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JTRODUCTION

Between March 1962 and March 1965 I did an M.Sc, thesis entitled "The
double~six of lines over PG(3, 4)" under the supervision of Professor
T.G, Room at Sydney, The results of this are embodied in a paper [50]: the
numbers in s@am brackets refer ?_}n'ougmut to the bibliography at the end of
this thesis, From .October 1965 'I:o October 1965 I have been doing this work
wnder the supervision of Dr, W,L. Edge at Edinbm'_,gh&

M, 3s used to denote the projective space of n dimensions, GF(q) the
Galois field of q elements and PG(n, q) the projective geometry in Il
over GF(q),

The main aim is to clarify and extend the earlier thesis, which
investigated I'hhe double=six of lines over the smallest field for which it
could be defined, and to find ocut how Grace's extension of the double~six can
oceur in a finite geometxy, In fact, all the projectively distinet cubic
surfaces vith 27 1lines over GF{g) have been classified for q s 9.

Bach of these surfaces is denoted by !‘a as it is found, vhere n is the
number of points on no line of the surface (this symbol is omitted if there

is no ambizuity) and q is the order of the field, Two surfaces are defiined
to be projectively distinct in PG(n, q) if there is no non-singular linear
homogeneous transformation of the space transforming the one into the other,
ef, Segre [57] Chapter 16, Grace's extension of the double-six is also
considered for all 6F(q) q s 9.

Two main features distinsvish PG(n, q) from the geometry over the
complex field, Firstly, the nmber of [ip's in I} is knowm, viz, it is

(@ at) / B (&0 e)  seae [ ] puzsr;
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for r =0, this is the mmber of points in I, whieh ‘s therefore

(¢"** = 1)/(q=1), Secondly, the number of roots of an equation in one
variable of degree m that lie in the field is known only to be between 0
and m,

Four references occur most frequently: Baker [4] and Segre [48] for
the classical theory of the general cubic surface, Told [61] for classieal
projective geometry, and Segre [57] for the theory of Galois fields and
finite projective goometries. A model of the double=six of lines is given
by Hilbert ani Cohn-Vossen [29] p. 165,

Finally, o finite projective geometry should not be confused with the
branch of mathematics known as "Finite geometry", in which a comparable
problem is the consideration oi the @7 lines of a cubic surface over the
real field which does not necessarily have an equation, e.g, Marchaud [36],
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CHAPTER I, Historical sumnary,

57 E_xe double~six and the cubic surface in classical projective geometry.

Throughout this short account, the emphasis is on the particular discoveries
relevant to the remainder of the thesis., There is no intention of providing a
general survey of the cubic surface: for this, extensive references are given
by Meyer [27] and Henderson [I% ],

There are 27 lines on a general cubic surface, F, over the real field.

This result was first published by Cayley [ 7 ] in 1849, He observed that
through each line of ¥, there are {ive planes meeting it in two other lines.
Since these planes, deseribed as treble tangent, named as triple tangent, which
we will call tritangent, each contain three of the 27 lines, they number 45,
Further, he showed that the eguation of F can be written as LHN + PQR = 0,

where L, M, N, P, Q, R are linear forms in the four coordinates, in 120 ways.
The planes L = 0 etc. are all tritengent planes. The gix planes form a pair
of trihedra, the planes of each one containing the same set of nine lines., He
also proved that each pair of trihedra, later to be called a Steiner trihedral
pair, is assoclated with two others, dividing the 27 lines into three sets of
nine; and he notated the lines accordingly., However he said "There is great
difficulty in conceiving the complete figure formed by the twenty-seven lines,
indeed this can hardly be accomplished till a more perfect notation is discovered"
and,at the end of the paper "I may mention in conclusion that the whole subject
of this memoir was developed in correspondence with Mr. Salmon, and in particular,
that I am indebted to him for the determination of the number of lines upon the
surface.....?

In 1851 Sylvester [60] stated, without a proper proof, that the general



-g -

cubic surface cen be expressed as tle' =0, ) Aisi =0 where the 2. are
linsar functions of the coordinetes Xo; M, ¥e, Xs 6nl the 5 planes 5L = 0
form a pentehedron, The result was proved in 1861 by Clebsch [/0O] firstly
using the method indicated by Sylvester and more directly [// ] 1later that year,

The projective generation of F as the locus of intersection of corres-
ponding planes of three collinear stars was made by Grassmann [J16] in 1855,
In 1857, Steiner [5(] systematically expounded a long list of emumerative
properties of the 27 lines, most of which are implicit in Cayley's paper. In
1858, Schlafli [4¢] proved the existence of the double-six of lines by con-
sidering when three corresponding planes of the stars meet in a line, and showed
that there are 36 double-sixes on P, e then suggested the double-six notation
for the 27 lines = ai, bi, cij by =1 00, 6 14§  which 1llustretes
all their properties except their gymmetry. This notation has since been
standard and stlll seems the simplest devised, After enunciating the double=~
six theorem, he asked for a proof of its existence independent of the cubic
surface on which it lies. He mentioned a surface with fifteen real lines and
six pairs of conjugate lines which form a double-six: +thus he anticipated
Clebsch's diagonal surface, though not the reason for its name,

In 1864, Cayley [ X ] discussed a special cubic surface which isolates
a particular trihedral pair, The three planes of one trihedron meet in a line:
the three planes of the other trihedron, which he named tritom planes, each meet
the surface in three concurrent lines., The points of concurrency were named
tritom points, The respective properties of the two trihedra imply each other.
The existence of the tritom points and their collinearity in certain sets of

three are properties intrinsic to the smaller finite geometries.

In 1866, using the projective definition, Clebsch [/l ] mapped F onto



& plane, plane sections of F being mapped by cubic curves through six base
points, The correspondence is birational with some exceptional elements.,

The six base points do not lie on a conic and each represeniscne of the lines

of half a double~six ai i1 =1, «.cy 6 sgy. In 1871, considering equations
of the fifth degree, Clebsch [/3 ] found a curve which is the intersection

of a quadric and a cubic surface; written in pentahedral coordinates it is

D10, 26°=0, 2£:°=0, The cubic surface contains the diagonals of
the quedrilaterals cut out on each of the five faces of the pentahedron by the
other fouwr: hence his name "diagonal surface of the pentahedron", These
fifteen lines lie in threes in fifteen planes, in ten of which the three lines
are concurrent, being the joins of the ten vertices to opposite edges. The
remaining twelve lines form a double-gsix, The exlstence of the double-six on
the surface depends on the "Golden Section" whose proportions are given by the
solution of p® e p =1 =0, In the plane representation the six base points
form a Brianchon hexagon in ten wgys, He characterized the gquadric by showing
that its section by a plane of the pentahedron contains the three pairs of
double=points of the involutions determined by the intersection of any dilagonal
with the cther two. Clebsch just missed the polarity of the double-six since
the above quadric is the one required; mneither did he point out the invariance
of the double~-six under any permubtation of the faces of the pentahedron, But
in 1911, Bumside [5 ] constructed this special double-six dually from a
skew pentagon whose vertices are actually the poles of the pentahedral faces
with respect to the polarity of the double=gix, and showed the double~-six to
be invariant under the group of permutations of the vertices of the pentagon.
In the plane representation, the five vertices of the skew pentagon become five

collinear points; these points are five of the fifteen diagonal points of 2
pentastign, whose vertices are taken from the six base points, The collinearity



of five diagonal points of a pentastign being subject to p° = =1 =0 was
observed by B. Segre [S6] 4n 1959,

Eckardt [/% ], in 1876, proved that if two of the coefficlents a; of
the equation of F written in pentahedral coordinates = I aixi® =0 2xi =0 =
are equal, then one of the vertices of the pentehedron is a tritom point.

The tritom points were afterwards called Eckardt points: we shall eall them
E~points. He showed that these cases comprised surfaces having 1, 2, 3, 4, ©
and 10 Eepoints, The surface with tlhree is Cayley's: the surface with
ten is Clebsch's. Sylvester's form for the cubic surface wes 2 xi® =0

Z bixi® 0, which is equivalent to the form above only when the pentahedral
faces are 4 by 4 independent, Eckardt then considered the two cases of
four and three faces of the pentahedron being dependent, In the former case
when four faces have a common point, the surface, which is described by

Segre [42] {{ 85-88 as cyclic and non=equianharmonic, has the canonical
equation x%° + K = 0, where K is a canonical cubic form in =xy, Xg, Xe.
The surface has 9 E~points which are all the points of inflexion of the

cubic curve ¥, =0 K =0 and which therefore lie in threes on 12 lines.
The tritangent planes at the 9 E-points are concurrent at the vertex of the
cone K = 0, The second case when three faces of the pentahedron are collinear
can be reduced to the canonical equation x° + %® + %® + %® =0, Eckardt
showed that over the complex field it contains 18 E~points lying in threes
on the edges of the fundamental tetrahedron, The existence of the E-points
depends on solutions of ¢ + p+ 1 =0, This surface was named the equian=
harmonic surface by Segre [ 4% ] p.128 after the general cubic or eguian-
harmonic curve in the plane with vhioch it is connected, The complete deter-
mination of surfaces with a degenerate pentehedron was given by Redenberg [/ ]
in 1879, Further, Segre [45] {{ 89-94 showed that there exist non-singular

cubic surfaces with no Sylvester representation,



"Die sechs Geraden g und ¢ der F®; welche mit den beiden erzeugenden
Netzen dor (¢) und (g) derselben susammenhingen und die bekannte Schlaefli'sche
Dopplesechs bilden, besitzen eine Eigenthimlichkeit, die den Geometern bisher
entgangen zu sein scheint,” wrote Schwr [47] 4in 1881, and proved, using the
projective generation of F, the existence of & quadric with respect to which the
double=-six is self-polar,

In this paper Schur showed the existence of the double-six by using a porism
of the plans cubic curve, This proof was not independent of the cubic surface,
However, in 1870, Ceyley [9 ] achieved the result using line coordinates. This
proof was of inordinate length and one in a simpler form after the same style and
also proving the polarity was given by Kasmer [32] in 1903, In 1908, Richmond
[40] gave a short and elegant proof by showing thet "if in space of five di~
mensions a quadrdc passes through all the vertices of a hexahedron and touches
five of its faces, it must touch the sixth face also, Finally in 1911, Baker [ / ]
gave a purely geometrical proof in three dimensions of the doublee~six theoren
which depended only on the incidence of properties of the lines and was quite
independent of the cubic surface, This proof showed clearly that, given five skew
lines with a common transversal, the necessary end sufficient condition for the
formation of the double~six is that each met of four out of the five lines shall
have & unique second trensversal, Further in 1921, Baker [ 2 ] gave a proof
by projection from four dimensions.

§ 2+ Grece's extension of the double-six,

In 1898, Grece [.15 ] showed the inter-dependence of the theorems below and
proved an extension of the double-six theorem.

1) "¥e take six hyperplanes in four dimensions; eny four of them meet in 2
point, consequently omitting one of them we get five points through which there
is a hypersphere, then the six hyperspheres so obtained by omitting each hyper
plane in twrn meet in & point,"



2) "Pgking six linear complexes having & line in common then any four of them
have another line in common, and therefore from a set of five of them we get five
lines through which one linear complex ngy be made Yo pass; then from the six
complexes we get six sets of five, and as from each five we get another complex,
we thus derive silx new complexes, then the theorem is that these slx compleres
have one common line,"

3) "If we have five lines meeting a given line, as in the figure, a, b, c, 4, ©
meet t, then any four of them as &, b, ¢; & have another line in common; thus
we get five such lines and ..... these five lines are met by another line f',
How ..... 3f we take six lines a, b, o, 4, e, £, then from each set of five we
get a line like f', and the property is that these six lines are all met by one
and the same straight line."

Groce studied the correspondence between line geometry in three dimensions
and sphere geometry in four dimensions. Then by considering cubic threefolds
in four dimensions he proved 1), 2) is equivalent to 1) by the sbove corres-
pondence, The extension theorem 3) is a special case of 2),

Another proof, which brought out the relations of all the lines implicit
in Grace's figure, was given by Wren [65] in 1916, This involved 44 1lines =
the original line, its six transversals, the fifteen second transversals of sets
of four of' these six, the six completing lines of the six double=sixes, the trans-
versal of these six, and the fifteen second transversals of sets of four of these
six, A diagram showed that these lines form 52 double=sixes and that the
Grace figure starting from six lines and a transversal is formed in 16 ways.

In 1917, Kubota [33] gave a shorter proof after the same siyle,

The theorem appeared again in 1922 in a dramatic way. E.K. Wakeford had
been corresponding with Baker while a soldier in the First Worid War, He was
killed in action and a manuscript found in his kitbag was sent to Baker, who had
it published [(3 ] with a paper of his oom [ 3 ] expending some of Wakeford's
arguments. Wakeford proved Grace's extension by considering the unique twisted
cubic which has six lines having a common transversal as chords and establishing

the polarity between the original six lines and the six lines obtained from the



construetion, Thus the required transversal of the six derived lines is the
polar of the trensversal of the originel six lines,

It is implicit in all the proof's of the extension theorem that the existence,
given the six skew lines with a transversal, of a unique second tranaversal for
each set of four out of the six lines is a necessary condition for the theorem,
However all fail to point out that the above condition is not always sufficient,
as shall be seen subseguently,

$ 3. Pinite projective geometry.

Projective geometry over a finite field was given an impetus by Veblen and
Bussey [(l] 4n 19068, Previous considerations had been mainly group
theoretical, In particular there is a vast deal of gecmetry hidden in the pages
of Burnside [ ¢ ] and Dickson [/7 ] which were first published in 1897 and
1900 respectively, Coble [ /4] in 1908 described a configuration in the
geometry over the field of three elements isomorphic with the twenty=-seven lines
of a cubic surface, Frame [.1%] 4in 1938 observed the isomorphisnm between the
27 lines of a real cubie surface and a configuration in the geometry over the
field of four elements; however, the accent was on the isomorphism and not on
the finite space itself,

Up to 1948, all the work done had been concerned with either the axiomatics
of the subject or the properties of particular finite geometries, usually not for
their own sake. The first more general and deteiled study was made by Segre [+7]
in his "Lezioni di Geometria Moderna"., Then came two papers, by Qvist [37 ]
in 1952 and Segre [5/] 4in 1955, which seem to me to have been chiefly res-
ponsible for recent interest and progress; for these papers showed the elegance
of the results obtainsble and the interest of the subject for its own sake, not
dependent on other branches of mathematics such as group theory, classical



projective geometry or statistiocs with which it had previously been connected,
Quite independently of these, there followed a series of papers by Edge, which
showed that an understanding of the simplicity of certain classical groups was
not to be had without studying the finite geometrical structures of which they
were the groups, Various papers on the existence of the twenty-seven lines in
a finite geometry have been published by Segre [5C], Rosati [42] [#4],
Bage [2/ ] [22] [23] and Coxeter [/5 ], all since 1940,

In what follows it is proposed to blend the techniques of finite geometry,
in which the problems lie, and those of classical geometry, whence the problems
are derived!



CHAPTER II. he double~-six and its cubic surface
over GF(4),

$ 4, ‘The double-six over an arbitrary field.

In Iy over an algebraically closed field, 4 independent skew lines have
2 transversals., Therefore, given a line bg with 5 skew transversals
284, &g, 83, 84, 85, there exist lines by, ba, bg, bg, bsg such that b; is the
second transversal besides bg of aj, ak, ag, ap. Then

(1) the lines by, bz, bs, be, bs have a transversal ae;

(i1) there exists a unique polarity with respect to which the double-six
is self polar, that is for which ai 3is polar to bi L =1, veey, 6,

Although (i) is formulated in terms of an algebraically closed field, the
proof of (i) and consequently (ii) given by Kasner [3¢ ] 4s true for all
fields except perhaps GF(q) q & 5, since the proof depends on only four para=
meters not being equal to the zero or the unit element of the field, Since
lines over GF(q) contain g + 1 points and since at least 5 points on a
line are required for the double-six, GF(4) and GF(5) demand first attention,

The diagonal surface of Clebsch [/3 ] contains 15 lines over any field,
diagonals of the quadrangles cut out on each of the 5 planes of a pentahedron
by the other 4, If p® = g+ 1 has two roots in the f£ield, the surface con=-
tains another 12 lines forming a double-six which Burnside [ 5 ] showed to be
invariant under 120 collineations of the space, Baker's deseription [ ]
p«168 of this double-six is sufficient to show that such a Burnside double=-six
does indeed exist over GF(4).

Over a field of characteristic other than two, an involutory reciprocity is

either (1) a polarity with respect to a quadric

or (ii) a null polarity,
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Over a field of characteristic two, an involutory reciprocity is
either (i) a mull polarity
or (4ii) a pseudopolarity, Segre [S/] pp. 238=245,

It will now be shown that a double=six self-polar with respect to a linear
complex exists over GF(4) and in fact only over GF(4) and its extensions;
moreover every double=six over GF(4) is such a one., Then it will follow that
such a double=six is a special Burnside double~-six and cannot exist over GF(2")
where n is odd since p® =p + 1 has thenno roots: p® =1 has 3 roots
in GF(qg) only if g =1 is divisible by 5, and 2" = 1 is not divisible by 3

for n odd.

§ 5, _Bxistence of the double-six over GF(4).

Over any field, the coordinates of the line p through X(xo, X4, X2, Xs)
and Y(yo, ¥1» ¥as ¥s) ere  (Po1s Poas Poss Pias Pats Pas) Where
Pij=Xyj=Xyi and ©pos Paa + Poz Pat + Pos P1a = 0. Such line coordinates
wniquely determine a line and are uniquely determined by the line, If two points
are conjugate with respect to a linear complex, the line joining them is self-polar
and belongs to the complex., If two lines a, b are polar with respect to a
linear complex C, denote this by a -'Pc'b or more briefly a'jp'b.

The mutual invariant of two lines », s is
‘5(1':: 8) = TYo1 S8gs + Yoa Ss4 + Too Btz + Tya Sos + Tat Soz *+ Tas So1}
r, s intersect if and only if W(r, s) = 0.

Let C be the linear complex
ZaijPij = 8g1 Pot + 202 Poz + 803 Pos + 243 Dyg + 8¢ DPat + 838 Paa = 0
with @pe 820 + 80z @gy + Q02 243 # 0 850 that C is not specisl: put
2ot 293 + 203 234 + 203 242 =1, Let R=3R ayyriy; and R' =13 ayj rl; where
rij r}; eve the coordinates of the lines r, r', If rPrt then

riy +r = Rake
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as shown by Baker [ % ] pe64¢ in a proof valid over any field, If this result
is multiplied by aij and summed, it follows immediately that R =R'. Let

8, 8' be polar lines with coordinates 8y s'us then s;; + l{i =35 gy
where S=Xaijsij. If r, s are conjugate so that »r meets s', then
Wr, 8') =0; but Wr, 8') =By spe =2 r (S ay; - see) =RS ~Wr, 8)
therefore Hr, s) =RS .

The mutual invariant of ', s' is

'a'(rv, 3') = X rLI 3;& = E(R ak'e,- ru)(s au - 'k&)

= 2RSS =RS =RS + 23 ryy By = ?5(:-, S)

4"3.' C{'I — \ '#J:{r-
\\
{ F \\\
A/ & P4
/ \\_. 55
/I! ) . £ \\.\’
=N /s
X ’
\_\\
\. /
C{l \__\ )!_.-'/ Q_%
f//./
/ 1"! /{" 43;

Consider the skew hexagon H i aq b a3 by 8 by with vertices Ayj = (ai, by).
Let H be self=polar with respect to a linear complex, i.e¢ ai ﬂbba
1 =1, 3, 5; then Aij lies in the opposite plame [aj, di], 3ts pclar plane.
Thus the planes [ag, bel, [as, bsl, [2s, ba] 21l contain the points
A4z, haes Ags vhich are therefore collinear, Similarly the planes [aq, Do),



- 10 =

{as, De], (a2, Ds] dntersect in the line Ag¢ A4 Agg. Thus if a skew hexagon
is self-polar with respect to a lincar complex, sets of alternate vertices are
collinsar, Let these two lines be called the axes of I,

The converse if also true, Take Az, Mgz, fgts Azt a8 the rofoerence points
Koy X4, %3, Xg respectively, and let the unit point be on Ag; #8z3. Then, Aas
being an Aqs Apgy and Ags being on Agq Agzs the equation of the complex is
Pot + Pygs = 0: the hexad is the one in the next diagram, Thus there iz a unique
linear complex with respect to which the hexad is selfwepolar,

Now take H: a¢ bg a3 by &5 by with sets of alternate vertices collinear and
the unique linear complex € such that a;fpbi i=1, 8 3 Take a tronge
versal bg of a4, 82, ag,; skew to by, by, bg. Restricting the field so that
#°= p + 1 has two roots, take the two trensversals a4, 85 Of by, bs, bs, bae
Then let by, bg, ag be the polars of ay, ag, bg respectively: both by and
beg meet aq, 23, 35, 83 2nd ag meets by, by, bz, bey bse Lot
Wiy = ai, 2j) =W(bi, bj) and C be B eijpiy=0 with
Cgt Cag + Coa Cag + Gpg G2 = 1. Put AL =3 ejk a‘;;‘k vhere a.J-Lk ave the
line coordinates of ai; then by the conjugecy conditions deseoribed sbove,

Wiy = AiAj  except for ij = 45,

If a4 4s proved conjugate to a5, ond therefore by to bg, the theorem
postulated in §4 will be established, This will be proven ifl,s = A4 As.

Consider W = (Wiy) 15 =1, +ovs 55 W is a symmetric matrixz with
diagonal elements zeros Let the cofactor of Wij be #ij. Then the con=
dition that the 5 lines ai t =1, eeeoy, 6 have 2 transversal is

w = sfw| - P9 Fymy o= 0 (Appendix I),
l(JL,.}ui

This cnly reduces to [W| = 0 over fields of characteristic other than
two, Substituting in the formule w = 0 for the Wiy, execluding uss, gives



Wes = B4y As (Apperdixz I), Therefore such a double-six exists over GF(2%")
and only over GF(2%%), 4.e, CF(2) and its extensions,

Tt vill now be showm that over GF(4) every skew hexagon which gives rise
t0 a non-degenerate double~six hes seots of altermate vertices collimear, Then
it follows that every double-six over GF(4) is as above,

Teke H: as ba 8 by 83 be again, A regulus over GF(4) consists of 5
skew lines, There is a regulus R complementary to the regulus a4 oz 8g.

If the double=aix is to be non~degenerate, 5 lines of R, namely the lines

Psy bss bg of the double=six,meet each of the lines a4, 2z, a3 Iia no vertices
of the hexagon, As lines over GF(4) contain only 5 points, the remaining
two lines of R meet a¢, 23, 2z in the & verdices of the hexagon, There~
fore these two lines must he Aqp A Aza and Agy Aqg Ass.

It is worth pointing out that a hexagon with alternate vertices collinear
can be self=polar with respect to a quadric, From 4, a polarity can ﬁave two
forms

(1) Jeaumy + Yaylzmy, + xy;m) = 0
i< Jj

(12) 7 eiylxiyy = xyyd = 0
'y

1000, a, 0100
\Q
P i G/
//d3
000/ ¢, “ooto

Viith respect to <this hexagon, for fislds of characteristic two, both (3)
and (ii) become

(%071 + x4 yo) + (Zys + x5 ya) =0,
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However for other fields, (i) becomes
(X079 +*y50 = (X35 + % ys) =0
and a double-slx may well exist containing ai(, by (=1, 2, & with this as
its polerity; vheveas (ii) becames
(%o ¥s =% ¥0) + (Xays =X ya) =0
an? 1t las been shown that o double=six does not exlist,

%, The disgonal surface,
Pe{3, 4) contains 85 points, 557 limes, 85 planes, We have established

the existence of the double-six of lines at, bt (=1, ses, 6 and of its
polarity with respect to a linear complex € din the asmellest field in which the
double~slx could be defined,

Let ©1; be the intersection of the nlanes [ai, bjl, [aj, b1l end o} the
Join of the points (ai, by), (aj, bi)s TFrom any hexagon ijk eij = eij, this
1line Leing o diagonal of the hexagon, The o:; are zslfepolar lines and thus
lic in C; e¢ij meets ai, bj and as in classical geometry o¢ij meets oké
only for %k, 244, 5, Beker [ 4 ] p.160.

