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Abstract

Automatic speech recognition for our most widely used languages has recently seen

substantial improvements, driven by improved training procedures for deep artificial

neural networks, cost-effective availability of computational power at large scale, and,

crucially, availability of large quantities of labelled training data. This success cannot

be transferred to low and zero resource languages where the requisite transcriptions are

unavailable.

Unsupervised speech processing promises better methods for dealing with under-

resourced languages. Here we investigate unsupervised neural network based models

for learning frame- and sequence- level representations with the goal of improving

zero-resource speech processing. Good representations eliminate differences in accent,

gender, channel characteristics, and other factors to model subword or whole-term units

for within- and across- speaker speech unit discrimination.

We present two contributions focussing on unsupervised learning of frame-level

representations: (1) an improved version of the correspondence autoencoder applied

to the INTERSPEECH 2015 Zero Resource Challenge, and (2) a proposed model for

learning representations that explicitly optimize speech unit discrimination.

We also present two contributions focussing on efficiency and scalability of unsu-

pervised speech processing: (1) a proposed model and pilot experiments for learning a

linear-time approximation of the quadratic-time dynamic time warping algorithm, and

(2) a series of model proposals for learning fixed size representations of variable length

speech segments enabling efficient vector space similarity measures.
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Chapter 1

Introduction

The year is 2166 and the world is in awe. The first indisputable signs of sentient alien

life have been detected. Artificial radio transmissions are being received by a probe

sent to flyby a rocky planet we discovered in the habitable zone of a nearby star. The

signals do not appear to be intentional efforts to communicate with unknown recipients

across interstellar space. Instead, they are a mixture of frequency modulated radio

transmissions much like those we created in the 20th century. The content includes a lot

of what sounds like natural speech in a variety of languages. The probe is rebroadcasting

the signals back to Earth and you are tasked with learning the spoken languages.

This fiction emphasises the difficulty of unsupervised speech recognition. In the

story, the aliens are not generating their transmissions with the intent of teaching us

their languages, we cannot interact with the aliens to solicit guidance, and we do not

have additional modalities with which the speech might correspond. Most notably we

cannot see, nor read about, what is being referred to in what we hear.

Human language learning is not usually so extreme. We interact with language

experts (e.g. our parents) and receive additional sensory inputs that co-occur with

the speech sounds. Co-occurrence strengthens our mental models either by explicit

supervised guidance (e.g. “look, a cat!”) or implicit unsupervised pattern detection.

The most extreme case of unimodal fully unsupervised spoken language learning,

like the alien radio signals scenario, has applications in three practical research areas:

• Automatic speech recognition (ASR) of under-resourced languages. There

are many thousands of languages in use across the world but only a handful have

adequate resources available for the development of usefully accurate supervised

ASR systems. Unsupervised ASR offers an approach that does not require the

costly and often infeasible collection of resources needed for supervised ASR.

1



2 Chapter 1. Introduction

• Conventional supervised ASR. Even well-resourced languages have more un-

labelled data than labelled data. Methods yielding improved representations

for unsupervised ASR can sometimes be applied usefully in supervised ASR

pre-training because they can be trained on larger quantities of unlabelled data.

• Computational models of human infant language learning. Human infants

learn language by immersion in a language speaking environment with minimal

explicit supervision. Unsupervised speech processing research can contribute to

the study of this process by offering cognitively plausible computational models.

Our work is motivated primarily by the first and second of these three areas. We make

no claims regarding the cognitive plausibility of our models.

We assume spoken language utterances are composed of sequences of discrete

abstract units (perhaps phonemes, morphemes, or whole terms) whose representative

sounds run together when spoken, such that their boundaries are unclear. Following the

conventional paradigm for unsupervised language learning, the first problem to solve is

that of segmentation – identifying the most likely boundaries between the discrete units

in the utterances we hear. Given boundaries, we can cluster the segmented units based

on their similarity. We are assuming here that two units that sound the same are likely

to be the same, at least when in similar contexts (the distributional hypothesis). The

two tasks often go hand-in-hand – improved clusters can be found given an improved

segmentation and improved segments can be found given an improved clustering.

Unit segmentation and clustering both depend on an ability to measure the similarity

between arbitrary segments of speech signals. We want to find unit boundaries that

maximize the similarity of units that are in fact the same, so they get clustered together,

and minimize the similarity of units that are in fact different, so they do not get clustered

together. The concept of clustering is meaningless without some notion of similarity.

Similarity is a function of representation. The degree of similarity between two

speech signal segments is related to the degree of similarity between their representa-

tions. A speech signal representation might be analogue (e.g. the deviation of a groove

in the wax covered surface of a phonograph cylinder) but we are more interested in

digital representations, which are easier to analyse. The characteristics of a digital

representation depend on the task for which it is designed. General purpose digital rep-

resentations of sound signals are designed to retain the information needed to reproduce

the original sound signal with high fidelity. We are not interested in reproduction of this

kind because there are many aspects of a raw speech signal that are unimportant in the
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identification of the abstract units we care about. We wish to ignore the confounding

effects of, for example, ambient noise, speaker-/gender-/accent-specific variations, or

the quality of the original recording.

Our ultimate goal is to find representations that (1) include all the unit-discriminative

information we care about, (2) include none of the information we do not care about,

(3) use an encoding enabling efficient similarity comparisons, and (4) can be learnt

from (potentially large quantities of) unlabelled data. In this work we focus on applying

unsupervised machine learning techniques to automatically discover representations

of individual speech frames, and larger segments of speech, that better meet these

requirements than previous methods.

1.1 Contributions

• A method for learning better representations of individual speech frames using an

improved version of the correspondence autoencoder (cAE). Prior versions of the

cAE used a shallow linear decoder; we present a version using a deep non-linear

decoder. We perform subword unit discrimination experiments, comparing the

new variant of the cAE with the previous variant and other baselines in the context

of the INTERSPEECH 2015 Zero Resource Speech Challenge.

• A novel model for learning speech frame representations by optimizing the ob-

jective of interest, dynamic time warping (DTW), explicitly. DTW is commonly

used as a measure of similarity when comparing two speech segments but rep-

resentations have not previously been learnt to optimize this measure directly.

We hypothesize that optimizing speech frame representations such that the DTW

distance between same-class sequences is less than the DTW distance between

different-class sequences will yield a better quality frame representation function.

• A novel model that learns to approximate the DTW function enabling sequence

comparisons in linear time instead of quadratic time. The time complexity

of DTW is proportional to the product of the lengths of the sequences being

compared. We propose a model that learns to approximate DTW such that com-

parisons have a time complexity proportional to the sum of the sequence lengths.

We hypothesize that the resulting approximate alignments and similarity meas-

urements can be usefully accurate. Our method generalises to approximate linear

time multi-sequence alignment, a task important in the field of bioinformatics.
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• An exploration of standard and novel models for learning fixed size represent-

ations of variable length speech segments. Sequence similarity computations

normally require an algorithm with time complexity that is a function of the

sequence lengths, e.g. DTW. Fixed size representations allow sequences to be

compared using a single vector space computation, e.g. cosine distance. We show

how standard models can be used for this purpose, describe their weaknesses, and

detail novel models that we hypothesize address those weaknesses.

Our first principal contribution is supported by experimental results and published in the

proceedings of INTERSPEECH 2015, the 15th Annual Conference of the International

Speech Communication Association. Our three other principal contributions comprise:

(1) an analysis of a problem related to unsupervised speech processing, (2) a review

of how existing methods are, or could be, applied to solving the problem and their

weaknesses, (3) detailed definitions of one or more novel methods that, we hypothesize,

solve the problem better than prior methods, and (4) fully worked out mathematics for

non-standard elements. The aim of these final three contributions is to support future

research by enabling others to quickly implement and experiment with our ideas. We

present results from a trial experiment in relation to one of the final three contributions;

no experimental results are presented in relation to the other two.

1.2 Thesis structure

Chapter 2 introduces the background material needed for fully understanding the

material in Chapters 3 through 5.

Chapter 3 presents our enhanced version of the correspondence autoencoder and

experimental results for learning representations of individual speech frames within

the context of the INTERSPEECH 2015 Zero Resource Speech Challenge. Chapter 4

covers our two DTW-oriented contributions: learning representations by optimizing

DTW explicitly, and approximating DTW with a linear time artificial neural network-

based algorithm. Chapter 5 extends the work presented in Chapter 3 to sequence

representation learning, where we attempt to avoid the bottleneck problems caused by

DTW by learning fixed size representations of whole sequences.

We wrap up in Chapter 6 with a summary of our contributions and present an agenda

for future research.
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1.3 Notation

We use standard notational conventions throughout, summarised here for convenience.

• X or {. . .}: a set; R: the conventional set of all real numbers.

• x ∈ X : a scalar from domain X with size |x| (where applicable).

• x ∈ X D: a column vector of size |x|= D containing scalar elements xi ∈ X at all

positions i ∈ [1, . . . ,D].

• X ∈ X M×N : a matrix with M rows and N columns containing scalar elements

xi, j ∈ X at all rows i ∈ [1, . . . ,M] and all columns j ∈ [1, . . . ,N].

• x1:L: A sequence of length L containing vector elements xt ∈ X D at all positions

t ∈ [1, . . . ,L].

• Xy, xy: the dot product of matrix X, or vector x, and vector y.

• x�y: the element-wise product of vector x and vector y.

• [x;y]: the concatenation of vectors x and y; if the sizes of the input vectors are M

and N then their concatenation is a column vector of size M+N.

• ‖x‖p =
(

∑
|x|
i=1 |x|

p
i

) 1
p : the p-norm of vector x.

• Dname (x,y): a distance function between vectors x and y; Dname (x1:Lx ,y1:Ly):

a distance function between sequences x1:Lx and y1:Ly; the nature of a distance

function is determined by its type, indicated by the superscript name.

• Wname, bname: a weight matrix and bias vector; the name superscript indicates an

artificial neural network layer to which these parameters belong.

• ∆n: the n-simplex, i.e. x ∈ ∆n⇔ x ∈ [0,1]n+1 and ∑
n+1
i=1 xi = 1; that is, x is a valid

set of parameters for a categorical probability distribution over n+1 outcomes.

• 0, 1: a vector or matrix of zeros or ones, respectively; the shape can be determined

from the context.

• I: the identity matrix; the shape can be determined from the context.

• X′: transpose of matrix X.





Chapter 2

Background

This chapter provides an overview of representation learning for unsupervised speech

processing. Relevant prior work is reviewed and the key concepts and technologies on

which this work is based are detailed. Section 2.1 provides a brief overview of relevant

prior work and introduces the most important algorithm on which unsupervised speech

processing is based: dynamic time warping (DTW). The methods by which speech

signals can be encoded into representations suitable for processing is introduced in

Section 2.2 along with an overview of prior work in representation learning for speech

signals. Section 2.3 describes the two tasks we use for evaluation: same-different and

ABX and Section 2.4 introduces the foundational models on which our contributions are

principally built: autoencoders and recurrent neural networks.

2.1 Unsupervised speech processing

Automatic speech recognition (ASR) is a speech-to-text process – the goal is to auto-

matically produce the best possible transcriptions of spoken utterances. State-of-the-art

ASR is supervised – the training data labels define a mapping between spoken inputs and

the corresponding, correct, textual outputs. We are interested in the unsupervised case

where labelled training data is unavailable and the correspondence between utterance

inputs and textual outputs must be inferred by indirect methods, e.g. frequency analysis

and language modelling.

Conventional ASR can be decomposed into five major components [32]:

1. The raw speech signal is transformed into an easier to process representation.

2. An acoustic model determines the probability of the speech signal representation

7



8 Chapter 2. Background

given a hypothesised word sequence.

3. A lexical model specifies how each entry in a fixed dictionary of words decompose

into subword units.

4. A language model determines the probability of a hypothesised word sequence.

5. A search procedure uses the other components to find the most probable word

sequence given the raw speech signal.

The first three components usually involve some form of supervision or expert know-

ledge and, in principle, each can be replaced with an unsupervised mechanism. For

example, the lexical model is typically specified by a linguist but this can be learnt from

data whilst continuing to train the acoustic model on transcribed utterances. In [32],

James Glass describes a spectrum of scenarios which vary in the degree to which they

require, and use, supervision. State-of-the-art ASR is firmly at one end – the expert-

based, fully supervised, scenario. We are interested in techniques most relevant to

Glass’s “major break from conventional ASR training” – the decipher-based scenario

where only unannotated speech and non-parallel text are available. One might think of

this scenario as learning to “listen” and “read” concurrently, from scratch, without a

teacher identifying correspondences between speech and text. Our work only tackles

the “listening” aspect, i.e. speech signal representation and acoustic modelling.

Semi-supervised methods, e.g. [53, 28, 65, 92], enable practical speech processing

when only small quantities of labelled data are available. We do not address semi-

supervised learning explicitly in our work but some of our methods may be useful in

semi-supervised settings, for example, when an unsupervised pre-training stage is used.

An important fully unsupervised speech processing task, and one that is often used

upstream of our methods, is unsupervised term discovery (UTD). The task, introduced

by Park and Glass [67], is to automatically discover clusters of speech segments that

occur frequently throughout the corpus, such that the segments within a cluster are

similar to each other and dissimilar to segments in other clusters. We expect a cluster

to form for each term that is commonly spoken in the corpus. The original approach

of Park and Glass combines segmental-DTW (a variation of the standard dynamic

time warping algorithm introduced below), to identify the frequently repeating patterns,

with a graph clustering algorithm. Later work has improved both segmental-DTW,

e.g. [46, 103, 47], and graph clustering, e.g. [10, 19, 71, 79], with particular emphasis

on scalability, enabling processing of datasets containing 100s of hours of speech.
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The study of Lyzinski et al. evaluated these graph clustering methods in the context of

unsupervised spoken term discovery [58]. Other uses of unsupervised speech processing

include query-by-example keyword spotting (e.g. [102, 59, 16]) and spoken document

indexing and retrieval (e.g. [31, 104]).

Unsupervised speech processing development is following a similar trajectory to

that of supervised speech processing [100, page 5, Figure 1.4]. Initial research is

necessarily focussed on the simplest task – isolated read words with a small vocabulary

in a single language. The task is made gradually harder by introducing a greater variety

of speakers, a larger vocabulary, allowing continuous speech where words are no longer

isolated, and moving towards conversational speech instead of directed speech. We

focus on a mid-point: continuous conversational speech from multiple speakers where

the recording is high quality/low noise.

The difficulty of tackling the full ASR task in an unsupervised setting is illustrated

by the TIDIGITS corpus (continuous small-vocabulary directed speech) and related

standard recognition task. Today’s unsupervised ASR word error rates are similar to

those achieved by supervised ASR 25 to 30 years ago. For example, in 2013, Walter et

al.’s [97] best unsupervised TIDIGITS word error rate (WER) was 1.5% while, in 1987,

Bush & Kopec’s [14] (reported by Normandin et al. [64]) supervised TIDIGITS WER

was also 1.5%. Modern supervised ASR can solve this task with zero errors.

We do not tackle the entire unsupervised ASR task in this work. Instead we focus

on unsupervised techniques that can be applied within the scope of speech signal

representation and acoustic modelling. Specifically, we wish to learn representations

that enable an acoustic model to more accurately discriminate between different classes

of speech units. Discrimination is a function of similarity; different speech unit classes

can be discriminated if speech units within a class are similar to one another and

dissimilar to speech units in other classes.

For the purposes of this work, we use speech signals encoded as sequences of

continuous-valued vectors. Each vector represents a short frame of the signal. For

example a particular utterance of the word /kæt/ might be represented by the sequence

x1:L of length L where each element xt ∈ RD is a continuous-valued vector of dimen-

sion D. Section 2.2 describes the process of encoding analogue speech signals into

frame sequences and a standard frame representation, mel frequency cepstral coef-

ficients (MFCCs). Most unsupervised speech processing techniques, including the

evaluation and downstream tasks we are interested in (see Section 2.3), rely on measur-

ing similarity between speech signals. The basis for these similarity comparisons is the
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DTW algorithm.

