(θt,θt) = ∇L(θt). The EM and EM gradient

algorithms at the same convergence rate are attracted when using strict local maximum point of

the observed likelihood. In Chapter 4, we will introduce an EM gradient based diffusion algorithm

and its application to an asynchronous network.
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2.3.4 Least Mean Square Method

Least-Mean-Square algorithm is a class of adaptive algorithm, developed from the MSE cost

function [27, 45]:

J(ω) = E|dt − xtωt|2 (2.39)

where dt denotes the desired signal, xt is the input signal and ωt denotes the weight vector. Then,

the gradient vector of the cost function is given as

∂J(ω)

∂ωt
=
(
ωt
)∗

Rx − bx (2.40)

where bx is the cross-correlation between the desired signal and the input signal and Rx is the

input signals correlation matrix. The optimum solution to the cost function (2.39) is the Wiener

solution, given by

ωt = R−1
x bx (2.41)

Rx and bx, as the statistics of the received signal, are not known in advance for the adaptive

algorithms. Thus, these quantities need to be estimated. Instantaneous estimates for Rx and

bx [27, 45] is used in LMS algorithm, expressed as

Rx = (xt)∗xt (2.42)

bx = (dt)∗xt (2.43)

Consisting of (2.42) and (2.43) into (2.40) leads to

∂J(ω)

∂ωt
= (ωt)∗(xt)∗xt − (dt)∗xt (2.44)

The filter coefficient vector is updated by

ωt+1 = ωt − α
(
∂J(ω)

∂ωt

)∗
= ωt + α(xt)∗[dt − xtωt] (2.45)

where α is the step-size controlling the convergence speed.
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2.4 Application in Power System State Estimation

In this section, the application of distributed estimation in power system are presented.Power

system state estimation (PSSE) stands for acquiring the voltage phasors of all system buses at

a fixed instant. This is realised by obtaining redundant measurements of power flows upon the

network, and then implementing inferences to retrieve the values of the phasors. Previously, a

centralized data processing center was used in PSSE to collect all the received data and retrieve

a global solution [46, 47]. The decentralized estimation method can be developed to have higher

estimation rate and better sensing ability. Large scale problems can be tackled by separating the

observations and buses in distributed state estimation methods for power systems. Each separated

control area senses and processes local data by itself, and communicate with other areas.

Distributed adaptive processing is now a powerful tool to perform the distributed state estimation

for power systems. We consider an IEEE 14-bus system [48] which has 14 substations to

demonstrate the use of distributed processing in power systems. The measurement model of the

multi-agent state estimation can be expressed as:

zi = hi(x) + ei (2.46)

where x represents the state of the interconnected system, hi(x) stands for nonlinear functions

of admittance matrix, i is the bus number, ei denotes the measurement error with zero means.

Vector x denotes the state variable of the entire interconnected power system, including voltage

magnitudes and voltage phase angles of all buses, which can be identified as the phase angle vector

xi for all buses. We can now approximate the measurement equation (2.47) with

zi = Hixi + ei (2.47)

where Hi denotes the measurement Jacobian vector for bus i. The goal of distributed estimation

method is to calculate an estimate of xi, which can minimize the cost function as

x̂ = min
x∈X

I∑
i=1

‖zi −Hixi‖2 (2.48)
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To minimise the cost function (2.49), a number of distributed state estimation approaches have

been proposed, such as M-CSE algorithm [6] and the alternating direction method of multipliers

(ADMM) method [49], gossip based Gauss Newton (GGN) algorithm [12].

2.5 Chapter Summary

In this chapter, the characteristics and typical network topology of WSNs are introduced. By

contrast with centralized processing, distributed version can reduce wireless bandwidth and energy

consumption, as well as improve the robustness of network connections. Three main cooperation

strategies on distributed estimation of parameters in WSNs are briefly presented. Meanwhile,

the optimization algorithms aforementioned and the distributed methods for power system state

estimation are presented in this chapter. In the following chapters, we will introduce these relevant

optimization algorithms and their applications to distributed networks.
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Chapter 3

Distributed Component-Wise EM Algorithm for

Mixture Models in Sensor Networks

This chapter considers mixtures model estimation for sensor networks in a distributed manner.

Based on the statistical literature, the maximum likelihood (ML) estimate of mixture distributions

can be computed via a straightforward implementation of the expectation and maximization (EM)

algorithm. In the sensor networks without centralized processing units, data are collected and

processed locally. Modifications on standard EM-type algorithms are necessary to accommodate

the characteristics of sensor networks. Existing works on the distributed EM algorithm mainly

focus on the estimation performance and implementation aspects. In this chapter, we address the

convergence issue by proposing a distributed EM-like algorithm that updates mixture parameters

sequentially. Simulation results show that the proposed method leads to significant gain in

convergence speed and considerable saving in computational overhead.

3.1 Introduction

Sensor networks are composed of enormous small devices with limited measuring, processing, and

communication abilities. There has been a variety of environmental monitoring applications, e.g.

the temperature sensing, automobile tracking, and cooperative information processing [50, 51].

As a powerful probabilistic modeling tool, the Gaussian Mixture Model (GMM) can be used

for modeling density functions, for example, machine learning, pattern recognition and so on.

The density estimation is essential especially in exploratory data analysis. For this purpose, the

expectation-maximization (EM) methods are widely used [1].
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The EM approach is well known to give ML approximations [52]. An expectation step (E-step) is

performed in the EM method, and the likelihood expectation is calculated based on the observed

latent variables. While the maximization step (M-step) is to maximize the expected likelihood to

obtain the estimates of ML parameters. To start another E-step, the parameters on the M-step are

required. The process is repeated a number of times until the convergence at a local maximum

is reached. In the context of mixture models, it provides closed form solutions for estimating the

means and covariance matrices of Gaussian components [53].

However, most EM algorithms are used in a centralized way for WSNs, which require the central

process unit has the strong ability to process all the data. On the other hand, some parameters of

interest can be estimated upon the network using the distributed estimation to leverage the local

estimations and the links between nodes. Unlike the centralized strategy which processes all the

information with a central node, the distributed estimation behaves differently and thus mitigates

the computational load. Furthermore, the distributed estimation method is more robust against link

failure [54, 55]. There have been a variety of distributed estimation approaches, such as diffusion

Least mean squares (LMS) Strategies [56], distributed recursive least squares (RLS) method [57],

distributed target source location [58], distributed power allocation and management approach

[59], distributed sparse estimation [60, 61], distributed adaptive learning [62] and distributed

Gaussian mixture density estimation [63].

The cooperation strategies among nodes have significant impact on WSNs within a distributed

processing framework. The incremental and consensus strategies are widely used for distributed

processing. The consensus strategy is discussed in [64, 65] which employs a slow time scale for

sampling and a fast time scale for iterative operations. This strategy aims to derive the consistent

estimates for all nodes. A distributed EM method for Gaussian mixtures using the consensus

strategy is presented in [2], in which a consensus filter is introduced between the E- and M-

steps. As the resources are constrained for WSNs communications [5], the application is limited

for consensus-based methods with two time scales. Especially for a large scale WSN, massive

computational burden will be brought in to achieve the consistency among the network nodes.

For the incremental strategy, the data flows in a pre-specific direction from one node to another

node, which leads to the loop-type cooperations between nodes with minimum power and
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communications. In this chapter, we first assume that individual observations over the environment

can be modeled as the mixture of Gaussian distributions. In [1], this model was successfully

applied to describe the data measured by sensor networks in a heterogeneous environment, such

as temperature, air pressure, humidity, or light. Therein, a distributed (EM)-type algorithm was

derived to identify Gaussian components common to the whole network and mixing probabilities

associated with each node. Methods for improving the performance of distributed EM algorithms

were suggested in [2, 66, 67].

In addition, increasing convergence speed is one of motivations for the DCEM method. The

most documented problem associated with EM is its possibility of slow convergence. To speed

up the convergence, various approaches have been proposed in the statistical literature [68, 69].

In [8], a component-wise EM algorithm was applied to mixture models. Instead of computing

all parameters simultaneously in the M-step, the component-wise EM updates the component

parameters sequentially. As the numerical results shown in [8], a better convergence rate can be

achieved with this flexible approach. Another advantage of the component-wise EM is that despite

the relaxation of the constraint on mixing probabilities, the sum of mixing probabilities equals to

one when the algorithm converges.

To facilitate the application of the component-wise EM to sensor networks, we adopt the idea of

incremental EM [53, 70] to enable local processing at sensor nodes. Note that such incremental

strategies may not be suitable for large scale networks. Therefore, we assume a small enough

network, typically less than 100 sensor nodes. As illustrated in the following sections, given

sufficient statistics from the previous node, the E- and M-step at the current node involve only

local observations. Simulation results showed that the proposed algorithm achieved a higher

convergence rate than the distributed EM [1], leading to significant saving of overall computational

time.

This chapter is organized as follows. The problem and data models is described in Section

3.2. Section 3.3 includes a brief description of the standard EM and distributed EM algorithms.

The distributed component-wise EM algorithm for sensor networks is developed in Section 3.4.

Section 3.5 presents an analysis of the convergence rate of the DCEM algorithm, Section 3.6

discusses simulation results and presents the performance of the proposed algorithm. Concluding
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remarks is given in Section 3.7.

3.2 Problem Formulation

Consider a sensor network consisting of M sensor nodes. The mth node records Nm independent

and identically distributed data ym = {ym,1, · · · ,ym,Nm}. The measurements are assumed to

obey a Gaussian mixture distribution

ym,i ∼
J∑
j=1

αm,jP(µj ,Σj), i = 1, · · · , Nm (3.1)

where P(µ,Σ) denotes the Gaussian density function with mean µ and covariance matrix Σ. The

mixing parameters αj = {αm,j}Mm=1 are likely to be unique at each node, while the J mixing

components P
(
µj ,Σj

)
are common to all nodes. Let θj = {αj ,µj ,Σj}Jj=1. Then the unknown

parameter set is given as θ = {θj}Jj=1. Based on the measurements y = {ym}Mm=1, the task is to

compute the maximum likelihood (ML) estimate for θ in a distributed manner.

Let P(ym|µ,Σ) denote the evaluation of a Gaussian density and the data sample ym is given by

P(ym|µ,Σ) =
1

2πd/2|Σ|1/2
exp
{
− 1

2
(ym − µ)TΣ−1(ym − µ)

}
(3.2)

It is well known that maximization of the log-likelihood for the mixture model in (3.1) [1]

L(θ) =
M∑
m=1

Nm∑
i=1

log

 J∑
j=1

αm,jP(ym,i|µj ,Σj)

 (3.3)

is greatly simplified by the EM-type algorithms [53] which are described in the following section.

This data model is assumed to be statistically independent for each node. However, if the

data are (spatially or temporally) correlated, this model is still valid by interpreting it as a

pseudolikelihood [71].
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3.3 Standard EM and Distributed EM Algorithms (DEM)

The formulation of the mixture problem in the EM framework is achieved by augmenting the

observed data vector y = {ym}Mm=1 with the associated component-label vectors z = {zm}Mm=1

where zm = {zm,i}Nm
i=1. Each zm,i takes on a value from the set {1, . . . , J}, where zm,i = j

indicates that ym,i is generated by the jth mixture component

ym,i ∼ P(µj ,Σj). (3.4)

The complete data log-likelihood Lc(θ) is then given by

Lc(θ) = log p(y, z|θ) (3.5)

=
M∑
m=1

Nm∑
i=1

J∑
j=1

zm,i,j(logαm,j + logP(ym,i|µj ,Σj))

where p(y, z|θ) denotes the joint density of y and z with parameter θ. Starting from an initial

estimate θ0, the standard EM algorithm iterates between the E (expectation) and M (maximization)

steps. In the E-step, given the current estimate θt, the conditional expectation of the complete data

log-likelihood is computed as follows

Q(θ;θt)= E[Lc(θ)|y,θt]

=

M∑
m=1

Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µj ,Σj)), (3.6)

where

wt+1
m,i,j =

αtm,jP(ym,i|µtj ,Σt
j)∑J

j=1 α
t
m,jP(ym,i|µtj ,Σ

t
j)

(3.7)

is the posterior probability that the ith sample at node m belongs to the jth component given the

observed value ym,i.

In the M-step, the parameters are computed by maximizing the complete data log-likelihood

function (3.6)

θt+1 = arg max
θ

Q(θ;θt), (3.8)
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which lead to the following update formula for j = 1, · · · , J .

αt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j , m = 1, · · · ,M (3.9)

µt+1
j =

∑M
m=1

∑Nm
i=1 w

t+1
m,i,jym,i∑M

m=1

∑Nm
i=1 w

t+1
m,i,j

, (3.10)

Σt+1
j =

∑M
m=1

∑Nm
i=1 w

t+1
m,i,j(ym,i − µ

t+1
j )(ym,i − µt+1

j )T∑M
m=1

∑Nm
i=1 w

t+1
m,i,j

(3.11)

The update formula in (3.9)-(3.11) can further be written as:

µt+1
j =

∑M
m=1 a

t+1
m,j∑M

m=1w
t+1
m,j

, (3.12)

Σt+1
j =

∑M
m=1 b

t+1
m,j∑M

m=1w
t+1
m,j

(3.13)

in which the local summary quantities are denoted as

wt+1
m,j =

Nm∑
i=1

wt+1
m,i,j , (3.14)

at+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,i, (3.15)

bt+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,iy

T
m,i. (3.16)

Thus, the global summary quantities are

wt+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,j , (3.17)

at+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,jym,i, (3.18)

bt+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,jym,iy

T
m,i. (3.19)

Notice that with these summaries defined as previous, the estimated parameters are

µt+1
j =

at+1
j

wt+1
j

, (3.20)

Σt+1
j =

bt+1
j

wt+1
j

− µt+1
j (µt+1

j )T , (3.21)

28



Distributed Component-Wise EM Algorithm for Mixture Models in Sensor Networks

The E- and M-steps are alternated repeatedly until the difference between likelihoods of

consecutive iterates L(θt+1)−L(θt) is less than a pre-specified small number ε. Note that, given

the current parameter θt and local data set ym,i, the local summary quantities {wt+1
m,j ,a

t+1
m,j , b

t+1
m,j}

can be locally computed. Thus, several distributed methods [1, 2] are valid to apply the standard

EM algorithm to such a WSN.

3.3.1 Distributed EM Algorithm based on Incremental Strategy

A distributed EM algorithm based on the incremental strategy for sensor network (DEM) was

studied in [1]. With such a network setting, the communication path is cyclic and pre-set. Only

one node update the parameter set θt+1 using its own Nm observations at each iteration, given the

current parameter set θt. In details, node m can update the global summary quantities by using its

new local summary quantities to replace the old quantities based on

wt+1
j = wtj + wt+1

m,j − w
t
m,j , (3.22)

at+1
j = atj + at+1

m,j − a
t
m,j , (3.23)

bt+1
j = btj + bt+1

m,j − b
t
m,j . (3.24)

and updates the parameter set θt+1 according to (3.20) and (3.21). During this procedure,

other nodes are fixed. Then, node m passes the message of updated global summary quantities

{wt+1
j ,at+1

j , bt+1
j } and the estimated parameter θt+1 to the next adjacent (m+ 1) node, and this

process is repeatedly.

Note that each node only executes a single and local E- and M- step in the DEM algorithm, thus

this algorithm does not require the updated means and covariances {µt+1
j ,Σt+1

j } to reach a fixed

point at each local E-step process. In order to speed up the overall convergence, DEMM algorithm

refers to DEM with multiple steps at each node which was studied in [1]. Specifically, the local

E- and M- steps can be repeated several times in succession until the maximization of the local

log-likelihood function is found, then the updated message can be passed to next node.
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3.3.2 Consensus based EM Algorithm

In [2], another distributed EM algorithm based on consensus strategy is proposed. The main idea

behind this technique is the application of average consensus filter between E- step and M- step.

For consensus strategies, the nodes communicate with their neighbours until network agreement

is achieved. The local summary quantities of individual nodes are updated using the local Nm

observations at E- step, and then the local statistics are exchanged via consensus filters. The node

can access to the global summary quantities until the final consensus:

αt+1
j =

1

NmM

M∑
m=1

Nm∑
i=1

wt+1
m,i,j , m = 1, · · · ,M (3.25)

µt+1
j =

1
M

∑M
m=1 a

t+1
m,j

1
M

∑M
m=1w

t+1
m,j

, (3.26)

Σt+1
j =

1
M

∑M
m=1 b

t+1
m,j

1
M

∑M
m=1w

t+1
m,j

(3.27)

All these algorithms require to execute the standard E- and M- step to update parameters

simultaneously. They are often effective when the mixtures are well-separated. They suffered

from a slow convergence when the mixtures become complex or overlapping. To speed up the

convergence of the standard EM algorithm, a component-wise EM method for mixture models

(CEMM) was presented in [8]. Rather than computing all parameters simultaneously, the CEMM

algorithm considers the decomposition of the parameter vector θ into component parameter

vectors {αj ,θj}, j = 1, · · · , J and updates only one component at a time. Specifically,

each iteration consists of J cycles in which the conditional expectation (3.6) and the parameter

vector associated with jth component are updated. As pointed out in [8], the decoupling of

parameter updates implies the use of the smallest admissible missing data space and leads to

faster convergence than the standard EM algorithm.

3.4 Distributed Component-wise EM Algorithm

Motivated by the superior convergence behavior of the component-wise EM algorithm, we propose

a distributed component-wise EM algorithm for mixtures in sensor networks. In some sensor
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Wireless Sensor Network

Figure 3.1: Communication/iteration cycle in a sensor network

network models, a high-performance centralized unit is involved to solve the estimation problems.

But relying on the centralized unit is undesirable in scenarios in which communications between

sensor nodes are much more costly than the computational cost at sensor nodes. In the following,

we consider the message passage model for sensor networks as depicted in Figure 3.1 Similar

to the distributed EM algorithm, our algorithm also exploits the idea of incremental EM [70]

to facilitate local processing. The idea behind incremental EM is to divide the observed data

into several blocks and implement the E-step for only a block of observations at a time before

performing a M-step [53]. Here, the observed data at each node is considered as one data block.

By applying the incremental EM, the component-wise EM can be implemented so that at node m,

given the summary quantities (3.17), (3.18) and (3.19) from the previous node (m− 1), only local

data ym is involved.

Let atj , b
t
j , w

t
j be the received summary statistics of the m−th node from the previous one, and the

local estimates after the t−th iteration be

θtm = {θtm,1, · · · ,θtm,J}, (3.28)
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where θtm,j include the estimate for the jth component {αtm,j ,µtm,j ,Σt
m,j}. At the beginning of

the (t + 1)th iteration, the initial estimates for the mean and covariance matrix are obtained from

the summary statistics as follows:

µtm,j =
atj
wtj
, Σt

m,j =
btj
wtj
− µtjµt

′
j , j = 1, · · · , J. (3.29)

Let θ[t+1,0]
m = θtm. The parameters associated with the jth components θtm,j are updated

sequentially in the proposed algorithm as follows.

For j = 1, · · · , J , the E-step is computed as:

wt+1
m,i,j =

αtm,jP(ym,i|µtm,j ,Σt
m,j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µtm,k,Σ

t
m,k)

. (3.30)

The M-step is then

αt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j , (3.31)

µt+1
m,j =

at+1
m,j

wt+1
m,j

, (3.32)

Σt+1
m,j =

bt+1
m,j

wt+1
m,j

− µt+1
m,jµ

t+1′

m,j , (3.33)

where the local summary statistics wm,j ,am,j , bm,j are

wt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j , (3.34)

at+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,i , (3.35)

bt+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,iy

′
m,i . (3.36)

The estimate at the jth cycle is given by

θ[t+1,j]
m = {θt+1

m,1, · · · ,θ
t+1
m,j ,θ

t
m,j+1, · · · ,θtm,J}. (3.37)
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After J cycles, the output of the (t+ 1)th iteration is given by:

θt+1 = θ[t+1,J ]
m . (3.38)

Then the local summary statistics are computed with the new estimate θt+1 according to (3.22)-

(3.24).

Note that the old values of summary statistics are replaced by the updated values at node m. In

addition, the computations of the posterior probabilities (??) and the estimates (3.31), (3.32) and

(3.33) involve only the data at node m.

The major difference of the proposed component-wise approach from the distributed EM

algorithm is as follows. In the distributed EM algorithm (DEM) [1], the parameters associated with

all components are updated simultaneously. The E-step is evaluated only once at the beginning

of the iteration. In the proposed algorithm, every component parameter set θj is computed

sequentially and the posterior probabilitywm,i,j (??) is evaluated at each cycle. The computational

time is only slightly increased by the multiple E-steps in compared to the distributed EM algorithm.

Simulation results in the following sections will show that our approach leads to a much faster

convergence of the log-likelihood than the distributed EM algorithm.

3.5 Convergence Analysis

In [72] and [73], the authors gave in-depth analysis on the convergence of standard EM algorithms.

It is shown in [70] and [74] et al. that under standard regularity conditions, the incremental EM

will give the estimates which converge with respect to the likelihood function, and the likelihood

is iteratively ascending. The standard EM algorithm usually follows the linear convergence. The

results in [72] and [75] help us to analyse the convergence behaviour of distributed component-

wise EM in a Gaussian mixture model.

In [1], it is assumed that the {θt} converges to θ∗ to maximize the log-likelihood L(θ). It can be

shown that the estimate θt near θ∗ with iterations has the following approximate relationship for
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sufficiently large t

θt+1 − θ∗ = M(θ̄
t − θ∗) (3.39)

where θ̄t is described as a certain average of the past {θ(t−m)}Mm=1 and M is defined as the rate

matrix of the algorithm. The convergence rate is determined by the spectral radius ρ(M) of the

rate matrix [76]. Based on the results [69], a larger ρ(M) leads to a slower convergence speed.

Before analyzing the convergence of DCEM, we consider another analytical approach for the

convergence of the DEM in [75]. In this method, we define an augmented vector including all

nodes’ as:

Θt =



θt1

...

θtM


(3.40)

During each iteration of the DEM algorithm, only one node updates its parameters while other

nodes’ parameters are fixed: all parameters of θt can be updated after a full cycle of the procedure.

In addition, assuming that data sets are statistically independent at different nodes, the local

objective function is calculated as:

Lm(θm) =

Nm∑
i=1

log(
J∑
j=1

αm,jP(ym,i|µmj ,Σj)) (3.41)

where θm is the parameter vector for the m−th node. We model the conditional expectation of

complete data using log-likelihood as:

Qm(θ;θtm)= E[Lc(θ)|ym,θtm] (3.42)

=

Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µmj ,Σj))

The total conditional Q function can be reformatted as [1]:

Q(θ;θt)= Q(θ;θt1, . . . ,θ
t
M ) (3.43)

=

M∑
m=1

Qm(θ;θtm)

34



Distributed Component-Wise EM Algorithm for Mixture Models in Sensor Networks

Finally, the updated equation of the DEM algorithm for a WSN can be represented as:

θt+1 = arg max
θ

Q(θ;θt1, . . . ,θ
t
M ), (3.44)

Although each iteration of the standard EM satisfies the property of L(θt+1) ≥ L(θt), this

monotonicity property is not guaranteed in the DEM scheme. However, each step of the DEM

method satisfies the monotonicity condition

Q(θt+1;θt1, . . . ,θ
t
M ) ≥ Q(θt;θt1, . . . ,θ

t
M ) (3.45)

This shows that the total conditional function Q is improved at each step. Using the Taylor

expansion in the local Q function, it was verified in [75] that the local estimates θtm can achieve

a local maximum at a fixed point θ∗m and satisfy the following approximate relationship for

sufficiently large t

θt+1
m − θ∗m = MDEM

m (θtm − θ∗m) (3.46)

where MDEM
m is the local rate matrix at node m and its expression is given by

MDEM
m = ∇11Qm(θ∗m;θ∗m)[∇20Qm(θ∗m;θ∗m)]−1 (3.47)

= I− [∇20D(θ∗m;θ∗m) +∇2L(θ∗m)]−1∇2L(θ∗m)

where∇ij denotes the ith order partial derivatives with respect to the first argument and jth order

partial derivatives with respect to the second argument. D(θm;θtm) = E[log p(y, z|y,θ)|y,θt] is

the distance between θm and θtm. It can be also shown that∇2L(θ∗m) andD(θm;θtm) are negative

definite [52] and the eigenvalues of MDEM
m all lie in [0, 1). With the definition of (3.40), if Θ∗

is a fixed point of the DEM algorithm , the convergence rate of the full DEM procedure in sensor

network setting can be formulated as:

Θt+1 −Θ∗ = MDEM (Θt −Θ∗) (3.48)
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where MDEM is a block diagonal matrix defined as

MDEM =



MDEM
1 0

. . .

0 MDEM
M


(3.49)

Based on the definition of the spectrum radius:

ρ(M) = max |β| (3.50)

where β are the eigenvalues of M, the convergence rate is the largest eigenvalue of M. Therefore,

if the maximum eigenvalue of MDEM
m is denoted by βDEMm , the convergence rate of all estimated

parameters in the DEM algorithm after a full cycle will be equal to

ρ(MDEM ) = max
m
|βDEMm | < 1 (3.51)

Now we consider the DCEM algorithm in a sensor network situation. In a DEM algorithm, the

linear constraint for Gaussian mixtures at each node operation
∑J

j=1 αm,j = 1 is automatically

satisfied during every E- and M- steps. This is obviously not satisfactory in the context of

component-wise methods [8]. In [8], a Lagrangian approach is introduced to fulfill this constraint

by reconstructing a modified likelihood function based on Lagrangian duality. Since the data

collected at each sensor are independent of the data at other sensors, the local modified likelihood

function is given by:

Lm(θm, λ) = Lm(θm)− λ
( J∑
j=1

αm,j − 1
)

(3.52)

From [8], we can get λ = Nm by solving this Lagrangian function, thus, (3.52) becomes

Lm(θm) = Lm(θm)−Nm

( J∑
j=1

αm,j − 1
)

(3.53)

The convergence of the standard algorithm with Gaussian mixtures is investigated in [72] by

linking the EM algorithm to gradient ascent methods. Motivated by this idea, we demonstrate

that the E- and M- steps of the DCEM algorithm at each node can be realized by jointly using the
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gradient and the projection matrices.

Theorem 1 At the jth cycle, the local updates formulas (3.31)-(3.33) in DCEM at node m can be

described as:

αt+1
m,j − α

t
m,j = Pαt

m,j

∂Lm(θm)

∂αm,j
|Am=A[t+1,j−1]

m
, (3.54)

µt+1
m,j − µ

t
m,j = Pµt

m,j

∂Lm(θm)

∂µm,j
|µm,j=µt

m,j
, (3.55)

vec[Σt+1
m,j ]− vec[Σt

m,j ] = PΣt
m,j

∂Lm(θm)

∂vec[Σm,j ]
|Σm,j=Σt

m,j
, (3.56)

where vec[C] denotes the vector obtained by stacking the column vectors of matrix C,Am denotes

the vector of mixing probabilities [αm,1, · · · , αm,J ]T at node m,

A[t+1,j−1]
m = [αt+1

m,1, · · · , α
t+1
m,j−1, α

t
m,j , · · · , αtm,J ]T , (3.57)

and

Pαt
m,j

=
1

Nm
αtm,j (3.58)

Pµt
m,j

=
Σt
m,j∑Nm

i=1 w
t+1
i,m,j

, (3.59)

PΣt
m,j

=
2∑Nm

i=1 w
t+1
i,m,j

Σt
m,j ⊗Σt

m,j , (3.60)

where ⊗ is the Kronecker product.

Proof: See Appendix A

Using the notation θm,j = {αm,j ,µm,j , vec[Σm,j ]
T }T we define the local projection matrix as

follow:

Pθtm,j
=



Pαt
m,j

0

Pµt
j

0 PΣt
j


(3.61)
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Then, the updates can be integrated into:

θ
(t+1)
m,j = θtm,j + Ptθm,j

∂Lm(θm)

∂θm,j
|
θm=θ

[t+1,j]
m

(3.62)

Consider the tth iteration at node m and let θm = {θm,j θm,l}T where θm,l are the other

parameters of θm when l 6= j. We apply the Taylor formula with remainder [77] to expand

this gradient at a fixed point θ∗m. Since ∂Lm(θm)
∂θm,j

|θm=θ∗m
= 0, we can obtain

θt+1
m,j − θ

∗
m,j = θtm,j − θ∗m,j + Pθ∗m,j

∂Lm(θm)

∂θm,j∂θm,j
|θm=θ∗m

(θtmj − θ∗mj) (3.63)

+ Pθ∗m,j

∂Lm(θm)

∂θm,j∂θm,l
|θm=θ∗m

(θtm,l − θ∗m,l)

Define the local Hessian of modified function at the fixed point θ∗m as

Hθ∗m
= −∂

2Lm(θm)

∂θm∂θm
|θm=θ∗m

(3.64)

and the following submatrices of Hessian

Hθ∗m,j
= − ∂2Lm(θm)

∂θm,j∂θm,j
|θm=θ∗m

(3.65)

Hθ∗m,l
= − ∂

2Lm(θm)

∂θm,j∂θm,l
|θm=θ∗m

where Hθm,j
is the curvature of the modified log-likelihood function Lm(θm) with respect to

θm,j , and Hθm,l
is the coupling between θm,j and θm,l. Let Rθm,j

denote the J × J permutation

matrix that reorders the elements of {θm,j ,θm,l} into {1, · · · , J}, and Rθm,j
RT
θm,j

= I. Then,

we define the J × J composite local rate matrix at j cycle for DCEM algorithm

MDCEM
m,j∗ = Rθm,j


I−Pθ∗m,j

Hθ∗m,j
−Pθ∗m,j

Hθ∗m,l

0 I

RT
θm,j

(3.66)

The components of θtm,l are just copied, so after permuting Rθm,j

θ[t+1,j]
m − θ∗m = MDCEM

m,j (θ[t+1,j−1]
m − θ∗m) (3.67)
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A full cycle consists of one update over each of the J index sets, therefore, after J cycle, we can

obtain:

θ[t+1,J ]
m − θ∗m = MDCEM

m,J × · · ·MDCEM
m,1 (θ[t,J ]

m − θ∗m) (3.68)

Theorem 2 There exists a < 1 such that for any

ρ(MDCEM
m ) = ‖MDCEM

m,J × · · ·MDCEM
m,1 ‖Hθ∗m

≤ a (3.69)

where ‖M‖N = ‖N1/2MN−1/2‖ denotes the generalized matrix spectral norm with respect to a

positive definite matrix N.

Proof: See Appendix B

After J cycles, the output of the (t+ 1)th iteration at node m is defined as:

θt+1
m = θ[t+1,J ]

m (3.70)

By applying the same analytical approach of DEM algorithm to the DCEM algorithm, it is easy to

obtain the similar result of convergence properties as

Θt+1 −Θ∗ = MDCEM (Θt −Θ∗) (3.71)

where MDCEM is a block diagonal matrix given by

MDCEM =



MDCEM
1 0

. . .