Any further intersections emong the lines would imply a degeneration of the
double~six, Hach line is thus met by 10 and only 10 lines, 2 through sach
of its 5 points, There are 6 lines a(, 6 lines bi, 15 lines e¢ij. Hach
line contains & points, Rach of these points lies on 3 lines, Therefore the
27 lines comprise 27 x 5/8 = 45 points,

The unigque cubic surface Fy; on which the double-six lies consists only
of the 45 points lying on the 27 lines; for the 5 planes through a4 cover
the space ond meet F¢ in the cubic curves at bj c1d J = 2y esey O, The
S lines of such & cvblc cwwe, being two adjecent sides and the diagonal meeting

thenm of a lexagon, are concwyrent, Thus the 45 points of Fg are all points
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of conowrrency of the 3 lines in which the surface is met by the 45 tri=-
tangent planes and so are all Eepoints (Eckerdt points). The 45 tri-

tangent planes are 30 of the type [ai, by, ¢iy)l, 15 of the type [eij, ckésCmnl.
As in classical geometry, the 27 lires form 36 double=-sixes of the types

D a4 ez ag aq ag ag 1
by bs bs be bs be

Dig a4 by Czs ©Cazs ©Cz8 Oz 8y = 15
ag ba Ciz Cis Cis Cig

Diza a4 @a 2 Csec C4c O4s Cs = 20.
Cgz Cys ©C42 Dy bs be
Bach of the 36 double=sixes D, DiJ, Dijk is self=-polar with respect to a unique
non=special linear complex d, dij, dijke
Now since, as is seen from Baker's description, the double=six over GF(4)
appears from Bumside's construction on 5 arbitrary points and since it has been
shown that all double-sixes over GF(4) are of the same type, they are all pro-
jectively equivalent, F; has a projective group A(4, 3) of order 25, 920
2s shown by Frame [J%]; this group is transitive on the 36 double-gixes,
Therefore each double-six has & projective group of order 720, This is S,
Edge [7], and is isomorphic to the gymplectic group in 4 varisbles over
GF(2), This raises the problem of why S appears as the projective group
instead of Sg as with Burnside.
In complex space the Sylvester pentahedron of the diagonal swurface
g +x8 +xP +xf +x8 =0 Xo + X+ X, + X + X 50
has faces x| =0 i =0, eeey, 4 and its 10 edges lie on the Hessian of the
surface, Over GF(4) the Hessian is not defined., However, apart from the
5 faces of the pentahedron, the other 10 planes of PG(5, 2) xi +xj; =0
lsjg =0, eee, &4 are also tritangent planes of the surface and pass one through
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each of the 10 edges of the pentahedron, Any of the 5 faces, let it be
Xy = 0, and the 4 of the 10 planes through the 4 edges of the pentahedron on
Xo =0, ViZe % + X =20, X + X =0, X +X3 =0, X +x =0, also
form a Sylvester pentahedron of the surface as

Xg + (%o + %)% + (x5 + %)% + (% + %)% + (x5 + %,)°
8 5xd +xF (% + X + X5 + %) +Xo(x] +xF +xf +xF) +xf +xF +xF +xd
= xpoexd exd exd exd
and xo + (%o + Xq¢) + (%o + %X3) + (%o + %) + (%0 + %) = Zxi .
There are 4 other pentahedras formed in this way end hence the 15 planes of the
PG (3, 2) contained in PG (3, 4) form 6 mutually interwoven pentahedra, Thus
there are 6 Sylvester pentahedra belonging to the surface and to a particular
double-six on it, The intersections of any 2 planes of different pentahedra
viz, =Xi =Xj+ X = 0 may be taken as the 16 lines e¢ij. The other 30
tritangent planes [ai, bj] pass 5 through each of the other 12 lines, which
form the double-six D, The 6 pentahedra show that the group of the double-six
is Sge

Dually the double-six is generated by 6 DBwrnside pentagons which form a set
-of 6 mubually interwoven pentagons any two of which have a common vertex, The
15 vertices are all the points of a PG(3, 2), BEdge [21], The 15 faces of
the pentahedra sbove being the [cij, ckes Cmnl, the 15 vertices of the pentagons
are their poles (eij, ©k& ©mn) with respect to the polarity of the double-six
D, which is X(xi yj +xjyi1) = O,

All the double=-sixes are projectively equivalent; so, for each of the 36
double-sixes, the 15 tritangent planes of Fy4 containing no line of a double=
six form 6 Sylvester pentshed.m vhich give 6! projectivities of the double-
six, Thus Fy 4is a diagonal surface in 6 x 96 = 216 ways and, as before, its
projective group is of order 6! x 36 = 25,920,
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7. The equianharmonic surface.

A Steiner trihedral pair is two sets of 3 planes whose © lines of

intersection can be arranged as, for example, Gzzs Dbs ag
as eis Dby
bs a4 Ciz

Let S435 denote the array of © lines as well as the set of 6 planes con-
taining the 5 1lines of a row or oolumn of the array, The & planes of each
trihedron have a line in common in contrast to the classical case where the S
planes have mostly only a point in common, These two lines will be celled the
axes of the trihedral pair. The lines of any determinantal product in the
ar7Tay ©e.8. ©Cz23 G4z Cyz are the diagonals of the hexagon formed by the remaine-
ing 6 lines. The 6 hexagons so obtainable all have the same 6 vertices
and the same two axes, which are also the axes of Sigs. Thus the 9 lines
are the joins of two sets of & points lying on two skew lines as in the
diagram below.

The 45 tritangent planes form 120 Steiner trihedral pairs, 20 of the
type Si23 as well as

a4 be Cie
8o x *Cy = 90 of the type S12,34 bs ag Cas
Ci3 C24 ©Oss

C14 C2s Cae
and °Ca/2 = 10 of the type St2s,486 Cse Cas  Cis
Cas Cis Cas

Each tritangent plane lies in 240 x 3/45 = 16 trihedra, of which the 52
other faces are those tritangent planes containing none of the 3 lines of the
original tritangent plane,

Let  Sijky Slik$ Sij,k&s BLJ,kE §  Sijk,fmny Sijk,fmn Dbe the axes
of the trihedral pairs Sijky, Sij,k€ Sijkys2mne The 120 trihedral pairs
fall into 40 +triads, each of which provides a trichotomy of the 27 lines =
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10 trdads 1ike S4nss Seses Stos,ese6 and 30 like Syg,34, Sse,s6,
Sseyt1a e  The axes of such a triad of trihedral poirs are the 3 pairs of

opposite edges of a tetrahedron.
Aiay '

‘3 \ /
\

—

A /3 ’42 / 43.2

The figure contains 6 reguli aq ag agy, by bz b, ¢€gs €43 G2 each with
Sesc, Sese &nd 8¢ Dy Caz, 85 by Cea, 2 bp csg oach with B842s,450
a:zg,“. » @&s for example 35456, 8450 are in the complementary regulus to
bs bs bg which is the complementery regulus t0 a4 22 ag. The 6 hexagons
arise from the 6 permutations of one of the sets of 3 vertices whilst the
other remains fixed, The J pairs of opposite lines of each hexagon are polar
lines in a double~-six, These are D, Dyog, Dese; D23, Disy Dize The double-
sixes formed from the two sets of 6 hexagons whose axes are Bgse, a:u H
8123,456> 3:::,430 are D, Dizs, Dases Dses Daes Das; Dass Diss Dizs Dses
Daes Dase

If +the faces of the tetrahedron, whose edges are the 6 axes of the triad
of trihedrel pairs, are xi =0 { =0, s+s, 5 then the equation of the surface
is

X +x +xp vxd = 0

this is the equianharmonic surface of Segre [4%] p.149, which is given over
GF(4) by Coxeter [/7 ], In classical geometry the surface has only the 18
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E=points on the edges of the tetrshedron, which is the Hessian of the surface;
it has o projective group of order 3% x 4! = 648. In this case, the Hessilen
is undefined, However, sach of the 40 triads of trihedral pairs will give
such a tetrahedron whose edgea contain 18 Eepoints, Thus Fgq is equian-
harmonic in 40 ways and has a projective group of order 40 x 648 = 25,020 as
before, Another tetrahedron giving the same surface is apparent from the
identity

(%9 + %g + %)% (3 + %5 + %)% + (g + %y + %)% + (0 + %y + %) °

g x +x? +x) +xf

Consistently, the equianharmonic surface can be transformed into the diagonsl
surface as, for examgple,

(o + %4 + % + %)% + (%0 + s + Xp + %)% + (%o + Xy + 0Xp + X)°

+ (%o + = + 2 +uxg)®s xP+ 2Pl xPe (x4 +x ¢3x,)°
where w® + 0w+ 1 =0,

Thus, over GF(4), the cubic surface containing 27 lines is simulteneously
diagonal, depending on ¥° = p+ 1, in 216 ways and equianharmonic, depending
on # +p+1=0, in 40 ways, and has a projective group of order 25,920,

The projective group of PG(5, 4) hes order

(4% = 1)(4* = 4)(4* = 43)(4* = £%)/(4 - 1) = 223, &%, 53, 7. 17.

Thus the number of double-sixes over CF(4) is
g'®, 3¢, 5%, 7. 17/720 = g%, 3%, 5, 7. 17,
Alternatively the mmber of double-sixes is one sixth the number of pentahedrons

= 85, 84, 80, 64, 27/6. 5!

= 2°% 3% 5,7, 17

= 1, 370, 880,
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§ 8., _A representation in Iy .

There are two e¢lassical representations of the cubic surface, which have
a particular appropriateness here: firsily, either the Plligker-Klein representa=
tion of lines in lig by points of a quadric in Iy or its dual; secondly, the
Clebsch mapping of a cubic surface onto a plane,

Consider the following representation in Iy in which lines of iz become
tangent primes to & quadrie 0 in Iy and non-special linsar complexes become
points of Ty not on . The line (pot, Poas Poss Pizs Piss Paa) becomes the
prime pgs Xo + Pig X4 + Pz X2 + Doz X3 + Poa Xs + Pot Xg = 0, This is a tan-
gent prime to 1 Xo X + X¢ Xg + Xg Xg =0 at the point (pos, Doss Doss
Pizs P1ss Pas)e If P, @ are two intersecting lines, then the point of contact
of the tangent prime representing ¢ lies in the tangent prime representing p
and vige versa., The linear complex C

823 Pot + 843 Poz + 242 Poz + 2038 Pe2 + Bo2 Pis + 804 Pas =0
becomes the point (204, 203, 203y 2425 848, 833). From §5, if +two lines
r, s are such that r(ﬁ’a,ﬂwn rij+sij= Aaije Therefore the points of
contact of the primes representing r, 3 are collinear with the point represent-
ing C. If three coplanar lines are concurrent, they are linearly dependent;

80 their representing primes as well as tlhe latters® points of contact are
collinear,

Let the primes representing ai, bi, ¢ij be Ai, Bi, I'ty with peints of
contaet ai, i, yij eand the points representing d, dij, dijk be &8, dij,
8ijk whose polar primes with respect to 2 are A, Aij, Aijke The row
8y Qg 8y ag &5 g of the double-gix D is represented by the simplex with
faces A and vertices Sy, The row by bz bg by bg bg is represented by
the simplex with faces B, and vertices ai, Thus the two rows of the double-
six become two simplexes insoribed and circumseribed to each other and to the



quadric primael and in perspective from the point 3, Also, as all the lines
o0ij lie in the complex d, all the primes TI'ij pass through &, All the
other double=sgixes are similarly represented,

This figure of 65 points ai, Pi, Vij, 8 8ij, Sijk is equivalent but not
projective to the entire space over GF(2) as described by Edge [Z/ ]. There
ere 651 1lines in PG(5, 2) and 651 1linear relations can be obtained from
the polar relations like i+ Fi = & and the relations dependent upon the
E-points like ai + fj = yij, as the correspondence with the configuration over
GF(2) shows that these limear relations can all be written with unit
coefficients, This correspondence is perhaps not so swrprising, The set of
27 points in PG(5, 2) corresponding to the 27 lines of the cubic surface is
all the points of en elliptic quadric which can be taken as Zx; xj = 0, Vhen
the field is extended by a root of p® = g+ 1, this mmé‘&’anbe transformed
into the Klein quadric f:$xo %X + X¢ X¢ + Xz Xg = 0 which is ruled, The
extension of GPF(2) to GF(4) to produce properties comnected with the double=
six has already appeared in § 6, where the diagonal surface was considered,

is
Iet %,y be points in Iig. Define x oy = fxi,y.-a +« Then the
i=0

intersection of lines in [l is expressible by «ai o fj =0 etc. Cther
properties of the configuration can now be derived, For example, as
ok + P =8 and yix + Yjk = 8ij, s0 8o 8iy =0; thus the points &
all lie in A, which implies that exactly 5 out of the 16 linear complexes
d, di; are independent,

One oan also derive limear properties of the 8's, As 8= a4 + fy,
8423 = @ + Yas, O4pe = P4 + Yas, S0 & + 8420 + 8456 = 0.
The existence of this line in Iy is equivalent to the existence in Il of
the Steiner trihedral pair S1308,458 » 28 the 9 primes I'iy i1 =1, 2, 5
J =4, 5, 6 representing the © 1lines c¢ij of the array S4zs,4s5¢ &1l
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contain the points &, 8433y S4see This line with the lines 845 +84g+ 835 = 0,
Sgp + 8406 + S5 = 0 spen the Ilg; this fact is equivalent to the triad of
Steiner trihedral pairs S138s Sas6s S920,456 providing a trichotomy of the
27 lines, The 6 axes of this tried were in Iy the edges of a simplex; they
have become in Iz the vertices of a simplex inscribed in Q,

These results may be elaborated and others formulated by further exposition
of the above linear (x+y + 2 =0) and multiplicative (x o y = 0) properties.
The relations among the linear complexes are similar to those in complex space
among the Schur quadrics as shown by Room [%2].

$ 9o The plane over GF(4) and the mapping of F4 onto it,
In the plane over GF(4) there are 21 points, 21 lines, 5 points on a line,

5 lines through a point, The sides of a triangle contain its vertices and O
other points; any one of the remaining 9 points of the plane with the 3 ver-
tices of the triangle are vertices of a quadrangle Q, Q has J diagonal points
and each of its 6 sides contaoins two of its wvertices and one of its diagonal
points leaving two points on each side, Thus the points in the plane not on any
side of @ number 21 =4 « 3 = 6,2 =2, One of these 2 points and the ver-
tices of ¢ form a pentad P, a set of 5 points no 3 collinear, The points of
P are the vertices of 5 quadrangles whose 15 diagonal points are necessarily
distinct, Fach of the 10 chords of P contains 2 of its points and meets the
3 chords through its other 3 points in the remaining 35 points of the chord,
Thus the chords of P contain only its points and its diagonal points which
number 5 + 15 = 20, Henece the 4 vertices of ( and the 2 poin‘l:s_.on its

sides form a hexad H, a set of 6 points no 5 collinear,
Since the join of 2 points of H meets the € sides of the gquadrangle Q

whose vertices are the other 4 points of H in none of these vertices, none of

the 3 other points of this join can 13 on 3 sides of Q and therefore must
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each lie on 2 and only 2 of the 6 sides of Q: 4i.,e, it passes through
the 3 diagonal points of Q. Thus the J diagonal points of a quadrangle
are collimear and lie on the line through the 2 points not on any side of the
guadrangle, Q determines H uniquely and H is fixed by any of its 15
tetrads. The 15 lines of diagonal points of quadrangles of H are the 15
chords of H, H may be partitioned into 3 pairs of points in 15 different
ways; any 2 chords of such a trichotomy, being sides of a quadrangle whose
vertices they contain, meet at a diagonal point which lies on the third chord,
Thus the 15 sets of & chords of H are concurrent at the 15 diagonal
points of the quadrangles which are therefore all Brianchon points of H,
This means that every hexagon in the plene is a Brianchon hexagon fif'teenfold
and the plane is exhausted by the 6 points of the hexad and its 15 Brianchon
points,

Each of the 6 vertices of H lies on 5 of its 15 chords, thus the
remaining 6 lines of the plane are skew to H, ‘Hence the 15 Brianchon
points of H are collinear in 6 sets of 5 on the above €6 lines, These
6 1lines form a hexagram dual to X,

A conic, being the set of intersections of two projectively related pencils
in the plane, is a pentad, - The tangent at each point is uniquely determined as
the line through the point not passing through the other four points; it is also
the line of diagonal points of the quadrangle whose vertices are these 4 points.
Hence the 5 tangents are concwrrent at the sixth point of the hexad contalning

the § points of the coniec,
In the mapping of the ocubic surface onto a plane, plane sections of the

surface become cubic cuwrves through 6 base points A; in the plane; a curve of
order A in the plene which has a "general multiple point" of order AL at the



base point Ai maps a curve of order SA = I Ai on the surface, Baker [ ]
ps191, The lines a; become the hexad H of base points A, the lines bibe-
come conics Bi through the 5 points of H which exclude A, and the lines oijbe~
come chords Cij=AjAj of H, Since AqA; 1s the tangent at A to the conic
AgAghylghg, the point (az, by) is an Eckardt point of the surface; in this
fashion there appear the 30 E=points (ai, bj)e The 15 Brianchon points of H
mep the 15 Bepoints. (eij, k2, ¢mn)e The 6 Burnside pentagons become the
points of the 6 1lines skew to H, This is not surprising since a line in the
plane not through any of the base points A{ is the map of a twisted cubic on
the swface, The 5 points of a skew pentagon, which incidentally form an
elliptic quadric over GF(2), form a twisted cubic over GF(4).

910, The group of order 25, 920 in the plane,

Since the hexad H is fixed by any of its tetrads, there are 6,5.4.,5 = 360
projectivities in the plane leaving 1 fixed, These projectivities impose the
960 even permutations on the points of H, To impose odd permutations, the
automorphism that replaces every mark of GF(4) by its square must be used. The
projectivities leaving H fixed transform all the cubic curves through H into
one another and, therefore, plane sections of F will also be mapped into one
another; thus, these projectivities leaving H fixed map projectivities in I3
that leave each half of the double=-six D dinverdiant, If there is any pro-
Jectivity in Il +transposing the two halves of D , it will be mapped by Cremona
transformation in the plane, which transforms cubic curves through H into one
another,

The points Ay (i =1, + + - 8) of H may be taken as 100, 010, 001,
111, wo®l, v®ul rvespectively; then the conics By are



% =yz, ¥y =2x, 2® = xy
Xy +yz +ox=0, wxy + w?yz + 3x = 0, Wxy + wyz + zx = 0,
and the lines Cij i»bJ=1, 2,3 are

Cga x=0, Cya ¥y =0, Cig 2 =0,

The only projectivity in IHg such that ai ®bi (all i) and therefore,
since the polerity of D will remein unchanged, bi +ai (all i), is the
identity; for then the c¢ij remain fixed and hence a pentahedron of the surface.
If o projectivity, other then the identity, transposes the two halves of the
double~six, take, since 4 points in the plane can be selected arbitrarily,
ap*hbi, i1=1, ¢+, 4, ag * bg, ag * bg which, again by the
constaney of the polarity, implies by = ai, i =1, eeey 4, g *ag,

bg “* 8.
The plane sections aibjeij<=—> biajeij ipy =1, 2, 53 then in the
plane Bj + Cij <=> By + Cij sy =1, 2, 3¢ Thus in the transforma=-

tion from the (x, y, z) plane to the (u, v, w) plane, writing
X=x*+y3, Ysey?+ax, 2=2+x7, UsvPa+vw, Vevieowm WTevd+uw

Zz¥ =0 = wiu=0 22X =20 » wW=0
yz:o » vii=0 yxso + W=0 otooot-(ﬂ)
=0 =+ uw=0 XN =0 -+ ul=0

BEach of the 6 cubic curves in the (x, y, z) plane is, as the arrows
indicate, to become a corresponding cubic curve in the (u, v, w) plane, Vhen
the proper functions of u, v, w are substituted for x, y, 3, each resulting
polynomiel must have the indicated cubic as a factor. If the residual factor
is the same in all 6 instances

yiz=wW:ul, 23 xX=uV:u, XxXty=uvV:vw
all of which relations hold if

X:y s 3 = uwW: viU : WOV P TTPIINCTPIOMRIEOI. |
These relations (B) do, in feet, achieve the desired tremnsformation of the



composite cubic curves as, for example, X is then proportional to
WV« wilPW 2 WV + WP+ VP 4 WBRR)
and therefore yX is proportional to the product of vW and a symmetric
function Z of wu, v, w,
I = W(v®° + v°u® + v®v® + v®v?sB)
8 UW(vw + wu + w)(o®vw + wa + ouv) (ovw + wu + o®uy)
is the product of 6 gquadratic factors which, equated 4o zero, are the 6 conics
containing 5 of the 6 fundamental points. I is never zero except at these
6 points,

The relations (B) 4mply that at any point other then the 6 fundemental

points

usviw = xX¥Z ; yiX 3 2X¥ .
This would be expected from (A) if the arrows were reversible; its independent
establishment shows that they are reversible, Direct ealculation from (B)
proves x¥Z +o be proportional to us?,

Thus the correspondence is an involutory Cremona transformetion, which
transforms lines into quintics through the Ay, and cubics through the A:
into one another.

There are 3560 Cremona transformations and these, with the 3560 plane
projectivities, f'orm a group of 720 birational transformations mapping iso=-
morphically the group of projectivities of the double-six over GF(4),

Other projectivities of the cubic surface may be revealed by transforming
D into other double-sixes of Fq. Plane sections of Fy are transformed into
others and equivalently cubic curves through H becane other cubic curves through

He To transform, for example, D <o Djyzg, suppose
2y 8 3.; + ( &y 8 as

by bz bs ) Caz ©C43 Ci3

end aibjoij - aicikbk isjok =1, 2, 5o



Thus in the plane

¥ =0 » W=0 ZX =0 =» wi=0
y2=0 * W=0 yX =0 - Ww=0 cenve i B3
=0 » Wi=0 XY =0 =» vU=20

Following the previous argument, the transformation of the cubic curves is

produced by

Xi1y:1z = UsVeW sveseskD)
as X 4is then proportional to

P +wW 8 u(v® +v° +v +uwvw) and

therefore yX is proportional to the product of uV and a symmetric function
of u,v,w; this function is the product of three factors which, equated to
zero are the 5 lines Aglg, Aglg, AsAg. The relations (D) imply that,
exoept at Ag, As, Agy

untviw = X:Y 2332,
As before, this shows that the arrows of (C) are reversible,

The correspondence is again an involutory Cremona transformation which
transforms lines into conies through Ay, As, A¢ and cubics through the Ay
into one another,

To transform D to D4y, suppose

as az &g ; é as by ea3
-

by ba Db ag Dbg G4

g by ¢4z * Dby ag 043
8g by cez * czp 22 be
8s by ©z3 ® 0C23 ba &z

therefore aqy by c43 * a4 Dby ¢C43
ey bs ©c4s * a4 Cy3 bg
az bg 038 * by ©C45 8g

ws e ws

In the plane
Y =0 =» wWe=20 2X =0 «» wil =0
y2=0 + vW=0 yX=0 » ul =0 saevsati)
XZ =0 » vwW=0 XN =0 » uwW=0



The transformation of the cubic cwrwves is achieved by
x:y:ﬁ = ul : ulW : wU .I.-.!.(F)
Then X is pwpo:'ti'onal to

wU? + wllW = W (v® + w°)
so that yX 4s proportional to the product of uwW and uw(uw’® + w®)., The

latter expression occurs in each case and is the product of 5 factors which,
equated to zero, give the lines Aglg, Aghg, AxAs, AgAg and the conic By.

The relations (F) dmply that except at Az, Ag, A¢, Asy As

utviw =5 XX :x2s X,
This shows that the arrows of (B) are reversible,

The correspondence is again an involutory Cremona transformation, which
transforms lines into cubics through Ay, Ag, As, As, Ae¢ and cubles through
the Ai dinto one another,

Accordingly, by trensforming D into itself and the 35 other double-sixes
of Fq, we have 25,020 plane Cremona transformations forming a group which
is the projective group of Fy, This plane over GF(4) and the group of
order 25,920 were recently studied by Edge [231].



CHAPTER III, The double-six over GF(5) end arithmeticsl
properties of cubic surfaces.

§ 11. Existence of the double-six over GF(5).

There is no double-six over GF(5) since every hexad in the plane is a conic,

Lines over GF(5) contain 6 points, Each chord of & pentad P meets 3
chords at two of the points of P, the other 3 chords at distinet points and
thus no chord at its remaining point, The chords of P therefore consist of
5§ + 10 x3/2 + 10 = 30 points, leaving a single point in the plane which is
therefore the remaining point of the conic, as well as of the hexad, containing P.
Thus each hexad is a conic, This is also a particular case of Segre's theorenm
[5/] that in a Desarguesian plane of 0dd characteristic, every oval is a conic,

An ergument solely in lg 4is worthvhile. Suppose D(ai, Di i = 1,+¢+,6)
exists. Then it lies on a cubic surface Fg containing 27 lines, each one met
by 10 others. Each line, comprising exactly 6 points, contains at least 4
E-points, Therefore Fs contains at least 27 x 4/ = 38 Ewpoints.,

It vill now be shown that a cubic swface F with 27 lines over any field
of characteristic other than two has at most 18 E~points, D is determined
by the skew hexagon aqbgagbsagbz and the line bg say. The hexagon determines
e polarity 4 given by the bilineir form

Zan Xy o+ 122'.1 aij{xi yj + x5yi) =0,

The polarity is alweys unique as even the most restricted case, where sets of
alternate vertices are collinfar as in § 5, gives O independent conditions,
viz, the 8aij excluding aci, 8gs ore gero end 2, + ap, = 0, D is com=
pleted by constructing successively a4, 2g, D4y bsy 3¢ Thus d is
necessarily a polarity of the double-six vhatever the field,
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Suppose (a4, b1) is an E-point, Then (aq, bi) 1ldes on e4i, hence
in its owm polar plane [ai, Dy] and hence on the polarising quadric
Zaiy xi 'xJ =0, If a1 contains 3 E=-points, it lies entirely on this quadric
and is self=polar, Thus a4 and similerly all the lines of F have at most
2 Ee-points, and F contains at most 27 x 2/5 = 18 E-points., Thus there is
again no double-six over GF(5).

