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Abstract

This thesis proposes a domain-specific framework to deal with some of the problems of
cognitive development raised by Post-Piagetian research, in particular early competence
and heterogeneity in across-domains performance. The theoretical framework is explored
in relation to the development of the domain of cardinal number: from counting to

precocious number conservation to standard conservation. The results of three empirical
studies support the interpretation that a same structure specialized in processing numerical
information becomes operational on contents of increasing complexity:
1. on individual sets (as in set reproduction tasks);
2. on two or more sets (as in set comparison and modified conservation tasks);
3. on sets of sets (as in the Piagetian number conservation task).

The process by which the child discovers the import of the number-structure on new

contents is modeled as a semantic process that transforms cardinal representations,
entertained as irrelevant, into relevant representations. This transformation proceeds in a

stage-like way which, at each stage, reveals new facts about number and brings about a
restructuring and extension of the cardinal number concept.
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Chapter 1 General introduction

1.1 Early competence

Suppose we want to assess a 5-year-old child's understanding of cardinal number.
We may begin by presenting the child with Piaget's well known number conservation
task. We ask the child to take the same number of sweets as there are in a row before

him. The child diligently places one sweet in front of each one of the row's items.
Then we transform one of the rows into a longer array. We ask the child whether the
two rows still have the same number of sweets or whether one of them has now more

sweets than the other. The child replies that there are more sweets in the longer array
and suggests that to have the same number again, the sweets which exceed the length
of the shorter row have to be taken away.

The reply of our 5-year-old to the number conservation question and his attempt to re¬

establish the equinumerosity are indicative of an extremely limited understanding of
what the cardinal number of a set is. His numerical inferences appear to be bound to
the perceptual appearance of the set because the number is considered to change when
the set's configuration is changed. It increases when the set looks bigger and decreases
when it looks smaller. According to Piaget's characterization, this child's number
concept is pre-operational, that is, perception-bound and irreversible.
Subsequently, we present the same child with another version of the conservation

task, and, once the transformation has been performed, we require a separate count of
the two rows before asking whether the number is the same or whether it has changed.
The child now concludes that the rows have the same number of sweets and justifies
this by pointing out that no sweets have been added nor taken away. At this point we
may start suspecting that, in fact, the child does know something about cardinality and
about what transformations affect or do not affect the numerosity of a set. And we may

also start doubting of Piaget's clear-cut characterization of our 5-year-old child's
number concept as perception bound and irreversible. This suspicion may be put under
further test by presenting the child with another version of the task in which no counts
are required. Here the spatial transformation of the row, instead of being performed by
the experimenter, occurs as an accident. The array's configuration is changed by the
intervention of a third disturbing agent, like a "naughty" teddy bear, who hits the row
and mixes it up. With the two rows again looking different, we ask the child if they are
still equinumerous or if one of them has more sweets. Here too the child confirms that
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the two rows are equinumerous and typically puts back the sweets into one-to-one

correspondence. You may have recognized in these two modified conservation tasks
the situations first used by Greco (1962) and McGarrigle & Donaldson (1975). Results
of this kind have been reported for a large number of Piaget's sensori-motor and
concrete operational tasks and constitute evidence of what have been called early
competencies: one of the major issues in cognitive development.
How are these early competencies to be accounted for? And more particularly what is
that allows the child to solve the conservation task under certain conditions and what at

the same time prevents him from confirming the equinumerosity in the standard
Piagetian task? Is the understanding of conservation in the modified tasks itself the
outcome of a developmental process? If this is so, what kind of change takes place
between the phase in which the modified tasks are failed and the later phase in which
they are solved? And between the period in which the modified tasks are understood
and the later phase in which also the standard conservation is solved? These are the
questions which I shall address in this thesis. But before introducing the specific aims
and the plan of this work, I wish to draw the wider background against which these
questions have arisen and to situate them with respect to the current debates in
cognitive development research.

1.2 Background

The study of cognitive development has been deeply influenced by the ideas and the
work of Jean Piaget. According to Piaget, the cognitive system develops through an

ordered sequence of stages, each underlying a qualitatively distinct representational and
reasoning structure. Piaget identified three overall stages which he characterized with
three structures: the group of displacement, constructed during the sensori-motor
period (between 0 and 2 years of age), the grouping of concrete operations,
constructed during the representational (or semiotic) period (between 2 and 10 years of
age) and the group of formal operations, constructed during the hypothetical-deductive
period (from 10 years of age to adolescence).
The development of the diverse concepts reflects that of the general stages and is

revealed by the increasing coherence, generality, and mobility of the concepts. Piaget
studied the process by which these properties of concepts emerge in the solving of
problem which have a same structure. The child is either guided to focus his attention
on some component of the experimental situation (e.g. look at an object in the task
about the permanence of the objects) or asked to perform an action (e.g. establish a

one-to-one correspondence between two sets of objects in the task dealing with the

2



conservation of the equinumerosity, or reproduce the water-line of a half-filled bottle in
the task exploring the concept of horizontality). Then the element or the relation
attended to undergoes some transformation. In the case of the permanence of the object
task, for example, the object is hidden under a cover. More complex transformations
involve hiding the object under a second cover, placed beside the first one; permuting
the two covers or performing the different hiding operations out of the child's view. In
the case of the conservation of number task, as we have seen, one of the two

equinumerous rows is lengthened to destroy the spatial one-to-one correspondence
between the rows' elements and the child has to recognize the equinumerosity beneath
the length difference. In the water-line task, the bottle is tilted and the child is asked to
draw the water-line in this non-canonical position.
From the evidence of the children's capacity to relate the initial, canonical states, the
transformations and the new, modified states (demonstrated by the retrieval of the
object in the object-permanence task; by the confirmation of equinumerosity in the
conservation of number or by the drawing of a horizontal line to represent the water-
line in the tilted bottle), the degree of generality, coherence and mobility of their
concepts is inferred. Using tasks of this kind, Piaget analysed the genesis of most
domains of knowledge, providing a very detailed description of the sensori-motor
period (eight sub-stages) and a broader description of the operational periods. In the
case of the genesis of most concrete operational concepts, in fact, Piaget identified
three clearly distinct sub-stages:
1. the inability to establish the initial relation (for instance the one-to-one

correspondence or the representation of the water-line);
2. the ability to establish that relation in the initial situation, but not in the modified one;

3. the ability to generalize the relation to the transformed situation.
The Piagetian theory has been submitted to an extensive and thorough empirical

testing, which has occupied much of the research on cognitive development from the
50s well into the 80s. Two aspects of the theory have been examined with special
attention:

1. The general stage hypothesis, that the different knowledge domains are organized
by same structural principles and should hence develop with some degree of
homogeneity;
2. The description of the development of individual concepts in a sequence of sub-
stages and the account of the underlying change.

There is now a certain consensus among students of cognitive development that little
evidence exists in support of (1) the hypothesis of major stages of cognitive
development of the type described by Piaget and of (2) the account of the development

3



of specific concepts (see Gelman & Baillargeon 1983, Carey 1984 for excellent and
complete critical reviews of the literature).
Concerning the hypothesis of across-the-board stages, and the prediction extrapolated
from it that cognitive abilities should emerge in a coordinate fashion, the research about
correlations in the performance across knowledge domains found very low
correspondences. These findings are particularly robust in the concrete operational
stage, where the same children were often reported to behave according to Piaget's
Stage 1 criteria for some concept and according to Stage 3 criteria for some other
concept, or inversely. More problematically for the Piagetian hypothesis, similar
results are also reported for the formal operational period, where the performance in
logical reasoning tasks was found to be critically dependent on the familiarity and
expertise of the subjects on the particular task content (Johnson-Laird 1983, Evans
1982).
Concerning the hypothesis of clear-cut changes in the development of individual

concepts, the studies of replication of Piaget's results produce two apparently
"contradictory" findings. On the one hand, the studies which employed tasks identical
to the Piagetian original ones (also with different materials and modes of
presentation), consistently replicated Piaget's findings. On the other hand, the studies
which introduced more important changes to the task presentation (e.g. contextual and
supplementary information are provided; the nature of the test display and of the
response required are modified), while maintaining a very similar structure (i.e. the
initial state, the transformation and the modified state), found that children could solve
the tasks under these modified conditions before they could solve the original tasks.
These findings, which exist for the great majority of Piagetian tasks, have been
interpreted as evidence of early competence, i.e. under certain circumstances, young
children behave in a way qualitatively equivalent to that of older children. The young
children appear to be operating with concepts which do not differ in coherence and
mobility, although they have a more limited domain of application.
In conclusion, the results of limited across-domains homogeneity of performance and
of early competence levels beside the operational level described by Piaget call for a
revision of the hypotheses of general stages of logical competence and of clear-cut
differences between younger and older children's concepts.
To approach these anomalies of Piaget's theory, two theoretical tendencies have been
emerging. On the one hand, the so-called neo-Piagetian theories reformulate the idea of
general qualitative changes by defining a sequence of overall stages in terms of
information-processing capacities, such as memory size, number of variables handled
(see Case 1985, Halford 1982). On the other hand, the domain-specific paradigm
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abandons the ideas of across-the-board stages and of changes in reasoning and
representational capacities in favour of the idea that cognition is organized in domains,
or sub-systems which develop with some autonomy (see Carey 1985, Gelman &
Baillargeon 1983, Karmiloff-Smith 1988a, 1988b, Keil 1986, Gopnick 1988). As this
approach gives up the hypothesis of qualitatively different reasoning and
representational systems, its basic assumption is that what develops are limited
knowledge structures which become increasingly more explicit, abstract and general,
as opposed to changing in kind.
The domain-specific approach seems to be a better candidate to account for the

evidence of low correlations and early competencies and to exploit the extensive data¬
base on these phenomena. From a domain-specific perspective, the correlation data
constitute evidence of the relative independence with which distinct conceptual fields
develop. A same child can be in Stage 3 in the numerical domain and at the same time
in Stage 1 in the spatial domain simply because he has elaborated a more sophisticated
conception of number than of space. Another child can be doing just the opposite
because his understanding of space is more articulate and complete than his
understanding of number. The early competence data instead can be reinterpreted as

prima facie evidence of the levels in the process of elaborating a knowledge domain,
the equivalent of Piagetian stages within particular domains, and can be exploited to

provide a much more detailed description of the developmental process in the diverse
domains.

To specify the structure underlying domain specific-stages, two solutions have been
proposed. Carey, Gopnick and Karmiloff-Smith draw an analogy between conceptual
development and scientific progress. The domain-specific structures are attributed
some of the properties that philosophers of science (see Kuhn 1970, Laudan 1977)
have identified in scientific theories, like incommensurability. The developmental
process is also interpreted in terms of some of the mechanisms underlying theory
change in science, such as concept differentiation and coalescence. Gelman and Keil
instead attribute basic, innate capacities in the forms of principles and rules structuring
the different domains, and characterize the developmental process by two factors: the
increasing explicitness of the rules and principles, and the improved ability to apply
and use them.

1.3 Objectives

In this thesis, I study the development of cardinal number from counting to
conservation of number with the aim of providing a domain-specific account of this
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genesis. By domain-specific I mean an account which explains the developmental
process without invoking general changes in the cognitive system, that is changes
outside the domain of cardinal number.

I argue that, from the first evidence of the child's ability to operate with cardinal
number (e.g. numerical discrimination, counting, early forms of conservation) we can

attribute to the child a basic structure for processing cardinal number information. This
structure can be minimally defined as yielding representations of scrts and elements of
sets and of the relation of (1-1^correspondence between elements of sets.

Nevertheless, because of the very limited range of numerical situations in which the
child is initially competent and because of the progressive widening of this range, I
formulate the hypothesis that in the course of development the child learns the uses and
imports of the cardinal number structure, that is, where cardinal representations are

useful to solve problems, classify and predict events, etc.. The child gradually extends
the domain of application of this structure by abstracting it over increasingly more

complex contents, and, in the process, works out new aspects and properties of the
number domain.

This developmental process goes through a sequence of stages which correspond to
the contexts for which the child has worked out the applications of the number
structure, that is, the class of "objects" upon which the structure is operational. The
stage sequence is reflected in the child's increasing ability to handle numerical
operations and to cope with situations and problems involving cardinal number.
To summarize, the building blocks of the domain-specific account of cognitive

development I propose are: a) the distinction between a number structure and its
domain of application, or the situations in which the child has worked out the import
and the consequences of the applications of the structure, b) the principle that in the
course of development the child generalizes this structure to a wider range of situations
and in the process elaborates a more complete and abstract cardinal number concept.

1.4 Theoretical and empirical analysis of number development

The analysis of the developmental process is carried out on two levels: (1) the
competence levels the child goes through, that is the domain-specific knowledge states-,

(2) the process by which the child moves from one competence level to the following,
that is the transition. Regarding the knowledge states, I claim that, in the elaboration of
the number domain, the child develops through a sequence of stages underlying
qualitative different number concepts. These concepts have the same basic structure,
but operate on different classes of objects. To illustrate how this account works,
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consider the case of Piaget's conservation of number task. In this task, the first
expression of numerical understanding appears when the children (who are asked to
take the same number of objects as there in a model set) stop copying the configuration
of the set and begin to reproduce the set's number. In doing so, the children actively
apply the 1-1-correspondence by putting in front of each object of the model set
another object, thus reproducing successfully the model set's number. However, as
the correspondence is destroyed when the experimenter lengthens one of the two rows,
the child considers that the two sets now have a different number of elements.

According to the account I propose, the first stage capacity to reproduce the number of
objects in a set indicates that the child has a grasp of the 1-1-correspondence structure,
but that the structure applies at that stage only to the elements of individual sets. This is
sufficient to represent the cardinal property of a collection and thus to construct

equinumerous sets. On the other hand, this is insufficient to deal with the conservation
problem which also requires that the 1-1-correspondence be established between the
elements of two sets. Once the child has abstracted the structure over this more

complex object, he can also operate on the relational aspects of cardinal number, like
equinumerosity and order of sets, and work out the conditions of number
conservation.

The nature of the interaction of numerical structure and content (or the objects that the
structure can assimilate) can be studied experimentally using a variety of numerical
problem-solving situations and determining the different competence levels in the
solution of these problems. The analysis of the tasks solved at each level gives us the
basis from which to infer the content of the numerical structure (the class of objects it
applies to) and to characterize the kind of number concept elaborated.
Regarding the second aspect of the developmental process, i.e. the transition, I argue
that the process by which the numerical structure comes to be applied to new situations
and to express more complex objects (sets, relations between pairs of sets, etc.) is one
of abstraction. Through the abstraction of the structure over new contexts, new

properties and aspects of the concept are discovered. I specify this process in terms of
a semantic model constructed by Richards (1985, 1987) to account for the
development of the concept of object in the sensori-motor period. According to

Richards, development is the process of "making information relevant", that is
discovering the relevance of a concept in new contexts. In the transition process, the
child moves from a state of irrelevance, where he does not see the bearing of the
structure on some particular context, to an intermediate state of ambivalence and finally
to a state of bivalence, which justifies the application of the structure to formulate
hypotheses and verify or falsify them according to the circumstances. The mechanism
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of "making relevant" is defined by a logical algorithm which reduces the semantic
space in which the child reasons from a four-valued to a two-valued reasoning
framework.

From the synthesis of the account of knowledge states and transition, I propose the
following picture of a portion of the development of cardinal number. I start from the
assumption that children have a biologically determined structure specialized in
processing numerical information. The earlier expression of cardinal competence
which I shall consider, i.e. number reproduction, indicates that the foundational
relation of (l-l)-correspondence is in place and is applied to the restricted domain of
elements of individual sets. The process by which the child moves from this first
expression to a subsequent, more advanced competence level (identified empirically as

the capacity to make accurate number judgments), is one by which the relevance of the
numerical structure is worked out for the new domain of relationships between two or
more sets. The same process underlies the transition to conservation of number, where
the relevance of the number structure is worked out for the more complex "object" set
of sets. At each of these levels, the child's concept is thus defined by the numerical
structure and by the objects it assimilates. Number is first a property of sets, then a

relation between sets and then a relation between sets of sets.

This proposal suggests a synthesis of the two approaches of domain-specific
knowledge structures (see section 1.2.): the more constructive "theory-based"
approach of Carey, Karmiloff-Smith and Gopnick and the more innate "set of
principles" account ofKeil and Gelman. I characterize the knowledge states in terms of
a structure which is present from very early on in development, a structure that
however gives rise to different theories depending on the objects it applies to at the
different stages. The formulation of the transition mechanism in terms of relevance
specifies the process by which new meanings emerge from an innate structure. The
concept becomes progressively more explicit (as Gelman suggests) and at the same

time, by interacting with new contents, is reinterpreted and generalized (as Carey and
Gopnick claim).

1.5 Predictions

The hypothesis that children have a basic understanding of number, i.e. a structure
specialized for processing cardinal information, and that in the course of development
this structure is relevant and operational over increasingly more complex objects entails
that the children move through a fixed sequence of stages (without regressions) of
greater numerical reasoning and problem solving ability. The hypothesis that the
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process of abstraction is three-phased, corresponding to the cognitive states of
irrelevance, ambivalence and relevance predicts that the children confronted to a

problem which is new for their stage, first do not see the relevance of the structure in
that new context, produce an incorrect solution and do not recognize its inadequacy;
secondly they start envisaging that the structure may apply and may lead to the solution
of the problem, and oscillate between the correct and the incorrect solution; finally they
observe the effect of applying the structure by formulating and testing the relative
hypothesis.

1.6 Plan

Chapter 2 deals with the issue of representing knowledge states and transitions in
conceptual development. I examine the structure of the Piagetian account: a) the
sequence of stages of conceptual organization, each including, while extending, its
predecessor, and b) the mechanism of reflective abstraction, by which a stage is
transposed onto a higher level and organized in relation to the other elements present at
that level. I then discuss some of the empirical and conceptual problems with Piaget's
theory: the evidence of precocious successes in operational tasks, of low correlations
in performance across different conceptual domains, of the contextual bias in adults'
logical reasoning. As a way of solving some of these problems, I argue for a domain-
specific approach to cognitive development.

In Chapter 3, I introduce the logical representations of stage structures and the
algorithm of stage transition proposed by Richards for the development of the object
concept. I suggest that Richards' model can be used to formally represent the structural
differences between ordered stages and, above all, to simulate the process of transition
from one stage to the following. I also argue that, because of its essentially logical
nature, this model is far from providing an adequate account of the complexity of the
psychological processes described. Richards' model should be simply taken as a

possible example of how discontinuity and conceptual restructuring can be expressed
in a domain-specific view.

In Chapter 4,1 offer a reinterpretation of the early competence phenomenon in the
terms of this theoretical framework. The case examined is that of the modified

conservation task in which the spatial transformation occurs accidentally (McGarrigle
& Donaldson 1975). The precocious success is explained by the fact that the modified
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task involves numerical relation on less complex objects (sets) than those involved in
the standard conservation task (sets of sets).

In Chapter 5, I present some methodological considerations about the analysis of
domain-specific development. I propose a method of hierarchical analysis to identify
the order in which tasks, dealing with the domain, are solved. The hierarchy identifies
different levels of problem-solving ability from which underlying conceptual
organizations can be inferred. The advantages of the hierarchical analysis are that it
permits us a) to integrate the data of early competencies, b) to evaluate the hypotheses
that within domains the child develops through a sequence of ordered stages and c)
subsequently to test precise hypothesis about the competence underlying the stages. In
the last section, the chapter sets out the plan of the study of cardinal number
development which is carried out in the remaining chapters.

In Chapter 6,1 examine in some detail the existing literature on the development of
the cardinal number concept. Three basic experimental paradigms have been used: the
tasks of reproduction, comparison and conservation of sets, the latter being the most

extensively studied. I emphasize two central findings: a) the same developmental shift
from space-based to number-based estimations of sets' size is reported in all three
experimental paradigms; b) the development of number conservation is at the same

time a very robust result, as long as the standard test is used, and a very weak result
when modified conservation formats are employed. Early forms of conservation have
in fact been reported from age 4. These findings set the questions which are explored
in the experimental component of the thesis (Chapters 7 and 8).

In Chapter 7, I introduce two experiments designed to determine whether the shift
from space-based to number-based estimations of sets' size in set reproductions,
comparisons and standard conservations occurs all at once or whether it appears first
in a class of tasks, then in some other tasks, and so on. In the first experiment, I
examine the acquisition order of the three basic tasks of number reproduction,
comparison and conservation. In the second experiment, I replicate the previous study
focusing on number reproduction and comparison, and introduce a new experimental
condition of set comparison. The two experiments identify three stages of number
competence. Stage 1 corresponds to the ability to reproduce sets; Stage 2 to compare
sets and Stage 3 to conserve number in the standard Piagetian task. In the last section,
I propose an account of the number concepts underlying this stage sequence. I argue
that the Stage 1 number concept reflects the application of the number-domain structure
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to individual sets and expresses the property "cardinality" of sets of objects. The Stage
2 number concept results from the application of the number structure to a pair ofsets
and expresses the cardinal relations of "equinumerosity" or difference between sets.
The Stage 3 number concepts reflects the abstraction of the number structure over pairs
ofpairs ofsets and makes possible to derive the principle of equivalence conservation.

Chapter 8 presents a third experiment which provides a first test of this account of the
development of cardinal representations. The experiment investigates the hypothesis
that the modified conservation tasks, like set comparison, require the matching of two
sets, an operation which is available from Stage 2. As predicted by the hypothesis, the
early conservations (identified by the modified conservation tasks) emerge quasi
concurrently with the solution of the set comparison tasks and precede conservation in
the standard task. This finding corroborates the hypothesis that the child develops from
simple counting to number conservation through three stages, each corresponding to a

new, and more complex, content on which the number-domain structure is operational.

In Chapter 9, I discuss the account of cardinal number development proposed in
relation to the alternative theories of number development of Piaget and Gelman. I then
model the transition between the stages identified, by means of Richards' logical
representations and algorithm. The model accomplishes only partially the descriptive
work originally envisaged. In conclusion, I evaluate the domain-specific approach
defended and suggest some new directions of enquiry.
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Chapter 2 Domain-specific conceptual development

2.1 Introduction

This chapter examines some of the conceptual and empirical problems encountered by
Piaget's theory of cognitive development and sets out an alternative, general theoretical
framework. The argument advanced is that the fundamental problems with Piaget's
theory resolve around the central claim that what changes in development are overall
reasoning and representational capacities. What is not in question is Piaget's account of
the developmental process as a sequence of stages, each including the preceding one,

while reorganizing and extending it.
In order to deal with the problems with Piaget's theory while exploiting its strength,

I propose a) to take the alternative perspective that what changes in development are
conceptual contents organized by domain-specific structures, as opposed to overall
logical systems, and b) to reformulate the Piagetian account of development within this
domain-specific framework. From this perspective, cognitive development is
envisaged as proceeding within knowledge domains (and in the local interactions
between domains, an aspect which I shall leave for the time being) through a sequence

of stages. The conceptual structure underlying each new stage includes the structure of
the previous stage, while extending and reorganizing it.
The chapter is divided into three sections. In the first section, I introduce some

elements of Piaget's theory and discuss in some detail his account of conceptual
change. In the second section, I briefly examine the basis of the empirical and
philosophical criticisms of the general stages theory. In the third part, I argue for a
domain-specific account of cognitive development and propose a way of analyzing the
domain-specific developmental process.

2.2 Piaget's theory of cognitive development

According to Piaget, cognitive development proceeds in a sequence of stages, each
corresponding to a level of adaptation (or equilibrium) between the individual and the
environment and each reflecting a general cognitive structure. Piaget discusses the
notion of equilibrium by drawing an analogy between the stability of a cognitive state
and the equilibrium of a mechanical system (1950). A mechanical system is in
equilibrium when the set of the virtual works compatible with the relations of the
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systems gives a product (of its compositions) equivalent to 0, i.e. with exact

compensation of + and -. Piaget writes1:

Dire qu'un systeme reel est en equilibre revient ainsi a evoquer une composition
entre des mouvements ou des travaux virtuels: parler d'equilibre c'est done inserer
le reel dans un ensemble de transformations, simplement possibles. Mais
reciproquement, ces possibilites sont elles-memes determinees par les 'liaisons' du
systeme, e'est-a-dire le reel (1950, p.40).

Similarly, the cognitive system is in equilibrium when all the mental operations
(corresponding to virtual transformations on the representational level) are

compensated, that is, when for each possible mental operation there exists a

corresponding operation of equal value, which can reverse the first. It is central to
Piaget's theory that the system is reversible, that it contains the possibility of mentally
reversing the operations executed. In practice, when the system is equilibrated, after an
operation has been undertaken and a result obtained, the individual can represent a

symmetrical operation which leads back to the initial state, without its having been
permanently modified by the application of the first operation.
Number conservation, discussed in Chapter 1, constitutes one of the clearest

illustrations of a reversible construct. Recall that in the conservation task, a spatial
transformation is performed over two sets equivalent in number and distribution, so as

to make them look different. A reversible concept allows the child to cancel mentally
the spatial difference brought about by the transformation and to go back to the initial
equinumerosity. This operation supports the conclusion that the two sets are still
equinumerous, either because it is possible to go back to the initial one-to-one
correspondence or because nothing has been added to or taken away from the sets.

2.2.1 The stages

According to Piaget's reconstruction of development, children move through three
stages, underlying three cognitive structures in equilibrium2: the sensori-motor group
of translations (around 2 years of age), the concrete operational grouping (between 6
and 9 years of age) and the formal operational group (between 12 and 14 years of age).
Piaget represented the different structures using existing logico-mathematical systems,

1hTo say that a system is in equilibrium is equivalent to attributing a law of
composition between virtual movements and works: talking of equilibrium
thus means inserting reality within a set of transformations, which are
only possible. Inversely, these possibilities are themselves determined by
the 'relationships' of the system, i.e. the real."
2The preoperational period is often referred to as a fourth stage, even
though no general, stable structure is constructed.
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such as Poincare's "groupe des deplacements" or Klein's INRC group, and
formulating an ad hoc system to express concrete thinking, e.g. the grouping.
During the first stage, the sensori-motor schemas3 are progressively differentiated

and coordinated to form the group oftranslations. This geometrical structure reflects
the organization of the child's knowledge of the movements and positions of the
objects and of his own body. Take "A, B, C, D" to denote the starting and end points
of a translation, "0" the null translation, "+" the composition of two translations and
"=" the result of the composition. The structure in which the translations come to be
related is the following:

a) AB + BC = AC
b) AB + BA = 0
c) AB + 0 = AB
d) AC + CD = AB + BD

Given the practical nature of the sensori-motor stage, the relations between translations
require concrete, perceptual supports, i.e. the composition of translations relies on the
recognition of the location and order of perceptual indices, such as reference points and
marks in the environment. At the behavioural level, the group of translations is
reflected in the action sequences that involve returning to an initial position (e.g. b: a
movement in one direction can be canceled by a movement in the opposite direction),
diverting an obstacle (e.g. d: a location can be reached by one among a choice of
different routes), retracing the objects' displacements and locations (as in the
permanence of the object tasks). The group expresses a primitive form of reversibility
in action characteristic of the stage as the capacity to undo the result of the application
of a sensori-motor scheme by invoking a second scheme which brings the child back
to the initial situation.

During the pre-operational period, the structure of translations goes through a

profound change as it is transposed onto the representational plane by the appearance

of the symbolic function. In this period, the child begins to represent the actions and to
reason about them, beside acting with them. These early representations have the form
of pre-concepts and intuitions, as they conserve features of the sensori-motor schemes
on the new plane of representation. In particular, the preoperational schemes, like
actions, are irreversible in that they work exclusively in one direction. Piaget formally
represents the preoperational thought in terms of a "semi-logic" corresponding to a

3 The Piagetian schemes which express the organization of actions as they
are transferred or generalized by repetition in analogous circumstances).
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system of one-way mappings: functions (y = (f)x) which represent an ordered couple
or a unidirectional application (e.g. dependency relations and covariations)4.
To become an operation, the internalized action has to be coordinated into a structured
whole and, within this structure, to become reversible, such that it can be both carried
out and canceled mentally. The equilibrium reached at the concrete stage corresponds
to the construction of groupings of operations. Piaget's formalization of this structure

attempts to capture the mobility and coherence characteristic of these operations. They
have in fact the particularity of being concrete in that they reflect actual events
occurring in the world and in that they proceed by means of contiguous overlapping s

(e.g. step by step). To express these properties, Piaget restricts the range of
combinations allowed within the structure of the mathematical group and creates the
groupings. Whereas in a group, the combination of two elements of the system
produces a third element, without passing through intermediate steps; in a grouping the
elements can only combine contiguously. In the grouping of classes, for instance, ((A
+ A) - A) is not equivalent to (A + (A - A)), as the former gives an empty class (((A +

A) = A) - A = 0) and the latter gives class A (((A - A) = 0) + A = A). Piaget
distinguishes eight such groupings divided into two types: the groupings of classes
with reversibility by inversion (or negation), e.g. (+ A - A = 0;) and the groupings of
relations with reversibility by reciprocity, e.g. (A > B; B > A) (permutation of the
terms); (A < B) (reversing of the relation).
The grouping structure is reflected in the reasoning patterns underlying the solution to
tasks such as the conservation or the seriation tasks, to take just two examples. In the
conservation of liquids, the child is asked to put the same amount of liquid in two
identical containers A and B.

4The attempt to define a structure underlying the pre-operational period
plays a central role in Piaget's latest works, in particular Epistemology and
psychology of functions, written with J.B. Grize & Vinh-Bang (Dordrecht,
D.Reidel, 1977). This line of research has been recently taken up by P.M.
Davidson in a paper called "Piaget's category-theoretic interpretation of
cognitive development: a neglected contribution", published in Human
Development 31, 1988 (p.225-244).
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Glass A Glass B Glass A Glass B'

transfer to

Fig. 2.1: the conservation of liquids task

Once the initial equivalence has been established, the content of one container (B) is
poured into a second container of different shape (B'), that may be shorter and wider.
After the transformation, the child is asked whether the amount of liquid has remained
the same or whether there is more liquid in one of the two containers. Whereas
preoperational children answer that the amount is different (in general they take the
container where the level is higher as having more liquid), operational children
conserve the quantity and justify their answers using either:

- a transitive argument (A = B' because A was equal to B and B is equal to B');
- inversion (A = B' because if we pour the content of B' back into B, the liquid will
be level in the two containers);
- reciprocity of relations (A = B' because in B' the level is higher but the width
narrower, while in B the level is lower and the width larger).

In the seriation task, where the child is asked to order a bunch of sticks according to
their length, operational children use the relations "bigger than" and "smaller than"
between any two sticks with equal ease, and succeed in ordering the sticks. They can

also insert supplementary sticks in the right place along the series, when they are

required to do so.

■
Fig. 2.2: Operational seriation
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For the preoperational children instead, the application of one relation excludes the
other (e.g. a stick cannot be at the same time longer than one stick and shorter than
another stick), as these constitute unidirectional, unrelated schemes. They thus arrange
the sticks in pairs or triplets with, for instance, a very long stick and two small ones.
When the preoperational children succeed in building the series, they still cannot insert
supplementary elements.

I
Fig. 2.3: Preoperational seriation

The last level of equilibrium is attained when the group of formal operations has been
constructed. While the groupings of operations are applicable only to concrete objects
and are related in a step by step fashion, the group of formal operations operate on

non-concrete objects and engage in abstract, hypothetical reasoning about prepositional
objects. The group structure organizes propositions which contain the operations of
classification, seriation, space and time of the previous level, i.e. they are "operations
on operations" to use Piaget's terminology.
Piaget formalized this new combinatorial competence with the group INRC (identity,
negation, reciprocal and correlative) which combines in one operation the reversibility
by inversion and by reciprocity, that were separated in the grouping. The group

expresses the whole set of transformations that may be performed on propositions in
order to establish all the possible relations between them. Every operation, such as the
implication p >q, has an inverse transformation N p —q (read "p and not q"); a

reciprocal R q >p\ a correlated C -p q\ an identity I which leaves the expression
unchanged, as well as the whole set of combinations of the different transformations.
A formal operational system is required to deal with situations where two or more

variables interact, such as problems that involve relative movements. The
understanding of a system of relative movements (e.g. a moving object can go forward
or backward (I and N) on a board, which itself can go forward or backward (R and
C)) involves the combination of inversions and compensations. Thus to characterize
the object's movements from the observer's viewpoint, the different combinations of
the movement of the object and of the board have to be taken into account and related.
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2.2.2 The properties of the stages

Although the stages define different levels of relational complexity, the three stages
underlie cognitive structures in equilibrium which share the following properties:
1 - a structure is a whole, i.e. it is more than an aggregate of individual elements and
has properties that none of its individual elements possess;
2 - a structure consists of its elements, their non-relational properties and the relations
between the parts, what Piaget calls the composition laws, such as identity,
reversibility, associativity, etc. The composition laws are the core of the structure, as

they specify the class of transformations that the system can express at each stage, i.e.
the relations and combinations between elements that may be established;
3 - a structure is a self-regulating system, with the corollary properties of self-
maintenance and closure. Transformations from one set of elements to another never

lead outside the system but always produce a result which belongs to the system.
Because the structures are closed, they preserve their identity as a system.

2.2.3 The differences between stages

In the sequence of stages outlined by Piaget, each subsequent structure possesses

greater reversibility and can handle a wider range of transformations. This progress is
reflected in the increasing ability to take into account and combine dimensions, as in
the solution of problems, in the classification, explanation and prediction of events,
and in the more and more systematic exploration of the full range of possibilities. This
greater internal articulation leads to a better equilibrium in the exchanges between the
individual and the environment. I illustrate the qualitative differences between stages

using two examples: 1) the shift from concrete operational to formal operational
transitivity; 2) the shift from preoperational to operational classification.
According to Piaget, the grouping of concrete operations reflects a system of thought
which operates on real events that have occurred or are occurring. For that reason,
children at the concrete operational stage, who master seriation tasks bearing on

concrete objects, fail equivalent problems of seriation which are presented in
prepositional form. For example, one of the problems studied by Piaget is the
following (example 1.1):

- Edith is fairer than Susanne

- Edith is darker than Lili

- who is the darkest of the three?

Piaget (1967, p. 159) reports this reply as paradigmatic of concrete operational thought:
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- Edith and Susanne are fair
- Edith and Lili are dark

then Lili is the darkest, Susanne the fairest and Edith is in between.
When confronted with verbal transitive problems, the concrete operational children
seem to make the same errors that preoperational children were doing in the sedation of
sticks task. They compare the characters (corresponding to the sticks in the concrete

sedation) two by two, instead of considering them at the same time darker (longer)
than and fairer (shoder) than some other character (stick). The concrete operational
thought cannot handle problems where the premises are given in the form of utterances
and the conclusion is to be drawn logically from them, without concrete support.

Piaget represents the difference between the concrete groupings and the formal
groups in terms of the combinatorial power of the two systems. This distinction
emerges in particular in the systems' different types of reversibility. In the groupings
there are two distinct types of reversibility:
1. inversion or negation (+A - A = 0) in the structures of classes;
2. reciprocity or reversal order (A = B; B = A) in the structures of relations.
In the group, the two reversibilities are synthesized in a single system, $o that it is
possible to move from one transformation to the other within the same system. The
outcome is that for any complex proposition, four transformations can be
simultaneously represented: Inversion (I), Negation (N), Reciprocal (R) and
Correlative (C). This brings about new capacities of abstract reasoning, as children can

operate a wider range of transformations on concrete operations, e.g. I, N, R and C;
and also can combine formal operations between themselves, e.g. N + R = C.
The second illustration refers to the transition from preoperational schemes of

classification to operations. In a classification task (example 1.2), the child is asked to
put all the wooden beads (B) from a bunch (C) of wooden and plastic (B') beads in a

container. The wooden beads (B) are either white (A) or brown (A'). Preoperational
children handle the problem successfully and demonstrate understanding of the scheme
A + A' = B. They also answer correctly the questions "if I take away all the wooden
beads, will some beads be left in the container?": "No, because they are all wooden"
and "If I take only the brown wooden beads away, will there be any bead left?":" Yes,
the white beads" Children also demonstrate understanding of the schemes B - A - A'
= 0 and B - A' = A. When however the quantification of inclusion question is put to
them "Are there more wooden beads or more brown wooden beads?" they answer that
there are more brown wooden beads "because there are only 2 white beads".
Piaget explained this behaviour in terms of the unidirectionality characteristic of

preoperational thinking. The child centres his attention on the whole B, or on the parts
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A and A', alternatively. Once he centres on A, the whole B is destroyed. Thus the part
A cannot be compared with the whole B (which does not exist any longer), and is
compared with the remaining part A'. At the concrete operational stage, on the
contrary, all the classification schemes have become operations. They are coordinated
within a unique system and become reversible. The child can now invoke one

operation and identify subclass A = B - A'; then reverse the scheme to identify B = A +

A', compare B and A and conclude that B is greater than A. Within the structure, he
can decompose the whole and later reconstruct it, without modifying it nor its parts

permanently. In more theoretical terms, Piaget characterizes preoperational thought as
the system where series of one-way relationships can be established, but where these
functions are not coordinated into a single system. In the case of liquid conservation
(fig. 1.1) for instance, the preoperational child non-conservation reflects a one-way

relationship of correlation between the height of the liquid in the container and its
quantity. There is more liquid where the level is higher. The composition of these one¬

way relationships within the concrete operational system opens the way to

compensations. The child recognizes that there is the same amount of liquid in the two
glasses as the liquid in the tall glass reaches a higher level, but is narrower, while the
liquid in the shorter glass is lower, but wider. In the case of classification, the
compensation intervenes when A is considered at the same time a subclass of B and a

class in itself, possibly superordinate with respect to other classes it may contain.
Let me stress that in the Piagetian analysis, the elements of the higher stage are

already present at the lower level, even thought they are inserted in different relational
systems. Once they are projected and coordinated on the higher level, they acquire new

properties, and in particular greater flexibility, i.e. combinatorial and reversibility.
Examining again the qualitative shift in classification, Piaget showed that the elements
for classification were present at the pre-operational level, as unrelated schemas.
Because their classification schemas are uncoordinated, pre-operational children do not
understand a problem like the quantification of class-inclusion, which requires the
simultaneous comparison of the total class and of one of its subclasses. Once the child
has applied one of the schemes, i.e. A = B - A', the total class B is permanently
modified and the classes that the child is left with are A and A', which he indeed

compares. On the other hand the operational structure of classification allows the child
to construct hierarchies of classes, that he can explore, decompose and recompose

exhaustively, though step by step.
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2.2.4 The transition between stages

The transition from a lower to a higher stage is characterized in terms of the
mechanism of reflective abstraction, according to which the structure of the lower stage
is projected onto a new plane of thought, integrated with the structure present there and
extended. Piaget distinguishes two phases in the process:

The reflecting abstraction includes two inseparable aspects: a 'reflecting' in the
sense of projecting on a higher level what is happening on a lower level, and a
'reflection' in the sense of a cognitive reconstruction or reorganization (more or less
conscious) ofwhat has thus been transferred (1975, p.35).

The actions (and later operations) are projected onto the new plane, e.g.

reflechissement in a physical sense, and there reorganized, e.g. reflection in a

psychological sense. The intuition behind this metacognitive principle is based on a

pun. To become aware of what is going on in one's cognitive functioning, one has to
look at one's own internal processes from some privileged, external point of view, i.e.
an higher stage. The reflection has to occur on a higher plane than that of action (and
later concrete operation) since it involves reasoning about the underlying processes,

and reasoning about processes requires a representation (or conceptualization) of them.
The inferior structure is thus reflected, projected on a superior plane, where it is
understood in relation to the structure present on that plane.
The originality of the notion of reflective abstraction emerges when it is compared
with empirical abstraction, the Piagetian term for induction. Piaget writes:

As opposed to empirical abstraction which consists merely of deriving the common
characteristics from a class of objects (by combination of abstraction and simple
generalization), reflective abstraction consists in deriving from a system of actions
or operations at a lower level, certain characteristics whose reflection (in the quasi-
physical sense of the term) upon actions or operations of a higher level it
guarantees; for it is only possible to be conscious of the processes of an earlier
construction through a reconstruction on a new plan In short, reflective
abstraction proceeds by reconstructions which transcend, whilst integrating,
previous constructions (1966, p. 189).

Empirical abstraction consists of abstracting a quality, such as colour or weight, from
an object, and works by assimilating new contents to the existing structures. As such it
can bring an increase in the extension of the structures, but no new structure.
Reflective abstraction instead consists of abstracting properties not from an object, but
from one's actions on the objects and in particular from the logical coordination of
one's actions. Piaget provides the following example to illustrate abstraction from
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logical coordination. A child puts five pebbles in a row and discovers that the number
remains 5 both when he counts from right to left and when he counts from left to right.

This experience is of logico-mathematical nature because it does not relate the
pebbles themselves, but to the relations between the activity of ordering and that of
forming a sum. The linear order did not exist in the pebbles before the subject
aligned them in a row. As for their sum, that too depends on the activity; that of
addition which, on the one hand, ignores the other pebbles or objects placed on the
table, and, on the other hand, constructs a totality by means of these few pebbles
without omitting any of them or counting the same twice. What the child discovers
is a property of his own activity; and not a property of the pebbles as such: it is the
fact that the result of the operation of addition is independent of the order followed
(1966, p.232).

The creative aspect of reflective abstraction is accomplished by the second component,
or reflection. The first component, the reflechissement, in fact consists of projecting
structure which was already there. The second component instead reorganizes the
projected structure by means of processes that Piaget called constructive generalization
or completive generalization, since it involves generalization in both extension and
comprehension. Reflective abstraction proceeds under two conditions, as Piaget
writes:

a) the new structure must first of all be a reconstruction of the preceding one if it is
not to lack coherence and congruity; it will thus be the product of the preceding one
on a plane chosen by it; b) it must also, however, widen the scope of the preceding
one, making it general by combining it with the elements proper to the new place of
thought; otherwise there will be nothing new about it (1967, p. 320).

2.2.5 The principle of Equilibration

Reflective abstraction is embedded within the more general principle of heightening
(.majorante) equilibration, the autoregulatory principle which governs the interaction
between the cognitive system and the environment, and constitutes the essentially
cognitive component of that principle. Underlying the functioning of reflective
abstraction, and in particular the causes of its activation, is Piaget's theory of
consciousness, a theory strongly influenced by Edouard Claparede's "loi de la prise de
conscience". According to this law, consciousness of the self or of the internal
functioning does not arise as long as we are successfully meeting our needs and
adapting to the environment. Then we are only conscious of the results of our actions
and not of the internal mechanisms organizing the action. We become aware of our
selves and of our internal functioning only when some of our needs are frustrated:
external obstacles appear, goals are not fulfilled, etc. In these cases, we have to
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analyze the reasons for the failure, and thus examine our own internal processes.
Reflective abstraction captures the mechanism by which one takes some perspective
over one's internal functioning and organization from a higher point of view (e.g. the
mental processes themselves are the objects of cognitive activity). The level is higher in
the sense of more abstract, as what previously organized our action now becomes the
content of thought.
A few considerations about the explanatory nature of Piaget's Equilibration principle
are necessary, as this issue has created many misunderstandings. Thanks to the
reflections of Kitchener (1983, 1986), Overton and Reese (1973, 1981) and Overton
(1984, 1985), the epistemological nature of Piaget's Equilibration theory has been
much clarified. These authors argue that Piaget's explanation of conceptual change is
of a retrodactive nature, by opposition to predictive, and mirrors the explanations given
by the theories concerned with evolutionary and historical processes (e.g. theories for
which change is the primitive), in biology as well as in psychology and philosophy. A
retrodactive explanation specifies the laws and principles capable of reconstructing the
evolutionary process as it has occurred. Hence Piaget's theory of equilibration is an

attempt to reconstruct the rational progression of development by providing a

description (interpretation) of the developmental process (that is, the sequence of
stages) and by specifying the laws governing why (that is, the tendency toward the
most advanced states of equilibrium possible) and how (that is, reflective abstraction)
development proceeds.

2.2.6 The structure of Piaget's account of cognitive development:
articulation of holism and cumulativity

To summarize, the equilibration theory offers a reconstruction of cognitive
development which is based on the following principles:
1. Development proceeds through a sequence of cognitive stages. The order of
succession of the stages is fixed;
2. Each stage has a holistic structure, with laws of composition, associativity, identity
and reversibility, and is a self-regulating system. The structures constitute qualitatively
different systems of thought, formalized as logical systems of different power;
3. In the sequence of stages, the structure of the preceding stage is an integral part of
the structure of the subsequent stage. The new structure is at the same time based upon
and more general than the earlier one. Thus, the earlier structure is at the same time
included in the following structure, and radically changed by the new relations
emerging with the new structure;
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4. The transition from lower to higher stages, and the relative generalization, is
accounted for by the mechanism of reflective abstraction. The structure is abstracted
from the lower stage, projected on the higher stage and reconstructed into a new

whole;
5. Each stage represents a particular degree of equilibrium between the individual and
the environment; the sequence as a whole reflects the equilibration process, i.e. the
progress towards greater problem-solving efficacy, coherence, increased objectivity.
This reconstruction rests on the articulation of holistic and cumulative aspects of

conceptual growth: holistic, because each new stage constitutes a qualitatively different
system of thought, when compared to the prior stage; cumulative, because each new

stage incorporates the prior stage, and constitutes a generalization from it. As the new

conceptual organizations include the prior ones, it follows that cognitive development
proceeds unidirectionally towards progress (in the incremental sense), without loss of
knowledge. The synthesis between the two components is made by means of the
process of reflective abstraction. The projection of the lower structure onto the higher
plane accounts for the cumulative aspect of inclusion; the reorganization and
reconstruction on the new plane accounts for the holistic aspect of qualitatively
different structure.

In order to appreciate the coherence and strength of Piaget's analysis of conceptual
development, consider some of the problems that may arise from a simple, structural
hypothesis. As we have seen, two stage structures constitute two holistic systems:
their parts are in interaction with each other, such that each part derives its meaning
from the whole. From this property, it follows that stage structures cannot be reduced
to their more primitive elements, as a) these elements are defined within their respective
whole structures and b) the structures have emergent properties that the elements do
not possess. Borrowing from the works in the field of history of science (in particular
Kuhn 1970), the two structures are said to be incommensurable, as their constitutive
elements cannot be isolated, matched and then compared directly. Depending on the
structural context of which they are part, they refer to different entities, they play
different roles and they express different relations.
These considerations open a central problem for structural theories of cognitive

development: if the stage-structures are incommensurable and cannot be compared, do
later structural organizations constitute progress with respect to the prior ones? And if
they do, how can one express and represent the progress that a later structure brings
about over the preceding one?
In my view, the strength of Piaget's account lies in the fact that it does offer a way of
approaching the fundamental issue of progress, by positing the inclusion (and
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conservation) of the previous structures into the subsequent ones, even though this
structure comes to be radically changed in the process. This property of development is
expressed by the fact that the included structure is still recognizable in the subsequent
structure as a part of the network of schemes or operations. Nevertheless, in the higher
stage the schemes and the operations are more highly interconnected to form more

complex, flexible and coherent systems, giving a radical new interpretation of the
concept.
This analysis is particularly clear concerning the different systems used to define

preoperational and operational classifications, that I define above. The preoperational
classification is represented by the classification schemes:

A + A' = B; B - A - A' = 0; B - A'= A;
These are unrelated and unidirectional. The operational classification emerges from the
coordination in a single structure of these schemes and from the properties which
derive:

composition: A+A'=B; B+B'=C; etc.
reversibility: B-A'=A; C-B=B';
associativity: (A+Av) +B'=A+ (A'+B');
identity: A+0=A
tautology: A+A=A

The projection and reorganization of the lower stage classification schemes bring
about a qualitatively different classification system, and a radical redefinition of the
class concept. Hence although the schemes are formally equivalent in the two stages,
their interpretation, specified by their interconnections within the stage-structure, is
radically different. In other words, the inclusion can be discerned on the basis of the
individual schemes; while the restructuring and the emergence of new properties are
identified by the new relations which arise between schemes. In the performance, the
inclusion is reflected in the fact that the classification tasks understood by the children
of the lower stage are also solved by the children of the higher stage. The progress
instead is revealed by the new class of problems that the children can solve (e.g. class-
inclusion).
Hence by specifying the structure of the different stages in terms of schemes and

relations between schemes, Piaget succeeds in combining the two aspects of
conceptual holism and cumulation, and at the same time avoids the relativism in which
holistic views of knowledge seem to be inevitably trapped as well as the weakness of
simply additive accounts of knowledge growth.
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2.3 Problems with Piaget's theory of cognitive development

An extensive discussion of the philosophical, logical and empirical studies concerned
with Piaget's genetic epistemology would by far exceed the scale of this dissertation. I
shall thus limit myself to two types of problems and focus on the criticisms relative a)
to the insufficient explicitness of the mechanisms invoked by the equilibration theory
and b) to the empirical support for the general stages hypothesis.

2.3.1 Conceptual problems

The major criticism advanced against Piaget's equilibration theory is of being too

descriptive and of giving of its central mechanism, reflective abstraction, a simply
metaphorical characterization. Consider the quotations of Piaget, reported in Section
2.2.4. The two components of reflective abstraction, projection and reorganization, are
described by analogy to two kinds of reflection. Projection, or the transfer of the
structure of the lower stage onto the higher stage, is equated to optical reflection, while
reorganization to reflection as a cognitive process. To my knowledge, nowhere does
Piaget specify the functioning of the two components of reflective abstraction in greater
detail. It thus remains unclear how the translation of knowledge from one level of
representation to another may occur, and how the knowledge may be transformed in
the course of the process. Similarly, if we take for granted that some structure is
transferred to the new representational level, how this structure may interact with the
structure already present on that level and how the global reorganization is achieved
also remain unspecified. Hence, the equilibration theory fails to provide a sufficiently
detailed explanation of the processes (of abstraction and reorganization) by which the
cognitive structures develop in the direction of greater logical and representational
power. These considerations are at the origin of Fodor's argument against Piaget's
constructivism. Fodor in fact dismisses equilibration as a plausible alternative to
induction to explain conceptual growth on the grounds that equilibration is

entirely descriptive: there is simply no theory of the processes whereby equilibria
are achieved (1975, p. 90).

On the basis of this judgment, Fodor claims that the only mechanism left capable of
explaining conceptual acquisition is inductive generalization, i.e. the projection and
confirmation of hypotheses. According to Fodor, the hypotheses are in the form of
biconditional. On the left-hand side, they specify the concept to be learnt and on the
right-hand side the conditions under which the concept applies, i.e. the extension of
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the concept being learned. For instance, if C is the concept to be learnt and G specifies
the conditions under which the concept is true, the hypothesis that is projected to learn
C is the following:

(x) (x is C if and only if x is G)
The formulation of the hypothesis and its subsequent confirmation presuppose that one
already knows G. But if G is required to understand C and C and G are coextensional,
then C does not represent, in any non-trivial sense, a conceptual novelty. C is nothing
more than a synonym of G. In other words, one cannot learn what C is (that C falls
under G), unless one already has a language in which C and G are expressed. Fodor
concludes that concepts cannot be learnt. Conceptual growth can only be the result of
biological maturation or accident
When this argument is directly applied to Piaget, the claim that children of different

stages represent different concepts is disproved as it would be impossible for children
of stage 1, for example, to learn a stage 2 concept C, since at stage 1 they could not

express the concept G, of stage 2, necessary to formulate and verify the hypothesis
about C. Fodor writes:

Either the conditions on applying a stage 2 concept can be represented in terms of
some stage 1 concept, in which case there is no obvious sense in which the stage 2
conceptual system is more powerful than the stage 1 conceptual system, or there are
stage 2 concepts whose extension cannot be represented in the stage 1 vocabulary,
in which case there is no way for thqgtfage 1 child to learn them (p.90, 1975).

The conclusion about the impossibility of explaining cognitive development in terms
of a change in the nature of the representational and reasoning system, reached by
Fodor through philosophical argument, mirrors the conclusions that can be drawn
from the results of the empirical research on Piaget's theory. In fact, no substantial
evidence has been found to support Piaget's claim that development involves across-

the-board changes in representations and reasoning capacities. Two findings are

particularly critical: low correlations in performance levels across knowledge domains
(i.e. heterogeneity) and the sensitivity of performance level to task presentation (i.e.
early competencies).

2.3.2 Empirical problems

The discussion of the empirical evidence bearing on the general stage hypothesis will
be extremely brief. As the amount of relevant research is simply enormous, I shall thus
limit myself to defining the problems and illustrating them with some examples.
Furthermore, the examples will be essentially drawn from studies of the
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preoperational-operational period, as it is in this phase that the general stage hypothesis
has been most systematically investigated.

2.3.2.1 Heterogeneity

The general stage hypothesis claims that concepts are highly interconnected and
homogeneous as they are organized according to common structural principles (e.g.
the operational structures):

each stage is characterized by an overall structure in terms of which the main
behaviour patterns can be explained (Piaget & Inhelder 1969, p. 153).

Concepts of equivalent operational complexity should thus appear in a related, quasi
synchronous, fashion. For Piaget, support for this hypothesis came from the fact that
children master, at approximately the same average age, various concepts of equivalent
operational level. For instance, the concepts of number conservation, class-inclusion
and transitive seriation, which in the Piagetian analysis underlie logico-mathematical
operational structures of equal complexity (e.g. they are concrete and have one form of
reversibility) all appear at around age 7 or 8. However, the empirical results provided
by Piaget do not constitute conclusive evidence of the existence of homogeneous
competence levels across conceptual domains, since Piaget studied the various notions
using different groups of children. A firmer corroboration of the general stages
hypothesis would require that the same children be examined across the different
concepts for which synchronism is hypothesized and that these children be found to

acquire these concepts in a close-to simultaneous order.
The studies which have compared the same children's ability to conserve (number,

substance, length, weight, volume), classify, seriate, measure, predict physical
phenomena, represent geometrical relations, etc., report low correlations between these
different abilities (see the reviews by Brown & Desforges 1979, Carey 1984, Gelman
& Baillargeon 1983). For instance, Tuddenham (1971) report that the median
correlation in a range of across domains tasks that require isomorphic operations is
only .30. Furthermore, there are widespread reports of children who solve some tasks
in a fully operational way (e.g. corresponding to stage 3) and then perform in a

typically preoperational way in other tasks (e.g. corresponding to stage 1).
The studies of Rieben, Ribaupierre and Lautrey (Ribaupierre et al. 1985, Lautrey et

al. 1985, Rieben et al. 1986) constitute one of the most extensive and systematic
investigation of the existence of concrete operational structures. The authors examined
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154 children (from 6 to 12 years of age) in the solution of a battery of eight concrete
operational tasks dealing with:
1. the logico-mathematical domain:

classes, classification of objects in intersecting classes,
probabilities, quantification of probabilities attached to the drawing of a red object
from collections of different size;

2. the physical domain:
conservation of substance, confirmation of equivalence for two balls of clay which
go through a series of deformations,
conservation of weight, confirmation of equivalence of weight for two balls of clay
deformed and cut into pieces,
conservation of volume, confirmation of equivalence of volume for liquid
transferred in containers of different shape,
construction of volumes, equivalent volumes (e.g. two houses) built on different
bases (e.g. two islands);

3. the spatial domain:
sectioning of volumes, anticipation and drawing of surfaces obtained by the
sectioning of objects along different axes,
unfolding of volumes, (anticipation and drawing of the development of plane or
curvilinear surfaces of different shapes);

4. the mental imagery:
folding of lines, anticipation and drawing of the figure obtained with geometrical
figures folded in half,
folds and holes, anticipation and drawing of the folding lines and the holes of a
square sheet of paper first folded and then slightly cut (in a corner or in the middle
of the fold).

Correlations between the performance level in pairs of the eight tasks are not very

high, as the authors note, given the age span (from 6 to 12 years) examined. The
values of Kendall's Tau Coefficient range from .23 to .50, with a median correlation
of .39, and are statistically significant at a level of p less than .05. Considering the
correlations higher than the median value, the authors identify two clusters of tasks.
The first includes the logico-mathematical tasks and the conservation tasks. The second
includes all the physical tasks and one task from each of the mental imagery and spatial
domains. These results are indicative of the complexity and the fragmentation which
seem to characterize the developmental process, when the performance of the same

children is examined in different knowledge domains. This heterogeneity goes against
the uniformity and unidirectionality hypothesized by Piaget.
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The same kind of problems have been also pointed out regarding the notions that
Piaget describes as emerging from the synthesis of specific concepts. For instance,
Piaget claims that the concept of operational number emerges from the synthesis of the
concepts of classes and relations. From this claim, it is legitimate to expect some form
of quasi synchronism in the acquisition of the concept of operational number,
transitivity and classification. However, when the performance levels of the same

children in the tasks probing the operational understanding of the three concepts (i.e.
conservation of number, quantification of class-inclusion, seriation) have been
compared, no significant correlations have been found (Dodwell (1960, 1962),
Brainerd (1978), Kofsky (1966), Little (1972)). The same problem has appeared in the
domain of spatial relations. Lunzer (1960, 1965) does not find any synchronism
between the solutions to the tasks of conservation and measure of volume or between

conservation and seriation of length.
These phenomena were not unknown to Piaget himselfwho introduced the notion of

"horizontal decalage" to account for the non-synchronic application of the same

operations to different contents. His classical example of horizontal decalage is the
conservation concept, where two years intervals separate the acquisition of the
conservation of substance (around age 7-8 years), of weight (age 9-10 years ) and of
volume (11-12 years). Piaget explains5:

La raison de ces decalages est naturellement a chercher dans les caracteres
intuitifs de la substance, du poids et du volume, qui facilitent ou retardent les
compositions operatoires: une meme forme logique n'est done pas encore, avant
11-12 ans, independante de son contenu concret. (1967, p.157).

Nevertheless, contrary to what Piaget claims in this text, the same decalages,
consequence of representing and reasoning upon different contents, are also present in
the formal operational stage. It has been extensively demonstrated that the adult's
performance in logical reasoning tasks is critically dependent on the particular content
of the task (see the reviews of Wason & Johnson-Laird 1972, Evans 1982 and
Johnson-Laird 1983).
As an illustration, consider the classic four- card selection task (Wason & Shapiro

1971, Johnson-Laird, Legrenzi & Sonino Legrenzi 1972, etc.). The task is designed to
determine what evidence the subject takes to be relevant to establishing the truth or

falsity of an assertion. The subject is presented with four cards showing a letter on one

5 "The reason of these decalages lies in the intuitive aspects of substance,
weight and volume. These characteristics can either facilitate or delay the
operational compositions: a same logical form is not independent of its
concrete content before 11-12 years of age" (my translation).
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side and a number on the other side (e.g. A, D, 4, 7), and with the rule: "if a card has a
vowel on one side, then it has an even number on the other side". The subject's task
consists of choosing the cards that need to be turned over to find out whether the rule
is true or false. In this abstract condition, the correct answer, i.e. turn A and 7, is

given only by a very small number of subjects. When the task is instead presented with
a more concrete, familiar material, the proportion of correct choices increases
significantly. One of the tasks used (Johnson-Laird, Legrenzi & Sonino Legrenzi
1972) asks the subjects to choose the letters necessary to establish whether the
following rule has been violated: "if a letter is sealed, then it has a 5d stamp on it".
Four envelops are presented: the back sealed, the back unsealed, the front with a 5d
stamp, the back with a 4d stamp. 22 out of 24 subjects solved the task correctly, lifting
both the sealed envelop and that with the 4d stamp. Of the same 24 subjects, only 7
solved the abstract condition correctly.
In a short article, "Intellectual evolution from adolescence to adulthood", Piaget

recognizes the role of factual knowledge (e.g. familiarity and expertise) in logical
reasoning:

We can retain the idea that formal operations are free from this concrete content, but
we must add that this is true only on the condition that for the subjects the situations
involve equal aptitudes or comparable vital interests (1977, p. 165).

However, although invoked by Piaget, neither "horizontal decalage" nor specific
expertise can be accounted for in any explicit and systematic way within the operational
stages theory. The low correlations in performance level across knowledge domains,
both in the concrete operational stage (where this phenomenon may be expected given
the role that the perceptual support plays on cognitive functioning at that stage) and in
the formal operational stage (where this phenomenon is instead more difficult to
account for), constitute an important anomaly for the general stages theory and identify
a class of phenomena that alternative theories of cognitive development have to deal
with.

