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Introduction

1 Introduction

1.1 Planned scope of thesis - neuroimaging dependence
Drugs of abuse alter the neurochemistry of the human brain. This is axiomatic, for if

they did not, they would be inactive and hence not abused. My interest in the study

of the neurobiology of dependence has centred on the use of the techniques of

functional neuroimaging to examine the responses and changes of the living human

brain to the processes of substance misuse. As one would expect, this thesis

therefore follows that path. After a brief description of the social history of

substance misuse, it is intended to begin with an explanation of the variety of

techniques available today. This will not be an exhaustive, nor complete, list but will

restrict itself to those techniques that feature in the rest of the thesis. A complete list

and descriptions of the relative merits of them all would be sufficient to fill an entire

thesis alone.

Following on from the description of neuroimaging techniques, this thesis will

discuss the previous use of these to the field of opioid addiction and dependence. As

the final chapter will be largely discussing the common findings and changes in

neurobiology found across the spectrum of drugs of abuse, this review will not be

confined solely to the study of opioid dependence; however, all the research work

carried out for this thesis focused entirely on this disorder.

The middle section of this thesis will focus on the empirical research carried out

using Positron Emission Tomography (PET) techniques to examine the neurobiology

1
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of opioid dependence. There are two separate studies contained within this section;

each beginning with a detailed discussion of the scanning and analysis techniques

developed and used, and each using a different sub-type of PET imaging to examine

different components of the disorder.

The final chapter will attempt to draw together the results from the review of the

published literature with the experimental results. The aim is to show the increasing

parallels being found from different methodologies examining different drugs of

abuse and hence provide evidence for core underlying neurobiological changes that

are implicated in the central concept of addiction.

1.2 A brief history of substance misuse

Man has been using and abusing psychoactive substances since the dawn of time.

The commonality of the search for psychoactive substances across different

continents and cultures suggests a form of social convergent evolution. Across all

cultures and substances, there is also a pattern of social constraint defining

acceptable manner of use. In addition to opium, khat, peyote, coca leaves and paste,

and alcohol all have accepted patterns of use for example. However, some users

stray outside of these social boundaries and are labelled as pathological.

Intriguingly, for many of these substances the psychological state of dependence is

common across the different substances.

The opium poppy (Papaver somniferum) has been domesticated for at least 8,000

years. The Sumerian language from Mesopotamia in 3,000 BC contains an ideogram



'the plant of joy' which denotes the opium poppy. Its medicinal use has been

recorded for almost as long. Over 700 different medications containing poppy juice

extract were found recorded on a medical papyrus dating from Thebes in 1551 BC.

More modern preparations like opium tincture (laudanum), and possibly even

morphine, date from the mid 17lh Century. Descriptions of physical dependence on

opiates also begin to appear in the medical literature from this time.

'So necessary an instrument is opium in the hand of a skillful
man, that medicine would be a cripple without it; and whosoever
understands it well, will do more with it alone than he could well
hope to do with any single medicine. To know it only as a means
of procuring sleep, or of allaying pain, or of checking diarrhoea, is
to know it only by halves. Like a Delphic sword, it can be used
for many purposes besides. Of cordials, it is the best that has
hitherto been discovered in nature. I had nearly said it was the
only one.'

Thomas Sydenham (quoted in Davenport-Hines, 2004, p.13)

Morphine was first recorded under that name from the early years of the 19th Century.

First reliably synthesised in Paris, it was marketed as a powerful analgesic and cure

for opium dependence. The use of injected opiates followed with the invention of

the hypodermic some half-century later.

Edinburgh has a long and illustrious history of involvement in the opiate story. One

of the largest early opium dealers was a graduate of Edinburgh medical school.

William Jardine and his company smuggled Indian opium to China amassing great

profits in the first half of the 19"1 Century. Dr. Alexander Wood, in Edinburgh,

developed one of the earliest described treatments for morphine dependence and

opium eating in the 1850s. Unfortunately his "cure" was based upon a protocol of
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morphine injections with the newly invented hypodermic syringe. A former

Physician Superintendent of the Royal Edinburgh Asylum, Thomas Clouston,

specialised in the treatment of opiate addiction. He was also one of the first to

describe the treatment of cocaine addiction at the end of the 19th Century (Davenport-

Hines, 2004).

C.R. Alder Wright first synthesised diacetyl-morphine from morphine in 1874. It

was then almost completely ignored until Felix Hoffmann, the creator of aspirin,

re-synthesised heroin (the new name for diamorphine) from morphine in 1898.

Heroin, the "heroisch" drug, contrary to popular myth, was not invented to fight

morphine and opium dependence. It takes its name from the German word

"heroisch " meaning powerful or heroic. It was initially marketed by Bayer as a

cough suppressant and treatment for respiratory illnesses more powerful than

morphine.

Although the concept of dependence was described over many centuries, its

scientific study began much later. The first epidemiological study of opium

dependence was by Terry & Pellens (1928). A study they conducted for the,

beautifully named, United States Bureau of Social Hygiene.

1.3 The techniques of neuroimaging

The focus of this thesis is on neuroimaging the neurobiology of opioid dependence. I

will begin, therefore, with a description of the techniques of neuroimaging. The

primary division of these techniques of neuroimaging is into the basic categories of
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structural or functional.

1.3.1 Structural imaging

Structural imaging is not used in this thesis, except where is has been used to

facilitate the analysis of functional imaging. Structural imaging can be used to

provide additional anatomical information, which the lower resolution of most

functional imaging techniques is often lacking.

The two main techniques in this category are Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI).

1.3.1.1 Computed Tomography (CT)

Computed axial tomography, as it was then known, was first used in the early 1970s

at Atkinson Morley's Hospital in Wimbledon, London. Its inventors, Sir Godfrey

Hounsfield and Allan Cormack, were awarded the Nobel Prize for their work in

1979. The principle itself is fairly straightforward. The implementation of the

process however, had to await sufficient computing power to handle the

computations required for image reconstruction. It is reported that the first ever CT

image took 9 days to acquire and reconstruct. Thankfully the target was an

inanimate object, not a patient.

Images are acquired as a series of x-rays taken at multiple angles. These are then

reconstructed into slices by a process of iterative reconstruction akin to solving of the

classical "magic square" mathematical puzzle (see Figure 1.1).
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Figure 1.1: Fundamentals of CT Scanning

More recently there have been many improvements in the technique that have

reduced the quantities of radiation required to acquire images. Speed, and the

production of true 3D images, has also been boosted by the use of spiral scanning

sequences (e.g. Hu, 1999). While still used extensively in a clinical setting, because

of the widespread availability, speed of image acquisition and low cost, its research

use is still limited by the radiation exposure inherent in any x-ray based technique.

In the last few years combined PET / CT scanners have been produced. These enable

accurate co-registration of structural CT scans and functional PET images. These

«
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have been developed mainly for clinical use in oncology and neurology.

1.3.1.2 Magnetic Resonance Imaging (MRI)

1.3.1.2.1 History of MRI
The first description of the process of Nuclear Magnetic Resonance (NMR, now

called MRI) as a potential in vivo imaging technique was by Damadian (1971). He

described the differences in T1 & T2 relaxation times between tissue types. The

process of using these tissue differences to create clinically useful images such as

those used today was taken up by Sir Peter Mansfield (e.g. Grannell & Mansfield,

1975) in Nottingham and Paul Lauterbur in the USA (e.g. Kramer et al., 1981); both

ofwhom were awarded the 2003 Nobel Prize.

1.3.1.2.2 Physics of MRI
MRI is based on the principle that all atomic nuclei are charged and spinning. The

combination of these properties requires that they therefore also have a magnetic

field. When placed in a very strong magnetic field they will align themselves with

this external field. These strong fields are only now possible through the use of

superconductors requiring extremely low temperatures. The majority of the bulk of a

modern MRI scanning is the liquid helium cooling system. Once the nuclei have

aligned with the magnetic field, they can then be perturbed, or knocked out of

alignment, by a brief electromagnetic pulse. After the pulse they will relax back into

alignment with the static magnetic field releasing measurable energy as they do so.

The rate at which they relax is dependent on the magnetic environment surrounding

7
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the nuclei at the time. In most common biological nuclei however, there are an even

number of protons, e.g. l2Carbon, l6Oxygen and 14Nitrogen. The MRI effect requires

an odd number in the nucleus which is why most current neuroimaging MRI

techniques are tuned to measure the responses of 'Hydrogen nuclei; although

31Phosphorus can also be used. Using 'Hydrogen gives a very clear picture of water

distribution in the body tissues which is excellent for imaging brain, as the skull is

relatively poorly seen in comparison to brain tissue; clearly this is markedly different

to CT where bone has a much larger contrast. By adding a gradient to the

surrounding magnetic field it then becomes possible to use this gradient to determine

the location of any relaxation signal within the field, aiding signal detection and

image reconstruction.

There are a very large number of different adaptations and scanning protocols that

can be employed to differentiate different tissues. These are produced by use of

different pulse sequences and tuning of the detector aerials. The original classical

MRI uses T1 relaxation times, which are in the order of 1000ms and are best for

distinguishing grey and white matter; T2 times are also commonly used in brain

scanning because of their ability to produce high contrast between CSF and brain

tissue. Improvements continue to be made with higher field strength magnets with

steeper gradients and faster pulse sequences. These act to improve signal to noise

ratios, increase spatial resolution and remove unwanted signal from tissues like

blood.

8



1.3.1.2.2.1 Voxel Based Morphometry (VBM)
This is a technique for the systematic and automated analysis of differences in brain

structure (Ashburner & Friston, 2000). MRI images are required with high spatial

resolution and good contrast between grey matter, white matter and cerebro-spinal

fluid (CSF). Each image is warped to fit a standardised space and then segmented

into the three main tissue types, with non-brain tissue being excluded. These maps

have voxel values that represent the concentration of tissue within the voxel. In

many ways this can be thought of also as an index of the proportion of cells within

the voxel that belong to the specified tissue class. These maps are then smoothed

before being compared between groups.

A further refinement has been proposed, usually referred to as "optimised VBM"

(Good et al., 2001), where the tissue concentration maps are convolved with the

parameters used to warp the images into standard space to produce modulated tissue

maps. In such a modulated map the value of each voxel can be conceptualised as the

volume that voxel would have occupied in native patient space. This means that

when comparing images between groups the outcome is regions where the volume of

target tissue is statistically different, rather than where the concentration of the target

tissue is different. The target tissue in question can be grey matter, white matter, or

even CSF.
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Table 1.1: Advantages and Disadvantages ofMRI & CT

CT

Cost Cheap

Typical acquisition 3-1Omins whole head
time

Availability

Tissue contrast

Typical spatial
resolution

Repeatability

Very widespread

Best for bone vs. soft tissue
vs. air

0.7 x 0.7 x 2-10mm

Limited by radiation
exposure

Physical constraints Usually open and easily
accessible

Contra-indications Nil

Image problems Poor in areas close to bone

Radiation exposure Average 1,5mSv per brain
scan (Mettler et al., 2000)

MRI

Moderately cheap
7-3Omins whole head

Fairly widespread and
increasing
Best for soft tissue type
discrimination

0.5 x 0.5 x 1 mm

Unlimited

Can be very enclosed

Metallic implants or foreign
bodies. Electronic implants.
Areas of distortion possible
associated with eye
movements, swallowing or
sinuses.

Nil

1.3.2 Functional imaging techniques

1.3.2.1 Functional Magnetic Resonance Imaging (fMRI)

1.3.2.1.1 History of fMRI
The first paper demonstrating the use of fMRI to image changes in neuronal function

associated with a task was published in 1992 (Kwong et al., 1992). All the basic

elements of current fMRI are nicely described in the paper including the need for

averaging over multiple acquisitions to discern the signal. In essence, fMRI is a

10
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subset of MRI. It is based on the differing magnetic properties of oxy- & deoxy-

haemoglobin. When neurones are active they are thought to increase the blood flow

through surrounding capillaries (Kwong et al., 1992). The increase in the delivery of

oxygenated blood exceeds that required by the neuronal tissue, resulting in a relative

increase in the amount of oxy-haemoglobin. This alters the response of surrounding

hydrogen nuclei to the MRI imaging technique. This variable response is labelled

the Blood Oxygen Level Dependent (BOLD) response. Newer pulse sequences and

techniques continually increase the possibilities of this technique.

1.3.2.1.2 Advantages and disadvantages of fMRI

fMRI has many advantages. Images can be acquired over a short time span, in the

order of hundreds of milliseconds for a whole brain image. No radiation exposure is

required. A structural image can be acquired within the same scanning session

helping to localise any signal measured by fMRI. These advantages mean that

experimental subjects can be scanned repeatedly over a short period of time in order

to discern the blood flow changes that accompany any concomitantly reported or

induced psychological state. The ability to repeat this many times helps to improve

the signal-to-noise ratio of the technique as it allows averaging of responses. Time-

locking the scan acquisition to a repeated event also allows for event-related or

evoked fMRI BOLD responses to be measured. This functions in a similar manner

to evoked potentials in the electroencephalography (EEG) field. Obviously, fMRI is

not without its drawbacks. The largest problems are related to the practicalities of

11
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the scanner. All fMRI scans are extremely noisy. Subjects or patients always have to

wear headphones, making verbal communication difficult. This can be reduced by

the use of "sparse" acquisition protocols, where the image is acquired over a

condensed period of time, with gaps interspersed. In addition to being noisy, the

scanner environment is frequently enclosed, making the presentation of any visual

stimuli difficult. Also the strong magnetic fields surrounding the scanner and the

pulsed high-frequency radio waves mean that any equipment used in the scanner

room must conform to tight rules of electrical screening.

In comparison with PET techniques, described later, fMRI has a number of

advantages. The possibility for rapid acquisition times allows for better temporal

resolution. The absence of any radiation exposure, allowing repeated scanning, leads

to better statistical power with larger sample numbers. However, fMRI does suffer

from some of the similar problems to MRI, with signal drop-out (esp. near sinuses).

This is more marked in fMRI due to the faster switching times required. Fluctuations

in the magnetic field also lead to image ghosting related to subject movement, e.g.

swallowing or eye movement echoes or just ordinary head movement. There is also

the issue of low frequency aliasing of high-frequency noise, e.g. respiratory and

pulse rate, as demonstrated in Figure 1.2. There are techniques for avoiding, or

minimising the impact of, these problems, but it is beyond the scope of this thesis to

discuss these in any detail.

12
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High frequency signal
sampled with regularly
spaced images

Low frequency (aliasing)
signal erroneously
reconstructed from

regularly spaced images

Figure 1.2: Aliasing of high frequency noise in fMRI images

1.3.2.2 Positron Emission Tomography (PET)

1.3.2.2.1 History of PET

The early history of PET is briefly described, along with nuclear magnetic resonance

in Brownell et al., (1982). As with CT, the theory was understood for a considerable

period of time before the necessary computational power became available to allow

the theory to be put into practice.

1.3.2.2.2 Physics of PET

Positron Emission Tomography relies on the injection of tracer molecules labelled

with positron emitting radio isotopes. The positron is an anti-matter equivalent to an

electron. Once released from a decaying nucleus it will diffuse into surrounding

13
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tissues for a short distance before colliding with an electron. When this happens the

two particles undergo a mutual annihilation releasing a dipole of two photons of

gamma radiation at 180° with an energy of 511 keV (kilo-electron volts). Using a

ring of detectors it is possible to use these two properties of a specific energy and a

pair of photons being released simultaneously, to distinguish these annihilation

events from background radiation and scattered photons released from events outside

of the field of view of the detector ring.

Figure 1.3: Simplification ofPET camera detector ring and simulated
gamma dipoles from isotope decay

The positron emitting isotopes routinely used for PET are 15Oxygen, "Carbon and

l8Fluorine. These have half-lives of 122 seconds, 20.39 minutes and 109.77 minutes

respectively. Images are acquired in one of two modes: frames or list-mode. For the

14



very short lived isotope l5Oxygen images are usually acquired as a single frame, as a

snapshot of cumulative signal distribution over the whole scan. For the longer-lived

isotopes, the older form of data collection, in frames, is still used, but decreasingly

often. This has the detector ring gather the sum of photons detected for a set period

of time. Early in the scan when there is plenty of signal and tracer levels are

changing rapidly, these time frames are usually fairly short, in the order of 30

seconds. Later, as the quantity of radiation and signal reduces exponentially and the

rate of change declines, then the time frames typically lengthen out to 5 minutes.

With the increase in computing power it is now possible to acquire images in list-

mode. In this case, every single event detected by the detectors is individually

logged with its time. The usual technique is then to sum the data into time frames as

for frame acquisitions and then proceed to image reconstruction. Because the time of

data acquisition has also been recorded it is possible to redefine the timing of the

frames after the scan, instead of before. They can then be selected based on the

actual time curve of the signal, rather than the expected time curve. As yet this

technique is still not fully exploited, but in theory it also allows for correction of

subject movement within the scan in an almost transparent manner before the data is

reconstructed into a dynamic sequence of 3D images.

The techniques of image reconstruction most commonly used are filtered back-

projection (FBP) (Kinahan & Rogers, 1989) and Ordered-Subset Expectation-

Maximisation (OSEM) (Hudson & Larkin, 1994). FBP is most frequently used for

research scans, where quantitative data is required, but OSEM is often used in the
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commercial, clinical environment due to improved lesion detection (Lartizien et al.,

2003).

Once the images are reconstructed they can be calibrated and further analysed in a

number of different manners. Further discussion of this will be postponed until later

in the thesis and discussed for each tracer used individually.

1.3.2.2.3 Measures of cerebral activation

The use of PET scanning depends entirely on the tracer that is injected. Radio-

labelled water containing Fb'50 can be used to follow blood flow, as can carbon

monoxide (Cl50). The short half-life of 150 of approximately 122 seconds, allows

for repeated scanning over a short period of time and the capture of specific

cognitive states. Closely related to this is the use of l8F-fluoro-deoxy-glucose

(l8FDG). This tracer is taken up into cells and trapped in proportion to their glucose

use; giving a proxy measure of metabolic activity. The technique has the advantage

of allowing injection of the tracer to occur outside of the scanner environment, which

may make studying of certain psychological states more feasible. However, the

much longer half-life of l8F means that the temporal resolution is much lower, in the

order of tens of minutes. On the other hand, the image quality is substantially better

as more data per scan can be acquired. This yields better signal to noise ratios for a

single scan for l8F, but the repeat scanning used with H2I50 enables averaging of data

to redress this balance. Despite this, fMRI has largely replaced H2lsO PET for

imaging cerebral activation.
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1.3.2.2.4 Measures of neurotransmitter systems

This is the field where PET continues to dominate. Using other tracers labelled with

either "Carbon or l8Fluorine it has become possible to measure indices of

neurotransmitter function. A large number of possible tracers have been developed

around the world. Depending on the neurotransmitter system under study it has

become possible to study many aspects of neuronal signalling. Tracers exist to

measure transmitter synthesis, post-synaptic binding and re-uptake. I shall describe

only those of interest later in this thesis. "C-Raclopride is a specific antagonist at the

dopamine D2 receptor. It has been shown to bind selectively to this receptor and to

be sensitive to the levels of endogenous dopamine (Laruelle et al., 1997). For the

opioid system there are two main tracers used. "C-Diprenorphine is an antagonist

which labels all three opioid receptor subtypes (mu, kappa and delta) (Frost et al.,

1986; Jones et al., 1999) and "C-Carfentanyl is a selective mu-receptor agonist

(Frost et al., 1990). As described above, depending on the PET scanner and tracer

used, PET imaging has a temporal resolution ranging from tens of seconds to a few

hours; which is clearly less than that available with fMRI. In the cases of "Carbon

and 18Fluorine the resolution is in the order of tens of minutes. However, in most

cases and specifically with "C-Raclopride and "C-Diprenorphine, it does allow for

absolute quantitation of tracer binding which more readily allows comparison

between scans and between individuals. The scanning is also silent, which means

that communication with the patient or research subject is easier and the environment

less distracting to the experiment. As well as the temporal resolution, spatial
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resolution is also not as good as with fMRI. Even the best PET scanners for humans

cannot resolve structures several millimetres across, although more is possible with

small animal systems.

1.3.2.3 Single Photon Emission Tomography (SPET)

Single Photon Emission Tomography (SPET) pre-dates CT as an imaging modality

used to image the living human brain. The first paper on using SPET to examine

cerebral blood flow was published in 1975 (Kuhl et al., 1975). SPET has the

advantage of being considerably cheaper than PET and hence far more widely

available; however, the spatial and temporal resolution is poorer. The principle of

injecting a radio-labelled tracer is that same as for PET, however the isotopes are

different. In this case, the isotopes emit single photons of gamma radiation. The two
4

most commonly used isotopes are "'"Technetium (99mTc) and 123Iodine (l23I). The

single photons of gamma radiation are usually picked up by two or three rotating

detector heads. The 3D image slices are reconstructed from these rotating heads in a

manner similar to that used for CT. As with PET there are also a wide range of

tracers using either "'"Technetium or 123Iodine for the study of several

neurotransmitter systems.

For measuring blood flow, and hence cerebral activation, the tracer

"mTc-hexamethylpropylene amine oxime (99mTc-HMPAO) is used. It is irreversibly *
absorbed in proportion to blood flow in the minutes following the injection. As with

l8FDG PET, it is possible to inject tracer outside of the scanner environment and

18
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during a period of exposure to stimuli or tasks of interest (Sharp et al., 1986). The

other main tracers of interest for this topic are ,23I-Iomazanil and 123I-Iodobenzamide

(l23IBZM). l23I-Iomazanil binds to the GABAA-benzodiazepine receptor (Holl et al.,

1989) and ,23IBZM to the dopamine D2 receptor (Kung et al., 1989).

1.4 The current state of neuroimaging in dependence

PET, SPET and fMRI together have produced a considerable body of research to aid

the understanding of the fundamental mechanisms of addiction and dependence. The

most striking finding is that different research groups studying different populations

of drug users using different methodologies repeatedly report the same brain regions

as being significant. The exact roles of individual brain regions are the topic of

considerable ongoing debate. A brief outline of suggested functions is shown in

Table 1.2. The multitude of imaging studies behind this table is discussed in the

following section, with particular emphasis on studies of heroin users. Studies of

other drugs will be mentioned only where they shed light on the processes of opioid

addiction.

Table 1.2 An outline of the brain regions implicated in addiction and theirproposedfunctions

Anterior Cingulate / Medial Pre-frontal Attention & emotional salience of drug
gyri related stimuli
Orbito-frontal cortex Urge to use & loss of control

Hippocampus & Amygdala Memory & learning
Ventral Striatum Reward prediction
Thalamus Rush & hedonic response

Hypothalamic & brainstem nuclei Autonomic & endocrine responses
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As alluded to above, a large number of differing neuroimaging techniques have been

used to study addiction. In the interest of clarity I shall first discuss studies

examining brain structure. In this section I will also include studies of brain function

where these studies seek to examine evidence of deficits in function unrelated to the

process of addition itself. For example, this section will include studies of perfusion

or glucose metabolism at rest. The remaining functional neuroimaging studies can

be divided into two major groups; those that examine cerebral activation and those

examining neurotransmitter function. The former group will also include some

studies of perfusion or glucose metabolism, but in this case where the task or

activation is related to the process of addiction, such as cue-induced craving.

1.4.1 Neuroimaging studies of structure or basic function

There are problems when attempting to study long term structural changes in the

brains of heroin users. The biggest problem that clouds the interpretation of most

studies is the tendency for heroin users to use other drugs that may also have

neurotoxic effects. Even when users are only buying heroin on the street it may be

contaminated with any number of potentially harmful additives. Differentiating the

effects of the active diamorphine from these other constituents may prove impossible

as they are unknown, unquantified and the amounts used will be strongly correlated

with the lifetime exposure to heroin. Unusual, but obvious examples of potential

confounds would be infective emboli from endocarditis secondary to poor injecting

practice or AIDS-related dementia. The few systematic studies of structural changes

20



ft

Introduction

have tended to find evidence of only subtle changes, if anything, which are always

open to the criticism that they are pre-morbid and perhaps an indication of a

predisposition to drug dependency problems.

Table 1.3 Structural andperfusion imaging studies in addiction

Study
Aasly et al., 1993
Adams et al., 1993
lAmass et al., 1992
Bae et al., 2006
Besson et al., 1981
Bolla et al., 2003
Bolla et al., 2004
Botelho et al., 2006
Cala etal., 1978
Cala et al., 1980
Carlen etal., 1978
Carlen et at., 1981
ICarlen et al., 1984
Cascella et al., 1989
Cascella et al., 1991
Chick et al., 1989

Christensen etal., 1996
ICowan et al., 2003
iDanoseta/., 1998a

Danos et al., 1998c
Danos et al., 1998b
Di Sclafani et al., 1995
Ersche et al., 2005a
Ernst et al., 2000
jFox et al., 1976
Galynker et al., 2000
Gerra etal., 1998
Gilman et al., 1990

Hagel et al., 2005

Handelsman et al., 1993
Haselhorst et al., 2002
Hill & Mikhael, 1979
Holman et al., 1991
Holman et al., 1992
Holman et al., 1993
Hwang et al., 2005
jJacobsen et al., 2001
jKao et al., 1994
Kaufman et al., 1999
Kim et al., 2005
Kim et al., 2006
[Kivisaari et al., 2004

Population
Poly drug users
Alcoholics
Mixed cocaine, heroin & poly-drug
Methamphetamine users and controls
"Alcoholic cerebral disorder"
Cocaine users

Abstinent cocaine users vs controls
Heroin users & historical controls
Alcoholics
Alcoholics
Alcoholics
Alcoholics
Alcoholics

Poly drug users
Poly drug users
Alcoholics

9 male polydrug users
MDMA users

Opiate patients in withdrawal but on
methadone

Opiate dependent
Heroin dependent
Older abstinent alcoholics

Amphetamine and opioid users and control
Methamphetamine
Alcoholics

Opiate-dependent subjects
Detoxed Opiate users
Alcoholic with and without cerebellar

damage
Heroin smokers with spongiform
leucoencephalopathy
HIV drug users
Long-term IV heroin
Heroin and alcohol
Cocaine (polydrug) users
Cocaine users and AIDS dementia
Heroin and Cocaine users

Methamphetamine
Cocaine

Amphetamine users
Methadone maintained opiate users

Methamphetamine
Methamphetamine
IV heroin users and controls

Technique (and taskl
MRI
FDG at rest

1.5TMRI
MRI
MRI/NMR
OFC decision making gambling task
H2150 PET on Stroop
HMPAO SPET at rest

CT
CT
CT
CT
CT
CT
CT
MRI

31P-MRS
VBM on MRI
HMPAO SPECT

CT
HMPAO-SPET (in withdrawal)
MRI

H2150 PET (Gambling task)
MRS
CT
FDG-PET
HMPAO SPET
FDG

CT & MRI

0.3TMRI
'H-MRS
CT
HMPAO SPET
HMPAO SPECT
HMPAO SPECT
HMPAO

Quantitative morphology
HMPAO
31P-MRS
FDG
VBM
MRI
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Kosten etal., 1998
Kroft et al., 1991
Krystal et al., 1995
Levin et al., 1994
Levin etal., 1995
Liu et al., 1995
London etal., 1989
Lyoo et al., 2004
Lyoo et al., 2006
MacKay etal., 1993
Mander et al., 1989
Mann et al., 1993
Mena et al., 1994
Meyerhoff et al., 1995
Oh et al., 2005
Pascual-Leone et al., 1991
Pezawas et al., 1998
Pezawas et al., 2002
Pfefferbaum et al., 2000
Rose et al., 1996
Rumbaugh et al., 1980

Siew etal., 1993
Silveri et al., 2004b
Strang & Gurling, 1989
Turneh etal., 1990
Volkowetn/., 1988a
Volkow etal., 1988c
Weber etal., 1993

Abstinent cocaine-alcohol users
Alcohol dependent women
Opiate users vs controls
Polydrug abusing women
Polydrug users treated with buprenorphine
Polydrug users
2 Heroin addicts & 3 heroin users

Cocaine & opiate
66 opioid-dependent + alcohol
Cocaine-dependent polysubstance abusers
Alcohol withdrawal
Alcoholics
Cocaine intoxication
Alcohol abuse and HIV

Methamphetamine
Cocaine

Opiate addicts
Opiate users
Alcoholics
Heroin users & controls
Case series of 6 mixed trauma & drug use &
monkey studies
Cocaine and heroin users

Start ofmethadone

Long-term heroin users
Cocaine users

Cocaine
Cocaine/heroin case series
Crack users

rCBF
MRI
HMPAO SPECT (after naloxone)
HMPAO SPECT
rCBF
MRI
FDG
MRI
VBM with MRI
?MRS
MRI T1 times
CT
review ofCT SPECT & MRI data
MRS
MRI of corpus callosum
CT
CT
HMPAO SPECT at rest

MRI
HMPAO SPET
CT

MRI
31P-MRS
CT low resolution
IMP-SPECT
PET perfusion
MRI

IMP-SPECT

1.4.1.1 CT and MRI studies

Almost from the beginning CT scanning was used to examine the effects of alcohol

on the brain. In the earliest studies they report atrophy as evidenced by enlarged

ventricles and widened sulci (e.g. Carlen et al., 1978; Fox et al., 1976). However,

these reported effects were seen in subjects with clinically evident cognitive

impairment or neurological sequelae. Aberdeen was one of the early pioneers in the

clinical use ofMRI scanning. Being Scottish, they applied this new technique to the

study of alcoholics very early on. They showed that T1 relaxation times were

acutely decreased in alcohol intoxication followed by a rebound increase during

withdrawal and after six weeks of abstinence (Besson et al., 1981). The effect was

more marked in the frontal grey matter than in the parieto-occipital region. However,
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the study number was small, with only 6 alcoholics and 3 controls, and no statistical

testing was undertaken. Nevertheless, the results were suggestive of a dehydration

effect during acute intoxication and a component of water intoxication in delirium

tremens. Over many subsequent studies, chronic exposure to excessive alcohol has

become well known to cause cerebral atrophy (e.g. Chick et al., 1989; Mander et al.,

1989, see Table 1.3).

The first study I could identify where an attempt was made to use neuroimaging to

examine the effects of heroin use on the brain in living people was a CT study from

1979 (Hill & Mikhael, 1979). For an early study, the number of subjects is

impressive, at 42 men; this comprised 15 alcoholics, 15 heroin users and 12 controls.

As expected from the age of the study, the methodology for examining the images

was crude by today's standards, however still better than several subsequent studies.
»

Measures of ventricular and brain area in each image slice were calculated to

produce a ratio, but sulcal widening was assessed only by visual inspection. Despite

this, no significant differences were detected between the three groups. This study

also included neuropsychological testing of the research subjects, which showed

impairments in both groups, although of different patterns. Unfortunately, no attempt

was made to relate the neuropsychological deficits to structural changes. The only

other opioid addiction study reported for the next 10 years is a case series of 6

I individuals who underwent CT scanning for a variety of clinical reasons including

head trauma, who also had a history of mixed substance misuse and abnormal CT

scans (Rumbaugh et al., 1980). Unsurprisingly, given the clinical histories of head
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trauma and clinical indications for the head CT scan, there was a common finding of

cerebral atrophy.

After the 10 year gap an increasing number of studies have been published

examining the structural effects of drug use. The first study after the gap compared

the brain CT scans of 23 men with a history of poly-substance misuse against

matched controls (Cascella et al., 1989). They showed that severity of alcohol

consumption predicted ventricle to brain ratio, i.e. atrophy, where heroin and other

drugs did not. In an expanded sample reported later, 40 polydrug users were

compared to age-matched controls (Cascella et al., 1991). These men used a wide

mixture of drugs, most notably cocaine, alcohol and heroin. This time the analysis

was slightly more advanced, with calculation of ventricle:brain ratios and third

ventricle width, alongside visual classification of cortical atrophy. These measures

of brain damage again showed the strongest relationship with measures of alcohol

consumption, particularly with the amount consumed per session. Heroin use

showed no association with any of the measures of abnormality on CT scanning.

A case series of CT scans on 3 heroin users and 2 addicts was reported, but I have

been unable to acquire the article (London et al., 1989). A group from London

attempted to examine the effects of very long-term heroin use (Strang & Gurling,

1989). Their cohort of 7 users had all been using heroin in excess of 20 years and

were maintained on injectable diamorphine prescriptions. They were able to

ascertain dose histories for the past 20 years in all subjects, giving an abnormally

accurate estimate of total lifetime exposure. Unfortunately the imaging data were not



so detailed. Brain image data was acquired in 6-7 slices of low resolution CT and

analysed by visual inspection and rating. Three of the 7 subjects showed moderate to

severe atrophy with a fourth showing enlarged ventricles, but it was not related to

any drug history variables or level of cognitive performance on a wide battery.

These results are difficult to further quantify as the control group have no brain

image data reported. The authors, themselves, also make the point that this is a very

unusual population and may be the survivors of a much larger group, where those

with problems died out at a younger age.

There then followed another ten year gap in CT imaging studies, although during this

time Danos et al. (1998c) used CT to examine structural changes in the brain of 9

heroin addicts and 9 patients with "neurotic depression" as a control group. They

demonstrated a 42% increase in the volume of external CSF space in the opioid-

dependent group compared to the depressed controls and a 33% increase in internal

CSF space. This was a statistically significant difference between the groups

controlling for age as a potential confound, as age was found to be strongly

correlated with CSF volumes. However, there was no correlation with duration of

heroin addiction. This result partly contradicts the results from Hill & Mikhael,

(1979), in that they agree on the lack of effect of heroin but disagree on the effect of

alcohol. Also in 1998 another group used CT to examine "volume loss" in 21 opiate-

dependent patients, this time compared to an equal number of healthy control

subjects (Pezawas et al., 1998). This group used a variety of linear and volumetric

measures of CSF volume to show evidence of substantial increases in opiate
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dependence. They also showed that reduced brain volume in the frontal lobes was

associated with decreased length of voluntary abstinence from opiates. They went on

to hypothesise that impaired frontal lobe function, and its resultant poor decision

making, may be a causal factor in relapse.

Gradually, over time CT has been replaced by the better suited modality ofMRI. As

reported above, the earlier studies examined the effects of alcohol on brain structure.

However, a literature on the effects of opioids on the brain has slowly developed.

One early study undertook a study ofMRI regional T1 and T2 times in a cohort of

opioid and/or cocaine dependent subjects (Amass et al., 1992). They compared three

groups of volunteers. The control group had 13 age-matched volunteers to compare

to 10 detoxified addicts previously dependent on heroin and /or cocaine, and to 4

poly-drug users still actively using drugs. Alcohol was a potential confound in this

study; two of the recently detoxified group had current alcohol dependence and the

poly-drug using group also used alcohol. They attempted to reduce the effect of

alcohol on the results by recruiting social drinkers into the control group, but clearly

this is only a partial solution. By this time, imaging techniques and hardware had

improved, such that they were able to use a 1.5 Tesla MRI scanner to acquire the

images. The images were analysed in a two stage process. Initially there was a

qualitative analysis of the structural images. One drug user and two controls were

excluded for sulcal widening, a further four drug users and one control were

excluded for T2 hyper-intensities. Therefore only 9 drug-dependent and 10 control

subjects remained and the distinction between drug users recently detoxified and
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current poly-drug users was not maintained. Unfortunately, no mention is made of

associations between these qualitative abnormalities and drug use or alcohol history.

With the remaining 19 subjects they found no significant differences in T1 or T2

times in any of the five basal ganglia regions studied. There was also no significant

effect from alcohol consumption. From this they conclude that the MRI technology

available at that time was inadequate to demonstrate the micro-structural changes in

the brain resulting from chronic opioid use. Given that they also failed to identify

any changes correlated to level of alcohol consumption, their conclusion is probably

correct. One other clear possibility is that the qualitative procedure excluded all

those with drug or alcohol related damage, leaving only a select population with no

changes and resulting in a false negative finding.

The sequelae ofHIV infection on structural MRI changes in drug users has also been

studied (Handelsman et al., 1993). In this study of 28 male drug users, they used 0.3

Tesla MRI and visual inspection of the images to measure cortical atrophy. They

showed that the level of cortical atrophy was correlated with the stage of HIV

infection. Unfortunately, although the cohort recruited consisted of approximately

equal numbers of methadone-maintained and heroin-using volunteers, the effects of

this on the MRI images were not reported. They also collected drug use and lifetime

exposure data, but only reported that this did not differ between the different groups

ofHIV severity.

Probably the first systematic study of MRI brain scans in drug users was in 1993

(Aasly et al., 1993). Opioid users made up approximately half of their cohort of 23
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drug users, who encompassed users of cannabis, cocaine, solvents and

amphetamines, and all were heavy alcohol users. They used a quantitative analysis

to examine cerebellar and ventricular sizes alongside visual inspection for gross

atrophy or white matter hyper-intensities (WMH). In the quantitative analysis the

only reported differences in the MRI scans of the drug users compared to a control

cohort were an 18% decrease in size of the cerebellum and a trend toward larger

lateral ventricles. There was no difference in the incidence ofWMH between drug

users and controls, but the drug users were 5 times more likely to be diagnosed with

cerebral atrophy (30% vs. 6%). Importantly these changes were thought to be related

to the effects of alcohol rather than the effects of any of the other abused drugs in this

cohort. In 4 of their cohort, the cerebellar changes related to subclinical signs of

cerebellar ataxia. The worst affected subject also had the greatest degree of
4

cerebellar shrinkage on MRI.

The earliest significant change in brain structure associated with opioid and cocaine

use demonstrated by MRI is an increase in pituitary volume (Siew et al., 1993). This

study of eight cocaine & heroin users showed a 190 mm3 (35%) mean increase in

pituitary volume in the drug dependent group compared to a matched control group.

Not only was this a large increase, but there was no overlap between the groups at

all. These changes were found in the absence of measurable changes in blood
i

hormone levels. As a consequence of the known effects of opioids and stimulants on

prolactin and ACTH secretion, the authors suggested that these volumetric changes

were most likely to be related to anterior pituitary lactotroph and corticotroph
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hyperplasia in response to opioid and cocaine use. Only 2 years later a study of 10

polydrug users and 10 healthy controls showed no difference in brain ventricle size

on MRI scans (Liu et al., 1995). This was despite 4 of the 10 polydrug users

drinking in excess of recommended levels. However, the later study estimated only

ventricular volume and ventricular:brain ratios, so it would not have detected

enlargement of the pituitary gland. More recently, but still using visual rating of

MRI scans, the finding of mild generalised atrophy has been replicated in IV heroin

users (Hagel et al., 2005). In this case 17 heroin users were more likely to have

enlarged ventricles than the same number of age-matched controls. In this study the

prevalence of co-morbid alcohol problems was much reduced, removing this

significant potential confound, but there was a higher incidence of benzodiazepine

dependence.

White matter hyper-intensities (WMH) on MRI scanning have been shown in addicts

for a number of drugs. They are generally thought to represent focal areas of brain

damage resulting from a number of different pathological processes. In an early case

series of MRIs in cocaine / crack and heroin users both of the heroin users showed

WMH compared to 1 of the 5 cocaine users (Volkow et al., 1988c). Curiously, one

of the cocaine users with a normal MRI also showed hypoperfusion of the frontal

cortex on PET scanning. Bae et al (2006) showed that there was an increased

incidence ofWMH in male methamphetamine users compared to a control group, but

not in female users. There was also evidence of a dose-dependent relationship, with

heavier lifetime use of methamphetamine associated with more severe and more

29



Introduction

numerous WMH lesions. The majority of lesions were in frontal regions and deep

white matter. In the largest study, (Lyoo et al., 2004) compared the incidence of

WMH in 32 cocaine users, 32 opiate users and 32 healthy controls. As in their later

study, described below, most co-morbidity was excluded with the notable exceptions

of alcohol dependence and diabetes mellitus. These are significant flaws in the study

as WHM are thought to be particularly associated with microvascular lesions. As

predicted, they showed that WMH incidence was significantly higher in the cocaine

users in deep white matter and insular regions, but not in peri-ventricular regions,

when compared to both the opiate and control groups. The opiate group, who also

had less alcohol dependence, were significantly worse than controls only when all

regions were analysed together; they showed a trend in deep white matter, but no

difference in other regions. In general, across both drug using groups, the WMH

lesions tended to be more frequent in frontal regions. Most recently in a study of

fMRI and MRS a larger number of opioid using subjects (4 out of 30), compared to

none in the control group, had to be excluded due to a high incidence of WHM

(Yiicel et al., 2007).

The most comprehensive study of structural effects of heroin addiction so far is that

by Lyoo et al., (2006). This was a much larger study than any previous, with 66

opioid-dependent subjects and 48 age-matched controls. 2 opioid users and 1 control

were removed for cortical atrophy or ventricular enlargement and a further 2 subjects

for motion artefacts in the images. The entire opioid group were methadone

maintained and the authors excluded anyone with dependence on anything else
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except nicotine & alcohol. The authors do not state how many of the 63 patients had

current alcohol dependence, but a significant proportion had past histories of

dependence on cocaine (27%), cannabis (29%) and alcohol (35%). This study used

a technique referred to as "non-optimised" Voxel Based Morphometry (VBM)

described earlier, therefore examining tissue density differences, rather than volume

differences. The results were a finding of decreased grey matter density in medial

frontal, and in the insula and superior temporal cortices in the opioid-dependent

group. The authors state that sub-analyses, excluding those patients with previous

co-morbid dependence on other substances, produced similar findings.

1.4.1.2 Perfusion and metabolism studies

Although not strictly structural imaging techniques, perfusion or metabolism scans

using either MRS, PET or SPET can be used to demonstrate possible structural

changes in the brain, especially when performed in a resting state. When used to

show patterns of activation in response to non-addiction related tasks they can also

shed light on potential drug-induced deficits in cerebral structure and function.

The technique of phosphorus magnetic resonance spectroscopy (3IP-MRS) can be

used to derive measures of bioenergetic status, and markers of cell membrane

integrity and turnover. Long term methadone treatment has been shown to be

associated with disturbances in bioenergetic status (decreased levels of

phosphocreatine) and phospholipid levels (elevated phosphomonoesters (PME) and

phosphodiesters (PDE)) compared to a control group (Kaufman et al., 1999). It was
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also shown that the methadone group who were most affected were those who had

received treatment for the shortest time. The authors interpret this as possible

evidence that methadone treatment helps to normalise the abnormalities produced by

heroin use and dependence. Alternatively, both their patient groups were continuing

to use illicit drugs as shown by 26% positive urine screens. So perhaps it is the

ability of methadone to prevent recurrent withdrawal states that is improving these

cerebral metabolic markers. It is worth noting that the pattern of abnormalities found

quite closely resembled that found in chronic ischaemia. Given the findings in other

studies of areas of hypoperfusion in heroin users, they argue that this is a possible

cause of the 31P-MRS abnormalities. It may also be evidence of subclinical degrees

of neuronal cell loss as has also been suggested in the structural studies described at

the start of this chapter.

To further test this, the same group went on to study another 43 heroin addicts at

different times after transfer to methadone (Silveri et al., 2004b). The whole group

findings were very similar with a general reduction in the bioenergetic marker

phosphocreatine and an increase in PDE, across the methadone groups compared to

controls. However, the PME changes were not replicated. The effects of duration of

methadone were not as expected. The phosphocreatine actually started equivalent to

the control group in the first week ofmethadone before falling over the next 3 weeks

of methadone treatment. The PME levels showed an almost linear increase with time

on methadone and there was no difference in PDE levels between methadone groups.

Again, this contradicts the earlier study. There was also no evidence of correlations
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with measures ofprevious drug use.

Using the related technique of 'H-MRS to assess levels of N-acetylaspartate (NAA),

(Haselhorst et al., 2002) studied neuronal viability in 12 heroin-dependent patients

maintained on methadone( 10) or heroin(2) and 12 matched controls. They only

examined two voxels of 20x20x20mm in the medial and lateral frontal lobes, but the

difference in proportion of grey and white matter in these two regions allowed them

to draw inferences about differential effects in these different tissue types. They

showed a significant decrease in NAA level in medial frontal lobe, which was

equivalent to an estimated reduction in NAA in grey matter. There were a few

problems with this study, most notably the co-morbidity of the patients, where 1

patient had Generalised Anxiety Disorder and another had paranoid Schizophrenia.

Nevertheless, the group results showed no outliers suggesting a relatively robust

effect of long-term heroin use.

The perfusion studies have also supplied evidence that there may be chronic low-

level ischaemia disrupting the metabolism of the brain in opioid users. One study of

27 abstinent former heroin users and 9 healthy controls, demonstrated a number of

regions of significant hypoperfusion compared with healthy control subjects as well

as a trend for a global decrease in CBF in the abstinent group using resting HMPAO

SPET scans (Gerra et al., 1998). However, as found in the MRS study above, these

* changes were not related to the substance abuse history, but rather to other co-morbid

diagnoses of depression or antisocial personality disorder. Specifically, significant

hypo-perfusion in the right frontal and left temporal cortices was associated with co-
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morbid depression and hypo-perfusion in the right frontal lobe was also associated

with "antisocial tendencies".

These hypoperfusion deficits following chronic heroin were also seen in another

HMPAO SPET study from the same year (Danos et ai, 1998b). They scanned 16

heroin users in their first week of inpatient detoxification. At the time of scanning 13

of the 16 were on oral methadone substitution. Unfortunately it is not possible to tell

from the paper whether the subjects were in the process of complete detoxification

from opioids using a reducing methadone regime, or simply in transition from heroin

to methadone. There was no control group in this study, but the number of areas of

hypoperfusion reported was substantial. 11 of the 16 patients had at least one region

of hypoperfusion according to visual inspection of the images. Bilateral temporal

lobe regions were most likely to be affected, followed by frontal and then parietal

areas. For those subjects who were also on methadone the degree of hypo-perfusion

was inversely related to the methadone dose. In other words, those on higher

methadone doses had smaller decreases in perfusion. Interpretation of these results is

difficult. The lack of information in the paper means that the effects of acute

withdrawal symptoms, long-term heroin use and acute methadone dose are

impossible to disentangle. They do report a lack of correlation between opioid

withdrawal scores and rCBF, but the scale used is relatively insensitive and any

perfusion changes need not be closely reflected in the subjective responses.

The finding of perfusion deficits in cerebral regions seems to be a consistent finding.

There is an earlier HMPAO SPET study showing similar focal and multifocal
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perfusion deficits in 9 of 10 heroin users and none of the matched control group

(Rose et al., 1996). Although this study also used visual ratings to measure the

effects of the heroin use, there were several important differences in the

methodology. The heroin users in this study were a surprisingly clean sample with

no histories of significant co-morbidity or other dependencies. In contrast to the

* other studies above, we are also explicitly told that they were all detoxifying off

heroin with the use of clonidine and were drug free at the time of scanning. The

visual ratings were repeated by multiple blind raters. Encouragingly, the abnormal

scans all showed improvement at 3 weeks abstinence. However, this does raise the

possibility of the hypoperfusion being a side-effect of the clonidine, which is known

to lower blood pressure and pulse rate.

Krystal et al (1995) also showed a reduction in rCBF in a population receiving
I

chronic methadone treatment. In this study the effects are much easier to attribute to

specific states. 10 methadone-maintained heroin users and 10 matched controls were

scanned with HMPAO-SPET after saline or naloxone injections. The effects of the

naloxone are described later, but the between-group differences in rCBF following

saline injection give information on the effects of chronic methadone. Specifically

the methadone group showed significantly less rCBF compared to controls in the

parietal and frontal cortices, with a non-significant trend in the temporal cortex.

I They also showed significantly increased rCBF compared to controls in the thalamus

bilaterally. Compared to the later study (Rose et al., 1996) it shows a consistent

finding of decreased rCBF, but some mild disagreement over the localisation of the
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There are two studies, by the same group, on the effects of the opioid partial agonist

buprenorphine on rCBF using HMPAO-SPET in male cocaine dependent polydrug

users (Holman et al., 1993; Levin et al., 1995), who also examined baseline

perfusion in the same population (Holman et al., 1991). In the earlier study, the

authors examined 18 polydrug users. Of these, 7 met criteria for current opioid

dependence in addition to their cocaine dependence. Given that 16 of the 18 patients

had perfusion abnormalities we can be sure that at least some of the opioid users had

abnormalities. Unfortunately, no data was presented or reported for the opioid using

subgroup. The pattern of distribution of these focal hypoperfusion deficits was

widespread, but with sparing of the cerebellum and occipital cortex. The same group

examined a comparison group of 13 cocaine dependent women, 4 of whom also had

opiate dependence (Levin et al., 1994). In contrast to the men, they only found

statistically significant hypoperfusion deficits compared to controls in the subgroup

with dual dependence.

In both the buprenorphine studies they looked at its effects on abstinent comorbid

heroin and cocaine addicts (Holman et al., 1993; Levin et al., 1995). The earlier

study contained 10 patients and the latter study 15 patients who were all undergoing

methadone-assisted withdrawal from cocaine and heroin before transfer onto

buprenorphine. Although not explicitly reported, it can be deduced that all 35

patients, from both studies, had hypoperfusion deficits in early abstinence. Measured

levels of rCBF in these regions of hypoperfusion increased by 24% in the first 3
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weeks after detoxification in the first study. The effects of buprenorphine in both

studies are reported in the next section, but it is interesting to note here that the

second study had a placebo arm. In patients taking placebo there was a non¬

significant increase in the number of hypoperfusion defects by day 5 but this had

resolved to a non-significant decrease by day 21 after detoxification.

More recently these findings have been replicated in a cohort of heroin users

(Botelho et al., 2006). This was a cleaner cohort of just heroin users; all were

dependent on heroin with only a subset showing sporadic use of other substances.

Again, the main finding was of widespread hypoperfusion on HMPAO SPET

scanning at rest. There was a slightly different spread in the pattern of most

extensive hypoperfusion. In this study the largest deficits were seen in the orbito-

frontal and temporal cortices. In terms of attribution of cause this study does not

attempt to place the origins of the hypoperfusion at the door of other co-morbidities.

In this case the authors suggest that the aetiology lies in the combination of heroin

use and tobacco smoking. In common with other studies there was also no evidence

of recovery in the one subject who underwent repeat scanning after 10 weeks of

abstinence.