0 MDCEM
M


(3.72)

Given the analysis above, since θ∗m is a fixed point of node m, the eigenvalues corresponding to

the m-th diagonal block of MDCEM should be in the interval [0, 1). For a specific sensor node,

the largest eigenvalue of the submatrix corresponds to the convergence rate of the parameters. The

largest eigenvalue of the rate matrix MDCEM is related to the convergence rate of all the network

parameters after a full DCEM cycle. Denote the largest eigenvalue of MDCEM
m as βDCEMm , the
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Figure 3.2: Data distribution for well-separated mixture case

convergence rate of DCEM for the whole network can be obtained as follow:

ρ(MDCEM ) = max
m
|βDCEMm | < 1. (3.73)

3.6 Simulation Results

In this section, we demonstrate the feasibility of the proposed algorithm with two different

simulated data sets, i.e. the well-separated mixture and overlapping mixture cases. In the

simulations, we consider a sensor network with M = 100 nodes. This sensor network fulfils

the communication requirements specified in [78].

40



Distributed Component-Wise EM Algorithm for Mixture Models in Sensor Networks

3.6.1 Well-separated Mixtures Model

First, we consider a well-separated components with the observations generated from J = 5

Gaussian components distributed as in Figure 3.2. Each component is a 2D Gaussian density,

the number of data samples at each node is Nm = 1000, which can represent environment

data clusters. In the first 40 nodes, 60% observations come from the first Gaussian component

and the other 40% observations evenly come from the other four Gaussian components, i.e.

αm,1 = 60%, αm,2 = αm,3 = αm,4 = αm,5 = 10% for m = 1, · · · , 40. In the next 30

nodes, 70% observations come from the second and third Gaussian components and the other

30% observations evenly come from the other three components, i.e. form = 41, · · · , 70, αm,1 =

αm,4 = αm,5 = 10%, αm,2 = 40%, αm,3 = 30%. For m = 71, · · · , 100, 70% observations

come from the last two Gaussian component and other 30% observations evenly from the other

three Gaussian components αm,1 = αm,2 = αm,3 = 10%, αm,4 = 40%, αm,5 = 30%. The

component parameters (true values) are given by µ1 = [0.2, 0.7], µ2 = [0.7, 0.2], µ3 = [0.3, 0.3],

µ4 = [0.5, 0.5], µ5 = [0.8, 0.8].

For comparison, we apply the proposed DCEM algorithm, the DEM algorithm [1] with a single

EM at each node, and DEMM [1] (multiple EM steps at each node) to the same batch of data.

These algorithms were randomly initialized with a guess of Gaussian mixture components. As

shown in Figure 3.3, the estimates for the x- and y-components of means are close to the reference

values.

In Figure 3.4, the log-likelihood values are plotted versus iterations. Convergence is reached

when the norm of the difference between successive parameter estimates is less than a specified

number, ε = 10−5. The proposed algorithm and DEMM algorithm require on average only 10

iterations and 11 iterations respectively to attain the maximal value of log-likelihood, while the

DEM algorithm requires 16 iterations to converge. As the complexity of each iteration required

using these algorithms is almost the same, this implies at least 37% saving in overall computation

comparing DEM algorithm to the proposed algorithm.
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Figure 3.3: Estimates for mean values by the DCEM algorithm for well-separated mixture case.

3.6.2 Overlapping Mixtures Model

Secondly, we consider the overlapping 2D Gaussian density with the same network setting as

used in the previous well-sperate mixture model. Each sensor node still takes 1000 observation

samples. The observations are generated from the 2D Gaussian mixtures with 5 overlapping

components distributed in Figure 3.5. The observations for each sensor node are collected

as follows. In the first 30 nodes, 80% observations come from the first Gaussian component

and the other 20% observations evenly come from the other four Gaussian components, i.e.

αm,1 = 80%, αm,2 = αm,3 = αm,4 = αm,5 = 5% for m = 1, · · · , 30. In the next 40

nodes, 70% observations come from the second and third Gaussian components and the other

30% observations evenly come from the other three components, i.e. form = 41, · · · , 80, αm,1 =

αm,4 = αm,5 = 10%, αm,2 = 40%, αm,3 = 30%. For m = 71, · · · , 100, 70% observations

come from the last two Gaussian component and other 30% observations evenly from the other
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Figure 3.4: Comparison of log-likelihood versus iterations for the DCEM, DEM with single EM
step at each node [1] and DEM with multiple EM steps at each node (DEMM) in the well-separated
mixture case.

three Gaussian components αm,1 = αm,2 = αm,3 = 10%, αm,4 = 40%, αm,5 = 30%. The

component parameters (true values) are given by µ1 = [0.2, 0.6], µ2 = [0.6, 0.2], µ3 = [0.3, 0.3],

µ4 = [0.5, 0.5], µ5 = [0.7, 0.7].

It can be seen from Figure 3.6 that the estimated mean values in all nodes calculated by the

DCEM algorithm approximate their true values when overlapping data exist. Figure 3.7 displays

the normalized log-likelihood versus the cycle of DCEM, DEM and DEMM in presence of

overlapping mixture. All three algorithms suffer from slow convergence compared to the well-

separated data sets, though they converge to the same solution. More specifically, the DEM

algorithm with a single EM loop at each node appears to converge slowly in 33 iterations so

that the DEMM algorithm and especially DCEM algorithm show a significant improvement of

convergence speed in around 16 iterations. Moreover, it appears that the implemented version of

the DEMM algorithm is less beneficial than the DCEM algorithm for situations where the DEM
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Figure 3.5: Data distribution for overlapping mixture case

algorithm converges slowly. One likely cause of this behavior is that the local procedure of DEMM

at each node is still the standard EM update, which still updates the parameters simultaneously,

while the local DCEM algorithm finds the estimates sequentially.

3.7 Chapter Summary

In this chapter, we proposed a distributed component-wise EM algorithm for mixture models

in sensor networks. The proposed algorithm is characterized by local processing capabilities

and sequential computations of component parameters. The ability to process data locally is of

particular interest to sensor networks with computationally powerful nodes, and it avoids costly

node-to-node communications.
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Figure 3.6: Estimates for mean values by the DCEM algorithm for overlapping mixture case.

More importantly, the component-wise update of the mixture parameters leads to significant

improvement in convergence rate compared to the DEM algorithm [1]. Simulation results show

that the number of iterations required by the proposed algorithm is about 37% less than that

required by the distributed EM algorithm. Given the advantages of computational efficiency and

simple implementation, we believe that the proposed distributed component-wise EM algorithm is

a powerful tool for estimating mixture models in sensor networks. In the following, another kind

of distributed EM algorithm based on diffusion strategy will be introduced in Chapter 4
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Figure 3.7: Comparison of log-likelihood versus iterations for the DCEM, DEM with single EM
step at each node [1] and DEM with multiple EM steps at each node (DEMM) in the overlapping
mixture case.
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Chapter 4

Diffusion-Based EM Gradient Algorithm for

Density Estimation in Sensor Networks

In this chapter, we focus on the mixture density estimation for an asynchronous sensor network

in the distributed manner. A random sensor network requires the data samples to be collected and

processed at local decentralized processing units. Reformulations of standard EM-type algorithm

are necessary to accommodate the characteristics of sensor networks. Existing works on the

distributed EM implementation focus mainly on synchronous networks. In this chapter, we address

the issue for asynchronous networks by proposing a diffusion-based EM gradient algorithm that

updates estimates by using an adapt-then-combine (ATC) diffusion strategy. Simulation results

show the robustness and scalability of the proposed approach in the presence of asynchronous

events.

4.1 Introduction

The mixture density estimation is used in a number of unsupervised algorithms for environmental

monitoring, pattern recognition and clustering. We present the EM algorithm in Chapter 2 to

retrieve the maximum likelihood (ML) using latent variables. Based on proper initialisations, the

algorithm alternates between two steps, i.e. the expectation (E) step to process the expected log-

likelihood function of the measurements and the maximization (M) step to update the estimates

based on the conditional log-likelihood function from the E-step. The distributed EM method for

a WSN thus requires an adaption to be used for the sensor nodes.

Distributed EM implementations were proposed for calculating the global sufficient statistics
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under the consensus-based schemes [2], incremental schemes [1, 79] and diffusion strategies

[3, 80, 81]. In [82], it is shown that searching for the global track to link all sensors using

incremental strategies is a Hamiltonian circuit problem. The applications in WSNs using

consensus-based approaches are hampered by the limited resources of these methods, due to their

double time scales [5].

Compared to other strategies, diffusion ones are particularly of interest to us, because the

parameters can be estimated locally for each node and different sensors do not have to share the

same global statistics. In the literature, a number of diffusion adaptation strategies were proposed

for the distributed estimation, detection and filtering, e.g. the diffusion least mean squares

estimation algorithms [56, 83, 84], the diffusion recursive least-squares estimation algorithm [85],

diffusion adaption for distributed detection [56], and diffusion Kalman filtering and smoothing

algorithms for dynamic systems [86]. Unlike the consensus strategy, the diffusion strategy can

update the estimate for each node using single time scale, which significantly helps to reduce the

communication burden. Given these good features, a distributed EM with diffusion strategies was

introduced in [3] to approximate the centralized EM approach using the Robbins-Monro stochastic

procedures. Also a diffusion adaption algorithm was discussed in [80] in which the process was

implemented in a number of steps for general mixture models. Furthermore, in [81], the authors

proposed a novel diffusion-based method to integrate the information propagation into the updates

of the parameters.

These algorithms are limited to the synchronous network model, where a coordinated time update

is required throughout the network. The asynchronous imperfections are challenging issues for

real implementations, e.g. random link failures, random data arrival times, noisy links, random

topology changes, agents turning on and off randomly, and even drifting objectives. In this chapter,

we present a diffusion-Based EM gradient algorithm for Gaussian mixture models in WSNs. The

method is based on an EM gradient method [87] derived for Gaussian mixtures. We develop

this method with an asynchronous adaptive diffusion scheme, and address here the general case

of density estimation. The main idea behind the proposed algorithm is that the diffusion of the

information across the network is embedded in the Expectation step to update parameters. In the

Maximization step, gradient based optimization is utilized under the asynchronous ATC diffusion

rule [9–11]. The advantage of the proposed method compared to the synchronous diffusion
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algorithm in which individual nodes in the network may stop updating the solutions or may stop

the normal communications with other nodes. This flexibility can be leveraged to save the power,

which is challenging especially for large-scale networks. Although asynchronous events degrade

performance as expected, numerical examples provided here still show that the performance of

the proposed algorithm is robust and it outperforms the consensus based EM method [2] and

diffusion-based distributed EM scheme [3].

This chapter is organized as follows. In Section 4.2 we describe the observation model and Section

4.3 derive the expressions for the centralized EM Gradient algorithm. We derive the distributed

optimization of Gaussian mixtures via the synchronous diffusion strategy in Section 4.4. Section

4.5 presents the diffusion-based EM gradient method for density estimation in asynchronous

WSNs under the assumption of GMM. Simulation results and summary are presented in Sections

4.6 and 4.7 respectively.

4.2 Problem Formulation

We first assume a sensor network with M nodes, and Nm i.i.d. samples for the mth node are

denoted as ym = {ym,1, · · · ,ym,Nm}. The data samples follow the Gaussian distribution:

ym,i ∼
J∑
j=1

αm,jP(µj ,Σj), i = 1, · · · , Nm (4.1)

where P(µ,Σ) is the Gaussian density function. αj = {αm,j}Mm=1 represent the mixing

parameters which can be distinct for different nodes, while component number J is a common

parameter. Here we let θj = {αj ,µj ,Σj} and the unknown parameter set is denoted as

θ = {θj}Jj=1. Based on the measurements y = {ym}Mm=1, we aim to estimate the maximum

likelihood (ML) of θ in a distributed manner.

Let the evaluation of the Gaussian density for y be P(y|µ,Σ), the log-likelihood for the mixture

model (4.1) can be written as:

L(θ) =

M∑
m=1

Nm∑
i=1

log

 J∑
j=1

αm,jP(ym,i|µj ,Σj)

 (4.2)
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The maximization of 4.2 can be significantly simplified by the EM-type algorithms [53]. We will

discuss about these approaches in the following section.

4.3 EM Gradient Algorithms

The formulation of the mixture problem in the EM framework is the same as that in the previous

chapter, which is achieved by augmenting the observed data vector y = {ym}Mm=1 with the

associated component-label vectors z = {zm}Mm=1 where zm = {zm,i}Nm
i=1. Each zm,i takes

on a value from the set {1, . . . , J}, where zm,i = j indicates that ym,i was generated by the jth

mixture component

ym,i ∼ P(µj ,Σj). (4.3)

Since we assume that the data samples in this model are statistically independent for each node,

the EM algorithm can be applied by each node m individually to its own data. The local data

log-likelihood Lm(θ) of is then given by

Lm(θ) =

Nm∑
i=1

J∑
j=1

zm,i,j(logαm,j + logP(ym,i|µj ,Σj)) (4.4)

The EM procedure can be implemented at a centralized fusion center, which is assumed to collect

all data from the whole network, the global complete data log-likelihood L(θ) becomes

L(θ) =
M∑
m=1

Lm(θ) (4.5)

Let θt be the parameter set at the tth iteration, the conditional expectation of the complete data

log-likelihood can be approximated by

Q(θ,θt) =

M∑
m=1

Qm(θ,θtm) (4.6)

=

Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µj ,Σj))
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where

wt+1
m,i,j =

αtm,jP(ym,i|µtj ,Σt
j)∑J

j=1 α
t
m,jP(ym,i|µtj ,Σt

j)
, (4.7)

is the posterior probability that the ith sample at node m belongs to the jth component given the

observed value ym,i. and Qm(θ,θtm) is the local conditional expectation at node m.

In the standard M-step, the parameters are computed by maximizing the complete data log-

likelihood in equation (4.6)

θt+1 = arg max
θ

Q(θ,θt). (4.8)

If the M-step cannot be computed in the closed form, there exists several methods which can

be utilized to improve the performance of the EM algorithm in the M-step. The most common

algorithm for iteratively solving the M-step is the Newton-type method, which can have the

quadratic convergence compared with the linear convergence experienced by the EM algorithm.

Based on this knowledge, the EM gradient algorithm was proposed in [87], to update the θt by

θt+1 = θt −∇20Q(θt,θt)−1∇10Q(θt,θt),

= θt −

[
M∑
m=1

∇20Qm(θtm,θ
t
m)

]−1 M∑
m=1

∇10Qm(θtm,θ
t
m),

= θt −

[
M∑
m=1

∇20Qm(θtm,θ
t
m)

]−1 M∑
m=1

∇Lm(θtm) (4.9)

where the operators ∇20Qm(θtm,θ
t
m) and ∇10Qm(θtm,θ

t
m) are the Hessian matrix and gradient

vector of the local conditional log-likelihood function Qm(θt,θtm) respectively. In addition, the

equality ∇10Qm(θtm,θ
t
m) = ∇Lm(θtm) holds, when Lm(θ) − Qm(θ,θtm) has its minimum at

θ = θtm. After the new estimate θt+1 is calculated, it is sent back to all nodes, i.e., θt+1
m = θt+1.

In addition, although the convergence of the EM and EM gradient algorithms are assured, the result

is sensitive to the initialization. Thus, a proper initialization is crucial for the performance of the

algorithm. Note that equation (4.9)is not distributed, the computation of the posteriori probabilities

at the M-step require the local information only, whereas the estimates in equation (4.7) requires

the global information. Thus, a distributed implementation of the EM algorithm entails local data

processing and sharing of information. In the next section, we introduce a adaptive diffusion

strategy [88, 89] to process the network communication issue.
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Figure 4.1: A network of integrator nodes in which node m receives the state θn of its neighbor,
node n

4.4 Distributed Optimization via Adaptive Diffusion Strategy

We present the details of the distributed optimization for Gaussian mixtures using synchronous

ATC strategies [88, 89] in the section. The sensor nodes are assumed be interacted locally with

the neighbours, and the communications are illustrated via an undirected graph G ={N , E}, where

N denotes the node sets, E represents the edges in which the pair {m,n} ∈ E stands for the

edge between node m and n. Take Figure 4.1 as an example, the neighbourhood of the node

m is denoted as Nm = {n | {m,n} ∈ E}. Thus, the conditional expectation function can be

reformatted as [56]:

Q(θ,θt) = Qm(θ,θtm) +
∑
n6=m

Qn(θ,θtn) (4.10)

where Qn(θ,θtn) is second order differentiable term, and thus Qn(θ,θtn) is optimized at a fixed

point θ = θ∗n. Now Qn(θ,θtn) can be approximated via the second order Taylor expansion:

Qn(θ,θtn) ≈ Qn(θ∗n,θ
t
n) +∇10Qn(θ∗n,θ

t
n) (4.11)

+
1

2
(θ − θ∗n)T∇20Qn(θ∗n,θ

t
n)(θ − θ∗n)

= ‖θ − θ∗n‖2Γn
+ c
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where c is a small constant and

Γn =
∇20Qn(θ∗n,θ

t
n)

2
(4.12)

Since θ∗n is the fixed point of Qn(θ,θtn), we have ∇10Qn(θ∗n,θ
t
n) = 0. We can assume that

Qn(θ∗n,θ
t
n) is a constant as it is independent of θ. Therefore, the conditional expectation function

in equation (4.6) can be reformatted as:

Q(θ,θt) = Qm(θ,θtm) +
∑
n 6=m
‖θ − θ∗n‖2Γn

(4.13)

However, the optimization over these conditional expectation functions for each node requires that

the global information, i.e. the estimate θ∗n, and the matrices Γn for other nodes, are available for

all sensors. The equation (4.13) here leads to a viable distributed implementation. In particular, we

approximate the equation (4.13) by deriving a local cost functions for each node. Firstly, we bound

the sum in equation (4.13) to the neighbourhood of node m, i.e., n ∈ Nm/{m}. Secondly, we

introduce an intermediate variable θn for the θ∗n. Therefore, the minimization can be performed

upon the modified conditional expectation function for the mth node:

Qdistm (θ,θtm) = Qm(θ,θtm) +
∑

n∈Nm/{m}

‖θ − θ∗n‖2Γn
(4.14)

A Newton-type method is applied here to minimize (4.14) in the similar way of optimising

(4.9). To deal with scenarios that unknown parameter θ is a matrix, we will present a quadratic

approximation argument [90].

Given the intermediate estimate θtm for themth node and a small perturbation δ on θtm, we employ

the second-order Taylor expansion of Qdistm (θtm + δ,θtm) and derive:

Qdistm (θtm + δ,θtm) ≈ Qm(θtm,θ
t
m) +∇10Qm(θtm,θ

t
m)δ (4.15)

+
1

2
δT∇20Qm(θtm,θ

t
m)δ +

∑
n∈Nm/{m}

‖θtm + δ − θ∗n‖2Γn

Qdistm (θtm + δ,θtm) can be approximated via a quadratic function around θtm, and δ is selected to

optimize this approximation (e.g. the gradient with respect to δ is zero). Consider the gradient of
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(4.15) along δ, we have:

∇δQdistm (θtm + δ,θtm) ≈ ∇10Qm(θtm,θ
t
m) +∇20Qm(θtm,θ

t
m)δ (4.16)

+ 2
∑

n∈Nm/{m}

Γn(θtm + δ − θ∗n)

By searching for the δ to give zero gradient, the optimum update strategy is

δ ≈ −H−1
[
∇10Qm(θtm,θ

t
m) + 2

∑
n∈Nm/{m}

Γn(θtm + δ − θ∗n)
]

(4.17)

= −H−1
[
∇10Qm(θtm,θ

t
m) + 2

∑
n∈Nm/{m}

∇20Qn(θ∗n,θ
t
n)(θtm + δ − θ∗n)

]

where

H = ∇20Qm(θtm,θ
t
m) + 2

∑
n∈Nm/{m}

Γn (4.18)

= ∇20Qm(θtm,θ
t
m) + 2

∑
n∈Nm/{m}

∇20Qn(θ∗n,θ
t
n)

Suppose that for different n, the Hessian matrices ∇20Qn(θ,θtn) do not distinguish from each

other significantly. This approximation is likely to be robust as the samples for different nodes

follow the same distribution. Then we have

∇20Qn(θ∗n,θ
t
n) ≈ cm,nH (4.19)

∇20Qm(θtm,θ
t
m) ≈ cm,mH (4.20)

Compared to (4.18), we have that

H ≈
∑
n∈Nm

cm,nH (4.21)

and
∑
n∈Nm

cm,n = 1

where cm,n denotes the nonnegative scalar which scales the neighborhood Hessian. Thus, equation

(4.17) can be simplified as

δ ≈ cm,m

[
∇20Qm(θtm,θ

t
m)
]−1
∇10Qm(θtm,θ

t
m) (4.22)
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−
∑

n∈Nm/{m}

cm,n(θtm − θ∗n)

and the recursive update equation can be written as

θt+1
m = θtm − νmcm,m

[
∇20Qm(θtm,θ

t
m)
]−1
∇10Qm(θtm,θ

t
m) (4.23)

− νm
∑

n∈Nm/{m}

cm,n(θtm − θ∗n)

where νm is the step-size which corresponds to the Newton step. The equation (4.23) can be

realized through two stages by first introducing an intermediate estimate ψt+1
m

ψt+1
m = θtm − νmcm,m

[
∇20Qm(θtm,θ

t
m)
]−1
∇10Qm(θtm,θ

t
m) (4.24)

θt+1
m = ψt+1

m − νm
∑

n∈Nm/{m}

cm,n(θtm − θ∗n) (4.25)

Then θ∗n in (4.34) can be replaced by the intermediate estimate ψtn for node n at time t. Similarly,

θtm in equation (4.25) can be replaced by ψtm. Based on equation (4.25), we have

θt+1
m = ψtm − νm

∑
n∈Nm/{m}

cm,n(ψtm −ψtn) (4.26)

= (1− νm + νmcm,m)ψtm + νm
∑

n∈Nm/{m}

cm,nψ
t
n

According to the ATC diffusion strategy [88, 89], we use the coefficients

bm,m = 1− νm + νmcm,m (4.27)

bm,n = νmcm,n (4.28)

Let B be the M ×M combination matrix which consists of the entries bm,n, then B is a left-

stochastic matrix which obeys

bm,n = 0 if n 6= Nm (4.29)

BT1M = 1M

where 1M is theM×1 all-one vector. We now express the Newton descent of the local conditional
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expectation function as

dtm = −
[
∇20Qm(θtm,θ

t
m)
]−1
∇10Qm(θtm,θ

t
m) (4.30)

Therefore, the equations (4.25) and (4.26) can be rewritten as:

ψt+1
m = θtm + amd

t
m, (4.31)

θt+1
m =

∑
n∈Nm

bm,nψ
t+1
n (4.32)

where am is a step-size value, and bm,n are the nonnegative coefficients for combining the

estimates.

4.5 Diffusion EM Gradient Algorithm

Based on the gradient EM version algorithm, we propose a distributed EM algorithm scheme

where the summations among all observations in equation (4.7) are computed by the asynchronous

diffusion strategy [9–11]. In the following , we consider an asynchronous Bernoulli model in a

WSN. The WSN is composed of M nodes, where each node adopts a random “on-off” policy to

save the power. Furthermore, we employ the EM gradient method at each node, and assume that

observations of different nodes are statistically independent. In the E-step, we use an intermediate

estimate θtm of the unknown θ at node m. The local conditional log-likelihood function is defined

as

Qm(θ,θtm) =

Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µm,j ,Σm,j)) (4.33)

where

wt+1
m,i,j =

αtm,jP(ym,i|µtm,j ,Σt
m,j)∑J

j=1 α
t
m,jP(ym,i|µtm,j ,Σt

m,j)
. (4.34)

The main difference between wt+1
m,i,j in equations (4.7) and (4.34) is that equation (4.7) is

computed using the global estimates µtj ,Σ
t
j , whereas computing equation (4.34) only requires

local estimates µtm,j ,Σ
t
m,j at each node m. With local periodic data exchanges, the local
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information in equation (4.34) is appropriately diffused over the network. In order to reduce the

computational complexity, the projection matrix [72] is utilised to replace the inverse of Hessian

matrix. Then local EM procedure can be expressed as follows:

At+1
m = Atm + PAt

m

∂Lm(θm)

∂Am
|Am=At

m
, (4.35)

µt+1
m,j = µtm,j + Pµt

m,j

∂Lm(θm)

∂µm,j
|µm,j=µt

m,j
, (4.36)

vec[Σt+1
m,j ] = vec[Σt

m,j ] + PΣt
m,j

∂Lm(θm)

∂vec[Σm,j ]
|Σm,j=Σt

m,j
, (4.37)

where vec[C] denotes the vector obtained by stacking the column vectors of matrixC,Am denotes

the vector of mixing proportions [αm,1, · · · , αm,J ]T and

PAt
m

=
{diag[αtm,1, · · · , αtm,J ]−Amt(Amt)T }

Nm
, (4.38)

Pµt
m,j

=
Σt
m,j∑Nm

i=1 w
t+1
m,i,j

, (4.39)

PΣt
m,j

=
2∑Nm

i=1 w
t+1
m,i,j

Σm,j
t ⊗Σm,j

t, (4.40)

where ⊗ denotes the Kronecker product. Using the notation

θ = [ATm,µTm,1, · · · ,µTm,J , vec[Σm,1]T , · · · , vec[Σm,J ]T ]T (4.41)

and

P (θm) = diag{PAm , Pµm,1 , · · · , Pµm,J , PΣm,1 , · · · , PΣm,J
} (4.42)

we can obtain

θt+1
m = θtm + Pm(θm

t)∇Lm(θtm) (4.43)

In the M-step, the ATC diffusion-oriented optimization method is used to find the estimates, whose

updates are given by

ψt+1
m = θtm + at+1

m dtm, (4.44)

θt+1
m =

∑
n∈N t+1

m

bt+1
m,nψ

t+1
n , (4.45)

where

dtm = Pm(θtm)∇Lm(θtm) (4.46)
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is the local gradient descent to the estimate using a Newton-like method in WSN andN t
m denotes

the random neighbourhood of node m at time t + 1. Similar to the synchronous version, this

scheme includes two operations as described in the previous section, the first step involves the

local adaptation, in which node m update its local estimates from θtm to an intermediate value

ψt+1
m . The second step is a combination step, in which the combination of intermediate estimates

{ψt+1
n } from the neighbourhood of node m is used to calculate the new estimates θt+1

m . In the

adaptation step, nodem enters an active mode with probability 0 < qm < 1 and evaluates equation

(4.44), and it enters a sleep mode with probability 1 − qm to save energy. The random step-sizes

at+1
m used in equation (4.44) depend on the probability qm and satisfy

at+1
m =


am, with probability qm

0, with probability 1− qm

(4.47)

where am is a constant step-size. The underlying topology of network is assumed to be fixed.

In the combination step, each node m is allowed to randomly select its neighborhood n with

probability 0 < pm < 1 and evaluates equation (4.45) for saving communication costs. The

combination coefficients {bt+1
n,m} are nonnegative parameters and they are required to satisfy the

following constraints

bt+1
m,n =


bm,n > 0, with probability pm

0, with probability 1− pm

(4.48)

For all n ∈ Nm \ {m}, and node m is required to adjust its own weight bt+1
m,m at each update via

bt+1
m,m = 1−

∑
n∈N t

m\{m}

bt+1
m,n (4.49)

to guarantee
∑

n∈N t
m
bt+1
m,n = 1. Note that at+1

m and {bt+1
m,n} are mutually independent, and the use

of these distributed control parameters enables the diffusion strategies which can process various

type of asynchronous network events. The independence between {am} and the constant step-size

used in synchronous diffusion networks enables us to set up a random “on-off” behavior at themth

agent to save power. Furthermore, the coefficient {bt+1
m,n} can be used to structure a random “on-
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off” status for the connection from agent m to agent n at time t + 1 to save the communication

cost. If the agents select the links randomly. i.e. there is only one other neighbouring agent

being communicated with at each time, then we are able to mimic the random gossip strategies

failures [7, 91–94]. It is worth mentioning that the sources for the randomness of the combination

coefficients are three facets. Firstly, it can come from the randomness in the topology which is

often used to simulate the network dynamics. Secondly, the connections between agents can drop

randomly. This can happen when we have interferences or other power saving strategies. Thirdly,

some agents may hold random combination coefficients, given that
∑

n∈Nm
bt+1
m,n = 1 is satisfied.

We will demonstrate the convergence and reliability through numerical simulation results in the

next section.

4.6 Simulation Results

In this section, we demonstrate the feasibility of the proposed algorithm through MATLAB

simulations. In the simulation, we consider a sensor network with M = 100 nodes in a 10 × 10

meter squares, and the number of data samples at each node is Nm = 100. It can be extended

to other scenarios without loss of generality. This sensor network fulfills the communication

requirement specified in [9–11] with connectivity radio range r. Figure 4.2 shows the cases

of different communication radio range with r = 0, r = 1.5, and r = 2.5. the proposed

algorithms use asynchronous diffusion combination matrix B under Metropolis rule [9–11] with

entries defined as

bm,n =



1/(max{|Nm|, |Nn|}), n ∈ Nm

1−
∑

k∈Nm\{m} bm,n, m = n

0, otherwise.

(4.50)

where | · | denotes the cardinality. For comparison, we apply the proposed asynchronous diffusion-

based EM gradient algorithm, the diffusion-based distributed EM algorithm (DDEM) [3], the

consensus based EM algorithm and the standard EM algorithm to the same batch of data.
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(a) Unconnected nodes (Radio Range=0 m)
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(b) Radio Range=1.5 m
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(c) Radio Range=2.5 m

Figure 4.2: 100 randomly distributed sensors with different radio ranges
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4.6.1 1-Dimensional Data

First, we consider the 1-dimensional data case, and the observations are generated from J = 2

distributed Gaussian components. Each component is a 1-dimensional Gaussian mixture density,

which can represent environment data clusters. In the first 50 nodes, 60% of the observations

come from the first Gaussian component and the other 40% observations evenly come from the

second Gaussian component, i.e. αm,1 = 0.6, αm,2 = 0.4 for m = 1, · · · , 50. In the last 50

nodes, 30% observations come from the first Gaussian component and the other 70% observations

evenly come from the second component, i.e. form = 51, · · · , 100, αm,1 = 0.3, αm,2 = 0.7. The

component means and variances are given by µ1 = 5, µ2 = 10, σ2
1 = 1, σ2

2 = 4. The radio range

for communication is set to 1.5 meters. The step-size am = 0.05 is uniform across the network.

As shown in Figure 4.3, the EM gradient algorithm with asynchronous diffusion setting and the

local standard EM without cooperation are tested. The probabilities for the Bernoulli model are

set as qm = pm = 0.8. It can been seen from Figure 4.3, the mean and variance estimates are

noisy for each sensor node with the standard EM algorithm using only the local information, while

the estimates with the proposed algorithm are much smoother for each sensor node, even under

the imperfect communication condition. In Figure 4.4, the mean-square-deviation (MSD) is used

and evaluated for performance of different algorithms, which is defined as

MSDθ = E
[
‖θ̂ − θ‖22

]
(4.51)

where ‖ · ‖2 is the Euclidean norm. We compare our algorithm with the consensus based EM and

DDEM. We select 100 consensus iterations in order to satisfy the condition of the convergence

of discrete consensus filter, and set η = 1/M to satisfy the condition for the convergence of

consensus filter in [2] is that η = 1/dmax, where dmax is the maximum degree. In addition,

we include a single round of averaging in the D-step and M-step for the DDEM algorithm [3],

respectively. Both consensus based EM and DDEM algorithm are operated in a synchronous

network setting, for a fair comparison, we select the value of probability pm = qm = 1

(corresponds to traditional synchronous diffusion). It can be seen from Figure 4.4(a), a diffusion

strategy provides improved mean-square-deviation in simulation compare to consensus based

EM and DDEM algorithms. To illustrate the performance of the proposed algorithm in an
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(a) Local standard EM algorithm without cooperation for 100 nodes
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(b) Diffusion-based EM gradient algorithm for 100 nodes

Figure 4.3: Estimated mean and variance for two Gaussian components with different schemes
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asynchronous network setting, we selected the value of probabilities with different cases, pm =

qm = 0.3, pm = qm = 0.5, pm = qm = 0.8 and pm = qm = 1. From Figure 4.4 (b), the proposed

asynchronous diffusion algorithm converges to almost as the same rate as the synchronous version.