2.3.2.2 Early competence

A second class of phenomena which constitute important anomalies for the the theory
of general stages are the early competencies: under particular circumstances, children
demonstrate precocious understanding of operational concepts. In Chapter 1, I
introduced the case of early competencies in number conservation. Children appear to
be failing the original Piagetian tasks while at the same time they can solve modified
versions of the tasks, which still demand a mobile, articulate understanding of the

3 1



concept examined (e.g. the lengthening of one of the rows is performed by a third,
disturbing, agent, instead of the experimenter (McGarrigle & Donaldson 1975); the
child is required to count the two rows after the spatial transformation has been
performed (Greco 1962)). These results go against the claim that clear-cut differences
distinguish the concept at the concrete operational stage from its early forms, e.g.
between the perception-bound pre-operational number concept and the reversible,
mobile operational number concept.
More generally, from the studies which replicate most Piagetian experiments, a strong
pattern emerges characterised by two apparently contradictory results. On the one

hand, the Piagetian findings are confirmed when tasks conforming to those originally
employed by Piaget are used. On the other hand, early competencies are exposed when
modified versions of the original tasks are employed, which maintain the structure of
the task while setting it into pragmatically, linguistically or physically different
contexts. The data of early competencies are extensively discussed in the review
chapters by Brown & Desforges (1978), Gelman & Baillargeon (1983) and Carey
(1984). In Chapter 4, I shall give a detailed presentation of evidence of early
competence in number conservation.
Here as illustration, consider the study by Bovet, Baranzini, Dami & Sinclair (1975)

on conservation of volume and density, a paradigm case of the early competence issue.
The original volume conservation task consists of two containers of equal size, half
filled with water and of two objects, of same volume (and different weight in the
density task). Once the child has confirmed that the water goes up the same height
when the two objects are immersed in the containers, one of the objects goes through a

series of transformation: it is made into different shapes or is divided into parts. The
conservation question about whether, after the transformation, the two objects still take
up the same space is then asked. A prediction that the level the water will go up is also
required. The task is typically solved between the end of the stage of concrete
operations and the beginning of the stage of formal operations, around age 12 - 14
years. Before that stage, children predict that the water will go up higher when the
surface enveloping the objects looks larger (e.g. the object is divided into many parts)
and when the object is heavier.
The modification of the task designed by Bovet et al. eliminates some of the complex
physical characteristics. As index of space occupied, the water is replaced by bran
flour; a move which eliminates physical aspects of the task linked to water, such as

buoyancy, pressure, speed of fall, etc. Under these conditions, the authors find
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evidence of early understanding of volume and density, and introduce a pre-notion of
"voluminosite"6:

C'est an niveau de 7, 8 ans approximativement que se construisent les trois
notions physiques elementaires que sont le poids statique, la voluminosite et la
conservation de la difference de lourdeur. Plus evolueees que la notion de
substance, elles semblent constituer une premiere differentiation au sein de cette
notion globale, en tant que contenu physique, et elles resultent d'une lente
elaboration puisqu'avant cet age on constate l'absence de conservation de la place
occupee et de la difference de lourdeur Nous pensons pouvoir affirmer que
chacune de ces notions represente un niveau prealable necessaire en vue de la
construction des notions achevees et complexes de l'adulte. Le poids statique
pourrait ainsi preparer la notion de poids-force; la voluminosite, celle de volume
physique et geometrique quantitativement mesurable; et la densite simple, celle de
densite en tant que rapport du poids au volume (1975, p.78-79).

Similar results are reported for the task of seriation Gillieron (1976), class-inclusion
(Markman 1978), horizontality (DeLisi, DeLisi & Youniss 1977), physical causality
(Bullock & Gelman 1979) and many others.
The early competence data identify levels of conceptual elaboration of some

complexity (e.g. the concept of "voluminosite"), where the Piagetian theory would
only expect perceptually bound, global pre-concepts and intuitions. Together with the
low correlations results, they indicate that developmental proceeds in a more articulated
and fragmented fashion than originally predicted by the general stage theory, not only
at the level of between domains performance (heterogeneity) but also at the level of
single conceptual domains, where the child appears to go through several levels of
competence.

2.4 Cognitive development from a domain-specific perspective

In the previous sections I have discussed some of the main problems encountered by
Piaget's general stages hypothesis both on the conceptual and on the empirical levels.

6"lt is around the age of 7, 8 years that the three elementary physical
notions of static weight, volume occupied and conservation of weight
difference are acquired. These notions are more developed than the notion
of substance. They seem to constitute a first differentiation within that
global notion, as physical content, and emerge out of a slow elaboration
since, before, before that age, there is no conservation of volume occupied
nor of weight difference... We have grounds to claim that each of these
notions represents a necessary prerequisite for the construction of the
full-blown, complex, adult notions. Hence static weight could prepare the
way for the notion of weight-force; the volume occupied that of
(measurable) physical and geometrical volume; and the simple density,
that of density as relationship between weight and volume" (my
translation).



In recent years, an alternative perspective on cognitive development has been emerging
which is designed to address these problems (among other issues). From their review
of the literature on the development of operational concepts, Gelman & Baillargeon
(1983) conclude that

the experimental evidence available today no longer supports the hypothesis of a
major qualitative shift from preoperational to concrete-operational thought. Instead
we argue for domain-specific descriptions of the nature as well as the development
of cognitive abilities (1983, p. 167).

Similar conclusions are reached by Carey (1984), Feldman (1986), Turiel & Davidson
(1986). The basis of the domain-specific view is the hypothesis that children have
biologically determined structures specialized in processing different kinds of
information pertaining to various knowledge domains. The cognitive system is hence
envisaged as organized in subsystems, with limited interactions: a view which is the
opposite of Piaget's general structures and which seems more adequate to account for
the fact that conceptual development proceeds in a much more fragmented way than
expected under Piaget's general stages hypothesis.
Because of the relative novelty of the domain-specific hypothesis and of the

complexity of the issues that it raises, I have spread the introduction and the definition
of the terms invoked and the discussion of its implications over the next two chapters.
Here I wish to focus on the first-hand advantages that this view yields with respect to
the problems I raised with Piaget's theory. I then move on to discuss the central issue
of how to envisage conceptual development from biologically determined domain-
specific structures.

First, consider the two developmental phenomena of heterogeneity and of early
competencies. From the domain-specific perspective, heterogeneity is the rule, rather
than the exception, as the domains are expected to develop autonomously (and not as a
consequence of the development of overall operational systems, as Piaget claims). A
child may in fact have elaborated a rich and articulated concept of physical causality
(e.g. which would classify him at stage 3, for instance) and at the same time have
elaborated a limited understanding of the domain of number (e.g. be able to reproduce
sets, but not to conserve number, equivalent to stage 1). On the other hand, early
competencies take the central place of initial evidence of the development of the
different domains, as they identify levels of competence in the domain.
Consider then the issue of explaining conceptual change in development. The

problem for Piaget's structural theory was that of explaining how new, more articulate
and coherent relational systems emerged out of previous, simpler systems; an

extremely abstract and complex process of which, I argued, Piaget provides an
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underspecified description. From a domain-specific perspective, the terms of the
problem are radically changed as a) specialized structure is attributed to the child from
the beginning and b) the changes are more local and concern aspects of the domains,
rather than abstract and general relational systems. At the level of conceptual domains,
the issue of explaining transition is thus formulated in terms that appear to be more

tractable.

With a domain-specific hypothesis, the locus of the explanation of developmental
change is transferred from general principles of conceptual organization to local
conceptual structures. These structures have been described as theories by Carey
(1985, 1988), Karmiloff-Smith (with Inhelder 1975, 1988b), Gopnick (1988) and as

sets of principles or rules by Gelman (with Gallistel 1978, with Meek 1986), Keil
(1986). I wish to advance and explore an alternative, though compatible, hypothesis
which distinguishes between the ability to represent concepts and the ability to apply
them correctly. Children have a basic structures specialized in processing domain-
specific information (e.g. the conceptual expressability of Fodor), and, in the course

of development, they work out the functions of these structures as a means to a) solve
problems, b) actively organize, classify and explain events in the world and c) infer
new possible states of affairs, like the prediction and anticipation of situations. The
basic intuition is that as the child comes in contact with a wide range of contexts where
these structures may apply, he has to work out where they to apply them and the
consequences of their application. This proposal is consistent with Fodor's view of
what may change in development:

learning does not increase the expressive power of one's system of concepts
(construed as the set of states of affairs that one can represent) though, of course, it
can and often does increase one's information about which states of affairs in fact
obtain (1975, p.93).

This dimension of development covers more fully the complexity of what
understanding a concept means, since, as Fodor remarks, conceptual expressability
alone cannot exhaust it:

Consider the English predicate 'is a chair'. The present view is, roughly, that no
one has mastered that predicate unless he has learned that it falls under some such
generalization as 'y is a chair' is true iff Gx. But, of course, it does not follow that
someone who knows what 'is a chair' means is therefore in command of a general
procedure for sorting stimuli into chairs and and nonchairs. That would follow only
on the added assumption that he has a general procedure for sorting stimuli into
those which do, and those which do not, satisfy G. But that assumption is no part
of the view that learning a language involves learning truth rules for its predicates.
If, e.g., it is true that 'chair' means 'portable seat for one', then it is plausible that
no one has mastered 'is a chair' unless he has learned that it falls under the truth
rule 'y is a chair' is true iff x is a portable seat for one'. But someone might well
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know this about 'is a chair' and still not be able to tell about some given object (or,
for that matter, about any object) whether or not it is a chair. He would be in this
situation if, e.g., his way of telling whether a thing is a chair is to find out whether
it satisfies the right-hand side of the truth rule, and if he is unable to tell about this
(or any) thing whether it is a portable seat for one (1975, p.62).

There exists thus a clear dimension of conceptual development which concerns the
discovery of the situations in the real world where some concept applies and of the
(pragmatic and epistemic) consequences that follow from its application. These two

aspects can be gradually worked out in the course of development by formulating and
testing hypotheses relative to the concepts in different circumstances.
The hypothesis that cognition has a biologically determined conceptual expressability
corresponding to the capacity to represent the structures founding a range of domains
(e.g. cardinal number, physical causality, topology, etc.) and that cognitive
development is the process by which the child works out the contexts of application for
those structures, remains however too general to provide some insight into the
complexity of the developmental processes or to motivate specific empirical research.
The hypothesis does not in fact put any precise constraints on how the developmental
process may occur: whether it proceeds in a simple cumulative way, e.g. the structure
is applied to a larger and larger number of situations, as they present themselves to the
child; or whether it proceeds in a gradual, step-by-step way, e.g. the structure is
applied to a limited class of situations, then some generalization process goes on and
the structure is applied to new situations and so on.

It is in addressing the issue of the constraints on development that the coherence and
power of Piaget's account of development can be helpful. The process of domain-
specific development can be viewed as consisting of a sequence of stages, each
corresponding to the knowledge that the domain structure applies to a particular class
of situations. Each new stage includes the knowledge formulated in the preceding stage

(e.g. the domain structure, the applications of the domain structure characteristic of the
stage and the consequences derived from these applications (properties, regularities,
relations discovered)), and at the same time reorganizes and extends it. The application
of the structure is worked out for a new set of situations, new facts are derived and a

new stage organization emerges. The step-by-step elaboration reflects the increasing
complexity of the objects to which the domain structure is applied and the role of
prerequisite that each new applications plays for further acquisitions. In sum, this
perspective mirrors, at the level of knowledge domains, the Piagetian account of
development as it describes the elaboration of more abstract and articulate concepts
from the assimilation of more and more complex contents to an innate structure, and
the relative discovery of new aspects and properties of the domain.
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This hypothesis, stated here in a very tentative form, will be examined from different
perspectives. It will be reformulated in the terms of a formal model of transition
according to which development is the process of "making information relevant": the
specialized domain structure creates a representation which is not immediately relevant
and whose import and implications have to be worked out. The hypothesis will be also
examined with respect to a concrete case: the developmental phenomena of early
competencies. The domain-specific perspective proposed provides in fact a new way

of approaching these data.

2.5 Conclusions

According to Piaget, cognitive development proceeds in a fixed sequence of stages,
underlying general representation and inference structures. Along the sequence, each
new structure includes the previous one, and at the same time extends its generality and
coherence. The mechanism responsible for the transition from the lower to the higher
stage is reflective abstraction which consists of two processes: 1) the projection of the
structure of the lower level onto a new plane of thought, and 2) the integration of it to
the structure present at the higher level to form a new system. The originality and
strength of this account lies in the synthesis of a holistic view of conceptual
organization (structural stages) with a cumulative view of conceptual increase
(inclusion of the structure of the lower stage into the higher stage). This synthesis
makes it possible to avoid the problems in which holism (i.e. the incommensurability
of concepts and the difficulty of characterizing the progress) and cumulativity (i.e. the
inadequacy of an additive account of conceptual growth) taken alone run into.
However Piaget's characterization suffers from two fundamental problems.

Empirically, the hypothesis of a sequence of clear-cut overall stages of reasoning and
representational competence is undermined by the findings of heterogeneity and of
early competencies. Conceptually, the process of reflective abstraction, as it is
formulated, does not provide a sufficiently detailed psychological account of how the
processes of structures' translation and reorganization work and succeed in achieving
greater representational and logical capacities. The most vehement criticism of
reflective abstraction comes from Fodor (1975), who qualifies this mechanism of
"entirely descriptive".
Both empirical and conceptual problems point towards the same aspect of Piaget's

theory, i.e. the view of cognition as a single system, organized by progressively
stronger logical structures. On the one hand this view is not corroborated by the
empirical evidence, which instead stresses the fragmentation (and the partiality) in the
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way cognition is organized; on the other hand, this view makes abstract sets of
relations the locus of developmental change.
These problems appear to become more tractable if the perspective is shifted from the

view of a unified cognitive system, organized by same underlying principles, to the
alternative view that cognition is organized into partial, domain-specific structures,

specialized in processing particular types of information. From this alternative
perspective, development would proceed within individual domains and by means of
local interactions between domains, and would result in the elaboration of

progressively richer knowledge contents. Two major advantages follow from this
view. We can reinterpret most of the empirical evidence of early competence as levels
of elaboration in the development of the domains and heterogeneity as domains
developing with some independence. We also approach the question of the transition
processes on a level which appears to be more tractable, i.e. the changes concern

partial structures of knowledge. In the next two chapters I try to make this view
clearer, first through a formal model of developmental transition according to which
development is the process of discovering the relevance of some structure in new

contexts, then through a concrete example, the reinterpretation of the early competence
phenomenon.

38



Chapter 3 Modeling domain-specific cognitive development

3.1 Introduction

In two articles (1985,1987), Richards presents a formal model of the development of
the object concept, from age 4 to 18 months. This model specifies logical
representations for the sequence of substages originally described by Piaget and an

algorithm for the processes of transition between substages.
Richards defines stage organizations in terms of propositional networks and captures
the relations of inclusion and extension existing between successive stages in terms of
the addition of new relevant propositions to the preceding network. The transition
between stages is defined as the process of "making information relevant" and is
brought about by the abstraction from weaker reasoning frameworks of stronger
systems. This abstraction is governed by the semantic algorithm of diagram pruning.
The semantic environment in which the child reasons is reduced and strengthened as

certain propositions change from irrelevant to paradoxical to either true or false, and
allow a greater number of inferences to be drawn.
Since Richards' model shifts the burden of the explanation of developmental change
from the kind of representations that the child have to the interpretations that he
entertains, this model is perfectly compatible with the view on cognitive development
introduced at the end of the previous chapter. Development emerges from the tension
between biologically determined cognitive structures specialized in processing specific
kinds of information and learning the circumstances under which it is appropriate to
use these structures to perform in the world. In other words, the child's cognitive
system provides domain-specific representations of which the child works out the
relevance in the course of development.
I make appeal to Richards' model as a way of explicitly formulating my view of

development. I extend this model to provide a general purpose structural description of
knowledge states and transitions in the genesis of conceptual domains. While offering
a way of representing central aspects of the developmental process, the extended model
provides only a purely formal and descriptive account. I therefore suggest that a
complete analysis of developmental change has to include an account of the content of
the concept at the different stages, beside its structure. This further layer of analysis is
fundamental as far as generation of new research (and eventual educational
applications) is concerned.
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The chapter is divided in two sections. In the first section, I present in some detail the
objectives and the general structure of Richards' model before discussing his account
of transition from substage 3 to 5 of the object concept development. In the second
section, I identify some problems with the explanatory value of the model and propose
ways of dealing with them.

3.2 Richards' model of developmental transition

Richards' proposal is an attempt to reinterpret some aspects of the Piagetian account
of conceptual development and at the same time deal with Fodor's compelling
argument on innateness. The basic intuition behind Richards's model is that, in the
course of development, the representational and inferential structure of the cognitive
system remains unchanged, while its interpretation, or content, varies. If we assume

that the bases of the cognitive system are propositions related by logical connectives,
the developmental process may increase the number of true propositions as well as the
number of inferences which can be drawn from them. The developmental changes are
thus envisaged at the level of what is entertained (what is relevant for the child at a

given stage), rather that at the level of conceptual expressability (e.g. Fodor's language
of thought).

3.2.1 The objectives

Richards sets two central aims for the explanation of cognitive development:
1) to specify a psychological mechanism of conceptual development, which is
explicit and capable of dealing with Fodor's nativist conclusions;

2) to represent the difference between lower and higher conceptual structures.
Richards deals with the first point by assuming a) that children can represent

propositions and logical relations (e.g. they have an innate, though limited, logical
competence) and b) that in the course of development they elaborate increasingly
complex conceptual contents (e.g. at different stages they reason within different
propositional networks). The change in the knowledge contents is expressed in
semantic terms, as different truth-values are assigned to propositions. The process of
reassigning values invokes a form of abstraction over the semantic environment in
which the child reasons and brings about an internal restructuring of knowledge.
Regarding the difference between lower and higher conceptual structures, Richards

assumes that the structures constitute holistic systems, i.e. the meaning of the concept
at a stage is only specifiable as part of the system, of entities and relations, to which it
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belongs. From this property of concepts it follows that two (developmentally ordered)
stage-structures are incommensurable, i.e. there is no univocal way of comparing their
conceptual organization and of saying what has been added to the lower stage concept
to form the higher stage concept. It is in principle impossible a) to characterize the
concept that the child has at the various levels in a stage-independent way, b) to specify
the differences between concepts of different levels and c) to identify the conceptual
advance that later stages represent with respect to the preceding ones. In order to deal
with the problem of incommensurability between structures, Richards recovers the
Piagetian idea that concepts develop in a sequence of discrete stages, each including the
preceding stage's structure and explores the possibility of characterizing the inclusion
and the conceptual increment in a formal 'syntactic' way:

If one takes a stage to be a network of connections among schemas, with schemas
regarded as the analogues of sentences, Piaget's theory can be seen to inherit the
coherence of Quine's account. From a 'syntactic' perspective one may discern a
particular network as included in another, and yet semantically one may read the
two networks in entirely different ways (p. 35, 1985).

The relations of inclusion and extension between two successive stages are captured by
the fact that the structure of propositions of the more advanced stage contains the
structure of the previous stage plus some new propositions which express the novelty
and the conceptual advance of the new stage. Nevertheless on the semantic level, the
two structures can receive two radically different interpretations and constitute two

qualitatively different conceptual systems.

3.2.2 The structure of the model

Richards approaches the developmental question from a formal semantics
perspective, undoubtedly an innovation in cognitive psychology. Richards' basic
assumption is that, if the developmental process is of a psychological nature, then
logical reasoning is to play a fundamental role in bringing about the conceptual
changes; the conceptual advance is derived through problem solving and inference.
Under this assumption, he notes that:

Which logic we should envisage to be involved, however, is a matter for
speculation. It would seem natural to consider classical logic, if only because
Piaget regards it as determining the fourth stage. He does, nevertheless, entertain
another possibility, viz., relevance logic. We shall explore the hypothesis that both
logics are actually involved in development. Given that the mechanism need not be
determined by a single logic, we shall suppose that it is in a certain sense unstable,
sometimes using classical logic and other times employing relevance logic, i.e., the
first-degree fragment (p.36, 1985).
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Children have an innate internal language, where propositions and the logical
connectives and, or and not are represented. However the interpretation of this
language is not univocal. At different stages of development, and depending on the
context, children can interpret propositions and relations within one of three logical
systems: a fragment of relevance logic (first-degree entailment), Kalman logic or

classical logic.
These logical systems are ordered according to their inferential power, that is the class
of valid deductions that they allow. This difference in reasoning strength is central to
capturing the difference between children of a lower stage and children of the higher
stage and to modeling the transition between stages. The transition mechanism operates

upon the weak logical structure of the lower stage (i.e. the four-valued first-degree
entailment), and reduces its semantic space to three-valued Kalman logic, first, and
then to two-valued classical logic. This semantic mechanism leads thus from the
weaker to the stronger reasoning framework

3.2.2.1 The logical systems

The formal apparatus to characterize the logics consists of a propositional language
which has the three basic connectives and, or and not (from which the other
connectives can be introduced by definition if required) and a nonempty set ofatomic
sentences. The set of all possible sentences of the language can be defined inductively:
where A and B are any sentences, so too are (A and B), (A or B) and not A.
Moreover, since we want to distinguish the conceptual stages in terms of the
deductions that are produced, a relation of Entailment is defined at the metalinguistic
level: =>.

The two principal logics are defined in semantic terms. In Classical logic, the
propositions have one of two truth values: they can be either true or false. The meaning
of the connectives and, or and not is defined as follows:

- a conjunction is true only when both conjuncts are true, otherwise it is false;
- a disjunction is true when at least one disjunct is true; it is false when both
disjuncts are false;
- a negation is true when the proposition is false; false when the proposition is true;
- an entailment holds between A and B (A => B), when A and B are both true, both
false, or when A is false and B is true. It does not hold if A is true and B is false.
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In First-degree Entailment, a proposition can have one among four truth values: true,
false, both true and false (btf) and neither true nor false (ntf). The connectives are

redefined to include the case of propositions btf or ntf, which are incomparable
between themselves.

The first-degree entailments for conjunction and disjunction are defined in the
following diagrams:

t f ntf btf

t t f ntf btf

f f f f f

ntf ntf f ntf f

btf btf f f btf

Fig. 3.1: Truth-table for conjunction in first-degree entailment

t f ntf btf

t t t t t

f t f ntf btf

ntf t ntf ntf t

btf t btf t btf

Fig. 3.2: Truth-table for disjunction in first-degree entailment

The negation is defined as in classical logic for propositions which are true and false.
For the other two cases, negation does not change the truth value of the proposition: if
A is ntf, not A is ntf; and if A is btf, not A is btf. Concerning entailment, (A => B)
holds when A and B are either both true or both false; and when A is false. (A => B)
does not hold when A is true and B is false, ntf or btf, and also when A and B are

incomparable.
The relationship between the theories of entailment defined by these two systems is

central to this developmental model. The logic of first-degree entailment is wholly
included in classical logic, as entailments which hold for the former holds also for the
latter and constitutes a sub-theory of classical logic. This property reflects the
fundamental inclusion relation existing between two ordered stages in development.
Kalrnan logic occupies an intermediary position between the logic of first-degree



entailment and classical logic, as Kalman entailment is strictly stronger than first-
degree and strictly weaker than classical entailment. Kalman logic is a three valued
theory, where the truth values are fixed as true, false and both true andfalse (btf).
In practice, when reasoning in the 4-value environment of the logic of first-degree

entailment, children distinguish the class of entailments that are first-degree valid, i.e.
what entails what in first-degree entailment. Similarly, when reasoning in the bivalued
environment, children distinguish the more extended class of classical entailments.
Disjunctive syllogism and transitive inference are instances of schemas that hold in
classical logic, but that are not valid in the logics of Kalman and of first-degree
entailment.

((A v B) & -A)=> B
ntf btf ntf btf

t

ntf

incomparable

Fig. 3.3: Proof that disjunctive syllogism is not valid in the logic of first degree
entailment.

(A and not A) => (B or not B) is an instance of a schema that distinguishes Kalman
logic, where it holds, from first-degree entailment, where it does not hold.
Significantly, the strength of these logics is inversely related to the number of possible
truth values: the class of entailments increases as the number of truth values decreases.

It is around this property of the three logical systems that the transition algorithm is
articulated.

3.2.2.2 The transition

The transition from the weak reasoning framework of the lower stage to the stronger

reasoning framework of the higher stage is accounted for in terms of a strategy which
operates upon the semantic structures of the different logics. The strategy consists of
abstracting from the four-valued tree of first-degree entailment a three-valued tree first
and a two-valued tree later. Technically, the abstraction is expressed by the pruning of
the first-degree entailment semantic tree of the node for neither true nor false, and then
by the pruning of the Kalman logic semantic tree of the node for both true and false.
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True

Fig. 3.4: The lattice of First-degree entailment

True

Fig. 3.5: The lattice of Kalman logic

True

N7
False

Fig. 3.6: The lattice of classical logic

Each pruning forces a reassignment of truth values under the constraint of consistency,
i.e. what is projected must be in accord with what is already known. The proposition
that was initially entertained as ntf is reassigned the value btf: the initial belief that the
proposition does not have any bearing on the situation at hand is partly conserved and
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combined with the new belief that the proposition might well be true in the situation.
Similarly the proposition entertained as btf is reinterpreted within a bivalent semantic
space and reassigned one of the values, true or false, after having been tested.
Defined in these terms, the mechanism gives an explicit account of the way in which

abstraction may proceed and expresses the property of unidirectionality of development
as change occurs from ntf to btf and from btf to true or false exclusively. It also
accounts for the tri-partite nature of change in terms of the constraint of consistency.
Development proceeds in a rational way as the initial abstraction corresponds to an

attempt to combine the initial beliefs with new insights. The combination of these
contrasting beliefs gives rise to an ambivalent state of mind, which itself motivates the
search for a rational solution of the ambivalence by abstracting the propositions into a

framework where they can actually be tested.
The transition algorithm is meta-conceptual in nature, since it is defined over the

different logical systems, and is not strictly part of any of them.

3.2.3 The predictions

Richards' model captures conceptual transition at the level of change in problem-
solving abilities. Schematically, a developmental transition is identified at the level of a
developmental task, i.e. a task that enhances different patterns of solutions at different
periods in the life-span and hence discriminates between competence levels (e.g. the
task is failed at a lower stage and performed successfully at a later higher stage). The
content of the propositions invoked by the model expresses the solution to

developmental tasks. The interface between the model and the empirical data is within
the developmental tasks. Richards writes:

These problems constitute the determinants of the analysis; that is, they set the
issues to be resolved and thereby fix the parameters necessary to specify the
concept. The solutions provide an interpretation for these parameters which is
given in the form of propositions which are held to be true (1985,p.61).

A proposition in the model can be either the solution of the tasks or a premise required
to deduce the solution. When this proposition is true, it permits conclusive reasoning,
that is to deduce a true proposition (the solution), given true premises (the problem).
The transition corresponds to the process by which the proposition comes to be
reinterpreted into a relevant proposition, i.e. a proposition which can operate as a

premise in the inferential chain or as hypothesis, be eventually verified and added to
the knowledge base. The model predicts that the transition between every pair of
ordered stages is tripartite, uniform and unidirectional:

46



1) children who fail the task approach the problem within the logic of first-degree
entailment and can only recognize the entailments valid in this logic. A proposition
which is either one of the premises or the conclusion of the deduction that produces the
solution is entertained as neither true nor false, that is irrelevant to the task in hand. As
such the accurate solution cannot be deduced: it cannot contribute to its being realized,
nor can it contribute to it being shown to be unrealizable;
2) the developmental strategy of abstracting a sublattice from the valuation space of
first-degree entailment is applied. The proposition which was entertained as irrelevant
is reinterpreted within the three-valued Kalman logic. In an attempt to combine the
"intuition" that the proposition might be relevant (and even true) and the prior belief
that it was not, children entertain the proposition as paradoxical: at the same time true
and false. The model predicts failure in solving the task, since an ambivalent
proposition, which plays the role of either premise or conclusion in a deduction,
cannot yield conclusive reasoning. In this intermediate phase, the failure is
accompanied by behavioural indices suggestive of internal conflict: any attempt to

verify an ambivalent proposition being also attempts to falsify it, and vice versa;
3) the developmental strategy is again invoked to force a reinterpretation of the
paradoxical proposition. The proposition is now entertained as either true or false and,
depending on the state of the world, is falsified or verified. By reasoning from true

premises to true conclusions, children can now increase their knowledge. The model
predicts that the correct solution is derived through classical inference and that the
testing of hypotheses is reflected, at the behavioural level, in verification procedures
and eventual revisions or corrections.

Before approaching the second aspect of the model, that is, the representation of the
conceptual increment between two ordered stages, let us examine the application of the
model to the development of the object concept. A concrete example makes the way in
which the model represents the stage structures clearer.

3.2.4 The model of the object concept development

Between 0 and 18 months of age, children learn a great deal about objects in the
world, about their spatial and dynamic properties. In this section, we focus on the
acquisition of object identity, or the permanence of the object in Piaget's terms. The
understanding of object permanence is operationally defined as the capacity to look for
objects that have disappeared from view in the location where they were last seen and
to retrieve them. The structure of the object task, designed to investigate the
development of this understanding, consists of attracting the infant's attention towards

47



an object placed within reaching distance. The object is then hidden under a cover,
with an action in full view of the child. Understanding of the permanence of the object
is attributed, in case the child searches for the object and looks under the cover. In
more complex tasks, the object is either hidden underneath a second cover, beside the
one used in the previous task; or the object is hidden under two superposed covers; or

else the cover under which the object lies, is exchanged location with a second cover.
According to Piaget's reconstruction, between 0 and 4 months infants develop the

capacity to track moving objects first in their field of view and later also beyond it,
with coordinated movements of the head and the eyes. By substage 3 (4 to 6 months),
infants can reach out to pick up an object that they see. However if the object task is
presented and the object is fully covered under a cloth or a cup, infants do not attempt
to remove the cover and to retrieve the object. It is sufficient for the object to be only
slightly uncovered and visible that the infants will not have any trouble in recovering it.
In a sense, substage 3 infants act as if the object, once covered or disappeared, no
longer existed. At substage 4 (6 to 12 months), infants can retrieve the hidden object.
However, if in a second trial, the object is hidden under a second cover, always in full
view of the child, another surprising response occurs. The infants go and look under
the cover where they first found the object, instead of where the object had last
disappeared, i.e. the second cover. Even after they fail to find the object, they do not
look under the second cover. At substage 5, infants retrieve the object from the last
hiding place and appear to be able to reconstruct the object's displacements.
Nevertheless, they cannot retrieve the object when it is hidden under two covers. They
lift the top cover and stop short of lifting the bottom cover. By 18 months, infants
seem to possess a structured concept of object, as they can find objects after any
visible displacement as well as after non visible ones, by verifying possible routes and
hiding places.
Richards reanalyzes this developmental progression between the substages 3 to 6

(from the capacity to recover the object from under one cover to the ability to recover
the object after double covering or swapping of location between two covers) in terms
of his transition model.

3.2.4.1 The transition from Substage 3 to Substage 4

The object is hidden under one cover in full view of the infant. Since the infant seems
interested in it, one would expect him to act to recover the object and hence to look
under the cover. Instead the infant does not do anything of this sort; first he seems
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bewildered and then loses interest in the whole situation. The model describes this state

of affairs as the infant representing the proposition:
(1) The object is there

(where the deictic 'there' refers to the location of disappearance) but projecting it as
irrelevant. The proposition (1) has the truth value neither true nor false. Although the
infant projects the appropriate proposition, he envisages the place of disappearance as

irrelevant to the recovery of the object. The irrelevant cognitive state also explains why
the reaction which accompanies the disappearance is one of bewilderment.
Later, the infant may modify his view and envisage (1) as more significant to the

problem than he first thought. However the proposition (1) does not immediately
emerge as an unambiguous hypothesis. The infant has reasons to suppose that (1) is
true as to take it to be false, a state that in the model corresponds to projecting the
proposition (1) as paradoxical, by invoking the truth value both true and false. The
corresponding state of mind is one of distress and frustration, as often reported in the
literature. In fact neither looking under the cover nor not looking would lead to a

verification or a falsification of the hypothesis.
The way out is to project the proposition (1) as either true or false. The infant is now
rationally motivated to act and check under the cover whether the object in fact is there
or not, since what he now discovers he can understand. The infant can now retrieve
the object from underneath the cover and have thus reached substage 4. The model
defines the object concept elaborated at substage 4 as consisting of one atomic sentence

(1) and a generalization of it in the atomic schema (2):
(1) The object is there
(2) [The object is there]3

The schema (identified by the square brackets) has object and place as parameters, and
a subscript which indicates that the schema emerges from substage 3. The classical
theory of the object elaborated at substage 4 consists of (2) and all the atomic
sentences, like (1), that can be added under (2). The classical theory thus specifies the
stage 4 conditions of admissibility for sentences to be instances of (2).

3.2.4.2 The transition from Substage 4 to Substage 5

The acquisition of the substage 3 theory does not require the application of any
particular rule of inference. As the proposition (1) is seen as relevant and bivalent, the
infant is motivated to act in order to determine whether the object is or is not under the
cover. In the transition between substage 4 and substage 5 instead, inference plays a



central role, as the hypothesis that is projected to solve the corresponding
developmental task is to be deduced after proposition (1) has been falsified.
The critical task that differentiates substage 4 from substage 5 consists of a first trial,
equivalent to the previous one (where the infant does not have any difficulty in
retrieving the object) followed by a second trial. The experimenter, instead of putting
the object again in the same location, puts it under a second cover placed just beside it.
The surprising behaviour is that frequently the infants do not look immediately under
this second cover, but rather lift the first one, where they had previously found the
object. Even more surprising is the fact that, after not having found the object, they do
not turn toward the second cover and look underneath it.

This new task demonstrates how the substage 4 concept of object identity is limited,
as it is sufficient to move the object to a new location to observe behaviours similar to
those characteristic of Substage 3. The model formulates this state of affairs as

follows. The infant entertains two propositions7:
(3) The object is therej
(4) The object is therei or The object is therea

The choice of propositions reflects the fact that the infants conceive the problem as one

concerning 'therej and not'thereIn that respect, a disjunction is more appropriate
than a conjunction for two reasons. From a conceptual point of view, the problems
deals with one object moved between two locations, a situation that can be represented
by a disjunction, but not by a conjunction. From a logical point of view, the complex
proposition is relevant, even when one of the disjuncts is irrelevant (see the definition
of disjunction in the logic of first-degree entailment), and this would not be the case

with a conjunction.
The infant approaches the problem from the perspective of substage 4 theory. Hence

he has good reasons to expect the vanished object to be where it had been found.
Proposition (3) is an instance of the schema (2) constitutive of the Substage 4 theory,
and as such it is considered relevant to the problem and true. The second disjunct of
(4) is instead considered irrelevant to the task, as the infant is exclusively centred on
the location 'therej.
The infant takes (3) to be true, looks under the cover and finds no object there. If he

had an adequate concept of object identity, he would consider that the object is under
the second cover and would go and look there. If the infant were reasoning within a

classical logic framework, he would go through a disjunctive argument:

7The subscritped deictics refer to the two locations: is the first cover and
'ii' the second. The three occurrences of 'object' are taken to be co-
referential.
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(4) the object is there, or the object is there
(3) not the object is therei

(5) the object is therea-

Instead, substage 4 infants, after having failed to retrieve the object from under the
original cover, do not attempt to reach for the second cover and appear to be
bewildered. According to the model, they reason within the weak logic of first-degree
entailment, where the disjunctive syllogism is not a valid entailment. In this
framework, they do not seem to conceive of any alternative location of the object to the
one in which it was previously found. The possibility that the object is 'therejj is
considered irrelevant to the solution of the problem.
In a subsequent phase, the child, while still failing to recover the object, shows

reactions of frustration, rather than bewilderment. The change is interpreted as

reflecting an emerging awareness that the object might be under the second cover. The
object's move to this new location is now seen as being of some relevance to the task,
even though the reasons for considering it unimportant are still present. The model
represents this state of affairs in terms of the proposition (5) the object is there^ now

being projected as paradoxical, i.e. both true and false. The task is now formulated
within the environment of Kalman logic, where the disjunctive argument is still not
valid. However even though the infants do not look under the second cover, they start
suspecting that it might well be there. In these circumstances, they are not motivated to
go and look under the second cover because both finding the object and not finding it
would confirm the paradoxical hypothesis.
The model envisages the way out of the dilemma as the strengthening of the

reasoning framework by abstraction of the bivalued classical logic from the three-
valued Kalman logic. Now the disjunctive syllogism is valid and proposition (5) the
object is therea- can be deduced as a true hypothesis, open to testing. The proposition
which was paradoxical is thus reassigned the truth value: either true or false. The infant
is now rationally motivated to look under the cover to check whether the object is there
or not. The testing carries new knowledge as the infant can finally understand the
outcome of his action. As he finds the object in the second location, he discovers new
properties of object displacements and identity.
The ability to retrieve the object when it is moved between distinct locations

corresponds to the attainment of substage 5. The model characterizes the conceptual
advance as the extension of the theory of substage 4 by the addition of the schemas: (6)



[ The object is thereat and (8) [not the object is therewhich reflects the fact that in
the task with two covers, the proposition (3) is false: (7) not the object is therej.
The substage 5 object concept is determined by the classical theory consisting of:
(2) [The object is there]3
(6) [The object is there„]4
(8) [not the object is there,]4

The theory specifies what instances are admissible, that is, which propositions the
substage 5 infants hold as true.

3.3 Richards' model as an account of transition in domain-specific
development

According to the domain-specific view proposed at the end of chapter 1, development
emerges from the tension between biologically determined structures, specialized in
processing specific kinds of information pertaining to the diverse knowledge domains,
and discovery of the circumstances under which the application of these structures
makes it possible to solve problems, identify properties, anticipate events, etc.

Contrary to the general stage hypothesis, the development of a conceptual domain is
not brought about by changes outside the domain. Furthermore, the development of
the different knowledge domains is presented as proceeding in a discontinuous
fashion, through a sequence of stages, each corresponding to a particular range of
application of the domain structure. The stage sequence reflects the increasing
generality of the concepts, as later stages have a more extended range of application
and deal with more complex contents. The nature of the concept elaborated at the
different stages is defined by the domain structure and by the contents that the structure
assimilates at the stages. The model proposed by Richards is not only compatible with
this view, but extremely useful in increasing its precision and explicitness. I now
examine how the main components and articulations of the domain-specific framework
presented can be specified by means of Richards' model.

3.3.1 The general principles

At the more general level, Richards starts from the assumption that children have an

innate representational system, where propositions and logical relations are expressed
and where complex reasoning can take place. At the same time, children cannot

immediately access and exploit all the information represented, i.e. at the outset most
representations are irrelevant and the range of inferences is extremely limited. The
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distinction between representing information and entertaining it as relevant corresponds
to the distinction between having a structure to process domain information and
knowing where to apply it and which consequences to draw from it. The opposite case
involves representing a proposition, but entertaining it as irrelevant, i.e. neither true
nor false. This is a logical formulation of the loose principle that, in presence of the
appropriate information, the specialized domain structure is triggered and produces an
internal representation, which need not be exploited to accomplish some action plan, to
draw some inferences, etc.
The reason the cognitive system has irrelevant representations is that any input from
the world is inherently ambiguous: it can be processed by many different specialized
systems (like having different points of view on a same scene). For that reason, not all
the representations produced can be entertained as relevant, at any one moment and for
one situation. But how can a selection between the representations be made, and on

which basis? Development can play the role of the process by which we work out the
consequences of representing particular aspects of a situation and we fix, through
hypothesis formation and testing, the representations that are more useful in the real
world (e.g.for solving problems, organizing and explaining facts, anticipating events).

3.3.2 The transition process

Regarding the transition process, the tripartite, uniform and unidirectional model
conforms to the idea that development proceeds in a similar, discontinuous manner in
all the domains. More particularly, the model specifies an explicit mechanism capable
of explaining how the process of gradually working out where the application of the
domain structure is advisable and useful (e.g. to identify properties and relations, solve
problems, anticipate facts, etc.). Moreover, as Richards defines it, the transition
process conforms well to the behavioural patterns observed in the development of the
object concept, as described by Piaget and later confirmed by numerous studies (see
Bower 1974 for a review). I will now set out two examples: the transition between
substage 4 and 5 of object concept development and the transition from substage 1 to 3
of the development of the conservation of liquids. In the examples I try to show how
the generalization of domain-specific structures to new contexts integrates the account
in terms of Richards' processes for making information relevant.
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3.3.2.1 Transition in object concept development

The clearest illustration of the working of the developmental strategy described by
Richards is found in the transition between substage 4 and 5 of the object concept. At
substage 4, the infant has elaborated a concept of object, according to which an object
can disappear at one location and can be found there. Thus, when the infant is faced
with the A-B task (the object is transferred from under A, where the infant had found it
before, to B) he formulates the hypothesis that the object is under the cover where he
found it in previous experiences. The infant represents the transfer from A to B, but
does not conceive that as relevant to identifying the location of the object. Therefore,
even when he looks under A and does not find the object, he does not formulate the
alternative hypotheses (e.g. the object is under B). In Richards' model this state of
affairs is represented as the infant reasoning within the weaker, first-degree logic.
Within this logic, the inference that if the object is either under A or under B; and the
object is not under A, then it is under B, cannot be drawn.
In the terms of the domain-specific hypothesis, the child has a structure specialized to

process information relative to objects and displacements. At substage 4, this structure
applies (and is relevant) to the class of situations which involve one object and one

location. It is because the substage 4 concept does not cover the displacements between
locations that the transfer and the positioning of the object under B constitute irrelevant
information for the child. Thus confronted with the A-B task, the substage 4 infant is
bewildered at not finding the object under A, the only location where he conceives it to
be.

The developmental strategy ofmaking what is irrelevant paradoxical is then applied.
The infant tries to square the evidence suggesting that the object might be under the
cover B (e.g. resulting from the application of the domain-structure to the problem)
with the original belief that the object is not under B and with the newly acquired
knowledge of the fact that the object is not under A. The infant finds himself in an

ambivalent state of mind with respect to the solution of the task, expressed by the
proposition that it is both true and false that the object is under B. Cognitively, this
does not motivate the action of verifying whether the object is indeed under B, as both
finding and not finding the object would confirm the hypothesis. Although Kalman
logic is stronger than the logic of first-degree, the inference which would lead from
the falsification of the initial hypothesis to the correct solution is still not valid.
The developmental strategy of making what is paradoxical into a proposition which is
either true or false further strengthens the reasoning. Now the disjunctive syllogism is
valid and can take the infant from formulating the proposition as hypothesis to verify
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it, by searching for the object in the second location. The hypothesis testing
corresponds to working out the consequences of applying the domain structure to this
new class of situations, and to acquiring new knowledge about objects and
displacements.

3.3.2.2 Transition in liquid conservation development

It also accounts well for the three phases of the developmental process that have been
observed in most Piagetian experiments. Consider the case of the conservation tasks,
and in particular the liquid conservation task (see section 2.2). In an initial phase,
children do not conserve the amount of liquid after this has been poured from one of
two identical containers into a container of different shape. One of the typical answers
is that "there is more liquid to drink because the liquid comes up higher", a judgment
based on the comparison between the levels of the liquid in the long, narrow glass and
in the short, wide glass, which overlooks the fact that the amount of liquid itself is
unchanged. The second phase is characterized by vacillations between non-

conservation and conservation judgments. Either the children keep changing their mind
from conservation to difference, or conserve after one transformation and do not

conserve after a second, equivalent transformation. In the third phase, the child
confirms the conservation of liquid quantity, regardless of the other changes, and
justifies it by arguments based on logical identity, reversibility by cancellation of the
change, and compensation between dimensions.
This developmental sequence can be characterized in terms of the three cognitive

states postulated by the model as the process through which the child generalizes the
specialized domain structure to a new set of situations. In the first period, the
appropriate domain structure is not applied (e.g. it is taken to be irrelevant to the task
at hand). It follows that the properties (e.g. the water is the same, nothing has been
added nor taken away) and the relations (e.g. the level of the water in one container is
higher, but the width is smaller) from which the conservation principle may be derived
are not identified. The child represents the proposition that the amount of water is the
same in A and B, since he has the structure appropriate to process this information.
Yet, he entertains that proposition as irrelevant. The same information can in fact be
processed by systems other than the appropriate one, systems that had worked in the
past, e.g. global perceptual estimation of quantity, and of which the child knows the
implications.
The vacillations typical of the intermediate period reflects an ambivalent state of mind,
where the child starts envisaging that the application of the domain structure to the task
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can provide some perspective on the problem, as it suggests that the amount of water is
the same. In an attempt to fit this conclusion with what he knows already, the child
tries to conciliate that conclusion with the initial one, that the amount is different. Thus
he entertains the proposition that the amount of water is the same in A and B as

paradoxical, i.e. at the same time true and false.
Finally, the third period corresponds to the straightforward application of the domain
structure to the task. The proposition becomes relevant and bivalent. The child
formulates the hypothesis that the amount is the same, either justifies it by the
argument of composition of width and height or tests it by pouring it back into the
initial container, and derives the conservation principle.

3.3.3 The sequence of stages and their organizations

In Richards' model, the conceptual organization underlying the stages is defined by a

classical theory consisting of a network of prepositional schemas. The conceptual
progress brought about with a new stage is specified in terms of the addition of new
schemas to the classical theory of the previous stage. The classical theory of substage
4, for example, consists of the atomic schema
(2) [The object is there]j.

At the subsequent substage 5, two new atomic schemas are added:
(6) [The object is there^4
(8) [not the object is there^4.

This same representation can be extended to define the stages in the development of
conceptual domains. The network of propositions expresses the range of application of
the domain structure at a stage, i.e. the class of situations where the relevance of the
structure has been worked out. The inclusion of the lower stage into the subsequent
stage and its reorganization are captured by the fact that a) the network corresponding
to the lower stage is still recognizable in the higher stage and b) the network
corresponding to the higher stage introduces supplementary propositions and relations
between propositions, and thus constitutes a new network.
Under the assumption that the concepts in the network are holistic in nature and that

the concept of different stages are incommensurable, the concept at the substage 4
ought to have a radically different interpretation from the concept of substage 5. This
requirement is partially satisfied by the model. On the one hand, an understanding of
objects based on the substage 4 classical theory, where only instances of (2) are true,
is to be very different from that of substage 5, where instances of (6) and (8) are also
admitted. On the other hand, schema (2) belongs to both classical theories and its
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content is constant within the two theories, i.e. the solution to object tasks with one

disappearance location only. The fact that a schema constitutive of the classical theory
of two stages has the same scope is not strictly compatible with the assumption that
concepts of different stages have incommensurable interpretations, even though it
reflects the inclusion relation at the basis of Piaget's analysis of stage structures.
Richards proposes to envisage the issue of incommensurable structures which share
common components from two different perspectives, i.e. that of the cognitive
scientist and that of the child. From the cognitive scientist's viewpoint each substage
has a content, i.e the class of tasks in the scope of the substage's schemas.
Development corresponds to an increase in competence (e.g. extension of the range of
application of the concept) such that new substages include the preceding ones. Thus
the structure of the predecessor (e.g. its schemas and their content) is included in the
successor.

From the child's viewpoint, on the other hand, the meaning of the schemas changes
radically from one substage to another. This meaning can thus be specified only in
terms of different theories, characteristic of the different stages. The distinction
between the child's and the cognitive theorist's perspectives leads Richards to conclude
that;

The difficulty is not merely that one cannot get inside the head of the child but
that it would be useless even if one could. One would then have no perspective
from which to articulate the difference between the theories. This can only be
characterized in an extra-cognitive way. What one shares with the child is the
sequence of classical theories, not their incommensurable interpretations (p.62,
1985).

This conclusion however is not without problems. If the logical structure of
Richards' model is sufficiently plain, its status as a psychological account of
conceptual development does present some shortcomings. The conclusion that it is
impossible, as well useless, to attempt to give a characterization of conceptual contents
entails that; a) one cannot specify the conditions under which the child entertains some
concept as irrelevant, b) the developmental reconstruction is always a posteriori, on
existing data. The most dramatic consequence is that if one refuses to make hypotheses
about the content of the concepts the child has, one has no grounds upon which to

generate new empirical questions and construct new experiments.
The same problem emerges concerning the status of the formal characterization of the
stage-structures as a set of prepositional schemas which correspond to the solutions to
the class of tasks solved at the stage. On the one hand, Richards presents the
prepositional representation as a shorthand to express the fact that the solution of the
tasks indicates the acquisition of a more general competence, at least that equivalent to
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solving a class of comparable problems. The use of schemas to express this
generalization is presented as "a certain expedient (p.52,1985)":

to overcome the difficulty is to specify precisely what problems these are (....)
What is needed is some kind of generalization which defines the range of
appropriate instances. Unfortunately it is not easy to identify the relevant factors
and even if it were, it would be cumbersome to formulate them into a suitable
generalization (p.52, 1985).

On the other hand, Richards gives important theoretical motivation to the representation
of stage knowledge as propositional schemas:

It is natural to ask what the concept might be which is differentiated by the
classical theory determined by schema (2). Here it is difficult to be explicit
without resorting to metaphor or to the via negativa. Neither seems a satisfactory
way to identify the conceptual content of this substage, or any other substage.
Quine would seem to point to the only viable approach. Let us suppose that
insofar as 'object-sentences' are concerned, the child accepts as true only those
belonging to the adumbrated theory. Clearly he is going to have a very strange
idea of objects, one that may actually be impossible to characterize other than by
the theory itself. But what other characterization do we need? It seems sufficient
to identify the range of schemas which the child takes to yield true sentences, in
this case schema (2). This fixes, together with the logic, the concept he is
entertaining and reveals it to be curious in the extreme (p.53, 1985).

Richards argues that, since there is no satisfying way of giving a direct
characterization of the content of the concept, the only possibility left is to specify the
concept in terms of the schemas which underlie the solutions of the tasks that the
children solve at a stage. However this proposal risks becoming circular as we would
say that a child is at a stage on the basis of the tasks that he solves and then would
model the competence underlying the stage as a set of schemas corresponding to the
solutions of the tasks.

Consider, for instance, the case of a stage,, which is identified by the solution of
tasks a and b. The model represents the concept at stage,, by the schemas [a\n and [b\n,
which are the solutions to the class of tasks equivalent to a and b. Although formally
irreproachable (e.g. this characterization satisfies the constraints of inclusion and
extension as well as expressing the holistic properties of concepts), the characterisation
of stage competence remains purely descriptive. In a sense it posits the same thing that
has to be explained, i.e. the capacity to solve the tasks, as model of the competence,
i.e. the schemas expressing the solutions of the tasks. This leads Richards to the quasi
paradoxical conclusion:

What is then the object concept? It is just the set of solutions to the
characteristic problems (1985, p.52).
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Beside circularity, two other important consequences follow from the choice of
specifying the child's concepts solely on the basis of the tasks he can solve. Firstly,
we could not generalize from the children's performance in the tasks to qualify the
children's understanding of the concept, which strongly undermines the objectives of
psychological research. Secondly, and more importantly, we could only offer an a

posteriori characterization of the children's concepts on the basis of existing research,
as we would not have the parameters to devise and study new tasks. These parameters
can only be specified with respect to hypotheses about the capacities and the limitations
defining the concept at a stage, hypotheses that can be tested by designing and
administering new specific tasks.
In order to solve these problems, I suggest that the model be complemented with a

characterization of the nature of the conceptual content at the diverse stages, underlying
the classical theories described by the model. For instance, we can offer a tentative
characterization of the nature of the object concept at stage 4, and from that create new
tasks that, if our characterization is correct, should be easily solved by stage 4
children. Similarly, from our hypotheses, we can devise tasks that depend on aspects
of objects which, according to our hypothesis, may be difficult to handle at stage 4 and
predict failure in those tasks. Hence, by trying to capture the content of the concept, as
well as its structure, we can motivate new empirical work and gradually refine our

descriptions and interpretations of the developmental process.
Going back to the distinction that Richards introduces between the two perspectives
for analyzing conceptual development, i.e. the child's and the cognitive scientist's, I
am suggesting that both are necessary to account for the two related aspects of
development: the stage organization and the transition process between stages. The
external, formal perspective is indeed necessary to articulate the differences between
the stages which otherwise would be unscrutable, and to capture the constructive
process of stage transition. The sequence of stages can in fact only be articulated from
the outside, as we observe the change in the behavioural patterns, reactions and
solution strategies possibly of the same children at different moments in time or, more

simply, of a group of children of different ages. The internal perspective is instead
necessary to attempt a characterization of the children's competence at a particular
stage. It is this analysis that leads to new research, as it demands that new situations be
introduced to probe aspects of the children's understanding and to test the hypotheses
about their competence.
The domain-specific perspective, introduced as a solution for some of the problems

emerged with Piaget's theory, may provide the guide-lines for a detailed analysis of the
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conceptual structures at the different stages. According to the domain-specific
hypothesis, the nature of the concept at the different stages can be characterized in
terms of the interaction between the basic structure of the domain, that is specialized in
processing information relative to the domain, and the contexts in which this structure
is effectively applied to yield relevant information. The particular version of the
domain-specific hypothesis I propose claims that along the sequence of stage concepts,
the relevance of the domain structure is worked out for increasingly more complex
contents. Each stage reflects the relevance of the domain-structure for a particular class
of objects, and the simultaneous irrelevance of that structure over some other classes of
more complex objects, and defines a specific concept. The meanings of contents,
objects and order of complexity should become clearer when the domain of cardinal
number will be analysed and a set of situations that are instances of the domain
introduced.

3.4 Conclusions

According to the theoretical framework proposed at the end of chapter 2, conceptual
development proceeds at the level of individual knowledge domains (and of local
interactions between domains) and emerges from the tension between basic knowledge
of the structure underlying the domains and gradual learning of the (pragmatic and
epistemic) consequences of the application of the structure to real world situations.
The model of Richards helps make this process more explicit.
In this model, the fact that children may represent but not use some structure,

necessary to approach a particular problem, is expressed in terms of information which
the child entertains as irrelevant (i.e. neither true nor false). Although the specialized
structure applies to the test situation, the child does not appreciate its relevance to a full
understanding of the situation, nor the consequences of its application, or the facts that
he can derive from it. Subsequent development is characterized as the reinterpretation
of this information first as paradoxical (at the same time true and false) and later as
relevant. Only in this last stage, does the child proceed to testing whether the
application of the structure in the context of the task yields useful information for the
solution of the task. In the case that it does, the child has discovered a new situation
that can be understood with that structure and has learnt new aspects and properties of
the domain.

In conclusion, Richards' model makes it possible to capture the structure of the
developing concept: represent the sequence of classical theories and the relations
between them. This models also offers a way of envisaging the process that brings the
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child from less to more advanced conceptual organizations. In parallel with this
analysis, I suggest that it is necessary to provide an account of stage concepts. The
analysis of the kind of concepts that the children entertain at the different stages directs
empirical research, addressing questions such as:

1. what is the nature of the understanding beneath the classical theory of the stage?
2. (and its complementary) why are some aspects of the concept irrelevant?
3. with respect to which situations is the child in an irrelevant cognitive state?

and more practical questions, such as:

4. which kind of experience can be more profitable to get the process of "making
relevant" started?
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Chapter 4 Early competences revisited

4.1 Introduction

In this chapter, I pursue the presentation of the domain-specific framework through
the discussion of its application to a central issue in developmental psychology: the
interpretation of precocious success in Piagetian tasks. I argue that the domain-specific
perspective permits us to treat early success on modified tasks as evidence of a
different level of understanding of a concept from the one which underpins later
success on the standard task. The approach advocated provides a systematic treatment
of intermediate competence levels.
Early competence, already introduced in Chapter 2, points up the limit of the analyses
of cognitive development which take single tasks to be critical proof of the acquisition
of a concept. Because early competence is highly sensitive to the mode ofpresentation
of the task, it provides evidence for certain essential properties of concepts: their
context sensitivity, limited application and specialization; and of concept development,
gradual generalization and abstraction.
From the perspective of a domain-specific model, these properties of concepts in

development are captured through the distinction between knowledge of the domain-
structure and application of that knowledge. Each level of competence identified
experimentally, be it with a modified task or with a traditional Piagetian task, is
interpreted as evidence of the capacity to apply the domain-structure in the context set
by the task. The application yields representations of properties and relations relevant
for the solution of the task. The reason for the decalage from the modified task (i.e. the
precocious success) to the standard task lies in the different complexity of the content
invoked by the tasks. The structure of the modified and standard tasks is then
reanalyzed in terms of the nature of the objects which are to be isolated and related to
solve the task, i.e. the objects to which the domain-structure is applied and which are

expressed in the relevant representation.
The chapter is divided into three sections. In the first section, I examine the general

argument for attributing to the child early competencies on the basis of modified
Piagetian tasks, and identify some problems with the argument. In the second section,
I illustrate the argument with the case of the modified number conservation task of
McGarrigle & Donaldson (1975). In the third section, I propose a reinterpretation of
the precocious success data based on the domain-specific framework presented.
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4.2 The argument for early competence

As we have seen in chapter 2, Piaget devised tasks which were critical for attributing
a full-blown concept to the child, like the permanence of the object, the seriation, the
class-inclusion, the conservation of matter, liquid, weight and volume. The
conservation of number task, for instance, is the task which discriminates between
children who have an operational concept of number: they can create a representation
of the number of a collection and reason with it, and children who have a pre¬

operational concept of number: they have a pre-concept, or an intuition of number,
based on the spatial extent and the configuration of a collection.
The conservation task is a critical test of number concept in that to maintain the

equinumerosity between two collections after a spatial transformation is performed on

one of them, the child has to go beyond the spatial difference and consider the spatial
transformation as number-irrelevant. Different complex inferences could be involved in
deriving the conservation principle:
a) the post-transformation configuration may be related back to the pre-transformation
configuration, where the equinumerosity was first established (e.g. by reversibility,
equinumerosity can be confirmed by going back to the one-to-one correspondence
between the pre-transformation arrays);
b) the two arrays may be analysed in terms of density (the distance between elements)
and length of array, dimensions which are then combined and matched (e.g. by
composition, one is longer but more spaced, the other is shorter but more dense);
c) alternatively the operation performed on the array may be examined, to note that the
number of objects in the modified array is always the same (e.g. by identity, nothing
has been added nor taken away from it).
After Piaget, much research was aimed at devising tasks to control for other factors
which may have been responsible for the preoperational type of response as an

alternative to or along with logical competence. Larsen (1977) calls this approach the
simplification strategy:

The general strategy seems to be that since performance on any task is multiply
determined, it is impossible to draw any conclusions about one aspect of the state
of the child from his performance on the task until all other significant aspects of
the child's state have been measured and controlled for. Specifically, one cannot
conclude from a child's performance on, for instance, a conservation task that
the child "has" or does not "have" conservation until other significant factors
determining his performance, such as his attention or verbal ability, are also
controlled for. In particular, a negative conclusion about a child's possession of
conservation is unjustified (p. 1163).
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Hence the basic schema behind the replication tasks is to maintain the structure of the
original Piagetian tasks, while a) setting the task into different contexts (e.g. familiar
situations), b) changing the material or the wording of the questions, and/or c)
preceding the task with training sessions (e.g. for memory, attention, linguistic
expressions used). For some of these tasks, precocious successes are reported, i.e.
children could solve the modified task earlier than they could solve the original
Piagetian task.
These results opened the way to the early competence argument that, since the

Piagetian task is critical for attributing operational understanding of a concept, and
children can solve tasks of same structure, but in different modes of presentation,
before Piaget's task, then the children have the operational concept much earlier than
Piaget claimed. In the standard task, the argument goes, their real competence is
simply masked by performance factors. Larsen (1977) remarks that such an argument
is in principle unfalsifiable:

One could always argue that other factors prevent the expression of a given
behaviour, and there are always other factors involved in any experiment (p.
1163).

Beside conceptual problems, there are also a number of empirical problems. First, the
analysis of the behaviours associated with the correct response in the modified task
suggests that they are qualitatively different from the behaviours characteristic of the
correct response in the traditional task (e.g. non-operational justifications, response
strategies based on spatial indices, on the order in which the transformations are

performed or on the last word uttered. See the example which follows and Appendix
6.2 for more details).
Second, given a Piagetian task, early competence has been exposed by replications

that isolated a variety of factors, such as linguistic skills, pragmatic competence,

memory load, attention, etc. The non-conservation responses have thus been
interpreted as due to the difficulties with these various factors. In the case of number
conservation, for instance, Mehler & Bever (1967) claim that conservation is one of
the basic capacities already of 2-year-olds, and that only the maturity of memory and
attention capacities stop them from expressing this competence in the standard task.
Gelman (1969) explains non-conservation by the fact that the child does not attend to
the connection between the initial pair of sets and the post-transformation pair. Later
Gelman (1972) interprets non-conservation responses as indexing a lack of confidence
in his own judgment due to the child's poor counting skills, as opposed to lack of
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cognitive ability. On the other hand, McGarrigle & Donaldson (1975) identify in
pragmatic skills the reason for non-conserving responses.