In contrast to the above studies that report deficits, at least two studies have

demonstrated increased function at rest in opioid users (Galynker et al., 2000;

Pezawas et al., 2002). In the first of these studies, they used the technique of l8FDG-

PET to measure regional cerebral glucose metabolism (rCMRglu) in methadone-

maintained opioid users, a group who were previously maintained on methadone and
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a control group (Galynker et al., 2000). At rest, they found an increase in rCMRglu

in the anterior cingulate gyrus in both current and previous methadone maintained

groups compared to controls. They argue that this may be a prolonged effect of

opioid dependence, or possibly evidence of a pre-existing pathology related to risk of

developing opioid addiction. No attempt was made to look for dose effects on this

change in metabolic rate. In the second, larger, study they used HMPAO-SPET to

demonstrate an increase in rCBF in twenty-one current opioid users at rest (Pezawas

et al., 2002). The significant increases compared to controls were in the superior

frontal, central and parietal cortices. However, they also demonstrated decreases in

the inferior frontal, occipital and temporal cortices, and basal ganglia. The most

interesting finding was a correlation between duration of opioid dependence and the

decrease of rCBF in the mesio-frontal cortex.

One group has used H2l50-PET to examine cerebral function on a gambling task

(Bolla et al., 2003) and a standard colour Stroop task (Bolla et al., 2004) in abstinent

cocaine users. They showed that the cocaine users had increased levels of activation

during the gambling task in the right orbito-frontal cortex (OFC) and decreased

activation in the right dorso-lateral prefrontal cortex (DLPFC) and left medial

prefrontal cortex (MPFC). Additional, unpredicted, effects were noted with

increased activation in left putamen and postcentral gyrus, and decreased activation

in right superior parietal lobule, the left medial frontal gyrus, left middle temporal

gyrus, and the right cerebellum, again compared to the levels of activation to the task

in the control group. The region in the right OFC was shown to have levels of
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activation that correlated with performance scores on the gambling task in both

groups, in the absence of performance differences between the groups. A measure of

drug use also showed negative correlation with activity in the left OFC. The later

study showed that cocaine users had an attenuated increase in function in the left

anterior cingulate and right pre-frontal cortices when naming colours incongruent to

the words when compared to controls. They also showed an increase in right anterior

cingulate cortex. Surprisingly, but as in the gambling task, they found no

performance difference between the control and cocaine using groups on this task

either. Taking both studies together the authors argue that cocaine use is associated

with abnormal levels of functioning, increased or decreased, in multiple brain regions

while performing tasks that require decision making and attentional load. Whether

increased or decreased activation corresponds to changes in efficiency of processing

or inability to activate damaged regions remains as unclear in these studies as it does

in many others.

Expanding further on this, another group later used the same imaging technique of

H2I50-PET to examine the different responses of current opioid or amphetamine

users with ex-users and a control group (Ersche et ai, 2005b). In this case the task

was based on the Cambridge Gambling Task where subjects have to choose between

high risk and low risk options to win or lose points. Again, in the scanner

environment and with smaller numbers, they failed to find the expected deficit in

functioning in the drug using population that had been previously found. In

agreement with the other study above, there was a distinct opposite pattern of
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activation in the left OFC and right DLPFC between controls and drug users. They

found only trends in differences between the opioid and amphetamine users, and

between current and former drug users. The potential explanations put forward in

this paper highlight the possible effects of poor impulse inhibition or altered affective

processing of stimuli that may result from, or predispose to, drug addiction.

Lastly, the case report literature is littered with reports of the potential neurotoxic

effects of the use of "street" opioids. Two main types of neurological insult are

reported most commonly, a spongiform leucoencephalopathy (Celius & Andersson,

1996) and hypoxic injury related to the respiratory depression of opioid overdose

(Vila & Chamorro, 1997). The spongiform leucoencephalopathy reported is

characterised by oedema of white matter in either the cerebrum or cerebellum,

sometimes also effecting grey matter. At the microscopic level there is swelling and

vacuolation of the myelin sheaths but sparing of the axons. The leucoencephalopathy

tends to occur sporadically and it has therefore been suggested that it may be related

to a neurotoxic contaminant rather then the heroin itself. There has been a recent

review that also highlights additional findings on diffusion-weighted MRI (Hagel et

al., 2005). They argue that the phenomenon is linked to heroin smoking only, not

injecting, and can also be fatal in some cases. There are also reports of ischaemic

infarcts, which may be related to embolic phenomena, either thrombo-embolic,

infective micro-emboli associated with the increased risk of endocarditis in intra¬

venous drug abuse, or foreign bodies from injection of insoluble contaminants.
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1.4.2 Cerebral activation studies

Cerebral activation studies use a variety of the techniques described above to

determine patterns of increased or decreased brain activity in any given state. The

studies described below use the techniques of fMRI, perfusion PET or SPET using

blood flow tracers, or metabolic PET using l8FDG. In this section the studies

discussed focus on the activation of the brain in response to drug, drug related stimuli

or withdrawal specifically, rather than the studies at rest described in the section

before. Again, the discussion is focused on opioid based studies unless other studies

related to specific effects of interest to the study of opioid relevant processes.

Table 1APrevious neuroimaging activation studies in addiction

Studv Population Technique Stimulus
Adinoff et al., 2001 Cocaine users HMPAO SPECT Procaine
Adler etal., 1997 Healthy volunteers h215o-pet Fentanyl and pain
Anderson et ah, 2006 Cocaine users fMRI Cue-responses in cerebellum
Becerra et al., 2006 Healthy volunteers fMRI Morphine
Breiter etal., 1997 Cocaine users fMRI Cocaine

Brody et al., 2002 Smokers l8FDG-PET Cigarette craving
Brody et al., 2004a Smokers 18FDG-PET Bupropion on cue induced

anterior cingulate activation
Casey et al., 2000 Healthy volunteers H2150-PET Fentanyl +/- pain
Childress et al., 1999 Cocaine users & Healthy Cue induced cocaine craving

volunteers
Christensen et al., 2000 Cocaine users Proton Density MRI Cocaine
Daniel et al., 1991 Schizophrenics l33Xe SPECT rCBF Amphetamine
De Wit et al., 1991 Healthy volunteers 1KFDG-PET Diazepam
Ernst et al., 1997 Healthy volunteers l8FDG-PET Dex-amphetamine
Firestone et al., 1996 Healthy volunteers H2150-PET Fentanyl
Forman et al., 2004 Heroin users and Healthy fMRI Go/NoGo task

volunteers
Garavan et al., 2000 Cocaine users & Healthy fMRI Cue-induced cocaine craving

volunteers
Gilman etal., 1996a Alcoholic l8FDG-PET & Disulfiram

"C-Flumazenil
Grant etal., 1996 Cocaine users Cue induced craving
Honey et al., 2003 Healthy volunteers fMRI Connectivity Variety of drugs including

sulpiride, methylphenidate,
diazepam etc.

Johnson-Greene et al., 1997Alcoholics 1,8FDG-PET Before and after relapse
Jones et al., 1991 Chronic pain patient C15O2 Morphine
Kaufman et al., 1998a Cocaine DSC-MRI Cocaine
Kilts et al., 2001 8 Crack using men H2l50-PET Cocaine craving
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jKosten etal., 2006 17 cocaine users in double- fMRI Cocaine cues (predicted relapse)
blind sertraline trial

Krystal etal., 1995 Methadone users SPECT Naloxone
Kufahl etal., 2005 Cocaine users fMRI Cocaine

Langleben et al., 2008b Heroin users rCBF Heroin craving
Lee TM et al., 2005 Heroin users and Healthy fMRI Impulsivity task

volunteers

Leppa etal., 2006 Healthy volunteers fMRI Remifentanil
Levin etal., 1998 Healthy volunteers fMRI Photic stimulation after alcohol
Li et al., 2000 Cocaine dependent fMRI connectivity Cocaine
London et al., 1990a Polydrug users 18FDG-PET Morphine
Londoner al., 1990b Cocaine users 18FDG-PET Cocaine
Lorenz etal., 2000 Healthy volunteers perfusion MR1 Remifentanil
Maas et al., 1998 Cocaine users fMRI Cue-induced cocaine craving
Martin etal., 1992 Chronic organic brain disorders18FDG-PET Rest

from alcohol
Martin-Soelch etal., 2001 Methadone users H2150-PET Reward task

jMathew etal., 1985 Healthy volunteers rCBF Diazepam
Mathew, Wilson, 1986 Healthy volunteers 133Xe SPECT rCBF Alcohol
Mathew etal., 1996 6 Cocaine users 133Xe SPECT rCBF Before & after cocaine
Mathew et al., 1997 Marijuana smokers h215o-pet Marijuana
Matthew etal., 1995 Healthy volunteers h2'5o-pet Benzodiazepine
Matochik etal., 1993 ADHD adults 18FDG-PET Stimulants
McClernon et al., 2005 Abstinent smokers fMRI Smoking cues
Modell & Mountz, 1995 Alcohol SPECT rCBF Alcohol craving
Moeller et al., 2004 MDMA users fMRI Working memory task
Pearlson etal., 1993 Abstinent cocaine users HMPAO SPECT Cocaine

Risinger et al., 2005 Cocaine users fMRI Cocaine
Sano et al., 1993 Healthy volunteers rCBF Alcohol

Schlaepferera/., 1998 Opiate users rCBF Opiates
Sell etal., 1997 Opiate users fMRI Heroin craving
Sell etal., 1999 Opiate users h215o-pet Heroin craving
Sell et al., 2000 Opiate users h215o-pet Heroin craving
jSilveri etal., 2004a Healthy volunteers T2 MRI Methylphenidate
jstapleton et al., 2003 Smokers and Healthy 18FDG-PET Nicotine

volunteers

Stapleton etal., 1995 Poly drug users l8FDG-PET Placebo (cocaine)
Streeter et al., 1998b Or Healthy volunteers with MRI with Alprazolam
Streeter etal., 1998a alcoholism family history gadolinium contrast

after

Streeter et al., 2005 Cocaine users GABA-MRS Venlafaxine or pramipexole
Theodore et al., 1986 Healthy volunteers 18FDG-PET Barbiturates

Neurology 36(l):60-64
Tiihonen etal., 1994 Healthy volunteers rCBF Alcohol
van Dyck et al., 1994 Buprenorphine users HMPAO SPECT Naloxone precipitated opioid

withdrawal
Veselis etal., 1997 Healthy volunteers rCBF Midazolam
iVolkow eta/., 1988b Alcohol intoxication H2150-PET Alcohol

|Volkow etal., 1990b Healthy volunteers i8FDG-PET Alcohol
fVolkoweta/., 1991b Cannabis users l8FDG-PET Tetra-hydro-cannabinol
[Volkow et al., 1991a Cocaine dependent 18FDG-PET Cocaine withdrawal
Volkow et al., 1992b Alcoholics 18FDG-PET Rest
Volkow et al., 1992c Cocaine users 18FDG-PET Rest
iVolkow et al., 1993a Cocaine users 18FDG-PET & "C- Rest

Raclopride
Volkow et al., 1993b Alcoholics 18fdg-pet Lorazepam
Volkow etal., 1994 Alcoholic in recovery 18FDG-PET Rest

Volkoweta/., 1995b At risk for alcoholism 18FDG-PET Lorazepam
[Volkow et al., 1996a Marijuana users 18FDG-PET Before & after marijuana
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Volkow eta!., 1997b Healthy volunteers l8FDG-PET Methylphenidate
Volkow et al., 1997d Alcoholics ,8FDG-PET Lorazepam
Volkow et al., 1998b Healthy volunteers l8FDG-PET Methylphenidate
Volkow et al., 1998c Cocaine users 18FDG-PET Benzodiazepine
Volkow et al., 1999b Cocaine users 18FDG-PET Cocaine craving &

methylphenidate
Volkow et al., 2000b Cocaine users l8FDG-PET Alcohol
Volkow et al., 2001 Methamphetamine users 18FDG-PET
Volkow et al., 2003 Healthy volunteers 18FDG-PET Expecting methylphenidate
Volkow et al., 2005 Cocaine users vs Healthy 18FDG-PET Methylphenidate

volunteers
Volkow et al., 2006 Healthy volunteers 18FDG-PET Low dose alcohol

Wagner et al., 2001 Healthy volunteers h2i5o-pet Remifentanil
Wallace et al., 1996 Cocaine users rCBF on Cocaine
Walsh et al., 1994 Heroin users 18FDG-PET Buprenorphine
Wang et al., 1994 Healthy volunteer rCBF after Methylphenidate
Wang et al., 1998 Female alcoholics 18FDG-PET
Wang et al., 1999b Healthy volunteers 18FDG-PET Lorazepam
Wang etal, 1999a Cocaine users18FDG 18FDG-PET Cocaine craving
Wang et al., 2000 Healthy volunteers 18FDG-PET Alcohol

Wang et al., 2004 Long abstinent 18FDG-PET Rest

Wendt et al., 1994
methamphetamine users
Healthy volunteers rCBF Alcohol

Wexler et al., 2001 Cocaine users fMRI Cocaine craving
Wik etal., 1988 Alcoholics and Healthy "C-glucose

volunteers
Wise et al., 2002 Healthy volunteers fMRI Pain on/off remifcntanil
Wolkin et al., 1987 Healthy volunteer and Sz 18FDG-PET Amphetamine
Wrase et al., 2002 Alcoholics and Healthy fMRI Alcohol and neutral cues

volunteers
Yiicel et al., 2007 Heroin users 'H-MRS and fMRI Task on methadone or

buprenorphine

1.4.2.1 Acute response to drug

One of the most obvious ways to study the effects of drugs of abuse is to give known

doses of drug and measure the effects. This idea has been tried with research

subjects being given opioid drugs while imaging the resultant effects in the brain.

Unfortunately there are many practical problems and constraints that have to be dealt

with resulting from the process of functional neuroimaging. One of the largest

problems is the nature of the scanner environment. Much work has been done that

shows that the "set and setting" in which a drug is taken heavily influences the

subjective effects of the drug. Animal work also suggests that there are differences

in effect dependant on whether the drug is experimenter-administered or self-
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administered.

Another major problem relates to the stage of dependence the subject population is at

during the study. A significant minority of these studies are done on healthy ("opiate

nai've") volunteers. This may be the most straight forward trial to run, however there

is considerable doubt as to how generalisable any findings would be to the

understanding of addiction. Given the nature of addiction and dependence, it is

highly unlikely that opioids or other drugs of abuse are having identical effects on

those with long-standing addiction as on those who have never used the drug before.

Aside from the complex issues of neuroadaptation and altered responses to drug,

there is also the much simpler question of equivalent doses. Tolerance is often so

marked in those with opioid addiction that the minimum dose required to get an

effect would be fatal to an opioid-naive volunteer.

If the subjects are actively dependent then their recent drug use will impinge heavily

on any neuroimaging results as opioids can take many days to fully washout from the

brain. If the subjects are in treatment then they are likely to be maintained on long-

acting substitute opioids like methadone, which take even longer to washout. If the

subjects are opioid-free then this is almost certainly going to be as a result of

detoxification with permanent abstinence as the long-term goal, in which case the

ethics of administration of an opioid require very careful scrutiny. Inevitably a

compromise between scientific rigour and practical and ethical considerations has to

be achieved. Therefore the results of all neuroimaging studies using this type of

paradigm need to be interpreted in the light of such a compromise.
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There are a few studies of the acute effects of opioid drugs in healthy volunteers

using functional neuroimaging. One group has used H2I50 PET to measure regional

cerebral blood flow (rCBF) in healthy volunteers in response to acute doses of

fentanyl at rest (Firestone et al., 1996) and on acute pain (Adler et al., 1997).

Fentanyl was shown to consistently increase rCBF in the anterior cingulate cortex,

irrespective of whether the subject was in pain or resting. In the first study, in the

resting state, fentanyl also produced increases in rCBF in the prefrontal and orbito-

frontal cortices and caudate nucleus. Fentanyl also caused decreases in rCBF in the

thalamus, frontal, temporal and cerebellar regions. Interestingly the effect of

fentanyl on rCBF changes induced by pain was to augment the increase in rCBF in

the supplementary motor area and left inferior frontal cortex. No global effects were

detectable in either study as this is removed at the modelling stage and cannot be

properly quantified without calibration from an arterial input function. These

findings of increased anterior cingulate activation to fentanyl in healthy volunteers

was later replicated (Casey et al., 2000). Although they measured subjective hedonic

responses to the fentanyl, there was no evidence of rCBF changes correlated with

this response. Jones et al., (1991) also studied the effects on rCBF of an analgesic

dose of morphine in a single patient with chronic pain. In this case morphine

induced increases in rCBF in similar areas, specifically the anterior cingulate,

prefrontal cortex, caudate and putamen. Increased rCBF was also seen in the insular

cortex contralateral to the site of the pain and ipsilateral temporal cortex. However,

an fMRI study of the effects of remifentanil in healthy volunteers showed an almost



opposite effect (Wise et al., 2002). In this study the increases in BOLD signal from a

noxious stimulus were significantly attenuated by the opioid infusion in both the

insular and anterior cingulate cortices. Unfortunately, it is not possible to directly

compare the studies as the absolute effects of remifentanil were not studied and the

analysis was restricted to brain regions activated by the pain stimulus.

A subsequent fMRI study of the effect of morphine on healthy volunteers has already

neatly summarised the brain systems implicated in the actions of opioids (Becerra et

al., 2006). In this study healthy volunteers underwent fMRI scanning during

infusions of morphine and saline placebo. The authors present a collection of

previous work looking at the overlap between patterns of activation and deactivation

in response to morphine with those of other stimuli that elicit particular subsets of the

effects. For example the pattern of deactivation in thalamus and a selection of

cortical areas from morphine matches that seen in response to another sedative drug,

propofol. Of more specific interest to the study of addiction was the increase in

BOLD signal in nucleus accumbens, orbito-frontal cortex, putamen, hippocampus

and extended amygdala. They also noted a decrease in BOLD signal in the anterior

cingulate gyrus, thalamus and peri-aqueductal nucleus. In this study they also

presented the time course of the responses to morphine, demonstrating another

advantage of IMRI's temporal resolution. A similar method was used to study the

fMRI responses to the ultra-short acting opioid remifentanil (Leppa et al., 2006).

The six healthy volunteers in this study showed a widespread BOLD response to the

remifentanil infusion. The largest response, by a considerable margin, was in the



precuneus. In general the BOLD responses for the activated brain regions divided

into two groups. The cortical regions responded to the remifentanil infusion with a

rapid increase in activation followed by an exponential decay matching the

subjective experiences reported. By contrast, the sub-cortical regions showed a

much slower increase in activation followed by a plateau phase before a slow

decline.

All of the above studies have detailed the effects of opioids on regional brain

activation patterns. There is one study that has used contrast-enhanced perfusion

MRI to measure the effects of opioid on absolute measures of rCBF (Lorenz et al.,

2000). This study demonstrated that as well as the regional effects reported

elsewhere, there was a global increase in CBF although this was minimal in occipital

cortex and white matter.

As can be seen from the above summaries of multiple studies, the effects of acute

doses of opioids in healthy volunteers can be contradictory. This may be partly

explained by a number of factors. The effects of measuring absolute versus relative

changes can lead to differences in results as shown (Lorenz et al., 2000). If the

whole brain shows a global increase, but some areas increase by a smaller amount

than the average then this can be seen as a relative decrease in rCBF. However, there

is another effect that we have not yet considered, that of dose. One study has studied

the effects of two doses of remifentanil on rCBF in healthy volunteers (Wagner et al.,

2001). This study showed that low and moderate doses can have opposing effects on

rCBF within the same individual. This effect was observed in a group of healthy
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volunteers who should all have a similar lack of opioid tolerance. Ifwe then add the

difficulties of trying to calculate equipotent doses of different opioids to compare

between studies we can see why some results may be contradictory. As will be seen

later in this section, this will become even more complex when differing levels of

opioid tolerance have to be considered both within and between different study

populations.

Study Stimulus
cortical subcortical

AntCingulate Post.Cingulate MedFrontal DLPFC Inffrontal somatosensory supplementarymotor precuneus Temporal occipital Insula thalamus caudate putamen hippocampus amygdala cerebellum
Firestone et

al., 1996
fentanyl
H215O PET

T 1 T " 1 i 1 " T - (!) - !

Casey et
al., 2000

fentanyl
H215O PET

T - T T

Becerra et

al., 2006
morphine
fMRI

- " 1 T 1 - 1 - - I t t T T 1

Leppa et
al., 2006

remifentanil
fMRI

T t T - T - T T " T T T " T t t

Lorenz et

al., 2000
remifentanil

perfusion
MRI

" ~ t " T ~ T T ~ T ~ t t T " " ~

Adlereta/.,
1997

fentanyl
H2'5O PET

t I 1 i

Wagner et
al., 2001

remifentanil

(low)
H215O PET

I T t !

remifentanil

(moderate)
H215O PET

t r T T t

Table 1.5: Healthy volunteer responses to opioids, "f " =increased activation "J, "=decreased
activation "=no change, empty square means the region not reported.
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cortical subcortical

Study Stimulus

AntCingulate Post.Cingulate MedFrontal DLPFC Inffrontal somatosensory precuneus Temporal occipital Insula thalamus caudate putamen hippocampus amygdala cerebellum
Casey
2000

et al., fentanyl
H2I50 PET

T 1 - I i

Adler
1997

et al., fentanyl
H215O PET

- I " -

Jones
1991

et al., morphine
C15O2 PET

T T t T T t

Wise
2002

et al., remifentani
1 fMRI

I 1

Table 1.6: Responses to opioids ofsubjects in pain, "f " =increased activation "J, "=decreased
activation "=no change, empty square means the region not reported.

Overall the pattern of responses observed in healthy volunteers matches what would

be expected from the known pharmacological properties of opioids; there are

inhibitory effects in areas rich in opioid receptors and downstream activation in

dopamine rich areas released from inhibition. In addition there are responses in areas

known to be implicated in the circuits ofpain perception and affect.

Bearing in mind what we have said above, the studies of the effects of acute opioid

doses have generally either looked at the effects in users who were currently

abstinent or who were currently actively dependent. Schlaepfer et al., (1998) studied

the effects of two opioids with different receptor profiles on rCBF using HMPAO

SPET. The opioids studied were hydromorphone which is a p full agonist, and

butorphanol which is a p partial-agonist and a k full agonist. This study allows us to

see the differential effects of opioid action on different receptor subtypes on both

subjective mental state and rCBF simultaneously. Butorphanol produced subjective
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results of "bad effects" and "LSD-like effects" with a diffuse pattern of activation of

rCBF, especially in the anterior temporal lobes. Hydromorphone produced

euphoriant effects and increased rCBF in the anterior cingulate, thalamus and

amygdala regions.

The effects of acute doses ofmorphine on regional cerebral metabolic rate of glucose

(rCMRglu) were studied by London et al., (1990a). As has been demonstrated in

several paradigms, morphine induced a global decrease in cerebral activity as

measured by CMRglu using 18F-fluorodeoxyglucose (18FDG) with PET scanning.

These changes were widespread throughout the brain, with many regions showing

significant reductions in the frontal, parietal and temporal cortices. Anterior

cingulate region, caudate nucleus and amygdala also showed significant reductions.

Of all these regions, only four showed any significant correlation with the subjective

measures of morphine effects that were taken during the scan. Both the paracentral

lobule and left cerebellar cortex showed positive correlations with the subjective

response and two regions in the occipital cortex showed negative correlations. There

is an obvious discrepancy between these studies with one showing increases in rCBF

and the other showing decreases in rCMRglu. These may be explained by the

differences in the method of correction for global changes between the two studies,

as regions that show a smaller reduction in rCBF than the decrease in the whole brain

will appear as increases in rCBF when the global changes are partialled out of the

statistical model. However, there are other possible explanations for the differences

related to timing of the acute drug dose with the injection of radio-tracer, or
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differences between glucose metabolism and blood flow, for example.

In a similar study, Sell et al (1997) used fMRI to examine the acute effects of heroin

injection in users maintained on methadone and heroin. They only examined the

effects of the drug on responses to photic stimulation. The effect of the heroin on the

visual cortex was to decrease the blood oxygen level dependent (BOLD) response to

the photic stimulation. This is consistent with the reported effects of morphine to

reduce global cerebral metabolism, but not consistent with the reported lack of effect

in the visual cortex in the same study (London et al., 1990a). However, another later

opioid study did show a reduction in occipital lobe activity (Walsh et al., 1994). An

identical effect has been reported with alcohol (Levin et al., 1998). In a later study,

Sell et al (1999) used PET to study rCBF changes in response to heroin and heroin-

related cues. In this study heroin injection caused increases in rCBF in the brain

stem, at the level of the peri-aqueductal grey matter (PAG) and the ventral tegmental

area (VTA).

The effects of buprenorphine, an opioid mu partial agonist and kappa antagonist,

have been studied (Walsh et al., 1994). This study used ,8FDG to examine rCMRglu

in polydrug abusers using a placebo-controlled, double blind design. Buprenorphine

produced a global decrease in cerebral metabolism, as is consistent with the effects of

other opioids reported above. The regions most affected were medial thalamus,

orbito-frontal cortex and hippocampus. However, there were very few regions that

did not show some reduction in rCMRglu in response to the buprenorphine injection.

Surprisingly, given the results from other studies (e.g. London et al., 1990a) the
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amygdala was one of these regions that did not show a response. However, while

this may reveal a difference in the effects of morphine and buprenorphine, or the

experimental setting, it may well represent differences in the statistical methods of

analysis and the effects of use of different statistical thresholds used to guard against

false positive results.

The main finding with imaging studies of the effects of acute doses of abused drug is

the overlap in the regions affected, irrespective of the drug given. In general, acute

doses of drugs of abuse cause a global decrease in brain activation as measured by

18FDG PET scanning. This occurs with opioids (London et al., 1990a; Walsh et al.,

1994), nicotine (Stapleton et al., 2003) and stimulants (London et al., 1990b). The

opioid study is described above, but the stimulant study reports the widespread effect

of cocaine injection, which caused a reduction in rCMRglu in every brain region

studied, except the cerebellum and pons. The same effect has been shown using

i33Xe SPET where amphetamine reduced global blood flow at rest in patients with

schizophrenia (Daniel et al., 1991). Cocaine has been shown to increase the velocity

of blood flow, including cerebral blood flow, but concurrent reduction in cerebral

blood volume, presumably related to vasoconstriction (Kaufman et al., 1998a;

Kaufman et al., 1998b). l33Xe SPET also demonstrated acute increases in CBF

following intravenous cocaine in contrast to the other studies (Mathew et al., 1996).

This study also showed a correlation between subjective intoxication and right

parietal rCBF. The reasons for these discrepancies are not obvious, but may relate to

dose of cocaine as well as imaging technique. The same group also showed acute
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increased in rCBF following infusions of delta-9-THC (Mathew et al., 1997). There

were global increases, but also regional increases, particularly in bilateral frontal

regions, insula, anterior cingulate gyrus, right amygdala and hippocampus.

What is not clear, is whether these apparent reductions in brain activation are true

representations of decreased neuronal demand for blood flow (measured by H2I50 or

"Tm-HMPAO) or energy (measured by l8FDG), or perhaps reduced tracer delivery

secondary to vascular constriction caused by the drug. There is at least one study

that argues against this interpretation (Ernst et al., 1997), it showed an acute increase

in ISFDG following intravenous amphetamine. However, this was not done at rest,

and perhaps more likely represents an interaction between dex-amphetamine and the

cognitive task given.

Against this background of decreased activation, acute doses have still been shown to

produce relative increases in brain activation in specific regions. Again, the pattern

emerges that multiple different drugs affect common areas. For example, acute doses

of an abused opioid (hydromorphone, Schlaepfer et al., 1998) and cocaine (Breiter et

al., 1997) have produced relative increases in brain activation in the anterior

cingulate, thalamus and amygdala. Because methylphenidate is also a dopamine re¬

uptake inhibitor like cocaine, it has been used to mimic the effects of cocaine in

cocaine users and has induced activation in the basal ganglia and orbito-frontal

cortex (Volkow et al., 1999b). This activation was also shown to correlate with drug-

induced craving for cocaine.

Alcohol appears to be the "odd one out" in its acute effects on blood flow. Probably
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as a direct result of its vasodilator effects it appears to produce acute increases in

CBF (Mathew & Wilson, 1986; Newlin et al., 1982). The early methodology used in

this study makes it difficult to reliably identify regional effects, but the increases in

rCBF appear more pronounced in frontal regions and in the right hemisphere.

Injected cocaine, rather than a substitute, was shown in one study to induce activity,

as measured with fMRI, in three distinct temporal patterns (Breiter et al., 1997).

Subjects reported an initial "rush" in response to the cocaine that correlated with the

time course of activation in the basal forebrain, ventral tegmental area (VTA), insula

cortex, thalamus, prefrontal cortex and caudate bilaterally, plus the right cingulate

cortex. The VTA is one of the two sites of dopamine neuron cell bodies and the

origin of the ascending meso-cortico-limbic dopamine pathway, long implicated in

substance misuse. A later network also appeared, related to the subjective experience

of "craving", involving the nucleus accumbens (NAcc), amygdala and right

parahippocampal gyrus. Interestingly, these are regions frequently found with cue-

exposure paradigms. A later, more sophisticated, study also showed patterns of

activation that differed between craving and high following cocaine injections

(Risinger et al., 2005). Specifically, high showed positive correlations with caudate,

posterior cingulate and cerebellar regions. It was negatively correlated with craving,

which was associated with activation in Nucleus Accumbens, orbito-frontal cortex

and anterior cingulate cortex. The discrepancies may relate to the later study

involving the effects of multiple cocaine injections, thereby altering the relationship

between expectation of the next dose, acute drug effects and subjective states from
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the previous dose.

A later study using a similar paradigm, but different fMRI imaging sequence, showed

a different pattern of BOLD response to IV cocaine infusions. In comparison to a

saline infusion, the cocaine infusion induced increased BOLD signal in the orbito-

frontal cortex, with some lesser activation in the anterior insula and dorso-lateral pre¬

frontal cortex. There were also cocaine induced decreases in basal ganglia, including

the ventral striatum, ventral tegmental area, amygdala and posterior orbital gyrus

(Kufahl et ai, 2005). As before, attempts were made to relate the measured BOLD

response to the subjective experiences of "High" and "Craving". In this case there

was much more overlap in regions associated with each rating scale. The "high"

scale was temporally associated most with changes in the Nucleus accumbens and

anterior orbito-frontal cortex. The "craving" scale was more tightly associated with a

wider area in the orbito-frontal gyrus.
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Study Stimulus
cortical subcortical

AntCingulate Post.Cingulate MedFrontal DLPFC Inffrontal somatosensory supplementarymotor precuneus Temporal occipital Insula thalamus caudate putamen hippocampus amygdala midbrain cerebellum
Schlaepfer
et at., 1998

butorphanol
HMPAO SPET

T

hydromorphone
HMPAO SPET

T t T

London et

al., 1990a
morphine
18FDG

1 1 - 1 1 4 4 4 4 4 4

Sell et al.,
1997

heroin fMRl 4

Sell et al.,
1999

heroin H2150
PET

T

Walsh et

al., 1994
buprenorphine
ISFDG

1 1 - " 4 - - 1 1 4 4 4 4 4 - 4 4

Table 1.7: Responses to opioids in opioid dependent subjects, "f" =increased activation
"J, "=decreased activation "=no change, empty square means the region not reported.

1.4.2.2 Acute drug withdrawal

There are fewer studies examining the effects of acute withdrawal than the effects of

prolonged use or acute doses, but they show a matching tendency for global

activation to increase during withdrawal from both cocaine (Volkow et al., 1994) and

opiates (van Dyck et al., 1994). However, precipitated opioid withdrawal appears to

have little consistent effect on rCBF (Krystal et al., 1995).

I
It is well known that administration of an opioid antagonist (e.g. naloxone or

naltrexone) to an opioid-dependent individual will precipitate the opioid withdrawal

syndrome by displacing the agonist (e.g. heroin or methadone) from the receptors.
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HMPAO SPET has been used to study the effects of naltrexone precipitated

withdrawal from buprenorphine on rCBF (van Dyck et al., 1994). They showed no

significant changes in rCBF in response to the withdrawals compared to the placebo

condition, but did show that rCBF in the anterior cingulate region was inversely

associated with the severity of the opioid withdrawal induced. Krystal et al (1995),

in the study already mentioned above, also looked at rCBF changes in response to

naloxone precipitated withdrawals in subjects maintained on methadone. There was

a significant reduction in global CBF in the methadone group, with no reduction in

the control group (Krystal et al., 1995). Surprisingly, the control group showed a

significant decrease in rCBF in the right parietal cortex and a significant increase in

temporal cortex in response to naloxone, where the methadone group showed no

regional changes at all.

1.4.2.3 Craving & neural circuits

The above studies related to acute responses to doses of drug or acute withdrawal.

However, there is an extensive literature on the responses to drug-related stimuli.

Such stimuli have been shown to provoke a variety of physiological and cognitive

responses. Craving is a term often used by opiate dependent individuals to explain

their relapses to heroin use, but it has proved difficult to define this term rigorously

in a scientific context (Pickens & Johanson, 1992; Robinson & Berridge, 1993).

Although not explicitly used in ICD-10 (World Health Organization, 1992) or DSM-

IV (American Psychiatric Association, 1994), both systems refer to "a persistent
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desire" or "strong desire or sense of compulsion" when defining the dependence

syndrome.

Cue-responsivity, or cue-exposure has been repeatedly used to study craving. The

term refers to the ability of situations, drug paraphernalia and mood states or

memories associated with previous drug use to effect the desire to use the drug

(Childress et al., 1988b). Responses to such cues can be drug-like, drug opponent or

withdrawal-like and may lead to the subjective experience of craving and/or the re¬

initiation or perpetuation of drug-seeking behaviour (Koob, 2000). Consequently,

the issue of cue-responsivity has received much attention offering possible avenues

for relapse prevention treatment (Dawe et al., 1993).

A multitude of different combinations of imaging techniques and craving induction

paradigms have been studied. Most of this work has been restricted to cocaine

craving with only much smaller amounts focused on other drugs like alcohol, opioids

or cigarettes. The variety of craving-induction paradigms has been extensive. Some

studies have used video stimuli showing drug related activities, such as buying or

using the drug (e.g. Childress et al., 1999; Garavan et al., 2000; Maas et al., 1998),

others have used handling drug related paraphernalia and some have used both (e.g.

Brody et al., 2002; Grant et al., 1996). Some studies went further and either

administered, or promised to allow later consumption of, the drug (e.g. Grant et al.,

1996).

Previous work by my predecessor in the Psychopharmacology Unit has shown that

craving for drugs, in individuals who were dependent, can be induced by using a cue-
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exposure paradigm of autobiographical scripts (Weinstein et al., 1997) even in

individuals who have remained abstinent from opiates for at least one year

(Weinstein et al., 1998). Similar work has been done elsewhere since (e.g. Kilts et

al, 2001).

As shown above, in Table 1.7, for responses to acute doses of opioid, the pattern of

brain activity demonstrated by craving studies is varied. This is not surprising given

the wide variety of methodologies and subject groups. There are, however, several

brain areas that are reported to show activations consistently across paradigms,

particularly the dorso-lateral pre-frontal cortex (Brody et al., 2002; Grant et al.,

1996; Maas et al., 1998), anterior cingulate cortex (Brody et al., 2002; Childress et

al., 1999; Kilts et al., 2001; Maas et al., 1998; Risinger et al., 2005; Sell etal., 1999;

Wexler et al., 2001), amygdala (Childress et al., 1999; Garavan et al., 2000; Grant et

al., 1996; Kilts et al., 2001) and orbito-frontal cortex (Brody et al., 2004a; Brody et

al., 2002; Childress et al., 1999; Risinger et al., 2005; Sell et al., 2000; Stapleton et

al., 1995; Volkow et al., 1999b; Wang et al., 1999a). One study using fMRI also

showed activation in the anterior cingulate with cocaine related stimuli in subjects

who reported no subjective experience of craving (Wexler et al., 2001).

Stapleton et al., (1995) showed that an injection of placebo cocaine produced an

increase in rCMRglu in the orbito-frontal cortex. The authors reported the study as

* showing that rCMRglu was altered in polydrug users compared to controls. In fact,

the subjects were all recruited as part of a study examining the effects of cocaine

injections on rCMRglu uptake in polydrug users. The control subjects had placebo
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injections on every occasion, but the polydrug users were given cocaine or placebo

injections in a randomised, double-blind manner. The authors are reporting a

comparison of the placebo scans of controls and drug users. While also reporting

reduced uptake in the occipital cortex of the drug users, they report increased

rCMRglu in the orbito-frontal, superior frontal, superior temporal and insular

cortices. Nearly all these regions have been reported to be activated in craving in at

least one other study.

Very few of the above cited studies of craving have examined opioid, or specifically

heroin, craving; nearly all have been concerned with cocaine craving. Only two

published studies have actually looked at heroin craving (Langleben et al., 2008a;

Sell et al., 1999; Sell et al., 2000). In the earlier study (Sell et al., 1999; Sell et al.,

2000), heroin users were shown neutral or heroin related videos before and after an <

injection of heroin or placebo. In this way it was possible to look at both the effects

of heroin, video cues for heroin and the interaction between the two. Subjects each

had 6 scans using H2I50-PET on two separate days, one for heroin and the other for

the placebo injections. As predicted, the drug-related video induced an "urge to use"

heroin which attenuated with repetition, and the heroin induced a significant "high".

The subjective "urge to use" correlated with rCBF in prefrontal cortex, specifically in

inferior frontal cortex and orbito-frontal cortex. An unpredicted finding, which
4

remained highly significant following correction for multiple comparisons, was a

strong positive correlation with a posterior cingulate region corresponding with the

right precuneus. A further unpredicted finding was a significant correlation between
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urge and bilateral reductions in neural response in the occipital cortex. Subjective

"high" ratings showed correlation with the hippocampus bilaterally, but these did not

survive correction for multiple comparisons. Absolute cerebral blood flow was not

measured, but the drug-related video induced increased rCBF in the brainstem

surrounding the peri-aqueductal grey matter and the ventral tegmental area in a

similar manner to heroin itself. Unlike the heroin, the drug-related video also

provoked increased rCBF in the left insula and bilateral cerebellar cortices. The

interaction effects are harder to describe, but the effect of the drug-related video on

the anterior cingulate, left dorso-lateral pre-frontal cortices and the left extended

amygdala were significantly modulated by the level of activation in the brainstem

provoked by the heroin injection. This type of interaction is termed a psycho¬

physiological interaction and will be dealt with in more detail in the next section on

connectivity.

The second study, of 25 methadone-maintained former heroin users, used fMRI to

examine the effect of methadone on craving responses to heroin related visual stimuli

(Langleben et al., 2008a). Most of the subjects were scanned at two time points; the

first was 90minutes pre-methadone and the second 90 minutes post-methadone dose.

The first analysis of the effects of the heroin-related stimuli produced activation in

the familiar regions of anterior cingulate, orbito-frontal and insular cortices as well as

the amygdala and hippocampus. What was particularly interesting about this study

was that the responses in the left and right orbito-frontal cortex, insulae and

hippocampal complex, and the left amygdala were reduced by methadone; although
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the effect in the orbito-frontal cortex was relatively small. By contrast, the anterior

cingulate effect of the stimuli was not significantly altered by the methadone. The

authors argue that this may explain the reduced effects of methadone on craving,

mediated via the orbito-frontal and anterior cingulate cortices, compared to the larger

effects on perceived interoceptive state, mediated by the amygdala and insula areas.

1.4.2.4 What is connectivity - effective and functional?

Traditionally, studies of neural activation using functional neuroimaging have used

analysis techniques designed to demonstrate whether or not a region is activated by a

specific task or stimulus. Connectivity concerns linkage between such brain regions.

The technique was originally applied to EEG and single-unit recording data analysis.

There have been two particular types of connectivity that have been described:

functional and effective (Gerstein & Perkel, 1969 as cited in Friston et al., 1993).

Functional connectivity is the simpler form, based on temporal correlation between

levels of activity in the brain regions. The premise is that brain regions involved in

the same function will tend to be activated at the same time and deactivated at the

same time. Therefore, activation levels in such areas should be temporally

correlated. Obviously, searching for such correlations requires a time-series of brain

images such as is acquired in typical fMRI or water-PET studies.

Effective connectivity is more complex. It requires a pre-defined, usually

anatomically derived, model of interconnections between the brain regions to be

specified. These connections are then examined using mathematical techniques such
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as dynamic causal modelling or structural equation modelling to assign strengths and

directions of modulation to the connections (see Buchel & Friston, 1997; Friston,

2002a; Friston, 2002b; Hampson et al., 2002; Mechelli et al., 2002 for examples).

Both techniques of measuring connectivity can be further expanded to examine

changes in the level of connectivity resulting from external manipulations, for

example drug administration or psychological task (Friston et al., 1997; Honey et al.,

2003).

1.4.2.5 Functional connectivity studies in dependence
To date, very few connectivity analyses have been carried out on functional

neuroimaging studies of substance misuse. The first was carried out by Sell et al

(Sell et al., 1999); who found activation in the midbrain in response to both a drug-

related video and an injection of heroin. They also carried out an analysis of

functional connectivity looking for regions showing a psycho-physiological

interaction. This describes the situation where either the correlation between two

regions is modulated by a psychological condition, or where neural activation in

response to a psychological stimulus is modulated by the level of activation in

another brain region. They report three areas where activity correlated with the level

of midbrain activation only during the drug-related video; specifically these regions

were the anterior cingulate and left dorso-lateral prefrontal cortices, and the left

extended amygdala. All of these are regions that other studies have implicated in

drug cue-responsivity. Heroin also appeared to alter the relationship between the

level of rCBF in the anterior cingulate and basal forebrain regions. The authors



suggest that this could be interpreted as heroin altering the manner in which these

brain areas respond to the presentation of drug-related stimuli via its effects on

midbrain activation.

Although not explicitly a study examining substance misuse, another group have

shown that methylphenidate tends to decrease both functional and effective

connectivity in a cortico-striatal-thalamic circuit activated by a spatial memory task

(Honey et al., 2003) and by nicotine (Jacobsen et al., 2004).

Cocaine also decreases local functional connectivity within brain regions (e.g. Motor

cortex, visual cortex) (Li et al., 2000). This study focused on correlations of activity

between voxels within the same localised region over the course of "spontaneous"

fluctuations in activity in a "resting" state. This analysis was conducted following

injections of saline and cocaine. The regions examined were specifically chosen to

be areas where there was minimal dopamine innervation. The authors suggest that

these measured decreases in local functional connectivity may be due to dopamine

effects on microvasculature or decreases in neuronal firing. Dopamine has known

effects on vascular walls in the brain (Krimer et al., 1998), however it is also known

that cocaine decreases regional cerebral glucose metabolism (London et al., 1990b)

which supports the cause being a simple decrease in "spontaneous" fluctuations

resulting in less measurable connectivity.

Some studies have examined the structural element of connectivity due to fears of the

neurotoxicity of some abused drugs. Cocaine has been demonstrated to produce

white matter lesions suggesting that this is one possible mechanism of altered
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connectivity which is particularly associated with stimulant misuse (Lim et al.,

2002). Using diffusion tensor imaging to examine white matter integrity, specific

disruption was noted in the orbito-frontal cortex of cocaine users. This region has

been implicated in the compulsive nature of drug craving and drug seeking

behaviours (Volkow et al., 2004a). The possibility of functional impairment of the

orbito-frontal cortex has been supported by data showing impairment in human drug

users in decision making functions related to orbito-frontal cortex at a level between

that of normal controls and patients with brain injuries in the orbito-frontal cortex

(Rogers et al., 1999).

1.4.3 Ligand studies
Table. 1.8 Previous neuroimaging ligand studies in addiction

Study
Bergstrom et al., 1998

Fardee/a/., 1994

iFowlereta/., 1989
Gilman et al., 1996a

Oilman et al, 1996b

Greenwald et al, 2003

Greenwald et al., 2007

Hagelberg et al., 2002b
Hagelbcrg et al., 2004b
Hietala et al, 1994
Jacobsen et al, 2000
Kaasinen et al, 2004b

Kaasinen et al., 2004a
Kling et al., 2000
Laineetal, 1994

Laine et al., 1999

'Laine et al., 2001

[Laruelle etal., 1995

Subjects
Single female back pain patient
and rats on fentanyl
Healthy men on alcohol and
alcoholics

Healthy human & baboon
Alcoholics on/off disulfiram

Controls & Chronic alcoholics +/-
cerebellar degeneration
Buprenorphine users, dose
response
Buprenorphine users, duration of
action

Healthy volunteers after alfentanil
Alfentanil in healthy subjects
Controls and abstinent Alcoholics
Cocaine abstinence

Healthy volunteers

Healthy volunteers
Users on methadone

Controls, alcoholics at 4 days and
4 weeks abstinence
Alcohol withdrawal

Controls and Alcoholics

Controls

Ligand
123I-beta-CIT

"C-Flumazenil

"C-cocaine
l8F-FDG& "C-
Flumazenil

- I8F-FDG & "C-
Flumazenil
"C-Carfentanil

"C-Carfentanil

Binding site
DAT & SERT

GABA-A

DAT
GABA-A

GABA-A

mu-opioid

mu-opioid

D2/3
D2/3
D2/3
DAT & SERT
D2/3

"C-Raclopride
"C-FLB 457

"C-Raclopride
l23I-P-CIT
Caffeine expectation
and "C-Raclopride
Caffeine "C-Raclopride D2/3
l8F-Cyclofoxy Mu,kappa-opioid
l23I-P-CIT DAT & SERT

,23I-P-C1T relationship DAT & SERT
to MADRS score

I23I-P-C1T and sensation DAT & SERT
seeking
l23I-IBZM after D2/3
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amphetamine
Laruelle et al., 1996 Controls and Sz 123I-IBZM after D2/3

amphetamine
Lingford-Hughes etal., 1998 Alcoholics l23I-IomazeniI GABA-A

Lingford-Hughes et al., 2000 Alcoholics women !23I-Iomazenil GABA-A
Litton et al., 1993 Controls and alcoholics "C-FIumazenil GABA-A
Malison et al., 1995 Cocaine addicts 123I-|3-CIT after cocaine DAT & SERT
Malison etal., 1998 Cocaine abstinence 123I-(3-CIT DAT & SERT
McCann et al., 1998 Ex-MDMA users, Controls "C-McN5652 SERT
Melichar et al., 2005 Users on methadone "C-Diprenorphine Mu, kappa & delta -

opioid
Nyback et al., 1994 Smokers and controls "C-nicotine Showed no use as

tracer

Pauli et al., 1992 Controls on/off alcohol "C-flumazenil GABA-A
Rourke etal., 1997 Smokers, current & abstinent 123I-IMP SPECT

Schlaepfer et al., 1997 Cocaine users on IV cocaine "C-Raclopride D2/3
Shi et al., 2008 Heroin ex-users, methadone users "C-CFT with craving DAT

controls
Smith etal., 1998a Controls +/- ketamine infusion "C-Raciopride D2/3
Volkow etal., 1990a Cocaine users 1 week and 1 iaF-N- D2

month abstinent, Controls methylspiroperidol
Volkow et al., 1992a Control "C-cocaine (whole DAT

body, not just brain)
Volkow et al., 1993a Cocaine users & controls l8F-FDG and "C- D2/3

Raclopride
Volkow etal., 1995a Controls "C-methylphenidate & DAT

"C-cocaine
Volkow et al., 1996b Controls +/- methylphenidate "C-d-threo-MP DAT
Volkow et al., 1996c Alcoholics & Controls "C-d-threo-MP & "C- DAT & D2/3

Raclopride
Volkow etal., 1996d Detoxed cocaine & controls "C-cocaine & l8F-N- DAT & D2

methylspiroperidol
Volkow et al., 1996e Controls +/- IV methylphenidate 11C-methylphenidate DAT
Volkow etal., 1997c Controls +/- methylphenidate "C-Raclopride D2/3
Volkow etal., 1997a Cocaine users on cocaine "C-Cocaine DAT
Volkow etal., 1998a Controls and baboon +/- "C-Cocaine DAT

melhylphenidate
Volkow etal., 1999c Controls "C-Raclopride predicts D2/3
(replicated in Volkow et al., methylphenidate effects
2002a)
Volkow et al., 1999a Controls "C-cocaine after DAT

methylphenidate
Volkow et al., 1999d Controls on methylphenidate "C-Raclopride D2/3

correlated with high
Volkow et al., 2000a Cocaine users on cocaine (nasal v "C-Cocaine DAT

smoked v. IV)
Volkow et al., 2002b Controls and abstinent alcoholics "C-Raclopride D2/3

(6 weeks & 4 months)
Volkow et al., 2004b Controls maths task & "C-Raclopride D2/3

methylphenidate
Wang et al., 1995 Chronic cocaine users l8F-N-methylspiperone 5-HT2
Wang etal., 1997a Cocaine users & controls "C-Cocaine DAT

Wang et al., 1997b Opiate dependent before and after "C-Raclopride D2/3
naloxone

Wu etal., 1997 Cocaine & controls 18F-DOPA DOPA uptake
Zubieta etal., 1996 Cocaine dependent & controls "C-Carfentanil mu-opioid
Zubietaeta/., 2000 Buprenorphine users "C-Carfentanil mu-opioid
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1.4.3.1 Dopamine

The majority of imaging studies in addiction looking at neurotransmitter systems, as

opposed to activation, have focussed on the role of Dopamine. There are probably

two main reasons for this. Most of the work has been done in the USA where

cocaine (and crack) use are the largest problem in terms of illicit drug use. It is

known that this drug works predominantly at the dopamine synapse, like other

stimulants. There has, therefore, been a deliberate focus by the National Institute for

Drug Abuse on funding studies of dopamine dysfunction in stimulants users (Volkow,

Director ofNIDA, personal communication). In addition to this, there are also many

more PET and SPET tracers available to study the dopamine system than any other.

l8F-DOPA can be used to measure the uptake of dopamine pre-cursor into pre¬

synaptic neurons. "C-cocaine and "C-d-threo-methylphenidate have both been used

to measure Dopamine-Transporter (DAT) activity in the pre-synaptic neuron. Many

tracers have been used to measure post-synaptic dopamine receptor availability,

specifically "C-Raclopride, UC-FLB and l8F-N-methylspiroperidol have been used in

the studies of addiction (see Table .1.8).