In contrast to the sbove, let F be a cubic surface with 27 lines over
a field of characteristic two. Then if a line on F contains 2 E-points it
contains 5, Take again D(ai, bi i =1, eesy 6) with its polarity

a1 & ail Xi yi + i;cJ aij(xi yy +xjyi) =0

If all the aii are zero, the polarity is null and, as in {5, over GF(22")
every line of F ocontains 5 E=points whence F contains 45 Ee-points., Over
Gr (22"*Y), with all the aii sero, F does not exist. Suppose then that not
ell the aii are zero and that a4 contains 2 E-points, These +two points,
being self-conjugate, both lie in the plane Z vV &ii Xxi = 0 which therefore
contains all the points of a4, Thus each point (24, i) of a¢ 1lies in its
polar plene [ai, by] and hence on o¢4i. Thus a¢ contains 5 Eepoints,

$ 12, Arithmetical properties of the cubic surface and the plane over GF(g).
The compulsory presence of E=points on the cubic surfaces with 27 lines

over small fields largely determines the structure of the surfaces. A cuhic
surface F with 27 1lines over GF(q) comprises ¢® + 7q + 1 points, This
appears from the plane mapping as each point of F is mapped to a separate
point of the plene except for the lines ai i =1, eeey, 6 say, which are each
mepped to a single point, So the number of points on F is

(®* +g+1) = 6 + 6(qg+1) = ¢ + 79 +1,
This number is obtained differently by Rosati [43].
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Let the 1lines of F be &1 ( =1, ¢+ 27 and let N be the total

number of points on the £i, Suppose F has e

E-pﬁintﬂo Let el,dL,Pl

be the respective numbers of points on £i where it meets two, one and no

other lines of F, Then

di + 2eL = 10, pi +di +ei=q+ 1,
Therefore PiL+d1/2 = ¢g=4

N = 27(:_1_-4)1-3.
If a double=six is to exist |
@ +7a+1 2 27(g=4) + e.
So e s qQ® =20g+ 109 = (q=10)% +
(For q=5 this means e s 34, whereas if ¥
If n is the number of points on F off the lines
e+n = (g=10)% + 9,
Since each line meets 10 others, if q £ 9 then
e 2 27{10 = (g + 1)}/3 = 9(9 = q).

L el = 3e

9.
exists e = 36,)

The difference between the upper and lower bounds for e is

@P=-11g+2 = (qg=4)(g=-7).

q Q® + 7q + 1 27(q - 4) uppe:' ;onm: for e lower bound for e
4 45 0 45 45

7 29 81 18 18

8 121 108 13 9

9 145 138 10 0

11 199 189 10 0

15 261 243 18 0
16 269 a24 45 0



There are aslso some arithmetical properties commected with F in the plane,
Consider a hexad of points in PG(2, ¢). It has 15 chords, each of which
meets 4 others at two of its points and the remaining 6 at separate points
if the hexad has no Brianchon points, which shall henceforth be called B- points,
If 3 coplanar lines form a triangle they comprise Sq points: if conecurrent,
5q + 1 points, Thus each Bepoint adds one point to the points on the chords
of the hexad, Let b be the number of Be-points, P the number of points in
the plane end ¥ the mumber of points on the ochords, Let the chords be
6i i =1, e¢;, 15 and let o¢i contein bi, ri, si points where it meels
exactly 2, 1, 0 other chords respectively, Then
bi+ri+si= qgq=1 i +ri=6 Zbi=5b

M = 28 + (Zri)/2 + (Bb)/3 + 6
= 15(q=4) + b + 6
= 16¢ - 54 + b
P =9 + q + 1
Therefore b € ¢® =14q+55 = (q=7)% + 6;
ond if 9s7, b > 156 {6=(g=1)}/8 = 5(7 = q.
The difference between the upper and lower bounds for b 1is
¢@® -9 +20 = (q=-4)(q~5)

q P 15q = 54 upper bound for b lower bound for b
E 21 6 15 15
5 b} 21 10 10
7 87 51 6 0
8 75 66 7 0
9 91 81 10 0

As has been seen in particular cases, the chords of a triad contain 3q
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points, the chords of a tetrad contain 6qg « 5 points and the chords of a
pentad contain 10q - 20 points, Thus the number of hexads in PG(2, @) not
lying on a conic is

fa?+qr1}{(q?+a+1) = 1]{(a®+qe1)=(q+1) }{a®+a+1)=5q} {(qP+a+1) = (6q = 5)}
x{(g®+g+1) = (10g=20) = (g=4)}/6!
= (g®+g+1)(g®+q) o* (g®~2q+1)(q?=5q+6)(q?~10q+25)/6!
= ¢%(a+1)(g~1)? (g=2)(a=5)(¢=5)2 (q3+q+1)/61



CHAPTER IV, The d - t biec surface
its e r GF z

¢ 15. Ihe gubio surface over GE(7).

Since a line over GF(7) contains 8 points, every line of a cubic surface
with 27 1lines contains at least two Hepoints, So the surface contains at
least 2 x 27/3 = 18 E~points. Over GF(q), as shown in § 12, a cubic surface
with 27 lines comprises ¢° + 7q l:-o%?-gr?';ioh, for q=17, is 99, The points
lying on the 27 lines number 27(q = 4) + e, where e is the number of Ee
points, For g =7, this is e + 81: thus e is at most 18, Consequently
a cubic surface over GF(7) containing 27 lines has exactly 18 Eepoints, two
on each line, anl contains no pointsnot on the 27 Ilines, Since
# + p+1 =0 has two roots over GF(7), the equienharmonic surface

x3 +x8 +x8 +xf = 0, Segre [ 48 ] p, 149,
contains 27 1lines and 18 E-points, two on each line, The Ewpoints lie in
threes on the six edges of a tetrahedron which is analogous to one of the 40
tetrahedra that occurred in ¢ 7 over GF(4), whose edges were the axes of a
triad of Steiner trihedrel pairs, Here in GF(7), of the 120 trihedral pairs,
only & have the property that the three faces of each trihedron are collinear,
Any two vertices of the tetrahedron each complete eguianharmonic tetrads with
the 3 Eepoints on their join,

Let ¥ be any cubic surface over GF(7) with 27 lines, To p:rove. that
F is alwgys equianharmonic, it will first be shown that the 18 E=points, 2 on
each of the 27 lines, lie in threes on the edges of a tetrahedron.

To do this we show that 2 E-points not lying on the same line of F are
collinear with a third E-point, This means that in the arrgy of lines deter-
mined by a Steiner trihedral pair, e.g. Sggs, if the lines of two rows are
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are concwrrent at Ee-points then the lines of the third row are also concurrent
at an Ee=point and the 3 E-points are collinear. So consider once more the

skew hexagon a4 bs ag by ag by

Czs as bg
¢, the lines belong to S4gs bs Ciz a1
ag by Ci2

Let (ay, bg) and (ag, by) be Eepoints: (aq, bs) is on ¢4 and therefore
lies in [agy, be); similarly (as, by) 1des in [ay, ba]. Therefore the 3
plenes [as, be), [as, bsl, [22, bs] contain the line £, the join of (a¢, bs)
and (agy b4)e But [as, byl, [21, Da] both contain (as, ba) which therefore
lies on £ and in [az, bs], Thus (ag, bs) 1ies in both [as, ba] and
[23, bs] and so on their intersection c¢zs. Hence (ag, b3) is also an E=
point and the 5 Eepoints (as, bzs ©23)s (21, Dsy c13), (22, iy c43) are
collinear,

Let the E-points on ay and by be (ay, bi), (a4, by), (ak, bs), (ag, be).
Then there are three cases to consider, namely when the two pairs i, J and
k, € have both, one or no members in common,

(1) et (a4, ba), (ay, ba), (az, b4), (8s, bs) be E~-points; then
(agy ba), (2a, bz) are also E=points. The 6 points (ay, by)
isJ =4, 5, 6 are all E=points since, for exénple, a4 can only contain the E-
points (a¢, bs), (e, be) as Dby, bz, bs each have 2 E-points already, In
the same way the remaining E-points are the 6 points (cqi, ©3j, Cak)
isjsk = 4, 5, 6, Thus the edges of the appropriate tetrahedron are the axes of

the triad Sizs, Sases St29,460.



(1) et (a1, ba), (as, ba), (as, 1), (26, b1) be E-points; then
(asy be)s (a3s be), (a4y bs), (ag, beg) ave also E~points, S50 &4,83,84sP1sDssb6
have their full complement of 2 E=points. So the E=-points on a; and by
are (a2, ba), (az, be), (as, b3), (2e, b2) giving 2 Ee-points on each ai, bis
From the arrey Siz,34» (845 Da, ©1a) and (e, bs, ©a4) being E=points
implies that (cy4s C2s, Cse) 48 an E-point, Similarly we have the other E~
points (c1s, ©z24y 0se)s (G125 Csss Cac)s (G125 Csss Ces)s (015, C26s Cas)e  The
edges of the appropriate tetrahedron are then the axes of the triad 843,34,
Ssa,869 Sse,t12.

(111) Let (ay, b2), (a1, bs), (aaz, b1), (agy by) be E-points,
Then (ag, bg) is an Eepoint as (a4, ba), (24, Dy) are E-points,

agy by) is an E-point as (a4, bs), (24, b4y) are E=-points,

agy bz) is an E-point as (a4, bs), (as, by) are E-points,
So 84y b3) 18 an E-point as (a2, be), (as, b3) are E-points,

Thus each of the 8 1lines ai, by i = 1, ee, 4 contains 2 of the above E=
points; +this leaves as with only one N-point (ag, bg)s So this case does
not ocecur,

Accordingly, the 18 E=points always lie in threes on the edges of a tetra-
hedron,

Now it will be shown that F is projectively equivalent to the equianharmonic
surface, Let the lines of F be transversals of the axes of the triad Sias,
S4ses Sizs,456 and take these axes ap the edges of the unit simplex., Then
the © lines aiy; biy cij 1y =1, 2, 5 may be given Pliicker coordinates as below

/Jf'Q 3

0,04,/ 0,0,4 1/ 0,0,+,
A
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aq ¢+ 0, pu, u, py, =1, 0 by 80, *v, v, r, =1, 0 cgs ¢ 0, qw, w, q, =1, 0
ag 3 0, qv, v, 9, =1, O by : Oy pw, wy, p, =1, 0 ci3 ¢ 0y ™0, u, T, =1, 0
ag ¢ 0, rw, v, r, =1, 0 bs ¢ 0, qu, u, q, =1, 0 cez 8 0, pv, v, p, =1, ©

where p, ¢, r as well as u, v, w are unequal, As the 18 E-pointsof F
ave distinct end as no 4 are collinear none of the E-points is a vertex o:f.‘. the
tetrahedron, so paruvw £ 0, Let the axes 8456y 8'4s¢ which meet ay, by, oy
t50=4, 56 be (0,0,0,0,1,0 and (0,100 0,0); asin 07,
they form reguli vith a4 ap as, with by by bg, and with ezs €13 Ci2 80 that
any 4 lines like 8456, S, 545 81y 8z are linearly dependent. Therefore

S .2

‘2=3=£-, £=2.=S.
u v v w u? w u v

W
80 .. P=g=r, W=y ew,
If m is a non-gero mark of GF(7), n® is either +1 61- -,
Suppose then that F has equation

i’.J{’a

b dig x? x; + V' dixjxkxe = 0

Cb,d=0 kAL
If p? =q® =% = =1 so that If p =q® =r® =1 so that
Py @ r are =1,-2, 3 in some Py @y r are 1, 2, =3 in some
order, then the conditions that order, then the conditions that
the 5 E~points on s42s are on the O E~points on 8423 are on
F are F are
=dzg + dgs = dga +dss = 0 dpp + dpg + dgp +dsg = O
“dag = Sdgg = 2gg + daa = 0 das = 3dgs + 2dsg + dsa= O
=2z + 2dgg + Sdag + das = 0 daz + 2dzs - 3dsz + dag= 0
o' Ggag =dsz = 0 dpp =dja e*e dgg =dgg =0 dag = =das
From s{2s, dot = d4p = 0 doo = * A1y

Similerly from the other 2 pairs of opposite edges,
dog = dgo =d4g =dgy =0 doo = & da2 dyq = % das

dog = dao =d43 =dgy =0 doo = % das deg = & do2



The dit must, for an existent F, takec values that make the above conditions
consistent, Thus F has the equation |

x2 +ex? +7xP +gxd +x % % XIdixi'= 0
where each of e, f, g is either 1 or =1, Such surfaces for fixed e, f, g
but varying di meet the edges of the tetrahedron of reference in the same 18
points; however, none contains the 27 lines except those having
do =dy =dg =dg = 0, So F is one of the swfaces
o

x! £ x ;x,’ =0

X

all of which are projectively equivalent to
xg +x0 + xF +x? =0

It has now been proved that every cubic surface over GF(7) containing 27

1lines is equianharmonic,

§14. The mepping of F; onto the ylane.

The projective uniqueness of F, hence to be called F,, and the exhaustive
covering by its 27 lines are mapped by corresponding geometry in the plane,

A plane kearc, a set of k points in a plane with no 3 collinear, is
complete if it is contained in no (k + 1) = arc: or equivalently, if the joins of
the k points £il1 the plane, Over GF(q), where q is odd, every g=arc is
contained in a (g + 1) = are, Segre [J2]; every (g + 1) = arc is a conic,
Segre [5/]. Thus in the plane over GF(7), every 7-arc is contained in a
conic, Hence all 6-ares not lying on a conic are complete. From the last table
in {12, a complete 6-arc has 6 B-points, namely when the upper bound for b
is achieved, Were no chord of the 6=-arc to contain more than one B-point, there
would be at most 5 Be-points, Thus at least one chord contains 2 B~-points,
Therefore the ©6e-arc or hexad can be formed from the four vertices of a quadrangle ¢
and two points on the join of two of its diagonal points,
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Let the vertices of @ be (+ 1, + 1, 1) so that its diegonal point
triangle is the triangle of reference; the hexad is to be completed hy two points
on x =0, The pencil of conics through the vertices of Q 1is

ax® + by +02° =0 vhere a+b+ ¢ =0,
Of the 8 conles in the pencil, & are line pairs, Of the remaining ©§ conics,
5 are skew to x =0, (0,1, 0) and (0, 0, 1) are the double points of an
involution on x = 0 whose pairs (0, + @, 1) each lie on one conic of the
pencil, The pairs (0, +1, 1), (0, + 2, 1), (0, + 3, 1) 1lie on the line pair
¥ «2° =0 and theconics X =2Q?+2° =0, X +y*«2s2=0
respectively, Thus the only possible peirs of points for the hexad are

(a) €21 (b) 0 21 (e¢) 0 =21 (@) 0 =21
051 0 =5 1 0 31 0 =3 1

By the harmonic inversion y <=> =y, which leaves ( fixed, the hexads obtained
from (2), (@) end (b), (¢) are equivalent, Thus there are only two pro=-
Jectively distinet complete hexads

¢« =111, 1=11, 111, 111, 021, 0 31

B =111, 1=11, =1 =11, 111, 021, 0=31 ,

This is reflected in Il3 by the two notationally different triads of trdi=-
hedral pairs ©.8. Si28, Ssses S120,456 and Siz,s4s Ssa,ser Sse,1z. The
hexad @« is related to the former type, the hexad £ +to the latter, If the
points of & are A4, «¢y Ag in the order

“1 14, 111, 021, 1«14, 1«11, 0351 ,
they fall into two triads Ay Ag Ag, A4 Ag Ag 3in sextuple perspective from
the 6 B-points, Each of the 9 lires Ai{ A j where A{ and Aj are from
different triads has two B-points, vhereas if A{ and Aj are from the same
triad Ai Aj has no Bepoints, On the other hand, if the points of B are
By, ¢y Bg in the order

“t 11, 111, 1 =11, =t =11, 021, 0=51 ,



they fall into three pairs By By, BBy, BsBs. Each of the 5 lines BB,
where Bi(Bj is ome of the pairs, contains two B=points; the other 12 lines
BiBj contain one B-point apiece.

The completeness of the hexads maps the covering of Fy by the 27 lines,
or in fact by the 21 lines ai, cjk, and the two types of hexad map the two
different types of notations for the properties of Fy,

The 6 Be=points of each hexad form a hexad of the same type as its
originator., For e, the B~points Hy, ¢, Hg are

Hy 3 AdAg, Aglg, Ashs Hy ¢ AgAgy Aghgy, Aghs
Ha ¢ Aqldg, Agdg, Asly Hg 3 AqAs, AgAg, Aalg
Hg 8 Aglg, Aghy, Acds Hg ¢ Aqhg, Aghs, Agly

They form a hexad «' partitioned into two triads HyHgHp, Hyliglips The B~
points of @' are the points of a as, for example, HiHq, HpHs, I3l are
the respective lines Aqly, A¢lg, AqAg which meet at Ay, Thus HqHgHs,
Hyllglg are in sextuple perspective from the 6 Ai. In this way the hexads
like « occur in closed pairs.

The hexad S depends on the triangle with sides ByBy, BgBs, BgBg. Let
this be XY4 and label the B-points of S8 as B;, «..., By where
By = (ByBa, BoBs, BeBe) Bz = (BiBa, BoBe, BaBs), B3, By lie on BoBg end
B, Ba 1ie on BeBe.
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From the quadrilateral BgBg, BgB4s BeBes BeBs with diagonal line triangle
XYZ, the pair By, By is harmonically separated by X, 2 as is the peir Bg,Bs
by X,¥ and the pair By,B; by Y,%. Similarly B3,,B; are harmonically con=-
jugate to Y,% as are B3,Bi to X,Z and Bs,Bs to X,¥. Thus the 6
points of S as well as the 6 Bepoints of S 1lie on the sides of XYZ and
are also harmonic conjugates of the 3 pairs of vertices of the triangle,

A converse can also be obtained from the above figure, Begin with
Bs,BsyBseBesX and select Y,Z2 so that By,B; are harmonically separated by
X,%2 and BgyBg by X,Y ¢ thus the line YZ is the polar of X with respect to
any condc through Bg,Bs,Bs,Bs and in particular the line pairs BgBs, BsBe and
BgBgs BsBsge Therefore the vertices By, By of these 1line pairs are points
of YZ and as before harmonic conjugates of Y,Z,

Suppose the 6 DBepoints of S do not form a hexad;  then some pair
Bi,B} lying on different sides of XYZ are collinear with & point Bf on the
third side, It will suffice to consider one pair as the argument is the same for
any other. 5o, letting Bs = (ByBs, BaBg), Bs = (ByBo, BaBy), Bg = (BiBe, ByBs),
either By,Da,Bg or B,,B;,B, are collinear, If B,,By,By,

(2, 3,21 ) B (xz, ByBy) B (vz, Biny
whence By,By are harmonic conjugates of Y,%; this is impossible as the
harmonic conjugate of By vr.i.th respect to Y, Z is By which is not on BgBg
or B¢Bg and so is distinct from By, If B,, By, B, are collinear,

(xz, 3,8} ) 3 (xz, 8iz,) B (3, Bi%,)

which implies a solution of {0, », 1, A} = {0, ®, A, «1], whence A® + 1 =0
which is insoluble over GF(7), Thus the 6 Bepoints of f form a hexad g',



From the converse stated above, the Bepoints of p' also lie on the sides
of the triengle and are hammonic conjugates of the vertices. As B!, B: differ
from Bg,Bg =0 the points where B} B},B;B; meet XZ differ from By,Bes So
the Be-poinis of pf' are not the points o f, Thus the 6 Bepoints of J' == BJ,
ves B, form a hexad " where B,,B,; B,,B,; B,,B; are the three pairs of
harmonic eoﬁ,jugatea of Y,Z4; similarly for X,Z2 and X,Y.

Finally the Bepoints of j" are the points of the original hexad S, So
the hexads like £ occur in closed triads, 1In coordinates, £ is

-1 11, 111, 1«11, =t =11, 021, 0«51,
Applying the projectivity y+ 22y, y=-z-=+2z sothat X¥Z dis the triengle

of reference, this becomes

510, =310, 301, =501, 031, 0=3 1,
and the successive hexads are
-110, 110, =201, 201, 0=11, 011

-210, 210, =101, 101, 0«21, 021,

Given the triangle XYZ, there are J x 3 x 2 = 18 hexads like £ whose
points lie on the sides of the triangle, The 18 hexads fall into 6 {rdads,.
Since there are 73(7° = 1)(7% = 1) projectivities in the plane and 57.56.49/6
triangles, XYZ has a group of order 6%, Thus each hexad Jf has a group of
order 12 and each triad a group of order 36, The number of hexads of
type £ is

18 x 57.56,49/6 = 2°,3%,7%,19,

The numbers of the two types of hexads in the plane can be calculated
simultaneously. Having selected the vertices of ¢, there are J x 2 = 6 ways
of selecting the remaining two points on the sides of the diagonal point triangle
of Q@ for each type of hexad, However for each hexad, the mumber of ways of



selecting the ordiginal tetrad is the number of residual pairs whose join contains
2 Bepoints, viz., 9 for hexads like &, 3 for hexads like S, Thus there are
thrice the number of hexads of type f as of ype a.

Of type « there are 57,56,40.56 x a 2%9,3.,7%.19,

$

41 )
Of type J there are 57,56,49,56 x § = 2°,5%,7°,19;
4 s

totalling 8%:3. 7.9
which is, by ¢ 12, the number of hexads in the plane not lying on a conic,

That there are J hexads like S to one like a corresponds in I %o
there being 30 triads of trihedral pairs like Sia 84, Sse,s6s Sse,12 and
10 1ike S¢23, S4s6s S120,456.

As there ave 7%(7° = 1)(7® = 1) projectivities in the plane, the groups which
leave a,f :i.nvariant are of respective orders 56 and 12, the latter as above,

The subgroup of Ae¢ which consists of all the permutations of 125,456 such
that the two triads are invariant or interchanged has order 3! x3! x2 = 72,
The projective group of & of order 36 consists theiefom of the subgroup of
those of the 72 permutations which are even, as the operation (56), say, camnot
be effected by a projectivity.

The group of S has, as a subgroup, the 4=group consisting of the unit and
the hamonic inversions with respect to each of the three sides of the triangle,
each of which inversions interchanges the members of two of the peirs ByB,BsBs,BsBe.
As the pairs must be left invariant, some other operation in the group of £ is
a permutation of the three pairs of order 3 i.,e, a complete permutation, none
of which commute with the elements of the 4-group, Hence the 4=group is a
normal subgroup of the group of f, which is therefore Ay, Dickson [/7]

P+268.,



& 156, Existence of Grace's extension of the double-six.

Grace's extension of the double-six requires the existence of & skew lines
with a common transversal such that any 4 have a unique second transversal, A
double-six includes sets of § suitable lines, Ve will firstly approach the
problem by seeking the existence over GF(7) of a sixth line,

Iet 84982,88584585,0 be the § lﬁws and their transversal; denote by
ag the line sought, In the representation of lines in I3 by points of a
quadric in Ii;, let the points (w, x, y, 2z, t, u) lie on K:iwu+ xt + yz =0,
Denote a point of K by the same symbol as the lime in [y it represents, Take
b as (1, 0, 0, 0, 0, 0): then the tangent prime at b, wu = 0, contains the
ai i1 =1, seey, 6 and meets K in a quadric cone with vertex b and base
Qs xt+yz =0,

If 4 skew lines have a single transversal then the polar line with respect
to K of the [y spanned by the 4 points representing the 4 lines touches
K at a point which lies in the Mg ([3/ ] p.217)., Thus the transversal is
linearly dependent on the 4 lines,

Take the ai as (Wi, Xiy, Yip Ziy iy 0) i =1, seey 6, In the
Mg w=u=0, let the points (0, xi, ¥i, 21y ti, 0) on Q be called Ai, Let

the planes Ti, Sijk be

Ti 3 xti +yz. +8yi. +txi = O i =1, e2ey 5
Sigk ¢ | x ¥ Z t = 0 isJok = 1,°°%, &
b S 4 zi L
x5 Y Zj €
X Yk K T

Ti is the tangent plane at Ai meeting ¢ in the two generators through Aj
and Sijk is a nonwtangent plane meeting ¢ in the 8 points of a conic, no

two on the same generator, As a; does not meet aj;, At does not lie in



?; J#is Asocach 4 of the ai | = 1,ees, 5 have two distinet transversals
and no more, b is independent of any 4 of the ai and any 4 of the ai are
themselves independent: thus Ai does not lie in S8 ke Jsk,2 #i. Ag "is not
to be either in any of the 5 planes Ti{ or in any of the 10 planes S k.