Two problems arise from this accounts. The memory, attentional, counting or

pragmatic skills are themselves cognitive processes that, like conservation, have to be
explained by a response-independent factor, like the operational structures for Piaget.
Moreover, the alternative accounts need to explain not only the reasons for failure in
conservation, but also the development from non-conservation to conservation.
Unfortunately, no precise account has been offered of how memory, attentional,
counting or pragmatic skills develop to yield the solution of the traditional task.
Third, the solution of the modified task appears to be itself the outcome of a
developmental process, as a substantial proportion of children is reported to fail even
this task. A complete account of early competence should also explain the process by
which the child arrives at the solution of the modified task.

To summarize, if, following the early competence argument, the concept is attributed
to the child from his first success at the modified tasks, three main questions remain to
be answered:

1. What is the conceptual basis of the qualitative differences in performance on

modified and standard tasks, when the justifications are different, the strategies
often heavily reliant on physical and spatial features of the modified task and the
solutions do not easily generalize to equivalent problems;
2. What is the nature of the process which underlies both the solution of the
modified task and the shift from solving the modified task only to solving both
modified and standard tasks;
3. What is the cognitive organization in the period which precedes the solution of
the modified task and the process by which the child acquires this ability.

In order to clarify and illustrate these points, I will discuss a case of precocious
success in a Piagetian task: the studies of number conservation where the spatial
transformation of the collections is introduced as an accident instead of being carried
out directly by the experimenter.

4.3 A case of early competence in number conservation: conservation
after accidental-incidental transformations

One of the most robust evidence of early competence comes from the modified task of
McGarrigle & Donaldson (1975). McGarrigle & Donaldson analyzed the conservation
task of number and of length from a pragmatic point of view and examined some of the
factors which guide the child's interpretation of the conservation question ("is there
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more here or more here or are they both the same?"). They observed that a conflict may
be brought in by that fact that the experimenter utters a sentence referring to the
numerical relations between two collections, and precedes this utterance by an action
(the lengthening of one of the arrays) which implicitly refers to the spatial extent of the
collections. McGarrigle & Donaldson offered the hypothesis that it is the uncoupling
between the adults' linguistic and non-linguistic behaviour (e.g. a state of affairs that
goes against normal usage), which misleads the young child to interpret the
conservation question as in fact bearing on the spatial size of the collections, and hence
leads him to give a non-conservation response based on the comparison of spatial size.
As McGarrigle and Donaldson write:

It could be that the experimenter's simple direct action of changing the length of
the row leads the child to infer an intention on the experimenter's part to talk
about what he has just been doing. It is as if the experimenter refers
behaviourally to length although he continues to talk about number (1975,
p.343).

4.3.1 The accidental number conservation task

In order to test the pragmatics hypothesis, McGarrigle & Donaldson modified the
way in which the transformation was carried out. They substituted the direct action of
the experimenter on the display with an accidental transformation, brought about by a

'naughty teddy bear', whose own activity was explicitly directed towards the goal of
spoiling the game. Under this accidental transformation condition, since the spatial
transformation did not appear to have been produced with calculated intent by the
experimenter, the child should not be led to make the inference that the experimenter
was thinking of spatial size, while talking about number. McGarrigle & Donaldson's
hypothesis was thus that children would have conserved from an earlier age in the
accidental condition than in the standard conservation.

At the same time, the modification in the way the transformation was carried out did
not seriously affect the structure of the conservation problem. Firstly, the child was

introduced to the teddy bear, kept in a box, and was told that "teddy is very naughty
and that he was liable to escape from his box from time to time and try to 'mess up the
toys' and 'spoil the game' (McGarrigle & Donaldson, p.345, 1975)". The child was

then presented either with the standard procedure first or with the modified one first8.

8The 80 children (between 4,2 to 6,3 years of age) are divided into two
groups where the order of presentation is counter-balanced. The children
receive four tasks for each of the accidental and intentional conditions:
conservation of number equality, conservation of number inequality,
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He was asked whether two rows of counters of same number, same length and equally
spaced, were equinumerous: "is there more here or more here or are they both the
same?". In the intentional condition, after the initial judgment, the experimenter said
"Now watch...", lengthened one of the rows and repeated the previous comparison
question. In the accidental condition, after the initial judgment had been given, the
experimenter expressed surprise and worry while he took the teddy bear out of the box
and moved it towards the closest row of counters. He said: "it's naughty teddy!" or
"Oh! look out, he's going to spoil the game", and moved the teddy over the row to

disarrange the counters. At this point the comparison question was repeated. No
justifications of the answer were required, because according to McGarrigle &
Donaldson:

the attempt to elicit justifications would have involved the child and E in further
complex interaction, the characteristics of which could have influenced the
child's subsequent behaviour in a number of ways (p.346, 1975).

4.3.2 The results

Significantly more children gave equivalence conservation responses in the accidental
task (54 out of 80, 67.5%) than in the intentional task (33 also out of 80, 41.25%).
When all the four tasks (e.g. conservation of equal number, unequal number, equal
length, unequal length) were examined, the mean percentage of correct responses was
of 71.9% in the accidental task, and of 33.7% in the intentional task. A better

performance in the standard condition was found among the children who started with
the accidental conservation than among those who started with the standard task
(47.5% vs 35%). The number of conservation responses in the accidental condition
was lower when children started with the intentional condition (55% vs 80%).
The results indicate a clear decalage between conservation in the accidental and in the
intentional condition. More than 60% of the nursery children conserve number when
the transformation is carried out accidentally, while only 30% of them conserve

number when the transformation is carried out intentionally by the experimenter. These
results corroborate McGarrigle & Donaldson's hypothesis that the intentional structure
of the task misleads the children to interpret the conservation question as bearing on

spatial size rather than number.

conservation of length equality and conservation of length inequality.
Here I shall limit my discussion to the number equality task only.
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4.3.3 The replications of McGarrigle & Donaldson's study

4.3.3.1 Exact replications

The results of this experiment have been extensively replicated. Light, Buckingham
and Robbins (1979, experiment 1) tested 60 children from 4.9 to 6.5 years of age on

tasks of conservation of equal and unequal length in the two conditions, accidental and
intentional. The procedure used matched exactly that of McGarrigle & Donaldson's
original study. The results are presented in the following table:

C
tandard
'ondition

NC

Table 4.1: Number of conserving (C) and non-conserving (NC) judgments under the
conditions accidental and standard for equal and unequal sets (from Light,
Buckingham & Robbins 1979, p.306).

Even though less dramatic, the difference in the number of correct conservation
responses in the accidental and intentional conditions is confirmed: around 30% correct

judgments in the accidental condition (70% in McGarrigle & Donaldson) versus 17,5%
in the standard condition (30% in McGarrigle & Donaldson). When Light et al.'s
results are presented as cross-classification of responses, they reveal three main
behavioural patterns in the solution of the two task conditions:

1. around 66% of the children do not conserve in either of the task conditions;
2. around 17% conserve in the accidental conservation, and do not conserve in the
intentional conservation;
3. around 17% conserve in both accidental and intentional conditions of the

conservation task.

Only two children do not conform to any of these behavioural patterns as, in the equal
conservation task, they fail the accidental condition and succeed in the intentional
condition.

Accidental condition

Inequality
~~C~

Equality
NC ~~C NC"

11 0

10 39

00 2

9 41
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Similar results are reported by Dockrell, Campbell & Neilson (1980), Hargreaves,
Molloy & Pratt (1982)9, S.A. Miller (1982, experiment 3), Parrat-Dayan & Bovet
(1982), Neilson, Dockrell & McKechnie (1983), Moore & Frye (1986). The
difference between rates of conservation response in the accidental and intentional
conditions was confirmed also for the case of arrays of seven elements (Dockrell et al.,
Parrat-Dayan et al.), whereas McGarrigle & Donaldson had used collections of four
elements. The only exception to the generalization of the phenomenon to larger
collections is the study by Moore & Frye who report no statistically significant
difference between modified and standard conservation for collections of seven items.

4.3.3.2 Modified procedures: incidental transformations

An even stronger facilitation effect was obtained by substituting the accidental
transformation with an incidental one, that is, the change was made to look literally
accidental, as opposed to being carried out by a teddy bear operated by the
experimenter. This further modification was aimed at eliminating the role of the
experimenter in the transformation. As light, Buckingham & Robbins write:

Since the child's interpretation of the tester's intentions is central to our
concerns, it is unfortunate that the 'naughty teddy' device involves some
ambiguities in this respect. While the children in the first experiment were willing
to 'play the game' by attributing agency to the teddy bear, they clearly also knew
that the tester was responsible for both introducing and manipulating it. The term
'accidental' is perhaps a misnomer because the teddy bear was supposedly trying
to spoil the game. But the extent to which the child holds separate the intentions
of the tester and those of the teddy must remain in doubt. As any parent knows,
children at this age have an unnerving tendency to 'step outside' role-playing
situations of this kind just when the adult has been drawn in most deeply!
(p.307, 1979).

The authors devised a new version of the conservation task in which the task was

embedded in a competitive game between two children. The game consisted of placing
pasta shells on a grid; the winner was the first who placed all his pasta shells. The first
step in the game was to establish two equivalent amounts of pasta shells kept in two
containers, one of which had the particularity of being chipped. Once the equivalence
was confirmed, the experimenter handed a container to each child, and, at that
moment, 'remarked' that one of them had a very sharp chipped edge and that it could

9In this experiment the accidental transformation is carried out by a
monkey manipulated by a second experimenter. This modification is
introduced to eliminate any intervention of the experimenter who puts
the question on the material (even through a puppet).
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have been dangerous for the child. He thus searched for a new container and produced
a larger one, where he poured the pasta shells from the chipped container. The
conservation question was then put: whether the amount of pasta shells in the narrow
and tall container was the same as the amount in the wide and short container (the level
of pasta shells is different in the two containers). Moreover, the conservation question
was pragmatically motivated by the fact that the game was fair only if both children had
the same amount of pasta shells.
The incidental transformation paradigm led to even earlier conservations than the

McGarrigle and Donaldson's procedure. Light et al. reported that 70% of the children
conserved in the incidental condition versus 5% in the traditional condition10. Bovet,

Parrat-Dayan & Deshusses-Addor (1981) followed the same procedure as Light et al.
and, once the game had ended, put the candies back in the two containers and asked
the conservation question again. Their results11 confirmed the findings of the previous
experiment and are summarized in the following table:

Incidental

Standard

C

NC

8 0

18 6

Table 4.2: Number of conserving (C) and non-conserving (NC) judgments under the
two task conditions standard and incidental (from Bovet et al. 1981, p. 293).

Here, too, we observe the three behavioural patterns of a) nonconservation in both
conditions (18.75%), b) conservation in the incidental condition and non-conservation
in the standard condition (56.25%), and conservation in both task conditions (25%).
No child conserves in the standard task and fails to conserve in the incidental task.

Two experiments (Hargreaves, Molloy & Pratt 1982 and S.A. Miller 1982) indicate
that the incidental transformation format leads to significantly more conservations
responses than the accidental format (e.g. 73% vs 93% in the latter experiment).

10The subjects of the experiment were 80 children between 5,7 and 6,7
years of age.
^The subjects were 32 children between 4,7 and 6,11 years of age.

70



4.3.3.3 Modified procedures: request of justifications

Parrat-Dayan & Bovet (1982) andNeilson, Dockrell & McKechnie (1983) addressed
the question of whether accidental conservations constitute evidence of operational
reasoning, as the masking competence hypothesis of McGarrigle & Donaldson
suggests. They examined the justifications given by children to conservation in
accidental transformation tasks to see if they conformed to the typical operational
justifications which accompanied the solution of the classical task:

a) reversibility: the spatial transformation is irrelevant and could be undone, to go

back to the initial configuration;
b) compensation: one row is longer, but its elements are more spaced, while the
other row is shorter, but its elements are closer together;
c) identity: nothing has been added nor taken away, they are still the same

collections as before.

Neilson et al. examined 128 children between age 4,2 and 6,9 years and reported 80%
correct conservation responses in the accidental condition against 34% in the traditional
condition, thus confirming the precocious conservation. When however, the responses
were classified into conserving on the basis of the two criteria a) 'same number'
response plus b) operational justifications, the percentage of conservation responses

decreased to 25% in the accidental condition. Hence, if children are considered to

conserve number only if they say that the number is still the same after the
transformation and justify this using operational arguments, conservation performance
in accidental and intentional conditions is equivalent. Furthermore the type of
justification given tended to vary depending on the experimental condition: in the
accidental task, 75% were of the reversibility type; in the intentional task 30% were of
the reversibility type and 54% of the identity type.
Parrat-Dayan & Bovet observed the same phenomenon: of 39 children (between 4,8

to 6,5 years of age) 23 conserved number in the accidental condition (59%), 13 could
justify their conservation response, using mainly arguments which made reference to
the initial configuration (e.g. reversibility type). Often the justification took a practical
form, in that the children put the elements disarranged by the doll back in one-to-one

correspondence. Parrat-Dayan & Bovet considered that most of the justifications given
corresponded in fact to a more primitive form of reversibility: the simple return to the
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point of origin, what Piaget called empirical return or renversabilite (translated as

revertibility)12:

il semblerait done que le jouet ait le role d'activer le scheme de correspondence
terme a terme permettant l'affirmation de l'egalite par un raisonnement de
renversibilite (p.243, 1982).

The authors concluded that the type of justification given by children to conservations
in the accidental format did not support the claim that children's superior performance
in the accidental condition reflects the same operational competence of the standard
condition.

4.3.4 Discussion

This case of precocious success in number conservation provides an ideal context in
which to evaluate the argument of early competence. Recall that precocious success in
tasks which maintain the structure of the original Piagetian tasks was interpreted as

conclusive evidence that a child had the basic numerical competence earlier than
expected by Piaget. In Section 4.2, I pointed out three problems for the early
competence argument: (1) qualitatively different functioning underlies the solutions of
the modified task and of the standard task; (2) developmental theory still has to specify
the processes underlying the solution of the modified task and underlying the shift to
solving both tasks has to be specified; (3) the theory must also account for cognitive
organization before the child solves a modified task itself as well as the process by
which the child acquires the ability to solve it. Consider these three issues with respect
to the accidental-incidental paradigm.
Few children justify accidental conservation by operational argument though many

use such arguments on intentional tasks. The differences in the kind of justifications
given are so pronounced that if the stricter scoring criterion of correct response plus
operational justifications is adopted, the performance in the two tasks is not

significantly different any more. The accidental task may do more than simply
revealing the competence masked by the traditional task: it may show that such a task
is, in effect, a different problem involving inferences of different nature.
Now let us turn to the suggestion that the capacity to solve the modified conservation
task appears to be itself the outcome of a developmental process. In both the accidental

12"It would hence appear that the toy plays the role of activating the one-
to-one correspondence schema, making it possible to affirm the
equivalence through reasoning by revertibility" (my translation).
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condition and the incidental condition, a significant proportion of children did not
conserve in either of the task conditions (68.3% in Light et al., 18.75% in Bovet et
al.). Hence precocious success cannot be interpreted as the simple expression of a
basic primitive competence. Either the modified task itself masks this primitive
competence or it identifies a competence level which results from the development of
prior incompetence.
Finally, let us consider the developmental change from the solution of the modified
task alone to the solution of the standard task as well. The process by which the
children would overcome their misinterpretation of the standard task remains
unspecified. McGarrigle & Donaldson write:

In the early stages of language acquisition, the child interprets the meaning of
behaviour events to arrive at a notion of speaker's meaning and this knowledge
is utilized to make sense of the language around him. Eventually the child
acquires a semblance of linguistic meaning, in that he can respect certain
properties of the language where the non-linguistic components of the speaker's
activities do not conflict with utterance. During this phase the intentional nature
of the speaker's activities, where this is at variance with the utterance, can
govern what the child thinks is being talked about, so that his understanding of
such concepts as number and length can be obscured (p.347,1975).

And they conclude:

It is possible that the achievements of the concrete operational stage are as much
a reflection of the child's increasing independence from features of the
interactional setting as they are evidence of the development of logical
competence (p.349,1975).

The processes through which independence from the interactional setting may be
achieved remain unclear. Moreover, if we accept the view that the acquisition of
general pragmatic rules underlies the solution of the traditional conservation task, how
can we account for one of the most robust results in conservation studies, i.e. the

decalage of two years separating the acquisition of the conservation of substance, of
weight, of volume? If the solution of the first substance conservation task is explained
by the acquired independence from the interactional setting, how could one explain the
concurrent failure in the structurally equivalent weight conservation task? A first
answer to this question is offered by Dockrell & al. who write:

In conclusion, the existence of the phenomena of uncoupling is not being
challenged. However, the assertion that the transition from preoperational to
operational thought is "as much a reflection of the child's increasing
independence from the features of the interactional setting as they are evidence of
a logical competence" is being questioned. It seems to us that behavioural
interpretation of setting is not a variable that functions autonomously like
counting or reading but rather pervades all communicative interactions and
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reflects the status of other aspects of the communicator's knowledge. It may be
seen to override linguistic analysis of an utterance where the child has trouble
understanding the linguistic terms involved or where he is unsure about a
logical-cognitive judgment or about the precise demands of the task or even
when he is unfamiliar with the material at hand. But likewise it itself can be
dominated by other aspects of the child's knowledge, such as that of word
meaning in alternative communicative contexts. What is required at this point is a
clarification of the interaction between the child's use of behavioural strategies
and his complete or partial understanding of the logical requirements of the
conservation task (p.438-439, 1980).

In other words, faced with the conservation task, the child may be at loss in
interpreting what the situation is about and thus finds the key to understanding the
standard conservation task in the experimenter's action (e.g. if the experimenter
changes configuration, than it is the comparison of spatial size that is at stake), but
unfortunately for him the key is the wrong one. Later in development, he has the
conceptual means to understand the conservation task autonomously and can ignore the
length dimension highlighted by the experimenter's action. This same transition may

occur within each of the tasks of conservation of number, substance, liquid, weight,
volume, etc. at different moments of development, depending on the degree of
elaboration of the concept involved. In other words, as long as the child has not
elaborated a sufficiently articulated and general concept of substance, liquid, weight,
he cannot make sense of the conservation question and resorts to the interactional
setting to guide his interpretation of the problem. As these concepts are gradually
acquired, the child has a clearer appreciation of the effects of transforming the objects'
shapes and becomes more independent from the interactional cues provided by the
experimenter's actions. Under this interpretation, although the pragmatic perspective
sheds some light on the failure in the conservation task, it neither explains it nor says
anything about the process leading to conservation. The pragmatic process appears to
be an event associated with, but not the cause of failure to conserve. The burden of the

explanation hence remains with conceptual organization and change.
The advantage of interpreting precocious success as reflecting a level of competence
in its own right is that it makes possible to give a unified account of the three issues
discussed here:

1. the qualitative differences between the solution of the modified and traditional
conservation tasks express different underlying concepts and different ways in which
the task is understood and solved;
2. the failure in the modified task indicates that there is a stage in which the child has
not elaborated the concept sufficiently to deal even with the modified task, although he
may well operate adequately with number in other circumstances;
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3. the simultaneous success in the modified task and failure in the standard task are

index of a stage of conceptual elaboration, sufficiently articulated to deal with the
modified task, but not enough to deal with the standard conservation task.
If we posit the hypothesis that the child's cardinal number concept develops through a

sequence of competence levels, corresponding to different forms of equinumerosity
and conservation of increasing coherence and generality, both accidental and standard
conservations can be seen as expressions of the understanding of properties of
equinumerosity, although of different complexity. These levels of understanding can

be spelt out by testing the same children on new tasks and by determining the
extension, articulation and coherence of their number concepts beside accidental,
incidental and intentional conservation. From this perspective, neither the complete
understanding of the conservation principle a la Piaget nor the innate understanding of
the conservation principle a la Mehler & Bever, Gelman and possibly McGarrigle &
Donaldson would make much sense. The notion would always be understood relative
to a problem space and to a stage in the development of the cardinal number concept.
To summarize, the Piagetian interpretation in terms of operational structures is too

general and cannot discriminate between the accidental-incidental where undoubtedly
the child goes beyond the difference in spatial extent between the two collections, and
the traditional forms of conservation. The early competence interpretation is also too

general and does not provide an adequate analysis of the child's initial failure on the
modified task and of the evolution of success on the traditional conservation task. I

have advanced the alternative view that precocious success reflect a level of numerical
competence which is itself the outcome of a developmental process and the basis for
the subsequent development of conservation in the traditional task. In the next section,
I propose a way of envisaging the different levels of numerical competence.

4.3.5 The domain-specific account of early competence

The theoretical approach presented in the previous chapters provides a framework in
which to specify the conceptual organization underlying the different competence levels
and to capture the transition from less to more advanced organizations. According to
this theoretical perspective, the child is endowed with biologically determined
structures specialized in processing specific kinds of information. In the course of
development, the child learns to discriminate the contexts in which the representations
produced by the domain-specific structures are relevant, that is, they allow him to
derive regularities and relations useful for pursuing his actions, for predicting events
and for achieving goals. Development proceeds in a stage-like manner, with



subsequent stages extending the range of application of the structure to more complex
contents in the form of the class of objects assimilated by each new domain-structure.
When the early competence issue is examined from this angle, the modified and

traditional tasks do indeed track the same concept, but operating on different objects.
The child may thus work out the relevance of the number structure for the accidental-
incidental situations, and derive from it the fact that the two collections are

equinumerous, and at the same time may not see the relevance of the number structure
in the traditional task, and so fail to discover the general conservation principle. The
problem thus becomes that of defining in which sense the requirements of the
accidental-incidental format and the traditional format are different, of determining why
the child who can establish equinumerosity in the accidental-accidental format fails to
apply the specialized number structure and discover equinumerosity also in the
traditional task.

One interesting difference between the two tasks is that, when the conservation
question is posed after the spatial transformation has occurred as an accident, the
question can be seen as inviting a natural check for an accidental disruption of the two
collections' numerosity. The child may thus answer the question by comparing the two
post-transformation collections either via counting, matching or dimensional
composition. The reports of children who put back the objects in one to one

correspondence support this interpretation, as do the justifications by revertibility.
Alternatively, the accidental transformation may be simply canceled, as a nuisance to
the progress in the game, an interpretation much favoured by Bovet et al. In either
case, the accidental-incidental tasks demand application of number structure to the pair
of sets visible after the accident.

We have seen however that the same child is very likely not to confirm that the two
collections are equinumerous when the transformation is performed by the
experimenter. In this situation, he fails to see the relevance of the number structure
application and cannot establish the equinumerosity. I wish to suggest that the
transformation, because it is intentionally performed by the experimenter does not
encourage the child to see whether equinumerosity has been upset. Rather than
focusing the child's attention on the current pair of sets, the task invites the child to
decide whether two collections are equinumerous on the basis of three facts: the initial
equinumerosity of the two collections in one-to-one correspondence, the rearrangement
of one of the collections gradually performed by the experimenter and the resulting pair
of collections, very different in distribution. While in the accidental task, the child has
to establish whether the two sets are still equinumerous after the accident, by applying
the number structure to that pair of sets, in the standard task, the child has to establish



whether a property of a pair of sets, i.e. their being equinumerous, is maintained after
the transformation. This corresponds to a more complex application of the number
structure: on a pair of pairs of sets (e.g. the initial pair and the post-transformation
pair). The decalage between the two tasks can be thus explained in terms of the
complexity of the objects over which the child has to abstract the number structure:
pairs of sets in the accidental-incidental task and pairs of pairs of sets in the standard
task.

To recapitulate, the decalage is due to the fact that, at the level of precocious
conservations, the child has worked out the relevance of the number structure for pairs
of sets and can determine whether two sets are equinumerous or not. This number
concept however cannot assimilate situations, like the traditional task, which involve
pairs of pairs of sets. The child does not see this task as bearing on number, and being
at loss uses the experimenter's action in lengthening a row as index ofwhat the task is
about. He thus bases his judgment on spatial extent and abandons the initial
equinumerosity.
And what about the period in which the children also fail the modified task? Here the
existing studies tell us very little about such children's numerical abilities. Without this
information, I can only extend this account and hypothesize that these children's
number concept does not even apply to pairs of sets. For them, the modified
conservation task involves a content which is too complex for a child who has not
discovered the relevance of the number domain structure on pairs of sets. In the case of
modified conservation tasks, as in the traditional, the child who fails bases his

judgment on length.
We have been able, however tentatively, to characterize the competence underlying

success first in the modified and later in the standard task. My hypotheses about
competence levels can be tested by determining whether other tasks with equivalent
requirements are solved concurrently either with the modified or the standard tasks.

4.4 Conclusions

The data identifying precocious success in Piagetian tasks pose a difficult problem of
interpretation. If we attribute full competence to children who can solve the modified
task, then we risk the positive error of attributing the concept to a child who in effect
does not have it, as failure in the standard tasks would suggest. If on the other hand
we attribute full competence only from the solution of the standard task, then we risk
the negative error of not attributing the concept when the child has it, as the precocious
success would suggest. A way out of this dilemma is to suppose that competence is
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relevant to the level of problem-solving ability. The child does not have the full concept
either when he is capable of solving the modified task or when he solves the traditional
task. He goes instead through different levels of conceptual elaboration of increasing
complexity and generality. New theoretical and empirical questions arise, as regards
experimentally describing the different competence levels and of characterising the
underlying organizations. The next chapter is concerned with the methodology for a
systematic investigation of competence levels and for evaluating accounts of conceptual
organization and change.
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Chapter 5 A research method for domain-specific cognitive
development

5.1 Introduction

This chapter deals with the nature of the research and with the appropriate
methodology for the study ofwithin-domains development. The theoretical framework
proposed in the preceding chapters addresses two basic empirical questions:

- whether the development of a conceptual domain proceeds according to a fixed
sequence of steps corresponding to levels of increasing competence;
- whether the transition phases are characterized by typical behavioural patterns
which reflect the sequence of cognitive states postulated by Richards' model.

The ideal strategy to explore these questions would require a longitudinal study in
which the same children are examined on a set of tasks, tracking a conceptual domain,
over a period of a few years at constant intervals. However this method presents both
methodological (e.g. the effect of repeated testing on same problems) and above all
practical shortcomings (e.g. the time scale, the children who drop out of the sample,
etc.). The second best strategy (Wohlwill 1973) relies on cross-sectional studies in
which children of different ages are examined on a same set of tasks. The cross-

sectional studies bring out the response patterns characteristic of children in
development.
The particular strategy that I suggest consists of administering a battery of tasks, each
probing a different aspect of the concept investigated, to a same sample of children
from different age groups. Response patterns across age and across tasks are identified
by performing a hierarchical analysis of the order in which the tasks are solved: we
need to know which tasks are solved concurrently (e.g. the children who fail one task
fail also a second; children who succeed one task also succeed a second), which tasks
are solved with a systematic, collective decalage (e.g. the children who solve one task
still fail a second), and also which tasks are solved with an individual decalage (e.g.
some children solve one task and fail the second, while other children fail the former
task and solve the latter).
Hierarchical analysis captures the paths that children follow along these steps in the
development of the domain. Concurrency successes represent a level of problem-
solving ability, or stage, while collective decalage identifies differences in problem-
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solving ability and reveal the order between stages. The patterns of individual decalage
are an index of the different paths children follow in reaching a stage.
The same analysis permits us to test hypotheses about the competence underlying the
different stages and about the transition process. Hypotheses about stage competence
are tested by devising new tasks which should require the conceptual organization
postulated and by determining whether these tasks are solved concurrently with the
other tasks typical of the stage. The study of transition, on the other hand, requires
qualitative information about the procedures which children use to solve problems, to
check and eventually correct their views; about the effect of countersuggestions, about
the type of justifications, etc. All these characterize collective decalage. The adequacy
of Richards' model (e.g. three ordered cognitive states) as an account of transition can

be evaluated against these qualitative observations.
The chapter is divided into three parts. The first part is concerned with the argument
for adopting batteries of tasks to assess competence and with the criteria for
constructing batteries of tasks. The second section introduces the experimental designs
and the statistical tools needed for the hierarchical analysis between task solutions. In
the third section, I set out the plan for the analysis of the development of cardinal
number, the domain which is investigated in the remaining chapters.

5,2 The study of conceptual development with batteries of tasks

In chapter 4,1 argued for an account of precocious success in terms of levels of
competence and have suggested that to investigate the nature of these conceptual
organizations it is necessary to identify new situations where the same early
competence may be expressed. In this section I discuss this research strategy in a more

systematic way. First, I present the argument for assessing the children's competence
using several tasks as opposed to one or two. I then deal with more practical issues
such as the construction of a battery of related tasks and the selection of appropriate
tasks to obtain information about the children's problem solving capacities and about
their strategies and attitudes.

5.2.1 The argument for using battery of tasks

One of the central methodological issues in cognitive developmental studies concerns
the criteria for attributing understanding of a concept to the child. In the Piagetian
studies, and even more so in the replications, the assessment of the concepts is
accomplished using critical tasks which discriminate between the partial, pre-
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operational concepts and the fully operational ones (see Chapter 4, for a more complete
discussion). Two significant and apparently unsolvable puzzles emerge from this
strategy: the interpretation of precocious success in modified critical tasks, discussed in
chapter 4, and the response criteria in conservation studies (Brainerd 1973, 1974,
1977; Reese & Schack 1974).
Consider the precocious success puzzle first. Two tasks Tl and T2 are taken to probe

the same concept: they share the same structure, but differ in their mode of presentation
(e.g. in the conservation task, for instance in Tl the transformation occurs as an

accident, in T2 it is carried out intentionally). It is found that Tl is solved before T2.
The solution of Tl can be interpreted as evidence that the child has the concept, and
that parasite, incidental performance factors stop him from expressing the same

competence in T2. Alternatively the earlier solution of Tl can be interpreted as an

artifact of the modifications introduced to the T2 task, which alone is the proof that the
child has the full concept. However, both these interpretations are prone to two kinds
of errors: the false positive error of attributing the competence from the solution of Tl,
when in fact the child does not have the concept; and the false negative error of doing
the opposite, and of attributing the competence only if T2 is solved, when in fact the
child has the competence already when he solves Tl. In other words, the parasite
performance factors, rather than competence, may guide the correct response in Tl as
much as they may lead to the incorrect response in T2, and mask the underlying
competence.
Similar problems have emerged when more qualitative observations, such as

justifications, response to countersuggestions, etc. have been used to assess the child's
concepts, alongside the success and failure in the task. In a conservation task, for
instance, Piaget attributes understanding of conservation when the child confirms that
the two quantities are still equivalent after the transformation and gives operational
justifications for the equivalence. Brainerd (1973) criticizes this criterion on the ground
that the ability to express the reasons of the conservation judgment verbally is not a
requirement for understanding the concept and is therefore irrelevant to the issue of
assessing conservation. The traditional Piagetian criterion for conservation on the basis
of "same" answers plus operational justifications thus risks producing false negative
errors. At the same time, however, Brainerd remarks that the criterion of attributing
understanding of conservation on the basis of "same" answers alone introduces the
risk of false positives, i.e. the child in fact does not understand conservation. Brainerd
concludes that although one risks false positive errors in using only judgment, this
error can be eliminated by proper procedural safeguards, which, however, he leaves
largely unspecified. The false negative errors instead cannot be overcome.
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I argue that neither puzzle can be solved by looking at the performance on single
tasks, but that instead the assessment of the child's understanding has to be based on

the child's performance on several related tasks, which embed the concept in diverse
contexts, put different constraints, elicit familiar knowledge, etc. The risk of negative-
positive errors in the attribution of a concept is substantially reduced if the success-

failure in one task, here the accidental conservation, is then compared with the
performance in some other equivalent tasks, here Greco's counted conservation and set

comparison tasks. In other words, the children's solution of specific tasks appears to
be dependent on so many factors built into the task, that it is hopeless to think that one
test can be critical in distinguishing children who have a concept from children who do
not. The response pattern across tasks constitutes a more robust basis from which to
draw inferences and formulate hypotheses about the child's competence.
This line of argument can be pushed even further to claim that the question of whether
a child has a given concept or does not have it is quasi meaningless and certainly
misleading. In a sense in fact, the child always has some understanding of a concept,
as his ability to cope with a variety of situations in experimental settings and especially
in real life indicates. This does not mean however that his understanding does not

change and increase in the course of development. Rather than asking whether the
child has a concept, the questions of what the nature of the concept is that he
entertains, of how his concept is different from the adult's or from a younger child's
should be addressed. In Piaget, this distinction is expressed in the qualification of a
concept as either being pre-operational, concrete or formal operational. However, since
Piaget defines pre-operational concepts essentially by via negativa, and not as

achievements in themselves, Piaget also presents a dichotomy between no concept and
full-blown, adult-like concept.

Moreover, the nature of the child's concept at different periods of his development
and the difference between its earlier and later forms acquire new meaning in the light
of such phenomena as early competence, heterogeneity, decalage, content-dependency
of adults' logical reasoning and such models as domain-specific accounts which posit a
sequence of levels of conceptual organization.
The advantage of testing children with a battery of tasks, all probing the same basic
concept put in different contexts, is that we can discriminate between competence
levels on the basis of the tasks the child solves, i.e. where he uses the concept

correctly, and the tasks the child fails, i.e. where he does not apply the concept. In
particular, in chapter 4 I have proposed a reinterpretation of the precocious success

data in terms of expressions of levels of elaboration of the concept. The solution ofTl
is hence explained in relation to an underlying organization of the concept of some
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internal complexity and coherence. This concept however appears to be still too limited
to solve T2. The subsequent solution of T2 is then explained in relation to a more

advanced conceptual organization.
From this perspective, the main empirical objective becomes that of providing a

detailed description of the different levels of conceptual elaboration and more

particularly to identify what else the child knows when he solves the modified task in
the lower stage and what else he knows when he solves the standard task in the higher
stage. Using a battery of tasks tracking a same concept in different contexts, we can

retrace the response patterns across tasks and determine which other tasks the children
of the lower stage can solve, and do the same thing for the higher stage children.
To illustrate how this strategy may work, consider a fictional battery of eight tasks,
all dealing with cardinal number in terms of set reproductions, comparison, and
conservation. Let us represent the tasks as: Tl, T2, T3, T4, T5, T6, T7, T8. Tl is the
accidental conservation, T2 is the standard conservation. In order to assess whether the
child who solves Tl has the full number concept (e.g. the early competence argument),
whether the child who solves T2 has the full number concept (e.g. the Piagetian
argument) or whether both the child who solves Tl and fails T2 and the child who
succeeds both tasks have a coherent number concept, which however differs in
extension and internal complexity (e.g. the interpretation I advance), we can see which
other number tasks the children are capable of solving.
We may find out that Tl, T6, T7 are solved concurrently, while the children who

solve T2 also solve T3, T4. T5 and T8 instead are failed both by the children who
succeed in Tl and by those who succeed in T2. These response patterns are

represented schematically as levels of a developmental sequence in the following
diagram:

Level 1
Tl T6 T7

Level 2
Tl T6 T7 T2

Level 3 Tl T6 T7 T2 T3 T4 T5 T8

Fig 5.1: Three ordered levels of problem-solving ability
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The analysis of the order in which the eight tasks are solved would reveal three
ordered levels of problem-solving ability. Both the Piagetian and the early competence
interpretations would have some difficulty in accounting for these data. The mature,

operational concept postulated by Piaget fails to apply to the tasks T5 and T8, and some

even more advanced concept (e.g. formal operational?) would have to be invoked. The
primitive early competence instead reveals itself in T6 and T7, as well as Ti, an
outcome which would tend to corroborate the interpretation of precocious
understanding. However, this interpretation should then account for the two layers of
masked competence, that is what stops the primitive competence to be expressed in the
solution of T3 and T4 first, and later in T5 and T8.
The most parsimonious account of this fictional developmental pattern is provided by
the domain-specific interpretation. Throughout the three levels, the children
demonstrate understanding of cardinal number, although this understanding becomes
gradually more general as a wider range of tasks is solved. Between step 1 and 2, and
step 2 step 3, the framework would claim that the child discovers the relevance of the
representations produced by the structure specialized to process numerical information
for new classes of situations. The reason for the decalage would then lie in the fact that
the objects to which the specialized number structure applies are more complex at each
successive step.
The experimental and statistical methods for investigating the response pattern across

tasks will be dealt with in the next section. Before that, I shall briefly introduce some

general principles regarding the construction and the selection of the tasks appropriate
for carrying out this kind of analysis.

5.2.2 The construction of the battery of tasks

The construction of a battery of tasks sets three basic practical and theoretical
questions: devising tasks which embed the concept investigated, providing a varied set
of such tasks and choosing tasks which provide us with both information about the
problem-solving skill of the child and about more qualitative aspects of the solution
such as the strategies used, the capacity to correct the errors, to justify a solution, etc.
The Piagetian research method provides us with some part of the answers.

5.2.2.1 The analysis of the conceptual domain

In the Piagetian methodology, the first step in approaching the development of a
concept is the definition of the structure of the concept. The definition is articulated
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from the advanced scientific and epistemological analyses of the concept. This analysis
brings out the entities and relations at the basis of the conceptual domain and to devise
practical tasks which deal directly with these basic elements of the concept. More
precisely, the solution of the tasks requires that the child establish these entities and
relations in the context of a concrete situation and that he carry out operations and
inferences on them to produce the correct solution. Consider, for instance, the case of
the domain of cardinal number.

Piaget refers to Cantor's definition of cardinality: if A and B are two sets such that
there exists a (1 -1) -correspondence between the elements of A and the elements of B,
than we say that A and B have the same cardinal number. Piaget's study of the
development of cardinality will then focus on the children's capacity to establish the (1-
1)-correspondence between the elements of two sets and to draw inferences about their
equinumerosity or difference. To study these capacities, Piaget devises two related
tasks. The first task is a simple set reproduction problem. The child is asked to take out
of a group the same number of objects as there are in a array which is placed in front
of him. The second task is the conservation of number, which I have already discussed
in the previous chapters. One of the two equinumerous rows, constructed in the
reproduction task, is changed into a longer row. The child is asked whether the two
rows still have the same number of elements or whether one of them has more

elements.

By means of these two tasks thus Piaget embeds the abstract relation of (1-1)-
correspondence at the basis of cardinal number into two practical situations13. These
tasks become the instrument for assessing the development of the understanding of
cardinality in the child. Notice however that as Piaget considers the conservation task
the ultimate test of the mature, operational number concept, this task has acquired the
role of critical test, and we have been confronted with the puzzles associated with
attributing competence on the basis of single tasks.

5.2.2.2 The variations of task format

The same Piagetian strategy can be extended to construct several tasks which deal
with the entities and relations defined, but in varied situations, such as the practical

13By focusing directly on the conceptual basis of number, Piaget's studies
constitute a radical innovation in the field of number development
research which, before Piaget, was essentially concerned with dressing a
catalogue of the numerical skills of the child (e.g. enumeration, counting,
elementary arithmetical operations). The impact of the conservation
paradigm is reexamined in the next chapter.
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context in which they are embedded, the mode of response, (e.g. action, verbal
response, drawing), the type of task (e.g. reproduction, comparison, anticipation).
Again Piagetian research, this time that concerned with the sensori-motor period,

offers a model of how equivalent variations can be devised. Piaget has studied the
genesis of the object concept using a number of variants of the basic object permanence
task (see chapter 3). This task consists of hiding an object which the infant is interested
in, under a cover within his reach and of observing whether the infant attempts to or
succeeds in retrieving the object from under the cover. The diverse variations used by
Piaget consist of:

a) hiding the object under a second cover, beside the one where the object
disappeared in previous trials;
b) putting a second cover over the one where the object has disappeared;
c) switching round the two covers, one of which hides the object;
d) hiding the object under another cover in the proximal space, without the child
seeing the object's transfer, to determine whether he can reconstruct possible
displacements of objects in the space around him.

Using such a battery of tasks, Piaget identifies six substages in the development of
the concept. The ordered substages reflect the infants' capacity to retrieve the object in
situations involving displacements of increasing complexity. This same level of detail
however is not achieved in Piaget's analysis of the genesis of concrete and formal
operational concepts. Generally Piaget did not introduce systematic variations in the
tasks' formats, and only modified the material used or the mode of response. With this
reduced range of task types, Piaget typically identifies three substages in the
operational period, with eventually some intermediate levels to classify particular
behavioural patterns. The three substages correspond very schematically to the failure
in the task, the oscillation between success and failure and the correct solution of the

task, with appropriate justifications. These descriptions do not approach, either in
precision or in detail, the one Piaget gave of object concept development14. The latter

14The reason of that appears to be historical. When Piaget studied the
sensori-motor period (around 1937), his theory of the operational stages
was not clearly spelt out yet. The first extended formulation of the
operational theory is usually identified with the article "Le mecanisme du
ddveloppement mental et les lois du groupement des operations. Esquisse
d'une theorie operatoire de l'intelligence" published in 1941 in Archives
de Psychologie 112, 215-285 (translation of the title "the mechanism of the
development of the mind and the laws of the grouping of operations.
Outline of an operational theory of intelligence"). The research on the
sensori-motor stage thus respond to an essentially descriptive aim, while
the studies of the operational period are focused on a specific property of
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remains one of the best models of the accuracy with which an analysis of conceptual
development might be carried out.

5.2.2.3 The type of tasks

The high replicability, the richness of responses enhanced and the variety in the
behaviours described demonstrate the well-founded of Piaget's assumption that
conceptual development is best captured in problem-solving situations that expose the
children's active search of solutions to practical tasks, the strategies they adopt, the
controls of the adequacy of the solution and the eventual corrections15.
The main advantage of concrete tasks is that they reduce the degrees of freedom and

set the framework for a rich interaction between the child, the specific problem space

and the experimenter. From these interactions, the observers can obtain different sorts
of information about:

1. the child's capacity to solve the problem and use the concept in the particular
situation;
2. the physical and logical properties of these situation;
3. the procedures invoked to arrive at the solution;
4. the reasons offered for favouring this procedure;
5. the checks the child may carry out and the eventual corrections;
6. about the arguments the child can give against countersuggestions.

As the context set by the task remains fixed, and children from different age groups

interact with that context, developmental change can be observed at each of levels
listed above. The analysis of the particular requirements on concept application set by
the tasks solved and failed at a stage permits to formulate hypotheses about the nature

cognitive functioning, i.e. reversibility, and overlook the complexity of
the pre-operational period.
l^See the forward to Piaget & Szeminska's The child's conception of
number':"In dealing with these new problems (development of operations
which give rise to number and continuous quantities, to space, time and
speed) appropriate methods must be used. We shall still keep with our
original procedure of free conversation with the child, conversation
which is governed by the questions put, but which is compelled to follow
the direction indicated by the child's spontaneous answers. Our
investigation of sensori-motor intelligence has, however, shown us the
necessity for actual manipulation of objects. In The child's conception of
physical causality, we saw, though it was not possible to take full
advantage of the fact, that conversation with the child is much more
reliable and more fruitful when it is related to experiments made with
adequate material, and when the child instead of thinking in the void, is
talking about actions he has just performed" (p.VII, 1952).
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of the concept characteristic of that stage. The qualitative information about the checks
that the children carry out on their solutions, the corrections they attempt and the
justifications they give provide us with elements for characterizing their global
cognitive attitude towards the task. Whether, for instance, the solution they propose is
the only one they can envisage, and if inaccurate, cannot be corrected. Or whether,
they are not very confident of the solution they propose, in which case the checks and
corrections are most revealing. The first case would match the characterization of the
lower stage, given by Richards' model in terms of irrelevant state ofmind. The second
case would match the characterization of the intermediate period in terms of a
paradoxical state of mind.

5.3 The statistical methods and the experimental design

Once the battery of tasks has been constructed, a number of decisions have to be
made regarding how to detect and analyse the change in the children's performance in
the tasks. In general, the performance of children from different age groups has been
compared. For instance, given two tasks Tl and T2, if the number of correct responses
to T2 is significantly greater among the older than among the younger children, while
performance in Tl does not differ significantly in the two age groups, developmental
change has been reported. This change has been interpreted as evidence that the
solution of Tl is a temporal antecedent of the solution of T2, and so is the
developmental relationship between the acquisition of the concepts or skills (e.g.
depending on the interpretation given) required to solve the two tasks.
Although the age dimension is important in the study of developmental processes, a
more specific dimension of change can be identified by examining the performance of
the same children in the series of tasks, within-subjects, rather than comparing groups

of children, between-subjects. Cross-tasks comparisons reveal patterns of concurrency
and order. Schematically the situation can be represented using a two-by-two
contingency table, indicating the frequency of successes and failures for any pair of
tasks.
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Task 1

Task 2\ Failure Success

Failure

Success

fll fl2

fil £22

Fig. 5.2: Developmental contingency table

A pattern of concurrency emerges when the frequency in the two cells representing the
combination of success in Tl and failure in T2 (e.g. fl2), and success in T2 and failure
in Tl (e.g. f21) approaches zero, within the limits of reliability of the response

measures involved.

Task 1
Task 2 Failure Success

Failure

Success

Fig. 5.3: The response pattern of concurrency (white cells are empty)

This response pattern is interpreted as evidence of two stages in the development of the
concept: a lower stage in which the children fail both tasks and a higher stage in which
children solve both tasks.

A pattern of collective decalage emerges when the frequency in one of the cells which
represent the combination of success and failure approaches zero. The decalage would
be in favour ofTl when the empty cell corresponds to success in T2 and failure in Tl,
i.e. only children child who succeed Tl also succeed T2, while no child who fails Tl
succeed in T2. It would be in favour of T2, when the empty cell represents failure in T2
and success in Tl.
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a b

Fig. 5.4: Two examples of the response pattern of collective decalage: a) of T2
precedes Ti, b) ofTl precedes T2

These response patterns are interpreted as evidence of three stages in the development
of the concept. The first corresponds to the failure in both tasks, the intermediate to
success in one task only, the third stage to success in both tasks.
Finally, a pattern of individual decalage emerges when no cell is empty. The

children's responses distribute uniformly in the four cells, as some children solve both
tasks, other children fail both tasks, and for some children Tl is solved and T2 failed
while for the other children Tl is failed and T2 solved.

v Task 1
Task 2\ Failure Success

Failure

Success

Fig. 5.5: The response pattern of individual decalage (no empty cells)

This last pattern is interpreted as indication of different paths that the children follow
when developing from the lower stage, i.e. failure in both tasks, to the higher stage,
i.e. success in both tasks. Some children elaborate the competence necessary to solve
Tl, but not adequate to solve T2, while other children do the opposite. This also
suggests that the two tasks track forms of understanding which develop independently
and which may come together when the higher stage is reached.
By systematically detecting these response patterns for each pair of tasks of the

battery, we can obtain a detailed description of the sequence of levels of problem-
solving ability and of the paths taken by children to move between levels. Consider for
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instance the case of six tasks dealing with different aspects of a conceptual domain.
The analysis of the across tasks response patterns may result in the diagram below:

= tasks solved concurrently

_ ^.collective decalage pattern

. individual decalage pattern

Stage3

Stagel

Stage2

Tl = T2

Tl = T2 = T3 = T4 = T5 =

Fig 5.6: The hierarchical analysis of the solutions to tasks Tl to T6

The stages are identified by the tasks which are correctly solved at the same time.
Stage 1 corresponds to the correct solution ofTl and T2; Stage 2 to the solution of the
two previous tasks plus T3 and T4; Stage 4 to the solution of the four previous tasks
plus T5 and T6. The order between stages is reflected in the patterns of collective
decalage existing between the solution of particular tasks. Stage 1 children solve Tl
and T2, but fail T3 and T4; Stage 2 children perform successfully in Tl, T2, T3 and T4,
but fail T5 and T6.

These patterns identify the situations which are critical for the children of a lower
stage (e.g. the requirements of T3 and T4 are too complex for Stage 1 children) and
which are solved at the higher stage to demonstrate the new conceptual advance. The
transition from Stage 2 and Stage 3 instead goes through two different paths, as
indicated by the individual decalage between T3 and T6, and between T4 and T5. At
Stage 2, children fail tasks T5 and T6, which are instead solved at Stage 3. However
some children reach Stage 3 by elaborating first the competence necessary to solve T5
and then generalize this competence to solve T6. Other children reach Stage 3 by the
opposite path. First they acquire the competence to solve T6 and later generalize it to
include the case of T5.

The stages are interpreted as expressions of competence levels in the conceptual
domain. The decalages distinguish between less and more advanced competence

levels, which are, according to the theoretical framework, abstractions over the
preceding stage's organization. The stage sequence described would thus reflect a
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series of conceptual organizations, each corresponding to the application of the
domain-structure to a particular class of objects and each being a prerequisite for the
subsequent conceptual elaboration. In the next section I introduce a statistical method
for performing the hierarchical analysis outlined.

5.3.1 The statistical method of prediction analysis of cross-

classifications

The prediction analysis for cross-classifications of Hildebrand, Laing & Rosenthal
(1977) provides a statistical index Del tailored to capture the phenomenon of
discontinuity in developmental stage theory16. It consists of a statistical procedure for
quantifying the extent to which a contingency table conforms to triangular hypothesis
of concurrency, collective decalage or individual decalage. The Del is a proportionate
reduction of error measure, which reflects the proportional improvement in the
accuracy of an estimation based on aprediction (e.g. of concurrency or decalage) over
the expected frequency. The measure Del is calculated for each logically distinct
statement of the form: given that an observation has X=xl (e.g. success in Tl), we
predict Y=yl (e.g. success in Tl under the hypothesis of concurrence; failure in T2
under the hypothesis of decalage).
The developmental data are presented in a two-by-two contingency table, where the
rows correspond to success and failure in Taskl and the columns correspond to
success and failure in Task2. The four cell entries are expressed as frequencies with
regard to the total number of observations, N (see table 5.1). Over the contingency
tables, four response patterns, or models, represent the order of acquisition between
Tl and T2 (see tables 5.2 to 5.4).
The predictions are formulated as triangular hypotheses corresponding to each of the
models and predicting the frequencies of success and failure in T2 on the basis of the
responses in Tl. The triangular hypothesis of concurrency states that failure in Tl
predicts failure in T2, and that success in Tl predicts success in T2 and expects

frequencies approaching zero to occur in all non-diagonal cells (e.g. celll.2 and cell2.1
in table 5.1). Errors are those events that occur in the two cells that are predicted to be
empty: If large enough, statistically, they falsify the hypothesis of concurrency. The
triangular hypotheses of collective decalage in favour of Tl states that failure in Tl
predicts failure in T2, whereas success in Tl predicts either success or failure in T2. It

16The use of the statistical method in developmental studies is advocated by
Hofmann (1983) and put into practice by Lautrey, Ribaupierre & Rieben
(1985) and Rieben, Ribaupierre & Lautrey (1986).
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expects frequencies approaching zero to be found in the bottom left-hand cell (e. g.
cell2.1). Prediction errors are those events which occur in that cell. In the case of the
opposite hypothesis of collective decalage in favour of T2, the prediction expects the
top right-had cell to approach a zero frequency.
The Del measure reflects the proportionate reduction of error that is achieved by

predicting certain cell frequencies of the table conditionally on the basis of the different
triangular hypotheses instead of by chance. The Del is computed as the ratio of the
observed frequency of the error cell(s) and the expected frequencies for the same

cell(s). For instance, if the triangular hypothesis predicts cell2.1 to be empty,the
expected error is calculated by multiplying the unconditional probabilities of the cell
(e.g. the marginal total f2. and ft.) and dividing the product by the total number of
observation N. The Del index corresponding to the prediction that cell2.1 is empty is
calculated by substituting the observed error and expected error values in the following
equation:

observed error (f2.l)
Del2.1 = 1.0

expected error (f2. f.i)

The value of Del ranges between zero and one. A value of zero indicates that the
triangular hypothesis makes absolutely no improvement over chance. An index of one
indicates that the triangular hypothesis provides a considerable improvement over
chance. Values between zero and one provide a measure of the proportionate extent to
which the data support the triangular hypothesis.
The next step consists of determining whether an observed Del is significantly greater
than a chance Del, always equivalent to zero. This is accomplished by calculating the
standard error of Del first and then a simple one-tailed normal curve test to determine
the significance of the Del with respect to chance:

Del
z =

S

A significant Del (the significance limit is set at p<.05) supports the prediction of the
relative triangular hypothesis, that there are fewer subjects in the error cell(s) than the
marginal frequencies would predict. In the same way the accuracy of different
predictions (e.g. a and b) on a same contingency table can be compared17:

17As a general practice, the accuracy of a triangular hypothesis as the
best predictor of order between tasks will be calculated on the basis of the
significance of the associated Del and of the difference between this Del
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Dela - Delb

z =

Sb -c

5.3.2 The uses of the prediction analysis

The Del analysis can be employed to achieve both descriptive and predictive research
aims. In a descriptive phase, the order of acquisition between tasks which have been
studied in the literature can be more firmly established. When we identify the best
model to fit the data. In a predictive phase, when hypotheses about stage organization
are formulated, specific hypotheses can be tested about concurrency between tasks, if
these tasks invoke the competence postulated, and about decalage, if these tasks set

requirements that can not be satisfied by the concept postulated. In particular, if the
child's solution of Tl is explained in terms of him having elaborated a concept cl, a
new task T2 can be constructed which sets requirements compatible with cl. From
that, children who solve Tl are expected to solve T2 as well, whereas children who fail
Tl should fail T2 (e.g. a pattern of concurrency between the solution of Tl and T2).
Alternatively, a task T3 can be created which requires inferences that are too complex
for cl. In this case, only children who solve T2, but not all of them, are expected to
solve T3 too, while no children who fail T2 are expected to be able to solve T3.
To test specific hypotheses, the level of significance of the Del which corresponds to
the expected order is calculated and compared with the values of the two alternative
orders. This serves to determine whether this Del is not only significant but also
significantly greater than the alternatives. A specific prediction is thus verified when
the corresponding Del both reaches the significance level against chance and its
improvement is significantly greater than that corresponding to the two Dels yielded by
the alternative models. The prediction is falsified when:
1. The corresponding Del does not reach the significance level, in which case the
alternative models are tested post hoc to identify an eventual best model that fits the
data;
2. No Del achieves the significance level. This result can be due to two different
distributions: (a) the predictions are under-determined by the data, either because the

and the Dels from the other possible ordering hypotheses. This further test
is recommended by Lautrey, Ribaupierre & Rieben (1985) to neutralize the
bias represented by the use of marginal frequencies. The second measure
in fact balances the two (or three) Dels, which were all submitted to the
same bias, one against the other, whereas the first measure tests a single
Del against chance.
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tasks are too easy, in which case the great majority of subjects are in the cell22 (success
in both tasks), or because they are too difficult, so that subjects are in the cellll (failure
in both tasks). This situation identifies a problem of sampling, i.e. the sample
examined is either too young or too old for the tasks at hand, (b) the responses are

evenly distributed in the four cells. We conclude by default that an individual decalage
exists in the acquisition of the two tasks;
3. The Del corresponding to the prediction is significant, but not significantly different
from the Dels of the alternative models, which themselves offer a significant
improvement over chance. Since all three triangular hypotheses which expect the cells
21 and 12 to be empty are simultaneously verified, and no model is significantly better
than any other, we conclude that weak concurrency underlies the acquisition of the two
tasks;
4. A special case of the previous situation is when the three Dels are equal to 1 (or
close to). This indicates that the three hypotheses fit perfectly the distribution. From
this result, I conclude that a strict concurrency holds in the acquisition of the two tasks,
as the corner cells 21 and 12 are empty (or close to be empty);
5. The Del is significant, but not different from one of the alternative models. If one of
the model is concurrency, then two models account for the order between the two tasks
and coexist: concurrency and collective decalage in favour of one task. If instead the
two models are of collective decalage, then the two tasks are acquired with individual
decalage.

5.3.3 The between-groups comparisons

Situation (2a) above points out a important limitation of the prediction analysis
method, that is it does not work when the responses are concentrated in one cell (e.g.
the cell representing the success or the failure in both tasks). This problem can be
tackled by carefully sampling children in the age range where developmental changes
are known, or expected, to occur. The hierarchical analysis has thus to be
complemented with the standard between age groups analysis of performance which
identifies the periods in which the developmental change investigated occurs.
Since the problem-solving performance is measured by categorizing the subject's

responses as success or failure, standard non-parametric statistical tests for nominal
data (see Siegel 1956) are employed. The x2 statistic tests the difference between age

groups (or orders) in the number of responses which fall into the two categories of
success and failure. The Marascuilo & McSweeney (1967) instead tests the difference
in response between tasks for each age group.
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The Marascuilo & McSweeney test, as modified by Meddis (1984) to provide a test
of specific experimental hypotheses, measures the effects associated with different
conditions under which the same individuals are observed (e.g. in a repeated measures

design). I employ the test to compare the cross-task performance differences within
each age group and to obtain the complementary information to that provided by the x2
(e.g. across groups performance difference in single tasks). In the Marascuilo &
McSweeney test, the null hypothesis is that if the different tasks are equivalent, then
the children should have the same probability of success under all conditions. The
statistics computes an index L, which reflects the change from correct solutions in one

task to wrong solutions in subsequent tasks. L can be converted into a standard z

score, from which the one-tailed significance level is calculated.
In my experiments, the two statistics x2 and L play a complementary role in that they
permit us to capture the effect of the age variable on the performance in single tasks
and the effect of task condition on the performance within each individual age group.
These two tests are thus instrumental in identifying the age at which we are more likely
to observe some particular developmental phenomenon with respect to a set of tasks,
and thus to avoid making a task too easy or too difficult for the sample examined.

5.3.4 The experimental design

The experimental design which permits the two complementary analyses of cross-
sectional response patterns and of between-groups comparisons of responses is a

within-subjects design with subjects nested in age groups (or age x order groups,
etc.). All the subjects are tested in all the tasks and are divided into groups constructed
according to age and order of tasks.

5.4 The plan for the study of cardinal number development

The theoretical and methodological apparatus presented in the preceding chapters is
applied to the study of cardinal number development, one of the most puzzling and
well documented domains in cognitive developmental research. In this section I set out
the plan for this study which is a direct implementation of the general research strategy
introduced earlier. Before discussing the different parts of my study of cardinal
number development, however it is necessary to delimit somewhat this vast domain.
Psychological research has approached the question of cardinal number development
from three different perspectives:

96



1. The acquisition of enumeration and counting skills, such as learning the number
words sequence and the counting procedures;
2. The acquisition of the operations on sets of objects as in situations of
reproduction, comparison and conservation of sets' number;
3. The acquisition of the arithmetic operations, both in their abstract form and
embedded in practical situations like number word problems.

From these studies it emerges that in the course of development the three levels of
number competence (e.g. enumeration-counting, cardinal representation and
arithmetics) interact in a highly complex way. Thus in the concluding remarks of her
extensive study of "Children's counting and concepts of number", Fuson writes that:

In summary, over the age span from age 2 through 8, children come to
understand increasingly complex relationships among the mathematically
different situations in which number words are used. They gain a considerable
amount of knowledge concerning different specific situations within each kind of
situation. Larger and larger number words are learned. Important changes occur
in children's conceptualizations of the sequence, counting and cardinal
situations. Increasingly abstract and complex conceptual units are used in these
situations. The relationships among sequence, counting and cardinal situations
become closer and more automatic until finally these become integrated within
the number-word sequence itself. At this level the number-word sequence is a
seriated, embedded, unitized, cardinalized, truly numerical sequence (1988, p.
416-417).

