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Betv?een March 1962 and March 1963 I did an M.Sc, thesis entitled "The

double-six of lines over PG(3, 4)" under the supervision of Professor

T.G. Room at Sydney. The results of this are embodied in a paper [30]s the

numbers in square brackets refer throughout to the bibliography at the end of

this thesis. Prom October 1903 to October 1965 I have been doing this work

under the supervision of Dr. W.L. Edge at Edinburgh,

n,i is used to denote the projective space of n dimensions, GF(q) tire

Galois field of q elements and PG(n, q) the projective geometry in fin

over GF(q),

The main aim is to clarify and extend the earlier thesis, which

investigated the double-six of lines over tire smallest field for which it

could be defined, and to find out how grace's extension of tire double-six oan

occur in a finite geometry. In fact, all the projectively distinct cubic

surfaces with 27 lines over GP(q) have been classified for q « 9.

Bach of these surfaces is denoted by P" as it is found, where n is the

number of points on no line of the surface (this symbol is omitted if there

is no ambiguity) and q is the order of the field. Two surfaces are defined

to be projectively distinct in PG(n, q) if there is no non-singular linear

homogeneous transformation of the space tx^ansforming the one into tire other,

of. Segre [57] Chapter 16, Grace's extension of the double-six is also

considered for all GF(q) q « 9.

Two main features distinguish PG(n, q) from the geometry over the

complex field. Firstly, the number of rip's in is known, vis. it is

n (q"*1-1 - 1) / .£ - 1) Segre [ 3 p.257;
i«0 t»0
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for r = 0, this is the number of points in nn, which in therefore

(qn41 - l)/(q - 1). Secondly, the number of roots of an equation in one

variable of degree m that lie in the field is known only to be between 0

and m.

Four references occur most frequently; Baker [4] and Segre [48] for

the classical theory of the general cubic surface, Todd [61 ] for classical,

projective geometry, and Segre [57] for the theory of Galois fields and

finite projective geometries. A model of the double-six of lines is given

by Iiilbert and Cohn-Vossen [29] p. 165.

Finally, a finite projective geometry should not be confused with the

branch of mathematics known as "Finite geometry", in which a comparable

problem i3 the consideration ox the 27 lines of a cubic surface over the

real field which does not neressorily have an equation, e.g. Marchaud [36],
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CHAPTER I, Historical stannary.

§1. The double-six and the cubic surface ir: classical projective geometry.

Throughout this short account, the emphasis is on the jarticular discoveries

relevant to the remainder of the thesis. There is no intention of providing a

general survey of the cubic surface: for this, extensive references are given

by Meyer [37] and Henderson [l 8 ].

There are 27 lines on a general cubic surface, P, over the real field.

This result was first published by Cayloy [ 7 ] in 1849. He observed that

through each line of P, there are five planes meeting it in two other lines.

Since these planes, described as treble tangent, named as triple tangent, which

we will call tritangent, each contain three of tlie 27 lines, they number 45.

Further, he showed that the equation of F can be written as LM + PQR = 0,

where L, M, N, P, Q, R are linear forms in the four coordinates, in 120 ways.

The planes L = 0 etc. are all tritangent planes. The six planes form a pair

of trihedra, the planes of each one containing the same set of nine lines. He

also proved, that each pair of trihedra, later to be called a Steiner trihedral

pair, is associated with two others, dividing the 27 lines into three sets of

nine; and he notated the lines accordingly. However he said "There is great

difficulty in conceiving the complete figure formed by the twenty-seven lines,

indeed this can hardly be accomplished till a more perfect notation is discovered"

and. at the end of the paper, "I may mention in conclusion that the whole subject

of this memoir was developed in correspondence with Mr. Salmon, and in particular,

that I am indebted to him for Hie determination of the number of lines upon the

surface.

In 1851 Sylvester [60] stated, without a proper proof, that the general
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cubic surface can be expressed as V si8 = 0, ^ Alsi s o where the el are

ls«Q

linear functions of the coordinates Xo, >-1 > Xa, x® and the 5 planes zi « 0

fora a pentahedron. The result was proved in 1861 by Clebach [10] firstly-

using the method indicated by Sylvester and more directly [ / / ] later that year.

The projective generation of F as the locus of intersection of corres¬

ponding planes of three collinear stars was made by Grassmann [c2.6] in 1855.

In 1857, Steiner [£"93 systematically expounded a long list of enumerative

properties of the 27 lines, most of which are implicit in cayley's paper. In

1858, Schlafll [^£] proved the existence of tiie double-six of lines by con¬

sidering when three corresponding planes of Hie stars meet in a line, and showed

that there are 56 double-sixes on F, He then suggested the double-six notation

for the 27 lines - ai, bi, cij l,j » 1 .6 i j vhich illustrates

all their properties except their symmetry. This notation has since been

standard and still seems the simplest devised. After enunciating the double-

six theorem, he asked for a proof of its existence independent of "the cubic

surface on which it lies. He mentioned a surface with fifteen real lines and

six pairs of conjugate lines which form a double-six: thus he anticipated

Clebsoh's diagonal surface, though not Hie reason for its name.

In 1864, Cayley [ £ ] discussed a special cubic surface which isolates

a particular trihedral pair. The three planes of one trihedron meet in a line:

the three planes of the other trihedron, which lie named tritoa planes, each meet

the surface in three concurrent lines. The points of concurrency were named

tritoa points. The respective properties of the two trihedra imply each other.

The existence of the tritom points and their collinearity in certain sets of

three are properties intrinsic to the smaller finite geometries.

In 1866, using the projective definition, Clebsch [iZL ] mapped F onto



a plane, plane sections of F being napped by cubic curves through six base

points. The correspondence is birational with some exceptional elements.

The six base points do not lie on a conic and each represents-one of the lines

of half a double-six ai i « 1, 6 say. In 1871, considering equations

of the fifth degree, Clebsch [13 ] found a curve which is the intersection

of a quadric and a cubic surface; written in pentahedral coordinates it is

E s 0, S5ia a 0, £ £ia = 0. The cubic surface contains the diagonals of

the quadrilaterals cut out on each of the five faces of the pentahedron by the

other four: hence his name "diagonal surface of the pentahedron". These

fifteen lines lie in threes in fifteen planes, in ten of which the three lines

are concurrent, being the joins of the ten vertices to opposite edges. The

remaining twelve lines form a double-six. The existence of the double-six on

the surface depends on the "Golden Section" whose proportions are given by the

solution of fia - (j - 1 s 0, In the plane representation the six base points

form a Brianchon hexagon in ten ways. He characterised the quadric by showing

that its section by a plane of the pentahedron contains the three pairs of

double-points of the involutions determined by the intersection of ary diagonal

with the ether two. Clebsch just missed the polarity of the double-six since

the above quadric is the one required; neither did he point out the invariance

of the double-six under any permutation of the faces of the pentahedron. But

in 1911, Burnside [ 5" 3 constructed tills special double-six dually from a

skew pentagon whose vertices are actually the poles of the pentahedral faces

with respect to the polarity of the double-six, and showed the double-six to

be invariant under the group of permutations of the vertices of the pentagon.

In the plane representation, the five vertices of the skew pentagon become five

collinear points; these points are five of the fifteen diagonal points of a

pentastiga, whose vertices are taken from the six base points. The collinearity



of five diagonal points of a pentastigm being subject to pa - p - 1 = 0 was

observed by B. Segre [ S"6] in 1959.

Eckardt [ / 8 ], in 1876, proved that if two of the coefficients ai. of

the equation of F written in pentahedral coordinates - £ aixi3 = 0 £xi s 0 -

are equal, then, one of the vertices of the pentahedron is a tritom point.

The tritom points were afterwards called Eckardt points: we shall call them

S-points. He diowed that these cases comprised surfaces having 1, 2, 5, 4, 6

and 10 E-points. The surface 7&th three is Cay-ley's; the surface with

ten is Clebsch's. Sylvester's form for the cubic surface was £ xi8 * 0

£ bixis 0, which is equivalent to the form above only when the pentahedral

faces are 4 by 4 independent• Eckardt then considered the two oases of

four and three faces of the pentahedron being dependent. In the former case

when four faces have a common point, the surface, which is described by

Segre [4-8] §§ 85-88 as cyclic and non-equianharmonic, has the canonical

equation Xo8 + K = 0, where K is a canonical cubic form in xi, Xs«

The surface ha3 9 E-points which are all the points of inflexion of the

cubic curve Xo = 0 K « 0 and which therefore lie in threes on 12 lines.

The tritangent planes at the 9 E-points are concurrent at the vertex of the

cone K » 0, ?h© second case when three faces of the pentahedron are collinear

can be reduced to the canonical equation Xo° + Xi3 + xs3 + Xa3 «s 0, Eckardt

showed that over the complex field it contains 18 E-points lying in threes

on the edges of the fundamental tetrahedron. The existence of the E-points

depends on solutions of pa + /J + 1 = 0, This surface was named the equian-

harroonic surface by Segre [4-8 ] p.128 after the general cubic or equian-

harmonio curve in the plane with which it is connected. The complete deter¬

mination of surfaces with a degenerate pentahedron v/as given by Ro&eriberg [tl ]

in 1879. Further, Segre [^-8 } §§ 89-94 showed that there exist non-singular

cubic surfaces with no Sylvester representation.



"Bio sechs Geraden g und c der Fs, welchfi tait den Leiden erzeugenden

Netsen der (c) un& (g) derselben susaaaehbSngen und die bekannte Sehlaefli'sche

Dopplesechs bilden, besitxen eine EigentMlblichkeit, die den Geometem bisher

entgangen zu sein scheint," wrote Schur £4-73 1881, and proved, using the

projective generation of J, the existence of a quadric with respect to which the

double-six is self-polar.

In this paper Schur showed the existence of the double-six by using a porian

of the plane cubic curve. This proof was not independent of the cubic surface.

However, in 1870, Cayley [93 achieved the result using line coordinates. Shis

proof was of inordinate length and one in a sampler form after the same style and

also proving the polarity was given by Kasner [3^2- ] in 1905. In 1908, Richmond

[9-0 3 gave a short and elegant proof by showing that "if in space of five di¬

mensions a quadric passes through all the vertices of a hexahedron and touches

five of its faces, it must touch the sixth face also. Finally in 1911, Baker [ / 3

gave a purely geometrical proof in throe dimensions of the double-sic: theorem

which depended only on the incidence of properties of the lines and was quite

independent of the cubic surface, Ells proof showed clearly that, given five skew

lines with a common transversal, the necessary and sufficient condition for the

formation of the double-six is that each set of four out of the five lines shall

have a unique second, transversal. Further in 1921, Baker [ Z 3 gave a proof

by projection from four dimensions.

§ 2. Grace * s extension of the double-six.

In 1898, Grace [ 4. S"3 showed the inter-dependence of the theorems below and

proved an extension of the double-six theorem.

1) "We take six hyperplanes in four dimensions; any four of them meet in a
point, consequently omitting one of thexa we get five points through which there
is a lyperspherc, then the six bypersphere3 so obtained by omitting each typer-
plane in turn meet in a point."
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2) "Taking six linear complexes having a line in common then aiy four of then
have another line in common, and therefore from a 3et of five of then we get five
linos through which one linear complex may "be mads to pass; then from the six
complexes wo get six sets of five, and as from each five we get another complex,
we thus derive six new complexes, then the theorem is that these six complexes
have one common line."

3) "If no have five lines meeting a given line, as in the figure, a, b, c, d, e
meet t, then arc four of them as a, b, c, d have another line In common; thus
we get five such lines and these five lines are met by another line f1.
How if we take six line3 a, b, c, d, e, f, then from each set of five we
get a line like f', and the property is that these six lines are all met by one
and the same straight line."

Grace studied the correspondence between line geometry in three dimensions

and sphere geometry in four dimensions. Then by considering cubic threefolds

in four dimensions he proved 1). 2) is equivalent to 1) by the above corres¬

pondence. The extension theorem 3) is a special case of 2).

Mother proof, which brought out tlie relations of all the lines implicit

in Grace's figure, was given by Wren [65"] in 1916. This involved 44 lines -

the original line, its six transversals, the fifteen second transversals of 3ets

of four of these six, the six completing lines of the six double-sixes, the trans¬

versal of these six, and the fifteen second transversals of 3ets of four of these

six. A diagram showed that these lines fora 32 double-sixes and that the

Grace figure starting from six lines and a transversal is formed in 16 ways.

In 1917, Kubota [33 3 gave a shorter proof after the same style.

The theorem appeared again in 1922 in a dramatic way. E.K. Wakeford had

been corresponding with Baker while a soldier in the First World War. He was

killed in action and a manuscript found in his kitbag was sent to Baker, who had

it published [63 3 with a paper of his own [ 3 3 expanding some of Wakeford's

arguments. Walesford proved Grace* 3 extension by considering the unique twisted

cubic which has six lines having a common transversal as chords and establishing

the polarity between the original six lines and the six lines obtained from the



construction. Thus the required transversal of the sis: derived lines is the

polar of the transversal of the original six lines.

It is implicit in all the proofs of the extension theorem that the existence}

given the six shew lines with a transversal, of a unique second transversa! for

each set of four out of the six lines is a necessary condition for the theorem.

However all fail to point out that the above condition is not always sufficient,

as shall be seen subsequently.

§ 3. Finite projective geometry.

Projective geometry over a finite field was given an impetus by Veblen and

Bussey [ QZ ] in 1906. Previous considerations had been mainly group

theoretical. In particular there is a vast deal of geometry hidden in the pages

of Burnside [ 6 3 and Dickson [ / 7 3 which were first published in 1897 and

1900 respectively. Coble [ /^ ] in 1908 described a configuration in the

geometry over the field of three elements isomorphic with tlje twenty-seven lines

of a cubic surface. Frame [<2.9"] in 1938 observed the isomorphism between the

27 lines of a real cubic surface and a configuration in the geometry over* the

field of four elements; however, the accent was on the isomorphism and not on

the finite 3pace itself.

Up to 1948, all the work done bad been concerned with either the axioraatics

of the subject or the properties of particular finite geometries, usually not for

their own sake. The first more general and detailed study was made by Segre [4-93
in his "Lezioni di Geometria ModernsThen came two papers, by Qvist [39 3

in 1952 and Segre [S~/] in 1955, which seem to me to have been chiefly res¬

ponsible for recent interest and progress; for these papers showed the elegance

of the results obtainable and the interest of the subject for its own sake, not

dependent on other branches of mathematics such as group theory, olassical
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projective geometxy or statistics with which it had previously been connected.

Quite independently of these, there followed a series of papers by Edge, which

showed that an understanding of the simplicity of certain classical groups was

not to be had without studying the finite geometrical structures of which they

were the groups. Various papers on the existence of the twenty-seven lines in

a finite geometiy have been published by Segre £5~0], Rosati [4-3] £44],

Edge £2/ ] £2.<5-3 [<2.3 ] and Coxeter £ ], all since 19CQ.

In what follows it is proposed to blend the techniques of finite geometry,

in which the problems lie, and those of classical geometiy, whence tlx© problems

are derived!



CHAPTER II, The double-six and, its cubic surface
over GF(4).,

§ 4. The double-six over an arbitrary field.

In n3 over an algebraically closed field, 4 independent skew lines have

2 transversals. Therefore, given a line be with 5 skew transversals

a*, a3, a3, a*, as, there exist lines bt, b2, bs, b4, b6 such that tj. is the

second transversal besides b6 of aj, or, ag, a^, Then

(i) the lines bi, b2, b3, b4, b8 have a transversal a3;

(ii) there exists a unique polarity with respect to which the double-six

is self polar, that is for which ai is polar to bi i s 1, »», 6,

Although (i) is formulated in terms of an algebraically closed field, the

proof of (i) and consequently (ii) given by Kasner [ *2 ] is true for all

fields except perhaps GF(q) q « 5, since the proof depends on only four para¬

meters not being equal to the zero or the unit element of the field. Since

lines over G-F(q) contain q + 1 points and since at least 5 points on a

line are required for the double-six, GF(4) and GF(5) demand first attention.

The diagonal surface of Clebsch [/3 3 contains 15 lines over any field,

diagonals of the quadrangles cut out on each of the 5 planes of a pentahedron

by the other 4, If p3 * \i + 1 has two roots in the field, the surface con¬

tains another 12 lines forming a double-six which Bumside [ 5" ] showed to be

invariant under 120 collineations of the space. Baker's description ["9-]

p,168 of this double-six is sufficient to show that such a Burnside double-six

does indeed exist over GF(4),

Over a field of characteristic other than two, an involutoay reciprocity is

either (i) a polarity with respect to a quadrie

or (ii) a null polarity.
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Over a field of characteristic two, an involutory reciprocity is

either (i) a null polarity

or (ii) a pseudopolarity, Segre [i~7 ] pp. 238-245.

It will now he shown that a double-six self-polar with respect to a linear

oomplex exists over G-P(4) and in fact only over CF(4) and its extensions;

moreover every double-six over Gi?(4) is such a one. Then it will follow that

such a double-six is a special Burnside double-six and cannot exist over GF( 2n)

where n is odd since iia = p + 1 has then no roots i ji3 « 1 has 5 roots

in GF(q) only if q - 1 is divisible by 3, and 2" - 1 is not divisible by 3
• • ' i • j • v • • • " ' ' I.* '•

for n odd.

§ 5. Existence of the double-six over GF(4).

Over any field, the coordinates of the line p through X(xq, xi, x2» Xa)
and Y(y0, yi, ya, y«) are (p0i, p0a» Poa, Pia, Pai, Pas) where

P l j = xiyj - xjyi and pa* pas + Poa Pat + Pos Pi a « 0. Such line coordinates

uniquely determine a line and are uniquely determined by the line. If two points

are conjugate with respect to a linear complex, the line joining them is self-polar

and belongs to the complex. If two lines a, b are polar with respect to a

linear complex C, denote this by a ' cb or more briefly a " b.
The mutual invariant of two lines r, s is

w(r, s) » r©i Sas + **oa 3st + ^03 sta +1*13 Soa + r2i so2 + ra3 S01 ;

r, s intersect if and only if w(r, 3) » 0.

Let G be the linear complex

2 ay pij 3 ao< P01 + aoa Poa + Soa Poa £12 P13 + a3i pa* + asa P33 85 0

with a©» a33 + a0a a3i + a03 a«a /£ 0 so that C is not special; put

a0« a33 + a02 aa< + a03 at2 « 1, Let R » Z aij rg and R* = F, aij r'tj where

rij» rij 31,0 "kh® coordinates of the lines r, r'. If r r' then

rij + r'j x R ake
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as shown by Baker [ *+ ] p»64 in a i)roof valid over any field* If this result

is multiplied by aij and summed, it follows immediately that R = R'. Let

a, s* be polar lines with coordinates s^, s'jj then sLj * a'j « S ak£
where S * S aij Sij . If r, s are conjugate so that r meets s', then

w(r, s') = 0; but w(r, a') « 2 * 2 ry(S ajy - akg) « RS - m(r, a)
therefore ef(r, a) « RS .

The mutual invariant of r*, s* is

H(rS a*) « £ r-j sk<& * 2(R ak£ - rtJ)(S aLJ - ske)
«* 2RS-RS-R8+2 rij sk£ » &T(r, s)

Consider the skew hexagon H : a* ba aa b« a3 b3 with vertices Ay = (ai, bj).
Let H be self-polar with respect to a linear complex, i.e. at h bi
l ts 1, 2, 5; then Ai.j lies in tine opjsosite plane [aj, bj,]* its polar plane.

Thus the planes [as, D*j, [at, ba], [a3, ba] all contain the points

AiS, A$i, Aas which are therefore collinoar. Similarly the planes [a,, ba],
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[as# l>i], [as# b3] intersect in the line Aat At3 A3a* Thus if a skew hexagon

is self-polar with respect to a linear complex, sets of alternate vertices are

collinear, Let these two lines be called the axes of II,

The converse if also true. Take A*a, A®1, Aal as the reference points

X0, Xt j X3, X3 respectively, and let the unit point be on Aaa AS3, Then, A&2

being en Ais Aai and Aas being on Ast At®# the equation of the complex is

Pot + p»s « 0: the hexad is the one in the next diagram. Thus there is a unique

linear complex with respect to which the hexad is self-polar.

How take II: at b5 aa bt a3 b2 with sets of alternate vertices collinear and

the unique linear complex C such that at bt t « 1, 2, 5, Take a trans¬

versal be of at, a3, a3, skew to bt# ba, b3. Restricting the field so that

pE= n + 1 has two roots, take the two transversals a4, as of bt, ba, b3, bQ,

Then let b4, b6, ae be the polars of a4, ag, bQ respectively: both b4 and

b3 meet a*, aa, a3, a6 and a6 meets bt, b3, b3f b4, b5. Let

«lj » aj) as w(bi, bj) and C be 2 ctj ptj = 0 with

Cot ca3 + c©a Cat + Cos Ct2 » 1. Put At = g ojk ajk where aj{< are the
line coordinates of ai; then by the con.jugacy conditions described above,

fiSij a AtAj except for ij =45,

If a« ia proved conjugate to a6, and therefore b4 to b5, the theorem

postulated in §4 will be established. This will be proven if w45 = A4. As ■>

Consider ¥ = («ij) i, j = 1, •••, 5; W is a symmetric matrix with

diagonal elements aero* Let the cofactor of wij be vj, Then the con¬

dition that the 5 lines at 1=1, • ••# 5 have a transversal is

w B 5|wI - V wtj trij = 0 (Appendix l).
.aj i«J*i
i< j

This only reduces to jwj =0 over fields of characteristic oxher than

two, Substituting in the formula w « 0 for the 2>tj, excluding 04s, gives
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a>45 * 3A.J As (Appendix l)» Therefore such a double-six exists over GF(2sn)
and only over GP(2sn), i.e. GF(i) and its extensions.

It Y-iXl now be shewn that over GP(4) every skew hexagon which gives rise

to a non-degenerate double-six has sets of alternate vertices eollimar. Then

it follows that every double-six over GP(4) is as -above,

Take H: at bs a3 bt ag b3 again. A regulus over GF(4) consists of 5

skew lines. There is a regulus R ccaplementaxy to the regulus at as 03.

If the double-six is to be non-degenerate, 3 lines of R, namely the lines

b<t, b6, b6 of the double-six,meet each of the lines a1f a®, a3 in no vertices

of the hexagon. As lines over Gi?(4) contain only 5 points, the remaining

two lines of R meet a*, &a» aG in the 6 vertices of the hexagon. There¬

fore these two lines must be A1a A31 A38 and Aai Ai® A33.

It is worth pointing out that a boxagon with alternate vertices coliinear

can be self-polar with respect to a quadric. From „4, a polarity can have two

forms

(i) / (auxiyi £atj(xiyj + xj yt) m 0
t< j

With respeot to this hexagon, for fields of characteristic two, both (i)

and (ii) beechug

(x0 y< + x< y0) + (sa y3 + x3 ya) « 0.
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How/er for other fields, (i) becomes

(x0 y< +s, y0) - (xs 7* + x3 y3) ■ 0

and a double-six my v«*aLl exist containing a;., b l i = 1, 2, 3 with this as

its polarity; wharoas (ii) becomes

(xo y$ - x, y05 + (x3 ys - x3 y3) = 0

and it has been shown that a double-six docs not exist,

26. The diagonal surface,

FS(5, 4) contains 35 points, 357 lines, 85 planes. We have established

the existence of the double-six of lines ai, hi t = 1, 6 and of its

polarity with respect to a linear complex 0 in the smallest field in which the

double-six could be defined.

Let oij be the intersection of the planes [ai, bj], [aj, In] end e*j the
join of the points (ai, bj), (aj, bi). From any hexagon ijk eij ~ ctj, this
line being a diagonal of the hexagon. The eij are self-polar lines and thus

lie in C; eg meets ais bj and as in classical geometry oij meets Ck£

only for k, -S / i, j, Baker { H~ 1 x>. 180,

Any further interseotion.5 among the lines would imply a degeneration of the

double-six, SJaeh line is thus met by 10 and only 10 lines, 2 through each

of its 5 points. Caere are 6 lines ai, 6 lines bi, 15 lines cij, Sach

line contains 5 points, Sach of these points lies on 3 lines. Therefore the

27 lines comprise 27 x 5/3 = 45 points.

The unique cubic surf ace F4 on v&ich the double-six lies consists only

of the 45 points lying on the 27 lines; for the 5 planes through cover

the space and meet F4 in the cubic curves ai bj ci j j » 2, 6, The
3 lines of such a cubic curve, being two adjacent sides and the diagonal meeting

them of a hexagon, are concurrent. Thus the 45 points of i\ arc all points
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Of concurrency of the 3 lines in which the surface is net by the 45 tri-

tangent planes and so are all E-points (Eckar&t points). The 45 tri-

tangent planes are 30 of the type [ai, bj, clj], 15 of the -type [cij, CKe>cmn].
As in classical geometry, the 27 lines form 36 double-sixes of the types

D at aa a3 a4 as a6 1

b, b2 b3 b4 b6 b6

Dia ai bi Cg3 C$4 Cas Cae 6Ca « 15

aa ba C13 Cf4 Cio cio

Bl 23 ai aa kxq C56 c4© 046 °cs *003a

°33 c1s Oia b4 bB b8

Each of the 36 double-sixes D, Dlj, Dtjk is self-polar with respect to a unique

non-special linear complex d, dij, dLjk.

Now since, as is seen from Baker's description, the double-six over GF(4)

appears from Burnside's construction on 5 arbitrary points and since it has been

shown that all double-sixes over GF(4) are of the same type, they are all pro¬

tectively equivalent, F4 has a projective group A(4, 3) of order 25, 920

as shown by Frame [<2^]; this group is transitive on the 36 double-sixes.