A sequence similarity measure is a function of the similarity of the elements in the

sequences. In general the sequences being compared may be of different lengths so

their elements must first be aligned. DTW, illustrated in Figure 2.1, is an algorithm

for aligning two sequences such that the sum of the element alignment costs is a

global minimum. To compute the cost of aligning a particular pair of frames we use

a vector-space distance function, such as the cosine distance, to compare their vector

representations.

The DTW algorithm can provide, as outputs, both the optimal alignment of frames

and a global minimum cost of that alignment. We are usually only interested in

the global minimum alignment cost which we interpret as a measure of the distance

between two sequences, DDTW (x1:Lx ,y1:Ly); a small alignment cost implies a small

distance which implies a high degree of similarity. We also use DTW optimal frame

alignments when training correspondence autoencoders (see Chapter 3). Details of

the dynamic programming algorithm used to compute DTW, and an analysis of its

computational complexity can be found in Section 4.3.

The significance of our contributions can be best understood within the context of a

downstream system, one that would use our representations, such as that of Kamper

et al. [49]. Their system achieves fully unsupervised small-vocabulary ASR using a

segmental Bayesian model that performs both segmentation and clustering. Arbitrary

length speech segments are mapped to points in a fixed-dimensional space and a

Gaussian mixture model identifies clusters of points within that space. For the mapping,

Kamper et al. use the fixed size embedding approach of Levin et al. [55]:

1. Speech segments are initially represented as sequences of frame representations

(e.g. MFCCs).

2. A set of exemplar speech segments form a reference set. This set is initialized to

random segments from the corpus but is refined iteratively using the Bayesian

model’s clusters.

3. The fixed size representation of a speech segment is computed in two steps:

(a) Computing the DTW distance between the speech segment and every exem-

plar in the reference set. This yields a reference vector of DTW distances

whose size is equal to the size of the reference set (e.g. 5,000).
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(a) Original (discretized in time) sequences. (b) Naive one-to-one alignment.

(c) Constant rate alignment. (d) Dynamic time warping alignment.

Figure 2.1: Dynamic time warping. How similar are the two sequences in Figure 2.1a?

Their lengths differ so a naive one-to-one alignment leaves some of the

longer sequence unaligned (Figure 2.1b). A constant advancement rate

assumption compares the full lengths but incorrectly aligns minima with

maxima (Figure 2.1c). Dynamic time warping allows the alignment rate to

vary and more accurately aligns the maxima and minima in the sequences

(Figure 2.1d).
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(b) Applying Laplacian eigenmaps [5] to the reference vector reduces the di-

mensionality (e.g. from 5,000 to 15) to form an embedding vector. This

approach maintains local similarity properties – nearest neighbours in the

reference vector space remain near neighbours in the embedding vector

space.

Our speech frame representation learning methods, presented in Chapter 3 and Sec-

tion 4.2, aim to deliver better frame representations than MFCCs (Step 1 above). We

hypothesize that using automatically learnt frame representations can improve the qual-

ity of the embeddings generated by the procedure above compared to using MFCCs.

Although the embedding procedure described above is partially motivated by a desire

to avoid costly DTW comparisons, DTW still figures strongly in the procedure’s runtime.

We hypothesize that our linear time DTW approximation, presented in Section 4.3, can

eliminate the DTW runtime bottleneck (Step 3a above). Achieving this would allow

the procedure to be applied to larger datasets enabling larger vocabulary unsupervised

speech processing.

Our fixed-size representation learning methods, presented in Chapter 5, can replace

the entire procedure described above (Steps 1 through 3b). We hypothesise that some

variation of the techniques presented in Chapter 5 can yield fixed size representations

that perform at least as well within downstream systems, such as Kamper et al.’s

Bayesian clustering model, and do so with lower computational costs because DTW

would no longer be required.

2.2 Speech representation learning

The communication of information by natural human speech uses an analogue physical

process involving patterns of pressure or density differentials propagating through a

substrate, typically air, between speaker and listener. The human speech production

and reception systems are complex and we do not concern ourselves with their details

in this work. However, that detail has played an important role in the engineering of

speech signal representations, and is important for interpreting the patterns that are

being captured in automatically learnt representations.

Natural speech signals are converted into digital form by sampling the analogue

signal using a microphone at a particular rate, e.g. 16 kHz. Each digital sample

comprises a measurement of the signal amplitude which is the degree to which the
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Figure 2.2: Frame representations. A mel frequency cepstral coefficient feature vector

is computed for every frame where frames start every 10 ms and cover

a 25 ms period of the signal. Figure elements are not to scale. Modified

version of image from Wikipedia (https://goo.gl/2U4ExM ).

substrate pressure is deviating from the ambient pressure. The amplitude measurement

may be positive or negative and is quantized into an integer value with a particular

degree of fidelity, e.g. 16 bits. These sequences of digital samples, that form the raw

data our systems are working with, are typically stored in a format known as pulse-code

modulation (PCM).

Until recently, speech recognition systems using the raw PCM data as input have not

yielded good quality results. Advances in artificial neural network (ANN) architectures,

combined with the ability to train with large quantities of data, have enabled close to

state-of-the-art word error rates to be achieved when using raw inputs [81, 9, 66, 33].

However, we focus on the more traditional approach of first transforming the raw data

into mel frequency cepstral coefficient (MFCC) feature vectors [20].

Full details of the MFCC computation are unimportant for this work but, in summary,

MFCC features represent speech using a sequence of continuous value vectors. Each

vector represents a short segment, or frame, of the speech signal, e.g. 25 ms in length,

and frame representations are constructed at a constant rate, e.g. 100 Hz (every 10 ms),

as shown in Figure 2.2. We typically compute 12 MFCCs for each frame which involves

extracting spectral information using the discrete Fourier transform, converting to the

mel scale, and computing the cepstrum (the spectrum of the log spectrum). The MFCC

computation is designed to adjust the speech signal in ways that are similar to the

transformation that occurs within the human speech perception system. The 12 MFCCs

are usually combined with a measurement of the amount of energy in the frame, yielding

13 features per frame. In our work, we apply another standard technique: supplementing

these 13 features with their deltas (i.e. velocity) and double-deltas (i.e. acceleration) to

form a 39-dimensional feature vector per frame.

https://goo.gl/2U4ExM
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MFCC features have been shown to be an effective representation for both super-

vised speech recognition and unsupervised speech segment discrimination. Carlin et

al. [15] and Schatz et al. [83, 84] have conducted studies to evaluate various representa-

tions, including MFCCs, in the context of unsupervised discriminability tasks – those

described in Section 2.3. In both studies MFCCs compare favourably to the various

alternatives. Within the context of deep neural network acoustic modelling, mel-scale

log-filter bank features have been shown to outperform MFCCs, e.g. Li et al. [56], but

in this work we stick with MFCCs.

State-of-the-art speech technologies have long used MFCC feature vectors which

have developed from expert knowledge of signal processing and the human speech per-

ception system, and from experimental results demonstrating their frequent superiority

to alternatives. Modern machine learning techniques offer the possibility of optimizing

speech signal representations beyond what has been achieved by human experts thus

far. Furthermore, feature discovery for zero or low resource languages can be achieved

without the need for costly and rare human experts by using unsupervised machine

learning algorithms.

When applying machine learning to the task of speech representation learning, the

principal goal is to obtain a function that maps inputs (typically conventional feature

representations such as MFCCs) to a new, latent, representation. We use machine

learning to find an optimal set of parameters for a given model structure, training

objective, and training dataset. We encode our prior knowledge about the domain,

and qualities desired of the resulting representations, into the model structure, its

hyperparameters, and the training objective. With appropriate choices for these design

decisions we can achieve better quality representations primarily because they can be

task specific or emphasise a particular property that is known to be important for the

types of tasks we are interested in.

In general, we are interested in unsupervised methods but this is not always true.

To deal with zero-resource languages we may train a representation function on a high

resource language and then apply it without any further training to the zero-resource

language. This is done in Chapter 3 where a supervised ANN is trained on English but

then applied to the African Bantu language Xitsonga. For low-resource languages we

may apply semi-supervised techniques or adaptation.

For a good, high-level, review of representation learning, the reader is advised to

start with Bengio et al. [6]. This review includes a section that answers the question

“why should we care about learning representations?” by relating it to the field of speech
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Figure 2.3: Convolutional artificial neural network. The input to the network in this

figure is a spectrogram, but any frame representation sequence can be used

(e.g. MFCCs). A set of filters scan over the input in two dimensions: time

and frequency. Reproduced from [1] with permission of author.

recognition. We do not review the field in as much breadth in this section. Instead

we highlight the techniques that provide foundation for our contributions or set our

contributions in context. The techniques that apply most directly to our contributions

are introduced in more detail in later sections. In this section we start with an overview

of ANN techniques and follow with an overview of non-ANN techniques.

State-of-the-art supervised ASR typically uses a mixture of deep or convolutional

ANNs (DNNs/CNNs) and hidden Markov models (HMMs). There are two common

methods for combining these components: tandem and hybrid. In the tandem ap-

proach [37, 24] the ANN learns to transform the original features into better quality

latent features; the latent features are then combined with the original features as

input to conventional training of a GMM/HMM acoustic model. In the hybrid ap-

proach [61, 93, 27] the ANN replaces the GMM component and is trained to predict

the HMM state posteriors directly. In both cases the ANN learns representations of

short-duration frame sequences. Both methods can be combined as illustrated by some

work related to our own: keyword spotting on low resource languages by Rath et al. [73]

DNNs are typically trained with a small, fixed-length, sequence of frames as input

(e.g. 9 frames) yielding features in higher level layers of the network (often a narrow
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bottleneck) that represent the whole window. CNNs typically convolve and pool over

time yielding patterns spanning similar numbers of frames as DNNs. Consequently

both DNNs and CNNs can learn short-duration patterns but neither can learn longer

duration patterns without the HMM, or by introducing recurrence, as we do in Chapter

5.

Unsupervised ANN representation learning for ASR attempts to replicate the beha-

viour of the DNN/CNN components of supervised ASR systems without the use of a

HMM to guide the representations towards those useful for the task of modelling the

speech segments in the lexicon.

Two general and commonly used unsupervised ANN representation learning tech-

niques are autoencoders [41] and restricted Boltzmann machines (RBMs, [38]). Au-

toencoders are simple ANN models, typically trained discriminatively to reconstruct

an input via a hidden latent representation. Autoencoders are an important foundation

technology for our work and are detailed in Section 2.4. An RBM is a generative

probabilistic model with an ANN (i.e. fully connected) structure. RBMs are also trained

to reconstruct their input but, in contrast to autoencoders, they are undirected graphical

models and thus require training methods that involve sampling, such as contrastive

divergence [39]. RBMs have been used for speech representation learning [45], but in

this work we focus on autoencoders and their ilk.

ANNs often require regularization to avoid overfitting or degenerate solutions. Many

forms of regularization are available including generally applicable methods such as

L1 or L2 norms applied to the model parameters. Regularization is important when

deploying ANNs for representation learning because we wish to avoid trivial solutions

to the training objective (e.g. reconstruction via an identity function). We focus on

the standard methods of denoising and representation contraction, and also develop

the recently introduced correspondence pairing approach. These topics are explored in

more detail in Section 3.

The field of non-ANN-based representation learning is broad, deep, and has an

extensive history. We barely touch on it here as it has little direct relevance to our

work but mention a few methods where they have particular relevance to representation

learning for unsupervised speech processing. We do not consider supervised approaches

here (e.g. linear discriminant analysis).

Perhaps the most widely used and simplest unsupervised representation learning

method is principal components analysis (PCA). PCA transforms the input features into

a set of features that are no larger in size than the inputs (but are often smaller) and
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where the output features are linearly uncorrelated. PCA is equivalent to a single linear

bottleneck layer autoencoder in that the two methods learn to project the inputs into

the same subspace [12]. PCA is a linear method and linear methods cannot be usefully

layered to form deep methods – a linear function of a linear function is itself a linear

function. We use non-linear autoencoder layers which can be usefully stacked into deep

architectures.

Independent components analysis (ICA) can be used to learn representative speech

features [54]. ICA hypothesises the existence of a set of independent components and

that mixtures of these components can explain the input data. There are linear and

non-linear shallow variants, and deep non-linear variants, of ICA.

A variety of non-ANN methods for learning fixed-size representations of variable

length speech sequences are evaluated by Levin et al. [55]. Their principal contri-

bution is the evaluation of different dimensionality reduction techniques applied to

the DTW exemplar distances method described in Section 2.1. We target the same

goal in Chapter 5 where we consider ANN-based approaches for learning fixed size

representations of variable length sequences.

Sparse coding has delivered some promising results in recent applications to speech

representation learning [86]. We do not apply sparsity constraints within any of our

models but this is an interesting area for future work – for example, the representations

learnt by frame-autoencoders or frame-sequence-autoencoders can be regularized via

sparsity constraints.

2.3 Evaluation tasks

Most speech representation learning aims to improve the quality of conventional super-

vised ASR systems. Consequently, the evaluation method typically involves using a

proposed representation function within a conventional supervised ASR system and

evaluating the change in word error rate. In contrast, we are interested in unsupervised

speech recognition where evaluating our representation functions within a supervised

ASR system could be misleading (because additional modelling assumptions confuse

matters) and would be unnecessarily time consuming. Instead, we focus on tasks and

evaluation methods that more directly measure the effectiveness of our representation

functions in an unsupervised setting.

Throughout this work we focus on two similar evaluation tasks: same-different and

ABX. Both tasks evaluate the effectiveness of a representation function to discriminate
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between different classes of sequences. Representation functions that make every class

clearly distinct from all other classes are preferred. In principle, both same-different

and ABX could be applied to sequences representing any meaningful unit of speech but,

following past work, we apply same-different to only whole-term pairs and ABX to only

minimal triphone pairs.

When evaluating a frame representation function, as in Chapter 3, sequence similar-

ity is found via DTW combined with cosine distances between the frame representations.

When evaluating a fixed size representation function, as in Chapter 5, sequence similar-

ity is measured by a single cosine distance between the two fixed size representations.

In summary, there are three independent axes of variation in the evaluation method:

• Comparison type: same-different or ABX.

• Pair type: whole-term pairs or minimal triphone pairs.

• Representation type: per-frame or whole-sequence.

2.3.1 Whole-term same-different

The whole-term same-different task [15, 55] measures the discriminability of a repres-

entation function by comparing the representations of two term instances and asking

whether they belong to the same or different classes. This is a binary classification

task (though tackled indirectly) and can be thought of as an instance of information

retrieval where same term-pair instances are “relevant" and different term-pair instances

are “irrelevant".

The test set typically includes a mixture of both same-speaker and different-speaker

term pairs. The latter is clearly a more difficult condition so the proportion of different-

speaker term pairs in the test set is an important statistic to bear in mind.

Same-different evaluations are achieved by firstly computing the distance between

the representations of every term pair in the test data set and secondly computing

the average precision, i.e. the area under the precision-recall curve. The precision-

recall curve is defined by a distance threshold. A term-pair are taken to be different

if the distance between their representations is greater than the threshold, otherwise

they are taken to be the same. In principle, the precision-recall curve is found by

computing precision and recall at every threshold value but this is equivalent to ranking

all term-pairs by distance and computing average precision over the ranked list, an

easier computation.
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Figure 2.4: Minimal triphone pair ABX evaluation task. Is X more similar to A or B?

Waveforms do not correspond to example triphones.

2.3.2 Minimal triphone pair ABX

A triphone is a sequence of three phones with the focus on the middle phone. The min-

imal triphone pair ABX task [83, 84] measures the discriminability of a representation

function by asking whether triphone x is most like triphone a or triphone b, where a

and x are distinct examples of the same triphone and b is a triphone differing from a

and x in only the middle phone. This task evaluates a model’s ability to discriminate

between different phones in the same context.

For example, a and x might be two different examples of the triphone /kIt/ while b

might be an instance of the triphone /kæt/, as depicted in Figure 2.4.

We consider two variants:

• Within-speaker: a, b, and x belong to the same speaker.

• Across-speaker: a and b belong to one speaker and x belongs to a different

speaker.

If the distance between a and x is greater than that between b and x then the model has

made an error. The error rate is the mean over all possible (a,b,x) triples in the test set.