However, due to the additional randomness in the adaption process, EM gradient method with

asynchronous diffusion suffers from a slight degradation in MSD performance.

The scalability of the proposed diffusion EM gradient approach is also explored, with M = 1000

sensor nodes randomly deployed in the same square. Observations for each sensor node and

asynchronous network setting are selected as the test of network size M = 100. The estimated

mean and variance for 1000 nodes are shown in Figure 4.5 for both the local and the diffusion

scheme. From Figure 4.6. we can see that the MSD performance of all these algorithms are

improved by the increased network size in comparison with M = 100 test, and the diffusion

strategy still outperforms consensus based EM and DDEM algorithms in MSD performance with

a large scale network.

4.6.2 2-Dimensional Data

In this subsection, we investigate the 2D Gaussian mixture density with M = 100 sensor nodes

randomly generated in the same square. The observations are generated from J = 2 2D Gaussian

components distributed as shown in Figure 4.7. Each component is a 2D Gaussian density, the

number of data samples at each node is Nm = 100. In the first 40 nodes, 60% observations

come from the first Gaussian component and the other 40% observations evenly come from the

other two Gaussian components, i.e. αm,1 = 60%, αm,2 = αm,3 = 20% for m = 1, · · · , 40.

In the next 30 nodes, 70% observations come from the second Gaussian component and the

other 30% observations evenly come from the other two components, i.e. for m = 41, · · · , 70,

αm,1 = αm,3 = 15%, αm,2 = 70%. For m = 71, · · · , 100, 60% observations come from the

last Gaussian component and the other 40% observations evenly come from the other Gaussian

components αm,1 = αm,2 = 20%, αm,3 = 60%. The component parameters are given by

µ1 = [0.7, 0.7], µ2 = [0.5, 0.5], µ3 = [0.3, 0.3],
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(b) Asynchronous network setting for 100 nodes

Figure 4.4: Comparison of network MSD vs iteration index for asynchronous diffusion,
synchronous diffusion, consensus based EM [2] and DDEM [3]
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(a) Local standard EM algorithm without cooperation for 1000 nodes
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(b) Diffusion-based EM gradient algorithm for 1000 nodes

Figure 4.5: Estimated mean and variance with different schemes for 1000 nodes
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(a) Synchronous network setting for 1000 nodes
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(b) Asynchronous network setting for 1000 nodes

Figure 4.6: Large scale network MSD (1000 nodes) comparison vs iteration index for
asynchronous diffusion, synchronous diffusion, consensus based EM [2] and DDEM [3]
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We set the probabilities for Bernoulli model as qm = pm = 0.8 and communication radio range

r = 1.5 meters, and randomly select 10 sensor nodes to demonstrate the evolution of the mean

of the first Gaussian component µ1 = [0.7, 0.7] during the iteration process in the Figure 4.8. As

shown in Figure 4.8, the estimated mean values almost converge to the same values based on the

asynchronous diffusion EM gradient method while the local standard EM converge to different

values. The impact of estimation performance with different communication radio ranges is also

considered here. As seen in Figure 4.9 , the performance of both estimated mean and variance

are significantly improved by increasing communication radio range. In Figure.1.10, we show

the performance of the estimated mean values of each nodes with different communication radio

ranges under the asynchronous network setting. When radio range r = 0 as shown in Figure 4.10

(a) the network becomes an unconnected network, each node only can perform local standard EM

without communication with other neighbour nodes, which leads to a noisy estimation result. It

can be seen from Figure 4.10 (b) and (c), the estimated mean values in all nodes are very close to

their true mean values (the true values are µ1 = [0.7, 0.7]′, µ2 = [0.5, 0.5]′, µ3 = [0.3, 0.3]′). By
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(a) Local standard EM algorithm without diffusion for 2D Gaussian mixture model
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(b) Diffusion-based EM gradient algorithm for 2D Gaussian mixture model

Figure 4.8: Evolution of the first estimated mean value with different schemes for 10 sensor nodes
using 2D Gaussian mixture model
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Figure 4.9: Estimation performance versus radio range (in meters) with the diffusion EM gradient
algorithm (pm = qm = 0.8)

increasing communication radio ranges, the estimation performance is improved.

4.7 Chapter Summary

In this chapter, we proposed a diffusion based EM gradient algorithm for mixture models in

asynchronous sensor networks. The proposed algorithm is characterized by local EM gradient

based processing and computations of component parameters with asynchronous ATC diffusion

strategies. The ability to process data locally is of particular interest to the sensor networks

with computationally powerful node which require costly node-to-node communications. More

importantly, with asynchronous diffusion model, each node is allowed to obtain the flexibility

through their own assessment of local information without coordinated behavior over the network

in comparison with synchronous strategies. Simulation results show that the proposed algorithm

outperforms the local-standard EM without cooperation but as expected it degrades the MSD
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(a) Unconnected nodes (Radio Range=0)
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(b) Radio Range=1.5m
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(c) Radio Range=2.5m

Figure 4.10: The estimated mean values versus radio ranges
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performance compared to synchronous diffusion scheme. Note that EM gradient method preserves

the procedure of E- step in EM algorithm and does not separate the space of components, thus

distributed EM gradient algorithm cannot provide a better performance under the overlapping

mixture model.
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Chapter 5

Distributed quasi-Newton Method for Power

System State Estimation

In this chapter, the system-wide power system state estimation (PSSE) is promising in deregulating

the energy market and improving the situational awareness. In practice, the use of centralised

estimator is not viable due to the high complexity, communication cost, and robustness issues.

Thus, with the systematic manner, we consider the distributed PSSE approaches which are

designed based on the quasi-Newton and backtracking line search. We demonstrate the

effectiveness of the proposed algorithms via the IEEE 14- and 4200- buses. It is shown in the

simulation results that the proposed method performs better than other algorithms when dealing

with bad data and large-scale problems.

5.1 Introduction

State estimation functions as an essential part in power systems. It significantly impacts the

capabilities in dispatching power, frequency management and error identifications. The system

administrator can monitor the state of the power grid via state estimation methods [95]. It

has become more and more important to estimate the system states with better accuracies.

Researchers have made great efforts in combining new sensing techniques with the state-of-the-

art state estimations. For example, in [96], the authors presented a Wide-Area Measurement

System (WAMS) aided by Phasor Measurement Units (PMUs). Since the computational load is

proportional to the amount of measurements, state-of-the-art systems would require the individual

buses to have their own processing abilities [97]. Compared to a centralized scheme, the

distributed methods have less amount of data for each estimator to process. Higher robustness
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is achieved since the information of the state is stored in a distributed way. Finally, the

communication overhead can be kept low by using advanced gossip based algorithms.

There have been a number of research efforts in investigating distributed state estimation

approaches for power systems. The hierarchical distributed approaches estimate system states

locally, exchange the information using a central processor, and combine the local estimations to

give the overall estimates [98–100]. However, such methods are limited by the communication

burden. In general, the distributed state estimations require the local communications rather

than counting on a central processor. Recent developments in fully distributed methods include:

leveraging the matrix decompositions [101, 102]; employing the alternating direction method

of multipliers (ADMM) method [49]; and information filter-based techniques [103]. The

matrix decomposition methods in [101, 102] give no guarantee on the convergence of the

distributed state estimates. The ADMM approach in [49] guarantees the asymptotic convergence.

However, the Lagrange multipliers require extra memory and asynchronous configurations can

be troublesome, which limit the use of ADMM methods. The method proposed in [103]

guarantees the convergence, but the required iterations scale linearly with the scale of the network.

Asymptotically convergent approaches can be particularly useful to deal with large-scale networks

especially when the convergence rate is independent of the scale of the network.

In [6, 7, 12], the authors proposed the gossip-based algorithms for complete distributed state

estimations. In particular, the method presented in [6] is a first order approach driven by the

diffusion strategy in [7]. Although the first order approaches are simple, their developments

are hampered by the slow convergence rate. However, the Newton-type methods usually have

quadratic convergence. A gossip-based Gauss-Newton method was developed in [12] to solve the

general nonlinear least squares problem and applied to the power system state estimation. The

Gauss-Newton method only exploits the presence of first-order information of Hessian, and thus

requires the cost function to be zero or a small residual. However, the presence of bad data will

result in a large residual in power system, which cannot be neglected during the estimation process.

Such situation can no longer be handled by Gauss-Newton methods efficiently. By contrast, quasi-

Newton methods are more efficient under these conditions, approximated Hessian can preserve

second order information, which allows our method to reduce the impact of bad data on the state

estimates.
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Figure 5.1: IEEE 14 bus system partitioned into I = 4 control areas

With this context, we reformulate the state estimation problem and propose a distributed quasi-

Newton method (DQN) for wide-area PSSE. Similar with [12],and employ the multi-agent gossip-

based scheme to describe the network communications. Under this scheme, the state of each agent

(control area) can be estimated by using the local information and a limited information exchange

with neighbour areas, for which the fusion center is not necessary. The agents can only preserve

their own states. This has advantages in both communication efficiency and storages, address the

large residual or bad data problem [104, 105].

In Section 5.2, we formulate the power system state estimation into a (non)linear least square (LS)

problem. The details of the proposed distributed quasi-Newton method are presented in Section

5.4. In Section 5.5, we provide the convergence analysis and finally in Section 5.6, the numerical

simulations are conducted to show the performance of our approach.
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5.2 Problem Formulation

A multi-area power network can be conveniently expressed as an undirected graph (N , E),

where the set of the vertices N , {1, · · · , B} denotes buses and the edge set E represents

the transmission lines that connect the buses. The power system state is normally defined as

the collection of the voltages (containing both phase and magnitude information) at all buses,

x = [ΘT ,VT ]T with Θ , [θ1, · · · , θB]T being the phase vector and V , [V1, · · · , VB]T the

magnitude vector. The whole network can be divided into I non-overlapping areas, each governed

by a control cite, which gathers the local measurements taken at the corresponding area and is

allowed to communicate with its neighboring areas. Fig. ?? shows a concrete example where the

network is partitioned into I = 4 regions. Apparently, the local measurements available to one

control cite is insufficient for it to estimate the total system state. Therefore, in this work we study

how to design the cooperation process between the multiple areas so that a distributed estimation

of the global state can be efficiently implemented.

We consider the traditional measurement system, SCADA (supervisory control and data

acquisition), which provides measurements on both power injections at some of the buses and

on power flows along some of the transmission lines. Since in SCADA system, the measurements

update rate is around once 2-6 seconds, which is relatively a long period of time compared with

the communication delay between different cites, a static setting is considered in this chapter, i.e.

measurement set is separated into different snapshots and each run of state estimation process is

based upon the most recent one. The measurement model can therefore be represented as:

ti = hi(x) + ei (5.1)

where ei denotes measurement noise at the ith sensor as well as some other uncertainties, such

as the modeling inaccuracy, and I = {1, · · · , I} where I is the number of control sites. We

further define M = 2B as the dimension of the system state. In general, the observation

function {hi(x)Ii=1} should be nonlinear. It is only in some special cases, such as when PMU

measurements are considered, that the observation function can be linear. In this chapter, the

general case is studied. By stacking the local measurements together, the global expression is

75



Distributed quasi-Newton Method for Power System State Estimation

shown as

t = h(x) + e, (5.2)

where h(x) = [hT1 , · · · ,hTI ]T , e = [eT1 , · · · , eTI ]T . A weighted least squares problem related to

this global representation can be written as

x̂ = min
x∈X

J(x) = (t− h(x))TR−1(t− h(x)) (5.3)

where R = cov([e1, · · · , eN ]T ) and X
.
= {θn ∈ [−θmax, θmax], Vn ∈ [0, Vmax], n ∈ N},

with θmax and Vmax being the phase angle and voltage limit. According to [12], problem

(5.3) is equivalent to the maximum likelihood estimation for (5.2), under the assumption that

the measurement errors at different regions are gaussian and uncorrelated with each other, i.e.

R = diag(R1, · · · , RI) with Ri being the covariance matrix for the measurement error at the

ith region. Since R is block diagonal matrix, problem (5.3) can be reformulated to facilitate a

distributed implementation,

x̂ = min
x∈X

J(x) =
I∑
i=1

‖t̄i − h̄i(x)‖2, (5.4)

with t̄i = R
− 1

2
i ti and h̄i = R

− 1
2

i hi. Both problem (5.3) and its distributed version (5.4) are

essentially non-linear least squares problems. For centralized processing structure, Newton type

algorithms are typically used to search for the stationary point because of their faster convergence

rate than the first-order methods such as gradient-descent method and ADMM. In the next section,

we introduce the centralized approach for solving problem (5.4), using a particular type of quasi-

Newton algorithm.

5.3 Centralized quasi-Newton Algorithm

A multi-agent network previously illustrated through Fig. 5.1 is considered, where there are I

distributed agents, and the ith agent only knows a subset function fi(x)
.
= z̄i − h̄i(x) : RM →

RNi , i ∈ I,

fi(x) =
[
f1(x)T , · · · fNi(x)T

]T
. (5.5)
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Given the Jacobian Ji = ∂fi(x)/∂x, the gradient of function ‖fi‖2 at x is denoted as Fi(x) =

Ji(x)T fi(x). Since the global objective function can be rewritten as

x̂ = arg min
x∈X

I∑
i=1

‖fi(x)‖2 (5.6)

where individual agent only gets access to the partial information of the global cost function, the

gradient of the global function can be computed as

F (x) =
I∑
i=1

Fi(x) =
I∑
i=1

Ji(x)T fi(x). (5.7)

In this chapter, we are interested in the BFGS (broyden-fletcher-goldfarb-shanno) quasi-Newton

algorithm [106] due to its wide applications and robust performance. According to BFGS

algorithm, with a properly chosen initial point x0 as well as a positive-definite matrix H0, the

searching for the stationary point of problem (5.6) can be established by iteratively computing the

following terms,

xk+1 = xk − αHkF (x0), (5.8)

Hk = (I − ρkzkykT )Hk−1(I − ρkykzkT ) + ρkzkzkT , k ≥ 0, (5.9)

where yk = F̂ (xk) − F̂ (xk−1), zk = xk − xk−1, ρk = 1/(ykTzk) and α is a fixed value that

controls the length of the searching step. The stopping criterion for convergence is typically set by

checking the difference between the objective function values in the present and the last iterations

or by simply assuming a maximum limit on the iteration number.

5.4 Distributed quasi-Newton Process

Motivated by the superior convergence behavior of the quasi-Newton method for large-scale

optimization, we propose a distributed quasi-Newton method that combines quasi-Newton

iterations with a network consensus process in this section.

Solving the minimization problem (5.6) in a distributed manner is challenging. The information on

the global objective function is required for the computation of the searching step, as discussed in
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the previous section. However, in our setting, each agent can only access a part of the global

information. To obviate this problem, we augment the quasi-Newton searching with gossip

process, which would disseminate local information across the network. We hope that by doing

so the distributed process would behave similarly as its centralized version.

5.4.1 Network Exchange Model

Gossip process is used to disseminate local information. Essentially, an agreement among

all agents is reached, to a certain degree of accuracy, via proper local information exchanges

prescribed in the gossip algorithm. In this section, we first brief the data exchange model before

introducing some assumptions that the gossip algorithm used in this chapter is built upon.

Since we assume that the data exchanges are synchronized among the agents, we can denote the

epoch for the data exchanges between the kth and the k+ 1th local iteration as [τk, τk+1). During

the epoch, each agent is allowed to only communicate with its neighboring nodes. The network

topology can be modeled as a time-varying graph Gk,t = (I, Ek,t), where t is the counter for the

data exchanges of the gossip process. The network topology is therefore assumed to be stationary

only within a single exchange stage in the gossip process. The node set corresponds to the area

set and is denoted also as I = {1, · · · , I}. The edges {i, j} ∈ Ek,t correspond to the available

communication links used for data exchanges. The adjacency matrix related to the graph is denoted

as Ak(t) = [A
(k,t)
i,j ]I×I

A
(k,t)
i,j =


1, {i, j} ∈ Ekt

0, otherwise

(5.10)

A connected graph Gk,∞ = {I,∪∞
t′=t
Ek
t′
} for all t ≥ 0 within the kth update is defined such that

there exists an integer L ≥ 1 which, for each pair of {i, j}, satisfies

{i, j} ∈
L−1⋃
t′=0

Ek
t′+t

. (5.11)

Define the weight matrix Φk(t) = [Φk
i,j(t)]I×I for network, where [Φk

i,j(t)] is non-zero entry of

matrix Φk(t) if and only if {i, j} ∈ Ekt . To ensure that the exchanges happen between adjacent
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agents, we require that Φk(t) is symmetric and doubly stochastic for any k and t. Furthermore,

with the i, j ∈ I, we assume there exists a 0 < η < 1 such that

1) Φk
i,j(t) ≥ η for all k > 0 and t > 0

2) Φk
i,j(t) ≥ η for all k > 0 and t > 0 if {i, j} ∈ Ekt

3) Φk
i,j(t) = η for all k > 0 and t > 0 if {i, j} ∈ Ekt

Gather the local information in one single vector Wk(t) , [Wk
1 (t), · · · ,Wk

I (t)], so that we can

write the network exchange explicitly as

Wk(t) = [Φk(t)⊗ IIW ]Wk(t− 1), 1 ≤ t ≤ tk, (5.12)

where IIW is the identity matrix and IW equals to the length of the local information exchanged at

agent i,Wk
i (t) (in our case, IW = M for both the exchanges of state variables and local gradients)

and tk is the number of exchanges during [τk, τk+1).

In general, the weight matrix Φk(t) is time-varying. However, we only consider the special case

of the general model, i.e. Coordinated Static Exchange [107, 108] in which each agent collects

the messages from the neighbourhood, and updates parameters based on a static weight matrix Φ.

This network can satisfy the fully connected condition with

A = II − 1I1
T
I (5.13)

where 1I is an I-dimensional all-one vector. In most CSE protocol based gossip network, the

weight matrix is constructed by Laplacian matrix

L = D−A (5.14)

where D = diag(A1I) is the degree matrix and

Φ = II − βL (5.15)

where β = 1/max(A1I).
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Lemma 1 [Proposition 1, [109]] Let connectivity and stochastic weights assumptions hold. The

entries of the matrix product
∏t
t′=0 Φk(t′) converge to 1/I with a geometric rate uniformly with

respect to i, j ∈ I, and k

∣∣∣[ t∏
t′=0

Φk(t′)
]
i,j
− 1

I

∣∣∣ ≤ 2
(1 + η−L0

1− ηL0

)
(1− ηL0)t/L0 (5.16)

where L0 = (1− I)L and L bound the intercommunication interval ensuring graph connectivity.

The limit of the weight matrix product exists

lim
t→∞

=

t∏
t′=0

Φk(t′) = 1N1TN/I (5.17)

and thus

lim
t→∞
Wk
i (t) =

1

I

I∑
i=1

Wk
i (0), k = 1, 2, · · · . (5.18)

5.4.2 Local Update Process

To start with, an initial state variable x0
i and an initial approximation for the inverse of Hessian

matrix H0
i , need to be set at each agent. For reasons that will be clear later, before any local

iteration k, a gossip process is implemented to compute the average state, denoted as

x̄i
k(lk) ≈

1

I

I∑
i=1

xki , (5.19)

where lk is the number of gossip exchange. We assume that all the agents are synchronized so that

the data exchange happens in an synchronous way. The deviation of x̄i
k(lk) from the real average

is related to both the states xki and lk, and will be discussed with more details in the next section.

Now Fi(x̄i
k(lk)) can be computed at each agent and the average of the gradients,

F̂ (x̄i
k, l
′
k) ≈

1

I

I∑
i=1

Fi(x̄i
k) (5.20)

can be similarly obtained by another gossip process, where l
′
k is the gossip exchange number. As

we later show, the values of lk and l
′
k have varied degrees of influence on the distributed algorithm’s
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convergence property.

After updating (except for the first iteration, i.e. k = 0) the approximation for the inverse of

Hessian matrix according to

Hk
i = (I − ρki zki ykTi )Hk−1

i (I − ρki yki zkTi ) + ρki z
k
i z
kT
i , (5.21)

where yki = F̂ (x̄i
k)−F̂ (x̄i

k−1), zki = x̄i
k−x̄i

k−1, ρki = 1/(ykTi zki ), the following local iteration

is then implemented at each agent,

xk+1
i = x̄i

k − αiHk
i F̂ (x̄i

k), i ∈ I, (5.22)

where αi is used to control the size of the searching step. To simplify the analysis, we fix αi to be

1 at all agents.

From the above description, it can be seen that only state variables and first-order information

are required to be exchanged between the nodes, while the second-order information is locally

estimated. More importantly, no matrix inverse is required, which reduce the computational

burden significantly compared with the Gossip-based Gauss Newton method in [12].

The whole procedure of DQN method is summarized in the Algorithm 1. In the next section, we

will provide its convergence analysis.

Algorithm 1 Distributed BFGS Algorithms

1: given initial variables x0
i , H0

i at all agents i ∈ I, as well as proper weight matrix Φ that
satisfies Assumption 1 and 2.

2: set k = 0.
3: repeat
4: network exchanges: Agents exchange their local state variables according to (5.12) with
tk = lk. After Fi(x̄ik(lk)) is computed at each agent, these local graients are exchanged
according to (5.12) with tk = l

′
k and the estimate of the global gradient F̂ (x̄i

k) is obtained at
each node.

5: local update: If k ≥ 1, update the approximated inverse Hessian matrix as (5.21). For each
i ∈ I. agent i updates its local variables as (5.22).

6: set k = k + 1
7: until ‖xk+1

i − xki ‖ ≤ ε or k = K.
8: set the local estimate as x̂i = xki .
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5.5 Convergence Analysis

In this section, we analyze the convergence of the DQN algorithm (summarized in Algorithm

1). Local convergence instead of global convergence property is studied here since the objective

function in our problem formulation is not guaranteed to be convex and for non-convex functions, a

global convergence proof is not found even for the centralized version of quasi-Newton algorithm

in existing literature. We mainly develop the local convergence analysis first used in [106] and

study the impact of the distributed implementations on the DQN’s convergence property.

5.5.1 Gossip Errors Analysis

One of the noticeable differences of DQN from its centralized version is that the values of state

variables and gradients utilized at the iteration equations (5.21),(5.22) are deviated from the real

values since the gossip exchange number is finite. We denote such deviations as gossip errors. To

facilitate our later analysis of the local convergence, we bound the gossip errors by making some

reasonable assumptions on the objective functions.

Lemma 2 [106] Assume the gradient of the global objective function, F : RM → RM is

differentiable in the open set D ⊂ X, and for some minima x∗ in D, p > 0 and K > 0,

∥∥∥F ′(x)− F ′(x∗)
∥∥∥ ≤ K‖x− x∗‖p. (5.23)

The following inequality is satisfied for every u, v in D,

∥∥∥F (v)− F (u)− F ′(x∗)(v − u)
∥∥∥ (5.24)

≤ Kmax{‖v − x∗‖p, ‖u− x∗‖p}‖u− v‖. (5.25)

If F
′
(x∗) is further invertible, there exist ε > 0 and ρ > 0 such that max{‖u−x∗‖, ‖v−x∗‖} ≤ ε

leads to u, v ∈ D and

(1/ρ)‖v − u‖ ≤ ‖F (v)− F (u)‖ ≤ ρ‖v − u‖. (5.26)
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Denote the gossip errors for the local state and the gradient exchanges respectively as pi(lk), qi(l
′
k)

at agent i and the kth iteration. To ease the expression, we use F̂ ki (t) in place of F̂ (x̄i
k, t)

hereafter. DefineWk
F (t) =

[
F̂ k1 (t), · · · , F̂ kI (t)

]
,Wk

x(t) =
[
x̄1

k(t), · · · , x̄Ik(t)
]
, W̄k

F = [1I1
T
I ⊗

IIM ]Wk
F (0)/I and W̄k

x = [1I1
T
I ⊗ IIM ]Wk

x(0)/I . Note thatWk
x(0) =

[
xk1, · · · ,xkI

]
,Wk

F (0) =[
F1(x̄1

k), · · · , FI(x̄Ik)
]
. By the above definitions, we would have

Wk
F (t)− W̄k

F =



q1(t)

...

qI(t)


,Wk

x(t)− W̄k
x =



p1(t)

...

pI(t)


. (5.27)

Lemma 3 Let the assumptions made in Lemma 2 hold and the gradients of the local functions are

upper bounded in D. The following inequalities are then satisfied for i ∈ I,

‖pi(t)‖ =

∥∥∥∥∥∥x̄ik(t)−
I∑
j=1

xki

∥∥∥∥∥∥ ≤ C1(t1), 0 < t1 < lk, (5.28)

∥∥∥F̂ ki (t)− F (x̄i
k)
∥∥∥ ≤ 2C1(lk) + C2(t2), 0 < t2 < l

′
k, (5.29)

where C1 and C2 are both positive reals that decrease exponentially with the number of the gossip

exchanges.

Proof: See Appendix C

5.5.2 Local convergence analysis

One prominent feature of quasi-Newton algorithm that differentiate it from other unconstrained

optimization algorithms is that its second-order information is updated recursively. To analyze

the local convergence property, we first characterize this recursive process by establishing the

following lemma.

Lemma 4 Let the gradient of the global function, F, satisfy the assumptions made in lemma 3 and
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further let the hessian matrix at the minima, F
′
(x∗), be symmetric and positive definite. Then there

exists an neighborhooldN = N1 ×N2 of (x∗, F
′
(x∗)−1) such that for each (x̄k−1,Hk−1) ∈ N ,

the updated Hessian inverse Hk, as defined in (5.21), satisfies

∥∥∥Hk − F ′(x∗)
∥∥∥
M
≤
[
1 + λ1 max

{
‖x̄k − x∗‖p, ‖x̄k−1 − x∗‖p

}]
∥∥∥Hk−1 − F ′(x∗)

∥∥∥
M

+ λ2 max
{
‖x̄k − x∗‖p, ‖x̄k−1 − x∗‖p

}
, (5.30)

where λ1, λ2 are non-negative constants, and ‖ · ‖M is certain Matrix norm. Note that we omit i

in x̄i
k and Hk

i for ease of expression.

Proof: See Appendix D

Now that the inverse of the hessian matrix is bounded through inequality (5.30), the local

convergence result can be well established. We conclude the main result in the following theorem.

Theorem 2 Let the assumptions made in Lemma 4 be satisfied by the gradient function, F. Then

there exists a neighborhoodN = N1×N2 of (x∗, F
′
(x∗)−1), such that for each r ∈ (0, 1), if the

initial states satisfy the following condition

‖x0
i ‖ < ε(r)/2, ‖H0

i − F
′
(x∗)‖M < δ(r), (5.31)

where ε(r), δ(r) are positive constants, then the sequences of x̄i
k,Hk

i , k > 0 are well defined in

N and x̄i
k converges to the local minimum x∗ in the following manner

‖x̄ik+1 − x∗‖ ≤ r′‖x̄ik − x∗‖, (5.32)

where r
′ ∈ (0, 1).

Proof: See Appendix E
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5.6 Simulation Results

In this section, we conduct experiments to compare the existing distributed quasi-Newton

algorithm performance to those of the GGN algorithm [12] and ADMM algorithm [49]. The

distributed estimate in each are {V̂ k
i,n}Nn=1, {θ̂ki,n}Nn=1 at each local update, the Mean Squared Error

(MSE) with respect to the voltage magnitude and the phase at the i-th site are

MSEk
V,i =

N∑
n=1

((V̂ k
i,n)− V̄n)2 (5.33)

MSEk
θ,i =

N∑
n=1

((θ̂ki,n)− θ̄n)2 (5.34)

In addition, the metric used in our comparisons are the cost function in (7),

Valk =
I∑
i=1

‖zi −Hix
k
i ‖2 (5.35)

which is evaluated using the decentralized estimates at each updates, and the global MSE is given

by

MSEk
V =

1

I

I∑
i=1

MSEk
V,i (5.36)

MSEk
θ =

1

I

I∑
i=1

MSEk
θ,i (5.37)

In the simulations we used the MATPOWER 5.1 [110] test case IEEE-14 (N=14) system, and took

the load form from Power Systems Test Case Archive, University of Washington [111], and scale

the base load from MATPOWER upon load buses, and selected the work program as Optimal

Power Flow to give the generation dispatch for that instant. The initialization for the voltage

magnitudes and phases are 1 and 0, respectively.

Sensor observations are generated by introducing independent Gaussian errors {e} ∼ N (0, σ2)

where σ2 = 10−6. The IEEE 14-bus grid is partitioned into 4 areas as depicted in Figure 5.1. The

control areas contain I1 = 3, I2 = 4, I3 = 4 and I4 = 4 buses, respectively.
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Table 5.1: Execution Time and Iterations in Case A

IEEE 14-bus GGN DQN Centralized Estimation

Computation times (s) 0.0287 0.0236 0.0228

Iterations 48 122 Undefined

5.6.1 Case A: Comparison with GGN without Bad Data

Here we present how the distributed quasi-Newton scheme performs against the Gossip based

Gauss Newton algorithm for PSSE in [12]. These distributed network algorithms proceed at

each tth gossip exchange, and run the with t = 10 gossip exchanges for each update. The

comparison is made on the same time scale based on the number of exchanges. By using the

t = 10 gossip exchanges between every two descent updates k = 1, · · · , 50, thus we have the

total number of 500 exchanges per snapshot. We assume that all sensors are connected, which

leads to the adjacency matrix A = II − 1I1
T
I , and the weight matrix is constructed with the

Laplacian L = diag(A1I) − A and Φ = II − ωL with ω = β/max (A1I) where β = 0.5.

We choose the step-size for Gossip based Gauss Newton algorithm as αGGN = 0.5. It can be

seen from Figure 5.2(a)to(c), GGN algorithms converge faster than the proposed DQN method,

because that GGN algorithm can achieve the convergence rate of centralized Gauss-Newton

Algorithm, which converge quadratically when the system error or residual is very small. On

the other hand, distributed quasi-Newton is a Newton-like algorithm that converges superlinearly.

However, based on the comparison in Table 5.1, GGN method require to compute the inversion of

Hessian matrix with complexity order of O(N3), where N is the matrix size. This results in high

computation complexity and requirements of the local processor to have capability to maintain

such computations on time for exchange. In contrast, the proposed method requires an O(N2)

computation cost. It uses an iterative solution of approximation for the Hessian matrix and avoids

calculating matrix inverse , which makes it more effective and realistic in a power system.