The scope of a dissertation does not allow me to address the fundamental issue of the
relationship between these different aspects of numerical knowledge in development. I
shall thus focus on the development ofthe capacity to represent the cardinal number of
sets ofobjects and draw inferences from these cardinal representations. In dealing
with this question, I shall also be concerned with some aspects of the acquisition of the
number-word sequence and of counting skills, as these constitute one of the privileged
instruments for representing cardinality.
I have chosen to study representations of the cardinality of collections of objects for

both theoretical and developmental reasons. On the theoretical level, this constitutes the
most basic aspect of the cardinal number concept with the operations of addition and
subtraction. As Wilder writes:

For most mathematicians, numbers are concepts relating to the "size" of sets.
The "size" of the set is the most basic aspect of its form - disregarding all other
aspect such as colour, shape, substance and the like, if the set be a collection of
physical objects; and disregarding order and other relations, operations and the
like, if the set be a collection of mathematical entities - and corresponds to the
"number" of its elements (p. 102-103, 1965).
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The capacity to abstract the numerical "size" of a collection of objects from its other
dimensions appears to be the outcome of a long and complex developmental process.
Since the early studies on numerosity judgments (Binet 1890), it has clearly emerged
that 3-, 4-year-old children tend to compare collections of objects on the basis of
spatial features of the collections such as the size of the individual elements, the space

occupied, the length, if the collection forms arrays, etc. From the age of 5-6 years,

children base their comparisons on the number of objects in the collections, usually
after having counted them. Since the pioneering experiment of Binet, the shift from
initial space-based to number-based comparisons has been widely reported.
Furthermore, Piaget's studies of the conservation of number find that under certain
circumstances even 5-, 6-year-old children abandon an initial judgment of
equinumerosity of two rows of objects, when one of the rows is spatially modified
into a longer (or shorter) row. In the context of the conservation task then, the 5-, 6-
year-old children make pre-numerical, space-based, judgments of numerosity
equivalent to those observed with 3-, 4-year-olds by Binet.
The objective of the study of cardinal number development I undertake is to provide

an account of the acquisition of the capacity to measure the size of a set of objects
independently from other indices of extent, such as the space occupied by the set as a
whole, the dimensions of its elements, etc. Firstly, I examine whether this capacity
emerges through a sequence of distinguishable levels of increasing adequacy.
Secondly, on the basis of the description of how development proceeds, I provide a

characterization of the nature of the different number concepts elaborated. Thirdly, I
model the developmental process using Richards' logical representations and
algorithms.
To approach these questions, I have devised a battery of tasks which require that

numerical representations of the set size be established and that inferences be drawn
from them. The tasks are derived from the very extensive literature on this topic. The
first phase of the study (Chapter 6) consists of a detailed review of the literature aimed
at identifying the tasks which point out clear developmental changes and at isolating the
periods of development in which these changes occur. The second phase (Chapter 7)
consists of establishing the precise order in which these tasks are solved. The
hierarchical analysis should reveal stages of competence, corresponding to the tasks
which are solved concurrently, and transition phases, corresponding to the cases of
collective decalage. On this first descriptive basis, I formulate hypotheses about the
underlying number concepts. These hypotheses are tested with new experiments in the
subsequent predictive phase (Chapter 8). The fourth phase consists of the modeling the
overall developmental process using Richards' logical apparatus. With this transition
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model I formalize the competence levels as networks of propositions and the process
leading from one level to the following as 1) the reinterpretation of propositions from
irrelevant to relevant, 2) the testing of the relevant propositions and, in case they are

verified, 3) their integration into a new prepositional network.
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Chapter 6 Review of the literature on cardinal number development

6.1 Introduction

Three main experimental paradigms have been employed to investigate the child's
development of cardinal number representations as the capacity to abstract the
numerical size of a set of objects from its other properties18 and to draw inferences on
these representations:

1) the Reproduction of sets;
2) the Comparison of sets;
3) the Conservation of number in various formats.

According to the literature, the acquisition of the solution to all the three tasks follows a
similar developmental pattern: children move from non-numerical representations of
the sets' size based on physical dimensions, such as space occupied, length, width or

items size, to accurate numerical representations, based on cardinality alone. In solving
number reproduction tasks, for instance, children move from constructing sets which
reproduce the configuration of the collection (in particular its length), to accurate

reproductions. These are carried out either by matching each element of the collection
with one element or on counting out a same number of elements to form the new

collection. In solving number comparison tasks, as well as conservation tasks,
children move from judging the numerosity of the sets on the basis of their spatial
dimensions (and again length in particular) to comparing their actual cardinality. The
comparison is carried out either by determining whether a spatial (1-^-correspondence
holds between the elements of the sets, or by counting them and directly comparing the
cardinal values obtained.

In this chapter, I examine in some detail the existing evidence of the shift from space-

to number-based estimations of numerosity in the tasks of set reproduction,
comparison and conservation. The analysis of the literature provides the initial
information (a) to discriminate the circumstances under which the child can operate
with number from the circumstances under which he cannot, (b) to follow the gradual

18These tasks have also provided a rich context in which to follow the
genesis of counting in use (as opposed to disembedded counting or simple
enumeration) as a means to represent the cardinality of collections of
objects and to carry out comparisons, reproductions and conservation
judgments.
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extension of the domain of application of number and (c) to describe the developmental
process of generalization in the transition from failure to success in specific tasks.
The chapter is divided into four sections. The first section is concerned with number
conservation (Piaget & Szeminska (1941, English version 1952), achieved at around
age 6-7. Piaget & Szeminska's results, where non-conservers abandoned their
judgment of equinumerosity of two rows of objects when one row was spread out has
been systematically replicated. First, I present the original Piagetian study and the
replications which confirm the robustness of the number conservation phenomenon
between age 5 and 7.1 then examine the modifications to the original conservation task
which find precocious forms of conservation among children younger than 5. Early
forms of conservation have been found in the studies which introduced the following
modifications to the original Piagetian procedure19 :

a) the transformation occurs accidentally (McGarrigle & Donaldson, 1975) (see
Chapter 4);
b) only one row is presented and transformed spatially; an identity conservation
question is put: "do you think that the number of objects is the same as it was
before?" (Elkind, 1967);
c) after the transformation, the child is requested first to count the two rows and
then to answer the standard conservation question (Greco, 1962).
In the second and third sections, I discuss the studies of the development of set

reproduction and set comparison abilities. Finally in the fourth section, I examine the
existing evidence about the order in which the three tasks are acquired.

6.2 The conservation task

6.2.1 The original Piagetian study

In the early years of experimental psychology, the study of number development was
concerned with listing and describing counting and enumeration abilities (Descoeudres
1921, Douglass 1925, Grant 1938, McLaughlin 1935, Reiss 1943, Russell 1936,
Woody 1931) and with the perception ofnumerosity (Binet 1890) in children. The
field received new impulse from the works of Jean Piaget. Piaget in fact introduced an

operational dimension to the study of number concepts and focused on the child's

19In Appendix 3.1 and 3.2 I discuss two experimental paradigms which
have identified very precocious forms of conservation: the magic
conservation of Gelman (1972) and the additive and spatial transformation
format of Mehler & Bever (1967).
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numerical representations and inferences in problem-solving type situations. Gelman
remarks this profound change of perspective:

Piaget shifted the framework from one in which the child's responses to number
were thought to indicate mastery of number facts to one in which the child's
responses to number were thought to reveal the functioning of underlying
cognitive operators. (1972, p.l 19)

To investigate the development of operational number, Piaget designed a battery of
tasks which share a same basic structure. Firstly, the child is required to establish a

particular relationship between two collections of objects. Secondly, the configuration
of one of the two collections is changed, without changing its numerical dimensions.
Fundamental tests of operational number are the conservation task, dealing with
cardinal number, and the seriation task, dealing with ordinal number. The conservation
task, already presented at various places in the preceding chapters, consists of asking
the child20:

1. To construct a row with the same number of elements as a model row: "take just
enough glasses off this tray for the bottles, one for each";
2. To confirm the equivalence verbally: "Is there the same number of bottles and
glasses, or are there more glasses or more bottles?";

The arrangement of one of the sets is then modified: one row is either lengthened,
shortened or made into a circle;

3.To confirm the equivalence between the two sets: "now, are there more bottles,
more glasses or have we got the same number of bottles and glasses?";
4. To give a justification for the answer: "how do you know that the number is the
same/different?" and reply to counter-suggestions like "you say that the number is
the same, but you see this one is much longer and this one very short".

Piaget identifies an operational concept of cardinal number with responses where the
child maintains the relation of equinumerosity, regardless of the change in shape, and

20Piaget presented the problem using different materials: a) beads
arranged in rows, b) collections of functionally-related objects, like eggs
and egg-cups or vases and flowers, c) collections created by one for one
exchange, d) bottles filled up with beads. As Piaget did not report
significant differences across the range of presentations, I report the data
as a whole and take the freedom of giving illustrations from the different
task situations.
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gives operational justifications, such as "nothing has been added nor taken away; this
one is longer but more spaced, that one is shorter but more crowded; we can go back
as it was before", etc..
In the seriation problem, the child is presented with a collection of objects, ordered

according to one dimension, and is required to construct a second collection of objects
of corresponding order. For example, the child is asked to find the sticks, from a

bunch of sticks of different length, that go with a series of dolls of markedly different
heights. Once the two rows have been arranged, one collection is modified in such a

way that the corresponding elements are no longer opposite to one another. The child
is asked the following questions:
a) for one object, which object from the corresponding collection goes with it;
b) the order of one series is reversed and the same question is put to the child;
c) the objects of each collections are mixed up, one object is picked up from a bunch;
the child is required to take the objects from the second bunch that are either bigger or
smaller than the selected objects.
An operational understanding of ordinal number is attributed to the child when he can
establish the ordinal correspondence in the different contexts and solve the last task.
For the rest of the discussion, I shall be concerned with the tasks on cardinal number,
as it deals directly with cardinal concepts.

6.2.1.1 The rationale of the number conservation task

Piaget introduced the number conservation task as a test for discriminating between a

primitive form of equivalence based on what Piaget qualifies as intuitive
correspondence and the more advanced form of equivalence based on operational
correspondence. Piaget argues that the child has a mature concept of number only
when the correspondence between sets has become independent of perceptual features
and in particular, when the child is capable of distinguishing between number-relevant
(e.g. addition and subtraction) transformations and number irrelevant (e.g. permutation
and partition) transformations, which only affect the configuration of the set. The
conservation task constitutes a critical test of mature, operative cardinal number
concept in that if the child's first equivalence relation is based on the optical
correspondence between the elements and on the equivalence of shape between the two
sets, and not on numerosity per se, then the child should abandon the equivalence
when a change in shape is produced. The transformation destroys in fact both the
original configuration and the optical correspondence, and introduces a marked
difference of configuration.
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Piaget explains the failure to conserve in terms of the pre-operational nature of the
number concept. The pre-operational thinking lacks the mobility and the internal
articulation to permit the child to go back mentally to the initial, pre-transformation,
equinumerous configuration or to compose the two spatial dimensions: greater length
with smaller density. For the pre-operational child thus, when the configuration
changes, everything changes, and when one of the collections looks bigger or takes up
more space, than it has a bigger number too. A further source of confirmation of the
operational, logical nature of the child's reasoning in the number conservation task
comes from the justifications that children give of their responses. Operational children
give the following reasons:

1. Nothing has been added nor taken away;
2. It is possible to go back to the previous display;
3. One row is longer, but its elements are more spaced; and the second row is
shorter, but its elements more crowded;
4. The enumeration of the two sets leads to the same number.

6.2.1.2 The development of number conservation

Piaget reports that between age 4 and 7, children move from non-conservation of
number to consistent conservation. He identifies three basic types of solutions:

Substage 1: children do construct a set equivalent to the model set, but respond that
one of the sets is more numerous after the transformation. In general, depending on the
transformation, longer rows or taller piles are taken to be more numerous.
Substage 2: children maintain number until the sets are too markedly different, i.e. big
differences in level or cross-section when the beads are in different bottles or marked

difference in length or density when they are arranged in rows. Children also give
inconsistent responses: conservation is immediately followed by non-conservation, or
vice versa.

Substage 3: children confirm the equinumerosity irrespective of any change in the
arrangement of their elements. Piaget illustrates the behavioural patterns characteristic
of each substage with extracts from the experimental protocols.

6.2.1.2.1 Substage 1

Children are at the non-conservation substage 1 when they abandon the initial
equinumerosity, estimating the numerical size of the sets after the transformation
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merely from single perceptual relationships: height or width in the case of beads in
bottles; length or density in the case of rows. Enumeration itself appears to be
subordinated to direct perceptual evaluation. A good illustration of the cognitive state
characteristic of substage 1 children is provided by the protocol of Bab (age 4,6)
(p.28, 1952)21: Bab put one bean on the table every time the experimenter did so.

Have we got the same? - "Yes". Bab then put one bean into L each time the
experimenter put one into P, and with each bean the child said spontaneously "It's the
same". But when there were ten in each glass, and L was 1/2 full, Bab cried: "I've got
a lot." - And what about me? - "Mine's quite full."- Are they the same? - "I've got a
lot." - And what about me? - "Look! you've got only a few." - Why? - "Look there
(pointing to the levels)". Bab then put a bead into E each time the experimenter put one
in P: Make sure that we've both got the same. - "Me one and you one; me two and you
two;...."(up to 6, when glass E was quite full). - Are they the same? - If we made
one necklace with your beads and one with mine, would they be the same? - "No,
mine would be longer." - But if we took all your beads and all mine? - "No, yours
won't be as long; we must fill your glass to have a necklace as long as mine." - Count
them. - (Bab counted 6 in E and 6 in P) - Well? - "You'll have a little necklace." - But

why have you got a lot? - "Look, they are low in your glass. It's me that's got a lot,
mine's quite full."
Similarly Port (age 5,0) (p.26, 1952) confirms the equinumerosity of the beads

contained in two identical glasses, and justifies it by saying: "Because there's the same

height of green and red." When the content of one of the glasses is poured into a

narrow and tall glass, the child claims that one of the glasses now has more and
justifies that by saying "Because it's narrow and they go higher". In the situation of
exchange of pennies for flowers, Gui (age 4,4) (p.57, 1952) exchanges 6 pennies for
6 flowers. The pennies are in a row while the flowers are bunched together. The
experimenter asks: What have we done?- "We've exchanged them." And then is there
the same number of pennies and flowers? - "No, it's more there", while pointing to the
pennies.
Piaget concludes that children at substage 1 do not evaluate sets as made up of

discrete units, but rather according to their global dimensions, such as length or width.
Thus the same set can sometimes be more numerous, sometimes be less numerous

2*In the text the children's replies are presented between inverted
commas and separated from the experimenter's questions and remarks by a
dash. The children are referred to by the first three or four letters of their
name.
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depending on it being lengthened, shortened or poured into containers of different size
and shape.

6.2.1.2.2 Substage 2

Children are classified in substage 2 when they do not consistently conserve number,
in the sense that either their conservation depends on the degree of change in the
configuration, or their conservation judgments are contradictory and unstable (e.g. the
necklace made out of the set A is longer than that made out of set B as it is judged
larger than B, but the set B is considered at the same time more numerous than set A,
because the row it forms is denser than A). The equivalence of two sets is not

immediately abandoned after the transformation, as it is typical of substage 1. Instead,
the difference in configuration between the two rows makes the child oscillate between
judgments of difference and equivalence. According to Piaget, substage 2 corresponds
to a period of conflict between correspondence-based equivalence and configuration-
based difference. Some examples from the protocols illustrate the behaviours which
reflect this conflict. Marg (age 5,6) (p. 30, 1952) considers that pouring the content of
glass A into a narrower and taller glass L will increase the number of beads ("There are

more in the big one.... because it gets bigger here (pointing to the narrower column in
L)"); however the necklaces made with the beads from A and L "they'll be the same

length". Tis (5,1) (p.31, 1952) puts one bead into L every time the experimenter puts
one into A. He also counts each bead as he puts it in and reaches the correct total of
12. L is then full, and Tis noticed: "I've got more." - Why? - "There are more in
mine." - And if we make two necklaces? - "This one (L) will be longer." - Why? -

"The glass is bigger, and that one (A) is smaller." - How did we put the beads in? -

"We put two every time." - What will the necklaces be like? - "Yours will be long and
mine will be the same length." - Why? - "Because this one (L) is big, and mine (A) is
little. You've got a lot of beads in yours." - And what about you? - "Not as many, but
a lot all the same".

According to Piaget, it is from the conflict between reasons to conserve and reasons
to change that operational conservation will emerge. The conflict characterizing
substage 2 leads in fact to the coordination of the different relations involved into a

system susceptible of justifying conservation, while taking into account all the
variations.
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6.2.1.2.3 Substage 3

At substage 3, children consistently give conservation answers. Lau (6,2) (p.47,
1952) makes 6 glasses correspond to 6 bottles. The glasses are then grouped together
and the experimenter asks whether they are still the same number; the child answers:

"Yes, it's the same number of glasses. You've only put them closer together, but it's
still the same number" Other children justify their conservation answers by saying:
"That (transformation) hasn't changed anything" or "Because there are ten vases and
here (flowers) there are ten" or else "Because they go like that (spontaneously putting
one flower opposite each penny)".

6.2.1.3 Discussion of Piaget's conservation studies

Between the age of 4 and the age of 6/7 children shift from non-conserving
responses, i.e. the spatial transformation of lengthening (or shortening) one of two
equinumerous rows destroys the original equinumerosity and makes the modified row
more numerous (or less numerous), to conserving answers, i.e. the numerosity of the
two collections is unchanged by spatial modifications. Between non-conserving and
conserving answers Piaget distinguishes an intermediate level of unstable responses,

which is taken to be the expression of the conflict between number-based and space-

based estimations of numerosity. The change from non-conservation to conservation
reflects the overall change in cognitive organization, from irreversible, perception-
bound preoperational schemas to reversible, mobile operational structures.

6.2.2 The replications confirming Piaget's results

6.2.2.1 The exact replications

In the early 1960s, the developmental change identified by the conservation task is
put to severe test in a series of studies: Dodwell (1960, 1961), Greco (1962), Hood
(1962), Rothemberg (1969), Wohlwill & Lowe (1962) and Zimiles (1966). The
objective of these studies is mainly to replicate Piaget's experiment using systematic
procedures and precise statistical analyses. The flexible Piagetian "clinical procedure"
was translated into a standardized experimental procedure where:

a) the initial equivalence is not established by the child himself. Instead two

equinumerous parallel rows of equally spaced items are presented to the child; the
child is only required to confirm the equinumerosity;
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b) only one of two spatial transformations is effected: one row is either lengthened
or shortened;

c) performance is generally scored on the basis of "same" answers: a child is a non-
conserver when he says that one row has more elements; intermediate, when under
one transformation he says that the rows are different and under the second
transformation that they are equivalent; conserver, when he maintains that the rows
have the same number, regardless of the difference in shape.

Regarding justifications, two positions have been adopted. Some researchers use a

stricter criterion for classifying children: conservers give a "same" answer and justify
it giving "operational" arguments. Other researchers instead consider that the request
for justifications introduces a new conceptual dimension: a level of meta-conceptual
understanding of conservation (see chapter 5 and the discussion of Brainerd's
argument). Since no firm basis exists to decide whether requiring justifications does or
does not implicate a different kind of conservation, it seems appropriate to adopt the
salomonic position of scoring the subjects using both criteria and of testing for the
significance of the eventual differences in correct response frequencies obtained with
the two scoring procedures (a position also defended by S.A. Miller 1978).
The studies previously cited confirm the shift from non-conservation to conservation
in the period between 4 and 6-7 years of age with both scoring procedures. The
Piagetian findings have also been replicated in the context of scalogram studies
(Wohlwill 1960, Smedslund 1966a, Wang, Resnick & Boozer 1971), learning studies
(Wallach & Sprott 1964, Bearison 1969, Gelman 1969 and 1982, Beilin 1971, Winer
1968), numerical/arithmetic competence (Gelman 1972, Mpiangu & Gentile 1975,
Russac 1978, Pennington & Wallach 1980, Fuson 1988), strategies analysis (Halford
1975, Cuneo 1982), relations to other conservation and logical tasks (Dodwell 1962,
Smedslund 1966b, Winer 1974, Inhelder, Blanchet, Sinclair & Piaget 1975, Siegler
1981). Other studies introduced modifications to the display. For example,
P.H.Miller, Heldmeyer & S.A.Miller (1975) add stripes to connect pairs of elements
of the sets after the transformation and find that this more salient perceptual display
elicits only a small anticipation.
To my knowledge, the only negative evidence is reported by Mehler & Bever (1967),
who found a very precocious form of number conservation between age 2 and 3 years.

These results have not however been replicated by any of the subsequent studies (see
appendix 6.2).

From the vast amount of evidence confirming Piaget's original findings, it seems
appropriate to conclude that during the preschool and early school years, between 4
and 7 years of age, children move from non-conservation. The phenomenon is well
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established for the specific context and procedure of the Piagetian problem and also
generalizes to different modes of presentation of the task.

6.2.2.2 The replications with modified conservation tasks

Modifications of the original Piagetian conservation problem provided supplementary
evidence confirming the developmental change in number conservation. S.A.Miller
(1982) tests the conservation problem in familiar environments and with natural
objects. Silverman & Schneider (1968), and S.A. Miller (1976a, b) devise non-verbal
versions of the problems and Bryant (1972) studies the more general capacity to
transfer numerical information between spatially modified collections. These
experiments demonstrate the extent of the phenomena originally described by Piaget,
as the same shift from non-conservation to conservation, and from perceptually-based
to number based judgments is confirmed between the ages of 4 and 7 years.

6.2.2.2.1 Conservation tasks in ecological settings

S.A. Miller (1982, experiment 1) designs a conservation task in which the
transformation occurs in an "ecologically natural manner", with minimal intervention
of the experimenter. Whereas the objects of the original task (e.g. counters, candies,
beads, egg-cups, etc.) can be moved only by the actions of the experimenter, Miller
introduces elements that are either alive (e.g. crickets) or inanimate, but in a dynamic
setting (e.g. cars on a slope; floating boats). These three ecological conditions are

compared with three standard ones using the same items, in the case of the inanimate
ones, or equivalent (plastic crickets instead of real ones), in the case of the alive ones.

The three ecological conditions are:
1) Boats, the child is shown two rows of five boats each, floating in a tub of water;
once the child has agreed to the equality, the experimenter pulls a hidden switch,
releasing an underwater wire that was holding one row together. The boats of one
row thus slowly float apart;
2) Cars, two rows of five cars each are presented on two inclined boards; a
breaking pad on one board is removed, causing one row of cars to run down-hill
and take up a more spread-out distribution;
3) Crickets, two groups of live crickets are presented in identical glass containers,
divided in two compartments; once the child has agreed that they are the same

number, one dividing wall is removed and the crickets spread over the entire
container.
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After each modification, children are asked whether the number of items in the two
collections (e.g. bunches) is still the same or whether it has changed and one has more
items in it. No significant differences are found between the conservation responses of
80 children (from 5 to 7 years of age) in the standard and ecological conditions. In the
standard task, around 53% of the children conserve, while in the modified task around
57% do so22.

6.2.2.2.2 Non-verbal conservation tasks

Experiments by Silverman & Schneider (1968), S.A. Miller (1976 a, b) compare the
standard conservation task with a non-verbal version of it. In the non-verbal task, the

children, instead of being asked whether the two rows have the same (or different)
number of counters, are asked "to pick the candies that they wish to eat", from two
rows of candies. This procedure involves a minimal use of quantitative terms both in
the wording of the comparison question and in the practical mode of response (e.g.
choice of one row). These non-verbal conservation problems produce minor
anticipations of conservation. The difference between performance in the standard and
in the non-verbal conditions reaches the significance level only in one of Miller's
studies (1976b, Experiment 1). However Miller's own replication of that experiment
(Experiment 2) has not confirmed the previous findings.
Another series of experiments by Miller (1976a) shed some light on the small advance
in conservation responses in the non-verbal condition. It appears that, when the term
"more" does not appear in the question, children's tendency to systematically choose
the longer row of sweets decreases. This yields an increase in the number of correct
responses which however does not exceed chance, that is, half of the time children
choose the more numerous row correctly. The superiority of the non-verbal condition
results thus from the fact that children are less likely to be consistently wrong on the
non-verbal trials than on the standard trials, and not from the fact that they conserve
systematically. For that to be the case, conservation responses should have been
significantly better than chance.
From the evidence at our disposal then, non-verbal conservation problems constitute

a further generalization of the number conservation phenomenon, which emerges also

22 Miller interprets these results as evidence against McGarrigle &
Donaldson (1975)' s claim that the failure to conserve is essentially due to
the nature of the action performed by the experimenter which misleads
the child into interpreting the conservation question as referring to the
dimension modified (e.g. length) and not to number. Here in fact the role
of the experimenter is masked and the rearrangements are random.
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when comparative terms are eliminated from the question and the response. Non-
conservation answers then may not be simply attributed to poorly developed linguistic
skills, like misunderstanding of the relational terms "more, less, same".

6.2.2.2.3 The inconsistency of numerical judgments

Some further qualification of the problems underlying non-conservation responses

comes from the studies which examined the children's consistency in carrying a

numerical judgment about two large collections (e.g. around 20 elements) through a

series of number-irrelevant transformations of the collections. This alternative

experimental paradigm was introduced by Bryant (1972). Bryant designs a modified
conservation tasks where the post-transformation display consists of two rows of
different number (difference =1) but same length and irregular distribution. Prior pilot
studies had revealed that these displays, unbiased with regard to the length cue, lead to
chance-level choices, i.e. each of the two rows has the same probability of being
judged to be the more numerous23 .

Figure 6.1 : Chance display, from Bryant (1972, p.81)

23 Notice that the child is not given the possibility of answering that the
two rows are equinumerous.

1 1 1



Bryant argues that the capacity to conserve a numerical relationship between two sets
is more directly observed using the chance displays as post-transformation
configurations since they do not have any misleading length cue which may distract the
child. Bryant predicts that if children appreciate conservation, than their judgment of
the chance display would be based on the previous judgment and this would lead to a

percentage of correct judgments significantly above chance. Such an improvement in
performance would indicate that the relation established in the pre-transformation
display has been conserved and transferred to what is usually a chance-level display.
Bryant's modified conservation task consists of:
a) two vertical arrays containing respectively 19 and 20 items, placed in spatial one-to-
one correspondence, such that the more numerous array exceeds the length of the other
array of one item;
b) both arrays are transformed, starting from the more numerous, to obtain two post-
transformation arrays of equal length, i.e. the chance-level displays;
c) the child is asked to point to the more numerous array; no judgment of equality is
allowed.

Bryant reports that from age 3, children respond consistently better to the modified
task than to the standard task. Children correctly indicate the more numerous array in
the chance display after the transformation between 80 and 90% of the time. Bryant
concludes that children have a basic understanding of conservation and that this
understanding is masked by the length difference cue between post-transformation
collections in the standard conservation test. Hence when such a misleading cue is not
present, as in his version of the task, children can express their understanding of
conservation. This conclusion is however undermined by the results of subsequent
studies which control for two factors which Bryant overlooked in the design of his
experiment. The two factors are:

1. The order of manipulation, in Bryant's procedure the more numerous row is
always manipulated first.
2. The questions used, Bryant does not allow 'same number' answers. Children are

obliged to choose one of the rows as more numerous even when they may think that
the two rows are equinumerous.

These two factors may influence the child's response in a significant way. Many
studies of the preschool child in fact show that his response strategies are often based
on indices of the experimental situation like the last word uttered, the order in which
some manipulations are performed, the colour of the material used, etc. In the case of
Bryant's experiment then, the child may answer by systematically choosing the
modified collection as the more numerous, without going through a conservation
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inference. On the other hand, the studies of number judgment in preschool children
indicate that children tend to compare collections on the basis of their spatial size. It is
likely then that children would judge the two collections of the chance display as

equinumerous on the basis of their equivalence in length. And indeed the experiments
which controlled for the order of manipulation and introduced the "same" option do not
confirm Bryant's findings.
Katz and Beilin (1976) modify Bryant's procedure by transforming only one row:

either the more numerous is contracted or the less numerous lengthened. Furthermore,
in a control condition, one row is modified so as to maintain the original length ratio
between the two rows (e.g. the longer remains the longer). The results show that
correct responses to the control condition significantly exceed the experimental
conditions (original conservation and Bryant test) and that the two experimental
conditions do not lead significantly different responses. The results suggest that
instead of relying on the prior judgment, children base their responses on alternative
strategies. They choose the array according to its colour (e.g. always the red row),
according to its position (e.g. always the right row), or systematically choose the row
that has been manipulated.
Starkey (1981) devises a study to examine the effect of the order of transformation

variable: either the more numerous or the less numerous array is transformed first. The
order of array transformation is found to be significant, with more correct judgments
when the more numerous array is transformed first. Starkey thus confirms that
Bryant's results may be due to the children's use of the order-of-array-transformation
cue (correlated in Bryant's experiment with numerosity) rather than to the conservation
of the initial numerosity judgment. Furthermore, the children's performance is
radically different from that reported by Bryant when "same" judgments are allowed.
Eighty-three per cent of the children respond that the post-transformation rows (e.g;
the chance-level display) have the same number of items, when they are given the
opportunity to do so. So, contrary to what claimed by Bryant, the numerosity
judgment with the post-transformation, chance-level display is one of equinumerosity,
even when the initial judgment identified one row as more numerous. Children seem

thus to favour local, length-based comparisons, and to exploit other indices rather than
transfer numerical judgements across number irrelevant, spatial transformations.
Halford and Boyle (1985, experiment 5) provide supplementary evidence of the

radical difference in response when the 'same' answer is allowed. Their 1985 study
provides the most systematic investigation of the consistency of children's numerical
judgments through number irrelevant transformations. The study consists of a series of
five experiments that used Bryant's chance-level displays as both pre-transformation
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and post-transformation displays. The authors argue that since chance-level displays
do not seem to carry stable cues to the sets' numerosity, using them both before and
after the transformation should show whether children's numerical judgments are

independent, or whether children can maintain a numerosity judgment and can carry
numerical information about a set across spatial transformations.
The experimental procedure consists of asking the children to choose which of two

chance-level rows has more objects. Then the spatial transformations are performed, in
such a way that the two rows remain equivalent to chance-level ones. The hypothesis
is that if children understand invariance, than they should take the same row to be the
more numerous, both before and after the transformation. The results indicate that,
while 3-, 4-year-olds do not demonstrate any tendency to maintain the judgment across
the transformations, their judgments being completely independent, 6-, 7-year-olds
show a significant tendency to maintain their original judgments across

transformations. Furthermore, an experimental condition where no transformation is
performed, with the question simply repeated, examines whether the change of
judgment is not simply due to the repetition of the question. When no transformation
occurs and the comparison question is simply put again, all the children maintain their
judgments between 84 and 88% of the time. The change in the children's numerosity
judgments seems thus to be essentially due to the spatial transformation leading to a

new configuration of collections.
In conclusion, and contrary to what initially claimed by Bryant, children between age

3 and 6 years appear to judge pairs of collections on an independent basis depending
on the collections' configuration. There is no evidence that they understand
conservation in the sense of carrying numerical information through from pre-
transformation judgments to post-transformation ones.

6.2.2.3 Discussion of positive replications

From a wide range of conservation studies, varying in a) type of questioning, b) size
of the collections, c) objects used and d) ecology of the situation, it emerges that
between the age of 3/4 and the age of 6/7 the child's understanding of cardinal number
goes through an important change. The child moves from considering that spatial
transformations performed on a pair of collections, with the same number of elements,
affect the equinumerosity of the two collections to maintaining their equinumerosity,
regardless of modifications to their configuration. The younger children appear to

overrely on the estimation of space occupied by the collections as a measure of
numerosity. Thus the children can easily switch from judging one collection to be
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larger than another collection to the opposite judgment, once the latter collection is
modified into, for instance, a longer row. Furthermore, the studies presented in section
6.2.3.3, suggest that young children tend to make independent and opposite judgments
of numerosity about pairs of collections which are modified spatially.
These results confirm the Piagetian description and his account of the pre-operational
number concept as perception-bound and undifferentiated from the spatial properties of
the collections. However this picture of the development of cardinal number is
challenged and greatly complicated by the results obtained using some other modified
conservation tasks. These tasks have revealed that, under specific conditions, 4- and 5-
year-old children can conserve number.

6.2.3 Precocious forms of conservations

Three tasks have produced the most robust evidence of early conservations:
1. Identity conservation;
2. Conservation of counted collections;
3. Conservation after accidental, incidental transformations.

There is strong evidence for collective decalage between conservation in the context set
by these tasks and conservation in the standard Piagetian task. The third task has been
discussed at some length in chapter 4. In this section, I shall present the first and
second modified conservation tasks .

6.2.3.1 Identity vs. Equivalence conservation

Elkind (1967) argues that Piaget's conservation task does not distinguish between
two types of conservation:

1. The conservation of the numerosity of the transformed set before and after the
spatial transformation has occurred, what he names the number identity;
2. The conservation of the equinumerosity between the two sets before and after
one of the sets has been transformed, or number equivalence.

According to Elkind's logical analysis of the task, the conservation concept

corresponds to a conditional of the form, if Rl = R2 (read rowl is equivalent to row2)
then Rl = R2' (read rowl is equivalent to row2', the row2 modified spatially). On the
assumption that the complex proposition Rl = R2 is entertained by the child as true, the
conditional would hold under two conditions: if R2 = R2' is also true and if the child

can draw the transitive inference from Rl = R2 to Rl = R2', via R2 = R2'. According
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to Piaget's theory, transitivity is an achievement of the operational stage, and that may
partly explain the failure to conserve. But what about identity?
Elkind argues that knowledge of number identity (e.g. R2 = R2') is a necessary, but

not sufficient condition for number equivalence, since knowing that R2=R2' does not
automatically lead to the conclusion that R1=R2', unless the child combines this
knowledge with the original equinumerosity of R1=R2, via a transitive inference.
Elkind then formulates the hypothesis that identity conservation is a developmental
antecedent and a conceptual prerequisite for equivalence conservation. The hypothesis
is tested using a direct test of identity conservation, which consists of a simple
modification of the original conservation. One row is presented to the child and is
transformed into either a longer or shorter row.

Figure 6.2: the identity conservation format with a spreading out transformation

After the transformation, the conservation question is asked: "is there more, less or the
same number of objects than there was before?". The developmental order between
identity and equivalence conservation is examined by comparing the children's
performance in the two tasks. Two experimental designs have been employed:

1. Between-subjects with age, task (identity vs. equivalence) and their interaction as

independent variables, the dependent variable being the number of conservation
responses;

2. Within-subject, with type of task as independent variable and frequencies in the
four response categories: conservation in both tasks, non-conservation in both task
or conservation in one task but not in the other, as dependent variable.

The results indicate a tendency for the identity conservation to be solved before the
equivalence conservation task, although this evidence is somewhat contradictory.
Among the studies using a between-subjects design, some articles report that 4 and 5
years-old are significantly better in the identity conservation test than in the equivalence
conservation task: Hooper (1969), Elkind & Schoenfeld (1972), Brainerd & Hooper
(1975), Rybash, Roodin & Sullivan (1975). Paradigmatic among the studies which
report a decalage between identity and equivalence conservation is Elkind &
Schoenfield's. Two groups of children, Nursery (mean-age: 4.5 years) and First-grade
(mean-age: 6.3 years), are tested on both Elkind's and Piaget's tasks. The analysis of
the distribution of correct conservation answers shows:

1. the age variable to be significant. Six-year-olds perform better than four-year-
olds, with mean score respectively of 2.7 and 2.02 out of 3;
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2. the task variable to be significant: overall children perform better in the Identity
Task than in the Equivalence Task, with mean score 2.53 versus 2.18;
3. the interaction of age and task to be significant in the Nursery group, but not in
the First-grade, for whom the two tasks are equally difficult.

Other studies, however, do not report significant differences between success in the
identity and equivalence conservations (Northman & Grue 1970, Murray 1970,
Papalia & Hooper 1971, Miller 1977). As illustration consider Northman & Grue's
experiment. Sixty children from Second and Third Grade classes (age range between
6,11 and 9,8) took three identity conservation and three equivalence conservation tests.
A correct judgment was scored 1 and an incorrect judgment 0. The results indicate that
children conserve in an all or none fashion as most children conserved either in no

trials (score between 0 and 1) or virtually in all trials (score between 5 and 6).
Also in studies which employed a within-subjects design, both decalage and

concurrence have been reported. In the studies indicating concurrency in the solution
of the two tasks, either children conserve in both tasks or they do not conserve in
either task. Moynahan & Glick's study (1972) examined 96 children from a

kindergarten (mean-age 5,11) and a first grade (mean-age 6,9) classes. The children's
responses, scored as conservation when the child answers that the number is the same

and gives operational justifications, have the following distribution24:

Table 6.1: the relationship of conserving (C) and non-conserving (NC) judgments in
the identity and equivalence tasks (from Moynahan & Glick 1972).

Koshinsky & Hall (1973) find that 86% of the children examined (72 children from
three age groups: kindergarten around age 5, first grade age 6 and second grade age 7),

24In order to provide a uniform presentation of the data from the different
experiments, I have adopted the format of two-by-two contingency tables,
with in the rows the frequency of conservation and non-conservation
responses to the standard conservation task and in the columns the
frequency of conservation and non-conservation responses to the
modified conservation task. This has been possible only for the studies
which use a within-subjects design and specify the frequencies (or
proportions and totals) of conservation/non-conservation responses.

Identity

C NC

C 70 2

NC 1 23
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either conserve in both identity and equivalence tasks or fail to conserve in the two
tasks. The analysis of conservation and non-conservation responses in each age group
shows that 80% of the kindergarten fail to conserve in both tasks against around 40%
of the older children.The authors interpret this pattern as close to concurrency.

Identity

Equivalence

NC

NC

23 3

7 39

Table 6.2: the relationship of conserving (C) and non-conserving (NC) judgments in
the identity and equivalence tasks (from Koshinsky & Hall 1973).

The results of Hooper (1969) go in the opposite direction and indicate a clear
decalage. Hooper (with Marshall 1968, cited in Hooper 1969) reports that 75% of the
children fail both tasks, 13% succeed both tasks and 12% of the children conserve

number in the identity task but not in the standard Piagetian task. Finally, the most
recent study on the developmental relationship between identity and equivalence
conservation, by Cowan (1979), provides strong evidence in support of a decalage
with identity conservation acquired before equivalence conservation. The responses of
72 children (4.6- to 6.6-year-olds) have the following distribution:

Identity

Equivalence \ C NC C NC C NC

C 8 3 c 19 2 c 23 0

NC 20 41 NC 21 30 NC 25 24

2 objects condition

a

5 objects

b

15 objects

c

Table 6.3: the relationship of conserving (C) and non-conserving (NC) judgments in
the identity and equivalence tasks: a) for collections of 2 items, b) for collections of 5
items and c) for collections of 15 items (from Cowan 1979)
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The discordant data about the order in which the tasks of identity and equivalence
conservation are solved gave rise to an interesting debate in the Psychological Bulletin
between Brainerd & Hooper (1975, 1978) on the one hand and S.A. Miller (1978) on
the other hand. Brainerd & Hooper argue that Elkind's original prediction has been
validated by all the studies that satisfy two conditions: 1) the sample examined includes
children of around age 4, as with younger and older children ceiling effects may occur
which mask the difference in performance between the two tasks; 2) the scoring of
conservation responses takes into account the kind of justifications given. Miller
challenges that conclusion on both factual and methodological grounds and claims that
only a minor decalage effect is in fact present. The general agreement reached was that
more research is needed to substantiate the claim that identity conservation is acquired
before and is a prerequisite for the acquisition of equivalence conservation. The study
by Cowan (1979) is, at my knowledge, the most recent attempt to resolve this issue.
As I noted above, Cowan does find clear evidence in favour of the decalage with a

sample of children from 4,6 to 6,6 years of age. The issue of the order of acquisition
of identity and equivalence conservation is reexamined in my own experimental work
presented in Chapter 8.

6.2.3.2 Conservation of counted collections

In a series of experiments on cardinal number development, Greco (1962) introduces
a variant of the Piagetian conservation of number task in which the child is required to
count the two rows after the transformation has been carried out and before making his
judgment about equinumerosity. With this situation, Greco explores the distinction
between "quotite" and quantity, a distinction introduced by Cournot (1861, quoted by
Greco, p.9) between number as measure (how many) and as quantity (how big)25 :

Cournot soutient que l'idee de quantite n'est pas une idee primitive, et que
'Tesprit humain la construit au moyen de deux idees vraiment irreductibles et
fondamentales, 1'idee de nombre et l'idee de grandeur" (p.9, footnote 6).

Greco argues that the original conservation task is a test of quantity, while his modified
task, which involves counting, probes the child's understanding of "quotite".
Following Cournot's analysis, he considers the conservation of counted sets to be a

pre-requisite for standard conservation and expects it to be acquired prior to standard

25 Cournot maintains that the idea of quantity is not a primitive idea, and
that "the human mind creates it from two absolutely irreducible and
fundamental ideas:the idea of number and the idea of size (my translation).
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conservation. Greco employs a within-subject design and compares the performance of
the same children in the classic test and in two modified formats of the counting task.
The two tasks of 'quotite' are:

1. After the transformation, the child is asked to count one of the rows, while the
second row is hidden with the hand by the experimenter. The child has to "guess"
the number of objects in the hidden row. This is called the inference task;
2. After the transformation, the child counts both rows, the numbers counted are

repeated and the conservation question is asked. This is called the comparison task.
The third problem is a classical conservation one. For each task, three different
conditions are examined:

a) conservation of equinumerosity with a spreading-out transformation;
b) conservation of equinumerosity with a piling (of counters) transformation;
c) conservation of inequality.
Each child is tested on the three problems, presented in a fixed order using the same

collections of objects. The inference task is first, followed by the enumeration task and
by the conservation task. In the report, the order of presentation of the experimental
conditions is not specified. The subjects are 85 children from age 5 to 8 years. The
results indicate that the two counted conservation tasks are solved before the standard

conservation task. This decalage appears clearly in the following contingency tables:

Comparison

Standard \ C NC C NC C NC

c 25 0 c 40 0 c 34 0

NC 29 31 NC 26 19 NC 22 29

Spread-out condition Piling condition Inequality condition

a b c

Table 6.4: the relationship of conserving (C) and non-conserving (NC) judgments in
the counted comparison and standard conservation tasks for the three conditions: a)
spread-out transformation, b) piling transformation and c) unequal collections.
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Inference

Standard \ C NC C NC C NC

c 24 1 c 40 0 c 34 0

NC 13 47 NC 23 22 NC 16 35

Spread-out condition Piling condition Inequality condition

a b c

Tables 6.5: the relationship of conserving (C) and non-conserving (NC) judgments in
the inference and standard conservation tasks for the three conditions: a) spread-out
transformation, b) piling transformation and c) unequal collections.

These results constitute a perfect case of collective decalage. For both task formats and
across all three conditions, the children either fail both the counted and standard tasks,
or succeed both tasks or succeed the counted task, while failing the standard
conservation task. Only one child (e.g. in the inference, spread-out condition) solves
the more difficult standard task while failing the easier counted conservation task.
The failure in both tasks indicates that, in a first stage of development, the count of

the two collections up to the same number is not sufficient for the children to confirm
that the two collections have the same number nor to infer the cardinality of the hidden
collection. The difference in configuration still plays a crucial role in judging
numerosity. In a subsequent stage, the count information confirms the equinumerosity
regardless of the difference in configuration, allowing them to infer the cardinality of
the hidden collection. Nevertheless the same children do not solve the task when they
are not explicitly required to count the two collections (e.g. the standard Piagetian
conservation). Only at a later stage, the conservation task is correctly solved both with
and without the count of the two collections after the transformation.

The comparison task appears to be solved before the inference tasks, even though the
pattern of decalage is not as clear as it was for the previous pairs of tasks:
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Inference

Comparison^ C NC C NC C NC

c 34 20 c 57 9 c 46 10

NC 3 28 NC 6 13 NC 4 25

Spread-out condition Piling condition Inequality condition

a b c

Tables 6.6: the relationship of conserving (C) and non-conserving (NC) judgments in
the two counted conservation tasks: comparison and inference, for the three conditions:
a) spread-out transformation, b) piling transformation and c) unequal collections.

In all the three conditions, a tendency to solve the comparison task before the inference
task emerges, and may be seen as further evidence that when the child has counted
both collections then he can reason more adequately about numerosity.
Greco reports that children give operational justifications for conservation in the

counted tasks as they will later do in the standard task (e.g. "you did not add nor take
any away", "you have just moved them"). Examples from the protocols cited by Greco
illustrate the case of children who at the same time solve the count task and fail the

Piagetian task26 :

Ves (4.9): Where is it more now? - "There (B', modified row), because it's very tall,
it's a lot all these on the top of each other" - Count that (A) - "6" (wrong, A is 7) - And
B', guess? - "Eight" (wrong, B* is 6) - Count B'! - "Six" - And how many in A'? -

"Six" - And for B'? - "Six" - Then, where is it more? - "If we count, it's six in both,
but if we do not count, it's more white (A), it's long, long..".
Tit (5.3): initially A is 8 and B is 7; B' is made into a longer row. Where is it more? -
"There (B'), it's longer". - Yes longer, but the counters, are there more or less here? -

"Less" - Where more? - "There" (B') - Count A - "Eight" - And B', guess how many

without counting! - "Seven, I counted before" - Then is there more in A or more in
B' - How many B' now? - "Seven" - And of A? - "Eight" - Then do we have more

A or more B' - "Before we had more As, now more Bs". - How many Bs now? -

"Seven" - And how many A? - "Eight" - More As or more Bs? - "More Bs,
obviously!" - What is more, Eight or Seven? - "Eight, naturally". - But here, are the

26Instead of reporting the original french text with my English
translation in the footnotes, as I have done up to now, I directly give the
translation in the main text for reasons of space.
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seven Bs more than the Eight As? - "No, eight is more than seven, but there, there are
more reds (B')".
Cal (5.3): Is it the same now, here (A) and there (B', transformed)? - "It's not the

same thing, but it's always the same number". - Why do you say that it's not the same

thing? - "Because it's more down there" (the bottom row) - More of what? - "More
buttons" - But is it the same number still? - "Yes, it's the same number". - Could you

count the buttons here (upper row)? - "Eight" (wrong it's 7) - And there (bottom row)?
- "Eight also". - But you say that there are more buttons here (bottom row)? - "Ah!
Yes, sorry: then nine, I had forgot that one, pointing to the button that exceeds the
length of the second row".
The decalage between the solution of counted conservation and of standard

conservation has been confirmed in a study by Fuson, Secada & Hall (1983,
experiment 1), who also controlled for order effects, a factor which was not taken into
account in Greco's study. In Fuson et al., the performance of a group of children from
4,4 to 5,6 years of age in a standard conservation task and in a conservation of counted
sets equivalent to Greco's is compared. The results indicate that:
a) significantly more children conserve in the count condition (11 out of 16) than in the
standard condition (2 out of 14);
b) the number of conservation responses in the standard task is greater when the
counting task has come first.
This second study confirms the main patterns of children who fail both tasks, solve the
counted conservation and fail the standard one, and finally solve both tasks.
Furthermore, it indicates that some transfer occurs between the counted procedure and
the standard one, as children start using counting to compare the two post-
transformation arrays also in the traditional task. The arguments given to justify the
latter conservation are also based on the number counted.

In both experiments, one of the most surprising results is that a good proportion of 5-
6-year-old children do not conserve number even when they have counted the two sets
and have reached equivalent numbers. A study by Ginsburg (1975) examines the non-
conservation strategies among children (between 2.6 and 5 years of age) who have
counted the two sets both before and after the transformation. Ginsburg reports that
regardless of the counts, the children still base their numerical judgments on the spatial
extent of the sets, and in particular their length. Either they consider more numerous

the longer row or the shorter and denser row, or alternatively, they do not seem to be
using any consistent judgment strategy.
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6.2.3.3 Discussion of precocious conservation

The studies on identity conservation and on conservation of counted collections
identify two early forms of conservation. Together with the incidental-accidental
conservation paradigm discussed in chapter 4, they indicate that under specific
conditions, children younger than 5-6 years of age can maintain the numerosity of a
collection, regardless of changes in the spatial size of the collection. Under these
specific conditions, then, children that, according to Piaget, have a perception-bound,
undifferentiated number concept, can overcome differences in shape and spatial extent
and represent the equinumerosity of two collections. What are the critical conditions?
First, children can conserve number earlier when they are pushed to count the two

collections and create an explicit numerical representation of the sets' number. This
request, however, does not automatically entail conservation, as children at around
age 4 may not conserve even after having counted the sets. The early acquisition of
"

quotite" sheds some light on the phase of development in which counting gradually
becomes an effective, operational means of representing the cardinality of sets in
practical, numerical tasks. Greco describes this phase in terms of coordination of
global set size, and "quotite", or the set's counted size27:

L'extension est en effet l'indice d'une quantite qui n'est encore pas maitrisee par
l'operation mentale. Assignee a l'espace, la quantite physique en est dependente.
La quotite n'est pas l'object d'une perception extensive: on perqoit la numerosite,
non la quotite ou le nombre proprement dit. Et sept restent sept parce qu'il n'y a
pas de raison pour qu'ils aient augmente ou diminue (1962, p.68).

Second, children also appear to conserve the numerosity of a single set, which goes

through spatial transformations, before they can conserve the equinumerosity of a pair
of sets, one of which is transformed. They consider that the transformation carried out
on one set is irrelevant with regards to the set's number, and elaborate, according to

Elkind, one of the building blocks of the later (equivalence) conservation concept.
Third, children not only conserve number identity and number equivalence after
counting, they can also conserve number equivalence without any explicit request for a
count, when the transformation of the collection occurs as an accident (see chapter 4).
In the next sections, the analysis of the literature on number judgment and set

27Extension is the index of a concept of quantity which has not been
mastered by mental operation. When attributed to space, physical quantity
is dependent on it. "Quotite" is not the object of a perception of extension:
we perceive numerosity, and not "quotite" or number as such. And seven
remains seven because there is no reason for them to be more or less (my
translation).
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reproduction provides some new information about what the child knows in the period
preceding the appreciation of standard number conservation.

6.3 Reproduction of Sets

The reproduction task deals with the child's ability to create a set equivalent to a given
(or 'model') set. It provides a direct test of the child's understanding of the basis for
equivalence, i.e. to draw a one-to-one correspondence between the elements of the
model set and the elements of the new set. The correspondence can be achieved either
by optical, spatial correspondence or by symbolic representations, i.e. number words
in counting. When one-to-one correspondence is established through counting, the
model set is counted and a same number of items is counted out (of a bunch) to create
the equivalent set. When it is established through spatial correspondence, an item
(from a bunch) is put in front of each element of the model set. The only requirement
for successful reproduction is that the copy set contain the same number of items as the
model set, regardless of equivalence or difference in configuration.
Two experimental paradigms are examined: 1) the studies of spontaneous

reproductions; 2) the studies of reproduction using counting.

6.3.1 Piaget's study of spontaneous reproduction

Chapter IV of Piaget & Szeminska's "The Child's Conception of Number" (1952)
focuses on the development of the child's spontaneous strategies to estimate the
cardinal value of a set. The experimenter tells the child: "Here are some 'objects': pick
out the same number", without suggesting any specific method. The objects forming
the model set are laid on the table in different configurations. The objects to construct
the copy are instead in a box. The task has been presented with a range of different
materials and configurations:
a) the model collection is made up of matches, while the copy has to be made with
counters, or vice versa;

b) the model collection is presented in parallel rows, closed shapes (like an oval or a
house), closed shapes which require a specific number of counters (like a square),
random arrangements;

c) the model collection is made of six beans in a row.

125



Fig. 6.3: Examples of sets' configurations used by Piaget & Szeminska (1952)

Piaget classifies the solutions offered and the corresponding strategies into two basic
behavioural patterns, or substages.

6.3.1.1 Substage 1

The solution offered by Substage 1 children (around age 4) is based on global
qualitative copies and not on numerical procedures. Some children, for example, take a

small handful of objects from the box and try to arrange them so that they look like the
model. Hug (5;0), once the copy is finished, answers the question of how he knows
that the two collections have the same number of items, "I looked twice (once the
model and once the copy). It's right." Most often children use more elements than
necessary, especially by placing them very close together. As the overall shape is
reproduced, they conclude that "there is the same number of counters" (Mul 4;1).
Reproducing collections arranged in rows, Piaget reports, children tend to reproduce

the length of the row rather than to establish a correct correspondence. Piaget provides
an illustration of this behaviour with an extract from the protocol of Boq (4;7): Put as
many sweets here as there are there. Those (6) are for Roger. You have to take as

many as he has. - (The child makes a compact row of about ten, which is shorter than
the model). - Are there the same? - "Not yet" (adding two more sweets). - And now? -

"Yes". -Why? - "Because they're like that" (indicating the length).
As a result the only configurations that Substage 1 children manage to reproduce are
those where the number of objects determines the shape, like the four objects
corresponding to the angles of a squares. It appears that for substage 1 children, equal
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counts do not guarantee equinumerosity if the collections are different in shape. Piaget
cites the case of Min (5;0) who reproduces a row of 8 counters with 10 counters in a

row of equivalent length. He correctly counts the two rows to 8 and 10, but still
maintains that the two collections are equivalent.

6.3.1.2 Substage 2

Children are at Substage 2 (around age 5) when they establish an optical spatial
correspondence between the items of the model set and those of the copy set. Whereas
children at substage 1 usually begin by putting a pile of counters on the table and then
arrange them to imitate the model, children here begin by taking the counters one by
one and by reproducing the different parts of the model. Piaget exemplifies the new

strategy: Ha (4;5) who first looks carefully at the pile of 15 counters, then puts down
16 elements one at a time, copying the configuration of the model one by one. The
child spontaneously checks to see that the correspondence is accurate and counts the
two collections: Are they the same? - "There (copy) is bigger. I'll take some away

(removing the extra counter)". - Are they the same? - "Yes". Ba (4;9) justifies the
equivalence by pointing to each pair of corresponding elements by saying at each
pairing: "This one and that one, this one and that one,...".
At this substage, problems emerge only when copy and model are made up of objects
which are markedly different in shape (e.g. counters and matches). This suggests that
perceptual correspondence is still playing some basic role in the child's equinumerosity
concept.

6.3.1.3 Other studies of spontaneous reproductions

Greco (1962) replicates Piaget's study of reproduction and adds a supplementary
numerical reasoning question. After the reproduction is achieved, the experimenter
covers one of the two collections with his/her hand and asks the child to guess the
number of objects in the hidden collection. Piaget's description of the development of
reproduction in two substages is further decomposed into four substages:
Substage 0: the child does not seem to understand the problem. His actions appear to
essentially playful and there is even no attempt to reproduce the figure;
Substage1\ the child does a global copy of the collection which respects its spatial
dimensions. When the child is asked to guess the number of objects of the hidden
collection, he generally (85%) does not count the visible collection;
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Substage 2: the child constructs the copy by systematic matching of the elements.
Children make spontaneous use of counting to infer the number of elements in the
hidden collection;

Substage 3: the child counts the model collection and takes an equivalent number of
objects to construct the copy; the shape of the collection is rarely reproduced.

The distribution of children in the four behavioural categories is presented in the
following table:

Age group
(years)

Substage Total

0 1 2 3

4-5 6 12 2 0 20

5-6 1 4 13 7 25

6-7 0 5 4 11 20

7-8 0 0 4 16 20

Table 6.7: Contingency table of the number of children in the four substages as a
function of age (Greco, 1962, p.42-43);

The increase in the number of children who reproduce the set correctly and infer the
cardinality of the hidden set, by counting the number of the visible set, increases
steadily with age. While 90% of the younger children fail the task (e.g. substages 0
and 1), reproducing the configuration rather than the number of the collection, only
15% of the children from age 5 onwards fail the tasks. The group of the 5-, 6-year-
olds children tend to reproduce the collections using spatial matching, while the older
groups more generally reproduce the set's number using counting.
Similar observations are reported by Comiti, Bessot & Pariselle (1980) in a series of

experiments on the reproduction strategies that children employ spontaneously and on
their efficacy. In their experiments, the reproduction task is followed by a verification
question (e.g. "Are you sure?") and a comparison question (e.g. "Is the number the
same or is it different?). The sample examined consists of children from the Cours
Preparatoire (C.P., from age 6 to age 8 years) and Cours Elementaire (C.E., from age
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8 to age 10 years). The analysis of the spontaneous strategies indicate a clear difference
between the two groups:

1. C.P. children use: counting (47%) , matching (38%) and perceptual estimation
(15%);
2. C.E. children use counting (79%) and matching 21%.

A second experiment examines the change in the reproduction strategies as a function
of the children's familiarity and expertise with the size of the collection to be
reproduced. 68 children from Cours Preparatoire classes are tested on reproduction of
large collections (37 items) in two sessions separated by three months. In the three
month interval, the teaching program introduces the children to numbers bigger than
20. The following table presents the frequency with which the strategies of counting,
spatial correspondence and perceptual copying are employed in the first test in March
and in the second test in June. Their distribution is compared with that obtained in the
Cours Elementaire group of the previous experiment.

Strategy March
C.P.

June
C.P.

C.E.

Counting 1 3 1 6 79

Matching 53 71 21

Perceptual
Estimation

34 1 3 0

Table 6.8: Percentages of children for reproduction strategy categories in the first and
second trial of the C.P. group and in the C.E. group of the first experiment (from
Comiti et al. p.205, 1980)

The teaching program followed during the three month interval between trials does not
lead to a significant increase in the use of the counting strategy . This strategy is rarely
used and the 6-, 8-year-olds, especially when compared with the 8-, 10-year-olds .

The overall improvement in the accuracy of the reproductions is essentially due to the
more frequent use of spatial matching, which replaces reproductions based on

perceptually estimated copies.
Comiti et al. report that in the first trial, when asked to verify their reproductions, the
children who used perceptual estimation strategies in reproduction either confirm the
equivalence or tend to modify the collections to make them look even more similar in
shape. Among the children who used correspondence, the majority confirm the
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equinumerosity, often pointing to the one-to-one pairing of the elements of the two
collections. The majority of children who succeed at reproduction, later confirm the
equivalence. Only eight children do not seem confident and check the numerosity either
by counting or by making the spatial pairing more precise. Among the 41 children who
fail reproduction, 23 are able to correct using matching.
On the second trial, the children's strategies evolve as follows:

1. 9 remain perceptual estimators (against 24, three months before); 7 stay at the
same level and 2 regress from matching to perceptual estimation;
2. 17 children move from perceptual estimation to matching (14) and counting (3);
3. more children (41 against 28) use matching spontaneously;
4. a similar number of children (12 vs. 14) use counting;

36 children out of 68 correctly reproduce the set. Among them 35 do so by matching.
The following table presents the proportions of successful reproductions for the two
strategies of counting and matching among the two C.P. groups in March and June
and in the C.E. of the previous experiment.

Strategy March
C.P.

June
C.P.

C.E.

Counting .11 .10 .40

Matching .75 .83 1

Table 6.9: Proportions of correct reproductions for the two strategies: counting and
matching, in the first and second trial of the C.P. group and in the C.E. group of the
first experiment (from Comiti et al. p.205, 1980).

In the whole sample tested, the matching strategy appears to be a much more reliable
means to carry out accurate reproductions of large sets than counting. However, while
this strategy is more common among younger children, older children favour the
counting strategy. In the next section, I examine the studies on reproduction tasks
which require the use of counting.

6.3.2 Studies of reproduction with counting

Along with spontaneous reproduction strategies, Fuson (1988) and Saxe
(1977,1979) investigate children's responses when they are explicitly asked to count
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the model set. As in the studies on spontaneous reproduction, children here first
reproduce the set configuration, and later make use of the count information.

6.3.2.1 The studies by Fuson

Fuson (1988) designed two variants of the reproduction task; one in which the model
set is physically present, e.g. the "make an equivalent set" task, and one in which only
the cardinal value of the model set is given, e.g. the "make a set of n" task.
In the "make an equivalent set" task, the children (between 4 and 6 years of age) are

presented with a row of irregularly spaced (7, 9,16 and 18) chips and are asked: "give
me as many blue chips as there are red ones", from a pile of 20 blue chips. In the
"make a set of n" task, a pile of chips is placed in front of the child, who is asked
"Give me n poker chips" (sets of 7, 8, 17 and 19 chips). The results indicate that
children's reproductions are:
a) Accurate less than 50% of the time before age 4,6;
b) Accurate above 75% of the time after age 5,6;
c) Dependent on set size, with sets bigger than 10 leading to a significantly worst

performance;
d) More accurate in the "make a set of n" task than in the "make an equivalent set task".
In the "make an equivalent set" task:
a) 60% of the matching strategies28 follow one of these patterns:

- Put-near match, the child moves a blue chip in front of each of the red chips,
(more frequent);
- Look-match, the child looks at one red chip after the other and simultaneously puts
a blue chip into a pile; eye fixation and pointing accompany this behaviour.

b) 20% simply count;
c) 20% either make a pile of chips (one-by-one or by handfuls) without looking at the
model set, or make a row of chips (at the edge of the table or along the row).
In the "make a set of n" task:

a) 82% of the solutions rely on counting out a set of n;
b) 23% of the strategies are non-numerical: children simply push some chips on the
table.