2.4 Standard artificial neural network architectures

Much of this work involves the development of novel ANN architectures. In this section

we describe the foundational architectures on which our contributions are based. Only

the standard architectures directly relevant to our work are presented in detail here. A

variant of the autoencoder architecture, the correspondence autoencoder, was introduced

previously by Kamper et al. [48] and the introduction to that model can be found in

Section 3.2, where we go on to develop it further.
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(a) Autoencoder. Input x is encoded into latent

representation h2 then decoded into reconstruc-

tion y. The model is trained to minimize the

difference between x and y. May be shallow or

deep (shown here).
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(b) Denoising autoencoder. Artificial noise (e.g.

Bernoulli masking, or additive Gaussian) is ad-

ded to input x to form noisy input x̃. The model

is trained to minimize the difference between

reconstruction y and original, clean, input x.

May be shallow (shown here) or deep.

Figure 2.5: Autoencoder models. Schematics of standard autoencoder model variants.

The input is denoted by x, the reconstruction by y, encoding layers by hl ,

and internal decoding layers by zl . Dashed red lines indicate differences that

are minimized during training. Model parameters are shown for each layer.

When deep, encoder and decoder layers are always paired and may share

weights
(

e.g. Wz1 =
(
Wh2

)′)
.

Throughout this document we denote ANN layers as vectors. In practice we use

minibatch stochastic gradient descent to train our networks, where a layer’s activations

are actually implemented as matrices, but we omit this complexity in our presentation

for clarity.

2.4.1 Autoencoder

A single-layer autoencoder (AE) [12] is an ANN with two components. The encoder

projects an input, e.g. an MFCC vector, x ∈ RD0 into hidden representation h1 ∈ RD1 .

The decoder projects the hidden representation back into the original vector space

y ∈ RD0 . We treat y as a reconstruction of x and train the network to minimize the

reconstruction squared error L (x) = ‖y−x‖2
2.

The encoder is implemented as a conventional feedforward ANN layer, h1 =

f1
(
Wh1x+bh1

)
, with weight parameters Wh1 ∈ RD1×D0 , bias parameters bh1 ∈ RD1 ,
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and non-linear activation function f1 (we use the hyperbolic tangent). The decoder

has a similar form as the encoder, y = Wyh1 +by, with additional weight parameters

Wy ∈ RD0×D1 and bias parameters by ∈ RD0 . To reconstruct unbounded data, such as

MFCCs, the reconstruction y must have an unbounded range, hence the use of a linear

decoder.

Deep narrow AEs typically achieve lower reconstruction error than shallow wide

AEs with the same number of parameters. As shown in Figure 2.5a, each of a deep AE’s

L encoders project the output of the previous encoder into a new hidden representation,

i.e. hi = fi
(
Whihi−1 +bhi

)
∈ Di for all i ∈ [1,L], with h0 = x. Each of the L decoders

reconstruct their respective hidden representations in turn, finally reconstructing the

input, i.e. zi = gi (Wzizi+1 +bzi)∈Di for all i∈ [1,L−1], with zL = hL and y = Wyz1+

by. We tie weights and use non-linear activation functions in all internal decoders, i.e.

gi = fi+1 = tanh and Wzi =
(
Whi+1

)′ for all i ∈ [1,L−1]. Our autoencoders use a

consistent hidden layer size, i.e. Di = Di−1 for all i ∈ [2,L].

Training all layers in a deep AE concurrently often yields poor results due to the

vanishing gradient problem [42, 7] (Section 2.4.5). We use the standard mitigation of

pre-training the deep AE layerwise, then fine-tuning the entire network [40].

2.4.2 Denoising autoencoder

AEs are not a strong baseline for representation learning. Denoising autoencoders (dAEs,

Figure 2.5b) [96] usually perform better because they implicitly regularize the paramet-

ers avoiding degenerate transformations, such as the identity function, being learned.

Regularization is especially important when training overcomplete AE architectures, i.e.

where Di ≥ D0 for all i ∈ [1,L].

A dAE is trained to reconstruct the clean versions of artificially noisy inputs. Differ-

ent types of noise may be applied. In our case the input features, once normalized to

zero mean and unit variance, are approximately Gaussian distributed so additive zero

mean Gaussian noise is appropriate. A dAE is identical to a conventional AE except the

input x̃ = x+N (0,γI) is a noisy version of x. γ is a hyperparameter determining the

standard deviation of the noise.

2.4.3 Recurrent neural network

A RNN is an ordinary feedforward ANN containing a special layer that propagates a

hidden state along the input sequence. We focus on the Elman-style RNN layer [25, 77,
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ht−1 ht ht+1

yt−1 yt yt+1
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(a) Unidirectional recurrent neural net-
work. This architecture maintains a hidden

state along the length of the input sequence

that is a function of the previous hidden

state and current input. The recurrent layer

is denoted by ht .

hbt−1 hbt hbt+1

hft−1 hft hft+1

yt−1 yt yt+1
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(b) Bidirectional recurrent neural network. This ar-

chitecture maintains a hidden state along the length

of the input sequence in both directions. The for-

ward recurrent layer is denoted by hft and backward

recurrent layer by hbt .

Figure 2.6: Recurrent neural network models. In these schematics, the input is de-

noted by xt and the output by yt . Black lines indicate ordinary feedforward

connections and blue lines indicate recurrent connections (shown unwound).

78]. A RNN layer accepts elements from the input sequentially and, given a specific

example sequence, can be unwound to yield a network containing a replica of the RNN

layer for each element in the sequence. The number of times the RNN layer appears

in the unwound network is thus equal to the input sequence length. When considered

more generally (i.e. not unwound for a specific input example), the key feature of a

RNN layer is the recurrent connection that feeds information forward from one position

along the sequence to the next. The t’th element xt ∈RV , where V is the dimensionality

of the vectors in the input sequence x1:L, is fed into a recurrent network via

ht = f
(

W h [ht−1;xt ]+bh
)

(2.1)

The neural network layer described in Equation 2.1 is recurrent because the hidden

layer state at position t is a function of the same hidden layer’s state at position t−1, in

addition to the input element at position t. A slice through an unwound RNN is depicted

in Figure 2.6a.

The dimensionality of the hidden state, D, remains constant along the sequence,

i.e. Wh ∈ RD×(D+V ), so the hidden state at position t can be thought of as a fixed size

representation of the sequence prefix at position t. Subject to an appropriate training loss

function, the hidden state found at the end of the sequence, hL, can be thought of as a

representation of the entire sequence. Typically D�V L so the network is incapable of

memorising the entire sequence verbatim – it is forced to learn a compression function.
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Furthermore, the compression ratio is typically high enough, or the data is typically

complex enough, that the compression function will necessarily be lossy. By using

a good training loss function we can encourage the network to remember the aspects

of the sequence we believe to be important for representing the sequence such that

similar sequences have similar representations and dissimilar sequences have dissimilar

representations.

The activation function f typically has a sigmoidal shape. Common activation func-

tions in recurrent neural networks are the hyperbolic tangent and the logistic function;

both quickly saturate as pre-activation value magnitudes increase. Alternatively, the

rectified linear unit (ReLU) activation function [62], used by Hannun et al. in their

end-to-end speech recognition recurrent network [36], is piece-wise linear which helps

avoid the vanishing gradient problem (see Section 2.4.5).

2.4.4 Bidirectional recurrent neural network

The hidden state, of an ordinary recurrent neural network, at a particular position

along the input sequence can be interpreted as a representation of the sequence prefix

up to that position, i.e. a representation of the preceding context. Sometimes our

training objective can benefit from a greater degree of context, i.e. the sequence suffix

in addition to the sequence prefix. For example, accurate identification of a phone

can be strongly influenced by the preceding and following phones, hence the use of

triphones, due to the way in which spoken sounds flow into one another. A bidirectional

recurrent neural network [85] maintains two hidden states at each position of a sequence;

one represents the prefix (the forward direction), the other represents the suffix (the

backward direction).

Figure 2.6b depicts a general slice from an unwound bidirectional neural network.

The recurrent layer aspect of this same network is defined by Equations 2.2 through 2.4.

hft = f
(

W h f [hft−1;xt ]+bh f
)

(2.2)

hbt = f
(

W hb [hbt+1;xt ]+bhb
)

(2.3)

ht = [hft ;hbt ] (2.4)

The complete hidden state at position t is a concatenation of the forward and

backward recurrent states at position t; this concatenated value is passed on to higher

level layers. A fixed size representation of the entire sequence can be obtained by

concatenating the forward hidden state at the end of the sequence and the backward
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hidden state at the start of the sequence, r= [hfL;hb1]; both components could represent

the entire sequence but in different ways so their combination may be a stronger

summary of the entire sequence.

In many practical use cases, such as speech recognition, a bidirectional recurrent

neural network may not be particularly cognitively plausible as it implies the entire

sequence is observed and then analysed post hoc. However, this work is not concerned

with the development of a computational cognitive model of unsupervised speech

recognition so we adopt the use of bidirectional network architectures whenever they

offer an improvement in the task of interest: representation learning for unsupervised

automatic speech recognition.

2.4.5 Dealing with long distance dependencies

Many practical tasks involve data that exhibits long distance dependencies. That is,

behaviour at position t needs to be a function of an input provided at position t− δ

where δ is “large”. What constitutes a long distance is model, task, and data specific.

As an example, consider the task of phone identification. Current phone identity is often

dependent on the identity of the preceding and following phones. Phone duration is

typically 30-90 ms (3-9 frames) but can be as much as 400 ms (40 frames) [69]. The

last frame of the current phone may need information from as much as 60 frames in the

past. It can be difficult to train a vanilla RNN to propagate a complex state through 60

recurrent steps.

The problem occurs during training: the error signal used to update the weights

is back-propagated through the unwound network, using back propagation through

time [80, 98], and at each step it passes through a squashing non-linearity (e.g. the

gradient of the tanh function is tanh′ (x) = 1− tanh2 (x)). Without “good weights”

(which is rare) the squashing functions cause the gradients to vanish to zero or explode

to infinity. This vanishing/exploding gradient problem is analysed in more detail by

Hochreiter et al. [42, 43].

In Chapter 5 we use RNNs to learn fixed size representations of whole sequences.

These approaches require all pertinent information to be propagated along the entire

length of the input sequences, which can involve many tens or hundreds of steps. For

their statistical machine translation task, Cho et al. [17] were unable to get meaningful

results using a vanilla RNN; instead they used gated recurrent units to learn fixed size

representations of arbitrary length word sequences.
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1

logistic

logistic

(b) Gated recurrent unit. The schematic for a

general slice from an unwound GRU layer. The

network learns to attenuate the input and hid-

den state via two multiplicative gates which

each take on values in [0,1]. Information can

be stored in the hidden state indefinitely thanks

to the lack of a non-linearity along the ht re-

current connection. The symbol denoted by a

circle with a horizontal line running across it

and with a 1 to the lower left indicates the op-

eration of subtracting the input from a suitably

sized vector of value 1.

Figure 2.7: Alternate recurrent neural network layers. The LSTM and GRU layers

offer methods for avoiding the vanishing/exploding gradient problem by allow-

ing information to flow along the hidden state’s recurrent update connections

without being modified when required. A filled circle on a line indicates

a dense matrix multiplication. Circles with an s-shape inside indicate an

application of a standard non-linear squashing function; the specific type, if

fixed, is indicated beneath the circle.
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Although, in theory, the gradients may explode or vanish, in practice we tend to be

in a situation where they vanish so the term “vanishing gradient problem” is usually all

that is mentioned. Both of the following mitigation techniques, however, help avoid

both vanishing and exploding gradients.

A general solution to the vanishing gradient problem is to allow information to be

passed onwards through the network recurrently without being changed. Of course, we

do want inputs to affect the hidden state so the following two solutions utilize “gates”

which the network learns to open or close depending on the state. When a gate is closed

the affected stream of information is discarded and when a gate is open the stream flows

on unchanged. Gate values are continuous in the range [0,1], and are multiplied with

the input, so the effect is an attenuation of the signal. The degree to which a gate is

open is a function of the current input and current hidden state, so the network learns

when to keep a gate open and when to close it. The hidden state thus now serves two

notional purposes: (1) to pass information about the sequence prefix to later points in

the sequence to achieve the training objective, and (2) pass information to later recurrent

layers to control their gates.

Both of the following mechanisms are different types of RNN recurrent layers and

can be used as direct replacements for the vanilla RNN recurrent layer described in

section 2.4.3. Both can also be used in a bidirectional RNN.

2.4.5.1 Long short-term memory

The long short-term memory (LSTM) architecture (Figure 2.7a) was originally proposed

by Hochreiter and Schmidhuber in 1997 [44] but has been repeatedly enhanced in later

years [29, 30, 82]. The key features of the LSTM architectures are three gates: the

input, forget, and output gates attenuate the input, hidden state, and output signals

respectively. The LSTM can be thought of as having two recurrent hidden states: (1)

the internal state mt which is only visible to, and used by, the LSTM layer itself, and

(2) the external hidden state ht which is the value passed on to the next layer(s) in the

network. The LSTM has become particularly popular in recent years, including in

acoustic modelling [82] and language modelling [74].

The original LSTM formulation [44] introduced input and output gates to select-

ively ignore some inputs and selectively avoid emitting information at some positions

respectively. A particularly important improvement was the introduction of a forget1

1The forget gate is poorly named as when the gate is fully open, i.e. when it takes on its maximal
value of 1, the layer does not forget anything! It would be better named the remember gate but we stick
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gate [29] which allows the network to selectively forget information by stemming the

information flow from the previous hidden state. The vanilla RNN is incapable of

explicitly forgetting information, all that can happen is for later information to over-

write earlier information. Further improvements were made with the introduction of

peephole connections [30] (an efficient view of the internal hidden state as input to the

gate functions) and the introduction of an output projection layer [82] (enabling the

network’s internal hidden state to have a different, often larger, size compared to the

external hidden state).

In this work we use an LSTM variant that includes the forget gate, peephole

connections, and output projection, all defined by Equations 2.5 through 2.9 and

depicted in Figure 2.7a.

it = σ
(
Wi [xt ;ht−1;mt−1]+bi) (2.5)

ft = σ

(
W f [xt ;ht−1;mt−1]+b f

)
(2.6)

mt = ft�mt−1 + it� f (Wm [xt ;ht−1]+bm) (2.7)

ot = σ(Wo [xt ;ht−1;mt ]+bo) (2.8)

ht = Wh (ot� f (mt)) (2.9)

The input, output, and forget gates are denoted it , ot , and ft respectively. The internal

and external hidden states are denoted mt and ht respectively. The activation functions

used in the gates are required to be logistic functions, σ(x) = 1
1+exp(−x) which has a

range of [0,1] as required for the gates. The activation functions used in the hidden state

updates, f , can be anything; we use tanh.

The LSTM weights are all dense, as usual, except for the peephole connections,

W {i,o, f}, which are diagonal. Dense weights on these connections may be helpful but

would increase the number of parameters quite significantly, especially if an output

projection layer is also used such that |ht |< |mt |.

The gates all have the same dimensionality as the signals they are attenuating and

can affect each dimension differently. For example, at a single position, the output gate

might be concurrently fully open for the first dimension and fully closed for the second

dimension.

with forget gate as that is what is used commonly in the literature.



28 Chapter 2. Background

gt ut ht is function of

1 1 ht−1

1 0 f (xt ,ht−1)

0 1 ht−1

0 0 f (xt)

Table 2.1: Gated recurrent unit update extremes. The values that go into updating a

GRU’s hidden state depend on the state of the two gates. This table indicates

what the extreme conditions look like. Gates with intermediate values provide

intermediate weighted additive combination updates. Here, f indicates some

non-linear function of its inputs.