5.6.2 Case B: Comparison with GGN in presence of Bad Data

We compare our proposed method with the GGN algorithm when bad data is present. We add

random Gaussian system errors es with E(ese
T
s ) = 100σ2. We examine the MSE performance of
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Figure 5.2: Comparison with GGN and distributed quasi-Newton using t = 10 exchange for each
update
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Figure 5.3: Comparison distributed quasi-Newton against GGN with bad data

the distributed quasi-Newton method where, in each snapshot t, each agent exchange to neighbour

agents 10 times on average during the interval[τk, τk+1) for all k = 1, · · · , 50. Clearly, as shown

in Figure 5.3(a) and (b), when large residual is present, caused by bad data, estimation with the

GGN method fail to improve the cost function after iteration k = 11 in each snapshot. On the

other hand this distributed quasi-Newton method degrades more gracefully. The GGN method

only considers the first order term of Hessian matrix, however, for the large residual problem,

second order terms cannot be neglected. By contrast, the distributed quasi-Newton method can

build up the second-order derivative term for approximated Hessian with iterative process. That is

the reason our method outperforms the GGN algorithm in the presence of bad data.
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5.6.3 Case C: Comparison with ADMM Method in a Large-scale Power Network

We finally compare our method to ADMM [49] using a larger power network: a 4200-bus power

grid constructed using the IEEE 14- and 300-bus power grid. By assuming that 300 buses are

different regions, a copy of the IEEE 14-bus grid can be used as the substitute for each of them.

Moreover, we randomly choose the the terminal buses among the incident to the line areas for

the IEEE 300-bus grid. Measurements and bad data are selected as the tests for IEEE 14-bus

grid. The step-size for ADMM is αADMM = 0.5. Figure 5.3(a) and (b) demonstrate the MSE

plot which are averaged upon 300 areas. Observing that the distributed quasi-Newton method

converges substantially faster than ADMM methods, achieving a Mean-square error of 10−6 less

than 25 iteration, while ADMM just reaches MSE of 10−3 by iteration 40. Note that the IEEE

300-bus is used as the substitute of the agents in the IEEE 14-bus grid. This reserved topology of

the 14 agents is also tested. It can be seen from the Figure 5.4(c) that the algorithm converged a

slightly faster (around 5%) due to the looser areas coupling.

5.7 Conclusion

In this chapter, we proposed a distributed quasi-Newton method for hybrid power system state

estimation integrating the seamlessly WAMS and SCADA measurement system, which adaptively

estimated the global state vector along with a large residual. The proposed algorithm reduced the

complexity of computation and maintained the property of fast convergence. In particular, only

gradient information is required to disseminated over the network, which significantly lowers the

communication overhead compared with other gossip-based algorithms. The numerical results

proved that the proposed approach was capable of delivering accurate estimates of the entire state

vector at each distributed area, even in the presence of bad data. Meanwhile, its effectiveness was

demonstrated by applying this method to a large-scale power system network.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Work

In this thesis, a number of innovative distributed cooperative strategies for dealing with exchange

of information, asynchronous network settings and state estimation have been considered for

wireless sensor and power system networks. The efficiency and convergence rate of the proposed

algorithms are often the main specifications in these types of applications. The presented

distributed approaches had been proven to be efficient when dealing with the statistical inference

problems for multiple applications. It was also shown that the proposed algorithm can outperform

existing algorithms in a variety of circumstances.

In Chapter 3, a distributed adaptive algorithm based on the component-wise EM method for

Gaussian mixture model in wireless sensor networks has been presented. The distributed

component-wise EM algorithm has been designed and applied into a Gaussian density estimation.

In particular, the proposed algorithm operates component-wise EM procedure for local parameter

estimation and exploits the incremental strategy in network updating, which can provide an

improved performance in terms of convergence rate. Numerical simulation results have proved

the advantages of the proposed DCEM algorithms in both well-separated and overlapped Gaussian

mixture densities. The distributed DCEM algorithm is able to outperform the existing DEM and

DEMM algorithms in the presence of overlap Gaussian mixtures. Note that due to the limitation

of the incremental strategy, the proposed algorithm only can be implemented on a small size (less

than 100 nodes) wireless sensor network.

In Chapter 4, a diffusion based EM gradient algorithm for density estimation in asynchronous

wireless sensor networks has been investigated. Specifically, based on the asynchronous adapt-
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then-combine diffusion strategy, a distributed EM gradient algorithm that can be applied to

asynchronous wireless sensor networks has been considered. We have derived the procedure

of diffusion optimization and exploited the Bernoulli model to approximate the asynchronous

behaviour of the network. In comparison with existing distributed EM based estimation

methods, more accurate estimates can be obtained for the proposed algorithm in the presence

of asynchronous uncertainties, such as random link failures, random data arrival times and turning

on or off sensor nodes for energy conservation. Simulation experiments have been conducted to

illustrate that the proposed algorithms significantly outperform the consensus based strategies in

terms of MSD performance under network uncertainties and imperfections.

In Chapter 5, the challenge of distributed state estimation in power system that requires low

complexity and high stability in the presence of bad data and in a large scale network is addressed.

A gossip based distributed quasi-Newton algorithm has been proposed for power system state

estimation. In particular, we have applied the quasi-Newton method in distributed state estimation

under the gossip protocol. The proposed algorithm exploits the BFGS formula to approximate the

Hessian matrix to avoid calculating the inverse Hessian matrix in each control area. A distributed

back track line search method has also been presented to coordinate the whole network with a

suitable step-size. The simulation results for the IEEE 14 bus system and a large scale 4200 bus

system have shown that the distributed quasi-Newton scheme outperforms existing algorithms

in terms of MSE performance with bad data. Researchers could also implement the distributed

quasi-Newton method efficiently in hardware design for a large scale power system.

6.2 Future Work

The proposed schemes in this thesis provide further potential to be implemented outside of our

considered scope. Further work and in-depth analysis can be done to extend our contribution to

other fields in the future.

The proposed distributed component-wise EM algorithm can be extended to a consensus based

strategy. More specifically, the component-wise EM algorithm can be carried out at local sensor

nodes to update estimates, and the local statistical summary can be exchanged based on a
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consensus protocol among the neighbour nodes in a wireless sensor network. In addition, the

important issue on stability of the DCEM method under quantization should be addressed in future.

The diffusion based EM algorithm proposed in Chapter 4 does not have analytical results in terms

of steady state performance and mean square convergence. In order to demonstrate the excellent

performance of the proposed algorithm, related mathematical performance analysis should be

performed in the future work.

The distributed quasi-Newton method in power system state estimation only employs the

consensus protocol for information exchange. However, diffusion strategies are more effective

than the consensus scheme. Further research on state estimation under diffusion protocols can be

carried out in the future work.
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Appendix A

Proof of Theorem 1

1. Consider the EM update for the mixing proportions αm,j , from Equations (3.1), (3.3) and

(3.53), it can be obtained

∂Lm(θm)

∂αm,j
|Am=A[t+1,j−1]

m
= (A.1)

Nm∑
i=1

P(ym,i|µtm,j ,Σt
m,j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µtm,k,Σ

t
m,k)

−Nm

Premultiplying by Pαt
m,j

, yields

Pαt
m,j

∂Lm(θm)

∂αm,j
|Am=A[t+1,j−1]

m
= (A.2)

1

Nm

Nm∑
i=1

αtm,jP(ym,i|µtm,j ,Σt
m,j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µtm,k,Σ

t
m,k)

− αtm,j (A.3)

The M-step formula for A in equation (3.31) can be rewritten as

αt+1
m,j = αtm,j +

1

Nm

Nm∑
i=1

wt+1
i,m,j − α

t
m,j (A.4)

2. Consider update formula for the mean µj which follows from (3.1) and (3.3) that

∂Lm(θm)

∂µm,j
|µm,j=µt

m,j
=

Nm∑
i=1

αtm,jP(ym,i|µtm,j ,Σt
m,j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µtm,k,Σ

t
m,k)

(A.5)

× (Σt
m,j)

−1[ym,i − µtm,j ]

=

Nm∑
i=1

wt+1
i,m,j(Σ

t
m,j)

−1[ym,i − µtm,j ]
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Premultiplying by Pµt
m,j

, yields

Pµt
m,j

∂Lm(θm)

∂µm,j
|µm,j=µt

m,j
=

1∑Nm
i=1 w

t+1
i,m,j

Nm∑
i=1

wt+1
i,m,jym,i − µ

t
m,j (A.6)

= µt+1
m,j − µ

t
m,j

Based on equation (3.31), it can be derived that
∑Nm

i=1 w
t+1
i,m,j > 0, and Σt

m,j is positive definite

with 1-probability under the assumption of a large enoughNm (the matrix has full rank). Similarly,

based on (3.32), Pµt
j

is positive definite with 1-probability. 3. The third piece of the theorem is

based on the equation (3.1) and (3.3) that

∂Lm(θm)

∂Σm,j
|Σm,j=Σt

m,j
= −1

2

Nm∑
i=1

αtm,jP(ym,i|µtm,j ,Σt
m,j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

k ,Σt+1
k ) +

∑J
k=j α

t
m,kP(ym,i|µtk,Σ

t
k)

(A.7)

× (Σt
m,j)

−1{Σt
m,j − [ym,i − µtm,j ][ym,i − µtm,j ]T }(Σt

m,j)
−1

= −1

2

Nm∑
i=1

wt+1
i,m,j(Σ

t
m,j)

−1{Σt
m,j − [ym,i − µtm,j ][ym,i − µtm,j ]T }(Σt

m,j)
−1

Based on the discussion above, the EM update formula for Σt
m,j can be restructured as

Σt+1
m,j = Σt

m,j +
1∑Nm

i=1 w
t+1
i,m,j

Nm∑
i=1

wt+1
i,m,j [ym,i − µ

t
m,j ][ym,i − µtm,j ]T −Σt

m,j (A.8)

= Σt
m,j +

2Σt
m,j∑Nm

i=1 w
t+1
i,m,j

VΣt
m,j

Σt
m,j ,

where

VΣt
m,j

= −1

2

Nm∑
i=1

wt+1
i,m,j(Σ

t
m,j)

−1{Σt
m,j − [ym,i − µtm,j ][ym,i − µtm,j ]T }(Σt

m,j)
−1 (A.9)

=
∂Lm(θ)

∂Σj
|Σj=Σt

m,j

which yields

Σt+1
m,j = Σt

m,j +
2Σt

m,j∑Nm
i=1 w

t+1
i,m,j

∂Lm(θm)

∂Σj
|Σj=Σt

m,j
(A.10)
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Facilitating the definition of vec operator, vec[ABC] = (CT ⊗A)vec[B], it can be derived

vec[Σt+1
m,j ] = vec[Σt

m,j ] +
2∑Nm

i=1 w
t+1
i,m,j

(Σt
m,j ⊗Σt

m,j)
∂Lm(θm)

∂Σj
|Σj=Σt

m,j
(A.11)

Thus, PΣt
m,j

equal to 2∑Nm
i=1 w

t+1
i,m,j

Σt
m,j ⊗Σt

m,j . Furthermore, with an arbitrary matrix U , it can be

derived that

vec[U ]T (Σt
m,j ⊗Σt

m,j)vec[U ] = tr(Σt
m,jUΣt

m,jU
T ) (A.12)

= tr(Σt
m,jUΣt

m,jU
T )

= vec[Σt
m,jU ]T vec[Σt

m,jU ]

which is valid only when Σt
m,jU = 0 for all U satisfies. Given that Σt

m,j is positive definite

with 1-probability and a large Nm, this condition can not be achieved. Therefore it follows from

equation 3.33) and
∑Nm

i=1 w
t+1
i,m,j > 0.
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Proof of Theorem 2

With (3.66), it can be obtained:

RT
θm,j

MDCEM
m,j Rθm,j

=


I−Pθ∗m,j

Hθ∗m,j
−Pθ∗m,j

Hθ∗l

0 I

 (B.1)

= I−


I

0

Pθ∗m,j
[Hθ∗m,j

Hθ∗m,l
]

= I−


I

0

Pθ∗m,j
[I 0]RT

θm,j
Hθ∗mRθm,j

RT
θm,j

MDCEM
m,j Rθm,j

=


I−Pθ∗m,j

Hθ∗m,j
−Pθ∗m,j

Hθ∗l

0 I

 (B.2)

= I−


I

0

Pθ∗m,j
[Hθ∗m,j

Hθ∗m,l
]

= I−


I

0

Pθ∗m,j
[I 0]RT

θm,j
Hθ∗mRθm,j
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Therefore,

MDCEM
m,j = I−Rθm,j


I

0

Pθ∗m,j
[I 0]RT

θm,j
Hθ∗m (B.3)

Multiplying both sides with H
1
2
θ∗m

and H
− 1

2
θ∗m

, (B.3) becomes

H
1
2
θ∗m

MDCEM
m,j H

− 1
2

θ∗m
= I−H

1
2
θ∗m

Rθm,j


I

0

Pθ∗m,j
[I 0]RT

θ∗j
H

1
2
θ∗m

(B.4)

= I−H
1
2
θ∗m

Rθ∗m,j


Pθ∗m,j

0

0 0

RT
θm,j

H
1
2
θ∗m

H
1
2
θ∗m

MDCEM
m,j H

− 1
2

θ∗m
= I−H

1
2
θ∗m

Rθ∗m,j


Pθ∗m,j

0

0 0

RT
θm,j

H
1
2
θ∗m

(B.5)

If parameter sets are chosen cyclically in a natural order, i.e., {1, · · · , J}, it follows from (B.5)

that

MDCEM
m,J × · · ·MDCEM

m,1 = I−Pθ∗mHθ∗m (B.6)

where

Pθ∗m = DP + LP (B.7)

where

DP =



Pθ∗m,1
0

. . .

0 Pθ∗m,J


(B.8)

is the block diagonal of Pθ∗m , and LP is the corresponding strictly lower block triangular matrix

of Pθ∗m . Then, we decompose the local Hessian matrix Hθ∗m by

Hθ∗m = DH + LH + LTH (B.9)
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where DH,LH represent the block diagonal, strictly lower triangular block parts of Hθ∗m . From

[68, Theorem 2 ], it can be verified that DP = D−1
H , we rewrite the (B.7) as follow:

Pθ∗m = (DH + LH)−1 (B.10)

Thus, by letting

MDCEM
m =

J∏
j=1

MDCEM
m,j (B.11)

the local rate matrix of DCEM at node m is given by

MDCEM
m = I− (DH + LH)−1Hθ∗m (B.12)

Let ‖M‖2 =
√
ρ(MHM) denotes the matrix spectral norm of M and define M̄ =

H
1
2
θ∗m

MDCEM
m H

− 1
2

θ∗m
, according to (B.12),

M̄HM̄ = M̄TM̄ (B.13)

=
(
I−H

1
2
θ∗m

(DH + LH)−1H
1
2
θ∗m

)T (
I−H

1
2
θ∗m

(DH + LH)−1H
1
2
θ∗m

)
= I−H

1
2
θ∗m

(DH + LH)−T (DH + LH + DT
H + LTH −Hθ∗m)(DH + LH)−1H

1
2
θ∗m

< I

By defining

‖MDCEM
m ‖2Hθ∗m

= ρ(M̄HM̄) (B.14)

The inequality ρ(M) ≤ ‖M‖N leads to

ρ(MDCEM
m ) ≤ ‖MDCEM

m ‖Hθ∗ (B.15)

=
√
ρ(M̄H)

<
√
ρ(I) = 1
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Proof of Lemma 3

According to Lemma 1, we can obtain

Wk
x(t)− W̄k

x (C.1)

=

 t∏
t′

Φk(t
′
)− 1I1I

I

⊗ IIM

Wk
x(0), (C.2)

the norm of which is bounded as

∥∥∥Wk
x(t)− W̄k

x

∥∥∥ ≤

∥∥∥∥∥∥
t∏

t′=0

Φk(t
′
)− 1I1I

I

∥∥∥∥∥∥
∥∥∥Wk

x(0)
∥∥∥ (C.3)

≤

∥∥∥∥∥∥
t∏

t′=0

Φk(t
′
)− 1I1I

I

∥∥∥∥∥∥
F

∥∥∥Wk
x(0)

∥∥∥ (C.4)

≤
[
2I

(
1 + η−L0

1− η−L0

)
λtη

] ∥∥∥Wk
x(0)

∥∥∥ , (C.5)

where λη = (1−ηL0)1/L0 and (C.4) is due to ‖·‖ ≤ ‖·‖F . Since xi lies in D, there exists positive

real CD > 0 such that
∥∥Wk

x(0)
∥∥2

=
∑I

i=1 ‖xki ‖2 < C2
D and we can further obtain that

‖pi(t)‖ ≤
∥∥∥Wk

x(t)− W̄k
x

∥∥∥ ≤ C1(t), (C.6)

where C1(t) =
[
2I
(

1+η−L0

1−η−L0

)
λtη

]
CD. It can be seen that the norm of pi(t) decreases

exponentially with t. Since the gradients of Fi are upper bounded in D, there exists positive

real CG > 0 such that ∥∥∥Wk
F (0)

∥∥∥2
=

I∑
i=1

∥∥∥Fi(x̄ki )∥∥∥2
< CG. (C.7)
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Therefore, similarly to the derivation of (C.6), we can obtain

‖qi(t)‖ ≤
∥∥∥Wk

F (t)− W̄k
F

∥∥∥ ≤ C2(t), (C.8)

where C2(t) =
[
2I
(

1+η−L0

1−η−L0

)
λtη

]
CG. It can be then obtained that

∥∥∥F̂ ki (t)− F (x̄i
k)
∥∥∥ =

∥∥∥∥∥∥
I∑
j=1

[
Fj(x̄j

k)− Fj(x̄ik)
]

+ qi(t)

∥∥∥∥∥∥ (C.9)

≤
I∑
j=1

ρ‖x̄jk − x̄i
k‖+ ‖qi(t)‖, (C.10)

where (C.10) is from Lemma 2. From (C.6), it can be derived that

‖x̄jk − x̄i
k‖ ≤ ‖pi(lk)‖+ ‖pj(lk)‖ ≤ 2C1(lk). (C.11)

Finally, from (C.8),(C.10) and(C.11), we have (5.29).
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Appendix D

Proof of Lemma 4

In the following analysis, we let ε, ρ be the corresponding parameters in Lemma 2, i.e. max{‖u−

x∗‖, ‖v − x∗‖} ≤ ε would lead to u, v ∈ D and inequality (5.26). Define N2 as

N2 =
{

H ∈ L(Rn)|‖F ′(x∗)‖‖H− F ′(x∗)−1‖ < 1/2
}
. (D.1)

To start with, we prove that the norm of yki is upper bounded by a constant. For any H ∈ N2,

we have that H is non-singular and there exists a positive real c, s.t. ‖H‖ ≤ c. If x̄k−1 ∈ D is

satisfied and further define ‖ski ‖ = ‖xki − x̄i
k−1‖, then

‖ski ‖ ≤ ‖H‖k−1F̂ k−1
i ‖ (D.2)

= ‖H‖k−1
∥∥∥F (x̄i

k−1)− F (x∗) + F̂ k−1
i − F (x̄i

k−1)
∥∥∥ (D.3)

≤ c
[
ρ‖x̄ik−1 − x∗‖+

∥∥∥F̂ k−1
i − F (x̄i

k−1)
∥∥∥] , (D.4)

where (D.4) is due to Lemma 2. Then we can bound the state (after state averaging) of the kth

iteration by

‖x̄ik − x∗‖ =
∥∥∥pi(lk) + xki − x̄i

k−1 + x̄i
k−1 − x∗

∥∥∥ (D.5)

≤ ‖pi(lk)‖+ ‖ski ‖+ ‖x̄ik−1 − x∗‖ (D.6)

≤ (cρ+ 1)‖x̄ik−1 − x∗‖+ ‖pi(lk)‖+ c
∥∥∥F̂ k−1

i − F (x̄i
k−1)

∥∥∥ . (D.7)

Now we define N1 as

∀xk−1
i ∈ N1, ‖x̄ik−1 − x∗‖ ≤ min

{
ε

2(1 + cρ)
,
ε

2

}
, (D.8)
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where µ2(2ρε)p < 1/3. According to Lemma 3, by choosing lk−1, l
′
k−1 such that

c
(

2C1(lk−1) + C2(l
′
k−1)

)
+ C1(lk−1) < ε/2, (D.9)

it can derived that ‖x̄ik − x∗‖ < ε or x̄i
k ∈ D. Now that both x̄i

k, x̄i
k−1 ∈ D, by Lemma 2, we

can derive that

1/ρ‖zki ‖ ≤ ‖F (x̄i
k)− F (x̄i

k−1)‖ ≤ ρ‖zki ‖, (D.10)

which is related to the term that we are trying to bound as

yki = ‖F (x̄i
k)− F (x̄i

k−1) + (D.11)

(F̂ ki − F (x̄i
k))− (F̂ k−1

i − F (x̄i
k−1))‖. (D.12)

Again, using Lemma 3, we can bound the last two terms in (D.11) by choosing appropriate

lk, lk−1, l
′
k and l

′
k−1 such that

1/(2ρ)‖zki ‖ ≤ ‖yki ‖ ≤ 2ρ‖zki ‖ (D.13)

Next, we prove that ‖yki ‖ is also lower bounded as

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ2‖yki ‖p, (D.14)

for some constants p > 0, µ2 > 0 and symmetric, non-singular M. To see this, first since F
′
(x∗)

is symmetric and positive definite, there exists a positive symmetric M s.t. F
′
(x∗) = M2. We

could then write

M−1yki −Mzki = M−1[y − F ′(x∗)zki ], (D.15)

which by Lemma 2, is equivalent to

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ0 max{‖x̄ik − x∗‖p, ‖x̄ik−1 − x∗‖p}. (D.16)

Since Hk−1 is in a neighborhood of F
′
(x)−1, i.e. N2, by the Banach Perturbation Lemma we can
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bound the operator norm of Hk−1 as

‖Hk−1‖ ≤ 2‖F ′(x∗)−1‖. (D.17)

By Lemma 2, it can then be derived that

1/ρ‖x̄ik − x∗‖ ≤ ‖Hk−1‖−1‖zki ‖, (D.18)

which combined with (D.17) indicates that there exists λ > 0 s.t.

max{‖x̄ik − x∗‖p, ‖x̄ik−1 − x∗‖p} ≤ λ‖zki ‖p. (D.19)

It is easy to see that due to Lemma 2, (D.16) combined with (D.19) is equivalent to (D.14). From

(D.14) and (D.13), we can finally derive that

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ2‖yki ‖p ≤ µ2(ρε)p ≤ 1/3, (D.20)

which enables us to use Lemma 5.2 in [106] to derive the following inequality

∥∥∥Hk − F ′(x∗)−1
∥∥∥
M
≤
[
1 + λ

′
1‖y‖p

] ∥∥∥Hk−1 − F ′(x∗)−1
∥∥∥
M

+λ
′
2

‖zki − F
′
(x∗)−1yki ‖

‖M−1yki ‖
, (D.21)

where λ1, λ2 are positive constants. Rewrite that

‖zki − F
′
(x∗)−1yki ‖ = ‖F ′(x∗)−1‖‖F ′(x∗)zki − yki ‖ (D.22)

Since x̄i
k, x̄i

k ∈ D and according to Lemma 2, it can be derived that

‖F ′(x∗)zki − yki ‖ = ‖F ′(x∗)zki −
(
F (x̄i

k)− F (x̄i
k−1)

)
−
(
F̂ ki − F (x̄i

k)
)

+
(
F̂ k−1
i − F (x̄i

k−1)
)
‖ (D.23)

≤ K max
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖zki ‖

+
∥∥∥F̂ ki − F (x̄i

k)
∥∥∥+

∥∥∥F̂ k−1
i − F (x̄i

k−1)
∥∥∥ (D.24)

≤ (K +Kq) max
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖zki ‖, (D.25)
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where (D.25) is derived by choosing sufficiently large iteration number so that the last two terms

on the right hand side of (D.24) are bounded according to Lemma 3. Moreover, by using (D.13),

it can be obtained that

‖yki ‖ ≤ 2ρ ≤ 2ρmax
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖. (D.26)

Finally, by combining (D.13), (D.21), (D.25) and (D.26), we can finally prove that inequality

(5.30) is satisfied under the aforementioned assumptions.
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Proof of Theorem 2

We set the neighborhood N as the one that satisfies the requirements in Lemma 4, i.e. for each

(x̄k−1,Hk−1) ∈ N , inequality (5.30) is satisfied. Then we choose ε(r), δ(r) such that ‖x − x∗‖

and ‖H− F ′(x∗)−1‖M < δ would imply that (x,H) ∈ N .

First, according to Lemma 3, by choosing sufficiently large l0 such that ‖pi(l0)‖ ≤ ε, it can be

derived that

‖x̄i0 − x∗‖ = ‖x0
i + pi(l0)− x∗‖ ≤ ε/2 + ‖pi(l0)‖ ≤ ε, (E.1)

which leads to that (x̄i
0,H0

i ) ∈ N . Since

x1
i = x̄i

0 −H0
i F̂

0
i , (E.2)

we can write that

x1
i − x∗ = −H0

i

[
F (x̄i

0)− F (x∗)− F ′(x∗)(x̄i0 − x∗)

+F̂ 0
i − F (x̄i

0)
]

+
[
I−H0

iF
′
(x∗)

]
. (E.3)

Since N1 ⊂ D (as shown in the proof of Lemma 4), according to Lemma 3, it can be derived that

∥∥∥F (x̄i
0)− F (x∗)− F ′(x∗)(x̄i0 − x∗)

∥∥∥
≤ K‖x̄i0 − x∗‖p‖x̄i0 − x∗‖ ≤ Kεp‖x̄i0 − x∗‖. (E.4)

By the equivalence of all norms that deal with a finite-dimensional space, there exists a constant

α, s.t. ‖A‖ ≤ α‖A‖M . Therefore, from ‖H0
i − F

′
(x∗)‖M < δ, we derive that

∥∥∥H0
i − F

′
(x∗)−1

∥∥∥ < αδ. (E.5)
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Further we assume σ ≥ ‖F ′(x∗)‖, γ ≥ F ′(x∗)−1. Then we can write

∥∥∥I−H0
iF
′
(x∗)

∥∥∥ =
∥∥∥F ′(x∗)−1 −H0

i

∥∥∥∥∥∥F ′(x∗)∥∥∥ ≤ 2αδσ. (E.6)

Combining (E.3), (E.4) and (E.6), it can be derived that

‖x1
i − x∗‖ ≤

[
‖H0

i ‖Kεp + 2αδσ
]
‖x̄i0 − x∗‖

+‖H0
i ‖
∥∥∥F̂ 0

i − F (x̄i
0)
∥∥∥ . (E.7)

Further we bound the vector norm of H0
i by

‖H0
i ‖ ≤ ‖H0

i − F
′
(x∗)−1‖ ≤ 2αδ + γ. (E.8)

Let ε, δ be sufficiently small, such that

(2αδ + γ)Kεp + 2σδα ≤ r. (E.9)

Then we can have

‖x1
i − x∗‖ ≤ r‖x̄i0 − x∗‖+ (2αδ + γ)

∥∥∥F̂ 0
i − F (x̄i

0)
∥∥∥ . (E.10)

Choose l0, l
′
0 such that

∥∥∥F̂ 0
i − F (x̄i

0)
∥∥∥ ≤ 1− γ

η(2αδ + γ)
‖x̄i0 − x∗‖, η > 1. (E.11)

We can derive that

‖x1
i − x∗‖ ≤ ‖x̄i0 − x∗‖, (E.12)

where r̂ = (r + (1 − r)/η) ∈ (0, 1). Using Lemma 3, with sufficiently large l1, we can further

have the following bound

‖x̄i1 − x∗‖ ≤ r′‖x̄i0 − x∗‖, r′ ∈ (0, 1), (E.13)

which indicates that x̄i
1 ∈ N1.
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Next, we start an induction argument. First, for k = 0, · · · ,m− 1, we assume that

∥∥∥Hk
i − F

′
(x∗)−1

∥∥∥
M
≤ 2δ, (E.14)

‖x̄ik+1 − x∗‖ ≤ r′‖x̄ik − x∗‖. (E.15)

Since (xki ,H
k
i ) ∈ N , by (5.30), it can be derived that

∥∥∥Hk+1
i − F ′(x∗)−1

∥∥∥
M
−
∥∥∥Hk

i − F
′
(x∗)−1

∥∥∥
M

(E.16)

≤ 2λ1σε
pr
′kp + λ2ε

pr
′kp. (E.17)

By summing the two sides of inequality (E.16) for k = 0, · · · ,m− 1, we obtain

∥∥∥Hm
i − F

′
(x∗)−1

∥∥∥
M
≤
∥∥∥H0

i − F
′
(x∗)−1

∥∥∥
M

+ (2λ1δ + λ2)
εp

1− r′p
. (E.18)

By choosing sufficiently small ε, we can have

(2λ1δ + λ2)
εp

1− r′p
< δ, (E.19)

which further leads to ∥∥∥Hm
i − F

′
(x∗)−1

∥∥∥ ≤ 2αδ. (E.20)

Similarly to the case when m = 1, with the help of Lemma 2, it can be derived that

‖xm+1
i − x∗‖ ≤

[‖Hm
i ‖Kεp + 2σδα] + ‖Hm

i ‖‖F̂mi − F (x̄i
m)‖. (E.21)

Noticing that

‖Hm
i ‖ ≤ ‖Hm

i − F
′
(x∗)−1‖ ≤ 2αδ + γ, (E.22)

we can rewrite (E.21) as

‖xm+1
i − x∗‖ ≤ r‖x̄im − x∗‖+ (2αδ + γ)‖F̂mi − F (x̄i

m)‖. (E.23)

Again, by Lemma 3, by choosing lm, l
′
m sufficiently large, we can conclude the induction argument
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by showing that

‖x̄im+1 − x∗‖ ≤ r′‖x̄im − x∗‖ (E.24)
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Appendix F

List of Publications

This Appendix contains a list of published and submitted papers.

F.1 Conference Papers

• Jia Yu and Pei-Jung Chung. ”Distributed componentwise EM algorithm for mixture models

in sensor networks.” 2013 IEEE Global Communications Conference (GLOBECOM).

IEEE, 2013.

• Jia Yu and John Thompson. ”Diffusion-based EM gradient algorithm for density estimation

in sensor networks.” Signal Processing Advances in Wireless Communications (SPAWC),

2016 IEEE 17th International Workshop on. IEEE, 2016.

F.2 Journal Papers

• Jia Yu and John Thompson, ”Distributed componentwise EM algorithm for density

estimation in wireless sensor networks,”, IET Signal Processing, submitted on November,

2016

• Jia Yu and John Thompson, ”Distributed qausi-Newton method for state estimation in

power systems,”, IEEE Trans. on Smart Grid, to be submitted.
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[40] Dusan Jakovetic, Joao Xavier, and José MF Moura. Cooperative convex optimization

in networked systems: Augmented lagrangian algorithms with directed gossip

communication. IEEE Transactions on Signal Processing, 59(8):3889–3902, 2011.

[41] Tuncer C Aysal, Anand D Sarwate, and Alexandros G Dimakis. Reaching consensus

in wireless networks with probabilistic broadcast. In Communication, Control, and

Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 732–739.

IEEE, 2009.

[42] Cassio G Lopes and Ali H Sayed. Diffusion adaptive networks with changing topologies.