Therefore each double-six has a projective group of order 720, This is So,

Edge [.2-2-3, and is isomorphic to the symplectic group in 4 variables over

GF(2), This raises the problem of why So appears as the projective group

instead of S5 as with Burnside,

In complex space the Sylvester pentahedron of the diagonal surface

X<? + X,8 + Xjf + Xga + * 0 x0 + X, + *2 + Xg + x4 S 0

has faces xi » 0 5, * 0, »•», 4 and its 10 edges lie on the Hessian of the

surfaoe. Over GF(4) the Hessian is not defined. However, apart from the

5 faoes of the pentahedron, the other 10 planes of P&(3, 2) xi + xj = 0

L,j =0, •••, 4 are al30 tritangent planes of the surface and pass one through
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each of the 10 edges of the pentahedron. Any of the 5 faces, let it be

Xo » 0, and the 4- of the 10 planes through the 4 edges of the pentahedron on

x0 = 0, via. Xo + x* a 0, Xq + x3 a 0, Xq + x3 = 0, Xq + X4 a 0, also

form a Sylvester pentahedron of the surface as

x® ♦ (x0 + xi)3 + (Xo + Xa)5 + (Xo + X3)3 + (xq + x4)®
a 5xq + x<? (x< + Xj, + x3 + x4) + XoCxf + x| + x| + xf ) + xf + x£ + x| + X*

a Xq + X3 + Xa8 + Xg® + X43
and x0 + (xo + x«) + (x0 + xa) + (xo + x3) + (x0 + x4) a 2 xi .

There are 4 other pentahedra formed in this way and hence the 15 planes of the

PG (3, 2) contained in PG (3, 4) form 6 mutually interwoven pentahedra. Thus

there are 6 Silvester pentahedra belonging to the surface and to a particular

double-six on it. The intersections of any 2 planes of different pentahedra

vis. Xi a xj ♦ Xk ® 0 may be taken as the 15 lines ci j. The other 30

tritangent planes [at, bj] pass 5 through eaoh of the other 12 lines, which

form the double-six D. The 6 pentahedra show that the group of the double-six

is 3C.

Dually the double-six is generated by 6 Bumside pentagons which form a set

of 6 mutually interwoven pentagons ary two of which have a common vertex. The

15 vertices are all the points of a P&(3, 2), Edge [-2-i], The 15 faces of

the pentahedra above being the [c ij, end, QR,n3» the 15 vertices of the pentagons

are their poles (clj, 0*6, cmn) with respect to the polarity of the double-six

D, which is 2(xi yj + xj yi) = 0.

All the double-sixes are protectively equivalent; so, for each of the 56

double-sixes, tlie 15 tritangent planes of P4 containing no line of a double-

six form 6 Sylvester pentahedra which give 6! projectivities of the double-

six. Thus P4 is a diagonal surface in 6 x 36 = 216 ways and, as before, its
projective group is of order 6! x 56 s 25,920.
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§7, The equiaaharraonic surface.

A Steiner trihedral pair is two sets of 3 planes whose 9 lines of

intersection can be arranged as, for example, C33 bs a8

as 013 bi

t>2 at Ci2 •

Let Si 33 denote the array of 9 lines as well as the set of 6 planes con¬

taining the 3 lines of a row or column of the array. The 3 planes of each

trihedron have a line in common in contrast to the classical case where the 3

planes have mostly only a point in common. These two lines will be called the

axes of the trihedral pair. The lines of any deterainantal product in the
( i

array e.g. C33 013 C13 are the diagonals of the hexagon formed by the remain¬

ing 6 lines. The 6 hexagons so obtainable all have the same 6 vertices
,

and the same two axes, which are also the axes of S133. Thus the 9 lines

are the joins of two sets of 3 points lying on two skew lines as in the

diagram below.

The 45 tritangent planes forca 120 Steiner trihedral pairs, 20 of the

type Sis3 as well as

ai b4 ©1 4

®C2 x 4Ca = 90 of the type S13 ;S4 bs as O33

C13 ©24 Oeo

C<4 ©28 ©3 8

and °Ca/2 = 10 of the type $123,450 Oae C34 ©1 D

©SB ©t 6 ©24

Eaoh tritangent plane lies in 240 x 3/45 = 16 trihedra, of which the 32

other faces are those tritangent planes containing none of the 3 lines of the

original tritangent plane.

Let Sljk, sijk f Sij,kA, s!j,k£ S Sljk,<ftcn, sljk,-fimn be the axes

of the trihedral pairs Sijk, Si.j,k6, Sijk,€tnn» The 120 trihedral jjairs
fall into 40 triads, each of which provides a trichotomy of the 27 lines -
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10 triads like Si23j ^4sc$ Sm2S,4gc and 30 lilce 813,34, S34j56,

SS6,13 . The axes of such a triad of trihedral pairs are the 3 pairs of

opposite edges of a tetrahedron.

The figure contains 6 reguli a, aa aG, hi bs b3, c23 c13 c12 each with

S4S0» 3456 3^ bl O33 , aa b3 Ci 3 s Eg bg C13 each with S, 23,450

»iaa,456 » ^or example 3455, sloe are in the complementary regulus to

1>4 h5 be which is the complementary reguLus to ai a3 as. The 6 hexagons

arise from the 8 permutations of one of the sets of 3 vertices whilst the

other remains fixed. The 3 pairs of opposite lines of each hexagon are polar

lines in a double-six. These are D, D12a» XUseJ b23, D1S, I>12. The double-

sixes formed from the two sets of 6 hexagons whose axes are 6455, sl56 ;

Si 33 j4Ge» Si 23 j 45 6 are D, Dl23» I>456» ^S6» ®46i ^45! DgG, I>13, Dig, Dge,

$46* ^48*

If the faces of the tetrahedron, whose edges are the 6 axes of the triad

of trihedral pairs, are xi = 0 i = 0, • ♦ 5 then the equation of the surface

is

x• + x• + x® + x® = 0 j

this is the equianharmonic surface of Segre p.149, which is given over

GP(4) by Coxeter [/o ]. In classical geometry the surface lias only the 18
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E-points on the edges of the tetrahedron, which is the Hessian of the surface;

it lias a projective group of order 3s x 4! = 643. In this case, the Hessian

is undefined. However, each of the 40 triads of trihedral pairs will give

such a tetrahedron whose edges contain 18 E-points. Thus F« is equian-

harmonie in 40 ways and has a projective group of order 40 x 648 = 25,920 as

before. Another tetrahedron giving the same surface is apparent from the

identity

(x, + x2 + *s)8+ (*o + xa + xs)® + (x0 + x, + x3)a + (x0 + Xi + x2)8
s X® + X® + x2® + X3®

Consistently,the equianharmonic surface can be transformed into the diagonal

surface as, fbr example,

(0x0 + xi + xa + X3)8 + (x0 + «xi + x2 + X3)® + (xo + Xi + <yxa t X3)8
+ (Xo + X* + X2 + 6JX3)®s x0a + x® + Xg2 + x3° + (x0 + xt + Xg + Xg)3

where wa + u + 1 « 0.

Tlius, over GF(4), the cubic surface containing 27 lines is simultaneously

diagonal, depending on = ti + 1, in 216 ways and equianharrnonic, depending

on fia + fi + 1 a 0, in 40 ways, and has a projective group of order 25,920.

Hie projective group of PG(3, 4) has order

(44 - 1)(4® - 4)(44 - 4a)(44 - 43)/'(4 - 1) = 2,a. 34. 5a. 7. 17.

Thus the number of double-sixes over GF(4) is

21a. 34. 5s. 7. 17/720 a 2s. 3a. 5. 7. 17.

Alternatively the number of double-sixes is one sixth the number of pentahedrons

= 85. 84. 80. 64. 27/6. 5!

• 28. 3®. 5. 7. 17

= 1, 370, 880.
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§ 8. _A_ representation in Ilg .

There are two classical representations of the cubic surface, which have

a particular appropriateness here: firstly, either the Plticker-KLein representa¬

tion of lines in n3 by points of a quadric in Ifs or its dual; secondly, the

Clebsch mapping of a cubic surface onto a plane*

Consider the following representation in i"i6 in which lines of Hs become

tangent primes to a quadric CI in Hg and non-special linear complexes become

points of He not on fl. The line (p®«, Poa» Pos» Pi2> Pis> P23) becomes the

prime p83 x0 + Pi3 x, + p12 x2 + p03 x3 + p08 X4 + p0l X5 = 0. This is a tan¬

gent prime to 0: x0 x5 + Xi x* + x8 x3 =0 at the point (p0«# Pca» Pos,

Pi 3, pi3, P33) • If p, q are two intersecting lines, then the point of contact

of the tangent prime representing q lies in the tangent prime representing p

and vice versa* The linear complex C

aa3 P01 + ai3 pos + ai8 p03 + &03 P12 + &Q8 Pi 3 + &01 Pa3 - 0

becomes the point (aoi, ao3» ao3» ata* ai3, a83). Prom §5, if two lines

r, s are such that r 's , then rij + st j * A atj* Therefore the points of

contact of the primes representing r, 3 are collinear with the point represent¬

ing C* If three coplanar lines are concurrent, they are linearly dependent;

so their representing primes as well as the 1niters' points of contact are

collinear*

Let the primes representing at, bi, 01 j be Ai, Bi, fij ?ath points of

contact at, Pi, ytj and the points representing d, dtj, dtjn be 5, Stj,

StjK whose polar primes with respect to Q are A, Atj, Atjk* The row

at a3 a3 a4 a5 aa of the double-six D is represented by the simplex with

faoes At and vertices pt , The row bt b8 b3 b4 b5 b6 is represented by

the simplex with faces Bt and vertices at. Thus the two raws of the double-

six become two simplexec inscribed and circumscribed to each other and to the
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quadric primal and in perspective from the point 8. Also, as all the lines

oij lie in the complex d, all the primes Fij pass through 8. All the

other double-sixes are similarly represented.

This figure of 63 points cu, fiit yij, 8, 8ij, Sijk is equivalent but not

projective to the entire space over GF(2) as described by Edge [4/ ]. There

are 651 lines in PG(5, 2) and 651 linear relations can be obtained from

the polar relations like ai+ /3i = 8 and the relations dependent upon the

E-points like ai + j8j * ytj, as the correspondence with the confijuration over

GF(2) shows that these linear relations can all be written with unit

coefficients. This correspondence is periiaps not so surprising. The set of

27 points in PG(5, 2) corresponding to the 27 lines of the oubic surface is

all the points of an elliptic qMOcSric which oan be taken as xj . 0. Hhen
a l< J

the field is extended by a root of n » fi + 1, this quadric can be transformed

into the Klein quadric fl: Xo x® +X1X4 + XgXa = 0 which is ruled. The

extension of GI?(2) to GF(4) to produce properties connected with the double-

six has already appeared in § 6, where the diagonal surface was considered.
i»S

Let x, y be points in 11b . Define x 0 y » y xi y6-i . Then the
l«o

intersection of lines in IT3 is expressible by at 0 /3j » 0 etc. Other

properties of the configuration can now be derived. For example, as

«k + a 5 and yik + yjk » Slj, so S o 8lj s 0; thus the points Suj

all lie in A, which implies that exactly 5 out of the 16 linear complexes

d, dpj are independent.
One can also derive linear properties of the 8fs. As 8 = a\ +

8<aa ® ®i + Ys3i 845® » + yaa* so 8 + 8*3(3 + 8450 = 0.

Tire existence of this line in rig is equivalent to the existence in lis of

the Steiner trihedral pair S*a8#«5e» as the 9 primes Fij 1=1, 2, 5;
j a 4, 5, 6 representing the 9 lines Cij of the array SiSS,4S6 eil
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contain the points 8, S13s» &4bg» This line with the lines 81S +S13 + S23 « 0,

S45 + 840 + 8s6 as 0 span the Fig; this fact is equivalent to the triad of

Steiner trihedral pairs St38, S4663 S12a,45e providing a trichotomy of the

27 line3. The 6 axes of this triad were in na the edges of a simplex; they

have become in n6 the vertices of a simplex inscribed in fi.

These results may be elaborated and others formulated by further exposition

of the above linear (x + y + z » 0) and multiplicative (x 0 y = 0) properties.
The relations among the linear* complexes are similar to those in complex space

among the Schur quadries as shown by Room [ H-X J.

§ 9. The plane over GF(4) and the mapping of F4 onto it,
mmmmm t r" ii>, ■ am n,a „ • ji ■ hkmmm mum — ■ mmmmmmmmmammm mm wmm mmmmmrnm mmmmmm

In the plane over GF(4) there are 21 points, 21 lines, 5 points on a line,

5 lines through a point. The sides of a triangle contain its vertices and 9

other points; any one of the remaining 9 points of the plane with the 5 ver¬

tices of the triangle are vertices of a quadrangle Q. Q has 5 diagonal points

and each of its 6 sides contains two of its vertices and one of its diagonal

points leaving two points on each side, Thus the points in the plane not on any-

side of Q number 21 - 4 - 3 - 6.2 = 2, One of these 2 points and the ver¬

tices of Q form a pentad P, a set of 5 points no 5 collonear. The points of

P are the vertices of 5 quadrangles whose 15 diagonal points are necessarily

distinct. Each of the 10 chords of P contains 2 of its points and meets the

5 chords through it3 other 3 points in the remaining 3 points of the chord.

Thus the ohords of P contain only its points and its diagonal points which

number 5 + 15 as 20. Hence the 4 vertices of Q and the 2 points on its*
• • " >■

sides form a hexad H, a set of 6 points no 3 collinear.

Since the join of 2 points of H meets the 6 sides of the quadrangle Q
whose vertices are the other 4 points of H in none of these vertices, none of
the 3 other points of this join can lie on 3 sides of Q and therefore must
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eaoli lie on 2 and only 2 of the 6 sides of Q: i.e. it passes through

the 5 diagonal points of Q. Thus the 5 diagonal points of a quadrangle

are collinear and lie on the line through the 2 points not on any side of the

quadrangle. Q determines H uniquely and H is fixed by any of its 15

tetrads. The 15 lines of diagonal points of quadrangles of H are the 15

chords of H. H may be partitioned into 3 pairs of points in 15 different

ways; any 2 chords of such a trichotomy, being sides of a quadrangle whose

vertices they contain, meet at a diagonal point which lies on the third chord.

Thus the 15 sets of 3 chords of H are concurrent at the 15 diagonal

points of the quadrangles which are therefore all Brianchon points of H.

This means that every hexagon in the plane is a Brianchon hexagon fifteenfold

and the plane is exhausted by the 6 points of the hexad and its 15 Brianchon

points.

Eaoh of the 6 vertices of H lies on 5 of its 15 chords, thus the

remaining 6 lines of the plane are skew to H. Hence the 15 Brianchon

points of H are collinear in 6 sets of 5 on the above 6 lines. These

6 lines form a hexagram dual to H.

A conic, being the set of intersections of two protectively related pencils

in the plane, is a pentad. The tangent at each point is uniquely determined as

the line through the point not passing through the other four points; it is also

the line of diagonal points of the quadrangle whose vertices are these 4 points.

Hence the 5 tangents are concurrent at the sixth point of the hexad containing

the 5 points of the conic.

In the mapping of the cubic surface onto a plane, plane sections of the

surface become cubic curves through 6 base points Al in the plane; a curve of

order A in the plane which has a "general multiple point" of order Al at the
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base point Ai. naps a curve of order 3A - E Ai on the surface, Baker [ ^t~ 3

p.191. The lines ai become the hexad H of base points Ai, the lines bi.be-

come conics Bi through the 5 points of H which exclude At, and the lines otjbe

come chords Ctj=AiAj of H. Since AtAa is the tangent at A® to the conio

AaAgAiAeAa, the point (a2, bf) is an Eokardt point of the surface; in this

fashion there appear the 30 E-points (ai, bj). The 15 Brianchon points of H

map the 15 E-points (ctj, ck£, Cmn)» The 6 Burnside pentagons become the

points of the 6 lines skew to H. This is not surprising since a line in the

plane not through any of the base points At is the map of a twisted cubic on

the surface. The 5 points of a skew pentagon, which incidentally form an

elliptic quadric over GF(2), form a twisted cubic over GF(4).

§ 10. Tlie group of order 25. 920 in the plane.

Since the hexad H X3 fixed by any of its tetrads, there are 6.5.4.3 = 360

projactivities in the plane leaving II fixed. These projectivities impose the

360 even permutations on the points of H. To impose odd permutations, the

automorphism that replaces every mark of GP(4) by its square must be used. The

prooectivities leaving H fixed transform all the cubic curves through H into

one another and, therefore, plane sections of F will also be mapped into one

another; thus, these projectivities leaving II fixed map projectivities in Us

that leave each half of the double-six D invariant. If there is any pro-

jectivity in II3 transposing the two halves of D , it will be mapped by Cremona

transformation in the plane, which transforms cubic curves through H into one

another.

The points Ai (i * 1, * • • 0) of H maybe taken as 100, 010, 001,

111, 0ao)1 respectively; then the conics Bi are
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x8 » yz ya = sx , z8 * xy

uS3y + &yz + nsO,ay + ys + sx « 0,

and the lines Cij

Caa x = 0,

wsy + &J8ys + sx a 0,

t»j = 1» 2, 3 are

C13 y a 0, Cts Z S 0

The only projeetivity in n3 such that ai b i (all i) and therefore,

since the polarity of D will remain unchanged, hi •* at (all t), is the

identity; for then the cij remain fixed and hence a pentahedron of the surface*

If a projectiviiy, other than the identity, transposes the two halves of the

double-six, take, since 4 points in the plane can be selected arbitrarily,

ai •* bi, i a 1, 4, a® •+ b0, ac -► b5 which, again by the

constancy of the polarity, implies bi •* at, i = 1, •••,4, b5 ac,

b« •* a®.

The plane sections aibjCij<—> biajcij t,j a t, 2, 3; then in the

plane Bj + Cij < —> Bi + Cij i,j = 1, 2, 5. Thus in the transforma¬

tion from the (x, y, s) plane to the (u, v, w) plane, writing

X = x3 + ys, Y a y8 + ax, Z a sa + 3y, U = u8 + vw, V = v2 + wu, Wan3 + uv

zY « 0 wu *0 sX a 0 ■* wV a 0

yZ a 0 -» vU = 0 yX a o •» W a 0 (a)
XZ SS 0 uV a 0 5 0 + I® a 0

Each of the 6 cubic curves in the (x, y, a) plane is, as the arrows

indicate, to become a corresponding cubic curve in the (u, v, w) plane. When

the proper functions of u, v, w are substituted for x, y, s, each resulting

polynomial must have the indicated cubic as a factor. If the residual factor

is the same in all 6 instances

y : z = vW* : wV, z : x = wV : \if, x : y = uV : vU

all of which relations hold if

These relations (b) do, in fact, achieve the desired transformation of the

x i y : z ® uV¥ : VWU : wUV (B)
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composite cubic curves as, for example, X is then proportional to

uaVflYi'a + vwUaW a W(vV + w®u3 + u3vs + u'v***)
and therefore yX is proportional to the product of VW and a symmetric

function £ of u, v, w.

£ s UVW(vsw® + w3u3 + u3v® + u^v2!?2)
a UVW(vw + wu + uv)(<javw + wu + arov)(wvw + yju + wauv)

is the product of 6 quadratic factors which, equated to aero, are the 6 conics

containing 5 of the 6 fundamental points. £ is never zero except at these
6 points.

The relations (B) imply that at any point other than the 6 fundamental

points

u : v : w * xXZ : y&X : zXX .

This would be expected from (a) if the arrows were reversible; its independent
establishment show3 that they are reversible. Direct calculation from (b)
proves xXZ to be proportional to u£a.

Thus the correspondence is an involutory Cremona transformation, which
transforms lines into quintics through the Ai, and cubics through the Ai

into one another.

There are 360 Cremona transformations and these, with the 360 plane

projectivities, form a group of 720 birational transformations mapping iso¬

morphically the group of projectivities of the double-six over GF(4).
Other proActivities of the cubic surface may be revealed by transforming

D into other double-sixes of P4. Plane sections of F* are transformed into

others and equivalently cubic curves through H become oilier cubic curves through

H. To transform, for example, D to Di33, suppose

a< ajj aa ) ■+ ( a< a3 a3
) (

bi ba b3 ) ( C33 C13 Cia

and aibjoij ■* aioiK^k t»J»k • 2, 3 .
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Thus in the plane

SY SS 0 ■* VW BS 0 zX = 0 v&i » 0

yXrO ■* uV S 0
xY = 0 •» vU * 0

yZ s 0 ■» wV s 0
x2 = 0 •* wU = 0

(c)

Following the previous argument, the transforation of the cubic curves is

produced by

as X is then proportional to

U8 + VW s u(u3 + v3 + w3 + uvw) and

therefore yX is proportional to the product of uV and a symmetric function

of u,v,w; this fmotion is the product of three factors which, equated to

zero are the 3 lines A+A© , A©A©, AgAo. The relations (d) imply that,

except at A4, Ag, A6,

As before, this shows that the arrows of (C) are reversible.

The correspondence is again an involutoiy Cremona transformation which

transforms lines into conics through A*, Ag, A6 and cubics through the Ai

into one another.

To transform D to Di2» suppose

x t y t z ss U : V : ¥ (D)

utv:w » X : Y i Z,

therefore a,\ b3 cia *♦ a* b3 c1a ;

a* bs C13 a< 0^3 b3 j

a2 bg o3s ®i 3 i

C13 bs ;

a3 b) o< 2 ■* bg &3 Otg

ag b* ei3 •* C23 a2 b®

a3 b3 c23 Oss bg as .

In the plan©

zY = 0 <* wV as 0

yZ » 0 W = 0
XZ S 0 *♦ vO as 0

sX » 0 ■* vjU m 0

yX a 0 *♦ ul s 0
aff « 0 ■» uV ■ 0

(E)



- 23 -

The transformation of the cubic curves is achieved by

x t y I a = uU : u¥/ : til .......(P)
vf '•

Then X is proportional to

u8Ua + uwUW = uU (u3 + w3)
so that yX is proportional to the product of \ffi and ull(u3 + w3). The

latter expression occurs in each case and is the product of 5 factors which,

equated to zero, give the lines AaAs, A®A*, A®A®, A®A8 and the conic Bt.

The relations (P) imply that except at A®, A®, A*, As, Ac

uSVJW a XXJXZSZX.

This shows that the arrows of (E) are reversible.

The correspondence is again an involutory Cremona transformation, which

transforms lines into cubics through A®, A®, A4, Ab, A© and cubics through

tloe At into one another.

Accordingly, by transforming D into itself and the 55 other double-sixes

of P4, we have 25,920 plane Cremona transformations forming a group which

is the projective group of P4, This plane over GP(4-) and the group of

order 25,920 were recently studied by Edge [=23 3 •



CHAPTER III. The double-six over SF(5) and arithmetical
properties of cubic surfaces.

§11. Existence of the double-six over GF(s).

There is no double-six over GF(S) since every hexad in the plane is a conic.

Lines over GF(5) contain 6 points. Each chord of a pentad P meets 3

chords at two of the points of P, the other 3 chords at distinct points and

thus no chord at its remaining point. The chords of P therefore consist of

5 + 10 x 3/2 + 10 ss 30 points, leaving a single point in the plane which is

therefore the remaining point of the conic, as well as of the bexad, containing P.

Thus each bexad is a conic. This is al30 a particular case of Segre's theorem

[ 57 3 that, in a Desarguesian plane of odd characteristic, every oval is a conic.

An argument solely in lis Is worthwhile. Suppose D(ai, bi i ~ 1,••«,6)
exists. Then it lies on a cubic surface Fs containing 27 lines, each one met

by 10 others. Each line, comprising exactly 6 points, contains at least 4

E-points. Therefore Fe contains at least 27 x 4/3 ss 36 E-points,

It will nor/ he shown that a cubic surface F with 27 lines over any field

of characteristic other than two has at most 18 E-points. D is determined

by the shew hexagon aib3a2bia3ba and the line b6 say. The hexagon determines

a polarity d given by the bilinear form

Lan xl yv + u aij(xi yj + xj yi) =0.
^ J

The polarity is always unique as even the most restricted case, where sets of

alternate vertices are coliinPar as in § 5, gives 9 independent conditions,

via. the 8a lj excluding aoi, a&z are aero and a.e1 + a13 =0. D is com¬
pleted by constructing successively a*, ag, b4, bB, a6. Thus d is

necessarily a polarity of the double-six whatever the field.
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Suppose (at, b0 is an E-point. Then (a1t bi) lies on ci i, hence

in its (Mi polar plane [at, b<3 and hence on the polarising quadric

S aij xi xj s 0, If at contains 3 E-points, it lies entirely on this qua&rio

and is self-polar. Thus at and similarly all the lines of F have at nost

2 E-points, and F contains at most 27 x 2/3 = 18 E-points. Thus there is

again no double-six over GF(5).

In contrast to the above, let F be a cubic surface with 27 lines over

a field of characteristic two. Then if a line on F contains 2 E-points it

oontains 5. Take again D(ai, bt i = 1, ..., 6) with its polarity

d : h ati xi yi + L aij(xi yj + xj yt) a 0
t <J

If all 1he au are zero, the polarity is null and, as in §5, over GF(22n)

every line of F contains 5 E-points whence F contains 45 E-points. Over

GF (280*1), with all the au zero, F does not exist. Suppose then that not

all the at i are zero and that at contains 2 E-points, These two points,

being self-conjugate, both lie in the plane E / au x; = G which therefore

contains all the points of ai. Thus each point (at, bt) of at lies in its

polar plane [at, bt] and hence on ou. Thus at oontains 5 E-points.

§ 12. Arithmetical properties of Hie cubic surface and the plane over GP(q).