In the case of "C-Raclopride, and the additional tracer "C-PhNO, it is also possible

to measure changes in availability of receptors caused by changes in extra-cellular

dopamine concentration. This technique relies on the binding of the radio-tracer

being dependent on the density of unoccupied or "available" receptors. This density

will be dependent on the number of receptors and the concentration of other ligands

that are able to occupy the receptor. In the case of the dopamine-D2 receptor the



competing ligand can be endogenous dopamine or exogenous drug. In this way,

changes in tracer binding can reflect either changes in dopamine or receptor

occupancy of a drug. This technique has been useful in demonstrating the receptor

occupancy of antipsychotic medication as an example (e.g. Kapur et al., 1998). The

relationship between endogenous dopamine release and tracer binding is much more

complex with estimates of the sensitivity varying widely (see Laruelle, 2000b for

review).

1.4.3.1.1 Dopamine studies in opioid dependence

For many years it has been known that animals will self-administer opioid drugs into

certain specific regions of the brain. The two main regions for which the best

evidence has accumulated are the ventral tegmental area (VTA) and the nucleus

accumbens (NAcc) (Wise & Hoffman, 1992). These regions, along with the PAG

and the medial forebrain bundle (MFB) are part of the meso-cortical-limbic

dopaminergic pathway. This pathway has been implicated as a general reward

pathway for diverse stimuli (e.g. sex and food) as well as drugs of abuse (Nutt,

1996). It is thought that opioids exert their addictive properties by "hi-jacking" this

natural reward pathway by causing excessive release of dopamine within the

pathway that is not subject to the same homeostatic regulation as the natural rewards

(Robinson & Berridge, 1993).

There is evidence from animal studies that opioids do release dopamine in this

pathway. Using microdialysis techniques, it has been possible to measure extra-



cellular dopamine levels in distinct anatomical regions in response to opioid drugs

(Cadoni & Di Chiara, 1999; Wise et al., 1995). For example, opioid micro-injections

into the VTA stimulate the release of dopamine in the NAcc in rats (Devine et al.,

1993), and systemic opioids have similar effects (Cadoni & Di Chiara, 1999).

Further evidence of the role of dopamine in the rewarding effects of opioids is

provided by the ability of dopamine antagonists to partially block the ability of

opioids to act as unconditioned stimuli in animal studies (e.g. Longoni et al., 1998).

Using the PET tools mentioned above, it is now possible to examine dopamine

system function in humans, in particular human opioid addicts. One of the most

consistent findings in PET studies of addiction is the down-regulation of Dopamine

D2 receptor tracer binding in users of many drugs. It has been repeatedly

demonstrated in cocaine users (e.g. Volkow et al., 1993a; Volkow et al., 1990a;

Volkow et al., 1996d) and is also seen in abstinent alcoholics (Hietala et al., 1994;

Volkow et al., 2002b). This effect occurs in the absence of changes in the pre¬

synaptic dopamine transporter, that can be measured with "C-d-threo-

methylphenidate (Volkow et al., 1996c). Of particular relevance to this thesis is the

finding of decreased dopamine function in opioid dependent subjects (Wang et al.,

1997b). Although this was primarily a study of the effects of naloxone on the

dopamine system (discussed below) it also examined baseline "C-Raclopride

binding. Opioid dependent subjects showed significant reductions of 18% and 14%

in the putamen and caudate nuclei respectively. As well as this post-synaptic deficit,

chronic heroin users have also been shown to have a pre-synaptic deficit. "C-CFT is
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a cocaine derivative that binds to the dopamine transporter and has shown decreased

binding in current and past heroin users (Shi et al., 2008).

There is not the same volume of studies examining the acute effects of opioids on

dopamine as there are for the dopamine effects of stimulants. In fact, this was the

reason for undertaking the study described in Chapter 5 of this thesis. Nevertheless 4

there are two useful studies from the same group examining the dopaminergic effects

of alfentanil in healthy volunteers (Hagelberg et al., 2004b; Hagelberg et al., 2002b).

In the earlier study alfentanil infusion provoked a 6% increase in "C-Raclopride

binding in basal ganglia. The second study used "C-FLB457 to demonstrate

increased binding in cortical regions. In both cases this increase in tracer binding

would be taken as evidence of decreased dopamine release. In the second study the

results also showed a correlation between change in tracer binding and the euphoric 1

effect of the alfentanil. It is worth noting that these were studies of analgesic effect

and all subjects received a painful stimulus at the end of the scan. What effects this

may have had on their state ofmind during the scanning session is not discussed in

the papers.

The effects of naloxone-precipitated withdrawals on the dopamine system have also

been studied as mentioned above (Wang et al., 1997b). In the opioid-dependent

group studied, naloxone did not significantly change "C-Raclopride binding

compared with placebo. However, the sub-group who received the higher dose of

naloxone, when analysed separately, did show a decrease in "C-Raclopride binding.

This is not what would be expected, as this result would tend to suggest an increase
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in synaptic dopamine levels in withdrawal where animal studies have found a

decrease using microdialysis techniques (Acquas et al., 1991). The explanation for

this difference is not obvious. It may be that the results represent true inter-species

differences in opioid withdrawal effects, or may reflect the difference in the

experience ofwithdrawal from a self-administered drug on which you are dependent

and an experimentally administered drug over which you have no control. Lastly, it

is not always possible to exclude the effects of changes in blood flow (and hence

tracer delivery and washout) from changes in radio-tracer binding-sites in PET scans.

1.4.3.2 Opioids

The opioid receptor system is characterised by three basic forms of the receptor mu

(p), delta (5) and kappa (k). There are further sub-divisions of these sub-types but

this level of detail is not required here. Fully demonstrating the distribution of the

different opioid receptor sub-types is not yet possible in humans in vivo, due to the

lack of sufficient selective tracers, but has been demonstrated using autoradiographic

techniques in vitro (Cross et al., 1987). The different anatomical distribution of the

three subtypes in the human brain is summarised in Table 1.9. The same authors also

highlighted the major differences between the pattern in humans and other mammals.
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Brain region Mean total specific ligand binding

(fmol/mg protein)

Component (%)

P 5 K

Thalamus 202 74 11 15

Temporal cortex 149 44 6 50

Claustrum 115 32 8 61

Caudate nucleus 112 49 3 48

Substantia nigra 63 40 16 13

Putamen 58 43 22 34

Globus pallidus (lat) 14 43 29 29

Globus pallidus (med) 7 43 57 <1

Table 1.9: Distribution ofopioid receptor subtypes in the human brain. (After Cross et al., 1987).

The various subtypes of the opioid receptor are thought to mediate different

components of the actions of opioids, both external and endogenous. In particular

the p receptor is thought to mediate the analgesic and euphoric effects of opioids, as
I

well as the addictive properties.

1.4.3.2.1 Functional neuroimaging of the opioid system in normal

volunteers

The basic mechanisms of PET & SPET have been described in the first section of

this chapter. From this it should be apparent that in order to examine the

characteristics of the opioid system in the CNS the primary pre-requisite is the

availability of suitable neuroimaging tracers. There are three main PET ligands that ,

are used to label this system, each with its own advantages and disadvantages. To

date there are no SPET ligands for the opioid system that have been used in humans,

but there are agents in development in animals which show promise (see Table 1.10).
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Ligand Imaging
type

Receptor profile Species

"C-Diprenorphine PET p, 8, k, - antagonist Human &
animal

l23I-Diprenorphine SPET p, 8, k, - antagonist Animal

"C-Carfentanil PET p - agonist Human &
animal

'1C-Methylnaltrindole PET 8 - antagonist Human &
animal

123I-Naltrindole SPET 8 - antagonist Animal

l8F-Cyclofoxy PET p, k - antagonist Human &
animal

,23I-Cyclofoxy SPET p, k - antagonist Human &
animal

11C-Buprenorphine PET p - partial agonist
k - antagonist

Animal

Table 1.10 Currently available radiotracersfor SPET & PET

PET studies of the opioid system in normal volunteers have confirmed the post-
\

mortem study findings that opioid receptors are extremely widespread in the human

brain. Using "C-Diprenorphine, which labels all the opioid receptor sub-types, it is

possible to demonstrate the normal distribution of opioid receptors in healthy

volunteers (Jones et al., 1988). The main areas of concentration of opioid receptors

are found in the thalamus, caudate nucleus, and temporal, frontal and parietal cortices

(see Figure 1.4 of a normal "C-diprenorphine scan). There is very little binding of

tracer in the occipital cortex as would be expected from the low levels of opioid

► receptor in this area.

"C-carfentanil can be used as a more selective p - opioid receptor tracer to show the

distribution of this sub-type alone. The modelling of this tracer is more problematic
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due to its faster dissociation from the receptor than "C-diprenorphine and synthesis

problems increasing the percentage of unlabelled (cold) ligand, but the distribution is

as expected from post-mortem studies with the largest signal present in the thalamus

(see Figure 1.4). There is relatively less binding in the cingulate and frontal cortex

compared to "C-diprenorphine as further evidence of the increased numbers of 8-

and k- opioid receptors in these areas (Frost et al., 1990).

ifefc Or ?

o

o °o o

11 C-Carfentanil "F-Cyclofoxy u C-Diprenorphine
Figure 1.4: Differing distributions ofmu, delta & kappa opioid receptors

More recently a relatively new PET ligand, "C-methylnaltrindole, has been used to

demonstrate the distribution of the 8- opioid in vivo in humans (Smith et al., 1999).

As predicted from the in vitro studies, there was a high level of tracer binding in the

putamen and caudate, intermediate binding in the frontal, parietal, occipital and

cingulate cortices, and lower binding in the thalamus and cerebellum.

The opioid system is not a static entity. The number and distribution of opioid

binding sites has been shown to vary with age, gender (Zubieta et al., 1999) and, for

women, phase of the menstrual cycle (Smith et al., 1998b). The density of binding

sites for many receptor systems changes with age, but the opioid system is unusual in

that the density generally increases with age. A further complication is that the age
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related changes are not uniform throughout the brain and they are gender dependent.

Age and gender related effects were shown in prefrontal, anterior cingulate, temporal

and parietal cortices. Age related effects were also found in the putamen and gender

related effects in the caudate nucleus and the cerebellum. Age-by-gender interaction

effects were also found in the amygdala and thalamus. It is therefore important that

comparisons of opioid receptor measures between groups ensure adequate matching

of these confounding factors.

The next section deals with the effects of acute doses of opioid drugs on the brain in

healthy volunteers. However, there are other non-drug interventions that have shown

measurable effects with functional neuroimaging of the opioid system. This system

has long been implicated in the perception of pain and a site of action for potent

analgesics. Chronic pain and the removal of chronic pain have been shown to alter

the pattern and density of available binding sites for opioid PET ligands (Jones et al.,

1994). They showed that in patients with chronic arthritis the levels of "C-

Diprenorphine binding decreased when the patient was in pain and increased when

scanned during pain-free periods. They suggest that this was an effect of endogenous

opioids being released to a greater degree during pain, thereby decreasing the number

of available binding sites for the tracer. A similar increase in "C-Diprenorphine

binding was seen in patients with trigeminal neuralgia following surgical intervention

to terminate their pain when they were scanned before and after the procedure (Jones

et al., 1999).
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1.4.3.2.2 Functional neuroimaging of acute effects of opioids in

normal volunteers

Before it is possible to fully understand the effects of opioid drugs in dependent users

it is necessary to understand what these drugs are doing in the normal healthy

volunteer. The most thorough neuroimaging study of the acute pharmacokinetics of 4

commonly used opioids was carried out on the rhesus monkey (Hartvig et al., 1984).

This group gave rhesus monkeys a range of "C-labelled opioids and imaged the

distribution and kinetics using PET. The drugs used in this study were heroin,

morphine, codeine and pethidine. Due to the low spatial resolution obtainable from

PET scanning at that time the results were only differentiated into whole brain, nose,

extra-cranial soft tissue and pituitary regions. One of the most striking results from

this study is the large difference in kinetics between the whole brain and the pituitary. <

Following intravenous administration, the peak level ofmorphine in the pituitary was

reached after 5 minutes compared with 10 minutes for the whole brain. The level of

uptake into the pituitary region was also almost double that in the rest of the brain.

This study also showed that elimination half-lives for these opioids were not the

same in brain, extra-cranial soft tissue or plasma. Morphine elimination half-life

from the brain is substantially longer than from other tissues. Conversely, pethidine

showed rapid uptake and elimination from brain with much longer plasma half-life.
<

The authors suggested that this may be the result of differences in the lipophilic

characteristics of the drugs studied; for example, pethidine has higher lipid solubility

than morphine, which explains its faster brain uptake, but not the slower plasma
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elimination. This is a clear example of functional neuroimaging helping to explain

clinical anomalies like the shorter duration of analgesic action of pethidine compared

to morphine despite its much longer plasma half-life.

1.4.3.2.3 Functional neuroimaging of acute effects of dependent

subjects

The opioid system has, unsurprisingly, also been the subject of some investigation of

its role in dependence. There is an emerging pattern from the data that suggests the

opioid system is implicated in more than just dependence on opioid drugs. nC-

Carfentanil has been used to study the p-opioid receptor in cocaine dependence. "C-

Carfentanil binding was elevated in cocaine users in early withdrawal compared to a

control group (Zubieta et al., 1996). The binding levels correlated with subjective

cocaine craving in four brain regions: amygdala, anterior cingulate cortex, frontal

cortex and temporal cortex. These increases in binding showed some evidence of

normalisation when re-scanned some 4 weeks after detoxification. The authors

highlight that opioid and dopamine systems are thought to have some degree of

antagonistic relationship with the brain. This is supported by the reciprocal finding

in early abstinence of increase opioid receptor tracer binding and decreased

dopamine receptor tracer binding.

The finding of increased opioid receptor availability in withdrawal is becoming a

generic finding across drugs of abuse. Work by the group in Bristol, of which I was

a member, has shown increased binding of "C-Diprenorphine in alcohol and
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methadone withdrawal (Williams et al., 2007). Increased opioid receptor availability

in opioid withdrawal was also shown with "C-Carfentanil (Zubieta et al., 2000).

This same study has also been able to demonstrate the occupation of p-opioid

receptors by buprenorphine (Zubieta et al., 2000). Buprenorphine is a relatively new

substitute opioid treatment. It is a partial agonist at the p-opioid receptor and

antagonist at the K-opioid receptor. This has been replicated by the same group, who

have also gone on to show the dose - occupancy relationship for buprenorphine

(Greenwald et al., 2003) and the duration of occupancy (Greenwald et al., 2007).

Attempts to image receptor occupation by the more traditional substitute opioid -

methadone, have not produced such clear results. Using 18F-Cyclofoxy, a PET tracer

that labels both p-opioid and K-opioid receptors, methadone has been shown to

reduce tracer binding by up to 32% in a dose dependent manner (Kling et al., 2000).

However, work in our unit did not find any effect of methadone treatment on opioid

receptor availability using "C-Diprenorphine (Melichar et al., 2005).

<
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2 Opioid Craving
The intention in this study was to extend previous work on mental imagery and cue-

induced heroin craving that had been carried out in a clinical laboratory setting

(Weinstein et al., 1997). As detailed in chapter 1, many neuroimaging studies have

been carried out in cocaine craving, with a few in alcohol, nicotine and heroin

craving. A larger volume of work exists, describing studies of cue-exposure and its

use to induce craving for addictive drugs. The aim of the study was to map the

neural activation patterns that were associated with the phenomena of heroin craving.

At the time of its inception no other study had yet done this. Following the use of

cue-exposure studies in the treatment of craving it was anticipated that

autobiographical scripts of distinct past episodes of craving would be a powerful

induction paradigm. This had already been shown in the clinical laboratory

(Weinstein et al., 1997). Work from the United States ofAmerica had already shown

that exposure to cues that predicted drug availability was also able to induce craving

and that these responses could be extinguished by repeated exposure to the stimuli in

the absence of drug (see Childress et al., 1988a for review). The implication of this

was that it would be ethically possible to use drug-related cues to induce craving in

abstinent users, provided these cues were not followed by exposure to the drug. It

was anticipated that this exposure should induce heroin craving, but that this would

reduce with repeated exposure to the stimuli, thereby not provoking relapse.

The specific hypotheses that this study was designed to test were that:

1. autobiographical memories of previous episodes of heroin craving would



Opioid Craving

induce heroin craving within the scanner environment, as it had in the clinical
laboratory;

2. craving would be associated with detectable changes in regional cerebral
blood flow as measured by PET, using the tracer H2150;

3. there would be a correlated pattern of subjective changes in heroin craving,
physiological responses and rCBF changes.

2.1.1 Methods

2.1.2 Subjects:

Power calculations are frequently problematic with neuroimaging studies. The

variables required for estimating power are frequently unknown. The modelling to

date suggested that below six subjects was unlikely to have sufficient power to detect

anything other than very large changes in rCBF. Between six and ten subjects power

increases in an approximately linear fashion and above twelve subjects is where the

power to subject number relationship curve begins to flatten out (Friston et al.,

1996). The target number for subjects was therefore set at 10-12 subjects.

In an ideal situation, all subjects would have been previously addicted to heroin, but

have used no other drug. In practice this is an impossible requirement as poly-drug

use is by far the norm in this population. Nicotine addiction is an almost ubiquitous

state in heroin users (Clemmey et al., 1997). In practice the best compromise

between removing possible confounding variables and on the other hand creating an

unrepresentative or non-existent sample was to require a past history of opioid

addiction and exclude any subjects with previous addiction to, or very heavy use of,

anything other than nicotine. As PET imaging requires radiation exposure we were
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also required by the National Radiological Protection Board (NRPB) and

Administration of Radioactive Substances Advisory Council (ARSAC) to set a

minimum age limit of 25 years. In order to avoid the confounding effects of

withdrawal on our measures of rCBF we required a minimum of 10 days opioid free

prior to scanning. However, we wished to examine the effects of duration of

abstinence so we aimed to recruit subjects who had been abstinent for a range of time

periods.

As well as excluding a past or present history of addiction to other drugs we also

excluded concomitant use of any psychotropic medication or the presence of any

current or past serious psychiatric diagnosis, any history of severe head trauma or

current acute medical condition likely to alter rCBF. We did not exclude anyone with

a diagnosis of personality disorder as this is too common a form of co-morbidity and

to do so would again make the sample unrepresentative of the population. With the

difficulties inherent in requiring abstinence from all potentially confounding

medications a compromise was reached in each case, with the aim to have the

subjects as medication and drug free as possible. In practice this meant a minimum

duration of abstinence from illicit drug use to produce a negative urine drug screen.

Using these inclusion and exclusion criteria we recruited twelve subjects, eleven of

whom were male. In keeping with the ARSAC requirement, the age range was from

twenty-seven to forty-five years with a mean age of 34.4 years. All subjects were

recruited from local drug treatment agencies: NHS, non-statutory and private. All

subjects reported suffering cravings for heroin since achieving abstinence according
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to their keyworker at the respective treatment agency. All subjects had a history of

previous opioid dependence of mean duration 7 years with a range 4 months to 20

years. In all cases, opioid dependence included time addicted to heroin and at least

one period of substitution with methadone. No subject had a history of use of

buprenorphine. Urine testing confirmed that all were opioid free at the time of the

study. The duration of abstinence from opioids prior to taking part in the study was

between 10 days and 3 years for all subjects. In the case of the first nine subjects this

data had to be recovered by a retrospective search of their case notes as it had not be

collected at the time of the scan. In two cases it was not possible for me to trace their

old case notes as they had been recruited from a private clinic. Only an approximate

estimate had been recorded in the subject details and this was used in all subsequent

analyses. For the remaining ten subjects, where precise data was available, the mean

duration of abstinence was 8.25 months. All subjects were right handed. Of the

twelve subjects, seven had a previous history of abuse of other drugs. None of them

were currently using other illegal drugs at the time of the study. This was also

confirmed by urine testing. Despite the inclusion / exclusion criteria, two of the

subjects were taking selective serotonin re-uptake inhibitor antidepressants and one

was taking anticonvulsants. One other subject was taking the anti-cholinergic drug

oxybutinin for detrusor instability. This study was approved by the three local ethics

committees covering the scanner and recruiting clinics, and by ARSAC. After

complete description of the study, written informed consent was obtained from all

participants. All subjects were also given a subject information sheet and a letter sent
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to their General Practitioner informing them of their patients' participation in the

study.

2.1.3 Protocol:

All subjects participated in the study for one day only. In each case this day followed

a standardised format. Subjects were collected from their residence in the morning,

where an initial dipstick urine test was done to exclude recent use of illicit drugs. We

then transported them to the cyclotron unit at Hammersmith Hospital, London. For

those subjects recruited by myself, they also completed a checklist of demographic

details and provided information on past and recent drug use, including alcohol and

tobacco. On arrival at the unit, subjects were given breakfast while the scanning

suite was prepared.

During the pre-scan interval all subjects recorded two audio-taped stimuli. This was

done in an identical manner to the previously published study in the clinical

laboratory setting (Weinstein et al., 1997). Each script was of two minutes duration

and recounted a single specific episode from their past. In one case the script

concerned an episode when they experienced a strong craving for heroin and the

other was of a neutral episode. Subjects were specifically told to focus on describing

the feelings, both emotional and physical, of the craving they experienced during the

episode they were recounting. Care was also taken to ensure that subjects also

described a similar level of details of their chosen neutral episode. Each stimulus

was recorded by the subject in conversation with the researcher. In all cases, this was
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done in such a way that only the subject's own voice was heard during the two

minute period recorded and used as a stimulus. Stimuli were recorded in a private

office within the cyclotron unit using a standard microphone attached to a mono

cassette recorder. At this point subjects were permitted a last pre-scan cigarette and

then shown the scanner environment and reminded of the exact scanning protocol

that would be followed. This meant that all subjects were approximately 1 hour

since their last cigarette at the time scanning began.

Prior to commencing the scanner session, all subjects completed the Heroin Craving

Questionnaire (Tiffany, unpublished as used in Weinstein et al., 1997). Immediately

prior to scanning, all subjects were escorted to the bathroom and requested to empty

their bladder. At this point a second urine sample was taken which was sent to the

local NHS clinical laboratory for confirmatory analysis for illicit drugs by EMIT

assay and HPLC. All these analyses were subsequently reported as negative for

cannabis, opioids including heroin and methadone, cocaine, amphetamine and

benzodiazepines.

Each scanning session followed the same protocol. Subjects were put into the

scanner by the radiographer and made comfortable. Their head was restrained in

position using padded foam and Velcro straps attached to the scanner bed. We used

laser cross-hairs to mark their position in the scanner aperture. The scanner gantry

was tilted to an orientation which produced maximal coverage of the whole brain

within the 10cm field of view in the inferior-superior axis, but contained the entire

cerebellum and orbito-frontal cortex. In practice this required tilting the scanner top
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posteriorly by approximately 15 degrees. Subjects were also fitted with a single ear¬

piece in their right ear. This was connected to the cassette recorder for playback of

the audio stimuli.

At this point subjects were also connected to a Finapres® using the finger-probe for

continual recoding of pulse and blood pressure.

Subjects then underwent a 12 run PET scan of regional cerebral blood flow (rCBF)

using the tracer H-,150, with a slow bolus technique. For each scan we injected

approximately lOmCi of radio-labelled water over 20 seconds. There was a 10-

minute gap between runs, with the total scan lasting 2 hours. A brain dedicated

Siemens/CTI (Knoxville, USA) ECAT 953b PET camera was used, operating in high

sensitivity 3D mode (Spinks et al., 1992). During each of the 12 runs the subject

listened to one of the two previously recorded audio taped scripts. Each drug-related

and neutral script was presented six times, in random order. Image acquisition began

90 seconds after the beginning of the script to allow craving to be induced in

response to the stimulus. Images were acquired in a single 90 seconds frame.

Radioactivity counts acquired during this time frame predominantly reflect changes

in rCBF during the rising phase of radioactivity in the head which typically lasts 30-

45 seconds.

After each run, the subjects completed 6 visual analogue scales (VAS) of:

At this moment the intensity ofmy craving for heroin is ...

At this moment my urge to take heroin is ...

At this moment I feel this happy ...
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At this moment I feel this sad ...

At this moment I feel this anxious ...

At this moment the vividness of the script is ...

Each scale ranged from 0 to 100 and was anchored at 0 with "not at all", at 25 with

"a little", at 50 with "quite a bit", at 75 with "very" and at 100 with "the most I could

be" as described previously (Weinstein et al., 1997). Subjects were instructed to

respond with the number most closely matching their current state. At the end of all

12 runs, subjects completed the Heroin Craving Questionnaire again, in order to

assess the overall level of craving and the multiple aspects of craving including

control over drug use, outcome expectancies and avoidance of withdrawal. See

figure (Figure .2.1) for a graphical representation of the scanning protocol timings.

Figure .2.1 Timing ofOpioid Craving Scan Protocol

2.1.4 Image Analysis:

2.1.4.1 Patterns of activation

The PET images of rCBF were analysed using SPM99 (Wellcome Department of

Cognitive Neurology, London) implemented in Matlab® 6.5.1 (Mathworks). The 12
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images for each subject were realigned to a mean image for that subject. This

partially corrects for motion of the subject between the 12 scans. Realigned images

were normalised to a standardised template H2150 PET image derived from the

Montreal Neurological Institute (MNI) template, using windowed sine interpolation.

The resultant realigned normalised images were then smoothed with a Gaussian

function at 12mm full width half maximum. This was chosen as three times the size

of the image voxel dimensions. This smoothing removes a degree of any remaining

mismatch between subjects after normalisation and also ensures a more normal

distribution of the residual errors in the subsequent statistical analysis (Friston,

1995).

For the statistical analysis the images were analysed using a cognitive subtraction

and a correlational analysis. For the cognitive subtraction a condition comparison

was carried out with the audio taped scripts (drug-related or neutral) determining the

conditions. For the correlational analysis the "crave" and "urge to use" VAS scores

were averaged to produce a more normally distributed composite "crave/urge" scale.

This composite "crave/urge" scale was then used as a covariate of interest to examine

areas of rCBF that co-varied with this scale. This second analysis was restricted to

include only those subjects that reported craving in response to the cue-exposure

stimuli. This resulted in 4 subjects being excluded from this analysis since their

"crave/urge" scales did not vary from zero throughout the scanning session. To

include those subjects who did not report any craving, i.e. whose VAS scores did not

vary, would contravene the basic assumptions of normal distribution that underlie the
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statistics in SPM, which uses the General Linear Model (Friston, 1995).

In the SPM99 analyses, time from the start of the first scan was entered as a covariate

of no interest to take account of any rCBF changes that were related to non-specific

factors. All covariates were centred around subject means, and entered with a

subject-specific fit. Global cerebral blood flow effects were removed by ANCOVA

model allowing a subject-specific fit. The threshold for statistical significance for all

analyses was set at p<0.05 after correction for multiple comparisons for either peak

change in rCBF or the size of the activated cluster.

In a further analysis, the contrast, or difference, images for each subject comparing

the effects of the two conditions were entered into a further 2nd level analysis to

examine the effects of duration of abstinence. The two subjects for whom duration of

abstinence was not precisely known were excluded.

2.2 Results

2.2.1 Subjective measures:

Craving was induced by the cue-exposure paradigm in 8 out of the 12 subjects (66%)

as shown by changes in the VAS scores. As can been seen in Figure 2.2 these 8

subjects (labelled as "cravers") showed a consistent pattern of higher "craving" and

"urge to use" scores in response to the drug-related script than the neutral script, but

this pattern attenuated with repetition of the scripts. The same figure shows the

distinct flatline response of the 4 subjects who showed no craving response (labelled
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the "non-craver" group). Figures 2.2-2.6 show the subjective responses on all the

VAS scales. In all cases the craver and non-craver subsets, and the whole group are

shown in their responses to both the neutral and drug-related stimuli.

On the combined "craving / urge to use" scale the whole group of subjects reported a

significantly higher score in response to the craving stimulus at all but the last

repetition of the stimuli (see Table 2.1). If the sub-group of those who did not show

a craving response (the "non-cravers") are excluded then the comparison is still

significant after the 1st, 3rd and 4th repetitions. For the "non-cravers" the difference is

never significant. The duration of abstinence from opiates did not predict the craving

response to the stimuli, nor did it correlate with the degree of craving induced.

Wilcoxon

signed-rank
parameter

Stimulus Repetition
1 2 3 4 5 6

W+ 43.5 26.5 36 36 26 39

W- 1.5 1.5 0 0 2 6

N 9 7 8 8 7 9

P< 0.0078 0.0031 0.0078 0.0078 0.0469 0.0547

Table 2.1: Wilcoxon paired signed-rank tests for "Craving / Urge to use" combined scale.
W+, W- and N are the raw statistics calculated as part ofthe Wilcoxon test, i.e. the positive
and negative rank differences and the number ofnon-tiedpairs.

As well as this statistical evidence that craving was successfully induced in at least 8

subjects there was also qualitative evidence. Several subjects spontaneously reported

feeling craving in a manner very similar to when they were using heroin. A few

subjects were noted by the experimenters as exhibiting transient signs of opioid

withdrawal brought on by the stimuli, for example enlarged pupils and goose-flesh.
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Figure 2.3 shows the effect of the stimuli on the "Happy" VAS. Subjects all showed

lower scores in response to the drug related stimuli but the effect is visibly smaller in

the "non-craver" group. The difference between stimuli never achieves significance

however when all 12 of the subjects were studied. There is no difference when only

the "cravers" are included in the analysis.
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Figure 2.2: Craving / Urge combined VAS scale. Sub-groups divided into Cravers (n=8) and
non-cravers (n=4).

The "sad" VAS scores are shown in Figure 2.4. They show a reciprocal pattern to the

"happy" VAS scores with all subjects generally scoring higher in response to the

craving stimulus. For the group as a whole this is only significant for the first two

repetitions (1st repetition: W+46.5, W-8.5, N=10, p<0.04883; 2nd repetition: W+45,

W-0, N=9, p<0.00396). This effect still remained significant for the "cravers"

subgroup on the 2nd repetition (W+36, W-0, N=8, p<0.007812).
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Figure 2.3: Happy VAS scores

A very similar effect was reported on the "anxiety" VAS. Although the magnitude of

the differences between the stimuli were a little smaller than on the sad VAS, as can

be seen in Figure 2.5, there was greater consistency across the subjects. As a result,

for the group as a whole, the differences between the two conditions were significant

at the 1st, 2nd and 4lh repetitions (1st repetition: W+51, W-4, N=10, p<0.01367; 2nd

repetition: W+46.5, W-8.5, N=10, p<0.04883; 4th repetition: W+63.5, W-2.5, N=ll,

p<0.00293). For the "cravers" sub-group, the difference only remains significant at

the 1st repetition (W+32.5, W-3.5, N=8, p<0.03906).

The final VAS was "vividness". Here there were, importantly, no visible trends of

significant differences between the two stimulus conditions. There was a slight trend

for the "non-craver" group to be slightly higher on this scale than the "craver" sub¬

group.
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Figure 2.4: Sad VAS scores

r
X

*

3 4

Repetition

-4—Neutral (All) - - Drug (All)

-*—Neutral (Cravers) - -*■ - Drug (Cravers)

-9—Neutral (Non-cravers) - - Drug (Non-cravers)

- - ♦-

3 4

Repetition

Figure 2.5: Anxiety VAS scores
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Figure 2.6: Vividness VAS scores
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2.2.2 Image analysis:

Figure 2.7: Activation in the left Anterior Cingulate and medial pre-frontal gyri. Comparison of
drug related with neutral stimuli
Analysis of the rCBF images revealed two main results. In the cognitive subtraction

of conditions the scans were divided into "drug-related" or "neutral" determined by

the stimulus script. The contrast between these conditions revealed a single

significant cluster of voxels (t= 4.53, cluster size = 297 voxels, spatial extent p<0.01

corrected for multiple comparisons) showing an increase in rCBF in an area

overlying the left medial pre-frontal region and adjacent left anterior cingulate cortex

(Talairach atlas co-ordinates -10,46,24 mm) (see Figure 2.7). Figure 2.8 shows the
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effect sizes for each stimulus in each subject. From this it can be seen that there is a

consistent activation in response to the drug related stimulus across all the subjects,

both those who craved, and those who did not.

Figure 2.8: Graph of effect sizes of stimuli for each subject. Each vertical panel
represents one subject and each bar represents the effect size for that subject in that
condition with red error bars.

The duration of abstinence showed a significant positive association with the size of

the difference in rCBF responses between the two conditions in this anterior

cingulate region (Talairach co-ordinates -8,38,18 mm, t=7.69, cluster size = 10

voxels, peak height p=0.018, spatial extent p<0.001 corrected for multiple
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comparisons). This implies that the longer the duration of abstinence from opiate

drugs, the larger the change in rCBF between the conditions (see Figure 2.9).

The reverse contrast of these two conditions, looking for areas of relative decrease

rCBF in response to the drug-related stimulus, showed significant bilateral decreases

in rCBF in the primary visual cortex (Talairach co-ordinates +/-14,-90,20 mm, t=3.99

(Right) & 4.02 (Left), cluster size = 193 (Right) & 241 (Left) voxels, spatial extent

p<0.05 corrected for multiple comparisons) and the right extra-striate cortex

(Talairach co-ordinates 30,-80,30 mm, t=3.96, cluster size = 378 voxels, spatial

extent p<0.005, corrected for multiple comparisons). These can be seen in Figure

2.10.
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Figure 2.9: Correlation between Anterior Cingulate activation and
duration of abstinence.
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As stated in the methods, the correlational analysis used only the images from the

eight subjects who exhibited a craving response to the drug related stimuli. As

shown in Figure 2.11, a single region in the left orbito-frontal cortex (Talairach

co-ordinates -26,44,-14 mm) was found to co-vary positively with the composite

"crave/urge" score (t= 5.19, cluster size = 157 voxels, peak height p<0.05 corrected

for multiple comparisons). There were also multiple areas in the occipital cortex that

negatively co-varied significantly with the composite "crave/urge" scores. The most

significant area was in the right occipital cortex (Talairach co-ordinates 12,-90,22

mm, t=5.31, cluster size = 890 voxels, spatial extent & peak height p<0.01 corrected

for multiple comparisons). Visually this was very similar to Figure 2.10.
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Figure 2.10: Areas of brain activation greater in response to the neutral
stimulus.
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The region of the orbito-frontal cortex which correlated with the "craving/urge" scale

did not show a significant activation in the condition comparison and similarly the

region in the left medial pre-frontal and anterior cingulate that showed a significant

activation in the condition comparison did not show a significant association with the

"crave/urge" scale.

Figure 2.11: Activation in left orbitofrontal cortex correlated with
heroin craving
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3 Circuits of Opioid Craving

This chapter will focus on an extensive re-analysis of the data from the previous

chapter on imaging heroin craving. The techniques used were developed for use in

fMRI within the SPM software package. Prior to this study there had only been one

published paper using similar techniques in PET imaging in heroin use (Sell et al.,

1999). This study provided the inspiration to extend our previous work to examine

areas of the brain that appeared to be part of a functionally connected circuit with the

primary regions of activation in the Anterior Cingulate and Orbito-frontal cortices.

3.1 Methods

3.1.1 Subjects and protocol:

Data for this study was derived from the same subjects as detailed in the previous

chapter. In brief, this was 12 abstinent former heroin addicts. The data for each

subject consisted of 12 PET scans of regional cerebral blood flow (rCBF) using the

tracer H?l50. Half the scans were acquired following presentation of a craving

related audio stimulus and half following a neutral stimulus.

3.1.2 Image analysis:

3.1.2.1 Patterns of activation

The PET images of rCBF were analysed using SPM99 (Wellcome Department of
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Cognitive Neurology, London). The 12 images for each subject were realigned to a

mean image for that subject. This partially corrects for motion of the subject between

the 12 scans. Realigned images were normalised to a standardised template H0150

PET image derived from the Montreal Neurological Institute (MNI) template (Evans

et al., 1993), using windowed sine interpolation (Ashburner et al., 1999). The

resultant realigned normalised images were then smoothed with a Gaussian function

at 12mm full width half maximum. This was chosen as three times the size of the

image voxel dimensions.

For the statistical analysis the images were analysed using a cognitive subtraction

and a correlational analysis. For the cognitive subtraction a condition comparison

was carried out with the audio taped scripts (drug-related or neutral) determining the

conditions. For the correlational analysis the "crave" and "urge to use" VAS scores

were averaged to produce a more normally distributed composite "crave/urge" scale.

This composite "crave/urge" scale was then used as a covariate of interest to examine

areas of rCBF that co-varied with this scale. This second analysis was restricted to

include only those subjects that reported craving in response to the cue-exposure

stimuli. This resulted in 4 subjects being excluded from this analysis since their

"crave/urge" scales did not vary from zero throughout the scanning session. To

include those subjects who did not report any craving, i.e. whose VAS scores did not

vary, would contravene the basic assumptions of normal distribution that underlie the

statistics in SPM, which uses the General Linear Model (ref).
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In the SPM99 analyses, time from the start of the first scan was entered as a covariate

of no interest to take account of any rCBF changes that were related to non-specific

factors. All covariates were centred around subject means, and entered with a

subject-specific fit. Global cerebral blood flow effects were removed by ANCOVA

model allowing a subject-specific fit. The threshold for statistical significance for all

analyses was set at p<0.05 after correction for multiple comparisons for either peak

change in rCBF or the size of the activated cluster.

3.1.2.2 Functional connectivity analysis

The basic patterns of activation analysis above yielded two main areas of activation;

activation in the left anterior cingulate gyrus in response to the opiate related

stimulus compared to the neutral stimulus in all subjects and activation in the left

orbito-frontal region was also shown to be correlated with subjective craving

reported by the 8 (66%) subjects who craved. For each of these two regions, SPM99

was used to extract the 1st eigenvariate from all voxels within a radius of 10mm of

the peak of activation for each scan. This is done in SPM99 by taking the matrix of

data containing the time series data for all voxels within this 10mm sphere and

subjecting them to singular value decomposition. The 1st eigenvariate is therefore a

time-series of values derived from the singular value explaining most of the variance

in the activated cluster from the first analysis.

The purpose of using an eigenvariate is to condense the data and remove some of the

noise, while retaining the maximum possible of the underlying information. To aid
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this noise reduction process still further, the time-series data subjected to this

singular value decomposition was not the raw scan data itself, but time-series derived

from the General Linear Model implemented in the original analysis. Specifically,

the time-series data used was adjusted to remove the effects of no interest, in this

case the global mean and time from scan start. At the end of this process this left two

time-series eigenvariables for each of the 12 subjects, one from the anterior cingulate

region and one from the orbito-frontal cortex. Figure 3.1 shows the 1st eigenvariate

from the orbito-frontal cortex as an example time-series.
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Figure 3.1: Graph of the 1st eigenvariate drawn from the left orbito-frontal cortex. 4s can be
seen, this accounts for 76.3% of the variance within the sphere
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These two variables were then entered into SPM99 analyses. In each case the

covariate was centred around the subject mean and modelled with a covariate by

subject interaction. As before, the time in minutes from the start of the scanning

session and the global mean were entered into the model allowing a subject-specific

fit.

I

For each eigenvariate, three separate analyses were performed; a simple association,

an interaction with scan condition (neutral or drug related stimulus) and an

interaction with subject group ("craver" of "non-craver"). Subject group was

determined post-hoc by whether or not the subject demonstrated a craving response

to the stimuli. In the first analysis the eigenvariate alone was entered into SPM99 as

described above. This tests for brain regions where activity is functionally connected

with the AC or OFC region.

In the next analyses two separate methods were used to test for brain regions where

the scan condition or subject group modulated the correlation of activity with the

covariate. This type of analysis has been termed a psycho-physiological interaction

(Friston et ai, 1997). Firstly an interaction variable was calculated by multiplying

the eigenvariate by 1 or -1 depending on the condition or group. This was entered

into an SPM99 analysis along with the main variable of condition or group. In the

second interactions method, the conditions or groups and the eigenvariate were

entered into a combined analysis where the variable was centred around the

condition or group mean and interactions tested for by contrasting the difference

between the covariance of the brain activity between the two conditions.
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The threshold for statistical significance for all analyses was set at p<0.05 after

correction for multiple comparisons for either peak change in rCBF or the size of the

activated cluster. In all cases the analysis uses 12 scans per subject with no

differentiation made between intra- and inter- subject variance measures. As such,

this is a fixed-effects analysis and consequently any statistical inference extends only

as far as the subjects in this study.

3.2 Results

3.2.1 Circuits results

Two networks of neural activation related to the primary areas found from the

previous analysis are shown in Figures 3.2 and 3.3. The first network (Figure 3.2) is

of regions where rCBF is associated with activity in the left Anterior Cingulate (AC)

region (Brodmann Area, BA 32). A positive association with middle temporal gyrus

was found on the ipsilateral (left) side (-62, -8, -18mm, BA21, cluster p=0.003, voxel

p=0.003). This was a consistent association across all 12 subjects. There was a

consistent negative relationship between the AC and posterior visual areas (BA 18

right (28, -92, 8, cluster p<0.001, voxel p=0.026) & BA 19 bilateral (left -16, -86, 18,

cluster p<0.001, voxel p=0.014) (right 28, -72, 34, cluster p=0.032, voxel p=0.257)).

In BA 19 on both sides there was a significant modulation of the negative association

with AC activity by the scan condition and BA 18 on the right side. Finally for this

circuit there was a significant modulation of the association between the AC region
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and left BA 3 (-34, -24, 36, cluster p=0.713, voxel p=0.043) depending on the

presence or absence of a subjective craving response; i.e. an interaction with subject

group.

The circuit associated with rCBF in the left orbito-frontal region (BA 11) is depicted

in Figure 3.3. As with activity in the AC region there was a negative association

between the OFC and posterior visual cortex bilaterally (BA 17/18 left (-14, -86,2

cluster p<0.001, voxel p=0.081) & BA 17 right (8, -80, 14, cluster p<0.001, voxel

p=0.041)). A similar negative association was seen in right BA 37 (52, -60, 0, cluster

p=0.02, voxel p<0.001).

There was a significant association between the left and right OFC (BA 11) only for

those who craved in response to the drug-related stimulus (26, 48, -18, cluster

p=0.230, voxel p=0.038). The same pattern was seen in the left parietal region BA48

(-36, 20, -2, cluster p=0.002, voxel p=0.194). This region also showed a significant

modulation of the association dependent on the subject group. For all subjects there

was a positive association between activity in the left OFC (BA 11) and left posterior

insular cortex (BA41, -26, -38, 10, cluster p=0.006, voxel p<0.001).

The scan condition was shown to have a significant modulatory effect on the

association between activity in the left OFC (BA 11) and two sub-cortical regions.

Specifically, this result was seen in the brainstem - centred in the area of the red

nucleus (0, -16, -8, cluster p=0.170, voxel p=0.025) and the left hippocampus (-20,

-36, 4, cluster p=0.092, voxel p=0.034). In these two areas no main association with

either the OFC activity or scan condition was observed. Figure 3.4 shows the
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association between the left OFC and brainstem regions for each subject, in

particular the change in slope between the craving and neutral conditions in the 12

subjects.

Group
Interaction

Figure 3.2Functional Connectivity ofLeft Anterior Cingulate Activation in Opiate Craving. Solid
arrows represent main effect correlations in activation; the boxes describe the subjects groups
showing the effect. Dotted arrows represent interactions between the correlation and either group or
condition.
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Condition

Figure 3.3 Functional Connectivity ofLeft Orbito-Frontal CortexActivation in Opiate Craving. Solid
arrows represent main effect correlations in activation; the boxes describe the subjects groups
showing the effect. Dotted arrows represent interactions between the correlation and either group or
condition.
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Figure 3.4: Scatterplots of the relationship between rCBF in OFC and brainstem. One panel
per subject. Squares are "craving" scans and crosses are "neutral" scans
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4 Measuring Dopamine Response with 11C-Raclo-
pride

4.1 Introduction

There are few good PET tracers. In the dopamine system the range available is

bigger than many other systems. Almost the entire process of dopaminergic

neurotransmission can be imaged with PET tracers:

Dopamine synthesis can be estimated from l8F-DOPA (Barrio et al., 1990). The

dopamine re-uptake pump has been imaged with "C-RTI-121 (Hume et al., 1996),

"C-cocaine (Gatley et al., 1994), "C-PE2I (Jucaite et al., 2006) and "C-WIN-35,428

(Villemagne et al., 1998). Post-synaptic dopamine-Di receptors "C-SCH-23390

(Maziere et al., 1992), "C-NNC 756 (Karlsson et al., 1993); dopamine-D2 receptors

with "C-Raclopride (Farde et al., 1985), "C-(-)-NPA (Hwang et al., 2000),

"C-(+)-PHNO (Ginovart et al., 2006) in striatum, "C-FLB 457 extra-striatal only

(Halldin et al., 1995); Dopamine-Ds receptors with l8F-fallypride (Mukherjee et al.,

1996).

At the time the studies for this thesis were undertaken the only tracers available to us

were l8F-DOPA and "C-Raclopride. We wished to investigate the release of

dopamine in opioid addiction. "C-Raclopride was the obvious choice as a PET

ligand for these studies as it had already been shown to be sensitive to release of

endogenous dopamine by amphetamine (Carson et al., 1997).
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4.2 Characterisation of11C-Raclopride

Raclopride is a substituted benzamide from the same chemical family as the anti¬

psychotic drug sulpiride. It has been shown to be a selective competitive antagonist

at the dopamine-D2 receptor. It has a high affinity and selectivity for Dopamine-D2

receptors, with a KD of 1.2nM and low non-specific binding. Over 90% of the

injected dose reaches the brain unmetabolised (Kohler et al., 1985).

Figure 4.1: Chemical structure of "C-Raclopride showing the position of the "C
isotope atom.

The standard method of modelling "C-Raclopride has become the simplified

reference tissue model to yield a measure of Binding Potential (BP) (Gunn et al.,

1997). This is derived from earlier work comparing different methods of parameter

estimation for modelling of "C-Raclopride (Lammertsma et al., 1996).
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ci

110



Measuring Dopamine Response with llC-Raclopride

4.2.1 Protocol

4.2.2 Image acquisition

4.2.2.1 Scanner characteristics

For all our "C-Raclopride studies, data was acquired on a brain dedicated

CTI/Siemens EXACT3D (model 966) scanner. This was a prototype scanner

developed by CTI, Knoxville Tennessee, USA with 6 detector rings as opposed to the

usual 4 rings. Full specification is detailed elsewhere (Spinks et al., 2000), but the

main advantages of this scanner are increased sensitivity by a factor of 2.5 over the

FIR+ and enlarged axial field of view to 23.4 cm. This enables acquisition of whole

brain images. Being able to obtain whole brain images is particularly useful for 11C-

Raclopride studies, as good visualisation of the cerebellum is needed for modelling

of the tracer. Scanner efficiency is relatively high at 5.8%. The higher sensitivity

and use of 3D mode increase the detection of scatter to about 42% of the total counts

detected, requiring greater correction. Using the techniques of filtered back-

projection with a ramp filter and standardised scatter correction, the in-plane

resolution of the scanner is reported as 4.8mm FWHM at the centre of the field of

view, increasing to 8.4mm FWHM.

4.2.2.2 Listmode acquisition

The full specification of listmode acquisition on the 966 PET camera is described in

the same reference as the scanner specification above (Spinks et al., 2000).
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Listmode means that each pair of co-incident photons of radioactivity detected are

recorded with a time-stamp and other data. This allows for later rebinning of the data

into frames whose specification can be determined post hoc. The advantage of this

being that the frame duration and start times can be determined following an

examination of the total radioactivity counts in the data after scanning has finished.

Previously, the frame definitions had to be detennined in advance, which meant that

if the tracer injection was late, or the time activity curves were not as expected then

sampling frequency of the frames may not be optimal for modelling of the data.

Using listmode the optimal frame definitions can be determined from the data.

Using a system known as Polaris® it is possible to also log the exact position of the

subject's head at the time that photon was detected (Bloomfield et al., 2003). This

system uses fiducial markers fixed to a skullcap worn by the subject and tracked by

laser. Subject to certain constraints it is therefore theoretically possible to correct for

head movement before the data is even rebinned into sinograms, let alone

reconstructed back into 3D images. At the time we began our PET scanning studies

with "C-Raclopride, this system was not reliably implemented. We therefore

decided not to use Polaris® motion correction on our data, despite it being acquired

with listmode.

4.2.2.3 Experiment image acquisition protocol

Each scanning session began with the acquisition of a 5 minute transmission image

using a standard rotating l37Cs isotope source. Emission scans were then acquired
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following a bolus injection of 120MBq "C-Raclopride over 30 seconds. Images

were acquired for 90 minutes using listmode acquisition. The sinograms were created

from the listmode data following rebinning into 26 frames starting with a variable

duration background frame then short initial frames extending to 5 minutes toward

the end of the scanning session [l*15sec, l*5sec, l*10sec, l*30sec, 4*60sec,

17*300sec], Images were reconstructed using filtered back projection with a ramp

filter using the process whose general principles were described in Chapter 1. A

matching pair of images was created for each scan, one with measured attenuation

correction from a transmission image, and the second with no attenuation correction

to be later used for correction of subject head movement.

4.2.3 Image analysis methodology

4.2.3.1 Motion correction

PET images using ligands that bind to specific targets, like receptors, routinely take

60-120 minutes to acquire. This time is required to allow some form of delineation

of the tracer kinetics within the target tissue region as described in the section on

modelling the tracer. This length of scanning brings with it the problem of

movement. During scanning subjects are routinely restrained with a variety of

different techniques. In some centres, subjects are fitted with a helmet which can

then be strapped to the scanner bed, others use a fitted thermoplastic face mask to

reduce head movement. Many techniques have been employed at Hammersmith

Hospital, but experience has lead us to use a combination of foam pad and soft straps
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over the forehead to restrict movement during the scan.

The main problem caused by head movement is blurring of the image. This is

exactly the same as the blurring seen with ordinary photographs with long exposure

times and moving objects. As the dynamic PET images are acquired as a series of

frames movement can be separated into movement within a frame and movement <

between frames.

Movement within a frame will cause that frame to be blurred. If that frame has been

acquired as a single frame, then that blurring is essentially permanent. If the frame

has been acquired by rebinning of data acquired in listmode, then it is theoretically

reducible as described above. In fact, in listmode the distinction between within-

frame and between-frame movement does not apply, as all data can be motion

corrected before the data is rebinned into frames.