In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.

[43] Noriyuki Takahashi and Isao Yamada. Link probability control for probabilistic diffusion

least-mean squares over resource-constrained networks. In ICASSP, pages 3518–3521,

2010.

[44] Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE

signal processing magazine, 25(2):21–30, 2008.

[45] S.Haykin. Adaptive filter theory, 3rd ed. Upper Saddle River, NJ,USA: Prentice Hall, 2002.

[46] Fred C Schweppe and J Wildes. Power system static-state estimation, part i: Exact model.

IEEE Transactions on Power Apparatus and systems, (1):120–125, 1970.

[47] Fred C Schweppe and Douglas B Rom. Power system static-state estimation, part ii:

Approximate model. IEEE Transactions on Power Apparatus and Systems, (1):125–130,

1970.

[48] Anjan Bose. Smart transmission grid applications and their supporting infrastructure. IEEE

Transactions on Smart Grid, 1(1):11–19, 2010.

[49] Vassilis Kekatos and Georgios B Giannakis. Distributed robust power system state

estimation. IEEE Transactions on Power Systems, 28(2):1617–1626, 2013.

115



Bibliography

[50] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A survey on

sensor networks. IEEE communications magazine, 40(8):102–114, 2002.

[51] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next century

challenges: Scalable coordination in sensor networks. In Proceedings of the 5th annual

ACM/IEEE international conference on Mobile computing and networking, pages 263–270.

ACM, 1999.

[52] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

[53] Geoffrey McLachlan and David Peel. Finite mixture models. John Wiley & Sons, 2004.

[54] Ali H Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao, and Zaid J Towfic. Diffusion

strategies for adaptation and learning over networks: an examination of distributed

strategies and network behavior. IEEE Signal Processing Magazine, 30(3):155–171, 2013.

[55] Jianshu Chen and Ali H Sayed. Diffusion adaptation strategies for distributed optimization

and learning over networks. IEEE Transactions on Signal Processing, 60(8):4289–4305,

2012.

[56] Federico S Cattivelli and Ali H Sayed. Diffusion LMS strategies for distributed estimation.

IEEE Transactions on Signal Processing, 58(3):1035–1048, 2010.

[57] Gonzalo Mateos and Georgios B Giannakis. Distributed recursive least-squares: Stability

and performance analysis. IEEE Transactions on Signal Processing, 60(7):3740–3754,

2012.

[58] Meng-Li Cao, Qing-Hao Meng, Ming Zeng, Biao Sun, Wei Li, and Cheng-Jun Ding.

Distributed least-squares estimation of a remote chemical source via convex combination

in wireless sensor networks. Sensors, 14(7):11444–11466, 2014.

[59] Lei Cao, Chen Xu, Wei Shao, Guoan Zhang, Hui Zhou, Qiang Sun, and Yuehua Guo.

Distributed power allocation for sink-centric clusters in multiple sink wireless sensor

116



Bibliography

networks. Sensors, 10(3):2003–2026, 2010.

[60] Paolo Di Lorenzo and Ali H Sayed. Sparse distributed learning based on diffusion

adaptation. IEEE Transactions on signal processing, 61(6):1419–1433, 2013.

[61] Zhaoting Liu, Ying Liu, and Chunguang Li. Distributed sparse recursive least-squares over

networks. IEEE Transactions on Signal Processing, 62(6):1386–1395, 2014.

[62] Chunguang Li, Pengcheng Shen, Ying Liu, and Zhaoyang Zhang. Diffusion information

theoretic learning for distributed estimation over network. IEEE Transactions on Signal

Processing, 61(16):4011–4024, 2013.

[63] Dongbing Gu and Huosheng Hu. Spatial gaussian process regression with mobile sensor

networks. IEEE Transactions on Neural Networks and Learning Systems, 23(8):1279–1290,

2012.

[64] Lin Xiao, Stephen Boyd, and Sanjay Lall. A space-time diffusion scheme for peer-to-peer

least-squares estimation. In Proceedings of the 5th international conference on Information

processing in sensor networks, pages 168–176. ACM, 2006.

[65] Ioannis D Schizas, Gonzalo Mateos, and Georgios B Giannakis. Distributed LMS for

consensus-based in-network adaptive processing. IEEE Transactions on Signal Processing,

57(6):2365–2382, 2009.

[66] Wojtek Kowalczyk and Nikos Vlassis. Newscast EM. Advances in Neural Information

Processing Systems 17, pages 713–720, 2005.

[67] Jason Wolfe, Aria Haghighi, and Dan Klein. Fully distributed EM for very large datasets. In

Proceedings of the 25th international conference on Machine learning, pages 1184–1191.

ACM, 2008.

[68] Jeffrey A Fessler and Alfred O Hero. Space-alternating generalized Expectation-

Maximization algorithm. IEEE Transactions on Signal Processing, 42(10):2664–2677,

1994.

117



Bibliography

[69] Xiao-Li Meng and David Van Dyk. The EM algorithman old Folk-song sung to a fast

New Tune. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

59(3):511–567, 1997.

[70] Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies

incremental, sparse, and other variants. In Learning in graphical models, pages 355–368.

Springer, 1998.

[71] Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical

Society. Series B (Methodological), pages 259–302, 1986.

[72] Lei Xu and Michael I Jordan. On convergence properties of the EM algorithm for Gaussian

mixtures. Neural computation, 8(1):129–151, 1996.

[73] Jinwen Ma, Lei Xu, and Michael I Jordan. Asymptotic convergence rate of the EM

algorithm for gaussian mixtures. Neural Computation, 12(12):2881–2907, 2000.

[74] Bo Thiesson, Christopher Meek, and David Heckerman. Accelerating EM for large

databases. Machine Learning, 45(3):279–299, 2001.

[75] Behrooz Safarinejadian, Mohammad B Menhaj, and Mehdi Karrari. A distributed EM

algorithm to estimate the parameters of a finite mixture of components. Knowledge and

information systems, 23(3):267–292, 2010.

[76] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[77] Elijah Polak. Computational methods in optimization: a unified approach, volume 77.

Academic press, 1971.

[78] Piyush Gupta and Panganmala R Kumar. The capacity of wireless networks. IEEE

Transactions on information theory, 46(2):388–404, 2000.

[79] Jia Yu and Pei-Jung Chung. Diibuted componentwise EM algorithm or mixture models in

sensor networks. In 2013 IEEE Global Communications Conference (GLOBECOM), pages

3418–3422. IEEE, 2013.

118



Bibliography

[80] Zaid J Towfic, Jianshu Chen, and Ali H Sayed. Collaborative learning of mixture models

using diffusion adaptation. In 2011 IEEE International Workshop on Machine Learning for

Signal Processing, pages 1–6. IEEE, 2011.

[81] Silvana Silva Pereira, Sergio Barbarossa, and Alba Pages-Zamora. Consensus for

distributed EM-based clustering in WSNs. In Sensor Array and Multichannel Signal

Processing Workshop (SAM), 2010 IEEE, pages 45–48. IEEE, 2010.

[82] D. Garey, M. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. WH Freeman and Company: San Francisco, CA, USA, 1979.

[83] Cassio G Lopes and Ali H Sayed. Diffusion least-mean squares over adaptive networks:

Formulation and performance analysis. IEEE Transactions on Signal Processing,

56(7):3122–3136, 2008.

[84] Noriyuki Takahashi, Isao Yamada, and Ali H Sayed. Diffusion least-mean squares with

adaptive combiners: Formulation and performance analysis. IEEE Transactions on Signal

Processing, 58(9):4795–4810, 2010.

[85] Federico S Cattivelli, Cassio G Lopes, and Ali H Sayed. Diffusion recursive least-squares

for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing,

56(5):1865–1877, 2008.

[86] Federico S Cattivelli and Ali H Sayed. Diffusion strategies for distributed kalman filtering

and smoothing. IEEE Transactions on automatic control, 55(9):2069–2084, 2010.

[87] Kenneth Lange. A gradient algorithm locally equivalent to the EM algorithm. Journal of

the Royal Statistical Society. Series B (Methodological), pages 425–437, 1995.

[88] Ali H Sayed and Cassio G Lopes. Adaptive processing over distributed networks. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences,

90(8):1504–1510, 2007.

[89] CassioG Lopes and Ali H Sayed. Distributed processing over adaptive networks. In Proc.

adaptive sensor array processing workshop, pages 1–5, 2006.

119



Bibliography

[90] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.

[91] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip

algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530, 2006.

[92] Tuncer C Aysal, Anand D Sarwate, and Alexandros G Dimakis. Reaching consensus

in wireless networks with probabilistic broadcast. In Communication, Control, and

Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 732–739.

IEEE, 2009.

[93] Tuncer Can Aysal, Mehmet Ercan Yildiz, Anand D Sarwate, and Anna Scaglione. Broadcast

gossip algorithms for consensus. IEEE Transactions on Signal processing, 57(7):2748–

2761, 2009.

[94] Dusan Jakovetic, Joao Xavier, and José MF Moura. Cooperative convex optimization
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Abstract-This work considers mixture model estimation in 
sensor networks in a distributed manner. In the statistical 
literature, the maximum likelihood (ML) estimate of mixture 
distributions can be computed via a straightforward application 
of the expectation and maximization (EM) algorithm. In sensor 
networks without centralized processing units, data are collected 
and processed locally. Modifications of standard EM-type algo­
rithms are necessary to accommodate the characteristics of sensor 
networks. Existing works on the distributed EM algorithm focus 
mainly on estimation performance and implementation aspects. 
Here, we address the convergence issue by proposing a distributed 
EM-like algorithm that updates mixture parameters sequentially. 
Simulation results show that the proposed approach leads to 
significant gain in convergence speed and considerable saving in 
computational time. 

Index Terms-sensor networks, expectation and maximization 
(EM) algorithm, componentwise EM algorithm, distributed pro­
cessing, mixture models 

I. INTRODUCTION 

Sensor networks consist of massively distributed, small 
devices with limited sensing, processing, and communication 
capabilities. They have a broad range of environmental 
sensing applications, including temperature monitoring, 
vehicle tracking, collaborative processing of information and 
data collection from spatially distributed sources [1], [2], [3], 
[6]. 

In this work, it is assumed that each node in the sensor 
networks senses an environment that can be modeled as 
a mixture of normal distributions. In [14], this model 
was successfully applied to describe data measured by 
sensor networks in an inhomogeneous environment. Therein, 
a distributed expectation and maximization (EM)-type 
algorithm was derived to identify Gaussian components 
common to the whole network and mixing probabilities 
associated with each node. Methods for improving the 
performance of distributed EM algorithm were suggested in 
[10], [8], [15]. 

The EM algorithm is a well known numerical method 
for finding maximum likelihood (ML) estimates [5]. In the 
context of mixture models, it provides closed form solutions 
for estimating the means and covariance matrices of Gaussian 
components [11]. However, the most documented problem 
associated with EM is its possible slow convergence. To speed 
up its convergence, various approaches have been proposed 

in the statistical literature [7], [12]. In [4], a componentwise 
EM algorithm was applied to mixture models. In stead of 
computing all parameters simultaneously in the M-step, 
the componentwise EM updates the component parameters 
sequentially. As the numerical results shown in [4], a better 
convergence rate can be achieved by this flexible approach. 
Another advantage of the componentwise EM is that despite 
relaxation of the constraint on mixing probabilities, it can be 
shown that when the algorithm converges, the sum of mixing 
probabilities equals one. 

To facilitate the application of the componentwise EM to 
sensor networks, we adopt the idea of incremental EM [11], 
[13] to enable local processing at sensor nodes. As will be 
illustrated in the following sections, given sufficient statistics 
from the previous node, the E- and M-step at the current node 
involve only local observations. Simulation results show that 
the proposed algorithm achieves a higher convergence rate 
than the distributed EM [14], leading to significant saving in 
overall computational time. 

This paper is organized as follows. The problem and data 
models will be defined in Section II. Section III includes a 
brief description of the standard EM and componentwise EM 
algorithms. The distributed componentwise EM algorithm for 
sensor networks is developed in Section IV. Section V presents 
and discusses simulation results. Concluding remarks are given 
in Section VI. 

II. PROBLEM FORMULATION 

Consider a sensor network consisting of M sensor nodes. The 
mth node records Nm independent and identically distributed 
data Ym = {Ym,l,' " ,Ym,Nm}' The measurements are as­
sumed to obey Gaussian mixture distributions 

J 

Ym,i rv L am,jN(ILj, I:j), i = 1 ,'" ,Nm (1) 
j=l 

where N(IL, I:) denotes the Gaussian density function with 
mean IL and covariance matrix I:. The mixing parameters 

CXj = {am,j }�=1 are potentially unique at each node, but 
the J mixing components are common to all nodes. Define 

OJ = {CXj,ILj,I:j}f=l' Then the unknown parameter set 
is given by 0 = { OJ} f = l' Based on the measurements 

Y = {Ym}�=l' the problem of central interest is to compute 

978-1-4799-1353-4/13/$31.00 ©2013 Crown 3418 
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the maximum likelihood (ML) estimate for (J in a distributed leading to the following update formulae for j = 1 ,  . . .  , J. 
manner. 

Let N(YIIL, I:) denote the evaluation of a Gaussian density 
at the data sample y. It is well known that maximization of 
the log-likelihood for the mixture model (1) 

M Nrn J 

L((J) = L L1og(L CXm,jN(Ym,iIILj' I:j)) (2) 
m=l i=l j=l 

is greatly simplified by the EM-type algorithms [11] which 
will be described in the following section. This data model 
is assumed to be statistically independent in each node, but if 
the data are (spatially or temporally) correlated, this model can 
still be employed by interpreting it as pseudolikelihood[16]. 

III. STANDARD EM AND COMPONENTWISE EM 
ALGORITHMS 

The formulation of the mixture problem in the EM frame­
work is achieved by augmenting the observed data vector 

Y = {Ym}�=l with the associated component-label vectors 
Z = {Zm}�=l where Zm = {zm,d!J:' Each Zm,i takes on a 
value from the set {I, ... , J}, where Zm,i = j indicates that 

Ym,i was generated by the jth mixture component 

Ym,i '" N(ILj' I:j). (3) 

The complete data log-likelihood Lc( (J) is then given by 

M Nrn J 

Lc((J) = L L L Zm,i,j(10gcxm,j + logN(Ym,iIILj' I:j)). 
m=l i=l j=l 

(4) 
Starting from an initial estimate (J0, the standard EM 

algorithm iterates between the E (expectation) and M (maxi­
mization) step. In the E-step, given the current estimate (Jt, the 
conditional expectation of the complete data log-likelihood is 
computed as follows 

M Nrn J 

I:t.+1 
J 

1 
L
Nrn t+l W m = l,'" , M  

N m,i,j' m i=l 
at.+1 ] 
� , 

Wj 
bt+1 j t+l t+l' � - ILj IL] Wj 

where the summary quantities are defined as follows 

M Nrn '" '" t+1 ��Wm,i,j' 
m=l i=l 

M Nrn '" '" t+1 � � Wm,i,jYm,i' 
m=l i=l 

M Nrn '" '" t+1 , � � Wm,i,jYm,iYm,i' 
m=l i=l 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

The E- and M-steps are alternated repeatedly until the 
difference between likelihoods of consecutive iterates 
L( (Jt+1) - L( (Jt) is less than a pre-specified small number E. 

To improve the convergence rate of the standard EM al­
gorithm, a componentwise EM algorithm for mixture models 
(CEMM) was proposed in [4]. Rather than computing all 
parameters simultaneously, the CEMM algorithm considers 
the decomposition of the parameter vector (J into component 
parameter vectors {a j, (J j }, j = 1"" , J  and updates only 
one component at a time. More specifically, each iteration 
consists of J cycles and the conditional expectation (5) is 
computed each time the parameter vector associated with jth 
component is updated. As pointed out in [4], the decoupling of 
parameter updates implies the use of the smallest admissible 
missing data space and leads to faster convergence than the 
standard EM. 

IV. DISTRIBUTED COMPONENTWISE EM ALGORITHM 

where 

= L LLw;,;,L(1ogcxm,j + 10gN(Ym,iIILj' I:j)), Motivated by the superior convergence behavior of the 
componentwise EM algorithm, we propose a distributed 

(5) componentwise EM algorithm for mixtures in sensor 
networks. In some sensor network models, a high-performance 
centralized unit is involved to solve the estimation problems. 

m=li=lj=l 

(6) But relying on the centralized unit is undesirable in scenarios 

is the posterior probability that the ith sample at node m 
belongs to the jth component given the observed value Ym,i' 

in which communications between sensor nodes are much 
more costly than the computational cost at sensor nodes. 
In the following, we consider the message passage model 
for sensor networks proposed in [14] (see Fig.l). Similar 
to the distributed EM, our algorithm also exploits the idea 
of incremental EM [13] to facilitate local processing. The 

In the M-step, the parameters are computed by maximizing 
the complete data log-likelihood (5) 

idea behind incremental EM is to divide the observed data 
into several blocks and implement the E-step for only one (Jt+l = argmaxQ((J,(Jt), 

() 
(7) 

block of observations at a time before performing a M-step 
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Wireless Sensor Network 

st = {wj,aj,bj},j = {j, ... ,J} 

Fig. 1. Communication/iteration cycle in a sensor network 

[11]. Here, the observed data at each node is considered 
as one data block. By applying the incremental EM, the 
componentwise EM can be implemented so that at node m ,  
given the summary quantities (11), (12) and (13) from the 
previous node (m - 1), only local data Ym is involved. 

Assume that at time (t + 1), node m receives summary 
statistics a;, b�, w; from the previous node. Define the esti­
mate after the tth iteration as 

(14) 

where ()� include the estimate for the jth component 
{ a; , IL;, ��}. At the beginning of the (t + 1 )th iteration, 
the initial estimates for the mean and covariance matrix are 
obtained from the summary statistics as follows: 

(15) 

Set (}[t+1,O] = (}t. The parameters associated with the jth 
components ()� are updated sequentially in the proposed 
algorithm as follows. 

For j = 1 ,'" , J  

E-step 

M-step 

(17) 

(18) 

�t+1 m,) (19) 

where the local summary statistics Wm,j, am,j, bm,j are 

1 � t+1 
N � Wm,i,j ' m i=1 
N-m 

'"' t+1 � Wm,i,jYm,i , 
i=1 
N-m 

'"' wt+1.y 'Y' . � m,.,) m,. m, • .  

i=1 

(20) 

(21) 

(22) 

The estimate at the jth cycle is given by 

End; %j 

(}[t+1,j] = {(}t+1 ... (}t+1 (}t . . .  ()t } l '  , ) , )+1' , J . (23) 

After J cycles, the output of the (t + 1 )th iteration is given 
by: 

(24) 

Then the local summary statistics are computed with the new 
estimate (}�1 as follows: 

wt+1 wt + wt+1 - wt . (25) ) ) m,) m,) 
t+1 t t+1 t (26) aj aj + am,j - am,j , 

bt+1 bt + bt+1 - bt . (27) ) ) m,) m,) ' 
Note that the old values of summary statistics are replaced 
by updated values at node m .  In addition, the computations 
of the posterior probabilities (16) and the estimates (17), (18) 
and (19) involve only data at node m .  

The major difference of the proposed componentwise 
approach from the distributed EM algorithm is as follows. 
In the distributed EM algorithm (DEM) [14], the parameters 
associated with all components are updated simultaneously. 
The E-step is evaluated only once at the beginning of 
the iteration. In the proposed algorithm, each component 
parameter set () j is computed sequentially and the posterior 
probability Wm,i,j (16) is evaluated at each cycle. The 

(16) 
computational time is only slightly increased by the multiple 
E-steps in comparison to the distributed EM algorithm. 

a;',jN(Ym,illL;, ��) Simulation results in the next section will show that our 

Z={":i o/+ �N(Ym,illL%+1, �%+1) + Z=�=. at kN(Ym,illL%, �%) 
. 
approach leads to a much faster convergence rate of log-m, ) m, 
likelihood than the distributed EM algorithm. 
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OL-____ _L ______ � ______ L-____ _L ____ � 
o 0.2 0.4 0.6 0.8 

x 

Fig. 2. Data distribution 

V. SIMULATION RESULTS 

In this section, we demonstrate the feasibility of the proposed 
algorithm by simulated data. In the simulation, we consider 
a sensor network with M = 100 nodes. This sensor network 
fulfills the communication requirement specified in [9]. 
The number of data samples at each node is Nm = 100. 
The observations are generated from J = 5 Gaussian 
components distributed as in Fig. 2. Each component is a 
2D Gaussian density, which can represent environment data 
clusters. In the first 40 nodes, 60% observations come from 
the first Gaussian component and other 40% observations 
evenly from the other four Gaussian components, i.e. 
am,l = 60% , am,2 = am,3 = am,4 = am,5 = 10% 
for m 1"" ,40. In the next 30 nodes, 70% 
observations come from the second and third Gaussian 
components and other 30% observations evenly from 
the other three components, i.e. for m = 4 1"" ,70, 
am,l = am,4 = am,5 = 10% , am,2 = 40% , am,3 = 30%. 
For m = 7 1",· , 100, 70% observations come from the last 
two Gaussian component and other 30% observations 
evenly from the other three Gaussian components 
am,l = am,2 = am,3 = 10% , am,4 = 40% , am,5 = 30%. 
The component parameters are given by 111 = [0.2 ,0.7]', 
112 [0.7 ,0.2]', 113 [0.3 ,0.3]', 114 [0.5 ,0.5]', 
115 = [0.8 ,0.8]'. 

For comparison, we apply both the proposed distributed 
componentwise EM algorithm and the distributed EM algo­
rithm [14] to the same batch of data. As shown in Fig. 3, 
the estimates for the x- and y-components of means are close 
to the reference values. In Fig. 4, the log-likelihood values 

0.9 
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Fig. 3. Estimates for mean values by the distributed componentwise EM 
algorithm. 
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Fig. 4. Comparison of log-likelihood versus iterations for the distributed 
componentwise EM algorithm and the distributed EM algorithm. 

are plotted versus iterations. The proposed algorithm requires 
on average only 10 iterations to attain the maximal value of 
log-likelihood, while the distributed EM algorithm requires 
16 iterations to converge. As the complexity of each iteration 
required by both algorithms is almost the same, this implies 
37% saving in overall computational time by the proposed 
algorithm. 
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VI. CONCLUSION 

In this work, we proposed a distributed componentwise EM al­
gorithm for mixture models in sensor networks. The proposed 
algorithm is characterized by local processing capabilities 
and sequential computations of component parameters. The 
ability to process data locally is of particular interest to sensor 
networks with computationally powerful nodes and require 
costly node-to-node communications. More importantly, the 
componentwise update of the mixture parameters leads to 
significant improvement in convergence rate compared to the 
distributed EM algorithm [14]. Simulation results show that 
the number of iterations required by the proposed algorithm 
is about 40% less than that required by the distributed EM 
algorithm. Given the advantages of computational efficiency 
and simple implementation, we believe that the proposed 
distributed componentwise EM algorithm is a powerful tool for 
estimating mixture models in sensor networks. The important 
issue on convergence of the proposed algorithm and other 
finite mixture model based on non-Gaussian distributions [11] 
will be addressed in future publications. 
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Ahstract-This paper considers mixture density estima­
tion in an asynchronous sensor networks in a distributed 
manner. In the statistical literature, the maximum likeli­
hood (ML) estimate of mixture distributions can be com­
puted via a straightforward application of the expectation 
and maximization (EM) algorithm. In a random sensor 
networks, data are required to collected and processed 
at local decentralized processing units. Reformulations of 
standard EM-type algorithms are necessary to accom­
modate the characteristics of sensor networks. Existing 
works on the distributed EM implementation focus mainly 
on synchronous network. Here, we address the issue of 
asynchronous behaviors by proposing a diffusion-based 
EM gradient algorithm that updates estimates under ATe 
diffusion strategy. Simulation results show the robustness 
and scalability of the proposed approach in the presence 
of additional randomness of asynchronous events. 

Index Terms-sensor networks, expectation and maxi­
mization (EM) algorithm, asynchronous network, distribut­
ed processing, Gaussian mixtures 

I. INTRODUCTION 

Mixture density estimation belongs to the general class 
of unsupervised learning problems and has a broad range 
of applications, including environmental monitoring, 
pattern classification and recognition for image analysis, 
and also for clustering. In presence of latent variable, 
the EM algorithm is a well known numerical method 
for finding maximum likelihood (ML) estimates [l]. 
It starts from an initial guess, the method alternates 
between an expectation (E) step, where the expected 
log-likelihood function of the observations is evaluated 
based on the current estimates, and a maximization 
(M) step, where the maximization is performed using 
conditional log-likelihood function of the E-step to find 
the new estimates. A distributed implementation of EM 
algorithm in a wireless sensor network (WSN) entails 
therefore a modification of the operations such that such 
that they can be executed at each local node. 

Related contributions in the literature propose 
distributed EM implementations where the global 
sufficient statistics are computed using for incremental 
schemes [2], [3], a consensus-based scheme [4], and 
diffusion strategies [5], [6], [7]. Among these schemes, 

diffusion strategies are attractive because they do 
not require different nodes to converge to the same 
global statistics, and individual nodes are allowed 
update parameters through their own local information. 
Based on these merits, a diffusion-based distributed 
EM is proposed in [5] where the authors use the 
Robbins-Monro stochastic procedure to approximate 
the centralized EM approach, and a diffusion adaption 
algorithm is proposed for general mixture models in 
[6], where the adaptive diffusion process is executed in 
M-step rather than solving a closed form optimization. 
In [7], another diffusion-type estimator is developed, 
where the propagation of information across the network 
is embedded in the iterative updates of the parameters, 
where a faster term for information is combined with a 
slower term for information averaging. 

The referred algorithms are limited to the synchronous 
network model, where a coordinated behavior is required 
throughout the network. In this paper we present a 
diffusion-Based EM gradient algorithm for Gaussian 
mixture models in WSNs. The method is based on a 
EM gradient method [8] derived for Gaussian mixtures. 
We develop this method with asynchronous adaptive 
diffusion scheme, and address here the general case of 
density estimation. The main idea behind the proposed 
algorithm is that the diffusion of the information 
across the network is embedded in the Expectation 
step to update parameters. In the Maximization step, 
gradient based optimization is utilized under the 
asynchronous ATe (adapt-then-combine) diffusion rule 
[9]. The advantage of the proposed with respect to 
the synchronous diffusion algorithm is more flexible, 
individual nodes in the network may stop updating their 
solutions or may stop sending or receiving information 
in a random manner and without coordination with 
other nodes. This flexibility can be translated into 
energy savings, a critical issue specially in large-scale 
deployments. Although asynchrony events degrade 
performance as expected, numerical examples provided 
here still show that performance of the proposed 
algorithm are robustness and outperforms diffusion­
based distributed EM scheme [5]. 

978-1-5090-1749-2/16/$31.00 ©2016 IEEE 



The paper is organized as follows. In section II we 
describe the observation model and Section III derive the 
expressions for the centralized EM algorithm and EM 
Gradient algorithm. Section IV presents the Diffusion­
based EM gradient method for density estimation in 
asynchronous WSNs under the assumption of GMMs. 
Simulations results and conclusions are presented in 
sections V and VI respectively. 

II. PROBLEM FORMULATION 

Consider a sensor network consisting of !vI sensor nodes. 
The mth node records Nrn independent and identically 
distributed data sample Yrn = {Yrn,l, . . .  , Yrn,Nm} . The 
measurements are assumed to obey a Gaussian mixture 
distribution 

J 

Yrn,i rv LCXrn,jP(ILj, �j), i= 1,··· , Nrn (1) 
j=l 

where P(IL, �) denotes the Gaussian density function. 
The mixing parameters aj = {cxrn,j };;;=1 are potentially 
unique at each node, but the number of mixing 
components J are common to all nodes. Define 
OJ = {a j , IL j , � j }! = 1. Then the unknown parameter 
set is given by 0 = {OJ }!=1. Based on the measurements 
Y = {Yrn};;;=l' the problem of central interest is to 
compute the maximum likelihood (ML) estimate for 0 
in a distributed manner. 

Let P(YIIL, �) denote the evaluation of a Gaussian 
density with at the data sample y. It is well known that 
maximization of the log-likelihood for the mixture model 
in (I) 

(2) 

is greatly simplified by the EM-type algorithms [11] 
which will be described in the following section. The 
data sample in this model are assumed to be statistically 
independent in each node, but if the data are (spatially or 
temporally) correlated, this model can still be employed 
by interpreting it as a pseudolikelihood [11]. 

III. STANDARD EM AND EM GRADIENT 

ALGORITHMS 

The formulation of the mixture problem in the EM 
framework is achieved by augmenting the observed data 
vector Y = {Yrn};;;=l with the associated component­
label vectors Z = {Zrn};;;=l where Zrn = {zrn,;};':::'i. 
Each Zrn,i takes on a value from the set {I, . . .  , J} , 
where Zrn,i = j indicates that Yrn,i was generated by 
the jth mixture component 

(3) 

The global complete data log-likelihood L( 0) is then 
given by 

!vI 

L(O) L Lm(O), 
rn=l 

!vI Nm J 

L L L Zrn,i,j(1ogcxrn,j + log P(Yrn,i IILj, �j)). 
m=l i=l j=l 

(4) 

where Lrn (0) is the local log-likelihood function at each 
node m. Starting from an initial estimate 0°, the standard 
EM algorithm iterates between the E (expectation) and 
M (maximization) step. In the E-step, given the current 
estimate ot, the conditional expectation of the complete 
data log-likelihood is computed as follows 

!vI 

L Qrn(O, ot), 
rn=l 

M Ntn J 

L L Lw;:'i,j(1ogcxm,j + log P(Yrn,i IILj , �j)). 
m=l i=l j=l 

where 

(5) 

t+l CX;n,jP(Yrn,iIILj, �j) 
Wrn,i,j = J t t t ' (6) 

�j=l CXm,j P(Yrn,i IILj' �j) 
is the posterior probability that the ith sample at node 
m belongs to the jth component given the observed 
value Yrn,i. 

In the M-step, the parameters are computed by maxi­
mizing the complete data log-likelihood in equation (5) 

Ot+l = argmaxQ(O, ot). (7) 
() 

The E- and M-steps are alternated repeatedly until the 
difference between likelihoods of consecutive iteration 
L( Ot+l) - L( ot) is less than a pre-defined small number 
E. 