The compulsory presence of E-points on the cubic surfaces with 27 lines

over small fields largely determines the structure of the surfaces. A cubic

surfaoe F with 27 lines over GF(q) comprises q3 + 7q + 1 points. This

appears from the plane mapping as each point of F is mapped to a separate

point of the plane except for the lines at i a 1, •••,6 say, which are each

mapped to a single point. So the number of points on F is

(qs + q + 1) - 6 + 6(q + 1) ■ tf + 7q + 1 .

This number is obtained differently by Rosati [v3 3.
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Let "the lines of F "be l\ i =1, • •, 27 and let N be the total

number of points on the h. Suppose F has e E-points. Let ei,di,pL

be the respective numbers of points on £i where it meets two, one and no

other lines of F. Then

di + 2ei a 10, pi + di + ei a q + 1, 2 ei a 3e

w - r t,. ^ 2 » S eiN a 2 pi. + g' + —g" •

Therefore pi + di/2 a q - 4

N a 27(q - 4) + e ,

If a double-six is to exist

qa + 7q + 1 ? 27(q - 4) + e.

So e «* qa - 20q +109 a (q - 10)a + 9,

(For q a 5 this means e s 34, whereas if F6 exists e a 56.)
If n is the number of points on F off the lines

e + n a (q - 1o)a + 9,

Since each line meets 10 others, if q $ 9 then

e * 27{10 - (q + l)}/3 a 9(9 - q).
The difference between the upper and lower bounds for e is

qa - 11q +28 a (q - 4)(q -7).
e + n a

q qa + 7q + 1 27(q - 4) upper bound for e lower bound for e

4 45 0 45 45

7 99 81 18 18

8 121 108 13 9

9 145 155 10 0

11 199 189 10 0

13 261 243 18 0

16 369 324 45 0
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There are also same arithmetical properties connected with F in the plane.

Consider a hexad of points in P&(2, q). It has 15 chords, each of which

meets 4 others at two of its points and the remaining 6 at separate points

if the hexad has no Brianohon points, which shall henceforth be called B- points.

If 5 ooplanar lines form a triangle they comprise 5q points: if concurrent,

3q + 1 points. Thus each B-point adds one point to the points on the chords

of the hexad. Let b be the number of B-points, P the number of points in

the plane and M the number of points on the chords. Let the chords be

ol i ss 1, 15 and let ©i contain bi, ri, si points where it meets

exactly 2, 1, 0 other chords respectively. Then

bi + ri + sl ■ q - 1 2bt + ri=6 Ebi=5b

M s S si + (£ ri)/2 + (5 bi)/3 + 6

B 15(q - 4) + b + 6

* 15q - 54 + b

P s qa + q + 1

Therefore b «* qa - 14q + 55 = (q - ?)s + 6;

and if q 7, b > 15 {6 - (q - 1) |/3 a 5(7 - q).
The difference between the upper and lower bounds for b is

qs - 9q + 20 m (q - 4)(q - 5)

q P 15q - 54 upper bound for b lower bound

4 21 6 15 15

5 31 21 10 10

7 57 51 6 0

8 73 66 7 0

9 91 81 10 0

As Ms been seen in particular cases, the chords of a triad contain 5q
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points, the chords of a tetrad contain 6q - 5 points and the chords of a

pentad contain 10q - 20 points. Thus the number of hexads in PG(2, q) not

lying on a conic is

Iqa+q+l][(qa+q+l) - 1 j Kqa+q+lMqvl) }[q3+q*l)^q} [(qa+q+l) - (6q - 5) ]
xf(qa+q+l) - (l0q-20) - (q-4)}/6!

= ( q8+q+1)(qa+q) qa (qa-2q+l)(qa-0q+6)(qa-1Oq+25)/0!
a q3(q+l)(q-l)a (q-2)(q-5)(q-5)a (qa+q+l)/6!
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CHAPTER IV, The double-sis:, its cubic surface and
its extension over GF(7).

§ 15. The cubic surface over .CH?(7),

Since a line over GF(7) contains 8 points, every line of a cubic surface

with 27 lines contains at least two E-points, So the surface contains at

least 2 x 27/5 * 18 E-point3. Over GF(q), as shown in § 12, a cubic surface
points

with 27 lines comprises qa + 7q + 1/which, for q = 7, is 99, The points

lying on the 27 lines number 27(q - 4) + e, where e is the umber of E-

point3. For q » 7, this i3 e + 81: thu3 e is at most 18, Consequently

a cubic surface over &F(7) containing 27 lines has exactly 18 E-points, two

on each line, and contains no pointsnot on the 27 lines. Since

y? + \i + 1 = 0 lias two roots over GF(7), the equianharraonic surface

x3 + x,3 + Xg + Xa =0, Segre [ 4*8 ] p. 149,

contains 27 lines and 18 E-points, two on each line. The E-points lie In

threes on the six edges of a tetrahedron which is analogous to one of the 40

tetrahedra that occurred in § 7 over GF(4), whose edges were the axes of a

triad of Steiner trihedral pairs. Here in G-F(7), of the 120 trihedral pairs,

only 5 have the property that the three faces of each trihedron are collinear.

Any two vertices of the tetrahedron, each complete equianhaxmonic tetrads with

the 5 E-points on their join.

Let F be any cubic surface over GF(7) with 27 lines. To prove that

F is always oquianharmonic, it will first be shown that the 18 E-points, 2 on

each of the 27 line3, lie in threes on the edges of a tetrahedron.

To do this we show that 2 E-points not lying on the same line of F are

collinear with a third E-point. This means that in the array of lines deter¬

mined by a Steiner trihedral pair, e.g. S<38, if the lines of two rows are
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are concurrent at E-points then the lines of the third row are also concurrent

at an E-point and the 3 E-points are collinear. So consider once more the

skew hexagon Gi b3 ag b2

Let (at, b3) and (aa, bt) be E-points: (at, b3) is on ot3 and therefore

lies in [a®, bt]j similarly (aa, b|) lies in [at, ba], Therefore the 3

planes [a3, bt], [at, ba3, [aa, b3] contain the line l$ the join of (at, b3)
an<i (aa, bt)» But [a3, b|], [at, ba] botli contain (as, ba) which therefore

lies on I and in [aa, b3], Thus (a®, ba) lies in both [aa, ba] and

[aa, b3] and so on their intersection ca3. Hence (a®, b3) is also an E-

point and the 3 E-points (a3, ba, c33), (at, b3, ct3), (aa, bt, cta) are

collinear.

Let the E-points on at and bt be (at, bi), (at, bj), (an, bt), (a£, bt).
Then there are three cases to consider, namely when the two pairs i, j and

k, I have both, one or no members in common.

(i) Let (at, ba), (at, b3), (aa, bt), (a3, bt) be E-points; then

(aa, b3), (as, ba) are also E-points. The 6 points (at, bj)
l, j =4, 5, 6 are all E-points since, for example, a* can only contain the E-

points (a*, b3), (04, b8) as bt, ba, b3 each have 2 E-points already. In

the same way the remaining E-points are the 6 points (ct i, oa j, c3k)
i, j,k = 4, 5, 6, Thus the edges of the appropriate tetrahedron are the axes of

the triad Stss, S«56, S1a3)43e*

the lines belong to Sta3

ca3 a3 ba

b3 cts at

aa bt Cta

6.
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(ii) Let (ai, b3), (ai, b4), (a«, bi), (ae, bi) be E-points; then

(a3, b6), (a3, b6), (a4, bs), (a4, b6) are also E-points, So a1,a3,a4,'b1,b5,b6

have their full complement of 2 E-points. So the E-points on a2 and b3

are (a3, b3), (a2, b4), (ae, b3), (a6, b3) giving 2 E-points on each ai, bu

Prom the array Si3,34, (a,, b3, ci3) and (a2, b4, c34) being E-points

implies that (ci4, cS3, c6e) is an E-point. Similarly we have the other E-

points (cia, o84, c33), (cia, c36, c4s), (ci3, c36» c4S), (ci3, c36, c34). The

edges of the appropriate tetrahedron are then the axes of the triad Si3,s4 >

S34,56» E5CjI2.

(iii) Let (at, b3), (a*, b3), (as, bt), (a*, bt) be E-points.

Then (a3, b4) is an E-point as (at, b3), (a4, bt) are E-points,
(as, b4) is an E-point as (at, b3), (a4, bt) are E-points,
(a3, b2) is an E-point as vat, b3J, (a3, bt} are S-points.

So (a4, b3) is an K-point as (a3, b4), (a3, b3) are S-points.

Thus each of the 8 lines a^bi i = 1* 4 contains 2 of the above E-

points; this leaves a® with only one E-point (a®, b6), So this case does

not occur.

Accordingly, the 18 E-points always lie in "threes on the edges of a tetra¬

hedron.

How it will be shown that F is protectively equivalent to the ecruianliarmonic

surface, Let the lines of P be transversals of the axes of the triad Si23,

S456, Si23,456 and take these axes as the edges of the unit simplex. Then

the 9 lines ai, bi, oij i, j « 1, 2, 3 may be given PIticker coordinates a3 below
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: 0, pu, u, p, -1, 0 b$ : 0, rv, v, r, -1, 0 c33 : 0, qw, w, q, -1, 0

a3 i 0, qv, v, q, -1, 0 b3 : 0, pw, v;, p, -1, 0 da s 0, ru, u, r, -1, 0

a3 • 0, rw, w, r, -1, 0 b3 s 0, qu, u, q, -1, 0 oi3 i 0> pv> v, p, -1, 0

where p, q, r as well as u, v, w are unequal. As the 18 E~points of F

are distinct and as no 4 are collinear none of the B-points is a vertex of the

tetrahedron, so pqruvw / 0, Let the axes S4g3, s'^e which meet aj., bi., clj

i, j ss 4, 5, 6 be (0,. 0, 0, 0, 1, o) and (0, 1, 0, 0, 0, 0)j as in § 7,

they form reguli with ai a3 a3, with bt b3 b3, and with c33 Ci3 Ci3 so that

any 4 lines like 3466> sise* at > are linearly dependent, Therefore

£ =2 =£, £*£»£. £3£ = £
U V W V w u wuv

so p3 = q3 = r3 , u3 « v3 « w3 .

If a is a non-sero mark of GF(7), m3 is either +1 or »1.

Suppose then that F has equation

t,J-» a

£ dij Xi XJ + V di Xj x« xe a 0
. 1,J"0 l/J/H/t

If p3 s q3 a r3 » -1 so that If p3 = q3 = r3 = 1 so that
p, q, r are -1,-2, 3 in some p, q, r are 1, 2, -3 in some
order, then the conditions that order, then tlie conditions that
the 3 E-points on s133 are on the 3 E-points on Si33 are on
F are F are

"d.22 + d33 - dss + dss * 0 d33 + d33 + d33 + d33 = 0
-d23 ** Sd3a ~ 2d3a + d33 » o d33 - 3d33 + 2d33 +■ d33= 0
-d33 + 2d33 + Sd33 + d33 » o d33 + 2d33 - 3d32 + d33= 0

#*♦ d33 «s ds3 as 0 d33 ~<2j3 d33 = ds3 = 0 d33 n -da3 •

From si33, dot * d10 =0 d0o = + <3-i 1 ,

Similarly from the other 2 pairs of opposite edges,

d03 83 d3o ~ d< 3 a d3$ ts 0 doo — d33 dn s i ^ss

d03 » d3o = dt 3 — d31 — 0 doo = * d33 di t = das
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The dii must, for an existent F, take values that make the above conditions

consistent. Thus F has the equation

Xo8 + e xf + f Xj + g Xg8 + Xj x, Xg XgB di xf* a 0

where each of e, f, g is either 1 or »1, Such surfaces for fixed e, f, g

but varying di meet the edges of the tetrahedron of reference in the same 18

points; however, none contains the 27 lines except those having

d0 = di = d2 = d3 = 0. So F is one of the surfaces

xo t. xi8 £ x* £ *8* 18 0
all of which are protectively equivalent to

x0® + x* + x* + xf » 0
It has now been proved that every cubic surface over GF(7) containing 27

lines is equianharmonic.

§ 14. The mapping of F? onto the plane.

The protective uniqueness of F, hence to be called *7. and the exhaustive

covering by its 27 lines are mapped by corresponding geometry in the plane.

A plane k-arc, a set of k points in a plane with no 5 collinear, is

complete if it is contained in no (k + 1) - arcs or equivaiently, if the joins of

the k points fill the plane. Over GF(q), where q is odd, every q-arc is

contained in a (q + 1) - arc, Segre [5^3i every (q + 1) - arc is a conic,

Segre [57 ], Thus in the plane over GF(7), every 7-arc is contained in a

conic. Hence all 6-arcs not lying on a conic are complete. Frcaa the last table

in §12, a complete 6-arc has 6 B-points, namely when the upper bound for b

is achieved. Were no chord of the 6-arc to contain more than one B-point, there

would be at most 5 B-points. Thus at least one chord contains 2 B-points.

Therefore the S-arc or hexad oan be formed from the four vertices of a quadrangle Q

and two points on the join of two of its diagonal points.
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Let the vortices of Q "be so that it3 diagonal point

triangle is the triangle of reference; the hexad is to he completed try two points

on x = 0. The pencil of conics through the vertices of Q is

ax8 + hya + cz2 = 0 where a + b + c = 0.

Of the 8 conics in the pencil, 5 are line pairs. Of the remaining 5 conics,

3 are skev/ to x » 0. (0, 1, 0) and (0, 0, 1) are the double points of an

involution on x = 0 whose pairs (0, + a, 1) each lie on one conic of the

pencil. The pairs (0, +1, 1), (0, +2, 1), (0, + 3, 1) lie on the line psair

ya - aa « 0 and the conics x2 - ^jr3 + za = 0, x3 + ya - 2Z3 = 0

respectively. Thus the only possible pairs of points for the hexad are

(a) 0 2 1 (b) 0 2 1 (c) 0 -2 1 (d) 0 -2 1
031 0-31 031 0-31

"By the harmonic inversion y <—> -y, which leaves Q fixed, the hexads obtained

from (a), (d) and (b), (c) are equivalent. Thus there are only two pro¬

tectively distinct complete hexads

a : -1 1 1 , 1 -1 1 , -1 -1 1 , 1 1 1 , 0 2 1 , 0 3 1

/? i -111, 1-11, -1-11, 111, 0 2 1, 0-3 1 ,

This is reflected in I'I3 try the two notationally different triads of tri¬

hedral pairs e.g. S123, 8456, 8122,453 and Sia,s4, 834,56, SB8,ia« The
hexad a is related to the former type, the hexad /9 to the latter. If the

points of a are A1, .., A® in the order

-1 1 1 , 1 1 1 , 0 2 1 , 1 -1 1 , -1 -1 1 , 0 3 1 ,

they fall into two triads Ai Aa Aa , A4 As Ae in sextuple perspective from

the 6 B-points. Each of the 9 lines Ai A j where Ai and Aj are from

different triads has two B-points, whereas if Ai and Aj are from tho same

triad Ai Aj has no B-points. On the other hand, if the points of /? are

Bi, »•, Ba in the order

-111, 111, 1-11, -1-11, 0 2 1, 0-3 1 ,
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they fall into three pairs B* Ba, BeBs. Each of the 5 lines BiBj,

where BiBj is one of the pairs, contains two B-pointsj the other 12 ines

BlBj contain one B-point apiece*

The completeness of the hexads maps the covering of F7 by the 27 lines,

or in fact by the 21 lines ai, cjk, and the two types of hexad map the two

different types of notations for the properties of F7.

She 6 B-points of each hexad form a hexad of the sane type as its

originator. For a, the B-point3 Hi, • •, H# are

Hf S A1A4, AgAg, AgAg H4 I AfAg, AgAg, AgAg
H3 S AtAs, AgAg, A3A4 Hg ! A1A5, AgAg, AgAg
H3 t AlAg, AgA*, AgAg Hg J AjAg, AgAg, AgAg

They form a hexad «' partitioned into two triads HiHgllg, HgHgHg, The B-

points of a* are the points of a as, for example, HiHg, HaHs, ligHg are

the respective lines A,Ag, AiAg, A^Ag which meet at At. Thus HiHgHg,

H^igHg are in sextuple perspective from the 6 Ai. In this way the hexads

like a occur in closed pairs*

The hexad ft depends on the triangle with sides BiB3, B3B4, BgBe. Let

this he T£Z and label the B-points of p as B{ ,*..., Bg where

B1 = (B1Bg, B3B5, BgBg) Bg = (B,Bg, BgBg, BgBg), Bg, B4 lie on BgBg and

Bg, Bg lie on BgBg •

8

A a, y K z
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Prom the quadrilateral B3Bb, BbB4, B4B6, B6B3 with diagonal line triangle

XYZ, the pair B3, B4 is harmonically separated By X, Z as is the pair B5,Be

ty X,Y and the pair bJ,B3 By Y,Z, Similarly Bi,Bs are harmonically con¬

jugate to Y,Z as are b£,b! to X,Z and Bg , B3 to X,Y. Thus the 6

points of /5 as well as the 6 B-points of lie on the sides of XYZ and

are also harmonic conjugates of the 3 pairs of vertices of the triangle,

A converse can also "be obtained from the above figure. Begin with

B3,B4,Bs,B6,X and select Y,Z so that B3,B4 are harmonically separated by

X,Z and Bs,Ba hy X,Y : thus the line YZ is the polar of X with respect to

any conic through B3,B4,Bg,B6 and in particular the line pairs B3B5 , B4B0 and

B3Be, B4B6. Therefore the vertices B*, B3 of these line pairs are points

of YZ and as before harmonic conjugates of Y,2,

Suppose the 6 B-points of ft do not form a hexad; then some pair

B',Bj lying on different sides of XYZ are collinoar with a point Bh on the

third side. It will suffice to oonsMer one pair as the argument is the same for

any other. So, letting B3 » (BtBg, BqBs), Bg = (BiB3, B2B4), B® » (BjB4, BjjB3),
either B4,Bg,B3 or Bj,Bg,Bg are collinear. If B|,Bg,Bg,

(YZ, BtBi ) (XZ, B3 Bs) (YZ, B,'B«)
whence Bi,B< aare harmonic conjugates of Y,Zj this is impossible as the

harmonic conjugate of Bi vdth respect to Y, Z is Ba which is not on. BaB6

or B4Ba and so is distinct from Bj, If , Bg , Bg are collinear,

(YZ, (XZ, BgBa) J* (YZ, b{ ft )
which implies a solution of tO, <*>, 1, A| = [0, «*, A, -1}, whence A2 + 1 = 0

which is insoluble over GP(7). Thus the 6 B-points of form a hexad /3*,
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From the converse stated above, the B-points of Px also lie on the 3±des

Of the triangle and are harmonic conjugates of the vertices. As , B ^ differ
from B6,B6 so the points where B!J B* , meet XZ differ from So

the B-points of /?' are not the points of p» Thus the 6 B-points of p* —• B",

•«, B6' form a hexad P" where B1 ,B2j , B*aj B^', Ba are the three pairs of
harmonic conjugates of Y,Z; similarly for X,Z and X,Y,

Finally the B-points of P" are the points of the original hexad /3, So

the hexads like fi occur in closed triads. In coordinates, p is

-111, 111, 1-1 1, -1-11, 0 2 1, 0 -3 1.

Applying the projectivity y + z y, y - a — z so that XYZ is the triangle

of reference, this becomes

510, -510, 501, -501, 031, 0-5 1,

and the successive hexads are

-1 1 0, 1 1 0, -2 0 1, 2 0 1, 0 -1 1, 0 1 1

-210, 210, -101, 101, 0-21, 021.

Given the triangle XYZ, there are 5x5x2 =18 hexads like p whose

points lie on the sides of the triangle. The 18 hexads fall into 6 triads.

Since there are 78(78 - 1)(78 - 1) projeetivities in the plane and 57.56.49/6

triangles, XYS lias a group of order 6®, Thus each hexad § has a group of

order 12 and each triad a group of order 36. The number of hexads of

type p is

18 x 57.56.49/6 = 2®.3®,7®.19.

The numbers of the two types of hexads in the plane can be calculated

simultaneously. Having selected the vertices of Q, there are 3x2 = 6 ways

of selecting the remaining two points on the sides of the diagonal point triangle

of Q for each type of hexad. However for each hexad, the number of ways of
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selecting the original tetrad is the number of residual pairs whose join contains

2 B-points, viz, 9 for hexads like a, 3 for hexads like fi, Thus there are

thrice the number of hexads of type p as of type a.

Of type a there are 57,56,49,36 x G = 23,3.7s,19.
4! 9

Of type y3 there are 57,56,49,36 x 6 = 23,3s,7®,19;
4! 3

totalling 2®.5. 7®,19
Tiiich is, by § 12, the number of hexads in the plane not lying on a conic.

That there are 3 hexads like to ore like o corresponds in lis to

there being 30 triads of trihedral pairs like S18 34, Ss4,66> Soe.ia and9 " *

10 like Siaa, 6430* Si33,456.

As there are 7®(7® - 1)(73 - 1) projectivities in the plane, the groups which

leave a,/3 invariant are of respective orders 36 and 12, the latter as above.

The subgroup of Ae which consists of all the permutations of 123,456 such

that the two triads are invariant or interchanged has order 3! x 3! x 2 » 72,

The projective group of a of order 36 consists therefore of the subgroup of

those of the 72 permutations which are even, as the operation (56), say, cannot

be effected by a projectivity.

The group of § has, as a subgroup, the 4-group consisting of the unit and

the harmonic inversions with respect to each of the three sides of the triangle,

each of which inversions interchanges the members of two of the pairs B1B2,B3B4,B8B6.

As the pairs must be left invariant, some other operation in the group of $ i3

a permutation of the three pairs of order 3 i,e, a complete permutation, none

of which coimnute with the elements of the 4-group. Hence the 4-group is a

normal subgroup of the group of §t which is therefore A#, Dickson [ / 7 3

p.268.
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§ 15. Exjster.ce of Grace' a extension of the double-six .

Grace*s extension of the double-six requires "the existence of 6 skew lines

with a common transversal such that any 4 have a unique second transversal, A

double-six includes sets of 5 suitable lines, We will firstly approach the

problem by seeking the existence over GF(7) of a sixth line.

Let auaaiaaja^jag^b be the 5 lines and their transversal; denote by

as the line sought. In the representation of lines in n3 by points of a

quadric in He, let the points (w, x, y, s, t, u) lie on Kswu + xt + ya = G,

Denote a point of K by the same symbol as the line in lis it represents. Take

b as (1, 0, 0, 0, 0, 0)j then the tangent prime at b, u » 0, contains the

at i b 1, 6 and meets K in a quadric cone ?d.th vertex b and base

Q : xt + yz « 0,

If 4 skew lines have a single transversal then the polar line with respect

to K of the Hs spanned by the 4 points representing the 4 lines touches

K at a point which lies in the 113 ([3/ 3 p.217), Thus the transversal is

linearly dependent on the 4 lines.

Take the ai as (wt, xt, yi, *i» ti, 0) i * 1* ***» 6, In the

Ug w « u * 0, let the points (0, xt, yi, 21, tt, 0) on Q be called At, Let

the planes Tt, Stjk be

Ttt xtt + yat + syt + txt * 0 1*1, *»», 5

StjK '• X y 2 t

Xt yt at tt

Xj yj Zj tj
Xk yk 2k tk

s 0 i»J»k = V**» 5

Tt is the tangent plane at At meeting Q in the two generators through At

and Stjk is a non-tangent plane meeting Q in the 8 points of a conic, no

two on the same generator. As at does not meet aj, At does not lie in
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Tj J / 'lS oach 4 of the at t = 1,..., 5 have two distinct transversals

and no more, b is independent of any 4 of the at and any 4 of the at are

themselves independent: thus At does not lie in Sjk4 / i« Ae is not

to be either in any of the 5 planes Tt or in ary of the 10 planes Stjk,

Suppose there is such a point A6 and project the points of Q stereo-

graphically from Ag onto a plane ir following Todd [6/ ] p.110, Let 4, g

be the generators of Q through Ag and m the intersection of tr vrith the

angent plane at A&, The point A of (J corresponds to the point a in which

AgA meets v. The exceptional elomen13 are Ag which corresponds to the line

m and the lines 4, g vtfiich correspond to the points L, G of m in which they

meet v, The' (q ♦ l)a - (2q ♦ 1) « qa points A of Q not on 4 or g

correspond 1-1 with the (qa + q+ l) - (q + 1) = qa points a of v not

on m. The two generators of Q through A correspond to the line pair

aL, a&, A conic section of *5 through Ag corresponds to a line pair one of

which is m. A conic section of Q not through Ag corresponds to a conic

through L, G,

As none of the At i »1, 5 lie in the tangent plane at Ag, they are

represented by points ai not on m. As Sijk does not contain Ag, the section

of Q by StjK is represented by a eonic through L, G, at, aj, «k , So no

three at can be collinear. As Aj does not lie in the tangent plane at At,

oj doe3 not lie on either of the lines aiL, «i&. Thus the points

L, G, «*, a3, as, ag, a6 form a 7-arc, These 7 points therefore lie on a

conio so the At I « 1, 5 lie in a plane. So the construction is impossible.

So there is no suitable Ae. So there is no suitable ag. So Grace's

extension of "the double-six does not exist over GF(7).

That a 7-arc lies on a conic was taken in § 14 from Segre's theorem as the
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discussion of the cubic surface ma started 'ab initio' in the plane; but it

is deducible directly from the cubic surface F7 of § 13, In both types of

notations for the triads of trihedral pair;; which determine the 18 E-points of

there are 6 E-points idiich are intersections of three clj lines. Thus

in the plane the only o-aros not lying csn a conic have 6 B-points and so are

complete. So any 7-arc lies on a conic.
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glAPTSU V. Preliminaries and general data on
Grace's exteiTsion .

§ 16. Tins twisted cubic over GF(g) .