Suppose there is such a point As and project the points of ¢ stereo~
graphically from As onto a plane 7 following Todd [6/ ] p.i10, Let &g
be the generators of Q through As and m the intersection of # with the
tangent plane at Ag.The. point A of ¢ corresponds to the point « din which
AgA meets w, The exceptional elements are Ag which corresponds to the line
m and the lines £, g which correspond to the points L, G of m in which they
meet m, The (q+ 1)? «(29+1) = o® points A of Q noton & or g
correspond 1 -1 with the (¢® + g+ 1) = (g + 1) = ¢® points a of 7 not
on m, The two generators of { <through A correspond to the line pair
el, at. A conic section of Q through Az corresponds to a line pair one of
which is m, A conic section of (¢ mnot through 'Ag corresponds to a conic
through L, G,

As none of the AL (=1, ¢+, 5 1lie in the tangent plane at A4Ag, they are
represented by points ai not on m. As Sijk does not contain 45, the section
of Q by Sijk is represented by a conic through L, G, @i, aj, ok « S0 no
three ai can be collinear, As Aj does not lie in the tangent plane at A,

«j does not lie on either of the lines «iL, aiG, Thus the points

Ly Gy @4, g, g, %4y ¢ form a 7=arc., These 7 points therefore lie on a
conic so the Ay { =1, «¢y 6 1lie in a plane, So the construction is impossible,
So there is no suitable Ag. So there is no suitable ag, S0 Grace's
extension of the double-six does not exist over GF(7).

That a 7=arc lies on & conic was taken in { 14 from Segre's theorem as the



discussion of the cubic surface vas started ‘ab initio' in the plane; but it
is deducible directly from the cubic surface Fyp of § 13, 1In both types of
notations for the triads of trihedral pairs which determine the 18 E~points of
Py, there are € E~-points which are intersections of three e¢i; 1lines, Thus
in the plene the only &=ares mnot lying on a conic have 6 Bepoints and so are
complete, So any 7-arc lies on a conie,
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CHAPTER V. Preliminaries and general data on
Grace's extension .

§ 16, Ihe twisted cubic over GF(g) .

Before attempting to discover by an inductive method whether Grace's extension
of the double-six exists over GF(7), it is here necessary to discuss the notion
of a "twisted cubic" over G¥(aq).

In the wbaaqueh’c arguments, n "pointa" refer to the roots of an equation
of degree n, which may or mgy not lie in the field being used,

Segre [Ja] defines the normel rational cwrve in an arbitrary dimension
for fields of odd characteristic, and shows that any set of q + 1 points in
three dimensions with no four coplanar forms such a curve; in [53] the
twisted cublc over a field of characteristic two is also defined, However, to
provide a uniform definition of the twisted cubic over any field GF(g), we will
follow Todd [6/] pe117 end consider the corresponding planes of three pro-
Jective pencils, It is shown, by teking a projectivity with two distinct self=-
corresponding points on one of the axes, how to set up the correspondence so that
three corresponding planes never meet in a line, Thus a set of points [P} is
derived, of which any point Py is given by

Xo 8 X4 8 X3 8 Xg = fo(A) & £4(A) 1 £3(A) & £3(A)
where the f£i(A) are all homogeneous cubic polynomials in Ay : Ay with no
common factor, Let u be the plane
UpXg + UgXq + UgXy + ugxg = 0O,
P, lies in u if and only if
uofo(A) + uefy(N) + uafa(A) + uafa(A) = 0.
It is desired to prove that the discriminant of the cubic form in the above



equation does not vanish identically, so that not every plane meets the curve
in a double point. Assume the contrary., For all ficlds except those of
characteristic two and three, Todd's argument mey be followed. In the exceptional
cases the discriminant of a cubic form takes a different shape, ILet
ax® + bx?® + cx + d be an arbitrary cubic form with a repested factor; it can
then be written as a(x + e)2(x + ), Hence
b=é.(2e+f) ' ¢ = ale® + 2ef) d = ae®f,
Thus by elimination,
27a%d® + 4ac® + 4b% - b%c? - 18 abed = 0
for any field, The expression on the left of the equation is the discriminent.
This becomes
(ad + be)? over GF(2),
ac® + 1% = b3c? over GF(3),
Following Todd, f£o(A) can be taken as one of the forma A2, A2 A, let
e(A) = ufe(A) + wpfa(A) + uafa(A) = AAS + BAZ A, + CAAf + DAP,
vhere A, B, C, D are linear forms in uy, ug, Us, Firstly over GF(2%), let
£fo(A) = Al ; then the discriminant of uofo(A) + g(A) 1s {(up + A)D + BC]? ,
If this venishes identically, then D =0 and either B=0 or C=0, If
£o(A) = A A, and [AD + (uo + B)C}® =0, then C =0 and either A =0
or D=0, Over GF(&"), if fo(A) = A§  then we require (up + 4)C° +
B «B%C® 2 0; thus C =0 andeither B=0 or D=0, If fo(d) = 22N
and AC® +(uo + B)®D = (uo + B)?c® =0, then D =C =0, In each of these
seven cases, two of A, B, C, D are zero; thus only two of the #£i(A) are
linearly independent and there are two linear relations between them., All the
points P, would then lie on a line, contrary to the initial arrangement of the
correspondence, Thus the diseriminant does not vanish identically,

If u is any plane of the space such that the discriminant of % uifi(A)



is not zero, then the plane contains exnctly three distinet "points" of the
curve given by the set of points {P}.

Finally it is shown that the polynomials are linearly independent, Thus
the set of points can be given by

Xo § Xq 3 Xg 3 %Xa =A% A% 2 A1,

This is now owr twisted cubic I .

over GF(q), T comprises q + 1 points joined in pairs by aq(g + 1)/2
chords of which at most [(g + 1)/2] are skews I also has (g® = ¢)/2
other chords, each the join of a pair of conjugate points whose coordinates belong
to GF(q?). These chords are mutually skew and skew to all the other chonrds,
At each of its q + 1 points, I' also has one tangent and ¢° secants. The
chord through points A=1r, s of I has coordinates |
Pot ¢ Poz ? Poa ! P12 ¢ Pat ¢ Paa
= 5% 1rs(r+s8) 1P +ra+s® trste(r+sa) 21,
Thus the tangont at A = r has coordinates

r* 1 2r° 1 5r® 1 r? 1 e2rs 1,

I' separates the points of the space into 4 mutually exclusive classes:

q+ 1 pointa en T

2q+1 off I', on the tangents
§2+1§q-1; off I'y on the "real" chords

q* - qg+1 on the "conjugate" chords,

giving a1l (g® + 1)(q + 1) points of the space, This shows that through each
point not on I there is a unique line with two=point contact on T, In the
dual case the situation is different: the planes of the space fall into 5
different classess
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q+1 osculating planes

alq + 1) planes containing a tangent of I' and one
other point besides the contact of the
tangent

i(g® = @ planes containing 3 distirct points and 5

A distinet "real" chords of T

#e® = q) planes containing one point and one

"conjugate"” chord of T,

leaving #(¢® = q) which do not meet I, Tuls is then the number of irreducible
oubic equations over GF(a).

Over fields of characteristics two and three, I' has peculiarities, Over
any field the tangents to I' 1lie in the linear complex

Pos = 3P4z
Over GF(2") the tangents to I fom & regulus
Poz = pas =0 Pos = Piz e
Over GF(3") the tangents to I' lie in a special linear complex
Pos = 0.
Hore strikingly, over GF(2") and GF(3"), I' is not a properly self-dual
construct, The plane which contains the points A=r, s, t of I is
Xo=(r+ s+ t)xy + (rs+rt+st)yg »-rst xg =0,
Thus the osculating planes over GF(2") form a proper developeble given by
Xo + O0xq + Oxp + 6°xg = 0,
while those over GF(3") merely form a pencil
%o = 0°x3 = 0,

whose axds is the axis of the speclal limear complex pes = 0, the transversael of
all the tangents of I, However, I is also the residual intersection of two
quadric cones with a common generator: for example, the quadric cones
x? = xx; =0 with vertex X3 and xf = x;x; = 0 with vertex X, meet in
XoXg and T, Duelly, consider the planes which touch two conics with &

comuon tangent, say the conic %2 = X%z =0 in X=0 and x? - xx=0



in x¢ = 0. Over GF(2") the planes form a pencil x, + 0x3 = 0, whereas
over GF(3") they form a proper developable
Xo + 8%y + %%y + 0%%5 = 0,

§17. Grace's extension in genersl and over GR(7).

Over the complex field, given € skew lines ai i=1, o0y 6 with a
common transversal b such that axy 4 ak, a¢, amy 8n heve a unique second
transversal bij =Db;;, then from b and aj, &k, 2, an, an the double-six
Di can be formed with the completing line «a;: meeting Dbij, biky Pig, Dims bin
as in Appendix II, Bach Di (=1, s¢y 6 lies on a cubic surface Fi,
which contains another 15 lines cjlk, where 011,1 meets ai, aj and cfk
meets aj, ak., In this field there is a unique twisted cubic ¢ with the 6
lines ai as chords, e,g. Wakeford [(3] p.112 footnote, This cubic %
contains 10 points of Fi, therefore lies on it, and is the residual intersection
of Fi and Fj besides &, biy, axs ags, am, ane Baker [ 4 ] p,195 proves
that "given six skew lines with a common transversal, the locus of a point, such
that the planes Joining it to the seven lines touch a quadric cone, is a cubic
ourve, having the six lines as chords but not meeting the transversal." For
fields of 0odd characteristic, as the twisted cubic and the lines that are
chords of it have been properly defined, Baker's theorem and the proof, as it
stands, are true, The theorem breaks down over characteristic two because
of the phenomenon mentioned in { 16 +that the common tangent planes to two
conics with a common tangent form a pencil and not a cubic developable,

0f the fields of characteristic two, I will concern myself at the moment
with GF(8) and show that six lines having a common transversal with each four

having a unique second transversal can be chosen as chords of a twisted cubic,
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A point of I dis given by
Xo $ X $ X3 $Xg = rsrd1rt1,
A chord of I has coordinates
Pot ¢ Poz ¢ Poa * P12 ¢ Pis ! Pas
=r°s? trs(r+s8) 1 +rs+s® 1rstr+s i
The line u with coordinates (0,0,0,1,0,0) is skew to I' and meets the chords
of I whose parameters satisfy r® + rs + 82 =0 .0, (r+ 8)? =prs, Let
r+s8=v, Then u meets the chords v of T with coordinates
(v4 v, 0, v®, v, 1), As GP(4) is not a subfield of GF(8), r® + rs + s
is irreducible over. GF(8); therefore these chords all meet I' in pairs of
conjugate points with », s in GF(8%), Thus these chords are all mutually
skew, The two with parameters 0, « are tangents,
Any four of these chords a, b, ¢, ¢ have exactly two transversals if

a* &' a 1] A 0,
* ©v° b 1
¢t ¢® o 1
a* a* a4 1

i, (a+b)(a+c)(a+a)d+o)b+a)e+d)
x(ab+ac+ad +bo+bd+ed) £0

Thus, to find a line and six transversals such that any 4 have a unique second
transversal and so that the six lines are chords of a twisted cubie,
necessarily unique, it is sufficient to find six non-zero elements of GF(8)

such that no four satisfy ab +ac + ad + be + bd + cd = 0. Conveniently the 10
planes x| =0, Xj + Xk =0 (,j,k =0, s¢¢ 3 cover the quadric 1%:":&::;:: 0.
To show this, consider the quadric over GF(q) where g = 2%°*' Over these
fields it is non-ruled and therefaore consists of ¢® + 1 points, Primrose [33].
The 10 planes are each spanned by three of the five points 1000, 0100, 0010,
0001, 11113 the line of intersection of any two of the 10 planes meets the



quadric in elther one or two of these five points, but never in any other point,
For, of these 45 intersections of pairs of the 10 planes, 30 are the 10
lines through pairs of the 5 points and the remaining 15 are intersecctions
of pairs of planes with one of the 5 points in common, Thus the number of
points on the quadrie lying in none of the 10 planes is

(¢® +1) =10(q = 2) =5 =q*=10g + 16 = (¢ = 2)(qg - 8),
Therefore the 10 planes cover the quadric over GF(8), and eny 6 of the 7 non-
zero elements of GF(8) may be taken as parsmeters of the six chords of T,
Then these six chords have a common transversal and each four have a umique second
transversal,

To show the necessity of its existence, I would like to approach the guestion
of the twisted cubic lying on all six F{ from another point of view, Firstly,
it must be shown that 211 the ofk are distinet, It is sufficient to consider
Fy and ¥, and to prove that every 1ine ojk is distinet from every line ofn.

oL = ¢4; implies that the rlanes [b, ai), [b, aj] 4

meet in e¢4i, 80 csi =03
o: . = ef) implies similarly thet st = Dyg;
eri = ofk JA2 k#£2,1i implies that 01'1 meets ag;
eai = efy 1, 34 1, 2 implies that 0si meets aj ;
o;k - °;n bk, 1, m#A1, 2 m#J, k implies that c}k meets &g .

All these cases contradict the intersections of lines on Fy imposed by the
initial conditions on the ai.

Fyqy F3 have 8 common tritengent planes = those containing b, by and
each of ag, a4, ags, age Thus, besides these six lines, Fy, F; have 8 points
in common viz, where r:u meets c:t i1=03, se¢y & and wvhere 031J
meets c:_i J =3, «oy 6, It is these points which lie on the residusl inter-
section of Fy, F; and must therefore be part of a twisted oubic,



Now consider any two cubic surfaces over GF(q) intersecting in a curve C
of degree © which may be degenerate., A line lying on only one of the surfaces
meets the other and also their intersection in 3 '"points”, Suppose a line £
is part of C, A plane through £, containing no other part of C, will meet
the remeinder of C, degenerate or not, in 8 '"points", The plane meets each
of the swrfaces residually in a conic, The two conics meet in 4 "points",
and £ mneets the two conics and hence the residual part of C in another 4
"points".

over GF(q), where q is odd or 2°", take as before the line b, the 6
lines ai, the twisted cubic t of which the ai are chords, the 15 lines by,
the 6 1lines ai, the 6 double-sixes D. and the 6 cubic surfaces Fi .
Fi, Fj meet in ak, ag, 8my any b, bijand t, Bach F{ contains 15 lines
ek 3, k=1, v, 6, ALl 90 ej are distinot as previously shom; or
otherwise, the coincidence of any two would make them a part of the intersection
of two of the Fi.

The lines at are chords of t. From the previous argument, the «i are
also chords of ¢, the o;‘k are secants of t, the bij are skew to £; b
is also skew to t singe in the intersection of Fi and PFj, it meets ax, .a.g,
8ms 8pe The lines cji%, Jkl, ci.k,], being the intersections of pairs of the
planes [ai, bjk]l, [aj, dkil, [ak, bij] are conourrent at a point Lijx of t.
The plane [b, ai] contains the 5 lines oi; J # i, all of which meet &3
they are therefore concurrent at a point L. of ¢, 1In this way there are
6 points Li and 20 points Lijxk on t.

K k
As ©ik does not meet cjk, Li £ Lj 143 ;

e

As O;Jj does not meet ci’u, Li £ Lijk

As e}u does not meet cf&, Lijk # Lije k#£L .
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Suppose then that, over GF(7), there exist 6 skew lines with a common
transversal such that any 4 have a unique second transverdsl; the construction
of the figure, described above, may then be carrdied out, The line b lies on
each surface Ti, therefore containg 2 Eepoints of each; these comprise 12
E-points altogether, distributed among the 6 points (b, ai) of b, This
saans that 18 lines ofk pess Witougi these 6 poluts, Sinee Do Bae Ten
5 of these lines can pass through any one of the € points, at least 2 of the
points have 2 or more of these lines through them. Therefore, at least 2
points of b are points Li of ¢; consequently b uachonlof t, This
gives a contradiction as 1% was previously seen that b is skew to t.

Thus, over GF(7), it is not possible to find a set of 6 skew lines with
a common transversal such that any 4 have a unique second transversel, So
Grace's extension of the double-six does not exist over GF(7).

It can also be shown that, for fields GF(q) where gq < 11, a necessary
condition for the exlistence of Grace's extension is that not all the surfaces Fi
are completely covered by their 27 lines,

Suppose all the Fi are covered by their lines, The point Lg, the meet
of the ©41 4 =2, ees 6 is on + and therefore on Fy, It does not lie on
aj J =2, seey 6, for then aj would meet c.‘a on Fi 1f£J3, As Ly £#L;
i =2, ooy 6, Ly does not lie on efie As Ly # Liijy Li¢ does not lie on
eij 4y 3 =25 eey 6. Te byt i =2, .., 6 are skew to t and therefore
also do not contain IL4s Thus L4, which must lie on some line of Fy, lies on
gte Thus oy meets t in two real points, Similarly all the «; meet ¢ in
two real points, As gq < 11, t contains less than 12 points, Therefore if
the ai exist then the ai exist but are not mutually skew, Consequently,
Grace's extension will not exist,



18, Ihg gubio swrface over GF(E).

Over Gi(8) 1lines contain 9 points, so each line on a cubic surface ¥
with 27 lires has at least one E-point and it is seen from the table in § 12
that F has between 9 and 15 E-points, All the sets of 9 E-poinis

readily imply the existence of 15 except an arrangement of 5 on each sides of
a triangle as, for example,

a1, bg, C13) ags bs, Cas) Ciss Ca4as Csg)
agy b3y Cas agy Dgy Cso Ci45 Caes C35
ag, Dey Cyz fgy D4y Che Ci1es Czss Coals

a figure which turns out to be non-existent, These O points form Maclaurin's
figure lying & on each of 12 lines, 4 lines through each point. As there seems
no obvious reason why such a set of 9 points cammot lie on a plane cubic over
GF(8), it will be easier to consider Gearcs (hexads) in the plane thean the
arrangement of the E=-points on the surface directly.

In the plane over GF(8), there are 73 points, 75 lines, © points on a
line, 9 1lines through a point, A1l 7, 8 and O=arcs belong to 10=arcs,
Segre [{5] p.45; such a 10-arc, which is an oval, aiways comprises the points
of a conic C and its nucleus N, the meet of all the tangents of €, [55] p«d7.
Thus there are two possible types of ©G=are not lying on a conic,

1) A S-arc (pentad) plus the nucleus of the conic C it determines.

2) A complete 6warc.

Consider a pentad 100, 010, 001, 111, abe,
¢ 4s ab+o)yz+blc+a)mx+cla+d) xy = 0
N is {a(b+e¢), 1ble + a), c(a + )},



which lies on the line of diagonal points, x+y + 2 =0, of the quadrangle Q
with vertices 100, 010, 001, 111, Thus N 1lies on the line of diagonal points
of every quaedrangle inseribed in C: or equivalently, the line of diagenal points
of Q passes through the nucleus of every circumseribed conic, (The latter re-
places the theorem, over fields of characterdstic other than two, that the diagonal
point triangle of ( is self-polar with respect to every conic circumscribing Q.)
Let Ahglslelg N be a hexad H of type (1). Let di be the line of
diagonal points of the quadrangle whose vertices are the Aj; residual to Ai. The
5 lines d: all pass through N; the 9 1lines through N are all the tangents
to the conic C containing the AL 1 =1, .+ 5. As there are only 4 points
on C besgides the Ai{ and as mo vertices of a quadrangle lie on its 1line of
diagonal points, at least one of the di passes through the corresponding Ai:
let it be dss So ds 4is NAg end contains 3 Bepoints of H wiz, (A4h5,4384),
(AghgyhoAy), (A4A4,Aghs)., Horeover H has no other Bepoints, For, from ¢ 12,
the chords of a hexad over GF{8) with 3 Bepoints contain 15,8 = 54 + 3 = 69 points,
This leaves 4 points in the plane which are therefore the residusl points on
€ to the Ai; none of these 4 poiuts can be DB-points of I, Thus H consists
of the vertices of a quadrangle ( and two points on its line of diagonal points,
which contains the J Bepoints of IH; conversely H determines ¢ wniquely.
Consider a hexad K of type (2) = AjAgAsAghghe; being complete, it has 7 B~
points as shovm in § 12, If no choxd of K were to contain more than one B-
point, K would have only 5 B~-points, ©So at least one chord, let it be Aq4j,
contains 2 DBepoints, These two points are diagonal points of the quadrangle Q
with vertices Ag,Aq,As,8; 90 AqAp contains all three diagonal points of Q,
which are all Bepoints of K, Thus the hexad, whether of #ype (1) or (2),
consists of the vertices of a quadrangle Q and two points on the latter's line
of diagonal points, which conteins 3 B-points, In case (1), Q is unique: in



case (2), as will be seen, Q can be selected in 3 ways, the 5 lines of
diagonal points being concurrent, Host of these remarks on plane 6Ge-arcs over
GF(8) have also been made by Segre [54] and Scafati [#5] .

The two types of hexads can be given canonical coordimtes, GF(8) is the
cubic extension of GF(2) by a root of either X +x* +1 = 0  or
x>+ x+1 = 0, the roots of either equation being reciprocals of the other, We
will take the former equation so that the elements of GF(8) are

0, €, €, ¢, €&, &, ¢, ¢ = 1

where 1+1 = 0,

e+ e+, €+ etar1 =0, e +e+1 = 0,
The only automorphisms of the field are ¢, ¢°, ¢° =1, where ¢ replaces each
element by its square, Segre [57] p.,99. GF(8) has the further property
that each clement admits a unique n~th root, viz,

/" = P nm =1 mod 7 Segre [57] ps100
Let the vertices of § be 100, 010, 001, 111; the hexads have their
remaining two points on x +y + 2 = 0, The two points are to be chosen from
the 6 points on this line apart from the diagonal points, viz, from
1, @, Sa, 1, fe®1,  e®1:
15 hexads can be thus selected, Those of type (1) include the vertices

S5 0 dmih M3 IR
: €% € €1 1)

From the formula previously given, the lower point is the nucleus of the conic
containing the vertices of Q@ and the upper point, The 6 pairs of points are
arraenged in two cycles of 5: in each gycle the nucleus of each of the 3 conies
is a point of the next, For, as the nucleus of the conic through the vertices
of Q and (2, b, c) is f{a(b +¢c), b(c + a), cla + b)}, when a+b+ec =0
the nucleus is (a®, b?, ¢®), So the mucleus is obtained by applying ¢ to
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(ay by, ¢); ¢ having period 3 dinduces the gycles of three,
The pairs completing hexads of type (2) ave

::::1; c‘c‘%; t‘csj)
1 € 1 “c®1)
A A} ¢ el
35 AR aa

That the 6 hexads of type (1) are equivalent up to collineation as well as the 9
hexads of type (2), is seen by applying the six permutation matrices and the
automorphisms ¢, ¢°.

Let the points of the first hexad H of type (1) be named Aq,ees,Ag
in the order

100, 010, 001, 111, €%€®1, €°e*1

They are the base points of a map of a cubic surface F with 13 coplanar E-
points on the lines ag, bes Csee For, as Ag 1s the meet of the tangents at
the AL 1 =1,0¢y 5 %0 the conic containing these points, bg has the 5 E-
points (be, ai, Cig); a5 MAghg contains 5 Bepoints of H, egs contains 3
E-points (ose, Cij, ck&) Of F; as Aghs is the line of diagonal points of Q,
it contains the nucleus of any conic circumscribing ¢ = in particular AsAg is
a tangent at Ag to the conic through Aq,Az,AssA¢shs, 50 (Cses Bes bs) is
also an Eepoint, So far there are 9 E~points lying on bg and cggj; but
(c125 C24s Cs6)y B5ay, and each of (bg, 2i, Cig) 1 =1, »s, 4 are collinear
with a third E-point on ag, Thus the points (as, bj, ©js) J =1, sey 4
are also E=points, Hence F has 13 coplanar Eepoints lying 5 on each of
the 8§ lines ag, be, CGse, including their point of concurrency.

Let the points of the first hexad K of type (2) be named Aq, ¢, Ag. in



the oxder

100, 010, 001, 111, €31, 1,
The three lines

Aghg 32 X+y+3 = 0

Aghy &t X+ ¥y = 0

Aqdg 3 z = 0

are the lines of diagonal points of the 3 quadrangles whose vertices are the 4
points of K +they do not contain, The 7 Bepoints of K therefore lie 3 on
each of Aqlg, Aghg, Aghgy including their intersection, Thus K exists in
3 ways as the vertices of a quadrangle and two points on the latter's line of
diagonal points,

The points of K are the base points of a map of a cubic surface G with
15 coplanar E~points lying on the lines c¢45, Caey Cses For, as each of A4,
Aghy, Ashg contains 35 Bepoints of X, each of €43, Cs¢s Cse contains 35 E-
peints of G, Also, AqA; contains the nucleus of any conic through Ag,Ay,Assle.