Aside from blurring of the image, head movement will also cause a mismatch

between the dynamic emission scan and the transmission scan that precedes it. The

transmission image is acquired by rotating a standard radioactive source around the

object to be scanned. In effect this creates a low resolution CT scan of the head.

This image is used to derive the parameters for attenuation correction on the

emission image. Therefore, if the transmission and emission scans are out of

alignment, then the correction applied to the emission scan will be incorrect. This

has particularly noticeable effects in regions where tissues with different attenuation

characteristics are in close proximity, for example, inferior orbito-frontal cortex

(Brett et al., 1999). In the case of "C-Raclopride this is a negligible effect as all of
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the important signal comes from the basal ganglia. In these areas tissue attenuation

is relatively homogeneous.

4.2.3.2 Correction of between-frame movement

If data have been acquired directly into sinograms and frames, or rebinned into

frames from listmode without Polaris® motion correction, then between-frame

motion correction is the only possibility. Correction for head movement begins with

the prerequisite step of quantifying the extent of movement. As has been alluded to

above, it is possible to track the movement of the head using an external system. The

coordinates and parameters of this movement can then be applied to the brain image

data. However, as we were not using the Polaris® system, this was not possible with

our data set. We therefore had to use the information contained in the image data

itself to derive the movement parameters. Techniques for this kind of motion

correction had been described for H2150-PET and fMRI for some time (e.g. Friston et

al., 1989). The extension of the use of these techniques into ligand-PET was just

beginning to be used and described as our studies were under way.

In the case of H2150-PET and fMRI each image in a dataset has a very similar overall

structure and contrast. In ligand PET this is not always the case. Particularly in the

case of tracers, like "C-Raclopride, where the specific binding is highly localised to a

small region, the distribution of signal within the image will dramatically change as

the scan progresses (see Figure 4.2). In this case it is very likely that the realignment

algorithm will incorrectly attribute changes in tracer distribution as movement
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(Dagher et al., 1998). Therefore correction for this false movement will increase the

misalignment between frames instead of reducing it.

Figure 4.2: Comparison ofAttenuation Corrected (Pane A - Left) and Non-Attenuation-
Corrected (Pane B - Right) Sagital Sections of every time frame in an exemplar scan. Note
the increased anatomical information on the right and the dramatic changes in tracer
distribution through the scan.

Three main techniques have been employed for dealing with movement within "C-

Raclopride, aside from the early years, where it was simply ignored. The easiest

technique is to remove subjects who moved too much from subsequent inclusion in

the analysis. This technique may certainly be appropriate in cases where there is

sufficient remaining data to maintain statistical power and where the exclusion rate is

approximately equal between any groups or conditions being studied. This raises the

common problem of movement that is correlated with either the task or condition
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being studied, or associated with any diagnosis under examination.

The two, more involved, techniques for motion correction are either to use an

idealized PET image as a template for realignment or to use images with greater

structural information and less tracer redistribution, for example images that have not

been corrected for attenuation (see Figure 4.2 above, pane B). The technique of

using an idealised PET image has been largely proposed by the Brain Imaging Centre

at the Montreal Neurological Institute, Canada (Zald et ai, 2004). In this technique,

an MRI image is obtained for each subject. This image is then divided into specific

tissue types. For each tissue type an idealised time-activity curve is calculated. This

is then combined with the MRI image to produce an 4D image which is effectively

an idealised PET image, where the various tissue types have ideal time-activity

curves. The 4D PET image can then be realigned on a frame-by-frame basis to the

matching frame in the idealised PET image. In this way, each frame of the dynamic

4D PET image should end up in the same space as the MRI image and, by extension,

in the same space as each other. The main drawback to this technique is that the

boundaries of tissue with different binding profiles for the tracer are not always

easily determined in a structural image. This can lead to inaccurate realignment of

the PET images at different stages of the scan session. In particular, differences in

the realignment between frames will worsen any motion effects or introduce

artefactual correction for non-existent motion. We, however, have developed the

technique of using non-attenuation corrected images.
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4.2.3.3 Use of non-attenuation corrected images

Initially dynamic PET images are reconstructed to 4-dimensional images. The

software for realigning images was originally developed to realign a time series of

images. Therefore, before processing the 4D images were separated into a series of

3D images, with one image per frame. This was achieved using standard brain image

software, MRIcro (http://www.mricro.com). Previously, where this had been

attempted at all, motion correction of "C-Raclopride images at the MRC Cyclotron

Unit, Hammersmith Hospital, had used "mpr" software. This uses a standardised

method for image co-registration called mutual information. Unfortunately, in "mpr"

the algorithms are implemented in 2D only. This means that movement within an

axial plane (i.e. left to right, or anterior to posterior, or roll) can be measured, but

movement between planes, or pitch and yaw, cannot be corrected.

To overcome this problem, I used the SPM2 (Wellcome Dept. Cognitive Neurology)

software package implemented in Matlab® (The Mathworks). The realignment

algorithms have been shown to be very effective at detecting and correcting

movement in a time series of water-PET or fMRI scans. SPM2 also detects and

corrects motion in 3 planes, as well as rotations about all 3 axes. The difficulty was

that SPM2 is written to apply the motion correction only to the images from which

the movement parameters were derived. SPM2, like its predecessor SPM99, uses a

system of files for storing image information. The images themselves are stored in a

standard format known as Analyze® 7.5 (AnalyzeDirect.com) that is commonly used

for medical images. This format defines a binary image file containing the matrix of
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data, combined with a header file which describes the format of the binary file and

contains many parameters concerning the image. For example, the header file

contains information on the image orientation, voxel sizes, date of the scan and any

scaling factors required. In addition to these 2 files, SPM2 adds a third file which

contains a matrix defining the translation from voxel-space (measured in voxels

within the image) to world-space (measured in millimetres from a standard reference

point, where the anterior commissure crosses the midline by convention).

I then realised that SPM2 could be used to realign the non-attenuation corrected

image frames to correct for movement. The translations required for this correction

were then stored in the associated data files. These files could then be renamed to

match the files containing the attenuation-corrected images. Once that procedure had

been established it made it possible to begin optimising the process for detecting and

correcting movement.

The obvious starting point was to include all time frames in the process. The

realignment module of SPM2 runs as a two stage process. The first process is to

realign all images to the space defined by the first image specified. All these

realigned images are then averaged to produce a mean image. In the second pass, all

images are then realigned to the space defined by the mean image. Obviously, the

mean image will be in the same space as the first image in the sequence due to the

effects of the first pass of the process. Once all the images have been realigned to the

mean image the distance and direction ofmovements and rotations are displayed.

When all time frames were included in the process it very quickly became clear, from



Measuring Dopamine Response with HC-Raclopride

the display of movement parameters, that there was an apparent large movement in

every scan between frames one to four. This is illustrated in Figure 4.3 pane A.

Often the calculated movements were so large that they would have required the

subject to have moved outside of the scanner field of view, or to hover 2cm above the

scanner bed (e.g. pane B). Clearly, these detected movement parameters were not

physically possible, and therefore must be incorrect and an artefact. This is a

concrete example of the risks outlined by Dagher et al. (1998)

Visual inspection of the images (see Figure 4.2 top row in both panes) showed that

the tracer distribution in the early frames was markedly different from the rest of the

frames. This is not surprising as the first frame in the dynamic image is always a

variable duration background frame. This means that the frame only contains

background radiation levels and ends when the tracer is injected. It therefore cannot

contain any tracer signal or brain image to which subsequent images can be aligned.

The next three frames are all of very short duration - 30 seconds - and contain few

counts as the tracer is only just starting to be delivered to the brain. I therefore,

sequentially removed these early frames from the realignment process until the

movement parameters stabilised. This is illustrated in Figure 4.3 panes A-E. It can

be seen that this stabilisation occurred once frames 1-4 were removed from the

process.
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Pane C; Excluding frames 1-2.
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Pane D: Excluding frames 1-3.

rotation
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Pane E: Excluding frames 1-4.

Figure 4.3: Estimation ofmovement parameters for exemplar scan excluding successive
early frames.
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Excluding frames 1-4 from the realignment is unlikely to detrimentally affect the

correction for movement. Frame 1 is background only and frames 2-4 are a total of

30 seconds duration together, which means only 30 seconds remains uncorrected for

movement. This is a very small proportion of a scan lasting 90 minutes. It is also

not unreasonable to assume that the majority of head movement will occur in the

later part of the scans as subjects become less comfortable over time.

Once the movement parameters have been determined and saved in the associated

files, they are then copied to be applied to the attenuation-corrected images. Like the

non-attenuation corrected images, these dynamic 4D images have been separated into

a series of 3D image volumes. These movement parameters then have to be

incorporated into the 3D images to perform the correction of motion. This is

accomplished within SPM2 again, using the reslice routines. During the reslice

procedure the user is required to chose a resampling method. Resampling of the

image is required because the translations and rotations require movement of the

image by a non-integer number of voxels. The intensity of the image is only defined

at the resolution of the image voxel sizes. Therefore data needs to be interpolated to

K
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represent the intensity of a given voxel after

movement from the surrounding voxels. A p--

L A A
w • •

There are several algorithms that can be used

for this interpolation. Tn general the trade-off ▼▼
L L
Uf iz

■ L.between methods is one of speed against yl
Figure 4.4: Graphical representation of

accuracy. The quickest and easiest bilinear interpolation
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interpolation method is simply to substitute the intensity value from the nearest

known value. This simply requires working out which voxel in the original image is

closest to the position of the new voxel whose value requires to be established from

interpolation. The distance from any new interpolated voxel to the surrounding

voxels can easily be determined using Pythagoras theorem in 3 dimensions.

As computing power has increased the ability to use more computationally intensive

interpolation algorithms has also increased. The next methods up the scale of

computation load are bilinear and then trilinear interpolation. The bilinear method is

shown graphically in Figure 4.4 and the equation is presented in Equation 1. The

trilinear method is simply an extension of the bilinear method into 3 dimensions.

Unfortunately, although computationally straightforward, this algorithm results in

some loss of higher frequency information (Ashburner & Friston, 2003). It is also

susceptible to local noise in the image as it relies on a relatively small number of

voxels (only 8 in 3 dimensions) to derive the intensity value for the interpolated

voxel. As a result, and with the benefit of increased computing power, more

complex and accurate techniques have been developed.

u = (y,^b- +lwy wy lyz

+ (x.Fa + z*F»
'-xz '-XZ *~yz

Equation 1: Bilinear interpolation - The value of the Unknown voxel "U" where W,X, Y and Z are
the intensity values for the nearest voxels in each direction. LWY is the length of the line from W
to Y. In words this equates to the sum ofeach nearby voxel weighted by its distancefrom U.

With increased computer power the standard interpolation algorithm used for PET
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data has now become windowed-sine (Ashburner & Friston, 2003). The main

advantage of this algorithm is that it no longer relies on a single voxel in any given

direction to derive the interpolated data; this, of course, makes the algorithm less

likely to propagate spikes of noise within the image. Sine interpolation uses all of

the voxels within the entire image to generate the value of the interpolated voxel.

This would be both computationally expensive and more complex than necessary. To

reduce the computational load to manageable levels, the volume of included voxels is

constrained to a set 3 dimensional window. Each voxel is again weighted by its

distance from the target voxel to be derived. The formula for doing this in each

dimension is shown in Equation 2. The window is applied to this formula by

restricting I to include only voxels where d, is less than a specified distance.

sin(rrd() 1
rr c/; 2

U~^i Vi ^ sir\{nd:) 1

1 + cos (2 ndi / /))

.

cos /,))
y=i ttu i 2 '

Equation 2: Sine interpolation - The value ofthe Unknown voxel U, where vi is the value ofthe ith
voxel and di is the distancefrom U to the ith voxel

For image modalities with greater spatial resolution, such as fMRI, even windowed-

sine is usually considered too coarse. For these situations the interpolation is carried

out using Fourier methods. In these cases the data are transformed before the

interpolation is carried out, then the reverse transform is applied to restore the image.

As this is not generally applied to PET data, and has not been used in these studies, I

will not describe these methods here, but would direct the reader to the SPM2

reference (Ashburner & Friston, 2003).
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In common with all data-derived procedures, proper validation of this procedure for

motion correction would require knowledge of the true magnitude and direction of

the subject head movement during the scan. Unfortunately, this is an unknown

quantity. Therefore an alternative estimate of the utility of motion correction had to

be found. The purpose of motion correction is to decrease the noise in the measures

of radioactivity in the tissues of interest. An index of the level of noise can be

estimated from the time activity curves of the regions of interest in the brain. In an

ideal situation the time activity curves for the brain regions of interest would be

smooth and noise free. Where there has been a sharp movement of the head the

change in the region of the brain sampled in a set location will cause a step change in

the time activity curve. Ideally motion correction should reduce any such steps in the

curve. This can be inspected visually, but is difficult to quantify.

In order to sample the regions of interest in the brain for validating the motion

correction an unbiased automated procedure for defining and delineating these

regions had to be developed. This procedure will be described below in this chapter.

At this point it is simply necessary to state that an automated procedure was used to

sample the 7 regions of the brain that are of interest in "C-Raclopride scans, namely:

putamen, caudate and ventral striatum bilaterally and the grey matter of the

cerebellar cortex.

Using these defined regions each subject's dynamic "C-Raclopride images were

sampled to yield mean and standard deviation of values of radioactivity in the region

for each time frame for each scan. This was done for each scan both before and after
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motion correction had been applied. An example of the derived data is shown in

Figure 4.9.

Time in seconds

Figure 4.5: Plot ofmean activity in left caudate from an example image demonstrating the
effect ofmotion correction on time activity curves. (Raw data in RED, realigned data in
BLUE.)

I attempted to use the "string length" of the curve as a measurement of the size and

number of such step changes in the curve. In order to do this I wrote a small Matlab

script to take the time activity curve and calculate the string length. As can be seen

from Figure 4.5, the string length is given by the simple equation in Equation 3(1).
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scanend

string length = ^Jat2 + Aal (1)
t=i

scanend

string length = X VzMr/1000)2 + A a2 (2)
t=i

Where: A t is the change in time and A a is the change in activity over that time.
Equation 3: Calculation ofstring length using Pythagoras theorem.

The initial values obtained for the string length were in the order of five to six

thousand, but the differences between string lengths for different regions or between

scans were in the order of 0.1 to 0.9. I realised this was because the scan duration

was effectively a constant, but also very large in comparison to the activity values. I

therefore scaled the time index as shown in Equation 3(2). This modification yielded

values of around ten, but preserved the level of variability at 0.1 to 0.9. However,

examining the results it became clear that this was not a good measure of the

effectiveness of motion correction. As the steps in the time activity curve were

removed this did indeed reduce the string length but this was variably offset by the

effect seen in Figure 4.9 of higher peak values for activity which increased the Aa

component of the function. This meant that the string length could go up or down for

any given curve after motion correction depending on the balance of these two

opposing effects. More importantly, it was not a clear good measure of the "quality"

of the time-activity data.

I therefore considered the problem from a different angle. If the motion correction is

working then the VOI definitions should be more accurately sampling the tissues

desired. Therefore the voxels within the VOIs should be more homogeneous. This

increased homogeneity should be reflected in a lower standard deviation of the
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voxels within the VOL Sampling the VOIs as described above yields a standard

deviation as well as a mean value. This gives a standard deviation for each frame

within the dynamic image. These standard deviations could be plotted against time

in an analogous manner to the mean activity as shown in Figure 4.9, but some form

of summary measure incorporating the entire scan was more useful. A simple mean

standard deviation was unlikely to be a good measure as it would be overly

influenced by early frames that have high count levels and relatively large variability

due to the short frame length. I needed to derive some form ofweighted mean of the

VOI standard deviations for the whole scan. There was already an established

technique for weighting in use at the MRC Cyclotron Unit. The weight for each

frame is derived from the frame duration, the number of true counts in the frame and

total number of frames in the image as given in Equation 4.

. , r i • . r ,w\ »T lenqth(i)ltruerate(i)The weight for the i th frame W{i) = N ——-—— ——

^ length (j) I truerate (j)
j=-

Where: length(;) is the length of the i th frame, N is the number of frames and
truerate( z) is the rate of true counts (not random counts) per second during the z th frame.
Equation 4: Formulafor calculatingframe weightings

The weighted mean of the standard deviations is then easily calculated as the mean

of the standard deviations multiplied by their respective weighting factors then

divided by the number of frames. The effect of the motion correction is shown in

Table 4.1. Testing whether this was a significant improvement in the data required

the selection of an appropriate statistical test for this data. Clearly the data are paired

as each scan has values before and after motion correction. It is possible to calculate
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paired student's t-tests for each VOI, but then the question of correction for multiple

comparisons arises. The obvious Bonferoni correction would be overly conservative

given that the data are clearly highly correlated. I therefore calculated a Hotelling's t-

squared multivariate statistic for the dataset as a whole (T2 = 745.6, F=88.3,

p<0.0001) showing that the differences are significant overall. Individual paired

student's t-tests for the separate VOIs showed that they were all significant p<0.0001

uncorrected. Therefore, they would remain significant at the p<0.05 level even after

a full Bonferoni correction.

When analysing this data I decided to treat the scans as independent events even

though the majority of subjects had two scans. The reason for this is that the

between and within subject variances in PET data are roughly equivalent and that the

effects of motion correction should be independent of the subject. This will have

increased the power of the statistical test by increasing the degrees of freedom, but

could be argued to decrease the generalisability of the results.

Raw

(mean VOI stdev + stdev)
Realigned

(mean VOI stdev ± stdev)
%difference (95% CI)

Caudate left 0.299±0.037 0.277±0.036 7.3 (6.6 - 8.0)

right 0.300±0.036 0.278±0.033 7.4 (6.5 - 8.2)

Putamen left 0.313±0.038 0.293±0.036 6.2 (5.5 - 6.9)

right 0.310±0.037 0.292±0.032 5.8 (4.5 - 7.1)

Ventral
striatum

left 0.298±0.034 0.278±0.028 6.4 (5.3 - 7.6)

right 0.298±0.037 0.280±0.030 6.0 (4.9-7.1)

Cerebellum 0.219±0.023 0.203±0.020 7.0 (6.2 - 7.8)

Table 4.1: Effect ofmotion correction on weighted means ofthe VOI standard deviations.

This reduction in VOI heterogeneity combined with visual inspection of the raw and
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realigned TACs gives a reasonable level of evidence that the motion correction

procedures reduce the noise introduced into the data by movement.

Interpolation of the data during reslicing of the images will necessarily result in a

degree of smoothing of the image. For trilinear interpolation the level of smoothing

will be dependent on the original "noisiness" of the image and on the closeness of the

movement to a multiple of the voxel dimensions. In other words this can explained

as the amount of smoothing will be at its least if the movement is exactly a multiple

of the voxel dimensions as no interpolation will be required. Conversely, the

interpolation will be maximal when the translation is exactly "n" and a half voxels,

where "n" is any integer. When windowed-sinc interpolation is used, the level of

smoothing is a constant, irrespective of the magnitude of the movement. The

presence of this smoothing secondary to interpolation is the rationale for deciding

whether or not to motion correct all images or just those with evidence ofmovement.

Some colleagues have argued that it is better to leave as much data as possible in its

original raw state (personal communication), however, I take the view that all data

need to be processed in the same way to avoid a potential bias. This is particularly

the case where the amount ofmovement may be correlated with the effect of interest.

In our studies we have often been studying the effect of stimuli that could easily be

argued to cause potential movement; for example we have presented drug related

stimuli to abstinent ex-users or injected doses of opioid agonist. Therefore it was

decided to apply motion correction to all our "C-Raclopride data.
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4.2.3.4 Automation of VOI sampling methods

There are already published criteria for defining the main regions in the basal ganglia

where "C-Raclopride is specifically bound (Mawlawi et al., 2001). However, simply

drawing these regions on each frame of each image would be both prohibitively time

consuming and sensitive to bias or inaccuracies. This required the development, in

parallel with development of the above motion correction, of a technique for

automated delineation of brain volumes of interest (VOIs). The first step was to

delineate the important regions on a template image derived from the ICBM dataset

(Evans et al., 1993). We used the template from the SPM2 software derived from a

normal dataset of T1-weighted MRI images transformed into the standard space of

the ICBM template. Using the published criteria (Mawlawi et al., 2001) we outlined

the putamen, caudate and ventral striatum on the template image (see Figure 4.6). In

addition we outlined the grey matter of the cerebellar cortex (see Figure 4.7).

Figure 4.6: Placement of the volumes of interest on the template Raclopride and T1-MRI
images. (Putamen - red and dark blue; caudate - green and pink; ventral striatum - yellow
and cyan).
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I

Figure 4.7: Placement of the cerebellar grey matter VOI on the template
Raclopride and T1-MRI images.

It was then necessary to find a way of transferring the VOI definitions onto the brain

image for each subject. SPM2 provides a "normalization" function (Ashburner &

Friston, 1999) which is used to warp subjects' images into the standard stereotactic

space defined by the ICBM template. In order to do this it requires an image from

the subject with good anatomical information and a matching template image. This

can be done is several different ways. If each subject has both a PET image and a

good resolution structural MRI image then the commonest method is to co-register

the PET and MRI image for the subject, so that they are in the same space. As we

are dealing with the same underlying structure, i.e. the same brain produced both

images, this is a rigid body transformation. SPM2 provides a routine for doing this

co-registration step (Ashbumer & Friston, 1997).

Co-registration between images from different modalities is not as straightforward as

registration of images in the same modality. Images of the same brain in the same
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modality would be expected to have peaks and troughs of intensity levels in the same

anatomical locations. This is not the case for images from different modalities. As

can be seen in Figures 4.6 & 4.7, the pattern of high and low intensity voxels in Tl-

weighted MRI images and "C-Raclopride images is very different. In a T1 image

the peak intensities are in white matter, with grey matter being somewhere between

white matter and cerebro-spinal fluid in intensity. In a "C-Raclopride PET image the

peak intensity is in the striatum, with little else in the rest of the brain. This means

that co-registering the images is not as simple as just minimising the difference

between them.

The algorithms within SPM2 used for inter-modality image co-registration are based

on three different techniques, Mutual Information, Joint Entropy and Normalised

Mutual Information. The latter, normalised mutual information, has been shown to

produce the most robust co-registration between MRI and PET data, especially where

there is a large field of view as we get from our PET scanner (Studholme et al.,

1999). The technique of mutual information co-registration is derived from

communications and information theory. Such algorithms were originally developed

to measure the quality of a signal transmitted and received. Put simply, a complex

image will contain a large amount of information, whereas a blank picture will

contain very little information. Similarly, entropy can be thought of as the converse

of complexity. In this context it can be considered as a measure of the uniformity of

an image; again illustrated by a grey image having greater entropy than a black &

white checker-board.
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If the information contained within an image is represented as a set then the Venn

diagram in Figure 4.8 can be used to illustrate the various mathematical techniques

for solving the problem of inter-modal image co-registration. In the case of Mutual

Information the images are moved such as to maximize the Mutual Information - i.e.

the green area. In the case of Joint Entropy techniques the algorithms seek to

minimize the Joint Entropy - i.e. the orange area. In the examples below it can be

seen how such techniques would maximise the overlap between the images, i.e. find

the best co-registration. Unfortunately the images are not always as well behaved as

the Venn diagrams. Often there will be one image that contains a field of view

covering less than the whole brain. It is also common for the image to contain a

large area of non-brain within the field of view. This has been shown to reduce the

chance of these algorithms finding the genuine best solution to the problem

(Studholme et al., 1999). The same authors show that "normalising" the search for

the minimum joint entropy by incorporating information on the marginal entropies

yields an algorithm that is more robust to both these conditions and to the condition

ofpoor starting estimates for the required translation.
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Marginal Entropy (blue) = H (M) + H {N)
Joint Entropy (orange) = H (M ,N)
Mutual Information (green) = I(M;N) = H (M) + H(N) — H (M ,N)
Normalised Mutual Information = Y (M ;N) = ~~~7~~r~~

H (M , N)
Figure 4.8: Venn diagram illustrating set theory representation of Mutual Information and
Joint Entropy

Once the PET and MRI images are in the same space it is then possible to

"normalise" the structural image to a matching structural template provided by

SPM2. The warping parameters derived for the MRI image can then be applied to

the PET image.

However, in our case we did not have good quality structural MRI scans available for

all subjects. We had acquired standard T1 structural MRI brain images on every

subject using the clinical scanner at the local hospital in Bristol. Unfortunately there

was a long delay of 2 years in obtaining the required computer access to retrieve the

raw data from the clinical scanner. It was only at this point that it became apparent

that the images contained insufficient contrast to permit analysis. The images

produced contained only approximately 100 distinct shades of grey; this is plenty for

printing on X-ray film and for clinical use. The image analysis algorithms require a

minimum of 256 intensity levels for analysis. We were able to rapidly develop a

enhanced acquisition protocol once we had access to the raw image data, but not in
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sufficient time to permit re-scanning of the early subjects in the study. We were

therefore unable to use an identical MRI-based analysis for all subjects.

This meant that the ideal solution was to "normalise" the subjects' PET images

directly to a matching PET template image. This approach would require PET

images with good anatomical information and the creation of a matching template 4

image. The images available with the most anatomical information were the

weighted mean images from the non-attenuation corrected images used in the

movement correction procedure above. What was therefore required was to create a

matching template image in standard space.

4.2.3.4.1 Creating a template uC-Raclopride image

We had good quality MRI images for several of the later subjects used in our

experiments. It was therefore possible to use these subjects in a bootstrap procedure

to begin the creation of the template. For each subject with a good quality MRI, the

MRI image was co-registered to the mean non-attenuation corrected image using

SPM2 co-registration routines. The MRI images were then used to derive

normalisation parameters for each of these subjects. The parameters were then

applied to the PET images. This yielded a collection of PET images in a close

approximation of standardised space. I visually inspected all images at every step of

this process to ensure that the co-registration and nonnalisation had succeeded. The

next step was to produce a first-pass "C-Raclopride template image. This requires

the production of a "soft mean". In words, a soft mean equates to the sum of data in
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a given voxel over all images, divided by the number of images with data in that

voxel. This can be easily produced using the image calculation facility in SPM2 and

Equation 5.

, (h~b/t + •-•+
'softmean'=(epS+( 7, ;=0)+(y=0 )+...+(/„.'=()))

Where /„ is the value in the nth image and '! = ' means 'not equal'. The eps term is the smallest
possible non-zero number, inserted to prevent 'division by zero' errors in voxels where
there is no data in any image.
Equation 5: Calculation ofa "soft mean".

This soft mean image was then smoothed with a Gaussian kernel of 6mm at Full-

Width-Half-Maximum. This smoothing has been shown to improve the registration

of images to a template by better allowing for anatomical differences between

individuals (Ashburner & Friston, 1999).

It would be possible to use this "first-pass" mean image as a template, but the fear is

that normalisation parameters would be more accurate for those subjects whose

images contributed to the template image than for the others. This could potentially

cause a bias in the outcome. To overcome this problem I put the data through a

"second-pass" of template creation. In this phase I took the first-pass template and

normalised all subjects' mean non-attenuation corrected images to this template.

Then, using the same formula, I created a second-pass template from the newly

created normalised images. In this way, all subjects contributed equally to the

creation of the template image.

4.2.3.4.2 Applying the VOIs to subject images

For each subject, I took the non-attenuation-corrected mean image and nonnalised it
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to the template created above. This generates warping parameters describing the

transformation from subject space to standard space. The VOI definitions are in

standard space. The two alternative procedures that could be applied are to warp the

subject's PET images into standard space using these parameters, or to invert the

parameters and warp the VOI definitions into the same space as the subject's images.

Each method has its advantages and disadvantages. Warping the subject's images has

one less step, the inversion of the parameters. Also, if all images are warped into

standard space it enables easier comparison between subjects. However, as described

above for the motion correction process, each resampling of the PET data

necessitates interpolation of the data and subsequent loss of resolution.

The normalisation process begins with a 12-parameter affine transformation of the

subject's image into the same space as the target template image (Ashbumer &

Friston, 1999). This process accounts for the differences in position, orientation and

global size between the two images. In effect it spins and slides the subject's image

into the same orientation as the template using 9 parameters, then uses the remaining

3 parameters to describe scale factors in each dimension accounting for differences in

overall size. The second phase of the process uses a series of basis functions to

describe the non-linear warping required to account for the localised differences in

brain shape between the images. In earlier versions of SPM, e.g. SPM99, the

parameters describing the basis functions were found which minimised the sum-of-

squares difference between the subject's and template images. This process took no

account of the anatomical feasibility of these warps, making the process vulnerable

138

<



Measuring Dopamine Response with HC-Raclopride

to unstable results where the subject's brain had localised anomalies or could become

trapped in localised minima. In SPM2 and later there is a dual cost function that

seeks to minimise both the sum-of-squares difference between the images and a

measure of the anatomical likelihood of the warping parameters. This second

component of the cost function is referred to as the "regularisation" of normalisation.

It is based on the Bayesian probability of the warping parameters. This refers to the

posterior probability of the parameters given the calculated parameters from the

minimisation of the sum-of-squares and the prior probability. As more eloquently

described elsewhere (Ashburner & Friston, 1999), in an ideal situation the prior

probabilities would be derived from some concept of the "brain-ness" of the image,

but this is difficult to quantify. Instead, the prior probabilities are derived from the

"membrane energy" of the warping parameters. In essence this is a measure of the

degree to which the subject's brain image will be "stretched out of shape".

Ultimately the combined dual cost function derives the warping parameters

producing the best match between the images with the least warping of the subject's

image to do so.

The next step is to invert these warping parameters. This can't be done directly. It is

easy to invert the 12-parameter affine components, but the non-linear warping

parameters and coefficients of basis functions which are not easily inverted.

However, there is an additional toolbox available with SPM2 called the deformation

toolbox (Ashburner et al., 2000). This toolbox takes the warping parameters from

the normalisation and converts them into a deformation field image which can be



Measuring Dopamine Response with llC-Raclopride

inverted. The deformation field produced by conversion from the warping

parameters is a matrix of the same dimension as the warped image but with each

voxel containing a vector describing the movement required for that voxel to

accomplish the warping. The same toolbox was then used to invert the deformation

field. This inverse deformation field was then applied to the VOI definitions in

standard space. This final step required some modification of the code.

4.2.3.4.3 Warping the VOI definition images

The VOIs are delineated in Analyze®. Routinely they are stored as "Object files",

which is a proprietary format. In order to be warped to match the subject's image,

they first need to be converted into a format that SPM2 can read and manipulate.

Analyze® itself is able to convert these VOI definitions into an image file where the

voxel value is an integer representing the VOI that voxel is a part of. The inverted

deformation field created above can be applied to this VOI image using the

deformation toolbox. However, the resampling of the image uses trilinear

interpolation as described above. This results in non-integer values in some voxels.

This makes it impossible to return the warped VOI images back into Object files.

The only way to maintain integer-only values in the image is to use "Nearest

neighbour" interpolation. The choice of trilinear interpolation is hard-coded into the

SPM2 source code (as shown in Codeblock 1), which therefore had to be modified.
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Codeblock 1: Original SPM2 function - spni_applydef_ui.m
function spin applydr.f iii(PPT)
% Applies a deformation field to an image
%

%@(#)spm applydef_ui.m 1.4 John Ashburner 04/03/24
ifnargin<2

n ~ spm_inputCNumber ofsubjects','+0', 'n', '1','
for i=l :n

P{i} =spm get(l,{'*y *.img','noexpand'},['Select deformation field ' num2str(i)]);
PT{i} =spm_get(Inf,'*.img',['Image(s)to warp ('num2str(i)')']);
end;

else
n ~ lcngth(P);
if ii —lengllifPT)
error('Must have matching deformation / files list cell arrays as inputs to spm_applydef_ui')
end

end

spin progress_bar('lnit',n,'Applying deformations'/subjects completed');
for i=l:length(P),

Pi = [repmat([P{i} 7],3,1) num2str([l 2 3]')];
spm_applydef(Pi,PT{i});
spm_progress_bar('Set',i);

end;
spm_progress_bar('Clear')
return;
%
function spm_applydef(VD,VI)
if ischarfVD), VD = spm vol(VD); end;
if ischar(VI), VI = spm_vol(VI); end;
VO = VI;
for i=l:length(VO),

VO(i).fname = prepend(VO(i).fname,'w');
VO(i).d im( 1:3) = VD(l).dim(1:3);
VO(i).mat = VD( 1 ).mat;
if -isficld(VO,'dcscrip'), VO(i).dcscrip _"; end;
VO(i).descrip = ['warped ' VO(i).descrip];

end;
VO = spm_create_vol(VO);
for p=l :VD(l)-dim(3),

M = spm_matrix([0 0 p]);
xl = s pm_s lice_vo1(VD( 1), M, VD( 1 ).d im( 1:2), 1)
x2 = spm_sIice_voI(VD(2), M, VD(1).dim(l:2),l)
x3 = spm_slice_voI(VD(3), M, VD(l).dim(l:2),l)
for i=1:length(Vl),
M = inv(VI(i).mat);
y 1 =M( 1, l)*xl I M(1,2)*x2+M( 1.3)*xd-M( 1,4)
y2 = M(2,1 )* xl +M(2,2.)*xf+M(2,3)+x3+M (2,4)
y3 = M(3,l)*xl+M(3,2):|:x2+M(3,3)*x3+M(3,4)
lmg = spm_sample_vol(VI(i),y I,y2,y3,1);
VO(i) = spm write_plane(VO(i),img,p);
end;

end;
VO = spm_close_vol(VO);
return;
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I decided that the best way to implemented this change was to permit user selection

of the interpolation algorithm. SPM2 can also be run using commands issued from

within a script. Any such script would not expect to have to choose the interpolation

algorithm, so I had to ensure that I maintained this interface. I achieved this by

setting trilinear interpolation as the default choice in the graphical interface and not

require the parameter to be passed as an input argument to the function, but allow it

to be passed. The resultant code is shown in Codeblock 2 with much of the unaltered

code snipped out.
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Codeblock 2: Modified spm applydef ui.m (with unchanged elements snipped for brevity)
function spm_applydef_ui(P,PT,interp)
% Applies a deformation field to an image
%
% Changes made by Mark Daglish 04/11/19
% Wanted to allow different interpolation levels so
% 1: interp added to function call
% ?• If nn vnrgin then fiill gui with P (array of deformation fields)
% PT (array of images to warp) and interp (level of interpolation)
% are required to be specified.
% If P & PT are defined, but not interp, then assume someone is expecting
% John's original program and set intcrp~T as default.
% If P. PT & interp are specified then use them & skip GUI.
% 3: Calls to spm_slice_vol and spm_sample_vol changed to include
% interp variable
%
% @(#)spm_applydef_ui.m 1.4 John Ashburner 04/03/24
ifnargin<3

ifnargin =2;
interp=l;

else
n =spm_inputCNumber ofsubjects ','+0', 'n', T, 1)';
for i=lm

P{i} = spm_get(l,{'*y_*.img7noexpand'},['Select deformation field ' num2str(i)]);
PT{i} = spm_get(Inf,'*.img',['Image(s) to warp (' num2str(i)')']);

% Option to change interpolation method added by Mark Daglish 04/11/18
interp = spm_input('lnterpolation Method?','+l','m',...

['Nearest Neighbour|Trilinear Interpolation!',...
'2nd Degree B-spline|3rd Degree B-spline|4th Degree B-spline|',...
'5th Degree B-spline|6th Degree B-spline|7th Degree B-spline'],...
[0 1 2 3 4 5 6 7], 2),

% End ofchange
end;

end;
«code snipped»
% Change to include interpolation in call to spm_applydef

spm_applydef(Pi,PT {i},interp);
«code snipped»

%
function spm_applydef(VD,VI,interp)

«code snipped»
% Changed to include inteip variable in calls to spm_slice_vol & spm_sample_vol
for p=!:VD(I).dim(3),

M =spm_matrix([0 0p]);
xl =spm_slice_vol(VD(l), M, VD(1).dim(l:2),interp);
x2-spm slice vol(VD(2),M, VD(l).dim(l:2),interp);
k3 ~ :,prnj,lice_vol( vD(3), M, \D(1).din(l.2).intuip).

«code snipped»
img = spm_sartple_vol(VI(i),yl,y2,y3,interp);
«code snipped»
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Once implemented, the new code allowed application of the inverse deformation

field to the standardised VOIs. I also applied the deformation to the template 11C-

Raclopride image. The end product of this process is to produce a map of the VOIs

that had been defined in standard space now warped into the same space as the

individual subject's images. By comparing the subject's mean non-attenuation-

corrected image with the warped template image it was possible to do a rough check

on the success of the normalisation and inversion process. The, now warped, VOI

image can then be converted back into an Object file using Analyze®. A sample

result of this process is shown in Figure 4.9. These can then be used to sample the

subject's dynamic image to obtain time-activity curves for the seven VOIs. It is these

time-activity curves that were sampled and plotted above to test the effects ofmotion

correction.

Figure 4.9: VOIs warped to fit the subjects mean (left) and BP (right) image.
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4.3 Modelling of nC-Raclopride

When analysing ligand PET images the concentration of radioactivity in the tissue is

the quantity measured by the scanner. Some measure of the availability of the

binding site is the measure of interest. It is the modelling of the tracer that enables us

to get from one to the other.

4.3.1 The simplified reference tissue model

This modelling technique for "C-Raclopride was first described by Lammertsma &

Hume, (1996). "C-Raclopride has been previously shown to have no specific

binding outside of the basal ganglia (Kohler et al., 1985). This means that it is

possible to model the tracer using the simplified reference tissue model. Modelling

of any tracer binding requires some form of input function that describes the delivery

of the tracer into the target region. Generally, this can be described using a three-

compartment model, as illustrated in Figure 4.10. The nominal compartments are

plasma plus the three tissue compartments: free, non-specifically bound and

specifically bound tracer. Assuming reversible binding, each compartment has two

rate constants associated with in describing influx and efflux from the compartment,

yielding a total of six rate constants.
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Figure 4.10: The fully specified three compartment model

This model requires estimation of six parameters and requires knowledge of the

amount of radio-labelled parent compound tracer in the arterial blood supply. The

parameters of interest are only ks and k,, or the ratio ks/k. Therefore if the free and

non-specifically bound compartments can be reliably estimated in a brain region

lacking specific binding it it possible to reduce the model to a reference tissue model

using four parameters (see Figure 4.11). This is possible because the specific binding

compartment does not directly connect with the plasma compartment. Flowever, the

reference tissue model does make the assumption that the effective delivery of tracer

to the free and non-specific binding compartments are the same in both target and

reference regions. Mathematically this is expressed as Kik =K'i/k'2. These

parameters are dependent on delivery of the tracer to the region by the plasma and

the effective surface area of the blood-brain barrier at each location. These factors

need not be the same in the target and reference regions, but the effect of differences
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is assumed to be the same on both Ki and k2, thereby preserving the ratio between

them.

Specific
binding

Reference tissue

Figure 4.11: Simplified reference tissue model

On initial examination it appears that this model still requires estimation of six

parameters (Ki,k2,k3,k4,K'i,k'2). Using the equations from Lammertsma & Hume,

(1996) reproduced as Equation 6(1-5), it is possible to show that these initial six

reduce to four parameters (Ri,k2,k3,k4). Where the tissue concentration Ct is expressed

as a function of Cr and the four parameters. Substituting Equation 6(6) gives us a

parameter of Binding Potential which is related to the parameters of real interest

which are Bmax and KD. Bmax gives a measure of the binding site availability and KD is

a measure of the tracer affinity for the binding site. There is currently some debate

amongst experts as to the correct nomenclature for this BP parameter (personal

communication). As identified in Equation 6 the reference tissue models all yield a
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measure of ^.BP which is dependent on the free-fraction of tracer in the target

tissues. I will generically refer to this parameter as BP, which is one of the

conventions currently being used in the literature.

= K\Cp(t)-k2Cr(t) (1)

= K^Cpit) — k2C f(t) — k3C f{t) + kACb(t) (2)

= k3Cf(t)-ktCb(t) (3)
dCb(t)
dt

C,(t) = Cf(t) + Cb(t) (4)

K, , ■ k7
R' = = t (5)K, Ki

BP = k4 = ™- (6)
kr .

_ BP
k""* " k

Where: Cr is the concentration in the reference tissue,
C f is the concentration of free and non-specifically bound,
C

p is the metabolite corrected concentration in plasma,
Cb is the concentration of specifically bound tracer (i.e. the measure of interest) and
C( is the concentration in the target tissue (as measured by the scanner).
R, is the ratio of tracer delivery between target and reference region.
BP is the binding potential - the new measure of interest

(more accurately described as BP. f, where
f 2 is the free-fraction of tracer in the target tissue).

Equation 6: Differential equations describing the change over time of the concentration of tracer in
each compartment in the reference tissue model.

The simplified reference tissue model (Lammertsma & Hume, 1996) makes further

assumptions of the data in order to derive a more straightforward and mathematically

stable approximation of BP. If it is assumed that, under tracer conditions,

equilibration between Cf and Cb is very fast then they can be effectively modelled as

a single compartment. This has been shown to hold for "C-Raclopride (Farde et al.,
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1989). This replaces Equation 6(2-3) with Equation 7(1). Including Equation 7(2)

with Equation 6 yields the full equation for the simplified reference region model as

Equation 7(3).

= K1CJt) - k2aCt(t)dt

= £-(I + bp)2a 2

Ct(t) = R,cr(t) + k2- R'k1+ BP Cr{t) ® e
—

l+ BP

Where k2a is the effective k2 for Ct(t).

Equation 7: 77?e equations for the simplified reference region model.

It can be seen that this simplified model now depends on the concentration in the

reference tissue and three parameters (Ri,k2 and BP) of which BP is the parameter of

interest. The implementation of this model in terms of computer software is

discussed in the next section.

4.3.2 Re-implementation of Receptor Parametric Mapping

software

Traditionally, at the MRC Cyclotron Unit in Hammersmith Hospital, the simplified

reference tissue model described above was implemented within an in-house

software package called "Receptor Parametric Mapping" (RPM). This software was

written by Dr. Vin Cunningham and Dr. Roger Gunn.
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4.3.2.1 Reformulation of the Simplified Reference Tissue Model

The equation for the simplified reference tissue model is given in Equation 7(3).

This is solvable, but computationally intensive and susceptible to noise (Gunn et ai,

1997). However, it is possible to linearise the equation to yield Equation 8(1).

Cf(t) = 0i C r (t) + 02cr(t) ® e
Where:

= r,
R,

-0,1

12 — k 2 1 -
1 + BP

1 + BP

This can be restated as:

C,(t) = 9,0,(1) + 92B(t)
Where:

-0,t

(1)

(2)

(3)

(4)

(5)

(6)B(t) = Cr(t) 65 e

Inserting a term for radioactive decay of nC gives:

k,
0, =

1 + BP
(7)

Equation 8: Linearised reformulation ofEquation 5(3).

From Equation 8(5) it is clear that Ct(t) is a linear function of Cr(t) and B(t) with two

parameters (0i and 82). Solving such a linear equation is computationally much

more straightforward. The novel approach taken in Gunn et ai, (1997) was to

generate a range of basis functions (B,(t)) covering the plausible values given the

physiological state being described. It is then a linear problem to find the basis

function that best fits the observed data and derive the parameters 9i and 02 and to
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yield corresponding values for Ri, k2 and BP. The only additional component needed

in the model is a term to account for the radioactive nature of the tracer, so A has to

be inserted as the decay constant for the "C isotope to finally give us Equation 8(7).

4.3.2.2 Origins of the software problems to be solved

The majority of the RPM software package runs from within the Matlab®

(Mathworks Inc., USA) package. Given the date it was written, the RPM package

was written for Matlab® version 5. There have been a number of changes to the

Matlab language between version 5 then and version 7.2 now. These required

updating of the program files to match the alterations in the language specification.

It also used routines for reading and writing brain images from disk taken from

SPM96 (Wellcome Dept. Cognitive Neurology) and adapted for use in the package.

For some of the more computationally intense operations, the software was written in

more efficient, lower level, computer languages like C, C++ and Fortran.

In order to analyse the brain images we acquired, we needed to deploy this software

package in Bristol on our own computers. The problem of this was that the

computers at the MRC Cyclotron Unit were Sun® computers using the SPARC®

architecture. In Bristol we had no Sun® computers and only machines based on the

Intel® x86 architecture. This created two main difficulties; firstly any software

compiled for the SPARC architecture had to be re-compiled for the x86 architecture;

secondly, all the brain images were stored in the wrong endian format. This needs to

be explained in more detail.
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The software written in Matlab's own language can be run on any machine that

Matlab will install and run on. The code written in C, C++ or Fortran needs to be

compiled before it will run on any computer. The same source code can be compiled

to run on any machine, but the compiled executable program will only run on the

architecture it was compiled for. The implication of this is that all the C, C++ and

Fortran components of the RPM package needed to be recompiled to run on our

computers. Unfortunately, a lot of the source code was either incomplete or missing

completely. This meant it had to be re-written to a varying degree before it could be

deployed in Bristol. Each of the components that required this work are described in

their own sections below.

The second problem was that of the endian fonnat of the brain images and the

machines they were to be analysed on. The term "endian" relates to the way

numbers are physically stored within a computer's memory. The basic unit of

computer memory is the byte. A byte is a number comprising 8 binary digits. The

size and precision of the brain image voxel data cannot be stored in a single byte, so

the data has to be stored in several bytes. These bytes can be ordered in at least two

ways; with the least significant byte first (see Figure 4.12, pane A), which is called

"Little endian"; or with the most significant byte first (see Figure 4.12, pane B),

which is called "Big endian". This is important because the Sun® computers use Big-

endian and the x86 computers use Little-endian formats. The result of this is that if

you try to read an unconverted image in the wrong fonnat, it will appear to be white

noise. This has been traditionally typified as the "NUXI problem", as the first
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attempt to port the Unix language to an other-endian system resulted in the printing

of "UNIX" as "NUXI". This gives a simple example of the effects of wrong endian

data reading on data. As an amusing aside, the terms big & little endian are

purported to be derived from the argument of the Lilliputians in Gulliver's Travels

over which end to crack open an egg.

Pane A: Little-endian Pane B: Big-endian

ID 2C 3B 4A 4A 3B 2C ID ...

Figure 4.12: Little and Big endian representations of the hexadecimal number 4A3B2C1D.

4.3.2.3 Solving the endian problem

The solution to the endian problem was to re-write the RPM software package to use

different routines to read and write brain image data from disk. If the image reading

and writing routines could be written to detect the byte-order (or "endian-ness") of

the images then this can be corrected as they are read in from disk. In this way the

rest of the software need have no knowledge of the image byte-order as the data is

automatically represented in memory in the correct format. The easiest way to

achieve this was to update the image routines to use those from the recently released

SPM2 as opposed to the original SPM96 routines. This updated version of the SPM

software package referenced above included improved disk reading and writing

routines. In particular, there were two clear advantages. Firstly, the images were

handled in a more memory efficient manner and also the byte-order was detected and

corrected if necessary as images were read in from disk (i.e. on-the-fly).
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The change of versions did mean a re-write of several segments of the RPM software

as the Application Program Interface (API) of the SPM image input/output (I/O)

routines was also changed with the new version. The API of any software is the rules

and conventions governing the passing and retrieving of arguments and the syntax

for invoking the routines. If the API remains unchanged with an upgrade of software

it will appear to the calling software, or end user, that the software has not changed.

Even if it accomplishes its functions in a different manner, these changes will be

transparent to the user. Conversely, when the API of a software package changes,

then it will require at least some degree of re-writing to regain the previous

functionality.

The original RPM software turned out to be using customised versions of some of

the SPM96 software as well. The original SPM96 software was written to handle 3D

images of a single brain volume. RPM requires the main input image to be a 4D

time-series of volumes. In order to more fully understand the nature of the problem,

some explanation is required of the format in which the brain images are stored. The

images use a format described as "Analyze 7.5" as it was defined by the software

package Analyze® (AnalyzeDirect, USA) version 7.5. This format is a widely used

method of image data storage. It uses two files to store the brain image. There is a

small header file (name.hdr) that contains a number of parameters that describe the

associated image. The image data itself is stored in an image file (name.img) that

contains only the binary data in the format described in the associated header file.

One of the first tasks for the RPM software when accessing images on disk is to
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determine the format of the image. This is done by reading in the header fde.

Previously the RPM package used a modified version of the SPM96 routine

spm_hread.m but this had been replaced in SPM2 by the new routine

spm_read_hdr.m. Behind the name change was also a fundamental change in the

way the data retrieved from the header file was represented in memory. Previously

each item of data, like image dimensions and voxel sizes, was stored in its own

variable. With the move to SPM2 the data from each header was stored in a single

structure variable containing all the necessary variables within it. The new header

I/O routine also returned information on the byte-order of the data. The net result of

these changes is that calls went from the form of:

[dim,vox,scale,type,offset,origin,descrip] = spm_hrcad(hdrfilcname);

to:

[hdr, otherendian] = spm_read_hdr(hdrfi1ename);

Where hdr is a structure containing fields like hdr.dim, hdr.vox etc. and otherendian

is a flag denoting where byte-swapping is required.

Previously, SPM96 would then take the header information and use it to memory

map the associated image disk file, to avoid loading large amounts of data into

memory, using a call to spm_map_vol. This mapped image file could then be read

using spm_sample_vol. In SPM2 images were no longer memory-mapped until

actually read from disk. In the RPM software this was accomplished by a routine
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map_dynamic which would create a matrix of memory-mapped 3D volumes from a

single 4D image file as shown in Codeblock 3.

function V= map dynamic(P)

% Receptor Parametric Mapping
% Version 1.0:20-06-98
% Roger Gunn
%
% John Ashburner's Memory Mapping Routine
%
% memory map of a dynamic image
% FORMAT V= map dynamic(P)
% P - filename
%
%
Vu map_dynamic returns a matrix Videntifying a memory mapped dynamic image.
% The matrixVcan be used by sample_dynamic.
% Once finished with, it should be unmapped with unmap_dynamic.