Before attempting to discover by an inductive method whether Grace's extension

of tine double-six exists over GP(7), it is here necessary to discuss the notion

of a "twisted cubic" over GF(q).

In the subsequent arguments, n "points" refer to the root3 of an equation

of degree n, wliich may or may not lie in the field being used,

Segre [5=2.] defines the normal rational curve in an arbitrary dimension

for fields of odd characteristic, and shows that any 3et of q + 1 points in

three dimensions vrith no four coplanar forms such a curve; in [5~3 3 the

twisted cubic over a field of characteristic two i3 also defined. However, to

provide a uniform; definition of the twisted cubic over ary field Gi'(q), we will

follow Todd [6/J P»117 and consider the corresponding planes of three pro¬

jective pencils. It is shown, by taking a projectivity with two distinct self-

corresponding points on one of the axes, how to set up the correspondence so that

three corresponding planes never meet in a line. Thus a set of points is

derived, of which any point is given by

x0 : Xt : x2 : X3 » fo(*) * fi(*) • f»(A) : fs(A)

where the f l( A) are all homogeneous cubic polynomials hi Ao : A, with no

common factor. Let u be the plane

U0X0 + U|Xi + U2X2 + U3X3 = 0.

lies in u if and only if

Uo?o(X) + Uif,(A) + U2f2(A) + U3*3(A) » 0.

It is desired to prove that the discriminant of the cubic form in the above
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equation does not vanish identically, so that not every plane meets the curve

in a double point. Assume the contrary. For all fields except those of

characteristic two and three, Todd*s argument may be followed. In the exceptional

cases the discriminant of a cubic form takes a different shape, let

ax® + bx2 + cx + d be an arbitrary cubic form with a repeated factor; it can

then be v/ritten as a(x + e)2(x + f), Hence

b = a(2e + f) c = a(e2 + 2ef) d = aeaf ,

Thus by elimination,

27aad8 + 4ac® + 4b®d - b2ca - 18 abed » 0

for any field. The expression on the left of the equation is the discriminant.

This becomes

Following Todd, f<>(A) can be taken as one of the forms A* , Aj . Let

g(A) s u,f,(A) + u3f2(A) + u3f3(A) « AA^ + BAa A, + CAoA,8 ♦ DA,® ,

•sphere A, B, C, D are linear forms in Ui, u2, U3, Firstly over GF(2n), let

foU) * A* I then the discriminant of Uof0(A) + g(A) is Kuo + A)D + BC]a ,

If this vanishes identically, then D = 0 and either B = 0 or C = 0, If

fo(A) = Aq2 A, and [AO + (u0 + B)c}3 s 0, then 0 = 0 and either A = 0

or D = 0, Over GF(5n), if fo(A) » A<? then we require (u0 + A)c® +

B®D - BaCa s 0; thus C = 0 and either Q e 0 or D = 0. If f0(A) = A2A,

and AC® +(uo + B)®D - (uo + B)aCa s 0, then 0=0 = 0, In each of these

seven cases, two of A, B, C, 0 are zero; thus only two of the f i( A) are

linearly independent and there are two linear relations between them. All the

points would -then lie on a line, contrary to the initial arrangement of the

correspondence. Thus the discriminant does not vanish identically.

If u is any plane of tire space such that the discriminant of S uif t(A)

(ad + be)2

ac® + b®d • b8ca

over GF(2),
over GF(S),
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is not zero, thon the plane contains exactly three distinct "points" of the

curve given by the set of points {P} .

Finally it is shown that the polynomials are linearly independent. Ihu3

the set of points can be given hy

This is now our twisted oubic Y .

Over GF(q), V comprises q + 1 points joined in pairs by q(q + l)/2
chords of which at most [(q + 1 )/2] are skew. T also ha3 (q8 - q)/2

other chords, each the join of a pair of conjugate points whose coordinates belong

to GF(qa). These chords are mutually skew and skew to all the other chords.

At each of its q + 1 points, Y also has one tangent and q8 secants* The

chord through points A = r, s of f has coordinates

Pol i Poa * PC3 I Pis ! P3i t Ps3

is r^s8 s rs(r + s) : r3 + rs + sa : rs : - (r + s) : 1 ,

Thus the tangent at A = r has coordinates

P separates ihe points of the space into 4 mutually exclusive classes J

giving all (q8 ♦ l)(q + 1) points of the space. This shows that through eaoh

point not on T there is a unique line with two-point contact on P, In the

dual case the situation i3 different: the planes of the space fall into 5

different classes:

xc : Xi : x3 : x3 » A3 : A8 : A : t

r* t 2T3 : Sr8 : r8 : -2r : 1 ,

points mi r
off r, on the tangents
off f, on the "real" chords
on the "conjugate" chords,
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q + 1 osculating planes
q(q + t) planes containing a tangent of I and one

other point besides the contact of the
tangent

X(aa - planes containing 3 distinct points and 3
• distinct "real" chords of F

iKq3 *" q) planes containing one point and one
"conjugate" chord of I,

leaving l(q® - q) which do not meet F. Tills is then tho number of irreducible

cubic equations over GF(q).

Over fields of characteristics two and three, F has peculiarities. Over

any field tho tangents to F lie in the linear complex

Poa ® 3 p 1 a ,

Over GF(2n) the tangents to F form a regulus

Poa ** Pst a 0 P03 18 Pia •

Over GF(3n) the tangents to V lie in a special linear complex

Poa = 0.

More strikingly, over 0^(2") and GF(5n), T is not a properly self-dual

construct. The plane which contains the points A = r, s, t of F is

x0 - (r + s ♦ t)*i + (rs + rt + st)xs •» rst xa = 0.

Thu3 "the osculating planes over GF(2n) form a proper developable given by

Xo + 6X1 + 0x2 + 0®X3 a 0 ,

while those over GF(3n) merely form a pencil

Xo » d3X3 b 0 ,

whose axis is the axis of the special linear complex poa » 0, the transversal of

all the tangents of f, However, F is also the residual intersection of two

quadric cones with a common generator: for example, the quadric cones

x,® - x0xa = 0 with vertex X3 and x22 - x1x3 = 0 with vertex X0 meet 3n

XoX8 and F, Dually, consider the planes which touch two conics with a

common tangent, say tho conic x® • x0xa =0 in X3= 0 and x® - x^s 0
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in xo 85 0. Over GP(2n) the planes form a pencil x0 + 6x3 = 0, whereas

over GF(5n) they form a proper developable

Xo + &ci + 02xa + 03X3 = 0.

V 17. Grace' s extension in (general and over G-F(7).

Over the complex field, given 8 skew lines ai i * 1, • 6 with a

common transversal b such that any 4 ok, ag, am, an have a unique second

transversal by = bjt, then from b and aj, ak, ag, %, an the double-six
Dl can be formed with the completing line oti meeting by, bik, big, bim, bin

as in Appendix II, Each Di 1 = 1, 6 lies on a cubic surface Fl,

which contains another 15 lines cjk, where cilj meets ai, aj and cjk
meets aj, an. In this field there is a unique twisted cubic t with the 6

lines ai as chords, e.g. Wakeford [£3 ] p*112 footnote. This cubic t

contains 10 points of Fi, therefore lies on it, and is the residual intersection

of Fi and Fj besides b, by, an, ag, am, an. Baker [ if ] p.195 proves

that "given six skew lines with a common transversal, the locus of a point, such

that the planes joining it to the seven lines touch a quadric cone, is a cubic

curve, having the six lines as chords but not meeting the transversal." For

fields of odd characteristic, as the twisted cubic and the lines that are

chords of it have been properly defined, Baker's theorem and the proof, as it

stands, are true. The theorem breales down over characteristic two because

of the phenomenon mentioned in § 16 that the common tangent planes to two

conic3 with a common tangent form a pencil and not a cubic developable.

Of the fields of characteristic two, I will concern myself at the moment

Tdth G-F(s) and show that six lines having a common transversal with each four

having a unique second transversal can be chosen as chords of a twisted cubic.
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A point of P is given by

Xo : Xi : x3 : xQ » r® : ra i r : 1 .

A chord of T has coordinates

Poi • Poa • P03 • Pi a • Pis • P23

= rrs3 1 ra(r + s) : r® + rs + s2 : rs : r + s : 1

The line u with coordinates (0,0,0,1,0,0) is skew to F and meets the chords

of I1 whose parameters satisfy r8 + rs + sa = 0 i.e. (r + s)2 = rs, bet

r * s = v . Then u meets the chords v of F with coordinates

(v4, v®, 0, v®, v , 1). As GF(4) is not a subfield of GF(8), r2 + rs + sa
is irreduoible over GF(3); therefore these chords all meet V in pairs of

conjugate points with r, s in GF(32), Thus these chords are all mutually

skew. The two with parameters 0, « are tangents.

Ary four of these chords a, b, c, d have exactly two transversals if

a4 a® a 1 / 0,
b4 b® b 1
c4 c® c 1
a4 a® a 1

i.e. (a + b)(a + c)(a + d)(b + o)(b + d)(c + d)
x (ab + ac + ad + be + bd + cd) /£ 0

Thus, to find a line ana six transversals such that any 4 have a unique second

transversal and so that the six lines are chords of a twisted cubic,

necessarily unique, it is sufficient to find six non-zero elements of GF(s)
such that no four satisfy ab + ac + ad + be + bd + cd = 0. Conveniently the 10

planes xi * 0, x? + xk = 0 i,j,k =0, ... 5 cover the quadric L xlxj= 0.
t. < j

To show this, consider the quadric over GF(q) where q = 22n+1, Over these

fields it is non-ruled and therefore consists of q2 + 1 points, Primrose [3 8],

The 10 planes are each spanned by three of the five points 1000, 0100, 0010,

0001, 1111 j the line of intersection of any two of the 10 planes meets the
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quadric in either one or tvjo of these five points, "but never in any other point.

For, of these 45 intersections of pairs of the 10 planes, 30 are the 10

lines through pairs of the 5 points and the remaining 15 are intersections

of pairs of planes with one of the 5 points in comon. Thus the number of

points on the quadrie lying in none of the 10 planes is

(q8 + 1) - 10(q -2) - 5 « q2 « 10q + 16 = (q - 2)(q - 8).

Therefore the 10 planes cover the quadrie over Gf(8), and my 6 of 'the 7 non¬

zero elements of GF(8) may be talcen as parameters of the six chords of F.

Then these six chords have a common transversal and each four have a unique second

transversal.

To show the necessity of its existence, I would like to approach the question

Of the twisted cubic lying on all six Fi from another point of view. Firstly,

it must be shown that all the c/k are distinct. It is sufficient to consider

J 2k is distinct from every line c&i.

4
Ot 1 a C*j implies that the planes [b, ai], [b, aj]

meet In Ct i , so
4

Ci i = b j
4

c3i
a

- Ci j Implies similarly that
1

c3 i = Ns;
i

Cl l
3

= OJk j £ 2 k / 2, i implies that
1

C1 i meets ani

Og i « c?j i, 3 A 1, 2 implies that Ca i meets aj j

Cjk
a

= °^in 3, k, 1, m ^ 1, 2 m ^ 3, k implies that
4

Cjk meets am .

All these cases contradict the intersections of lines on Ft imposed by the

initial conditions on the ai.

F,, Fa have 8 common tritangent planes - those containing b, btS and

each of a3, a4, a6, a8. Thus, besides these six lines, Fi, Fa have 8 points
is 1

in comon viz. where c, i meets Cgi i « 3, 6 and where Osj
3

meets Ci j j s3, 6. It is these points which lie on the residual inter¬

section of Ft, Fs and must therefore be part of a twisted cubic.
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Nor; consider any two cubic surfaces over GP(q) intersecting in a curve C

of degree 9 which may be degenerate. A line lying on only one of the surfaces

meets the other and also their intersection in 3 "points". Suppose a line I

is part of C. A plane through -6, containing no other part of C, will meet

the remainder of C, degenerate or not, in 8 "points". The plane meets each

of the surfaces residually in a conic. The two conics meet in 4 "points",

and I meets the two conics and hence the residual part of C in another 4

"points".

Over GF(q), where q, is odd or 2®n, take as before the line b, the 6

lines ai, the twisted cubic t of which the ai are chords, the 15 lines bij,

the 6 lines «i, the 6 double-sixes Di and the 6 cubic surfaces Fl .

Fi, Fj meet in ai<, ag, &m» an, b, bij and t. Each Fl contains 15 lines

©Jit J, & * 1, ,.,6, All 90 cjk are distinct as previously shown; or

otherwise, the coincidence of any two would make them a part of the intersection

of two of the Ft,

The lines ai are chords of t. From the previous argument, the at are

also chords of t, the cji< are secants of t, the bij are skew to t; b

is also skew to t since in the intersection of fi and Fj, it meets ok, ag,
I J ^

am, an. The lines cjk, ckL, cij, being the intersections of pairs of the

planes [ai, bji<], [aj, bki], [ak, Vtj] are concurrent at a point Lijk of t.

The plane [b, ai] contains the 5 lines c£j j / i, all of which meet t;

they are therefore concurrent at a point L i of t. In this way there are

6 points Li and 20 points Lijk on t.

As
k

Oik does not meet
k

Cjk, Li Lj i t 5 •

)

As oJj does not meet CLk* Li Li jk ♦
*

As Ojk does not meet •itf i jk Li jg k jL I •
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Suppose then that, over GF(7), there exist G skew lines with a common

transversal 3uch that any 4 have a unique second transverdsl; the construction

of the figure, described above, may then be carried out. The line b lies on

each surface Pi, therefore contains 2 B-points of each; these comprise 12

E-points altogether, distributed among "the 8 points (b, ai) of b. This

means that 12 lines cjk pass through these 6 points. Since no more -than

5 of these lines can pass through any one of Hie 6 points, at least 2 of the

points have 2 or more of these lines through them. Therefore, at least 2

points of b are points Li of tj consequently b is a chord of t. This

gives a contradiction as it was previously seen that b is skew to t,

Ellis, over GF(7), it is not possible to find a set of 6 skew lines with

a common transversal such that ary 4- have a unique second transversal. So

Grace's extension of the double-six does not exist over GP(7),

It can also be shown that, for fields GP(q) where q < 11, a necessary

condition for the existence of Grace's extension is that not all the surfaces Fi

are completely covered by their 27 lines.

Suppose all the Fi are covered by their lines. The point Lt, the meet

of the Ci\ i = 2, ,,,6 i3on t and therefore on Ft, It does not lie on

aJ J e 2, 6, for then aj would meet eA on Fl i / j. As Lt /£ Li
i = 2, 6, Lt does not lie on Ct L, As Lt / Lt ij, Lt does not lie on

Cij i, j = 2, 6, The bt i i * 2, 6 are skew to t and therefore

also do not contain Lt, Thus Lt, which must lie on some line of Ft, lies on

a1# Thus at meets t in two real points. Similarly all the a-t meet t in

two real points, As q < 11, t contains less than 12 points. Therefore if

the ai exist then the ai exist but are not mutually skew. Consequently,

Grace's extension will not exist,
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CHAPTER VI. ^ Sraoo'a. extension,
over GF(8).

§ 18, Sis cubic surface over G-g(s).

Over G-F(d) lines contain 9 points, so each line on a cubic surface F

with 27 lines has at least one B-point and it is seen from the table in § 12

that F has between 9 and 13 E-points, All the sets of 9 E-points

readily imply the existence of 13 except an arrangement of 3 on each sides of

a triangle as, for example,

(Cis, ®34» Ccq)

a figure which turns out to be non-existent. These 9 points form Maclaurin's

figure lying 3 on each of 12 lines, 4 lines through each point. As there seems

no obvious reason why such a set of 9 points cannot lie on a plane cubic over

GF(s), it will be easier to consider 6-arcs (hexads) in the plane than the

arrangement of the E-points on the surface directly.

In the plane over GF(8), there are 73 points, 73 lines, 9 points on a

lino, 9 lines through a point. All 7, 8 and 9-arcs belong to 10-arcs,

Segre [i~5"3 p,45j such a 10-arc, which is an oval, always comprises the points

of a conic C and its nucleus N, the meet of all the tangents of C, [5"5"] p*37.
Thus there are two possible types of 6-arc not lying on a conic.

1) A 5-arc (pentad) plus the nucleus of the conic C it determines.

2) A complete 6-arc,

Consider a pentad 100, 010, 001, 111, abc.

C is a(b + o)yz + b(c + a)zx + c(a + b) 3Qr b 0;

N is [ a(b + c), b(o + a), c(a + b)j,

C14, cac> 0®e/
Cl6j ^26 J Cs4/>
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which lies on the line of diagonal points, x + y + z = 0, of the quadrangle Q

with vertices 100, 010, 001, 111. Thus N lies on the line of diagonal points

of every quadrangle inscribed in C: or equivalently, the lire of diagonal points

of Q passes through the nucleus of every circumscribed conic. (The latter re¬

places the theorem, over fields of characteristic other than two, that the diagonal

point triangle of Q is self-polar with respect to every conic circumscribing Q.)
Let AiAgAaA+As N be a hexad H of type (1). Let di be the line of

diagonal points of the quadrangle whose vertices are the Aj residual to Au The

5 lines di all pass through Hj the 9 lines through N are all the tangents

to the conic C containing the At i = 1, •• 5. As there are only 4 points

on C besides the Ai and as no vertices of a quadrangle lie on its line of

diagonal points, at least one of the di passes through the corresponding Ai;

let it be d5, 3o dg i3 MAc and contains 3 B-points of H viz. (AiAa,A»A«),

(AiA4,AaA3), Moreover H has no other B-points, For, firoin § 12,

the chords of a hexad over GF(3) with 3 B-points contain 15.8 - 54 + 3 = 69 points.

This leaves 4 points in the plane which are therefore the residual points on

C to the Aij none of these 4 points can be B-points of K, Thus H consists

of the vortices of a quadrangle Q and two points on its line of diagonal points,

which contains the 3 B-point3 of Hj conversely H determines Q uniquely.

Consider a hexad X of type (2) - AiA3A3A4A6Aaj being complete, it has 7 B-

pointo as shown in § 12, If no chord of K were to contain more than one B-

point, K would have only 5 B-points, So at least one chord, let it be AiAa,

contains 2 B-points, These two points are diagonal points of the quadrangle Q

with vertices Aa,A4,Ae,A«j so AiA2 contains all three diagonal points of Q,

which are all B-points of K, Thus the hexad, whether of 1ype (l) or (2),
consists of the vertices of a quadrangle Q and two points on the latter's line

of diagonal points, which contains 3 B-points, In case (1), Q is unique: in
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case (2), as will be seen, Q can be selected in 3 way3, the 3 lines of

diagonal points being concurrent, Most of these remarks on plane G-arcs over

GF(S) have also been made by Segre [5^3 and Scafati [^5" 3 .

The two types of hexads can be given canonical coordinates, GP(s) is Hie

cubic extension of GF(2) by a root of either x3 + x? + 1 = 0 or

x3 + x + 1 = 0, Hie roots of either equation being reciprocals of the other, VYe

will take the former equation 30 that the elements of GF(8) are

0, €, r3, <3, «*, e®, e®, c7 a 1

where 1+1 * 0,

C3 + e2 + 1, €® + €* + 1 as 0, «® + € + 1 » 0,

The only automorphisms of the field are <j>, $2, <£3 =1, where 4> replaces each

element by its square, Segre [57] p.99. GF(s) has the further property

that each element admits a unique n-th root, viz,

xi/n a jjja no s 1 mod 7 Segre [57 3 p«100

Let tlie vertices of Q be 100, 010, 001, 111} the hexads have their

remaining two points on x + y + s = 0. The two points are to be chosen from

the 6 points on this line apart from the diagonal points, viz, from

c3?2!, *®e41, <r®e1, e2*3!, e4e°1, ee51i
15 hexads can be thus selected. Those of type (1) include the vertices

rVl) <f®e4l) e5< 1 ). eac31) <4e®l) c e»l)
e°e4l) *®e 1) r3*3 1 )' c4e®l) < e®l) c8e8l)*

From the formula previously given, the lower point is the nucleus of the conic

containing the vertices of Q and the upper point. The 6 pairs of points are

arranged in two cycles of 3; in each cycle the nucleus of each of the 3 conies

is a point of the next. For, as the nucleus of the conic through the vertices

of Q and (a, b, c) is [a(b + c), b(c + a), c(a + b)}, when a + b + c = 0

the nucleus is (a2, b8, ca). So the nucleus is obtained by applying $ to
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(a, b, c); 4> having period 5 induces the cycles of three.

The pairs completing hexads of -type (2) are

e3*3!) e6*4-}) e®c 1)
e2*3!) c c®1; *4fei)

c'Vl) €®C 1) c3^}
*Vl) rW c «®i)

€®e 1) eVl) e6c4l)
c €®1) e4e61; e2*3!) .

That the 6 hexads of "type (1) are equivalent up to collineation, as well as the 9

hexads of type (2), is 3een by applying the six permutation matrices and the

automorphisms $, <pa.
Let the points of the first hexad H of type (1) be named Ai,*«»,Ag

in the order

100, 010, 001, 111, c3e®1, c°e41
They are the base points of a map of a cubic surface P with 15 coplanar E-

points on the lines as, b6, ess. For, as Ae is the meet of the tangents at

the A1 i = 1,••, 5 to the conic containing these points, b6 has the 5 E-

points (b6, at, ciG)J as AgA6 contains 3 B-points of H, Css contains 3

E-points (cse, ctj, CKg) of F; as AgAg is the line of diagonal points of Q,

it contains the nucleus of ary conic circumscribing Q - in particular .AgAg is

a tangent at Aa to the conic through ,A3,Aa,A4,Ag, so (cs6» as, b6) is
also an E-point, So far there are 9 E-points lying on be and cg6j but

(cia, C34, Cgs), say, and each of (b6, at, ct6) i = 1, 4 are collinear

with a third E-point on a«. Thus the points (a®, bj, ojs) «3 = 1» 4

are also E-points, Hence F has 13 coplanar E-points lying 5 on each of

the 5 lines ag, b6, cee, including their point of concurrency.

Let the points of the first hexad K of iype (2) be named A%, Ago in
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the order

100, 010, 001, 111, cVl, c3e31.
The three lines

AeA« : x + y + s « 0

A3A4 s x y = 0

AtAg i z = 0

are the lines of diagonal points of the 5 quadrangles whose vortices are the 4

points of K they do not contain. The 7 B-points of K therefore lie 3 on

each of AiAa, A3A4, AgAe, including their intersection. Thus K exists in

5 ways as the vertices of a quadrangle and two points on the letter's line of

diagonal points.

The point3 of K are the base points of a map of a cubic surface G with

13 coplanar B-points lying on the lines o<2, C34, c6e. For, as each, of A<Ag,

AaA*, AsA« contains 3 B-points of K, each of cia, C34, c66 contains 3 E-

points of G, Also, A*Aa contains the nucleus of any conic through A8,A4,Ae,A#.

Therefore A,Aa is a tangent at A1 to the conic AiAgA^AgAg and at A2 to the

conic AaAsA*AgAa» Thus Cia has too further E-points (at, ba, c13) and

(aa, bt, Cta): similarly for C34, o6o. So eaoh of o12, C34, cB6 has 5 E-

points on G,

If G is now mapi >d onto a plane so that the lines at, aa, aa, 045* c*e» cge»

comprising one half of the double-six Di333 are all mapped to a point, these six

points form a hexad of type (1), Hence the two types of hexad map tha one type

of cubic surface.

It has now been shown that, over GF(s), a cubic surface F with 27 line3

alway contains 13 coplanar E-points; from the table in § 12, the 27 lines

comprise the whole of F, It remains to discover whether F is protectively nique.

This will be done lay developing the properties implied by the E-points and thU3
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seeking a canonical form for F,

Call the i>lane of the E-poxnts f. Of the 27 lines, 24 contain exactly

one E-point while the remaining 3 each contain five. The self-conjugate points

with respect to the polarity of any double-six on F lie, by § 11, in a plane.

As each line contains at least one E-point, the 12 lines of the double-3ix

contain at least 6 E-points. These 6 all lie in their polar planes. As

these E-points also all lie in f, the plane of the self-conjugate points in

the polarities of all the double-sixes on F is f,

Let us now examine f and particularly the 3 lines of F in f: let

them be Cig, c34, csa. They are concurrent and each meets two other lines of

F at 4 more points and no other lines at its remaining 4 points. As has

been 3hown in §13, if the lines meeting at 3 E-points form an array associated

with a Steiner trihedral pair, the 3 E-points are collinear. Thus the 12

points on C13, 034, cB8, excluding (ci8, 034, cSe),which are E-points, are

oollinear in sets of 3 in 16 waysj for example, throu^i one of the 12 points,

say (c1a» a-*, ka)» there are 4 lines which each contain an E-point on C34

and C53, viz.

(C34» a-s, b4 ), (CS6> C14, C33);

(C34, 84, b3 ), (c50> C13, 034)}

(os4, C13, 035), (cge, as, he )j

C®34» Cse/, (c5e» a8, bg )•
Let these 16 lines be called m-lines.

The remaining 12 points on the 3 lines, call them G-points, do not have

this property. If a line other than Ci3, 034, c6a passes through 2 E-points,

it passes through 3 and is an m-line. Through each E-point there are 4 in¬

line3; so the remaining 4 lines in f, excluding the line of F, through the E-

point all contain 2 G-pointsi call these n-lines. Thus through each E-point
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there are 4 m-lincs and 4 n-linea, totalling 16 m-lines and 48 n-lines.

These comprise the 64 lines of f apart from -the pencil through (ci2, C34, Cse) •
Thus through each G—point there are 8 n-lines.