Therefore A¢Az; is a tangent at Ay to the condc AqAslgfghs and at A; to the
conic AshsAglsAs, Thus ¢4 has two further E-points (as, by, ¢y3) and
(egy byy ©43):  similarly for cggy Csse S0 each of ©yg, C34y Cs¢ has 5 E=-
points on G,

If ¢ is now mapped onto a plane so that the lines a¢, az, 283y Casy C4sy Cs6s
comprising one helf of the double=six Djgg, are all mapped to a point, these six
points form a hexad of type (1). Hence the two types of hexad map the one type
of cuble surface,

It has now been shown that, over GF(8), a cubic surface F with 27 lines
alwey: contains 15 coplanar Ee-points; from the table in £ 12, the 27 lines
comprise the whole of F, It remains to discover whether F is projectively unique,
This will be done by developing the properties implied by the E-points and thus
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seeking o canonical form for F,

Call the plane of the Ee-points £, O0f the 27 limes, 24 contain exactly
one Ew=point while the remaining 3 each contain five, The self-conjugate points
with respect to the polarity of any double-six on F lie, by & 11, in a plane,
As each line contains at least one E-point, the 12 lines of the double-six
contain at least 6 E~points, These € &ll lie in their polar planes, As
these E-points also all lie in £, the plane of the self-conjugate points in
the polarities of all the double-sixes on F is 1,

Let us now examine f and particularly the 3 lires of ¥ in f: 1let
them be cu; Cs4s Csee Lhey are concwrrent anl each meets two other lines of
F at 4 more points and no other lines at its remaining 4 points. As has
been shown in '2.}15, if the lines meeting at & E=-points form an array Iaaéociatad
with a Stelner {rihedrel pair, the 5 E-points are collinear, Thus the 12
points on i3, Cses Cpes excluding (ciay Cse, Ose),which are E=-points, ave
collinear in sets of 5 in 16 ways; for example, through one of the 12 points,
say (cqa é.g, bg), there are 4 lines which each contain an Bepoint on Caq

and csey Viz,
(csey 23, b4 ), (cses C14s ©23)3
(caqs 84, bs ), (eses 135 C24);
(ceay Cres ©28), (cses 26, be )3
(cses Ciss C26/s (cses 265 bs ).

Let these 16 lines be called mw~lines,

The remaining 12 points on the O 1lires, call them G=points, do not have
this property. If a line other than c¢42, Cs4s Cse passes through 2 E-points,
it vasses through O and is an me=line, Through each E=-point there are 4 mn=-
lines; so the remaining 4 lines in f, excluding the line of F, through the E=-
point all contain 2 Gepoints: call these n-lines, Thus through each E-~point
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there are 4 melines and 4 nelines, totalling 16 mwlines and 48 n=lines,
These comprise the 64 lines of £ apart from the pencil through (ciz, Csss Cse).
Thus through cach Gepoint there are 8 n=lines,

In any Deserguesian plane, given 3 lines £; 1 =1, 2, & through a point
U each containing 4 points Ay, Biy, Ci, Di such that Aq;By,0qyDy and
AgyBg,Ca,Dg are in perspective from a point Py of & and such that
AgyBgyCayDy and Ag,Bs,Cs,Ds are in perspective from a point Py of &4,
then if PyPa meets &3 at Py, Ay,2;,01,D¢y and AgyBs,05,D3 are in per-
spective from a point V where V,Pp are hamonic conjugates of Py,Ps. To
prove this, consider the quadrangle UAqAsAg; two of its diagonal points, the
intersections of two pairs of its opposite sides UAy, ApA; and UAg, A¢Ap; are
Py and Pss So the third pair Uhz, AyAg meets PyPy in points P, V which
are harmonic conjugates of Py,Pg, Todd [6/ ] pe45, Thus Aq,B¢,Ci,Dy and
AgyBg,C3,Da are in perspective from V, where V is determined as the harmonic
conjugate of P, with respect to Py,Pg. However, over fields of characteristic
two, P and V coincide, Todd [&/ ] p.40,

The 12 points Ai,Bi,Ci,Di i =1, 2, 3 canbe taken as the G-points on
Ct2s Cs4s Cse 50 that U is (c43, Cses Csa); then Py,P;,Ps are suitable E-
pointa, The line PyPgP3 1is an meline and the configuration can be obtained
in exactly 16 ways, one for each m=line, It is natural to ask how the & points
of £i residual to U are partitioned into E-points and G-points,

On a line == and similarly inwhat Todd [4/ ] pe 15 calls " a primitive
geometric form of dimension one" == over a field of characteristic two, 4
points are pairs in 3 involutions all of which have the same double=-point;
this 1s called the associated point to the other four, Segre [S3]. If a,b,c,d
and x are the parameters of 4 points on a line and their assocliated point, then

x* = (bed + oda + dab + abe) /(2 + b + ¢ + )3



in particular «, 0, 1, a are associated with va, Over GF(8), if
S15582593,5495s are 5 points on 2 line M and Ty,T3,T3,T¢ the remaining 4
points, then the T{ are associated with one of the Sj, which is also the
associated point of the other 4 §j, hnd each of the remaining 4 tetrads of the
S; has a different T: as its associated point, Segre [54].

~The paremeters of the © points on M are

© 0,1, ¢ &, &, €, &, ¢,
A get of 6 pointsa on M can be partitisned into two trdads; if o is any ome
Ofthe ‘i’ 181,'..’ 6, ﬂ‘m

@, 0, 1, a : a* 3 a® a®a®®
w, 0, 1, a* : a® 1t a ®a®®
w, 0, 1, a®* s a 3 a* a®a®d®
w, 0,1, @ s &® 3 &® o c®a®
w, 0, 1, @® 3 &® 1 &® a Pt
w, 0, 1, ® 3 a® s &® a oPa*

where the middle parameters are associated to both tetrads in the same row, The
hexad residual to =, 0, 1 is uniquely partitioned into two triads a,o®,a*; o%,a%0o®
such that the teitrads consisting of the one triad and any element of the other is
associated with an element of the second triad., Let this be written

a,d®, ot A &, B, o,
o< 1s an equivalence relation:

(1) it is trivially reflexive as from the given formula a,b,c,c
are associated with ¢j

(41) ud'ia symmetric from sbove;

(#31) As e tried is arbitrary on M, each residual hexed has the
same property, so from (ii)

“ 0,1 A a, a*, o®; this and
@, o2, a*cd o, o, o® give
®, 0, 1 4 o®, o, a°.
It is to be noted that two associations determine the partitioning of a hexad,



viz, if

X4, Xz, X3, X¢ ave associated with =xg

and X4, Xg, Xg, ¥ are assoclated with =xg,
then Xy, X2, Xa, g are associated with =g
and xuxa,xcﬂm,xe,xo-

 The three triads e, 0, 1; @, o®, a*; ¢®, o®, a® are all in the relation
#{-to one another and M can be partitioned into 3 such triads in °Cg/5 = 28
ways. The projective group LF(2, 2°) of M has recently been studied in
another comection by Macbeath [35 ],

The previous geometry would indicate that U is the associated point of the
E=points as well as the G-points on each £&i, For, as a line meets the sides
of a quadrangle Q in pairs of an involution, if a line passes through exactly
one diagonal point P of Q, it meets the other 4 sides in pairs of an
involution for vhich P 1s a double-point, So consider the quadrangle /AgBy/AsCs}
one of its diagonal points is U, [Now ApAs meets &; in Py and BoCs
cannot meet &y in Py as ByBs does. So the line of diagonal points passes
through U but is not £y. Therefore the 4 sides ApAg, AgCs, BaAg, B3Cs
meet £y in the 4 E-points which heve U as their fifth associated point. Thus
the 4 CGepoints also have U as their fifth associated point,

The plane of the E~points, f, is one of the 45 +tritangent planes of F;
let the other 12 through the lines of F in f be v-planes and the remaining
32 be weplanes, Each tritangent plane is in 3 x 240/45 = 16 trihedra. Thus
£ is in the 16 <trihedra whose other faces are pairs of the 352 w~planes, The
fages of these 16 trihedra are collinear in the 16 melines, The 16 conjugate
trihedra are composed of the 12 v-planes, each being in 3,16/12 = 4 of them,

The 12 ve=planes have the property that the sets of 4 through e12, Cs4y Cse



all have £ as their associated plane; for f and the 4 veplanes through e©4a,
say, are the polar planes of U end the other 4 E-points on ¢4 with respect
to any double-six in which ¢45 lies,

A sinmilar property holds for the other 24 lines of ¥, One of the 5
tritangent plancs through such a line. of F also contains one of ¢4, Csey Cses
this plane is then associated with the other 4, For example, the 5 planes
[byy at] 4i=2, oy, 6 all pass through (by, c43) end meet £ in ¢4z and the
4 m=~lines through it; c3s meets ¢4z in U eand the 4 melines in its other
4 E~points, which are associated with U, (Therefore [by, agly ccveceee,. [by, a6l
are associated with [by, ag). Dually, in any double-six of F, the 5 points
in which a line is met by the other lines of the double-six form a set of 4 and
its associated point according to their polar plemes. In D (aiy, bi 1 = 1,+48),
the 5 points (ai, bi) 4 =2, ++y 6 have polar planes [by, ai] so that (ay, bs)
is the associated point of (as, bs), (a1, be)y (a4s bs), (24, be). However, it
should he noted that, of the 356 double-sixes of TP, 24 contain two of ¢¢2, C34s Css»
and 12 contein none, Thus with respect to one of the 12, D for example,
the associated point among the 5 on ay is the E=-point (a4, bz, cy2), but
with respect to one of the 24, it is not; ..for example in

Dsjaa ¢ @&y 8z 83 Cse Cqs Ces it is (ay, by) thet is associated with
G253 C43 C12 Ba bs Dg

(24 c43)y (a1, c42), (21, bs). (aq, be).

One of the 16 +trihedral peirs containing £ is

Ci2 Cas Cse
S188,240 G2 G2  Ci4
Cas Cie Cas
From such a trihedral pair a canonical form for F msy be derived, ILet ¢
be %o =03 this 1s then the face of a trihedron, another of whose faces nay
be taken as xy = 0 so0 that the third is Axo+ Bxy =0 . Two faces of the



conjugate txdihedron may be taken as x; =0, X3 =0 so that two of the lines
of F in £ are X =0, X =0 and xo =0, xg = 0; then the third face
con be taken as Xp + Xg + Xg = 0, The equation of F now is

Xoxq(Axo + Bxy) = x¥%g(%o + X3 + x3).
By substituting  AB®xy for =xy, the equation becomes

Axoxy (%o + X1) = XaXs(xo + X3 + Xg).

Over characteristic two, consider the reducible ternary quadretic form
2814%° + 823Y° + 8332° + a1.XY + 843X2 + 855Y2
= (ax + by + ez)(dx + ey + £3)
agy = ad azz = be ags = of

ags = bf + ce aqg = af + ¢d agg = ae + bd

By substitution it can be seen that
2 2 2
244833 + 8z2813 + 8as@42 + 823813842 =0 ,
Iff yy ax + by + czy dx + gy + £z are linearly dependent, then af + ¢d = 0,
50
2 2
2843 = 0 844823 + 833242 = 0,
Xo = A%z meets F in 3 concurrent lines for 5 values of A, two of
which are 0 and e, Substituting in the equation for F,
Ay (Mg + %) = Xaxg( A+ 1 % + %)
xa(AXzy + xo + AMxyxg + A+ 1 Xoxg) =0
By the ebove conditions,
AMA+ 1)2+ (A2 =0
ANAN® + A +1) = o,
As  AA® + A® + 1 has distinct roots, AA%+ A%+ 1 divides A7 + 1.

But over GF(2")
AMaet =2(A+ 1D+ 2+ )% + 22 1),



Therefore A =1, Thus the canonical form for F, hence to be called Fg 1is
Xox1(Xo + X1) = XoXe(Xo + % + Xo)
or %3 % + X (X1 + XeXs) + xexe(m + %) =0,
and every cubic surface over GF(8) with 27 lines is projectively equivalent
to this form,

This equation of Fg enables us to determine the order of its projective
group. Any projectivity leaving P invardant will leave X = 0 invariant,
and so will transform the trihedral pair S485,24¢ dinto itself or one of the 15
other pairs which have x, = 0 as a face, If Siss,24s is left fixed then
both its trihedra are also left fixed: in the trihedron containing x¢ = 0
the remaining two faces can only interchanged, while in the conjugate trihedron
the three faces can only be permuted, The 12 possible such operations can all
be achieved by projectivities, The following three generate the others,

(1) Ieave =xo, X2, X3 fixed and substitute 3 + % for =xi,
thus interchanging x =0 and x + %Xy = 0,

(ii) ZLeave xg,mﬁmdandtmnspoae Xg, Xz, thus interchanging
*z = 0 and Xg = 0,

(444) Leave =x,, X, X2 ﬁmﬁaxﬂsubgtﬂute Xo + X3 + Xg for Xs,
thus interchanging xas = 0 and xp + X2 + X3 = 0,

These operations generate a group, So the trihedral pair has a projective group,
and Fg & subgroup, of order 12, the direct product of a ¢yelic group of order
2, generated by (i), and a symmetric group of degree 3, generated by (ii) and
(111),

The trihedral pelr OSygp,24¢ n1noW has to be transformed into the other 15
containing the plane [cyg, Oses Css)s These fall into two types: the 9 that
have another plane in common with S126,248, for example Si3,24, and the ©

thol do not, for example S1e,25¢



Ci2 Cas Cse Ci12 Case Cse C12 G4 Css
Sias,24¢ ©C36 Cas Cie S1a,24 81 by Cig S14,23 a1 ba Ci3
C45 Cie Ca3 by ag ¢Cas b a4 24

Both types of trensformation can be done by projectivities, For exanple,

1f 8 0 U
. 31"3 gives the trihedral pair
e 00 1
xo(xy + ©x2)(%Xo + Xy + x3) = x3(€®x0 + %a)(€®x + % + %) 1 +$.+::a
3 . € +* + =
33(11*'(5!3)*'30(1’+(sx@)=¢’r.§m+m2¢“xg+x,) e + i
+ Xaxo(xs + x3) @ + S8+
' ' i + €4 &=
xo%4 (X0 + X1) =xgxg(xg_+x3+xg) 1 +¢€ + €=

gives the trihedral pair

%%
OO -0
(‘.:--LQ’CI
“oas

Xoletxg + 2y + ®xg + €xa)(€ %0 + Xy + Exa + x5)
= (€°%0 + %2)(€°x0 + xs)( X + %3 + %)
xd + %8 (x4 + €x2 + €x3) + xo(xf + xF + °xP)
= 28 + 28 (2 + xF) + x0(e®xF + x3x5 + xF) + xoxa(x0 + %)
xoxi(xo + %1) = xgxo(%o + Xg + Xs)

Thus Siss,24s can be projectively transformed into all 16 trihedrol pairs
containing [c4g, 34y Cse] and into no others, Therefore the order of the
projective group of Fg is 16 x 12 = 192,

Where does Fg fit into Segre's classification of the cubic swrfaces over
the real and complex fields? It is a degenerate case of the non=equianharmonic
cyclic surface, [43] 0 85-89, 100, where the fundamental plane is f and
the centre, the intersections of the tangent planes at all the E'-points, is

o000



(c12s C24) cse); the centre does not normally lie on the cyclic surface, much
less on one of its lines, In the complex case the cyclic non=equianharmonic
surfaces have groups of order either 54 or 108, whereas Fg has a group of

order 192,

¢ 19, Grace's extension gver GE(S).

VWhen it is said that Grace's extension exists, it is meant that the six
lines ai as constructed in § 17 are skew and have a unique transversal,

Over GF(8), from the example in § 17, six lines @i with a transversal b

can be selected with any 4 having a wnique second transversal, so that the ai
exist, However,as all cubic surfaces over GF(8) are covered by their 27 lines,
the theorem at the end of § 17 shows that there is no proper extension,

What does happen to the six lines «i? It was shown in § 17 that, if the
surface It is covered by its 27 1lines, ai passes through Li, Thus over
GR(8), ai passes through Li for i =1, «., 6, The twisted cubic t com~
prises 9 points over GF(8), but must contain the 26 points Li, Ljke.

From § 17, two of the Ljkg¢ may coincide with Li, e.8¢ L3, Lasss Dzse o
Four of the Ljkg may coincide with one another e.g, Lizsy Liass Dase, Lasss
Thus, if two Ljkg coincide with each Li and the remaining 8 Ljkg are
equivalent in two sets of four, the 26 points are 8 distinet ones: less
there cannot be, This leaves one point L on $. SZach @i is a chord of t and
contains Li; L d4s the only other point of ¢ that may lie on ai, Therefore
the 6 lines ai are all concurrent at L, An example of this figure is given
in Appendix III,

To discover more of the figure it is necessary to find the plane of the E=
points for each Fij; 1let these planes be called f£{ i = 1,ee+y 6, @y meets
the 10 1ines byi, i 1 =2, eeey 6 of Fy and cuts t 4in L, Ly by
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is skew to t and c:i meets t in L, which does not coincide with either
L or Li. So these 10 lines of Py, meet a¢y in at most 7 points, So
@y ocontains at least S 'E-rpoin'ba and therefore 5, Thus fi 4is one of the
five tritangent planes of ¥Fi <through ai.
These © planes, one through each ai, form cycles like f£;f; ,,,.fm, which

represents
[aty big) [aj, byk] eeeer [@m, Duils

If there is o cycle of two, say L[@i, bia) [@a,ba1], then (bya, 8s, C2s) and
(beg, 83, ©fs) are both Bepoints: so by, contains Lyas, the meet of o8
and os.a; but byz is skew to t., So there are no cycles of two., Therefore,
suppose that £y and f; are [ay, bia, o1a) and [as, bas, ofb]. Now lot
Ki = (5, at) i=1, vy 6, Then, from Dy and D, respectively,
Ks, Kqy Kg, K¢ are associated with K;
and K4, K¢y Ksy K¢ are associated with Kg@
therefore Kg, Koy Kg, Kg are associzted with K4
and K, Kap Ko 4 Ke, Ko, Koo Thus [ag, boe, 0] 15 £5 ond the 6 £i
form two cycles f£f,f3 and fefsfs or f£4fsfs5. In fact, in the example given
in Appendix III, the oyoles are fifife¢ and f4fsfs, 80 that om b
Kiy Koy Ko ‘)‘{’ Kz, Koy Kg o
Hach 1ine bij meets 6 of the 12 lines ay, ax, but the partitioning into
triads of these points on Bij is not alweys determined by fi and fj. There
are two cases to be considered: either bij iiea in one of fi, £j or in none,
Let K‘:‘J be (bij, ax) for k =4i,j and (bij, ak) for k # i,j. Consider
bga; f3 and f3 are  [ap, bas] and [asy bas]se 8o, from D3 and Ds
respectively,
K3, K, K3°, K3  are associated with K3°
and K3®, k3%, K33, K3  are associated with K3°

therefore K§° , K8% K88 o‘i E38 _x8® _x%8,
4 [} 2 3 B
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However, biz is in a different case; £y and f3 are [aq, Dyg] and
[@a, basle From Dy and Dy respectively,
K'3,K'3, k'3, kK\® are associated with Ki?
and K, K3, K2, K'? are associated with K'Y,
so thet either K'?,K'?,x? A x?,x1?,xi?
or K?,K9,x\® & K\P,K2,K'2,

Each line ai meets the 11 lines b, bjk J, k #1 and therefore must
~accommodate 11 points (ai, b), (ai, bjk) among the 9 it contains as weJ.'L as
11 planes [ai, b], [ai, bjk] emong the © that contain it, As Lges coincides
with Lg4s, the planes [ag, bae), [24y Das] contain both ag and this point,
which 1ies on t and therefore not on a¢s Thus

[a4s D2s]l = [aq, basl.
Further, as bae, bgs meet and as a4y meets both these lines but not ay, a4
must pass through their intersection; so
(a4y baa) = (a1, bas).
In this way, the 11 lines which meet ai occupy 8 points, given on ay by
b Dbaa bas bes  bae bas  Dbae bas
bas bss  bse
Similarly, these 11 lines are in 8 planes through a4
b Dbes bae bag  bag  bas  bas bse
bse  bas bae
From each Di 1 # 1, one can pick out a set of 4 points on a; and their
associated point, and similarly for the planes, but this is not reflected in the
above arrangements,

As the final piece of geometry of the figure, consider the plane LLiLj,.
The conourrent sides of the diagonal line triangle of the quedrilateral
aiajorjol) are LiLj, bij and the transversal of b, LiLj through 1; b
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meets c;.l,; and ct'j, cannot lie in this plane and therefore contains the point

g
(eigy ig)e

L‘v : Lo"
So b contains 15 points (oflj, cltj) i, J = 1,004 6, [Each of 6 oij,;

contains 5 E-points and so passes through (b, ai, ct’;) =Kt = (oi'j, ol.'}).
The remaining 9 points (ni‘J, c;‘;) therefore coinecide in threes in the 3
remaining points of b,

The search for Grace's extension must now move o PG(3,9).
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§ 20, The Eckardt points on 2 oubic surface gver GF(9).

over GF(4), GF(7) and GF(8), cubic swfaces with 27 lines have been
found tolbe pro jectively unique and completely covered by their lines, Over
these fields Grace's extension of the double-six does not exist, a necessary
condition being the existence of a point on the cubic surface off the lines,
Over CF(9), a line has 10 points so that a cubic surface with 27 1lines does
not 'a priori' have Eepoints, From ¢ 12, a cubic swrface with 27 1lines has
at most 10 E=points, in which case it is covered by its lines,

As mentioned in ¢ 1, over the complex field Bekardt showed,by considering
Sylvester's form for a cubic surface, that a surface F with 27 lines has iis
Ee~points at the vertices of its pentahedron; so that, if F has any E~points
at all, it has 1, 2, 3, 4, 6 or 10 and in the case of a degenerate pentahedron
9 or 18, Although Eckardt [/Y ] did not identify all the cubic surfaces
with 27 1lines, a complete classification, e.g. Segre [4 5] pp 125 = 162,
did not reveal any further arrangements of Eepoints,

Over any field, the arrangement of Eepoints on F is governed by the
lemma of $F 5 and 13 that two Ee-points not on the same line of F are collinear
with & third E~point, Over fields of characteristic other than two, it was
seen in § 11 that each line of F has at most two E=-points and F itself has
at most 18 Eepoints, With the help of these two lemmas let us examine, over
fields of characteristic other than two, the possible arrangements of E~points
on F,

If there is one E=point (as, bg, ¢42), a second Eepoint is either on one
of the same lines of F, e.&s (aa, by, ¢y2), and implies no other E=-points, or
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is on different 1lines of F, e.g. (2s, bs, c23), and implies a third collinear
E-point (2a, b4y C43).  If another Bepoint is added to (ay, bz, C13 ) and
(az, b1y C42)s the existence of at least one more is implied and a closed set of
three is formed, Thus to construct any number of Eepoints beyond three, one
can start with a collinear set of three,
ee8s (21, ba, ©12), (ag, bs, ©2s), (as, b1, ©13)

without any loas of generality, A fourth E-point can be chosen in 3 ways: of
the three lines of F through 1t, either none or one or three will have occurred
in the above & E=points, |

(1) Choose (ag¢y sy C4s); this and the other 5 Ee-points dimply the
further 3 E=points (cis, Caes Cse)s (Cies Cass Css)s (Ci4y C2ey Css)e These
then induce the E-points (ag, D4y C4e) and (asy ey Cse )e These 9 Ee-
points are a closed set and form a plane Maclaurin set lying in threes on 12
lines, 4 through ecach E=-point, From { 1, such surfaces exist over the
complex field vhere the 9 Ee-points are all the inflexions of a plane cubic,

(i1) 1In this case choose (012, Caey Cse); this implies two further L=
points (by, a4, Ct4) and (ag, bes C24)s The 6 E-points are vertices of a
quadrengle lying two on each of the sides by, ag, C4g of its diagonal line
triangle, This configuration occurs when the € E-points are all the vertices
of the pentahedron of F which lie in one of its faces,

(441) Pinelly the choice of (aaz, b1, C12) gives & closed set of 4

(a1, ba, c13)y (aas Da, cas)y (as, bi, cis)
(22, b1, c12).