28The younger group (3.6 to 4.6 year-old) matchings were correct only
50% of the time. Often children put one chip too few or too many, or begin
with correct matching and at some point started to put the chips down
closer together for the rest of the row.
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In her analysis of the errors, Fuson reports that most incorrect reproductions are due
to the fact that children do not use the model set nor the cardinal value of the set as a

limit to their activity and keep on adding blue chips until they have made a pile of all 20
blue chips. In the first condition, this behaviour is reported for 13 of the 24 younger

children. In the second condition, the same behaviour is found among 12 young

children.

6.3.2.2 The studies by Saxe

In a series of experiments, Saxe (1977, 1979) compares children's performance in
two task conditions:

1 .The model set is visible on the table in front of the child;
2. The model set is on the floor, in a position which does not permit the child to see

the model set when he is constructing the copy set.
This second condition, by excluding the possibility of matching, requires the use of
counting to transfer the numerical information from the model to the copy set. The
reproduction has to be carried out either by putting the same number of objects on the
table or by drawing them on a piece of paper. Throughout the testing session, and for
both experimental conditions, the experimenter frequently suggests to the children that
they should count the items (e.g. "Would counting help you?").
Saxe classifies children's strategies (between age 3 and 7) in pre-quantitative (level 1,
subdivided in sub-level la and sub-level lb) and quantitative (level 2, subdivided in 2a
and 2b). The classification does not take counting accuracy into account.

6.3.2.2.1 Level 1

Level 1 strategies are those where counts are not used as a means to reproduce sets.
At sub-level la: the child first makes an approximate copy of the model without
counting. When explicitly asked to do so, he counts only the copy. Saxe reports

examples like: the child makes a semicircle of 15 beads opposite the model. The
experimenter suggests counting and the child counts to 14, gesturing back and forth
over the model and the copy. Following the count, no corrections are made. Another
child draws 11 circles, filling the page; after the suggestion he counts the copy to 10.
In the situation where the model is on the floor, the child puts all the available objects
on the table, counts them to 10 and, asked whether model and copy sets have the same

number, answers: "yes, because I counted them".
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At Sub-level lb, the child makes an approximate copy of the model without
counting. After direct suggestion, he counts both collections separately, but does not
use this information to verify or correct his copy. Examples of this pattern are: a child
puts six beads in a straight line opposite the model but not in one-to-one

correspondence. After the suggestion, he counts: "you have 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11.1 have 1, 2, 3, 4, 5, 6, 7." Even though he has reached different numbers, he
does not modify the copy. In the drawing task, a subject draws 12 circles, filling the
page; then counts the copy to 7 and the model to 11 and says "they're the same

number". In the reproduction of the far collection, another subject places the entire
available set on the table; after the suggestion he counts the objects on the table to 14
and the objects on the floor to 6 and confirms the equivalence justifying it: "yes,
because I counted".

6.3.2.2.2 Level 2

Counting is used to produce numerical reproductions of arrays. In sub-level 2a: the
child makes an approximate copy of the model without counting and then counts both
collections separately. A trial-and-error method is used to attain the numerical
equivalence between model and copy. Illustrations are: a child who makes a

reproduction of 15 beads and matches the end points with the model. Asked whether
they have the same number, he answers that they have not and makes a series of
additions and subtractions interspersed with counts until the equality is achieved.
Similarly a child draws 11 circles in a random order and, after the suggestion, counts
both the model and the copy. He remarks the difference, draws the copy again and
after a series of counts, erasures and recounts, produces a correct copy.
At Sub-level 2b, the child counts the model and then produces a numerically

equivalent copy, or produces an approximate copy and then systematically adjust it
through counting to attain numerical equivalence with the model. Typically children
count the model collection and then count out the same number from the pile and place
those opposite the model. Otherwise they count out the same number of circles while
drawing them.
The same sequence of behavioural patterns from pre-quantitative to quantitative

reproductions is observed across the task conditions. Ninety per cent of the 3-year-
olds use strategy la; 4-year-olds are evenly distributed in the four sub-levels while 7-
year-olds are consistently using strategy 2b. Overall, the situation with the model on
the floor tends to be more difficult and a steady rise in accurate counting is found
between sub-levels la and 2b.
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In a subsequent, longitudinal study, Saxe (1977) follows the development of 9 of the
3-year-olds of the previous study. Whereas in the first test these children were all
using pre-quantitative strategies (5 were at sub-level la and 3 at lb), after 12 months
all children use more advanced strategies: 5 are at sub-level lb and 3 at sub-level 2a.
Counting accuracy also improves. When the same children are tested after 6 more

months, all children use quantitative counting strategies and all but one consistently
count accurately.

6.3.3 Discussion of the development of reproduction

The results from the studies of the development of set reproduction identify three
clearly distinct behavioural patterns:
1. Before age 5, children do not reproduce the cardinal number of a set of objects.
They make global copies of the set's configuration without noting the number of
elements used. In particular, they tend to put a handful of objects on the table and
rearrange them to look like the model set, to use all the objects at their disposal, or to
establish a precise correspondence but only for some parts of the configuration (e.g.
the end points of a row or the angles of a closed figure). When the children are

explicitly asked to count the model set before starting the reproduction, they do not
make use of this numerical information in their reproduction. When instead they are

asked to count the model and the copy set after the reproduction has been carried out,

they count one of the sets only, or they count both sets separately but still conclude that
they are equinumerous. As Saxe notes, in this first stage, counting information does
not seem to have any quantitative meaning for the child. Thus, in Greco's inference
task, the children do not infer the cardinality of the hidden set, even when they are

invited to count the visible set.

2. Between age 5 and 7, children reproduce the set correctly (e.g. 75% of the children
older than 5,6 provide accurate reproductions in Fuson's study). They generally
construct the copy by one-to-one correspondence (placing one object in front of each
of the model set's elements until all the elements of the model are paired). The copy is
also produced using counting, but more rarely. The cardinal number of the model is
calculated and an equal number of objects is taken to build the copy. In Greco's
inference task, the children who have created the copy set by spatial matching solve the
task by counting the visible set and saying that the hidden set has that same number.
The shift taking place between stage 1 and 2 is reflected in the data of Comiti et al. on
the reproduction strategies. In the group between 6 and 8 years of age, 15% of the
responses are spatial copies, whereas none of the 8 to 10 years group uses this
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strategy. Matching decreases slightly, while counting increases significantly as the
favoured strategy. 79% of the children from the 8 to 10 years group use counting in
their reproduction, versus 47% in the 6 to 8 group. In the older group also, the rate of
corrections after inaccurate reproductions is high. Saxe notices that in this period, the
task is solved by a trial and error method whereby the child puts down a bunch of
objects, then counts the model and the copy, adds (or subtracts) one element from the
copy, then counts the two sets again, adds (or subtracts) another object, counts again,
and so on until the counts coincide.

3. After age 7, children solve the reproduction task using a systematic counting
strategy. They count the model, and count the same number of objects to create a copy

which can have a very different configuration. This pattern corresponds to Greco's
substage 3 and to Fuson's level 2b.

6.4 Relative Number Judgments

The number comparison task probes the understanding of equinumerosity in the
context of determining whether two given sets of objects have the same number of
elements or not. Whereas the reproduction task requires children to establish a match
between elements of the model set and elements of the copy set, the comparison task
requires the child to determine whether the matching between the elements of two
given collections already holds or whether one is larger and has unmatched elements.
The standard comparison paradigm consists of showing children a series of stimuli

(e.g. two rows of equal-size dots or counters) and of asking them to make a cardinal
number judgments: "Is there the same number of 'objects' here and there (or the same

number of reds and blues), or is it different?"; "I want you to look carefully and
choose the row with the most marbles". Siegel (1971) introduces a variant of this
paradigm with a matching to sample task, in which children are asked to choose among
four possible cards, the card which has the same number of objects as the target
collection. Non-verbal variants of the task consist of learning situations, in which
judgments on the basis of number, as opposed to spatial extent, size of items, etc. are
taught.
The development of comparison capacities was first studied by Binet (1890). Binet

asked a group of 4-year-olds to judge whether two parallel rows of counters contained
the same or a different number of elements. One row consisted of 15 large counters,
the other of 18 small counters, so that the more numerous row was shorter than the
less numerous one. The children consistently judged the longer row as having a greater
number of counters. Even when Binet took some of the larger counters away, so as to
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reduce the length, the child maintained the same judgment, until the smaller row was

also shorter. At the same time children were always correct when they had to judge
rows of counters of equal size and equally spaced. From these results Binet concluded
that 4-year-old children base their numerical comparison on a holistic estimation of the
space occupied by the collection, instead of its cardinality.
These findings have been consistently confirmed: Wohlwill (1963), Siegel (1971,
1973, 1974, 1982), Pufall & Shaw (1972), Pufall, Shaw & Syrdal-Larsky (1973),
Brainerd (1973,1977,1978), Lawson, Baron & Siegel (1974), Baron, Lawson &
Siegel (1975), Smither, Smiley & Rees (1974), Estes & Combs (1966), Estes (1976),
Saxe (1979), McLaughlin (1981), Fuson, Secada & Hall (1983), Michie (1984a,
1984b), Cowan (1984, 1987), Sophian (1987). The development of number
comparison in these numerous studies can be summarized in the two behavioural
patterns which follow:
1. Before age 6, children recognize that two rows are equinumerous when they have
not only same number, but also same length and density. Similarly, children correctly
judge a difference in number, when the two rows have different number as well as
different length (or density), and the longer (or denser) row is also the more
numerous. When instead number does not co-vary with the length or density
dimensions of the row, the children do not make accurate judgments of numerosity.
For instance, when the rows have:

a) the same number of elements, but different length and density, the longer row is
judged as having more elements (less frequently the denser row is chosen);
b) different number if elements but equivalent length, the two rows are judged to be
equinumerous;
c) different length and number, with the shorter row more numerous, the longer row is
consider more numerous.

2. After age 6, children judge the two collections on the basis of number alone. So two
collections are equinumerous if their respective counts produce the same cardinal
number, regardless of differences in spatial extent.

As illustration, consider the results from the studies of Pufall & Shaw (1972):
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Configuration Type of relation Age: 3 4 5 6

©©©©©©©

same density
same length
same number .42 1.0 1.0 1.0

0DOOOO

same density
different length
different number .9 .85 .95 .95

same length
different density
different number .58 .17 .29 .63

© © © © ©
as above

.84 .40 .63 .92

00 o oo o o

same number
different length
different density .11 .04 .02 .10

©©©©©©©

different length
different density
different number
(shorter row more numerous)

.53 .19 .46 .88

©©©©©©©
as above
(longer row more numerous) .89 .90 .98 1.0

Table 6.10: Proportion of correct judgments as a function of age and arrays number
and configuration (length and density) (from Pufall & Shaw, 1972, p.63-65)

Leaving beside the column corresponding to the 3-year-olds' responses for the
moment29, we observe very high accuracy across age groups in the judgments of
arrays which have same length, density and number (e.g. top row); same density,
different length and different number (e.g. second row from top; the longer array is
also the larger); different density, length and number; the longer array is the most
numerous (e.g. bottom row). We observe significantly higher performance between

29 The studies of conservation in 3 and 4 year-old children reviewed in
Appendix 6.2, and in particular the replications of Mehler & Bever (1967)
study, have shown that the judgments of children at that age are not
reliable, as they are based on contingent strategies, such as repeating the
last comparative term uttered, choosing the same array each time, or the
array of same colour, etc. Their interpretation hence is very problematic
and will not be addressed in this dissertation.
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the 4- and the 5- and between the 5- and 6-year-olds groups when the arrays have
same length but different density and number (e.g. third and fourth rows from top);
and when the arrays have different length, density and number and the larger array is
shorter than the less numerous one. The proportion of correct judgments is constantly
high among the 6-year-olds (e.g. between .63 and 1.00, mean = .78), except for cases
of two arrays of same number and different lengths (e.g. proportion of .10 correct

responses, not different from the younger age group). This same developmental
pattern (with only some variations on the size of the rows and the length, density
differences are introduced) has also been generally confirmed in studies which set the
numerical judgments in a learning context or in a matching-to-sample task.
I now turn to the question of the role of counting on numerical comparison accuracy.
Do children spontaneously use counting to compare, and, when required to count, do
they make use of this information regardless of differences in spatial size between the
collections?

Cowan (1987) examines how children compare rows whose cardinality is within the
range of children's counting competence and whose length provides a conflicting cue

to number. In four experiments, children from 3 to 5 years of age, whose counting
competence is assessed for consistency, are tested using two comparison procedures:

1. The child is asked to count each row and then to judge whether the two rows

have the same number or whether one of them is bigger;
2. The experimenter does the counting, and the comparison question is put once the
two collections have been counted.

This second condition is designed to control for the fact that children may not use

counting to compare because they lack confidence in its accuracy and reliability,
whereas the experimenter's count ensures the accuracy.
Cowan reports that very few competent counters aged under 6 years judge correctly

on the basis of their counting when conflicting cues are present. Before that age,
counting two rows of different length up to the same number does not convince
children that the two sets are equinumerous. Instead the longer row is generally taken
to have more elements.

In a first experiment (1984a), Michie reports that children 3- and 4-year-olds do not
spontaneously use information from counting to make numerical judgments, unless
they are explicitly asked to do so; instead they systematically base their judgments on
the length cue. In a follow-up experiment (1984b), Michie investigates two factors that
can play a role in the spontaneous use of counting:
a) the presence of the misleading length cues. To eliminate this factor, the elements of
the two sets to be compared are counted and put into opaque boxes;
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b) the role ofmemory. A visual display of numerals is used to indicate the last numeral
counted.

The child is then provided with the numerals representing the cardinality of the sets,
either with or without the set of objects present in view. Performance is significantly
improved when the sets are hidden in the boxes and the numerals representing their
cardinality are visible. The improvement is not significant when, both numerals and
sets with conflicting arrangements (e.g. the longer row has fewer elements) can be
seen. From these results, Michie draws a rather paradoxical conclusion:

The result of their counting may be played down by children, not because they
lack an understanding of number, but because they judge it to be less reliable
than other sources of information relevant to number (p.356).

How can someone who understands number prefer the spatial size of two rows over

the cardinal size to judge about numerosity? It seems rather that young children are

capable of using the counting information only when this is the only information
available about the two collections (e.g. they are into two opaque containers). When
the younger child has information both about number and spatial extension, he will
base his numerical judgments on the latter. In other words, Michie's findings indicate
that young children can accurately judge the numeral "6" to be bigger than the numeral
"5", while at the same time they conclude that a longer row that they have counted to
"5" is more numerous than a shorter row that they have counted to "6". Observations
of this kind are also reported in studies by Sophian (1987) and Saxe (1979).

6.5 Relationship between task acquisition

Very few studies have addressed the question of the order in which the tasks of set
reproduction, comparison and conservation are solved. Greco (1962) and Piaget &
Szeminska (1952) examine the same children in both the reproduction and the
conservation tasks and report that reproduction is correctly solved before the
conservation, with a decalage of around two years. The substage 2 in Piaget's
analysis, for instance, corresponds to the capacity to reproduce the collection while
failing the conservation test when one of the collections is spread out.
Saxe (1977,1979) examines all three tasks and finds that although the same transition
from pre-quantitative to quantitative procedures is observed across each of the tasks, it
occurs in comparison (his sublevel 2a) than in reproduction (Sublevel 2b), and in these
two tasks than in conservation.
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6.6 Conclusions and directions for new research

The extensive research on cardinal number development presented in this chapter
indicates a radical change in the understanding and use of numerical relations between
age 3 and age 7. Two periods can be distinguished. Before age 5-6, children
systematically estimate the size of a collection of objects on the basis of its spatial
extent. Hence, when they are asked to create a collection equivalent to a model one,
they tend to reproduce the overall configuration rather then the cardinality of the model.
Similarly when they are asked to judge the numerosity of two collections, they indicate
as more numerous the collection which takes up more space, and particularly the one

which is longer, taller or larger. When the collections have an equivalent spatial size
(same length and similar density), they are also considered equinumerous. In this
period children can count up to 20 with good consistency, but, they do not use

counting spontaneously as a strategy for solving these quantitative problems. When
they are explicitly required to do so, either they count one of the collections only, or
both collections, but do not draw any conclusion about equinumerosity on this basis.
Only the study by Michie obtains precocious success in set comparisons by making the
children count the two collections into opaque containers. In this situation, the children
do not have information about the spatial extent and indeed base their judgments on the
counts. In this period then, children have some knowledge of number (e.g. they know
a good portion of the number word sequence, they can count at least up to 20, they
know that "5" is bigger than "4", etc.). However, they do not know that to reproduce a

row of four they have to count out four elements, or match each element of the row
with one object, and that to compare two rows they can either count them or put their
elements into one-to-one correspondence to see whether one is bigger.
Between age 5-6 and age 7, children learn to reproduce and compare sets' cardinal

numbers independently of their configurations. They can also confirm that a set's
number is not changed when its configuration is modified (identity conservation task).
They can confirm that two collections are equinumerous regardless of spatial
modifications under two conditions: when the spatial transformation occurs as an

accident and when they are required to count the two collections again before judging
about their equinumerosity. However, only after age 7 can children conserve number
in the standard Piagetian task, where no counting is asked and the transformation is
performed by the experimenter.
The fascinating aspect of these results is that the same kind of developmental change
is observed for each task at different periods. In each case, children evolve from
evaluations of size based on the spatial dimensions to systematic numerical strategies
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that employ one-to-one correspondence and counting. The change takes place between
ages 3 and 5-6 for reproduction, comparison, identity and counted conservation. It
occurs between ages 5-6 and 7 for the standard Piagetian task. In other words, the
children seem to go through a period in which they can construct cardinal
representations, which are completely independent from spatial features of the set, for
a particular class of situations. These same children however "regress" to pre-

numerical representations when they are faced with the Piagetian conservation task.
The range of tasks solved in the period preceding standard conservation are indicative
of the numerical competence that children have before age 7, a competence which
clearly exceeds the Piagetian account of the pre-operational number concept as
irreversible and perception-bound. Children can in fact construct cardinal
representations and draw inferences about equinumerosity, difference and
conservation, even before succeeding the standard conservation task.
The reconstruction just given, however, can be only indicative of the kind of changes
occurring in development, as it is based on the ages in which the various tasks are

consistently solved, on different samples, in different countries with different teaching
programs, etc. More precise data about the order in which the tasks are solved is
needed. In the next two chapters I investigate this order using the hierarchical analysis
method described in chapter 5. In particular I shall address the following questions:
1. The comparison and reproduction tasks appear to be acquired in the same period.
Saxe (1977, 1979) however suggests that comparison is solved with a slight
anticipation on reproduction. Are the reproduction and comparison tasks solved
concurrently or does a collective decalage exist between the solution of comparison and
reproduction, as suggested by Saxe?
2. The modified conservation task appears to be mastered in the same period. Does that
mean that identity conservation, counted conservation and accidental conservation are

solved concurrently?
3. Can the collective decalage between modified and standard conservation tasks be
confirmed by the hierarchical analysis of performance across tasks?
Precise data about the order in which the diverse numerical tasks are solved is

necessary to identify stages of number competence (the tasks solved concurrently),
order among these stages (the increasing range of tasks solved concurrently) and to pin
down the phases of transition between stages (the task failed at one stage, solved at the
subsequent stage, and the response strategies, testing procedures, general attitudes
observed). This information allows us to begin to articulate a characterization of the
nature of the contents upon which the cardinal number structure operates and to capture
the generalization of this structure to new contents. In the next two chapters, I shall try
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to answer the three questions above with three experiments. In the first two
experiments, reported in the following Chapter 7,1 explore the relationship between
the acquisition of the three main tasks of set reproduction, comparison and
conservation. On the basis of the developmental orders identified, I propose a

characterization of the underlying number concepts. These hypotheses are tested in the
third experiment which occupies Chapter 8 and which includes some of the modified
versions of Piaget's conservation task.
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Chapter 7 A study of cardinal number development

7.1 General introduction to the experimental component

Chapters 7 and 8 constitute the experimental component of the thesis and the
application of the theoretical framework and of the methodology presented in the
previous chapters. These chapters introduce three experiments which offer a

systematic investigation of the development of the cardinal number concept from the
acquisition of the ability to reproduce sets to the conservation of number in Piaget's
standard task.

The two experiments presented in Chapter 7 have two descriptive objectives:
a) to determine whether the development from set reproduction to number conservation
proceeds in a sequence of clearly distinguishable stages;

b) to gather observations about the phases of transition between stages.
The investigation of the developmental process arises from two questions which were

left unanswered by the literature on cardinal number development:
1. Does the capacity to reproduce sets precede, follow or co-occur with the capacity
to compare sets?
2. Does the capacity to compare sets precede, follow or co-occur with number
conservation in the Piagetian task?

Answering these questions and confirming the reported decalage from the capacity to
reproduce sets to number conservation will provide the basis from which hypotheses
about the evolution of the child's number concepts will be advanced. The hypotheses
will be articulated in the theoretical terms of the domain-specific framework proposed.
Tasks solved concurrently identify a stage of competence and indicate the contexts in
which the child has worked out the relevance of the number-domain structure. From

the analysis of these tasks' requirements, the objects to which the number domain
structure applies are specified as well as the nature of the number concept at that stage.
Tasks solved with a systematic collective decalage reflect the steps in the
developmental process and identify the transition phases when the relevance of the
number structure is discovered for new contexts and the number concept redefined.
The third experiment, presented in Chapter 8, constitutes a first test of these

hypotheses. It examines whether the solutions of the different modified conservation
tasks emerge concurrently as well as concurrently with set comparison.

143



The experimental component of the thesis is hence divided in two chapters. In the
first, more descriptive Chapter 7,1 present two experiments which try to replicate and
systematize some of the data about numerical development discussed in the literature
review. This first part is composed of three sections corresponding to two experiments
and to the general discussion and interpretation of their results. In the second, more
predictive part (Chapter 8), I test the account of the development of cardinal number
competence with a third experiment which introduces new tasks.

7.2 Experiment 1

7.2.1 Introduction

Experiment 1 initiates the hierarchical analysis of the development of cardinal number
by comparing the performance of children age 4 to 7 years in the three tasks of:

1. set reproduction, the construction of a set with the same number of objects as a

'model' set;

2. set comparison, the judgment of numerosity of two sets of objects which are

either equivalent in number and spatial extent (especially length) or equivalent in
number and different in configuration;
3. conservation ofnumber, the standard Piagetian test, where one of the two sets
that the child has constructed in the reproduction task and has judged equinumerous
is either lengthened or shortened by the experimenter. After the transformation, the
child is asked whether the sets are still equinumerous or whether they are different
in number.

In the literature, the three tasks have been studied independently and on different
groups of children. In this experiment, the development of the ability to solve the three
tasks and the order in which the tasks are acquired is examined on the same children
who take the whole battery of tasks. The cross-sectional response patterns will
constitute evidence of the steps in the development of the cardinal number concept
from space dominant to number dominant quantifications of sets.
The literature summarized in Chapter 6 suggests that reproduction and comparison
abilities are acquired by age 5-6 years and conservation by age 7. A collective decalage
should therefore exist between the solution of reproduction and comparison, on the
one hand, and of conservation on the other hand. Apart from Saxe's studies (1977,
1979) which indicate that numerical reasoning appears first in comparison tasks and
later in reproduction tasks, the literature does not provide any clear evidence about the
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acquisition order between set reproduction and comparison. Experiment 1 examines
this order by presenting the reproduction task in two conditions followed by a

numerical judgment:
a) 'Visible': the set to be reproduced is physically present before the child;
b) 'Hidden': the set to be reproduced is out of the child's sight and is identified only by
the numeral corresponding to its cardinality. After the reproduction, the screen hiding
the model row is lifted.

The two conditions differ in that a correct visible reproduction yields a copy row which
is generally equivalent in number and form30 to the model row, whereas a correct
hidden reproduction yields two rows equinumerous, but different in form31. When,
after the reproduction, the children are required to compare the two sets, now both
visible and one facing the other, they are confronted with coinciding information in the
visible condition (both number and length are equivalent) and conflicting information
in the hidden condition (same number and different length). This unusual format is
designed to establish the order in which number reproduction and comparison abilities
develop.
Furthermore, since over this same period the child's knowledge of the number word
sequence and of counting develops rapidly, precautions have been taken to take into
account the child's expertise of enumeration and counting. The children have been pre¬

tested on their counting and enumeration capacities and, on the basis of the results at
the pre-test, set sizes have been chosen that the children could quantify reliably. Notice
that if on the one hand this strategy introduces an element of variation, i.e. different
children are exposed to sets of different cardinality, on the other hand all the children
are faced with similar demands on their representation of numerosity. Small sets of
three or four objects may in fact be just within the span of the children's counting skill
at age 4, but may be very easy to handle, and may even function as units, for the 6 or 7
year-old child. For the older children, instead, the quantification of a set of eight or
nine objects may present the same degree of difficulty as the small set for the younger
child. In other words, the strategy of determining the size of the sets that the child is
asked to reproduce, compare or conserve ffom a pre-test of counting skill should put
all the children in a comparable situation. The choice of factoring out counting

30According to the literature, when the model set is present children
spontaneously use spatial pairing to reproduce the set and, when correct,
obtain sets which have both equivalent number and length (75% of
children between 3 and 6 years according to Fuson 1988).
3Children do not have any information about the shape of the set and
their reproduction is exclusively based on the numeral representing the
cardinality of the set, without guarantee of similarity in shape.
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expertise by using different sets, adapted to the children's capacity, also respond to the
preoccupations expressed both by researchers, like Gelman (1972b), who distinguish
between the capacity to create numerical representations and to reason with these
representations, and by researchers, like Bovet et al.( 1981), who consider that
reasoning with small sets does not involve the same kind of processes (e.g. perceptual
estimation or subitizing) as reasoning with medium-size and large sets.

7.2.2 Objectives

The objective of the study is to determine whether the solutions of the three tasks by
the same children appear:

1. concurrently : either a child succeeds at both the tasks or fails them;
2. with collective decalage: a child solves some tasks while at the same time failing
some other task;
3. with individual decalage, some children solve some tasks before others, while
other children do the opposite.

Collective decalage between reproduction-comparison and conservation (e.g. a child
may succeed in both reproduction and comparison tasks and then fail conservation,
whereas no child who succeeds in conservation fails in reproduction or comparison)
would indicate that the conservation task introduces aspects of the number concept
which are critical for children who at the same time operate adequately with number in
the context of the tasks of reproduction and comparison. The pattern of collective
decalage would thus identify two stages of number concept development,
corresponding to the competence underlying the ability to reproduce and compare sets,
and to the competence underlying conservation; and a transition period (reflected by
typical responses) when the understanding of conservation is elaborated.
Moreover children's number judgments after the two reproduction conditions

(Hidden and Visible) can reveal whether the equinumerosity at the basis of accurate
reproduction is systematically confirmed in a subsequent accurate comparison,
regardless of the difference in the form of the sets, or whether accurate reproductions
are followed by inaccurate comparisons when the spatial and numerical sizes do not
coincide. Collective decalage between reproduction and comparison would identify
two stages of numerical competence: a first stage in which the children can only
reproduce sets and a second stage in which they can compare sets both when the
numerical and spatial sizes coincide and when they do not. Notice that this sequence

parallels stages in the acquisition of Piagetian conservation. In the conservation task,
however, the conflict between number and spatial cues is a consequence of a
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transformation carried out by the experimenter, while in the comparison, the conflict is
a by-product of the strategy used to construct the equivalent sets and no

transformations are involved.

To summarize, the two conditions of the reproduction task followed by the
comparison and conservation tasks confront the child with the problem of establishing
and confirming the equinumerosity of two collections. The three tasks thus introduce
similar contexts in which to probe the coherence and generality of the child's concept
of cardinal number and in particular his ability to create a one-to-one correspondence
between the elements of two collections and draw inferences about the collections'

equinumerosity or difference32, independently from the spatial cues to size.

7.2.3 Hypotheses

The literature on cardinal number development predicts that:

Hypothesis 1: there is a collective decalage between the solution of the reproduction
and comparison tasks on the one hand and the later solution of the conservation task
on the other hand.

Correct performance on the conservation task should be more strongly associated with
correct performance on the reproduction and comparison tasks than with incorrect
performance on these tasks, as in figures 7.1a, 7.1b.

Reproduction
visible & hidden

Conservation

Comparison after repro
visible& hidden

S F

s s

:r illfe
F F 11

• •1

a b
Fig. 7.1: Models of collective decalage according to hypothesis 1: a) between
responses to the conservation and reproduction, b) between responses to conservation
and comparison (white cells are the cells predicted to be empty).

32The different tasks are presented in a related way so as to avoid that the
comparison task be a mere perception of numerosity task (see chapter 6
section 6.4). By requiring the comparison after the set reproduction, the
child has two sources of information on which to base his number

judgment: 1) the original equinumerosity established in the reproduction
task; 2) the perceptual estimation of size based on the distribution of the
collections.
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The developmental order between the tasks of reproduction and comparison will be
investigated via the hidden condition of reproduction. After hidden reproduction task,
the length difference between rows should create a conflict between numerical and
spatial size and should introduce a new critical dimension (or conflict) in the
comparison task that neither the reproduction task nor the comparison after visible
reproduction (same length and same number) contain. Because of the conflict, the
comparison of a pair of rows of different lengths constitutes a more complex operation
than the reproduction of an individual row or the comparison of rows which coincide
in number and length:

Hypothesis 2a: there is collective decalage between the solution of the reproduction
tasks and the later solution of the comparison task after hidden reproduction task.

Correct performance on the comparison after hidden reproduction task should be
associated with correct performance in the hidden reproduction task: no one should fail
the former who succeeds at the latter, as in figure 7.2.

Reproduction
s. hidden

Comparison
after hidden „

reproduction

F

Fig. 7.2: Model of collective decalage between responses to hidden reproduction and
to comparison after hidden reproduction according to hypothesis 2a.

Hypothesis 2b: the solution of the reproduction task in both visible and hidden
conditions is concurrent with the solution of the comparison after visible
reproduction task.

Correct performance on the comparison after visible reproduction should be strongly
associated with correct performance in both reproduction tasks; incorrect performance
on the comparison after visible reproduction is strongly associated with incorrect
performance in the visible reproduction, as in figure 7.3.

.
.
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Fig. 7.3: Model of concurrency between responses to visible reproduction and to the
following comparison according to hypothesis 2b.

7.2.4 Design

Each subject was presented the tasks in the following fixed order:
1. Number Reproduction: A Visible, B Hidden
2. Number Comparison
3. Number Conservation

Two variants of the hidden condition of reproduction (B) were used:
- 'Seen' condition (Bl): the subject saw and counted the model set, before it was
Hidden behind the screen;
- 'Unseen' condition (B2), the subject did not see the model set at all and was only
informed of its cardinal number.

No specific hypotheses were attached to either of the two B conditions which were of
an exploratory nature. The series was repeated three times for each child starting with
the reproduction in the visible condition (A), where the set to be reproduced, or model
set, was on the table before the child. In the next reproduction-comparison-
conservation series, the child had one of the two hidden conditions (B), where the
model set was behind a screen and was denoted by the numeral corresponding to its
cardinality. In the final series, the other B condition was used. A always preceded B
conditions. Half the subjects received the seen condition (Bl) first and unseen (B2)
second, while the other half did the opposite. I chose to start always with the visible
condition A in order to let the children display spontaneous procedures of
quantification. Starting with condition B, might have in fact strongly induced the use

of counting also in the visible condition of reproduction. The orders of task
presentations are summarized in the following schema:
Order 1

First trial Second trial Third trial

Repro visible (A) Repro hid seen (Bl) Repro hid unseen (B2)
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Comparison
Conservation

Comparison
Conservation

Comparison
Conservation

Order 2

First trial

Repro visible (A)

Second trial

Repro hid unseen (B2)

Third trial

Repro hid seen (Bl)
Comparison
Conservation

Comparison
Conservation

Comparison
Conservation

The number and the type of objects were different at each trial to reduce repetition
effects. The following independent variables were manipulated:
- tasks:

- reproduction visible, hidden seen, hidden unseen;
- comparison after reproductions visible, hidden seen, hidden unseen;
- conservation after reproductions visible, hidden seen, hidden unseen.

- schooling/aee group:
- Nursery (between age 4 and 5)
- Primary 1 (between age 5 and 6)
- Primary 2 (between age 6 and 7)

- order of presentation of the hidden conditions (B): seen (Bl) first or unseen (B2)

Dependent variables were the number of correct responses in each task and the
contingencies between correct and incorrect responses in pairs of tasks.
In terms of statistical design, this experiment was within subjects (repeated

measures), with subjects nested in age groups. In the within-subject dimension, I
compared the same children across the whole set of tasks; while in the nested,
between-subject dimension, I compared the performance of the age groups in each task
and of single age groups across tasks.

7.2.5 Statistical analysis

The mixed design requires different statistical treatments. The order in which the
tasks are solved can be analyzed at two levels:
1) at the level of age groups, by comparing the frequency of correct-incorrect
responses to each task across the three age groups (e.g. significant difference in the
number of success-failure responses between Nursery, Primary 1 and Primary 2
children) and by comparing the frequency of correct-incorrect responses within each

first.
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age group across task conditions (e.g. significant difference in the number of success-
failure responses to reproduction, comparison and conservation tasks);
2) at the level of the whole sample, by looking for patterns of concurrency, collective
decalage or individual decalage in the responses to each pair of tasks.
As I pointed out in section 5.3.2, both kinds of analysis are equally necessary since

the hierarchical analysis, which tests more directly the hypotheses of order,
necessitates a previous delimitation of the period in which developmental changes
occur. This information guides the sampling and reduces the risk of obtaining very

unbalanced contingency tables, in which most children find the two tasks either too
simple or too difficult. Since the children's performance is measured at the nominal
level (children are allocated in the two categories of success and failure), I use non-
parametric statistics for both the age group and the task conditions analyses33:
a) x2 tests to evaluate the degree of relationship between the distribution of correct
responses to each task condition and the age groups;
b) Marascuilo & McSweeney test (a variant of Cochran's Q test) to evaluate whether,
within each age group, the performance follows the order of complexity assumed for
the task conditions.

For the more specific question of the developmental ordering among problems (e.g.
concurrency, collective decalage or individual decalage), I employ the Hildebrand,
Laing & Rosenthal's Prediction analysis for cross-classifications. For each hypothesis
listed above in 7.2.3,1 devise a triangular hypothesis which identifies the cells of the
two-by-two developmental contingency table predicted to be empty. The prediction is
verified when the observed Del (which gives the improvement of fit over chance when
one (or two) cell(s) of the table is predicted to be empty), is significantly greater than a

chance Del34 (at the level of p<.05, one-tail normal curve test, with the critical value of
z to exceed 1.65) and is significandy different from the Del values of the alternative
ordering patterns (see section 5.3.1 for a description).

7.2.6 Materials

Three sets of objects were used: red and blue wooden cylinders (1.7 cm high and 1.7
cm of diameter), small plastic animals (pigs and hippopotamuses of similar size),
orange and yellow round sweets (2.5 cm of diameter). The set of objects given to the

33The statistical methods are presented in some detail in sections 5.3.1,5.3.2.
34As a general policy, I shall give the precise significance level
corresponding to the one-tail normal curve test z. The choice of a one-tail
test is justified by the fact that the theory dictates only positive Del as
being desirable (see Hofmann, 1983, p.35).
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child to reproduce were kept in a box. In the hidden condition of reproduction, the
screen was a red, rectangular cardboard. For each subject and each condition, a
different set of objects was used, chosen on a random base.

7.2.7 Procedure

The children were seen individually and first were pre-tested on their counting
abilities: "do you know how to count?" and "how far can you count?". If the child
missed a number word from the sequence or stopped the recitation abruptly, the
experimenter asked "what number comes after x (the problematic number word)?". On
the basis of the portion of the sequence which the child could recite, the experimenter
decided which set sizes to use in the following tasks. In a general way, Nursery
children were tested with sets of between 4 and 6 objects; Primary 1 with sets between
7 and 10 and Primary 2 with sets between 7 and 12. The pre-test was followed by the
reproduction, comparison and conservation tasks, repeated for each condition of
reproduction according to the order defined in 7.2.4. The series were presented in two
half-counterbalanced orders: of each age group half follows Order 1 and half Order 2.

7.2.7.1 Reproduction Task

The experimenter put down a row of objects and said "here I have a line (or row) of
'objects', I give you these" (the box containing the corresponding objects, between 12
and 15) and, pointing to the row, asked the child:
- in visible condition: "I would like you to take the same number of 'objects'35 as there
are here (or as I have) and make a row (or line) with them".
- in hidden seen condition: "Could you count this row of 'objects'?" After the count,
the row was hidden behind the screen: "Now I cover it up, so that you cannot see them.
I would like you to take the same number of 'objects' as there are here (pointing to the
row behind the screen) and make a line (row) with them here (pointing to the child's
side of the screen)".
- in hidden unseen condition: without ever showing the row, the experiment said "I'm
making a line (or row) with 'n'36 objects here. I would like you take the same number
of 'objects' from the box and make a row with them on this side (or your side)".

35In the questioning the word "objects" was replaced by the word denoting
the items that were used in the test, such as pigs, hippos, candies, rounds,
etc.

36"n" was replaced by the chosen cardinal number
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7.2.7.2 Comparison Task

After the reproduction task in the hidden condition, the screen was taken away. In all
conditions, the child was asked: "Is there (pointing to one row) and there (pointing to
the other row) the same number of objects, or does one of the rows have more

objects?" In case the child responded that the two rows were different in number, the
experimenter asked which of the rows had the most and then asked the child to correct
the inequality: "What can you do to have the same number here and there (pointing to
the two rows)?". If the child did not know how to achieve the equinumerosity, the
experimenter suggested to establish a one-to-one correspondence by placing the objects
from the two rows one in front of the other.

7.2.7.3 Conservation of Number Task

Once the child had reached the conclusion that the two rows had the same number of

objects (by a correct judgment, by an incorrect judgment of equinumerosity for
unequal sets, by the correction of an initially inaccurate judgment of difference, by the
suggestion of the experiment to create a one-to-one correspondence), the experimenter
presented him the conservation problem: "Look what I do now"; and transformed the
arrangement of one of the two rows, making it longer (in half trials) or shorter (in the
second half of the trials). The conservation question followed:"Is the number of
objects the same here and there (pointing to the two rows), or is the number
different?". The child was then asked to justify his answer: "why is it, or why do you
think so?". The experimenter then modified the other row into a shorter one and asked
the same series of question.
A particular procedure was followed in the case of children who, in the comparison

task, judged as equinumerous sets which were in fact different. These children were

not excluded from the third part of the experiment because some meaningful
distinctions could still be carried out over their conservation responses. Two post-
transformation responses are possible. Consider a response of difference first. A
judgment of difference could either express a "correct" appreciation of the difference
existing between the two sets or an "incorrect" estimation of set size based on spatial
cues, i.g. the spatial difference introduced by the transformation. In order to
discriminate between these two interpretations, the first transformation to be performed
made the more numerous row into a shorter one. A choice of the longer row as the
more numerous was evidence of the fact that the child was basing his judgments on the

spatial extent of the sets. Instead, when the shorter row was chosen, we asked the
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child to make the two rows equinumerous (eventually suggesting the one-to-one

matching) and we started the conservation task again. Consider then a response of
equivalence. Since we knew from the literature that incorrect comparisons are generally
based on an estimation of the spatial size of the sets rather than their numerical size, we
did not expect that many children would have maintained their "incorrect" judgment of
equinumerosity after the transformation that made the two rows look markedly
different. In section 7.2.10.1.2.3, we report the number of responses who conform to
these three behavioural patterns.

7.2.7.4 Interviews

For the Primary classes the interviews occurred in one of the rooms of the school, in
a location familiar to the children. The Nursery children were interviewed within the
Nursery itself, in a quiet corner. The experimenter was accompanied by a female
colleague, who filled in an already prepared protocol-schema for the session (see
Appendix 7.1) and took further notes about the children's manipulations and
comments. The testing sessions lasted between 5 and 20 minutes.

7.2.8 Measure

Children's performance was measured by the number of correct reproductions,
comparison and conservation responses. The scoring criteria were:
1. In the reproduction task, the number of items of the copy set had to be equivalent to
the number of items of the model set;

2. In the comparison task, the judgment of equinumerosity had to conform to the actual
situation; in the case of incorrect reproductions, comparisons were scored correct when
the child recognized the difference and corrected it; children who admitted that the two
sets were different but who did not know how to equalize them failed the task;
3. In the conservation task, children were scored correct when they answered that the
two collections had the same number of elements after both spatial transformations37.

37As I argued in section 6.2.2.1, two criteria for passing the conservation
test have been employed in the literature: "same" answers and "same"
answers plus operational justifications. I scored the children's responses
according to the two criteria and have found a small difference in the
number of conserving children (see 7.2.10.1.2.3). I have thus retained the
"same"answer criterion alone because it provides the less conservative
measure of conservation but at the same time the most conservative
measure of across-task performance and decalage, e.g. children who
succeed in the conservation task and fail in the reproduction or
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A third transformation decided the status of particularly insecure and unstable
responses.

7.2.9 Subjects

Sixty children from age 3,9 to age 7,2 were tested. They were divided into three
class-age groups of 20 children each: Nursery (mean age = 4,4; SD = .39), Primary 1
(m = 5,6; SD = .24), Primary 2 (m = 6,7; SD = .28). The children were from the same

school and came from a mixed social background, with a predominance of middle-
class children. Three children were not native speakers of English, though they were
very proficient.

7.2.10 Results

The analysis of the results was performed at three levels. The group performance
analysis examined:

a) the effect of the variable order of presentation of the two reproduction conditions
(independent variable) on the number of correct reproduction, comparison and
conservation responses (dependent variables);
b) the effect of the variable schooling/age group (independent variables) on the
performance in each of the tasks: reproduction, comparison and conservation
(dependent variables).

The task analysis examined the effect of the tasks' complexity within each age group.
The hierarchical analysis examined the order of acquisition of the tasks through the
cross-sectional patterns of concurrency, collective decalage and individual decalage in
the solution of each pair-wise combination of the three tasks.

7.2.10.1 Group analysis

7.2.10.1.1 Order of presentation

Tables 7.2.1, 7.2.2, 7.2.3 are contingency tables for the frequency of correct and
incorrect reproductions (7.2.1), comparisons (7.2.2) and conservations (7.2.3) in the

comparison task. The justifications are examined in the qualitative
analysis of the results.
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two hidden reproduction conditions, seen and unseen, when the condition seen is first
(Order 1) and when the condition unseen is first (Order 2). Each table is followed by
the statistics X2 (with Yates correction) computed on it.

.Order

Response
First Second

vOider

Responses. First Second

c

I

22 28

8 2

c

I

22 27

8 3

(A) Hidden reproduction condition seen (B) Hidden reproduction condition unseen

Table 7.2.1: Frequency of correct (C) and incorrect (I)hidden reproduction responses
for condition seen (A) and unseen (B) as a function of order of presentation (A: X2 (1>
N=60) = 4.32, 0.05 > p > 0.03; B: x2 (1, N=60) = 2.7, p = 0.1).

.Order

Response
First Second

vOrder

Responses. First Second

c

I

20 23

10 7

c

I

18 21

12 9

(A) Comparison after visible Reproduction (B) Comparison after hidden Reproduction

Table 7.2.2: Frequency of correct (C) and incorrect (I) comparison responses as a
function of order of presentation of the initial visible reproduction (A: X2 (1, N=60) =
0.72, 0.5 > p > 0.3) and hidden reproduction (B: X2 (1, N=60) = 0.6, 0.5 > p > 0.3).

.Order

Response
First Second

vOider

Responses. First Second

c

I

12 16

18 14

c

I

12 14

18 16

(A) Conservation after visible Reproduction (B) Conservation after hidden Reproduction

Table 7.2.3: Frequency of correct (C) and incorrect (I) conservation responses as a
function of order of presentation of the initial visible reproduction (A: X2(l> N=60) =
1.06, 0.5 >p > 0.3) and hidden reproduction (B: X2(l> N=60) = 0.25, 0.9 > p > 0.8).
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The X2 analyses reveal that the distribution of correct responses in the comparison
and conservation tasks for children starting with the seen condition is not significantly
different from that of the children starting with the unseen condition. The distribution
of correct reproductions in the hidden seen condition is instead affected by the order of
presentation. When this task is presented after a trial which begins with the hidden
unseen condition, the number of correct responses increases. A similar tendency
appears also in the hidden unseen condition, without however reaching the level of
significance set (p equal or smaller than .05). In the remaining discussion the variable
order of presentation will be ignored, except when the performance differences in
hidden reproduction tasks will be examined.

7.2.10.1.2 Age group comparisons

The age group analysis determines the age period in which some developmental
change occurs on the basis of the difference in age groups' performance. Tables 7.2.4
to 7.2.12 present the contingency tables for the children's correct and wrong responses

to each task condition as a function of age38. A X2 lest is computed on each
contingency table. When the value ofmore than two expected frequencies is less than
five, as in Tables 7.2.5 and 7.2.6,1 have collapsed the responses of Primary children
and computed the X2 test on that distribution. Occasionally, a further breakdown of the
table is required to identify the precise age groups in which the performance varies
significantly. To carry out this specific analysis, goodness of fit tests on the number of
correct and wrong responses are computed.

7.2.10.1.2.1 Reproduction Task

Age
Resfbs. Nursery Primary 1 Primary 2

Correct 11 15 19

Failure 9 5 1

Table 7.2.4: Correct and failed reproduction responses by age group in the
reproduction task, visible condition ( X2 (2, N=60) = 8.53, p = 0.014).

38In general, in case of tables with two or more cells with expected
frequencies of less than 5, I have collapsed the responses of children from
Nursery-Primary 1 in conservation and Primary 1-2 in reproduction.
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\. Age
RespV. Nursery Primary 1 Primary 2

Correct 13 18 19

Failure 7 2 1

Table 7.2.5: Correct reproduction responses by age group in the reproduction task,
hidden seen condition (X2 (1, N=60) = 7.04, 0.01 > p > 0.005).

\ Age
RespS. Nursery Primary 1 Primary 2

Correct 12 18 19

Failure 8 2 1

Table 7.2.6: Correct reproduction responses by age group in the reproduction task,
hidden unseen condition (X2 (1, N=60) = 9.59, 0.005 > p > 0.001).

The X2 test is significant for all three reproduction tasks. Between the Nursery and
the Primary groups, the number of correct reproductions increases and the number of
failed reproductions decreases. The younger children reproduce the sets with less
accuracy, whereas no difference appears between the two Primary groups' responses
(18 correct hidden reproductions in Primary 1 versus 19 in Primary 2; 15 correct
visible reproductions in Primary 1 versus 19 in Primary 2).

7.2.10.1.2.2 Comparison task

The data for the comparison tasks which follow the three conditions of the
reproduction task are summarized in Tables 7.2.7 to 7.2.9. Each contingency table of
response category by age group is followed by the relative X2 statistics, and where
necessary some further comparisons of parts of the table.
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Age
ResfN. Nursery Primary 1 Primary 2

Correct 11 16 20

Failure 9 4 0

Table 7.2.7: Correct and failed comparison responses after visible reproductions by
age group (X2 (2, N=60) = 11.98, p = 0.002).

The difference is homogeneously distributed across the three age groups and is more

pronounced between Nursery and Primary 2 children, where the X2 test is highly
significant ( X2 N=40) = 11.6, p<001).

\. Age
Resp— Nursery Primary 1 Primary 2

Correct 5 18 20

Failure 15 2 0

Table 7.2.8: Correct and failed comparison responses after hidden, seen reproductions
by age group (X2 (2, N=60) = 32.67, p = 0.000001).

Nursery children usually failed the comparison task after hidden seen reproduction.
Older children generally succeeded. Whereas the primary groups give an equivalent
number of correct and wrong responses, the difference between Nursery and Primary
1 responses (and consequently also Primary 2) is highly significant ( X2 (1» N=40) =
17.4, p < .001).

\ Age
Resp*—. Nursery Primary 1 Primary 2

Correct 4 16 19

Failure 16 4 1

Table 7.2.9: Correct and failed comparison responses after hidden unseen

reproductions by age group ( X2 (2, N=60) = 27.69, p=0.00001).
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Nursery children usually failed and primary children succeeded. The X2 test of the
distribution of correct and wrong reproductions among Nursery and Primary 1
children is highly significant: X2 (!•> N=40) = 14.4, p < .001.
The null hypothesis of homogeneity between age groups' responses is rejected for all
comparison tasks. The Primary children make more correct comparisons than the
nursery children. The difference in accuracy is particularly pronounced between
Nursery and Primary children when the comparisons follow the hidden reproductions
(see Tables 7.2.8 and 7.2.9)

7.2.10.1.2.3 Conservation task

The data for the conservation tasks which follow the three conditions of reproduction
are summarized in Tables 7.2.10 to 7.2.12. Each contingency table of response
category (correct-failed) by age group is followed by the relative X2 statistics.

\ Age
Respv. Nursery Primary 1 Primary 2

Correct 1 7 18

Failure 19 13 2

Table 7.2.10: Conservation and non-conservation responses after visible reproduction
by age group (X2 (2, N=60) = 30.271, p = 0.000001).

Both the difference between Nursery and Primary 1 correct responses (binomial test, p
= .035) and between Primary 1 and Primary 2 correct and wrong conservations ( X2
(1, N = 40) = 12.8, p < .001) are significant. Only in Primary 2 did most children
conserve. Of the 26 children who confirmed that the two collections were

equinumerous after the transformation, 22 justified the conservation with operational
arguments (see 6.2.1.1). The remaining children either counted the two rows or could
not explain the equinumerosity.
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Age
Resfhs. Nursery Primary 1 Primary 2

Correct 1 9 18

Failure 19 11 2

Table 7.2.11: Conservation and non-conservation responses after hidden seen
reproduction by age group (X2 (2, N=60) = 29.062, p = 0.000001).

As in the previous distribution, the responses differ significantly both between the
Nursery and Primary 1 groups (binomial test on conservation responses, p = .011)
and between the Primary 1 and Primary 2 groups ( X2 (T N=40) = 9.2, .005 > p >

.001). Again a majority conserved only in Primary 2. Of the 28 children who
maintained the judgment of equinumerosity, 23 gave operational justifications.

\ Age
Respv. Nursery Primary 1 Primary 2

Correct 1 7 18

Failure 19 13 2

Table 7.2.12: Conservation and non-conservation responses after hidden unseen
reproduction by age group

The distribution is equivalent to that of Table 7.2.10 and so are the differences
identified there. Here too, 23 of the 26 provided operational justifications for the
conservation.

The X2 tests are significant for the conservation responses following all conditions of
reproductions. The null hypothesis of homogeneity is thus rejected for all three
conditions, as the children's responses have a distribution significantly different from
chance. The origin of the difference lays principally in that fact that: Nursery children
do not conserve with only one exception (always the same child); Primary 2 children
systematically maintain the equinumerosity throughout the spatial transformations (18
of them out of 20) and Primary 1 children occupy an intermediate position, with
around 30% of correct conservations. While in the case of the comparison task the
difference was very noticeable between the Nursery and Primary groups, in the
conservation the difference is more marked between Nursery and Primary 1 children,

161



on the one hand, and Primary 2 children on the other hand. Notice that the distribution
would not have been significantly different should the criteria for conservation have
been "same" answer plus justifications. In fact more than 80% of the children
classified as conservers on the basis of their answer do also provide operational
justifications.
Let us briefly focus on the conservation responses of the children who fail the

comparison task, and judge equinumerous sets which are in fact different. As outlined
in 7.2.7.3, the row with fewer elements was systematically made into a longer row to
evaluate the basis of judgments of difference. Thirty children are presented with a

conservation task with unequal sets. Twenty-four children answer that the two rows

are different, but indicate that the smaller and longer row is more numerous. The six
remaining children remark the difference and correct it through spontaneous or

suggested one-to-one correspondence. However only one of them succeeds the
following conservation task. These observations indicate that the failure in the
comparison task goes with the failure in the conservation task, a result which will
clearly emerge from the hierarchical analysis which follows.

7.2.10.1.2.4 Discussion

Significant changes in performance with age are observed in all nine tasks. The
developmental differences emerge more clearly between Nursery and Primary children
in the case of the reproduction and comparison tasks, and between Nursery-Primary 1
and Primary 2 children in the case of the conservation task. The task analysis which
follows focuses directly on the performance changes across tasks at each age level.

7.2.10.1.3 Task Analysis

The repeated testing of children in the reproduction, comparison and conservation
tasks allows us to determine whether the difference in performance across tasks
conforms to the expected degree of difficulty of the tasks, and above all whether these
differences are specific to particular age groups. Since in my predictions I formulate
specific alternative hypotheses about the order of difficulty, I favour Marascuilo &
McSweeney test (1967) over Cochran Q test (1950), which is classically employed for
repeated measure designs with dichotomous data (see Meddis 1984, p.230).
The hypotheses 1, 2a and 2b underlie specific predictions about the order of difficulty
of the tasks. For each predicted order, there is an associated set of coefficients,
adjusted to sum to zero so to simplify the computations, which reflect the complexity
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scale. Hypothesis 1 predicts that conservation will be the most difficult task of all.
Hypotheses 2a and 2b predict:
1. In the visible condition, correct reproductions will produce two rows of equal length
and number, facilitating the subsequent comparison by posing no conflict between
number and space occupied. For all age-group, then, reproduction and comparison are

expected to be equally difficult and both should be easier than conservation39:

A) Reproduction=Comparison > Conservation [-1 -1 +2]

2. In the hidden condition, correct reproductions will produce two rows matching in
number but not in number and length. Because length and number cues conflict,
comparison should now be more difficult than reproduction, but still easier than
conservation.

B) Reproduction > Comparison > Conservation [-1 0 +1]

Tables 7.2.13 and 7.2.14 present the values of the Z statistics relative to the two

predicted orders of task difficulty A and B for the three age groups. The values
significant at p < .05 are marked by a star (*).

N. Age
Nursery binary 1 ,rimary 2

OrdA 4.47* 4.01* 1.22

Table 7.2.13: Marascuilo & McSweeney Z values associated with prediction A:
reproduction and comparison are equally difficult and conservation is more difficult,
for the age groups Nursery, Primary 1 and Primary 2

The predicted order of difficulty between the tasks of reproduction, comparison and
conservation is confirmed for the two younger groups, Nursery (z=4.47, p<0.00003)
and Primary 1 (z=4.01, p<0.00003). The result is not statistically significant for the
Primary 2 group (z=1.22, p=0.111) and the null hypothesis cannot be rejected: the
older children perform uniformly across the three tasks.

39(=) stands for "the number of subjects correctly performing Task A is
equivalent to the number of subjects correctly performing Task B"; (>)
stands for "the number of subjects correctly performing Task A is greater
that the number of subjects correctly performing Task B".
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\ Age
OrderX^ Nursery Primary 1 Primary 2

OrdB

seen
4.24* 3.48* 0.7

OrdB

unseen
4.06* u> 00 * 0.7

Table 7.2.14: Marascuilo & McSweeney Z values associated with prediction B:
reproduction easier than comparison easier than conservation in the three age groups

The result of the test is statistically significant in the two younger groups both for the
hidden seen and for hidden unseen conditions of reproduction (Nursery: seen z =

4.24, p < 0.00003; unseen z = 4.06, p < 0.00003; Primary 1: seen z = 3.48, p =

0.00034; unseen z = 3.81, p = 0.00007). The Null hypothesis of homogeneity is
rejected in favour of the alternative hypothesis of order for the two younger groups.

The result is not statistically significant in the Primary 2 group (with both seen and
unseen reproductions z = 0.7, p = .242) and the null hypothesis cannot be rejected.
Also when the older children begin with the hidden reproductions, they perform
equally well across the three tasks.

7.2.10.1.3.1 Discussion

The data support the predicted orders of complexity between tasks for the Nursery
and Primary 1 children. As predicted by order A (e.g. visible reproduction =

comparison > conservation) a significant number of children succeed in the
reproduction and comparison tasks and fail in the conservation task. As predicted by
order B (e.g. hidden reproduction > comparison > conservation), a significant number
of children reproduce accurately, fewer children compare correctly and even fewer
children conserve. The fact that the Primary 2 children's responses to the three tasks
do not follow the predicted orders confirms the tendency emerged in the previous age

group analysis, and indicates that the acquisition of the capacity to reproduce, compare
and conserve number develops in the period between pre-school and the first year of
school, and is fully acquired by the second year of school.

7.2.10.2 Prediction analysis of task solution orders

Children's performance across pairs of tasks provides the tests for specific
developmental hypotheses of concurrency and decalage. The Hildebrand, Laing &
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Rosenthal Prediction Analysis of Cross-Classifications (described in Section 3.5) tests
order hypotheses directly. The procedure applies to two-by-two contingency tables,
where the rows represent the frequency of correct or failed responses to the first task
and the columns represent the frequency of correct or failed responses to the second
task. In the language of prediction analysis, the two main hypotheses advanced by
Experiment 1 are reformulated as follows:
- Hypothesis 1 (collective decalage from the solution of the reproduction and
comparison tasks to the solution of the conservation task for all task conditions):
failure in the reproduction and comparison tasks is predictor of failure in the
conservation task;
- Hypothesis 2a (collective decalage from the solution of the tasks of reproduction and
comparison after visible reproduction to the solution of the comparison after hidden
reproduction): failure in the reproduction and comparison after visible reproduction is
predictor of failure in the comparisons after hidden reproduction.
- Hypothesis 2b (concurrency between the solution of the reproduction task and the
solution of the comparison after visible reproduction): failure in reproduction predicts
failure in comparison; success in reproduction predicts success in comparison.

7.2.10.2.1 Hypothesis 1: collective decalage between reproduction-
comparison and conservation

The triangular hypothesis associated with collective decalage in favour of
reproduction and comparison solutions over conservation predicts that the cell
corresponding to failure in reproduction, comparison plus success in conservation be
empty. First I evaluate the hypothesis of collective decalage from reproduction to
conservation. Then I examine the order of acquisition of comparison and conservation.

7.2.10.2.1.1 Collective decalage between reproduction and
conservation

Tables 7.2.15 to 7.2.17 present the two-by-two contingency tables of the all of
children's responses to the three conditions of the reproduction task and the following
conservation task. After each table, I indicate the value of the Del index corresponding
to triangular hypothesis of collective decalage between the ability to solve the
reproduction task and the later ability to solve the conservation task. The cell predicted
to be empty by the triangular hypothesis corresponds to the white cell (the other cells
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being shaded). For each table, I indicate the normal curve z test for Del40 and its
significance level. Another z test compares the difference between the Del
corresponding to the main hypothesis and the Dels of the alternative hypotheses of
concurrency and collective decalage in the opposite direction. This second comparison
serves to determine whether the triangular hypothesis not only yields a significant
improvement over chance but also provides a more accurate prediction than the other
triangular hypotheses.

Repro
visible

s F
Cons

s

F

25 1

20 14

Table 7.2.15: Contingency table for reproduction and conservation in the visible
reproduction condition (Del = 0.83; z = 7.6, p < 0.00003)

Not only is the Del for Hypothesis 1 significant in the visible reproduction condition,
but is a significantly better predictor of results than concurrency (z = 4.9, p < 0.00003)
or decalage from conservation to reproduction (z = 4.6, p < 0.00003).
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Table 7.2.16: Contingency table for reproduction and conservation in the hidden seen
condition of reproduction (Del = 0.785 (z = 3.9, p<0.00005))

For the hidden seen condition, collective decalage in favour of reproduction predicts
the significantly non-chance contingencies and is a significantly better predictor than
concurrency (z = 3.1, p < 0.00097) or the reverse decalage (z = 3.6, p < 0.00016).

40The Del was calculated by means of statistical software designed by
Lautrey, Ribaupierre & Rieben and kindly provided by them.
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Table 7.2.17: Contingency table for reproduction and conservation in the hidden
unseen condition of reproduction (Del = 0.615 (z = 2.6, p < 0.004))

Finally in the hidden unseen condition, collective decalage in favour of reproduction is
significant and a significantly better predictor than concurrency (z = 2.3, p < 0.01072)
and opposite decalage (z = 2.5, p < 0.00621).
In all three conditions, the children's performance in the reproduction task is a very

reliable predictor of performance in the conservation task. When children solve the
reproduction task correctly, they can either succeed or fail the more complex
conservation task; but if they fail the simpler reproduction task, they systematically fail
the conservation task. As predicted by Hypothesis 1, the ability to reproduce number is
a prerequisitefor number conservation.

7.2.10.2.1.2 Collective decalage between comparison and conservation

Tables 7.2.18 to 7.2.20 present the two-by-two contingency tables for correct and
wrong responses to the comparison and the conservation tasks after each of the three
conditions of the reproduction task In each case Del indices comparisons are given.
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26 0

21 13

Table 7.2.18: Contingency table for comparison and conservation after visible
reproduction (Del = 1 (z = e, p < 0.00001))
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After visible reproduction, there is significant decalage from comparison to
conservation. This model is a significantly better predictor than concurrency (z = 7.4,
p < 0.00003) or conservation-to-comparison decalage (z = 12.2, p < 0.00003).