2.4.5.2 Gated recurrent unit

The LSTM is an especially complicated contrivance, especially the version presented

in Section 2.4.5.1, and may be more powerful than required for some tasks. The gated

recurrent (GRU) architecture, introduced by Cho et al. [17] and further empirically

evaluated by Chung et al. [18], has complexity and potential power somewhere between

the vanilla RNN and LSTM. The GRU (Equations 2.10 through 2.13 and Figure 2.7b)

uses two gates: (1) the reset gate, denoted gt
2, determines how much of the hidden

state goes into the potential hidden state update mt , and (2) the update gate, denoted ut ,

determines how much of the potential hidden state update actually changes the hidden

state ht .

gt = σ(Wg [xt ;ht−1]+bg) (2.10)

ut = σ(Wu [xt ;ht−1]+bu) (2.11)

mt = f (Wm [xt ;gt�ht−1]+bm) (2.12)

ht = ut�ht−1 +(1−ut)mt (2.13)

The activation functions used in the gates are required to be logistic functions. The

activation functions used in the hidden state updates, f , can be anything; we use tanh.

The GRU gates interact in a complex manner. Table 2.1 shows what values the

hidden states become a function of at each of the gate combination extremes. If the

update gate is close to 1 then the current input is mostly ignored and the hidden state
2We denote the reset gate with gt to avoid potential confusion with representation values which are

usually denoted r .
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is updated linearly. If the update gate is close to 0 then the hidden state is updated

non-linearly and the reset gate determines how much that non-linear update depends on

the current hidden state in addition to the current input.





Chapter 3

Learning representations of speech

frames

Building on the artificial neural network models and evaluation tasks introduced in

Chapter 2, we introduce the correspondence autoencoder (cAE), and our novel improve-

ment to the cAE, in Section 3.2. Experimental results are presented in Section 3.3

where we compare our modified cAE to the original cAE and other baselines using the

ABX subword discrimination task applied to English and the zero-resource language,

Xitsonga.

The work presented in this Chapter was previously published in The proceedings of

INTERSPEECH 2015 as A Comparison of Neural Network Methods for Unsupervised

Representation Learning on the Zero Resource Speech Challenge by Daniel Renshaw∗,

Herman Kamper†, Aren Jansen‡, and Sharon Goldwater∗ [75].

3.1 Introduction

Automatic speech recognition systems are typically trained using tens or hundreds

of hours of supervision (hand-transcribed speech data), and often still have difficulty

dealing with differences in accent, gender, channel characteristics, and other factors.

Yet months-old human infants begin to solve the basic problems of identifying phones

and words with no comparable supervision. Recent work on zero-resource speech

technology asks: how can we build artificial systems that might approach the unsuper-

vised learning abilities of human infants? Solving this problem would provide more

∗,†ILCC and †CSTR, School of Informatics, University of Edinburgh, UK
‡HLTCOE and CLSP, Johns Hopkins University, USA
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universally available speech technology in under-resourced languages, and could lead

to novel methods that also improve supervised speech recognition.

The Zero Resource Speech Challenge (ZRSC) promotes work in this area by defining

two shared tasks and providing training data and common evaluation mechanisms. The

challenge ran as a special session of INTERSPEECH 2015. Our entry tackles Track 1,

subword modelling, by using several neural network based methods to learn frame-level

representations that yield better phonetic discriminability than standard Mel Frequency

Cepstral Coefficients (MFCCs) [20]. We evaluate our representations using the ZRSC’s

Track 1 minimal triphone pair ABX discrimination task.

We enhance the correspondence autoencoder (cAE) method of Kamper et al. [48],

introduced in Section 3.2, which learns a non-linear mapping from MFCCs to a lat-

ent distributed feature representation. Kamper et al. trained their system on data

from the Switchboard corpus and evaluated it using the same-different discriminability

task [15], showing that the learned representations performed substantially better than

the original MFCCs, and also better than representations learned by a standard autoen-

coder (AE) [12]. Here, we show that Kamper et al.’s model, with no additional tuning,

generalizes well to other data sets, languages, and tasks by evaluating it using the ABX

task with the two ZRSC datasets: Buckeye [68] (English, but with different channel

characteristics than Switchboard) and the NCHLT Xitsonga1 Speech corpus [21].

While the cAE is a weakly supervised model, we train it with correspondence pairs

sourced from an unsupervised term discovery (UTD) system [47] making the approach

unsupervised as a whole. Alternatives to the weakly supervised regularization implicit

in the cAE were not considered in [48]. Here, we show that a standard unsupervised

form of regularization, denoising autoencoders [95], learns better representations than

AEs, but still not as good as cAEs. We also introduce an improved cAE architecture and

training method that reduces the number of hyperparameters to be tuned, and show that

narrow architectures work better, with reduced error rates on a zero-resource language

after tuning on English. Unlike similar previous work [90, 89, 105] our methods, when

considered as a single system, are fully unsupervised, train on individual frames without

context, and use a loss function in the input vector space instead of the representation

vector space.

Finally, we explore whether ABX performance can be improved on a zero-resource

language by using representations trained on large amounts of supervised data in a

different language. We use a deep neural network (DNN) trained on a large amount of

1Xitsonga is a southern African Bantu language.
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English data to extract bottleneck features (BNFs) [34] for the Xitsonga test data. We

find that these cross-language supervised representations perform comparably with the

cAE representations trained with in-language data and that further improvements can

be achieved by combining the two approaches.

Our baseline models are the vanilla autoencoder (Section 2.4.1) and the denoising

autoencoder (Section 2.4.2). We compare the baseline models to two versions of the

correspondence autoencoder and a deep neural network. The hyperparameters of the

autoencoder models are optimized on English and then the resulting model architecture

is applied without any further hyperparameter changes to Xitsonga. The DNN is trained

on English and applied without any further training or adaptation to Xitsonga.

Optimizing a cAE architecture on English and applying it to Xitsonga, we obtain a

relative error rate reduction of 35% compared to the original MFCCs. We also show

that Xitsonga frame representations extracted from the bottleneck layer of a supervised

DNN trained on English can be further enhanced by the cAE, yielding a relative error

rate reduction of 39%.

3.2 Correspondence autoencoder

An autoencoder (AE, see Section 2.4.1) is trained with an unsupervised objective –

reconstruction. We can learn better quality representations if we use an objective that

better approximates the extrinsic task: learning features that discriminate between

different subword units. To this end, Kamper et al. [48] introduced a weakly supervised

AE variant: the correspondence autoencoder (cAE). Instead of reconstructing its input,

a cAE is trained to predict and construct an unseen example that is known to be similar

to the input.

We can view the cAE as a version of a dAE where, instead of artificial noise,

the network is presented with input pairs that differ only in non-linguistic sources of

variation, e.g. speaker or channel. Denoising the true sources of extrinsic variability

is a more optimal method than introducing artificial sources, though we are limited to

what can be discovered with the UTD system.

Four steps go into training a cAE for unsupervised speech representation learning

as depicted in Figure 3.1.

1. Train stacked autoencoder: layerwise pre-training using AE objective

2. Unsupervised term discovery: identify likely same-class term pairs [47]
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Input features

1. Train stacked autoencoder

2. Unsupervised term discovery

3. Align word-pair frames (DTW)

4. Train correspondence autoencoder

Initialize weights

Unsupervised

feature extractor

Figure 3.1: Correspondence autoencoder training procedure. An overview of the

training procedure for our INTERSPEECH 2015 Zero Resource Speech

Challenge entry. (1) The entire unlabelled speech corpus is used to pre-train

a network using a standard autoencoder objective. (2) The same corpus is

run through an unsupervised term discovery system. (3) Frames are aligned

between every pair of UTD terms believed to be from the same class. (4)

The pre-trained network is fine-tuned using the aligned frame pairs and the

correspondence autoencoder objective. The final encoder portion of the

network is used as our frame representation function. Inspiration for this

figure from Kamper et al. [48].
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3. Align word-pair frames: yielding frame pairs where frames in same relative

positions

4. Train correspondence autoencoder: fine-tune whole network using cAE objective

We obtain a frame-level alignment for each segment pair using dynamic time warping

(DTW) with cosine distance, yielding a set of frame pairs {(x, x̂)}. A deep AE is

trained layerwise on the entire corpus to initialize the network’s parameters prior to cAE

fine-tuning. The cAE is then trained to minimize the reconstruction error of y relative

to x̂ for each frame pair (x, x̂), yielding the cAE loss LcAE (x, x̂) = ‖y− x̂‖2
2. We obtain

better results by using every pair twice, once where the first item is input to the network

and a second time where the second item is input to the network.

In Kamper et al.’s previous work [48] the layerwise pre-trained decoders were

discarded and a single, randomly initialized, decoder trained during cAE fine-tuning,

as in Figure 3.2a. This approach has the advantage that the total number of layers

is reduced, mitigating the vanishing gradient problem, but a single linear decoder is

unable to undo the work of many non-linear encoders forcing some of the top encoder

layers to be implicitly retrained as decoders during fine-tuning. The layer to use for

representation must then be determined using a held-out validation set. In this work we

use a deep non-linear decoder during cAE fine-tuning, as in Figure 3.2b, allowing the

top encoding layer to always be used as the input’s representation.

3.3 Experiments

3.3.1 Data

We use two datasets. The first is a 5 hour portion of the Buckeye corpus [68] distributed

as part of the ZRSC. The second is a 2.5 hour portion of the NCHLT Xitsonga Speech

corpus [21] consisting of 16 kHz, close-talking microphone, prompted speech.

As input we use HTK [99] MFCCs2 with a 25 ms window and 10 ms step size,

which are augmented with first and second order derivatives to yield 39-dimensional

feature vectors. The MFCCs falling entirely within the speaker segments of interest–the

ZRSC’s evaluation intervals–are extracted and cepstral mean and variance normalization

is applied to those segments per source file. All of the resulting frames are used during

pre-training of our networks.

2Thanks to Herman Kamper.
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y

h2

h1

x x̂

Wy,by

Wh2 ,bh2

Wh1 ,bh1

(a) Correspondence autoencoder with shallow
decoder. This variant uses a shallow decoder,

i.e. a single decoder layer, irrespective of the

number of encoder layers.

y

z1

h2

h1

x x̂

Wy,by

Wz1,bz1

Wh2,bh2

Wh1,bh1

(b) Correspondence autoencoder with deep de-
coder. This variant uses a deep decoder,

i.e. every encoder layer is paired with a de-

coder layer. Encoder/decoder layer pairs are

nested, e.g. the bottom encoder is paired

with the top decoder, and may share weights(
e.g. Wz1 =

(
Wh2

)′).

Figure 3.2: Correspondence autoencoder models. Schematics of two variants, one

with a shallow decoder, the other with a deep decoder. Input x is encoded

into latent representation h2 then decoded into reconstruction y. The model

is trained to minimize the difference between the corresponding, but different,

input x̂ and reconstruction y. Encoding layers are denoted by hl , and decod-

ing layers by zl . Dashed red lines indicate differences that are minimized

during training. Model parameters are shown for each layer. The networks

depicted here have two encoder layers but deeper (and shallower) networks

were also tested.
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MFCC inputs (9x39)

2-norm maxout (5000)

2-norm maxout (5000)

linear bottleneck (60)

softmax output (7600)

5 layers

Figure 3.3: Deep neural network. A supervised model that learns to predict a context-

dependent HMM state given 9 stacked MFCC frames. The bottleneck layer

is used as our representation. Trained on English then applied without ad-

aptation to Xitsonga. Network size depicted is that used in our experiments.

In addition to raw acoustic features as input to the various learning algorithms,

we also evaluate the utility of data-driven features that exploit out-of-domain and/or

out-of-language supervision. Specifically, we use BNFs extracted from a Kaldi speech

recognition toolkit [70] trained DNN3. The DNN architecture takes a 9-frame context

window of MFCCs as input to 5 hidden layers of 5,000 units (2-norm maxout non-

linearity) followed by a linear bottleneck layer of 60 units (see [101] for details).

The softmax output layer consists of 7600 clustered context-dependent HMM state

targets. The DNN is trained using the Switchboard and Fisher English corpora, which

amount to approximately 1,500 hours of English conversational telephone speech drawn

from over 12,000 speakers. The resulting BNFs thus encode a detailed knowledge

of the speaker-independent acoustic-phonetic structure of English, which we expect

to transfer reasonably well into Buckeye despite the channel mismatch. However, as

a representation for Xitsonga, any demonstrated improvement over the raw acoustic

features would be derived from cross-lingual generalization of the encoded English

knowledge.

Correspondence pairs for the Buckeye and Xitsonga corpora are extracted by the

UTD system described in [47]3. We use the graph clustering method of [22] to group

individual discovered repetitions into term clusters from which we can derive more

extensive transitive matches. In this way, we recover 11,041 token pairs for the ZRSC

Buckeye portion (57% across-speaker) and 6,982 token pairs for Xitsonga (61% across-

3Thanks to Aren Jansen.
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speaker).

3.3.2 Training

We have four sources of training data: (1) ZRSC Buckeye portion MFCCs, (2) Xitsonga

MFCCs, (3) English BNFs, and (4) Xitsonga BNFs. In the spirit of using zero-resources,

we demonstrate, in two ways, the effect of applying unsupervised models to domains

and/or languages that differ from those used to optimize the architecture.

Our neural networks, implemented in Theano [4, 8], are trained via minibatch

stochastic gradient descent backpropagation [11]. Weights and biases are random and

zero initialized respectively. The training data is shuffled prior to each epoch of training.

MFCC-based models include delta and double-delta features unless otherwise stated.

The “original” model architecture is identical to Kamper et al.’s 9× 100-layer

model [48] and is optimized for English Switchboard MFCCs on the same-different

task and then trained with the data from one of the four sources. Nine encoders, each of

size 100, are layerwise AE pre-trained over 30 epochs at a learning rate of 0.00025, and

cAE fine-tuned over 120 epochs at a learning rate of 0.008, with minibatches of size

256. A single randomly initialized linear decoder is used during fine-tuning so we must

select a representation layer; we report results using the Switchboard optimal layer, the

6th, and perform layerwise checks to determine the best layers for Buckeye.

The “optimal” model architecture is optimized for the ZRSC Buckeye portion

MFCCs on the ABX task and then trained with the data from one of the remaining

three sources. The optimal network structure, 5× 13, was found by grid searching

over number of layers (1, 3, 5, 9) and layer sizes (13, 39, 100). We also found that

better results could be obtained by using a different training regime. Thus, the “optimal”

architecture has 5 encoders, each of size 13, are layerwise AE pre-trained over 4 epochs

at a learning rate of 0.1, and cAE fine-tuned over 320 epochs at a learning rate of

0.1, with minibatches of size 2048. Unlike the “original” architecture, the “optimal”

architecture uses tied weights, a deep non-linear decoder (to avoid the layer selection

problem), is trained using AdaGrad [23], and the correspondence pairs are presented in

both directions. The use of AdaGrad allows the learning rate to be set to a single large

value eliminating much of the advantage/cost of optimizing this hyperparameter.

We assume the optimal ratio between input size and hidden layer size is reasonably

constant across datasets and models (backed up by informal experience from our

collaborators’ past uses of the cAE) and so use layer widths of 154 and 20 respectively
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for the “original” and “optimal” models for the two BNF training data sources where

the inputs are 60-dimensional.

The AE-only and dAE-only models are trained using the same training regime as

the “optimal” models and their architectures are optimized via grid-search over layer

widths and counts using the ZRSC Buckeye portion MFCCs. The optimal sizes are

1×13 and 1×200 for the AE and dAE respectively. The dAE was trained with γ = 0.2.

3.3.3 Evaluation

Following the ZRSC’s protocol, we evaluate our frame representations using an ABX

task [83, 84] which measures the discriminability of frame representations by asking

whether triphone x is most like triphone a or triphone b, where a and x are distinct

examples of the same triphone sequence and b is a triphone sequence differing from

a and x in only the middle phone. More detail on this evaluation task can be found in

Section 2.3.2.

3.3.4 Results

Our results are alphabetically labelled and presented in Table 3.1a (English) and

Table 3.1b (Xitsonga); we focus our discussion on the more challenging across-speaker

case. Comparisons are made to the ZRSC official baselines (MFCCs without delta

or double delta features, a and l) and supervised toplines (Kaldi posteriorgrams and

HMM-GMM, b and m) [94].

