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Abstract

The waveguiding effect of spatial solitary waves in nonlinear optical media has been suggested as
a potential basis for future all-optical devices, such as optical interconnects. It has been shown
that low power (∼ mW ) beams, which can encode information, can be optically steered using
external electric fields or through interactions with other beams. This opens up the possibility
of creating reconfigurable optical interconnects.

Nematic liquid crystals are a potential medium for such future optical interconnects, pos-
sessing many advantageous properties, including a “huge” nonlinear response at comparatively
low input power levels. Consequently, a thorough understanding of the behaviour of spatial op-
tical solitary waves in nematic liquid crystals, termed nematicons, is needed. The investigation
of multiple beam interaction behaviour will form an essential part of this understanding due to
the possibility of beam-on-beam control. Here, the interactions of two nematicons of different
wavelengths in nematic liquid crystals, and the optical steering of nematicons in dye-doped
nematic liquid crystals will be investigated with the aim of achieving a broader understanding
of nematicon interaction and steering.

The governing equations modelling nematicon interactions are nonintegrable, which means
that nematicon collisions are inelastic and radiative losses occur during and after collision. Con-
sequently numerical techniques have been employed to solve these equations. However, to fully
understand the physical dynamics of nematicon interactions in a simple manner, an approxi-
mate variational method is used here which reduces the infinite-dimensional partial differential
equation problem to a finite dynamical system of comparatively simple ordinary differential
equations. The resulting ordinary differential equations are modified to include radiative losses
due to beam evolution and interaction, and are then quickly solved numerically, in contrast to
the original governing partial differential equations. Nöther’s Theorem is applied to find various
conservation laws which determine the final steady states, aid in calculating shed radiation and
accurately compute the trajectories of nematicons. Solutions of the approximate equations are
compared with numerical solutions of the original governing equations to determine the accu-
racy of the approximation. Excellent agreement is found between full numerical solutions and
approximate solutions for each physical situation modelled. Furthermore, the results obtained
not only confirm, but explain theoretically, the interaction phenomena observed experimen-
tally. Finally, the relationship between the nature of the nonlinear response of the medium, the
trajectories of the beams and radiation shed as the beams evolve is investigated.
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Chapter 1

Introduction

1.1 Solitary Waves - ‘Solitons’

The first written record of a soliton can be found in James Scott Russell’s Report on Waves
which describes the “large solitary elevation” Scott Russell famously observed on Edinburgh’s
Union Canal in 1834 [1]. Boussinesq, Lord Rayleigh and Korteweg & de Vries developed
mathematical models supporting Scott Russell’s observation of what was later termed a solitary
wave before the turn of the 20th century, but it was not until the mid-1960s that the term
‘soliton’ was coined and the inverse scattering transform (IST) developed, from which exact
multiple soliton solutions of various nonlinear equations could be computed. Strictly speaking
Scott Russell observed a solitary wave, whereas developments in the 1960s largely focused on
idealised solitary waves, or solitons. A soliton is defined as a solution of an integrable nonlinear
differential equation for which

• the solution is a stable solitary wave, i.e. a localised wave of permanent form.

• interactions between solitons are elastic, i.e. the soliton can collide with other solitons yet
emerge unchanged except for a phase shift, with no radiative losses.

This exacting definition meant that solitons were difficult to create in experimental situations,
so in the physical and experimental literature the definition was extended to include periodi-
cally varying localised waves and localised waves where propagation and collisions resulted in
radiative losses. Whilst the qualitative behaviour of these experimental solitons was similar,
they no longer quantitatively satisfied the original definition of a soliton. A more encompassing
description of what a soliton is has been used in optics and related literature over the past few
decades and can be summarised by the following;

A soliton is a solution of a nonlinear partial differential equation for which

• the solution is a localised wave which retains its basic form over a long time or large
distance.

• interactions between solitons can be elastic or inelastic, but solitons emerge from collisions
with a similar size and shape or fuse together creating a larger localised wave with a similar
shape.

A broad spectrum of interesting nonlinear phenomena involving localised structures could then
be classed under a ‘catch-all’ term using this definition. The localised structures presented here
conform to such a definition.