In any Desarguesian plane, given 3 lines l\. i « 1, 2, 3 through a point

U each containing 4 points At, Bi, Gt, Di such that Ai,Bi,Ci,Di and

Aa,B2,Ca,Ba are in perspective from a point P3 of and such that

A3,B3,C3,D3 and A3,B3,C3,D3 are in perspective from a point Pi of £1,

then if PiP3 meets €3 at Pa, k\,B,,Ci,2>i and A3,Ba,C3,D8 are in per¬

spective from a point V where V,P8 are harmonic conjugates of Pi,P3. To

prove this, consider the quadrangle UAiAaA3; two of its diagonal points, the

intersections of two pair3 of it3 opposite sides UAt, A3A3 and UA3, AiA3 are

Pi and Pa. So the third pair UAa, A1A3 meets PiP8 in points P3, V which

are harmonic conjugates of Pi,P8, Todd [bl ] p.45, Thus Ai,Bi,Ci,Dt and

Aa,Ba,C8,D8 are in perspective from V, There V is determined as the harmonic

conjugate of P3 with respect to Pi,p3. However, over fields of characteristic

two, P3 and V coincide, Todd [6/ ] p.40,
The 12 points Ai,Bi,Ci,Di i « 1, 2, 3 can be taken as the G-points on

c13, C34, cBe so that U is (ci3, c34, c56)i then Pi,P3,P3 are suitable E-

points. The line PiP3P3 is an m-line and the configuration can be obtained

in exactly 16 ways, one for each m-line. It is natural to ask how the 8 points

of residual to U are partitioned into E-points and G-points,

On a line — and similarly in what Todd [6/ ] p, 15 calls " a primitive

geometric form of dimension one " — over a field of characteristic two, 4

points are pairs in 3 involutions all of which have the same double-point;

thi i is called the associated point to the other four, Segre [.S3 ]• IP a,b,c,d

and x are the parameters of 4 points on a line and their associated point, then

xs ss (bed + cda + dab + abc) /(a + b + c + d);
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in particular °», 0, 1, a are associated with Va. Over £F(8), if

St*Sa,S3,S4,S5 are 5 points on a line H and the remaining 4

points, then the Tl are associated with one of the Sj, which is also the

associated point of the other 4 Sj, hnd each of the remaining 4 tetrads of the

Sj has a different Ti as its associated point, Segre £5^].,
The parameters of the 9 points on M are

Of 1» c, C3, c3, €*, tf5, «®.
A set of 6 points on M can b e partitioned into two triads; if a is any one

of the €l is 6, then

<», 0, 1, a : a4 : a3 a3 a0a8
», 0, 1, a4 : a2 : a a3a6a6
», 0, 1, a8 : a J a4 a8a6ex6
co, 0, 1, a3 t a® s a6 a a2a4
c», 0, 1, a8 : a6 I a3 a a2 a4
«», 0, 1, a6 : a3 ; a6 a a3a4

whore the middle parameters are associated to both tetrads in the sane row. The

hexad residual to «», 0, 1 is uniquely partitioned into two triads a, a3,a4; a3, a
such that the tetrads consisting of the one triad and any element of the other is

associated with an element of the second triad. Let this be written

a ,a3, a4 j4- a®, a8, a®.
c4 is an equivalence relation:

(i) it is trivially reflexive as from the given formula a,b,c,c
are associated with o;

(ii) A is symmetric from above;

(4-3-i) As a triad is arbitrary on M, each residual hexad has the
same property, so from (ii)

», 0, 1 t>/ a, a4, a8 ; this and

a, a2, a4 A- a8, a6, a® give

co, 0, 1 A- a3, a®, a8.
It is to be noted that two associations determine the partitioning of a hexad,
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viz. if

x2, X3, X4 are associated with xB

and *1, Xs, x3, Xe are associated with Xo,

then x2, X3, xg are associated with *4

and x3, Xs <Ar x*, xs, Xe .

The throe triads «», 0, 1| a, a8, a4j a®, a5, a6 are all in the relation

to one another and M can be partitioned into 3 suoh triads in ®C&/3 » 28

ways. The projective group LF(2, 23) of M has recently been studied in

another connection by Macboath [35* 3.

The previous geometry would indicate that U is the associated point of the

E-points as well as the G-points on each -&l. For, as a line meets the sides

of a quadrangle Q in lairs of an involution, if a line passes through exactly

one diagonal point P of Q, it meets the other 4 sides in pairs of an

involution for which P is a double-point. So consider the quadrangle AgBaAsCaJ

one of its diagonal points is U. Now A2A3 meets l\ in P* and B2C3

cannot meet l\ in Pi as B2B3 does. So the line of diagonal points passes

throu^i U but is not £1. Therefore the 4 sides AsAs, AaC3, B3A3, B2C3

meet l\ in the 4 E-points which have U as their fifth associated point. Thus

the 4 G-points also have U as their fifth associated point.

The plane of the E-points, f, is one of the 45 tritangent planes of Pj

let tire other 12 through the lines of F in f be v-planes and the remaining

32 be w^planes. Each tritangent plane is in 3 x 240/45 s 16 trihedra. Thus

f is in the 16 trihedra whose other faces are pairs of the 32 w-planes, The

faces of these 16 trihedra are coliinear in the 16 m-lines. The 16 conjugate

trihedra are composed of the 12 v-plane3, each being in 3,16/12 = 4 of them.

The 12 v-planes have the property that the sets of 4 through ot2, c3<», Csc
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all have f as their associated plane; for f and the 4 v—planes through ci3}

say, are the polar planes of U and the other 4 E-points on a2 with respect

to any double-six in which cta lies.

A similar property holds for the other 24 lines of F, One of the 5

tritangent planes -trough such a line of F also contains one of cta, 034, Ceei

this plane is then associated with the other 4. For example, the 5 planes

a-J i = 2, • 6 all pass through (bt, eta) and meet f in Ci3 and the

4 m-lines through it; C34 meets Ci2 in U and the 4 m-lines in its other

4 E-points, which are associated with U. Therefore [bt, aa], , .[bt, ae3
are associated with [bt, aa3. Dually, in any double-six of P, the 5 points

in which a line i3 met by the other lines of the double-six form a set of 4 and

its associated point according to their polar planes. In D (ai, bi i = 1,»»«6),
the 5 points (ai, bi) i = 2, 6 have polar planes [bt, a-J so that (at, ba)
is the associated point of (at, b3), (at, b4)» (at, b5), (at, b6). However, it

should b3 noted that, of the 36 double-sixes of F, 24 contain two of ct2, C34, oS(i,

and 12 contain none. Thus with respect to one of the 12, D for example,

the associated point among the 5 on at is the E-point (at, ba, Cta), but

with respect to one of the 24, it is not; for example in

D133 : at aa a3 c86 043 045 it is (at, b4) that is associated with
®23 ®13 O12 ^4 be

(at, Cta), (at, Cta)# (at, b6)r (at, b6).
One of the 16 trihedral pairs containing f is

°12 034 Oee

St 36,246 C36 O35 Ct4

C45 Ct6 Ca3

From such a trihedral pair a canonical form for P may be derived, Let f

be Xo « 0; this is then the face of a trihedron, another of whose faces may¬

be taken as Xt = 0 so that the third is Ax0+ BXf = 0 . Two faces of the
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conjugate trihedron may "be taken as x2 = 0, x3 = 0 so "that two of the lines

of F in f are x0 = 0, x2 = 0 ana xo = 0, x@ = 0; then the third face

can "be taken as Xo + xa + xq « 0, The equation of F now is

XqXi(Axo + Bxt) a XaXa(xo + x3 + x3).

hy substituting A3®xt for Xi, the equation becomes

AxoXt(xo + Xt) *> xsx3i,x0 + x2 + Xa).

Over characteristic two, consider the reducible temaiy quadratic form

a^x2 + a22y2 + a33za + + ai3xz + a23yz

a (ax + by + cz)(dx + ey + fz)

an B ad aa2 = be a33 = cf

aa3 a bf + ce a13 = af + cd ai3 = ae + bd

By substitution it can be seen that
% % &

ai ,a23 * a22ai3 + assays + a23ai3ai2 = 0 .

If y, ax + by + cz, &x + ay + fz are linearly dependent, then af + cd = 0.

So
n a a

a< 3 » o &11&33 + a33ai 2 ® 0«

Xo » Axa aeet3 F in 3 concurrent lines for 5 values of A, two of

which are 0 and «>. Substituting in the equation for F,

AAx3Xi (Axa + xt) a x2Xg( XTT x2 + X3)

XaCAAxf + x^ + AA^tXa + A + 1 ^3X3) « 0

% the above conditions,

AA(A + 1 )2 + (AA3)3 = 0

AA(AA3 + A8 + 1) a 0.

As AA.3 + A2 + 1 has distinct roots, AA®+ Aa+ 1 divides A7 + 1.

But /or &F(2n)
A7 + 1 s (A-* 1)(A3 + A + 1)(A3 + Aa+ 1).
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Therefore A = 1. Thus the canonical form for F, hence to be called F3 is

XoXl(Xo + Xl) = X3Xs(Xo + %3 * 35b)

or x<? Xi + Xo (xf + X2X3) + XaSbC^b + Xb) » 0,

and every cubic surface over GF(c) with 27 lines is protectively equivalent

to this form.

This equation of F8 enables us to determine the order of its projective

group. Any projectivity leaving ?e invariant will leave Xb = 0 invariant,

and so will transform the trihedral pair Si35,24e into itself or one of the 15
other pairs which have Xo * 0 as a face. If Si38>S4a is left fixed then
both its trihedra are also left fixed: in the trihedron containing Xo = 0

the remaining two faces can only interchanged, while in the conjugate trihedron

the three faces can only be permuted. The 12 possible such operations can all

be achieved by projectivities. The following three generate the others,

(i) Leave Xo, xs, xa fixed and substitute xb + xi for Xi,
thus interchanging X* = 0 and xo + xi « 0.

(ii) Leave Xo, x< fixed and transpose x®, Xa, thus interchanging
xs * 0 and Xa = 0.

(iii) Leave Xo, Xi, Xa fixed and substitute Xo + xa + X3 for Xs,
thus interchanging xs a 0 and xo + x2 + X3 = 0,

Tliese operations generate a group. So the trihedral pair ha3 a projective group,

and Fa & subgroup, of order 12, the direct product of a cyclic group of order

2, generated by (i) , and a symmetric group of degree 3, generated by (ii) and

(iii).

The trihedral pair S136>246 now has to be transformed into the other 15

containing the plane [o1a» 034, ce6]. These fall into two "types: the 9 "that

have another plane in common with Sis5,34s, example Si3>24, and the 6
th „ do not, for example 214,33.
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0<2 C34 OB0

S135f246 °30 ^26 014

C45 CtC C33

O12 C34 Css

St3,a4 a, 1)4 c,4

ba ®33

C12 C34 Cse

Stc,23 ai bg C13

b2 a< O24

Both "types of transformation can be don© ty projective,ties. For example,

gives the trihedral pair

10 0 0
0 1 e® 0
0 0 10
e3 0 0 1

Xo(x* + C6X8)(3to + X, + ^Xa) = Xa(cSXo + X3)(«aXo + X2 + X3)
X® (xi + c5xa) + xo(x3 + e3xa ) a e°xo xa + xoxaC^Xg + xs)

+ X2Xa(xa + X3)

XoXi(xo + xi) a x3xa(xo + xa + xg)

1 + e2 + <t* « 0
c + <r® + e4 = 0
€2 + €4 + C® =0
e3 + C® -t- C® s 0

+ e4 + ec a 0
1 + < + e® = 0

1 0 0 0
e* < -s ,3
c6

1 e"
0 1
0 0

€

0
1

gives the trihedral pair

x0( <r4>-c + xt + «5xa + e3x»)( e6x0 + xi + e£xa + €3xa)
« (ff6Xc + Xa)(c3xo + X3)(ck0 + xa + Xa)

C3Xo + Xo (xt + ^Xa + c8Xa) + xo(xf + €3x£ + «ex#)
as C3Xo® + X<? («6Xif + C3X#) + Xo(€SXg + X3X3 + €6X$) + XgXaCxs + X3)

XqX*(xo + Xi) » XgXaCxo + xa + X3)

Thus Si38,24e oon be protectively transformed into all 16 trihedral pairs
containing [ci2, C34, c56] and into no others. Therefore the order of the

projective group of Fe is 16 x 12 s 192,

Where does F0 fit into Segre's classification of the cubic surfaces over

the real and complex fields? It is a degenerate case of the non-equianharmonic

cyclic surface, [4-8] §§ 85-89, 100, tJhere the fundamental plane is f and

the centre, the intersections of the tangent planes at all the E'--points, is
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(cia, C34, ce6) > the centre does not normally lie on the cyclic surface, such

less on one of its lines. In the complex case the cyclic non-equianharaonic

surfaces have groups of order either 54 or 108, whereas Fe has a group of

order 192,

19. Grace's extension over GF(8).

When it is said that Grace's extension exists, it is meant that the six

lines oci as constructed in § 17 are skew and have a unique transversal.

Over GF(s), from the example in § 17, six lines ax with a transversal b

can be selected with any 4 having a unique second transversal, so that the «i

exist. However, a3 all cubic surfaces over GF(b) are covered by their 27 lines,

the theorem at the end of § 17 shows that there is no proper extension.

Y/hat does happen to the six lines ai ? It was shown in § 17 that, if the

surface Fi is covered by its 27 lines, ax passes through Li. Thus over

GF(q), cu passes through Li for i » 1, •«, 6, The twisted cubic t com¬

prises 9 points over GF(8), but must contain the 26 points Li, Ljk£.

From § 17, two of the Ljk£ may coincide with Li, e.g. Li, L334, L256 •

Four of the Ljk4 may coincide with one another e.g. Li23, Li46, L246, Lass.

Thus, if two Ljkg coincide with each Li and the remaining 8 Ljkg are

equivalent in two sets of four, the 26 points are 8 distinct ones: less

there cannot be. This leaves one point L on t. Haoh ai is a chord of t and

contains Li; L is the only oilier point of t that may lie on ai. Therefore

the 6 lines ai are all concurrent at L. An example of this figure is given

in Appendix HI.

To discover more of the figure it is necessary to find the plane of Hie E-

points for each Fi; let these planes be called fi i = 1,»««, 6, ai meets

the 10 lines bi i, o« i i = 2, 6 of Ft and cuts t in L, Lij bi i
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is skew to t and c*i Beets t in Li, which does not coincide with either

L or L| , So these 10 lines of Fi, Beet a* in at most 7 points. So

oti contains at least 3 E-points and therefore 5. Thus f i is one of the

five tritangent planes of Ft through ecu

These 6 planes, one through each ai, form cycles like f ifj.. ...-fm, which

represents
[at, hij] [aj, hjk] [<*n, bmi}.

If there is a cycle of two, say [ai, bia3 [«2 , bai3t then (bia, a3, 02*3) and

(hia, a3, o'a) are both E-points: so bi2 contains Li33, the meet of 03*3
and Ci8i hut bia is skew to t. So there are no cycles of two. Therefore,

suppose that fi and fa are [04, bi3, c'a 3 and [03, ba3, cJa 3 . Now let

Ki » (h, ai) i » 1, ••, 6 . Then, from D, and Da respectively,

Kg, K4, K®, K® are associated with Ka

and K-1, K®, K6, K6 are associated with K®:

therefore Ka, K4, ft®, K® are associated with K1

and Ki, Kg, Kg c£f- K®, ft®, Ke . Thus [a8, b31, c*a3 is f3 and the 6 ft,

form two cycles fif2f3 and f®f®fe or . In fact, in the example given

in Appendix III, the cycles are fifgf® and faf3fs, so that on h

Ki, K®, K® Kg, Ka, K® .

Each line bij meets Q of the 12 linos an, Ok# but the partitioning into

triads of these points on bij is not always determined by fi and fj. There

are two cases to be considered: either bij lies in one of ft, fj or in none.

Let be (btj, c*k) for k = i,j and (bij, ak) for k ^ i,j„ Consider

ba3| fa and fa are [aa, ba3] and [03, bs®}. So, from Da and D3

respectively,

K38 , ft" , Kg8 , K38 are associated with K8®
and K3® , K3® , K3® , K2e® are associated with Kg®

therefore K?® , K8® , K3® K28 , K33 . K8® .
T 4 6 3 3 6
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However, bi3 is in a different case; ft and f3 are [<*i, big] and

[<*a» Pi and D3 respectively,

K\2 , K13a , K\s , K162 are associated with K1e2
and , K14a , K1g2 , K^3 sire associated with K12,
so that either K1,3 , Kg2 , Kg2 ^ K1,2 ,.K1/ , K1§2

or K»,K'/,KV c4 K" . K» . K'» .

Each line at meets the 11 lines b, bjk k ^ i and therefore must

accommodate 11 points (at, b), (at, bjk) among the 9 it contains as well as

11 planes [at, b], [ai, bjkl among the 9 that contain it# As I»346 coincides

with L346, the planes [a*, b3e], [a*, b3e3 contain both a* and this point,

which lies on t and therefore not on a*. ThU3

[a*, b3eJ « [ag, bsg]#

Further, as b2S, b33 meet and as ai meets both these lines but not a*, a<

must pass throu^i their intersection; so

(a,, ba6) « (ai, bas)«
In this way, the 11 lines which meet ai occupy 8 points, given on ai by

b b33 b3« b25 bao b34 b33 b*6

b«e bss b36

Similarly, these 11 lines are in 8 planes through ai

b b33 b34 b36 b8e b3g b4S b3e

b3s b34 b4fl

From each Di i / 1, one can pick out a set of 4 points on ai and their

associated point, and similarly for the planes, but this is not reflected in the

above arrangements.

As the final piece of geometry of the figure, consider the plane LLiLj.

The concurrent sides of the diagonal line triangle of the quadrilateral

aiajcyc^j are LiLj, by and the transversal of b, LiLj through L; b
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meets cij and c £j» cannot lie in this plane and therefore contains the point
/ <1 1 N

Uij, Qij),

L

/ j t \ j
So b contains 15 points (cfj, cij) i, J « 1»***» Each of 6 cij

contains 5 E-points and so passes through (b, ai, c£*j) sKt a (cij, cij).
The remaining 9 points (o ij , e t j) therefore coincide in threes in the 3

remaining points of b.

The search for Grace's extension must now move to PG-(3,9),
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CHAPTER VII. The cubic surface, ami Grace's extension.
over GP(9Jg22IT

§ 20. The Eckar&i pointg on a cubic surface over GF(9).

Over GF(4), GF(7) and &F(s), cubic surfaces with 27 lines have been

found to be protectively unique and completely covered by their lines. Over

these fields Grace's extension of the double-six does not exist, a necessary-

condition being the existence of a point on the cubic surface off the lines.

Over GF(9), a line has 10 points so that a cubic surface with 27 lines does

not 'a priori* have E-points. From § 12, a cubic surface with 27 lines has

at most 10 E-points, in which case it is covered by its lines.

As mentioned in § 1, over "the complex field Eckardt showed,by considoring

Sylvester's form for a cubic surface, that a surface F with 27 lines has its

E-points at the vertices of its pentahedron; so that, if F has any E-points

at all, it has 1, 2, 3, 4, 6 or 10 and in the case of a degenerate pentahedron

9 or 18. Although Eckardt [ / § ] did not identify all the cubic surfaces

with 27 lines, a complete classification, e.g. Segre pp 125 - 162,

did not reveal any further arrangements of E-points,

Over any field, the arrangement of E-points on F is governed by the

lemma of §§ 5 and 13 that two E-points not on the same line of F are collinear

with a third E-point, Over fields of characteristic other than two, it was

seen in § 11 that each line of F has at most two E-points and F itself has

at most 18 S-points. With the help of these two lemmas let us examine, over

fields of characteristic other than two, the possible arrangements of E-points

on F.

If there is one E-point (at, b2, cta), & second E-point is either on one

of the same lines of F, e.g. (a®, b|, c12), and implies no other E-points, or
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is on different lines of F, e,g, (a2, b3, C33), and implies a third collinear

E-point (a3, bi, C13). If another E-point is added to (ai, b2, ci2 ) and

(as, bi, Ci2), the existence of at least one more is implied and a closed set of

three is formed. Thus, to construct any number of 3-points beyond three, one

can start with a collinear set of three,

e,g. (ai, b2, C13), (a2, b3, C33), (as, bi, Ct3)
without any loos of generality, A fourth E-point can be chosen in 5 ways: of

the three lines of F through it, either none or one or three will have occurred

in the above 3 E-points,

(i) Choose (a4, b6, c48); this and the other 3 E-points imply the

further 3 E-points (ci8, ca4, C3«), (cie» c25, 034), (ei4, c28, 035)# These

then induce the E-points (a6# b4, c46) and (a8, be, c88 ), These 9 E-

points are a closed set and form a plane Maclaurin set lying in threes on 12

lines, 4 through each E-point, From § 1, such surfaces exist over the

complex field where the 9 E-points are all the inflexions of a plane cubic,

(il) In this case choose (oi2, c34, c88); this implies two further B-

points (bi, a4, ci4) and (a8, b4, cs4). The 6 E-points are vertices of a

quadrangle lying two on each of the sides bi, aa, Ci2 of its diagonal line

triangle. This configuration occurs when the 6 E-points are all the vertices

of the pentahedron of F which lie in one of its face3,

(iii) Finally the choice of (a2, bi, ci2) gives a closed set of 4

(ai, b2, ci2), (aa, b3, c2a), (a®, bi, ci®)

(a2, bi, 0i2)•
The addition of a further E-point to (iii) is accompanied by the original

three choices: the 3 lines of F through the point can have none or one or

three lines in common with the 9 that occur above,

(iv) Take (a*, b8, o48 )j this implies the E-points (a3, b2, 033),
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(at, b3, cto) and the 11 others tying on none of the 9 lines ai, hi, cij

i, j = 1, 2, 3 as in case (i) of £ 15. These are the 18 E-points of an

oquienharmonic surface tying in threes on the edges of a tetrahedron which are

the axes of the trihedral pairs St23, 8433, Si2a>«ee.

(v) Now take (ai, h*, 0,4); this implies the further E-points (a4, ba, 034)*

(a4, 1>3, C34 ), (eta, 024, Ceo), (a3, t>4, C34}, (0,4, C23, 033)* These are

the 10 E-points of a diagonal surface, lying two on each of the 15 lines

residual to the double-six DBe,

(vi) Finally take . (a8, ba, ca3)j this implies only one more E-point

(at, bs, C|3). Thus there are 6 E-points tying in threes on two skew lines

as in the diagram of § 7. So the faces of both tribedra of the pair Si33

are colllnear and F has the equation

A x0Xt(xo + Xt) » xaxa(xa + X3) .

In fields GF(q) where (q—1, 3) » 1, each element has a cube x*oot;30 the

equation can be transformed to »

XoXt(xo + X1) a x3xa(x2 + X3),

Segre [-5"£] p. 224 gives the theorem that, over GF(q) where (q - 1, 3) =1,
the surface f(xo, xt) = f(xa, xa) contains [q3 + {(d - 1)3 * l]q + 1] points,

vhore d is the number of aeros in GF(q) of the cubic form f(x, y) • Thus,

when (q - 1, 3) = 1, the above surface contains qa + 5q + 1 points and there¬

fore cannot contain 27 lines. Y/hen (q - 1, 3) = 3, x® - 1 divides xq - 1

and x2 + x + 1 has two roots in GF(q), Then the equation of F can be

transformed to

Ax® + A x ® + + x® * 0.

If A has a cube root in GF(q), F is equianharmonic and contains 18 E-

points as (iv). If A has no cube root, F consists of q3 + 4q + 1 points,

Segre [T8] p.237, and cannot contain 27 lines. Thus it is not possible that
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F has exactly 6 such E-points.

The addition of further E-points to any of the cases (i), (ii), (v)

implies the cases (iv) or (v). Thus we can conclude that F, a cubic sttrface

with 27 lines over a field of odd characteristic, has 0, 1, 2, 3, 4, 6, 9, 10,

or 18 E-points and that these E-points are arranged exactly as over the complex

field as described by Eckardt [I % ] .

GF(9) is a quadratic extension of GF(5) by a root of fi3 » ft + 1 or of

Ha + fi = 1, Segre [5~7] p.84. Talcing the former equation, the elements of

GF(9) are

0, + 1, + cr, + a2, + a®
where 1+1 + 1=0

Or8 — O— 1=0 = 0* +1

and cr3 - cr2 «. a = 0 cr3 + a2 +1=0 a3 + a -1=0.

The only automorphisms of GF(9) ore $ and = 1, where $ replaces each

element by its cube.

Over GF(9), a cubic surface F with 27 lines has between 0 and 10

E-points, § 12, If F has 10 E-points, they are the 10 vertices of a

pentahedron and lie two on each of 15 lines as in (v). A diagonal surface,

although it does not have its usual form

Exf ■ 0 Zxi so,
o o

can be obtained by evaluating the above as a cubic in Xo, xi, Xa, Xg . The

terms in xf disappear and a factor of 3 can be cancelled. Then, over

GF(9), the surface is

t xi XJ - ¥1^ t X~1 s 0
i,j » 0 O

L/ j
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or more symmetrically

4 4

x-.XtX^ S 0 L Xi a 0,
i>, j, k . O 1 J ^ 0
i < j < K

Thus, as \ia & n + 1 has two roots in GF(9), the sui*face has 27 lines and

10 E-points, Baker [ -/- 3 p. 168, and is entirely covered by its lines. The

faces of the pentahedron are xi - 0 i = 0, 4 as over any other field.