The addition of a further BHepoint to (iii) is accompanied by the original
three choices: the 35 1lines of F through the point can have none or one or
three lines in common with the 9 that occur sbove,

(iv) Take (a4, bs, Ces )3 this implies the E-points (as, ba, ©33),



(245 Day ©13) and the 11 others lying on nome of the 9 lines ai, biy Ciy
4, =1, 2,5 asincase (1) of { 15, These are the 18 Ewpoints of an
equianharmonic swrface lying in threes on the edges of a tetrahedron which are
the axes of the trihedral pairs S128s Seser Sug’ug.
(v) Now take (a1, bap C14) this implies the further E-points (as, ba, €24),
(245 bay cs4 )y (Cray €345 Gse)s (23, Das Cas)s (Cisy 23, Cse)s These are
the 10 E-points of a diagonal surface, lying two on each of the 15 lines
residusl to the double=six Dgge
(vi) Finelly take . (ag, bs, Cas)j this implies only one more E-point
(245 bsy C13)s Thus there are 6 B-points lying in threes on two skew lines
as in the diagram of § 7. So the faces of both trihedra of the pair S4as
are collinear and F has the equation
A xox1(%o + %1) = Xgxe(%a + Xo)e
In fields 6¥(q) where (g=1,.3) =1, each element has a cube root;so the
equation can be transformed to
Xoxe(xo + X1) = Xaxa(Xp + Xa)e
Segre [5%] p. 22¢ gives the theorem that, over GF(g) where (g =1, 3) =1,
the surface f(xop X1) = £(xa, Xs) contains [g® + {(d = 1)% + 1]q + 1] points,
wiiere @ is the number of seros in GF(q) of the cubic form f(x, y)s Thus,
vhen (g = 1, 8) = 1, the above surface cormteins ¢® + 5g + 1 points and there=
fore cannot contain 27 lines, Vhen (gq=1, 8) =3, *x° =1 divides x> =1
and x® + x+ 1 has two roots in GF(q), Then the equation of F can be
transformed to
A x} +Ax” +x: 1-:: = 0,
If A has a cube root in GF(q), F is equianharmonic and contains 18 E-
points as (iv), If A has no cube root, F consists of g® + 4q + 1 points,
Segre [5%] p.257, and camnnot contein 27 lines,  Thus it is not possible that



F has exactly 6 such E=points,

The addition of further E~points to any of the cases (i), (ii), (v)
implies the cases (iv) or (v). Thus we can conclude that F, a cubic surface
with 27 lines over a field of odd charecteristic, has 0, 1, 3, 5, 4, 6, 9, 10,
or 18 E-points and that these E-points are arranged exactly as over the complex
field as deseribed by Eckardt [/K ] .

GF(9) is a quadratic extension of GF(3) by a root of ° = p+1 or of
B+ p=1, Segre [57) p.84. Telcing the former equetion, the elements of

c*(9) are
0, 21, 20, + 0%, + ¢
where 1 + 1 + 1 =0
P et =20=0"4+1
and 0° = 0® w0 =0 o+ +1=0 ®+0 =1=0,

The only automorphisms of GP(9) ere ¢ and ¢® =1, where ¢ replaces cach
element by its cube.

Over GF(9), a cubic surface F with 27 lines has between 0 and 10
Ewpoints, $ 12, If F has 10 E~points, they are the 10 vertices of a
pentahedron and lie two on each of 15 1lines as in (v). A diagonal surface,
although it does not have its usual form

4 4
%axf =0 Zlonxl 20,

can be obtained by evaluating the above as a cubiec in X, X1, X3, Xs » The
terms in x? disappear and a factor of 3 can be cancelled, Then, over
GF(9), the surface is

f’, xfx; = xox.xaxai‘,x‘i’ =0
l,JtO 4]

i.7/.j



or more symmetrically

) 5

xx:x = 0 xt = 0
isdsk = © lJﬁ (4] > .
b€ J 2R

Thus, as 4° = g+ 1 has two roots in GF{9), the surface has 27 lines and
10 E-points, Baker [ 4 ] p.168, and is entirely covered by its lines, The
faces of the pentahedron are =xi =0 1 =0, s, 4 as over any other field,
Therefore, by trensforming the pentahedron of any surface over GF(9) with 27
lines end 10 E=-points into this one, all such surfaces are projectively
equivelent to the one given, which will henceforth be called Fg , The projective
group of Fg, as over the complex field, is the aymmetric group of degree 5
eonsisting of all permutations of the faces of the pentahedron and has order 120,

To discover other surfaces, hexads in the plane could be considered. From
the diagonal surface, hexads vith 10, 4, 2 B-points can be obtained by mapping
Fg via the 3 different types of double=-sixes, The hexad with 10 B-points
is, by § 12, complete, Segre [55] p. 49 has shown that over GF(9) there
exist complete 6, 7, 8-arecs., A O-arc 1is contained in a 10=arc, which is
always complete, Thus a hexad is either a complete 6=arc or is contained in
a 7=arc or an 8~arc, The difficulty in considering the hexads in complete 7 or
8=arcs theoretically (practically, enumeration is straightforward giving only
hexads with 2, 3, 4 or 10 Be-points) suggests examining further possibilities
in three dimensions.

For a cubic surface F with 27 lines over CF(9), let e be the number
of Eepoints and n the number of points not on any line ; then

e + n = 10 & 12

The case of Fg where e =10 n =0 has just been considered, It will now

be shown that n <€ 1,



To do this we require an estimate of the number of points on a plane cuble
curve over GF(9), Unfortunately, there is no estimate in the same comparatively
elementary vein as this work., Segre [58] p.228 foll. discusses severasl
cases vhich he gives as particular examples of a general theorem of Hasse [327]
and Weil [64]) =

‘. "An absolutely irreducible curve of genus g and order d over a field
GF(qg) has IN points, where
bt - (g +1)] s 2g/q, gﬁ%(d.—‘lx‘_l-ﬁ)."
The theoﬁﬁm is given precisely in this form and generalised by Lang and Weil [34] .
(It 15 also equivalent to the Rismenn hypothesis in function-fields over a fimite
field), In particular, this theorem shows that a plane cubic curve over GF(9)
has at most 16 points,

From § 12, F contains 145 points, Suppose F has at least two points
P, ¢ off its lines, Either PQ meets F in no further points or in one further
point, 1In the first case, if a plane section of F through PQ contains a
line £ of F, then ¢ would meet PQ in a point of F other than P or (,
contraxry to the_lwpotheaia; so all plane sections of F through PQ are
irreducible cubics. Therefore F contains at most 10(16 = 2) + 2 = 142 points,
which is contraxy tolthem being 145,

Suppose then that PQ meets F in a further point R, So, if a plane
section of F through PQ is a line and a coniec, the line will pass through R,
Thus at most S seot_iona of F through P(Q ocan consist of a line and a conie,
in which case the 3 1lines form an E-point at R, Thus in the cases where there
are 0, 1, 2, 5 such plane sections, the number of points on F is respectively

at most
10(16 - 3 + & = 133
16«3) + H20«3) + & = 157
B(16 = 3) + 2(20-3) + 3 = 141
(16 =3) + 3(20~3) + & = 145 ,



Only the last case is admissible wiere R is an E~-point, So, for every peir
of points not on .any line of F, there is an D=-point on their join, As there
ave n points of F on none of its lines, there are n(n = 1)/2 lines through
pairs of these points and each line contains an E=-point, though these are not
‘negessarily distinct, However n< 6; for if n2 6, n(n = 1)/2 > 15 so that
at least 5 Ee-points would be required, whereas there is room for at most 4
gince e+ n =10, For n=2, 5, 6, e is respectively 8, 7, & and in
each case we have seen that there is no possible way of F containing exactly
this number of E-points,

when n=4, e =06 and the 6 E~points are vertices of a plane quad=
rilateral as in (4i), e.g.

(013. C35s cas) (cses Cisy cae) (cses 185 C24)
(c12, caes Cas) (coas cies c28) (c12y oy ose);

these are the points where the plane [ciz, Cses Cse)] meets the edges of the
tetrahedron vhose vertices are the 4 points of F on none of its lines, ILet
the tetrehedron be the simplex of reference and the plane [ei1a, Cas, Cse) be
Xo + Xq + ¥g +xg =0, Then, as Ci12, Caqy Css are joins of opposite vertices
of the quadrilateral, they have equations
Xo + Xy 2 X3 + Xg = 0, Xo +Xg =X + X =0, Xo + Xg = X + X = 04
The 6 tritangent planes containing & concurrent lines of F have equations

Lcia, o385 el X + %1 = a(Xa + Xs)
[c12, Caey Casl b(xo + %) = Xz + %
[cas, ciss czel %o + Xz = of(x + x3)
[ese, C18, C2s) d(xo + X2) = X + X
[eses ©13s €24l Xo+ X3 = e(xq + x3)

[Gsa, Ciay QSB] f(xo + Xg ) = X o+ X



- 80 =

As [ey2, Co4s Cse) meets F in ey, Cgey Cse and as Xo, X4, Xz, Xs
lie on F, its equation is
(%o + %4 + X3 + Xo) (AoaXoXy + AogXoXs + AgaXoXs + A1aXiXa + AtgXsXs + AgoXaXs)
+ (%2 + %a)(x4 + %a)(x1 + x3) = 0,
G12s Cass Cas o1l lie in planes through XoXi. S0 Xo + X1 = a(xz + Xg)
meets F in X3 + X3 =0, a'% + X3 =0, x3 + a"xg = 0, Substituting
Xo = aXg + aXg = X; in the equation
(2 + 1)(xe + %) {(axg + axs = x1)(AotXy + AogaXs + AosXs) + AqaXeXay + AqaXiXs + AgaXaXs)
+ (20 + x3)(xf + xaxp + xyxg + Xa%) =0 .
Then, suppressing the factor (xz + xs), the coefficients of xf , xixa,
xX1%Xs in the remaining conic must be zero,
=(a+ 1At +1=0
ala + 1)Apy = (& + 1)Apg + (2 + 1)Aqg + 1 =20
a(a + 1)igr = (8 + 1)Ags + (a + Az +1 =0
Substituting 1 for (a + 1)Ags 4n the last two equations and, as a # =1,
cancelling a + 1

10%3 +A13=0
1= hog + Ayg =0,

Similarly from the section of F by o + xp = o{xy + x3)

1 e8¢ + A2 =0
1 = Aog + Agg =0

and from X, + X3 = e(x + x3)

1 Aoy + Agg =0
1 = Aoy + 243 =0

Therefore Aoy =Apa =Aca =(a+1)"" =2(c+1)"'=(e+1)"' =2

Aqa SAga ﬂkasﬂ.l\-1-

So the equation of I is



o8 »

(xo + x¢ + Xz + %g) [A%o(%1 + X3 + xg) + (A= 1)(x4xz + XyXs + XaX3) ]}
+ (x2 + xa)(xy + xa)(® + x3) = 0
%o + %4 = a{xs + x3) meets F in
(2 + )(xz + %) [A(=xy + axp + ax%)(x1 + %3 + Xg) + (& = 1)(xiXg + XuXg + Xo¥s)]
+ (za + xa)(xs + %a)(x1 + x2) =0
which, since (a + 1)A =1, 'is
(xa + xa)(axd + 2+ 7 %gxe + axg ) =0
The quadratic expression has two different zeros, so its discriminant
A=(a+1)?=a?=1-a=-{a+1)/A
is a non-gero square, S0 A # 0, =1. and 4* = 1;
' so (A+ 1)% =2t
A +a+1=20
A=1orer ored
01218 Xo + Xy = %o+ Xe =0 850 Xo + X3 = MX + Xs) meets F in 3 lines
for 5 values of A,
(A + 1)(xp + xg) [A(=xy + Axg + Mxg)(x4 + % + Xg) + (A = 1)(x4%p + 14X + Xo¥s)}
+ (xg + xa)(x¢ + %a)(x4 + %3) = 0
Suppressing the factor (xp + xg)
(= a(as Dixd + AMx+ (x5 + x5 )
+ [AA% = 1) 4 (&= 1)(2+ 1) + 1}(xixe + x1%a)
+{oaNMA+1) +(Aet)(A+1) +1}xgxg =0

So A satisfies 1eprR+3 M1 =AA+ 1) Mi«aR+ 1)
MieAX+ 1 AMA + 1) MNP a=1)+2r]|=0
Mi=aX+1T) AA%2 = 1) + A AMA + 1)
(1=a2+1) 1 A X
M1 =-ARTT) AMA + 1) MEPe1)+Ar]=0
Mi=AR®T) AA% -1) + A AMA + 1)




88 =

(1=a2+1) | aMar+1)% =23 A(A.+1)§A.°+A-1) +A(1 = A)

AMA+1)(ABarr=1) +A1=4) AMA+1)2 =22
(QedaX+ D [(MA+1)2 e PP «jA(A+ D)X +A2=1) + M1 =P =0
(1 oA+ D=AA+ 1)(A=1)2+ Mr+ D}AMA+1) =A} =0
(1eard+ DA+ DA=aRTNAMA=1)2=A} =0
The quadratic A(A=1)2 e« A =AM +2 =1 A+ A has two different factors so
its discriminant
Ve(A=1)? e« =44+1
satisfies V'=1; a0

(A+1)%=1

A* + A% 4+ A =0

and as A £ 0 A2 + A% +1 =0
s0 A=1 or ¢ or o°,.

Thus, by comparison with the previous values, A =1, Therefore a=¢=¢e¢ =0
the plenes X + Xy =0, X + % =0, X +xg =0 are tritangent planes and
contain the points X4, X3, X3, which now lie on linesof F, F is, in fact,
Xo(%1 + X3 + %a)(Xo + Xy + Xa + Xa) + (xa + x3)(x1 + %) (x4 + %) = 0
Putting =xo + %X¢ + X3 + X3 + x4 2 0, this becomes
Xoxe(%y + %3 + Xg) + (Xo + X # X )(Xo + Xg + X2 N + g + X ) =0
xox4(X1 + Xz + X3) + (X0 + %4)® + (x0 + %)* (x4 + %3 + x3)

+ (o + xe)(Xi%p + X4Xs + XaXa) + XyXoXs =0

Xoxe(xy + Xp + Xa) + (%o + X¢)(Xaxp + XyXp + XgXg) + XyXaXs =0

XX : i = .

This is the diagonal surface Fg’ on which Xp, Xy, X3, £3 are 4 of the 10

E-pointa.
| Tt has now been shown that n € 1.



§ 21, e gwblo surface over GF(9) mith 9 Bepointe.
From § 20, there remains the possibility thet n =1 and F has 9 E-points
as in (1), e.g.
Ry 3 gau ba, cmi Ry gan T tmi Ry 3 gcm C345 Baoi
Ry s (a3, bgy C2a Rs 3 (ag, bgy Cse Rg ¢ (C145 C2as Cas
Rg 3 (agy Dyy Cea Re ¢ (ag, ey Cse Ro 3 (c16y C25y Cas
which lie in a plane section of F on the 12 lines
R4RgRa,  ReReRs;  RoReRp,  Ri1R4Ry, RaRgRs,  RaReRe
RiRgRey  RiReRas,  RaReRe,  RaReRy, RsRgRy,  RsReRs .
These lines are given by the rows, columns and determinantal products in the

above arrgy, If there is such an F with only one point off its lines, this point
lies in the plane section containing the Ee-points; this plane section therefore
contains 10 points and is rational, To show this, coordinates will be given
to the 9 E-points, Eight constants can be chosen arbitrarily in a plane; as
a point has freedom 2, we may select 3 points and then one more on both the
lines joining two of the points to the third, visz,

Ry (1, 0,00 ;5 Ry (0, 1,0 5 Re (1, 1, 0)

Ry (1, 0,0) 3 Re(0, 0,1) 3 Ry (4,0, %) .
The remaining 4 points can be given coordinates by the following collinearities

Ry (0, 1, 0) ; Re (0, 0, 1) Ry (0, «a, 1)

Ra (1, 1,0 3 R (1,0,1) 5 Rs(B+1, 5 1)

Re (0, 0,13 Re(B+1,8 1R (B+1, 58 Y

Ry (1, 0, 1) ; Re (0, @, 1) 3 Rg (8,«@, 8+ 1)

The other 6 collinearities are
Ry (1, 0, 0) ; Re (B+1, 85 ¥); Ra (8, a, &+ 1)
Re (1, 0, 0) ; Rs (B+ 1, B, 1); Re (0, ¢, 1)
Ra (0, 1, 0) Rg (B+1, B, 1); Re (8, & 8+ 1)
Rz (0, 1, 0) ; Re (B+ 1, B ¥)3 Re (1, 0, 1)
Rs (1, 1, 0) Re (0, 001) 3 Rg (8 & 8+ 1)

e

e

R& (1,’ 13 0) H Rﬁ (ﬁ* 1’ IQ’ Y); Re (0) Gy 1)



The conditions for these 6 collincarities are respectively A8 + 1) = ay,
f=a Hé+1) ==, f+i=y, =8 oy==i, These give
g=f=wy=§=1 gothat the 9 points are

Ry y, 0, o% Re zo, 0, 1) Ry (1, 0, 1)

Rg (0, 1, © Rg (=1 1,1} m% -1, 1)

Rg (1, 1, © Rg (1, =1, 1 Re -4
Thay lie on the cubic curve

Py =-2)+35(z-%) +2%(x=y) =0
vhose only other point is (1, 1, 1), Thus the plane section of F containing
the 9 Eepoints also contains the only point of ¥ on none of its lines and
is rational, DBefore detemining whether such a surface actually exists, it
will be helpful to find out more about the rational plane cubic,
Oover G#(q), q =3", consider & rational cubic T in the plane by pro=
jeoting the twisted cubie I given by
Xo 8 X $ X 8 X = A° s A* A

froma point P onthe line &€ : x, = %3 = 0, which is, by § 16, the meet
of the osculating planes of I, onto a plane u which does not meet I' in any
points belonging to GF(q)e The q+ 1 ‘tangents of T meet £ in dise
tinct points. Thus, through P, there is one tangent, at Qo say, and ¢
secants, at Uqy eveey Qgs» of I. As the osculating planes of I' pass through
P, the tangents to T, which are the intersections of the osculating planes of
I' with wu, all have S-point contact with T, Thus the projections P(Qi) of
the (i are elither inflexions or cusps, As FQo is a tangent to I, the
planes through PQo meet I' in the Qi i =0, eee, g 50 that all the lines
of u through P(Qe) meet & ina P(Qi) 4 =0, seey g thus P(Qp) is
acusp, As the PQi 1 =1, ,.., Q are secants, the P(Qi) i £0 are
inflexions, S0 T consists of g inflexions and one cusp.

As the osculating planes of I' are collinear in &£, the tangents of T are



concurrent in the meet of £ and u, Any plane containing two of the secants
of I' through P contains a third; so the q inflexions of T are collinear

in threes in q(q - 1)/6 ways, The osculating plane at Qo contains

the point P

the other q points on £

the other q points on PQp

ﬁq’ - points on "conjugate" chords of T
q* - points on ‘"resl" chords of T,

the last being collinear in threes, In this way we have all ¢® + g + 1
points of the plane, If Qo is the point A =v, then PQy, the tangent to
I' at Qp, has coordinates

v¢ 1« :0:vP v & 18 3
& is 0:0:0:13:0:0
so.alina @ through P in the osculating plane at Qo 1s

viievPi0sv¥agrvit1 .
Achord B of ¥ is

*s? sra(r+8) 1 +rs+s? trster=-s5:1,
If P meets a
v e v(r+8) + (v¥ =g)(r® ¢+ rs + 8°) + vrs(r + 8) « ¥Ps? = 0,

So - Hlre-s)={vPevir+s) +rs}®

Thus the chords of I meeting « are all "real" or all "conjugate" according
a8 ¢ is a square or a non-square, Therefore, through each point of the
(g = 1)/2 chords & given by square ¢, therc is a real chord of I, Thus
the o(q = 1)/6 planes through P and 3 points of I are collinear in sets
of ¢/ on (g = 1)/2 concurrent lines of the osculating plane £Qo. Thus
o/3 lines through the q dinflexions of T are concurrent at a point of the
cuspidal tengent in (q = 1)/2 ways.

Over GF(9) in partiocular, T oconsists of 9 inflexions and one ousp
with the 10 tangents concurrent; the 9 inflexions are collinear in 12



sets of 3, any set of o linea‘thmu@tha 9 inflexions being concurrent

at a point of the cuspidal tangent, IHerein lies a difference from the complex
field where, although a plane cubic has 9 inflexions collinear in 12 sets of
5, asetof 3 lﬁms through the 9 inflexions forms a triangle,

So, the surface F with 9 E-points at the inflexions of a plane cubic
contains 145 points of which 144 are on the 27 1lines, The remaining point of
F is the double point of the plane cubic,

It remains to find out whether such a surface F with 27 lines end 9 E=-
points actually exists. Keeping in mind the previous discussion of the plane
cubic over GF(9) 1let us aim at a surface like

%o l& BLjXLX) + X =X X5 =0
mtha 9 E=-points are to lie on ¥o = Xi = %3 X =0, The tangent
plane at (0, y1, ¥ya, ys) is
X0 ), i:j:fawm + YaysXa =¥3 Xs = 0.
The points of Xp = Xy = X3 Xs =0 ave givenby (0, t, 1, ) and 3 points
t=p, ¢ r are collinear if p+ q+r =0, To show that F has 27 lines,
it iz sutficient to find its equation in terms of sach member of a triad of
C23 83 Dg
Steiner trihedral pairs, e.g8. Sisss Seses Si123,456+ Consider Sigs by ©42 &4 3
‘ ag by o4
let the rows be the tangent planes at the Xepoints at ¢ =0, 1, =1 =0 that
the columns are tritangent planes, collinear in the line containing these E~-
peints,
Thus F can be given the equation
(Axo + ¢ = %g)(Bxo + X4 = %3)(Cxo + X4 = Xg) = (%o + x)(%Xa = %s)(xa + xa)
vihere Xp = 0 has been chosen as the plane of Eepoints, xp + X5 =0,
Xg = %3 =0, X3+ xg =0 as arbitrary planes through t = 0, 1, =1 respectively,



end Xp = Xy = X3 = 0 as the line through these 3 points, Thus 14 para-
meters have been chosen; the fif'teenth appears from the unit element being
taken as the ratio of the products on either side of the eguation, Expanding
the equation gives
ARG X5 + % [AB + AC + BC)(xy = xg)] + Xol(A + B + C)(xq = %) = x¥ + x& }
+ % =X3Xs = 0

The tangent plane at (0, t, 1, t®) is therefore

% D(t = t?)2 + t8 =« 1] + 1%, =%y = 0 where D =A+B+C,
Now similarly teke the equation of F from the trihedral pair S¢se, three
of whose planes are tritangent planes at the E-points t = ¢°, -0®, =0 and
vhose other 3 planes contaein the line of these points, Xo = Xy = 0°xg = X3 = 0 .
(o + x4 = 0%xa = %5)(fxo + X4 = 0% = %) (¥ + Xy = 0%xz = X3)
= {(=D + 0)%o + o5 = X} {(D + )% + % = %} {(D + *)xp = 0°%5 = %5}
x5 {afy + (D =0 )(D = DD = 0®)] + x5 {(af + ay + PY)(xs = x5 = %) + "% = Dxg}

+xf(es By )z =0*xa = xe)® = (D + Vxg + =] + 2 =xfxz = 0,
Compare the two equations of F,
From the coefficlent of xo, a+B8+y= A+B+C=0,
Then from xg, af +ay+ Py = AB+ AC + BC =1,
Therefore from z:, afy + 1 = ABC ,
ILet ABC=k, Then A, B, C are the roots of
¥ +x-k=0
and @ P, yare the roots of x® +x «k+1 =0, However x* =x =
(2 +x)(x® +x=1)(x®+x+1); thus k=0, 1, =1 4,e, ¥ =k, So
F has equation
K xo + X (X1 = Xs) = %o(x3 =x3) + %X =Xax =0.