Developments in nonlinear wave theory in the 1960s were the prelude to a great surge of
interest in nonlinear optics from the 1970s to the present day. The development of low loss glass
for optical communications sparked the initial theoretical interest, with Hasegawa & Tappert
predicting that optical fibres could support the propagation of stable temporal solitons in 1973
[2, 3], later confirmed in 1980 experimentally [4]. Such developments in the field, combined with
the increasing knowledge of various useful soliton properties, such as the low losses associated
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with soliton propagation and their intrinsic nonlinear nature, attracted both researchers and
members of the communications industry whose aim was to improve fibre optic communication
technology. This indirectly resulted in the discovery of various new types of temporal and
spatial solitons in a huge variety of different materials.

There are a number of differences between temporal and spatial solitons worth mentioning
before continuing further. Temporal solitons can form in media exhibiting weak nonlinearities
and are described, or at least approximated, as being stable. Generally temporal solitons are
easily modelled using a linear approximation. Contrary to this, spatial solitons form in media
with a strong nonlinearity and their stability is not guaranteed [5]. A full nonlinear description
must therefore be found. Whilst temporal solitons are formed via a balance between nonlinear
self-phase modulation and linear dispersion, spatial solitons rely on balancing nonlinear self-
focusing and linear diffractive spreading. Diffractive spreading can be countered by an increase
in the refractive index of the medium in the vicinity of the beam, which focuses the beam
and causes a waveguiding effect. If the beam itself causes the refractive index change in the
medium then the beam traps itself in its own waveguide, a property known as nonlinear local
self-focusing, where the term ‘local’ refers to the self-focusing response of the medium being
greatest where the beam intensity is high and decaying to zero outside of the near vicinity of
the beam.

In recent years a great deal of attention has turned to spatial optical solitons (SOS) in
nonlinear optical media. There are three main reasons for this change in direction. Firstly,
in contrast to media supporting temporal solitons, the large nonlinearities associated with
media capable of supporting SOS do not allow linear models to approximately describe soliton
behaviour. Hence, a more refined approach is required. Secondly, a huge variety of materials
support SOS propagation. Soliton evolution is directly affected by the properties of the medium.
Thus solitons in different media are governed by different equations, allowing great scope for
original research. Lastly, interest has been stoked further by the potential applications of SOS
in technology. For example, SOS in liquid crystals have been proposed as candidates for use in
optoelectronic devices, such as logic gates [6]. This thesis focuses attention particularly on SOS
in a highly promising nonlinear medium, the nematic liquid crystal (NLC), adding theoretical
understanding to experimental observations and contributing to the ever-growing rich tapestry
of knowledge in soliton theory.

1.2 Nematic Liquid Crystals and Nematicons

Solitons have been observed in a huge range of nonlinear materials, from the first solitons
discovered in water by John Scott Russell to solitons describing the macroscopic dynamics of
Bose-Einstein condensates [5]. One of the most interesting materials capable of supporting
solitons is the nematic liquid crystal (NLC), due to its uniquely controllable nonlinear response
and extensive use in technology, for example the liquid crystal display (LCD).

In a NLC, a beam can self-focus due to a regular local nonlinearity which was described
above and/or a nonlocal reorientational nonlinearity. The nonlocal nonlinearity is defined and
discussed below, but it suffices here to say that it is highly tuneable and consequently SOS have
been observed that have been induced by a regular local nonlinearity, a nonlocal nonlinearity or
a combination of both [7, 8, 9]. Other materials such as plasmas and atomic vapours, ion gases,
thermoelastic media and photorefractive crystals exhibit nonlocal soliton formation [10, 11, 12],
however none of these nonlocal media possess the same mechanism driving nonlocality as that
of the NLC.