AE/dAE: As in previous work, we find that plain AEs (c and n) barely outperform

MFCCs (a and l). dAEs (d and o) provide a bigger benefit, supporting previous

work showing the importance of regularization in unsupervised representation learning,

e.g. [96, 3]. Nevertheless, even dAEs do not match the performance of any cAEs,

supporting Kamper et al.’s claim that guiding the representation learning using UTD

pairs provides a major benefit over standard unsupervised methods. With further

optimization (e.g. different types and levels of noise) better dAE results may be obtained

which could be helpful in situations where correspondence pairs are unavailable.

“Original” cAE: Despite having its architecture optimized in a different domain,

the “original” cAE (e) reduces Buckeye error rates compared to MFCCs by 17% relative.

When we re-optimize for this domain (f), using the best representation layer for the

Buckeye data (not a zero-resource result), the relative error rate reduction increases to

22%. These results are in line with previous work showing layer selection is important
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English models Within Across

a Official baseline (13-dim MFCCs) 15.6 28.1

b Official topline (HMM-GMM) 12.1 16.0

c Optimal AE 16.9 28.6

d Optimal dAE 15.8 25.3

e Original cAE (Switchboard layer: 6th) 15.8 24.7

f Original cAE (Buckeye layer: 9th) 15.1 23.2

g Optimal cAE 13.5 21.1

h BNFs from English DNN 12.8 18.1

i Original cAE (Switchboard layer: 6th) 14.1 19.2

j Original cAE (Buckeye layer: 8th) 13.7 18.8

k Optimal cAE 14.0 19.3

(a) English results. Bold indicates per-section best results.

Xitsonga models Within Across

l Official baseline (13-dim MFCCs) 19.1 33.8

m Official topline (HMM-GMM) 3.5 4.5

n Buckeye optimized AE 17.4 29.5

o Buckeye optimized dAE 15.8 25.9

p Original cAE (Switchboard layer: 6th) 13.4 22.0

q Original cAE (Buckeye layer: 9th) 12.1 19.6

r Buckeye optimized cAE 11.9 19.3

s Xitsonga optimized cAE 11.6 18.5

t BNFs from English optimized DNN 14.4 19.3

u Original cAE (Switchboard layer: 6th) 14.1 19.0

v Original cAE (Buckeye layer: 8th) 13.1 17.8

w Buckeye optimized cAE 13.0 18.2

(b) Xitsonga results. Bold indicates best zero-resource results (architectures

optimized on English data).

Table 3.1: Minimal triphone pairs ABX within-/across- speaker error rates. Top

sections: official baseline (unsupervised) and topline (supervised). Middle

sections: models of MFCCs including delta and double-delta features unless

otherwise stated. Bottom sections: models of bottleneck features extracted

from English trained DNN.
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for getting the best results from a cAE that uses a single linear decoder during fine-

tuning. The same architecture trained on Xitsonga has the same pattern of results but

with larger relative error rate reductions of 26% and 34% (p and q) compared to the

baselines (a and l). These latter cross-language results are encouraging evidence that

the cAE could be applied productively to other zero-resource settings without fearing

the architecture is especially sub-optimal.

“Optimal” cAE: Optimizing the cAE architecture on the Buckeye data (g) increases

the error rate improvement from 17% (e) to 29% relative to the MFCC baseline (a).

Clearly, the channel and task differences between Switchboard/same-different and Buck-

eye/ABX are significant. In the zero-resource case we find that the English improvements

transfer to Xitsonga without any further optimization; the Buckeye-“optimal” cAE (r)

reduces the Xitsonga error rate from the MFCC baseline by 35% relative. Optimizing

the architecture on Xitsonga (s; a 9× 13 architecture was best here) yields a small

improvement but this is not a zero-resource result. The greater reductions achieved by

the Buckeye/ABX-optimized architecture compared to the Switchboard/same-different-

optimized architecture may be due to changes in architecture, to changes in training

regime, or to optimizing for a different task.

DNN BNFs: Unsurprisingly, for English, the supervised BNFs (h) perform substan-

tially better than the representations found by the unsupervised cAE (g). Furthermore,

the cAE is unable to improve the English BNFs (i, j, k) suggesting the two training

objectives are not complementary in the same-language setting. Pleasingly, applying the

English DNN to Xitsonga (t) produces representations that perform just as well as the

Buckeye-“optimal” cAE (r) representations. Our best zero-resource result is obtained

by applying the “optimal” cAE to the Xitsonga BNFs (u, v, w) yielding representations

of better quality than either approach achieves independently. By optimizing the Xit-

songa cAE architecture a little we found that a narrower cAE network, 100 instead of

154, produced better results, reducing the error rate to 16.6% when using an “original”

architecture, but this is not a zero-resource result.

More training data: Training the optimal cAE architecture on the entire Buckeye

corpus, including a larger number of UTD pairs, did not yield distinctly different results

from those obtained from using just the ZRSC Buckeye portion.
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3.4 Summary

We have presented a selection of approaches for learning frame representations using

unsupervised methods in zero-resource settings. Using a minimal triphone pair ABX

discrimination task we showed that correspondence autoencoders (cAEs) outperform

denoising autoencoders which outperform plain autoencoders. Although the cAE is a

weakly supervised model, we obtain the correspondence data from a fully unsupervised

term discovery system making our approach, taken as a whole, fully unsupervised.

Compared to the original MFCCs, the cAE architecture optimized on Switchboard

English reduces ABX error rates by 17% (relative) on Buckeye English and 26% on

Xitsonga. Optimizing on Buckeye English instead yields a Xitsonga error rate reduction

of 35%. These results demonstrate that our unsupervised system can be optimized in a

high-resource setting, such as English, and then applied productively in a zero-resource

setting such as Xitsonga.

We also found that applying the unsupervised cAE system to Xitsonga bottleneck

features obtained from a supervised DNN trained on English yielded better results on

Xitsonga than either system alone: an overall relative error rate reduction of 39% over

MFCCs. This result suggests a promising future line of work combining supervised

training in a high-resource language with unsupervised language adaptation to the

zero-resource language.

We do not follow the high-resource thread further in this thesis. Instead, we

propose a novel unsupervised model for improving the quality of frame representations

further by optimizing speech unit discriminability explicitly, instead of implicitly using

correspondence pairs (Section 4.2). The methods presented in this chapter used dynamic

time warping (DTW), a quadratic-time algorithm, to compare sequences of frame

representations; in Section 4.3 we propose a method that aims to speed up sequence

comparisons by approximating DTW with a linear-time algorithm. We used the ABX

task in this chapter to evaluate the discriminability of representations of subword units

where those representations comprised sequences of frames; in Chapter 5 we propose

models that can tackle the same task (or whole-term same-different) but where the

representations are single fixed-size vectors, enabling more efficient comparison of

sequences.
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Dynamic time warping related models

Dynamic time warping (DTW), introduced in Section 2.1, plays an important role in

many unsupervised automatic speech recognition (ASR) systems where the minimal

DTW alignment cost is used as a measure of sequence similarity. Unsupervised term

discovery (UTD) systems are typically built on some version, or approximation, of

DTW, and sequence similarity underpins speech indexing and retrieval systems.

All of the models in Chapters 4 and 5 require training data consisting of speech

frame sequences; Section 4.1 introduces the methods we use to obtain suitable sequences

in an unsupervised fashion. We go on to explore two DTW related topics in this chapter.

In Section 4.2 we present a novel model that learns speech frame representations by

optimizing DTW explicitly. In Section 4.3 we present a novel method for approximating

DTW such that sequences can be compared in time proportional to the sum of their

lengths instead of the product of their lengths. The triplet ranking loss introduced in

Section 4.2 is used again in Section 5.4.

We ease future implementation by fully detailing each model, with particular em-

phasis on non-standard components. Section 4.2 does not contain any experimental

results but we provide reasoned justifications for our hypotheses. We do likewise in

Section 4.3 where results from a trial experiment are also presented.

4.1 Training data – sourcing sequences

We are interested in unsupervised representation learning – our training data is not pre-

segmented into useful frame sequences. A raw speech corpus is typically segmented at

dialogue or utterance boundaries. Ideally, we would train with segments at the level for

which we wish to learn representations, e.g. phones, triphones, or whole terms. A voice

43
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activity detection (VAD) algorithm [72] can be used to yield the most interesting portions

of a corpus, removing silence and periods containing only uninteresting background

noise, but the extracted segments are often still too long to be useful as they can contain

many whole terms that flow into one another. A UTD system can go further and identify

likely speech units, as was done for our frame-based models in Chapter 3. Another

possibility is to sample random segments from the VAD output such that the distribution

of lengths follows that of test-time sequences. Randomly sampled segments can be

useful because:

1. The model presented in Section 4.3, and many of those in Chapter 5, do not

require their training sequences to have a known or latent class (e.g. a triphone

label). Instead, the models require data exhibiting sequential regularities and

nothing more. Random segments will exhibit the sequential regularities of natural

speech.

2. UTD systems are not perfect, often over- and under-segmenting. If our models

are to be used with UTD generated sequences (e.g. after training, as part of

larger unsupervised ASR system) then they must deal with extraneous material at

the sequence ends. Random segments will usually contain noisy ends, [67, sec.

III-C].

3. We can sample arbitrary quantities of random segments. Using a cross-entropy

objective, as we do in this work, neural networks can often be trained just as

effectively with larger quantities of low quality data as with smaller quantities of

high quality data. The same cannot be said of sequence-discriminatively trained

models [26].

4. The best of both worlds may be obtained by pre-training with large quantities of

random segments and fine-tuning with UTD segments.

When using a pair loss (e.g. in a correspondence-based model) or a triplet loss (see the

next section), we need a dataset consisting of paired sequences. A UTD system can be

applied to identify all likely positive pairs but there is a quantity-quality trade-off. When

UTD is unavailable, or undesirable, random sequences can be sampled and artificially

corrupted to form pseudo-positive pairs. This method can generate arbitrarily large

quantities of low quality training data which may yield a better quality representation

function than using the small quantity of higher quality data typically provided by a

UTD system. Artificial sequence corruption techniques are discussed in Section 5.5.
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Negative pairs can be chosen randomly from all sequence pairs that are not identified

as positive pairs but need to be sampled carefully. Given example x1, e.g. the triphone

/kIt/, we must select another example x3 that does not belong to the same class, e.g. a

triphone that shares the same first and third phones but has a different middle phone

such as /kæt/. Sampling uniformly from all examples that meet these conditions may

not be sufficient; the speaker identity may also need to be taken into account1. In many

cases, positive pairs will be utterances from the same speaker while the overwhelming

majority of possible negative pairs will be utterances from different speakers. It may be

easier for the network to learn whether the speaker is the same or different, than to learn

whether the speech unit is the same or different. To prevent this undesirable learning

behaviour we must take the speaker identity into account when sampling negative

pairs, preferring negative pair utterances to be from the same speaker. The number of

valid negative examples from the same speaker is often small; we propose sampling x3

from the union of valid same-speaker and different-speaker sets but disproportionately

biasing towards the same-speaker examples.

4.2 Optimizing DTW explicitly

In unsupervised speech processing, standard tasks and evaluation use DTW distance

as a measure of the degree of similarity between sequences of frame representations.

A good representation is one that minimizes the DTW distance between sequences

of frames representing different utterances of the same speech unit and maximizes

the DTW distance between sequences of frames representing utterances of different

speech units. The correspondence autoencoder (cAE, Section 3.2) learns representations

that achieve this goal implicitly – frame representations are encouraged to be similar

when they appear in the same relative position of sequences representing the same unit

because the input frames are aligned using DTW. However, alignment of the input

representations can be suboptimal due to the extraneous information contained in the

source data – the noise we wish to eliminate from the representations. We do not care

about the alignment of the input representations but we do care about the alignment

of the output (i.e. learnt) representations since that is what is used in our evaluations

and downstream tasks. We hypothesize that learning frame representations to explicitly

minimize the alignment cost will yield a better quality representation function than is

achieved by minimizing the alignment cost implicitly via a method such as a cAE.

1This observation is due to Herman Kamper in private correspondence.
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Figure 4.1: Optimizing DTW explicitly. The frames of sequences x1
1:5, x2

1:3, and x3
1:4

are encoded into latent representation sequences h1
1:5, h2

1:3 and h3
1:4 re-

spectively. x1
1:5 and x2

1:3 are different utterances of the same speech unit

and x3
1:4 is an utterance of a different speech unit. The training objective is

to minimize the DTW distance between the positive pair whilst ensuring that

the the DTW distance between the negative pair is at least a margin greater;

the precise loss function is given in Equation 4.2. Every frame is encoded

in the same way (the parameters W1 and b1 are used at every position of

every sequence). Only one layer is shown here but many layers may be

used in general.
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We can minimize the alignment cost between all pairs of sequences
(
x1

1:L1 ,x2
1:L2

)
representing different utterances of the same speech unit, i.e all positive pairs, using the

loss in Equation 4.1.

L
(
x1

1:L1,x2
1:L2

)
= DDTW ( fθ

(
x1

1:L1

)
, fθ

(
x2

1:L2

))
(4.1)

fθ is a sequence-to-sequence function that transforms the input into a representation

parametrized by θ. In principle the output sequences may differ in length from their

corresponding inputs but we focus on the case where fθ generates a sequence of one-to-

one frame representations.

The loss in Equation 4.1 is inadequate: mapping every frame to the same point in the

latent representation space (e.g. the zero vector) would trivially minimize the objective.

It also fails to encourage different-class sequence comparisons to have a large DTW

alignment cost. To counter these problems we propose using a triplet loss (Equation 4.2)

as in Thiolliere et al. [91] and Hadsell et al. [35]. Here,
(
x1

1:L1 ,x2
1:L2

)
is a positive pair

and
(

x1
1:L1,x3

1:L3

)
is a negative pair, i.e. x1

1:L1 and x3
1:L3 represent utterances of different

speech units. Equation 4.2 is also a ranking loss: θ is considered optimal if the positive

pair DTW distance is always at least margin α smaller than the negative pair DTW

distance.

L
(
x1

1:L1,x2
1:L2,x3

1:L3

)
=

max
{

0,DDTW ( fθ

(
x1

1:L1

)
, fθ

(
x2

1:L2

))
−DDTW ( fθ

(
x1

1:L1

)
, fθ

(
x3

1:L3

))
+α
}

(4.2)

Equation 4.2 differs from the loss used in the correspondence autoencoder approach

of Chapter 3 because the distance measure is between whole sequences, not individual

frames, and it is the output of the function that is being aligned during training, not the

input.

Training the parameters θ of neural network representation function fθ, using

stochastic gradient descent with our proposed loss function, requires propagating gradi-

ents through the DTW computation. This is possible because the DTW function is

composed entirely of differentiable operations. Equation 4.3 is a recursive definition

of DTW distance between sequence-pair (u1:Lu,v1:Lv) combined with the frame-pair

cosine distance. This function can be computed efficiently using the conventional
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dynamic programming technique.

DDTW (u1:i,v1: j
)
=



∑
i

k=1 Dcos (uk,v1) if j = 1

∑
j
k=1 Dcos (u1,vk) if i = 1

Dcos (ui,v j
)
+min


DDTW (u1:i−1,v1: j

)
,

DDTW (u1:i,v1: j−1
)
,

DDTW (u1:i−1,v1: j−1
)
 otherwise

(4.3)

where

Dcos (ui,v j
)
=

1
2

(
1−

uiv j

‖ui‖2

∥∥v j
∥∥

2

)
∈ [0,1] (4.4)

The gradient of the min operation in Equation 4.3 can be computed using the

recursive definition gK
θ
=min

{
c1

θ
,c2

θ
, . . . ,cK

θ

}
=min

{
gK−1

θ
,cK

θ

}
and Equation 4.5. The

gradient of gK
θ

is technically undefined when gK−1
θ

= cK
θ

but we follow common practice

and arbitrarily use ∂cK
θ

∂θ
in that case.

∂gK
θ

∂θ
=


∂c1

θ

∂θ
if K = 1

∂cK
θ

∂θ
if cK

θ
≤ gK−1

θ

∂gK−1
θ

∂θ
otherwise

(4.5)

Our implementation of DTW, using Theano [4, 8], is available online2. In this

implementation the gradients are derived using Theano’s automatic differentiation

feature. DTW itself cannot be trivially parallelized but our Theano implementation

enables some degree of parallelization by enabling many DTW alignments, i.e. a

minibatch, to be computed at once.