Substituting k %, + x4y for x; gives

% (%1 = %3) = xo(xd =x2)+x -Bxs = 0,



To verify that F has 27 1lines, conslder its equation via the trihedrel pair
S123,4s6 derived from the Hepoints at t = =d°, o, o,
(a %0 + x4 + 0°% = x5)(bxo + %1 + 0°%p = x )}(oxo + x4 + 0°xs = xg)
= (0% = 0% = X)(% = 0"x5 = %5)(0°%0 + 0°xa = %)
(abe + 1)z5 + x5 {(ab + ac + be)(xy + Pxa = x3) = Pxa}
+ Zof(at b+ e)(x + Pxo =xs)” =xf +xF ]+ 2d = xx =0
S0 sbe+1 =0, ab+tac+be=1, a+b+e=0; and a, b, ¢ are the
roots of xX* +x+1=0,
Thus 21l cubic surfaces over GF(9) with 27 lines and 9 E-points

are projectively equivalent to F, hence to be called Fp , which is

x8 (x4 = x3) = xo(xf =xf) + 22 =xfx; =0

This equation ensbles us to determine the order of the projective group

of Fy, Any projectivity leaving Fp fixed also leaves the cubic curve con=
taining the Ee-points xp = x{ = xfxg =0 fixed, as well as the cusp
(0, 0, 0, 1) of the curve and the cuspidal tangent =X, =% =0 . The
meet of the inflexional tangents (0, 1, 0, 0) is also fixed as well as the
set of 4 points (0, a, 0, 1) a* =1 in which the 12 lines through sets of
three inflexions meet the cuspidal tangent, IBach of these 4 points ia the
meet of the 3 1lines in which the faces of halves of the pairs in a triad of
trihedral peirs are concurrent; for example, from the derivation of the
equation of ¥), the faces of one trihedron of Syzs meet in o = Xy = x = 0,
of Sese Mmeet in Xo = Xq = 0°Xg = X3 = 0, of S423,45s meet in
Xo =Xy + O°%xa =x3s = 0, These 5 lines meet in (0, 1, 0, 1) on X, =% =0,
The other & such triads of trihedral pairs are

S14,28 S2s,26 Sze, 14

S1s,26 S28,24 Saa,18

Sie,24 S24425 Sssyte



To determine the order of the group of ¥y we will consider in how many ways
S92 can be transformed into itself and whether it can be transformed into
another trihedral pair, both of its own triad and of one of the other triesds,
If, under a projectivity of ¥}, the point of xp = %3 = 0 which "belongs"
to a triad == in the sense that (0, 1, 0, 1) belongs to Sizs, Seses S123,456
e i3 left fixed, then the triad is also left fixed,
¥ x§ (%1 = %3) = Xo(xf «xf) + x® =xfx =0
S1as (% = %a)(0%%0 + X1 = xa)(=0"%0 + X4 = Xa) = (%o + %a)(X2 = Xa)(x2 + xa)
Any projectivity leaving Sz fixed also keeps both its trihedra fixed, Call
the trihedra indicated by the left and right sides of the equation L and R
respectively, Consider the following tlree transformations, |
(1) Leave Xo, X3, Xs fixed and substitute 0°%p + X1 for Xy,
thus giving a complete permutation of the faces of L and
leaving those of R fixed,
(i) leave X¢, Xy, Xa fixed and substitute -x, for xp, thus
interchanging the faces xp = xg =0 and xXp + %3 = 0
of R while leaving those of L fixed,
(144) leave x, fixed and substitute «xp + Xy + Xz for xy,
-Xp = Xg fOr x and = Xg + Xp + Xg for x, thus

interchanging the faces Xo + %X =0 and Xy + Xg =0
of R while leaving those of L fixed,

Thus L has a cyclic group of order 35, generated by (i), and R has a
symetric group of degree 5, generated by (ii) and (43i)., Sy2s has a non-
abelian group of order 18 end these are all the projectivities which leave it
invariant,

As the axis of one triheiron of Sgss 48 Xo = Xy = 0°%g = Xg = 0
and of Bras,ass 18 Xo = Xy + 0’3 = X3 = 0, the projectivity (ii) trens-
poses BS4pe and S433,456¢ Similarly S4g3 can be transformed into both
S¢se and Sqza,ese o Thus the triad of trihedral pairs has a group of
order 3 x 18 = 54, The projectivities (i), (ii), (4ii) all leave each



point of xp = %3 = 0 fixed and so keep all four triads invariant, However, the
triads can be transformed into one another, The projectivity, which leaves X
fixed and replaces X1 Dby Xo = X1, Xa by 0°Xa, Xs by 0°%o = 0°xa, makes Fy
Xo (%0 = %1 = °xo + 0°xa) = xo(=0"%8 + xf + oxoxg + x§)
% =%’ + °2d (%0 = 0°x3) = 0

%8 (% = xg) + %o(xf =xf) «xf +xfxg= 0.
This projectivity transforms (0, 1,0,1) into (0, =0°,0, 1) and 50 S42s
into o momber of onme of the other triads, 1In this way, S¢zs can e {rans-
formed into all 12 trihedrsl pairs one of whose trihedra has an axis, Thus the
order of the projective group of Fy is 4 x 5 x 18 = 216,

This surface differs from the gyclic non-equianharmonic surfaces over the
complex field, Segre [43] § 100, in that its centre, the meet of the tangent
plenes at the E-~points,lies on the surface and in its fundamental plane, neither
being true in the complex case, Also, the group over the complex field is of
oxder 54 or 108, not 216 as for Fh.

It was seen on Fg that the 5 points in which a line of a double-six
meets the other lines are partitioned into 4 and 1, as ave the 5 tri-
tangent planes through the line, A similar property holds on Fj .

Over any field not of characteristic two, the condition that x4, xz and
Xay, X4 are harmonic conjugates is

(%1 + %2)(Xa + xa) = 2(xexa + XoXe) o
Over fields of characteristic three, this becomes

iz‘;J X xj=0

80 that any two pairs from such a set of =xi{ are hamonie conjugates; thus any
permutation of the 4xi can be effected by a projectivity, This also shows
that any four elements which are the roots of a quartic whose middle term is zero



are harmonic, Over GF(9) 4n particular, the squares, satisfying x* = 1 =0,
as well as the non=-squares, satisfying =* + 1 = 0, are harmmonie, The 6
points on a line over GF(9) residual to a harmonic tetrad fell into 5 pairs,
any two of which form a hammonic tetrad, Edge [210].  Taking the initiel
tetred as 0, =0, 0°, -0°, the sextuplet consists of the three pairs

“ 03 1, =15 &, =o*,

On the rational plane cubic over GF(9), the 4 points of concurrency of
sets of 3 1lines through the 9 inflexions 1ie on the cuspidal tangent and
are given by 4 parameters which are the 4 non-zero squares in GF(2): thus
these 4 points are harmonic, 1Let them be Si, 83, Ss, S¢ and suppose, as
before, the 9 inflexions Ry 1 =1, ++, O are such that R4BsRs, R¢Psle,
ReRgRg, are ment at 8¢, Then,as the join of any two inflexions passes
through a third and also one of the Si, the range (S¢R4RaRs) is in sextuple
perspective from the points Ry n =4, esy, 9 with the range (84 Si 8J Sk),
vhere ijk is a permutation of 234, As (8¢ Sz Ss 84) is harmonic, so is
(84 Rq Ry Rg)s Similarly any 3 collinear inflexions plus the point where their
Join meets the cuspidal tangent form a harmonic tetrad,

Now consider F] whose 9 E=-points, one on each of the 27 1lines, lie
on a plane cubic f, The 9 <tritangent planes at the E=-points contain the
inflexional tangents to f at these points and have a common point R, The
12 lines ai, bt 1 =1, ¢y 6 of the doublo=-six D meet in pairs at the

6 Ee~points
Ry ¢ lag, bay 01:3 Re 3 (a4, s, 0“%
Rz ¢ (ag, bg, Caa Rs t \agy bgy Cse
Ry ¢ (as, by, c4a) Rg ¢ \2g, b-&,-NG)

This arrengement of E=-points on a surface projective to F} will be deseribed
by sgying that the swrface is B(125,456): the numbers give the cycles of BE-
points, 125 representing (a:, b2), (as, bs),(2s, B1)e Consider the 5 planes



[a1, bi] through ay; they meet the plane of f in the lines RyR , RqRa, RiRg,
RyRgy R4Rge The 4 1lines R4Rs, R4Ry, RyRs, Rg form a hamonic range
(S4ReRgRg) on R4RsRe:; thus the planes

[215 Bel, [a1, bel, [24y bs], [a1, bel
are harmonic,

In contrast, consider the 5 points (a4, bi) on ay, Their polar planes

[bey ai] with respect to the polarity of D meet the plane of £ in the
lines RgRz, RsR, RaR4, RsRg, RsRg; the 4 1lines RgRp, RgRe, RoRs, Re@e fomm
a hormonic range (S4ReRgRg) on ReRgRg, Thus the 4 points

(215 b2), (21, be), (a1, bs), (21, be)
form a harmonic set on a4, Thus the 5 <tritangent planes through any line
of F! contain a hammonic.set; the residual plane is the only one of the 5
which contains 3 conourrent lines of F}. Dually, the 5 points in which
eny line of eny double-six on ¥ Iis met by the other lines of the double-six
form a hamonic set of 4 and o residual point according to their polar planes,

§ 22. Existence of Grace's extension over GR(9).

There are two necessary conditions for a proper Grace figure,

(1) +he line b must have 6 skew transversals ai such that any 4 of
the ai have one further transversal and such that any 5 of the ai are
linearly independent,

(i1) The 6 ai, as constructed in Appendix ITI, must be skew,

When these two conditions are fulfilled, the proofs of Wren [65] and
Kubota [33 ] show that the ai have o transversal f; thus (1) end (ii)
are also sufficient conditions,

suppose (1) is satisfied -b and ay 4 =1, ees, 6 exist, Then, as
in § 15, let them correspond to points b and ai on the quadric X in T



such that the ai lie in the tangent prime ot b = (1, 0, 0, 0, 0, 0), The
points ai are projected from b to the points Ai on the ruled quadric
Qe xt+yz=0 lyingin w=u=0, No Aj lies in the tangent plane at
Ay to ¢ and no 4 of the Aj are coplanar, The points on the line
bAi dn Mg correspond in I to the lines in the plane [b, ai] through
the point (b, at)e Let the reguli of § be p, p' consisting respectively
of the lines gi, hi.d = 1, «esy, 10, So the lines g; of p represent the
points of the line b in [z and the lines hi of p' represent the planes
through b, As indicated in ¢ 21, 6 points on a line or 6 lines of &
regulus over GF(9) occur most gystematically as those residual to a harmonic
tetrad,

Let @rs 8oy £9s Bto De & hamonic set with parameters o 0°, -0, =¢°
and suppose axy two of the pairs g1, Ge 5 820 885 83y 8¢ also form a harmonic
set; lot them have parameters e, 0, 1, =i, 0°, =¢® in the order given,
Further, let Iy, he, hp, hue have poremeters 6, 0°, =g, =0° in some order
and let any two of the pedrs h¢, he; ha, he; hs, hs form a hammonic set,
These ©h; have 29, 3! = 48 substitutions which preserve the pairs, Any
collineation leaving the set of OGhi fixed will also preserve the pairs, The
residusl harmonic set has 24 projectivities into itself, § 213 the auto-
morphism ¢ of § 20 also leaves the residual harmonic set invariant, Thus
the 48 substitutions of the sextuplet can all be effected by collineations,
Thus the perameters of hi 1 = 1, e+, 6 can be selected as =, 0, 1, =1, 0°, =¢®

in the order given above. So

g =hy = o s =hg =0
go = g = 1 gs = he = =1
sazhazo’ 84 = hg =

Let Ai be (gi, hi) 4 =1, «sp 6, The condition that Ai, Aj, Ak, Ag aYe



not coplanar is that the crosseratios {gi, £j; 8k» 8¢ls [his hj3 hg, hel

are wequal,

{815 €25 89, 81} £ {hy, hgj hg, hi} i=4,5,6
{Bas 885 8oy Bi) £ {hey hs; he, hi} i=1,25
{@1s Be3 Bas 8] ¥ {hay hg; ha, hsl the cross-ratios
{8as B85 Bsy B4} £ {ha, hgj hs, hel on the left |
{83y Be3 81y B8] A {ha, he; hu, he} ara_:_-‘l (L |
{e1s 8as €ss Go] A (b, has ha, hel the cross-ratios
{82y Bo3 €ay B8] A {ha, he; ha, hs} on the right
{8as 853 81y B4} A {ha, hs; hyy hel S 1

{815 €25 Bas 85} = =0 {hi, ha; he, he} = =0

{815 823 Gs» B8] = ©° {hyy ho; hg, hg} = o

{825 €33 &4y 8] = ©° {hay hoj hey he} = ©

S0 [gi, 8J; 8ks 88} # (hi, hy; hk, hgl for all 15 sets ijké. Sono
4 of the Ai = (gi, hi) are coplanar,

Thus, choose the points (b, ai) in a sextuplet as the gi and the planes
[by, at] in a sextuplet as the hi; also let the first coordinates wui of the
ai be such that any 5 a; are linearly independent (this is only 6 linear
conditions on the wui)e Then b and the 6 ai satisfy (4i). Also, of any
5 plenes [b, ail], one set of 4 is  hormonie; and similarly for the
points (b, ai).

From these ai, the lines bij = bji, the double-sixes Di and their cubic
surfaces Fi, and the lines a«i are constructed as in Appendix II, The 12
lines @i, @i are chords of a twisted cubic ¢, to which b, bij are skew
and cth is secant, ¢ 17.

The surfaces PF{ are projectively equivalent to F;" or F!, Suppose
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that at least one Fi is equivalent to the diagonal surface FJ , The group
of FJ is trensitive on the 12 lines of the double-six D, as the equations
given by Baker [ 4 ] p. 168 show; the other 15 1lines eij of F? all
contain 2 E-points, One of the 12 lines of D is
Rioy+z+x=0 Stm@+y+t=0
end the 5 trditangent planes through it are
Ry S, R+ 8, R +S; OR =38

no 4 of which are harmonic, So b cannot be one of the lines of D con=
taining no E-points, but must be one of the lines ey containing two Ee
points, Thus, on any of the surfaces Fi like F?, b will contain 2 E=-
points; on any like F , only one IL-point, As at least one Fi is like
Fg, b oont#ina at least 7 BE~points on the Fij 50 two of the lines oj’k
pass ﬂxraugh&wsm point (b, ak) of b, This point is then Lx on ¢,
vhich contradicts that b is skew to ¢, § 17, Therefore, all the surfaces
Fi are like Fj : each line of Fi conteins exactly one E=-point on Fi ,

Before considering whether (ii) is satisfied, it must be shown that the
@i are either all concurrent or all skew, From the 6iak, bij =bji was
constructed meeting the ‘4 ax besides ai, aj 3 bij also meets @i, «j.
Kubota [33] proved that the 4 reguli

(bias brss bra)s (D21, Daay Das)s (Dass Dozs Psa)s (bats bazs baa)
have g line in common: let this be fgg = Fese The lines a4, g, Gg, 44
lie in the 4 respective complementary reguli and thus meet fSss. The lines
agy 8¢ 1ie in all 4 complementary reguli and also meet fgee Similarly
there are 15 lines fij = fji each meeting € of the 12 lines ai, aie

bij meets i, aj, oky 8Ly 2,5 2, . |

Bij meets ai,aj, O, @g, G, Gy o



Suppose @y meets ay at M, Then, as 4, @y are both chords of the
twisted cubic t, ¥ 1lies on t. D42, which is skew to ¢t and meets both
@y and 0y, cannot pass through M and therefore 1lies in the plane m of
@y Gge The 6 lines fij i, 41, 2 meet both « and ag. Psoy, as it
metal @y and @z, lies in m or passes through M, As fSgg is in the same
regulus as byg, it camot lie in m; therefore fFge¢ passes through H,
Similarly the other 2ij 1,J #1, 2 pass through N,

However, ag meets pPeoy Sse and therefore lies in the plane [Peesfsel
or passes through their intersection, which is M, Similerly ag 1lies in
[PeesPss] or pesses through M, As ag does not meet @, it does not
pass through M, Therefore ae lies in [Pse, Pscle As as camnot meet a4,
it must pass through M, Similerly g, as, @ pass through M and the 15
Bij as well, So the @i are all concurrent,

When the i are all concurrent, Sjk is also determined as the wnique
line through M, aj, ak, as was the case in ¢ 19 over GF(8). If, initially,
Pse meets pSee, then a4, az, @z meet these two lines and so two of them
intersect; the situation is then as above, Thus, if no two of the ai meet,
then [fjk does not meet [Jjg and vice versa,

To see that (ii) 4is satisfied,suppose the ai are concurrent at the
point L of ¢, The 26 points Li, Lijk of & 17 also lie on ¢, As
ai does not meet ofg Jy k#4i, a4 does not contain Lijk; S0 Lijk
cannot coincide with L, Suppose L coincides with L, ILet Hi = (b, ai);
then any two pairs of Hy, Hej Mg, Hsj Hsy He ave harmonie, As (Hp, Ha, Hey He)
is a harmonic set, by ithe property of ¢ 21 of any double=six on ?; »

De ¢ a1 82 as a4 os O gives that (g, bis, Cis) is an Eepoint, But
bie b2 bge bge bge b

of meets t at Ls. S0, @3 L and Iy ere coincident, g and ofe



both pass through it; thus byeg .also containc this point, But bee 1is
skew to ¢, 80 Ly ocamnot coineide with L, Therefore the 26 points Li,
Lijk occupy the © points of ¢ residual to L in some arrengement similar
to that of the 8 points in Appendix III, over GF(8); mno more.thsn one of
the 26 points could be isolated, As Fi; is like Fy, @ has exactly one
E~point and exaotly one point through which no other lire of F{ passes. From
$ 17, Dy 318 either on @y or it is the point of ¥y on none of the lines;
also,none of the lines byiy 6t 1 £ 1 pass through Lye If Ly ison a,
the 10 1lines byi, ©fi occupy the 8 points of @ residusl to L and
Lij s0 @ ocontains at least 2 Eepoints of Fy, This is impossible as
Fy 4s 1ike Fp, Thus L does mot lie on aie So Li 4s the point of
Pt on none of its lines, As @i cannot contain Lijk, none of the Gay
can pass through three coincident points such as DLg, Lossy Lase 0r Lizes
Ligey Lzage If the 26 points Li, Lijk occupy only 8 points of ¢ as
in Appendix ITI, no ai can pass through any of them, If they occupy the
9 points residual to L, only 8 points of t can have only two of the 26
points coincident and so at most Sai could be chords, Even if a further ai
is the tangent at I, there are two «i which have only one=point contact with
te S0 it is impossible that the ai are concurrent,
Thus the 6 ai are skew and their transversal £ is a line of the €
double=sixes
Ay ai @) PR 7 o
8 Biy Pw Pz Fim P

of Appendix IV, So Grace's extension exists over GF(9),
- An exam-le of the configuration is given in Appendix VI,



§ 25, Deseription of Grace's extension over GF(9).
Let us now take any case of Grace's extension over GF(9), There are
44 lines =
ib, 6 aiy, 15 bjky, 15 Bgny C any, 18,
There are 2° = 64 sets of 6 lines obtained by selecting one of each pair
2y @i 4 =1, eee, 6; 52 of these sets have a single trmsversal viz,

b meets the 6 ai 1

B  meets the 6 ai 1

biy meets ai, aj, ak, WL, Gm, @ 15

Piy meets ai, aj, ok, %¢, dm, % 16 .,
Also ai meets the 16 1lines b, bjk, Pié s ky £ £ 4

@i meets the 16 lines B, Bjk bie ok, L £L.,

The incidence relations of these 44 lines are displgyed in Appendix V in a
table taken from Wren [(S). The other 32 sets of 6 lines are rows
of the 52 double-sixes of Appendix IV, viz,

Di @i ® ak ag en &g é
b bij bik bié bim Dig

Ai ai @ G @ O On 6
B PBiy Bk Pit Bim Pun

Vijk a. aj &k a& oap U a0

Bixk Pki PiJ bun bpne bln

Wekeford [63] proved the existence of a polarity W reciprocating b
into B, ai into ai, biy into Pij. Thus the construction can begin from
any of the 32 lines b, 8, bij, fij and the completing line will be the polar
of the initiel line,

In the figure, there are 52 cublic surfaces e= call them Feswrfaces,

Fi containing the double-six Di L =1, ¢eeey 6
@ containing the double=six A; 1 =1, seey 6

Fijk containing the double-six Vijk i, 53 k ; 1geeey 6
<J<k,



Each swface contains

6 of the 12A = lines ai, ai
6 of the 52B~- lines b, B, biy, PiJ

i iJk

and 15 of the 480C = lines c¢jk, lek, aaif
The last are, on each Fi, 15 lines ol s k=1, o, 8
on each @i, 15 lines yjk Js k=1, eey 6
on each Fijk, 15 lines 933" &, m=1, *+, 6

where the lower suffixes refer to the indices of the two A=~lines whence the
C~line is constructed. The 352 Fesurfaces all contain the twisted cubic i
the A=lines are chords of t; the DB-lines are all skew to %3 the C-lines
are all secants of €, i.e. they have one-point contact wvith t, Each A=
line lies on 16 and each Be-line lies on 6 of the Fe-surfaces,

The intersections of the plane [b, a;] with the 5 planes [as, byi]
are cqla,' these lines all meet t once and [b, 24] meets ¢ in three
"points", two of which are on a3, So the cgl;, are concurrent at a point Iy
of ts As @i is a chord of ¢, Ly is the other point in which [ai, bi]
meets t. Hence the intersection of any two of [ai, Bit] 4 =2,es, 6 also
passes through Lge Thus the planes

[21y b], [0ay Beal, [aa, Dials [aey Pisly [y Desl, [ag, Beal meet in pairs
in the following 15 1lines through the point Iy

°?la 3283 014. cg!i °gl. a::s’ agis’ a:es agg‘s hws iy 52‘ o
Similarly the planes

[“1. ﬁ]’ [aﬂ] ﬁ!ﬂ]. [83p ﬁiS]’ [343 ﬁuL [353 ﬁ!l]s [8-09 ﬁis]
meet in pairs in the following 15 lines through the point A,

Y?a, ﬂa, )44, ﬂs. ﬂa. a;:‘s 8;:‘: 3;233 a;:G: o e a;:.

and the planes
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(a1, basls [22, Beal, [8ss Dialy [aay Bsels [y Pasls [asy Pas] meet in pairs
in the following 15 lines through the point Lizs (=As¢se)
0;3, °1’as 01’33 V:o-: Y:s: Y:a: 213°%, a:;': a::s’ 038°s reveny ag:a .

As each A~line meets 16 Belines, there are 12 x 18 = 192 planes [A, B],
6 of which contain one of the 52 ILepoints Li, Ai, Lijke As each of the 192
planes meets the 5 others through the same I=point in a C-line, the
192 x 5/2 = 480 Celines are all accounted for and pass 480/52 = 15 through
each Lepoint,

From the double=-six Vizs, 84 camnot meet 233° which is the intere
section of [a,, f1a] end [as, P1s); 023° contains Ay so @y does not
contain A¢.  Similarly

as cannot contain Lijk - 1, 3, kA1
I m¥1
M

@y camnot contain Ly
Ay k#1
Ly

From § 17, Ly can only lie on @y of the lines of Fy, From sbove, Ls
does not lie on ay3 s0 Fy dis projectively equivalent to F; and Ly is
the point '@M“itelines. Similerly 44 is the point of &, on none
of its lines and Lgygs that of Fesee All the Fesurfaces are projectively
equivelent to Fgp , Hence on each surface each line has exactly one F-point.
Each Beline meets 6 A-lines, § on each of the 6 Fegsurfaces on which the
Beline lies; and on each of these 6 surfaces, the Be-line contains a different
Eepoint, e,g. if (b, a4) were an E=point on both Fp and Fg, then b would
eéntain the point (b, a1) = (efo, cfs) =Ly of %,

VWith regerd to ay, the Lepoints are of two {ypes: either an Lepoint
lies in one of the 16 planes through a1 and the DBe=lines which meet it
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or it does not, The above shows that ay does not contain en L-point of the
second type. Suppose it contains an Lepoint of the Mrst ypo, e.g. lv; then
the 5 lines m"ti#‘l are concurrent at a point of a4, But (b, a¢) is
an E=point for one of the surfaces Fij s0 b also contains this point L,
which is impossible as b is skew to ¢, So a1 does not contain Iye So
no A=~line conteins any Lepoint,

The 6 A=-lines through a Beline form a coifiguration like that of § 22.

For example,
on y, b meets ag ag as ag ag
on Fg , b meets ay ag [P ag 2g
on Fa , b meets as az ase as as
on Fqp, D meets ay - az ag ag as
on Fs , b meets a4 ag ag - tg
on F¢ b meets ay 83 a5 a¢ 8

Let hi = [b, at] end H{ = (b, at), Suppose that Hg is an E-point on
Fye Then, by § 21, (hy, hs, hs, he) is a harmonic set; thus, on Ty, Hy

is an Eepoint, On Fy, @y must contain an E=point; as e+¢ cannot
contain two Eepoints,it cannot be (ay, bie): let it be (as, big)s Then
(Ha, Hg, Hy, Hg) is a harmonic set; so, on Fg, (ag, big) is an E-point,
Now, let He be an E=point on Fg; then (hy, hs, he, hg) is a harmonic
set: so Hy is an Ee~point on - Fg, Therefore, from Fp and ¥,

(h1, hg, he, hg) is 2 harmonic set and Hs and He arve Eepoints on I
and Fs respectively, On Fp, as Hg is an E=point, (s, bae) is not;
let the Eepoint on @ be (@2, b2s)e Then (Hy, Hs, He, He) 1s harmonic
and (ag, bas) is en Bepoint on PFs, So, from Fy and Fe, (Hi, Ha, Hg, He)
is harmonic and (ag, bae), (ag, bsg) are Eepoints on Fs and Fg¢ respectively.
Thus the hi form a sextuplet hy, hej ha, hgj hg, hg and the Hi fom a
sextuplet Hy, He; Ha, Hg; Ha, Hee S0, for any Grace extension over G¥(9),
the 6 points, as well as the 6 planes, in which b meets the lines ai
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are the sextuplet residual to a harmonic tetrad, And so it 1s for all 32 B=
lines and the 6 A-lines meeting them,
The partitioning of the sextuplets for all the B=lines is known when all
the E-points on the 6 F{ are known, 8o far, in the notation of ¢ 21, .
Fy ds B(164, 133:k) where.  1,§¢k is 255 or 235

Fo is B(256, ipjoka) . iajsks 4s 154 or 149
Fg is B(3545, isjsks) isjoks is 162 or 126
Ps is B(143, d4jeke) iedeke is 235 or 256
r,,,ia' B(235, isjsks) lsjoke is 148 or 164
e s E(126, igjeke) ledkks is 55 or 345

Suppose 115&, = 255 i.e. (a3, bis), (as, D1a), (as, bs2) are E-points;
then, on Fa, (as, bae) 4s not an Eepoint so ipjalke is not 145 but 154,
This means that (a4, Dga) is an Eepoint on Fy, so it is not en E=-point on
Fge Therefore dgjsks is not 126 bdut 162, Similarly, let i4jeke= 265;
then idgjsks = 146 and igjeke = 354, The 1jk are therefore given
by the first column above, These figures are the correct ones for the
example of Appendix VI,

Consider byg; (as, D1g) 4is an E-point on ¥ and (a4, beg) is an
Ewpoint on Fa. So

E“u bta%. a4y B12)y [2s, Pe2], [26, P1a] are harmonic
425 bial, L8a, h‘lﬁ]o: a5y Dial, Leey hi_a] are hammonic,

and
Therefore the pairs of the sextuplet are

[asy beal, [aey B12); [%a, Dial, [as, Deal; [as, beal, [ae, brale
As (a2, Deg) 13 an E-point on Fy and (ay, bas) on Fa, 80

(el b e g

m aa’ b’l‘ » 84, b‘a » aﬁ’ bi’ » a,g, b‘a are hmmc.