Several methods can be used to improve the perfor­
mance of the EM algorithm in the M-step, if the M-step 
cannot be computed in closed form. The most common 
algorithm for iteratively solving the M-step would be 
Newton-type method, which have quadratic convergence 
compared with the linear convergence experienced by the 
EM algorithm. Based on this knowledge, EM gradient 
algorithm was proposed in [8], which updates the ot by 

0'+' 0' - [�, ""Qm(O"O'lr' 

!vI 

X L \jlOQrn(Ot, ot), (8) 
rn=l 



where the operators V20Qm (()t, ()t) and VlOQm (()t, ()t) 
are the Hessian matrix and gradient vector of the local 
conditional log-likelihood function Qm (()t, ()t). In 
addition, the equality VlOQm(()t, ()t) = VLm(()t) 
holds, when Lm (()t) - Qm ((), ()t) has its minimum 
at () = ()t. In [10], Xu and Jordan use the projection 
matrix P( ()t) to take place of the inverse of Hessian 
matrix as follows 

At+1 = At + [� pt ] � aLm(()) I = t, � Am � aA A A. 
m=l m=l [ M ] M aL (()) J-t]

t+ 1 = J-t]
t + """' pt """' m I 

� ,",j,m � all. ,",j=,", �' 
m=l m=l P'] 

x 

(9) 

(10) 

(11) 

where vec[C] denotes the vector obtained by stacking 
the column vectors of matrix C, A denotes the vector 
of mixing proportions [a1,'" ,aJV and 

{diag[ai ,m, '" , a�,m ] - Amt(Amtf} 
(12) 

(13) 

pt �j,'m (14) 

where 0 denotes the Kronecker product. Using the 
notation 

() = [AT, J-tL ··· , J-t}, vec[�l]T, . . .  , vec[�J ]TV, (15) 

P(()) = diag[PA,P,",,,'" ,P,",."P�l'''· 'P�j ], (16) 

we can obtain 

()t+1 = ()t + [t1 
Pm (()t)] Ttl VLm(()t) (17) 

Hence, iterative EM algorithm can be considered as a 
variant of quasi-Newton Methods. In addition, although 
the EM and EM gradient algorithm are guaranteed 
to converge to a local maximum of the likelihood 
function, the result is sensitive to the initialization of 
the parameters. Therefore, in order to start, a suitable 
initializer is needed. Notice that computation of the 
posteriori probabilities at M-step require knowledge of 
local information only, whereas the estimates in (6) 
require knowledge of global information. Therefore, a 
distributed implementation of the EM algorithm entails 
local data processing and sharing of information. 
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Fig. 1. A network of integrator nodes in which node m receives the 
state en of its neighbor, node n 

IV. DIFFUSION EM GRADIENT ALGORITHM 

Based on the gradient EM version algorithm, we propose 
a distributed EM algorithm scheme where the summa­
tions among all observations in (6) are computed by 
the asynchronous diffusion strategy [9]. In the follow­
ing , we consider an asynchronous Bernoulli model in 
wireless sensor network, the WSN composed of node 
N, where each node adopt a random "on-off' policy 
to reduce energy consumption. The communications for 
each node are restricted to a closed neighborhood, and 
the information flow among the nodes is described by 
means of an undirected graph 9 ={N, E}, where N 
is the sets of the nodes and E is the set of edges. 
The unordered pair {m, n} E E if there exists an edge 
between node m and n. The neighborhood of node m 
is defined as Nm = {n I {m, n} E E} shown in 
Fig 1. Further, we employ the EM gradient method at 
each node, and assume observations of dilferent nodes 
are statistically independent. In the E-step, we use an 
intermediate estimate ();n of the unknown () at node 
m, and the local conditional log-likelihood function is 
defined as 

Nm. J 

LLw;:i,j (log am,j + logP(Ym,i IJ-tm,j, �m,j)), 
i=lj=l 

(18) 

where 

t+1 _ a:n,jN(Ym,ilJ-t:n,j' �:n) 
Wm,i,j - ] . 

(19) 
LJ=l a;n,jN(Ym,ilJ-t:n,j' �;n,j) 

The main difference between w;:'i,j in (6) and (19) is 
that (6) is computed using the global estimates J-tj, �j, 
whereas computing (19) only requires local estimates 
J-t;n,j' �;n,j at each node m. By means of local periodic 
data exchanges, the local information in (19) is appropri­
ately diffused over the network. In the M-step, the ATe 

where the operators \J20 Qm ((}t, (}t) and \JlOQm ((}t, (}t) 
are the Hessian matrix and gradient vector of the local 
conditional log-likelihood function Qm ((}t, (}t). In 
addition, the equality \JlOQm((}t,(}t) = \JLm((}t) 
holds, when Lm ((}t) - Qm ((), (}t) has its minimum 
at () = (}t. In [10], Xu and Jordan use the projection 
matrix P( (}t) to take place of the inverse of Hessian 
matrix as follows 

At+1 = At + [~ pt .] ~ 8Lm((}) I _ I L Am L 8A A-A, 
m=l m=l 

(9) 

[ !vI ]!vI' t+1 = t + pt 8Lm((}) _ I 

M] M] L /Li , n>. L 8 . I/Li-/Lj' 
m=l m=l M] 

(10) 

vec[~~+l] vec[~;] + [t1 P~i,m] 
!vI 

" 8Lm((}) 
L t9Vf~d~J I~i=~;' x (11) 
m=l 

where vec[C] denotes the vector obtained by stacking 
the column vectors of matrix C, A denotes the vector 
of mixing proportions [a1,'" ,OU]T and 

P)", 

pt 
/-Lj,tH 

t 
P'Ej,m 

{diag[ai,m,'" ,a~,m]- Arnt(Amt)T} 

~t 
] 

L:Nm wt+1 
,=1 m,i,j 

Nm 

2 
L:Nm wt+1 ~/ 0 ~.t 

,=1 m,i,j ] , 

(12) 

(13) 

(14) 

where 0 denotes the Kronecker product. Using the 
notation 

() = [AT, Mi,'" ,M}, VeC[~l]T, ... ,vec[~J]Tf,(15) 
P((}) =diag[PA'P/Ll"" ,P/LJ,P~l"" ,P~i], (16) 

we can obtain 

[ !vI ] !vI 
(}t+1 = (}t + r~l Pm ((}t) r~l \JLm((}t) (17) 

Hence, iterative EM algorithm can be considered as a 
variant of quasi-Newton Methods. In addition, although 
the EM and EM gradient algorithm are guaranteed 
to converge to a local maximum of the likelihood 
function, the result is sensitive to the initialization of 
the parameters. Therefore, in order to start, a suitable 
initializer is needed. Notice that computation of the 
posteriori probabilities at M-step require knowledge of 
local information only, whereas the estimates in (6) 
require knowledge of global information. Therefore, a 
distributed implementation of the EM algorithm entails 
local data processing and sharing of information. 
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Fig. l. A network of integrator nodes in which node rn receives the 
state en of its neighbor, node n 

IV. DIFFUSION EM GRADIENT ALGORITHM 

Based on the gradient EM version algorithm, we propose 
a distributed EM algorithm scheme where the summa­
tions among all observations in (6) are computed by 
the asynchronous diffusion strategy [9]. In the follow­
ing , we consider an asynchronous Bernoulli model in 
wireless sensor network, the WSN composed of node 
N, where each node adopt a random "on-off" policy 
to reduce energy consumption. The communications for 
each node are restricted to a closed neighborhood, and 
the information flow among the nodes is described by 
means of an undirected graph Q ={N, E}, where N 
is the sets of the nodes and E is the set of edges. 
The unordered pair {m, n} E E if there exists an edge 
between node m and n. The neighborhood of node m 
is defined as Nm = {n I {m, n} E E} shown in 
Fig 1. Further, we employ the EM gradient method at 
each node, and assume observations of dilferent nodes 
are statistically independent. In the E-step, we use an 
intermediate estimate (};n of the unknown () at node 
m, and the local conditional log-likelihood function is 
defined as 

Qm((), (};,,) 
N m . J 

LLw;:i,j(1og am,j + 10gP(Ym,iIMm,j, ~m,j)), 
i=lj=l 

(18) 

where 

t+1 a;",jN(Ym,i IM;",j' ~;,,) 
wm,i,j = "J t N( I t ~t ) . 

~j=l am,j Ym,i Mm,j' m,j 
(19) 

The main difference between w;:L in (6) and (19) is 
that (6) is computed using the global estimates M;, ~;, 
whereas computing (19) only requires local estimates 
M;n,j' ~;n,j at each node m. By means of local periodic 
data exchanges, the local information in (19) is appropri­
ately diffused over the network. In the M-step, the ATe 



diffusion-oriented optimIzation method is introduce to 
find the estimates, whose updates are given by 

where 

(Jt+ 1 = '""" bt+ 1 .i,t+ 1 rn L-t n,rn 'f"n , 
nENm 

(20) 

(21) 

(22) 

is the local exact descent to the estimate using a Newton­
like method in WSN. There are two operations in this 
scheme, the first step involves local adaption, where node 
m update its local estimates from (J;n to an intermediate 
value 'IjJ;;t1. The second step is a combination step, 
where the combination of intermediate estimates {'IjJ�+1 } 
from neighborhood of node m is used to calculate the 
new estimates (J;;; 1. In the adaption step, node m enters 
an active mode with probability 0 < qm < 1 and 
performs (20), and it enters a sleep mode with probability 
1 - qm to save energy. The random step-sizes a;;;l that 
are used in (20) depend on the probability qm and are 
required to satisfy 

am, with probability qm 
0, with probability 1 - qm (23) 

where am is a constant step-size. The underlying topolo­
gy of network is assumed to be fixed. In the combination 
step, each node m is allowed to randomly select its 
neighborhood n with probability 0 < Pm < 1 and 
performs (21) for saving communication costs. The com­
bination coefficients {b�+,�} are nonnegative parameters 
and are required to satisfy the following constraints 

bt+1 
= 
{ bn,m > 0, 

n,m 0, 

with probability Pm 
with probability 1 - Pm (24) 

for all n E Nm \ {m} , and node m is required to adjust 
its own weight b;;;,;, at each update via 

bt+1 
= 1 -m.rn (25) 

nENm\{m} 

to guarantee LnENm b�:,� = 1. Let B denote the N x N 
combination matrix whose {m, n} entry is bn,m, and 
B is left-stochastic matrix which satisfy BT llN = llN, 
where llN is the N x 1 all-one vector. Notice that 
a;;;l and {b�:�} are mutually independent, and the use 
of these distributed control parameters enable diffusion 
strategies process various type of asynchronous network 
events. In the following, numerical results will verify its 
convergence and robustness. 

V. SIMULATION RESULTS 

In this section, we demonstrate the feasibility of the 
proposed algorithm by simulated data. In the simulation, 
we consider a sensor network with !vI = 100 nodes. This 
sensor network fulfills the communication requirement 
specified in [9] with connectivity radius T = 0.5. The 
number of data samples at each node is Nm = 100. The 
observations are generated from .J = 2 distributed Gaus­
sian components. Each component is a I-dimensional 
Gaussian mixtures density, which can represent environ­
ment data clusters. In the first 50 nodes, 60% of the 
observations come from the first Gaussian component 
and other 40% observations evenly from the second 
Gaussian component, i.e. am,l = 0.6, am,2 = 0.4 for 
m = 1, ... ,50. In the last 50 nodes, 30% observations 
come from the first Gaussian component and other 70% 
observations evenly from the second component, i.e. for 
m = 51"" ,100, am) = 0.3, am,2 = 0.7. The compo­
nent means and variances are given by 111 = 5, 112 = 10 , 
a? = 1, a§ = 4. The step-size am = 0.0 5 are uniform 
across the network, and the proposed algorithm is run 
a diffusion combination matrix B under Metropolis rule 
[9] with entries defined as { 1/(max{lN,n

. 

I, INn l}
.
), n E N,n 

bm,n = 1- LkENm\{m} bn,m , m = n 
0, otherwise. 

(26) 

where I . I denotes the cardinality. For comparison, we 
apply both the proposed asynchronous diffusion-based 
EM gradient algorithm, the diffusion-based distributed 
EM algorithm (DDEM) [5] and standard EM algorithm 
to the same batch of data. As shown in Fig. 2, the 
EM gradient algorithm with asynchronous diffusion 
setting and local standard EM without cooperation are 
tested. The probabilities for Bernoulli model are set 
as qm = Pm = 0.8. The estimates of both mean and 
variance are very noisy in Fig 2(a) for each sensor node 
with standard EM algorithm only based on the local 
data, while the estimation of both mean and variance 
with the proposed algorithm are much smooth for each 
sensor node, even under the imperfect communication 
condition. 

In Fig. 3, the mean-square-deviation (MSD) is used 
and evaluated for performance of different algorithms, 
which is defined as: 

MSDo = E [118 - (JII� ] (27) 

where 11·112 is the Euclidean norm. We selected the value 
of probabilities with two different cases, Pm = qm = 0.8 
and Pm = qm = 1 (corresponds to traditional syn­
chronous diffusion). Both adaptive diffusion algorithms 
provide improved mean-square-deviation in simulation 
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compare to DDEM. The proposed asynchronous diffu­
sion algorithm converge to almost as the same rate as the 
synchronous version. However, due to the additional ran­
domness over the adaption process, EM gradient method 
with asynchronous diffusion suffer a slight degradation 
in MSD performance. 

VI. CONCLUSION 

In this work, we proposed a diffusion based EM gradient 
algorithm for mixture models in sensor networks. The 
proposed algorithm is characterized by local gradient 
based processing and computations of component pa­
rameters with asynchronous diffusion strategies . The 
ability to process data locally is of particular interest 
to sensor networks with computationally powerful nodes 
and requires costly node-to-node communications. More 
importantly, with asynchronous diffusion model, each n­
ode are allowed flexibility through their own assessment 
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Fig. 3. Comparison of network MSD vs iteration index for asyn­
chronous diffusion, synchronous diffusion and DDEM [5] 

of local information without coordinated behavior over 
the network in comparison with synchronous strategies. 
Simulation results show the proposed algorithm outper­
forms local-standard EM without cooperation and de­
grades the MSD performance in compare to synchronous 
diffusion scheme. Theoretical analysis of convergence 
of the proposed algorithm will be addressed in future 
publications. 
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Abstract: This paper considers mixtures model estimation for sensor networks in a distributed
manner. In the statistical literature, the maximum likelihood (ML) estimate of mixture distributions
can be computed via a straightforward implementation of the expectation and maximization (EM)
algorithm. In the sensor networks without centralized processing units, data are collected and
processed locally. Modifications of standard EM-type algorithm are necessary to accommodate the
characteristics of sensor networks. Existing works on the distributed EM algorithm mainly focus
on estimation performance and implementation aspects. In this paper, we address the convergence
issue by proposing a distributed EM-like algorithm that updates mixture parameters sequentially.
Simulation results show that the proposed method leads to significant gain in convergence speed
and considerable saving in computational time.

1. Introduction

Sensor networks are composed of enormous small devices with limited measuring, processing, and
communication abilities. There have been a variety of environmental monitoring applications, e.g.
the temperature sensing, automobile tracking, and cooperative information processing [1, 2]. As a
powerful probabilistic modeling tool, Gaussian Mixture Model (GMM) can be used for modeling
density function in multiple applications, such as machine learning, pattern recognition and so
on. It is an important step to estimate density in exploratory data analysis. For this purpose, the
expectation-maximization (EM) method has been widely used [3].

The EM approach is well known to give ML approximations [4]. An expectation step (E-step)
is performed in the EM method, and the likelihood expectation is calculated with observed latent
variables included. While the maximization step (M-step) is to maximize the expected likelihood
to obtain the estimates of ML parameters, this process is repeated a number of times until con-
vergence at a local maximum. However, most EM algorithms are designed in a centralized way
for sensor networks. Unlike the centralized strategy which processes all the information with a
central node, the distributed estimation behaves differently and thus mitigates the computational
load. Furthermore,the distributed estimation method is more robust against link failure [5].

The strategies of cooperation among nodes have significant impact on sensor networks within
a distributed processing framework. The incremental and consensus strategies are widely used
for distributed processing. The consensus strategy is discussed in [6, 8] which employs a slow
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time scale for sampling and a fast time scale for iterative operations. This strategy aims to derive
the consistent estimates for all nodes. A distributed EM method for Gaussian mixtures using the
consensus strategy is presented in [10], in which a consensus filter is introduced between the E-
and M- steps. As the resources are constrained for sensor networkss communications [7], the
application is limited for consensus-based methods with two time scales. Especially for a large
scale sensor networks, massive computational burden will be brought in to achieve the consensus
among the network nodes.

For the incremental strategy, the data flows in a pre-specific direction from one node to another
node, which leads to the loop-type cooperations between nodes with minimum power and com-
munications. In [3], this model was successfully applied to describe the data measured by sensor
networks in an inhomogeneous environment. Therein, a distributed (EM)-type algorithm was de-
rived to identify Gaussian components common to the whole network and mixing probabilities
associated with each node. Methods for improving the performance of distributed EM algorithm
were suggested in [12, 10, 17].

In addition, the most documented problem associated with EM is its possibility of slow con-
vergence. To speed up its convergence, various approaches have been proposed in the statistical
literature [9, 15]. In [13], a component-wise EM algorithm was applied to mixture models. Instead
of computing all parameters simultaneously in the M-step, the component-wise EM updates the
component parameters sequentially. As the numerical results shown in [13], a better convergence
rate can be achieved by this flexible approach. Another advantage of the component-wise EM is
that despite relaxation of the constraint on mixing probabilities, it can be shown that when the
algorithm converges, the sum of mixing probabilities equals to one.

To facilitate the application of the component-wise EM to sensor networks, we adopt the idea
of incremental EM [14, 16] to present a distributed component-wise EM algorithm (DCEM) for
sensor networks. Note that such incremental strategies may not be suitable for large scale networks.
Therefore, we assume a small enough network, typically less than 100 sensor nodes. As illustrated
in the following sections, given sufficient statistics from the previous node, the E- and M-step at the
current node involve only local observations. Simulation results show that the proposed algorithm
achieves a higher convergence rate than the distributed EM [3], leading to significant saving of
overall computational time.

This paper is organized as follows. The problem and data models is defined in Section 2.
Section 3 includes a brief description of the standard EM and distributed EM algorithms. The
distributed component-wise EM algorithm for sensor networks is developed in Section 4. Section
5 presents an analysis of the convergence rate of the DCEM algorithm, Section 6 discusses simu-
lation results and shows the performance of the proposed algorithm. Concluding remarks is given
in Section 7.

2. Problem Formulation

Consider a sensor network consisting of M sensor nodes. The mth node records Nm independent
and identically distributed data ym = {ym,1, · · · ,ym,Nm

}. The measurements are assumed to obey
a Gaussian mixture distribution

ym,i ∼
J∑

j=1

αm,jP(µj,Σj), i = 1, · · · , Nm (1)
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where P(µ,Σ) denotes the Gaussian density function with mean µ and covariance matrix Σ.
The mixing parameters αj = {αm,j}Mm=1 are potentially unique at each node, but the J mixing
components P

(
µj,Σj

)
are common to all nodes. Set θj = {αj,µj,Σj}Jj=1, then the unknown

parameter set is given by θ = {θj}Jj=1. Based on the measurements y = {ym}Mm=1, the task is to
compute the maximum likelihood (ML) estimate for θ in a distributed manner.

It is well known that maximization of the log-likelihood for the mixture model (1)

L(θ) =
M∑

m=1

Nm∑
i=1

log

(
J∑

j=1

αm,jP(ym,i|µj,Σj)

)
(2)

is greatly simplified by the EM-type algorithms [14] which will be described in the following
section. This data model is assumed to be statistically independent for each node. However, if
the data are (spatially or temporally) correlated, this model is still valid by interpreting it as a
pseudolikelihood [18].

3. Standard EM and Distributed EM Algorithms (DEM)

The formulation of the mixture problem in the EM framework is achieved by augmenting the
observed data vector y = {ym}Mm=1 with the associated component-label vectors z = {zm}Mm=1

where zm = {zm,i}Nm
i=1. Each zm,i takes on a value from the set {1, . . . , J}, where zm,i = j

indicates that ym,i is generated by the jth mixture component

ym,i ∼ P(µj,Σj). (3)

The complete data log-likelihood Lc(θ) is then given by

Lc(θ) = log p(y, z|θ) (4)

=
M∑

m=1

Nm∑
i=1

J∑
j=1

zm,i,j(logαm,j + logP(ym,i|µj,Σj))

where p(y,z|θ) denotes the joint density of y and z with parameter θ. Starting from an initial
estimate θ0, the standard EM algorithm iterates between the E (expectation) and M (maximization)
steps. In the E-step, given the current estimate θt, the conditional expectation of the complete data
log-likelihood is computed as follows

Q(θ;θt)=E[Lc(θ)|y,θt]

=
M∑

m=1

Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µj,Σj)), (5)

where

wt+1
m,i,j =

αt
m,jP(ym,i|µt

j,Σ
t
j)∑J

j=1 α
t
m,jP(ym,i|µt

j,Σ
t
j)

(6)

is the posterior probability that the ith sample at node m belongs to the jth component given the
observed value ym,i.
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In the M-step, the parameters are computed by maximizing the complete data log-likelihood
function (5)

θt+1 = argmax
θ

Q(θ;θt), (7)

leading to the following update formula for j = 1, · · · , J .

αt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j, m = 1, · · · ,M (8)

µt+1
j =

∑M
m=1

∑Nm

i=1 w
t+1
m,i,jym,i∑M

m=1

∑Nm

i=1 w
t+1
m,i,j

, (9)

Σt+1
j =

∑M
m=1

∑Nm

i=1 w
t+1
m,i,j(ym,i − µt+1

j )(ym,i − µt+1
j )T∑M

m=1

∑Nm

i=1 w
t+1
m,i,j

(10)

Thus, the global summary quantities are

wt+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,j, (11)

at+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,jym,i, (12)

bt+1
j =

M∑
m=1

Nm∑
i=1

wt+1
m,i,jym,iy

T
m,i. (13)

in which the local summary quantities are denoted as

wt+1
m,j =

Nm∑
i=1

wt+1
m,i,j, (14)

at+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,i, (15)

bt+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,iy

T
m,i. (16)

Notice that with these summaries defined as previous, the estimated parameters are

µt+1
j =

at+1
j

wt+1
j

, (17)

Σt+1
j =

bt+1
j

wt+1
j

− µt+1
j (µt+1

j )T , (18)

The E- and M-steps are alternated repeatedly until the difference between likelihoods of consecu-
tive iterates L(θt+1)− L(θt) is less than a pre-specified small number ϵ.
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A distributed EM algorithm based on the incremental strategy for sensor network (DEM) was
studied in [3]. With such a network setting, the communication path is cyclic and pre-set. Only
one node updates the parameter set θt+1 using its own Nm observations at each iteration, given the
current parameter set θt. In details, node m can update the global summary quantities by using its
new local summary quantities to replace the old quantities based on

wt+1
j = wt

j + wt+1
m,j − wt

m,j , (19)

at+1
j = at

j + at+1
m,j − at

m,j , (20)

bt+1
j = btj + bt+1

m,j − btm,j . (21)

and update the parameter set θt+1 according to (17) and (18). During this procedure, other nodes
are fixed. Then, node m passes the message of updated global summary quantities {wt+1

j ,at+1
j , bt+1

j }
and the estimated parameter θt+1 to next adjacent (m+1) node, and this process is repeatedly im-
plemented.

Note that each node only executes a single and local E- and M- step in DEM algorithm, thus this
algorithm do not require the updated means and covariances {µt+1

j ,Σt+1
j } to reach a fixed point at

each local E-step process. In order to speed up the overall convergence, DEMM algorithm refers
to DEM with multiple steps at each node was also studied in [3]. Specifically, the local E- and M-
steps can be repeated several times in succession until the maximization of the local log-likelihood
function is found, then the updated message can be passed to the next node.

All these algorithms require to execute the standard E- and M- step to update parameters si-
multaneously. They are often effective when the mixtures are well-separated, but suffered a slow
convergence when the mixtures become complex or overlapping. To speed up the convergence
of the standard EM algorithm, a component-wise EM method for mixture models (CEMM) was
presented in [13]. Rather than computing all parameters simultaneously, the CEMM algorithm
considers the decomposition of the parameter vector θ into component parameter vectors {αj,θj},
j = 1, · · · , J and updates only one component at a time. Specifically, each iteration consists of
J cycles and the conditional expectation (5) is computed and the parameter vector associated with
jth component is updated at each cycle. As pointed out in [13], the decoupling of parameter up-
dates implies the use of the smallest admissible missing data space and leads to faster convergence
than the standard EM algorithm.

4. Distributed Component-wise EM Algorithm

Motivated by the superior convergence behavior of the component-wise EM algorithm, we propose
a distributed component-wise EM algorithm for mixtures in sensor networks. In the following, we
consider the incremental strategy for information exchange between sensor networks as depicted in
Fig. 1, which exploits the idea of incremental EM [16] to facilitate local processing. By applying
the incremental EM, the component-wise EM can be implemented so that at node m, given the
summary quantities (11), (12) and (13) from the previous node (m − 1), only local data ym is
involved.

Let at
j, b

t
j, w

t
j be the received summary statistics of the mth node from the previous one, and

the local estimates after the tth iteration be

θt
m = {θt

m,1, · · · ,θt
m,J}, (22)
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Fig. 1. Communication/iteration cycle in a sensor network

where θt
m,j include the estimate for the jth component {αt

m,j,µ
t
m,j,Σ

t
m,j}. At the beginning of the

(t + 1)th iteration, the initial estimates for the mean and covariance matrix are obtained from the
summary statistics as follows:

µt
j =

at
j

wt
j

, Σt
j =

btj
wt

j

− µt
jµ

t′

j , j = 1, · · · , J. (23)

let θ[t+1,0]
m = θt

m, the parameters associated with the jth components θt
m,j are updated sequentially

in the proposed algorithm as follows.
For j = 1, · · · , J , the E-step is computed as:

wt+1
m,i,j =

αt
m,jP(ym,i|µt

j,Σ
t
j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µt

m,k,Σ
t
m,k)

. (24)
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The M-step is then

αt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j , (25)

µt+1
m,j =

at+1
m,j

wt+1
m,j

, (26)

Σt+1
m,j =

bt+1
m,j

wt+1
m,j

− µt+1
m,jµ

t+1′

m,j , (27)

where the local summary statistics wm,j,am,j, bm,j are

wt+1
m,j =

1

Nm

Nm∑
i=1

wt+1
m,i,j , (28)

at+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,i , (29)

bt+1
m,j =

Nm∑
i=1

wt+1
m,i,jym,iy

′
m,i . (30)

The estimate at the jth cycle is given by

θ[t+1,j]
m = {θt+1

m,1, · · · ,θt+1
m,j ,θ

t
m,j+1, · · · ,θt

m,J}. (31)

After J cycles, the output of the (t+ 1)th iteration is given by:

θt+1 = θ[t+1,J ]
m . (32)

Then the local summary statistics are computed with the new estimate θt+1 according to (19)-(21).
Note that the old values of summary statistics are replaced by updated values at node m. In
addition, the computations of the posterior probabilities (24) and the estimates (25), (26) and (27)
involve only the data at node m.

The major difference of the proposed component-wise approach from the distributed EM algo-
rithm is as follows. In the distributed EM algorithm (DEM) [3], the parameters associated with
all components are updated simultaneously. The E-step is evaluated only once at the beginning of
the iteration. In the proposed algorithm, each component parameter set θj is computed sequen-
tially and the posterior probability wm,i,j (24) is evaluated at each cycle. The computational time
is only slightly increased by the multiple E-steps in comparison to the distributed EM algorithm.
Simulation results in the following sections will show that our approach leads to a much faster
convergence of the log-likelihood than the distributed EM algorithm.

5. Convergence Analysis

In [19] and [20], the authors gave in-depth analysis on the convergence of standard EM algorithms
and . It is shown in [16] that under standard regularity conditions, the incremental EM will give the
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estimates which converge with respect to the likelihood function, and the likelihood is iteratively
ascending. In [3], it is assumed that the {θt} converges to θ∗ to maximize the log-likelihood
L(θ). It can be shown that the estimate θt near θ∗ with iterations has the following approximate
relationship for sufficiently large t

θt+1 − θ∗ = M(θ̄
t − θ∗) (33)

where θ̄
t is described as a certain average of the past {θ(t−m)}Mm=1 and M is defined as the rate

matrix of the algorithm. The convergence rate is determined by the spectral radius ρ(M) of the
rate matrix [22]. Based on the results of [15], a larger ρ(M) leads to a slower convergence speed.

Before analyzing the convergence of DCEM, we consider another analytical approach for the
convergence of the DEM in [21]. In this method, we define an augmented vector including all
nodes’ parameters as:

Θt =

 θt
1
...