Liquid crystals display characteristics of liquids, yet retain some degree of long range molec-
ular order similar to crystals. A nematic liquid crystal is a type of thermotropic liquid crystal.
As the name suggests, thermotropic liquid crystals come into being by changing the tempera-
ture of the medium. At low temperature a material will form an anisotropic crystal, raising the
temperature leads to the formation of smectic liquid crystals that have a well-defined positional
and orientational molecular order, a further rise in temperature leads to the nematic phase and
above this all order is lost and the medium forms an isotropic liquid. The nematic phase is
characterised by a high degree of molecular orientational order and no positional order. As a
result, NLCs exhibit a fluidity in motion but with the optical properties of a crystal. There are
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Figure 1.1: Numerically calculated steady nematicon. Cross-sections of (a) the nematicon beam
profile and (b) the perturbation θ of the refractive index of the NLC caused by the beam and
extending beyond it.

several advantageous properties that LCs, and in particular NLCs, possess. Liquid crystals in
general are chemically stable and can be kept in the LC phase over a wide range of tempera-
tures. NLCs have the advantage that their refractive index is easily changed by electric fields,
magnetic fields and boundary conditions [13]. With such easily tuned nonlinearities, NLCs have
become relatively common media for optical experimentation.

Nematic molecules are rod-like and tend to align in a certain direction via elastic intermolec-
ular forces. When an electric or magnetic field is applied to the medium the rod-like molecules
form dipoles and rotate in response to the torque induced by the dipole-field interaction, result-
ing in a large refractive index change in the liquid crystal. The electric field of a light beam can
also induce the same reorientational response as a static/low-frequency applied electric field.
The resulting refractive index change extends beyond the vicinity of the beam, which is demon-
strated in Figure 1.1 for a single nematicon propagating in a nonlocal NLC. The beam profile is
given in Figure 1.1(a). The perturbation of the molecular orientation, or refractive index change
, caused by the beams’ presence, θ, shown in Figure 1.1(b), clearly extends beyond the tail of
the beam itself. This nonlinear reorientational response occurs in other optical media, such as
thermoelastic media [14], but the degree of control via electric fields is unique to NLCs and, as
a result, is the source of unique nonlinear effects. Local nonlinearities, on the other hand, are
far more common. NLCs are capable of local and nonlocal reactions. As a result of this, the
analysis of nematicons requires appropriate equations that model nematicon propagation and
interaction in both local and nonlocal regimes. These equations will be shown to be strongly
related to the nonlinear Schrödinger (NLS) equation, which is the simplest equation governing
soliton evolution in a nonlinear optical medium and is written

i
∂u

∂z
+

1

2
∇2u+ |u|2u = 0, (1.1)

where u represents the envelope of the electric field of the beam and z is the propagation
direction. The Laplacian ∇2 can refer to the second derivative of u with respect to the spatial
variable x transverse to z for (1 + 1)-D solitons, or ∂2u/∂x2 + ∂2u/∂y2 for (2 + 1)-D solitons,
where the term ‘(1 + 1)-D soliton’ refers to a soliton which is limited to one spatial transverse
dimension, e.g. x and one propagation (time-like) direction z. Solitons can be modelled in (1+1)
dimensions in planar waveguides, such as the homeotropically-aligned thin film waveguide used
by Karpierz et al to observe nematicons [13]. A (2 + 1)-D soliton has two transverse spatial
dimensions, x & y, and a propagation direction z. These (2 + 1)-D solitons will be the focus
of the present work. It is worth noting that the coefficient 1/2 in the NLS equation is solely
included to simplify calculations. The second (Laplacian) term represents linear diffraction as
the beam evolves. Nonlinear self-focusing is represented by the final term. A balance between
the two terms results in the emergence of a stable soliton.

The (1+1)-D NLS equation is integrable and possesses exact solutions. It has a stable soliton
solution which can be found via the IST or, more easily, analytically and is given exactly by

u(x, z) = a sech(ax)eia
2z/2, (1.2)
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where a is the amplitude of the soliton. Conversely stable soliton solutions cannot be found for
the (2+1)-D NLS equation because solutions blow-up in finite z above an amplitude threshold
or decay into radiation below the threshold. For the (2+1)-D nematicon equations presented in
this work, nonlinearities have a complicated dependence on molecular reorientation, the optical
beam(s) and changes to the nematic refractive index. As a consequence the (2 + 1)-D NLS
equation is an inappropriate equation to model nematicon evolution. Stable evolution in (2+1)
dimensions can, however, be achieved in materials whose nonlinear response is saturable. It
will be shown that the thermal and reorientational nonlinearities characteristic of NLCs have
this saturating property. The complex interactions between the beam(s) and the medium can
be modelled by coupling a NLS-like equation to equations representing this interaction. A more
appropriate basic equation encompassing various nematicon evolution phenomena then is the
generalised NLS equation