P = P(P ~='');
Filename = P;
q =Tength(P);
ifP(q - 3)=P = P(1 :(q - 4)); end

[DIM VOX SCALE TYPE OFFSET] = spm_hread([P '.hdr1]);
if (TYPE—-2) siz-l;
elseif(TYPE= 4) siz=2;
elseif(TYPE— 8) sk-4,
clscif (TYTE~ 16) siz 4;
elseif (TYPE= 64) siz^8;
else siz=l;
end

if (length(DIM)= 3) DIM = [DIM 1]; end

for ff=l :D1M(4)
V(:,fr) = spm_map_vol(Fi!ename,[DIM(l:3) VOX(l:3) SCALE TYPE

OFFSET+prod(DlM(l:3))*(fr-l)*siz]);
end
Codeblock 3: Original version ofmap_dynamic routine.

The new version of RPM had to be adapted to the new format of spm_vol, which

replaced spm_map_vol. The revised version is shown in Codeblock 4.
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Lunction V= map_dynamic(P)
% memory map of a dynamic image
% FORM AT V=map_dynamir(P)
% P - filename
%
%
% map_dynamic returns a matrix V identifying a memory mapped dynamic image.
% The matrixVcan be used by sample_dynamic.
% Once finished with, it should be unmapped with unmap_dynamic.
%
% Hacked by Mark Daglish 3 Jan 2005 to work with SPM2 routines
% spm_map_vol is no longer used, replaced by sprn vol. Vremains
% a (num_frames x 1) matrix of structures as described in spm_vol

P = P(P-=");% Remove blanks
Filename = P;
q = length(P);
if P(q - 3)=P = P( 1 :(q - 4)); end % remove filename extens ion

[hdr,othercndian] - spm_read_hdr([r '.hdr']); % get the hdr structure

% If it is a 3D image, set the 4th dimension to 1
if ((Iength(hdr.dime.dim)==4) | hdr.dime.dim(5)=0) hdr.dime.dim= [hdr.dime.dim(l:4) 1]; end

Vols =cell(hdr.dime.dim(5),l);
% As this is a 4D image create a matrix of filenames of the form "filename. img,n"
% where n is the frame number from 1 to number of frames,
for fi=l :hdr.dime.dim(5)

tmp = [strcat(Filename,',',num2str(ff))];
Vols(fr)= cellstr(tmp);

end

Vols = char(Vols);
V=spm volfVols);
Codeblock 4: Revised version ofmap_dynamic routine.

Once these changes had been made, the rest of the routine calls to read image data

from disk where very straightforward to modify. References to the mapped 4D

volume matrix V_old of the form V_old(:,frame) could simply be replaced by

V_new(frame). Similarly, the image dimensions were no longer referenced as

V_old( 1:2,frame), but as V_new(frame).dim(l:2). The other remaining advantage

from the new API was that image structures no longer needed to be unmapped,

rendering calls to spmunmap unnecessary.
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With the changes in image I/O routines the other remaining task was to update the

routines for writing images to disk. Previously, the RPM package did the writing to

disk of all the created images. It made more sense to me to use the new SPM2

routines to obviate the need for re-implementing routines that were already in

existence. All that was needed was to build a structure describing the volume to be

written, as defined by the spm_vol. The data to be written has already been created

in a matrix, and so can be written to disk with a call to spm_write_vol.

4.3.2.4 Re-writing the compiled software

The analysis of "C-Raclopride images using the simplified reference tissue model

requires the use of two of the compiled routines within RPM. The Simplified

Reference Tissue Model (SRTM) as implemented in RPM, as described in Equation

8.5 and Equation 8.6, uses a series of basis functions generated as a range spanning

the likely possible solutions to the model parameters. The routine that generates the

basis functions has to implement a convolution function (see Equation 9) which is

computationally heavy.
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From Equation 8(5) above, the /'th basis function B,(t) = CR{t) ® e °3f
Where CR{t) = interpolated activity in reference region at time t.

Expanding over a finite set of discrete time intervals gives us:

B,(t) =
3, r=0

Where k is a constant.

°5 t_1
Similarly: B,{t-1) = k ~e X CR(T)e""(f""1_T)03

03, r=0
1 —o03' t_1

Which implies: B,(t-l)e~03' = k e~03' X CR(T)e~(f~1_T)03'
03, r=0

i °3'
and therefore: l)e"03' = k——CR(t)

03f
i °x

Which means that: B,(t) = B;(t-l)e~°3 + k——CR(t)
03,

Equation 9: Convolution functionfor SRTM basis function generation

There originally existed a routine written in Matlab code (see Codeblock 5). It can

easily be seen that this implements the final line of Equation 9. For speed this had

been converted to C using the Matlab compiler to which we did not have access in

Bristol. This left us with two possible solutions: 1) we could continue to use the

Matlab code, or 2) I could re-write the code as a C function.

Codeblock 5: Matlab code to implement
function convolution=conv(inp,k,theta,t)

et = exp(-theta);
prev = 0;
fori= l:length(t)

prev= prev*et + k*inp(i)*(l-et)/theta;
convolution^) = prev;

end
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The first option of leaving the Matlab® code in use was clearly the easiest. However,

as the length of vector 'f is the scan duration in seconds it is frequently in excess of

5,000 and therefore incurred a noticeable time penalty with each image analysis run.

Taking the code in Codeblock 5 as a starting point, I re-implemented this in C.

Having not programmed in C before, this required the use of some web-based

resources and the External Interfaces Manual for Matlab®. The resulting C code is

shown in appendix 8.1.2.1. The mathematical explanation for the nature of the

convolution is detailed in Gunn et al., (1997) and Equation 9.

The next compiled routine was a much more complex problem. The whole principle

of the basis functions approach described above relies on finding the best fit of the

model to the observed data from every possible model derived from the basis

functions. As demonstrated in Equation 8 this is a linear problem with two

parameters (0i and 02). In this way, an expected C-r(t) can be derived for every

plausible basis function. The best fit to the observed data can then be found using a

standard linear least squares method. It was the solution of this problem that was

handled by the compiled software routine.

As before, I had a few resources at my disposal to re-implement this solution on our

computer system in Bristol. It was possible to trace the original software for the

compiled routines in use from a backup store. Unfortunately, this code comprised

three files written in a different language, namely C++. This code had been written

in 1996 and would now no longer compile due to changes in the accepted standards

of the language. Luckily, hidden within the source code was an old version of the
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Matlab® code from which it was derived. However, it was soon clear that the M-

code was not as sophisticated as the C++ code that was derived from it. In addition,

the original M-code was written to make use of the matrix capabilities of the Matlab®

environment. In order to re-implement this in C++ the previous programmers had

used the object-orientated nature of C++ to create a series of classes of objects that

mimicked the matrix and vector structures of Matlab® and implemented equivalent

methods. This is not easily mimicked in C. The original C++ files written by Drs.

Steve & Roger Gunn are reproduced in Appendix 8.1.

This first step to solving the problem was to re-implement the current solution in

Matlab® M-code. This would be much slower than any compiled code, but has the

advantage of being much easier to read, write and debug. The code contained in the

comments of the C++ source code appeared to provide a solution to the mathematical

components of the problem. Specifically, it would take similar input parameters,

although not identical as detailed below, and would find the best fitting solution with

the associated values for 0i, 02 and 03- However, unlike the existing compiled routine

it was missing one input argument. This argument was a matrix labelled "mask".

From the calling program it was possible to deduce that this parameter contained a

binary vector that contained a value of 1 where there was data in the image,

according to a user-supplied masking image, and a value of 0 where there was no

useful data in the image (i.e. outside the brain).

The only reason for supplying such an input would be to reduce the computational

load on the software by only analysing voxels that contain useful data. Given that
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the brain image sits in a larger cuboid matrix of non-brain there are large regions

where analysis will produce meaningless results at the expense of a large amount of

computer processing time. It appeared that this was what the C++ code was using

the mask input argument for. Therefore, any solution to re-implement the M-code

had to include the "mask" argument to avoid the need to modify the source code in

the program calling the routine. The idea being, that it should be possible to

substitute one routine for another directly without the rest of the software package

being altered, or even aware of the change. Similarly, the substitution should be

transparent to the end-user, most particularly in the production of identical end

results. In addition, the reduction in computational load would also be maintained.

The new Matlab® M-code for this routine is shown in full in Appendix 8.1.3.2. It

was while re-writing the section in Codeblock 6 that I discovered a bug in the

original software as shown in Codeblock 7.

Codeblock 6: M-code for allocating default return values

RI=zeros(l,ydim);
k2=zeros(l,ydim);
BP=zeros(l,ydim);
index=ones(l,ydim)*(no_basis_functions);

The calling program for this routine uses the returned variable "index" to calculate

the number of voxels where the solution found is the first or last in the series of

possible basis functions. This can be used as a quality check, as an occasion where

too large a proportion of the solutions found are in the first or last function suggests

that the range of basis functions specified for the tracer is either off-centre or too

small. When originally developed and published (Gunn et al., 1997) the only tracers
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studied were shown to be adequately modelled by 100 basis functions.

Codeblock 7: Original C++ code showing bug highlighted
"

R(y) = o.o;
k(y) = 0.0;
BP(y) = 0.0;
ind(y) = 100.0;

At some later date the new tracer for the 5-HTia receptor, "C-WAY-100635, was

added to the tracers modelled using the SRTM. In contrast to the others, "C-WAY-

100635 requires 300 basis functions to be adequately modelled. As can be seen from

Codeblock 7, the return value for index where there is no data will be 100. For

tracers where the number of basis functions is 100, this value will be l+(maximum

value returned) as "index" usually returns "solution -1". For tracers, like "C-WAY-

100635, where the number of basis functions is greater than 100, this value will no

longer be outside the meaningful range of returned values for index. Therefore the

code had to be modified to return a signal value that was always outside the

meaningful range, i.e. "number of basis functions" as shown in Codeblock 6.

Having corrected this bug the full code could then be implemented as shown in

Appendix 8.1. Once this had been done, the code had to be tested. The only truly

valid test was to compare the results produced by the original software package and

the new re-implementation. Luckily was had a store of "C-Raclopride images that I

had analysed using the software at the MRC Cyclotron Unit. These were acquired

for the study detailed in Chapter 5. I was therefore able to re-analyse the images

using the new routines and compare the resulting parametric images. I realised that
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the C implementation of the routine would have to be tested in the same way, and

therefore it made sense to write that code as well before running the test comparisons

on both new routines simultaneously. Clearly if the set of three results were all

closely matched, then I could be confident of the routines. If the results differed,

then the presence of results from all three routines would aid the debugging process.

I therefore wrote the C program shown in Appendix 8.1.3.3. As can be seen from the

comments within the code, I was able to incorporate a number of enhancements for

speed into the C routine. The clearest example is in Codeblock 8.

Codeblock 8: Matlab loop to identify the best solution
for i= 1 no_basis_functions

B(:,2)=A(:,i);
result=bigm((i*2-l):i*2,:)*Wd;
ssq(i)=siim((weight).*(B*result-data).A2);

end

sol=find(min(ssq)==ssq);
ind~sol(l);

In this example the result for each possible basis function is calculated and then the

sum-of-squares difference is then calculated and stored in the "ssq" vector. This is

then searched for the minimum value, which returns the index of the best fitting basis

function. This "find" command is effectively looping through the whole contents of

the vector to find the minimum value. As can be seen from Codeblock 9, this can be

brought inside the preceding loop for greater computational efficiency. However, it

is also clearly visible that the cost is the clarity of the code.

The first run of the code, once the errors had been removed, showed immediately the

speed effects of using C rather than Matlab® to handle the computationally heavy
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algorithm. Using the Matlab® code the image analysis took approximately 22.5

minutes. The same analysis with the compiled C code took 3.5 minutes.

Codeblock 9: C code illustrating increased computational efficiency
for (bfH); bf<nobf;bf++) {

/* B(:,2)=A(:,bf);
For each basis function in turn extract the required parameters */
for (i-0;i<ffamcs;i++) (

*(B+ffames+i)=* (A+bf* ffames+i);
}
/* result=bigm((bP2-I):bf*2,:)*Wd; */
resultfu] ~ 0.0;
result[l] = 0.0;
for (i=0; i<2;i++) {

for (j=0; j<ffames; j++) {
result[i] += *(T3igm+-j*2*nobf+(bfk2+i)) * Wd[j];

}
}
/*ssq(bf) = sum((weight).*(B*result-data).A2);
and calculate the sum ofsquares difference between the predicted data from the parameters

and the observed data */

ssq =0.0;
for (i=0; i<frames;i++) {

temp = *(B+i)*result[0] + *(B+frames+i)*result[l] - data[i];
ssq +=temp*temp*weight[i];

}
/* sol = tind(min(ssq)=ssq); */
/* Biuughl finding the ininiiiiunisumofsquaies solutiun inside the same loop to cut

computational time */
if (bf= 0) {

/* Skip checking first time round as minssq starts at 0.0 */
minssq=ssq;
sol = bf;

} else if (ssq <minssq) {
sol = bf;
minssq = ssq;

}
}

4.3.2.5 Testing the results from the new code

I initially began by comparing the resulting Binding Potential images (BP.img) from

the three different version of the code: the original on the Cyclotron Unit system; the

Matlab code; and lastly the compiled C-code. The easiest way to do this comparison
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was to load the images into the Analyze® software package (AnalyzeDirect Inc.,

Kansas, USA) and use the image calculator to produce a difference image simply by

subtracting one image from the other. I calculated such difference images for all the

possible combinations. The results were all very similar between the three images.

The first point to note is that the difference images were not entirely blank as would

be expected if the BP images were all identical. I firstly looked at the global image

characteristics. These are shown in Table 4.2 below. This initial comparison looks

very good, especially the mean difference. However, it has to be remembered that a

lot of the image matrix is outside the brain, and therefore set to zero. I therefore

decided to also look at the differences in the volumes of interest.

Value of
difference

Global Left
Putamen

Left
Caudate

Left
Ventral
Striatum

Right
Putamcn

Right
Caudate

Right
Ventral
Striatum

Cere¬
bellum

Maximum 0.97504 0.00408 0.00011 0.00281 0.46831 0.00327 0.00011 0.38680

Minimum -0.8124 -0.08461 -0.08778 -0.05643 -0.09770 -0.07008 -0.04139 -0.65987

Mean -0.00016 -0.01452 -0.01553 -0.01167 -0.01271 -0.01474 -0.00997 -0.00017

Standard
Deviation

0.00455 0.01461 0.01556 0.01207 0.02369 0.01323 0.01105 0.01564

Table 4.2: Initial comparison ofBP value differences between original code and new C codefor one
exemplar scan.

The differences in the VOIs are again reassuringly small. However, it has to be

borne in mind that the mean values for the BP images are themselves quite small,

typically less than 5. I therefore calculated values of percentage difference between

the images using the mean value over both images as the denominator. For these

"percentage difference" images it was necessary to exclude the whole image and
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cerebellar values from the comparison as these would be expected to be extremely

large (approaching infinity) as the expected mean value for the BP images in these

regions should be zero. The percentage differences for the same exemplar subject as

above in Table 4.2 are shown in Table 4.3.

Value Left
Putamen

Left
Caudate

Left Ventral
Striatum

Right
Putamen

Right
Caudate

Right
Ventral
Striatum

Maximum 2.47% 0.01% 1.09% 34.72% 0.67% 7.45%

Minimum -3.09% -2.64% -2.51% -4.53% -2.96% -2.70%

Mean -0.69% -0.75% -0.64% -0.60% -0.73% -0.52%

Standard
Deviation

0.55 0.58 0.57 1.86 0.55 1.03

Number of voxels
<-10% or > 10%

0 0 0 2 0 0

Table 4.3: Percentage differences in BP between original and new C-code analysis for a single scan

For the one VOI, right putamen, with 2 voxels that were outside the range -10% to

10% the mean and standard deviation came back to -0.6975% ± 0.5756 once the two

outliers were removed. The small size of the differences between the images led me

to suspect that the differences were due to different inaccuracies in the storage of

floating point numbers in the two computer architectures. In order to test this

hypothesis I first looked at the difference between the BP images from the original

C-code run on the MRC Cyclotron Unit computer and the new C-code on the Bristol

computer. I then compared the images from the Matlab® code and C-code both run

in Bristol, it was clear that these images were identical. This demonstrated that the

new C-code and Matlab® code were working identically when run on the same

computer. I then compared the original image from the MRC Cyclotron Unit

computer and the new Matlab® M-code on the Bristol computer. Unsurprisingly the
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results were identical to those in Table 4.2 and Table 4.3. Very similar results were

found for the other images, with the differences between the results produced by the

two methods being small with the exception of a few isolated voxels, which in some

cases fell within the volumes of interest. Nevertheless, these results were sufficiently

close to be considered a good enough equivalent implementation of the model to

proceed with the image analysis using this re-implemented software.

4.4 The measurement of dopamine release with

nC-Raclopride

As mentioned briefly at the very start of this chapter, "C-Raclopride has been used to

measure dopamine release (e.g. Carson et al., 1997). Now that the mechanics of the

analysis of the "C-Raclopride images has been thoroughly described, the mechanism

by which this technique can be used to measure dopamine release needs to be

examined.

As described in the very first section of this chapter, Raclopride is a competitive

antagonist at the dopamine-D2 receptor. In vivo, in the absence of any other

pharmacological challenge, the only competitor for Raclopride at the receptor is

endogenous dopamine. As described above, the measure acquired from modelling

"C-Raclopride is the binding potential. This measure is dependent on two core

parameters, the Bmax and the KD. Kd is the effective dissociation constant for

Raclopride from the dopamine-Dj receptor and, in this context, can therefore be

assumed to be a constant. The more interesting contributor to BP is the Bmax
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component. This is a measure of the concentration of free receptors. In the in vivo

state this will be the density of dopamine^ receptors reduced by the proportion

that are unavailable to "C-Raclopride. Unlike dopamine, "C-Raclopride will bind to

dopamine^ receptors in either the high or low affinity state. As has recently been

shown "C-Raclopride is also able to bind to intra-cellular dopamine-D2 receptors

(Jiang et al., 2006). This means that the only dopamine^ receptors unavailable will

be those that are already occupied by dopamine.

There remains some debate over how best to interpret the baseline resting "C-

Raclopride BR At rest and comparing between subjects any difference in BP value

could reflect a difference in dopamine^ receptor density or in resting extra-cellular

dopamine. It is not possible with a single scan paradigm to disentangle these two

components. Previous studies have shown that two scans using high and low

specific activity are able to give better differentiation (Farde et al., 1995; Hietala et

al, 1999).

While the exact contributions of individual factors to a single "C-Raclopride scan

binding potential are problematic to elucidate, the interpretation of pairs of scans

under different conditions is more clear. Alterations in dopamine function have now

been clearly demonstrated to induce changes in "C-Raclopride binding in a variety

of models and species. Ex vivo it has been shown that electrically stimulating

dopamine neurones will decrease 3H-Raclopride binding but this effect can be

blocked by depleting the cells of dopamine or preventing its release (Gifford et al.,

1996). Similarly, ex vivo rodent studies have demonstrated the ability of
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dopaminergic drugs to alter 3H-Raclopride binding. D-amphetamine provokes

dramatic dopamine release and induces decreased 3H-Raclopride binding, whereas

reserpine induces decreased brain dopamine levels and increases 3H-Raclopride

binding (Young et al., 1991).

Extending the tritiated labelled autoradiographic studies into PET with the same

raclopride molecule, but now labelled with carbon-11 has produced complementary

results. Amphetamine, which provokes dopamine release and blocks its re-uptake

and GBR-12909 which blocks dopamine re-uptake, both produce marked decreases

in "C-Raclopride binding potential (Dewey et al., 1993). In the same studies, the

authors also gave tetrabenazine as a monoamine depleting agent, expecting it to

increase "C-Raclopride binding. However, it produced an equivalent reduction in

"C-Raclopride binding, which is what would be expected from its actions as a

dopamine-D2 receptor antagonist.

The strongest evidence for the specificity of the "C-Raclopride signal comes from

work using simultaneous PET and microdialysis. In this way changes in extra¬

cellular dopamine concentrations can be related directly to alterations in "C-

Raclopride binding. For obvious reasons, this cannot be done in humans, but has

been done in non-human primates (Tsukada et al., 1999). The linear relationship

between changes in extra-cellular dopamine concentration and "C-Raclopride

binding in these studies is a very clear argument that this is the main component of

the change in "C-Raclopride signal seen in paired-scan PET studies.
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5 Dopamine Response to Opioids

The previous chapter dealt, at some length, with the methodology of "C-Raclopride

PET scanning. In this chapter I will now go on to describe the use of these

techniques to examine the effect of opioids on the dopamine system in opioid

addicted patients. This chapter will describe a study in two parts. The primary aim

of the study was to examine the hypothesis that drugs of abuse, specifically opioids,

provoke dopamine release in the ventral striatum in human addicts. The evidence for

this theory has been discussed in the introduction to this thesis, Section 1.4.3.1.1.

Therefore the hypotheses were that:

1. a dose of opioid agonist would produce a dopamine response measurable by
displacement of "C-Raclopride;

2. and that the amount of dopamine release would be related to the level of
subjective and objective intoxication produced by the agonist.

The two arms of the study were identical except for the opioid agonist administered.

In the earlier part this was a subcutaneous injection of hydromorphone and in the

later part an intravenous injection of diamorphine.

5.1 Methods

Approval was obtained from the relevant local ethics committees, NHS Trust

Research Governance committees and the Administration of Radioactive Substances

Advisory Committee.
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5.1.1 Subjects

Two groups of subjects were recruited, using the criteria below. All subjects were

recruited from the local drug treatment agencies. After a full explanation of the study

and provision of approved information leaflets, written informed consent was

obtained.

5.1.1.1 Inclusion and exclusion criteria

The primary inclusion criterion was addiction to opioids. On this background

criterion the exclusion criteria were then developed as required by ethical constraints,

regulatory bodies and in order to minimise the heterogeneity of the sample

population and remove potential confounds. Therefore subjects had to be aged

between 18 and 65 years. The minimum age was determined by the Administration

of Radioactive Substances Advisory Committee (ARSAC) consequent upon the

radiation dose administered during the PET scans, and the upper limit was an

arbitrary divide intended to exclude those with a higher likelihood of cerebral

atrophy or Parkinson's disease. In addition, it has previously been shown that opioid

receptors (Zubieta et al., 1999) and dopamine receptors (Antonini et al., 1993)

change with normal ageing.

We required subjects to be stable on a prescribed dose of methadone of at least

15mg/day. We sought to recruit subjects with a range of methadone doses above this

minimum threshold. The 15mg/day threshold was chosen to ensure that subjects

would be sufficiently opioid tolerant to be administered 50mg IV diamorphine

172



Dopamine Response to Opioids

without undue risk of overdose. Subjects stable on methadone were chosen as this

would give an easily quantifiable measure of their level of opioid tolerance. "On-

top" use of heroin was not an exclusion criterion for two reasons. Primarily there

was a concern from one of the ethics committees approving the study that we may

provoke relapse in patients by administering an opioid agonist; patients using "on-

top" heroin could not be considered abstinent and therefore relapse was not a

concern. Secondly, and equally importantly, continuing use of heroin meant that an

acute agonist challenge was mimicking, as closely as possible within the scanner

environment, the current experience of drug use, i.e. acute dose on the background of

methadone. As for the craving study described in Chapters 2 and 3, we aimed to get

the subjects as drug free as possible, excluding opioids and smoking.

Concurrent use of stimulants, such as amphetamine and cocaine, was also an

exclusion criterion at anything other than an occasional level. The rationale for this

was that stimulant drugs are known to act directly at the dopamine synapse and

would therefore alter the "C-Raclopride signal we were trying to measure (Cadenas

et al., 2004). Stimulant addiction is also known to cause down-regulation of "C-

Raclopride binding (Ginovart et al., 1999; Volkow et al., 1997c) which can take

some time to recover. We did permit patients with a past history of stimulant use to

enter the study, but excluded those with a history of addiction. It was not possible to

exclude all subjects with previous, or even current, occasional stimulant use as this

would have excluded all but a very atypical minority of patients from the studies.

Very few contemporary heroin addicts have no use of stimulants in the area served
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by the Bristol Specialist Drug Service. This has been an increasing trend seen in the

national statistics (Chivite-Matthews et al., 2005).

Concurrent or past addiction to any other substance was also an exclusion criterion,

with the exception of nicotine. All subjects were current smokers. We permitted a

history of heavy alcohol consumption, but not in the past year.

5.1.1.2 Hydromorphone study arm subjects

I recruited nine methadone maintained opioid dependent males from the local drug

treatment centre. From a clinical interview and review of their case-notes I confirmed

that they all satisfied ICD10 (World Health Organization, 1992) and DSM-IV

(American Psychiatric Association, 1994) criteria for opioid dependence. Basic

demographic data are displayed in Table 5.1. As well as being on prescribed

methadone, all subjects were also continuing to use "street" heroin on top of their

prescription to varying degrees. Two were later excluded for testing amphetamine or

cocaine positive on urine screening on the day of a PET scan. 1 subject subsequently

dropped out after receiving only 1 of the 2 planned PET scans.

5.1.1.3 Heroin study arm subjects

For the second arm of the study I recruited 10 methadone maintained opiate

dependent males from local drag treatment agencies. As well as being on prescribed

methadone, all subjects were also continuing to use "street" heroin on top of their

prescription to varying degrees. One was later excluded for testing cocaine positive
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on urine screening. One other subject subsequently dropped out after receiving only

1 of the 2 planned PET scans. Eight remaining subjects completed the study. Basic

demographic data are displayed in Table 5.1.

Hydromorphone Study
Arm

Heroin Study Arm

Number of subjects recruited 9 11

Number not completing the
study

3 (1 single scan,
1 cocaine +ve,

1 amphetamine +ve)

3 (2 single scan,
1 cocaine +ve)

Age 25, 25 & 27 years 28, 31 & 40 years

Methadone daily dose 20, 25 & 50 ml/day 35, 45 & 45 ml/day
Number completing the study 6 8

Age 32.6 ± 5.0 years 34.7 + 9.7 years

Methadone daily dose 46.7 ± 13.2 ml/day
(Range 35-70 ml/day)

40.6 ±10.1 ml/day
(Range 30-50 ml/day)

Table 5.1: Demographic Datafor both "C-Raclopride study subjects

5.1.2 Protocol

The overall protocol was that subjects attended for two PET scanning sessions.

Before each session they completed a variety of questionnaires. Immediately prior to

the scan they were administered an injection of opioid or placebo in a double-blind

random order cross-over design. During the scanning session visual analogue scales

were used to measure subjective effects and saccadic eye movements were used to

assess objective effects of the injections. Each element of this protocol is described

in more detail below.

As will be seen, a large number of measures were collected. The rationale for this
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was that the PET data would measure the dopamine response. We collected

physiological and objective measures of intoxication to quantify the effects of the

opioid agonists administered. Lastly, we collected data on a number of potential

confounding variables so that they could be excluded as the cause of any measured

dopamine signal, for example anxiety or depressive mood states.

5.1.2.1 Questionnaires

After being recruited into the study, all subjects completed questionnaires on general

health, personality factors and history of drug dependence. The personality

questionnaires chosen were the Eysenck Personality Questionnaire - revised (EPQ-R)

and the Eysenck Personality Questionnaire - Impulsiveness, Venturesomeness,

Empathy (EPQ-IVE) (Eysenck & Eysenck, 1975; Eysenck et al., 1985). These were

chosen as well known broad personality inventories. It is known that heroin addicts

have a different spread of scores on these scales compared to control populations,

generally scoring higher on neuroticism and psychoticism on the EPQ-R (Gossop &

Eysenck, 1980). Similarly, drug users have a different distribution of normal scores

on the EPQ-IVE (e.g. Butler & Montgomery, 2004). In addition to the personality

inventories, each subject completed the MOS-SF36 general health survey (SF-36)

(Jenkinson et al., 1996). This was chosen as we had already used the same

instrument in a number of addiction related projects within Bristol. We wanted to

include a measure of general health as a way of screening for chronic ill health or

pain, as these are known to affect the opioid system (Jones et al., 1991).
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We gathered three primary measures of drug use, using the Severity of Dependence

scale (Gossop et al., 1995), a version of the Obsessive Compulsive Drinking Scale

(Anton et al., 1995) modified for use with injecting opiate users (see Law et al.,

1997) and a structured drug use history. The Severity of Dependence scale offers a

very straightforward measure of the dependency on a number of drugs, which we

planned to use to moderate any potential confounding effects on our primary

outcome measure. The main purpose of the structure drug history was to ensure

compliance with the inclusion and exclusion criteria.

All of the questionnaires were administered just once to each subject as they purport

to measure relatively static characteristics. These were augmented by several

additional questionnaires used to measure both state of mind on the day of the PET

scans and the effects of administered drugs. On each scanning day, prior to scanning,

subjects completed the Spielberger State/Trait anxiety inventory (STAI, Spielberger

et al., 1983), the Beck Depression Inventory (BDI, Beck et al., 1961) along with a

general mood profile visual analogue scale. These questionnaires were chosen as a

general screen for potential confounding factors that may interfere with the dopamine

signal, such as anxiety or sadness.

In order to capture drug related states ofmind, like craving and withdrawal, we also

administered four additional scales prior to each PET scan. For craving, we used the

Heroin Craving Questionnaire (HCQ, Weinstein et al., 1997) which we had

previously used in all heroin craving studies in the unit, including those in chapter 2.

We wanted an objective measure to use as an adjunct to the other subjective or self-
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report measures. To this end we used a modified version of the Opiate Withdrawal

Scale (OWS, Kolb & Himmelsbach, 1938). As baseline measures of possible drug

effects we used the Addiction Research Centre Inventory (ARCI, Haertzen, 1974)

and the Adjective Checklist (AC, Jasinski, 1977). These four scales (ARCI, OWS,

AC, HCQ) and the mood profile were repeated immediately after the PET scanning

sessions to assess changes. One last questionnaire was administered asking subjects

to classify and rate the strength of the pre-scan injection.

All questionnaires are reproduced in appendix 8.2.

In addition to the above questionnaires on drug use we also conducted a case-note

review of drug use histories. We wanted to derive a simple measure that somehow

encompassed the past drug use history for each subject. In order to do this we

created a rating scale of drug use comprising definitions of duration, quantity and

route of drug use for all the commonly abused drugs. Two very experienced

addiction psychiatrists (the author and a colleague) then took these ratings scales to

derive measures of drug use from the subjects' case-notes for the month and year

prior to scanning as well as a total lifetime measure. The two raters completed these

ratings independently and then compared the concordance. In cases of disagreement,

a mean score was calculated.

5.1.2.2 Visual Analogue Scales (VAS)

In order to assess changes in subjective state during the PET scans we used a verbal

form of visual analogue scales. We could not use questionnaires during the scans as
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the subjects had to lie supine in the scanner and move as little as possible. We also

did not want any confounding motor signal to alter dopamine release in the striatum.

We therefore developed a standard technique for presenting written visual scales to

the subjects while asking them to respond verbally to with a number corresponding

to their current state. The exact scales, as they were presented, are shown in

Appendix 2, with the other questionnaires. In this study the scales used were as

follows:

1. At this moment I feel this sleepy
2. At this moment my urge to take heroin is
3. At this moment the intensity ofmy craving for heroin is
4. At this moment I feel this gouched out

5. At this moment I feel I am withdrawing
6. At this moment I feel this high
7. At this moment I feel this much of a rush

Subjects were asked to rate themselves on a standard scale for each of the above

questions at baseline, before the injection, then at 5 minutes after the injection and at

15 minute intervals thereafter until the end of the scanning session.

For those not au fait with the street language of opioid use in Bristol, the term

"gouched out" requires some brief explanation. It is a term used to describe the

subject experience of opioid intoxication and is in widespread use throughout

England. In essence it includes elements of psychological calm, relaxation and

sedation, as well as physiological sensations like "pleasant sick" which describes the

visceral sensation of opioid intoxication.
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5.1.2.3 Physiological measures

Previous work in our unit has shown us that saccadic eye movements are a reliable

method for assessing the central effects of psychoactive substances, including

opioids (e.g. Melichar et al., 2003). As in the case of the visual analogue scales, the

subjects had their saccadic eye movements measured at baseline and then 5 minutes

after injection, followed by every 15 minutes until the end of the scan. We used the

same saccadic eye movement procedure as in our previous studies. This meant that

we sequentially tested eye movements at 35° saccades decreasing to 5° saccades with

two repeats at each angle. Data was then interpolated to 30° from all data points.

The recorded eye movements were then analysed to produce measures of peak

velocity, peak acceleration, peak deceleration and acceleration:deceleration ratio.

Blood samples were taken at baseline for estimation of plasma methadone levels.

Further samples were taken 5 and 20 minutes after the scan start for estimation of

hydromorphone or heroin metabolite levels. These samples were spun down and

frozen for storage on the day of the scan. The samples from both studies were then

sent to collaborators in Switzerland for analysis of plasma methadone enantiomers,

hydromorphone, diamorphine and their metabolites.

5.1.2.4 Pre-scan interventions

In both arms of the study, subjects were given a pre-scan injection. The injection

contained either an active opioid agonist or saline placebo of similar volume. Both

the subjects and investigators in the scanning room were blind to the injection

180



Dopamine Response to Opioids

content. One investigator, not in the scanning room, knew the injection content and

was carrying naloxone, a specific opioid antagonist, in case of overdose. However,

this was never needed. All investigators, but not the subjects, knew that each subject

would receive one active injection and one placebo injection in random order prior to

the two scanning sessions. Subjects were told that they could receive the active

injection on one, both or neither occasion. In this way, at the second scan subjects

would still be unable to deduce the content of the injection, even if they had correctly

identified the injection at their first scan.

For the first arm of the study, subjects were given a subcutaneous injection 15

minutes prior to the scan start. The active opioid injection contained lOmg

Hydromorphone. This is a potent mu-opioid agonist equivalent to approximately

35mg diamorphine. The timing was chosen as we knew from previous studies that

hydromorphone SC will have reached its maximal effect by this time.

Preliminary analysis of the first arm of the study revealed that the subjects were only

reporting mild to moderate levels of intoxication. This occurred at the same time as

hydromorphone for injection became unavailable in the UK. Therefore we revised

the protocol for the second arm of the study to use a stronger stimulus, i.e. a larger

dose intravenously. As a result, subjects were given an intravenous injection 5

minutes prior to scan start. The active opioid injection contained 50mg diamorphine.

At current estimated street purity of 11% this would equate to approximately 0.5 gr

"street" heroin. Again, the injection time was chosen to ensure peak drug effects

prior to the injection of "C-Raclopride.
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5.1.2.5 Scanning protocol

Each subject underwent 2 PET scans with ^C-Raclopride approximately 1 week

apart (range 1-3 weeks). All scans took place at approximately 1pm to avoid

temporal effects confounding any differences found between scans. On scan days

the first 2 subjects, in the hydromorphone arm of the study, were instructed to take i

half their usual daily methadone dose at 8 am, i.e. 5-6 hours before scan start. The

remainder of the subjects took no methadone prior to scan start. As most subjects

took their methadone routinely at around 10am this meant that the majority of

subjects were 27 hours after their last dose at the time of scanning.

The PET images were acquired on a brain dedicated Siemens/ECAT HR++ scanner.

Following a bolus injection of 120MBq "C-Raclopride over 30 seconds, we acquired

images for 90 minutes. The images were acquired using listmode acquisition, as

described in the previous chapter. Dynamic images were rebinned into 26 frames

starting with a variable duration background frame then short initial frames

extending to 5 minutes [l*15sec, l*5sec, l*10sec, l*30sec, 4*60sec, 17*300sec],

Images were reconstructed using filtered back projection with a ramp filter. A

matching pair of images was created for each scan, one with measured attenuation

correction from a transmission image, and the second with no attenuation correction.
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5.1.3 Analysis methods

5.1.3.1 PET images

The "C-Raclopride images were analysed as described in some detail in the previous

chapter. In brief, the images were corrected for movement using SPM2 with

movement parameters derived from non-attenuation corrected images. These motion

corrected images were then analysed with the RPM software to produce maps of

Binding Potential. We then used automated sampling techniques to derive mean

levels of "C-Raclopride binding in the six regions of interest; namely, left and right

caudate, putamen and ventral striatum. These were then compared between scanning

sessions using paired t-tests.

5.1.3.2 Questionnaires:

Baseline questionnaires on personality and other unchanging variables like drug

history were compared to population norms. State questionnaires performed only

once per scan were compared using paired t-tests to examine for between-scan

condition differences. State measures completed pre- and post-scan were compared

using repeated measures ANOVA with time (pre- vs. post-scan) and condition

(placebo vs. drug) as within-subject effects, and drug (hydromorphone vs. heroin)

and scan order (placebo scan first vs. drug scan first) as between-subject effects.

5.1.3.3 Visual Analogue Scales (VAS)

VAS were collected at 2 baseline time points and 7 time points following injection of
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either opioid or placebo. For each scan I used a trapezoid method to calculate an

area under the curve (AUC) measure of change from baseline. These AUC measures

were compared using paired t-tests for the effects of the drugs and entered into a

repeated measures general linear model analysis to examine for effects and

interactions between drug and placebo, and heroin and hydromorphone. All VAS

data was also entered into a repeated measures ANOVA with scan condition and time

point as the within-subject variables.

5.1.3.4 Physiological data

The intention was to analyse the saccadic eye movement data in a similar manner to

the visual analogue data, i.e. as a repeated measures general linear model design with

condition and active drug as the independent variables. This proved not to be

possible as the main effect of the heroin was to make the subjects too intoxicated to

complete the task, particularly at the earlier time points. Therefore only a descriptive

summary of the data was possible.

5.2 Results

5.2.1 Subjective measures

5.2.1.1 Personality variables
The personality questionnaire results are presented in Table 5.2. They showed the

subjects to be high on scores of Psychoticism, Addiction and Criminality as expected

from published studies of drug dependent populations (Gossop & Eysenck, 1980).

There was a moderate elevation ofmean neuroticism scores of less than one standard
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deviation, this was very close to the published data for addicts in treatment. We

found a similar result for the psychoticism scale. In contrast, on the extroversion

scale our subjects actually scored closer to the general population levels than the

addicts' data published. On the Criminality scale our subjects were scoring at levels

very close to the report norms for prisoner populations (prisoners: 15.57±5.18) rather

than controls (shown in Table 5.2).

In contrast to the EPQ-R, I could find no published studies of the EPQ-IVE in drug

using populations. As can be seen from Table 5.2, the small sample studied here

scored higher on both Impulsiveness and Venturesomeness, but approximately the

same on the empathy scale as published norms for males of similar age.

The SF-36 health measure showed a general poor level of health for our patient

sample compared to the general population (Jenkinson et ai, 1993). The general

population norms are shown in Table 5.2 for males aged 25-34 years. As can be seen

from the table, the addict sample scores well below these norms. What is not shown

in the table is that the reported mean scores for patients with self-reported long¬

standing illness also score better than our addict sample. The largest difference was

in the Social Functioning scale. The addicts scored around 33 which is about 3.5

standard deviations below the population norm (91.3) and still 1.8 standard

deviations below those with chronic illness (80.2). Our sample also scored very

poorly on the Mental Health subscale. In this case they were only 2.2 standard

deviations below age-matched norms (75.8) and 1.5 standard deviations below the

chronic illness population (69.9). On all the other subscales the addict sample scored
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at levels very close to the chronic illness population.

The OCDS showed generally high scores on both subscales of obsessive thinking

about drugs and compulsion to use drugs. A subsection of those items used in the

OCDS-R (Morgan 2004) showed a mean score of 17.5, which was higher than that

shown in the original validation study. There was a non-significant trend for the |

hydromorphone group to score worse than the heroin group (Table 5.2).

Table 5.2Personality and General Characteristics of the Study Samples
Scale All Hydromorphone

group

Heroin

group

Published
norms

(males only
if different)

Addiction

population
norms (if
available)

EPQ-
R

Neuroticism 13.5±5.39 16.213.35 11.115.86 10.515.81 15.814.67
Extroversion 13.1±4.73 13.114.83 13.014.9 12.516.0 15.214.94
Psychoticism 10.3±3.6 9.414.3 11.0+2.87 7.214.6 10.714.64
Lie 5.5±3.55 4.913.26 6.113.87 7.114.28 3.112.75
Addiction 16.5±4.82 18.614.72 14.614.3 11.614.96 19.814.96

Criminality 16.3±5.27 18.315.29 14.5+4.79 9.014.54
EPQ-
IVE

Impulsiveness 9.7±4.72 8.815.43 10.8+3.83 6.614.43
Venturesomeness 11.5±3.44 10.0+3.92 13.211.79 7.614.25

Empathy 11.2±3.72 12.113.14 10.214.24 12.013.31
SF36 Physical

Functioning
78.3±28.8 81.7122.1 75.5134.2 93.9114.2

Role

functioning -

physical
69.7±31.8 50.0+35.4 84.1120.2 92.0123.2

Bodily Pain 64.8±24.4 65.5119.9 64.3128.2 87.5117.7

General Health 60.7±20.9 61.0122.6 60.5120.7 76.7117.7

Vitality 51.9±10.8 46.3111.9 56.018.11 64.5117.3

Social

Functioning
33.6±11.5 27.8112.9 37.918.54 91.3116.3

Role

functioning -

Emotional
71.9127.8 70.8127.8 72.7129.1 87.1+27.9

Mental Health 46.0111.2 41.7111.1 49.1+10.7 75.8+15.2

OCDS Obsessive 9.5615.99 11.114.83 8.016.89

Compulsion 14.417.95 15.418.93 13.3+7.21

OCDS-R 17.519.41 19.1110.0 15.919.06 9.7716.70
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The drug profile data showed good inter-rater agreement with Spearman's rank

correlations ranging from 0.35 to 0.846 (median 0.63) for the categorical measures

and Pearson's from 0.86 to 0.99 (mean 0.92) for the measures of years of use. The

least reliable measure was estimated lifetime stimulant use, although still with a

Pearson's r = 0.86. Summary data for the agreed values are presented in Table 5.3

and Table 5.4.
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Variable Hydromorphone Heroin All

Median Range Median Range Median Range

Opiates Last Month 3 2-4 3 3-3.5 3 2-4

Opiates Last Year 3 2-4 3 2-4 3 2-4

Opiates Lifetime 3 2-4 3.5 2-3.5 3 2-4

Tobacco Last Month 3 3-4.5 3.25 3-5 3 3-5

Tobacco Last Year 3 2.5-4.5 3.25 3-5 3 2.5-5

Tobacco Lifetime 3 2-4 3.75 3-5 3.5 2-5

Alcohol Last Month 1.5 0.5-4 1.25 0-2 1.25 0-4

Alcohol Last Year 2.75 2-4 1.5 0-2 2 0-4

Alcohol Lifetime 2.25 1.5-4 2 2-2.5 2 1.5-4

Stimulants Last Month 0 0-2.5 0 0-0.5 0 0-2.5

Stimulants Last Year 1.5 0-2 2 0-0.5 1.75 0-2

Stimulants Lifetime 2 1-3 2.5 0-3 2 0-3

Cannabis Last Month 2 0-4 1 0.3 1.5 0-4

Cannabis Last Year 3 0-4 2.5 0-3 3 0-4

Cannabis Lifetime 3 1.5-4.5 3 0-4 3 0-4.5

Benzodiazepines Last
Month

0 0-1 0 0-0.5 0 0-1

Benzodiazepines Last
Year

0.5 0-2.5 0 0-1.5 0.5 0-2.5

Benzodiazepines
Lifetime

1 0-3.5 0.25 0-2 1 0-3.5

Table 5.3: Measures ofPast Drug Use (Categorical Variables)
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Hydromorphone Heroin All

Duration of use Mean ± SD Mean ± SD Mean ± SD

Opiates 9.67 ± 4.12 11.81 ±8.18 10.68 ±6.24

Tobacco 15.67 ±6.1 17.4 ± 11.13 16.29 ±7.86

Alcohol 14.19 ± 4.27 15.75 ±4.26 14.86 ±4.18

Stimulants 6.67 ±5.83 7.68 ±7.99 7.11 ±6.63

Cannabis 13.94 ±6.55 8.00 ±4.85 11.82 ± 6.51

Benzodiazepines 5.56 ±7.6 1.38 ±2.43 4.17 ± 6.53

Table 5.4: Measures ofDuration ofPast Drug Use (years)

5.2.1.2 Pre-scan state

There was no difference in pre-scan measures of BDI, STAI on drug or placebo days,

as can be seen from the data presented below (Table 5.5). There was also no

difference in scores between the first and second scans, suggesting an absence of an

order effect that could have confounded the results. The mean of BDI scores was in
>

the mild to moderate depression range. Finer analysis of the data showed that the

subjects endorsed the items for Insomnia, Sense of Failure, Retardation, Fatigability

and Self Accusation most frequently. Clinically, none of the subjects had a diagnosis

of depression and the items endorsed could also be explained as side-effects of

opioid addiction. The items also mirror the findings on the SF-36 of fairly poor levels

of general health.

The scores on the STAI are close to the reported population average of 36± 11 for

' normal volunteers (Spielberger et cil., 1983).
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Table 5.5: Pre-scan Variables

Scale All Hydromorphone
group

Heroin Group

Placebo

day
Drug
Day

Placebo

Day
Drug
day

Placebo

Day
Drug
Day

State
Anxiety

34.9±11.0 36.9±9.36 40.4±10.6 39.8±9.08 30.9±9.92 34.1±9.25 ns

Trait

Anxiety
40.6±10.9 40.4±10.2 47.0±9.41 44.9±10.8 35.5±9.43 36±7.71 ns

BDI 12.7±7.2 12.4±9.45 14.6±8.80 14.1±10.5 11.3±5.82 10.4±8.38 ns

ns = non-significant on repeated measures ANOVA with group (hydromorphone vs heroin) and scan
order as between-subject effects and condition (drug vs. placebo) as within-subject effect.

5.2.1.3 Drug effects

The effects of the injection (placebo or active drug) on the Adjective Checklist, ARCI

and Opiate Withdrawal Scale are shown below (Table 5.6). Using the repeated

measures ANOVA showed that there was a significant time (pre-post scan) by

condition (drug vs. placebo) effect on both the agonist and withdrawal subscales of

the Adjective Checklist (Agonist F=13.89, p=0.034; Withdrawal F=11.54, p=0.043).

Specifically, the active opioids produced an increase in scoring on the agonist scale

that was not seen in response to the placebo injections. In addition, the withdrawal

subscale showed significant interaction with both the drug (hydromorphone or

heroin) and order (placebo first vs. drug first) terms. Inspection of the raw data

showed that pre-scan the withdrawal scores were strangely higher in the

hydromorphone arm of the study compared to the heroin arm. There is no obvious

reason why this should be the case as the subjects were in very similar states in both

studies, i.e. about 26 hours after their last dose of methadone. Also there was no

such difference on the observer rated withdrawal scale.
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The MBG (morphine-benzedrine-group) scale of the ARCI showed a significant

condition by time interaction on the repeated measures GLM (F=9.098, p=0.024).

This translates as the opioid injection producing a larger increase in the scale

compared to the placebo injection. This effect showed a barely significant

interaction with order (F=6.02, p=0.050) and a more significant interaction of time

by condition by drug by order (F=7.793, p=0.032). The A (amphetamine) subscale

also showed a significant time by drug by order (F=l 6.932, p=0.006) and main time

(F=6.58, p=0.04) effect.

Table 5.6: Drug effects ofquestionnaire ratings

Scale
All Hydromorphone Heroin

Placebo Drug Placebo Drug Placebo Drug
Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Adjective
Checklist -

Agonist
21±5 19±5 21±7 27±7 19±4 17±2 19+5 29+7 22+6 20+6 23+8 26±8

Adjective
Checklist -
Withdrawal

9+9 8±6 8±8 8±14 16±9 10±6 13+9 13±2 4+4 7+6 3+3 4±4

ARCI -
MBG

6+4 5+2 5+4 6+4 4+2 3+1 3+1 5+5 8+4 6+2 7±4 8+3

ARCI —

LSD
4±3 4+2 4+3 4±3 7+2 5+3 6+3 6+4 3+1 3±1 3±1 3+2

ARCI —

PCAG
5+3 5+3 5+4 6+4 7+3 7±3 7+4 7+4 5+2 4+2 3±1 4+2

ARCI —

BG
6±2 5+2 5±2 5+2 4+2 3+2 4+1 4+2 7+2 6+2 7+2 6+1

ARCI-A 3±3 3±2 3±2 4±3 2±1 2±2 2±2 3+3 4+3 4+2 4+1 5±2
OWS 0±0 0±0 0+0 1+2 0±0 0±0 0+0 1+2 0+0 0+0 0+0 0+0

Examining the raw data for the mood scales showed that the individual subjects had

been interpreting the scales in very different ways. The spread of baseline values

was extreme, as demonstrated by the standard deviations of the data frequently being

an order ofmagnitude larger than the means. This meant that generating any form of
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mean value at any given time-point was unlikely to be representative of the data.

Therefore, a difference measure was calculated to show the amount of change in each

scale that was reported by each subject in response to the injection. The means of

these change scores (post-scan minus pre-scan scores) are summarised below (Table

5.7). These data were still analysed using a repeated measures GLM as this accounts

for inter-individual differences in baseline scores and examines within-subject

changes in scores.

Table 5.7: Mood changesfollowing injection

Scale

All Hydromorphone Heroin
Placebo Drug Placebo Drug Placebo Drug
Change
(Post-pre
scan)

Change
(Post-pre
scan)

Change
(Post-pre
scan)

Change
(Post-pre
scan)

Change
(Post-pre
scan)

Change
(Post-pre
scan)

Nervous 0.58+20.6 11.6+29.8 6.88+18.6 1.25+11.2 -4.82+22.1 18.9±37.4

Tired -4.42+16.9 10.4+32.1 -13.3+20.1 8.00+14.0 3.21+8.83 12.1+40.3

Depressed -0.38_20.7 8.23+22.5 4.38+24.3 -1.75+24.2 -4.46±18.0 15.4+36.8

Relaxed 6.83+22.2 13.0±22.5 11.0+24.5 2.25±19.0 3.21+21.4 20.7+22.8

Drowsy 1.63+31.4 -11.0+20.5 3.75+12.6 -9.50+16.7 -0.18+42.8 -12.1 ±24.1

Alert 9.81+65.3 6.56+36.6 -4.58+36.2 6.75±15.9 22.1+83.9 6.43±47.8

Energetic -17.1+40.6 5.00±31.5 5.42+17.0 23.4±39.0 -36.4+46.0 -5.54±23.1

Clear¬
headed

-4.04+17.1 12.1±26.3 0.00+13.7 10.3±32.9 -7.50±19.9 13.4±23.4

Sociable 25.3+59.1 2.08±14.7 -4.38±25.9 -0.50±22.0 50.7+69.2 3.93±7.95

Cheerful -9.23+43.1 1.67±14.7 15.6+22.3 1.75+24.2 -30.5±46.4 1.61+2.77

Irritable 11.2±31.7 7.08±34.5 -1.88+24.3 -0.25±29.6 22.3+34.6 12.3±39.0

Confused -1.06+16.7 -6.35±17.4 3.54+11.7 -2.75+5.48 -5.00+20.1 -8.93+22.8

HCQ had to be abandoned because the subjects became confused and frustrated with

the questionnaire and refused to fill it in.
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5.2.1.4 Visual Analogue Scales

The complete VAS data are presented in Figure 5.1. There was a large amount of

variability in the responses to the injections and the scanner environment as a whole.