θt
M

 (34)

During each iteration of the DEM algorithm, only one node updates its parameters while other
nodes’ parameters are fixed, all parameters of Θt can be updated after a full cycle of the proce-
dure. In addition, assuming that data sets are statistically independent at different nodes, the local
objective function is calculated as:

Lm(θ) =
Nm∑
i=1

log(
J∑

j=1

αm,jP(ym,i|µj,Σj)) (35)

where θm is the parameter vector for the mth node. We model the conditional expectation of
complete data using log-likelihood as:

Qm(θ;θ
t
m)=E[Lc(θ)|ym,θ

t
m] (36)

=
Nm∑
i=1

J∑
j=1

wt+1
m,i,j(logαm,j + logP(ym,i|µj,Σj))

The total conditional Q function can be reformatted as [3]:

Q(θ;θt)=Q(θ;θt
1, . . . ,θ

t
M) (37)

=
M∑

m=1

Qm(θ;θ
t
m)

Finally, the updated equation of the DEM algorithm for a sensor networks can be represented as:

θt+1 = argmax
θ

Q(θ;θt
1, . . . ,θ

t
M), (38)

Using the Taylor expansion in the local Q function, it was verified in [21] that the local estimates
θt
m can achieve a local maximum at a fixed point θ∗

m and satisfy the following approximate rela-
tionship for sufficiently large t

θt+1
m − θ∗

m = MDEM
m (θt

m − θ∗
m) (39)
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where MDEM
m is the local rate matrix at node m and its expression is given by

MDEM
m = ∇11Qm(θ

∗
m;θ

∗
m)[∇20Qm(θ

∗
m;θ

∗
m)]

−1 (40)
= I− [∇20D(θ∗

m;θ
∗
m) +∇2L(θ∗

m)]
−1∇2L(θ∗

m)

where ∇ij denotes the ith order partial derivatives with respect to the first argument and jth order
partial derivatives with respect to the second argument. D(θm;θ

t
m) = E[log p(y, z|y,θ)|y,θt] is

the distance between θm and θt
m. It can be shown that ∇2L(θ∗

m) and D(θm;θ
t
m) are negative

definite [4] and the eigenvalues of MDEM
m all lie in [0, 1). With the definition (34), if Θ∗ is a fixed

point of the DEM algorithm , the convergence rate of the full DEM procedure in sensor network
setting can be formulated as:

Θt+1 −Θ∗ = MDEM(Θt −Θ∗) (41)

where MDEM is a block diagonal matrix defined as

MDEM =

 MDEM
1 0

. . .
0 MDEM

M

 (42)

Based on the definition of the spectrum radius:

ρ(M) = max |β| (43)

where β are the eigenvalues of M, the convergence rate is the largest eigenvalue of M. Therefore,
if the maximum eigenvalue of MDEM

m is denoted by βDEM
m , the convergence rate of all estimated

parameters in the DEM algorithm after a full cycle will be equal to

ρ(MDEM) = max
m

|βDEM
m | < 1 (44)

Now we consider the DCEM algorithm in a sensor network situation. In a DEM algorithm, the
linear constraint for Gaussian mixtures at each node operation

∑J
j=1 αm,j = 1 is automatically sat-

isfied during every E- and M- step. This is obviously not satisfactory in the context of component-
wise methods [13]. In [13], a Lagrangian approach is introduced to fulfill this constraint by recon-
structing a modified likelihood function based on Lagrangian duality. Since the data collected at
each sensor are independent of the data at other sensors, the local modified likelihood function is
given by:

Lm(θ, λ) = Lm(θ)− λ
( J∑

j=1

αm,j − 1
)

(45)

From [13], we can get λ = Nm by solving this Lagrangian function, thus, (45) becomes

Lm(θ) = Lm(θ)−Nm

( J∑
j=1

αm,j − 1
)

(46)

The convergence of the standard algorithm with Gaussian mixtures is investigated in [19] by link-
ing the EM algorithm to gradient ascent methods. Motivated by this idea, we demonstrate that the
E- and M- steps of the DCEM algorithm at each node can be realized by jointly using the gradient
and the projection matrices.
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Theorem 1. At the jth cycle, the local updates formulas (25)-(27) in DCEM at node m can be
described as:

αt+1
m,j − αt

m,j = Pαt
m,j

∂Lm(θ)

∂αm,j

|Am=A[t+1,j−1]
m

, (47)

µt+1
m,j − µt

m,j = Pµt
m,j

∂Lm(θ)

∂µm,j

|µm,j=µt
m,j

, (48)

vec[Σt+1
m,j ]− vec[Σt

m,j] = PΣt
m,j

∂Lm(θ)

∂vec[Σm,j]
|Σm,j=Σt

m,j
, (49)

where vec[C] denotes the vector obtained by stacking the column vectors of matrix C, Am denotes
the vector of mixing probabilities [αm,1, · · · , αm,J ]

T at node m,

A[t+1,j−1]
m = [αt+1

m,1, · · · , αt+1
m,j−1, α

t
m,j, · · · , αt

m,J ]
T , (50)

and

Pαt
m,j

=
1

Nm

αt
m,j (51)

Pµt
m,j

=
Σt

m,j∑Nm

i=1 w
t+1
i,m,j

, (52)

PΣt
m,j

=
2∑Nm

i=1 w
t+1
i,m,j

Σt
m,j ⊗Σt

m,j, (53)

where ⊗ is the Kronecker product.
Proof: See Appendix 8.1

Using the notation θm,j = {αm,j,µm,j, vec[Σm,j]
T}T , we define the local projection matrix as

follow:

Pθt
m,j

=

 Pαt
m,j

0

Pµt
j

0 PΣt
j

 (54)

Then, the updates can be integrated into:

θ
(t+1)
m,j = θt

m,j + Pt
θm,j

∂Lm(θ)

∂θm,j

|
θm=θ

[t+1,j]
m

(55)

Consider the tth iteration at node m and let θm = {θm,j θm,l}T where θm,l are the other parameters
of θm when l ̸= j. We apply the Taylor formula with remainder [23] to expand this gradient at a
fixed point θ∗

m. Since ∂Lm(θ)
∂θm,j

|θm=θ∗
m
= 0, we can obtain

θt+1
m,j − θ∗

m,j = θt
m,j − θ∗

m,j +Pθ∗
m,j

∂Lm(θ)

∂θm,j∂θm,j

|θm=θ∗
m
(θt

j − θ∗
j) (56)

+ Pθ∗
m,j

∂Lm(θ)

∂θm,j∂θm,l

|θm=θ∗
m
(θt

m,l − θ∗
m,l)
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Define the local Hessian of modified function at the fixed point θ∗
m by

Hθ∗
m
= − ∂Lm(θ)

∂θm∂θm

|θm=θ∗
m

(57)

and the following submatrices of Hessian

Hθ∗
m,j

= − ∂Lm(θ)

∂θm,j∂θm,j

|θm=θ∗
m

(58)

Hθ∗
m,l

= − ∂Lm(θ)

∂θm,j∂θm,l

|θm=θ∗
m

where Hθm,j
is the curvature of the modified log-likelihood function Lm(θm) with respect to θm,j ,

and Hθm,l
is the coupling between θm,j and θm,l. Let Rθm,j

denote the J × J permutation matrix
that reorders the elements of {θm,j,θm,l} into {1, · · · , J}, and Rθm,j

RT
θm,j

= I. Then, we define
the J × J composite local rate matrix at j cycle for DCEM algorithm

MDCEM
m,j = Rθm,j

[
I−Pθ∗

m,j
Hθ∗

m,j
−Pθ∗

m,j
Hθ∗

m,l

0 I

]
RT

θm,j
(59)

The components of θt
m,l are just copied, so after permuting Rθm,j

θ[t+1,j]
m − θ∗

m = MDCEM
m,j (θ[t+1,j−1]

m − θ∗
m) (60)

A full cycle consists of one update over each of the J index sets, therefore, after J cycle, we can
obtain:

θ[t+1,J ]
m − θ∗

m = MDCEM
m,J × · · ·MDCEM

m,1 (θ[t,J ]
m − θ∗

m) (61)

Theorem 2. There exists a < 1 such that for any

ρ(MDCEM
m ) = ∥MDCEM

m,J × · · ·MDCEM
m,1 ∥Hθ∗m

≤ a (62)

where ∥M∥N = ∥N1/2MN−1/2∥ denotes the generalized matrix spectral norm with respect to a
positive definite matrix N.

Proof: See Appendix 8.2

After J cycles, the output of the (t+ 1)th iteration at node m is defined as:

θt+1
m = θ[t+1,J ]

m (63)

By applying the same analytical approach of DEM algorithm to the DCEM algorithm, it is easy to
obtain the similar result of convergence properties as

Θt+1 −Θ∗ = MDCEM(Θt −Θ∗) (64)

where MDCEM is a block diagonal matrix given by

MDCEM =

 MDCEM
1 0

. . .
0 MDCEM

M

 (65)
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Fig. 2. Data distribution for well-separated mixture case

Given the analysis above, since θ∗
m is a fixed point of node m, the eigenvalues corresponding to

the mth diagonal block of MDCEM should be in the interval [0, 1). For a specific sensor node, the
largest eigenvalue of the submatrix corresponds to the convergence rate of the parameters. The
largest eigenvalue of the rate matrix MDCEM is related to the convergence rate of all the network
parameters after a full DCEM cycle. Denote the largest eigenvalue of MDCEM

m as βDCEM
m , the

convergence rate of DCEM for the whole network can be obtained as follow:

ρ(MDCEM) = max
m

|βDCEM
m | < 1. (66)

6. Simulation Results

In this section, we demonstrate the feasibility of the proposed algorithm with two different simu-
lated data sets,i.e, the well-separated mixture and overlapping mixture cases. In the simulations,
we consider a sensor network with M = 100 nodes which fulfils the communication requirements
specified in [11].

6.1. Well-separated Mixtures Model

First, we consider a well-separated components with the observations are generated from J = 5
Gaussian components distributed as in Fig. 2. Each component is a 2D Gaussian density, the
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number of data samples at each node is Nm = 1000, which can represent environment data clusters.
In the first 40 nodes, 60% observations come from the first Gaussian component and other 40%
observations evenly from the other four Gaussian components, i.e. αm,1 = 60%, αm,2 = αm,3 =
αm,4 = αm,5 = 10% for m = 1, · · · , 40. In the next 30 nodes, 70% observations come from the
second and third Gaussian components and other 30% observations evenly from the other three
components, i.e. for m = 41, · · · , 70, αm,1 = αm,4 = αm,5 = 10%, αm,2 = 40%, αm,3 = 30%.
For m = 71, · · · , 100, 70% observations come from the last two Gaussian component and other
30% observations evenly from the other three Gaussian components αm,1 = αm,2 = αm,3 =
10%, αm,4 = 40%, αm,5 = 30%. The component parameters (true values) are given by µ1 =
[0.2, 0.9]′, µ2 = [0.9, 0.2]′, µ3 = [0.3, 0.3]′, µ4 = [0.5, 0.5]′, µ5 = [0.8, 0.8]′.

For comparison, we apply the proposed DCEM algorithm, the DEM algorithm [3] with a single
EM at each node, and DEMM [3] (multiple EM steps at each node) to the same batch of data.
These algorithms were randomly initialized with a guess of Gaussian mixture components. As
shown in Fig. 3, the estimates for the x- and y-components of means are close to the reference
values.

In Fig. 4, the log-likelihood values are plotted versus iterations. Convergence is declared when
the norm of the difference between successive parameter estimates is less than a specified number
ϵ = 10−5. The proposed algorithm and DEMM algorithm require on average only 10 iterations and
11 iterations, respectively, to attain the maximal value of log-likelihood, while the DEM algorithm
requires 16 iterations to converge. As the complexity of each iteration required by these algorithms
is almost the same, this implies at least 37% saving in overall computation over DEM algorithm
time for the proposed algorithm.

6.2. Overlapping Mixtures Model

Secondly, we consider the overlapping 2D Gaussian density with the same network setting used
in previous well-sperate mixture model. Each sensor node still takes 1000 observation samples.
The observations are generated from the 2D Gaussian mixtures with 5 overlapping components
distributed in Fig. 5. The observations for each sensor node are collected as follows. In the first 30
nodes, 80% observations come from the first Gaussian component and the other 20% observations
evenly from the other four Gaussian components, i.e. αm,1 = 80%, αm,2 = αm,3 = αm,4 = αm,5 =
5% for m = 1, · · · , 30. In the next 40 nodes, 70% observations come from the second and third
Gaussian components and other 30% observations evenly from the other three components, i.e. for
m = 41, · · · , 80, αm,1 = αm,4 = αm,5 = 10%, αm,2 = 40%, αm,3 = 30%. For m = 71, · · · , 100,
70% observations come from the last two Gaussian component and other 30% observations evenly
from the other three Gaussian components αm,1 = αm,2 = αm,3 = 10%, αm,4 = 40%, αm,5 =
30%. The component parameters (true values) are given by µ1 = [0.2, 0.9]′, µ2 = [0.9, 0.2]′,
µ3 = [0.3, 0.3]′, µ4 = [0.5, 0.5]′, µ5 = [0.9, 0.9]′.

It can be seen from Fig. 6 that the estimated mean values in all nodes calculated by the DCEM
algorithm approximate their true value when overlapping data exits. Fig. 7 displays the normalized
log-likelihood versus the cycle of DCEM, DEM and DEMM in presence of overlapping mixtures.
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Fig. 3. Estimates for mean values by the DCEM algorithm for well-separated mixture case.

All three algorithms suffer from slow convergence compared to the well-separated data set, al-
though they converge to the same solution. More specifically, the DEM algorithm with a single
EM loop at each node appears to converge slowly in 33 iterations so that the DEMM algorithm
and especially DCEM algorithm show a significant improvement of convergence speed around 16
iterations. Moreover, it appears that the implemented version of the DEMM algorithm is less ben-
eficial than the DCEM algorithm for situations where the DEM algorithm converges slowly. One
likely cause of this behavior is that the local procedure of DEMM at each node is still the standard
EM update, which still updates the parameters simultaneously, while local DCEM algorithm find
the estimates sequentially.

7. Conclusion

In this paper, we proposed a distributed componentwise EM algorithm for mixture models in sensor
networks. The proposed algorithm is characterized by local processing capabilities and sequential
computations of component parameters. The ability to process data locally is of particular inter-
est to sensor networks with computationally powerful nodes, and it avoids costly node-to-node
communications.
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Fig. 4. Comparison of log-likelihood versus iterations for the DCEM, DEM with single EM step
at each node [3] and DEM with multiple EM steps at each node (DEMM) in the well-separated
mixture case.

More importantly, the component-wise update of the mixture parameters leads to significant im-
provement in convergence rate compared to the DEM algorithm [3]. Simulation results show that
the number of iterations required by the proposed algorithm is about 40% less than that required
by the distributed EM algorithm. Given the advantages of computational efficiency and simple
implementations, the proposed distributed component-wise EM algorithm is a powerful tool for
estimating mixture models in sensor networks.

8. Appendices

8.1. Proof of Theorem 1

1. Consider the EM update for the mixing proportions αm,j , from Equations (1), (2) and (46), it
can be obtained

∂Lm(θ)

∂αm,j

|Am=A[t+1,j−1]
m

= (67)

Nm∑
i=1

P(ym,i|µt
j,Σ

t
j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µt

m,k,Σ
t
m,k)

−Nm
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Fig. 5. Data distribution for overlapping mixture case

Premultiplying by Pαt
m,j

, yields

Pαt
m,j

∂Lm(θ)

∂αm,j

|Am=A[t+1,j−1]
m

= (68)

1

Nm

Nm∑
i=1

αt
m,jP(ym,i|µt

j,Σ
t
j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µt

m,k,Σ
t
m,k)

− αt
m,j (69)

The M-step formula for A in equation (25) can be rewritten as

αt+1
m,j = αt

m,j +
1

Nm

Nm∑
i=1

wt+1
i,m,j − αt

m,j (70)

2. Consider update formula for the mean µj which follows from (1) and (2) that

∂Lm(θ)

∂µm,j

|µm,j=µt
m,j

=
Nm∑
i=1

αt
m,jP(ym,i|µt

j,Σ
t
j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

m,k,Σ
t+1
m,k) +

∑J
k=j α

t
m,kP(ym,i|µt

m,k,Σ
t
m,k)

(71)

× (Σt
m,j)

−1[ym,i − µt
m,j]

=
Nm∑
i=1

wt+1
i,m,j(Σ

t
m,j)

−1[ym,i − µt
m,j]
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Fig. 6. Estimates for mean values by the DCEM algorithm for overlapping mixture case.

Premultiplying by Pµt
m,j

, yields

Pµt
m,j

∂Lm(θ)

∂µm,j

|µm,j=µt
m,j

=
1∑Nm

i=1 w
t+1
i,m,j

Nm∑
i=1

wt+1
i,m,jym,i − µt

m,j (72)

= µt+1
m,j − µt

m,j

Based on equation (25), it can be derived that
∑Nm

i=1 w
t+1
i,m,j > 0, and Σt

j is positive definite with
1-probability under the assumption of a large enough Nm (the matrix has full rank). Similarly,
based on (26), Pµt

j
is positive definite with 1-probability. 3. The third piece of the theorem is based

on the equation (1) and (2) that

∂Lm(θ)

∂Σj

|Σj=Σt
j
= −1

2

Nm∑
i=1

αt
m,jP(ym,i|µt

j,Σ
t
j)∑j−1

k=1α
t+1
m,kP(ym,i|µt+1

k ,Σt+1
k ) +

∑J
k=j α

t
m,kP(ym,i|µt

k,Σ
t
k)

(73)

× (Σt
j)

−1{Σt
j − [ym,i − µt

j][ym,i − µt
j]
T}(Σt

j)
−1

= −1

2

Nm∑
i=1

wt+1
i,m,j(Σ

t
j)

−1{Σt
j − [ym,i − µt

j][ym,i − µt
j]
T}(Σt

j)
−1
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Fig. 7. Comparison of log-likelihood versus iterations for the DCEM, DEM with single EM step at
each node [3] and DEM with multiple EM steps at each node (DEMM) in the overlapping mixture
case.

Based on the discussion above, the EM update formula for Σt
j can be restructured as

Σt+1
j = Σt

j +
1∑Nm

i=1 w
t+1
i,m,j

Nm∑
i=1

wt+1
i,m,j[ym,i − µt

j][ym,i − µt
j]
T −Σt

j (74)

= Σt
j +

2Σt
j∑Nm

i=1 w
t+1
i,m,j

VΣt
j
Σt

j,

where

VΣt
j
= −1

2

Nm∑
i=1

wt+1
i,m,j(Σ

t
j)

−1{Σt
j − [ym,i − µt

j][ym,i − µt
j]
T}(Σt

j)
−1 (75)

=
∂Lm(θ)

∂Σj

|Σj=Σt
j

which yields

Σt+1
j = Σt

j +
2Σt

j∑Nm

i=1 w
t+1
i,m,j

∂Lm(θ)

∂Σj

|Σj=Σt
j

(76)
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Facilitating the definition of vec operator, vec[ABC] = (CT ⊗A)vec[B], it can be derived

vec[Σt+1
j ] = vec[Σt

j] +
2∑Nm

i=1 w
t+1
i,m,j

(Σt
j ⊗Σt

j)
∂Lm(θ)

∂Σj

|Σj=Σt
j

(77)

8.2. Proof of Theorem 2

With (59), it can be obtained:

RT
θm,j

MDCEM
m,j Rθm,j

=

[
I−Pθ∗m,j

Hθ∗m,j
−Pθ∗m,j

Hθ∗l

0 I

]
(78)

= I−
[

I
0

]
Pθ∗m,j

[I 0]RT
θm,j

Hθ∗mRθm,j

Therefore,

MDCEM
m,j = I−Rθm,j

[
I
0

]
Pθ∗m,j

[I 0]RT
θm,j

Hθ∗m (79)

Multiplying both sides with H
1
2
θ∗m

and H
− 1

2
θ∗m

, (79) becomes

H
1
2
θ∗m
MDCEM

m,j H
− 1

2
θ∗m

= I−H
1
2
θ∗m
Rθ∗m,j

[
Pθ∗m,j

0

0 0

]
RT

θm,j
H

1
2
θ∗m

(80)

If parameter sets are chosen cyclically in a natural order, i.e., {1, · · · , J}, it follows from (80) that

MDCEM
m,J × · · ·MDCEM

m,1 = I−Pθ∗mHθ∗m (81)

where
Pθ∗m = DP + LP (82)

where

DP =

 Pθ∗m,1
0

. . .
0 Pθ∗m,J

 (83)

is the block diagonal of Pθ∗m , and LP is the corresponding strictly lower block triangular matrix of
Pθ∗m . Then, we decompose the local Hessian matrix Hθ∗m by

Hθ∗m = DH + LH + LT
H (84)

where DH,LH represent the block diagonal, strictly lower triangular block parts of Hθ∗m . From [9,
Theorem 2 ], it can be verified that DP = D−1

H , we rewrite the (82) as follow:

Pθ∗m = (DH + LH)
−1 (85)

Thus, by letting

MDCEM
m =

J∏
j=1

MDCEM
m,j (86)
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the local rate matrix of DCEM at node m is given by

MDCEM
m = I− (DH + LH)

−1Hθ∗m (87)

Let ∥M∥2 =
√
ρ(MHM) denotes the matrix spectral norm of M and define M̄ = H

1
2
θ∗m
MDCEM

m H
− 1

2
θ∗m

,
according to (87),

M̄HM̄ = M̄TM̄ (88)

= I−H
1
2
θ∗m
(DH + LH)

−T (DH + LH +DT
H + LT

H −Hθ∗m)(DH + LH)
−1H

1
2
θ∗m

< I

By defining
∥MDCEM

m ∥2Hθ∗m
= ρ(M̄HM̄) (89)

The inequality ρ(M) ≤ ∥M∥N leads to

ρ(MDCEM
m ) ≤ ∥MDCEM

m ∥Hθ∗ (90)

=
√
ρ(M̄H)

<
√
ρ(I) = 1
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Distributed quasi-Newton Method for Power System
State Estimation

Jia Yu, and John Thompson, Fellow, IEEE,

Abstract—In this paper, the system-wide power system state
estimation (PSSE) is promising in loosing the energy market
and improving the situational awareness. In practice, the use of
centralised estimator is not viable due to the high complexity,
communication cost, and robustness issues. Thus, with the
systematic manner, we consider the distributed PSSE approaches
which are designed based on the quasi-Newton and backtracking
line search. We demonstrate the effectiveness of the proposed
algorithms via the IEEE 14- and 4200- buses. It is shown in
the simulation results that the proposed method performs better
than other algorithms when dealing with bad data and large-scale
problems.

Index Terms—power system state estimation, quasi-Newton, av-
erage consensus.

I. INTRODUCTION

STATE estimation functions as an essential part in pow-
er systems. It significantly impacts the capabilities in

dispatching power, frequency management and error iden-
tifications. The system administrator can monitor the state
of the power grid via state estimation methods [?]. It has
become more and more important to estimate the system states
with better accuracies. Researchers have made great efforts
in combing new sensing techniques with the state-of-the-art
state estimations. For example, in [?], the authors presented
a Wide-Area Measurement System (WAMS) aided by Phasor
Measurement Units (PMUs). Since the computational load is
proportional to the amount of measurements, state-of-the-art
systems would require the individual buses to have their own
processing abilities [3]. The distributed methods have benefits
in reliabilities, computational efficiency, communication load,
and memory storage.

There have been a number of research efforts on investigating
distributed state estimation approaches for power systems. The
hierarchical distributed approaches estimate system states lo-
cally, exchange the information using a central processor, and
combine the local estimations to give the overall estimates [4]–
[6]. However, such methods are limited by the communication
burden. In general, the distributed state estimations require the
local communications rather than counting on a central proces-
sor. Recent developments in fully distributed methods include:
leveraging the matrix decompositions [7], [8]; employing the
alternating direction method of multipliers (ADMM) method
[9]; and information filter-based techniques [10]. The matrix

J. Yu was with the Institute for Digital Communications, The University of
Edinburgh, UK e-mail: j.yu@ed.ac.uk.

Manuscript submmited Feb 5, 2017.

decomposition methods in [7], [8] give no guarantee on the
convergence of the distributed state estimates. The ADM-
M approach in [9] guarantees the asymptotic convergence.
However, the use of ADMM methods is limited, since the
Lagrange multipliers require extra memory and asynchronous
configurations can be troublesome. The method proposed in
[10] guarantees the convergence, but the required iterations
scale linearly with the scale of the network. Asymptotically
convergent approaches can be particularly useful to deal with
large-scale networks especially when the convergence rate is
independent of the scale of the network.

In [11]–[13], the authors proposed the gossip-based algorithms
for complete distributed state estimations. In particular, the
method presented in [11] is a first order approach driven
by the diffusion strategy in [12]. Although the first order
approaches are simple, their developments are hampered by
the slow convergence rate. However, the Newton-type methods
usually have quadratic convergence. A gossip-based Gauss-
Newton method was developed in [13] to solve the general
nonlinear least squares problem and applied to the power sys-
tem state estimation. The Gauss-Newton method only exploits
the presence of first-order information of Hessian, and thus
requires the cost function to be zero or a small residual.
However, the presence of bad data will result in a large
residual in power system, which cannot be neglected during
the estimation process. Such situation can no longer be han-
dled by Gauss-Newton methods efficiently. By contrast, quasi-
Newton methods are more efficient under these conditions,
approximated Hessian can preserve second order information,
which allows our method to reduce the impact of bad data on
the state estimates.

With this context, we reformulate the state estimation problem
and propose a distributed quasi-Newton method (DQN) for
wide-area PSSE. Similar with [13],and employ the multi-agent
gossip-based scheme to describe the network communications.
Under this scheme, the state of each agent (control area) can
be estimated by using the local information and a limited
information exchange with neighbor areas, for which the
fusion center is not necessary. The agents can only preserve
their own states. This has advantages in both communication
efficiency and storages, address the large residual or bad data
problem [18], [19].

Moreover, we introduce a distributed line search method to
accelerate the convergence of the presented approach in [20].
Our investigation aims to extend the commonly used Armijo
rule in backtracking line searches [20]. We form a local Armijo
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Fig. 1: IEEE 14 bus system partitioned into I = 4 control
areas

rule for each agent by taking only the valid terms at that
agent, using the exchange information from neighbours. These
features make the proposed approach a viable distributed
alternate to the central line search methods.

In Section II, we formulate the power system state estimation
into a (non)linear least square (LS) problem. In Section III,
we introduce centralized BFGS with line search for the LS
problem. Furthermore, the details of the proposed distributed
quasi-Newton method are presented in Section IV. Finally, in
Section VI the numerical simulations are conducted to show
the performance of our approach.

II. PROBLEM FORMULATION

A multi-area power network can be conveniently expressed
as an undirected graph (N , E), where the set of the vertices
N , {1, · · · , B} denotes buses and the edge set E represents
the transmission lines that connect the buses. The power
system state is normally defined as the collection of the
voltages (containing both phase and magnitude information) at
all buses, x = [ΘT ,VT ]T with Θ , [θ1, · · · , θB ]T being the
phase vector and V , [V1, · · · , VB ]

T the magnitude vector.
The whole network can be divided into I non-overlapping
areas, each governed by a control cite, which gathers the local
measurements taken at the corresponding area and is allowed
to communicate with its neighboring areas. Fig. 1 shows a
concrete example where the network is partitioned into I = 4
regions. Apparently, the local measurements available to one
control cite is insufficient for it to estimate the total system
state. Therefore, in this work we study how to design the
cooperation process between the multiple areas so that a
distributed estimation of the global state can be efficiently
implemented.

We consider the traditional measurement system, SCADA
(supervisory control and data acquisition), which provides

measurements on both power injections at some of the buses
and on power flows along some of the transmission lines.
Since in SCADA system, the measurements update rate is
around once 2-6 seconds, which is relatively a long period
of time compared with the communication delay between
different cites, a static setting is considered in this paper, i.e.
measurement set is separated into different snapshots and each
run of state estimation process is based upon the most recent
one. The measurement model can therefore be represented as:

ti = hi(x) + ei (1)

where ei denotes measurement noise at the ith sensor as well
as some other uncertainties, such as the modeling inaccuracy,
and I = {1, · · · , I} where I is the number of control
sites. We further define M = 2B as the dimension of the
system state. In general, the observation function {hi(x)Ii=1}
should be nonlinear. It is only in some special cases, such as
when PMU measurements are considered, that the observation
function can be linear. In this paper, the general case is
studied. By stacking the local measurements together, the
global expression is shown as

t = h(x) + e, (2)

where h(x) = [hT1 , · · · ,hTI ]T , e = [eT1 , · · · , eTI ]T . A weight-
ed least squares problem related to this global representation
can be written as

x̂ = min
x∈X

J(x) = (t− h(x))TR−1(t− h(x)) (3)

where R = cov([e1, · · · , eN ]T ) and X
.
= {θn ∈

[−θmax, θmax], Vn ∈ [0, Vmax], n ∈ N}, with θmax and
Vmax being the phase angle and voltage limit. According to
[14], problem (3) is equivalent to the maximum likelihood
estimation for (2), under the assumption that the measurement
errors at different regions are gaussian and uncorrelated with
each other, i.e. R = diag(R1, · · · , RI) with Ri being the
covariance matrix for the measurement error at the ith region.
Since R is block diagonal matrix, problem (3) can be refor-
mulated to facilitate a distributed implementation,

x̂ = min
x∈X

J(x) =

I∑
i=1

‖t̄i − h̄i(x)‖2, (4)

with t̄i = R
− 1

2
i ti and h̄i = R

− 1
2

i hi. Both problem (3) and its
distributed version (4) are essentially non-linear least squares
problems. For centralized processing structure, Newton type
algorithms are typically used to search for the stationary point
because of their faster convergence rate than the first-order
methods such as gradient-descent method and ADMM. In
the next section, we introduce the centralized approach for
solving problem (4), using a particular type of quasi-Newton
algorithm.

III. CENTRALIZED QUASI-NEWTON ALGORITHM

A multi-agent network previously illustrated through Fig. 1
is considered, where there are I distributed agents, and the
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ith agent only knows a subset function fi(x)
.
= z̄i − h̄i(x) :

RM → RNi , i ∈ I,

fi(x) =
[
f1(x)T , · · · fNi

(x)T
]T
. (5)

Given the Jacobian Ji = ∂fi(x)/∂x, the gradient of function
‖fi‖2 at x is denoted as Fi(x) = Ji(x)T fi(x). Since the global
objective function can be rewritten as

x̂ = arg min
x∈X

I∑
i=1

‖fi(x)‖2 (6)

where individual agent only gets access to the partial infor-
mation of the global cost function, the gradient of the global
function can be computed as

F (x) =

I∑
i=1

Fi(x) =

I∑
i=1

Ji(x)T fi(x). (7)

In this paper, we are interested in the BFGS (broydenCfletcher-
CgoldfarbCshanno) quasi-Newton algorithm [29] due to its
wide applications and robust performance. According to BFGS
algorithm, with a properly chosen initial point x0 as well as
a positive-definite matrix H0, the searching for the stationary
point of problem (6) can be established by iteratively comput-
ing the following terms,

xk+1 = xk − αHkF (x0), (8)

Hk = (I − ρkzkykT )Hk−1(I − ρkykzkT ) + ρkzkzkT , k ≥ 0,
(9)

where yk = F̂ (xk) − F̂ (xk−1), zk = xk − xk−1, ρk =
1/(ykT zk) and α is a fixed value that controls the length of
the searching step. The stopping criterion for convergence is
typically set by checking the difference between the objective
function values in the present and the last iterations or by
simply assuming a maximum limit on the iteration number.

IV. DISTRIBUTED QUASI-NEWTON PROCESS

Motivated by the superior convergence behavior of the quasi-
Newton method for large-scale optimization, we propose a
distributed quasi-Newton method that combines quasi-Newton
iterations with a network consensus process in this section.

Solving the minimization problem (6) in a distributed manner
is challenging. The information on the global objective func-
tion is required for the computation of the searching step, as
discussed in the previous section. However, in our setting, each
agent can only access a part of the global information. To obvi-
ate this problem, we augment the quasi-Newton searching with
gossip process, which would disseminate local information
across the network. We hope that by doing so the distributed
process would behave similarly as its centralized version.

A. Network Exchange Model

Gossip process is used to disseminate local information. Essen-
tially, an agreement among all agents is reached, to a certain
degree of accuracy, via proper local information exchanges

prescribed in the gossip algorithm. In this section, we first brief
the data exchange model before introducing some assumptions
that the gossip algorithm used in this paper is built upon.

Since we assume that the data exchanges are synchronized
among the agents, we can denote the epoch for the data
exchanges between the kth and the k + 1th local iteration
as [τk, τk+1). During the epoch, each agent is allowed to only
communicate with its neighboring nodes. The network topol-
ogy can be modeled as a time-varying graph Gk,t = (I, Ek,t),
where t is the counter for the data exchanges of the gossip
process. The network topology is therefore assumed to be
stationary only within a single exchange stage in the gossip
process. The node set corresponds to the area set and is
denoted also as I = {1, · · · , I}. The edges {i, j} ∈ Ek,t
correspond to the available communication links used for
data exchanges. The adjacency matrix related to the graph is
denoted as Ak(t) = [A

(k,t)
i,j ]I×I

A
(k,t)
i,j =

{
1, {i, j} ∈ Ekt
0, otherwise

(10)

A connected graph Gk,∞ = {I,∪∞
t′=t
Ek
t′
} for all t ≥ 0 within

the kth update is defined such that there exists an integer L ≥
1 which, for each pair of {i, j}, satisfies

{i, j} ∈
L−1⋃
t′=0

Ek
t′+t

. (11)

Define the weight matrix Φk(t) = [Φki,j(t)]I×I for network,
where [Φki,j(t)] is non-zero entry of matrix Φk(t) if and
only if {i, j} ∈ Ekt . To ensure that the exchanges happen
between adjacent agents, we require that Φk(t) is symmetric
and doubly stochastic for any k and t. Furthermore, with the
i, j ∈ I, we assume there exists a 0 < η < 1 such that

1) Φki,j(t) ≥ η for all k > 0 and t > 0

2) Φki,j(t) ≥ η for all k > 0 and t > 0 if {i, j} ∈ Ekt

3) Φki,j(t) = η for all k > 0 and t > 0 if {i, j} ∈ Ekt

Gather the local information in one single vector Wk(t) ,
[Wk

1 (t), · · · ,Wk
I (t)], so that we can write the network ex-

change explicitly as

Wk(t) = [Φk(t)⊗ IIW ]Wk(t− 1), 1 ≤ t ≤ tk, (12)

where IIW is the identity matrix and IW equals to the length
of the local information exchanged at agent i, Wk

i (t) (in our
case, IW = M for both the exchanges of state variables and
local gradients) and tk is the number of exchanges during
[τk, τk+1).