Therefore, by transforming the pentahedron of any surface over GF(9) with 27

lines and 10 S-points into this one, all such surfaces are protectively

equivalent to the one given, whioh will henceforth be called P9° , Tie projective

group of F®, as over the complex field, Is the symmetric group of degree 5

consisting of all permutations of the faces of the pentahedron and has order 120,

To discover other surfaces, hexads in the plane could be considered. From

the diagonal surface, hexads with 10, 4, 2 B-points can be obtained by mapping

F® via the 5 different types of double-sixes. The hexad with 10 B-points

is, by § 12, complete. Segre [6~5~3 p. 49 has shown that over &F(9) there

exist complete 6, 7, 8-arcs. A 9-arc is contained in a 10-arc, which is

always complete. Thus a hexad is either a complete 6-arc or is contained in

a 7-arc or an 8-arc. The difficulty in considering the hexads in complete 7 or

8-arcs theoretically (practically, enumeration is straightforward giving only

hexads with 2, 3, 4 or 10 B-points) suggests examining further possibilities

in three dimensions.

For a cubic surface F with 27 line3 over GF(9), let e be the number

of E-points and n the number of points not on any line j then

e + n » 10 & 12

The case of F° where e s 10 n = 0 has just been considered. It will now

be shown that n « 1.
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To do this we require an estimate of the number of points on a plane cubic

curve over &F(9), Unfortunately, there is no estimate in the same comparatively

elementary vein as this work. Segre [5~S] p.228 foil. discusses several

cases nfliich he gives as particular examples of a general theorem of Hasse [17 ]

and Weil [ —

"An absolutely irreducible curve of genus g and order d over a field

ftF(q) has N points, where

The theorem is given precisely in this form and generalised by Lang and Weil [i'V-] •

(It is also equivalent to the Riemaim hypothesis in function-fields over a finite

field). In particular, this theorem shows that a plane cubic curve over GP(9)
has at most 16 points.

From § 12, F contains 145 points. Suppose F ha3 at least two points

P, Q off its lines. Either PQ meets F in no further points or in one further

point. In the first case, if a plane section of F through PQ contains a

line I of F, then I would meet PQ in a point of F other than P or Q,
t

contrary to the hypothesis; so all plane sections of F through PQ are

irreducible cubies. Therefore F contains at most 10(16 - 2) + 2 = 142 points,

which is contrary to there being 145.

Suppose then that PQ meets F in a further point R. So, if a plane

section of F through PQ is a line and a conic, the line will pass through R.

Thus at most 3 sections of F through PQ can consist of a line and a conic,

in which case the 3 lines form an K-point at R. Thus in the cases where there

are 0, 1, 2, 3 such plane seotions, the number of points on F is respectively

at most

jl? - (q ♦ 1)| « 2tf/q, g « Ka - i/a - 2)."

+ 3 B 135
+ 5 ■ 137
+ 3 « 141
+ 5 a 145
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Only the last ease is admissible ■where It is an E-point. So, for every pair

of points not on any line of F, there is an E-point on their join. As there

are n points of F on none of its lines, there are n(n - l)/2 lines through

pairs of these points and each line contains an E-point, though these are not

necessarily distinct. However n < 6; for if n > 6, n(n - l)/2 5 15 so that

at least 5 E-points would be required, whereas there is room for at most 4

since e + n = 10, For n = 2, 3, 5, e is respectively 8, 7, 5 and in

each case we have seen that there is no possible way of F containing exactly

this number of S-points*

..hen n = 4, e « 6 and the 6 E-points are vertices of a plane quad¬

rilateral as in (ii), e.g.

(cia# cog, o«e) (C34» cts» Cse) (oes, Ct3, C34)

(da, 036* o*g) (c34» c«», cas) (eta* 034* Oae)t
these are the point3 where the plane [c*a, C34, 033] meets the edges of the

tetrahedron whose vertices are the 4 points of F on none of its lines. Let

the tetrahedron be the simplex of reference and the plane [cia* C34, csel be

Xo + xi + Xa + X3 « 0, Then, as cie» C34, 05c ere joins of opposite vertices

of the quadrilateral, they have equations

x0 + X1 a x2 + Xq s 0, Xo + xa = xi + X3 = 0, Xo + Xa » Xi + Xa = 0.

The G tritangent planes containing 3 concurrent lines of F have equations

£oia» 036, ©43] Xq + Xi - a(x8 + Xb)

[oia* 036, 045] b(xo + Xi) a x8 + X3

[c34, Ci5» Caal xo + xa » c(xi ♦ X3)
[os4> Cis* C2S3 d(xo + Xa) ® x* 4 x®

[CQO, 0^8, C34] Xo + X3 « e(xi + Xa)

[Ofio* ©i4> C23j f(xo + X3 ) = Xi +• X®
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As [ci2, C34, csal meets F in C12, C34, 053 and as X0, X1, Xs, X3

lie on F, its equation is

(%0 ♦ xi 4- x2 + xgjcaotxoxt + AQ3X0X2 + A03X0X3 + A12x1x2 + aI3xIx3 + A33X2X3)
♦ (xa + x3)(xi 4- xs)(xi + xa) « 0,

Oi2t c35, C46 all lie in planes through XqXi. So xo + xi = a(x2 + x3)
meets F in x2 4- x3 » 0, a*x3 + x3 « 0, x3 + a^Xg » 0. Substituting

Xo = ax2 + ax3 - X1 in the equation

(a + 1)(xs + xe){(ax3 + ax3 - x<)(AoiX< + Aosxz + a03x3) + Ai3Xi*a + At3x,x3 + as3x2x3]

4> (x2 4- xs)(x<a + x<x2 + x1x3 + x2x3) «s 0 .

Then, suppressing the factor (x2 + xa), the coefficients of xa , xix2,

X1X3 in the remaining conic must be zero,

*• {a + t)Aoi +'1*0

a(a + 1)a0i - (a + l)Aoa + (a + l)aia + 1 =0

a(a +• 1)a0i - (a 4- 1)a03 4 (a + 1)ai3 + 1 «= 0

Substituting 1 for (a 4- 1)a0i in the last two equations and, as a / »1,

cancelling a + 1

1 - A02 + A12 - 0
1 • AQ3 4- A<3 e 0 .

Similarly from the section of F by Xo + x2 = o(x< 4- X3)
1 Aoi + A<2 sb 0
1 •» Aq3 4- A33 s= 0

and from Xo + Xjs e(x< + x8)
1 * A02 + A8a *s 0
t • Ao 1 4- A< 3 — 0 f

Therefore A0i * Aoa = A03 = (a + 1)"1 s (c + 1)~1 = (e + 1)"1 sa A

ai8 * At 3 ss A83 as a - 1 .

So the equation of F is
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(x0 4 x| 4 x3 4 xjjmaxocxt 4 x2 4 x3) + (a— l)(x|x2 + x,x3 + x3x3)]
4 (x2 + x8)(xt 4 x<j)(xj 4 x3) a 0

(a + 1)(xs 4 x3)|A(-Xi 4 ax2 + axs)(xi + x2 + Xs) 4 (A - l)(xix3 + XiX3 + x2x3)j
4 (xg + x3)(xi + xa)(xi + x2) a 0

which, since (a + 1)A = 1, is

The quadratic expression has two different rieroa, so its discriminant

A = (a 4 l)a - aa = 1 - a = -(a + 1)/A

is a non-zero square. So A /= 0, -1 and a4 s 1;

so (A 4 1)4 = A4
A® 4 A 4 1 e 0

d2is Xo + Xt b xg 4 xa • 0 so Xo + xt = A(xb 4 X3) meets F in 5 lines

for 5 values of A,

(A 4 1 )(xa 4 xa)[A(-Xt 4 Ax2 4 Ax6)(x1 4 x3 4 Xa) 4 (A - l)(xiXa 4 xiX3 4 XgXa)}

x0 4 xi ts a(x2 4 x3) meets F in

(xg + x3)(axaJ + a 4 1 x3Xs + axs ) * 0

A = 1 or -cr or - a3

4 (x3 4 x3)(x« 4 Xa)(xt 4 x3) * 0

Suppressing the factor (x2 4 x3)

il - a(A4 1)Jx* 4 AA(A 4 t)(xjf 4 x83 )

+> [a(A3 - 1) 4 (a - 1)(A 4 l) 4 1 j(xix® 4 xlxs)
4 AA(A 4 l) + (a • 1)(A 4 1) 4 1 \xa xs = 0

So A satisfies 1 • A T7T A(1 — A A 4 1)
AA(A 4 1)

A(Aa - 1) 4 A

A(1 - a A 4 1)
A( A® - 1) 4 A = 0
AA(A 4 1)

A(1 - A A 4 t
A(1 - A X 4 Ij

(1 - A A+1J 1 A A

A(Aa «l) 4 A = 0
AA( A 4 l)

" A K 4 ^ +

A(1 - A XTT) A(Aa - 1) 4 A



(1 - A A + 1 ) | AA(A + 1)3 - A3 A(A + 1)(A3 + A - l) +A(l - A)
| A(A + 1)(A* A - 1) + A(1 - A) AA(A + 1)3 - A3

(1 - A A + 1) [[AA(A + 1)3 - A3]3 - JA(A + 1)(A3 + A - 1) + A(1 - A)}®3 « 0

(1 - A XTT){-A(A + 1)(A - 1)3 + A(A + 1)HA(A + 1) - A} = 0

(1 - A XTT)(A + 1)(A - A XTT)iA(A - 1)3 - A} = 0

The quadratic A(A-1)3~A = A A2 + A - 1 A + A has two different factors so

its discriminant

V B (A - l)3 - A3 = A + 1

satisfies V4 * 1; so

(A + 1)4 # 1
A4 + A3 + A * 0

and as A / 0 A8 + A® + 1 as 0
so A s= 1 or o or o3 ,

Thus, by comparison with the previous values, A a 1, Therefore a = c = e = 0:

the planes x<j + Xi = 0, xo + x2 = 0, Xo + Xg = 0 are tritangent planes and

contain the points X*, Xa, Xa, which now lie on lines of P» P is, in fact,

x0(xt + xa + X3)(x0 + Xt + xa + xa) + (xa + xaXxt + Xe)(xt + xa) = 0

Putting xo + Xt + x2 * 23 + x< s 0, this becomes

XoX«(xi + xa + Xg) + (xo + + Xi)(x<> + x* + Xz )(xo + x* + Xq ) = 0

XoX4(xi + xa + X3> + (xo + X4)8 + (x0 + X4)2 (xt + Xa + XS)

+ (xo + x*)(xixa + X1X3 + xaxa) + xtxaxa = 0

XoX4(xi + xa + X3) + (xo + xt)(x1x2 + x*Xa + x®Xa) + XiXaXa = 0

^ 4
, ,Z XiXjXk S 0 Z Xi HO.i < j < k J o

This is the diagonal surface Fs° on which X0, Xt, Xa, X3 are 4 of the 10

E-points,

It has now been shown that n *5 1 •
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§ 21, The cubic surface over G-F(o) with 9 E-points.

From § 20, there remains the possibility that n = 1 and F has 9 E-points

as in (i), e.g.

which lie in a plane section of F on the 12 lines

RiRaRs, ReReRe* RvReR®, R1R4R7, RallgRa, R3R0R9

RfltyRs, HiRelia > RgReR®, RgReR?, RgRsR?, R3R4R8 .

These lines are given by the rows, columns and determinantal products in the

above array. If there is such an F with only one point off its lines, this point

lies in the plane section containing the E-pointsj this plane section therefore

contains 10 points and is rational. To show this, coordinates will be given

to the 9 E-points. Eight constants can be chosen arbitrarily in a plane; as

a point lias freedom 2, we may select 3 points arid then one more on both the

lines joining two of the points to the third, viz.

The remaining 4 points can be given coordinates by the following coUinearities

Hi (1, 0, 0) i R3 (0, 1, 0) J R3 (1, 1, 0)

R« (1, 0, 0) ; Ib» (0, 0, 1) } R, (1, 0, 1) .

Ra (0, 1, 0) ; R4 (0, 0, 1) ; R9 (0, «, 1)
Ra (1, 1, 0) j R7 (1, 0, 1) J Rs jp ♦ 1, P, 1)

R4 (0, 0, 1) j Rs </3 + 1, pt 1); Rg (/? + 1, P» y)

R? (1, 0, 1) ; R» (0, a, 1) ; R8 (3, 8 + 1)
The otlier 6 collinearities are

Ri (1, 0, 0) j R6 03 + 1, p, y)j Rg (8, a, 6 + 1)
Rf (1# 0, 0) } Re (/3 + 1, p, 1); R® (0, R, 1)
Ra (0, 1, 0) ; Re (p + 1, pt 1); R8 (S, a, 8 + 1)
Ra (0, 1, 0) j R6 (p + 1, p, y); R7 (l, 0, 1)
Rs (1, 1, 0) ; R4 (0, 0, 1) j Re (8, a, S + 1)

(1, 1, 0) j R6 (p + 1, p9 y); R® (0, a, 1)
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The conditions for these 6 collinearities are respectively $S + 1) » ay,

P s a, /3(S + 1)«»1, /3 + 1 = y, a = 8, ay = »t, These give

ai^s-ys5sl so that the 9 points are

R, (1, 0, 0) R4 (0, 0, 1) R, (1, 0, 1)
Ra (0, 1, 0) Rb (-1, 1, 1) Re (-1, -1.1)
Re'(1, 1. 0) Re (1» -1, 1) Re (o, 1, 1)

TiiSjy lie on the cubic curve

x?(y - z) + ya(z - x) + za(x - y) » 0

whose only other point is (1, 1, 1), Thus the plane section of F containing

the 9 K-points also contains the only point of F on none of its lines and

is rational. Before detenaining whether such a surface actually exists, it

will be helpful to find out more about the rational plane cubic.

Over G3?(q), q = 3n, consider a rational cubic T in the plane by pro¬

jecting the twisted cubic T given try

Xo : x, s Xg ; Xe = A3 J A8 : A : 1

from a point P on the line t : Xo = Xg a 0, which is, by § 16, the meet

of the osculating planes of r, onto a plane u which does not meet T in any

points belonging to GF(q). The q + 1 tangents of T meet I in dis¬

tinct points. Thus, through P, there is ore tangent, at Qo say, and q

secants, at Qi, ••••* Qq, of P. As the osculating planes of P pass through
P, the tangents to T, which are the intersections of the osculating planes of

P with u, all have 5-point contact with T, Thus the projections P(Qi) of
the Q i are either inflexions or cusps. As PQo is & tangent to P, the

planes through PQ0 meet r in the Qi is 0, ..., q so that all the lines

of u through P(^o) meet X in a P(Qi) i = 0, ,,,, q : thus P(Q0) is

a cusp. As the PQi i = 1f ,,,, q are secants, the P(Ql) i ^ 0 are

inflexions. So T consists of q inflexions and one cusp.

As the osculating planes of P are collinear in lt the tangents of T are



«» 85 —

concurrent in the meet of I and u. .Any plane containing two of the secants

of T through P contains a third; so the q inflexions of T are collinear

in threes in q(q - 0/6 ways* The osculating plane at Q0 contains

the point P
the other q points on t
the other q points on PQo
-Kqa - q) points on "conjugate" chords of f
Kq* - 0 points on "real" chords of r,

the last being collinear in threes. In this way we have all q8 + q + 1

points of the plane. If Q0 is the point A = v, then PQo» the tangent to

T at Q0, lias coordinates

v4 i • v® i 0 i Vs I T I 1 § 16 J

I is 0 : 0 ! 0 I 1 t 0 : 0

so a line a through P in the osculating plane at Q0 Is

v4 s • v3 t 0 i v8 - t v : 1 .

A chord /3 of T is

x*s2 : ra(r + s) J r8 + rs + s3 t rs s - r - s : 1,

If p meet3 a

v4 + v3(r + s) + (va -^Xr2 + rs + s8) + vrs(r + a) + z^s8 » 0.

So $(r - s)a a Jv2 - v(r + s) + ra J8

Thus the chords of P meeting a are all "real" or all "conjugate" according

as 4> is a square or a non-square. Therefore, through each point of the

(q • l)/2 chords a given by square <£, there is a real chord of P. Thus

the q(q - l)/6 planes through P and 5 points of P are collinear in sets

of q/3 on (q - l)/2 concurrent lines of the osculating plane ThU3

q/3 lilies through the q inflexions of T are concurrent at a point of the

cuspidal tangent in (q - l)/2 ways.

Over GF(9) in particular, T consists of 9 inflexions and one cusp

with the 10 tangents concurrent; the 9 inflexions are collinear in 12
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sets of 3, any set of 3 lines through the 9 inflexions being concurrent

at a point of the cuspidal tangent. Herein lies a difference from the complex

field where, although a plane cubic has 9 inflexions collinear in 12 sets of

3, a set of 3 lines through the 9 inflexions forms a triangle.

So, the surface F with 9 E-points at the inflexions of a plane cubic

contains 145 points of which 144 are on the 27 lines. The remaining point of

F is the double point of the plane cubic.

It remains to find out whether such a surface F with 27 lines and 9 E-

points actually exists. Keeping in mind the previous discussion of the plane

cubic over GF(9) let us aim at a surface like

atj xt xj ♦ j&? - x* x3 =0

where the 9 E-points are to lie on Xo = Xi3 - x® Xq = 0. The tangent

plane at (0, yi, y3, ya) is

*0 Z u " « aLjyiyj + ysyaXa - ya8 Xa « 0.
i« J

The points of x0 * x* - x® x3 « 0 are given by (0, t, 1, t®) and 3 points

t « p, q, r are collinear if p + q + r s 0 , To .how that F has 27 lines,

it is sufficient to find its equation in terms of each member of a triad of

c3a a® bg
Sieiner trihedral pairs, e.g. S,aa, S4fia, S|23>46A. Consider S,aa ba o,a a, j

a3 bt Oi 3

let the rows be the tangent planes at the E-points at t = 0, 1, -1 so that

the coliaans are tritangent planes, collinear in the line containing these E-

points.

Thus F can be given the equation

(Axo + xi - Xa)(Bxo + Xi - x3)(Cxo + x* - x3) ■ (xo + X3)(x8 - XsHx® + x3)
where Xo = 0 has boon chosen as the plane of E-points, Xe + Xa » 0,

xa - x3 = 0, Xa + x3 = 0 as arbitrary planes through t « 0, 1, -1 respectively,
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and x0 ■ x1 - x3 = 0 as the line through these 3 points. Thus 14 para¬

meters have been chosen; the fifteenth, appears from the unit element being

taken as the ratio of the products on either side of the equation. Expanding

the equation gives

ABC x<f + x<? iAB + AC «• BC)(xi ~ Xa)} * Xol(A + B + C)(xi - xa)8 - x® + x| }
+ xt • x® xg = 0

The tangent plane at (0, t, 1, t3) is therefore

Xo|I)(t - t3)® + t* *» t] taXa - x3 c= 0 where I) » A + B + C .

How similarly take the equation of P from the trihedral pair S456, three

of whose planes are tritangent planes at the E-pointa t = a3, -<y®, -o and

whose other 3 planes contain the line of these points, x0 = x, - c^xa - x3 = 0 .

(0K0 + x, - or'xa - Xa)(j3x0 + x< - cf®Xa - x3)(ys0 + x, - osx2 - x3)
= |(-D + o)x0 + 0x3 - xg}{(-D + l)xo + 0^X3 - x3H("^ + o*)xo - o3Xs - xa}

Xo Ia@y + (P )(D - l)(l> - o®)} + [(aft + ay + /3y)(xt - 0^X3 - xs) + o^Xg - Dxs|
+ XoK<* + P +y )(xi - cr®x2 - X3)® - (D + l)x£ -»■ x® } • ♦ x3 - x® x3 « 0 .

Compare the two equations of P.

From the coefficient of Xq, a + S + y s A + B+ C»0.

Then from x<? , oy5 ♦ ay 4 /?y » AB + AC + BC = 1.

Therefore from x ® , afiy * 1 * ABC .

Let ABC * k. Then A, B, C are the roots of

x3 + x - k = 0

and a, /?, y are the roots of x3 + x - k + 1 « 0. However x® - x =

(x3 + x)(xa + x - l)(x3 + x + 1); thus k « 0, 1, -1 i.e. k3 = k , So

P has equation

k xo# + xo (xi » x3) - Xo(x* • x^ ) + x* - x" xa « 0 .

Substituting k Xo + x^ for Xi gives

Xo (xi - xa) - xo(xa* - x3 ) + x* - xl xa = 0 .
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To verify that F has 27 linos, consider its equation via the trihedral pair

St20,456 derived from the Il-points at ta -cr3, cr8, a.

(a xo + xi + o^Xa - xs)(bxo + xt + cr^a - x )(cxo ♦ xt + 0^x2 - xs)

» (oxo - ox2 - Xa)(xb - o2Xa - Xs)(o3xo + o3x3 - xg)

(abc 4- 1)xo ♦ Xo i(ab + ac + bc)(xi + 0^x3 - X3) - o^xaj
+ x0{(a+ b + c)(xi + cr^xa - xa)2 - X5? + X3 } + X* - XaaX3 = 0

So abo + 1=0, ab + ao + be = 1, a + b + c « 0; and a, b, c are the

roots of xa + x+1=0.

Thua all cubic surfaces over GF(9) with 27 lines and 9 E-points

are projectively equivalent to F, hence to be called F9 , which is

x<? (xt - xs) - Xo(x23 - x38 ) + X13 - x2a x3 =0

This equation enables us to determine the order of the projective group

of Fp, Any projectivity leaving F9 fixed also leaves the cubic curve con¬

taining the E-points Xo = xi3 - x2 Xs =0 fixed, as well as the cusp

(0, 0, 0, l) of the curve and the cuspidal tangent Xo «= Xg = 0 . The

meet of the inflexional tangents (0, 1, 0, 0) is also fixed as well as the

set of 4 points (0, a, 0, 1) a4 = 1 in which the 12 lines through sets of

three inflexions meet the cuspidal tangent. Each of these 4 points is the

meet of the 3 lines in which the faces of halves of the pairs in a triad of

trihedral pairs are concurrent; for example, from the derivation of the

equation of S'J, the faces of one trihedron of S128 meet in Xo * xi - xa » 0,

of 3*66 oeet in Xo = Xi - cr'xa - x3 » 0, of Si 23,455 meet in
Xo «= xi + a3xa - xs = 0, These 3 lines meet in (0, 1, 0, 1) on Xq * Xa * 0,

The other 3 such triads of trihedral pairs are

$14,38 $35,36 Sao,14
$15,26 $26,34 ^34,16
®i6,34 324,35 336,16
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To determine the order of the group of I>1a we will consider in how many ways

Si as can be transformed into itself and whether it can be transformed into

another trihedral pair, both of its own triad and of one of the other triads.

If, under a projectivily of F#, the point of Xo = Xa = 0 which "belongs"

to a triad — in the sense that (0, 1, 0, 1) belongs to S123, S456, Si 23,45a

«■* is left fixed, then the triad is also left fixed.

Xo (xi - Xa) • Xo(x88 - x3 ) + x,3 - x3a x3 « 0

S133 (xi - x3)(craxo * Xi - Xa)(-ff2Xo + Xi - Xo) « (xo + Xg)(x2 - X3)(xa + X3)

Any projectivity leaving Si2y fixed also keeps both its trihedra fixed. Call

the trihedra indicated by Hie left and right sides of the equation L and 1

respectively. Consider the foliovdng three transformations.

(i) Leave xo, x3, X3 fixed and substitute 0^X0 + xi for xi,
thus giving a complete permutation of Hie faces of L and
leaving those of R fixed .

(ii) Leave x«, Xi, x3 fixed and substitute -x3 for thus
interchanging the faces x2 - xs » 0 and x2 + x3 = 0
of R while leaving those of L fixed,

(iii) Leave x0 fixed and substitute -x0 + Xi + x2 for xi,
» Xo - xa for Xg and - Xq + x2 + X3 for x-j, thus
interchanging the faces Xo + xg = 0 and x2 + x3 = 0
of R while leaving Hiose of L fixed.

Thus L ha3 a cyclic group of order 5, generated by (i), and R lias a

symmetric group of degree 3, generated by (ii) and (iii). S123 has a non-

abelian group of order 18 end these are all the projectivities which leave it

invariant.

As the axis of one trihedron of 5*6 s is Xq as Xi • Cf^Xs - xs ss 0

and of Si23j4S6 is Xo = Xf + 0^X3 - x3 = 0, the projectivity (ii) trans¬

poses S460 and Sia3,4se< Similarly Si23 can be transformed into both

S40O and 3138,466 * Thus the triad of trihedral pairs lias a group of

order 3 x 18 = 54, The projectivities (i), (ii), (iii) all leave each



• 90

point of Xo = x2 = 0 fixed and so keep all four triads invariant. However, the

triads can be transformed into one another. The projectivity, which leaves Xo

fixed and replaces xt "by xo - x», xa "by a3**, Xg by o°xo • c^Xg, makes

x0 (xoxt - o3Xo * 0^X3) - xo^-c^Xa2 + cf'Xo + 0X0X3 + x| )
+ Xo • x 3 + o3x» (c^Xo - G^xa) = 0

• X<? (xt - X3) + Xo(Xs? "» X-? ) - Xi® + X® X3 » 0 .

This projectivity transforms (0, 1,0,1 ) into (0, -<^,0, 1) and so St 23

into a member of one of the other triads. In thia way, St 23 can be trans¬

formed into all 12 trihedral pairs one of whose trihedra has an ax±3. Thus the

order of the projective group of S» is 4 x 3 x 18 » 216.

This surface differs from the q>die non-equianhanoonic surfaces over the

complex field, Segre [4-8] § 100, in that its centre, Hie meet of the tangent

planes at the b-points* lies on the surface and in its fundamental plane, neither

being true in the complex case. Also, the group over the complex field is of

order 54 or 108, not 216 as for F9.

It was 3een on Fe that the 5 points in which a line of a double-six

meets Hie other lines are partitioned into 4 and 1, as are the 5 tri-

tangent i)lone3 through the line, A similar property holds on B® .