Evidence of this can be seen in the large standard deviations on the figures. Due to

the high correlations between some of the measures (see Table 5.8), they were

combined to form composite scales. Specifically, the "crave" and "urge to use"scales

were combined, as were the "high" and "gouched" scales. The correlations between

the VAS scales were calculated taking each individual time point as an independent

measure. Statistically this cannot be used to argue that these scales are highly

intercorrelated in the population as a whole as this method conflates between- and

within- subject variance. Nevertheless it is still valid to say that in these subjects as a

group the measures are correlated. Reducing the VAS data in this way to five scales

instead of seven also reduces the number of statistical tests, and hence the chance of

Type I error.

Urge Crave Gouched Withdrawal High Rush

Sleepy -0.262 -0.263 0.686 -0.035 0.546 0.367

Urge 0.898 -0.213 0.588 -0.084 -0.136

Crave -0.202 0.676 -0.086 -0.136

Gouched -0.026 0.818 0.516

Withdrawal -0.026 0.007

High 0.526

Table 5.8: Pairwise Pearson's correlation coefficients between VAS scales. Scales to be combined
shown in bold.
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5.2.1.4.1 Sleepy

Results for the sleepy VAS scale were similar from the repeated measures analysis

using all the data, and using the Area-Under-the-Curve measures. For all the

timepoint data there was a general effect for sleepiness to increase during the

scanning session in both the active and placebo conditions. As a main effect of time 1

the differences were significant at 15, 30, 45 and 60 minutes after injection. There

was also a significant main effect of condition (F=6.64, p=0.026) with the active

injection causing more sleepiness. Looking at the time by condition interaction it

can be seen that the significant increase in sleepiness occurred at 15 minutes after the

injection and continued to the end of the session. There was no time by condition by

drug or condition by drug interaction effect. Using the AUC measures, there was a

main effect of condition (F=9.45, p=0.011), but no interaction of condition by drug.

5.2.1.4.2 Crave / Urge

As described above, the "urge to use" and "crave" measures behaved in a identical

manner, as has been found in Chapter 2. Examining the individual time-points

showed that the combined measure significantly declined with time at all time points.

There were no other significant effects. This was surprising as visual inspection of

the data showed that in the hydromorphone study the Crave/Urge levels decreased a

little in the placebo condition, but decreased more following hydromorphone

injection. In the heroin study the measure stayed fairly flat in the placebo condition

but reduced to zero for the duration of the scan following heroin injection. The most
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likely reason is that the levels were low in the placebo condition and that floor effects

prevented statistical separation of the scores after the injections.

5.2.1.4.3 Withdrawal

In both groups, withdrawal ratings started low, and remained so in the placebo

condition. However, it was completely reduced to zero by both active injections.

There were no statistically significant effects using either analysis technique, which

again probably represents a floor effect.

5.2.1.4.4 Gouched / High

As these measures were so highly correlated, the combined scale was analysed.

Using the data from all time points there was a significant interaction between time

and condition with ratings increasing following active drug and slightly decreased

after placebo, which started at 15 minutes after the injection and continued to the end

of the session. It was not statistically significant, but there was a short increase in

ratings after the placebo injection, but it was of much smaller magnitude than after

the active injections. The AUC measure also showed a significant effect of

condition, but no interaction with drug. There was a borderline main effect of drug

with heroin scores being slightly higher that hydromorphone scores across conditions

(F=4.863, p=0.050).

5.2.1.4.5 Rush

Visual inspection of the data from the "rush" scale showed results as expected.
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There was a small, slow steady rise following subcutaneous hydromorphone and a

much shorter, higher peak response to intravenous heroin. Statistical analysis

showed no time by condition by drug interaction, but the time point data showed a

significant condition by time interaction at 15 minutes after injection only. There

was, however, a main effect of time at 15, 30 and 45 minutes after the injections.

Using the AUC measure, there was a significant increase in rush after the active

injection (F=5.78, p=0.035), but not interaction with drug or main effect of drug.
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5.2.2 Physiological measures

No significant changes in Finapres® measures of any sort were found. Therefore, no

more of this data will be presented. There was an observable drop in pulse oximetry

after the diamorphine injection, but this was not formally recorded. If such a drop

occurred following the hydromorphone injection, it was not noted at the time.

Of the 14 subjects who remained in the study, after the exclusion of those who had

only one scan or tested positive for stimulants, 2 were lacking SEM data for the drug

scan and 4 for the placebo scan. In all cases this was due to technical failure in the

amplifier. However, inspection of the remaining data showed that the most striking

effect of the active injections, heroin or hydromorphone, was that the subjects

became unable to complete the task. This further reduced the quantity of data

available and made further statistical analysis impossible. The picture was the same

for all the variables measured: peak velocity, peak acceleration, peak deceleration,

acceleration:deceleration ratio and latency. Only data for peak velocity are presented

below (Figure 5.2). As can be seen from this figure, the number of subjects capable

of performing the task fell from 6/6 to 2/6 immediately following the heroin

injection, but gradually recovered to 5/6 subjects by 60 minutes. Conversely, the

hydromorphone group showed a drop from 5/5 to 4/5 at 15 minutes post injection

and then to 3/5 at 60 minutes, before recovering to 4/5 at the end of the session. For

the heroin - placebo group, the number remained at 5/5 throughout and for the

hydromorphone - placebo group it fell to 4/5 for most of the readings.

198

4



Dopamine Response to Opioids

Peak Velocity

Figure 5.2: Saccadic Eye Movement Changes.

5.2.3 PET results

The mean values for "C-Raclopride BP are shown in Table 5.9. No significant

change in dopamine receptor binding was seen using paired t-test for within-subject

comparison between the two conditions in either group or in all subjects together.

Using repeated measures ANOVA with condition (active or placebo) as within

subject factor and active drug (heroin or hydromorphone) as the between subject

factor also showed no main effect of condition nor was there any interaction between

condition and active drug.
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Putamen Caudate Ventral Striatum

Left Right Left Right Left Right
Hydro¬

morphone
Placebo 2.84±0.36 2.88±0.42 2.89±0.36 2.72±0.43 2.5210.30 2.2810.22

Drug 2.76±0.30 2.70±0.36 2.73±0.24 2.61±0.30 2.4410.14 2.2410.26

Heroin Placebo 2.81±0.25 2.79±0.24 2.68±0.26 2.61±0.34 2.4910.34 2.2110.33

Drug 2.89±0.27 2.85±0.29 2.80±0.39 2.73±0.44 2.4910.36 2.0710.49

All Placebo 2.82±0.28 2.83±0.31 2.77±0.30 2.66±0.37 2.5110.30 2.2410.27

Drug 2.84±0.27 2.79±0.33 2.77±0.34 2.6810.39 2.4710.34 2.1410.40

Controls Nil 2.73±0.47 2.74±0.40 2.62±0.15 2.5810.21 2.4110.15 2.3110.17

Table 5.9: Mean "C-Raclopride BPfor regions of interestfor hydromorphone, heroin, combined drug
groups and historical control data.

Examining the placebo scans only and comparing these with data from 5 historical

controls with a one-way ANOVA showed that there was no difference between the

three groups. The full data are plotted in Figure 5.3. As can be seen from this figure,

the control subjects, scanned at rest, are evenly interspersed with the hydromorphone

and heroin subjects scanned after the placebo injection. The ladder plot also shows

no consistent pattern of response to opioid agonist in either group, even though the

means for the hydromorphone group might suggest it.

There were no significant correlations between subjective measures and "C-

Raclopride BP. There were several subjects excluded for protocol violations, either

completing only one scan or testing positive for stimulant drugs. Figure 5.4 is in the

same form as Figure 5.3 but shows the data for all the controls, the included subjects

and the excluded subjects. This clearly shows that the single subject excluded for <

amphetamine positive urine drug screen had markedly lower "C-Raclopride than any

of the other subjects, including those testing positive for cocaine. The full details for
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these subjects is shown in Table 5.10.

Subject Scan Reason for exclusion Putamen Caudate Ventral
Striatum

Left Right Left Right Left Right
1395 1 Amphetamine in urine 1.90 1.70 1.96 1.82 1.85 1.82

2 Amphetamine in urine 1.66 1.67 1.75 1.72 1.53 1.42

1538 1 Paired with cocaine scan 2.96 3.02 2.91 2.86 2.93 2.47

2 Cocaine in urine 2.85 2.84 2.88 2.78 2.80 2.35

1863 1 Single scan only 2.96 2.93 3.19 2.87 2.91 2.52

2369 1 Single scan only 2.41 2.64 2.31 2.17 2.08 1.84

2604 1 Paired with cocaine scan 2.44 2.45 2.53 2.49 2.10 1.82

2 Cocaine in urine 3.01 2.99 3.16 3.03 2.65 2.15

3119 1 Single scan only 2.59 2.63 2.30 2.43 2.53 2.42

Table 5.10: Individual "C-Raclopride BP data for scans excludedfrom the primary analysis
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Figure 5.4: Ladder plot showing the BP values for those scans excluded from the
primary analysis due to protocol violations. "Paired" are scans where the matching pair
tested cocaine positive, but this scan was negative.
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6 Discussion
The preceding chapters have presented results from a number of studies and the

development of the methodologies required to obtain these results. The first study

presented the effects of drug related autobiographical stimuli on brain activation

patterns in abstinent heroin addicts. I showed that drug related stimuli activated the

left anterior cingulate cortex more than matched neutral stimuli. I also showed that

the subjective level of craving experienced as a result of those stimuli correlated with

the level of activation in the left orbitofrontal cortex. Both regions were then shown

to be part of distributed, functionally connected, networks of activation. There were

also consistent areas of deactivation.

I then went on to show the development of enhanced techniques for the analysis of

"C-Raclopride PET images. Using these techniques, I showed that despite

significant doses of opioid, there was no measurable release of dopamine in opioid

dependent patients given their drug of choice. This was in spite of marked

psychological and physiological responses to these pharmacological stimuli.

6.1 Neural substrates of heroin craving

The most significant finding in the present study of heroin craving is of two distinct

and dissociable peaks of activation. The results show an activation of the anterior

cingulate gyrus and adjacent medial pre-frontal region that occurs in response to a

drug-related stimulus, but does not correlate with the subjective craving response to

that stimulus. In fact, it occurs even in the absence of such a subjective response, fn
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addition, we saw an increase in this effect with duration of abstinence. Conversely

the orbitofrontal cortex activation is correlated with the subjective response to the

stimulus, but is not always present in response to the stimuli themselves.

The different analysis methods could be employed to tease apart this distinction

because there was a carry over effect into the neutral scans of craving induced by the (

drug-related stimuli. Initially this was considered to be a draw back of the study

design. It was clear from the VAS that inducing craving worked well for some of the

subjects as their reported levels increased rapidly in response to the stimuli.

However, turning off the craving was not possible, in effect we were waiting for it to

subside almost spontaneously. In addition, the progressive desensitization to the

stimuli shown by the subjects also meant that comparing scans by subtraction was

not the same as looking at activation with craving.

During the analysis phase it became apparent that I could use this carry over effect to

differentiate responses to the stimuli from activation associated with craving.

Specifically the cognitive subtraction will be maximally sensitive, and a correlational

analysis will be relatively insensitive, to detecting responses to the drug-related

stimuli that do not show a carry over effect into the next scan run. Conversely, areas

of activation that show a slower response and particularly are slow to wear off will

not be modelled well by an "on/off' model as used for the condition comparison, but
I

a correlational analysis will be maximally sensitive to this pattern.

Thus the orbito-frontal cortex (which correlated with the "craving/urge" scale) did

not show a significant activation with opioid related cues and similarly the left
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anterior cingulate/medial pre-frontal region (activated by opioid related stimuli) did

not show a significant correlation with the "crave/urge" scale. Because these

prefrontal foci do not overlap spatially and were obtained with fundamentally

different analyses these results suggest a true dissociation that brain responses to

drug-related stimuli per se may invoke different brain circuits from those involved in
*

the craving induced by these stimuli.

6.1.1 The role of the anterior cingulate

The activation of the left anterior cingulate gyrus has become a consistent finding in

many types of functional imaging studies. More significantly, this region has been

shown to be activated by other drug related stimuli, but not consistently. There are

three other published functional imaging studies of opioid craving. In the first study
i

the level of activation in the midbrain was found to modulate the response of the

anterior cingulate to drug related visual cues (Sell et al., 1999). The second study, by

the same group, showed no anterior cingulate response but did show an unexpected

posterior cingulate activation to a drug related video (Sell et al., 2000).

However, the most recent study showed anterior cingulate activation in response to

water but not heroin in thirsty drug users (Xiao et al., 2006). As was noted by the

authors of this last study, the literature on imaging heroin craving is small, making it

> difficult to unpick the potential causes of inconsistencies. In the single fMRI study

no attempt was made to measure craving induced by drug related stimuli but only

half of the 14 subjects were stated to have reported craving for the heroin (Xiao et
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al., 2006). This alone is not enough to explain the discrepancy with the current study

as the anterior cingulate activation was present in all subjects, whether they reported

a subjective craving response or not. In the current study, the experimental protocol

was designed to raise the potential salience of drug related stimuli. Specifically, the

subjects all knew they had been recruited for a study of heroin craving; they had

spent time prior to the scanning session recording the audio stimuli; they completed

repeated scales rating their levels of heroin craving and were otherwise undistracted.

In the most recent study, the subjects had been subject to a thirst induction paradigm

involving water restriction and diuretic administration (Xiao et al., 2006). The

authors in this later study did not measure craving levels during the scanning session.

It is therefore very likely that the primary preoccupation of the subjects during the

scanning session was thirst. It is therefore not surprising that the stimulus that was

able to capture their attention primarily was the drink related stimulus. In our study

the primary stimuli of interest were likely to be the drug-related stimuli as a result of

the clear direction of the focus of the study on heroin craving. What this suggests is

that the salience of the stimuli can be inferred from their ability to activate the

anterior cingulate. However, this can also be stated as the level of activation of the

anterior cingulate being the determinant of the level of salience attributed to a given

stimulus, i.e. the direction of causality is unknown.

This interpretation is further supported by the larger number of studies of craving for

cocaine and other drugs. Activation of the anterior cingulate has been reported with

cue-induced cocaine craving in response to a drug-related video in two studies from
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the same group (Childress et al., 1999; Maas et al., 1998), however in the earlier

study it is not possible from the published data to further localise the effect to a

specific subdivision of the AC. ACC activation in the same pre-genual subdivision

has additionally been shown in smokers in response to cigarette cues (Brody et al.,

2002). The same group also showed that this activation could be attenuated with
*

bupropion (Brody et al., 2004a).

In our study the focus of activation was located in the pre-genual subdivision of the

cingulate cortex. Previous reviews of the functional imaging literature have

subdivided the anterior cingulate into a superior-dorsal "executive" region and an

"affective" region in the pre- and sub- genual parts of the gyrus (Bush et al., 1998).

As can be seen from this paper, the activation peak found in this current study is very

close to the localisation of activation in an emotional counting Stroop done by the
I

same authors (Whalen et al., 1998). This argues for the activation in the current

study to be related to emotional attention. This is in keeping with the subjective

experience informally described by our subjects, who felt that the induction of

craving was an emotional stimulus. Tasks that have activated the "executive" region

of the AC have usually been tasks of divided attention of other cognitive tasks (Bush

et al., 1998), which is much more dissimilar to the stimuli presented in our study. In

at least one of the previous studies the AC activation in heroin craving modulated by

> midbrain responses was inferior to our activation but remains within this 'affective'

region (Sell et al., 1999).

Activation in this AC region, as measured by SPET, has additionally been shown to
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be inversely correlated with the severity of naltrexone-precipitated opioid withdrawal

(van Dyck et al., 1994). It was observed, but not measured, that several of our

patients experienced conditioned withdrawal, (e.g. sweating and piloerection) whilst

listening to their craving experiences. Therefore an alternative explanation is that the

activation of the anterior cingulate (an area which was previously associated with

withdrawal and pain) during the craving manipulation in our patients is a

manifestation of conditioned withdrawal. However, if this was the case it would be

expected that the difference in responses between the opioid stimulus and neutral

stimulus conditions would decrease with increasing duration of abstinence, rather

than the increase described.

The finding of an increase in the AC activation with increasing time abstinent was an

unexpected finding. There was no a priori hypothesis, but the expectation would be

that heroin addicts early in recovery would show an exaggerated response to drug-

related stimuli compared to those with a longer period of abstinence. One theory that

may explain the finding is that exposure to stimuli that provoke craving for opioids

should become a less familiar experience as the period of abstinence increases.

Therefore any habituation to such stimuli should gradually be lost and they would be

more arousing or alerting when encountered. Consequently it would not be surprising

that regions involved in emotional arousal and attention, such as the anterior

cingulate/medial pre-frontal cortex, show increased relative activation to opioid

related stimuli with increasing length of abstinence. It could also be that the

character of these stimuli moves from appetitive to aversive over time.
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Animal models have also demonstrated increases in conditioned responses to drug-

paired stimuli over time (Grimm et al., 2003). Rats previously trained to lever press

in response to a light stimulus to receive a cocaine reward showed increasing lever-

press responses to the same light stimulus as duration of abstinence increased out to

66 days of abstinence. However, the ability of foot shock to reinstate heroin

associated lever presses showed an inverted-U shaped pattern over the same time

period (Shalev et al., 2001). It is difficult to see whether this confirms or refutes the

current results as the cocaine study using conditioned stimuli is closer to the

autobiographical stimuli used in our study, however the heroin study using foot

shocks has a poorer match in the stimuli but is based on the same drug.

Unfortunately the conditioned cue study has not been done with heroin.

6.1.2 The role of the orbito-frontal cortex

Activation in the left orbito-frontal cortex (OFC) showed a positive association with

the composite "crave/urge" scale. This association of rCBF activation was present in

all 8 subjects who reported a craving response to the stimulus. The absence of

statistical activation in this area in the subtraction analysis above argues that the OFC

is more directly related to the subjective experience of craving rather than the early

processing of the opioid related stimuli. A significantly similar result has been

reported showing a correlation between 'urge to use' heroin and rCBF in an adjacent

area of the left inferior frontal cortex and an area of the orbito-frontal cortex in the

opposite, right hemisphere (Sell et al., 2000). Visual heroin related stimuli have also
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more recently been shown to activate the OFC in an fMRI study of heroin users

(Xiao et al., 2006). Cocaine craving also correlates with OFC activation, more

medially, when precipitated by withdrawal (Volkow et al., 1991a) and in the right

OFC when induced by methylphenidate (Volkow et al., 1999b). Bilateral OFC

activations are also observed in response to stimuli that elicit cocaine craving (Grant

et al., 1996; Wang et al., 1999a). Similar results have also been shown for craving in

treated & untreated smokers (Brody et al., 2004a; Brody et al., 2002).

The above data adds to the emerging evidence, from other non-imaging techniques,

that the OFC plays an important role in drug dependence (Di Chiara & North, 1992;

Wise, 1996). The OFC is linked to the mesolimbic dopamine system that mediates

response to reward related stimuli (Koob, 1992), the subcallosal region of the

anterior cingulate seen activated in this study (Di Chiara & North, 1992; Koski &

Paus, 2000; Wise, 1996) and is connected to the amygdala. Additionally, it receives

inputs from various sensory association areas and consequently plays an important

role in expectancy and the reinforcing salience of stimuli (Hugdahl et al., 1995;

Rolls, 1996; Thorpe et al., 1983). Others have theorized that the OFC, through its

connection with the amygdala, may play a role in evaluating the motivational value

of stimuli and labelling the emotional experience of craving (London et al., 2000).

This hypothesis could explain why this region co-varied with subjective craving

measures in our study. Lastly, Volkow has emphasized the role of the OFC as part of

the striato-thalamic-orbitofrontal cortex circuit in which dysfunction results in

compulsive behaviour and heightened motivation to access a drug of abuse in a
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number of her publications (e.g. Volkow & Fowler, 2000). This is supported by

evidence that patients with lesions in the OFC perform poorly on tasks of gambling

that require synthesis of emotional valence and impulse control for optimal

performance (Rogers et al., 1999). Furthermore, amphetamine and opioid dependent

patients performed at a level between OFC-lesion patients and a healthy control

group. This deficit could be mimicked in the control group using dietary tryptophan

depletion.

6.1.3 The role of the sensory cortices

The correlational analysis looking for areas of functional connectivity with the AC

region found activity deep in the posterior central gyrus (BA 3) and middle temporal

gyrus (BA 21). Neither of these areas is classically thought to be connected to the AC

region. Flowever, the functions of these areas do have a possible link with the task

condition, which may explain this apparent functional connectivity. Brodmann area

21 is involved in auditory sensory input and this craving experiment used auditory

stimuli. The activation in the posterior central gyrus is in the area representing intra¬

abdominal sensation (Penfield & Rasmussen, 1950). It is therefore plausible that

both these areas are activated by heroin related auditory stimuli that may evoke a

visceral response in addition to any cognitive response. The heroin related stimuli are

likely to engage a greater auditory attention to the stimulus, which would explain the

increase in BA21 and the negative correlation between the AC region and visual

areas via a cross-modality suppression of visual areas (Figure 3.2). The negative
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association between activity in the OFC and posterior visual areas could again be

related to cross-modal suppression. Consistent with this result, activation of the

primary visual cortex has been shown in response to heroin related visual stimuli

(Xiao et al., 2006). Again this demonstrates the ability of drug-related stimuli to

command greater responses from early stages of processing within primary sensory

cortex. Of course, it remains possible that the relative decrease in rCBF observed in

my study in the occipital cortex during the "craving" scans is simply the subjects

allowing their attention to wander to gazing around the scanner room while listening

to the neutral stimuli. In effect this could produce greater occipital activation during

the neutral scan, rather than reduced activation during the craving scan. This is

something that could have been examined if we had included a resting control scan;

however the precise nature of the cognitive activity occurring during a "resting" state

is usually unknown and often impossible to standardise.

This is in keeping with a hypothesis that the pre-genual AC activation is related to

the emotional salience / attentional focus to the heroin stimuli which in turn is linked

to heightened sensory processing of the stimuli and the physiological effects. These

are effects of the stimuli that are likely to be the result of many thousands of

unconditioned - conditioned stimulus pairings over many years of substance misuse.

In this respect there is therefore no need for this particular activation network of

sensory cortices and attentional circuits to be functionally connected to the OFC

network also found in the study.
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6.1.4 Wider circuits of activation

The nodes in the OFC connection network that activated proportionally with craving

also have face validity when considering the nature of the experimental situation.

The hippocampus, and temporal regions are implicated in memory or episodic

memory. The stimuli used here were autobiographical episodes of craving. The

more the script evoked activation in the memory areas the more subjective craving

was described. It is difficult to know whether this was an effect of the nature or

intensity of the memories for the craving and neutral episodes. There was no

reported difference in the "vividness" of the stimuli, which suggests that it was not

the richness of the recorded script that accounted for the differences found. What

cannot be differentiated with the data available is any possible direction of causality,

or effective connectivity.

The brainstem (Red Nucleus) region that was associated with the OFC activity is

usually considered to be involved in the integration of motor activity. This region

also has projections from the anterior cingulate cortex and cerebellar dentate gyrus.

The spatial resolution of PET is not sufficient to differentiate the Red Nucleus from

other nearby brain stem nuclei more often implicated in the opioid system, e.g. peri¬

aqueductal grey matter. Therefore, even though this was the localisation of the peak

interaction between stimulus condition and OFC activity the true focus could have

been located in other nearby nuclei. However, early reports from a recent fMRI

study of video induced heroin craving, with the greater spatial resolution of fMRI,

has also shown the red nucleus to be activated in response to drug-related stimuli
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(Langleben et al., 2002).

These results suggest that opiate craving and drug related stimuli do not activate

"special" brain circuits specific for drug dependence or craving. Instead, the

connected networks reported in this study identify circuits related to attention,

sensory processing and memory. In other words, drug-dependence circuitry is t

perhaps associated with a greater degree of activation of regions associated with

processing the autobiographical stimuli rather than activating "special" "addiction"

regions of the brain. Our results add further support to the theories of addiction that

suggest that what makes dependence is the ability of the drug and its related stimuli

to "hi-jack" the neural circuits usually activated by attention and motivation and

drive them stronger than "normal" rewards and stimuli (e.g. the incentive-

sensitisation model, Robinson & Berridge, 1993).

6.1.5 Limitations of the craving studies

A number of caveats apply to the H2I50-PET data. The were no control subjects and

only 12 subjects in total. The analysis techniques used only a fixed-effects not a

random effects statistical design, so we are limited in our conclusions to this

particular group of subjects. Small subject numbers and the consequent effects on

statistical power are very commonly an issue in PET studies. At the time this study

was done 12 subjects was an average number of subjects. There is always a tension

between increasing statistical power on the one hand and the requirements of

ARSAC to minimise the number of subjects exposed to radiation on the other. In the
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case of this study we can be reasonably confident that the subject number was

sufficient to detect important patterns of rCBF changes in heroin craving. The

activation patterns found were in keeping with many other studies in the literature

and made functional sense with substantial face validity.

Only 66% of our subjects reported craving in response to the drug related stimulus,

however this is not unusual in the artificial environment of a brain scanner. When all

subjects were included in the original correlational analysis an activation was found

in the left dorso-lateral pre-frontal cortex (DLPFC). This activation very closely

matched one previously found in cocaine craving (Grant et al., 1996). This result

was not reported however as inspection of the individual effect sizes for each subject

showed that the entire effect was being driven by those four subjects who had a

craving score of zero throughout the study. In straightforward terms, this correlation

was statistically invalid. The DLPFC activation completely disappeared when these

four subjects were removed. It was not possible to exclude this as the cause of the

findings in the cocaine study as individual craving scores were not reported.

A weakness of our initial categorical design was the carry over effect of craving into

the neutral condition, however we were able to take advantage of this effect by

performing a correlational analysis in those subjects who craved to show a

differential pattern of activation.

The relationship of the VAS reports of subjective craving used in this study to real

behavioural intentions are also open to some question as none of the subjects acted

on this craving by relapsing to heroin use. However, the majority of them were



seeking help with craving as part of their on-going treatment and so the experience of

craving was well known to them. The gradual habituation to the craving stimuli,

shown by the VAS scores, in some of our subjects may also have increased the

variance of responses reducing the sensitivity of the cognitive subtraction analysis.

There were minor significant differences in the "vividness", "anxious" and "sad"

VAS scales between the two conditions but it is unlikely that these were responsible

for the activations reported as no significant rCBF changes correlated with these

scales.

It is also necessary to bear in mind the limited spatial and temporal resolution

afforded by PET scanning. This technique of examining functional connectivity has

allowed us to highlight a network of brain regions implicated in opioid dependence,

but it does not allow us to study the nature of the interactions between them. At

present this is a map of nodes whose level of activation shows an association. It is

not possible to state a causal relationship between activity in connected brain region,

or the strength of one, should it exist. This will require further study with techniques

better suited to the study of effective connectivity, but where the experimental

environment is even less conducive to the state of mind we are trying to study, e.g.

fMRI.

6.2 Dopamine

The "C-Raclopride study reported here is the first study to examine whether opioids

increase dopamine levels in human opioid addicts as is seen with other drugs of



abuse. We detected no increase in striatal dopamine levels despite marked subjective

and objective opioid effects. Following the injections of diamorphine and

hydromorphone the subjects showed slowed saccadic eye movements and a

pronounced level of intoxication including "high/gouched" and "rush". There was

also a dose-response relationship between these physiological and subjective

responses and the opioid injections. This dissociation implies that dopamine may not

be critical in mediating the 'high' from opioids in dependent humans and contrasts

with a number of pre-clinical studies.

A portion of the animal literature has shown that there is a dopamine response to

opioids. In drug nai've rats, single doses of morphine up to lOmg/kg S.C. induced

increases in extra-cellular dopamine of up to 200% of baseline in the nucleus

accumbens and up to 180% in the caudate nucleus (Di Chiara & Imperato, 1988).

Using similar microdialysis techniques an injection of IV diamorphine also induced a

similar 260% rise in extra-cellular dopamine in drug nai've rats (Hemby et al., 1995).

However, the same study in a second sample of rats showed that after repeated self-

administration of heroin the dopamine response was no longer observable. The same

group showed that in rats trained to self-administer heroin, cocaine or a

heroin/cocaine mixture there was a significant increase in extracellular dopamine

following cocaine and heroin/cocaine, but not following heroin alone (Hemby et al.,

1999). In a study intended to examine the effects of chronic buprenorphine infusion,

acute single doses of heroin were again shown to induce small increases in

extracellular dopamine, typically around 150% of baseline (Sorge et al., 2005). The
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continual slow infusions of buprenorphine also resulted in increases in baseline

dopamine concentrations pre-injection of a similar magnitude after 2 weeks

exposure.

Dopamine responses to heroin self-administration have also been measured with

greater temporal resolution using the technique of high speed chronoamperometry <

(Kiyatkin et al., 1993). This technique measures the electrochemical effects of

changes in extracellular dopamine concentrations rather than measuring dopamine

concentrations directly as with microdialysis. This method has been criticised (Di

Chiara 2005, personal communication) but nevertheless this study reports interesting

results that may be of relevance to the interpretation of our "C-Raclopride data. Rats

were permitted to self-administer heroin daily. The dopamine electrochemical signal

in response to the first injection of each day's session was significant and increased

over subsequent days. In contrast, the response to the second and later injections of

each day's session was an initial drop in signal lasting approximately 20 minutes that

followed a steady crescendo of electrochemical signal up to the moment of the lever

press that delivered the heroin injection. Translating this into the situation

experienced by our research subjects would suggest that one would expect a

dopamine response to the first self-administration of heroin each day, but all

subsequent self-administrations would be preceded by the dopamine release followed

by a post-injection dip in dopamine. However, as suggested by some of the animal

literature above, we may see a different pattern of dopamine response, if any, as the

heroin was administered to our subjects by the experimenter and not self-
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Relating this element of the pre-clinical animal literature to our human PET studies

clearly requires overlooking of a large number of significant assumptions. However,

the subjects in our dopamine experiment were clearly well experienced users with

long histories of heroin use. That clearly suggests that the experiments with animals

pre-exposed to opioids are more likely to match our experiment. All our subjects

were on methadone maintenance but, with the exception of the first subjects had

received no dose on the scan day until after the PET scans. Initially this would argue

that the first injection of the day animal experiments are most appropriate as a model,

where dopamine was seen to be released. However, methadone has a long half-life

and none of the subjects were showing withdrawal signs or symptoms prior to

scanning. This contrasts with the animal models where much shorter acting opioids

were used.

This has not been the first study to examine dopamine responses to opioids in

humans. The effects of another opioid agonist, alfentanil given by infusion, have

been reported in two dopamine receptor PET studies designed to explore analgesia in

healthy volunteers (Hagelberg et al., 2004a; Hagelberg et al., 2002a). The first

showed a 6% increase in "C-Raclopride binding in the striatum (Hagelberg et al.,

2002a). This argues for a possible decrease in extracellular dopamine, contrary to

the pre-clinical studies. In the second, "C-FLB-457 binding was increased by a

small amount in several cortical regions (Hagelberg et al., 2004a). "C-FLB-457 is a

selective high-affinity Dopamine D2/3 receptor ligand that is used to image extra-
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striatal receptor availability. The authors were able to show that the increase in UC-

FLB-457 binding was proportional to the euphorogenic effects of the alfentanil.

Again, this finding of a suggested decrease in dopamine is contrary to the pre-clinical

studies. The authors were unable to account for this discrepancy, other than to

consider whether the noradrenergic neuron release of dopamine may contribute to the

posterior cingulate signal measured. However, this would not account for the largest

decrease which was seen in the thalamus. Our study is different in that we examined

the effects of a substantial analgesic dose of hydromorphone and a standard heroin

"hit". The doses used in our study were only possible to give because of the pre¬

existing tolerance to opioids in our methadone-maintained subjects. Had we given

such doses to healthy control subjects we would have very likely provoked signs and

symptoms of opioid overdose. Secondly our study used addicted individuals who

continue to use heroin for its euphoriant effects and were expecting to get such

effects from the injected dose used in this study. The experiments described above

used healthy volunteers, in the latter study they also were expecting to have the

analgesic effect of the alfentanil tested after the PET scan sessions (Hagelberg et al.,

2004a; Hagelberg et al., 2002a). However, there was an association with the

euphorogenic effects of the alfentanil, so the experiences of the healthy volunteers

can't have been entirely negative.

Stimulant drugs and opioids are generally considered to be approximately equal in

their ability to cause dependence (Ridenour et al., 2005) and several studies have

shown that cocaine and amphetamine measurably reduce "C-Raclopride binding.
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The high dose of heroin given in our second study produced significant subjective

effects that were of similar magnitude to those reported from cocaine (Schlaepfer et

al., 1997) and amphetamine (Oswald et al., 2005) when given in the scanner

environment. Despite this, there was no equivalent effect on "C-Raclopride binding.

That cocaine, amphetamine and methylphenidate induce measurable decreases in

human "C-Raclopride binding is not surprising, as these drugs act directly at the

dopamine synapse to increase dopamine levels. However, increases in dopamine

release have also been reported with challenges either of drug or behaviours that do

not directly release dopamine. These include alcohol (Boileau et al., 2003), smoking

(Barrett et al., 2004; Brody et al., 2004b), feeding (Small et al., 2003), playing a

video game (Koepp et al., 1998), placebo apomorphine (Fuente-Fernandez et al.,

2001) and finger tapping (Badgaiyan et al., 2003).

One important finding to note is that the magnitude of the "C-Raclopride signal in

response to a stimulant challenge is attenuated in chronic cocaine users (Volkow et

al., 1997c). In this study the cocaine dependent group showed a 9% reduction in "C-

Raclopride following methylphenidate, whereas the control group showed a

reduction of 22%. As was described in the animal literature above, this decreased

dopamine response is known to follow the development of dependence on opioids as

well.

Baseline levels of "C-Raclopride binding are also reported to be 11% lower in

cocaine users compared to a control group (Volkow et al., 1997c). Similar findings

have been suggested in alcoholics (Martinez et al., 2005). However, we did not see a
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matching difference between the "C-Raclopride binding in our subjects during the

placebo scan and levels in an historical control group re-analysed with the same

methodology. One previous study has reported reduced dopamine D2 receptor levels

of 18% in opioid dependence (Wang et al., 1997b). However, direct comparison

with this opioid study is difficult as the protocols and patient populations were

different. The protocol involved an injection of either saline or naloxone prior to the

scan and the subjects were users of heroin primarily. Contrary to the expectations of

the authors, the naloxone injections decreased "C-Raclopride binding, suggesting an

increase in dopamine levels. However, the subjects were reportedly blind to the drug

injection, so it is possible that the dopamine signal related to surprise at the

unexpected consequences of the injection.

There is additional evidence that the dopamine system is not desensitised in our

population. One heroin addict recruited in study 1 who, despite appearing un-

intoxicated, subsequently tested positive to amphetamine on urine screening. He had

approximately 30% lower "C-Raclopride BP in all regions compared to all the other

subjects (see Figure 5.4). This suggests that the dopamine system in this subject

remained sensitive to amphetamine induced reduction in "C-Raclopride binding.

One further possible interpretation is that he had a measurable response to

amphetamine because he was not dependent on this drug and had therefore not

become desensitised. In addition it also confirms that our scanning and analysis

method was able to measure the known effect of amphetamine.
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6.2.1 Sensitivity of nC-Raclopride PET

Another potential difference between the animal microdialysis studies and the human

imaging studies is the anatomical resolution. For some time it has been known that

the nucleus accumbens has two subcomponents of a core and shell (e.g. Heimer et

al., 1991). The subdivisions have different patterns of connectivity, with the medio-

ventral shell being connected to the "extended amygdala" and the core connecting to

the striato-pallidum (Pontieri et al., 1995). It has also been shown that single doses

of experimenter-administered morphine produce increases in extracellular dopamine

only in the shell, but not the core, of the nucleus (Pontieri et al., 1995). Again, the

level of increase has still been relatively modest, in the order of 200% of baseline.

At present, the resolution achievable with PET is in the order of 2-5mm (full-width

Halfmaximum) which is insufficient to distinguish this level of substructure.

In addition to issues of spatial resolution, there is also the issue of sensitivity.

Measures of the sensitivity of "C-Raclopride to changes in extracellular dopamine

concentration are highly variable, ranging in estimates from 8:1 to 44:1 (% increase

DA to % decrease 11C-Raclopride) and this relationship may vary with the subject

and nature of the challenge (see Laruelle, 2000a for full discussion). In brief, it is

suggested that Raclopride can bind to a larger pool of dopamine D2 receptors than

dopamine itself. Dopamine binds only to "active" receptors in the high affinity state,

where Raclopride will bind to all surface receptors. The net result of this is that "C-

Raclopride PET remains a relatively insensitive tool. Therefore, changes of the

comparatively small magnitude reported by microdialysis studies, particularly if
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highly localised, would not be readily detectable with "C-Raclopride PET, even with

movement correction and the latest image analysis techniques.

Another potential contribution to the lack of sensitivity of "C-Raclopride PET to

changes in extracellular dopamine in this study is the size of the sample. We

recruited and obtained complete data on 14 subjects, excluding those that tested

positive for stimulant use. While this seems a small number, it is in keeping with the

PET literature. There is also no evidence of a "sub-threshold" trend to our data to

suggest that a small dopamine response was emerging. The "ladder plot" (Figure

5.4) shows that the direction of change in the paired scan data was convincingly

inconsistent. It could also be argued that with a single subject we were able to

demonstrate the known effects of amphetamine on "C-Raclopride binding.

6.2.2 Theoretical implications for the role of dopamine in

opioid dependence

This study raises fundamental questions about the role of dopamine in human opioid

addiction. The dissociation of measurable dopamine release and subjective "high"

argues against this as a fundamental prerequisite for perception of drugs as rewarding

and pleasurable. Certainly, it cannot now be suggested that the magnitude of

dopamine release measured in response to stimulants is required for a substance to be

"addictive".

One possible unifying explanation is that the level of dopamine release and "C-

Raclopride displacement provoked by stimulants may be correlated with, but not
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necessary for, the addictive properties of these drugs. It could be that a dopamine

signal in the shell of the nucleus accumbens is required by all drugs of abuse, but that

this is too small to be detectable with PET and that the detectable dopamine signal is

merely a corollary pharmacological effect of the stimulants. Although on the surface

the findings with alcohol and nicotine argue against this, they show weaker effects

than those with stimulants. The alcohol data required extreme intoxication (Boileau

et al., 2003) and the original nicotine data, that initially showed a large effect, has

recently been extended to reveal a much smaller effect that is predominantly seen in

subjects with the low dopamine functioning COMT polymorphism (Brody et al.,

2006).

It may be that drugs such as nicotine and opioids, that in animals activate dopamine

neurons indirectly by switching off an inhibitory GABA inter-neuron in the ventral

tegmental area (Garzon & Pickel, 2001), release little, if any, dopamine in the

terminal regions, or that dopamine is rapidly taken up into the pre-synaptic terminals.

Perhaps blocking dopamine re-uptake, e.g. by a low dose of cocaine, would prevent

such uptake and reveal an effect of opioids, as has been suggested by the synergistic

elevations shown in rodents (Hemby et al., 1999). However, in the case of opioids

there are potential sites, other than the dopamine system, that may mediate their

addictive actions. For example, some output regions of the basal ganglia dopamine

projections, e.g. the globus pallidus, have high opioid receptor densities that could be

the "down-stream" target for mu-opioid agonists (Mitrovic & Napier, 2002).

It has been argued that the role of dopamine is not to signal the rewarding properties
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of drugs of abuse, but as a signal related to drug "wanting" - the incentive-

sensitisation theory (Robinson & Berridge, 1993). Clinically the subjective response

to stimulants includes the component of "wanting", as well as "rush" and "high",

with the "wanting" often leading to bingeing. In contrast, subjective responses to

opioids are characterised only by "rush", "high" and intoxication, as we found in this

study. The drug "wanting" component of opioid addiction is most closely associated

with the period between acquisition of the drug and its subsequent consumption. If

the dopamine response to drugs of abuse is related to the "wanting" phase rather than

the "liking" phase, then it would be expected that dopamine would be associated

with acute administration of stimulants, but in the case of opioids the dopamine

release would be maximal when drug was expected, not after it has just been

administered. It has already been shown that the "craving" induced by cocaine

administration activates the dopamine-rich nucleus accumbens, where the "rush" and

"high" do not (Breiter et al., 1997). This suggests that, at least in the case of opioid

addiction, manipulations of expectation of drug would be a more fruitful area of

future research. This explanation certainly ties in with the animal models described

above where the predominant dopamine release in experienced animals was in a

crescendo associated with lever pressing to receive a conditioned reinforcement

rather than to the heroin infusion (Kiyatkin et al., 1993).

Whatever the explanation, the results of this study cannot refute the animal literature

which argues dopamine may well be intimately involved in the process of developing

addiction to opioids and the drive to seek alleviation of the withdrawal syndrome.
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However, our study argues against dopamine having the same supremacy as the

causative agent in opioid addiction as has been hypothesised for stimulant addiction.

We still face fundamental problems however in marrying up the data from the pre¬

clinical and human studies due the the very different drug administration histories of

the animals and addicts. Ideally one would like to be able to challenge abstinent

drug users with opioids and give equivalent doses to drug naive subjects, neither of

which could be ethically justified. Similarly the animal models required to properly

mimic the real clinical patterns of drug use observed in patients would take many

years to complete. We felt that this study was the best compromise as similar opioid

doses given to drug naive subjects would have caused unacceptable levels of nausea

and respiratory depression, and waiting for higher levels of withdrawal to emerge

would have had the potential to cause increased subject head movement and other

potential confounds.

6.3 Conclusions

Addiction, or substance misuse, is a large social problem worldwide. To date the

majority of treatments are empirically derived from experience and evidence from

the clinic. Gradually neuroscience is beginning to shed light on the underlying

mechanisms of dependence which will pave the way for potential new treatments.

The techniques of functional neuroimaging give the ability to visualise neuronal

function in the living human drug user and therefore open a window on the

understanding of addiction processes unavailable from any other technique.
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Positron Emission Tomography (PET) and functional magnetic resonance imaging

(fMRI) together have produced a considerable body of research to aid the

understanding of the fundamental mechanisms of addiction and dependence. The

majority of neuroimaging studies in dependence, to date, have focused on regions of

brain activation in response to specific drug related stimuli or on changes in

neurotransmitter function.

The studies presented in this thesis have endeavoured to take these established

methodologies and extend. The opioid craving study began with a straightforward

activation paradigm. It showed that drug-related stimuli and the subjective

experience of craving were associated with definable patterns of cerebral blood flow.

However, the second component of the study was an extension of existing fMRI

analysis techniques into the field of perfusion PET. This cross-fertilisation of

analysis techniques yielded new insights into the meaning of these activation patterns

and helped to link them to the subjective and observable phenomena of opioid

craving. Similarly, the nC-Raclopride study did not simply report changes in

neurotransmitter binding in response to a pharmacological challenge. Instead, this

study used combined subjective and functional measures of opioid effect

simultaneously with measurement of neurotransmitter function. We also developed

automated and enhanced techniques of image analysis to ensure that the data was

exploited to its full extent.

The work presented in this thesis was, for me at least, more of an exploration of the

ways that imaging methodologies can be extended and applied to the study of the
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neurobiology of addiction than it was an actual study of the neurobiology. In effect

the journey taught me more than what I found when I arrived at the destination.
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8 Appendices

8.1 Computer source code written for the thesis

8.1.1 Conventions used in presentation of source code
In order to aid readability the source code will be presented in a standardised format.
I will need to describe the format here.

Grey = comments
code = black

compiler pre-processing commands = green
type declarations = red
program language keywords = bold
numerical constants = blue

string constants = purple
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8.1.2 Convolution

8.1.2.1 The re-implemented C-code
/* Re-implementation ofmex_rogconv.c
The original was created from mex_rogconv.m by MATLAB compiler.
The original routine was written by Roger Gunn,

while at MRC Cyclotron Unit, Hammersmith Hospital, London, UK.

The matlab routine was:

function convolution=rogconv(inp,kl,k2,t)
ek2=exp(-k2);
prev=0;
for i=l :length(t)

prev=prev*ek2+k 1 *inp(i)*( 1 -ek2)/k2;
convolution(i)=prev;

end
Where inp is a column vector and t is a row-vectors of same length
kl & k2 are real numbers
convolution is a vector of same length as inp & t
For some reason Roger uses k2, where in the paper it is theta3. Therefore,
1 will use theta as the variable name here.