We propose to use a multi-layer perceptron frame representation function, as defined

in Equations 4.6 and 4.7 with parameters θ =
{(

Wl,bl) | l ∈ [1, . . . ,H]
}

, where H is

the number of layers. This approach is similar to the encoder portion of the models

used in the frame-based approaches of Chapter 3 and is depicted in Figure 4.1 with a

single layer.

fθ (x1:L) = hH
1:L (4.6)

hl
1:L =

x1:L if l = 0

relu
(

Wlhl−1
1:L +bl

)
otherwise

(4.7)

2https://github.com/danielrenshaw/TheanoBatchDTW

https://github.com/danielrenshaw/TheanoBatchDTW
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We propose using the element-wise rectified linear unit (ReLU) activation function,

relu(a) = max{0,a} which was the approach taken by the successful frame-based

Siamese networks of Thiolliere et al. [91]. Deep networks trained with ReLU activation

functions can be trained efficiently without layer-wise pre-training because the ReLU

gradient is piecewise constant and does not saturate for large positive inputs.

This model explicitly optimizes representations to exhibit the desired behaviours.

More work is required to determine whether the representation function parameters θ

can be optimized efficiently when gradients are propagated through the DTW dynamic

program, and in the presence of low quality sequence pairings.

4.3 Linear time DTW approximation

The asymptotic time complexity of DTW is a function of the product of the sequence

lengths, i.e. O(MN). When aligning a large number of long sequences, the computation

cost of DTW can become a bottleneck in some systems, e.g. Kamper et al. [49]. In

many cases the DTW distance is of interest but not the alignment itself. Furthermore, an

approximate distance may be acceptable or we may only require a ranking of sequence

pair similarities where even the absolute DTW distance values are of little interest. This

final scenario is applicable in many unsupervised speech processing systems.

In this section we present a model that can learn to approximate DTW such that,

after training, sequences can be compared with an asymptotic time complexity that is a

function of the sum of the sequence lengths, i.e. O(M+N).

A recent result from Backurs and Indyk [2] suggests that an optimal sub-quadratic

time algorithm for computing the edit distance between two strings cannot exist if

P 6= NP. The edit distance and DTW algorithms are very similar so this result may

also apply to DTW making a linear time algorithm necessarily approximate. An

approximate DTW function would be acceptable for our purposes if the accuracy of

sequence similarity rankings remains high.

4.3.1 Training and use

Figure 4.2 depicts the proposed training procedure and potential subsequent uses.

Sequence pairs are extracted from the training dataset. The pairings may be meaningful

(e.g. from sequence labels or from a UTD system) but we hypothesize that training

with arbitrary sequences would be more effective. Unlike the model in Section 4.2 we
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Figure 4.2: Linear time DTW approximation – training procedure and uses. Se-

quence pairs are extracted from the training corpus. The model is trained to

predict the optimal DTW alignment paths. The trained model can be used

to predict alignment paths for novel sequence pairings, or the lower level

encoder can be used as a frame or sequence representation function.

are not training the model in this section to discriminate between different speech units.

The evaluation and downstream tasks for our linear time DTW approximation model

involve aligning arbitrary sequence pairs so training with arbitrary pairs will replicate

the test-time use. Also, training with only positive pairs may yield a model that does

not behave appropriately given negative pairs.

Alignment paths between every training sequence pair are computed using DTW.

The resulting optimal paths are used as the supervision signal for training our model.

Our model learns to approximate the globally optimal DTW path via a sequence of

local alignment decisions. A decision is made at each position given only sequence

prefix and suffix summaries.

The trained model can be used in at least two ways:

1. As an approximate alignment function. Given two frame sequences, the model

can predict an alignment that approximates the optimal DTW alignment. The

predicted alignment path or cost can be used in downstream tasks, e.g. as a

measure of sequence similarity.

2. As a frame or sequence representation function. The frame embedding layer

can be used as a frame representation function or the bidirectional recurrent neural

network (BRNN) layer can be used as a whole-sequence representation function.
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ht−1 ht ht+1

hbt−1 hbt hbt+1

hft−1 hft hft+1

rt−1 rt rt+1

xt−1 xt xt+1

Figure 4.3: Linear time DTW approximation – bidirectional recurrent neural net-

work. This figure depicts a general slice through the lower half of our linear

time DTW approximation model as applied to one of the input sequences. In

general, a bidirectional recurrent neural network is applied to the two input

sequences, x1
1:L1 and x2

1:L2 , independently yielding two sequences of hidden

states, h1
1:L1 and h2

1:L2 . Each hidden state hi
t combines a representation of

the prefix and suffix of sequence i. Solid black lines indicate normal feed-

forward connections, blue lines indicate recurrent connections, and dotted

black lines indicate elements that are simply concatenated together.

This model can only deliver value as an approximate alignment function if the training

time is offset by sufficient use of the trained model.

4.3.2 Model

Our model is composed of two halves. A slice through the lower half, a BRNN, is

depicted in Figure 4.3. A separate BRNN is applied to each of the input sequences

xi
1:Li independently (for i ∈ {1,2}), yielding two sequences of hidden states hi

1:Li . Each

hidden state hi
t contains information about the sequence prefix up to position t and the

sequence suffix down to position t. We hypothesize that the prefix and suffix information

is sufficient for the model to make local alignment decisions that yield an accurate
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approximation of the globally optimal DTW path.

ri
t = f

(
Wrxi

t +br) (4.8)

hfi
t =

0 if t = 0

f
(
Wh f [hfi

t−1;ri
t
]
+bh f ) otherwise

(4.9)

hbi
t =

0 if t = Li +1

f
(
Whb [hbi

t+1;ri
t
]
+bhb) otherwise

(4.10)

hi
t = f

(
Wh [hfi

t ;hbi
t
]
+bh

)
(4.11)

Frame representations ri
t are learnt for inputs xi

t . Equation 4.8 gives a non-linear

frame representation function, whose parameters are learnt jointly with the rest of the

model. We propose to use the tanh activation function for f .

The forward and backward passes of the BRNN, hfi
t and hbi

t , are given in Equa-

tions 4.9 and 4.10 respectively. Here we use simple RNN layers but LSTM or GRU

layers could be used instead. The forward and backward states are combined into a

single state hi
t (Equation 4.11) for use in the upper half of the model.

If needed, we can form fixed-size representations of the sequences by concatenating

the final hidden states in each direction, ri =
[
hfi

L;hbi
1
]
.

An alignment between the the two hidden state sequences is predicted in the upper

half of the model, depicted in Figure 4.4. This is a novel neural network structure

that learns to align the inputs by making a sequence of local alignment decisions. The

network parameters are optimized to minimize the difference between the model’s

predicted local alignment decisions and the globally optimal target alignment decisions.

The first frames in the two input sequences are force aligned and sequence position

state variables p1
t and p2

t are initialized to equal 1. At each position the model decides

which of the two sequences to advance; it may choose to advance either sequence alone,

or advance both sequences, but may not choose to advance neither sequence. The

specific hidden states used to make this decision are determined by the current position

state variables p1
t and p2

t .

yt = softmax
(

Wy
[
h1

p1
t−1

;h2
p2

t−1

]
+by

)
(4.12)

ŷt = argmax
j

yt, j (4.13)

pi
t = pi

t−1 +

1 if ŷt = i or ŷt = 3

0 otherwise
(4.14)
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Figure 4.4: Linear time DTW approximation – alignment path prediction. This figure

depicts a full example of the upper half of our linear time DTW approximation

model as applied to sequences of lengths 3 and 5. This model component

predicts an alignment between the two input sequences by making a series

of local alignment decisions. Each position in the alignment path yt is a distri-

bution over three possible actions: advance sequence 1, advance sequence

2, advance both sequences. The current position in each sequence is stored

in the index variables p1
t and p2

t . The input sequences are generated by

the lower half of the model depicted in Figure 4.3. Black lines indicate the

forced alignment of the initial frames, red lines indicate the states used at

each alignment decision (determined by all previous alignment decisions),

and blue lines indicate recurrent links.
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yt ∈ ∆2 (Equation 4.12) is the predicted probability distribution over the three pos-

sible actions at position t. The soft local alignment decisions are hardened into

ŷt ∈ {1,2,3} (Equation 4.13) to determine which position state variable(s) to incre-

ment (Equation 4.14).

By using a hard decision at each position we are not guaranteed to obtain the

path that the model prefers globally. Beam search may be applied to decode many

competing paths concurrently but this affects the computational complexity of the

model. With beam width B, the computational complexity increases from O(N +M) to

O(B(N +M)).

During training the model is forced to predict a path that is of the same length T

as the globally optimal path found by DTW. The predicted path is compared to the

globally optimal path using a cross-entropy loss (Equation 4.15) where zt ∈ {1,2,3} is

the correct alignment decision at position t along the alignment path.

L
(
x1

1:L1,x2
1:L2

)
=− 1

T

T

∑
t=1

log(yt,zt ) (4.15)

At test time we do not know the alignment path length so iterate the model until

both input sequences are exhausted. To prevent the model making invalid decisions

the unexhausted sequence is forced to advance once the other sequence has become

exhausted.

An alternate training procedure would adopt the test time behaviour and apply

a weaker supervision signal. Instead of comparing the alignment decisions at every

position along the alignment path (which may now be of a different length to the

globally optimal path) we instead compare only the final alignment cost with the globally

optimal alignment cost. This approach more closely matches many unsupervised speech

processing scenarios where we care about the alignment cost but not the alignment path.

However, we hypothesize that comparing the alignment cost alone in the loss will not

be a strong enough training signal to optimize the model parameters efficiently.

Our model can generalize to the task of aligning more than two sequences. This is

an important task in a variety of fields including bioinformatics where we are often in-

terested in finding the optimal alignment between multiple sequences of DNA. Optimal

multiple sequence alignment has time complexity that is exponential in the number of

sequences. Our model can be applied such that the time complexity is linear in the

number of sequences. To achieve this, the output layers yt must be altered. The number

of combinations of sequences that could be advanced at each position, and thus the

size of the output layers, is exponential in the number of sequences. The exponential
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blow-up can be avoided by using a separate logistic output layer for each sequence. The

model predicts whether each sequence should be advanced independently of all other

sequences given the current hidden states. The loss function is then a sum of binary

cross-entropy terms. A disadvantage of this approach is that it becomes possible for the

model to make invalid predictions, i.e. “advance none of the sequences”. At training

time this can be ignored and penalized naturally. At test time this would stall decoding

so we propose always advancing at least the single sequence whose predicted advance

probability is highest, even if less than 0.5.

4.3.3 Trial experiment results

To test the feasibility of our proposed model we run a trial experiment using textual

data and a spelling correction task. This scenario is simpler than using speech data

with an ABX or same-different task making it more appropriate for feasibility trials.

We use sequences of characters that form plain English words. These sequences are

short discrete representations making them quite different from the long continuous

representations we use for speech data (e.g. MFCCs).

For this setup, the edit distance algorithm provides optimal alignments. Edit distance

is computed using dynamic programming, like DTW, and the optimal alignment is

defined as the minimal cost edit operation sequence that turns the first sequence into the

second sequence. We use different costs for each of the edit operations: insertion has

cost 1.1, deletion has cost 1, and substitution has cost 1.5.

Edit distance is similar in spirit and implementation to DTW. The most important

difference is that DTW operates on continuous multivariate data while the edit and

Levenshtein distances require discrete data. A more subtle difference is that DTW force

aligns the first pair of elements while the edit and Levenshtein distances allow initial

elements in one sequence to remain unaligned.

Our training data consists of the 5,000 most frequently used plain words in Moby

Dick (i.e. tokens consisting of [a-z]+ only) which are artificially corrupted (insertion

rate: 10%, deletion rate: 15%, substitution rate: 5%). 10 misspellings are generated for

each original word. The resulting dataset has the following characteristics: sequence

pair count: 50,000; identical pairs: 14.2%; mean word length: 6.5 characters; mean

misspelled word length: 6.3 characters; mean optimal edit distance path length: 7.1

aligned characters; mean edit distance cost: 2.2. 10% of the sequence pairs are held out

for evaluation. Each character is represented by a 1-hot 26-dimensional vector (a binary
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vector containing a single 1 at the position corresponding to the letter of the alphabet

being represented).

We use a character embedding layer of size 5 and LSTM recurrent layer of size

20. The model has 4,698 parameters. We train the model using mini-batch stochastic

gradient descent with a batch size of 50 and learning rate of 0.1 over 10 epochs.

The trained model’s predicted alignment paths exactly match the optimal edit

distance alignment paths for 32.2% of the test set’s sequence pairs. 16.8% of the

predicted paths were too short, 5.6% too long, and 45.4% were the correct length but

advanced the wrong sequences in at least one position. Of the 77.6% of predicted paths

that had the correct length the following can be observed: correctly spelled and correctly

aligned: 17.8%; correctly spelled and incorrectly aligned: 0%; incorrectly spelled and

correctly aligned: 23.7%; incorrectly spelled and incorrectly aligned: 58.5%; cost

identical: 53.1%.

An approximation of spelling mistake correction performance is evaluated by com-

puting a distance between every original word and every misspelling in the test set,

ranking those distances, and computing the average precision. This is a difficult task as

illustrated by the optimal edit distance achieving an average precision of 36.8%. Our

model achieves an average precision of 10.0%. Further work is required to determine

whether substantial improvements can be obtained by optimizing the hyperparameters

and improving the training regime. For example, only positive pairs were used to train

the model and better results may be obtained by using arbitrary sequence pairs.

It is encouraging that an unoptimized model can predict a path of the correct length

in over 77% of cases and, of those, correctly predict the cost in over 50% of cases. The

model clearly learns something useful: prior to training, with random parameters, 0.7%

of the predicted paths are fully correct and 1.1% have the correct length. The average

precision results are mildly disappointing; more work is needed for error analysis to

understand where the model is performing well, and where it fails.

4.4 Summary

Dynamic time warping (DTW) is an important technology for unsupervised automatic

speech recognition (ASR). In this section we explored two aspects of DTW related to

our interest in unsupervised representation learning for ASR.

We hypothesize that optimizing the frame representations to minimize/maximize

DTW explicitly will yield a better representation function than can be achieved using
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a correspondence autoencoder (cAE). Minimizing/maximizing DTW is the behaviour

we need in our evaluation and downstream tasks when the two sequences are from the

same/different classes respectively. In contrast, the cAE achieves the desired behaviour

indirectly and, potentially, inefficiently. Our proposed training loss function explicitly

encourages same-class sequence pairs to have a smaller DTW alignment distance then

different-class sequence pairs.

In systems that rely on performing large numbers of long sequence comparisons

using DTW, but where the optimal alignment path is not required, one may use our

novel linear time DTW approximation model. The time complexity of our approach is

O(N +M), i.e. proportional to the sum of the sequence lengths, while the optimal DTW

algorithm has time complexity O(NM), i.e. proportional to the product of the sequence

lengths. Our linear time DTW approximation model may also be used to learn frame

or sequence representation functions. However, we expect these representations to be

poor in comparison to those learnt by the first model of this chapter because the latter is

learning to align the original (noisy) inputs while the former is learning representations

that explicitly optimize the downstream alignments we care about.

It is natural to consider the possibility of combining together the two models

presented in this chapter: using the DTW approximation model in place of optimal

DTW in Equation 4.2. Though this may be possible, it is difficult to envisage a

circumstance where the joint model could be of any more use than the two models

used separately. It is not clear that a representation function optimizing DTW explicitly

could only yield representations enabling a better quality approximation of DTW if they

are trained jointly. If we want to optimize DTW explicitly, and also have a fast DTW

approximation for use at test-time, then we can simply train the model in Section 4.2

first then train the model in Section 4.3 using the optimized representations as input.
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Learning representations of speech

frame sequences

Speech signals are typically represented by sequences of frames where frames are

produced at a constant rate, e.g. 100 Hz (i.e. every 10 ms), and each frame represents a

fixed period of the signal, e.g. 25 ms. Human speech productions vary considerably in

their duration, even for different utterances of the same speech unit. We are interested in

the similarity of frame sequences but have no control over the lengths of those sequences.