Over ary field not of characteristic two, the condition that X(, x2 and

Xg, X4 are harmonic conjugates is

(xi + x3)(xa + x*) = 2(x<xs + X3X4).

Over fields of characteristic three, this becomes

Z XL xj = 0
Kj

30 that ary two pairs from such a set of xl arc harmonic conjugates; thus any

permutation of the 4xi can be effected by a projectivity. This also shows

that any four elements which are the roots of a quartic whose middle term is zero
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are harmonic. Over GF(9) in particular, the squares, satisfying s4 - 1 = 0,

as well as the non-squares, satisfying x4 + 1 =0, are harmonic. The 6

points on a line over GF(9) residual to a harmonic tetrad fall into 3 pairs,

any two of which form a harmonic tetrad, Edge [3.0]. Taking the initial

On the rational plane cubic over GP(9), the 4 points of concurrency of

sets of 3 lines through the 9 inflexions lie on the cuspidal tangent and

are given by 4 parameters which are the 4 non-zero squares in GF(9): thus

these 4 points are harmonic. Let then be Si, S3, S3, S4 and suppose, as

before, the 9 inflexions Ri i «= 1, •♦, 9 are 3uch that RiR2S3,

R7R.8R9> are concurrent at Si. Then,as the join of any two inflexions passes

through a third and also one of the Si, the range (S1R1R3R3) is in sextuple

perspective from the points Rn n = 4, 9 with the range ($1 Si Sj S*),
where ijk is a permutation of 934, As (Si S2 3S S4) is harmonic, so is

(Si Ri R2 R#), Similarly any 3 collinear inflexions plus the point where their

join meet3 the cuspidal tangent form a harmonic tetrad.

Now consider whose 9 E-points, one on each of the 27 lines, lie

on a plane cubic f. The 9 tritangent planes at the E-points contain the

inflexional tangents to f at these points and have a common point R. The

12 lines ai, bi i = 1, 6 of the doublo-six D meet in pairs at the

6 E-points

Tiiis arrangement of E-points on a surface projective to will be described

by saying that the surface is B(123,456): the numbers give the cycles of E-

pointa, 123 representing (ai, b2), (aa, b3),(a3, bO. Consider the 5 planes

tetrad as cr, -0, a3, -a3, the sextuplet consists of the three pairs

*, 0; 1,-1? -cr3.

E, :
R2 •

S3 ;
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[ai, b-J through aij they meet the plane of f in the lines RiR , R1R3, RtRc,

RiR4, RiR©. The 4 lines R1R3, RiIU, RiR®» form a harmonic range

(StRillgRe) on R4RfiR6 j thus the planes

Cai# ba3» [a(, b4], [a1# b5], [ai, b»]
aire harmonic#

In contrast, consider the 5 points (at, bt) on at. Their polar planes

[bt, at] with respect to the polarity of D meet the plane of f in the

lines R3R2, R3R, R3R4, R3R3, Rgllg j the 4 lines R3R2, RaR*» R3R6, RgRe fowl

a harmonic range (SiR^Rg) on P^RgR®, Thus the 4 points

(at, ba), (at, b4), (at, bg), (at, bo)
form a harmonic set on at • Thus the 5 tritangent planes through any line

of 1* contain a harmonic set J the residual plane is the only one of the 5

which contains 5 concurrent lines of F*, Dually, the 5 points in which

any line of any double-six on F* is met by the other lines of the double-six

form a harmonic set of 4 and a residual point according to their polar planes.

§ 22. Existence of grace's extension over G?(9).

There are two necessary conditions for a proper grace figure.

(i) the line b must have 6 slcow transversals ai such "that any 4 of

the ai have one further transversal and such that any 5 of the at are

linearly independent.

(ii) The 6 at, as constructed in Appendix II, must be skew.

When these two conditions are fulfilled, the proofs of Wren [65"] and

Rubota [ 33 3 show that the at havo a transversal ft; thus (i) and (ii)
are also sufficient conditions.

Suppose (i) is satisfied - b and at i = 1, •••, 6 exist. Then, as

in § 15, let them correspond to points b and at on the quadric K in II6
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such that the ai lie in the tangent prime at b = (1, 0, 0, 0, 0, 0). The

points ai are projected from b to the points Ai on the ruled quadric

Q : xt + ys = 0 lying in w = u = 0. Ho Aj lies in the tangent plane at

A i to Q and no 4 of the Aj are coplanar. The points on the line

bAi in ITg correspond in FI3 to the lines in the plane [b, ai] through

the point (b, ai). Let the reguli of Q be p, p* consisting respectively

of the lines gi, hil a 1, • ••, 10, So the lines gt of p represent the

points of the line b in n3 and the lines hi of p* represent the planes

through b. As indicated in § 21, 6 points on a line or 6 lines of a

regulus over G3?(9) occur most systematically as those residual to a harmonic

tetrad,

fcet 8t» get get Bio he a harmonic set with parameters o, c®, -a, -os
and suppose ory two of the pairs Gi» Be ! £a» Bsi Bat g4 also form a harmonic

set; let them have parameters 0, 1, -1, a2, -cr2 in the order given.

Further, let h?, h®, h®, hio have parameters a, a®, -a, -a® in some order

and let any two of the pairs hi, h4j h2, h®j h3, ha form a harmonic set.

These Ghi have 2®, 3! =48 substitutions which preserve the pairs. Any

oollineation leaving the 3et of 8hi fixed will also preserve the pairs. The

residual harmonic set lias 24 projectivities into itself, § 21 j the auto¬

morphism $ of § 20 also leaves the residual harmonic set invariant. Thus

the 48 substitutions of the 3extuplet can all be effected by coll inflations.

Thus the parameters of hi i = 1, 6 can be selected as », 0, 1, -1, o®, -o®
in the order given above. So

gt = hi » «» g6 a h® a 0
ga a ha * 1 gs = he = -1
g3 = h3 = c g4 = h® = -O®

Let Ai be (gi, hi) i a 1, 6. The condition that Ai, Aj, AAt are
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not coplanar is that the cross-ratios |gi, gj; gk, g.gj, [hi, hjj hk, Kg]
are unequal#

isi» Gai Sa, Gl] {hi, h2; ha, hi] i « 4, 5, 6

IS4» £e i Go, 611 |h4, ha; he, hi] i a 1 , 2, 3

Ui» Se, Sa, Go] Ihi, ha; h2, hg] the cross-ratios

ISat G6} Go, Go] hat hs; h3, he] on the left

ig3, 84 i Gi, Go] |h3, hg; hi, h«] are -1

Isft sai 6a, Go] ihi, I14,* h8, h«]
,f '**

the cross-ratios

iSa, Sei Sat Gel / £ha, h«; h3, ha] on the right

I Sa t Sei S1» So] [h3, hei hi, ha] are -1

iSi, SaS S*, SsI as -a |h», ha; ha, hg ] = —o3

i G1, Ba t 66 , Co ] sx a3 j[hi, hg; he, h

ha, Sai So, Gel as a3 ih8, ho; ha, h6] = 0

'hit

So fgi, gj} gk, gg] / [hi, hj; hk, hg] for all 15 sets ijkG. So no

4 of the Ai = (gi, hi) are coplanar.

Thus, choose the points (b, ai) in a sextuplet as the gt and the planes

[b, ai] in a sextuplet as the hi; also let the first coordinates ul of the

ai be such that any 5 aj are linearly independent (this is only 6 linear

conditions on the ui). Then b and the 6 ai satisfy (i). Also, of any

5 planes [b, ai], one set of 4- is harmonicj and similarly for the

points (b, ai).
From these ai, the lines btj = bji, the double-sixes Di and their cubic

surfaces Fi, and the lines at are constructed as in Appendix II. The 12

lines ai, ai are chords of a twisted cubic t, to which b, bij aire skew
I

and Ojk is secant, V 17.

The surfaces Fi are protectively equivalent to F° or FS1 . Suppose
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that at least one Ft is equivalent to the diagonal surface F9° , The group

of F® is transitive on the 12 lines of the double-six D, as the equations

given by Baker [ £f- ] p. 168 show; the other 15 lines ct j of F® all

contain 2 E-points. One of the 12 lines of D is

R:cry+3 + x = 0 S:oz+y + t = 0

and the 5 tritangent planes through it are

Sy R + Sj cr^R + S, oR — S

no 4 of which are harmonic. So b cannot be one of the lines of D con¬

taining no E-points, but must be one of the line3 etj containing two E-

points. Thus, on any of the surfaces Ft like F® , b will contain 2 E-

points; on any like F* , only one E-point. As at least one Ft is like

F ® , b contains at least 7 E-points on the Ft; so two of the lines cjk

pass through the same point (b, a*) of b. This point is then L« on t,

which contradicts that b is skew to t, § 17. Therefore, all the surfaces

Ft are like F9 : each line of Ft contains exactly one E-point on Ft .

Before considering whether (ii) is satisfied, it must be shown that the

at are either all concurrent or all skew. From the 6 a*, btj = bjt was

constructed meeting the 4 &k besides at, aj ; btj also meets at, aj.

Kubota £333 proved that the 4 reguli

(bt2, bj3, bi4), £bai, b23, b24), (b3t, b32, b34), (b4t, b42, b43)
have » line in common: let this be /356 = §66, The lines at, a2, a3, 04

lie in the 4 respective complementary reguli and thU3 meet /366. The lines

a6, a® lie in all 4 complementary reguli and also meet /368. Similarly

there are 15 lines j3tj = fij t each meeting 6 of the 12 lines ai, at.

btj meet3 at, aj, an, ag, %, an .

P ij aeets at, ftj , Or , , «n .
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Suppose a* meets aa at K, Then, as :i, a3 are "both chords of the

twisted cubic t, M lies on t. bi3, which is skew to t and meets both

<*i and eta, cannot pass through H and therefore lies in the plane m of

oi, eta, ®xe 6 lines /?ij / 1, 2 meet both ot and a3. &c, as it

meets and ag, lies in m or jxisses through M, As /9aa is in the same

regulus as b13, it cannot lie in m; therefore /366 passes through M,

Similarly the other Pij i,j £ 1, 2 pass through M,

However, aa meets p4a, /3aa and therefore lies in the plane [jS46>Ase]
or passes through their intersection, which is K, Similarly aa lies in

[A*e>Ase] or x*asses through H, As as does not meet a*, it does not

pass through M, Therefore as lies in [/3«a» />ssl. As a3 cannot meet a0,

it must pass through K, Similarly 04, <%, pass through M and the 15

as well. So the ai are all concurrent,

Vihen the ci are all concurrent, fljk is also determined as the unique

line through H, aj, ah, as was the case in §19 over GF(s), If, initially,

psa meets /34a, then a«, a3, as meet these two lines and so two of them

intersect; the situation is then aa above. Thus, if r.o two of the ai meet,

then Pjk does not meet and vice versa.

To see that (ii) is satisfied, suppose the ai are concurrent at the

point L of t. The 26 points Li, Li jk of § 17 also lie on t. As

ai does not meet ejk j, k ^ i, ai does not contain Lljr; so Lljk

cannot coincide with L, Suppose Lt coincides with L, Let Hi * (b, ai);
then any two pairs of Hi, He; Hs, Hgf II3, H4 are harmonic. As (ll3, Ha, H4, Hg)
Is a harmonic set, by the property of § 21 of ary double-six on ,

Da : ai as <13 a* as ose gives that (aa, bia, c®a) is an E-point. But
bie l>2o b36 b4e bse b

ft 6
cfe meets t at Li, So, as L and Li are coincident, a0 and cie
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both pass through it; thus biG also contains this point. But biG is

skew to t, so Li cannot coincide with L. Therefore the 26 points Li,

Lljk occupy the 9 points of t residual to L in some arrangement similar

to that of the 8 points in Appendix HI. over SF(8); no more than one of

the 26 points could be isolated. As Ft is like .Fg, at has exactly one

S-point and exactly one point through which no other line of Ft passes. Pros

§ 17, Li is either on a* or it is the point of Fi on none of the lines;

also, none of the lines bit, Ci1l i £ 1 pass through Li. If Li is on a\,

the 10 lines bit, c*i occupy the 8 points of ai residual to L and

Lt; so «i contains at least 2 E-points of Fi, This is impossible as

Fi is like Fg. Thus Li does not lie on ai. So Li is the point of

Ft on none of its lines. As at cannot contain Lij*, none of the 6aj

can pass through three coincident points such as L2«6, L8ae or Li24,

bias* haa6» If the 26 points Lt, Llji< oceujy only 8 points of t as

5m Appendix III, no at can pass through any of them. If they occupy the

9 points residual to L, only 5 points of t can have only two of the 26

points coincident and so at most Sat could be chords. Even if a further ai

is the tangent at L, there ire two ai which have only one-point contact with

t. So it is impossible that the at are concurrent.

Thus the 6 at are skew and their transversal £ is a lire of the 6

double-sixes

Ai at aj OK dg ORJ On

ft Plj /?ik ft it ftim ft in

of Appendix IV. So Grace's extension exists over GP(9),
An exam le of 1he configuration is given in Appendix VI.
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V 23. Description of Grace's extension crvwr GP(9).

Let us now take any case of Grace's extension over GP(9), There are

44 linos —

t.b, 6 at, 15 bjk, 15 ftgn, 6 On,

There are 2° - 64 sets of 6 lines obtained by selecting one of each pair

aa; i b 1, in, 6; 52 of these sets have a single traisversal viz.

b meets the 6 ai 1
p meets the 6 ai 1
bij meets ai, aj, or, at, am, a,, 15
Pij meets a;, aj, or, a^, On 15 ,

Also ai meets the 16 lines b, bj«, P\l j, k, t £ 1
ai meets the 16 lines p, Pj* bK j, k, I £ i .

The incidenoe relations of these 44 lines are displayed in Appendix V in a

table taken from Wren [651. The other 32 sets of 6 lines are rows

of the 52 double-sixes of Appendix IV, viz,

Di #i «J % af % an 6
b bij bik bi4 bim bin

Ai ai aj % <te Ofe On 6
P Pi J Pik Pi% Pirn P in

Vijk a; aj or ae an an 20
£jk /?ki Pii bmn bn£ bfm

Wakeford [63] proved the existence of a polarity W reciprocating b

into pt ai into ai, bij into /3ij, Thus the construction can begin from

any of the 52 lines b, pt bij, pij and the completing line will be the polar

of the initial line#

In the figure, there are 52 cubic surfaces •*» call them F-surfaces,

Fi containing the double-six Di i = 1, •«♦, 6
9i containing the double-six Ai i » 1, ...,6
Fijk containing the double-six Vijk i, j, ks 1,..., 6

i < j < k.
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Each surface contains

6 of the 12A- lines ai# at

6 of the 52B- lines b, /?, bij,
I i i jk

and 15 of the 480 C - lines cjk» yjk» a^m

The last are, on each Ft, 15 lines ojk j, ks 1, «•, 6
on each $i, 15 lines yjk j, k b 1, • 6
on each Fijk» 15 lines djfej* A, m * 1, ••, 6

where the lower suffixes refer to the indices of the two A-lines whence the

C-lirte is constructed. The 32 F-surfaces all contain the twisted cubic it

the A-lines are chords of t; the B-llnes are all skew to tj the C-lines

are all secants of t, i.e. they have one-point contact with t. Each A-

line lies on 16 and each B-line lies on 6 of the F-surfaees,

The intersections of the plane [b, ai] with the 5 planes [a,, bit]
are CiiJ these lines all meet t once and [b, atj meets t in three

"points", two of which are on at. So the Ci\ are concurrent at a point Li

of i. As ai is a chord of t, Li is the other point in which [ai, bi i]
meeta t. Hence the intersection of ary two of [at, bi i] i » 2,•«, 6 also

passes through Li. Thus the planes

[ai, b], [aa, bia], [a3, bta], E«4» [(%, bi8], [ae, *««] meet in pairs

in the following 15 lines through -Hie point L<

«13# «13» 0<4, Cis, Ol§, 3a36» 3^4% ajjg®, •••••, 5^4 .

Similarly the plane3

C<*1» Pit Pislt E&s, Pislt [a*t P\*lt Eae» Z5*o3» [a«, /3i6]
meet in pairs in the following 15 lines through the point Ai

y?3, y?4, y?3, dll\ aif, ajf, a;;4, a«8
and the planes
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[at, b3S3» [aa, bi3j, [a«, b18], [04, Aso3» [ag, i3463, U0, /3463 Beet in pairs

in the foilwring 15 lines through the point Li 23 (=A»56)

_ 1 .» _ 3 -.6 ,,0 66 a146 a146 a3B6 a348
c33» C13» C13» Vs6» V*Q> V*S> ®14 > ®15 » °\ 6 » C724 * •••••, 03a •

As each A-line meets 16 B-lines, there are 12 x 16 a 192 planes [A, B],
6 of which contain one of the 32 L-points Li, At, Lijk» As each of the 192

planes msets the 5 others through the same L-point in a C-line, the

192 x 5/2 » 480 C-line a are all accounted for and pas, 480/32 = 15 throu^t

each L-point.

From the double-six V133, a, cannot meet 93§® which is the inter¬

section of [a2, Pis] and ['as, Pi33» 3aia contains Ai so ai does not

contain Ai. Similarly

at cannot contain Lijk i, j, k / 1
Lm ia / 1
At

«t cannot contain Ltij
A* k + 1
Li

From § 17, Lt can only lie on at of the lines of Ft. From above, Li

does not lie on a«j so Ft is protectively equivalent to F» and Li is

the point on none of its lines. Similarly At is the point of $, on none

of its lines and Li33 that of litce* All the F-surfaces are protectively

equivalent to F» . Hence on each surface each line has exactly one 2-point.

Each B-line meets 6 A-lines, 5 on each of the 6 F-surfaces on which the

B-line lie3j and on each of these 6 surfaces, the B-line contains a different

E-point, e.g. if (b, ai) were an it-point on both F2 and Fa, then b would

contain the point (b, ai) & (c^3j cfs) - bi of t.

With regard to ai, the L-points are of two -types: either on L-point

lies in one of the 16 planes through ai and the B-lines which meet it
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or it does not. The above shows that at does not contain en L-point of the

second type* Suppose it contains an L-point of the first vpe, e.g. Lij then

the 5 lines c*i i / 1 are concurrent at a point of at. But (b, at) is

an E-point for o,'*s of the surfaces Fij so b also contains this point Lt,
1 ... t }

which is impossible as b is skew to t. So at dees not contain Lt. So

no A-line contains any L-point.

The 6 A-line3 through a B-line form a c o, figuration like that of 22.

For example,

on b meets a2 aa ae a6 a6
on » b meets at as 64 a® a©
on Fa , b meets at a3 a* ae a©
on ^4 , b meets at a2 aa ae a©
on b meets at &2 aa 04 a©
on Fe t b meets at a3 ag &4 aa

Let hi » [b, ai] and Hi « (b, at). Suppose that H# is an 2-point on

Ft. Then, by 21, (h3, h3, h©, h©) is a harmonic set; thus, on F©, Ht

is an E-point. On Ft, at must contain an E-point; as ct14 cannot

contain two E-points, it cannot be («t, bt©): let it be (at, b16). Then

(H3, li3, H4, E©) is a harmonic set; so, on F©, (a©, b1a) is an E-point.

Now, let He be an E-point on Fa; then (ht, h3, h©, he) is a harmonic

set: so Hs is an E-point on Fe, Therefore, from ?3 and F6,

(ht, hs, he, hg) is a harmonic set and He and Ha are E-points on F®

and Fe respectively. On F3, as He is an E-point, (a3, b36) is not;

let the E-point on a2 be (as, b26). Then (Ht, II3, H4, He) is harmonic

and (ote, b3e) is an E-point on Fe. So, from Fa and F4, (B§, H®, H«, He)
is harmonic and (a®, b34), (a,, ba©) are E-points on F3 and F4 respectively.

Thus the hi fona a sextuplet ht, h3, he. ha, lie and the Hi form a

sextuplet Ht, He; H3, IbS H3, H4. So, for any Grace extension over GF(9),
the 6 points, as well as the 6 planes, in which b meets the lines ai



102

are the sextuplet residual bo a harmonic tetrad. And so it is for all 52 B-

lines and the 6 A-lines meeting then. . .

The partitioning of the sextuplets for all the B-lines is known when all

the E-points on the 6 Pi are known. So far, in the notation of §21, ,

Pi is E(164, itJiki) where l,Jik, is 255 or 235

Ps is E(256, igjaka) , i2j2ks is 134 or 143

F3 is B(545, igj3k3) ia&s^a is 162 or 126

P4 is E(143, i^k* is L35 or 256

Ps is E(235, iejske) ie&k® is 146 or 164

?e is E(126, iejeka) ieJKke is 354 or 345

Suppose it13,lc1 » 253 i.e. (a3, bis), (as, bis), (a®, bi3) are E-points;

then, on Pa, (a3> b3i) is not an E-poirct so igjgka is not 143 but 134.

This means that (a*, b33) is an E-point on Fa, so it is not an E-point on

Pa. Therefore igjgkg is net 126 but 162. Similarly, let 265;

then is take = 146 and i®jek® = 354. The i j k are therefore given

by the first column above. These figures a::1® the correct ones for the

example of Appendix VI.

Consider bi8; (a3, bi3) is an E-point on Fi and (34, bi3) is an

E-point on Fa. So

[«M, kia3, [a®, bi3], [a®, bl3], [a®, b13] are harmonic
and [a®, bi3], [a®, bi3], [a®, bi3j, [a®, bi3] are harmonic,

• } i

Therefore -the pairs of the sextuplet are

[ai, bt3], [a®, bi3]j [a3, bi3], [ag, bi3j; [as, bt3j, [a®, bi3].
As (a3, bis) is an E-point on Pi and (ai, b88) on Fa, so

(ai, bi3), (a3, bi3), (04, bi2), (a©, biS/ are harmonic
and (oa, bia), (04, bi3), (as, bi3), (a®, bi2) are harmonic.

So the pairs of the sextuplet are
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(fti, (&3» ^ia)j ("a* bis), (as, bta); (&4» bt2), (a«, ^12)

Similarly the sextuplets of points and planes can be determined for the other

bij# With respect to W, the polar of (b, ai) is [/?, at], of (b».j# <*0
is [PiJ,ai]j of (bij, an) is [pij, an]* So the sextuplets of points

and planes for ft, fiij are given ty the polars of the sextupletc of planes

and points for b, bij. The partitioning of the sextuplets of points is given

in Appendix V.

These sextuplets determine the 15-points on all the F-surfaces, Define

the lines cJh, yjk, 3^f as the polars with respect to the double-sixes
& ' L AWS

Di, Ai Aftnn of the lines CjV, yjk, 3 j'k , i.e. c*3 is bhe meet of

[aa, b13], [as, bi8] and so o23 is tine join of (aa, biS), (as, bt2)«
For W, the polars of cjk , yjk, 3jk" are y^ , cjkt 3j£2 x, y, s t- I, m, n.
On Fi, (ae, bu) is an B-point, i.e. a^, b<4, c«6 are concurrent. From

W, Os, P\4> are coplanar and, from the polarity of At, Pi6, «4» y«a

are concurrent. So the E-points on §i, Fijk are in the reverse cycles

to those on Ft, e.g. F1 is E(164, 255) and ft is E(146, 255).

The 52 L-points Li, Ai, Lijk of t can be at most 10 distinct

points. From the C-lines which pass through the L-points

Li may coincide vjith Ai or Ljkn j, k, m 1
but not with Ln or Lijk n ^ 1

At may coincide with Lt or Ltjk
but jggt ' with An or Ljkw j, k, m, n ^ 1

Ltas may coincide with L4,I<s,L«,A«,4#,A®, Li ij»L2 ij,Latj,L466 i»j / 1,2,5
but not with Lt,L3,La,A<,A6,Ae, Li2k,Li3k,L2sk» k 1,2,5

At most 4 of the L-points can coincide,

e.g. I>1 »Ap.D24G,I<230 or L, 24,Li 361^236,1*46 6 •

If Li, At or Lias, coincide, the pair has no further coincident L-point.
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The L-poirrts must occupy at least 8 po.ats of t. It will bo shown that

in fact they occupy all 10 points of t.

Prom the double-sixes D i, a, is shew to aj, aj j / 1. Suppose at

meets a%; as they are both chords of t, this point (at, at) is on t and,

•from before, is not an L-point, Either a, and at are both "real"

chords of t or one i3 a "real" chord and the other a tangent. Let at be

a chord; then, as the point H of at on t other than (at, at) is not

an I—point, M cannot lie on a C-line* It also cannot lie on a E-lino;

but E is on §t and so must lie on an A-line, However, it is not (at, «t)
and at does not meet a i i ^ 1, So M cannot lie on ft • So at

cannot meet a*,

Suppose an A-line meets t in a point whose coordinates lie in GF(9);
let the line be at • As it has been shown that at does not meet at and

that at does not oontain any L-point, this point cannot lie on ft* So

all A-linec are "conjugate" chords of t, i,e, they meet t in two points

whose coordinates belong, not to GF(9), but to GF(9S).
The 32 l-points must therefore occupy all i0 points of t; for, if

there is a spare poi fc, it cannot lie on an A-line, B-line or C-line; and

the only remaining point on any F-surface is an L-point.

At this stage, the S-points on tlse F-surfaces and hence the harmonic

sets among the 6 planes and the 6 points of the 6 A-lincs through a B-
. * '

line are known. It remains to show how each A-line is met in its 10 points

by 1G B-lines and hov; the 32 L-points ore distributed on t. These

results are connected.