Licensed under GPL, version of your choice,
by:
Dr. Mark Daglish
Clinical Lecturer in Psychiatry
Psychopharmacology Unit
University of Bristol,UK
mark.daglish@bris.ac.uk

*/

/* SRevision: 0.1 $ */
/* include mex headers for matlab and math header for exponential */
#include "mex.h"
#include <math.h>

void conv( double *conv, const double *input, const double kl, const double theta, const int 1)
/* The subroutine that does the work */
{

double prev, et, factor;
int i;
prev = 0.0;
et = exp(-theta);
factor = k 1 *( 1.0-et)/theta;
for (i = 0; i < 1; i++) {

prev *= et;
prev += (*(input+i)) * factor;
*(conv+i) = prev;

}
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}

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

/* The gateway routine called by Matlab */
{

int inpM, inpN, tM, tN;
double kl, theta;
double *input, *solution, *td;

/* Check input arguments. */
if ( nrhs != 4 [| nlhs != 1 ) {

mexErrMsgTxt("Usage: convolution=conv(inp,kl,theta,t)");
}
inpM = mxGetM(prhs[0]);
inpN = mxGetN(prhs[0]);
tM = mxGetM(prhs[3]);
tN = mxGetN(prhs[3]);
if (!mxlsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||

!mxIsDouble(prhs[l]) || mxIsComplex(prhs[l]) ||
!mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) ||
!mxIsDouble(prhs[3]) || mxIsComplex(prhs[3])) {

mexErrMsgTxt("All arguments must be non-complex and double");
}
if ((inpM != 1) || (tN != 1)) {

mexErrMsgTxt("inp must be a row vector and t a column vector");
}
if (inpN < tM) {

mexErrMsgTxt("inp must be the same size or longer than t");
}
/* Create matrix for the return argument. */
plhs[0] = mxCreateDoubleMatrix(l ,tM, mxREAL);

/* Assign pointers to each input and output. */
input = mxGetPr(prhs[0]);
kl = mxGetScalar(prhs[l]);
theta = mxGetScalar(prhs[2]);
td = mxGetPr(prhs[3]);
solution = mxGetPr(plhs[0]);

/* Call the convolution subroutine. */

conv(solution, input,kl,theta,tM);
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8.1.3 Basis pursuit solution

8.1.3.1 The original C++ code

8.1.3.1.1 rpm_ref.cpp
// Filename: rpm_ref.cpp
//
// Description: Calculates parameters for the simplified reference region model
//
// Classes:
//
// Comments: Mex implementation of rpm_ref.m
//
//function

[Rl,k2,BP,index]=rpm_ref(bigm,W,no_basis_functions,lbetal,weight,A,Cref,v(l).dim(2),mask(x,:),d,l
ambda)
// Wd=W*d;
// B=[CrefA(:,l)];
// for i= 1 :no__basis_functions
// B(:,2)=A(:,i);
// result=bigm((i*2-1 ):i*2,:)*Wd;
// ssq(i)=sum((weight).*(B*result-d).A2);
// end
// sol=find(min(ssq)=ssq);
// index=sol( 1);
// result=bigm((index*2- l):index*2,:)*Wd;
// Rl=result(l);
// k2=result(2)+(lbetal(index)-lambda)*Rl;
// BP=(k2)/(lbeta 1 (index)-lambda) - 1;
//
// mex -v -f ,/gccopts.sh rpm ref.cpp
//
// Author: Steve Gunn & Roger Gunn (c)

#include <cstdio>
#include "mex.h"

#ifndef_tensor_h_
#include "tensor.h"

#endif

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

// Read in Variables

precision *bigmP = (precision *)mxGetPr(prhs[0]);
unsigned int bigmRow = mxGetM(prhs[0]);
unsigned int bigmCol = mxGetN(prhs[0]);
MATRIX<precision> bigm(bigmP,bigmRow,bigmCol);

precision *WP = (precision *)mxGetPr(prhs[l]);
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unsigned int WRow = mxGetM(prhs[l]);
unsigned int WCol = mxGetN(prhs[l]);
MATRIX<prccision> W(WP,WRow,WCol);

unsigned int no_basis_functions = (unsigned int)mxGetSca!ar(prhs[2]);

precision *lbetalP = (precision *)mxGetPr(prhs[3]);
unsigned int IbetalRow = mxGetM(prhs[3]);
unsigned int IbetalCol = mxGetN(prhs[3]);
VECTOR<precision> Ibetal (lbetal P,lbetalCol);

precision *weightP = (precision *)mxGetPr(prhs[4]);
unsigned int weightRow = mxGetM(prhs[4]);
unsigned int weightCol = mxGetN(prhs[4]);
VECTOR<precision> weight(weightP,weightRow);

precision *AP = (precision *)mxGetPr(prhs[5]);
unsigned int ARow = mxGetM(prhs[5]);
unsigned int ACol = mxGetN(prhs[5]);
MATRIX<precision> A(AP,ARow,ACol);

precision *CrefP = (precision *)mxGetPr(prhs[6]);
unsigned int CrefRow = mxGetM(prhs[6]);
unsigned int CrefCol = mxGetN(prhs[6]);
VECTOR<precision> Cref(CrefP,CrefRow);

unsigned int ydim = (unsigned int)mxGetScalar(prhs[7]);

precision *maskP = (precision *)mxGetPr(prhs[8]);
unsigned int maskRow = mxGetM(prhs[8]);
unsigned int maskCol = mxGetN(prhs[8]);
VECTOR<precision> mask(maskP,maskCol);

precision *dP = (precision *)mxGetPr(prhs[9]);
unsigned int dRow = mxGetM(prhs[9]);
unsigned int dCol = mxGetN(prhs[9]);
MATRIX<precision> d(dP,dRow,dCol);

precision lambda = mxGetScalar(prhs[10]);

// Main Routine

VECTOR<prccision> R(ydim);
VECTOR<precision> k(ydim);
VECTOR<precision> BP(ydim);
VECTOR<precision> ind(ydim);
VECTOR<precision> tcmp(dRow), result(2), ssq(no_basis_functions), data(dRow);
MATRIX<precision> B(dRow,2);
VECTOR<precision> tempssq(dRow);
B.putCol(Cref,0);
for(unsigned int y=0; y<ydim; y++)
{

if (mask(y)!=0) {
d.getCol(data, y);
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VECTOR<precision> Wd=W*data;
for(unsigned int i=0; i<no_basis_functions; i++) {

A.getCol(temp, i);
B.putCol(temp, 1);
bigm.getRow(temp, i*2);
result(O) = temp*Wd;
bigm.getRow(temp, i*2 + 1);
result(l) = temp*Wd;
tempssq = (B*result - data);
ssq(i) = O.O;
for(unsigned int j=0; j<dRow; j++)

ssq(i) += weight(j)*tempssq(j)*tempssq(j);
}
unsigned int index = ssq.minlndex();
bigm.getRow(temp, index*2);
result(O) = temp*Wd;
bigm.getRow(temp, index*2 + 1);
result(l) = temp*Wd;
R(y) = result(O);
k(y) = result(l)+(lbetal(index)-lambda)*result(0);
BP(y) = k(y)/(lbetal(index)-lambda) - 1.0;
ind(y) = index;

} else {
R(y) = 0.0;
k(y) = 0.0;
BP(y) = 0.0;
ind(y) = 100.0; //Error here

}
}
// Return Variables

plhs[0] = mxCreateDoubleMatrix( 1 ,ydim,mxREAL);
precision *ptrO = mxGetPr(plhs[0]);
memcpy(ptrO,R.getdata(),ydim*sizeof(precision));
plhs[l] = mxCreateDoubleMatrix(l,ydim,mxREAL);
precision *ptrl = mxGetPr(plhs[l]);
memcpy(ptrl,k.getdata(),ydim*sizeof(precision));
plhs[2] = mxCreateDoubleMatrix(l,ydim,mxREAL);
precision *ptr2 = mxGetPr(plhs[2]);
memcpy(ptr2,BPgetdata(),ydim*sizeof(precision));
plhs[3] = mxCreateDoubleMatrix( 1 ,ydim,mxREAL);
precision *ptr3 = mxGetPr(plhs[3]);
memcpy(ptr3,ind.getdata(),ydim*sizeof(precision));

8.1.3.1.2 tensor.cpp
// Filename: tensor.cpp
//

//Description: Routines for Tensors
//
// Classes: Tensor
//
// Comments: VECTOR and MATRIX are #defines which can be used to clarify
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// code to show show what type of tensor is intended.
//
// Author: Steve Gunn (srg@ecs.soton.ac.uk)
//
// Copyright: All rights reserved
#define _tensor_cpp_
#include <memory.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>

#ifndef_tensor_h_
#include "tensor.h"

#endif

using namespace std;
////////////////////// Private members ////////////////////////////

template<class T>
void Tensor<T>::create()
{

unsigned int i;
if (rank)
{

length = 1;
for(i=0; i<rank; i++) length *= size[i];

}
if (length!=0)
{

switch (rank)
{
case 1:

val = data = new T[length];
assert(data);
break;

case 2:
val = new T*[size[0]];
assert(val);
((T**)val)[0] = data = new T[length];
assert(data);
for(i=l; i<size[0]; i++) ((T**)val)[i] = ((T**)val)[i-1] + size[ 1 ];
break;

case 3:
val = new T**[size[0]];
assert(val);
((T***)val)[0] = new T*[size[0]*size[l]];
assert(((T***)val)[0]);
((T* * *)val)[0] [|0] = data = new T[length];
assert(data);
for(i=l; i<size[0]*size[l]; i++) ((T***)val)[0][i] = (T *)

((T***)Val)[0][i-l] + size[2];
for(i=l; i<size[0]; i++) ((T***)val)[i] = (T **)

((T***)val)[i-1] + size[2]*size[ 1 ];
break;

default:

assert(rank <= MAX_TENSOR_RANK); // Tensor rank unsupported
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}
// Initialise elements to zero

T* p = data;
for(unsigned long x=0L; x<length; x++) *p++ = (T)0.0;

} else {
val = NULL;
data = NULL;

}
}
template<class T>
void Tensor<T>::destroy()
{

if (rank= 0) return;
if (length != 0) {

switch(rank) {
case 1:

delete[] (T*)val;
break;

case 2:

delete[] ((T**)val)[0];
deleted (T**)val;
break;

case 3:

deleted ((T***)val)[0][0];
deleted ((T***)val)[0];
deleted (T***)val;
break;

}
length = 0;

}
deleted size;
size = NULL;
rank = 0;
data = NULL;
val = NULL;

}
template<class T>
void Tensor<T>::copy(const Tensor<T> &t)
{

if (t.rank) {
rank = t.rank;
size = new unsigned int[rank];
assert(size);
for(unsigned int i=0; i<rank; i++) size[i] = t.size[i];
create();
if (length) memcpy(data, t.data, (size_t)length*slzeof(T));

} else {
length = 0;
rank = 0;
size = NULL;
data = NULL;
val = NULL;
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}
////////////////////////// Constructors ///////////////////////////
template<class T>
Tensor<T>: :Tensor()
{

rank = 0; // It's a an uninitialised tensor
length = 0;
val = NULL;
size = NULL;
data = NULL;

}

template<class T>
Tensor<T>::Tensor(const unsigned int u)
{

rank = 1; // It's a vector
size = new unsigned int[rank];
assert(size);
size[0] = u;
create();

}

template<class T>
Tensor<T>::Tensor(const unsigned int u, const unsigned int v)
{

rank = 2; // It's a matrix
size = new unsigned int[rank];
assert(size);
size[0] = u;
size[l] = v;
create();

}

template<class T>
Tensor<T>::Tensor(const unsigned int u, const unsigned int v, const unsigned int w)
{

rank = 3; //It's a 3tensor ... yeehah
size = new unsigned int[rank];
assert(size);
size[0] = u;
size[l] = v;
size[2] = w;
create();

}

// The following three member functions are required for the matlab
// interface. Implemented by KB 10/8/96
template<class T>
Tensor<T>::Tensor(T* t,const unsigned int 1)
{

rank = 1; // It's a vector
size = new unsigned int[rank];
assert(size);
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size[0] = 1;
create();
// do this the inefficient way as not to sure how this class works.
for( unsigned int i = 0; i<l; i++) {

((T*)val)[i] = t[i];
}

}

template<class T>
Tensor<T>::Tensor(T* t,const unsigned int nr, const unsigned int nc)
{ <

rank = 2; // It's a matrix
size = new unsigned int[rank];
assert(size);
size[0] = nr;
size[l] = nc;
create();

// do this the inefficient way as not to sure how this class works.
for( unsigned int i = 0; i<nc; i++)

for( unsigned int j = 0; j<nr; j++) ((T**)val)[j][i] = t[(i*nr) + j];
}

template<class T>
T* Tensor<T>::tensorPtr()
{

T* ptr = NULL;
unsigned int r,c;
if (length != 0) {

switch(rank) {
case 1: ptr = new T[size[0]];

for (c=0; c<size[0]; C++)
ptr[c] = ((T*)val)[c];

break;
case 2: ptr = new T[size[l]*size[0]];

for (c=0; c<size[l]; C++) {
for (i=0; r<size[0]; r++)

ptr[c*(size[0])+r] = ((T**)val)[r][cj;
}
break;

case 3:
cout« "\n help rank = 3 in tensorPtr \n";
break;

}
}
return(ptr);

}

//////////////////////// Overloaded Operators /////////////////////
template<elass T>
Tensor<T>::operator T()
{

return data[0];
}
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template<class T>
Tensor<T>& Tensor<T>: :operator=(const Tcnsor<T>& t)
{

bool sameSize = true;
if (this != &t) { // if object is assigned to itself, do nothing

if (rank != t.rank || length != t.length) sameSize = false;
else

for(unsigned int i=0; i<rank; i++)
if (size[i] != t.size[i])

sameSize = false;
if (sameSize) {

if (length)
memcpy(data, t.data, (size_t)length*sizeof(T));

} else {
if (rank) destroy();
copy(t);

}
}
return *this;

}

template<elass T>
Tensor<T>& Tensor<T>::operator=(const T init)
{

for(unsigncd long i=0L; i<length; i++)
data[i] = init;

return *this;
}

template<class T>
bool Tensor<T>;:operator==(eonst Tensor<T>& b)
{

if (rank != b.rank) return false;
if (length != b.length) return false;
for(unsigncd int i=0; i<rank; i++)

if (dim(i) !=b.dim(i)) return false;
for(unsigncd long j=0L; j<length; j++)

if (data[j] != b.data[j]) return false;
return true;

}

template<class T>
bool Tensor<T>::operator!=(const Tensor<T>& b)
{

if (rank != b.rank) return true;
if (length != b.length) return true;
for(unsigned int i=0; i<rank; i++)

if (dim(i) != b.dim(i)) return true;
for(unsigncd long j=0L; j<length; j++)

if (data[j] != b.data[j]) return true;
return false;

}
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template<class T>
Tensor<T>& Tensor<T>::operator+=(const Tcnsor<T>& t)
{

assert(same_size(t));
T* dl = data;
T* d2 = t.data;
for(unsigned long x=0L; x<length; x++) *dl++ += *d2++;
return *this;

}

template<class T>
Tensor<T>& Tensor<T>::operator+=(const T add)
{

T* d = data;
for(unsigned long x=0L; x<length; x++) *d++ += T(add);
return *this;

}

template<class T>
Tensor<T> Tensor<T>::operator+(const Tensor<T>& t)
{

Tensor<T> sum =* this;
sum += t;
return sum;

}

tempiate<class T>
Tensor<T> Tensor<T>::operator+(const T add)
{

Tensor<T> sum = *this;
sum += add;
return sum;

}

template<class T>
Tensor<T> operator+(const T add, const Tcnsor<T>& t)
{

Tensor<T> sum = t;
sum += add;
return sum;

}

template<class T>
Tensor<T>& Tensor<T>::operator-=(const Tensor<T>& t)
{

assert(same_size(t));
T* dl = data;
T* d2 = t.data;
for(unsigned long x=0L; x<length; x++) *dl++ -= *d2++;
return *this;

}
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template<class T>
Tensor<T>& Tensor<T>::operator-=(const T sub)
{

T* d = data;
for(unsigned long x=0L; x<length; x++) *d++ -= T(sub);
return *this;

}

template<class T>
Tensor<T> Tensor<T>::operator-(const Tensor<,I>& t)
{

Tensor<T> sum = *this;
sum -= t;
return sum;

}

template<class T>
Tensor<T> Tensor<T>::operator-(const T sub)
{

Tensor<T> sum = *this;
sum -= sub;
return sum;

}

template<class T>
Tensor<T> operator-(const T sub, const Tcnsor<T>& t)
{

Tensor<T> sum = t;
sum -= sub;
return sum;

}

template<class T>
Tcnsor<T>& Tensor<T>::operator*=(const Tcnsor<T>& t)
{

Tensor<T> temp;
temp = *this;
*this = temp * t;
return *this;

}

template<class T>
Tensor<T>& Tensor<T>::operator*=(const T mul)
{

T* d = data;
for(unsigncd long x=0L; x<length; x++) *d++ *= T(mul);
return *this;

}

template<class T>
Tensor<T> Tensor<T>::operator*(const Tensor<T>& t)
{
// if (t.rank= 0) return *this * t.data[0];
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// if (rank— 0) return data[0] * t;
assert(rank);
assert(t.rank); // Cannot multiply by uninitialised tensor
assert(size[rank-l] = t.size[0]); // Incompatible Tensor dimensions
Tensor<T> result;
unsigned int newRank = rank+t.rank-2;
unsigned int *newSize = NULL;
if (newRank= 0) {

newRank = 1;
newSize = new unsigned int[newRank];
newSize[0] = 1; (
assert(newSize);

} else {
newSize = new unsigned int[newRank];
assert(newSize);
unsigned int i 1 =0, j 1=1;
while(il+l < rank) {

newSize[i 1 ] = size[i 1 ];
ii++;

}
while(il < newRank) {

newSize[il] =t.size[jl];
ii++;
jl++;

}
}
result.changeDim(newRank, newSize);
delete[] newSize;
T* rd = result.data;
T* d = data;
T* td = t.data;
assert(rank < 3 && t.rank < 3); // tensor multiplication not tested for 3 tensors
unsigned int i, j, k;
unsigned long 1, m;
unsigned int tO, tl, t2;
switch(t.rank) {
case 1:

tO = t.size[0];
m = (unsigned long) length/tO;
for(l=0; l<m; 1++, td = t.data, rd++)

for(i=0; i<t0; i++) *rd += *d++ * *td++;
break;

case 2:
tO = t.size[0];
tl = t.size[ 1 ];
m = (unsigned long) length/tO;
for(l=0; l<m; 1++, rd += tl, td = t.data)

for(j=0; j<t0; j++, d++, rd -= tl)
for(i=0; i<tl; i++)

*rd++ += *d * *td++;
break;

case 3:
tO = t.size[0];
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tl = t.size[l];
t2 = t.size[2];
m = (unsigned long) length/tO;
for(l=0; l<m; 1++, rd += t2, td = t.data)

for(k=0; k<tO; k++)
for(j=0; j<tl; j++, d++, rd -= t2)

for(i=0; i<t2; i++) *rd++ += *d * *td++;
break;

}

return result;
ft }

template<class T>
Tensor<T> Tensor<T>::operator*(const T mul)
{

Tensor<T> sum = This;
sum *= mul;
return sum;

}

template<class T>
Tensor<T> operator*(const T mul, const Tensor<T>& t)
{

Tensor<T> sum = t;
sum *= mul;
return sum;

}
i

template<class T>
Tensor<T>& Tensor<T>::operator/=(const Tensor<T>& t)
{

assert(same_size(t));
T* dl = data;
T* d2 = t.data;
for(unsigned long x=0L; x<length; x++) if (*d2!=0.0) *dl++ /= *d2++;
return This; // leave answer unchanged for division by zero

}

template<class T>
Tensor<T>& Tensor<T>::operator/=(const T div)
{

assert(div != 0.0); // Tensor - division by zero
T* d = data;
for(unsigned long x=0L; x<length; x++) *d++ /= T(div);
return This;

► }

tempiate<class T>
Tensor<T> Tensor<T>::operator/(const Tensor<T>& t)
{

Tensor<T> sum —* this;
sum /= t;
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return sum;

}

template<class T>
Tensor<T> Tensor<T>::operator/(const T div)
{

Tensor<T> sum =* this;
sum /= div;
return sum;

}

template<class T>
Tensor<T> operator/(const T div, const Tensor<T>& t)
{

Tensor<T> sum = t;
sum /= div;
return sum;

}

///////////////////////////// 10 Functions ///////////////////////////

template<class T>
ostream& operator«(ostream& out, const Tensor<T>& t)
{

if (t.rank>0)
{

out«t.size[0];
for(unsigned int i=l; i<t.rank; i++)

out« ""«t.size[i];
out« endl;

for(unsigned long x=0L; x<t.length; x++)
out«t.data[x]« " ";

}
out« endl;
return out;

}

template<class T>
istream& operator»(istream& in, Tensor<T>& t)
{

unsigned int i = 0;
unsigned int tempsize[MAX_TENSOR_RANK];
char c;
while( in.get(c)) {

if (c == '\n') break;
in.putback(c);
in »tempsize[i++];
assert( i <MAXTENSORRANK );

}
t.changeDim(i, tempsize);
for(unsigned long x=0L; x<t.length; x++)

in »t.data[x];
return in;
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}

template<class T>
void Tensor<T>::fill(istream& in)
{
// output matrix

for(unsigned long x=0L; x<length && !in.eof(); x++)
in» data[x];

}

template<class T>
9 ostream& operator«=(ostream& out, const Tensor<T>& t)

{
if (t.rank>0) {

out«t.size[0];
for(int i=l; i<t.rank; i++)

out« " " «t.size[i];
out «endl;

}
out.write((char*)t.data, (int)t.length*sizeof(T));
return out;

}

template<class T>
istrcam& operator»=(istream& in, Tensor<T>& t)
{

unsigned int i = 0;
unsigned int tempsize[MAX_TENSOR_RANK];

' char c;
while) in.get(c)) {

if (c= '\n') break;
in.putback(c);
in »tempsize[i++];
assert( i < MAXTENSORRANK.);

}
t.changeDim(i, tempsize);
in.read((char *)(t.data), (int)t.length*sizeof(T));
return in;

}

///////////////////// Miscellaneous Functions ////////////////////////
template<class T>
Tensor<T> Tensor<T>::transpose()
{

Tensor<T> trans = *this;
switch(rank) {

• case 2:

trans.changeDim(size[ 1 ], size[0]);
for(unsigncd int i=0; i< size[0]; i++)

for(unsigncd int j=0; j< size[ 1 ]; j++) ((T**)trans.val)[j][i] = ((T**)val)[i]
01;

}
return trans;
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}

template<class T>
Tensor<T> Tensor<T>::concat(Tensor<T> &a)
{
// concatenate two tensors,

unsigned int i, newRank;
Tensor<T> c;
if (a.length= 0) return(*this);
if (rank= 0 && a.rank= 0) return c;
if (rank != 0 && a.rank !=0) f

for(i=l; i<rank; i++)
assert(size[i] = a.size[i] || size[i] == 0 || a.size[i]= 0);

// dimensions incompatible for concat.
if (rank= 0) newRank = a.rank;
else newRank = rank;
unsigned int *newSize = new unsigned int[newRank];
assert(newSize);
if (rank= 0) newSize[0] = a.size[0];
else newSize[0] = size[0] + a.size[0];
for(i=l; i<rank; i++)

if (size[i] = 0) newSize[i] = a.size[i];
else newSize[i] = size[i];

c.changeDim(newRank, newSize);
deiete[] newSize;
T *d = data;
T *cd = c.data;
for(i=0; i<length; i++) *cd++ = *d++;
T *ad = a.data;
for(i=0; i<a.length; i++) *cd++ = *ad++;
return(c);

}

// This function should be combined with blockAdd

template<class T>
void Tensor<T>::add(Tensor<T> &a, const unsigned int startpos, const unsigned int offset)
{

assert(a.rank= 1 && rank =1); // add currently only works on vectors
// add the vector a to this vector putting it in the specified place
assert((a.size[0]-i)*offset+startpos < size[0]);
for (unsigned int i=0; i<a.size[0]; i++)

((T*)val)[i+startpos+i*offset] += ((T*)a.val)[ij;
}

tempiate<ciass T>
Tensor<T> Tensor<T>::subTensor(const unsigned int xStart, const unsigned int xEnd )
{

assert(rank =1);
// subTensor(xstart,xend) only works on vectors

assert(xStart <= xEnd && xEnd < size[0]);
// illegal range in subTensor

Tensor<T> result(xEnd - xStart + 1);
for(unsigned long x=xStart, xi=0; x<xEnd + 1; x++, xl++)
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((T*)result.val)[xl] = ((T*)val)[x];
return(result);

}

template<class T>
Tensor<T> Tensor<T>::subTensor(const unsigned int xStart,

const unsigned int xEnd, const unsigned int yStart, const unsigned int yEnd)
{

assert(rank= 2);
// subTensor(xstart,xend,ystart,yend) only works on matrices

assert(xStart <= xEnd && xEnd < size[0] && yStart <= yEnd && yEnd < size[l]);
// illegal range in subTensor

Tensor<T> result(xEnd - xStart + 1, yEnd - yStart +1);

for(unsigned long x=xStart, xl=0; x<xEnd + 1; x++, xl++)
for(unsigned long y=yStart, y 1 =0; y<yEnd + 1; y++, yl++)

((T**)result.val)[xl][yl] = ((T**)val)[x][y];

return(result);
}

template<class T>
Tensor<T> Tensor<T>::subTensor(const unsigned int xStart, const unsigned int xEnd,

const unsigned int yStart, const unsigned int yEnd, const unsigned int zStart,
const unsigned int zEnd)

{
assert(rank= 3);

// subTensor(xstart,xend,ystart,yend, zstart, zend) only works on 3tensors. yeehah....
assert(xStart <= xEnd && xEnd < size[0] && yStart <= yEnd && yEnd < size[l] && zStart

<= zEnd && zEnd < size[2]);
// illegal range in subTensor

Tensor<T> result(xEnd - xStart + 1, yEnd - yStart +1, zEnd - zStart +1);
for(unsigned long x=xStart, xl=0; x<xEnd + 1; x++, xl++)

for(unsigned long y=yStart, y 1 =0; y<yEnd + 1; y++, yl++)
for(unsigned long z=zStart, z 1 =0; z<zEnd + 1; z++, zl++)

((T***)result.val)[xl][yl][zl] = ((T***)val)[x][y][z];
return(result);

}

template<class T>
void Tensor<T>::insertSubTensor(Tensor<T> &m, const unsigned int x)
{

assert(rank= 1);
assert( x+m.dim() <= size[0]);
for (unsigned int i=0; i<m.dim(0); i++) ((T*)val)[i+x] = ((T*)m.val)[i];

}

template<class T>
void Tensor<T>::insertSubTensor(Tensor<T> &m, const unsigned int x, const unsigned int y)
{

assert(rank= 2);
assert( (x+m.dim(0) <= size[0]) && (y+m.dim(l) <= size[ 1 ]));
for (unsigned int i=0; i<m.dim(0); i++)
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for (unsigned int j=0; j<m.dim( 1); j++)
((T**)val)[i+x][j+y] = ((T**)m.val)[i][j];

}

template<class T>
void Tensor<T>::insertSubTensor(Tensor<T> &m, const unsigned int x, const unsigned int y, const
unsigned int z)
{

assert(rank= 3);
assert( (x+m.dim(0) <= size[0]) && (y+m.dim(l) <= size[ 1 ]) && (z+m.dim(2) <= size[2]));
for (unsigned int i=0; i<m.dim(0); i++)

for (unsigned int j=0; j<m.dim(l); j++)
for (unsigned int k=0; k<m.dim(2); k++)

((T***)val)[j+x][j+y][k+z] = ((T* * *)m.val)[i] [j] [k];
}

template<class T>
void Tensor<T>::addOuterProd(Tensor<T> &a)
{

assert(a.rank= 1 && rank= 2); // addOuterProd currently only works on vectors
// error if the vector is not the correct size is too large
assert( (size[0]=a.size[0]) && (size[l]=a.size[0]));
T mult;
T* ar = a.data;
T* ac = a.data;
for (unsigned int r=0; r<size[0]; r++, ar++, ac = &(a.data[r])) {

for (unsigned int c=r; c<size[ 1 ]; C++) {
mult = *ar * *ac++;
((T**)val)[r][c] += mult;
if (c!=r) ((T**)val)[c][r] += mult;

}
}

}

template<class T>
Tensor<T>& Tensor<T>::OuterProduct(Tensor<T> &a, Tensor<T> &b)
{

assert(a.rank= I && rank= 1);
// OuterProduct currently only works on vectors

assert( (size[0]=a.size[0]) && (size[l]=a.size[l]));
// error if the vector is not the correct size

T* ar = a.data;
T* be = b.data;
T* res = data;
for (unsigned int r=0; r<size[0]; r++, ar++, be = b.data)

for (unsigned int c=0; c<size[l ]; C++) *data++ = *ar * *bc++;
return *this;

}

template<class T>
void Tensor<T>::blockAdd(Tensor<T> &A, const unsigned int rPos, const unsigned int cPos)
{

assert(rank= 2);
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// BlockAdd currently only works on matrices
// performs block addition, i.e. adds the matrix A into this
// matrix where K(rPos,cPos) = A(0,0)
// error if the matrix A is too large
assert( (rPos+A.size[0]<=size[0]) && (cPos+A.size[l]<=size[l]));
for (unsigned int i=0; i<A.size[0]; i++)

for (unsigned int j=0; j<A.size[0]; j++)
((T**)val)[i+rPos][j+cPos] += ((T**)A.val)[i][j];

}

template<class T>
void Tensor<T>::diagonalAdd(T t)
{

if (rank == 0 || rank= 1) { data[0] += t; return; }
unsigned int i;
unsigned long j;
for(i=l; i<rank; i++) assert(size[0]= size[i]);

//Cannot diagonal add to tensor with different dimensions
unsigned int increment = size[0] + 1 + (rank-2)*size[0]*size[0];
for (i=0, j=0L; i<size[0]; i++, j += increment) data[j] += t;

}

template<class T>
void Tensor<T>::swap(const unsigned int i, const unsigned int j)
{

assert(rank =1);
// swap currently only works on vectors

T c = ((T*)val)[i];
((T*)val)[i] = ((T*)val)[j];
((T*)val)[j] = c;

}

template<class T>
void Tensor<T>::changeDim(unsigncd intnewRank, unsigned int *newSize)
{

if (rank && rank= newRank) {
bool sameSize = true;
for(unsigned int j=0; j<rank; j++)

if (size[j] != newSize[j]) sameSize = false;
if (sameSize) {

(*this) = (T) 0;
return;

}
}
if (rank) destroy();
rank = newRank;
if(rank) {

size = new unsigned int[rank];
assert(size !=NULL);
for (unsigned int i = 0; i < rank; i++) size[i] = newSize[i];
ereateQ;
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template<class T>
void Tensor<T>::changeDim()
{

if (rank= 0) return;
destroy();

}

template<class T>
void Tensor<T>::changeDim(const unsigned int x)
{

if (rank= 1 && x = size[0]) {
(*this) = (T) 0;
return;

}
destroy();
size = new unsigned int[rank = 1];
assert(size);
size[0] = x;
create();

}

template<class T>
void Tensor<T>::changeDim(const unsigned int x, const unsigned int y)
{

if (rank= 2 && x == size[0] && y= size[ 1 ]) {
(*this) = (T) 0;
return;

}
destroy();
size = new unsigned int[rank = 2];
assert(size);
size[0] = x;
size[l] = y;
create();

}

template<class T>
void Tensor<T>::changeDim(const unsigned int x, const unsigned int y, const unsigned int z)
{

if (rank= 3 && x= size[0] && y— size[ 1 ] && z= size[2]) {
(*this) = (T) 0;
return;

}
destroy();
size = new unsigned int[rank = 3];
assert(size);
size[0] = x;
size[l] = y;
size[2] = z;
create();

}
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template<class T>
void Tensor<T>::reorder(const unsigned int pt[])
{

assert(rank= 1 || rank= 2);
Tensor<T> temp = *this;
unsigned int i;
switch(rank) {
case 1:

for (i=0; i<size[0]; i++)
((T*)val)[i] = ((T*)temp.val)[pt[i]];

break;
case 2:

for (i=0; i<size[0]; i++)
for (unsigned int j=0; j<size[ 1 ]; j++)

((T**)val)[i][j] = ((T* *)temp.val)[pt[i]] [j];
break;

}
}

template<class T>
bool Tensor<T>::same_size(const Tensor<T>& t)
{

if (rank != t.rank) return false;
for(unsigned int i=0; i<rank; i++) if (size[i] != t.size[i]) return false;
return true;

}

template<class T>
void Tensor<T>::getRow(Tensor<T> &a, const unsigned int i)
{

assert(rank= 2);
// getRow currently only works on matrices

a.changeDim(size[l]);
for (unsigned int j=0; j<size[ 1 ]; j++) ((T*)a.val)[j] = ((T**)val)[i][j];

}

template<class T>
void Tensor<T>::putRow(Tensor<T> &a, const unsigned int i)
{

assert(rank= 2);
// putRow currently only works on matrices

for (unsigned int j=0; j<size[l]; j++) ((T**)val)[i][j] = ((T*)a.val)[j];
}

template<class T>
void Tensor<T>::getCol(Tensor<T> &a, const unsigned int j)
{

assert(rank= 2);
// getCol currently only works on matrices

a.changeDim(size[0]);
for (unsigned int i=0; i<size[0]; i++) ((T*)a.val)[i] = ((T**)val)[i][j];

}



I

Appendices

template<class T>
void Tensor<T>::putCol(Tensor<T> &a, const unsigned int j)
{

assert(rank — 2);
// putCol currently only works on matrices

for (unsigned int i=0; i<size[0]; i++)
((T**)val)[i][j] = ((T*)a.val)[i];

}

template<class T>
void Tensor<T>::vecQSort(const int left, const int right)
{

assert(rank= 1);
// QSort currently only works on vectors

// sort vector into ascending order. Taken from K&R p.87.
if (right > left) { // if array contains no elements, do nothing

swap(left,(left+right)/2);
unsigned int last = left;
for (int i=left+l; i<=right; i++) {

if (((T*)val)[i] <((T*)val)[left]) {
++last;
swap(last,i);
}

}
swap(left,last);
vecQSort(left,last-1);
vecQSort(last+l,right);

}
}

template<class T>
T Tensor<T>::euclidDist()
{

precision s = 0.0;
T *aval = data;
for(unsigned long x=0L; x<length; x++) s += pow(*aval++,2.0);
return T(pow(s,0.5));

}

template<class T>
T Tensor<T>::euclidDist(const Tensor<T>& t)
{

precision s = 0.0;
T *aval = data;
T *bval = t.data;
for(unsigned long x=0L; x<length; x++) s += pow(*aval++ - *bval++,2.0);
return T(pow(s,0.5));

}

template<elass T>
Tensor<T> Tensor<T>::abs()
{

Tensor<T> result(*this);
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T* rptr = result.data;
for(unsigned long x=0L; x<length; x++, rptr++) *rptr = fabs(*rptr);
return result;

}

template<class T>
T Tensor<T>::minVal()
{

T mindata = data[0];
T* d = data;
for(unsigned long x=l L; x<length; x++, d++) if (*d < mindata) mindata = *d;

| return mindata;
}

template<class T>
T Tensor<T>::maxVal()
{

T maxdata = data[0];
T* d = data;
for(unsigned long x=l L; x<length; x++, d++) if (*d > maxdata) maxdata = *d;
return maxdata;

}

template<class T>
unsigned long Tensor<T>::minIndex()
{ // absolute value

T mindata = data[0];
unsigned long minindex=0;
T* d = data;
for(unsigned long x=l L; x<length; x++, d++)

if (*d < mindata) { mindata = *d; minindex=x; }
return minindex;

}

template<class T>
unsigned long Tensor<T>::maxIndex()
{ // absolute value

T maxdata = data[0];
unsigned long maxindex=0;
T* d = data;
for(unsigned long x=l L; x<length; x++, d++)

if (*d > maxdata))
maxdata = *d;
maxindex=x;

}
return maxindex;

1 }

template<class T>
void Tensor<T>::print()
{

cout« "Tensor : Rank "« rank« endl « "Dimension : ";
for(unsigned int i=0; i<rank; i++) cout« size[i]« " ";
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cout« endl;
T* d = data;
unsigned long x=0L;
while( x++ < length ) {

cout« *d++« "
if (x % size[rank-l] == 0) cout« endl;

}
}

template<class T>
void Tensor<T>::clear()
{

destroy();
}

template<class T>
void Tensor<T>::diag(Tensor<T> &d)
{

assert(rank= 2);
assert(size[0] == size[l]);
for(unsigned int i=0; i<size[0]; i++) ((T**)val)[i][i] = d(i);

}

template<class T>
void Tensor<T>::diag(T &d)
{

assert(rank= 2);
assert(size[0]= size[l]);
for(unsigned int i=0; i<size[0]; i++) ((T**)val)[i][i] = d;

}

template<class T>
Tensor<T> Tensor<T>::diag()
{

assert(rank= 2);
assert(size[0]= size[ 1 ]);
VECTOR<precision> d(size[0]);
for(unsigncd int i=0; i<size[0]; i++) d(i) = ((T**)val)[i][i];
return(d);

}

template<class T>
double Tensor<T>::sum()
{

double result = 0.0;
T* dptr = data;
for(unsigned long x=0L; x<length; x++, dptr++) result += *dptr;
return result;

}

template<class T>
Tensor<T> Tensor<T>::partialSum()
{
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Tensor<T> result;
if (rank= 0) return result;
unsigned int newRank = rank-1;
unsigned int *newSize = NULL;
if (newRank == 0) {

newRank = 1;
newSize = new unsigned int[newRank];
newSize[0] = 1;
assert(newSize);

} else {
newSize = new unsigned int[newRank];

| assert(newSize);
unsigned int i=l;
while(i < rank) {

newSize[i - 1] = size[i];
i++;

}
}
result.changeDim(newRank, newSize);
delete newSize;
T* dptr = data;
T* rptr = result.data;
for(unsigned int y=0; y < (int)(length / size[0]); y++, rptr++)

for(unsigned int x=0; x < size[0]; x++, dptr++) *rptr+= *dptr;
return result;

}

template<class T>
Tcnsor<T> Tensor<T>::inverse()
{ // Inverse of a matrix using SVD

assert(rank — 2);
VECTOR<T> w(size[ 1 ]);
MATRIX<T> inv_w(size[ 1 ], size[ 1 ]);
MATRIX<T> v(size[l], size[l]);
MATRIX<T> u(*this);
MATRIX<T> inverse;
svdcmp(u, w, v);
const precision threshold = 1 .Oe-8;
for(unsigned int i=0; i<w.dim(); i++)

if (w(i) < threshold) w(i) = 0.0;
else w(i) = l/w(i);

inv_w.diag(w);
inverse = v*inv_w*u.transpose();
return(inverse);

}

1 ////////////////////////// SVD Functions /////////////////////////////

template<class T>
void Tensor<T>::SVD(VECTOR<T> &b, VECTOR<T> &x)
{ // Solves Ax=b, A.SVD(b.x)

// where A is this matrix.
assert(rank= 2 && b.rank == 1);
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// SVD operates on a matrix A and a vector b
assert(size[0]= b.size[0]);

// Incompatible Vector and Matrix dimensions for SVD.
VECTOR<T> w(size[ 1 ]), y(size[ 1 ]);
MATRIX<T> v(size[ 1 ], size[ 1 ]);
MATRIX<T> A(*this);
svdcmp(A, w, v);
// This is where any singular values are 'edited',
const precision threshold = 1.0e-8;
for(unsigned int j=0;j<A.size[l];j++)

if(w(j) < threshold) { w(j) = 0.0;}
svbksb(A, w, v, b, x);

}

template<class T>
void Tensor<T>::svdcmp(MATRlX<T> &A, VECTOR<T> &w, MATRIX<T> &v)
{ // constructs SVD of any matrix.

//i.e. A = U.W.V'
// where for the output:
// A = U
// w = diag(W)
// V = V
int m=A.dim(0);
int n=A.dim(l);
int flag,i,itsjjj,k,l,nm;
precision one = 1.0;
precision anorm,c,f,g,h,s,scale,x,y,z;
VECTOR<T> rvl(n);
g=scale=anorm=0.0;
for (i=0;i<n;i++) {

l=i+l;
((T*)rvl.val)[i]=scale*g;
g=s=scale=0.0;
if (i < m) {

for (k=i;k<m;k++) scale += fabs(((T**)A.val)[k][i]);
if (scale) {

for (k=i;k<m;k++) {
((T**)A.val)[k][i] /= scale;
s += ((T**)A.val)[k][i] * ((T**)A.val)[k][i];

}
f= ((T**)A.val)[i][i];
g = -ISISSIGN (sqrt(s),f);
h = f * g - s;
((T**)A.val)[i][i] = f - g;
for G=l;j<n;j++) {

for (s=0.0,k=i;k<m;k++)
s += ((T**)A.val)[k][i] * ((T**)A.val)

MD'];
f=s/h;
for (k=i;k<m;k++)

((T**)A.val)[k][j] += f * ((T**)A.val)
[k][i];

}
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for (k=i;k<m;k++) ((T**)A.val)[k][i] *= scale;
}

}
((T*)w.val)[i] = scale * g;
g = s = scale = 0.0;
if (i < m && i != (n-1)) {

for (k=l;k<n;k++) scale += fabs(((T**)A.val)[i][k]);
if (scale) {

for (k=l;k<n;k++) {
((T**)A.val)[i][k] /= scale;
s+= ((T**)A.val)[i][k] * ((T**)A.val)[i][k];

}
f= ((T* *)A.val)[i] [1];
g =-ISISSIGN(sqrt(s),f);
h= f * g - s;
((T**)A.val)[i][l] = f - g;
for (k=l;k<n;k++) ((T*)rvl.val)[k] = ((T**)A.val)[i][k] / h;
for (j=l;j<my++) {

for (s=0.0,k=l;k<n;k++)
s += ((T**)A.val)[j][k] * ((T**)A.val)[i][k];

for (k=l;k<n;k++) ((T**)A.val)[j][k] += s * ((T*)rvl.val)
[k];

}
for (k=l;k<n;k++) ((T**)A.val)[i][k] *= scale;

}
}
anorm=ISISMAX(anorm,(fabs(((T*)w.val)[i])+fabs(((T*)rvl.val)[i])));

}
for (i=n-l;i>=0;i~) {

if 0 < (n-1)) {
if(g) {

for (j=l;j<n;j++)
v(j,i)=(((T**)A.val)[i][j] / ((T**)A.val)[i][l])/g;

for (H;j<n;j++) {
for (s=0.0,k=l;k<n;k++)

s += ((T**)A.val)[i][k] * ((T**)v.val)[k]0];
for (k=l;k<n;k++) ((T**)v.val)[k][j] += s * ((T**)v.val)

[k][i];
}

}
for (j=l;j<n;j++) ((T**)v.val)[i][j] = ((T**)v.val)0][i] = 0.0;

}
((T**)v.val)[i][i] = 1.0;
g = ((T*)rvl.val)[i];
l = i;

}
for (i=ISISMIN(m,n)-1 ;i>=0;i—) {

1 = i+1;
g = ((T*)w.val)[i];
for 0=l;j<n;j++) ((T**)A.val)[i][j] = 0.0;
if (g) {

g= 1.0/g;
for (j=l;j<n;j++) {
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for (s=0.0,k=l;k<m;k++) s += ((T**)A.val)[k][i] * ((T**)A.val)[k]
01;

f= (s / ((T**)A.val)[i][i]) * g;
for (k=i;k<m;k++) ((T**)A.val)[k][j] += f * ((T**)A.val)[k][i];

}
for (j=i;j<m;j++) ((T**)A.val)[j][i] *= g;

}
else for (j=iy<my'-H-) ((T**)A.val)[j][i] = 0.0;
++(((T* *)A.val)[i] [i]);

}
for (k=n-l;k>=0;k~) {

for (its=l ;its<=30;its++) {
flag = 1;
for (l=k;l>=0;l~) {

nm = 1 - 1;
if ((double)(fabs(((T*)rvl.val)[l])+anorm)= anorm) {

flag = 0;
break;

}
if ((double)(fabs(((T*)w.val)[nm])+anorm)= anorm) break;

}
if (flag) {

c = 0.0;
s = 1.0;
for (i=l;i<=k;i++) {

f= s * ((T*)rvl.val)[i];
((T*)rvl.val)[i] = c * ((T*)rvl.val)[i];
if ((double)(fabs(f)+anorm)= anorm) break;
g = ((T*)w.val)[i];
h = pythag(f,g);
((T*)w.val)[i] = h;
h = 1.0/h;
c = g * h;
s = -f * h;
for (j=0;j<m;j++) {

y = ((T**)A.val)[j][nm];
z = ((T**)A.val)[j][i];
((T**)A.val)[j][nm] = y*c + z*s;
((T**)A.val)[j][i] = z*c-y*s;

}
}

}
z = ((T*)w.val)[k];
if (1= k) {

if (z < 0.0) {
((T*)w.val)[k] = -z;
for (j=0;j<n;j++) ((T**)v.val)D'][k] = -((T**)v.val)Lj][k];

}
break;

}
assert(its < 30); // SVD - no convergence in 30 svdcmp iterations
x = ((T*)w.val)[l];
nm = k - 1;
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y = ((T*)w.val)[nm];
g = ((T*)rvl.val)[nm];
h = ((T*)rvl.val)[k];
f= ((y-z) * (y+z) + (g-h) * (g+h))/(2.0 * h * y);
g = pythag(f,one);
f= ((x-z) * (x+z) + h * ((y / (f + ISISSIGN(g,f))) - h)) / x;
c = s = 1.0;
for G=l;j<=nm;j++) {

i=j+ l;
g = ((T*)rvl.val)[i];
y = ((T*)w.val)[i];
h = s * g;
g = c * g;
z = pythag(f,h);
((T*)rvl ,val)[j] = z;
c = f / z;
s = h / z;

c + ]
'

s;

g = g*c-x*s;
h = y * s;
y *=c;
for Gj=0;jj<n;jj++) {

x = ((T**)v.val)Oj]D'];
z = ((T**)v.val)[jj][i];
((T**)v.val)G'j]G] = x*c + z*s;
((T**)v.val)Gj][i] = z'

}
z = pythag(f,h);
((T*)w.val)0'] = z;
if (z) {

= 1.0/z;
= f * z;
; h * z;

:

g + s * y;
i * ,

}
f= c :
x = c"y-s'fg;
for Gj=0;jj<m;jj++) {

y = ((T**)A.val)[jj]G];
z = ((T**)A.val)Gj][i];

}

((T**)A.val)[jj]G]:
((T**)A.val)[jj][i]: c - y * s;

}
((T*)rvl.val)[l] = 0.0;
((T*)rvl.val)[k] = f;
((T*)w.val)[k] = x;

}

template<class T>
void Tensor<T>::svbksb(MATRIX<T> &u, VECTOR<T> &w, MATRIX<T> &v, VECTOR<T> &b,
VECTOR<T> &x)
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{
int m=u.dim(0);
int n=u.dim(l);
intjjj.i;
precision s;
VECTOR<T> tmp(n);

// find WA{-I} UA{T) b
for (j=Q;j<n;j++) {

s = 0.0;
if(((T*)w.val)[j]) {

for (i=0;i<m;i++) s += ((T**)u.val)[i][j] * ((T*)b.val)[i];
s /= ((T*)w.val)[j];

}
((T*)tmp.val)[j] = s;

}
// find V . [WA{-1} UA{T} b]

for G=0;j<n;j++) {
s = 0.0;
for (jj=0;jj<n;jj++) s += ((T**)v.val)[j][jj] * ((T*)tmp.val)[jj];
((T*)x.val)[j] = s;

}
}

template<class T>
double Tensor<T>::pythag(double &a, double &b)
{

double absa,absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(l .0+lSISSQR(absb/absa));
else return (absb— 0.0 ? 0.0 : absb*sqrt(1.0+IS!SSQR(absa/absb)));

}

8.1.3.1.3 tensor.h

// Filename: tensor.h
// Description: Routines for Tensors
// Classes: Tensor
// Comments: VECTOR and MATRIX are #defines which can be used to clarify
// code to show show what type of tensor is intended.
//
// Author: Steve Gunn (srg@ecs.soton.ac.uk) (c)
//
// Copyright: All rights reserved

#ifndef_tensor_h_
#deftne _tensor_h_
#include <assert.h>
#include "defns.h"
#defme VECTOR Tensor
#define MATRIX Tensor
#define MAX_TENSOR_RANK 3
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#ifdef_DEBUG
#define RANGECHECKING(a) a

#else
#define RANGECHECKING(a)

#cndif

template <class T> class Tensor;
template <class T> T operator +(Tensor<T>);
template <class T> T operator -(Tensor<T>);
template <class T> T operator *(Tensor<T>);
template <class T> T operator /(Tensor<T>, Tensor<T>);
template <class T> ostream& operator«(Tensor<T>, Tensoi<T>);
template <class T> istream& operator»(Tensor<T>, Tensor<T>);
template <class T> ostream& operator«=(Tensor<T>, Tensor<T>);
template <class T> istream& operator»=(Tensor<T>, Tensor<T>);
template <class T>
class Tensor {
private:

void create();
void destroy();
void copy(const Tcnsor& t);

protected:
unsigned int rank;
unsigned int* size;
unsigned long length; // total number of elements
void* val;
T* data; // pointer to data

public:
Tensor();
Tensor(const unsigned int u);
Tensor(const unsigned int u, const unsigned int v);
Tensor(const unsigned int u, const unsigned int v, const unsigned int w);
// required for matlab interface. Implemented by KB 10/8/96
Tensor(T* t,const unsigned int I);
Tensor(T* t,const unsigned int nr, const unsigned int nc);
T* tensorPtr();
~Tensor() { destroy(); }
operator T();
Tensor(const Tensor<T>& t) { copy(t); }
Tensor<T>& operator=(const Tensor<T>& t);
Tensor<T>& operator=(const T init);
bool operator=(const Tensor<T>& b);
bool operator!=(const Tensor<T>& b);
T& operator()(const unsigned int u)
{

RANGECHECKING(assert(u<size[0]);)
return ((T*)val)[u];

}
T& operator()(const unsigned int u, const unsigned int v)
{

RANGECHECKING(assert(u<size[0] && v<size[ 1 ]);)
return ((T**)val)[u][v];

}
T& operator()(const unsigned int u, const unsigned int v, const unsigned int w)
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{
RANGECHECK.ING(assert(u<size[0] && v<size[l] && w<size[2]);)
return ((T***)val)[u][v][w];

}
bool same_size(const Tensor<T>& t);
Tensor<T>& operator+=(const Tensor<T>& t);
Tensor<T>& operator+=(const T add);
Tensor<T> operator+(const Tensor<T>& t);
Tensor<T> operator+(const T add);
friend Tensor<T> operator+o(const T add, const Tensor<T>& t);
Tensor<T>& operator-=(const Tensor<T>& t); i
Tensor<T>& operator-=(const T sub);
Tensor<T> operator-(const Tensor<T>& t);
Tensor<T> operator-(const T sub);
friend Tensor<T> operator-o(const T sub, const Tensor<T>& t);
Tensor<T>& operator*=(const Tensor<T>& t);
Tensor<T>& operator*=(const T mul);
Tensor<T> operator*(const Tensor<T>& t);
Tensor<T> operator*(const T mul);
friend Tensor<T> operator*o(const T mul, const Tensor<T>& t);
Tensor<T>& operator/=(const Tensor<T>& t);
Tensor<T>& operator/=(const T div);
Tensor<T> operator/(const Tensor<T>& t);
Tensor<T> operator/(const T div);
friend Tensor<T> operator/o(const T div, const Tensor<T>& t);
friend ostream& operator«o(ostream& out, const Tensor<T>& t);
friend istream& operator»<>(istream& in, Tensor<T>& t);
friend ostream& operator«=<>(ostream& out, const Tensor<T>& t);
friend istrcam& operator»=o(istream& in, Tcnsor<T>& t);
void fill(istrcam& in);
unsigned int ran() const { return rank; }
unsigned int dim() const {

if (rank=0) return 0;
return size[0]; }

unsigned int dim(const unsigned int d) const {
if (d >= rank) return 0;
return size[d];}

void* getval() const {return val; }
T* getdata() const {return data;}
unsigned long len() const { return length; }
Tensor<T> transpose();
Tensor<T> concat(Tensor<T> &a);
void add(Tensor<T> &a, const unsigned int startpos, const unsigned int offset);
Tensor<T> subTensor(const unsigned int xStart, const unsigned int xEnd);
Tensor<T> subTensor(const unsigned int xStart, const unsigned int xEnd, const

unsigned int yStart, const unsigned int yEnd);
Tensor<T> subTensor(const unsigned int xStart, const unsigned int xEnd, const

unsigned int yStart, const unsigned int yEnd, const unsigned int zStart,
const

unsigned int zEnd);
void insertSubTensor(Tensor<T> &m, const unsigned int x);
void insertSubTensor(Tensor<T> &m, const unsigned int x, const unsigned int y);
void insertSubTensor(Tensor<T> &m, const unsigned int x, const unsigned int y,
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const unsigned int z );
void addOuterProd(Tensor<T> &a);
Tensor<T>& OuterProduct(Tensor<T> &a, Tcnsor<T> &b);
void blockAdd(Tensor<T> &A, const unsigned int rPos, const unsigned int cPos);
void diagonalAdd(T t);
void swap(const unsigned int i, const unsigned int j);
void changeDim(unsigned int newRank, unsigned int *newSize);
void changeDim();
void changeDim(const unsigned int x);
void changeDim(const unsigned int x, const unsigned int y);
void changeDim(const unsigned int x, const unsigned int y, const unsigned int z);
void reorder(const unsigned int pt[]);
void vecQSort(const int left, const int right);
void getRow(Tensor<T> &a, const unsigned int i);
void putRow(Tensor<T> &a, const unsigned int i);
void getCol(Tensor<T> &a, const unsigned int j);
void putCo1(Tensor<T> &a, const unsigned int j);
T euclidDist();
T euclidDist(const Tensor<T>& t);
Tensor<T> abs();
T minVal();
T maxVal();
unsigned long minlndex();
unsigned long maxlndex();
void clear();
void print();
void diag(Tcnsor<T> &d);
void diag(T &d);
Tcnsor<T> diag();
double sum();
Tensor<T> partialSum();
Tensor<T> inverse();
void SVD(VECTOR<T> &b, VECTOR<T> &x);
void svdcmp(MATRIX<T> &A, VECTOR<T> &w, MATRIX<T> &v);
void svbksb(MATRIX<T> &u, VECTOR<T> &w, MATRIX<T> &v,

VECTOR<T> &b, VECTOR<T> &x);
double pythag(doub!e &a, double &b);

#if dcfincd(_MSC_VER) || defined) BORLANDC ) || dcfincd(_GNUC_) ||
defined) WATCOMC )
#include "tensor.cpp"