Table 7.2.19: Contingency table for comparison and conservation after hidden seen
reproduction (Del = 1 (z = e, p < 0.00001))

After hidden seen reproduction, there is significant decalage from comparison to
conservation. This model is a significantly better predictor than concurrency (z = 5.1,
p < 0.00003) or conservation-to-comparison decalage (z = 7.5, p < 0.00003).
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Table 7.2.20: Contingency table for comparison and conservation after hidden unseen
reproduction (Del = 1 (z = e, p < 0.00001))

After hidden unseen reproduction, there is significant decalage from comparison to
conservation. This model is a significantly better predictor than concurrency (z = 3.4,
p < 0.00034) or conservation-to-comparison decalage (z = 4.3, p < 0.00003).
In all three conditions, children's performance in the comparison task is a very

reliable predictor of performance in the conservation task. Only children who solve the
simpler comparison task succeed the more advanced conservation task, though not all
the children who succeed the comparison solve the conservation task correctly. Ay
Hypothesis 1 predicted, the ability to compare sets is a prerequisite for number
conservation. This holds both for sets of same number and shape, after visible
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reproductions, and for sets of same number and different shape, after hidden
reproductions.

7.2.10.2.2 Hypothesis 2a: collective decalage between reproduction
and comparison after hidden reproduction

Tables 7.2.21 and 7.2.22 present the two-by-two contingency tables of responses to
the comparison tasks after the hidden reproduction tasks. Hypothesis 2a predicts
decalage from hidden reproductions to comparison. The decalage is brought about by
the fact that the hidden reproduction yields two rows of different length, and the length
cue is expected to make the comparisons problematic. The triangular hypothesis
associated to Hypothesis 2a predicts that the number of children failing the
reproduction task and succeeding at the comparison task (white cells) will be close to
zero.
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Table 7.2.21: Contingency table for reproduction and comparison after hidden seen
reproduction (Del = .72 (z = 4.2, p < 0.00003))

In the hidden unseen condition, collective decalage in favour of reproduction is
significant and a significantly better predictor than concurrency (z = 1.9, p < 0.0287)
and comparison-to-reproduction decalage (z = 2.2, p < 0.0139).
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Table 7.2.22: Contingency table for reproduction and comparison after hidden unseen
reproduction (Del = .86 (z = 6.5, p < 0.00003))
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After hidden unseen reproduction, there is significant decalage from reproduction to

comparison. This model is a significantly better predictor than concurrency (z = 2.7, p
< 0.00347) or comparison-to-reproduction decalage (z=3.5, p<0.00023).
For both conditions, the children's performance in the reproduction task is a very

reliable predictor of performance in the comparison task. When children fail the
reproduction task, they systematically fail the comparison task too, while if they
succeed at the reproduction task, they may either succeed at or fail the comparison
task. As Hypothesis 2a predicted, the ability to compare sets ofdifferent length and
same number, emerges only when the ability to reproduce sets is in place.

7.2.10.2.3 Hypothesis 2b: Concurrency between visible reproduction
and comparison

Table 7.2.23 presents the two-by-two contingency table for the responses to the tasks
of reproduction in the visible condition and the subsequent comparison of the two sets
of same number and shape. The Hypothesis 2b predicts that the ability to reproduce the
sets appears concurrently with the ability to compare them, when the sets have been
constructed so as to have at the same time equivalent number and length. Children who
fail reproduction are also expected to fail comparison and children who succeed at

reproduction are expected to solve comparison too (see shaded cells on the contingency
table).

Compvisible
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45 0

2 13

Table 7.2.23: Contingency table for comparison and reproduction in the visible
condition (Del = .83 (z = 7.6, p < 0.00003))

The concurrency between visible reproduction and subsequent comparison is of a strict
type because both alternative decalages are significant (in favour of reproduction Del
=.83, z = 7.6, p < 0.00003; in favour of comparison Del = 1, z = e, p < 0.00001)
while the concurrency pattern is significantly different from both (z = 1.7, p < 0.0446,
for reproduction,; z = 1.6, p < 0.0548, for comparison). As it is expected in the case
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of strict synchronism, the two triangular decalage hypotheses, which predict that either
the lower left cell or the higher right cell are empty, are verified (e.g. no child who fails
one task succeeds at the other task). In other words, success at visible reproduction
perfectly matches success at comparison; and failure at visible reproduction
corresponds perfectly tofailure at comparison.
To recapitulate, the analysis of acquisition orderings of the problems of reproduction
and comparison provides support for the hypotheses. It shows that:
1. When set reproduction occurs with the set visible, the children who fail the
reproduction task, also fail the comparison task, while children who succeed at the
reproduction task constructing two sets equivalent in number and length, then succeed
at comparison. The two tasks are acquired concurrently;
2. When instead the set is reproduced on the basis of its cardinal number alone, and no
equivalence of length is created, children can succeed at reproduction and later fail at
comparison. A significant number of children produce an accurate reproduction by
counting out an equivalent number of objects but in the subsequent comparison task do
not confirm the equinumerosity, basing their numerical judgment instead on the space

occupied by the two sets. In general the longer row is taken to have a greater number
of objects.

7.2.10.3 Some a posteriori comparisons

In introducing the two conditions of the reproduction task (visible and hidden), I
assumed that when the row of objects is presented, the children construct the
equivalent set by matching the objects one-to-one and obtain two rows which have
same number and same length. When the row is instead hidden, the new row produced
has the same number, and generally different length. The children examined in
Experiment 1 conform to these behavioural patterns. They all use one-to-one matching
in the visible reproduction condition and construct a set which is equivalent in
distribution and number to the model. In the hidden reproduction condition, they count
out and arrange the objects on one side of the screen. In this experiment, it never
happened that two rows had equivalent length.
I have examined a posteriori the nature of the acquisition order between (a) the visible
and hidden reproduction tasks (for both seen and unseen conditions), (b) visible
reproduction and comparison after hidden reproduction and (c) comparison tasks
which followed seen and unseen hidden reproductions. For each pair of tasks, I have
calculated the Del indexes for the three hypotheses of concurrency, decalage in favour
of one task and decalage in favour of the second task. The contingency tables for each
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pair of tasks are presented in the Appendix 7.2, together with the relative statistical
tests. Here I briefly summarize the main findings.
Weak concurrency exists between visible and hidden seen reproductions and between
the two conditions (seen and unseen) of the hidden reproductions. Individual decalage
holds between visible and hidden unseen reproduction. Weak concurrency and
individual decalage are found between visible reproduction and comparison after both
conditions of hidden reproduction. These results are, however, only partially reliable
as the underlying distributions are very unbalanced. The majority of children in fact
consistently solve each of these pairs of tasks correctly (around 70% of the children).
The failure to identify some clear-cut response patterns may hence be due to the fact
that the reproduction task is too easy for this sample.
After hidden reproduction (seen and unseen), the response patterns indicate a

concurrency accompanied by collective decalage in favour of the seen condition. The
decalage component corresponds to 4 children out of 60 who have solved the
comparison task after the reproduction in which they have counted the rows

themselves and fail the second condition of comparison. The remaining 54 children's
responses conform to a strict concurrency pattern.

7.2.10.4 Qualitative analysis of the responses

In this section, I present some general observations of the behaviours underlying the
scoring of the responses as correct or wrong. I discuss the strategies used, the
justification given and the procedures used to produce, explain and check the solutions
offered. This more qualitative and descriptive analysis is performed separately on each
task.

7.2.10.4.1 Reproduction Task

All 144 (out of 180) correct reproductions result from the same strategies:
1. In the visible reproductions, the children put the objects down one at a time, each
one in front of, and very close to, one object of the model row. The strategy

corresponds to establishing a spatial one-to-one correspondence between elements of
the model set and elements of the new one. Among the older children, the matching is
often accompanied by counting. Only one child employs a different strategy. Lan
(6,10) from Primary 2 says "How many are there?", counts the model set and takes the
same number of objects out of the box, in a bunch.
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2. In the hidden reproductions, the children put the objects down one at a time and
count; the action is stopped once the count has reached the number of the collection
behind the screen.

The 36 inaccurate reproductions are produced by the following procedures:
1. In the visible reproductions (15 failures), children either use all the objects of the
box (7 children of which 4 from Nursery, 2 Primary 1 and 1 Primary 2) mainly to

reproduce the length of the row, or apply a non-systematic spatial matching (7
children: 4 Nursery, 3 Primary 1). In this case they end up with 1 or 2 objects too

many or too few and reproduce the length of the model row. In the former case
however, some children construct a series of rows parallel to and of same length as the
model row until all the objects are used. One child from the Nursery group uses a

completely different strategy and reproduces a six-object row with a four object row,
starting from one end of the model and going down perpendicular to it. The resulting
row is thus different in number and shape from the model set.
2. In the hidden reproductions (21 failures), children either use up all the objects in the
box, without any overt quantification (7 children of which 5 from the Nursery, 2 from
Primary 1), count incorrectly or employ various pre-quantitative strategies. The pre-

quantitative strategies are more common in the Nursery group (8; 1 from Primary 1)
and consist generally of putting down a random number of objects, without counting
them in the process, or picking up all the objects in the box one by one.
Dan (5,1) constructs a row of eight objects to reproduce a set of five, without

showing any form of explicit numerical quantification. Even when the experimenter
repeats the question and the model set's number, the child does not recount the objects.
Mich (4,0) has to reproduce a row of five objects. First she puts down three objects,
then adds another object. At this point the experimenter repeats the question, clearly
restating the cardinal number of the model set. Mich counts her row of four objects,
adds one and immediately afterwards another object, to obtain a set of six objects.
Inaccurate counts produce the remaining incorrect reproductions (2 children from
Nursery, 1 from Primary 1 and 2 from Primary 2). Although they base their response
on the cardinality of the model set, the children put down a number of objects which is
different from what is required. In the hidden seen condition, Lu (5,6) counts the set
of six objects accurately but then in the reproduction puts five objects down. The
action of taking and placing the objects is not coordinated with the counting, and so

she counts to six but puts down five. Kat (5,7) also counts the objects as she puts
them down. The model row is made of seven elements. She puts down six objects,
stops suddenly, counts the row to five and adds two more objects, thus creating a row

of eight, instead of the required seven.
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To recapitulate, accurate reproductions result from the sequential matching of each
object of the model set with one object, i.e. the spatial correspondence characteristic of
reproductions of visible sets, and via number words and counting in the case of
reproductions of non-visible sets. Inaccurate reproductions result from:
a) indiscriminate use of all the objects given to construct the set;

b) reproduction of the length of the row, without attention to the number of objects
used;

c) imprecise spatial one-to-one correspondence between elements of the two rows,

with the exception of the two ends of the rows;
d) poor coordination between counting and putting the objects down;
e) general difficulty with understanding the task and using the numerical information
about the model set, as in cases where the child puts down an arbitrary number of
objects.

7.2.10.4.2 Comparison task

The strategies used in the comparisons after visible reproduction are analyzed
separately from the comparisons after hidden reproduction (B). Particular attention is
given to the situations where correct reproductions are followed by incorrect
comparison or where inaccurate reproductions are corrected in the comparison task.

7.2.10.4.2.1 Comparison after Visible Reproduction

All the children who reproduce the set accurately also compare the sets correctly and
confirm their equinumerosity. Only 2 of the 15 children who fail the reproduction
recognize the difference between the sets and correct it. The two children belong to the
Primary groups (1 Primary 1; 1 Primary 2). Pol (6,3) starts the reproduction using a

spatial matching strategy but progressively shifts of strategy and puts the cylinders
very close together, until they are all used. At the comparison she remarks the
difference, asks for more objects and creates the correspondence by adding some

objects to the model set and taking some away from her copy set. Nic (5,8) also uses

all the objects. When she is asked the comparison question, she notices the big
difference, counts them and takes away the correct difference from the copy set. Eight
children, who had failed reproduction, judge the two sets to be different in number.
Nevertheless they neither attempt to correct the difference nor succeed in equating the
sets' numbers. Most of the tentative corrections consist of subtracting some objects
from the row judged to be more numerous, without precise quantification. Mic (5,9)
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initially reproduces the length of the row, using more elements than necessary. At the
comparison stage, he takes three objects away from the copy row, even though the
difference is of four, and reconfirms the equinumerosity. Tho (5,6) uses all the objects
at his disposal to reproduce the set, notices the difference and, without apparent
quantification, takes away seven elements, where the difference is five. Five children,
mainly from the Nursery group, confirm that the two rows are equinumerous, even
though they are not. Their incorrect judgment seems to be based on the equivalent
length of the rows or on the result of peculiar counts. Ad (4,8) counts the two rows as

if they were one and concludes that they are the same number. Joe (5,8) puts five
objects in a row with the ends matching those of a row of seven. At the comparison
stage, he counts the model to five, recounts it to seven, counts the copy row to six and
concludes that the two rows have the same number of objects.

7.2.10.4.2.2 Comparison after Hidden Reproduction

Around two thirds of the Nursery children abandon the equinumerosity established in
by reproduction once the screen is taken away to reveal two rows of unequal length.
This phenomenon is practically non-existent among older children. In all, out of 99
correct reproductions, 18 (16 in Nursery, 2 in Primary 1) pairs of rows are judged to
be different in number at the subsequent comparison. After a judgment of difference,
the children are required to re-balance the sets and correct the difference. Three
characteristic behaviours are observed:

1. Children say that the rows have different number but cannot say what the difference
is nor attempt any action to equate the sets;
2. Children reestablish equinumerosity by adding or subtracting some elements from
one of the sets to obtain two rows of same length or, more rarely, change the form of
the rows again to obtain two rows of equivalent length.
3. Children justify the difference by producing inaccurate counts that conform to their
judgment. Ad (4,8) skips one of the elements of the shorter row and counts it as
having one element less than the longer row. She (4,9) counts an element of the longer
row twice and shows that the longer row has one element more than the shorter one.
In both cases, the outcome is that the perceptual judgment is confirmed by the count
and that the addition of one element to the shorter row, to produce matching end-
points, gives two equivalent sets.
Among the children who have failed the initial reproduction task, I observe:
1. Children who confirm the 'equinumerosity';
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2. Children who remark the difference in number but who either could not correct it or

who produce an inadequate correction (e.g. modify the length, add or subtract
elements to match the end points);
3. Children who succeed in reestablishing equinumerosity.
Nursery children tend to perform inaccurate correction. They modify the distribution of
the elements to obtain an equivalent length of the rows. They add or subtract a wrong
number of elements to achieve matching end-points. Most of the Primary children
instead use the comparison task as a test of the accuracy of their previous reproduction.
They count the number of objects in the two rows, and in case of difference, subtract
or add the number of elements required.
To recapitulate, the conditions under which reproduction is performed produce

different solutions and yield different procedures of comparison. In the older age
groups, the comparison question is used to check the accuracy of the reproduction.
The children count the two sets and, if required, correct inaccurate reproductions by
adding or subtracting the appropriate number of elements. In the younger group,

instead, the sets which are taken to be different in number and are corrected are those
which have different length, regardless of number. To achieve equivalence of form,
the children either lengthen one of the rows or add some objects to the shorter row to
make the end-points match.

7.2.10.4.3 Conservation task

Classic conservation responses have been observed. Among the majority of Nursery
and Primary 1 children, the lengthened row is systematically considered the more

numerous. The justification given is that since it is longer, it has more elements. A few
hesitations between conservation and difference are found among Primary 1 children,
with conserving answers being immediately followed by non-conserving responses.

Conservations are classically justified using the arguments that 1) nothing has been
added nor taken away, 2) it is possible to go back to the original configuration and 3)
one row is longer, but more spaced, while the second row is shorter and more

crowded.

7.2.11 Discussion

The Age Group, Task Condition and Acquisition Order analyses provide substantial
support for the three hypotheses of (1) collective decalage between reproduction-
comparison and conservation, (2a) collective decalage between hidden reproduction
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and subsequent comparison, (2b) concurrency between visible reproduction and
subsequent comparison. At all three levels of analysis, children appear to possess first
the ability to solve the reproduction tasks and the comparison after visible reproduction
task, then to solve the comparison of rows of different length (after hidden
reproductions) and finally the understanding of conservation.
The comparison of performance across age groups indicates that the number of

children who solve each of the tasks increases with age. More specifically, a clear
performance gap emerges between Nursery and Primary children in the comparison
tasks after hidden reproduction (25% of the Nursery children are correct versus 80%
of the Primary 1 and 95% of the Primary 2) and between Nursery, Primary 1 children
and Primary 2 children in the conservation task (5% Nursery and 35% Primary 1
children are correct versus 90% Primary 2 children). Along the age scale then, Nursery
children appear to have some ability to reproduce sets (more than 50% correct) but
very little competence in comparing and conserving number. Primary 1 children have
the ability to solve the reproduction and comparison tasks (around 85% correct
solutions), but have very little competence in conserving number (around 35% correct
solutions). Primary 2 children instead master the whole battery of tasks, as their rate of
success ranges between 90 and 100% correct solutions in all tasks.
This battery of tasks thus identifies two developmental changes in performance.

Between the Nursery and the Primary 1 years, the children acquire the competence to

reproduce and compare sets of objects. Between the Primary 1 and the Primary 2
years, the children acquire the competence to conserve number, across spatial
transformations of the sets. The comparison of performance across tasks within each
age group mirrors the preceding findings. While the performance of Nursery and
Primary 1 children varies according to the predicted order of complexity of the tasks
(e.g. reproduction > comparison > conservation), the Primary 2 children's
performance does not change significantly across tasks. In particular, among Nursery
and Primary 1 children when the set reproduced is visible and leads to two rows

equivalent in number and length, reproduction is as difficult as comparison, and both
tasks are easier than conservation. When the set reproduced is hidden, the rows may

be equinumerous, but are different in length. The comparison task is here more

complex than the reproduction task, as it introduces a conflict between number and
length. Comparison however is still easier than conservation, where the conflict is
produced by an active (dynamic and intentional) transformation.
Consider now the core of the developmental analysis, that is the hierarchical analysis
of the order in which pairs of tasks are solved. Hypothesis 1 states that collective
decalage exists between the solution of the tasks of reproduction and comparison and
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the later solution of the conservation Task. The triangular hypotheses which
correspond to collective decalage between the solution of reproduction and
conservation, on the one hand, and between the solution of comparison and
conservation, on the other hand, describe the data with good accuracy. In the
contingency tables relative to the different pairs of tasks, children distribute in the three
cells which correspond to 1) failure in both tasks, 2) success in both tasks and 3)
success in the simpler task (either reproduction or comparison) and failure in the more
complex task (conservation). I have found only 5 responses out of 360 which
correspond to the opposite pattern, i.e. failure in the less advanced task and success in
the more advanced.

This finding conforms to the developmental progression from a level where both
tasks are failed, to a second level where the simpler task is solved and at the same time
the more advanced task is failed, to a third level where both tasks are succeeded. The
solutions of the tasks of reproduction and comparison identify the intermediate level
between complete failure and success, and track a stage of conceptual elaboration
which appears to have a status and an organization of its own. Consider now the
developmental relationship between reproduction and comparison: are these two tasks
understood at this same intermediate stage in the elaboration of the number concept?
Hypothesis 2a states that collective decalage exists between the solution of the hidden
reproduction task and the later solution of the comparison after hidden reproduction
task. Hypothesis 2b, on the other hand, states that the solution of the visible
reproduction task is concurrent with the solution of the comparison after visible
reproduction task. The two triangular hypotheses that express the two relations of
concurrency and collective decalage describe the data with good accuracy. Only two
children out of 60 fail one task, while succeeding the second task. Only three
responses out of 120 correspond to failures in the simpler task of visible reproduction
and correct solutions to the more advanced comparison tasks. Also, these data are in
agreement with the expected developmental progression, as at the first level children
fail all the tasks; at the second level they succeed the reproduction and the comparison
of rows equivalent in number and length, but fail the comparison of rows
equinumerous but different inform; at the third level they solve all the reproduction and
comparison tasks. The ability to solve the tasks of reproduction and of comparison of
sets of same number and distribution thus identifies a competence level which precedes
that of generalized comparisons independent of spatial cues.
This fairly linear picture of the development of cardinal number is, however,

complicated when the developmental orders between (a) the solution of the two
conditions (visible and hidden) of reproduction and (b) the solution of hidden
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reproduction and comparison after visible reproduction are examined. The findings of
weak concurrency and individual decalage suggest that the competence levels may not
be reached by the same path. At level 1 in particular, some children are able to solve
visible reproductions using matching, but may fail hidden reproductions which
requires the use of counting. Other children do the opposite. Similarly some children
fail the hidden reproduction task and fail the comparison after visible reproduction. As
I previously remarked, however, these results remain only indicative, because the
contingency tables are very unbalanced by the high rate of success in both
reproductions (70% of the trials). The developmental relationship between the different
task conditions will be examined more thoroughly in a subsequent experiment with
younger children, in order to reduce the proportion of children for which the two tasks
are too easy and more clearly to identify eventual underlying response patterns.
In conclusion, Experiment 1 provides some robust evidence on the sequence of levels
which lead to the understanding of cardinal relations required by the conservation task.
The data confirm the order of acquisition between reproduction/comparison and
conservation pointed out in the literature. They provide new evidence of a level of
competence between the capacity to reproduce and conserve sets which corresponds to
the ability to judge the numerosity of pairs of sets, independently from spatial indices.
The experiment supports a finer decomposition of the developmental process:
Stage 0: children fail all the tasks. Failure in the visible reproduction task is generally
due to the reproduction of the length of the row, rather than the number. Failure in
hidden reproduction is due to the use of all the objects at the children's disposal or to
counting inaccuracies;
Stage 1: children solve the reproduction tasks and the comparison task after visible
reproduction, when the sets are equivalent in both length and number. They fail the
comparison after hidden reproduction, where the previously established sets'
equinumerosity conflicts with the sets' difference in shape. Children tend to judge the
longer row as more numerous and seem to forget the equinumerosity that underlies the
preceding reproduction;
Stage 2: children solve the reproduction and comparison tasks in all conditions, both
when the reproduced sets have equivalent shape and when they are different. Often
children use the comparison problem to check the accuracy of the previous
reproduction. They fail the Piagetian conservation test and abandon the equinumerosity
once the experimenter has lengthened one of the two rows;
Stage 3: children solve the three tasks of reproduction, comparison and conservation
under all conditions.
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The analyses of the children's solution strategies, justification and testing procedures
give some insight into the nature of the conceptual problems characterizing the
transition between stages. In Stage 1, when in the comparison after hidden
reproduction task the screen is taken away and the children see that the two rows do
not look identical (e.g. one is longer or shorter than the other), they judge the two sets
to be different in number. The longer row is generally considered to have more

elements. If they are asked to verify their answer, and eventually induced to count,

they double count one of the elements of the longer row to reach a greater number.
Alternatively they skip on one element of the shorter row to obtain a smaller cardinal
number. Their counting is in a sense manipulated to fit the numerical judgment. In
those cases, the children reestablish equivalence by adding one element to the shorter
row and in the process matching an end-point of the two rows. Other children count
both rows as one to conclude that the sets are indeed different. When they are asked to
reestablish the equivalence, they either modify the distribution of the two rows, to
make them of same length, or they add (or subtract) some elements to the shorter
(longer) row to match the end-points. Behaviours which are even more suggestive of
some conceptual conflict are observed among the children who judge the two

equinumerous rows to be different on the basis of their length, and then add some

elements to equate the rows' length, count them again and discover that the two rows
have different number. They then add the elements necessary to cancel the difference.
This action however introduces a new difference in length. Again the children say that
the two rows are different and add some elements to compensate the difference in
length. The subsequent count to verify the equivalence reveals the new difference,
which calls for a new addition of elements, and so on until all the objects at the
children's disposal have been used. This puzzling behavioural pattern has been
observed in at least four cases.

The children reach Stage 2 when they have elaborated the knowledge necessary to
solve reproductions and comparisons under all conditions. Comparison judgments
based on length differences are verified and corrected using counting. Alternatively,
counting or one-to-one correspondence is used from the start as the basis for the
numerical judgment. Although these children cope with the length difference in the
static context of the comparison task, however they fail to assimilate the length
difference brought about by the spatial transformation in the conservation task. In
some cases, the conservation task is presented starting from two rows which, although
different in length, are correctly considered equinumerous. Even in these
circumstances, after the transformation has occurred, the children claim that the two
rows are different in number and that the row which is now longer is more numerous.
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Counting, which these children used spontaneously in the comparison task, is
surprisingly not invoked to solve the conservation.
Behaviours that can indicate periods intermediate between Stage 2 and Stage 3 are

characterized by oscillations between conservation and non-conservation answers.
Some children first say that the number has remained the same after the transformation,
then move to a non-conservation response. Often the switch is triggered by the request
to justify the answer or by the counter-suggestions, such as one row is much longer
than the other.
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7.3 Experiment 2

7.3.1 Introduction

Experiment 1 has found evidence of three stages in the elaboration of the concept of
cardinal number. The stages correspond to the ability to reproduce sets and to compare
sets equivalent in number and length (Stage 1), to compare also sets equivalent in
number but different in length (Stage 2) and to conserve number across transformation
on the sets' distribution (Stage 3). Experiment 2 focuses on the period encompassing
Stage 1 and Stage 2 and is designed to replicate the new result of Experiment 1 that the
ability to reproduce sets emerges prior to the ability to compare sets which are

equinumerous, but different in configuration. In order to determine whether the
difficulties that children experience with comparison are due only to the misleading
length difference, Experiment 2 introduces a second condition of comparison in which
the sets to be compared form two arrays of same length and differ cardinal number.
Experiment 2 presents children with the tasks of set reproduction in the two visible

and hidden (unseen) forms and of set comparison under three conditions:

a) two rows of same number and length (after correct visible reproduction);
b) two rows of same number and different length (after correct hidden reproduction);
c) two rows of same length and different number (as the child is not required to
construct the set himself but is presented with two already made rows, in a new

condition, direct comparison.).

The two conditions of reproduction and comparison are exact replicas of the tasks used
in Experiment 1. The third condition of comparison is instead a new situation and
consists of placing before the child two sets forming two rows of equivalent length,
matching end-points and a minor difference of spacing between items. To achieve this
perceptual similarity the numerical difference between the two sets is of one element.
Since according to Experiment 1 the ability to reproduce and compare sets emerges

between age 4 and 5 years, in Experiment 2 the battery of numerical tasks is presented
to a sample of 40 Nursery and 20 Primary 1 children.
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7.3.2 Objectives

Experiment 2 has three basic objectives. First, it should replicate the acquisition
orders identified by Experiment 1. Second, it addresses the question of whether the
correct judgments observed in Stage 1 (for rows equivalent in number and length)
underlie some form of numerical competence or whether they are simply length based.
To answer this question the new comparison task of sets of same length and different
number is introduced. Collective decalage between comparison after visible
reproduction and the new direct comparison task (children judge the two rows to be
equinumerous) would indicate that Stage 1 children systematically base their
numerosity judgments on the spatial size of the sets, although they are able to
reproduce sets correctly. Concurrency between success in comparison after visible
reproduction and the new task would indicate that in some conditions the Stage 1
children can work out the numerical difference beneath the length equivalence and can

make accurate numerical judgments. If this is so, failure in the comparison after hidden
reproduction (for rows equivalent in number, but different in length) would constitute
a special case rather than the expression of a general conceptual deficit, i.e. the inability
to compare the cardinality of sets of objects.
Third, Experiment 2 examines the order in which the solutions of visible and hidden
reproductions emerge. Experiment 1 in fact identifies a pattern of weak decalage
between the two conditions of reproduction, a finding which deserves further scrutiny.
To consider this issue, a larger sample ofNursery children is examined.

7.3.3 Hypotheses

Experiment 2 investigates the following response patterns. First, I expect to replicate
the findings of Experiment 1:

1 .Collective decalage from hidden reproduction to comparison after hidden
reproduction;
2.Concurrency between visible reproduction and comparison after visible
reproduction;
^.Tendency towards individual decalage in the solution of reproduction in the two
conditions visible and hidden.

Second, there are predictions about the relationship between the comparisons after
hidden and visible reproductions and the new direct comparison task, in particular:
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A.Concurrency between comparison after hidden reproduction and direct
comparison, also equivalent to
5.Collective decalage between visible reproduction, subsequent comparison and
direct comparison.

Three groups of hypotheses are formulated. The first group, consists of the
hypotheses already investigated in Experiment 1, and invites replication with a larger
sample of young children.

Hypothesis la: there is a collective decalage from the solution of the hidden
reproduction task to the solution of the comparison after hidden reproduction task.

Correct performance on the comparison after the hidden reproduction task should be
more strongly associated with correct performance on the hidden reproduction task
than with incorrect performance on this task, as in figure 7.2 (p. 148).

Hypothesis lb: The solution of the visible reproduction task is concurrent with the
solution of the comparison after visible reproduction task.

Correct performance on the comparison after visible reproduction task should be
strongly associated with correct performance in the visible reproduction task; incorrect
performance on comparison after visible reproduction should be strongly associated
with incorrect performance in visible reproduction, as in figure 7.3 (p. 148).

The second group of hypotheses examines some generalizations from hypothesis 2b.
The two comparison conditions: direct and after hidden reproduction introduce a

conflict between the length and the cardinal number of the sets. In the direct
comparison condition, although the two rows have same length, they are different in
number. In the comparison after hidden reproduction condition, although the
(accurately reproduced) rows have same number, they are generally different in length.
Under the assumption that Stage 1 children base their numerosity judgments on an

estimation of the spatial size of the sets (length in particular), and that they develop in
Stage 2 to compare the sets' numerical size using counting or one-to-one matching, I
predict that either the children fail both conditions of comparison (e.g. direct and after
hidden reproduction), using length as criterion, or they solve both task conditions,
using cardinal number to make their numerosity judgments.
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Hypothesis 2: The solution of the direct comparison task is concurrent with the
solution of comparison after the hidden reproduction task.

Correct performance on comparison after hidden reproduction should be strongly
associated with correct performance in the direct comparison task; incorrect
performance on the comparison after visible reproduction task should be strongly
associated with incorrect performance in the direct comparison task.

Direct

Fig. 7.4: Model of concurrency between responses to direct comparison and
comparison after hidden reproduction according to hypothesis 2 (the white cells are the
cells predicted to be empty).

The same response pattern (envisaged from the angle of the difference between Stage
1 and Stage 2) corresponds to the collective decalage between visible reproduction and
direct comparison. In this case, the failure in the reproduction task predicts failure in
the direct comparison task, whereas the opposite does not hold.

Reproduction

Fig. 7.5: Model of collective decalage between responses to reproduction and direct
comparison according to hypothesis 2.

The third group of hypotheses deals with the acquisition of reproduction in the
different task conditions. The weak decalage reported in Experiment 1 may underlie a

tendency towards individual decalage, which may have been masked in that experiment
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by the larger number of children who solved both tasks. In Experiment 2, the two

reproduction tasks are administered to a sample of younger children and the following
hypothesis is tested:

Hypothesis 3: There is individual decalage between the solution of the hidden
reproduction task and the solution of the visible reproduction task.

Correct performance on the hidden reproduction task should be equally associated with
correct and incorrect performance in the visible reproduction task. Correct performance
on the visible reproduction task should also be equally associated with correct and
incorrect performance in the hidden reproduction task.

Visible
Reproduction

Reproduction
S

<

.

i '

Fig. 7.6: Model of individual decalage between responses to visible reproduction and
hidden reproduction according to hypothesis 3.

7.3.4 Design

Each child performed the five tasks:
1) number reproduction, visible condition: a row of objects, uniformly spaced, was
laid down before the child. The child was asked to take the same number of similar

objects from a box and to construct a row which had the same number of objects.
2) number reproduction, hidden condition: the experiment had put a number n of
objects behind a screen. The child was asked to take a same number of objects n from
a box and to construct a row which had the same number of objects. This task was an
exact replication of the hidden unseen condition of reproduction used in Experiment 1.
3) number comparison, after visible reproduction condition: the child was asked
whether the two rows had the same number of objects or whether one of them had
more objects.
4) number comparison, after hidden reproduction condition: the screen hiding the
model row was taken away. The child had the two rows before him and was asked
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whether the two rows had the same number of objects or whether one of them had
more objects.
5) direct comparison: the experimenter laid down two rows of objects, of which one

had one element more than the other. The rows were constructed to have same length.
The child was asked whether the two rows had the same number of objects or whether
one of them had more objects.
The tasks of reproduction and comparison were presented in a fixed sequence of

reproduction followed by comparison. The order of presentation of the direct
comparison was also fixed. It systematically followed the two series of reproduction-
comparison tasks, which were counterbalanced. Half of the children started with
visible reproduction and half with hidden reproduction. For each reproduction-
comparison pair, the number and the type of objects was changed so as to reduce
repetition effects. The two orders were presented in the following schema:

Order A

Reproduction Visible
Comparison
Reproduction Hidden
Comparison
Direct Comparison

Order B

Reproduction Hidden
Comparison
Reproduction Visible
Comparison
Direct Comparison

The independent variables were:
- tasks:

- reproduction visible, hidden;
- comparison after visible reproductions visible, after hidden reproductions;
- direct comparison.

- schooling/ase group:
- Nursery (between age 3,6 and 5);
- Primary 1 (between age 5 and 6)

- order of presentation of the reproduction-comparison series:
- visible reproduction first (e.g. order A);
- hidden reproduction first (e.g. order B).

Dependent variable was the number of correct responses on individual tasks and pairs
of tasks.

This experiment, like the previous one, was a within-subjects design, with subjects
nested in age groups and order (A or B). Along the within-subjects dimension, I
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compared the children's performance across the whole set of tasks; while in the nested,
between-subject dimension, I compared the performance of the age groups across

tasks.

7.3.5 Statistical analysis

The same statistical tests used in the preceding experiment were also employed in
Experiment 2. They are described in section 7.2.5.

7.3.6 Material

The same three sets of objects used in Experiment 1: wooden cylinders (green and
red), small plastic animals (pigs and hippopotamuses), round sweets (orange and
yellow). The cylinders and the animals were interchangeably employed in the two

reproduction-comparison pairs. The objects were given to the child in two boxes, one
containing the pigs and one the red cylinders. In the condition hidden of the
reproduction task, the screen used to hide the model set was a red, rectangular
cardboard. The round sweets were employed in the direct comparison task.

7.3.7 Procedure

The children were pre-tested on their counting abilities, as in Experiment 1, and the
set sizes used were chosen within the children' counting competence span. Nursery
children were generally tested with sets of between 4 and 6 objects; Primary 1 children
with sets between 7 and 10. In the direct comparison task, I used three (or four)
objects in one row and four (or five) objects in the second row with Nursery children;
five (or six) in one row and six (or seven) in the second row. The pre-test was
followed by the two series of reproduction and comparison tasks, and the final direct
comparison task.
The presentation of the reproduction and comparison tasks was identical to that

followed in Experiment 1 (see sections 7.2.7.1 and 7.2.7.2) apart from a more

systematic request for checks, corrections and justifications in the comparison after
hidden reproduction task. In the direct comparison task instead, the experimenter laid
down the two rows of sweets, first putting one orange candy, then a yellow candy in
front of it; a new orange, and then another yellow further apart, and so on, until two
rows were created one with one object more than the other, though both are same

length. The experimenter then said: "here I have made two lines (or rows) of sweets.
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Are there (pointing to one row) the same number of sweets as there (pointing to the
other row)? or is the number different?" Alternatively, the question was worded as "If
you want to have a lot of sweets, which ones (or row) would you want?". After the
child had answered, the experimenter asked if he knew some way to check whether
they were the same. If the child did not attempt any checking procedure, the
experimenter suggested counting the two rows "Why don't you try counting the rows.
Do you think it's a good way to see if they are the same number?".
The interviews took place in a relatively quiet corner of the class-room. During the
interviews the other children were kept away from the area, but could observe what
was happening. I chose this setting to make the child feel as comfortable as possible.
During the interview, the experimenter noted the responses and the strategies employed
on an already made protocol-schema (see Appendix 7.3). Immediately after the
interview, the notes were completed with some more general remarks about specific
behaviours, comments or reactions. The testing session lasted between 10 and 20
minutes.

7.3.8 Measure

Children's performance is measured by the number of correct reproductions, and
comparison. The scoring criteria are equivalent to those used in Experiment l41. They
are extensively described in section 7.2.8. In the new, direct comparison task, children
are scored correct when they answer that the two collections have a different number of
elements or when they revise an initial judgment of equinumerosity after counting or

establishing a one-to-one correspondence and remark the difference.

7.3.9 Subjects

60 children from age 3,3 to age 5,11 years were tested. They were divided into two

class-age groups of 40 Nursery children (mean age = 4,3 years; SD = .44) and 20
Primary 1 (mean age = 5,5 years; SD = .25). The Nursery children are from two
different schools, from one of which the Primary 1 children also come from. The
children are of a mixed social background. Four children were not native speakers of
English.

41 In administering the tasks, my priority has been to stimulate as much as
possible the use of checking procedures and the eventual revisions or
corrections of the initial answer. The scoring criteria also try to take into
account the checks and the corrections carried out and to go beyond a
simple first answer criterion.
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7.3.10 Results

As in Experiment 1, the analysis of the results was performed at three levels. The
Group analysis examined the effects of the variable order of presentation and
schooling/age group on the reproduction, comparison and direct comparison
responses. The Task analysis examined the adequacy of the hypothesized order of
difficulty of the tasks in predicting changes across tasks in the two age groups. The
Hierarchical analysis determined whether the predicted across-tasks response patterns
conformed well to the observed overall distributions of responses.

7.3.10.1 Order of task presentation

Tables 7.3.1 to 7.3.3 present the contingency tables of the frequency of correct
reproductions (7.3.1), comparisons (7.3.2) and direct comparisons (7.3.3) for the two
orders: visible reproduction first (order 1) and hidden reproduction first (order 2).
Each table is followed by the x2 statistics computed on it to compare the number of
correct responses who fall into each cell (e.g. observed frequencies) as against the
numbers of correct responses we would expect to fall into each cell if there were in fact
no differences between the two orders of presentation (e.g. expected frequencies).
Also in Experiment 2 the reported values of x2 include Yates' correction for continuity.

\Order

Response^

c

I

.Order

First Second Responses. First Second

23 25 c 26 24

7 5 I 4 6

(A) Reproduction condition visible (B) Reproduction condition hidden

Table 7.3.1: Frequency of correct (C) and incorrect (I) reproduction responses for
condition visible (A) and hidden (B) as a function of order of presentation (A: X2 (1,
N=60) = 0.4, 0.7 > p > 0.5; B: X2 (1, N=60) = 0.48, 0.5 > p > 0.3).
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\OnJer

Response\

c

I

First Second

vOrder

ResponseN. First Second

23 25

7 5

11 10

19 20

(A) Comparison after visible Reproduction (B) Comparison after hidden Reproduction

Table 7.3.2: Frequency of correct (C) and incorrect (I) comparison responses as a
function of order of presentation of the initial visible reproduction (A: X2 (1, N=60) =
0.4, 0.7 > p > 0.5) and hidden reproduction (B: X2 (1, N=60) = 0.06, p = 0.8).

\Order

Response's

c

I

First Second

vOider

Responses First Second

10 13

20 17

20 17

10 13

(A) Direct comparison after visible Reproduction (B) Direct comparison after hidden Reproduction

Table 7.3.3: Frequency of correct (C) and incorrect (I) direct comparison responses as
a function of order of presentation of the initial visible reproduction (A: X2(l> N=60) =
0.64, 0.5 >p > 0.3) and hidden reproduction (B: X2(l> N=60) = 0.64, 0.5 > p > 0.3).

As the x2 test does not reach the .05 significance level for any of the tasks, the null
hypothesis of homogeneity of correct responses as a function of order of presentation
of the initial reproduction task cannot be rejected. The x2 analyses thus indicate that the
number of correct reproductions and comparisons of children starting with the visible
condition of reproduction is not significantly different from that of children who start
with the hidden condition of reproduction. Since the order of presentation of the task
conditions does not appear to have any significant effect on the children's
performance, this variable will be ignored for the rest of the discussion.

7.3.10.2 Age groups analysis

Tables 7.3.4 to 7.3.8 present the number of correct and failed responses to the five
task conditions in the two age groups: Nursery and Primary 1. A x2 test is computed
on each contingency table to assess the degree of correspondence between the
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observed and expected distributions of responses in the two age-groups and to
determine whether the reproduction and comparison performance varies with age.

l\ Age
Resp

Nursery 5rimary 1

Correct 28 20

Failure 12 0

Table 7.3.4: Correct and incorrect reproduction responses in the visible condition for
Nursery and Primary 1 subjects (x2 (1, N=60) = 5.74, p=0.0165)

Age
Resp

Nursery Mniary 1

Correct 32 18

Failure 8 2

Table 7.3.5: Correct and incorrect reproduction responses in the hidden condition for
Nursery and Primary 1 subjects (x2 (1, N=60) = 0.375, p=0.54)

l\ Age
Resp

Nursery Miliary 1

Correct 28 20

Failure 12 0

Table 7.3.6: Correct and incorrect comparison responses after visible reproduction
for Nursery and Primary 1 subjects (x2 (l, N=60) = 5.74, p=0.0165).

l\. Age
Resp N.

Nursery Mmary 1

Correct 10 11

Failure 30 9

Table 7.3.7: Correct and incorrect comparison responses after hidden reproduction
for Nursery and Primary 1 subjects (x2 (l, N=60) = 4.04, p=0.0444)

192



Age
Resp

Nursery Vimary 1

Correct 10 13

Failure 30 7

Table 7.3.8: Correct and incorrect direct comparison responses for Nursery and
Primary 1 subjects (x2 (l, N=60) = 7.41, p=0.0064)

The null hypothesis of across age groups homogeneity is rejected for all tasks but
one. The correct and failed responses of Nursery children differ significantly from
those of Primary 1 children in visible reproduction, comparison after visible
reproduction and after hidden reproduction as well as in the direct comparison task.
They do not differ significantly in the hidden reproduction task (Table 7.3.5).
Notice also that the distribution of correct and wrong responses is identical in the

tasks of visible reproduction and subsequent comparison and is similar in the tasks of
comparison after hidden reproduction and direct comparison. This conforms well with
the hypothesis that these two pairs of task are acquired concurrently. The hierarchical
analysis below will provide firmer evidence of concurrency by determining whether
these equivalent frequencies represent the same children, e.g. if the 48 children correct
in the visible reproduction are the same 48 children who are correct in the comparison
after visible reproduction, and whether the 21 children who compare correctly after the
hidden reproduction are among the 23 children who compare correctly in the direct
condition. But before carrying out the hierarchical analysis of response patterns, I
briefly examine the accuracy of the proposed order of task complexity as predictor of
response changes in the two age groups.

7.3.10.3 Analysis of task difficulty

Implicit in the hypotheses of order of acquisition is a hypothesis of order of
complexity between the task conditions. The present analysis examines whether the
children's performance varies according to the predicted order of complexity of the
task conditions. The hypotheses of concurrency between a) visible reproduction and
comparison after visible reproduction and b) comparison after hidden reproduction and
direct comparison imply that the associated tasks are of equivalent complexity so that a
significant proportion of children should give a correct response both in the former and
the latter task. The hypothesis of collective decalage between hidden reproduction and
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comparison after hidden reproduction implies that hidden reproduction is easier than
comparison after hidden reproduction and so a significant proportion of children
should shift from correct reproduction responses to wrong comparison responses. The
following orders of complexity, with the associated sets of coefficients adjusted to sum

zero, are tested (see section 7.2.10.1.3 for a more detailed description):

Order A: Visible Repro = Comp after Visible Repro > Direct Comp
1 (-1) 1(-1) 2 (+2)

Order B: Hidden Repro > Comp after Hidden Repro = Direct Comp
2 (-2) 1 (-1) 1 (-1)

The Marascuilo & McSweeney test is calculated to see whether the order of complexity
of the task conditions is a good predictor of the variation of correct responses
frequency in the different task conditions. Table 7.3.9 summarize the results of the
normal curve z test obtained for the orders A and B with Nursery and Primary 1
children. The z scores significant at the level of p < .05 are marked by an asterisk.

l\Age
_Ortfer\^

Nursery Vimary 1

Order A
visible 2.45* 1.53

Order B
hidden 2.54* 1.31

Table 7.3.9 Marascuilo & McSweeney Z values of the predicted orders A and B for
Nursery and Primary 1 subjects

The orders of complexity of task conditions are accurate predictors of the children's
responses only in the case of Nursery children. The null hypothesis that the responses
to the tasks are unaffected by the degree of complexity of the task conditions is in fact
rejected for the Nursery group (for order A, z = 2.45, p = 0.007; for order B, z =

2.54, p = 0.005), but not for the Primary 1 group (for order A, z = 1.53, p = 0.063;
for order B, z = 1.31, p = 0.095). Younger children find a) visible reproduction as

difficult as comparison after visible reproduction, and both task conditions easier than
direct comparison (order A); b) hidden reproduction easier than comparison after
hidden reproduction, which itself is as difficult as direct comparison (order B). Older
children, on the other hand, tend to respond homogeneously throughout the two task
series. The data confirm the finding of the difference between the two age groups

overall performance indicated by the previous age group analysis.
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7.3.10.4 Hierarchical analysis of task solutions

The central testing of the hypothesized patterns of concurrency, collective decalage or
individual decalage in the solution of pairs of tasks is carried out using the prediction
analysis of cross-classifications technique. Tables 7.3.10 to 7.3.15 present the
contingency tables corresponding to the responses to each pair of tasks for which an

ordering hypothesis has been formulated. Each table is followed a) by the value of the
Del index corresponding to the improvement over chance produced by the relative
triangular hypothesis, b) by the values of the z test calculated on the Del and c) by the
values of the z test of the difference between the main hypotheses and the two existing
alternative hypotheses.

7.3.10.4.1 Hypothesis la: Collective decalage between hidden
reproduction and comparison after hidden reproduction

Comp

Repro
hidden

s 20 30

1 9

Table 7.3.10: Contingency table for reproduction and comparison in the hidden
condition (the white cell is die cell predicted to be empty by Hypothesis la (Del = 0.71;
z = 2.7, p = 0.003)

Collective decalage from hidden reproduction to comparison after visible reproduction
predicts the significantly non-chance contingencies and is a significantly better
predictor than concurrency or the reverse decalage (both giving z = 2.6, p = 0.004).

7.3.10.4.2 Hypothesis lb: Concurrency between visible reproduction
and comparison after visible reproduction

For the visible condition, strict concurrency exists between the solution of
reproduction and comparison. As the error cells of each one of the three possible
orders are empty, all three hypotheses give Del of 1, significant at p = 0.000. Implicit
in hypotheses la and lb is the order between the comparison conditions.
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Comp

Repro
visible

s

F

48 0

0 12

Table 7.3.11: Contingency table for reproduction and comparison in the visible
condition (Del = 1; z = e, p = 0.000)

Since the comparison after visible reproduction is expected to be concurrent with
visible reproduction and visible reproduction is itself expected to be solved prior to
comparison after hidden reproduction, it should follow that the two forms of
comparisons are themselves solved in a fixed sequence, with collective decalage in
favour of comparison after visible reproduction. This derived hypothesis is examined
in the following table:

Compvisible
Comp\ S F
hidden

s

F

21 0

27 12

Table 7.3.12: Contingency table for comparison after visible and after hidden
reproduction (Del = 1; z = e, p = 0.000)

For the two conditions of reproduction, there is decalage from comparison after visible
reproduction to comparison after hidden reproduction. This model is a significantly
better predictor than concurrency (z = 10.7, p < 0.0001) or the reverse decalage (z =
18.9, p < 0.0001).

7.3.10.4.3 Hypothesis 2: Concurrency between comparison after
hidden reproduction and direct comparison

Strict concurrency exists between the solution of the two conditions of the
comparison task. The three error cells have very low frequencies and all three
hypotheses give Del close to 1 (Del =. 92, z=12.4 for decalage of comparison over
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direct comparison; Del = .79, z = 7.8 for the opposite decalage), significant at p <
0.00001 and not different from each other.

Comp
hidden

Direct
Comp

s

F

20 3

1 36

Table 7.3.13: Contingency table for direct comparison and comparison after hidden
reproduction (Del = 0.86; z = 12.3, p < 0.00001)

Since the direct comparison task is solved concurrently with the comparison after
hidden reproduction, and the latter was solved only once comparison after visible
reproduction had been acquired, direct comparison is also expected to be solved after
comparison following visible reproduction. The relationship between these two tasks
is examined in the following table:

Comp
visible

Direct
Comp

s

F

23 0

25 12

Table 7.3.14: Contingency table for direct comparison and comparison after visible
reproduction (Del = 1; z = e, p = 0.000)

Collective decalage in favour of comparison after visible reproduction is highly
significant and a significantly better predictor than concurrency (z = 9.5, p < 0.00001)
and collective decalage in the opposite direction (z = 4.4, p < 0.0003). This result
together with that of table 7.3.12 clearly indicates that the development of generalized
comparison competence goes through two steps: first children know to compare sets
where number and length coincide and only later they acquire the capacity to compare
also sets where number and length do not coincide. Either the two rows have same

number but different length (e.g. comparisons after accurate hidden reproductions) or
they have same length but different number (e.g. direct comparison).
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7.3.10.4.4 Hypothesis 3: Individual decalage between visible
reproduction and hidden reproduction

Repro
hidden

o V SRepro
visible

s

F

42 6

8 4

Table 7.3.15: Contingency table for visible reproduction and hidden reproduction
tasks

The three Dels associated to the three order hypotheses are the following:
- concurrency: Del = 0.19; z = 1.3, p = 0.097;
-collective decalage from hidden to visible reproduction: Del = 0.18; z = 1.25, p = 0.1;
- collective decalage of visible over hidden reproduction: Del = 0.20; z = 1.26, p= 0.1.
As none of the Dels is significantly greater than the chance Del, nor significantly
different from the other Dels (z values of comparisons between 0.24 and 0.26, p =
0.44), the individual decalage explanation appears to hold between visible and hidden
reproduction. This was, of course, our finding on Experiment 1. Again, however, we
are faced with an unbalanced distribution in which 70% of the children succeed at both

conditions of reproduction, so that an even younger sample might reveal some order
effects. Notice that an equivalent individual decalage exists between hidden
reproduction and comparison after visible reproduction. Both results suggest that
numerical representations based on one-to-one matching and counting develop with
some independence.

Table 7.3.16: Contingency table for hidden reproduction and comparison after visible
reproduction
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7.3.10.5 Summary of the results

The analyses of the acquisition orders provide support for all three order hypotheses.
As in Experiment 1, concurrent solution of visible reproduction and comparison after
visible reproduction identifies a first stage of numerical competence (Stage 1). Again
collective decalage between hidden reproduction and the subsequent comparison task
identifies two ordered stages (Stage 1 and Stage 2) is confirmed. Moreover, the new

direct comparison task which involves distracting length cues, is in fact solved only by
children who already solve a reproduction task which involves only counting, but is
solved concurrently with the comparison after hidden reproduction which again offers
unhelpful length cues. The ability to carry out a correct numerical comparison in the
direct condition, despite conflicting visual cues, is hence another demonstration of the
numerical understanding characteristic of Stage 2 (and of the limitations typical of
Stage 1).
The data here also confirm the earlier finding of individual decalage in the solution of
the two conditions of reproduction, suggesting that children reach Stage 1 through two
different paths: some children first solve the reproduction in the condition visible and
fail the condition hidden, while other children do the opposite. The more detailed
reconstruction of the developmental process which emerges from the results of
Experiment 2 consists of three main stages:
Stage 0. the children cannot reproduce nor compare sets;

Stage 1. the children can reproduce sets and compare sets of same length and number;
Stage 2. the children compare sets' numerosities independently from spatial cues and
hence can judge sets in which the numerical size does not coincide with spatial size.
Children developing from Stage 0 to Stage 1 through the elaboration either of the

capacity to reproduce sets using spatial matching (e.g. visible reproduction) or of the
capacity to reproduce using counting (e.g. hidden reproduction). Stage 1 is reached by
age 5, the age of the older children in the Nursery group, while Stage 2 is reached by
age 6, the age of the older children in the Primary 1 group. The description of the three
stages in the development of cardinal representations is enriched and further specified
by examining the strategies underlying the children's responses.

7.3.10.6 Qualitative analysis of the responses

The main behavioural patterns described in Experiment 1 are also found in
Experiment 2. In this section, I present the solution procedures used in each task (e.g.
strategies, checks, justifications and corrections) and classify them according to the
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three stages. This further analysis provides a qualitative description of the competence
levels alongside success and failure in the tasks.

7.3.10.6.1 Stage 0

Children are classified at Stage 0 when they fail the reproduction task in both the
visible and hidden conditions. The inaccurate visible reproductions derive from three
basic strategies. The children use all the objects at their disposal. Either they construct
a very long row

o o o o o

oooooooooooooo

or they create two or three rows whose end points match those of the model row;
o o o o o

o o o o o o o

o o o o o o o

Other children start with an initial accurate one-to-one matching and gradually shift to
put the objects very close to each other until an object is in correspondence with the last
object of the model row;

o o o o o

o o ooooo

The third procedure observed consists of an inaccurate one-to-one correspondence.
The reproduction of Kev (4,3) offers a particularly clear illustration of this strategy.
Kev creates a loose matching between the objects in the model and in the copy set,

putting four objects in correspondence with five. He then remarks the difference and
adds one object at the end of the row of four; this yields two rows of different length.
After a short pause, Kev adds another object to the end of the shorter row which fills
in the unmatched end of the row. The two rows now have 5 and 6 objects respectively,
but same length.
The fourth strategy consists of putting down the objects in a line which continues the
model row, without counting nor applying any other form of quantification or

correspondence:

200



ooooooooo or ooooooooo

Also in the hidden reproduction task, some children use all the objects at their
disposal. Other children place the objects so as to reproduce the full length of the
screen. One child instead takes a handful of objects (three objects) out of the box and
puts them down as a bunch, without apparent counting. The majority of mistaken
solutions however, consists of inaccurate counts. Children put down five items for a
model row of four, or three items where four are required. In these cases, the
experimenter repeats the question ("Here there are 5 'objects'. Did you put down the
same number of 'objects' there?"). Some children do not recount, while other children
recount but do not seem to appreciate the difference, and when they do they do not
seem to envisage corrections nor modifications.
In the subsequent comparisons, the children who fail the reproduction are divided

between those who incorrectly confirm that the two rows are equinumerous and those
who, after they are induced to count, remark the difference but cannot quantify the
difference nor do anything to correct it or equate the two sets. Either they inaccurately
respond that the two rows have the same number of objects, or they say correctly that
the two rows are different, but cannot decide which is bigger or what to do to balance
the difference. When they try to cancel the difference, they add a random number of
objects. When the experimenter suggests counting, they either count only one row or

they count the two rows as one, without stopping at the end of the first row and
restarting the count with the second row (1/2/3/4/5 (first row) 6/7/8/9 (second row)).
In the case of Cra (4,10), the two rows are counted separately. Cra finds out that one
row has four objects and the other five, but does not attempt any action to cancel the
difference. Fra (5,2) instead notices that the row he has created is different from the
model row, and simply rearranges the two rows to have same length and similar
distribution.

7.3.10.6.2 Stage 1

Children are classified at Stage 1 when they succeed at the reproduction tasks and the
comparison with rows of same number and length, but fail at numerical judgment
when number and length do not coincide.
In the visible condition, when the row to be reproduced is present before the child the
accurate reproductions are always carried out by the systematic one-to-one matching of
each object of the row with one object from the child's bunch. Four children who have
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originally provided inaccurate reproductions because of a loose correspondence,
spontaneously correct their reproductions. Two of the children move the objects back
into a precise one-to-one correspondence and put the remaining, unmatched, objects
away. Cla (5,8) spontaneously counts the two rows, notices that the copy row has one
object less and adds one object to it. Fra (5,2) ends up with a copy row with matching
end-points and nine objects instead of eight. He counts, remarks the numerical
difference but unexpectedly takes one object out of the smaller set (the model row),
instead of the larger one (the copy row). The two rows now have different number (7
and 9) and different length. Fra then takes away the object, at the end of the larger
row, which is unmatched and obtains two rows of 7 and 8 with same length. He
recounts the rows by counting the objects two by two, that is pointing to one object of
the upper row and to the corresponding object of the lower row. He counts 1 and 1, 2
and 2, 3 and 3, etc., and does not remark the difference, as he counts one object twice.
He says "I put them together", puts the objects of the two rows in one to one

correspondence and finds out that there is one object which cannot be matched and
takes it away.
In hidden reproduction (where the children know only the numerosity of the model

set), the correct solutions are based on counting out of the box a number of objects
equivalent to the target cardinal number. Some children execute this operation
accurately, while other children need a second count. In most cases this count appears
spontaneously; in other cases only after the experimenter has reminded the child of the
number of objects in the model set.
All the children who succeed the visible reproduction task also succeed the

subsequent comparison. Some of them count the two rows, others simply justify their
reply saying that "that's the same and that's the same" or "'cause they are four".
Among the children who shift from a correct hidden reproduction to a failed

comparison, three main response patterns are observed. Some children identify the
difference in the elements of one row extending beyond the limits of the other row.
They indicate the difference by tracing an imaginary line connecting the unmatched end
points with their finger:

o o o o

o o o o

They generally cancel the difference either by adding some elements to the shorter row
or by taking away some elements from the longer row. Gor (4,5) for instance says

"it's diagonal", and proposes to "take a pig away" to cancel the difference.
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Some children consider the rows as wholes, that is without explicitly identifying the
locus of the difference. They take the longer row to be more numerous and operate, as
before, additions or subtractions. More frequently, however, they change the density
of a row as a whole, condensing or expanding it, to achieve equivalence of spatial size.
Bob (4,9) says that one row is more numerous because "it's longer" and proposes to

"squash them" to have equivalent rows. Ja (4,1) says that it is "more in the long" and
to have the same to "put them back together".
Very interesting behaviours emerge when the experimenter asks the children to verify
their numerical judgment and suggests counting. Some of the children who based their
relative number judgment on the difference in the rows' length, count the two rows in
a way that reflects their judgment. This means that when the longer row, judged to be
more numerous, is counted after the shorter row, one of its elements is counted twice,
so as to obtain a cardinal value larger than the shorter row. If the shorter row is
counted after the longer row, the child skips one element of the row so as to obtain a

smaller cardinal value than the longer row. In most cases, the children give the
impression of being aware of the miscount as immediately after they have skipped (or
counted twice) an element they look up at the experimenter, as if they expected a
reaction from him. Children "cancel" the difference by taking one object away from the
longer row or adding one object to the shorter row in a way consistent with their
doctored count. In some of these cases, however, they do not carry out any correction.
Ed (5,6) counts the shorter row correctly to seven and the longer row to eight,
counting an element twice. Asked to make the two collections the same, he proposes to
"take one away", but does not do it. After a pause, the experimenter repeats the child's
proposal: "so if you take this object away, would the two lines have the same

number?". Ed does not reply, nor does he undertake any action. Similarly, Ka (5,7)
counts the longer row to six correctly and the shorter row, also of six, to five. She
does say that the longer row has one object more but does not attempt any change to
cancel the difference.

Among the children who had failed the hidden reproduction, there is only one case of
correction in the subsequent comparison task. Aid (3,5) has put down three objects
when the model set had four. When comparing them, he first claims that the two rows
are equinumerous, then counts them to find out that they have a difference of one. he
immediately adds an element to the copy row to create the equivalence.
Stage 2 children also fail the direct comparison task. These failures are the outcome of
four main strategies. Some children respond that the two collections are equinumerous,
and confirm the judgment after having counted the two collections separately (even
when one is counted to five and the other to six) or together (they are counted up to
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eleven). Fra (5,2) says that the two collections have the same number of objects and,
asked to check by counting whether they are equinumerous, counts the two rows

together, up to eleven. Other children consider the two collections to be equinumerous
and modify their counting of the two rows to conform to that judgment. On the basis
of the count obtained in the row counted first, be it of five or of six, the second row is
counted up to the same number, regardless of its true cardinality. As in the case of the
comparisons after hidden reproductions, the children seem to be aware of this trick as

they look at the experimenter after the count and sometimes pause for an instant before
double counting or skipping an item.
Some children realize that the two collections are of different number, but cannot say
which collection has more elements. When they are invited to count, either they count
only one row, or they count the two rows as one. After such a count, they can

certainly not say which collection is more numerous, what is the difference nor have
they the grounds to equate the two collections. The corrections which are attempted
consists of: two children suggest to "swap them (the two rows) round", two other
children take one element away from the smaller array.
The most puzzling behaviours are those of four children who remark the difference
(either from the start or after the counting check) but cannot cancel it nor equate the two
sets in a way they consider satisfactory. They realize that one row has one element
more than the second row and add a new element to the smaller row. This element

however introduces a difference in length, that they cancel by adding a new element to
the shorter row. After this action, they count the two rows again, remark the difference
and add another object. The procedure is generally interrupted after a couple of
attempts or when all the objects at the child's disposal have been used. Ro (3,11) and
Alex (4,2), for instance, say that there are more yellow sweets and add one orange

sweets. They look puzzled, pause for a moment and put another yellow sweet in front
of the orange one, thus reestablishing the matching of end points. Before answering
Kat (5,10) counts the two rows together, up to eleven, then recounts them to six and
six and still unconvinced counts them again to find that one has six sweets and the
other five. She concludes that the two collections have a different number of sweets.