In general, the weight matrix Φk(t) is time-varying. However,
we only consider the special case of the general model, i.e.
Coordinated Static Exchange [27], [28] in which each agent
collects the messages from the neighbourhood, and updates
parameters based on a static weight matrix Φ. This network
can satisfy the fully connected condition with

A = II − 1I1
T
I (13)
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where 1I is an I-dimensional all-one vector. In most CSE pro-
tocol based gossip network, the weight matrix is constructed
by Laplacian matrix

L = D−A (14)

where D = diag(A1I) is the degree matrix and

Φ = II − βL (15)

where β = 1/max(A1I).
Lemma 1. [26, Proposition 1] Let connectivity and stochastic
weights assumptions hold. The entries of the matrix product∏t
t′=0 Φk(t′) converge to 1/I with a geometric rate uniformly

with respect to i, j ∈ I, and k∣∣∣[ t∏
t′=0

Φk(t′)
]
i,j
− 1

I

∣∣∣ ≤ 2
(1 + η−L0

1− ηL0

)
(1− ηL0)t/L0 (16)

where L0 = (1 − I)L and L bound the intercommunication
interval ensuring graph connectivity.

The limit of the weight matrix product exists

lim
t→∞

=

t∏
t′=0

Φk(t′) = 1N1TN/I (17)

and thus

lim
t→∞

Wk
i (t) =

1

I

I∑
i=1

Wk
i (0), k = 1, 2, · · · . (18)

B. Local Update Process

To start with, an initial state variable x0
i and an initial

approximation for the inverse of Hessian matrix H0
i , need

to be set at each agent. For reasons that will be clear later,
before any local iteration k, a gossip process is implemented
to compute the average state, denoted as

x̄i
k(lk) ≈ 1

I

I∑
i=1

xki , (19)

where lk is the number of gossip exchange. We assume that
all the agents are synchronized so that the data exchange
happens in an synchronous way. The deviation of x̄i

k(lk) from
the real average is related to both the states xki and lk, and
will be discussed with more details in the next section. Now
Fi(x̄i

k(lk)) can be computed at each agent and the average
of the gradients,

F̂ (x̄i
k, l
′

k) ≈ 1

I

I∑
i=1

Fi(x̄i
k) (20)

can be similarly obtained by another gossip process, where l
′

k

is the gossip exchange number. As we later show, the values
of lk and l

′

k have varied degrees of influence on the distributed
algorithm’s convergence property.

After updating (except for the first iteration, i.e. k = 0) the
approximation for the inverse of Hessian matrix according to

Hk
i = (I − ρki zki ykTi )Hk−1

i (I − ρki yki zkTi ) + ρki z
k
i z
kT
i , (21)

where yki = F̂ (x̄i
k) − F̂ (x̄i

k−1), zki = x̄i
k − x̄i

k−1, ρki =
1/(ykTi zki ), the following local iteration is then implemented
at each agent,

xk+1
i = x̄i

k − αiHk
i F̂ (x̄i

k), i ∈ I, (22)

where αi is used to control the size of the searching step. To
simplify the analysis, we fix αi to be 1 at all agents.

From the above description, it can be seen that only state vari-
ables and first-order information are required to be exchanged
between the nodes, while the second-order information is
locally estimated. More importantly, no matrix inverse is
required, which reduce the computational burden significantly
compared with the Gossip-based Gauss Newton method in
[13].

The whole procedure of DQN method is summarized in
the Algorithm 1. In the next section, we will provide its
convergence analysis.

Algorithm 1 Distributed BFGS Algorithms

1: given initial variables x0
i , H0

i at all agents i ∈ I, as well
as proper weight matrix Φ that satisfies Assumption 1 and
2.

2: set k = 0.
3: repeat
4: network exchanges: Agents exchange their local state

variables according to (12) with tk = lk. After Fi(x̄ik(lk))
is computed at each agent, these local graients are ex-
changed according to (12) with tk = l

′

k and the estimate
of the global gradient F̂ (x̄i

k) is obtained at each node.
5: local update: If k ≥ 1, update the approximated inverse

Hessian matrix as (21). For each i ∈ I. agent i updates
its local variables as (22).

6: set k = k + 1
7: until ‖xk+1

i − xki ‖ ≤ ε or k = K.
8: set the local estimate as x̂i = xki .

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the DQN
algorithm (summarized in Algorithm 1). Local convergence
instead of global convergence property is studied here since
the objective function in our problem formulation is not
guaranteed to be convex and for non-convex functions, a global
convergence proof is not found even for the centralized version
of quasi-Newton algorithm in existing literature. We mainly
develop the local convergence analysis first used in [29] and
study the impact of the distributed implementations on the
DQN’s convergence property.

A. Gossip Errors Analysis

One of the noticeable differences of DQN from its centralized
version is that the values of state variables and gradients
utilized at the iteration equations (21),(22) are deviated from
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the real values since the gossip exchange number is finite. We
denote such deviations as gossip errors. To facilitate our later
analysis of the local convergence, we bound the gossip errors
by making some reasonable assumptions on the objective
functions.
Lemma 2. [29] Assume the gradient of the global objective
function, F : RM → RM is differentiable in the open set
D ⊂ X, and for some minima x∗ in D, p > 0 and K > 0,∥∥∥F ′(x)− F

′
(x∗)

∥∥∥ ≤ K‖x− x∗‖p. (23)

The following inequality is satisfied for every u, v in D,∥∥∥F (v)− F (u)− F
′
(x∗)(v − u)

∥∥∥ (24)

≤ Kmax{‖v − x∗‖p, ‖u− x∗‖p}‖u− v‖. (25)

If F
′
(x∗) is further invertible, there exist ε > 0 and ρ > 0

such that max{‖u−x∗‖, ‖v−x∗‖} ≤ ε leads to u, v ∈ D and

(1/ρ)‖v − u‖ ≤ ‖F (v)− F (u)‖ ≤ ρ‖v − u‖. (26)

Denote the gossip errors for the local state and the gradient
exchanges respectively as pi(lk), qi(l

′

k) at agent i and the
kth iteration. To ease the expression, we use F̂ ki (t) in place
of F̂ (x̄i

k, t) hereafter. Define Wk
F (t) =

[
F̂ k1 (t), · · · , F̂ kI (t)

]
,

Wk
x (t) =

[
x̄1
k(t), · · · , x̄Ik(t)

]
, W̄k

F = [1I1
T
I ⊗

IIM ]Wk
F (0)/I and W̄k

x = [1I1
T
I ⊗ IIM ]Wk

x (0)/I . Note that
Wk
x (0) =

[
xk1 , · · · ,xkI

]
,Wk

F (0) =
[
F1(x̄1

k), · · · , FI(x̄Ik)
]
.

By the above definitions, we would have

Wk
F (t)− W̄k

F =

 q1(t)
...

qI(t)

 ,Wk
x (t)− W̄k

x =

 p1(t)
...

pI(t)

 .
(27)

Lemma 3. Let the assumptions made in Lemma 2 hold and
the gradients of the local functions are upper bounded in D.
The following inequalities are then satisfied for i ∈ I,

‖pi(t)‖ =

∥∥∥∥∥∥x̄ik(t)−
I∑
j=1

xki

∥∥∥∥∥∥ ≤ C1(t1), 0 < t1 < lk, (28)∥∥∥F̂ ki (t)− F (x̄i
k)
∥∥∥ ≤ 2C1(lk) + C2(t2), 0 < t2 < l

′

k, (29)

where C1 and C2 are both positive reals that decrease
exponentially with the number of the gossip exchanges.

Proof. Please see Appendix A.

B. Local convergence analysis

One prominent feature of quasi-Newton algorithm that differ-
entiate it from other unconstrained optimization algorithms is
that its second-order information is updated recursively. To
analyze the local convergence property, we first characterize
this recursive process by establishing the following lemma.
Lemma 4. Let the gradient of the global function, F, satisfy
the assumptions made in lemma 3 and further let the hessian
matrix at the minima, F

′
(x∗), be symmetric and positive

definite. Then there exists an neighborhoold N = N1 × N2

of (x∗, F
′
(x∗)−1) such that for each (x̄k−1,Hk−1) ∈ N , the

updated Hessian inverse Hk, as defined in (21), satisfies∥∥∥Hk − F
′
(x∗)

∥∥∥
M
≤
[
1 + λ1 max

{
‖x̄k − x∗‖p, ‖x̄k−1 − x∗‖p

}]∥∥∥Hk−1 − F
′
(x∗)

∥∥∥
M

+ λ2 max
{
‖x̄k − x∗‖p, ‖x̄k−1 − x∗‖p

}
,(30)

where λ1, λ2 are non-negative constants, and ‖ ·‖M is certain
Matrix norm. Note that we omit i in x̄i

k and Hk
i for ease of

expression.

Proof. Please see Appendix B

Now that the inverse of the hessian matrix is bounded through
inequality (30), the local convergence result can be well
established. We conclude the main result in the following
theorem.
Theorem 1. Let the assumptions made in Lemma 4 be satisfied
by the gradient function, F. Then there exists a neighborhood
N = N1×N2 of (x∗, F

′
(x∗)−1), such that for each r ∈ (0, 1),

if the initial states satisfy the following condition

‖x0
i ‖ < ε(r)/2, ‖H0

i − F
′
(x∗)‖M < δ(r), (31)

where ε(r), δ(r) are positive constants, then the sequences of
x̄i
k,Hk

i , k > 0 are well defined in N and x̄i
k converges to

the local minimum x∗ in the following manner

‖x̄ik+1 − x∗‖ ≤ r
′
‖x̄ik − x∗‖, (32)

where r
′ ∈ (0, 1).

Proof. Please see Appendix C.

VI. SIMULATION RESULTS

In this section, we conduct experiments to compare the exist-
ing distributed quasi-Newton algorithm performance to those
of the GGN algorithm [13] and ADMM algorithm [9]. The
distributed estimate in each are {V̂ ki,n}Nn=1, {θ̂ki,n}Nn=1 at each
local update, the Mean Squared Error (MSE) with respect to
the voltage magnitude and the phase at the i-th site are

MSEk
V,i =

N∑
n=1

((V̂ ki,n)− V̄n)2 (33)

MSEk
θ,i =

N∑
n=1

((θ̂ki,n)− θ̄n)2 (34)

In addition, the metric used in our comparisons are the cost
function in (7),

Valk =

I∑
i=1

‖zi −Wix
k
i ‖2 (35)

evaluated using the decentralized estimates at each updates,
and the global MSE is given by

MSEk
V =

1

I

I∑
i=1

MSEk
V,i (36)
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TABLE I: Execution Time and Iterations in Case A

IEEE 14-bus GGN DQN Centralized Estimation
Computation times (s) 0.0287 0.0236 0.0228
Iterations 48 122 Undefined

MSEk
θ =

1

I

I∑
i=1

MSEk
θ,i (37)

In the simulations we used MATPOWER 5.1 [22] test case
IEEE-14 (N=14) system, and the load form is taken from
Power Systems Test Case Archive, University of Washington
[21], and scale the base load from MATPOWER upon load
buses, and select the work program as Optimal Power Flow
to give the generation dispatch for that instant. The initial-
ization for the voltage magnitudes and phases are 1 and 0,
respectively.

Sensor observations are generated by introducing independent
Gaussian errors {e} ∼ N (0, σ2) where σ2 = 10−6. The IEEE
14-bus grid is partitioned into 4 areas depicted in Fig. 1. The
control areas contain I1 = 3, I2 = 4, I3 = 4 and I4 = 4
buses, respectively.

A. Case A: Comparison with GGN without Bad Data

Here we present how the distributed quasi-Newton scheme
performs against the existing Gossip based Gauss Newton
algorithm for PSSE in [13]. These distributed network al-
gorithms proceed at each tth gossip exchange, and run the
them with t = 10 gossip exchanges for each update. The
comparison is made on the same time scale based on the
number of exchanges. By using the t = 10 gossip exchanges
between every two descent updates k = 1, · · · , 50, thus we
have the total number of 500 exchanges per snapshot. We
assume that all sensors are connected, which leads to the
adjacency matrix A = II − 1I1

T
I , and the weight matrix

is constructed with the Laplacian L = diag(A1I) − A and
Φ = II − ωL with ω = β/max (A1I) where β = 0.5.
We choose the step-size for Gossip based Gauss Newton
algorithm as αGGN = 0.5. It can be seen from Fig. 2(a-
c), GGN algorithms converge faster than the proposed DQN
method, because GGN algorithm can achieve the convergence
rate of centralized Gauss-Newton Algorithm, which converge
quadratically when the system error or residual is very small.
On the other hand, distributed quasi-Newton is Newton-like
algorithm that converges superlinearly. However, from the
comparison in Table 1, GGN method require to compute the
inversion of Hessian matrix with complexity order of O(N3),
where N is the matrix size. This results in high computa-
tion complexity and requirements of the local processor to
have capability to maintain such computations on time for
exchange. In contrast, the proposed method requires an O(N2)
computation cost. It uses an iterative solution of approximation
for the Hessian matrix and avoids calculating matrix inverse ,
which makes it more effective and realistic in a power system.

0 50 100 150 200 250
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Information Exchange Index

V
al

k

 

 

Gossip based Gauss−Newton Algorithom
Distributed quasi−Newton Algorithm

(a) Cost Function Valk

0 50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Information Exchange Index 

M
S

E
V

 

 
Gossip based Gauss−Newton Alogorithm
Distributed quasi−Newton Algorithm

(b) MSEkV

0 50 100 150 200 250
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Information Exchange Index

M
S

E
θ

 

 
Gossip based Gauss−Newton Algorithm
Distributed quasi−Newton Algorithm

(c) MSEkθ

Fig. 2: Comparison with GGN and distributed quasi-Newton
using t = 10 exchange for each update



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

B. Case B: Comparison with GGN in presence of Bad Data

We compare our proposed method with GGN algorithm when
bad data is present. We added random Gaussian system errors
es with E(ese

T
s ) = 100σ2. We examine the MSE perfor-

mance of the distributed quasi-Newton method where, in each
snapshot t, each agent exchange to neighbour agents 10 times
on average during the interval[τk, τk+1) for all k = 1, · · · , 50.
Clearly, as shown in Fig. 2(a) and (b), when large residual
is present, caused by bad data, estimation with the GGN
method fail to improve the cost function after iteration k = 11
in each snapshot. On the other hand this distributed quasi-
Newton method degrades more gracefully. The GGN method
only considers the first order term of Hessian matrix, however,
for the large residual problem, second order terms cannot be
neglected. By contrast, the distributed quasi-Newton method
can build up the second-order derivative term for approximated
Hessian with iterative process. That is the reason for our
method which outperforms significantly the GGN algorithm
in the presence of bad data.

C. Case C: Comparison with ADMM Method in a Large-scale
Power Network

We finally compare our method to ADMM [9] using a larger
power network: a 4200-bus power grid constructed using the
IEEE 14- and 300-bus power grid. By assuming that 300
buses are different regions, a copy of the IEEE 14-bus grid
can be used as the substitute for each of them. Moreover, we
randomly choose the the terminal buses among the incident
to the line areas for the IEEE 300-bus grid. Measurements
and bad data are selected as the tests for IEEE 14-bus grid.
The step-size for ADMM is αADMM = 0.5. Fig. 3(a) and (b)
demonstrate the MSE plot which are averaged upon 300 areas.
Observing that distributed quasi-Newton method converges
substantially faster than ADMM methods, achieving a Mean-
square error of 10−6 less than 25 iteration, while ADMM just
reaches MSE of 10−3 by iteration 40. Note that the IEEE 300-
bus is used as the substitute of the agents in the IEEE 14-bus
grid. This reserved topology of the 14 agents is also tested. It
can be seen from the Fig. 3(c) that the algorithm converged a
slightly faster (around 5%) due to the looser areas coupling.

VII. CONCLUSION

In this paper, we proposed a distributed quasi-Newton for
hybrid power system state estimation integrating seamlessly
WAMS and SCADA measurement system, which adaptively
estimated the global state vector along with a large residual.
The proposed algorithm reduced the complexity of compu-
tation and maintained the property of fast convergence. The
numerical results proved that the proposed approach was capa-
ble of delivering accurate estimates of the entire state vector
at each distributed area, even in the presence of bad data.
Meanwhile, its effectiveness was demonstrated by applying
this method to a large-scale power system network.
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Fig. 3: Comparison distributed quasi-Newton against ADMM
in a large-scale power network
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APPENDIX A
PROOF OF LEMMA 3

According to Lemma 1, we can obtain

Wk
x (t)− W̄k

x (A.1)

=

 t∏
t′

Φk(t
′
)− 1I1I

I

⊗ IIM

Wk
x (0), (A.2)

the norm of which is bounded as

∥∥Wk
x (t)− W̄k

x

∥∥ ≤
∥∥∥∥∥∥

t∏
t′=0

Φk(t
′
)− 1I1I

I

∥∥∥∥∥∥∥∥Wk
x (0)

∥∥ (A.3)

≤

∥∥∥∥∥∥
t∏

t′=0

Φk(t
′
)− 1I1I

I

∥∥∥∥∥∥
F

∥∥Wk
x (0)

∥∥(A.4)

≤
[
2I

(
1 + η−L0

1− η−L0

)
λtη

] ∥∥Wk
x (0)

∥∥ ,(A.5)

where λη = (1− ηL0)1/L0 and (A.4) is due to ‖ · ‖ ≤ ‖ · ‖F .
Since xi lies in D, there exists positive real CD > 0 such that∥∥Wk

x (0)
∥∥2 =

∑I
i=1 ‖xki ‖2 < C2

D and we can further obtain
that

‖pi(t)‖ ≤
∥∥Wk

x (t)− W̄k
x

∥∥ ≤ C1(t), (A.6)

where C1(t) =
[
2I
(

1+η−L0

1−η−L0

)
λtη

]
CD. It can be seen that

the norm of pi(t) decreases exponentially with t. Since the
gradients of Fi are upper bounded in D, there exists positive
real CG > 0 such that∥∥Wk

F (0)
∥∥2 =

I∑
i=1

∥∥Fi(x̄ki )
∥∥2 < CG. (A.7)

Therefore, similarly to the derivation of (A.6), we can obtain

‖qi(t)‖ ≤
∥∥Wk

F (t)− W̄k
F

∥∥ ≤ C2(t), (A.8)

where C2(t) =
[
2I
(

1+η−L0

1−η−L0

)
λtη

]
CG. It can be then obtained

that∥∥∥F̂ ki (t)− F (x̄i
k)
∥∥∥ =

∥∥∥∥∥∥
I∑
j=1

[
Fj(x̄j

k)− Fj(x̄ik)
]

+ qi(t)

∥∥∥∥∥∥(A.9)

≤
I∑
j=1

ρ‖x̄jk − x̄i
k‖+ ‖qi(t)‖, (A.10)

where (A.10) is from Lemma 2. From (A.6), it can be derived
that

‖x̄jk − x̄i
k‖ ≤ ‖pi(lk)‖+ ‖pj(lk)‖ ≤ 2C1(lk). (A.11)

Finally, from (A.8),(A.10) and(A.11), we have (29).

APPENDIX B
PROOF OF LEMMA 4

In the following analysis, we let ε, ρ be the corresponding
parameters in Lemma 2, i.e. max{‖u − x∗‖, ‖v − x∗‖} ≤ ε

would lead to u, v ∈ D and inequality (26). Define N2 as

N2 =
{

H ∈ L(Rn)|‖F
′
(x∗)‖‖H− F

′
(x∗)−1‖ < 1/2

}
.

(B.12)

To start with, we prove that the norm of yki is upper bounded
by a constant. For any H ∈ N2, we have that H is non-singular
and there exists a positive real c, s.t. ‖H‖ ≤ c. If x̄k−1 ∈ D
is satisfied and further define ‖ski ‖ = ‖xki − x̄i

k−1‖, then

‖ski ‖ ≤ ‖H‖k−1F̂ k−1i ‖ (B.13)

= ‖H‖k−1
∥∥∥F (x̄i

k−1)− F (x∗) + F̂ k−1i − F (x̄i
k−1)

∥∥∥(B.14)

≤ c
[
ρ‖x̄ik−1 − x∗‖+

∥∥∥F̂ k−1i − F (x̄i
k−1)

∥∥∥] , (B.15)

where (B.15) is due to Lemma 2. Then we can bound the state
(after state averaging) of the kth iteration by

‖x̄ik − x∗‖ =
∥∥pi(lk) + xki − x̄i

k−1 + x̄i
k−1 − x∗

∥∥ (B.16)

≤ ‖pi(lk)‖+ ‖ski ‖+ ‖x̄ik−1 − x∗‖ (B.17)

≤ (cρ+ 1)‖x̄ik−1 − x∗‖+ ‖pi(lk)‖+ c
∥∥∥F̂ k−1i − F (x̄i

k−1)
∥∥∥ .(B.18)

Now we define N1 as

∀xk−1i ∈ N1, ‖x̄ik−1−x∗‖ ≤ min

{
ε

2(1 + cρ)
,
ε

2

}
, (B.19)

where µ2(2ρε)p < 1/3. According to Lemma 3, by choosing
lk−1, l

′

k−1 such that

c
(

2C1(lk−1) + C2(l
′

k−1)
)

+ C1(lk−1) < ε/2, (B.20)

it can derived that ‖x̄ik−x∗‖ < ε or x̄i
k ∈ D. Now that both

x̄i
k, x̄i

k−1 ∈ D, by Lemma 2, we can derive that

1/ρ‖zki ‖ ≤ ‖F (x̄i
k)− F (x̄i

k−1)‖ ≤ ρ‖zki ‖, (B.21)

which is related to the term that we are trying to bound as

yki = ‖F (x̄i
k)− F (x̄i

k−1)+ (B.22)
(F̂ ki − F (x̄i

k))− (F̂ k−1i − F (x̄i
k−1))‖. (B.23)

Again, using Lemma 3, we can bound the last two terms in
(B.22) by choosing appropriate lk, lk−1, l

′

k and l
′

k−1 such that

1/(2ρ)‖zki ‖ ≤ ‖yki ‖ ≤ 2ρ‖zki ‖ (B.24)

Next, we prove that ‖yki ‖ is also lower bounded as

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ2‖yki ‖p, (B.25)

for some constants p > 0, µ2 > 0 and symmetric, non-singular
M. To see this, first since F

′
(x∗) is symmetric and positive

definite, there exists a positive symmetric M s.t. F
′
(x∗) =

M2. We could then write

M−1yki −Mzki = M−1[y − F
′
(x∗)zki ], (B.26)

which by Lemma 2, is equivalent to

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ0 max{‖x̄ik −x∗‖p, ‖x̄ik−1−x∗‖p}.
(B.27)

Since Hk−1 is in a neighborhood of F
′
(x)−1, i.e. N2, by the
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Banach Perturbation Lemma we can bound the operator norm
of Hk−1 as

‖Hk−1‖ ≤ 2‖F
′
(x∗)−1‖. (B.28)

By Lemma 2, it can then be derived that

1/ρ‖x̄ik − x∗‖ ≤ ‖Hk−1‖−1‖zki ‖, (B.29)

which combined with (B.28) indicates that there exists λ > 0
s.t.

max{‖x̄ik − x∗‖p, ‖x̄ik−1 − x∗‖p} ≤ λ‖zki ‖p. (B.30)

It is easy to see that due to Lemma 2, (B.27) combined with
(B.30) is equivalent to (B.25). From (B.25) and (B.24), we
can finally derive that

‖Mzki −M−1yki ‖
‖M−1yki ‖

≤ µ2‖yki ‖p ≤ µ2(ρε)p ≤ 1/3, (B.31)

which enables us to use Lemma 5.2 in [29] to derive the
following inequality∥∥∥Hk − F

′
(x∗)−1

∥∥∥
M
≤
[
1 + λ

′

1‖y‖p
] ∥∥∥Hk−1 − F

′
(x∗)−1

∥∥∥
M

+λ
′

2

‖zki − F
′
(x∗)−1yki ‖

‖M−1yki ‖
, (B.32)

where λ1, λ2 are positive constants. Rewrite that

‖zki − F
′
(x∗)−1yki ‖ = ‖F

′
(x∗)−1‖‖F

′
(x∗)zki − yki ‖(B.33)

Since x̄i
k, x̄i

k ∈ D and according to Lemma 2, it can be
derived that

‖F
′
(x∗)zki − yki ‖ = ‖F

′
(x∗)zki −

(
F (x̄i

k)− F (x̄i
k−1)

)
−
(
F̂ ki − F (x̄i

k)
)

+
(
F̂ k−1i − F (x̄i

k−1)
)
‖ (B.34)

≤ K max
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖zki ‖

+
∥∥∥F̂ ki − F (x̄i

k)
∥∥∥+

∥∥∥F̂ k−1i − F (x̄i
k−1)

∥∥∥ (B.35)

≤ (K +Kq) max
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖zki ‖,(B.36)

where (B.36) is derived by choosing sufficiently large iteration
number so that the last two terms on the right hand side of
(B.35) are bounded according to Lemma 3. Moreover, by using
(B.24), it can be obtained that

‖yki ‖ ≤ 2ρ ≤ 2ρmax
{
‖x̄ik − x∗‖, ‖x̄ik−1 − x∗‖

}
‖.
(B.37)

Finally, by combining (B.24), (B.32), (B.36) and (B.37), we
can finally prove that inequality (30) is satisfied under the
aforementioned assumptions.

APPENDIX C
PROOF OF THEOREM 1

We set the neighborhood N as the one that satisfies the
requirements in Lemma 4, i.e. for each (x̄k−1,Hk−1) ∈ N ,
inequality (30) is satisfied. Then we choose ε(r), δ(r) such
that ‖x− x∗‖ and ‖H− F ′(x∗)−1‖M < δ would imply that
(x,H) ∈ N .

First, according to Lemma 3, by choosing sufficiently large l0
such that ‖pi(l0)‖ ≤ ε, it can be derived that

‖x̄i0−x∗‖ = ‖x0
i+pi(l0)−x∗‖ ≤ ε/2+‖pi(l0)‖ ≤ ε, (C.38)

which leads to that (x̄i
0,H0

i ) ∈ N . Since

x1
i = x̄i

0 −H0
i F̂

0
i , (C.39)

we can write that

x1
i − x∗ = −H0

i

[
F (x̄i

0)− F (x∗)− F
′
(x∗)(x̄i

0 − x∗)

+F̂ 0
i − F (x̄i

0)
]

+
[
I−H0

iF
′
(x∗)

]
. (C.40)

Since N1 ⊂ D (as shown in the proof of Lemma 4), according
to Lemma 3, it can be derived that∥∥∥F (x̄i

0)− F (x∗)− F
′
(x∗)(x̄i

0 − x∗)
∥∥∥

≤ K‖x̄i0 − x∗‖p‖x̄i0 − x∗‖ ≤ Kεp‖x̄i0 − x∗‖.(C.41)

By the equivalence of all norms that deal with a finite-
dimensional space, there exists a constant α, s.t. ‖A‖ ≤
α‖A‖M . Therefore, from ‖H0

i − F
′
(x∗)‖M < δ, we derive

that ∥∥∥H0
i − F

′
(x∗)−1

∥∥∥ < αδ. (C.42)

Further we assume σ ≥ ‖F ′(x∗)‖, γ ≥ F
′
(x∗)−1. Then we

can write∥∥∥I−H0
iF
′
(x∗)

∥∥∥ =
∥∥∥F ′(x∗)−1 −H0

i

∥∥∥∥∥∥F ′(x∗)∥∥∥ ≤ 2αδσ.

(C.43)
Combining (C.40), (C.41) and (C.43), it can be derived that

‖x1
i − x∗‖ ≤

[
‖H0

i ‖Kεp + 2αδσ
]
‖x̄i0 − x∗‖

+‖H0
i ‖
∥∥∥F̂ 0

i − F (x̄i
0)
∥∥∥ . (C.44)

Further we bound the vector norm of H0
i by

‖H0
i ‖ ≤ ‖H0

i − F
′
(x∗)−1‖ ≤ 2αδ + γ. (C.45)

Let ε, δ be sufficiently small, such that

(2αδ + γ)Kεp + 2σδα ≤ r. (C.46)

Then we can have

‖x1
i−x∗‖ ≤ r‖x̄i0−x∗‖+(2αδ+γ)

∥∥∥F̂ 0
i − F (x̄i

0)
∥∥∥ . (C.47)

Choose l0, l
′

0 such that∥∥∥F̂ 0
i − F (x̄i

0)
∥∥∥ ≤ 1− γ

η(2αδ + γ)
‖x̄i0 − x∗‖, η > 1. (C.48)

We can derive that

‖x1
i − x∗‖ ≤ ‖x̄i0 − x∗‖, (C.49)

where r̂ = (r + (1 − r)/η) ∈ (0, 1). Using Lemma 3, with
sufficiently large l1, we can further have the following bound

‖x̄i1 − x∗‖ ≤ r
′
‖x̄i0 − x∗‖, r

′
∈ (0, 1), (C.50)

which indicates that x̄i
1 ∈ N1.

Next, we start an induction argument. First, for k =
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0, · · · ,m− 1, we assume that∥∥∥Hk
i − F

′
(x∗)−1

∥∥∥
M
≤ 2δ, (C.51)

‖x̄ik+1 − x∗‖ ≤ r
′
‖x̄ik − x∗‖. (C.52)

Since (xki ,H
k
i ) ∈ N , by (30), it can be derived that∥∥∥Hk+1

i − F
′
(x∗)−1

∥∥∥
M
−
∥∥∥Hk

i − F
′
(x∗)−1

∥∥∥
M

(C.53)

≤ 2λ1σε
pr
′kp + λ2ε

pr
′kp. (C.54)

By summing the two sides of inequality (C.53) for k =
0, · · · ,m− 1, we obtain∥∥∥Hm

i − F
′
(x∗)−1

∥∥∥
M
≤
∥∥∥H0

i − F
′
(x∗)−1

∥∥∥
M

+(2λ1δ+λ2)
εp

1− r′p
.

(C.55)
By choosing sufficiently small ε, we can have

(2λ1δ + λ2)
εp

1− r′p
< δ, (C.56)

which further leads to∥∥∥Hm
i − F

′
(x∗)−1

∥∥∥ ≤ 2αδ. (C.57)

Similarly to the case when m = 1, with the help of Lemma
2, it can be derived that

‖xm+1
i − x∗‖ ≤

[‖Hm
i ‖Kεp + 2σδα] + ‖Hm

i ‖‖F̂mi − F (x̄i
m)‖. (C.58)

Noticing that

‖Hm
i ‖ ≤ ‖Hm

i − F
′
(x∗)−1‖ ≤ 2αδ + γ, (C.59)

we can rewrite (C.58) as

‖xm+1
i − x∗‖ ≤ r‖x̄im − x∗‖+ (2αδ + γ)‖F̂mi − F (x̄i

m)‖.
(C.60)

Again, by Lemma 3, by choosing lm, l
′

m sufficiently large, we
can conclude the induction argument by showing that

‖x̄im+1 − x∗‖ ≤ r
′
‖x̄im − x∗‖ (C.61)
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