#endif
#endif

8.1.3.2 The new Matlab M-code program

function

[RI,k2,BP, index]=rpm_ref(bigm,W,no_basis_functions,lbetal,weight,A,Cref,ydim,mask,d.lambda)
% Pre-allocate arrays for speed, use 0 for R1 ,k2 & BP. Use signal value for index

ssq=zeros( 1 ,no_basis_functions);
RI=zeros(l ,ydim);
k2=zeros(l,ydim);
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BP=zeros(l,ydim);
index=ones( 1 ,ydim)*(no_basis_functions);
for y=l :ydim

ifmask(y) > 0
% Only do work if data exists

data=d(:,y);
Wd=W*data;
B=[CrefA(:,l)];
for i=l :no_basis_functions

B(:,2)=A(:,i);
result=bigm((i*2-1 ):i*2,:)*Wd;
ssq(i)=sum((weight).*(B*result-data).A2);

end

sol=find(min(ssq)==ssq);
ind=sol(l);
result=bigm((ind*2-l):ind*2,:)*Wd;
RI(y)=result( 1);
k2(y)=result(2)+(lbetal(ind)-lambda)*RI(y);
BP(y)=(k2(y))/(lbetal(ind)-lambda) - 1;
index(y)=ind-1;

end
end

8.1.3.3 The new C program
/* Code to re-implement rpm_ref.cpp, tensor.cpp & tensor.h in C rather than C++
The original M-file and C++ code was written by Roger & Steve Gunn,

while at MRC Cyclotron Unit, Hammersmith Hospital, London, UK..

function [Rl,k2,BP,index] = rpm_ref(bigm, W, no_basis_functions, Ibetal, weight, A, Cref, ydim,
mask, d, lambda)

Where:

bigm double matrix (2*no_basis_functions,num_frames)
W double matrix (num_frames,num_frames)
no_basis_functions integer scalar
lbetal double row vector (1 ,no_basis_functions)
weight double column vector (num_frames,l)
A double matrix (num_frames,no_basis_functions)
Cref double column vector (num_frames, 1)
ydim integer scalar
mask double coumn vector (1 ,ydim)
d double matrix (num_frames,ydim)
lambda double scalar
R1 double row vector (l,ydim)
k2 double row vector (l,ydim)
BP double row vector (1 ,ydim)
index integer row vector (1,ydim)

Licensed under GPL, version of your choice,
by:

Dr. Mark Daglish
Clinical Lecturer in Psychiatry
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Psychopharmacology Unit
University ofBristol,UK
mark.daglish@bris.ac.uk

*/
/* SRevision: 0.1 $
SDate: 2006-08-01 $*/

/* include the headers required by Matlab and the mathematics functions */
#include "mex.h"
#include "matrix.h"
#include <math.h>
void mexFunction(

int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
/* the gateway routine called by Matlab */
{

int ydim, nobf, frames, M,N,i j,bf,y,sol;
double lambda, result[2], temp, *d, *Wd, *B;
double *bigm, *W, *lbetal, *A, *Cref, *mask, *data, ssq, minssq, *R1, *k2, *BP, *weight,

*index;
/* Check input arguments. */

if ( nrhs != 11 || nlhs != 4 ) {
mexErrMsgTxt("Usage: [RI,k2,BP,index] = markrpm_ref(bigm, W,

nobasisfunctions, lbetal, weight, A, Cref, ydim, mask, d, lambda)");
}
for (i=0;i<l l;i++) {
if (!mxIsDouble(prhs[i]) || mxIsComplex(prhs[i])){

mexErrMsgTxt("All arguments must be non-complex and double");
}

}
nobf= (int)mxGetScalar(prhs[2]);
ydim = (int)mxGetScalar(prhs[7]);
frames = mxGetM(prhs[9]);
/* Argument dims 0 1 234 5 6789 10 */
int Msize[l 1] = {2*nobf,frames,!, 1, frames,frames,frames, 1, 1, frames,1};
int Nsize[l 1] = {frames, frames,1,nobf, 1, nobf, 1, 1,ydim, ydim ,1};

for (i = 0; i < 11; i++) {
M = mxGetM(prhs[i]);
N = mxGetN(prhs[i]);
if ((M != Msize[i]) || (N !=Nsize[i])) {

mexErrMsgTxt("Matrix has wrong dimensions");
}

}
/* Create matrices for the return argument. */
for (i = 0; i<4; i++) {

plhs[i] = mxCreateDoubleMatrix(l ,ydim, mxREAL);
if (plhs[i]= NULL) {

mexErrMsgTxt("Failed to allocate memory for return value");
}

}

/* Assign pointers to each input and output. */
bigm = mxGetPr(prhs[0]);
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W = mxGetPr(prhs[l]);
lbetal = mxGetPr(prhs[3]);
weight = mxGetPr(prhs[4]);
A = mxGetPr(prhs[5]);
Cref= mxGetPr(prhs[6]);
mask = mxGetPr(prhs[8]);
d = mxGetPr(prhs[9]);
lambda = mxGetScalar(prhs[l 0]);
R1 = mxGetPr(plhs[0]);
k2 = mxGetPr(plhs[l]);
BP = mxGetPr(plhs[2]); 4
index = mxGetPr(plhs[3]);

/* Allocate space for working variables */
Wd = mxCalloc(frames,sizeof(double));
if (Wd= NULL) {

mexErrMsgTxt("Failed to allocate memory (Wd)");
}
data = mxCalloc(frames,sizeof(double));
if (data == NULL) {

mexErrMsgTxt("Failed to allocate memory (data)");
}
B = mxCalloc(frames*2,sizeof(doublc));
if (B= NULL) {

mexErrMsgTxt("Failed to allocate memory (B)");
}
/* From here the comments reproduce the M-code we are copying */
/* B(:,l)=Cref; */
/* This factor doesn't change for each basis function, therefore pre-load the first column of the matrix
*/
for (i=0;i<frames;i++) {

*(B+i) = Cref[i];
}
for (y = 0; y<ydim; y++) {

/* if mask = 0 then we have no usable data in this voxel */
if (mask[y] > 0.0) {

/* data=d(:,y);
Extract the data for the voxel we want
Wd=W*data;
And also calculate the weighted data */
for (i = 0; i<frames; i++) {

*(data+i) = *(d+y*frames+i);
*(Wd+i) = *(data+i) * *(W+i*frames+i);

}
sol = 0;
minssq = 0.0;
for (bf=0 ; bf<nobf;bf++) {

/* B(:,2)=A(:,bf);
For each basis function in turn extract the required parameters */
for (i=0;i<frames;i++) {

*(B+frames+i)=*(A+bf*frames+i);
}
/* result=bigm((bft2-l):bP2,:)*Wd; */
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result[0] = 0.0;
result[l] = 0.0;
for (i=0; i<2;i++) {

for (j=0; jcffames; j++) {
result[i] += *(bigm+j*2*nobf+(bf*2+i)) * Wd[j];

}
}

/*ssq(bf) = sum((weight).*(B*result-data).A2);
and calculate the sum of squares difference between the predicted data from the parameters and the
observed data */

ssq = 0.0;
9 for (i=0; i<ffames;i++) {

temp = *(B+i)*result[0] + *(B+frames+i)*result[l] - data[i];
ssq += temp*temp*weight[i];

}
/* sol = find(min(ssq)=ssq); */
/* Brought finding the minimum sum of squares solution inside the same loop to cut computational
time */

if (bf= 0) {
/* Skip checking first time round as minssq starts at 0.0 */

minssq=ssq;
sol = bf;

} else if (ssq < minssq) {
sol = bf;
minssq = ssq;

}
}

/* result = bigm((sol*2-l):sol*2,:) * Wd;
and copy the solution into the returned parameters */

result[0] = 0.0;
result[l] = 0.0;
for (i=0; i<2;i++) {

for (j=0; j<frames; j++) {
result[i] += *(bigm+j*2*nobf+sol*2+i) * Wd[j];

}
}
Rl[y]=result[0];
k2[y]=result[ 1 ]+(lbeta 1 [sol]-lambda)*RI[y];
BP[y]=k2[y]/(lbetal [sol]-lambda)-1.0;
index[y]=sol;

} else {
/* if there is no data set the return values to zero */

RI[y] = 0.0;
k2[y] = 0.0;
BP[y] = 0.0;

/* except the index which should be a signal value ofmax+1 */
> index[y] = nobf;

}
}
/* free the working memory before we exit */
mxFree(data);
mxFree(Wd);
mxFree(B);
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8.2 Appendix 2: Questionnaires used

8.2.1 Heroin Craving Questionnaire (HCQ)
Indicate how much you agree or disagree with each of the following statements by placing a single
cross (like this: X ) along each line between STRONGLY DISAGREE and STRONGLY AGREE.
The closer you place your cross to one end or the other indicates the strength of your agreement or
disagreement. Please complete every item. We are interested in how you are thinking or feeling
RIGHT NOW as you are filling out the questionnaire.

RIGHT NOW

1. If there was heroin right here in front of me, it would be hard not to use it.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

2. Using heroin would not be pleasant.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

3. I would feel less sick now if I used heroin.

STRONGLY DISAGREE [ | | | | | | | STRONGLY AGREE

4. If I had the chance to use heroin right now, I don't think I would use it.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

5. Using heroin would not sharpen my concentration.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

6. Even if it were possible, I probably wouldn't use heroin right now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

7. I am not missing heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

8. I am going to use heroin as soon as possible.

STRONGLY DISAGREE | | | | | | | | STRONGLYAGREE

9. My aches and stiffness would not go away if I used heroin right now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE
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10. Using heroin now would make things seem just perfect.

STRONGLY DISAGREE | | | | | | | j STRONGLY AGREE

11. My desire to use heroin seems overpowering.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

12. Right now, I am not making plans to use heroin.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

13. I could control things better right now if I could use heroin.

STRONGLY DISAGREE | | | | | | | | STRONGLYAGREE

14. Using heroin right now would make me feel less tired.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

15. I could not stop myself from using heroin if I had some here now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

16. If I tried a little heroin now, I would not be able to stop using more of it.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

17. I want heroin so bad I can almost taste it.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

18. Nothing would be better than using heroin right now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

19. I would do almost anything for heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

20. I would feel so good and happy if I used heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

21.1 don't want to use heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE
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22. I would be less irritable now if I could use heroin.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

23. All I want to use now is heroin.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

24. It would be difficult to turn down heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

25. Starting now, I could go without using heroin for a long time.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

26. Using heroin would not be very satisfying now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

27. If I used heroin right now, it would not help me calm down.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

28. I would not enjoy using heroin right now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

29. I would not be able to control how much heroin I used if I had some here.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

30. I would feel energetic if I used heroin

STRONGLY DISAGREE | | | | j. | | | STRONGLY AGREE

31. If I had some heroin with me right now, I probably wouldn't use it.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

32. My hot and cold flushes would not get better if I used heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE

33. I do not need to use heroin now.

STRONGLY DISAGREE | | | | | | | | STRONGLY AGREE
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34. I will use heroin as soon as I get the chance.

STRONGLY DISAGREE I I I I

35. I have no desire to use heroin right now.

STRONGLY DISAGREE I I I

36. If I were using heroin, I would feel less tense.

STRONGLY DISAGREE I I I I

37. Using heroin right now would make me content.

STRONGLY DISAGREE I I I I I

38. It would be easy to pass up the chance to use heroin.

STRONGLY DISAGREE | | | | | |

39. I crave heroin right now.

STRONGLY DISAGREE I I I I I I

40. If I were offered some heroin, I would use it immediately.

STRONGLY DISAGREE I I I I I I I

41. Using heroin would make me feel less depressed.

STRONGLY DISAGREE | | | | |_

42. I have an urge for heroin.

STRONGLY DISAGREE I I I I I

43. I am thinking of ways to get heroin.

STRONGLY DISAGREE I I I

44. I could easily control how much heroin I used right now.

STRONGLY DISAGREE I I I I I I

45. I think that I could resist using heroin now.

STRONGLY DISAGREE I I I I

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE

STRONGLY AGREE
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8.2.2 Eysenck Personality Questionnaire - Revised (EPQ-R)

INSTRUCTIONS: Please answer each question by putting a circle around the
'YES' or 'NO' following the question. There are no right or wrong answers, and
no trick questions. Work quickly and do not think too long about the exact
meaning of the questions.

PLEASE REMEMBER TO ANSWER EACH QUESTION

1. Do you have many different hobbies? YES / NO
2. Do you stop to think things over before doing anything? YES / NO
3. Does your mood often go up and down? YES / NO
4. Have you ever taken praise for something you knew someone else had

really done? YES / NO
5. Do you take much notice of what people think? YES / NO
6. Are you a talkative person? YES / NO
7. Would being in debt worry you? YES / NO
8. Do you ever feel 'just miserable' for no reason? YES / NO
9. Do you give money to charities? YES / NO
10. Were you ever greedy by helping yourself to more than your share of

anything? YES / NO
11. Are you rather lively? YES / NO
12. Would it upset you a lot to see a child or an animal suffer? YES / NO
13. Do you often worry about things you should not have done or said? YES / NO
14. Do you dislike people who don't know how to behave themselves? YES / NO
15. If you say you will do something, do you always keep your promise no

matter how inconvenient it might be? YES / NO
16. Can you usually let yourself go and enjoy yourself at a lively party? YES / NO
17. Are you an irritable person? YES / NO
18. Should people always respect the law? YES / NO
19. Have you ever blamed someone for doing something you knew was really

your fault? YES / NO
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20. Do you enjoy meeting new people? YES / NO
21. Are good manners very important? YES / NO
22. Are your feelings easily hurt? YES / NO
23. Are all your habits good and desirable ones? YES / NO
24. Do you tend to keep in the background on social occasions? YES / NO
25. Would you take drugs which may have strange or dangerous effects? YES / NO
26. Do you often feel 'fed-up'? YES / NO
27. Have you ever taken anything (even a pin or button) that belonged to

someone else? YES / NO

28. Do you like going out a lot? YES / NO
29. Do you prefer to go your own way rather than act by the rules? YES / NO
30. Do you enjoy hurting people you love? YES / NO
31. Are you often troubled about feelings of guilt? YES / NO
32. Do you sometimes talk about things you know nothing about? YES / NO
33. Do you prefer reading to meeting people? YES / NO
34. Do you have enemies who want to harm you? YES / NO
35. Would you call yourself a nervous person? YES / NO
36. Do you have many friends? YES / NO
37. Do you enjoy practical jokes that can sometimes really hurt people? YES / NO
38. Are you a worrier? YES / NO
39. As a child, did you do as you were told immediately and without grumbling?

YES / NO

40. Would you call yourself happy-go-lucky? YES / NO
41. Do good manners and cleanliness matter much to you? YES / NO
42. Have you often gone against your parents' wishes? YES / NO
43. Do you worry about awful things that might happen? YES / NO
44. Have you ever broken or lost something belonging to someone else? YES / NO
45. Do you usually take the initiative in making new friends? YES / NO
46. Would you call yourself tense or 'highly-strung'? YES / NO
47. Are you mostly quiet when you are with other people? YES / NO
48. Do you think marriage is old fashioned and should be done away with?
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YES / NO

49. Do you sometimes boast a little? YES / NO

50. Are you more easy-going about right and wrong than most people? YES / NO

51. Can you easily get some life in to a rather dull party? YES / NO

52. Do you worry about your health? YES / NO

53. Have you ever said anything bad or nasty about anyone? YES / NO

54. Do you enjoy co-operating with others? YES / NO

55. Do you like telling jokes and funny stories to your friends? YES / NO

56. Do most things taste the same to you? YES / NO

57. As a child, were you ever cheeky to your parents? YES / NO

58. Do you like mixing with people? YES / NO

59. Does it worry you if you know there are mistakes in your work? YES / NO

60. Do you suffer from sleeplessness? YES / NO

61. Have people said that you sometimes act too rashly? YES / NO

62. Do you always wash before a meal? YES / NO

63. Do you nearly always have a 'ready-answer' when people take to you?
YES / NO

64. Do you like to arrive at appointments in plenty of time? YES / NO

65. Have you often felt listless and tired for no reason? YES / NO

66. Have you ever cheated at a game? YES / NO

67. Do you like doing things in which you have to act quickly? YES / NO

68. Is (or was) your mother a good woman? YES / NO

69. Do you often make decisions on the spur of the moment? YES / NO

70. Do you often feel life is very dull? YES / NO

71. Have you ever taken advantage of someone? YES / NO

72. Do you often take on more activities than you have time for? YES / NO

73. Are there several people who keep trying to avoid you? YES / NO

74. Do you worry a lot about your looks? YES / NO

75. Do you think people spend too much time safeguarding their future with
savings and insurance? YES / NO

76. Have you ever wished that you were dead? YES / NO
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77. Would you dodge paying taxes if you knew you could never be found out?
YES / NO

78. Can you get a party going? YES / NO

79. Do you try not to be rude to people? YES / NO

80. Do you worry too long after an embarrassing experience? YES / NO

81. Do you generally 'look before you leap'? YES / NO

82. Have you ever insisted on having your own way? YES / NO

83. Do you suffer from 'nerves'? YES / NO

84. Do you often feel lonely? YES / NO

85. Can you on the whole trust people to tell the truth? YES / NO

86. Do you always practise what you preach? YES / NO

87. Are you easily hurt when people find fault with you or the work you do?
YES / NO

88. Is it better to follow society's rules than go your own way? YES / NO

89. Have you ever been late for an appointment or work? YES / NO

90. Do you like plenty of bustle and excitement around you? YES / NO

91. Would you like other people to be afraid of you? YES / NO

92. Are you sometimes bubbling over with energy and sometimes very sluggish?
YES / NO

93. Do you sometimes put off until tomorrow what you ought to do today?
YES / NO

94. Do other people think of you as being very lively? YES / NO

95. Do people tell you a lot of lies? YES / NO

96. Do you believe one has special duties to one's family? YES / NO

97. Are you touchy about some things? YES / NO

98. Are you always willing to admit it when you have made a mistake? YES / NO

99. Would you feel sorry for an animal caught in a trap? YES / NO

100.When your temper rises, do you find it difficult to control? YES / NO

101 .Do you lock up your house carefully at night? YES / NO

102.Do you believe insurance schemes are a good idea? YES / NO

103.Do people who drive carefully annoy you? YES / NO

104.When you catch a train, do you often arrive at the last minute? YES / NO
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105.Do your friendships break up easily with out it being your fault? YES / NO
106.D0 you sometimes feel like teasing animals? YES / NO
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8.2.3 Eysenck Personality Questionnaire - Impulsiveness,
Venturesomeness, Empathy (EPQ-IVE)
INSTRUCTIONS: Please answer each question by putting a circle around the YES
or NO following the question. There are no right or wrong answers, and no trick
questions. Work quickly and do not think too long about the exact meaning of the
questions. PLEASE ANSWER EACH QUESTION

1. Would you enjoy water skiing? YES NO

2. Usually do you prefer to stick to brands you know are reliable,
to trying new ones on the chance of finding something better? YES NO

3. Would you feel sorry for a lonely stranger? YES NO

4. Do you quite enjoy taking risks? YES NO

5. Do you often get emotionally involved with your friends' problems?
YES NO

6. Would you enjoy parachute jumping? YES NO

7. Do you often buy things on impulse? YES NO

8. Do unhappy people who are sorry for themselves irritate you? YES NO

9. Do you generally do and say things without stopping to think? YES NO

10. Are you inclined to get nervous when others around you seem to be nervous?
YES NO

11. Do you often get into a jam because you do things without thinking?
YES NO

12. Do you think hitchhiking is too dangerous a way to travel? YES NO

13. Do you find it silly for people to cry out of happiness? YES NO

14. Do you like diving off the high board? YES NO

15. Do people you are with have a strong influence on your moods? YES NO

16. Are you an impulsive person? YES NO
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17. Do you welcome new and exciting experiences and sensations, even if they
are a little frightening and unconventional? YES NO

18. Does it affect you very much when one of your friends seems upset?
YES NO

19. Do you usually think carefully before doing anything? YES NO

20. Would you like to learn to fly an aeroplane? YES NO

21. Do you ever get deeply involved with the feelings of a character in a film,
play or novel? YES NO

22. Do you often do things on the spur of the moment? YES NO

23. Do you get very upset when you see someone cry? YES NO

24. Do you sometimes find someone else's laughter catching? YES NO

25. Do you mostly speak without thinking things out? YES NO

26. Do you often get involved in things you later wish you could get out of?
YES NO

27. Do you get so "carried away" by new and exciting ideas, that you never
think of possible snags? YES NO

28. Do you find it hard to understand people who risk their necks climbing
mountains? YES NO

29. Can you make decisions without worrying about other people's feelings?
YES NO

30. Do you sometimes like doing things that are a bit frightening? YES NO

31. Do you need to use a lot of self-control to keep out of trouble? YES NO

32. Do you become more irritated than sympathetic when you see someone cry?
YES NO

33. Would you agree that almost everything enjoyable is illegal or immoral?
YES NO
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34. Generally do you prefer to enter cold sea water gradually, to diving
or jumping straight in? YES NO

35. Are you often surprised at people's reactions to what you do or say?
YES NO

36. Would you enjoy the sensation of skiing very fast down a high mountain
slope? YES NO

37. Do you like watching people opening presents? YES NO

38. Do you think an evening out is more successful if it is unplanned or arranged
at the last moment? YES NO

39. Would you like to go scuba diving? YES NO

40. Would you find it very hard to break bad news to someone? YES NO

41. Would you enjoy fast driving? YES NO

42. Do you usually work quickly without bothering to check? YES NO

43. Do you often change your interests? YES NO

44. Before making up your mind, do you consider all the advantages and
disadvantages? YES NO

45. Can you get very interested in your friends' problems? YES NO

46. Would you like to go pot-holing? YES NO

47. Would you be put off a job involving quite a bit of danger? YES NO

48. Do you prefer to "sleep on it" before making decisions? YES NO

49. When people shout at you, do you shout back? YES NO

50. Do you feel sorry for very shy people? YES NO

51. Are you happy when you are with a cheerful group and sad when the others
are glum? YES NO

52. Do you usually make up your mind quickly? YES NO
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53. Can you imagine what it must be like to be very lonely? YES NO

54. Does it worry you when others are worrying and panicky? YES NO
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Didyoueverthink yourdrugusewas outofcontrol?

Didtheprospectof missingafixor dosemakeyou anxiousorworried?
Didyouworry aboutyourdrug use?

Didyouwishyou couldstop?

Howdifficultdid youfindittostopor gowithoutyour drag?
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8.2.5 General Health MOS- Short form 36 (SF-36) UK version
Instructions: The questions below ask you about your health, including how you
feel and how well you are able to do your usual activities. If you are unsure how to
answer, please give the best answer you can. Thank you.

1. In general, would you say your health is: (circle one)
Excellent 1

Very good 2
Good 3
Fair 4
Poor 5

2. Compared to one year ago, how would you rate your health in general now?
(circle one)

Much better now than one year ago 1
Somewhat better now than one year ago 2
About the same as one year ago 3
Somewhat worse now than one year ago 4
Much worse now than one year ago 5

3. The following questions are about activities you might do during a typical day.
Does your health now limit you in these activities? If so, how much?

(circle one number on each line'
Activities Yes,

Limited a

lot

Yes,
Limited a

little

No, Not
limited at

all

a. Vigorous activities, such as running, lifting
heavy objects, participating in strenuous sports,
etc.

1 2 3

b. Moderate activities, such as moving a table,
pushing a vacuum cleaner, bowling, or playing
golf, etc.

1 2 3

c. Lifting or carrying groceries. 1 2 3

d. Climbing several flights of stairs. 1 2 3

e. Climbing one flight of stairs. 1 2 3

f. Bending, kneeling or stooping. 1 2 3

g. Walking more than a mile 1 2 3
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h. Walking half a mile 1 2 3

i. Walking one hundred yards. 1 2 3

j. Bathing or dressing yourself. 1 2 3

4. During the past 4 weeks, have you had any of the following problems with your
work or other regular daily activities as a result of your physical health? 4

circle one number on each line)
YES NO

a. Cut down on the amount of time you spent on work or other
activities.

1 2

b. Accomplished less than you would like. 1 2

c. Were limited in the kind of work or other activities 1 2

d. Had difficulty performing the work or other activities (for
example it took extra effort).

1 2

5. During the past 4 weeks, have vou had anv of the following problems with vour
work or other regular dailv activities as a result of anv emotional problems fsuch
as feeling depressed or anxious)?

(circle one number on each line)
YES NO

a. Cut down on the amount of time you spent on work or other
activities.

1 2

b. Accomplished less than you would like. 1 2

c. Didn't do work or other activities as carefully as usual. 1 2

6. During the past 4 weeks, to what extent has your physical health or emotional
problems interfered with your normal social activities with family, friends,
neighbours or groups?

(circle one)
Not at all 1

Slightly 2

Moderately 3

Quite a bit 4

Extremely 5

322

I



Appendices

7. How much bodily pain have you had during the past 4 weeks?
(circle one)

None 1

Very Mild 2

Mild 3

Moderate 4

Severe 5

Very severe 6

8. During the past 4 weeks, how much did pain interfere with your normal work
(including both work outside the home and housework)?

(circle one)
Not at all 1

Slightly 2

Moderately 3

Quite a bit 4

Extremely 5

9. These questions are about how you feel and how things have been with you
during the past 4 weeks. For each question, please give the one answer that
comes closest to the way you have been feeling.

How much of the time during the past 4 weeks:- (circ e one number on each line"
All of
the
time

Most
of the
time

A

good
bit of
the
time

Some
of the
time

A
little
of the
time

None
of the
time

a. Did you feel full of life? 1 2 3 4 5 6

b. Have you been a very
nervous person?

1 2 3 4 5 6

c. Have you felt so down in
the dumps that nothing could
cheer you up?

1 2 3 4 5 6

d. Have you felt calm and
peaceful?

1 2 3 4 5 6

e. Did you have a lot of 1 2 3 4 5 6
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energy?
f. Have you felt
downhearted and low?

1 2 3 4 5 6

g. Did you feel worn out? 1 2 3 4 5 6

h. Have you been a happy
person?

1 2 3 4 5 6

h. Did you feel tired? 1 2 3 4 5 6

10. During the past 4 weeks, how much of the time has your physical health or
emotional problems interfered with you social activities (like visiting friends,
relatives etc.)?

(circle one)
All of the time 1

Most of the time 2

Some of the time 3

A little of the time 4

None of the time 5

11. How TRUE or FALSE is each of the following statements for you?
(circle one number on each line)

Definitel

y true
Mostly
true

Don't
know

Mostly
false

Definitel

y false
a. I seem to get ill more
easily than other people

1 2 3 4 5

b. I am as healthy as
anyone I know

1 2 3 4 5

c. I expect my health to
get worse

1 2 3 4 5

d. My health is
excellent

1 2 3 4 5
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8.2.6 Spielberger State-Trait Anxiety Inventory (STAI)

Instructions: Please circle a number on the left to indicate the score which best

describes how you are feeling RIGHT NOW, that is AT THIS MOMENT.

1 = Not at all 2 = Somewhat 3 = Moderately so 4 = Very much so

1. I feel calm 12 3 4

2. I feel secure (safe) 12 3 4

3. I am tense 12 3 4

4. I feel strained 12 3 4

5. I feel at ease (at rest) 12 3 4

6. I feel upset 12 3 4

7. I am presently worrying over possible misfortunes 12 3 4
8. I feel satisfied (happy enough) 12 3 4
9. I feel frightened 12 3 4

10.1 feel comfortable 12 3 4

11.1 feel self-confident (confident in myself) 12 3 4
12.1 feel nervous 12 3 4

13.1 feel jittery (shaky) 12 3 4

14.1 feel indecisive (unable to make decisions) 12 3 4

15.1 feel relaxed 12 3 4

16.1 feel content (quietly happy) 12 3 4

17.1 feel worried 12 3 4

18.1 feel confused (mixed up) 12 3 4

19.1 feel steady (stable) 12 3 4

20. I feel pleasant 12 3 4
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Instructions: Please circle a number on the left to indicate the score which best

describes how you are feeling GENERALLY, that is NOT just how you feel at this
moment.

1 = Not at all 2 = Somewhat 3 = Moderately so 4 = Very much so

12.1 feel pleasant 12 3 4
13.1 feel nervous and restless 12 3 4

14.1 feel satisfied with myself 12 3 4
15.1 wish I could be as happy as others seem to be 12 3 4
16.1 feel like a failure 12 3 4

17.1 feel rested 12 3 4

18.1 am "calm, cool and collected" 12 3 4

19.1 feel that difficulties are piling up so that I cannot overcome them
12 3 4

20.1 worry too much over something that really doesn't matter 12 3 4
21.1 am happy 12 3 4
22.1 have disturbing thoughts 12 3 4
23.1 lack self-confidence 12 3 4

24.1 feel secure 12 3 4

25.1 make decisions easily 12 3 4
26.1 feel inadequate 12 3 4
27.1 am content 12 3 4

28. Some unimportant thought runs through my mind and bothers me
12 3 4

29.1 take disappointments so keenly that I can't put them out ofmy mind
12 3 4

30.1 am a steady person 12 3 4
31.1 get in a state of tension or turmoil as I think over my recent concerns

and interests 12 3 4
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Thank you.
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8.2.7 Beck Depression Inventory (BDI)
On this questionnaire are groups of statements. Please read each group of statements
carefully. Then pick out the one statement in each group which best describes the
way you have been feeling in the past week, including today. Circle the number
beside the statement you picked. If several statements in the group seem to apply
equally well, circle each one. Be sure to read all the statements in each group before
making your choice.

1. I do not feel sad. 0
I feel sad. 1
I am sad all the time and I can't snap out of it. 2
I am so sad or unhappy that I can't stand it. 3

2. I am not particularly discouraged about my future. 0
I feel discouraged about the future. 1
I feel I have nothing to look forward to. 2
I feel the future is hopeless and that things cannot improve. 3

3. I do not feel like a failure. 0
I feel I have failed more than an average person. 1
As I look back on my life, all I can see is a lot of failures. 2
I feel I am a complete failure as a person. 3

4. I get as much satisfaction out of things as I used to. 0
I don't enjoy things the way I used to. 1
I don't get real satisfaction out of anything any more. 2
I am dissatisfied or bored with everything. 3

5. I don't feel particularly guilty. 0
I feel guilty a good part of the time. 1
I feel quite guilty most of the time. 2
I feel guilty all of the time. 3

6. I don't feel I am being punished. 0
I feel I may be punished. 1
I expect to be punished. 2
I feel I am being punished. 3

7. I don't feel disappointed in myself. 0
I am disappointed in myself 1
I am disgusted with myself 2
I hate myself 3
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8. I don't feel I am worse than anybody else 0
I am critical ofmyself for my weaknesses or mistakes 1
I blame myself all the time for my faults 2
I blame myself for everything bad that happens 3

9. I don't have any thoughts of killing myself 0
I have thoughts of killing myself but I would not carry them out 1
I would like to kill myself 2
I would kill myself if I had the chance 3

10. I don't cry any more than usual 0
I cry more than I used to 1
I cry all the time now 2
I used to be able to cry, but now I can't cry even though I want to 3

11. I am no more irritated now than I ever am 0
I get annoyed or irritated more easily than I used to 1
I feel irritated all the time now 2
I don't get irritated at all by the things which used to irritate me 3

12. I have not lost interest in other people 0
I am less interested in other people 1
I have lost most ofmy interest in other people 2
I have lost all my interest in other people 3

13. I make decisions as well now as I ever could 0
I put off making decisions more than I used to 1
I have greater difficulty in making decisions than before 2
I can't make decisions at all any more 3

14. I don't feel I look any worse than I used to 0
I am worried that I am looking old or unattractive 1
I feel there are permanent changes in my appearance that make

me look unattractive 2
I believe I look ugly 3

15. I can work about as well as before 0
It takes an extra effort to get started at doing something 1
I have to push myself very hard to do anything 2
I can't do any work at all 3

16. I can sleep as well as usual 0
I don't sleep as well as I used to 1
I wake up 1 -2 hours earlier 2
I wake up several hours earlier than I used to and cannot get

back to sleep 3
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17. I don't get more tired than usual 0
I get tired more easily than I used to 1
I get tired from doing almost anything 2
I am too tired to do anything 3

18. My appetite is no worse than usual 0
My appetite is not as good as usual 1
My appetite is much worse now 2
I have no appetite at all any more 3

19. I haven't lost much weight, if any, lately 0
I have lost more than 5 lbs 1
I have lost more than lOlbs 2
I have lost more than 15 lbs 3

I am purposely trying to lose weight by eating less: Yes / No

20. I am no more worried about my health than usual 0
I am worried about physical problems such as aches

and pains, upset stomach, or constipation 1
I am worried about physical problems and it's hard to think of

much else 2
I am so worried about my physical problems that I cannot think

about anything else 3

21. I have not noticed any recent change in my interest in sex 0
I am less interested in sex than I used to be 1
I am much less interested in sex now 2
I have lost interest in sex completely 3
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8.2.8 Addition Research Centre Inventory (ARC!)
These 49 items may or may not describe how you feel RIGHT NOW. Mark T (for
True) next to each item that does describe how you feel, and mark F (for False) for
the items that do not describe how you feel. You must mark either T or F for each
statement.

1. My speech is slurred. T F

2. I am not as active as usual. T F

3. I have a feeling of things being an T F
uphill struggle rather than plain sailing

4. I feel sluggish. T F

5. My head feels heavy. T F

6. I feel like avoiding people although 1 T F
usually do not feel this way.

7. I feel dizzy. T F

8. It seems harder than usual to move T F
around.

9. I am moody. T F

10. People might say that I'm a little T F
dull today.

11. 1 feel drowsy. T F

12. I am full of energy. T F

18. I can completely appreciate what T F
others are saying when I am in this
mood.
19. I would be happy all the time if I T F
feel as I feel now.

20. I feel so good that I know other T F
people can tell it.

21. I feel as if something pleasant had T F
just happened to me.

22. 1 would be happy all the time if I T F
felt as I do now.

23. I feel more clear headed than T F

dreamy.

24. I feel as if I am popular with people T F
today.

25. I feel a very pleasant emptiness. T F

26. My thoughts come more easily than T F
usual.

27. 1 feel less discouraged than usual. T F

28. I am in the mood to talk about the T F

feelings I have.

29. 1 feel more excited than dreamy. T F

13. Today I find it easy to express T F
myself.

14. Things around me seem more T F
pleasing than usual.

30. Answering these questions was very T F
easy today.

31. My memory seems sharper to me T F
than usual.
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15. I have a pleasant feeling in my T F 32. I feel as if I could write for hours. T F
stomach.

16. I fear I will lose the contentment T F 33. I feel very patient. T F
that I have now.

17. I feel in complete harmony with the T F 34. Some parts ofmy body are tingling. T F
world and those about me.

35. I had a weird feeling. T F 43. I notice my hand shakes when I try T F
to write.

36. My movements seem faster than T F 44. I have a disturbance in my stomach. T F
usual.

37. I have better control over myself T F 45. I feel an increasing awareness of T F
than usual. bodily sensations

38. My movements seem slower than T F 46. I feel anxious and upset. T F
usual.

39. I find it hard to keep my mind on a T F 47. I have an unusual weakness ofmy T F
task or job. muscles.

40. I do not feel like reading anything T F 48. A thrill has gone through me one or T F
right now. more times since I started the test.

41. It seems I am spending longer than T F 49. My movements are free, relaxed T F
I should on each of these questions. and pleasurable.

42. My hands feel clumsy. T F
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8.2.9 Adjective Checklist (AC)

For each item below, indicate how you feel RIGHT NOW using the scale below.

0 = not at all 1 = a little 2 = moderately 3 = quite a bit 4 = extremely

Normal 0 1 2 3 4 Restless 0 1 2 3 4

Stomach churning 0 1 2 3 4 Watery eyes 0 1 2 3 4

Nodding off to sleep 0 1 2 3 4 Runny nose 0 1 2 3 4

Skin itchy 0 1 2 3 4 Chills or gooseflesh 0 1 2 3 4

Heavy or sluggish feeling 0 1 2 3 4 Sick to stomach 0 1 2 3 4

Relaxed 0 1 2 3 4 Sneezing 0 1 2 3 4

Dry mouth 0 1 2 3 4 Abdominal cramps 0 1 2 3 4

"Coasting along" 0 1 2 3 4 Irritable 0 1 2 3 4

Carefree 0 1 2 3 4 Backache 0 1 2 3 4

Talkative 0 1 2 3 4 Tense and jittery 0 1 2 3 4

Friendly 0 1 2 3 4 Sweating 0 1 2 3 4

Good mood 0 1 2 3 4 Depressed / sad 0 1 2 3 4

Pleasant sick 0 1 2 3 4 Sleepy 0 1 2 3 4

Energetic 0 1 2 3 4 Shaky (hands) 0 1 2 3 4

Drive / Enthusiasm 0 1 2 3 4 Hot or cold flushes 0 1 2 3 4

Drunken 0 1 2 3 4 Bothered by noises 0 1 2 3 4

Nervous 0 1 2 3 4 Skin clammy and damp 0 1 2 3 4

Muscle cramps 0 1 2 3 4 Painful joints 0 1 2 3 4

Flushing 0 1 2 3 4 Yawning 0 1 2 3 4
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8.2.10 Modified Himmelsbach Opiate Withdrawal Scale -
Observer Rated (OWS)

Lacrimation:

0 = None. 1 = manually induced. 2 = spontaneous
i

Rhinorrhoea:

0 = None. 1 = watery sound on sniffing 2 = spontaneous runny nose

Piloerection:

0 = None. 1 = can feel bumps 2 = visible without touching

Perspiration:
0 = None. 1 = can palpate sweat 2 = visible sweating

Restlessness: (in past 15 minutes)
0 = None. 1 = one behavioural sign 2 = more than one behavioural sign

Yawning:
0 - None. 1 = one yawn 2 = more than one yawn

Total:
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8.2.11 Mood Profile

Instructions: Please make a mark on the line to indicate how you have felt IN THE
LAST 24 HOURS, compared to your usual self over the last few weeks or months.
The closer you make a mark to either end of the line, the greater the change in your
feelings. Making a mark in the shaded area, means you felt no different from usual.

USUAL

More nervous Less nervous

Less Tired More tired

More depressed Less depressed

Less relaxed More relaxed

More drowsy Less drowsy

More alert Less alert

Less energetic More energetic

Less clearheaded More clearheaded

More sociable Less sociable

Less cheerful More cheerful

Less irritable More irritable

More confused Less confused

USUAL
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8.2.12 Obsessive Compulsive Drinking Scale modified for
opiates
Instructions: The questions below ask about your opiate (e.g. heroin, methadone, codeine etc) use, and
your attempts to control your opiate use. Please circle the number next to the statement that best applies to
you. Thank you.

1. How much of your time when you're not actually under the influence of
opiates is occupied by ideas, thoughts, impulses, or images relating to
opiate use?

0 = None
1 = Less than 1 hour a day
2= 1-3 hours a day
3 = 4-8 hours a day
4 = Greater than 8 hours a day

2. How frequently do these thoughts occur?

0 = Never
1 = No more than 8 times a day
2 = More than 8 times a day, but most hours of the day are free of those thoughts
3 = More than 8 times a day, and during most hours of the day
4 = Thoughts are too numerous to count, and an hour rarely passes without several

such thoughts occurring

3. How much do these ideas, thoughts, impulses, or images related to
opiate use interfere with your social or work (or role) functioning? Is there
anything you don't or can't do because of them? (If you are not currently
working, how much of your performance would be affected if you were

working?)

0 = Thoughts of opiate use never interfere -1 can function nonnally
1 = Thoughts of opiate use slightly interfere with my social or occupational

activities (what occupies me, e.g. work), but my overall performance is
not impaired

2 = Thoughts of opiate use definitely interfere with my social or occupational
perfonnance, but I can still manage

3 = Thoughts of opiate use cause substantial (considerable) impainnent in my social
or occupational performance

4 = Thoughts of opiate use interfere completely with my social or work performance
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4. How much distress or disturbance do these ideas, thoughts, impulses, or
images related to opiate use cause you when you're not actually under the
influence of opiates?

0 = None
1 = Mild, infrequent, and not too disturbing
2 = Moderate, frequent, and disturbing, but still manageable
3 = Severe, very frequent, and very disturbing
4 = Extreme, nearly constant, and disabling distress

5. How much of an effort do you make to resist these thoughts or try to
disregard or turn your attention away from these thoughts as they enter
your mind when you're not actually under the influence of opiates? (please
rate your effort made to resist these thoughts, not your success or failure in
actually controlling them)

0 = My thoughts are so minimal, I don't need to actively resist. If I have
thoughts, I make an effort to always resist

1 = I try to resist most of the time
2 = I make some effort to resist
3 = I give in to all such thoughts without attempting to control them, but I do

so with some reluctance (unwillingness)
4 = I completely and willingly give in to all such thoughts

6. How successful are you in stopping or diverting these thoughts when
you're not actually under the influence of opiates?

0 = I am completely successful in stopping or diverting such thoughts
1 = I am usually able to stop or divert such thoughts with some effort and

concentration
2 = I am sometimes able to stop or divert such thoughts
3 = I am rarely successful in stopping such thoughts and can only divert

such thoughts with difficulty
4 = I am rarely able to divert such thoughts even momentarily (for a

moment)

7. How many times do you INJECT opiates each day (include injecting and
skin popping)?
0 = None

1 = Less than one injection per day
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2 = 1 injection per day
3 = 2-3 injections per day
4 = 4 or more injections per day
8. How many times do you USE opiates each day (include injecting, skin
popping, smoking and swallowing)?

0 = None

1 = Less than one use per day
2= 1-2 uses per day
3 = 3-7 uses per day
4- 8 or more uses per day

9. How many days each week do you use opiates?

0 = None
1 = No more than 1 day per week
2 = 2-3 days per week
3 = 4-5 days per week
4 = 6-7 days per week

10. How much does your opiate use interfere with your work functioning?
Is there anything you don't or can't do because of your opiate use? (If you
are not currently working, how much of your performance would be
affected if you were working?)

0 = Opiate use never interferes -1 can function normally
1 = Opiate use slightly interferes with my occupational activities (what

occupies me, e.g. work), but my overall performance is not impaired
2 = Opiate use definitely interferes with my occupational perfonnance, but I

can still manage
3 = Opiate use causes substantial (considerable) impairment in my

occupational performance
4 = Problems caused by opiate use interfere completely with my work

performance
11. How much does your opiate use interfere with your social functioning?
Is there anything you don't or can't do because of your opiate use?
0 = Opiate use never interferes -1 can function normally
1 = Opiate use slightly interferes with my social activities, but my overall

performance is not impaired
2 = Opiate use definitely interferes with my social perfonnance, but I can
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still manage
3 = Opiate use causes substantial (considerable) impairment in my social

performance
4 = Problems caused by opiate use interfere completely with my social

performance

12. If you were prevented from using opiates when you desired opiates,
how anxious or upset would you become?
0 = I would not experience any anxiety or irritation
1 = I would become only slightly anxious or irritated
2 = The anxiety or irritation would mount, but remain manageable
3 = I would experience a prominent and very disturbing increase in anxiety

or irritation
4= I would experience incapacitating (disabling) anxiety or irritation

13. How much of an effort do you make to resist using opiates? (Only rate
your effort to resist, not your success or failure in actually controlling your
opiate use)

0 = My opiate use is so minimal, I don't need to actively resist. If I use

opiates, I make an effort to always resist
1 = I try to resist most of the time
2 = I make some effort to resist
3 = I give in to almost all my opiate use without attempting to control it, but

I do so with some reluctance (unwillingness)
4 = I completely and willingly give in to all opiate use

14. How strong is the drive (internal pressure) to use opiates?
0 = No drive
1 = Some pressure to use opiates
2 = Strong pressure to use opiates
3 = Very strong pressure to use opiates
4 = The drive to use opiates is completely involuntary (not under my own

control) and overpowering

15. How much control do you have over the use of opiates?

0 = I have complete control
1 = I am usually able to exercise voluntary control over it
2 = I can control it only with difficulty
3 = I must use opiates and can only delay using with difficulty
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4 = I am rarely able to delay using opiates even momentarily (for a moment)

i
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8.2.13DrugProfile DRUGPROFILE-OPIATES:Ifyoucircle"YES"inthefirstcolumn,pleasecompletetherestofthatrow,includingeachopiatethatyouhavetaken. PREVIOUSOPIATEUSE

RECENTOPIATEUSE

HaveyouEVER usedthisdrug? If"yes",please
alsofillintherest ofthatrow

Howold wereyou whenyou FIRST tookit?

Howlongagowhen youLASTtookit (ORhowoldwere youifnotinthelast year)?

Forhowmany monthsoryearsdid youuseitregularly (ORifnotregularly howmanytimes)?
Howmany

dayshaveyou useditoutof thelast28 days?
(N=None)

Onaveragehow muchhaveyou useddailyinthe last28days? (N=None)

Howare/wereyou takingit? O=Oral
S=Smoked

I=Injected Other(pi.state)

Opiates
Heroinbysmoking

YesNoUnsure

Heroinbyinjection

YesNoUnsure

Prescribedmethadonemixt.
YesNoUnsure

Streetmethadonemixture
YesNoUnsure

Methadonetablets

YesNoUnsure

Buprenorphine(Temgesic)
YesNoUnsure

MorphineorMST

YesNoUnsure

DiconalorPalfium

YesNoUnsure

DF118,Dihydrocodiene
YesNoUnsure

Codeine,galcodeine
YesNoUnsure

Co-proxamol(Distalgesic)
YesNoUnsure

Nalbuphine(Nu-bain)
YesNoUnsure

KaolinandMorphine
YesNoUnsure

Coughmixtures(codeineetc)
YesNoUnsure

DrCollisBrown's

YesNoUnsure

Gee'slinctus

YesNoUnsure

Opium

YesNoUnsure

Poppyseedsorheads
YesNoUnsure

Otheropioids(pleasestate) 1.
YesNoUnsure



DRUGPROFILE-NON-OPIATEDRUGS:Ifyoucircle"YES"inthefirstcolumn,pleasecompletetherestofthatrow.Thankyou. OTHERPREVIOUSDRUGUSE

OTHERRECENTDRUGUSE

HaveyouEVER usedthisdrug? If"yes",please
alsofillintherest ofthatrow

Howold wereyou whenyou FIRSTtook it?

Howoldwereyou whenyouLAST tookit(ORhow longagoifinthe last12months)?
Forhowmany monthsoryearsdid youuseitregularly (ORifnotregularly howmanytimes)?
Howmany

dayshaveyou useditoutof thelast28 days?
(N=None)

Onaveragehow muchhaveyou useddailyinthe last28days? (N=None)

Howare/wereyou takingit? O=Oral
S=Smoked

1=Injected Other(pi.state)

Non-opiatedrugs
Alcohol

YesNoUnsure

Cannabis

YesNoUnsure

Amphetamines

YesNoUnsure

Cocaine

YesNoUnsure
Crack

YesNoUnsure

Prescribedtranquilliserse.g. Valium,mogodon

YesNoUnsure

Streettranquillisers
YesNoUnsure

Barbiturates

YesNoUnsure

Ecstacy(MDMA)

YesNoUnsure

LSD(acid)

YesNoUnsure

Magicmushrooms

YesNoUnsure

Poppers

YesNoUnsure

Glue,solvents,aerosols
YesNoUnsure

Tobacco

YesNoUnsure

Steroids

YesNoUnsure

Others(pleasespecify): 1. 2. 3.

YesNoUnsure YesNoUnsure YesNoUnsure
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8.2.14 Injection questionnaire
Please answer the following few questions about the injection you had just before the
scan started. Please remember that you may have an injection of hydromorphone for
both, one or neither of your two scans. Please circle the option that most closely
matches your answer.

1. This time I received an injection ofHydromorphone /Water.

2. The effects of this injection were roughly the same as how much street heroin?

Zero / £10 bag / 2 x £10 bags / Vi gram /1 gram / VA grams / 2 grams

Injected / Smoked

3. The effects of this injection were roughly the same as how much methadone?

Omg lOmg 20mg 30mg 40mg 50mg 60mg 70mg 80mg 90mg lOOmg
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8.2.15 Visual Analogue Scales (Craving Study)
1. At this moment the intensity of my craving for heroin is

0 10 20 30 40

Not at all

strong

A little

strong

50

Quite strong

60 70 80 90 100

Very
strong

2. At this moment my urge to take heroin is

The

strongest
ever

0 10

Not at all

strong

20 30

A little

strong

40 50

Quite strong

60 70 80

Very
strong

90 100

The

strongest

3. At this moment I feel this happy .

0 10 20 30

Not at all A little

40

4. At this moment I feel this sad

50

Quite a bit

60 70 80

Very

90 100

The most I
could be

0 10 20 30

Not at all A little

40

5. At this moment I feel this anxious

50

Quite a bit

60 70 80

Very

90 100

The most 1
could be

0 10 20 30

Not at all A little

40 50

Quite a bit

60 70 80

Very

6. At this moment I the vividness of the script is

90 100

The most 1
could be

0 10 20 30

Not at all A little

40 50

Quite a bit

60 70 80

Very

90 100

The most 1
could be
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8.2.16 Visual Analogue Scales (Raclopride Study)
1. At this moment I feel this sleepy

0 10 20 30 40 50 60 70 80 90 100

Not at all A little Quite a bit Very The most I
could be

2. At this moment my urge to take heroin is

0 10 20 30 40 50 60 70 80 90 100

Not at all

strong

A little

strong
Quite strong Very

strong
The strongest
ever

3. At this moment the intensity of my craving for heroin is..

0 10 20 30 40 50 60 70 80 90 100

Not at all

strong
A little

strong
Quite strong Very

strong
The strongest
ever

4. At this moment I feel this gouched out

0 10 20 30 40 50 60 70 80 90 100

Not at all A little Quite a bit Very The most I
could be

5. At this moment I feel I am withdrawing

0 10 20 30 40 50 60 70 80 90 100

Not at all A little Quite a bit Very The most 1
could be

6. At this moment I feel this high

0 10 20 30 40 50 60 70 80 90 100

Not at all A little Quite a bit Very The most I
could be

7. At this moment I feel this much of £i rush

0 10 20 30 40 50 60 70 80 90 100

Not at all A little Quite a bit Very The most 1
could be
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