When asked to make them have the same number of objects, she takes away one object
of the larger set and, asked whether now the two collections are equinumerous, after a
pause answers that she does not know.
Consider finally the case of the three children who fail the comparison after hidden
reproduction and succeed the subsequent direct comparison. In all three cases the
children correct an initial judgment of equinumerosity after counting the two arrays,

whereas in the previous comparison, they had counted the collections without finding
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or correcting the difference. Lou (5,10) considers the longer row as having more

objects. As she is asked to quantify the difference, she counts the two rows, finds out
that they have both six objects, but does not correct her previous judgment to conclude
that they are equinumerous. Ed (5,6) takes the longer row to be more numerous and
counts it to eight, where both rows have seven elements. He identifies the difference
and cancels it only after the experimenter suggests putting the two arrays in one-to-one

correspondence. In the subsequent direct comparison task he replies that the two rows

are equinumerous, but then counts them to five and six to conclude that they differ of
one element.

7.3.10.6.3 Stage 2

The Stage 2 children solve all the five tasks correctly. Among the children who
succeed that reproduction and then confirm equinumerosity in the following
comparison task:
a) some children justify the answer by referring to the previous task (Ch (4,3) '"cause
I counted five");
b) some children spontaneously count the two rows before answering the question
(Mar (5,4) counts the two rows to six and concludes that they have the same number;
Eli (4,10) replies '"cause it's 2 and 2 here and 2 and 2 here".
c) other children first say that the longer row is more numerous and then check
whether this is the case by counting or by establishing a one-to-one correspondence. In
(5,2) initially says that the longer row is more numerous, then counts the two
collections and after a brief pause concludes that they are the same. Similarly Ben (4,7)
first considers the longer row more numerous, then moves the objects in one-to-one

correspondence and concludes that they are the same.

The case of Cla (5;8) provides a particularly clear illustration of the kind of processes
underlying the comparison of arrays of different length. Cla has correctly laid down
six objects. As the screen is taken away, the model row appears to extend beyond the
row that she has constructed in length at both ends.

Model row o o o o o o

Copy row oooooo

Cla says that there are more objects in the model row and adds three objects to the copy
row in such a way that their end points now coincide. Asked again whether the two
rows are equinumerous, she counts them to seven (for six) and to nine. She adds three
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objects to the model row, inserting them in some of the wide gaps existing between the
objects:

Model row o ooooooo o

Copy row ooooooooo

Cla seems to hesitate; the experimenter asks the comparison question a third time to see

whether she is convinced of the equinumerosity. Cla replies that the two rows are

different and adds two more objects to the model row, recounts the two rows and
finally adds two more objects to the copy row to achieve equinumerosity between rows
again (eleven objects each).
In the direct comparison task, the correct responses are obtained by two procedures.
In one, children say that the two rows are equinumerous on the basis of the spatial
extent of the collections, and then count the two rows. When they discover that they
are different, they calculate the size of the difference and add or subtract the element
which constitutes the difference. In the other procedure, before answering the
comparison question, they count the two collections to conclude that they are different
and that one of them has one object more than the other.

4.3.10.7 Summary of the qualitative analysis

The qualitative analysis of the children's solution strategies helps characterize the
three competence levels identified in this experiment. In particular the analyses expose
in some detail the progress that Stage 1 constitutes over Stage 0 and the difficulties that
Stage 1 children experience with the comparison tasks solved at Stage 2. Stage 0
corresponds to a systematic failure in all tasks. In both conditions of reproduction
Stage 0 children either use all the objects at their disposal or put down an unquantified
bunch, reproducing the length of the model row or simply creating another unrelated
row. The progress characteristic of Stage 1 is reflected in the accurate reproductions
carried out through a one-to-one matching when the model set is visible and through
counting out the required set in the hidden condition. At this stage there is a remarkable
consistency between visible reproduction and the subsequent comparison.
The most interesting behaviours relative to Stage 1, however, emerge from the more
difficult tasks of comparison after hidden reproduction and of direct comparison.
Stage 1 children abandon the equinumerosity established in the initial correct
reproduction and judge the two, now visible, rows as different in number once they
see that the two rows have a different configuration. The longer row is systematically
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taken to be greater in number than the shorter row. At the same time, they take the two
rows of same length (e.g. the direct condition of comparison) to be also equivalent in
number, despite one has one element more than the other. The Stage 1 children appear

to lack the competence to compare the cardinality of sets of objects, and to judge their
numerosity systematically on the basis of spatial extent (actually length or the largest
dimension). Accordingly, children's success in the comparison after visible
reproductions does not constitute an expression of numerical competence, but rather
the outcome of a length comparison which is correct because the spatial and numerical
dimensions of the sets coincide.

In comparison tasks, then, number appears to be a non-criterial dimension, even
though it is relevant and operational in the previous reproduction tasks. Stage 1
children thus use counting and counting information when they are asked to check their
judgment. However, some children count both rows as one, others count the two rows
separately to conclude that they are equinumerous, regardless of the different counts
they obtain. Other children instead remark the difference but can neither quantify it
precisely nor cancel it. The checking procedures identify also some behaviours which
may be interpreted as expression of an internal conflict between space and number
based judgments (e.g. counting is adjusted to fit the original judgment, attempts to
achieve at the same time equivalence of number and length).
In some cases the conflict is resolved in favour of space and produces incorrect

comparisons; in other cases it is resolved in favour of number and leads to correct

comparisons; in the last examples instead, the conflict does not seem to be resolved as
the children try to combine the numerical and spatial information about the sets. They
either produce a dishonest count or attempt by a trial and error method to achieve
equivalence of spatial size and of number.
Finally, Stage 3 children solve the full battery of tasks, making, testing and revising
their numerical judgments. In the comparison tasks, they may start by judging the
longer row to be more numerous than the shorter to then count the two rows (or match
their elements) to check whether the longer row is indeed more numerous.

Alternatively, they count before making their judgments or compare correctly and
justify their response by reference to the reproduction they carried out before.

7.4 General discussion of Experiments 1 and 2

Experiments 1 and 2 have pointed out a clear developmental change in the child's
understanding of cardinal number in the period which goes from the Nursery school
years to Primary 2, that is, from age 4 to 7 years. Number development proceeds
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through four stages of increasing problem-solving ability from the failure to solve the
tasks of set reproduction (Stage 0), to the capacity to reproduce sets (Stage 1), to make
judgements of numerosity (Stage 2), to conserve number in the standard Piagetian task
(Stage 3). Stage 1 is attained through two different paths. Some children first learn
how to reproduce sets when this involves the one-to-one matching of objects (e.g. the
visible reproduction task) and only later carry out reproductions using counting. Other
children follow the opposite path.
Whereas I cannot say much about the nature of the cardinal number concept

underlying Stage 0 since all the tasks seem to be beyond the child's competence43,
some hypotheses about the nature of the cardinal number concept at Stage 1, 2 and 3
can be advanced. These hypotheses are derived from the general theoretical framework
proposed in the preceding chapters.
We have proposed that children have domain-specific structures specialized in

processing particular kinds of information. In the appropriate circumstances, these
structures are activated (possibly by something like a pattern-matching process) and
produce an internal representation of the aspects of the situation relative to the domain.
On these lines, Gelman & Meek (1986) advocate

the idea that much of early cognitive development proceeds as a function of some
domain-specific principles that define domains, focus attention on domain-
relevant inputs, and play a central role in the selection and generation of the class
of domain-appropriate behaviors (p.29).

In the course of development, we claim, children work out the relevance of these
representations in the form of contributions towards drawing some inference useful to
the solution of problems, the prediction of events and their classification. The process
of "making information relevant" however is not envisaged as functioning on a case-

by-case basis depending on the child's immediate circumstances. Instead it is
envisaged as proceeding in a step-by-step fashion from simpler to more complex
contents. The discovery of the import of some representations in a new, more

complex, class of situations produces a generalization and reorganization of the
domain-specific knowledge that the child already possesses. This conceptual
restructuring permits new applications and serves as pre-requisite for further
generalizations.
The developmental process itself is envisaged as the transition from a cognitive state
in which the domain-specific representation is entertained as irrelevant, to an

43 Tasks more appropriate to children younger than 4 should be devised
and examined, like for instance Gelman's magic conservation (see
Appendix 6.1), to evaluate the numerical competence of Stage 0.
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intermediate phase corresponding to ambivalence towards ^he import of this
representation, to the final discovery of its relevance and of the consequences that can
be drawn from it. The outcome of the process is a more articulate and general
understanding of the domain, as the domain-structure becomes relevant for a new class
of (more complex) contents.
In the case of the cardinal number domain, the structure specialized for processing

numerical information in the environment abstracts and produces representations of
cardinality for sets of objects. Its basic functions are to identify entities such as objects
and collections ofobjects and to establish relations of one-to-one correspondence
between elements of collections. I would claim that this structure is present from very

early in development and maybe biologically determined. Support for this claim is
found in studies of infants and preschool children who display a range of quantitative
abilities, such as magnitude discrimination, counting, estimation of numerosities. In
fact, even infants are able to discriminate between small numerosities (Starkey &
Cooper 1980, Starkey, Spelke & Gelman 1983, Strauss & Curtis 1984). These studies
indicate a) that infants can discriminate between arrays of two and three items by age

10 months, and sometimes between three and four items44; b) that infants 6 to 8
months-old can detect intermodal numerical correspondences between a visible
arrangement and a sequence of sounds45.
However a large qualitative gap exists between these first demonstrations of quasi-

perceptual numerical competence and the understanding and conceptual use of number
in the tasks I have studied. While the infants' tasks deal with the capacity to abstract
and match representations of numerosity, the tasks of reproduction, comparison and

44The technique used is the multiple-habituation technique. An infant is
presented with several members of a category until habituation occurs.
During the test phase, the infant is presented with two types of instances
of the familiar category and with instances of a new category. The ability
to categorize is inferred from the continued habituation to new instances
of the invariant category and from the dishabituation to instances from a
new category. In the case of number, the infant is habituated to a category
of number (N) items varying in dimensions like length of the array,
density, item type, size, position, etc. The dishabituation corresponds to
instances of a category N + 1 or N - 1. If the infant generalizes to this new
category, then it is inferred that infants are not capable of abstracting
numerosity. If instead they don't, as it appears to be the case, they are
attributed the capacity to discriminate numerosity against other
dimensions.
45Infants are presented with a choice of looking at a picture containing
either two or three objects while they heard either two or three
drumbeats. Infants look longer at the visual display with the number of
items that matched the number of drumbeats. From this result, the authors
conclude that infants must be able to abstract away from the modality of
presentation and the type of item to be enumerated.
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conservation require that operations be carried out on these representations, inferences
be drawn from them and precise quantifications arrived at. The progression from the
initial forms of number knowledge to the later forms of reflected, explicit forms
corresponds to the developmental process by which the child works out the relevance
of the cardinal representations (produced by the number structure) to acting in real
world situations, solving problems, inferring numerical properties and principles. The
constraint under which this process functions is that it goes through a series of stages
corresponding to the application of the structure to different and more complex
contexts, i.e. the contexts for which the numerical representations are discovered to be
appropriate and useful. Consider the stage sequence emerging from Experiment 1 and
2 from this perspective.
The reproduction task provides the first context of application for which we have

evidence that the structure is operational and produces relevant representations. Stage 0
children do not attempt to establish any form of numerical relationship between the
model set and the copy. On the contrary, Stage 1 children either partition the objects at
their disposal to form a subset which they then reproduce via counting or one-to-one

correspondence and equate to the model set. Or from the beginning they establish a

one-to-one correspondence between the elements of the copy and model sets.
The second context for which the structure application becomes operational is the

comparison task. Stage 1 children, though they can reproduce sets, fail the comparison
tasks where number and length do not coincide because they judge the sets'
numerosity on the basis of length. The collection is perceived as a whole, and not as
constituted of a sum of individual elements, and no decomposition and matching are

attempted. Stage 2 children instead look for the numerical relation between the two
collections and check whether two sets are equinumerous or not either by counting
them or by matching their elements one to one. This does not mean however that they
never use spatial cues as a first hint into the sets' sizes. It means rather that they have
the means to test whether an estimation based on spatial extent is accurate. Stage 1
children lack this second resource fundamental to make number judgments.
The third context is constituted by the Piagetian conservation of number task. Here

Stage 2 children seem to regress to the spatial estimation characteristic of Stage 1
children's number judgments. When they witness the spatial transformation of one of
the two equinumerous sets, they abandon the previous judgment and say that the rows
have now different number. Interestingly, they do not attempt any verification as they
generally do in the comparison tasks. Stage 3 children find the conservation problem
easy and swiftly confirm the equinumerosity that they justify by reference to the
starting equivalence or to the spatial nature of the transformation performed.
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While the patterns of behaviour are similar, the three competence levels appear to
differ in the nature of the objects over which the child has to operate with cardinality.
The reproduction task bears on an individual set which has to be identified as such and
quantified. A correspondence has then to be established between each of its elements
and one element of the child's bunch. The operation of correspondence can be carried
out with two means: the spatial matching and counting.
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Fig. 7.7: Cardinal number structure applied to the set reproduction task (the black
counters correspond to the model row, the white counters to the bunch the child has at
his disposal to carry out the reproduction)

The comparison task (fig. 7.8) bears on apair ofsets which have to be identified as

two separated entities (e.g. a step which can be problematic for those children who,
when asked to verify their inaccurate judgment, count the two sets as one) and which
have to be matched with respect to their numerical size. A correspondence has to be
established between the elements of the two collections either via counting or spatial
matching.Now consider the standard conservation task. Two facts strongly suggest
that this task requires a more complex operation than establishing a numerical
relationship between two sets. First, its solution appears after the solution of the
comparison task with rows of different length and same number. If conservation
demanded a simple comparison of the two post-transformation rows of different
length, it should be solved concurrently with the comparison of rows.
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Fig. 7.8: Cardinal number structure applied to the set comparison task

Second, non-conserving children who systematically use counting and matching to
solve the comparison tasks do not apply any of these strategies to solve the
conservation problem (e.g. a common observation in conservation studies, see Gelman
1982). It appears then that because of its structure the conservation task does not invite
empirical procedures (e.g. a second count of the two rows) to determine whether they
are still equinumerous or not, but some form of inference from the initial
equinumerosity and the transformation type.
Elkind (1967, see section 6.2.3.1) argues that the conservation task sets two

requirements: the conservation of the number identity of the set which is transformed
(i.e. A = A', the transformed set) and the transitive inference to go from the initial
equinumerosity A = B to the conclusion A' = B, through the intermediate step A - A'.
The children may thus know how to determine the numerosity relation between two
sets and to conserve the numerosity of a single set, but still fail to derive the
conservation principle as they do not have the logical competence to draw transitive
inferences46.
In the discussion of early conservations in the accidental-incidental tasks in Chapter
4,1 have proposed an alternative interpretation of the requirements of the standard
conservation task (see section 4.3.5). I suggested that to understanding the

46There is now evidence that children can draw transitive inferences
from the age of 4. Although the debate about whether this competence
corresponds to the fully abstract transitive reasoning described by Piaget
at the concrete operational stage is still open, Elkind's interpretation may
need to be reconsidered. I shall come back to this issue in the case of

transitivity of numerical relations in the next Experiment 3.
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conservation principle the child must relate the equinumerosity of the initial pair of sets
to the numerical relationship of the post-transformation pair. So, while the number
judgment task bears on a pair of sets, the conservation task bears on a pair ofpairs of
sets. It involves the application of the cardinal structure to a more complex class of
objects, i.e. pairs of pairs of sets, to work out the conservation of equinumerosity. In
other words, the understanding of the equivalence conservation principle involves a

kind of second-order numerical representation over the first-order representation of the
equinumerosity of two sets.

Fig. 7.9: Cardinal number structure applied to the number conservation task

To summarize, Stage 1 corresponds to the ability to operate with number on single
sets; Stage 2 to operate with number on pairs of sets; Stage 3 to operate with number
on pairs of pairs of sets. At all levels, the structure involved is the same, as it identifies
objects and sets of objects and relates them by one-to-one correspondence, but its
domain of application varies from individual sets, to pairs of sets, to pairs of pairs of
sets. In Stage 1, the child discovers the relevance of the number structure application to
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quantifying individual sets precisely. The reproduction task in fact requires that one set
be matched to another set to produce two equinumerous sets and cardinality is a much
more accurate and reliable means to achieve that than estimations based on spatial
extent In Stage 2, the child discovers the relevance of the cardinal representation when
one has to decide which set of a pair is more numerous. In this context too, number
provides a much more reliable cue to size than spatial extent. In Stage 3 yields, the
child learns the relevance of number to the equinumerosity of two sets. The child in
fact works out the general property of invariance of two sets' equinumerosity when
these are transformed in shape.
Each step of the process is a pre-requisite for the next. The elaboration of cardinality

as a property of sets of objects is instrumental in working out the numerical
relationship which may hold between two or more sets. Understanding cardinality as

the basis of the numerical relationship between sets is instrumental in working out the
principle of invariance as a general law of number, which itself can open the way to

subsequent more articulate and coherent number concepts. Each new acquisition hence
provides another building block for the elaboration of the subsequent concept and
constitutes the basis for new abstractions (e.g. the conservation principle is understood
only after the numerical relations between pairs of sets have been worked out).
This account of cardinal number development sheds some light on the precocious

forms of conservation that I have discussed in the literature review (see section 6.2.3):
identity conservation (section 6.2.3.1) and counted conservation (section 6.2.3.2).
Consider identity conservation first. The task of identity conservation involves one

row of objects which is spread out. After the transformation, the child is asked
whether or not the number of objects in the row is still the same. The studies which
compare the same children's performance in the identity and standard, equivalence
conservation tasks report a tendency for identity conservation to be solved earlier.
I argue that this decalage can be explained by the fact that the identity task requires

matching the pre-transformation set to the post-transformation set. This operation,
according to the account presented above, can be performed at Stage 2, where the child
has discovered that sets of objects are numerically related. Although the application of
the number structure in the set comparison and the identity conservation tasks involves
the same class of objects (a pair of sets), the latter task may introduce further
difficulties as the two sets are not both present before the child at the same time. The
child may thus match a memory of the pre-transformation set with the post-
transformation set. Nevertheless, the nature of the operation is the same.

Now consider the counted conservation task. Recall that before the conservation

question, the child is required to count the two rows. Under these conditions, the
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children can confirm the equinumerosity earlier than they do in standard conservation.
I argue that this decalage can also be explained by the fact that the modified task
requires the matching of two sets' numerosities, an operation which is understood by
the child at Stage 2. In counted conservation in fact, the child judges two sets

equinumerous, then one of the set is lengthened. At that moment, the child counts the
two sets and only now is he asked whether their number is still the same or whether it
has changed. The child can answer the question on the basis of his count alone without
having to think back to the initial equinumerosity or to consider the relationship linking
the pre- and post-transformation rows.

Two predictions follow from this alternative interpretation of the early forms of
conservations. Identity conservation and counted conservation should be failed at

Stage 1 and solved at Stage 2 concurrently with the comparison of sets whose length
and number do not coincide. These hypotheses are examined in the next chapter where
I report Experiment 3.
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Chapter 8 Experiment 3

8.1 Introduction

Experiment 3 focuses on the period of development encompassing Stage 2 and 3 and
examines the hypothesis that the difference between the competence underlying these
two stages rests in the nature of the objects among which the children can recognize the
equinumerosity: sets in Stage 2, sets of sets in Stage 3. The hypothesis is tested via the
acquisition orders of the tasks of set comparison, standard number conservation and
two modified conservation tasks which identify early forms of conservation: identity
conservation and counted conservation. I have claimed that the modified conservation

tasks require the competence to relate and match the cardinality of sets of objects, i.e.
the competence characteristic of Stage 2. Accordingly, these tasks should be solved
after set reproduction and before the standard number conservation task. In fact, if the
modified conservation tasks, like the set comparison task, involve a numerical
relationship between two sets, these tasks should be failed by some of the children
who reproduce sets and who have the competence to operate on individual sets only
(i.e. Stage 1). Similarly, if they involve a first-order cardinal relationship, some of the
children who conserve in the modified tasks should fail to conserve in the standard

task which involves a second-order cardinal relationship (i.e. Stage 3). Above all
however, if the modified conservation tasks and the set comparison tasks track the
same level of number competence, i.e. the ability to relate and to match the cardinality
of sets of objects, then they should be solved concurrently.
Experiment 3 also examines the alternative interpretation of the standard conservation
task proposed by Elkind (1967). Whereas I have suggested that understanding
conservation consists of working out the cardinal relationship between the more

complex class of objects 'pairs of pairs of sets', Elkind argues that the conservation
task involves advanced logical reasoning. According to Elkind, non-conservation is
due to the fact that the children lack the logical competence to draw transitive inferences
and in particular to conclude from the initial equinumerosity A = B and the number
identity of the set pre- and post-transformation A = A', that the sets A' = B are

equinumerous.
To provide some indications about whether Stage 2 children do indeed lack the logical
competence to draw transitive inferences, Experiment 3 introduces a new comparison
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task involving three sets whose number and length do not coincide. The comparison of
three sets can in fact be carried out by at least two kinds of procedures:
a) the sets are counted and compared two by two; the two larger sets are then compared
between themselves to pick the largest of the three, if there is one;
b) other procedures involve some elementary forms of transitivity. A rather
sophisticated use of ordinal information in the number words sequence underlies the
simpler procedure of counting the three sets and picking out the set corresponding to
the largest count as most numerous. A more explicit inference underlies the following
procedure: two sets are counted, the larger is picked out and then compared with the
third set. For instance, if A is found to be larger than B, A is then directly compared
with C, to determine whether A or C is the largest of the three. This procedure omits
one step, the comparison of C with B. Depending on the particular circumstances, the
transitive inference takes the child from A is greater than B and C is greater than A, to
the conclusion that C is also greater than B and is the largest of the three. Or
alternatively it can take the child from A is equivalent to B, and C is greater than B to
the conclusion that C is also greater than A and is the largest of the three.

8.2 Objectives

Experiment 3 has three basic objectives:
1. To replicate the findings of the previous experiments that the capacity to reproduce
sets appears consistently before the capacity to compare sets and that this appears

systematically before the capacity to conserve number;
2. to evaluate the prediction that identity conservation, conservation of counted sets
and comparison of two and three sets are acquired concurrently at Stage 2 (with the
two corollaries that these tasks are solved with a collective decalage over the preceding
solution of the reproduction task and the following solution of the conservation task);
3. to examine the procedures used to solve the three-set comparison task. Since I claim
that Stage 2 children have a concept of number as relation between sets as well as the
inferential capacities to reason with it, I expect to find some evidence of transitive
reasoning. While Stage 1 children tend to employ exhaustive counting and to match
each pair of sets, Stage 2 children should compare two pairs of sets only and apply
transitive reasoning
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8.3 Hypotheses

Experiment 3 investigates two groups of response patterns. The first group is a

replication of the findings of Experiment 1 and 2: 1. Collective decalage between
hidden reproduction and comparison after hidden reproduction; 2. Collective decalage
between comparison after hidden reproduction and conservation.

Hypothesis la: there is collective decalage between the solution of the reproduction
task and the later solution of the comparison task.

Correct performance on the comparison should be more strongly associated with
correct performance in the reproduction task than with incorrect performance in the
reproduction task (see figure 7.2, p. 148).

Hypothesis lb : there is collective decalage between the solution of the comparison
task and the later solution of the conservation task.

Correct performance on the conservation task should be more strongly associated with
correct performance on the comparison tasks than with incorrect performance on this
task (see figure 7.1b, p. 147).

The second group of hypotheses deals with the relationship between the solution of
the tasks of comparison of two sets, three sets and of identity and counted
conservation. We predict that all four tasks will be solved at the same stage because
they involve cardinal representations ofsame order, i.e. between pairs of sels. Before
Stage 2, children cannot establish such representations for pairs of sets and base their
number judgments on spatial extent and length. At Stage 2, children have elaborated
such representations and can recognize and operate with the numerical relationships
between two or more sets. They can thus solve all the tasks of number comparison
(two- and three-set comparisons and counted conservation) as well as conserve

number in the identity conservation by relating the cardinal representation of the pre-
transformation set with that of the post-transformation set.
We also predict that these tasks will be mastered after set reproduction and before

standard conservation. The decalage from reproduction to comparisons and modified
conservations is explained by the fact that the operation of relating pairs of sets
(required by the comparison and modified conservation tasks) cannot be handled with
the Stage 1 number concept as property of individual sets. The decalage from
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comparisons and modified conservations to standard conservation is explained by the
fact that the operation of relating pairs of pairs of sets (required by the standard
conservation task) cannot be handled by the Stage 2 number concept as relation
between sets. These two corollary hypotheses and the associated tables are presented
in Appendix 8.1.

Hypothesis 2a : The solution of comparison after hidden reproduction is concurrent
with the solution of three-set comparison task.

Correct performance on the comparison after hidden reproduction should be strongly
associated with correct performance in the three-set comparison task; incorrect
performance on the comparison after visible reproduction task should be strongly
associated with incorrect performance in the three-set comparison task. The white cells
are the cells predicted to be empty as shown in figure 8.1 below.

Comparison

Three sets

Comp

F

Fig. 8.1: Model of concurrency between comparison after hidden reproduction and
three-set comparison according to hypothesis 2a.

Hypothesis 2b : The solution of comparison after hidden reproduction is concurrent
with the solution of the identity conservation task.

Correct performance on the comparison after hidden reproduction should be strongly
associated with correct performance in the identity conservation task; incorrect
performance on the comparison after visible reproduction task should be strongly
associated with incorrect performance in the identity conservation task.
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Fig. 8.2: Model of concurrency between comparison after hidden reproduction and
identity conservation according to hypothesis 2b.

Hypothesis 2c : The solution of comparison after hidden reproduction is concurrent
with the solution of the counted conservation task.

Correct performance on comparison after hidden reproduction should be strongly
associated with correct performance in counted conservation; incorrect performance on
comparison after visible reproduction task should be strongly associated with incorrect
performance in counted conservation.

Fig.8.3: Model of concurrency between comparison after hidden reproduction and
counted conservation according to hypothesis 2c.

Hypothesis 2d : The solution of three-set comparison is concurrent with the solution
of counted conservation task.

Correct performance on three-set comparison should be strongly associated with
correct performance in counted conservation; incorrect performance on three-set
comparison should be strongly associated with incorrect performance in counted
conservation.
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Fig. 8.4: Model of concurrency between three-set comparison and counted
conservation according to hypothesis 2d.

Hypothesis 2e : The solution of three-set comparison is concurrent with the
solution of the identity conservation task.

Correct performance on three-set comparison should be strongly associated with
correct performance in identity conservation; incorrect performance on three-set
comparison should be strongly associated with incorrect performance in identity
conservation.

Identity
rons

Three sets

Comp

Fig. 8.5: Model of concurrency between three-set comparison and identity
conservation according to hypothesis 2e.

Hypothesis 2f\ The solution of counted conservation is concurrent with the solution
of the identity conservation task.

Correct performance on counted conservation should be strongly associated with
correct performance in identity conservation; incorrect performance on counted
conservation should be strongly associated with incorrect performance in identity
conservation.
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Fig. 8.6: Model of concurrency between identity conservation and counted
conservation according to hypothesis 2f.

8.4 Design

Each child participated in six tasks:
1) number reproduction. This task was identical to the hidden condition of
reproduction in Experiments 1 and 2;
2) number comparison (after the hidden reproduction condition) was again the task
used in Experiments 1 and 2;
3) three-set comparison. The experimenter presented three rows of objects of different
length, one of which had one element more than the other two. The child was asked
whether the three rows had the same number of objects or whether one of them had
more;

4) identity conservation. The experimenter presented a row of objects, then spread it
out to form a longer row. The child was asked whether the row had the same number
that it had had before or whether the number was now different;

5) counted conservation. The experimenter presented the child with two rows of
objects of same number and length, asking him whether they had the same number of
objects or not. One of the rows was then spread out to form a markedly longer row.
The child was required to count the two rows and only after the count was asked
whether the two rows were equivalent or not;
6) standard conservation.. The experimenter asked the child to reproduce a set placed
before him. When the row had been created and the equinumerosity confirmed, the
experimenter spread one of the two rows out and asked the conservation question:
whether the two rows were still equinumerous or whether one had more elements.
Reproduction and comparison tasks were presented first, in a fixed sequence. The

remaining tasks were presented in a balanced set of 24 orderings according to a Latin
Square design (with three subjects per block). The levels of the independent variables
are:
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- tasks:

- reproduction;
- comparison after reproduction;
- comparison of three-set;
- identity conservation;
- counted conservation;
- standard conservation.

- schooling/age group:
- Nursery (between age 3,6 and 5 years);
- Primary 1 (between age 5 and 6 years);
- Primary 2 (between age 6 and 7 years).

Dependent variable were the number of correct responses in each task and the
contingencies between correct and incorrect responses in pairs of tasks.

8.5 Statistical analysis

The statistical methods employed here are identical to those used in Experiments 1
and 2, with one exception: no statistics are computed regarding the order of
presentation given the balanced task orderings.

8.6 Material

The same collections of objects used in Experiment 1 were employed in the
reproduction, comparison and counted, standard conservation tasks. They consisted of
red, blue and green cylinders (1.7 cm high and 1.7 cm of diameter) and small plastic
animals (hippopotamuses and pigs of size equivalent to the cylinders'). In the identity
conservation task I used a collection of plastic frogs slightly bigger than the pigs and
hippopotamuses. In the three-set comparison, three rows of colourful clown's faces
(1.5 cm wide and 2 cm high) were presented on a white cardboard. They were stuck
on with a weak glue which allowed them to be easily removed. The three rows were of
different length, two of the three having same number, and the third one object more.
The top row consisted of six faces (dominant colour black) and was 14 cm long. The
mid row also contained six faces (dominant colour red) and was 24 cm long. The
bottom row had seven faces (dominant colour yellow) and was 18 cm long. The three
sets were presented as in the following configuration:
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Fig. 8.7: The three-set comparison task display

8.7 Procedure

The reproduction, comparison and conservation tasks were exact replicas of the tasks
used in Experiment 1. I refer to section 7.2.7 for a detailed description of their
presentation. The only difference with respect to Experiment 1 is that, because of the
balanced order of presentation, the conservation task did not systematically follow the
reproduction-comparison pair. Hence it was always preceded by its own set

reproduction (visible condition) task. The child was asked to take the same number of
objects as there were in a row before him and to construct a second array in front of the
first one. After the equinumerosity had been confirmed, the experimenter said "Look
what I do now" and spread one of the two arrays out. He then asked the conservation
question (see section 7.2.7.3). The child was asked to justify his response and, if he
had answered that the two rows are different, first to say which row he thought had
more elements, how many more and second to equate the two rows' number. Because
of the long series of trials, the conservation task is presented only once with a spread
out transformation.

The identity conservation task was presented in the context of a story to make it more
plausible. The frogs were lined up very close together. The experimenter said: "You
see these frogs, they are going for a walk all together". He then started moving the first
frog to the end of the table, the second frog at some distance and so on for all the other
frogs. In the meantime he said: "Some of the frogs walk much faster than the other
frogs and are farther ahead. Some of the frogs are slow and stay a little behind. Do you

think that there is still the same number of frogs in this long line as it was at the start of
the walk?". If the child answered that the number was now different, the experimenter
asked whether it was more or less and why it was. When the response was positive,
the child was asked why he thought so.
To introduce the counted comparison task, the child was presented with two rows of
objects of same length and number and asked: "Do these two rows have the same

number of rounds, or does one of them have more rounds?". After the child had
confirmed the equinumerosity, the experimenter lengthened one of the rows and asked
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the child to count the two rows "I would like you to count this line (pointing to one of
the rows). Could you also count this other line? How many rounds are there? and how
many rounds are there?". If a count was inaccurate, the experimenter intervened and
suggested counting a second time. Finally the experimenter asked the conservation
question and the usual justifications and clarifications.
Finally, in the three-set comparison, the child was presented with the three rows of
clown faces and asked: "I would like you to tell me whether there is the same number
of clowns here (pointing to the bottom row), here (pointing to the mid row) and here
(pointing to the top row), or whether the number is different? You can either count
them or move them around if you wish". If the child responded that the number was
different, he was asked to indicate which row (or rows) had more objects and to

quantify the difference. The experimenter systematically suggested to carrying out a
control ("Do you know of a way to check that this line has more clowns?") either by
counting the three rows ("Would counting help?") or by relocating the objects ("Would
moving the faces help?").

8.8 Interviews

The interviews took place in the class-room in a corner separated by a low bookcase
or by a desk and some chairs. The interviews lasted between 15 and 25 minutes. Notes
were taken on a prepared sheet (see Appendix 8.2 ) by the experimenter.

8.9 Measure

Children's performance was measured by the number of correct reproduction,
comparison and conservation responses. The scoring criteria were:
- in the reproduction task, the number of items of the copy set had to be equivalent to
the number of items of the model set;
- in the two sets comparison task, the judgment of equinumerosity had to conform to
the actual situation; in the case of incorrect reproductions, comparisons were scored
correct when the child recognized the difference and corrected it; children who admitted
that the two sets were different but did not know how to equalize them nor to quantify
the difference were scored as failing the task;
- in the three-set comparison task, the numerosity judgement had to identify the row
with seven faces as the largest. If an initial incorrect judgment was corrected after the
experimenter's suggestion of checking it using counting or moving the objects, the
child was scored correct;
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- in the counted, identity and standard conservation task, children were scored correct
when they answered that the collection had the same number of elements as it had
before (i.e. identity conservation task) and that the two collections had the same

number of objects (i.e. counted and standard conservation tasks). The scoring did not
take into account the justifications (see footnote 37).
Beside scoring the responses to the three-set comparison in correct and failed, the

order in which the rows were compared was analysed in detail (e.g. the three rows

were counted one after the other, or were counted in pairs and compared two-by-two,
some row was double counted).

8.10 Subjects

72 children from age 3,8 to age 7,4 years were tested. They were divided into three
class-age groups of 24 Nursery children (mean age = 4,8 years; SD = .43), 24
Primary 1 (mean age = 5,8 years; SD = .24) and Primary 2 (mean age = 6,9 years; SD
= .23). The children came from different classes of the same Edinburgh school and
were from a mainly working class social background. All children were native
speakers of English.

8.11 Results

The analysis of the results is carried out at the level of age group comparisons, of
within age groups across tasks changes in response and of overall response patterns to
pairs of tasks.

8.11.1 Age groups analysis

Tables 8.1 to 8.6 present the number of correct and failed responses to the six tasks
in the three age groups: Nursery, Primary 1 and Primary 2. A x2 test is computed on

each contingency table to assess the degree of correspondence between the observed
and expected responses falling in the success and failure categories in the three age-

groups and to evaluate the variation in performance across age. This analysis is
complemented by comparisons of pairs of groups to identify the precise periods in
which performance changes occur.
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Age
Resp\" Nursery Primary 1 Primary 2

Correct 14 22 24

Failure 10 2 0

Table 8.1 Correct and failed reproduction responses for three age groups

Since the distribution of correct and failed reproductions yields three cells with
expected frequencies lower than 5, I have collapsed the responses of the Primary
children and computed a x2 test on this distribution : x2 (1, N=72) = 16.2, p < 0.001.
The responses are homogeneous in the two Primary groups (91% of the Primary 1
children and 100% of the Primary 2 children reproduce correctly), whereas the
Nursery children's performance is much less accurate (58% of correct reproductions).
I have computed a second x2 test on the distribution of correct and wrong

reproductions in the Nursery and Primary 1 groups to determine whether the
performance in the reproduction task differs significantly in these two groups. The x2
((1, N=48) = 6.8) gives a significant result at the level of .01 > p > .005.

\ Age
RespV. Nursery Primary 1 Primary 2

Correct 9 17 21

Failure 15 7 3

Table 8.2 Correct and failed comparison responses for three age groups

The significant value of x2 ((2, N=72) = 13.72, p=0.001) indicates that the frequency
of correct and failed comparison responses is not independent of the age group

variable. The difference between the observed and the chance distribution is mainly
concentrated around the Nursery and Primary groups. Whereas the primary groups

give a comparable number of correct and wrong responses (x2 (1, N=48) = 2, .2 > p

> .1), the Nursery and Primary 1 comparison responses (and consequently also
Primary 2) are significantly different: X2 (1> N=48) = 5.36, .025 > p > .02.
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\ AgeResp\~ Nursery Primary 1 Primary 2

Correct 6 13 19

Failure 18 11 5

Table 8.3 Correct and failed standard conservation responses for three age groups

The conservation responses are related to the age groups: x2 (2, N=72) = 14.15,
p=0.0008. In particular the frequency of Nursery children's correct and failed
conservation responses is significantly different from the Primary l's (x2 (1, N=48) =
4.2, .05 > p > .025). The two Primary groups' conservation responses do not differ
significantly: (x2 (1, N=48) = 3.32, .10 > p > .05).

\ Age
RespV. Nursery Primary 1 Primary 2

Correct 7 16 21

Failure 17 8 3

Table 8.4 Correct and failed identity conservation responses for three age groups

Here x2 (2, N=72) = 17.65, p=0.0001. Also the identity conservation responses are

not distributed homogeneously across age-groups. In particular, the performance
difference is concentrated between the Nursery and Primary children. The x2 test

computed on the frequency of correct and failed conservation responses in the Nursery
and Primary 1 groups is equivalent to: x2 N=48) = 6.8, .01 > p > .005. The two

Primary groups' responses on the other hand distribute homogeneously (x2 (1, N=48)
= 2.96, .10 > p > .05)
\ Age
Respv. Nursery Primary 1 Primary 2

Correct 10 19 24

Failure 14 5 0

Table 8.5 Correct and failed counted conservation responses for three age groups
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Here x2 (2, N=72) = 21.59, p=0.00002. The significant difference between observed
and expected frequencies is particularly noticeable between Nursery and Primary 1 (x2
(1, N=48) = 7, .01 > p > .005).

N. Age
Respv*" Nursery Primary 1 Primary 2

Correct 7 16 20

Failure 17 8 4

Table 8.6 Correct and failed three-set comparison responses for three age groups

In this case x2 (2, N=72) = 15.36, p=0.0004. The same pattern described for the
Identity conservation table also underlies the distribution of correct and failed three-set
comparisons. The response category and age variables are related and this relationship
is more noticeable between Nursery and Primary 1 children (x2 (1, N=48) = 6.8, .01
> p > .005). No significant difference exists between Primary 1 and Primary 2
comparison responses.

8.11.1.1 Summary of the age groups analysis

The x2 analysis reveals that in all six tasks the number of correct and failed responses

does not distribute uniformly across age groups and thus that performance changes
with age. In the period which goes from Nursery to Primary 2, the number of correct
responses appears to increase and the number of failed accordingly to decrease. The
main difference is found between the Nursery and Primary children. The performance
ofPrimary 1 and Primary 2 children instead appears to be comparable. The x2 analysis
of Primary 1 and Primary 2 response distribution comes close to the significance level
of p < .05 only in the identity and standard conservation tasks.

8.11.2 Analysis of task difficulty

The results of the analysis of across groups performance in each of the six tasks is
complemented by the analysis of across tasks performance in each age group. The
response patterns hypothesized underlie a specific order of complexity between tasks,
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from reproduction, to comparison and modified conservations, and finally to standard
conservation. The expected order should be reflected in the children's shift from
correct reproductions to failed comparisons and modified conservations in a first phase
of development; from correct reproductions, comparisons and modified conservations
to failed standard conservations in a second phase of development; to a third phase in
which they solve all tasks.
The following statistical analysis examines whether the children's responses vary

according to this predicted order of task complexity and whether the expected change
occurs in all the three age groups or whether it is specific to some particular age group.
The following order of complexity, with the associated sets of coefficients adjusted to
sum zero, is tested:

Repro Vis > 2-sets Cp = 3-sets Cp = Identity Cs = Counted Cs > Standard Cs
(-2) (-1) (-1) (-1) (-1) (+6)

The Marascuilo & McSweeney test evaluates how the order of complexity of the task
conditions fits with the variations from correct to failed responses across tasks. Table
8.7 summarizes the result of the normal curve z test for the Nursery, Primary 1 and
Primary 2 groups. The z scores significant at the level of p < .05 are marked by an

asterisk.

Age Nursery Jrimary 1 5rimary 2

Order 2.68* 3.15* 2.7*

Table 8.7: Marascuilo & McSweeney Z values associated to the predicted order of task
difficulty for Nursery, Primary 1 and Primary 2 children

The observed across-tasks response change fits well the predicted order of task
difficulty. Contrary to Experiment 1, where Primary 2 children's responses were

homogeneous across tasks, in Experiment 3 the response change observed is
significant in all three age groups.

8.11.3 Hierarchical analysis of task solutions

The central testing of the hypothesized patterns of concurrency, collective decalage or
individual decalage in the solution of pairs of tasks is carried out using the prediction
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analysis of cross-classifications technique. Tables 8.8 to 8.17 present the contingency
tables of the frequency of correct and failed responses to each pair of tasks for which
an ordering hypothesis has been formulated. Each table is followed a) by the value of
the Del index corresponding to the improvement over chance produced by the
associated triangular hypothesis, b) by the values of the z test calculated on the Del and
c) by the values of the z test of the difference between the main hypotheses and the two
alternative hypotheses of order.

8.11.3.1 Hypothesis la: Collective decalage between reproduction and
comparison

Repro

Comp

15 10

Table 8.8: Contingency table for reproduction and comparison (the white cell is the
cell predicted to be empty by Hypothesis la) (Del = 0.99; z = 15.79, p < .00003)

Collective decalage from reproduction to comparison is significant and a significantly
better predictor than concurrency (z = 2.6, p = .004) or decalage from comparison to

reproduction (z = 7.83, p < .00003).

8.11.3.2 Hypothesis lb: Collective decalage between comparison and
conservation

\mp s p

38 0

9 25

Table 8.9: Contingency table for comparison and conservation (Del = 1; z = e,
p < .00001).

Collective decalage from comparison to conservation predicts the significantly non-

chance contingencies and is a significantly better predictor than concurrency (z = 3.3,
p = .0004) or the reverse decalage (z = 4.1, p < .00003).
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The response patterns described in Experiment 1 are replicated. Reproduction is
solved before comparison, as only two children who fail the reproduction can solve the
comparison, while some among the children who can reproduce number, can also
make accurate number judgments. Comparison is solved before conservation, and only
one child who fails the comparison later succeeds the conservation. A subset of the
children who make an accurate numerical judgments succeed in conserving number.
As expected, the same collective decalage holds between the easiest reproduction task
and the more complex conservation task, as the following table clearly indicates:

Table 8.10: Contingency table for reproduction and conservation (Del = 1, z = e, p <
.00001)

The next section examines the relationship between the solutions of comparison and
of three-set comparison, identity and counted conservation. The predicted response

pattern is one of concurrency as all these tasks are expected to track the number
competence characteristic of Stage 2, that is, the capacity to recognize the
equinumerosity of two or more sets.

8.11.3.3 Hypothesis 2a: Concurrency between two and three-set
comparison

Three sets

\orap c F
Comp\

42 5

1 24

Table 8.11: Contingency table for two-set comparison and three-set comparison (Del
= 0.82; z= 11.8, p < .00003).
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The concurrency pattern is significant and a significantly better predictor than collective
decalage in favour of three-set comparison (z = 2.05, p = .02). It is not, however,
significantly different from the collective decalage in favour of two-set comparison (z =
1.56, p = .06). Hypothesis 2a is only partially verified. Although 92% of the
responses conform to the expected pattern and correspond to failure in both tasks and
success in both tasks, 5 of the remaining 6 responses fall into the cell corresponding to
success in the two-set comparison and failure in the three-set comparison. It appears
then that the concurrency is accompanied by a few cases of prior solution of the two-
set comparison over the three-set comparison (i.e. collective decalage from two-set

comparison to three-set comparison).

8.11.3.4 Hypothesis 2b: Concurrency between set comparison and
identity conservation

Table 8.12: Contingency table for comparison and identity conservation (Del = 0.79;
z = 10.5, p < .00003)

The concurrency model yields a significant improvement over chance as also the two
models of collective decalage do (Delid = .72; z = 7.1, p < .00003; Delcomp = .86; z =
10.1, p < .00003). The three Dels are not significantly different ffom each other:
a) concurrency and decalage from identity conservation to comparison: z= 1.3, p= .09;
b) concurrency and decalage ffom comparison to identity conservation: z= 1.07,p=.14;
c) decalage ffom comparison and decalage ffom identity conservation: z= 1.16, p= .12;
Since all three hypotheses yield a significant improvement over chance at the same time
and are not significantly different between each other, I conclude that the order in
which the solutions of identity conservation and two sets comparison appear is of
weak concurrency.
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8.11.3.5 Hypothesis 2c: Concurrency between set comparison and
counted conservation

Table 8.13: Contingency table for two-set comparison and counted conservation
(Del = 0.67; z = 7.2, p < .00003)

The concurrency model is significant and a significantly better predictor than collective
decalage from comparison to counted conservation (z = 2.7, p = .0034). It is,
however, a significantly worse predictor than collective decalage from counted
conservation to comparison (z = -1.7, p = .044). As this latter pattern is also a better
predictor than the collective decalage in favour of comparison (z = 2.05, p = .02), it
constitutes the overall best predictor of performance. The hypothesis of concurrency is
thus falsified. Although 86% of the children contribute to the concurrency pattern,
either failing or succeeding at both tasks, there is a significant number of children who
succeed the counted conservation task and fail the comparison task.

8.11.3.6 Hypothesis 2d: Concurrency between three-set comparison
and counted conservation

Count
Cons

Three set§v S
Comp

s

F

42 1

11 OOt-H

Table 8.14: Contingency table for three-set comparison and counted conservation
(Del = 0.63; z = 6.8, p < .00003)

Here too, the concurrency model is significant and a significantly better predictor than
collective decalage in favour of three-set comparison (z = 6.5, p < .00003) but is a
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significantly worse predictor than collective decalage from counted conservation to
three-set comparison (z = -2.8, p = .0025). As this latter pattern is also a better
predictor than the collective decalage in favour of comparison (z = 3.6, p = .00016), it
appears to be the overall best predictor of performance. Thus, in the case of three-set
comparison and counted conservation, the hypothesis of concurrency is falsified.
Although 83% of the children contribute to the concurrency pattern and either fail or
solve both tasks, 11 children (15%) solved counted conservation task and failed three-
set comparison.

8.11.3.7 Hypothesis 2f: Concurrency between identity conservation and
counted conservation

Count
Cons

Identity\ S F
Cons

S

F

44 0

9 19

Table 8.15: Contingency table for identity conservation and counted conservation (Del
= 0.72; z = 8.5, p < .00003)

Also in the third comparison involving counted conservation, the concurrency model is
significant and a significantly better predictor than collective decalage in favour of
identity conservation (z = 8.5, p < .00003) but is a significantly worse predictor than
collective decalage from counted conservation to identity conservation (z = -3.3, p =

.00048). As this latter pattern is also a better predictor than the collective decalage in
favour of comparison (z = 4.2, p = .00003), it appears to be the overall best predictor
of performance. For this third pattern, the hypothesis of concurrency relative to
counted conservation is falsified. Again, the bulk of the children (88%) produced
concurrent results, but nine children (12%) succeeded at the counted conservation task
while failing at identity conservation.
Since collective decalage of similar strength holds from counted conservation, to

comparison, to three-set comparison and to identity conservation (contrary to the
hypothesis of concurrency), an intermediate competence level prior to the capacity to

compare sets and to conserve a single set numerosity (Stage 2) has clearly emerged.
Furthermore, collective decalage from reproduction to counted conservation has been
found as the following table indicates:
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Repro

Count
Cons

s

F

50 3

10 9

Table 8.16: Contingency table for reproduction and counted conservation (Del =
0.66; z = 4.05, p = .00003)

Collective decalage from reproduction to counted conservation predicts the
significantly non-chance contingencies and is a significantly better predictor than
concurrency (z = 1.94, p = .026) or the reverse decalage (z = 1.64, p = .050).
The ability to succeed at the counted conservation task appears thus after the ability to
reproduce sets is in place (Stage 1) and before the ability to compare sets and conserve
a set number has been elaborated (Stage 2). I propose to interpret these two decalages
as evidence of a substage 2a, which will be further discussed in the concluding
section.

8.11.3.8 Hypothesis 2e: Concurrency between three-set comparison and
identity conservation

Ideot
Cons

Thn
Co

ee sets
omp

s

F

42 1

2 27

Table 8.17: Contingency table for three-set comparison and identity conservation (Del
= 0.91; z= 18.4, p< 00003)

Since the model of concurrency as well as the two models of collective decalage are

significant with Del values close to 1 (.94 for the collective decalage in favour of three-
set comparison; .88 for the collective decalage in favour of identity conservation) and
are not significantly different (the z test values range from .56 to .59 and are significant
at the level of .29), I conclude that a strict concurrency exists in the solution of the
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three-set comparison and identity conservation tasks. The hypothesis 2e that the two
tasks are acquired concurrently is verified.

8.11.4 Analysis of the procedures to solve the three-set comparison

The correct three-set comparison responses are the outcome of two basic strategies: a)
the three rows are counted, b) the rows are compared two-by-two. The former strategy
consists of counting the three rows, one after the other and of picking out the largest.
The children conclude that "it's got one more", or "these have 6, this is more, it's 7".
This strategy is employed more frequently (67%) both from the start (62%) and to
check an initial judgment based on a spatial estimation of size (38%). In this case, the
child first answers that the longer row is more numerous, and asked to check whether
that row is indeed the more numerous, counts the three rows and revises his initial

judgment.
The second strategy consists of counting two rows, always the top and the middle

row, of noticing that they are the same number (e.g. 6 and 6), and then of counting the
bottom row to 7 to conclude that this is the most numerous row. Alternatively, children
count the top and middle rows, first, and the middle and bottom rows, then, to
conclude that the latter is the largest of the three. The children justify their judgment by
saying: "this one and this one are the same, and this is seven, one more" or pointing to
the rows "top and middle are the same, bottom is bigger" or "there's one more

(bottom) and these are less". These strategies are employed by 33% of the children
(71% from the start and 29% as a check of an initial judgment based on length). Sco
(5,2) for instance, takes the long row to be the largest, counts the top row to 6 and the
long to 7, double counting one of its elements. He then counts the bottom row

accurately to 7; counts again the long, middle row to 6 and the bottom row to 7 and
concludes that the bottom row is the largest of the three. Lis (7,0) judges the long row
to be more numerous, counts it to 6 and the bottom row to 7, then compares the top
and the bottom rows and counts them to 6 and 7 and concludes that the bottom row is

the largest of the three.
These observations and especially the responses based on the second type of strategy
are indicative of the fact that Stage 2 children can carry out some simple transitive
inference as they identify the largest row after two comparisons, rather than
exhaustively examining all three possible pairings of sets. If the top and the middle
rows are found to be equinumerous, then the third row is counted and compared to the
two previous rows' cardinal number directly. Both strategies indicate that the Stage 2
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children can use the order information embedded in the sequence of cardinal numbers
and draw inferences on relationships of equivalence and difference between sets.
The Stage 1 children lack this competence as their errors in the three-set comparison
task indicate. The incorrect responses are all based on a length comparison. The
middle row is taken to be more numerous. As Cla (4,5) says: " here (top row) it's not
much, here (mid row) it's more much and here (bottom row) it's more ". When
verification by counting is suggested, 45% of the children count the three rows, and
regardless of the different cardinal number they obtain, confirm the initial judgment.
Ian (7,1) judges the three rows to be equinumerous and justifies the judgment saying
that "this is a bit longer, but these two are more crowded". He then counts the three
rows accurately to 6, 6 and 7 and concludes that the middle row (i.e. the long row) is
the largest. 21 % of the children count the three rows as if they were one (e.g. 1, 2, 3,
4, 5, 6 (top row), 7, 8, 9, 10, 11, 12 (mid row), 13, 14, 15, 16, 17, 18, 19 (bottom
row)). The remaining children either adapt the count to the initial length based
judgment (18%) or oscillate between a number and a length-based judgment. For
example, Jac (6,1) count the three rows accurately and concludes that they are the
same. When she is asked to justify her reply, she answers that one is bigger because it
is the longest. The experimenter then asks her to remind him of how many elements
there are in the three rows. Jac recounts and says that there are 6 in the top row, 6 in
the middle row and 7 in the bottom row, and concludes that the bottom row is largest.
The experimenter asks for a confirmation and Jac responds that the middle row is the
most numerous.

8.12 Summary and discussion of the results

In this last section, I discuss the relationship between the results of Experiment 3 and
of the previous Experiments 1 and 2, and in particular the place that the acquisition of
identity and counted conservation takes in the three stages previously identified. I then
evaluate the hypothesis that the modified conservation task should be solved
concurrently with the set comparison tasks, since they involve the operation of
matching sets characteristic of Stage 2. To further qualify Stage 2 number competence,
I examine the strategies observed in the solution of the three-set comparison task and
the evidence they provide of transitive reasoning on numerical relations.
Experiment 3 replicates the main results of the previous experiments: the collective

decalages from reproduction to comparison, from reproduction to conservation and
from comparison to conservation. The basic sequence of three stages of numerical
competence described by Experiments 1 and 2 is thus confirmed. Children first acquire
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the capacity to reproduce sets, then to compare pairs of sets and finally to maintain the
equinumerosity of two sets throughout spatial transformations. As expected, the
conservation task is in fact solved with a constant collective decalage, after all the
comparison and modified conservation tasks (see appendix 8.1).
Experiment 3 also provides some support for the characterization of the numerical

competence underlying the three stages presented in the general discussion of section
7.4. According to this account, Stage 2 corresponds to the capacity to establish
numerical relations (equivalence or difference of numerosity) between sets. I argued
that the modified conservation tasks which deal with a single set which is spread out
(identity conservation) and which require a count of the two sets before answering to
the conservation question (counted conservation) both depend on the Stage 2 ability to
relate sets' cardinal numbers. Experiment 3 has tested this hypothesis by examining
whether the comparison and modified conservation tasks are solved concurrently.
The hypothesis is verified for three-set comparison and identity conservation tasks
(strict concurrency), for comparison and identity conservation tasks (weak
concurrency) and for three-set and two-set comparison tasks (concurrency together
with collective decalage from two-set comparison to three-set comparison). On the
other hand, the hypothesis is falsified with respect to all the response patterns

involving counted conservation. Although counted conservation is systematically
solved once the ability to reproduce is in place (collective decalage from reproduction
to counted conservation), it is always solved before the comparison and identity
conservation tasks (collective decalage from counted conservation to comparison and
from counted conservation to identity conservation). I interpret this finding as evidence
of an early form of the capacity to recognize the equinumerosity of sets whose
numerical and spatial sizes do not coincide, induced by the specific conditions in which
the numerical judgement is carried out in the counted conservation task.
In this task, the child is first asked whether or not two rows of same length and

number are equinumerous. All the children examined answer that the two rows have
the same number of elements. Then the experimenter spreads one of the rows out and
asks the child to count the two rows separately and to repeat the cardinality of the first
row and then of the second row. Only after these operations have been accurately
carried out, is the conservation question asked. Some of the children answer that the
two rows are different and choose the longer row as being the more numerous,

regardless of the result of the previous count (i.e. the children who generally belong to

Stage 1). Other children confirm that the two rows are equinumerous, but when
confronting the comparison, identity conservation or three-set comparison tasks, they
base their numerical judgment on the length of the rows (i.e. the children who are
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classified at Substage 2a). When asked to check their judgments by counting, these
children make the errors already described for the previous experiments. Some of them
adapt their count to fit the judgment. Others count the two rows as one and so do not
obtain any relevant information.
The order in which the judgment and the count are carried out may be playing an

important role. In counted conservation, the judgment is asked after the count has been
performed on each row separately. Before comparing the sets then, the child has
created a separate representations of each set's cardinality which is not affected by the
length difference between the two rows or by the objective of comparing the two rows,
which is set only later. In the comparison tasks and in the identity conservation task,
on the other hand, the judgment is made first and only then is counting suggested.
Before counting, the child may have already created a representation of the numerical
relationship holding between the two sets and may not be willing to question its
accuracy nor to revise it. For that reason the counting information is often irrelevant
and sometimes manipulated to fit the previous judgment.
It makes sense, therefore, to propose an intermediate level corresponding to the

solution of counted conservation (Substage 2a), in which the child has learned to rely
on count information to establish the numerical relationship between two sets of
objects when he has this information. When instead he is asked to judge the sets'
numerosity, he does not spontaneously count, but favours spatial cues (as the Stage 1
child does) and does not see the import of the subsequent counts. This behavioural
pattern has been extensively described by Michie (1984a, b) (see section 6.4 of the
literature review chapter). The decalage between the solution of the counted
conservation task and the later solution of the comparison and identity conservation
tasks may thus identify a phase in the developmental process by which counting
becomes the privileged means to create cardinal representations. In this phase of
relative instability, when the representation based on counting is created first, the risk
of interference from spatial information decreases. When instead counting comes in
after a cardinal representation has been created, a conflict between spatial and count
information eventually emerges and is generally solved in favour of spatial cues. Only
at Stage 2, does counting work both as a strategy for comparing sets (e.g. when asked
to make a number judgment, the child spontaneously counts the two rows and judges
on the basis of the number reached) and as a method for verifying the accuracy of an
estimate based on spatial extent (e.g. when asked to make a number judgment, the
child picks out the longer row as the most numerous, he then counts the two rows and
determines whether his hypothesis was correct or not).
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Experiment 3 also has implications for our view of the logical competence
characterizing Stage 2. The analysis of the strategies used in the three-set comparison
gives some indication that children can combine the relations holding between pairs of
sets (e.g. A = B and C > B) to infer new relationships on other pairs (e.g. C > A).
Although this evidence is rather weak, it indicates a basic competence to reason on

first-order relations of equinumerosity and difference. Further support can be found in
the capacity to use the order relationships embedded in the number words sequence

(e.g. the solution of the three-set comparison based on counting the three rows and
identifying the largest) and to conserve number in the identity conservation task (e.g.
the children justify the conservation by the fact that nothing has been added nor taken
away, and that it is possible to go back to the initial configuration),.
In conclusion, Experiment 3 provides further support for the description of the

development of cardinal representation as proceeding through three major stages and
for the characterization of the three stages competence proposed in section 7.4. Stage 1
corresponds to the ability to reproduce sets and could be characterized by a concept of
cardinal number as property ofsets ofobjects. Stage 2 corresponds to the ability to
make numerical judgments on two and three sets and to conserve the numerosity of a
single set when this is transformed in length. For this reason, the Stage 2 child should
understand cardinal number as a relationship between sets. This concept is first
expressed in the context of the counted conservation task, that is when the child creates
cardinal representations of each set with counting before matching them, and is then
generalized to other situations like two- and three-set comparison and identity
conservation. Stage 3 corresponds to the ability to conserve the equinumerosity of two
sets when one of them is modified spatially. Now the child appears to have a concept
of number as a second order relationship between sets ofsets.
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Chapter 9 A model of cardinal number development

9.1 Introduction

In this last chapter, I summarize the findings of Experiments 1, 2 and 3 and examine
their contribution to the existing literature on the development of cardinal number
representations. I then model the transition between each pair of stages using Richards'
logical representations and algorithm. Since this applications is not very satisfying, I
examine the reasons and suggest to constrain the domain of developmental phenomena
that Richards' approach can model in a useful and meaningful way. Finally, I propose
some new directions for empirical research and for modeling developmental processes.
According to the literature, the process of cardinal number development results in the
shift from space to number based estimations and judgments of numerosity. The
experiments I have carried out provide evidence that this shift does not occur all ax once
across all numerical tasks, but emerges first in the context of set reproduction
problems, second in number judgment tasks and third in standard conservation of
number tasks.