A representation function for individual frames is useful, as demonstrated in Chapter 3,

but comparisons between more meaningful units, such as triphones or whole terms,

requires the use of a method like dynamic time warping (DTW) to find the optimal

alignments between arbitrary length sequences. DTW can become a bottleneck in

systems that rely on large numbers of sequence comparisons, as discussed in Chapter 4.

Linear time DTW approximations, such as the approach described in Section 4.3, offer

one potential solution to this problem. An alternative solution is to avoid alignment-

based methods altogether and instead learn to represent entire speech sequences by

fixed size vectors. Sequences with fixed size representations can be compared efficiently

using a single vector space comparison such as cosine similarity.

We hypothesize that fixed size representation functions are feasible and can usefully

represent variable length speech segments because:

1. We assume the sequences of interest can be represented using finite length se-

quences of discrete symbols drawn from a finite vocabulary. For example, the

variable length frame sequences representing every possible utterance of the

triphone /kæt/ can be represented by the fixed length symbol sequence [k, æ, t].

As long as our fixed size representations have sufficient representational capacity

59
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to cover every possible (valid) sequence of symbols then they could, in principle,

replicate the symbolic representation.

2. We are interested only in the relative similarity of sequences; a frame alignment

is unnecessary. Finding the optimal alignment path is what makes DTW slow but,

we hypothesize, finding an explicit alignment path is unnecessary for determining

sequence similarity.

3. Standard DTW uses a hard alignment – each frame in one sequence is associated

entirely with one or more frames in the other sequence. A hard alignment may

not be appropriate for our data where we might reasonably expect, for example, a

frame to be associated 60% with one frame, 30% with the previous frame, and

10% with the next frame, i.e. a soft alignment. Any information lost in DTW’s

hard alignment may still be available to a sequence representation function that is

not based on DTW.

4. Prior work has shown fixed size representations can be both meaningful and

useful. For example, the recurrent neural network (RNN) encoder-decoder archi-

tecture (RNN-ED, Section 5.3) has been applied successfully in large vocabulary

speech recognition [57] and machine translation [17]. Variable length sentences

are represented by a fixed size vector and, from that vector alone, a translation

of the original sentence is produced in a different language. The entire meaning

of the arbitrary length source sentence must be compressed into the fixed size

representation for the target sentence to be generated accurately.

In this chapter we present a selection of methods for learning fixed sized representations

of variable length sequences using RNN architectures. Section 5.2 pairs a novel

training objective for speech data (sequence reversal) with the standard bidirectional

RNN (BRNN) to partially avoid the hypothesised cause of poor representations produced

by the simple RNN with a predict-next training objective presented in Section 5.1. We

propose applying the standard RNN-ED to our fixed-size representation learning task

in Section 5.3 to overcome the problems faced by the previous models but highlight a

hypothesised flaw due to a training objective that does not closely match the similarity-

oriented task. We hypothesise that this final flaw can be overcome by using a triplet

ranking loss with a novel Siamese RNN (SRNN), presented in Section 5.4.

All models in this chapter require training data consisting of frame sequences. The

sequences may consist of meaningful segments of speech, e.g. from unsupervised term
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y1 y2 y3 y4 y5

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

r

Figure 5.1: Simple RNN with predict-next objective. At each position the network

updates its internal state ht given the current input xt and makes a prediction

yt for what the next input will be. An example is shown for a sequence of

length 5. Black lines indicate normal feedforward connections, blue lines

indicate recurrent connections (depicted unwound), dotted lines indicate how

the sequence representation is constructed, and dashed red lines indicate

differences we minimize during training.

discovery (UTD), or may be randomly sampled. Both the RNN-ED in its supervised

sequence translation mode, and the SRNN, require meaningful sequences. The other

models could operate with either meaningful or random sequences. Section 4.1 describes

how sequences can be sourced from an unsegmented speech corpus. Related to the

method for sourcing training sequences is the topic of artificially generating additional

data for the purpose of regularization; this topic is covered in Section 5.5.

We ease future implementation by fully detailing each model, with particular em-

phasis on non-standard components. This chapter does not contain any experimental

results. We provide reasoned justifications for our hypotheses, motivated in some cases

by inconclusive trial experiments.

5.1 Simple RNN with predict-next objective

Perhaps the simplest method for learning unsupervised fixed size representations of

variable length sequences using an RNN is to apply a predict-next objective. At each

position in the sequence the model updates its internal state given the current input

and predicts the next input given the updated hidden state. The model parameters are

optimized to minimize the difference between the predicted next inputs and the actual

next inputs. This is a common approach for neural network language models [60] where

the predict-next objective closely matches the evaluation method and downstream tasks.

For input sequence x1:L, the simplest version of this model is defined in Equations 5.1
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through 5.4, and an example is depicted in Figure 5.1 with L = 5.

ht =

0 if t = 0

f
(
Wh [ht−1;xt ]+bh) otherwise

(5.1)

yt = Wyht +by (5.2)

r = hL (5.3)

L (x1:L) =
L−1

∑
t=1

Dsq_euc (yt ,xt+1) (5.4)

The recurrent layer’s activation function f is typically the hyperbolic tangent or

logistic function. A linear activation function is used in the output layer because

the targets, i.e. MFCCs, have unbounded values. The squared Euclidean distance

Dsq_euc (yt ,xt+1) = ‖yt−xt+1‖2
2 is used in the loss to measure the discrepancy between

predicted next input yt and actual next input xt+1.

The final hidden state is used as the representation of the whole sequence (Equa-

tion 5.3) but the loss function does not affect the final hidden state so an end-of-sequence

pseudo-element (e.g. a zero vector) must be appended to every sequence to ensure that

the final state incorporates information about every real element in the sequence.

This network cannot be made bidirectional because the objective would become

trivial to solve – the next hidden state in the backward direction can precisely determine

the prediction in the current position for the next position. A GRU or LSTM layer could

replace the simple RNN layer used in Equation 5.1, as described in Section 2.4.5.

Our primary goal is the fixed size sequence representation r but the model may also

yield improved element representations if the network is enriched with an additional

layer by replacing Equation 5.1 with Equations 5.5 and 5.6. The frame representation

function rt can be used just like those presented in Chapter 3.

rt = f (Wrxt +br) (5.5)

ht = f

0 if t = 0

f
(
Wh [ht−1;rt ]+bh) otherwise

(5.6)

The main criticism of this model is that the hidden state is not encouraged to

summarise the entire prefix by the training objective. Instead, the network only requires

the hidden state to retain enough information about the past for it to correctly predict

the next item in the sequence at the current and all following positions. In principle, the

network can forget information once it believes it has become irrelevant for predicting

future inputs. This is explicit when using a GRU or LSTM recurrent layer and implicit
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x1 x2 x3 x4 x5

hf1 hf2 hf3 hf4 h55
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r

Figure 5.2: Bidirectional RNN with sequence reversal objective. An example of us-

ing a bidirectional RNN to learn to reverse sequences. The task can only be

achieved if information about the start of the sequence is accurately retained

via the forward hidden state to the end of the sequence, and similarly for the

backward direction. This suggests the fixed size sequence representation

will contain a useful summary of the whole sequence. Black lines indicate

normal feedforward connections, blue lines indicate recurrent connections

(depicted unwound), dotted lines indicate how the sequence representation

is constructed, and dashed red lines indicate differences we minimize during

training.

when using a simple RNN layer. For example, if our data is generated by productions

A→ B, B→ A |C, C→ D, and D→C then, starting from A, the network could learn

that once it sees a C there is no longer any need to remember anything about As or

Bs. This potential behaviour suggests that the final hidden state may not be a good

representation of the sequence as a whole.

5.2 Bidirectional RNN with sequence reversal objective

We hypothesize that pairing a BRNN with a novel training objective can offer a partial

solution to the above-mentioned flaw. The simple RNN with a predict-next objective

is allowed to forget information once it has become irrelevant for predicting the next

elements in the sequence. To avoid this, we need information about all inputs to

flow along the entire length of hidden states to enable the final hidden state to be a

representation of the entire sequence.

The BRNN, introduced in Section 2.4.4, increases the representational power of the

RNN architecture by allowing it to model all prefixes and suffixes independently. We
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represent the entire sequence by concatenating the final hidden state in each direction.

We propose to pair the BRNN with a novel training objective: at each position the

model must predict the element at the corresponding position in the reverse of the input

sequence. For example, if the input were stonehenge the network would need to predict

the sequence egnehenots.

A BRNN trained with the proposed objective can only successfully predict a target

sequence if the hidden states retain information about the ends of the input sequence

to the opposite ends of the recurrence. For example, the final prediction can only be

correct if information about the first input is communicated along the entire length of

the recurrence. This objective ensures the final hidden states in each direction, which

comprise our fixed size representation, contain long distance information not expected

to be found in the simple RNN’s representation.

Figure 5.2 depicts an example of learning to reverse a sequence of length 5 and

shows how the fixed size representation r is constructed. This model is generalized in

equations 5.7 through 5.11.

hft =

0 if t = 0

f
(
Wh f [hft−1;xt ]+bh f ) otherwise

(5.7)

hbt =

0 if t = L+1

f
(
Whb [hbt+1;xt ]+bhb) otherwise

(5.8)

yt = Wy [hft ;hbt ]+by (5.9)

r = [hfL;hb1] (5.10)

L (x1:L) =
L

∑
t=1

Dsq_euc (yt ,xL−t+1) (5.11)

Details regarding the activation function f , output layer activation function, distance

function Dsq_euc, and option to jointly learn frame representations match those for the

simple RNN (Section 5.1). GRU or LSTM layers could replace the simple RNN layers

used in Equations 5.7 and 5.8, as described in Section 2.4.5. Unlike the simple RNN, we

need not include a pseudo-element to indicate the end-(or start-)of-sequence position(s)

because the loss function is applied to the entire sequence length.

We may criticise the BRNN with sequence reversal objective in much the same

way as the simple RNN with predict-next objective: the hidden states at the ends of the

sequence are encouraged to contain information about the opposite ends of the sequence

but need not contain information about the internal portion of the sequence. With the

sequence-reversal objective, information about the middle of the sequence has become
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x1 x2 x3

h1 h2 h3 r z1 z2 z3

y1 y2 y3

Figure 5.3: RNN encoder-decoder. An example of using an RNN encoder-decoder as

a sequence autoencoder. A RNN, without any output at each position, is

used to encode the input sequence x1:3 into the sequence representation

of interest r. From r, the sequence is decoded using a second RNN into

reconstruction y1:3. Black lines indicate normal feedforward connections,

blue lines indicate recurrent connections (depicted unwound), and dashed

red lines indicate differences we minimize during training.

redundant before the ends of the sequence are reached and so may be forgotten. An

extreme case of this problem is illustrated in Figure 5.2 where the middle element of

an odd-length sequence need not be retained in the hidden states at all. The speech

sequences we intend to use with this model tend to contain uninteresting data (e.g.

silence) or confusing data (e.g. due to poor segmentation) at the ends so this model may

not effectively represent the sequence portion we care most about – the middle.

5.3 RNN encoder-decoder

The RNN with a predict-next training objective (Section 5.1) does not explicitly encour-

age the hidden state to represent the whole sequence and this is only partially remedied

by the BRNN with a sequence reversal objective (Section 5.2). These problems can be

addressed entirely with the use of the RNN Encoder-Decoder (RNN-ED) [17]. This

model learns to compress a variable length sequence into a fixed size vector and, jointly,

to decompress that vector into a target sequence.

In its most general form, the RNN-ED learns to transform from one sequence do-

main into a different sequence domain. Figure 5.3 depicts an example of the RNN-ED
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transforming the input sequence x1:3 into output sequence y1:3 via fixed size representa-

tion r; in general, the input and output sequences need not have the same length. The

RNN-ED has been used by the machine translation community [17] where competitive

translation quality has been achieved without the need for extensive feature engineering.

We can use the RNN-ED for unsupervised representation for ASR,

1. as a sequence autoencoder (unsupervised) where the output is a reconstruction of

the original sequence, or

2. as a sequence translator (supervised) where the output is compared to a target,

e.g. corresponding, sequence.

In both cases, but unlike machine translation, we can force the network to emit exactly

the right number of elements and thus avoid the need to learn to identify the end of

sequence position. The second approach requires paired data which may be sourced

from an unsupervised term discovery system. As with the autoencoder approaches of

Chapter 3, we discard the decoder portion of the network after training as we only care

about the sequence representation r.

The network architecture is defined by Equations 5.12 through 5.15.

ht =

0 if t = 0

f
(
Wh [ht−1;xt ]+bh) otherwise

(5.12)

r = f (WrhL +br) (5.13)

zt =

0 if t = 0

f (Wz [zt−1;yt−1;r]+bz) otherwise
(5.14)

yt =

0 if t = 0

Wy [zt ;yt−1;r]+by otherwise
(5.15)

When using this network as a sequence autoencoder we use the loss

L (x1:L) =
L

∑
t=1

Dsq_euc (yt ,xt) (5.16)

and when using the network as a sequence translator, where x2
1:L2 is the target sequence,

we use the loss

L
(
x1

1:L1,x2
1:L2

)
=

L2

∑
t=1

Dsq_euc (yt ,x2
t
)

(5.17)

Details regarding the activation function f , output layer activation function, distance

function Dsq_euc, and option to jointly learn frame representations match those for the
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simple RNN (Section 5.1). GRU or LSTM layers could replace the simple RNN layers

used in Equations 5.12 and 5.14, as described in Section 2.4.5. Indeed, Cho et al. [17]

found that simple RNN layers were inadequate for their task.

Using the RNN-ED as a sequence autoencoder explicitly generates a representation

of an entire input sequence – the model is only able to reconstruct the input sequence

if the representation r contains a good summary. There is one caveat to this claim:

the RNN-ED’s decoder is powerful and can learn a great deal of information about

regularities in the data in its own right. In principle, the decoder could learn a range

of standard templates/patterns (local or global) and then the representation need only

specify a standard template or pattern to follow, plus any deviations from that pattern.

In a sense, the representation could be interpreted as a set of abstract instructions for the

decoder. This cannot reduce the representational power of the fixed size representations

but has the potential to impair the discriminability properties of the representations.

Sutskever et al. [88] found that training a similar model to emit target sequences in

reverse order yielded improvements. This makes intuitive sense because it encourages

the network to learn a decoder that is a more explicit inversion of the encoder; indeed,

there may be scope to tie some weights. Targeting the reverse sequence may be

especially useful for our application of sequence autoencoding, where we expressly

want the decoder to be an inverted version of the encoder.

Unlike the simple RNN with a predict-next objective, we have an opportunity to

make the network bidirectional. This could only apply to the encoder portion of the

network since the decoder has no sequence input. A bidirectional encoder is specified

in Equations 5.18 through 5.20.

hft =

0 if t = 0

f
(
Wh f [hft−1;xt ]+bh f ) otherwise

(5.18)

hbt =

0 if t = L+1

f
(
Whb [hbt+1;xt ]+bhb) otherwise

(5.19)

r = f (Wr [hfL;hb1]+br) (5.20)

Although the RNN-ED does yield representations that must treat all parts of an

input sequence equally (unlike the models above), there is no explicit need for the

representations to be easily discriminable. Using an autoencoder-style objective will

accentuate this problem because there is no requirement for the representations to be

discriminable. We hypothesize that using corresponding sequence pairs, and the RNN-
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Figure 5.4: Siamese RNN. An example of applying the Siamese network approach to

sequence modelling using a triplet ranking loss. The model parameters are

trained to make the distance between same-class sequence representations

r1 and r2 be at least α smaller than the distance between different-class

sequence representations r1 and r3. Black lines indicate normal feedforward

connections, blue lines indicate recurrent connections (depicted unwound),

and dashed red lines indicate elements of the loss we minimize during

training.

ED as a sequence translator, will implicitly improve representation discriminability in

the same way that corresponding frame pairs improve the quality of a machine learned

frame representation (Chapter 3): representations must congregate near class centroids.