So the pairs of the sextuplet are
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(a1, Baz)s (2ay D13); (aey Diz), (28, bi3); (2ey De2)y (as, Dia)
Similarly the sextuplets of points and planes can be determined for the other
bije With respect to W, the polar of (b, ai) is [B, ail, of (bij, @i
is [Bij,ail, of (bij, ak) 2s [Bij, ak]. S0 the sextuplets of points
and planes for B, fij ave given by the polars of the sextuplets of planes
and points for b, bije The partitioning of the sextuplets of points is glven
in Appendix V,

These sextuplets determine the E-points on all the PFesurfaces, Define
the lines ;Jlk, 'y'_l'k, m as the polars with respect to the double-sixes
Diy At Agnn of the lines ojk, Yiks OJn » Lece cf, d8 the meet of
[82, D1sl, [25, D12l and s0 G, is the join of (aa, bis), (as, bis).

For W, the polars of chm oo o5 . ave ;J‘,( o Olks JE  x, ¥, 2 £ ¢ m,n,
on Fyy (86, b1a) i3 an E=point, i.e. 8¢, Digs Cis are  concurrent, From
W, @, Bia; Yie @ore coplanar and, from the polarity of A1, Sies %s Yis

are concwrrent, So the E=~points on &, Fijk are in the reverse c¢ycles

to those on Fi, Femns €e8. Fy iz B(164, 255) and & 4is E(146, 235).

The 352 ILepoints Li, Ay Lijk of + can be at most 10 distinet
points, From the OCelines which pass through the Lepoints

Ly mgy coincide with AL or Ljkm Sk, m A1
but not with Lp or Iqjk n#1

Ay may coincdde with Li or L4k
but not Cwith Ay or  Ljkm J, k, my n £1

Ligs may coincide with Lg,Lg,Le,M ,lg 00, Dyijslaijslatjyluse 1,5 # 1,2,8
but not with Ly,Lo,La,Meylesfes Lizksliakylasks k£ 1,3,3

At most 4 of the Lepoints can coincide,
Cefle I“I"GQLS“.LQGG or L, QC’INSB)I‘SSU.L‘BGQ
If Iy, M oOr lyas, Igse coincide, the pair has no further coincident L-point,
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The Lepoints must oocuﬁy at least © points of ¢, It will De shown that
in fact they oceuyy all 10 points of ¢, -

Fron the double-simsljl Diy @ is skew to aj, a; J#1. Suppose a4
meets ai; 28 they ave both chords of ¢, this point (a4, @) ison ¢t and,
from before, is not an Lepoint, Bither a; and @ are both M"real"
chords of t or one is a "real" chord and the other a tangent, ILet a1 De
a chord; then, as the point M of @ on ¢ other than (as, 21) is not
an Lepoint, ¥ cannot lie on a2 C-line, It also cannot lie ona B~line;
but M is on & and so must lie on an A-line, However, it is not (a1, @)
and @ doesnotmeet ay i£1, S0 M cennot lie on %. So a4
carmot meet a4,

Suppose an A=line meets + in a point whose coordinates lie in GF(9);
let the 1ine be @y, As it hes been shown that a4 does not meet o4 and
that &y does not contein any lLepoimt, this point cannot 1ie on &. 8o
all A—linea aral "conjugate” chords of %, i.e, they meet ¢t in two polnts
whose coordinates belong, not to CF(9), but to GF(9%).

The 352 I=points must therefore occupy all 10 points of ¢; for, if
there 1s a spere podnt, it cennot 1ie on an A«line, B-line or (C-line; and
the only remaining point on any Fe-swrface is an ILepoint,

At this stage, the ZE=-points on the Fesurfeces and hence the harmonic
sets among the € planes end the 6 points of the 6 A~lines through a B-
line are known, It remains to giow how each A~line is met in its 10 points
by 16 B-lines and how the 53 Lepoints are distributed on t, These
results are commected,

Foy each of tl'n 16 Fegurfaces containing a particular A-line, there is
a harmonic set of planes and one of points as:oclated with the A-line, However,
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these 16 harmonic sets of planes and of peints do not clarify matters, Con-
sequently, let us first consider which B-lines mgy intersect, From the
double~sixes,

b does not meet bij, but may meet Bij, £

bij does not meet b, bik ,Fun k, # nki 3
but may meet S, bke, Bim k, ¢ #41,3
Bij does not meet S, Pik, bmn X, 8, 0441, 3
m w mat b, pk&’ hl.m k’ ’c # 1’ J

£ does not meet Pij, but moy meet bij, D . BSuppose Ly = Ag; then
the planes [as4, b] and [a4, P12] have this point end a4 in common, As
the point cannot lie on a4, these two planes are the same; hence b meets
Bize The line ay; alsomeets b and Syo but mot a4, so &z passes
through the intersection of b and f4a. A similar result holds for f#
and byp either by W or argued from the planes [ap, iz, [2a, £l.

In 211, if Ly = 4 then [31: b} = [31: 512]’ E“ﬁ’ ﬂ} = [ag, bya)
(ais B) = (“13 b‘la)a ag, b) = (aa, ﬂ‘li)o

Conversely, if one of the 4 equalities holds, the others do also and Ly = Ag,
Similexdy
Lisse = Lige <=> [a1y Daal = (a4, Dsely E%s ﬁu; = [ag, ﬁu;

(@1, Pas) = (2, Pse)y (az, basa) = (az, bse

L = L G G5y B = |tgy, B agy, b = lagy B
e ot fd i b oA s e
A = Ligg <=> Eﬁm Bia) = [2a, bta}: [aa, Bis] = Eaes bia]
dzy be2) = (@2, f1a), (as, bes) = (as, Bea)

These are all the rposoflle coineidences of Lepoints vhich are different within
the notation, except for a pair msuch as Ly and A3 these do not lmply the
coincidence of two planes [A, B] and so do not imply the intersection of

two Belines, Any two Belines which intersect, if they are not polars in

W, are met by two skew A-lines; so0 the intersection of the Belines must lie
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on an A-line, That two non-polar DB-lines may intersect is wrongly denied
by Wren [65] p. 164,

The distribution of the 352 Lepoints on t can be determined, Iy is
the meot of the 15 1ines ei%, 240 3, Js Ky £, my n £ 1, Therefore,
on the 15 surfaces Fi, Pean, Ly lies ona C~line; on Fy it is the
point on no line of F4s On any other Fesurface, Ly is either on o C-line
or is the point on no line of the swface, 50 Iy must coincide with some
other I~point, In the case where it coincides with Ay, there are 30 (=
lines all from different Fesurfaces through this point, TFor the other two
Pesurfaces Fy and &, it is the point on none of their linss, Thus when
Ly end Ay coincide, the position of this point on all 32 Fesurfaces is
knowm,

If L¢ coincldes with some other Lepoint, sgy 4Ag, then the 50 C=
1ines thaough Ly and Ay do not include one from the Fesurface Figg, for
exemple, So this point Ly = A of ¢, which must lie on a C=line or be
the point on no line of Fyg4, coincides with a further Lepoint, So now
take I coincident Lepoints =  L4yag, Ligsy lases The C=lines through
them are

166 _146 _145 _256 246 245 856 _040 045
Ligat 9:3301’8301’8:}’:0,)’:0:?:3,314 3918 916 3924 3925 5920 5934 5935 930

1 8- 188 1286 .123 .846 46 84 .8568 280 .235
Lias? CqssCissClasydosYiesYass 212 5013 5018 2024 3024 »086 »058 5038 3086

2 & 6 1 8 _ & .204 134 123 .845 145 .135 046 148 106
Loget ©56sC269C26sYa4,Y14:Y18,%12, 923 ,924 ,915 ,936 ,95 3716 3936 e

These 45 C«lines include one from all the Fegurfaces except Fios, Fisss
Fzaey Fsse; the last three have Lgse, Ias, Di2s as the respective points
on none of their lines, The only Lepoint which can coincide with Iqag,
Liass Lass 15 Lsse, which does indeed 1ie on Fyzg, being the point on none
of its lines,
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The 92 ILI~points thereflore coincide in twos or in fours so as to exclude
any further coincidences, The solution of 4a + b = 32 and 2 +b =10 is
a=6and1§=4. So the Lepoints lie 4 at cach of €6 points and 2 at
cach of 4 points of t. In the oxanple of Appendix VI, their distribution
is

Te 3 La, A, Laes, Laze

Tz 8 Lgy Agy Lagey Laes

Ta 3+ Le¢y fsy Liyzsy luse

Ta ¢ lLgy My Leges Dnse

Ts ¢ Ligss Liass Lases, Laoce
Te ¢t Lagey Dises Loss, Luse
Ty ¢ Ly,

Tg ¢ Lgy 4g

To ¢ Lesss Lass

Tyot Lises lizas

Now consider the points in which each A«line is met by 16 B-lines, No
9 Belines are concwrrent, so the 16 Be=lines meet the Aeline in 8, 9 or
10 distinct points: if 8, there are 8 coincidences among the 16 points
of intersection; if 10, 6 coincldences, So there are between 72 and 96
coincidences in all, Now each coincidence of two Lepoints, apart from a
pair like Lz and Ag, gives +two coincidences of points where an A-line
is met by two B-lines, So the 6 points of t in which 4 IL-points
coincide give 2 x 6 x %C; =72 such coincidences on the A=lines, Any
concurrency of 2 Belines and an Awline is given by the coincldence of 2 Iw
points, Thus there are cxactly 6 coincidences on each A=line, i,e, the
16 Belines which meet an A=~line ocour as 2 through € points and one
through 4 points of the A=-line, TFor the example, these coincidences are
given by the table and the diagrem of Appendix VII, The 16 planes through
an A=line ccc: ~ similarly, the planes through at being the polars in W of
the points on ai .

Four points on ¢ have a cross-ratio given by that of the planes through



the 4 points and a chord of ¢, If ¢ is
xo:m_:xa:xa:?a.a:ha:h:‘l
then‘theplanothro_ugh A=r, 8, 8 is
Xg=(r+s+0)x + (rs+ 10+ 50)x - rsfxg =

0
Xo = T+ 8% +rage Kxy= r+8x + r8x3) = 0

S50 the crosseratio of the 4 planes through r, s and 6y, 63, 63, 6
is {01, O35 05, 04} :I.nd.ependmﬂs of .-r ond 8,

As (a24y bgs) is an. E-point on Fg, the planes (a1, b), [as, Dasl,
a1y basl, (24, bael m-harmonit;; so the points Li, D12as In2sy Inze,
which ave T, Tes Tsp Tes are harmonic, Similarly (a1, b) 4s an Eepoint
on Fgy so the planes [a4, bael, -[a" baals (a1 basl, (81, Dse] arve
narmonie, as are Lyge, Lises Dresy Lies, wiloh are Te, Te, Ts, To o Thus
the 6 points Ty 4 =1, +eey 6 formm a sextuplet residual to ﬂwhu.mme
tetrad (T9, Te, To, T1o) in the pairs Ty, Te; Ta, Ts; T4, Te . Thus
on any A~line, the 15 points in which it is met by the Belines being
distributed as €6 sets of 2 and 4 of 1, the 4 are harmonic and the
6 are a sextuplet divisible into 5 pairs any two of which are harmonic;
sinilaxly for the 16 planes through the A=line,

To summarise, GF(9) is the smallest field over which Grace's extension
exists, Its peculiar properties depend on the partitions

10 =6 + 4, 16 =2 x6 + 4, 2=4x6+2x4,
where the final digit 4 in each equation indicates a harmonic set, and on

all 32 cubic surfaces involved being projectively equivalent to F; .
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CHAPTER VIII, Gonclusion.

$ 24, Sumary.

The aim on starting the thesis was to imwvestigate the existence of the
double~slx and Grace's extension over finite fields,

Over GF(4) a new type of double-six was found, selfepolar with respect
40 a lirear complex and which only exists over GF(4"™), No double-six exists
over GF(5)., The projectively distinct cubic surfeces with 27 lines over
GF(g) were all investigated for g < 9 and, on discovery, were denoted by Fa
where ¢q is the order of the field and n the number of points on the sur-
face on no line of it, Vhen n = 0, the symbol was omitted if there was no
ambiguity., The surfaces are all in the following table vhere e 1is the
nuber of Eepoints and g the order of the projective group of the surfaces.

o e ;

¥ 45 25,920 = 28,345
Fq 18 648 = .

Fg 13 192 = 28.8

#g 1G 120 = 2°,3,5
F! 9 216 = 2°,3°

As there is no double-six over GF(5), there is no Grace's extension,
Over GF(7) no line has 6 transversals such that each set of 4 has only
one further trensverssl, Over GF(8), a line and 6 transversals can be
found so that each set of fowr has ' a second transversal, but the 6 completing
lines of the 6 double=sixes obtained from the original line and sets of 5
of its transversels sre concwrrent; this figure is not limited to GF(8).

It is over GF(9) that Grace's extension is first found to exist and
the points in vhich the € transversals meet the original line are necessarily
a set of 6 residual to a harmonic tetrad; the 352 cublc surfaces involved
are all projectively equivalent to Fj .
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¢ 25, Epilogue.
Severel problems arise from the thesis of which the most immediate follow,

(1) vhat is the smallest field over which a general cubic surface with
27 lines exists == "general" in the sense that it has no E-points?

(i) vwhat is the smallest field over which a general Grace's extension
exists == "general" in the sense that none of the particular coincidences of
Appendix VII occur?

(ii1) vhat ave the group of substitutions of Grace's extension and the
groups of projectivities of the figures over GF(8) and GF(9)?

(iv) Does Grace's extension exist over GPF(4™) such that all 32 Fe
surfaces have 45 Eepoints?

(v) 1Is there an extension to Grace's extension over any field at all?

I can give a definite answer to only one of these questions, viz, (iv),
but I will make some remarks on all,

(1) The smallest possible field for this is GF(11), A classification
of Geares in PG(2, 11) would decide the question,

(41) The smallest possible field is. GP(51), since the 32 Le-points of
the twisted cuble ¢ are required to be distinet,

(i1i) I would expect the order of the group of substitutions to be
32 x 51, 840, the order of the group of projectivities of the figure over GF(8)
to be 6 x 192 and that of GF(9) o be 52 x 216,

(iv) Por GF(4"™) 4t was by no means estoblished that the 6 transversals
of a line are chords of a twisted cubic ¢, If ¢t exists, then Grace's
extension is not obtainable from b and ai 1 =1, ¢¢p 6 so0 that 211l 52
Fesurfaces have 45 E-points, as b would contain the 6 IL=points Li
L1=1, +0ey 6 of ¢,

If ¢ does not exist, then the 15 C-lines which were given in § 23



- {1l -

as passing through Ls are not only the intersections of pairs of the 6
planes [a¢y b), [@i, Dsi] 1 =2, seey 6 but also the joins of pairs of the
6 points (a1, ), (2i, bsi)s So the 5 lines e eall lde in [a4, b]
and contain these 6 points, which are therefore coplanar, Hence the 6
planes [a4, b], [@i, Bst] are all the seme: this givesunpermissible
intersections of lines, Thus it is not possible that the 32 PFegurfaces of
Grace's extension all have 45 E-points,

(v) To the best of my knowledge, there is no mention in print of any
extension to Grace's figure, which Itself has received sparse attention,
Any opinion I have heard has been contrary to a further extension, but the
start of such a figuwre will be briefly considered,

Iet b meet a1, as, 23, 84, 85, @s, 87; each set of 4ai hay a
further transversal bjke « Thus from the 21 double-sixes like

@12 8a @4 9% 8s an
b Di1as biae bias Dize bi2?

there are 21 lines @ije There are also 7 lines fi such that By is
the trensversal of @13, %43, @14s Qss ey e Do the Fi L =1, eee, 7
have a transversal f?

Baker [4] p. 195 proves the three theorems that given a line and 5, 6, 7
trensversals the locus of a point such that the planes joining it to the 6, 7, 8
lines touch a quadric cone is a cubic swrface, a twisted cubic, o point,

Thus there are 7 <twisted cubiecs i with a common point T such that ¢4

has chords az, ag, 84y 85, 86y 87, %12, C13, 14, G5, e, %7. Two cublc
curves with a common point have 6 common chords, Cremona [16]; so the

6 chords 43, 8s, 84y 85y 8y 87 Of T4 and t3 are all their common chords,
A quartic surface is determined by OS54 constants, The number of conditions
for a line and 7 <+ransversals to lie on a quartic surface is 5 + 7 x 4 = 53,
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Let Q be the surface containing b, ai, ag, as, 24, 85, 86y @7 and T, Then,
as there are 13 common points required to put a twisted cubic on Q, the 7
cubics ¢i also lie on Q.

There is also a quartic swrface commected with Grace's extension, The
chords of a twisted cubic belonging to a special linear complex lie on a ruled
quartic surface of the type IIB discussed by Rdge [19] &F 60, 80, It is
possible that the ¢i coincide so that the 7 lines ai are chords of one
cubic ¢t and Q is then one of these ruled surfaces, (From &5 17, 19
such a flgure can be constructed over GF(8), in which case the aij are all
real chords of t.)

There are 7 x %Cy = 105 lines ﬂj‘n = ﬂnl.i dnvolved in the construction:
the four reguli i _
(basss Dases Doan)s (basas boses Pas7)s (Dscss Dsess Yser)s (bazes bazes bavze)
all have the common line A2 and the 5 lines B, A%, Afa, A2, s all
belong o a regulus, Kubota [33], There are 7 x ®Cs = 140 doubleesixes like

a‘l' aﬂ, ‘% g7 Gg7 Ga7
Baz Pis Piz Dbser basv  Dbasw
and 42 1like

8; Mg (44 31‘5 L2 T Qe

By Bis Bas Bi3s Pds P

If the transversal f of the pi does exist, there seems no simple woy of
obtaining it either as the line belonging to certain double-sixes or from the
quartic surface Q. The clear symmetry of Grace's extension of the double~six
is no longer present,

There is a further problem which suggests itself,

(vi) As there are various relations between the 86 Schur quadrics of a
cubic surface, described by Room [42] and which are almost the same as those of
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§ 8, what are the relations between the polarities of the 32 double-sixes
Diy At, Vijk and how are these polarities related to W?
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APPENDIX-I. The conditdon that 5 gkew lines have g
Lrensversal.

Teke 5 skew lines s, b, ¢, d, @ met by the line x, The line a
has coordinates ai 1 =0, *s, 5 such that ao8s + 8as + 838s = 0j
similarly for the other lines, Any two lines, e.g. 2, b, have a mutual
Suverdat $a, ) » aody ¢ &by + agbs + Sabs + agdy + aghe. Lot 8, D, O,
d, e correspond to 1, 2, 3, 4, 5 mapeétiva:ly so that ®@(a, b) can be
written dys and so on. | |

Teke the symmetric matrix W= (¥ij) 1, J=1, ++4 5 and lot the

cofactor of Hij in |W| be iy, In clossical geometry the condition
that the lines a, b, ¢, d, ¢ have & common trensversal is |W| = 0,
e, g Todd [61] p. 145 ex, 41. However, over GF(2"), since W is
symetric with dlagonsl elements zero, || = 0, Yot sets of 5 lines
with no common transversel do exist even over GF(2) so there must be a
more fundemental condition valld over any field,

Since the diagonal elements of W are szerc, |W| has, not 5!,
but 5i = 51(%,- §!+%!--;-3>. 44 terms, These form 22 pairs of
equal terms, Thus the condition required ought to be found as the sum of
these 22 temms,

S8ince a, b, ¢, 4, @ are all met by =x,

8o5%g + B4Zq + BpXg + BgXp + BgMy + gXo =0
Doxs + Dixg + Daxs + DaXe + DexXy + bgxp =0
Co¥s k 01Xg + CoXg + CgXg + CqXy + CgXo =
doXg + dexy + dgxg + daXp + dgxy + dgXp =
G0Xg + 84Xy + ©3X3 + €a¥p + €4X¢ + €5%Xa =0

XoXg + XqXg + Xa¥Xg = 0,
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Solving for the =i from the linear equation and substituting in the

quadratic
8 8¢ 8z 83 a4 a4 8 Q8 B4 85 ¢ + = 0
Bo by bz bs ba bs by bs by by
Co & €2 O3 G4 Cy O C3 ©Cg ©Op
do dy dg da dg dy dg ds dg ds
Gy ©1 Oy O3 O 01 O3 €3 eg O
¢ ¢ ¢ 0 o 1 0 a5 s e dg €| + <+ = 0
G0 & 83 a3 8¢ 8] |0 a8y De o5 A €4
bo By by bas bg bgi |0 as by og ds ep
G ©1 ©3 ©3 O Opf {0 ag by o3 dp ez
do @4 dg dg dg dg C a1 be o dy ey
@ ©1 O3 €3 ©4 €5f |1 oo by o dg e
1 a do @ + + = 0
hog:lgeaau:‘.u
h%tg Us Uga Wazs
& T B e O O
T g
@ (gt W@pp Usy Ogs O
Expending the determinants by the first row and them, except for |,

by the first coluwmn

-\'tJa‘
wadlw| - &o‘ i:.!n'l Pimy=0;

for wij ocours twice in each of the threc expensions, the coefficient of
73z in the displayed determinent 1s =aghs = agbe, the sum of two of the
six products of =iy e

Over ©lolds not of charscteristic 2, 28 Wy wmy 4s W] expended
5 times so thet 5 ¥y miy =5[W]/2 and the condition decomes [w|/2=0
as expected,

How substitute Wiy = AiA; exoept for 1J=45 and put U = A Adls:
then wij 4s the product of Af AF AP AP AP /A1A; end the corresponding



eofactor in = 2M3 = A)

..n...a...a..-\.c)
- wd O =
e N e R
PO s =
L=

80 that Wijmiy ocan be replaced in w = 0 by this cofactor save when

13is 45; Wgmes Will be replaced by =A = 3A = 2A% ,

0
1
1
i

-k D ~b

1
i
1
A

- ) =k =k

The replacements for WygWyz, WiaMys, Gzalas are all
1 = 2\ - A®

T
A T
O Pt e

1
0
A

and for Ui4Ti4 DisTis, PoaTae, DosTes, Daslas > Dpsas arve all

= A,

A
- et -2 O
PO e
e R

Thus, using all the above replacements in w = 0,

B3 = A) = BA = 3(2A = A®) = (SA = 22%) =0
Ms=A) =0,
The line d does not meet e, thus os # 0 this means that A £ 0,
Therefore A=3,
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Wren's

APTENDIX V,

The pelrs of the sextuplet of points in which a B-line is met by the A~

Any two pairs are harmonie .
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The 72 coincidences of ko B~lines on an A-line are given for the lines
of Appendix VI ,

a4

v bas Dbas Dbas  Dae bae bas bse Bis  bPie
P1s bBse Pia bas P2 bes

o g Pas BPas Pas Pze Bas Bss Bse b1z Dbee

biz Pas Pas Dbis Psa bisg

ag b bes Dee Bas  Dbys bse bse bae Paz  Pze
B1a bas Paa bae bas Bas

o 8 Bia Bia Pis  Pae Bse Baa Pas bas Dae
Pas Pse Pss Dbas ez Bas

as D1z Bea Dee bas  bes bas b b1s bae Pas
Bse ©3s Pis  Pas Pas Paa

ag Prz Pia Pre Pae Pas Pse 8 Bis Pae Dae
Bec ™3 Pas Das Das bas

2e b D1z Bas Dis  Dbiee bas bas bae Bas Pas
Pas Das Dbss Pra Das Bas

g 8 Pra Pis Bis  Fae Bas Bae Bae bae Dbas
bes Pse DPie Pae Pas bae

2s b biz Dye Dbas Doy bas Baa bye Bas Pse
Pes bas Pis Pas bae bae

g g Prz Bra P2z  Bas Bsae Pre Pie bes bse
Bis Pae Pas Pes Dbas bas

as b1z Bis By baz  bas bae b b1s bas  Pae
Bae FPre Dbas bes Pse Bas

ag B1a Pra Pia Pas  Pas Bss B Pis Pasa TDse

P1c Pas bee Dbas  Pas bse
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