This finding challenges the two principal accounts of cardinal number development:
Piaget's and Gelman's. Piaget's theory cannot account for the specific number concept
underlying Stage 2, a concept which possesses some of the logical features (e.g.
composition, reversibility, transitivity) that Piaget attributes only to the operational
Stage 3 number concept. Gelman's theory, which envisages the development of
cardinal number competence as learning to produce accurate and reliable
representations of numerosity for increasingly larger sets and as abstracting general
numerical properties, is challenged by the result that cardinal number develops in a

stage-like way, independently from the cardinal numbers involved. The collective
decalages clearly indicate that cardinality becomes operational in the reproduction of
sets first, in the comparison of sets later and in the standard number conservation
finally for set sizes that the child can count accurately.
I have proposed an alternative account of this stage sequence in the terms of the

theoretical framework advanced in this thesis. According to this account, the
development of the number concept consists of the abstraction of cardinality over

increasingly more complex objects, i.e. individual sets, sets, sets of sets. The stage¬
like nature of the process reflects the fact that each abstraction is a prerequisite for the
following conceptual elaboration: cardinality as a property of sets of objects is a pre-
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requisite for the subsequent discovery of cardinality as a relation between sets;

cardinality as a relation between sets is a prerequisite for the subsequent discovery of
the principle of conservation of numerosity over sets of sets.
From this perspective, the transition between stages is envisaged as the process by
which the relevance of cardinal number structure is discovered for new and more

complex objects. The process is reflected in the shift from space-based to number-
based estimations and judgments. Between Stage 0 and Stage 1, children move from
inaccurate reproductions, e.g. the length of the row is reproduced, to accurate

reproductions. Between Stage 1 and Stage 2, children move from numerosity
judgments based on spatial dimensions of the rows, and especially length, to

judgements based on the cardinal size of the rows. Between Stage 2 and Stage 3,
children move from abandoning the equinumerosity holding between two rows when
one of them is transformed into a longer row to confirming the equinumerosity,
regardless of the differences in spatial extent introduced.
This quasi-recursive process conforms well to the uniform model of transition

between stages proposed by Richards in the case of the object concept development.
Richards' model represents each stage transition as a fixed sequence of three cognitive
states each of which underlies an inferential system of different power. A semantic
algorithm operates and strengthens the logical systems (e.g. the logic of first-degree
entailment is pruned of the truth value neither true not false to yield the stronger
Kalman logic) and brings about the conceptual change characteristic of the new stage.
After having analysed the main articulations of the process of cardinal number
development, I provide a model for it using the logical representation and algorithms
proposed by Richards.

9.2 The import of the experimental results for the existing literature on

the development of cardinal representations

The studies of cardinal number development presented in the literature review
(Chapter 6) report analogous shifts from space based to number based estimations of
the numerosity of sets of objects in tasks dealing with number reproduction,
comparison and conservation. The series of experiments that I have run replicates this
phenomenon and adds a critical new element regarding its unfolding. They indicate that
the shift from space to number based estimations of numerosity does not occur all at
once, but is spread over the age period from 3,6 to 7 years of age, in relation to the
particular task requirements. First, the capacity to carry out accurate reproductions of
sets is acquired (around age 5). Second, the capacity to make numerical judgments and
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to conserve a single set's numerosity across spatial transformations (around age 6) is
acquired, and finally the capacity to conserve the equinumerosity of two collections
across spatial transformations to one of them emerges (around age 7).
Let us examine the sequence of competence levels more closely. Stage 0 children fail
the reproduction task mainly because they reproduce the length of the row instead of its
cardinality. Nevertheless independent evidence suggests that even at Stage 0 the
children have some understanding of cardinal number: a) conservation of numerical
judgments in Gelman's magic experiment (see Appendix 6.1), b) ability to count and
to make judgments on the basis of the order of the number words sequence (e.g. 2 is
larger than 1, 3 is larger than 2), c) appreciation of the consequences that adding and
subtracting an element from a set has on its numerosity (see Appendix 6.2), d) capacity
to take out 'n' objects and to answer 'how many' questions. However, when the Stage
0 children are asked to abstract and precisely quantify the cardinality of a set, and on
this basis create another equinumerous set, they systematically fail the task. The gap

between possessing the competence previously described and putting it into practice in
the reproduction task can be accounted for in terms of the complexity of the operations
involved in that task. The cardinal size of the set has to be isolated from the other

spatial properties of the set The size has then to be precisely quantified and reproduced
in a new set, either via counting or one-to-one matching. Finally, the set of objects that
serve to carry out the reproduction has to be partitioned, and a subset of it has to be left
unused.

Stage 1 children reproduce the set's number accurately, either by counting out the
same number of items or by establishing a one-to-one spatial correspondence between
elements of the model row and elements from the set they are given to carry out the
reproduction. At the same time, when faced with the task of judging the numerosity of
two or three sets, or the identity of the numerosity of a row which is spatially
modified, Stage 1 children fall back on a space based estimation of size and generally
take the longer row to be the more numerous. This phenomenon is particularly striking
in the case of two-set comparisons which immediately follow set reproduction in the
hidden condition. Stage 1 children solve the reproduction task and create a row which
has the same number 'n' of elements as a model row 'n', hidden behind a screen.

When the screen is taken away, two rows of different length are revealed. Despite the
immediately preceding reproduction, Stage 1 children judge that the two rows have a

different number of elements.

The difficulty with combining difference in length with equinumerosity (or difference
in number with equal length, as in the static comparison task of Experiment 2) is
overcome in Stage 2, where children base their numerical judgments on numerosity
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alone. They either start with a hypothesis based on spatial estimation that they then
verify using one-to-one correspondence and, more frequently, counting; or they count
the two or three rows from the start and isolate the most numerous row. Similarly, in
the identity conservation task the operation of spreading out the rows' elements does
not lead to the conclusion that the row's number has also changed. The children
explain that it is still the same row and no elements have been added nor taken away

from it. However, the Stage 2 number concept is still not completely independent from
spatial features of the set. Faced with the standard conservation task, Stage 2 children
fall back on an estimation of equinumerosity based on the difference in length
introduced by the spatial transformation of one of the rows.
Only at Stage 3, do children solve the standard number conservation task as well.

Since, to my knowledge, no tasks have been devised that involve more complex
operations on the cardinal representation of sets of objects than the conservation task,
Stage 3 constitutes the top level in the development of cardinal representations of sets.
To summarize, Experiments 1,2 and 3 point out some important new elements in the
development of cardinal representations. The stage-sequence is schematically presented
in table 9.1 and further qualified in the following paragraphs:
1. The response patterns to a battery of nine tasks involving set reproduction, set

comparison and number conservation identify three distinct competence levels: Stage 0
where no tasks are solved, Stage 1 where the set reproduction tasks are solved, Stage
2 where the set reproduction, two- and three set comparison, identity conservation and
counted conservation (substage 2a) tasks are solved, Stage 3 where set reproduction,
two- and three-set comparison, identity conservation, counted conservation and
standard conservation are solved.

2. Stage 1 is attained at around age 5 (the older children in the Nursery school). Stage
2 is attained at around age 6 (towards the end of Primary 1). Stage 3 is attained at
around age 6,6, 7 (during Primary 2).
3. At each stage, children have some numerical competence and can carry out complex
operations. As Stage 2 has been explored more thoroughly, it provides some

particularly interesting illustrations of sophisticated inferences on cardinal number. I
found some indications of transitive inferences from relations of equinumerosity and
difference in the three-set comparison, of articulate explanations in the identity
conservation task, where children justify that the cardinality of the row has not been
changed by the spatial transformation by the fact that no elements have been added nor
taken away from the set. Both in this task and in the comparison tasks, children justify
their judgments also by combining the length and the density of the rows (e.g. this one
is longer, but more empty; this one is shorter but more crowded).
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4. At each stage, the competence has characteristic limitations. Whereas the
circumstances under which the children operate accurately are revealed by the tasks that
the children can solve simultaneously, the limitations are identified by the response

patterns of collective decalage. The Stage 1 children fail the two- and three-set
comparison tasks, the identity conservation and the counted conservation tasks as well
as the standard conservation task. The Stage 2 children fail the standard conservation
task.

Stage Age Tasks solved Notes

0 4 None of the tasks accurate counts to 4-5
In set reproduction:
use of all the objects
arbitrary number
inaccurate matching
copy of length

1 5 Set reproduction
visible, hidden

In set reproduction:
accurate matching
and counting
In set comparison:
longer = more numerous
equal length = same number

2a 5-6 Counted
conservation
Set reproduction

In set comparison:
if count first, accurate comp.
if count after space-based
judgment, inaccurate comp.

2 6 2-set comparison
3-set comparison
Identity conserv
Counted conserv
Set reproduction

In set comparison:
count precedes judgment or
follows as a check
In standard conservation:
after transformation, sets are
different and longer = more

3 7 All the tasks In standard conservation:
operational justifications

Table 9.1: The four Stages (with one Substage), with the corresponding approximate
age, task solved and basic solution strategies, as reported in Experiments 1, 2 and 3.

5. Knowledge of the count words sequence, enumeration, and even counting do not
form a sufficient condition for carrying out the numerical operations and inferences
required by these diverse tasks. In all three experiments, in fact, care has been taken to
examine children using set sizes that are in the range of their counting competence and
to help children correct their counts in case of mistakes. Despite this precaution,
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inaccurate reproductions and comparisons have not disappeared. The developmental
process therefore cannot be the product of the increased reliability of children's
counting. Nevertheless, accurate counting plays a crucial role in testing hypotheses
about numerical relations between sets and in discovering specific properties and
regularities. This clearly emerges from the early success in the count conservation task
(where a count of the two rows is required before making the number judgment) as the
first form of numerical comparison competence.
6. The two fundamental means of creating precise numerical representations of the
sets' cardinality, that is counting and one-to-one spatial correspondence, develop with
some independence. The response pattern of individual decalage between reproduction
in the visible condition and reproduction in the hidden condition indicate that some
children develop counting before matching, while other children do the opposite. In
Stage 2, both strategies are present and are applied in a coordinated fashion to test for
the kind of numerical relations holding between sets. The children can in fact invoke
counting and matching in a interchangeable way or use them as double checks.

9.3 The import of this result on the main accounts of cardinal number
development

These findings challenge both Piaget's and Gelman's accounts of number
development. According to Piaget, an important milestone in the development of
cardinal number is reached when a system is constructed that leads to number
conservation: the realization that the equality of two collections of objects put in one-to-
one correspondence and judged equal does not change when one of the collections is
spaced out and the optical correspondence is destroyed. The system emerges from the
reciprocal assimilation of the operational structures of classes and relations and
guarantees the necessity of conservation through reversibility (i.e. the two sets are still
equinumerous because it is possible to go back to the initial optical correspondence),
identity (i.e. the two sets are still the same because nothing has been added nor taken
away from them), composition (i.e. the two sets still have the same number of
elements as one is longer, but more spaced, while the second is shorter, but more
crowded). Before this system is in place, the child has an intuitive concept of number
which is perception bound and irreversible.
When this characterization of number development is matched to the developmental
sequence that I have described, the intuitive, pre-operational number concept

corresponds to Stage 1. The child can reproduce a set using counting or one-to-one

correspondence, but as he is faced with two rows of different length he abandons the
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equinumerosity (e.g. comparison after hidden reproduction, identity, counted and
standard conservation) and makes a judgement based on the set's spatial extension.
The operational number corresponds instead to Stage 3. The child can conserve the
equinumerosity of two collections across their spatial transformations, and explain this
using logical arguments of reversibility, identity and composition.
Where the Piagetian account in terms of two clear-cut stages fails is with respect to

the Stage 2 number concept. Piaget's theory does not have the means to characterize
the achievement of Stage 2 where the representation of the set's cardinality is clearly
distinct from spatial size and have some operativity. In making numerical comparisons
of rows in which length and number do not coincide (e.g. same length and different
number, and same number and different length), Stage 2 children in fact go beyond
spatial differences and recognize the rows' equinumerosity or different number. They
justify their judgments using arguments of composition of length and density (e.g. this
row looks bigger, but is more spaced. This row looks smaller, but is more crowded).
In the identity conservation task, Stage 2 children maintain a set's number across
spatial changes to it and justify the conservation again with arguments of composition,
reversibility and also identity (e.g. You didn't add nor take away any). In the three-set
comparison, beside picking out the more numerous array independently from the
arrays' length, some of the Stage 2 children carry out some form of transitive
reasoning (e.g. from the result that A is equal to B and that C is larger than B they
conclude that C is the largest set, without needing to compare C with A). In sum, the
Stage 2 number concept possesses the logical properties that Piaget attributes only to
the Stage 3 concept. The Piagetian analysis cannot account for the coherence of the
Stage 2 number concept and for the difference between the Stage 2 and Stage 3
concepts, a difference which is reflected in the Stage 2 children's failure to solve the
standard number conservation task.

The finding that the development of cardinal number from set reproduction to number
conservation proceeds through three fixed stages also constitutes a challenge to
Gelman's analysis of number development and does so on two levels. According to
Gelman, numerical inferences (what she calls number operators) appear only after the
child has developed number estimators which provide reliable and accurate numerical
representations. In the three experiments I have run, care has been taken to assess

children always on set sizes that they can handle and count accurately (see the pretest to
determine the size of the sets the child is asked to reproduce and compare). The finding
that children fail the tasks of reproduction, comparison and conservation even when
the size of the sets involved is within the child's counting range indicates that
numerical development goes beyond the accurate representation of sets' cardinality and
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that counting is not a sufficient condition for numerical reasoning. Although advanced
counting skills play a major role in discovering and testing hypotheses about numerical
properties of sets and relations between sets, proficient counting per se does not

directly bring about complex number concepts. Consider, for instance, the case of the
children that in the comparison task modify their counts as a function of their original
numerosity judgment. Their counting is proficient enough to be (dishonestly) adapted
to confirm the initial hypothesis, if the child think that a longer row must indeed be
more numerous than a shorter row. Thus extensive development in number
competence goes on beyond the acquisition of advanced counting skills.
The second problematic aspect of Gelman's account of number development refers to
her more general theoretical framework. Gelman bases her analysis of development on
Rozin's theory (1976) that part of cognitive development involves an increasing ability
to access the structures underlying early cognitive and perceptual abilities. Because of
this growing general ability to gain access to underlying competences, the early and
possibly innate abilities are used in wider and wider settings and combine to serve new

abilities. To illustrate how this process works, Gelman gives the following example:

Consider the case of reading. I know of no claims that the ability to read is innate.
Many have argued that a child has to access the phonetic speech-stream if he is to
master the sound-sight correspondence rules. But the ability to do this develops
relatively late. In Rozin's terms, this is because the ability to produce speech only
embeds an implicit ability to use the phonetic code. This ability is not an explicit
one. With development, there is an increase in the ability to access the phonetic
code and put it to work in the service of acquiring a new ability - to read. (Gelman
1982, p. 217).

Similarly in the case of number, with development the child gradually gains access to
the principles underlying his counting practice. Access to these principles make
possible more efficient and operational numerical reasoning (e.g. about number
conservation). The finding that cardinal number development proceeds in an orderly
manner through three stages goes against a simple learning view that this competence
develops as a function of practice and of the child's encounters with many and diverse
number situations. The stage sequence identified puts supplementary constraints
(beyond Rozin's and Gelman's accounts) on the developmental process by which
access is gained to implicit knowledge of numbers.
The stage-like nature of the developmental process can instead be expressed within

the theoretical framework proposed in this thesis. The framework assumes that
development is a stage-like process by which some structure specialized in processing
particular kinds of information becomes relevant and operational over more and more

complex classes of objects. From this perspective, an account can be given of the
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competence underlying the three stages in terms of a concept of number defined by the
fundamental number-structure and by the content this structure applies to.
The Stage 1 number concept corresponds to the application of the number structure to
individual sets and defines cardinal number as a property of individual sets. The child
is granted a full logical competence to draw inference and carry out complex operations
which involve the cardinality of individual sets. Unfortunately, the only illustration of
this competence in the studies I have reported is provided by the solution of the set
reproduction tasks.
The Stage 2 number concept corresponds to the application of the number structure to
two or more sets and encompasses the cardinal relations of equinumerosity and
different number between sets. The child is again granted a full logical competence to
draw inferences and carry out complex operations which involve numerical relations
between two or more sets. In the case of Stage 2, there is more evidence in support of
this claim. The children work out the property of conservation of individual sets across
spatial transformation by relating the initial configuration with the post-transformation
configuration and by noticing that nothing has been added nor taken away (identity),
that it is possible to go back to the initial configuration (reversibility) and that although
the post-transformation row looks larger, its elements are more spaced than in the
initial configuration (composition). Similarly, the indications of transitive inferences
support the view that children can combine the equinumerosity between two sets (A =

B) with the difference between one of these sets and a third set (C > B) to conclude
that this set is also larger than the first one (C > A). The Stage 2 concept defines
cardinal number as a first-order relation between sets together with all the inferences
that can be drawn from this kind of relation.

The Stage 3 number concept corresponds to the application of the number structure to
sets of sets, and in particular to the initial pair of sets of the number conservation task
(A = B) and the post-transformation pair (A = B'). The application of the number
structure to the more complex object pairs of sets permits the child to discover the
principle of number conservation, that is the permanence of the equinumerosity of two
sets across spatial transformations, as long as no elements are added nor taken away.
This alternative account also permits us to explain some of the results reported in the
literature. First of all, the early conservations can be explained in terms of the
competence characteristic of Stage 2. The modified conservation tasks are solved prior
to the standard conservation task because they require the matching of the two post-
transformation sets and not the more complex operation of matching the initial pair of
sets with the post-transformation pair, as in Piaget's standard task. Halford & Boyle's
(see Section 6.2.2.2.3) finding that before age 7 children cannot transfer a numerical
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judgment (e.g. two large rows are presented, the child estimates the row on the left as
larger) across spatial transformations on one of the rows (e.g. the same child now

judges the right row to be larger) can be explained in terms of the Stage 3 competence
to relate pairs of sets. Only when the concept of cardinal number which expresses sets
of sets is elaborated can the children carry the same judgment through the series of
spatial transformations and give consistency to their numerical judgments. Before this
stage, the children can only give independent judgments of each pair after each
transformation, as Halford & Boyle report.

9.4 The development of cardinal number, a detailed description

As we have seen in the previous sections, the development of cardinal number from
set reproduction to conservation of number develops through four stages. I now
examine the paths that children take along this stage sequence.

Children reach Stage 1 two different ways, either by elaborating one-to-one matching
first or counting first. Cardinal number structure is thus realized by two initially
independent means. At the end of Stage 1, the two forms of cardinal operations are in
place, and are favoured depending on the specific circumstances of the task. Between
Stage 1 and Stage 2, children develop a first form of the competence to compare sets.
When they have a precise representation of cardinality (e.g. through counting) at their
disposal, they base their numerical judgments on this information. The counted
conservation task is thus solved by children who at the same time fail the other
comparison tasks, where the judgment is demanded before a count has been obtained.
Children move then through to Stage 2 where they can perform different kinds of
matching between sets. They compare two and three sets and they compare the initial
and final configurations of a row which is spread out, concluding that the set has still
the same number of elements. The two strategies for recognizing equinumerosity,
counting and matching, become fully operational as a means to make judgments and to
assess their accuracy, one as test of the other. Children move from Stage 2 to Stage 3
where they discover the principle of conservation of equinumerosity: if two sets are

equinumerous, they remain so regardless of changes to their configuration as long as

no element is added or taken away from them.
The steps of the developmental process are summarized in the following figure 9.2:

Fig. 9.2: Developmental paths along the stage sequence (tasks characteristic of stages
are underlined and illustrated by arrays of circles: numerals appear when counting is
required, 'transf indicate that the row's length is transformed; arrows correspond to
transitions between stages).
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9.5 Modeling the process of development

The uniform developmental process of moving from space-based to number-based
representations of numerosity can be captured using Richards' transition model (see
Chapter 3). According to Richards' model, developmental transition occurs by
reasoning and in particular by overcoming contradiction. In the case of the transition
between successive stages of cardinal number competence, the contradiction is
installed between number-based and spatial-based estimations (assumed to be more

primitive measures of size than cardinal number) and is solved in favour of number,
that is gradually recognized as the most reliable measure of set's size. This process

yields the recognition of cardinality as the relevant dimension in the reproduction of
sets first, in the comparison of sets second, and the discovery of new properties of the
cardinal number of sets, like identity and equivalence conservations.
The transition is envisaged as proceeding uniformly through three cognitive states

which reflect the interpretation given to the cardinal representation produced by the
number-domain structure in the the task situation. Depending on the child's stage, this
representation can be envisaged as irrelevant, paradoxical or relevant. Consider the
case of a child who is confronted with a new problem which is beyond his competence
(e.g. a Stage 1 child whose number concept is inadequate to establish the
equinumerosity of two sets and fail the number comparison task with rows of same
number and different length). According to Richards' model, in the initial phase, the
child represents the equinumerosity (the cardinal representations of the two sets and of
the one-to-one correspondence holding between their elements produced by the
specialized number-domain structure), but does not recognize its relevance for the task
at hand. The child solves the task by means other than numerical strategies (e.g. spatial
estimations of the rows' length or density). In an intermediate phase, the child starts
envisaging the import of the cardinal representation of the sets for the solution of the
task. The result of an estimation based on number can be, however, in contradiction
with the result of the previous estimation by space, as in the comparison of rows
equivalent in number and different in length or different in number and equivalent in
length. This leads the child into a paradoxical state where he tries to combine the new
number-based estimation with the previous space-based estimation. The contradiction
is overcome by envisaging the new number-based estimation as a possible way of out
of the contradiction. The child project equinumerosity as a hypothesis, that is, as being
either true or false, and proceeds to test it (e.g. by counting, matching) or to evaluate it
by argument (e.g. the conservation responses which refer to the fact that nothing has
been added nor taken away, or that it is possible to go back to the initial configuration).
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A successful test yields the recognition of the relevance of the cardinal number
structure in a new situation and the discovery of new facts about number (e.g. that two
different looking sets can have the same number, or that two equinumerous sets,
transformed in distribution, remain equinumerous).

9.5.1 The transition from Stage 0 to Stage 1

The first developmental transition brings the child from the failure in the reproduction
task (e.g. all the objects are used or a reproduction of the length of the row instead of
its number is carried out), to correct reproductions. This transition follows two paths.
The individual decalage between counted reproduction and matched reproduction in
fact indicates that the children acquire the two forms of correspondence independently.
To model the failure characteristic of Stage 0 and the two paths followed to reach Stage
1,1 invoke two propositions which express the conditions under which the model set
and the reproduced set have the same number of objects. The discovery of the
relevance of these two propositions brings the children from Stage 0 to Stage 1 and
constitutes the basis of what will be the Stage 1 theory of cardinal number.
Consider the hidden reproduction task first. The model set (m) is placed behind a

screen and is identified by its cardinal value (Count (m)). The child's task is to create a
set (n) equinumerous with set (m). For set reproduction in condition hidden to be
correct, the following complex proposition47 must be true.
(1) [Given Count (m), Number (n) is the same as Number (m) iff Count (n) is the
same as Count (mj\\

Consider then the visible reproduction task. The model set (m) is placed before the
child. For a set reproduction condition visible to be correct, the following proposition

48
must be true .

(2) [Given m, Number (n) is the same as Number (m) iff the objects in n can be
matched one-one to the objects in m\\

47To avoid tedious repetitions in the presentation of the model, I do not
distinguish between propositions and propositional schemas. The model
refers from the start to the level of generalized representations of
knowledge. Each proposition is between square brackets and is numbered.
Each proposition also has an index (subscript) corresponding to the Stage
in which its truthness is discovered for a characteristic class of tasks and
situations.
48 Also proposition (1) would satisfy the conditions for an accurate
reproduction, but, as the results of Experiments 1 and 2 indicate, counting
is never used in this task.

254



The propositions (1) and (2) correspond to the application of the cardinal number
structure to set (m) (see figure 7.7, p.210), either in its physical or in its symbolic
(number word) realization, and express the internal representation of the cardinality of
(m) produced. The performance in the reproduction tasks at the different stages is
modeled in terms of the interpretation given to the two propositions (1) and (2).
In Stage 0, the failure in the two conditions of reproduction is represented by the

propositions (1) and (2) being entertained as irrelevant. Although the number-domain
structure yields a representation of the cardinality of the model set, the bearing of this
representation on the problem is not appreciated. The children thus do not have the
cognitive motivation to attempt to establish a one-to-one matching, nor to count out the
same number (m) of objects out of their bunch. The behaviours observed reflect the
non-numerical nature of the Stage 0 children's approach to the task and suggest that the
children do not grasp the task as bearing on a set's cardinality. The children
systematically use all the objects at their disposal; reproduce the length of the row (or
of the screen in the hidden reproduction task); or create a second row, with an arbitrary
number of elements. A more primitive quantitative comparison schema based on the
set's spatial extension is often favoured over one-to-one correspondence, especially in
the visible condition of reproduction.
Between Stage 0 and Stage 1, the child goes through an intermediate phase which is

brought about, according to the model, by the intervention of the semantic algorithm
which prunes the logical system in which the child is reasoning (i.e. the logic of first-
degree entailment) of the truth value for neither true nor false. The pruning of this
value leads to the reassignment of truth values to the propositions which are irrelevant:
the propositions (1), (2) are reinterpreted as both true andfalse within Kalman logic.
The corresponding cognitive state of paradox and ambivalence is reflected in the
child's attempts to establish a one-to-one correspondence and at the same time use up

all the objects. Some children thus create two or three rows of objects which are all in
one-to-one correspondence with the model row. These attempts can be interpreted as

indications of a search for a compromise between the conditionfor equinumerosity that
the child starts envisaging as relevant and the previous non-numerical solution
strategies.
The contradiction between the spatial and numerical solutions is solved by a second
intervention of the semantic algorithm, which prunes the value both-true-and-false
from the semantic environment in which the child is reasoning. The paradoxical
propositions (1), (2) are reinterpreted into relevant propositions which are either true
or false, and can function as hypotheses within a classical logic reasoning system. The
child has now the cognitive motivation to carry out the action of counting out a same
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number of objects or of establishing a one-to-one correspondence. This action
produces the accurate equinumerous set.
This transition does not proceed in parallel for the two conditions of accurate

reproduction (counting and matching). The individual decalage in the solution of the
two tasks indicate that some children first work out the relevance of proposition (2).
They reproduce correctly in the visible condition of the reproduction task in which the
model set is before the child. At the same time, they fail the hidden condition of the
reproduction task in which proposition (1) has to be invoked. Since proposition (1) is
irrelevant, the children cannot make any use of the information that the model set has
'n' element, and produce non-numerical reproductions. Some children follow the
opposite pattern. They first work out the relevance of proposition (1). They can make
use of the information that the model set has 'n' elements to carry out the reproduction.
When instead in the visible reproduction task this information is not given, the child
lacks a pointer to number and provides non-numerical reproduction.
The same basic conceptual relation, i.e. one-to-one correspondence applied to the

elements ofone set to reproduce an exact copy ofit, is expressed by two means: spatial
matching and counting. These two basic strategies which guarantee accurate

reproduction of sets come together at Stage 1. The propositions (1) and (2) are

simultaneously relevant and define the Stage 1 number theory:

(1) [Given Count (m), Number (n) is the same as Number (m) iff Count (n) is the
same as Count (m)\ \

(2) [Given m, Number (n) is the same as Number (m) iff the objects in n can be
matched one-one to the objects in m] \

9.5.2 The transition from Stage 1 to Stage 2

The transition from Stage 1 to Stage 2 corresponds to the extension of the Stage 1
theory to situations of set comparisons. The two propositions (1) and (2) are in fact
relevant only with respect to individual sets. When the Stage 1 child is faced with two
rows which he has to judge in numerosity, his number concept is not developed
enough to express the relationship between sets. This means that although the number
structure yields a representation of the sets' cardinality and of the correspondence
holding between their elements, this representation is initially interpreted as irrelevant.
The situation is represented in terms of a new complex proposition that expresses the
condition to recognize equinumerosity between two sets using either matching or

counting (see figure 7.8, p.211).

256



(3) [Number (m) is the same as Number (n) iffthe objects in m can be matched one-
one to the objects in n or Count (m) is the same as Count (n)]2

Since this proposition is irrelevant in Stage 1, the child relies on the primitive schema
of estimation of quantity on spatial extension and judges as larger the set which is
longer (or sometimes the set which is more crowded). On this basis, two rows which
have same spatial extent are taken to be equinumerous, both when they have same

number, and when their difference (e.g. one) is too small to create a perceptual
difference in spatial size (e.g. length, density). Of two rows which differ in length, the
longer row is generally taken to be the more numerous, regardless of the rows'
cardinal numbers.

The transition from Stage 1 to Stage 2 proceeds through an intermediate stage where
the reduction of the semantic environment in which the child reasons (i.e. the logic of
first-degree entailment) yields to the reinterpretation of the proposition entertained as

neither-true-nor-false as both-true-and-false. The paradoxical state, in which the
proposition (3) is seen as at the same time true and false, explains the solutions which
suggest an underlying conflict between the result of counting and the estimation of size
on the basis of length. Some children in fact try to combine the two sources of
information about size and attempt to achieve simultaneous equivalence of spatial size
and equinumerosity. In the case of two rows of same number and different length, as
we have seen, the children apply first the spatial criterion to conclude that the two rows
have different number. They add some objects to cancel the spatial difference, count
the two collections, obtain a different cardinal number, add the number of objects
corresponding to the difference. This addition introduces a new length difference, a
new conflict and a new addition to match the end points, and so on. They go on

switching from one criterion to the other until all the objects are used.
Another illustration of the kinds of contradictions that the children experience is

provided by those children who formulate a numerosity judgment using spatial size as

the criterion and then bend their counting to fit the initial judgment As I have remarked
in the presentation of qualitative results in Experiments 2 and 3, the children seem to be
aware of the trick they employ to make the count information fit the space-based
judgment. The contradiction between the initial judgment and the result of the count is
anticipated and solved by modifying the count.
The transition algorithm intervenes again to reduce the semantic environment and to
transform the proposition (3) which was entertained as both true and false into
relevant, that is either true or false. The child can now project the hypotheses that if the
two sets are equinumerous, their counts are the same or alternatively that their elements
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can be matched. The hypotheses are tested either by counting the two sets or by
matching their elements, or by carrying out both tests.
When the true proposition (3) is applied to the identity conservation problem, the

child matches set (m) with the post-transformation set (m') to conclude that:
(4) [Ifm is spatially transformed into m\ then Number (m) is the same as Number
(m')]2

The conclusion of equinumerosity can be reached empirically (when set (m) had been
counted, set (m') is also counted and their cardinal values are the same; by matching a

memory of set (m) with set (m') before the child), or by inference (the arguments that
nothing has been added to nor taken away from set (m), that set (m') is longer, but its
elements are more spaced than in the shorter set (m), and that it is possible to go back
to the initial configuration). Both conceptual and empirical solutions rely on the ability
to match the two sets (m) and (m') and to work out their cardinal properties
(conservation after spatial transformations) and relations (equinumerosity).
The decalage between counted conservation and the other number comparison tasks
of Stage 2 is explained by the fact that half of the right-hand side of the biconditional
(3) is acquired first in the direction from equal counts to same number. The substage
2a is represented by the following relevant proposition:

(5) [If Count (m) is the same as Count (n), then Number (m) is the same as
Number (nj\2a

In the subsequent Stage 2, the proposition (5) is extended and included within the
more general proposition (3). The Stage 2 number theory corresponds to the Stage 1
number theory plus the propositions (3), (4) and (5), to give the following
propositional network:
(1) [Given Count (m), Number (n) is the same as Number (m) iff Count (n) is the
same as Count (m)]i
(2) [Given m, Number (n) is the same as Number (m) iff the objects in n can be
matched one-one to the objects in m\\

(5) [IfCount (m) is the same as Count (n), then Number (m) is the same as Number
(n)ha.
(4) [Ifm is spatially transformed into m\ then Number (m) is the same as Number
(mj]2
(3) [Number (m) is the same as Number (n) iffthe objects in m can be matched one-
one to the objects in n or Count (m) is the same as Count (n)]2
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9.5.3 The transition from Stage 2 to Stage 3

The Stage 2 number theory is still not sufficiently articulate and general to express the
conditions for the permanence of equinumerosity in the standard conservation task.
Stage 2 children in fact typically fail the conservation task This situation is modeled in
terms of the same two propositions referring to the context set by the number
conservation task (see the index 3, which refers to the task characteristic of Stage 3,
i.e. standard conservation) and to the conditions of equinumerosity of the set m and the
set n', i.e. the row n modified by the spatial transformation. At Stage 2, the
proposition (6) is irrelevant.
(6) [Given two equinumerous sets (m) and (n), ifm is spatially transformed into m\
Number (m') is the same as Number (n)

The irrelevance of the cardinal representation produced by the number structure when
the tasks demands that two pairs of sets (m, n and m',n) be matched is reflected in the
abrupt change from a judgment of equinumerosity to a spatially based judgment of
difference once a spatial transformation on one of the rows is carried out. Whereas the
Stage 2 theory led to accurate set comparisons, the same theory is in trouble when
faced with judging the two sets again, after a spatial transformation has been
performed and has introduced a difference in spatial size.
Elsewhere I have argued that the decalage between the solution of the set comparison
tasks and the standard conservation task indicates that the latter task introduces

completely new requirements, i.e. the matching of the initial pair of sets with the post-
transformation pair (see figure 7.9, p.213). Since this new context for recognizing
equinumerosity is outside the domain of the Stage 2 number concept, the child makes
appeal again to the primitive schemas for estimation of quantity. He abandons the
initial equinumerosity for a judgment of difference, where the longer row is taken to be
the more numerous.

The reinterpretation of proposition (6) into both-true-and-false explains the kind of
ambivalent responses that children give in a period which is generally considered
intermediate between non-conservation and conservation. The children oscillate

between a judgment of equinumerosity and a judgment of difference both in the case of
a unique transformation of a pair of rows (e.g. firstly the child answers that the two
rows are equinumerous, and asked to justify that, replies that in fact they are different)
and in the case of different trials (e.g. the child confirms equinumerosity after a
lengthening transformation and abandons equinumerosity after a shortening
transformation).
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Finally the proposition (6) becomes relevant and effective reasoning can be performed
on it. The child is motivated to determine whether the propositions are true or false and
can either carry out an empirical test of equinumerosity (i.e. count the two post-
transformation rows or match them), or derive the equinumerosity from the premises
that a) nothing has been added nor taken away, b) the difference bears only on length
and c) it is possible to go back to the starting configuration.
The Stage 2 number concept is enriched by the inclusion of the proposition (6) and by
all the new relations between propositions that emerge, to give the number theory of
Stage 2:
(1) [Given Count (m), Number (n) is the same as Number (m) iff Count (n) is the
same as Count (m)\i

(2) [Given m, Number (n) is the same as Number (m) iff the objects in n can be
matched one-one to the objects in rri\\
(5) [IfCount (m) is the same as Count (n), then Number (m) is the same as Number
(n)ha.

(4) [Ifm is spatially transformed into mthen Number (m) is the same as Number
(mjh
(3) [Number (m) is the same as Number (n) iffthe objects in m can be matched one-
one to the objects in n or Count (m) is the same as Count (n)]2
(6) [Given two equinumerous sets (m) and (n), ifm is spatially transformed into m\
Number (mj is the same as Number (n)

9.6 Evaluation of the model

As I argued at the end of my presentation of Richards' model, this model offers a

general purpose structural description of stages and transition in the development of
conceptual domains. The two main features of the description of cardinal number
development that it provides are the following:
1. The structure underlying each competence level is represented explicitly as a

network of propositions (e.g. Stage 2 number theory). The relation of inclusion
between any two successive stage structures is captured by the fact that the
prepositional network of the lower stage is part of the prepositional network of the
following stage-structure, e.g. the Stage 2 structure is part of the Stage 3 structure. At
the same time, the reorganization and generalization characteristic of the new stage is
captured by the fact that the new stage structure contains new propositions which come
to interact with the prepositional network of the previous stage to give a new network
of interconnections between propositions and new meanings.
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2 - the transition from one stage to the next is represented in terms of the semantic
algorithm that strengthens the logical framework in which the child reasons and brings
about a reinterpretation of information about cardinality. The shift from space-based to
number-based estimations and judgments of numerosity is explained as a fixed
sequence of interpretations of the import of cardinal representations to a class of
situations.

Although both the formalism for the stage sequence and the transition mechanism fit
well the development of cardinal number representations, the model looses some of its
explanatory power with respect to its previous application to the development of the
object concept. In the case of the object concept in fact, beside defining the truth values
of propositions that represent the child's understanding of the task at different stages, it
was possible to model inferences which were characteristic of the different logical
systems in which these propositions were embedded.
Consider again Substage 4 of the genesis of the object concept, which corresponds to
the task of retrieving the object from under one of two covers A and B: cover A where
the object had been found previously and cover B where the experiment has put it
before the infant's eyes. Richards' model explains in terms of the weak logic in which
the child is reasoning the fact that the Substage 4 infant typically looks under cover A,
and not finding the object, still does not go and look under B. In the logic of first-
degree entailment in fact, the disjunctive syllogism which would take the child from the
negation of the first of two possible locations A and B (e.g. the infant does not find the
object under A where he expected to find it) to looking in the second location (e.g.
under B) is not a valid schema of inference. In the case of the analysis of cardinal
number development that I have provided, no comparable situations were identified.
Of the principle that children of different stages reason within different logical systems,
only the truth values associated to the different systems have been used (e.g.
propositions which are irrelevant, paradoxical) while none of their characteristic
inferences have been identified.

From the application to cardinal number problems, it appears that the domain for
which the model has some explanatory power has to be restricted to situations where
the child's hypotheses and the verifications or falsifications of the hypotheses are

distinct, that is to situations in which the child is required to make predictions and in
which we can observe his reactions when the hypotheses are falsified by the
circumstances (e.g. the object is not found under A). Since none of the experimental
number situations investigated have this characteristic (e.g. they do not provide a direct
falsification for inaccurate reproductions nor comparisons), the application of the
model to the development of cardinal number remains somewhat trivial. Nevertheless
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the model contributes to make the account of the nature of the concept (i.e. the objects
to which the specialized cardinal number structure are applied) and of the
developmental process (i.e. the generalization of the number structure to increasingly
more complex objects) more explicit.

9.7 Appraisal and new directions of research

Although the account of the nature of the number concept at the three different stages
remains still very tentative and all its consequences have not been fully explored, the
basic objective of this thesis has been satisfied. We can now go back to our 5-year-old
child of the introduction and can provide a specific characterization of his
understanding of conservation in the accidental and in the counted conservation tasks
and his simultaneous failure to conserve in the standard number conservation task.

The 5-year-old child is operating with a concept of number which can express and
recognize the equinumerosity (or the numerical difference) between two sets of
objects. This concept on the other hand, cannot express the numerical relations
between sets of sets and cannot recognize the equinumerosity between two pairs of
sets, an operation which is required in the standard conservation task.
Furthermore, the characterization of the nature of the number concept at the different
stages has permitted us to devise new experimental situations, to ask new questions
about existing data, to provide a uniform account for the new experimental results and
to offer a reinterpretation of some of the most classic puzzles in developmental studies,
like the early conservations.
The main interest of the account of number development proposed however emerges
in the new questions it raises and in the new research it motivates. Firstly, the
sequence of three stages of number competence can be extended both in the direction
of earlier competence levels and of subsequent levels of competence. This question can
be approached experimentally by looking for stages which systematically precede
Stage 1 and by defining their characteristic competence. In the opposite direction, we
can look for more advanced stages of cardinal number representation beyond Stage 3
of number conservation. These studies involve the creation of new tasks, i.e. tasks that
are accessible to Stage 0 children and tasks which are critical for Stage 3 children and
the exam of the developmental orders in the solution of these tasks, an analysis that can
be carried out using the hierarchical analysis method. Beside extending the analysis of
the development of the cardinal representations of sets of objects, new studies can be
undertaken to investigate the relationship between the three stages of cardinal
competence and other kinds of knowledge, such as a) the development of arithmetical
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knowledge, in the context of practical tasks involving exchanges of objects, additions,
subtractions, etc.; b) the development of measure concepts, in the context of practical
tasks involving the measure and comparison of length, weight and surface. The
relationship between the genesis of cardinal representations and of arithmetics remains
within the domain of number; whereas the study of the relationship between the
development of cardinal number and of measure raises fundamental questions about
the interactions between different domains of knowledge (e.g. in this case, knowledge
of numbers and knowledge of the domain to be measured).
The hierarchical method can serve to examine the previous questions experimentally.
Firstly, the development of arithmetical and measure competence can be investigated
separately on the basis of the response patterns to a battery of tasks. Secondly, the
stages identified in the genesis of the two concepts can be matched to the stages
described in the case of number. The analysis of the response patterns across tasks
dealing with cardinal number and arithmetic can provide evidence of the relationship
between these two types of knowledge in development. Similarly, the response

patterns across tasks on cardinal number and measure can provide information about
the relationships between these two domains in the course of their development.
I take the more properly cognitive science objective of this dissertation to be achieving
greater explicitness in characterizing the developmental processes invoked. I have
expressed my reservations about the explanatory value of the application of Richards'
model to an explicit account of cardinal number development. Alternative ways of
modeling the developmental process have to be sought which can allow a much richer
characterization of the stage structures and of their inferences, while preserving the
original intuition of Richards' model that developmental change is a semantic process
of working out relevant applications for representations to overcome contradictions.
The limitations of Richards' model should not preclude the possibility of coordinating
a more complex and articulate characterization of the content of stage competence with
a formal characterization of their structure and of the transition process. The Artificial
Intelligence literature provides some indications of how the representation of complex
knowledge structures can be achieved (see Hayes 1985a, b) and of how revision and
reorganization of knowledge structures can be modeled (see Martins & Shapiro
198449). The semantic mechanism of Richards' may thus be embedded within more

49The SWM System of Martins & Shapiro is based, as Richards' model, on
Relevance Logic. The basic feature of the SWM System is that it keeps track
of the propositions which are used to derive any given proposition. When
a contradiction is detected, the system can thus recover and identify
exactly the premisses from which the contradictory proposition was
derived.
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detailed representations of stage knowledge and may operate upon parts of the stage
structures. A formal system which would make it possible to represent the richness
and complexity of the knowledge structure underlying a stage and the transition
process which operates on it to bring about the structure of the following stage would
in any case be of an extreme complexity and of difficult realization at present.
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Appendix of Chapter 6: Conservation before age 5

In this appendix, I briefly present two experimental paradigms used to assess

young children's (3- and 4-year-old) understanding of number conservation:
Gelman's magic paradigm and Mehler & Bever's conservation of small collections.

6.1 Gelman's magic experiment

Gelman (1972b) devises a new procedure to assess conservation of number which
involves two phases. First the child is trained to make a number judgment between
two arrays of two or three items. The child is shown two sets of objects (mice) on
separate plates placed side by side and his/her task is to find the 'winner'. The plates
are covered, shuffled, uncovered over a few trials so that the child comes to expect
that each tray will have a specific number of mice, e.g. 'The winner has three; the
looser has two'. Then the experimenter introduces unexpected modifications, such as

a rearrangement of the display or the removal of items, and assesses how the child
treats the surreptitious subtractions or displacements. Three measures are taken: 1)
the confirmation or change of judgment, 2) the differential reactions (on a 3-point
scale: 0 = no discernible surprise; 1 = minimal surprise; 2 = moderate to extreme

surprise), 3) the comments to the change.
The finding that children change their judgment and express surprise equally after
the rearrangement and the removal of items (and change their judgment) would
confirm that young children are nonconservers and can not distinguish number
relevant from number irrelevant transformations. If instead children change their
judgment only after the removal of items, although they express surprise after both
transformation, this would indicate that children take note of the transformations but
can discriminate between number relevant and number irrelevant operations on sets
and can conceive of number as a dimension which is independent from the spatial
dimensions of the set.

Gelman examines 96 children between 3,6 and 5,10 years of age and observes that
the majority of children conform to the latter pattern. Their identification of the
winner array does not change after the displacement although they appear to have
recognized that the array has been changed in shape (e.g. 'Still three just moved
them'). Instead, the subtraction operation leads to surprise as well as a change of
judgment (e.g. 'Not four, only one-two-three; took one'). This experiment has been
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replicated successfully by Gelman (1972b) and by Silverman, Rose & Phillis (1979)
also when the arrays are presented simultaneously and when the displacement is
performed before the child, rather than surreptitiously.
Gelman concludes that, from age 3, children appreciate that a small number of items
in an array remains invariant through the operations of displacement but not addition
and subtraction. They are capable of conserving number in the magic task; a

conservation which is systematically supported by the use counting to evaluate the
modification and figure out the answers. According to Gelman, these same

preschoolers fail the standard number conservation task because they lack an explicit
understanding of one-to-one correspondence, which remains inaccessible under most
circumstances until age 6 and 7 years.

6.2 Mehler & Bever's conservation of small collections

Mehler & Bever's studies (1967, with Epstein, 1968) examine the implicit
assumption that, if 4 year-olds do not conserve number, than also children younger
than 4 should not conserve number. Mehler & Bever argue that young children may
in fact possess an innate understanding of number that simply disappears at around
age 4 to reappear at age 6 years, as reported by Piaget. This alternative hypothesis is
directly tested by a study of number conservation among 2 to 4 year olds with a task
adapted to the younger population in the number of items used. Four items are used
instead of six or seven. Mehler, Bever & Epstein (1968) report 80% conservation
responses at age 2, 50% at age 3 and 64% at 4, a pattern which conforms to the
expected U-shaped distribution.
The subsequent replication studies (Beilin 1968, Piaget 1968, Rothenberg &

Courtney 1968, Higgins-Trenk & Looft 1971, LaPointe & O'Donnell 1974,
Calhoun 1971 and Hunt 1975), however, which control for factors such as the order
in which the alternatives "same number" and "different number" are presented in the
question and the role of the experimenter's expectations, do not confirm Mehler,
Bever & Epstein's results. It was also remarked that the task, as it was presented,
did not bear directly on the conservation of the equinumerosity as children were not
asked to judge whether the two sets had initially the same number of elements.
Moreover, the child was not asked to give justifications and was considered to be
conserving only on the basis of "same" answers. Finally, Mehler & Bever's
observation that children seem to be responding that the modified row is still the
same row, and not that the two rows have the same number, was confirmed.
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The results of the replications, hence, strongly undermine the original conclusion of
Mehler & Bever that children younger than age 4 can conserve, an ability that is lost,
to then reappear at age 6. Nevertheless, the series of studies on preschoolers'
number competence did reveal some understanding of elementary numerical
operations, such as the effect of adding or subtracting elements on sets' numbers.

268



Appendix of Chapter 7

7.1 Protocol form for Experiment 1

Class:

Name:

Age:

Reproduction visible
Here I have a line (or row) of 'objects', I give you these. I would like you to take the
same number of 'objects' as there are here (or as I have) and make a line (or row) with
them.

Objects used and number:
Actions

The objects of the model set are counted: YES NO
The objects are counted out of the box: YES NO
The objects are taken out of the box:

- one at a time

- in handfuls

- in one bunch

The objects are put on the table:
- each one in front of one of the models' objects Near-Match Look-Match
- matching end-points
- global reproduction of shape
- randomly all
- bunch readjusted to match model Global One-to-one
Result of reproduction
- Correct

- Incorrect More Less How many?
Reason of failure

- unquantified bunch
- global copy of shape
- inaccurate matching
- inaccurate counting
- other

269



Comparison
Is there and there the same number of objects, or does one of the rows have more
objects?
Answer: SAME DIFFERENT

Correct Wrong
If Different:

Where is more and how many more?
- Count

- Indication of exceeding elements

What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

Conservation 1

Look what I do. (specify the type of transformation)
Is the number of objects the same here and there, or is the number different now?

Same Different

Why is it, or why do you think so?
If different, which has more?

Conservation 2

Look what I do. Is the number of objects the same here and there, or is the number
different now?

Same Different

Why is it, or why do you think so?
If different, which has more?

Reproduction hidden seen

Could you count this row of 'objects'?
Count: Correct Wrong (suggestion)

Now I cover it up, so that you cannot see them. I would like you to take the same

number of 'objects' as there are here and make a line with them here.
Objects and number:
Actions:
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- unqualified bunch
- count one at a time out of the box
- in handfuls

- other

Result of reproduction
- Correct
- Incorrect

Reason of failure
- unquantified bunch
- all the objects are used
- inaccurate counting
- other

Comparison
The row is uncovered

Is there and there the same number of objects, or does one of the rows have more
objects?
Answer: SAME DIFFERENT

Correct Wrong
IfDifferent:

Where is more and how many more?
- Count

- Indication of exceeding elements
If Same:

How do you know that?
What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

Conservation (same as above)

Reproduction hidden unseen

I'm making a line with 'n' objects here. I would like you take the same number of
'objects' from the box and make a row with them on this side.
(Actions, results and checks as in reproduction condition hidden seen)
Comparison (same as above)
Conservation (same as above)

all the objects

More Less How many?
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7.2 Some a posteriori comparisons

In this appendix, I present the contingency tables of the pairs of tasks for which
Experiment 1 did not formulate any specific hypothesis:
a) visible reproduction and hidden seen reproduction;
b) visible reproduction and hidden unseen reproduction;
c) hidden seen reproduction and hidden unseen reproduction;
d) visible reproduction and comparison after hidden seen reproduction;
e) visible reproduction and comparison after hidden unseen reproduction;
f) comparison after hidden seen reproduction and comparison after hidden unseen

reproduction;
For each pair of tasks, the three developmental models of concurrency and collective
decalage in the two directions were calculated and compared. This analysis provided
some indications as to the order in which these tasks are acquired. The contingency
tables and the results of the statistical tests are presented below.

7.2.1 Visible reproduction and hidden reproduction condition seen and
unseen

v Repro
\ n seen
x S

Repro \
F \^f

ReproX

pro
uns

s F

Visible

s 42 3
Visible

s 39 6

F 8 7 F 10 5

a b

Table A.7.1: Contingency table a) for visible and hidden seen reproduction and b) for
visible and hidden unseen reproduction

Consider distribution a) first. The three Dels of the models of concurrency (Dele) and
collective decalage (Deldl and Deld2) are all significant:

Dele = .45 (z = 3.25, p = .0006)
Deldl = .6 (z = 3.26, p = .0006)
Deld2 = .36 (z = 2.69, p = .0035)
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The comparison indicate that the model of concurrency is a significantly better
predictor of results than decalage from reproduction visible to reproduction hidden
seen (z = 2.02, p = 0.02), but is not significantly different from decalage from
reproduction hidden seen to reproduction visible (z = 1.26, p < 0.10). Since the two
collective decalages are not themselves significantly different from each other (z =
1.48, p = .069), none of the models provides a better fit to the distribution.
Nevertheless, as they are all significant, I can conclude that a weak form of
concurrency exists between the solution of visible and hidden seen reproduction.
Consider now distribution b). None of the three Dels is significant:
Dele = .22 (z = 1.5, p = .06)
Deldl = .27 (z = 1.5, p = .06)
Deld2 = .18 (z = 1.4, p = .08)

Since the models are not significantly different form each other (z ranges between .76
and 1.01), individual decalage appears to hold between the solution of visible and
hidden unseen reproduction. This result may be due also to a sampling problem as the
majority of children (65%) solve both tasks.

7.2.2 Seen and unseen hidden reproductions

Repro
n Seen

Repro
h uns

s 46 3

4 7

Table A.7.2: Contingency table for hidden seen and hidden unseen reproduction

The three Dels of the models of concurrency (Dele) and collective decalage (Deldl and
Deld2) are all significant:

Dele = .75 (z = 8.8, p < .00003)
Deldl = .68 (z = 5.5, p < .00003)
Deld2 = .81 (z = 9.05, p < .00003)

They are not, however, significantly different from each other (z ranges from .87 to
1.1). I thus conclude that a weak form of concurrency exists between the solution of
hidden reproduction in the conditions seen and unseen .
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7.2.3 Visible reproduction and Comparison after hidden seen and
unseen reproduction

Comp
h uns

Comp
h seen

Repro
Vis

S 34 11

VIS

s 36 9

F 5 10 F 7 8

Table A.7.3: Contingency table for visible reproduction and a) comparison after
hidden unseen reproduction, b) and hidden seen reproduction

Consider table a) first.
Dele = .37 (z = 2.9, p = .0018)
Deldl = -.01 (z = .8, p = .2)
Deld2 = .49 (z = 3.3, p = .0004)

The models of concurrency and of decalage from reproduction to comparison are

significant, but not significantly different from each other. Since they both yield better
predictions than the reverse decalage model, I conclude that the two tasks are solved
with concurrency together with decalage from reproduction to comparison. The same

conclusion applies to Table A.7.3 b (the Dels being: Dele = .65 (z = 2.6, p = .004),
Deldl = -.25 (z = .4, p = .3), Deld2 = .51 (z = 2.5, p = .006)

7.2.4 Comparison after hidden seen and after hidden unseen

reproduction
Comp
\ h uns

CompVy S F
h seen

s

F

39 4

0 17

Table A.7.4: Contingency table for comparison after hidden seen reproduction and
comparison after hidden unseen reproduction

The three Dels of the models of concurrency (Dele) and collective decalage (Deldl and
Deld2) are all significant:
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Dele = .85 (z = 8.8, p < .00003)
Deldi = .73 (z = 5.5, p < .00003)
Deld2 = 1 (z = e, p < .00000)

The Del for decalage from comparison after hidden seen reproduction to comparison
after after hidden unseen reproduction is a significantly better predictor of results than
concurrency (z = 2.07, p < 0.019) or the reverse decalage (z = 2.4, p < 0.008).
Notice however, that the great majority of responses (93%) correspond to success in
both tasks or failure in both tasks. This suggests that concurrency does also provide a

good fit to the data, accounting for 93% of the responses.
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Appendix 7.3 Protocol form for Experiment 2

Class:

Name:

Age:

Reproduction visible
Here I have a line (or row) of 'objects', I give you these. I would like you to take the
same number of 'objects' as there are here (or as I have) and make a line (or row) with
them.

Number:

Actions

Model set counted:

Objects counted out of the box:
Near-Match

Look-Match

Bunch

Bunch readjusted to match model
All

Result of reproduction
- Correct

- Incorrect

Reason of failure

Inaccurate counting
Inaccurate matching
Matching end-points
Global reproduction of shape
Unquantified all

Comparison
Is there and there the same number of objects, or does one of the rows have more
objects?
Answer: SAME DIFFERENT

Correct Wrong

YES NO

YES NO

Global One-to-one

More Less How many?
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IfDifferent:

Where is more and how many more?
- Count

- Indication of exceeding elements

What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

- nothing

Reproduction hidden
I'm making a line with 'n' objects here. I would like you take the same number of
'objects' from the box and make a row with them on this side.
Number:

Actions:

Objects counted out of the box: YES NO
If No:

Bunch

All

If Yes:

Accurate Inaccurate Counting
Result of reproduction
- Correct

- Incorrect More Less How many?
Reason of failure

- unquantified bunch
- all the objects are used
- inaccurate counting
- other

Comparison
The row is uncovered

Is there and there the same number of objects, or does one of the rows have more
objects?
Answer: SAME DIFFERENT

Correct Wrong
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IfDifferent:

Where is more and how many more?
- Count

- Indication of exceeding elements
- Suggested Count
If Same:

How do you know that?

What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

Direct comparison
Here I have made two lines of sweets. Are there the same number of sweets as there

(pointing to the other row)? or is the number different?"

Answer: SAME DIFFERENT

IfDifferent:

Where is more and how many more?
- Count

- Indication of exceeding elements
Why don't you try counting the rows. Do you think it's a good way to see if they are
the same or a different number?

What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

If Same:

How do you know that?

But you see, they look the same.
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Appendix of Chapter 8 Experiment 3

8.1 The corollary hypothesis of Experiment 3: there is collective
decalage from identity, counted conservation, three-set comparison
and standard number conservation

In Appendix 8.1, I present the results of the comparison of the children's
performance in the tasks of identity conservation, counted conservation and three-
set comparison, on the one hand, and standard number conservation, on the other
hand. The corollary hypothesis of hypothesis 2 that a collective decalage exists
from the solution of the Stage 2 tasks (identity conservation, counted conservation
and three-set comparison) to the solution of the standard Piagetian conservation task
is tested. Correct performance on the standard conservation task is thus expected to
be more strongly associated with correct performance on the Stage 2 tasks than with
incorrect performance on these tasks. The hypothesis is schematically presented in
figure 8.A.1:

Count Cons Ident Cons Three-set

a b c

Fig. 8.A.1: Models of collective decalage between responses to the standard
conservation task and a) counted conservation task, b) identity conservation task, c)
three-set comparison task.
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The results are summarized in the following contingency table 8.A.1 (the white cell
is the cell predicted to be empty):

Table 8.A.1: Contingency table for standard conservation and a) counted
conservation, b) identity conservation, c) three-set comparison.

In all three tables, collective decalage predicts the significantly non-chance
contingencies in favour of:
a) counted conservation (Del = 1, z = e);

b) identity conservation (Del = .93, z = 14.2, p < .00003);
c) three-set comparison (Del = .93, z = 14.2, p < .00003);
it is also a significantly better predictor than concurrency:
a) z = 4.8, p < .00003
b) z = 2.1, p = .018
c) z = 1.8, p = .036
and is a significantly better predictor than the reverse decalage:
a) z = 6.8, p < .00003
b) z = 2.4, p = .008
c) z = 2.1, p = .018
These results corroborate the hypothesis that counted conservation, identity
conservation and three-set comparison are acquired before standard conservation.
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Appendix 8.2 Protocol form for Experiment 3

Class:
Name:
Age:

Reproduction hidden
I'm making a line with 'n' objects here. I would like you take the same number of
'objects' from the box and make a row with them on this side.
Number:

Actions:

Objects counted out of the box: YES NO
If No:

Bunch

All

If Yes:

Accurate Inaccurate Counting
Result of reproduction
- Correct

- Incorrect More Less How many?
Reason of failure

- unquantified bunch
- all the objects are used
- inaccurate counting
- other

Comparison
The row is uncovered

Is there and there the same number of objects, or does one of the rows have more
objects?
Answer: SAME DIFFERENT

Correct Wrong
IfDifferent:

Where is more and how many more?
- Count

- Indication of exceeding elements
- Suggested Count
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If Same:

How do you know that?

What can you do to have the same number here and there?
- change in the arrangement
- addition or subtraction

Reproduction visible
Here I have a line (or row) of 'objects', I give you these. I would like you to take the
same number of 'objects' as there are here (or as I have) and make a line (or row) with
them.

Number:

Actions

Model set counted:

Objects counted out of the box:
All Near-Match Look-Match

Result of reproduction
- Correct

- Incorrect More Less How many?

Conservation

Look what I do.

Is the number of objects the same here and there, or is the number different now?
Same Different

Why is it, or why do you think so?
If different, which has more?
Can you make them the same?
Addition Subtraction Length Nothing

Three-set Comparison
I would like you to tell me whether there is the same number of clowns here, here and
here, or whether the number is different? You can either count them or move them
around if you wish.

Same Different

- Count

YES NO

YES NO

Bunch Bunch readjusted (Global - 1-to-l)
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- Length estimation
- Other

If Different: Which row has more objects?
How many more?

If no answer, Suggestion: Do you know of a way to check that this line has more

clowns? Would counting help? Would moving the faces help?
If Same: How do you know that?
Suggestion: Do you know of a way to check that they have the same number of
clowns?

Counted Conservation

Pre-transformation: Do these two rows have the same number of rounds, or does one
of them have more rounds?

Post-transformation:

I would like you to count this line. Could you also count this other line?
Count: Correct Wrong Recount:
How many rounds are there? and how many rounds are there.
Number: Correct Wrong
Is the number of objects the same here and there, or is the number different now?

Same Different

Why is it, or why do you think so?
If different, which has more?
Can you make them the same?
Addition Subtraction Length Nothing

Identity Conservation
You see these frogs, they are going for a walk all together.
Transformation

Some of the frogs walk much faster than the other frogs and are farther ahead. Some
of the frogs are slow and stay a little behind. Do you think that there is still the same

number of frogs in this long line as it was at the start of the walk?
Same Different

If Same: Why is it? How do you know?

IfDifferent: Is it more or is it less? Why is it?
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