Per each of the 16 F-surfaees containing a particular A-line, there is

a harmonic set of planes and one of points associated with the A-line, However,
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theso 16 harmonic set3 of planes and of pc its do not olariiy matters. Con¬

sequently, let us first consider which B-lines may intersect. Prom the

double-r :txe3,

b does not meet by, but may meet Pij, ft

bij does net meet b, bik ,P»n k, m, n ^ i, j
but may meet ft, bk£, Pirn k, t £ i, j

ftij does not meet ft, ft in, b»n k, m, n i, j
but may meet b, Pk-e, bim k, I £ i, j

ft does not meet Ptj, but may meet btj, b . Suppose Li » Aej then

tlie planes [ai, b] and [ai, P12] have this point and ai in common. As

the point cannot lie on m, these two planes are the same; hence b meets

Pta, The line a8 also meets b and Pt8 but not ai, so a2 passes

through the intersection of b and Pis. A similar result holds for ft

and bf2 either by W or argued from the planes [a2, bi83» [a3, ft]*
In all, if Li = Ae then [ai, b] = [ai, Pia3» [aa, ft] « [02, biS]

(<*1, ft) « C^t, bia), (a8, b) * (aa, Pi8).

Conversely, if one of the 4 equalities holds, the otliers do also and Li = Aa.

Similarly

L134 « Li5S <"""•> Lai, ^94} » [ai, bsej» [aa» Ps*] = £<*2* Pse3
\ (aa, ba<) = (aa,

Li » L2 G4 <—>

Ai ~ Lias <—>

(®i» P34) * (*1, Pse), (aa, 1534) = (aa, bss)

[as, bis] - C«6» PieJ» [«e» big] « [oa, Pis]
(as» Pis) 85 (as, bi6), (a6, Pis) - \a6, biS)

[aa, Pi23 = [ag, bis3» [aa, pi3] - [as, bia]
(aa, bi2) = (03, P13), (csa, bis) * («3» Pis)

"These are all the " le coincidences of L-points Tsfeich are different within

the notation, except lor a pair such as Li and Ai j these do not imply the

coincidence of two planes [A, B] and so do not "mply the intersection of

two B-lines, Any two B-lines which intersect, if they are not polars in

W, are met by two skew A-lines; so the intersection of the B-lines must lie
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on an A-line. That two non-polar B-linos say intersect is wrongly denied

by T-ren [65] p. 164.

The distribution of the 52 L-points on t can be determined. Li is

the meet of the 15 lines ci i, i, j, k, lt m, n f 1» Therefore,

on the 15 surface;; F., Li lies on a C-line; on Pi it is the

point on no line of Fi. On any other F-surface, Lt is either on a O-line

or is the point on no line of the surface* do Li must coincide with some

other L-point. In the case where it coincides with Ai, there are 30 C-

lines all from different F-surfaces through this point* For the other two

F-surfaces Fi and §t, it is the point on none of their lines. Thus when

Li and Ai coincide, the position of this point on all 32 F-surfaces is

known.

If Li coincides with sane other L-point, say AB, then the 30 C-

lines throu^a Li and Ae do not include one from the F-surface Fi34» for

example. So this point Li = A* of t, which must lie on a C-line or be

the point on no line of Fia4, coincides dth a further L-point* So now

take 3 coincident L-points — Li23, Li48, Lass. -Hie C-lines throu^i

thera are

1 3 3 4 6 6 J 46 145 S6 6 240 246 36 6 346 346
Llast O33,C$3,0l3 tVS6»y46 »y45 >014 >015 >016 >®34 >035 >&2Q >»34 >"35 >035

T . - * -4 -8 „a 3 • -*S6 -126 -123 -346 246 -234 -366 -366 -235Li 40 • C46,Cl8,Ci4»y36»ya6»ya»»''la > ®13 >010 >»34 >»34 >046 >026 >036 >056

, 2 6 6 1 3 4 -234 -124 -123 -343 -146 -135 -346 -146 -136
—266* OB6>Ca6>C26*y34>yi4>yi3>012> 023 >024 >015 >«S6 >045 >016 ,036 >°46

These 45 G-lines include one from all like F-surfaces except Fi 2e> F134,

F236, F466J the last iiiree have Lg8e> I»i46> ^123 as the respective points

on none of their lines. The only L-point which can coincide with L123,

Li46, L36b is L346, which does indeed lie on Fi2s> being the point on none

of its lines.
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The 52 it-points therefore coincide in twos or in fours so as to exclude

any further coincidences# The solution of 4a + 2b = 32 and a + b = 10 is

a » 6 and b = 4. So the L-points lie 4 at each of 6 points and 2 at

each of 4 points of t. In the example of Appendix VI, their distribution

is

Ti : L*, Ac, La48# Laaa
Ta » I»a» Mt I*146» 1*346
1*3 t 1*4, A6, L125, 1*666
T4 S 1*6, At, 1*126, 1*134
T. t 1*138, 1*146, base# **346

S 1*134, 1*136, 1*236» I*4S6
Tf i 1*6, Ao
Tq i 1*6, A®
T9 1 1*136, 1*346
TlO« 1*166, 1*234

Hot/ oonsider the points in which each A-line is net by 10 B-lines. No

3 B-lines are concurrent, so the 16 Klines meet the A-line in 8, 9 or

10 distinct points: if 8, there are 8 coincidences among the 16 points

of intersection; if 10, 6 coincidences. So there are between 72 and 96

coincidences in all. Now each coincidence of two L-points, apart from a

pair like La and Aq, gives two coincidences of points where an A-line

is mot by two B-linec. So the 6 points of t in which 4 L-points

coincide give 2 x 6 x *C3 = 72 such coincidences on the A-lines. Any

concurrency of 2 B-lines and an A-line is given by the coincidence of 2 L-

points. Thus there are exactly 6 coincidences on each A-line, i.e. the

16 B-lines which meet an A-line occur as 2 through 6 points and one

through 4 points of the A-line. For the example, these coincidences are

given by the tabic and the diagram of Appendix VTI. The 16 planes through

an A-line occ * similarly, the planes through at being the polars in ¥/ of

the points on at .

Pour points on t have a cross-ratio given by that of the planes throngi
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the 4 points and a chord of t. If t is

xo : xt : xg : X3 s X : Aa : A : 1

then the plane through A = r, s, 0 is

Xo - (r + 5 + 0)x1 + (rs + r0 + s0)xs - rs0Xa, * 0

Xq - r + 3 xi + rxi2 • #(*1 - r + s x3 + rsxs) = 0

So the cross-ratio of the 4 planes through r, s and 0$, 02, 0g, 0<

is |0t, 03j 0a, 041 independently of r end s.

As (ai, haa) is an E-point on Pa, the planes [ai, bj, [ai, b2*j,

[ai, b2S], [ai, b2e] are hanaonic; so the points Li, hi24, Li2fi, Li28,

which are £1, T«, T3, T4, are hazmonic. Similarly (ai, b) is an E-point

on F4, so the planes [a^ ba+J# [aif b34]» Ui» Ui* b4«3

harmonic, as are L134# L134, Li45, Li4a, which are T3» T4, T5, Ta • Thus

the 6 points T i i = 1, ..., 6 form a sextuplet residual to the imimonie

tetrad (T7, T®, T», T$o) in the pair3 Ti, T3j Ta» T#| T4, Te . Qui

on any A-line, the 18 points in which it is met by the B-lines being

distributed as 6 sets of 2 and 4 of 1, the 4 are harmonic and the

6 are a soxtuplet divisible into 5 pairs any two or which are iiarmonic;

similarly for the 16 planes through the A-l±ne.

To summarise, 8P(9) is the smallest field over which Grace's extension

exists. Its peculiar properties depend on the partitions

10 = 6 + 4, 16 = 2x6 + 4, 32 = 4x6 + 2x4,

where the final digit 4 in each equation indicates a harmonic set, and on

all 32 cubic surfaces involved being protectively equivalent to Fg .
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GiAPTER VIII. Conclusion

§ 24. Supsaary.

The aim on starting the thesis was to investigate the existence of the

double-six and Grace's extension over finite fields.

Ovor GF(4) a new type of double-six was fbund, self-polar with respect

to a linear complex and which only exists over GF(4m). Ho double-3ix exists

over GF(5). The protectively distinct cubic surfaces with 27 lines over

GF(q) were all investigated for q s 9 and, on discoveiy, were denoted by F"

where q is the order of the field and n the nuaber of points on the sur¬

face on no line of it. When n » 0, the symbol was omitted if there was no

ambiguity. The surfaces are all in the following table where e is the

number of S-points and g the order of the projective group of the surfaces.

As there is no double-six over GEP(5), there is no Grace's extension.

Over GF(7) no line has 6 transversals such that each set of 4 has only

one further transversal. Over GF(8), a line and 6 transversals can be

found so that each set of four has a second transversal, but the 6 completing

lines of the 6 double-sixes obtained from the original line and sets of 5

of its transversals are concurrent; this figure is not limited to GF(8).

It is over GF(9) that Grace's extension is first found to exist and

the points in vhich the 6 transversals meet the original line are necessarily

a set of 6 residual to a harmonic tetrad; tlse 32 cubic surfaces involved

are all protectively equivalent to Fj •

4b
18
13
10
9

© 3

25,920 a 2®.34.5
648 = 2®.54
192 k 2®.3
120 s= 2® .3.5
216 - 2® .3®



§ 25. Epilogue.

Several problems arise from the thesis of which the most immediate follow,

(i) 'What is tiie smallest field over which a general cubic surface with

27 lines exists — "general" in the sense that it has no E-points?

(ii) What is the smallest field over which a general Grace's extension

exists — "general" in the sense that none of the particular coincidences of

Appendix VII occur?

(iii) What are the group of substitutions of Grace's extension and the

groups of projectivities of the figures ovor GF(S) and GF(9)?

(iv) Does Grace's extension exist over GF(4m) such that all 52 F-

surfaces have 45 E-points?

(v) Is there an extension to Grace's extension over any field at all?

I can give a definite answer to only one of these questions, viz, (iv),
but I will mate some remarks on all,

(i) Hie smallest possible field for this is GF(11), A classification

of G~arc3 in P&(2, 11) would decide the question,

(ii) The smallest possible field is GF(ol), since the 32 L-points of

the twisted cubic t are required to be distinct,

(iii) I would expect the order of the group of substitutions to be

52 x 51, 840, the order of the group of projectivities of the figure over C3?(8)
to be 6 x 192 and that of GP(9) to be 52 x 216.

(iv) For GF(4m) it was by no means established that the 6 transversals

of a line are chords of a twisted cubic t. If t exists, then Grace's

extension is not obtainable from b and ai i = 1, 6 so that all 52

F-surfaces have 45 E-points, as b would contain the 6 L-points Li

is 1, ***# ® of t.

If t does not exist, then the 15 C-lines which were given in § 25
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as passing through L* are not only the intersections of pairs of the 6

planes [ai, b], [<u, bt i] i = 2, • ••, 6 but also the joins of pairs of the

6 points (ai, b), (<u, bit), So the 5 lines &A all lie in [ai, b]
and contain these 6 points, which are therefore coplanar. Hence the 6

planes [ai, b], [ai, bi l] are all the same; this gives impermissible

intersections of lines. Thus it is not possible that the 32 F-surfaces of

Grace's extension all have 45 E-points.

(v) To the best of my knowledge, there is no mention in print of any

extension to Grace's figure, which itself has received sparse attention.

Any opinion I have heard lias been contrary to a further extension, but the

start of such a figure will be briefly considered.

Let b meet ai, as, as, a*, a®, as, a7; each set of 4ai has a

further transversal bjk£ , Thus from the 21 double-sixes like

ais as as as as a?
b biss bta* bias bias bi87

there are 21 lines aij. There are also 7 lines pi such that is

the transversal of «i8, <*13, 0*4, ai8, ai6» «<?• the £i. i = 1, •••, 7

have a transversal /3?

Baker [4] p. 195 proves the three theorems that given a line and 5, 6, 7

transversals the locus of a point such that the planes joining it to the 6, 7, 8

lines touch a quadric cone is a cubic surface, a twisted cubic, a point.

Thus there are 7 twisted cubics ti with a common point T such that ti

has chords aa» a8, 04, as, a6, a7, a1a, e*ia, <*14, ais, a16, <*17, Two cubic

curves with a common point have 6 common chords, Cremona [16]; so the

6 chords ctia» a8, 04, a®, as, a7 of -t| and ta are all their comnon chords,

A quartic surface is determined by 34 constants. The number of conditions

for a line and 7 transversals to lie on a quartic surface is 5 + 7x4 = 33,
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Let Q be the surface containing b, ai, as, aa, a®, a6, a? and T. Then,

as there are 13 common points required to put a twisted cubic on Q, the 7

cubics tl also lie on Q,

There is also a quartic surface connected with Grace's extension. The

chords of a twisted cubic belonging to a special linear complex lie on a ruled

quartic surface of the type UB discussed by Edge [19] §§ 60, 80, It is

possible that the 11 coincide so that the 7 lines at are chords of one

cubic t and Q is then one of these ruled surfaces, (Prom §§ 17, 19

such a figure can be constructed over GF(8), in which case the oij are all

real chords of t,)
a It

There are 7 x Ca =105 lines Pjk = As j involved in the construction:

the four reguli

(ba45, bg4o, bs4?)» (bas«t base, b367)» (b364, baea* ba67), (b37<, b37e, b37e)
all have the common line p*a and the 5 lines pfa, P*9t Pia, A63, P?s all
belong to a regulu3, Kubota [33], There are 7 x *C3 as 140 double-sixes like

at aa aa £*47" £*07 <237

Pa3 Pi 3 Pi2 befl7 b4s7 b487

and 42 like

fla ®u a*4 aiS °10 £*17

P% P»n Pn* Pis Pis Pit

If the transversal p of the pi does exist, there seems no simple way of

obtaining it either as the line belonging to certain double-sixes or from the

quartic surface Q» The dear synssetxy of Grace's extension of the double-six

is no longer present.

There is a further problem which suggests itself,

(vi) As there are various relations between the 36 Schur quadrics of a

cubic surface, described by Room [42] and which are almost the same as those of
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» are the relations between the polarities of the 32 double-sixes

At, VijK and how are these polarities related to W?
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APPENDIX I. The condition that 5 skew lines have a

traversal.

Take S skew lines a, b, c, &, e met by the line x. The line a

has coordinates ai i = 0, 5 such that a0aa 4- ata* ♦ aaa3 a 0;

similarly for the other lines. Any two lines, e.g. a, b, have a mutual

invariant v(a, b) « aobe + aib* + a8b3 + a3b2 + 04bt + asbo. Let a, b, c,

d, e correspond to 1, 2, 3, 4, 5 respectively so that S(a, b) can be

written «i8 and so on.

Take the symmetric matrix ¥ = (Sij) i, j » 1, •••, 5 and let the

cofactor of wij in |w| be itij. In classical geometry the condition

that the lines a, b, c, d, e have a common transversal is |w| = 0,

e. g, Todd [61] p. 145 ex. 41, However, over &P(2n), since W is

symetric with diagonal elements zero, jw| ® 0, Yet sets of 5 lines

with no cannon t: nsversal do exist oven over G?(2) so there must be a

more fundamental condition valid over any field.

Since the diagonal elements of ¥ are sere, jwj has, not 51,

equal terms. Thus the condition required ought to be found as the sum of

these 22 terras.

Since a, b, c, d, e are all met by x,

aoXg + ai%4 + a3Xa + a3x2 + a^x% + agxo = 0

b03fe + bix* + baxs + b3xa ♦ b4Xi + b3Xo « 0

OgY-S f C1X4 + C2X0 + C3X3 4- C4X1 + C6Xo a 0

doXg ♦ dtX4 4* dax3 + &3x2 + £4X1 + d5x0 = 0

eoxs 61X4 4- e8xa 4- e3xa + 64X1 4- e§*a « 0

but 44 terms. These form 22 pair3 of

XoX« 4- X1X4 4- Xax3 = 0 .
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Solving for the xi, from the linear equation and substituting in the

quadratic

ao at Aa &a a© ai ®8 as 04 06 4

bo hi bs ba b© bi ba b0 b© ba
Co Ci 02 ©S 04 Ci Oa Os 04 06
do da da d4 di da ds d© d©
e« ®i 03 «• ®4 e8 ©a ®4 ©6

0 0 0 0 0 1 j 0 as ba Co do ©8
ao ai aa as «4 as | 0 04 b* ©4 d4 ©4
b0 b* ba ba b4 ba | 0 a© bs Co d« es
Co 01 ©a c3 04 Co 1 0 a-a ba Ca d3 ©a
do dt da d© d4 a» 0 b, C« di ®t
®0 01 @3 ©3 ®4 ©6 [ 1 &Q bo Co do ©0

t £. t t
«3» «»4 ^8

1 a©
a© 0
b© %* u
ca ®ai ^aa 0 ^84 <$so
d« gn <j»a £43 0 ST45
®e %t 5oa «fes S54 <5

Expanding the detexninante bar the first roar and then, except for jw{»
by the first column

w a 5 jwj - E i'j . 1 By Wlj m 0;
K J

for ffij occurs twice in each of the three expansions, the coefficient of

#12 in the displayed determinant is -©obs - a«b«, Hi© mm of two of the

six products of -S$a «

Over fields not of characteristic 2, 2 £ «?ij iry is |*f{ expanded

5 tinea ao that Z «fy try ® 5|wj/ 2 and Hi© condition become© |wj/2« 0

as expected.

Now substitute 3y » AiAj oxeept for i^ « 45 and put «*© a K A4A1;

then try is the product of Af A<f A*? /AlAj and the corresponding
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cofactor in 0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 X
1 1 1 X 0

a 2A(i> <* X)

ao that «ij ff ij can be replaced in w = 0 by this cofactor save when

ij is 45; 2J4p v4s will be replaced by -X 0
1
1
1

1 1 1
0 1 1
1 0 1
1 1 X

s 5X - 2Xa

The replacements for «iaVia , #13^13, t?3oVa3 are all

• 2X - Xarite 1 1 1 t
1 0 1 1
1 1 0 X
1 1 X 0

and for <*14^14 Sf15jr16, 3a4®a4> ^bs^ssj $34^34 > ^se^as are all

* X .1 0 t 1
t 1 0 1
1 1 1 0
1 1 1 X

Thus, using all the above replacements in rt = 0,

6A(5 - X) - 6X - 5(2X - X2) • (5X - 2Xa) « 0

X(5 » X) ss 0 .

The line d does not meet e, thus w46 fk 0; this means that X / 0.

Therefore X » 3
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APH5NDH II. The double-sixes produced by a line
aM 6

&1 As &3 &4 3(5 84

Dt «t &3 a3 &4 8* 3* GJk F|
b bta bta bta bta bt 0

_ a
D8 ai Qta Qa &a a# a« cjk Fa

bat b baa baa bs» ba«

Dg at aa <*9 &4 &s aa Cjk Fa
bat baa b baa baa baa

« «Da at aa aa «a a« a« cjk F«
bat baa b«3 b b«« baa

rv •D$ at a3 aa a* a8 aa ojk F5
bet b8a baa baa b baa

Da at a3 aa aa Qe a® cjk 1>®
b©t baa boa baa baa b
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AFFETSDIX 17. The ->S double-sixes intrinsic to grace's
extension.

D1 Ct% 0-2 3.3 SLp !XQ
b bta bis As bi6 As

A, a* «a A A A A
P Pta Pi s Pts As Pto

Da at a# as &4 &e &$
b3i b bas b34 b3S baa

Ag Sf Q,a S3 CC4 S3 S3
At P As A« As Ae

D 3 at ag A A A A
At baa b As As As

A at a8 &a A A A
At As P As As As

Ds at ag as 04 a« ae
bst Ag Aa b As Ac

A Sf Sg S3 &4 Ug U3
At Aa As P As As

Ds at &a as a* A ae
At Aa Aa As b Aa

A 03 S3 04 as Sq
At Aa Aa As P Aa

Dq at A ag &s &s 03
bet bea As As As b

A at sa Og 04 sg a0
At Aa Pea Pes Paa P

Vt33 at A A A A A
Paa Pat Pi a Ae As Aa

Vsae as A A «t A A
Pee Pes Psa Aa At bt2

Vt 24 at A A A A A
As At Pi a Aa Aa As

Vase A A A A A A
Ae Pea Pae As Ai bta

Vt aa at aa 03 AAA
Paa At Pta Aa Aa As

V34Q aa &s &s at 03 A
Psa Pea As baa At bta

Vt26 at a a A A A
Aa Pat Pta As As As

V346 03 as A A A A
Pss Aa Pas Ac At bta

Vt 3s at A A A A A
Pas Pst Pta Aa Aa As

Vase a3 A A A A A
A e Psa Pas As At bt3

Vtas at as a A A A
P36 Pst Pta As Aa As

Vase A A A A A A
Psc Pea As As At As



'is® a« a3 a© aa
Pat Pei Pi 8 $48

'mb ai a® a® Ob
P4B Pel Pt4 $88

V«®6 ai 3* a© as
Pes Pel Pi4 $88

?t8© a* c® a® 03
Pes pQi Pit $84

04 '348
$ea $»4

«e o® Vase
$•8 $83

Oa 0% Vgj{
$83 $88

0» 04 Va84
$48 $88

a® a® a© Of 03 o®
P®8 Pea Pse $88 $ei $is

&a a® 8® Of a® a®
Pee Pea Pss $48 $51 $14

ag a® a® Of a® a®
Pee Pea Pas $48 $e*. $*4

a® a» a® o« o® a®
Ps4 P48 Pas $88 $81 $18
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APH3NDIX V. wren's diagram .

The pairs of the sextuplet of points in which a B-line is met by the A-

lines re x» x; y, y> 2, 3. Any two pairs are harmonic .

ai a» &3 at at ae «1 a8 a3 «t a€

b X 0 a a 0 X • t * • • ♦

• • X y z y X z • ♦ • •

^19 • X # » y z z • X • • •

^14 • X X • 0 ti z • • z • •

tis • X 0 2 * X z • * • y •

bie • X y Z y • X » • t *

ba3 X • • V z z • X 0 • • •

bat X • y • y z • z » X • •

bat X • 0 X • z * 0 • # z •

bat X • X V y • • z • # •

b#4 X V * • z 0 • • X 2 • •

bat X X * • u * • z • z •

bat X 0 • X z • * • z. • • 0
bts X 0 X • • z • • • z y •

bte X X 0 • z * • • • y • z

bet X 0 II 2 * m • * • •, z X

Pitt • • • • X u z z X y • •

Ptt • • • X • y z 0 z ♦ X •

Pts • • • X y • X z z • 4 0
p3t • • X • * u a z • X 2 •

P®® • • X • & # z X • y # z

Ps4 • • X X « * u 0 • ♦ z z

Pat » X • • • X * z z y •

Pa® • X # • X • a • 0 z * z

Pat • X * V • • z • 0 • X 2

Pa 3 • X y • * • a • • z z X

Pi® X « • • • • 0 0 2 z •

Pi® X * * • y ♦ • 0 z 2 * X

Pit X * • y • • • z X • z 0
Pi a X • 0 • • • • X * t y z

Pi a X 0 * • • ♦ • • 0 X 2 z

P • * # • • • X 0 z X 2 0
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AEFENDIX VII. The st>ecial concurrencies of lines implicit In
Grace's extension of the double-six over £F(9) .

The 72 coincidences of tfro B-lines on an A-line are given for the lines

of Appendix VI .

ai u

Pi 6
bas
b46

b34
Pi 4

bae
b34

bas
P12

b30
bos

b3s bss Pis Pis

<*i P
hi a

Pa 3
P46

Pa4
Pa 6

Pas
bio

Pao
P34

Pss
bio

Pas Pss bia bio

aa b
Pia

bis
b46

bis
Pa4

bio
bso

bis
bss

bss
Pas

bso bos Pas Pas

Oa P
t»4

Pi 3
Ps 6

Pi 4
Ps5

P15
bas

Pis
bia

Pas
Pss

P34 Pos baa bas

as bia
bs«

Vt4
baa

bio
Pis

bss
Pa3

bos
Pas

bos
P34

b bis bao Pas

«• Pi 3
P<6

Pi 4
bi3

Pie
Pa6

Pa o
baa

P45
b30

Pss
bss

P Pis Pao bas

ft# b
P34

bia
bsa

bis
be®

bio
Pi 4

bio
b25

bos
P*6

baa bas Pao Pos

«« P
bos

Pia
Pss

Pta
bis

Pis
Pao

Pis
Pas

Pas
bas

Pas Pas bao bos

a6 b

P46
bia
b4«

bis
Pis

b83
Pa6

b24
b36

bas
b3o

bi3 bis Pas Pse

as P
b«

Pia
Pa e

P14
Pa a

Paa
Pos

Pa4
bas

Pao
bos

Pia Pis b36 bee

as bis
P26

bi3
Pie

bl4
bso

ba3
bos

bas
Pss

boo
Pos

b bis bao Pas

«o Pi 3
bis

Pia
P48

Pi 4
b46

P33
bao

Pas
Pa4

Pas
bss

P Pis Pao b36
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Naf»c>u»«is»«6Cieo oona^^ooi^uaei^uw

8 8 8 g
8 8 8 88 g

8 8 8 8
8 8 8 8 g 8 ;°*

8 8 8 8 g*
8 8

8 8
8 8 8 8

•» a1
u

-o4
H

-C
a

MO*
M

M O*

8 8 8
8 8 8 8 ^

8 8 2°*
8 8 8 g %"

8 8 8 g %"
8 8 8 8 g 8 Z#

8 8 8 g £«*
8 8 8 8 S*

8 8 8 8 ?*
8 8 g 8 £*>
8 8 8 . £ £ £

8 8 8 8 p*
8 8 8 8 g^

8 8 8 8 ST*
£ JP £ 8 8***

£ £ £ 88 8 $*>
8 8 g f f*
8 8 8 8 SP*

8 8 8 8 ?*
8 8 8 8 ?*

8 8 8 8 8 8 F*
8 8 g 8 ?»

8 88 8 8 g ?»
8 8 8 8
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