5.4 Siamese RNN

We hypothesise the RNN-ED used as a sequence translator with corresponding sequence

pairs will yield the best representations of all models presented in this chapter thus

far, for the reasons outlined above. However, the sequence translator RNN-ED does

not explicitly optimize the objective of real interest – learning representations that

discriminate between classes. We care about class discrimination more than whole

sequence representation; there is no need to represent entire sequences if just one portion

is needed to discriminate the classes.

A solution to this problem is offered by Siamese neural networks (SNNs, [13])

where the training objective involves explicit comparisons between representations and
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ensuring those comparisons exhibit the desired behaviours. We minimize the distance

between representations of different utterances of the same speech unit and maximize the

distance between representations of different utterances. By this method we explicitly

match the model training objective to the evaluation metric and downstream task.

Good results have been obtained for frame-based representation learning using

SNNs, e.g. Synnaeve et al. [90] and Thiolliere et al. [91]. Recent work by Kamper

et al. [50] has achieved good results using Siamese convolutional neural networks

over entire sequences. Here we present a novel variant on the theme – a Siamese

RNN (SRNN) architecture.

The fixed size representation of sequence xi
1:Li is found via the architecture defined

in Equations 5.21 and 5.22.

hi
t =

0 if t = 0

f
(
Wh [hi

t−1;xi
t
]
+bh) otherwise

(5.21)

ri = f
(
Wrhi

Li +br) (5.22)

Details regarding the activation function f and option to jointly learn frame repres-

entations match those for the simple RNN (Section 5.1). GRU or LSTM layers could

replace the simple RNN layers used in Equation 5.21, as described in Section 2.4.5.

We propose using a triplet ranking loss to explicitly encode our desired represent-

ation behaviour into the training objective. We want representations of same-class

sequences to be more like each other than representations of different-class sequences.

Section 4.2 provides the detail and reasoning behind triplet ranking losses. Here we

apply a triplet loss by comparing the distance between fixed-size representations of

whole sequences instead of dynamic time warping alignment costs. Equation 5.23 is

equivalent to Equation 4.2 but using the notation of this section. Figure 5.4 depicts a

SRNN with this triplet loss.

L
(
x1

1:L1,x2
1:L2,x3

1:L3

)
= max

{
0,Dcos (r1,r2)−Dcos (r1,r3)+α

}
(5.23)

Synnaeve et al. [90] evaluated a variety of distance functions for training frame-

based Siamese networks and found the squared cosine between negative pairs worked

best for their architecture, yielding a distance function called coscos2. We adapt coscos2

into an alternate triplet ranking loss for sequences in Equation 5.24.

Lalt (x1
1:L1,x2

1:L2,x3
1:L3

)
= max

{
0,Dcos (r1,r2)−Dcos2 (

r1,r3)+α

}
(5.24)
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where

Dcos2 (
r1,r3)= cos2 (r1,r3)= ( r1r3

‖r1‖2 ‖r3‖2

)2

∈ [0,1] (5.25)

The SRNN can be made bidirectional by replacing Equations 5.21 and 5.22 with

Equations 5.26 through 5.28.

hfi
t =

0 if t = 0

f
(
Wh f [hfi

t−1;xi
t
]
+bh f ) otherwise

(5.26)

hbi
t =

0 if t = L+1

f
(
Whb [hbi

t+1;xi
t
]
+bhb) otherwise

(5.27)

ri = f
(
Wr [hfi

Ls;hbi
1
]
+br) (5.28)

Section 4.1 details the methods by which a paired-sequence training dataset can be

sourced in an unsupervised fashion.

The SRNN instils the behaviours we desire of our representations into the training

objective but it has lost the notion of explicit sequence representation. The triplet

ranking loss ensures that different speech unit classes are distinct in the representation

space but there is no requirement for representations to summarise the frame sequences

from which they are computed. While we care most about class discrimination we may

still get some value from sequence summarization, particularly in combination with

sequence regularization methods such as those described in Section 5.5. As a result we

may consider combining the SRNN with the RNN-ED: the training objective would mix

both triplet ranking loss and reconstruction loss via a mixing weight hyperparameter λ,

e.g. Equation 5.29.

L
(
x1

1:L1,x2
1:L2,x3

1:L3

)
= max

{
0,Dcos (r1,r2)−Dcos (r1,r3)+α

}
+

3

∑
i=1

λ

Li

Li

∑
t=1

Dsq_euc (yi
t ,x

i
t
)

(5.29)

5.5 Regularization of sequence models

Standard techniques for neural network regularization can be applied to any of the

sequence models presented in this chapter, including applying an L1 or L2 norm to the

model parameters [63], using dropout [87], or artificially expanding the training data.

In this section we explore (1) a variant of dropout (denoising), (2) application of a weak

supervision signal (sequence correspondence), and (3) applying the idea of contractive

autoencoders to sequence models.
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Denoising autoencoders regularize their training by artificially corrupting the inputs.

A standard version of this is random zero-masking – in each epoch we apply a random

zero-mask to each training datum so only some proportion of the data is actually visible

to the network at any one time. This has the effect of expanding the size of the training

data by making it look like we have many more instances, and those instances are also

more noisy. The extra noise helps prevent the network from overfitting the data.

Adding noise to a sequence can be more involved than adding noise to non-sequential

inputs because in addition to modifying the frames, we may also wish to adjust the

length of the sequence.

5.5.1 Artificial noise methods that do not change the sequence

length

• Zero-masking frame components: Each frame is independently corrupted by

element-wise multiplying it by a binary mask sampled from a multivariate

Bernoulli distribution; x̂t = xt � (1−mt) where mt ∼ Bernoulli(p) and p is

the probability of a dimension being zeroed out.

• Adding Gaussian noise to frame components: Our speech input representations

are normalized to be approximately multivariate Gaussian distributed with zero

mean and identity variance so additive zero-mean Gaussian noise is appropriate;

x̂t =
1
2 (xt +nt) where nt ∼ Gaussian

(
0,Iσ2) and σ2 is the variance of the noise

applied to each dimension.

• Zero-masking entire frames: As for frame components, but applied to entire

frames instead; x̂t = mtxt +(1−mt)xt where mt ∼ Bernoulli(p) and p is the

probability of an entire frame being zeroed out.

Given the usual overlap in duration of speech frames (sampled every 10 ms but each

covers a period of 25 ms, thus overlapping the next frame fully and the following frame

partially) the above noise application methods may need to be applied consistently to

non-overlapping sub-sequences of length 2 or 3 frames.

Each of the three techniques above could be used to artificially expand the size of

the training data, or used in the context of denoising training. For the former, the four

sequence based models described in Sections 5.1 through 5.4 would be unaware of the

original uncorrupted inputs, they are simply trained with more inputs, some of which

are corruptions of the originals. For denoising, the input and target sequences differ
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only in that the input sequence is the noisy version of the target sequence; all four of

the sequence models in this chapter can be used this way.

5.5.2 Artificial noise methods that can change the sequence length

• Up- or down-sample the speech representation sequence: MFCCs are convention-

ally sampled at a rate of 100Hz but we may produce (somewhat) semantically

identical sequences by sampling at different rates. Computing sequences of

MFCCs for the same speech signal at different rates (e.g. 100 Hz and 200 Hz)

yields different sequences which we want to have identical representations.

• Use over- or under-segmented sequences: We want to use these representations

within systems that attempt to segment a speech signal into meaningful units. The

segmentation decisions will be error-prone but we would still like the representa-

tions of segments to accurately identify their principal contents. Our networks

can be trained with sequences that are deliberately over- or under-segmented

such that the segment contains some of the preceding or following segment, or

does not contain the complete intended segment. This method only applies when

training with meaningful, i.e. non-random, speech segments.

• Drop or insert random frames: Sequences can be made explicitly shorter or longer

by dropping or inserting random frames; if done carefully, this can help the

network generalize to sequences of varying length. When dropping frames the

neighbouring frames can be adjusted to include some of the dropped frame’s in-

formation, i.e. if the frame at position t is dropped then x̂t−1 = λxt−1 +(1−λ)xt

and x̂t+1 = λxt+1 +(1−λ)xt . When inserting frames, the inserted frame can be

a noisy mixture of the neighbouring frames, i.e. x̂t =
λ

2 (xt−1 +xt+1)+(1−λ)nt .

In both cases λ ∈ [0,1] is a hyperparameter that determines how much mixing

occurs.

5.5.3 Using a correspondence supervision signal

As with frame-based models, we may apply the idea of correspondence training to

sequence-based models. Given a supervision signal that identifies pairs of same-class

sequences (e.g. unsupervised term discovery), we can use one sequence in a pair as the

input sequence and the other sequence in the pair as the target sequence. For the simple

RNN with predict-next objective, and the BRNN with sequence reversal objective, the
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input and target sequences need to be frame-aligned, as for the frame-based models,

because the input and target sequences must have the same length. For the RNN-ED and

SRNN the input and target sequences need not be frame aligned as these two models

support input and target sequences of different lengths.

We hypothesize that a correspondence training signal can improve the quality of

sequence representations in the same way it improves the quality of frame representa-

tions – it is a more powerful form of regularization: we use natural variance in the data

instead of adding artificial noise.

5.5.4 Contractive objective

A final form of regularization that could have particular application to sequence rep-

resentation learning comes from contractive autoencoders [76]. The basic idea is to

add a term to the training objective so as to minimize the gradient of the representation

with respect to the input. Achieving this objective ensures a small change in the input

yields only a small change in the representation – a behaviour we would like our rep-

resentations to exhibit. Given a loss L , we add the contractive objective to form the

composite loss given in Equation 5.30 where γ is a hyperparameter determining the

relative strength of the contractive objective compared to the model’s standard training

objective.

Lcont (x1:L) = L (x1:L)+ γ‖Jr (x1:L)‖2
F (5.30)

The contractive objective uses the squared Frobius norm of the Jacobian of the repres-

entation function, given in Equation 5.31.

‖Jr (x1:L)‖2
F =

L

∑
t=1

|xt |

∑
i=1

|r|

∑
j=1

(
∂r j

∂xt,i

)2

(5.31)

For sequence inputs the Jacobian becomes large, with LDxDr entries, and each

gradient involves O(L) factors. Trial experiments using the contractive objective in

a sequence model suggest it may not be practical – computing the Frobius norm of

the Jacobian takes too much time with real sized speech data – unless a more efficient

implementation can be found.

5.6 Summary

Many possibilities exist for finding fixed size representations of variable length speech

frame sequences. No experimental results have been presented here so no conclusions
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can be drawn about the degree to which these methods work as intended. We have

instead presented justified hypotheses about the strengths and weaknesses of each

proposed method. Further work is needed to verify or refute the assumptions and

assertions presented here.

We hypothesize that a simple recurrent neural network (RNN) with a predict-next

style objective will fail to yield useful fixed size representations because the objective

does not encourage the model to retain pertinent information within its hidden state,

which we ultimately use as the representation, along the entire length of the sequence.

We hypothesize that the bidirectional RNN with a sequence reversal objective only

partially solves this problem because this alternate objective only encourages the model

to retain information about the sequence ends (about which we tend to care little) and,

potentially, discards information about the sequence interior (about which we care

most).

The RNN Encoder Decoder is structured such that the fixed size representation must

contain a summary of the entire sequence but we hypothesize that this summary will

not be as distinctive as it could be because the training objective does not compare

representations in any way. We hypothesize that the Siamese RNN solves this final

problem by using a training objective that directly matches the way in which the model

is evaluated and used in downstream tasks – maximizing representation similarity when

sequences are drawn from the same class and minimizing representation similarity when

they are drawn from different classes.

We hypothesize that the sequence models presented here will work at their best when

paired with a supervision signal providing correspondence information. This signal may

come from an unsupervised source, e.g. an unsupervised term discovery system, which

would make the system as a whole unsupervised, the scenario of most interest to us.

When a correspondence supervision signal is unavailable, or undesirable, the models

presented in this chapter can be trained with alternate methods of regularization, and we

have presented a variety of methods here. We hypothesize that artificially adding noise

to the training data will not yield models that perform as well as a correspondence-based

model, but will still outperform models that are not regularized at all.



Chapter 6

Conclusions and future work

Unsupervised automatic speech recognition (ASR) is a difficult task: there is a 25 to 30

year gap between comparable state-of-the-art supervised and unsupervised word error

rates. Representation learning is a critical component of unsupervised speech processing

which is typically built on similarity-based methods and it is the representations of the

sequences being compared that determine their similarity. Without labelled data we must

use unsupervised representation learning methods, such as autoencoders, or combine

supervised representation learning with a training signal from an unsupervised source,

e.g. unsupervised term discovery (UTD). This thesis has contributed four methods

that are either shown, or hypothesised, to improve the quality of representations or the

efficiency of their use for unsuperivsed ASR.

In Chapter 3 we showed that an improved version of the correspondence autoen-

coder (cAE) can learn better quality frame representations than some baseline methods

and the previous cAE version. The general approach used in our entry to the IN-

TERSPEECH 2015 Zero Resource Speech Challenge suggests that the combination

of powerful supervised representation learning with a noisy training signal from an

unsupervised source (e.g. UTD) can be more powerful than standard unsupervised

representation learning methods alone.

Our evaluation methods, and downstream tasks, use DTW to compare speech

signal representations but DTW has not previously played an explicit role within

the optimization of the representations. In Section 4.2 we proposed a model that

explicitly optimizes the representations for DTW. Training with a triplet ranking loss,

the representations are optimized to make DTW distances between same-class sequence

pairs smaller than the distances between different-class sequence pairs.

Optimal sequence similarity algorithms such as dynamic time warping (DTW) can

75
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limit the scalability of unsupervised speech processing methods because they have

a time complexity that is quadratic in the lengths of the sequences being compared.

In Section 4.3 we proposed a model that learns to approximate the DTW alignment

algorithm using only local information. The trained model can approximately align two

sequences with a time complexity that is linear in the sequence lengths. We went further

in Chapter 5 and proposed a series of models that learn fixed size representations of

variable length speech signals enabling even faster comparison of sequences using a

single vector space distance computation.

The most urgent need for future work is clearly experimentation of the models

proposed in Chapters 4 and 5. At present we cannot be certain that the hypotheses

expounded in those chapters would be supported or weakened by empirical results.

Beyond that we have considered:

• Combining model components and training objectives. Good representations

of individual frames (Chapter 3) may improve the representations of whole

sequences (Chapter 5). One could construct a model that incorporates both frame-

level and sequence-level training objectives. For example, a loss that combines

frame-reconstruction with sequence-reconstruction, or a loss that combines Sia-

mese frame comparisons and Siamese sequence comparisons. This could be

potentially developed further by also incorporating an explicit DTW optimization

component (Section 4.2).

• Convolution vs. recursion vs. recurrence. Speech signals include both short

and long temporal patterns. Convolutional neural networks (CNNs) have proved

powerful solutions for both supervised ASR and unsupervised representation

learning [50]. CNNs can only detect short temporal patterns but RNNs in com-

parison can capture long temporal patterns. Combining a CNN with a RNN has

proved successful in language modelling [51] and may be valuable here for the

same reasons: we can capture patterns at a wider variety of time scales.

• Representation-segmentation-clustering-labelling. Our work has largely fo-

cussed on representation learning as a stand-alone activity, independent of rep-

resentation use. But representation learning is only one subtask necessary for

unsupervised ASR. Considering the larger task of unsupervised automatic speech

recognition, we may find it important to develop models that learn to jointly

segment, represent, cluster, and label the meaningful units in the speech signal.
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This might be achieved by coarsely combining multiple models together and iter-

atively applying gradual optimization until convergence. Alternatively it might

be achieved by developing an integrated model, perhaps a neural network, that

performs all of these tasks in a “soft”, i.e. differentiable, manner combined with a

decoding method, e.g. beam search, to predict the “hard” output sequence. Some

recent work is moving in this direction, for example Kamper et al [49] jointly

segment and cluster while Kong et al. [52] jointly represent and segment.

We are still a long way from creating an ASR system capable of contributing significantly

to an alien language understanding scenario like that portrayed in Chapter 1 but maybe in

150 years that scenario will not seem so far fetched. Current trends suggest unsupervised

ASR technology will have advanced to a point where it could be used productively to

understand our interstellar neighbours.
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