i
∂u

∂z
+

1

2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F (|u|2)u = 0, (1.3)

where the specific form of F depends on the relation u has with the nematic refractive index
change, which can be defined separately. Even though equations of the type (1.3) may not
necessarily be exactly integrable and will therefore not have an infinite number of conserved
quantities, stable solitary wave solutions can be found which possess a finite number of conserved
quantities [11]. Each nematicon regime presented in this work will have equations of this general
form which govern the propagation of the light beam(s). Two-colour nematicon equations
only differ in that each of the NLS-like equations representing each of the beams will have a
nonlinearity F with a dependence on the other beam due to coupling. The specific form of
F for each nematicon regime investigated will be discussed in the Background section of each
chapter and a brief derivation of the general nematicon governing equations will be given in
Section 2.1.

A reorientational nonlinearity causes a very strong refractive index change in the medium,
particularly when considering the relatively low power levels (∼ 2mW ) used to excite a nonlinear
reaction [6]. The saturating nature of the nonlinearity additionally means that nematicons are
easy to generate for a large range of power levels. This combination of properties suggests
that there is potential for using nematicons in optoelectronic components. However, whilst
the nonlinear effect is strong, several orders of magnitude greater than that of comparable
media [9], it is also slow (∼ 0.1s) [6]. NLCs in their present form have little chance of finding
commercial optoelectronic applications in telecommunications, where GHz switching rates are
the minimum. For example, current electrical interconnects switch at microsecond speeds,
whereas optical interconnects created using solitons in NLCs react over seconds [15]. The issue
of the slowness of the NLC nonlinear reaction is not addressed in this work, but should be kept in
mind as any claims of potential applications for SOSs in NLCs are made under the assumption
that nonlinear reaction times will be improved significantly in the future, a condition which is
far from guaranteed. There is a large amount of materials research being conducted now with
the specific aim of increasing the speed of the NLC nonlinear response. In the meantime NLCs
are still highly useful, providing an ideal test bed for investigations into novel optical soliton
dynamics.

1.3 Experimentally Observed Nematicons

Nematicons (SOSs in NLCs) have been extensively studied by experimentalists since early
investigations of the nonlocal, nonlinear self-focusing of beams in NLCs by Braun et al in 1993
[7]. “Self-waveguiding structures”, most likely nematicons, were observed by Warenghem et al
in capillaries filled with dye-doped NLC in 1998 [8], but it was not until 2000 that (2 + 1)-
D nematicons were first observed in bulk NLC by Peccianti et al [9]. A beam was shown to
propagate unchanged over a distance of 1.4mm, which is more than 20 times the distance at
which the beam would be expected to diffract. This SOS in a NLC was later given the title
“nematicon” in 2003 [6]. Investigations by experimental researchers in the Nonlinear Optics
and Optoelectronics Lab (Nooel) in the University of Rome “Roma Tre” and various other
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institutions have revealed substantial differences between soliton behaviour in local nonlinear
media and NLCs. These differences can be attributed to the large saturable reorientational
nonlocal nonlinearity described in the previous section.

The experimental scheme naturally varies slightly depending on the particular behaviour
under investigation. However a general overview of how nematicons are produced is useful,
particularly when comparing theoretical results with experimental observations. A cell is filled
with a commercially available nematic such as E7 or 5CB. The NLC cell is treated as a bulk
medium, with boundary effects being neglected, when the wavelength of the light and the width
of the initial beam are smaller than the dimensions of the cell in the (x, y)-plane and the beam
propagates far from the cell boundaries. Nematic molecules in the bulk nematic can be given
a homeotropic or planar initial alignment. Here only NLCs with an initial planar alignment
will be considered. By applying an external static/low-frequency electric field (also known as
bias) the mean molecular orientation (termed director) can be adjusted. This is known as a
pre-tilt of the director. The pre-tilt is decided by the relative strength of the torque, which
forces molecules to align in the direction of the external applied field, and the strength of inter-
molecular forces struggling to keep molecules in their original alignment. The introduction of
a pre-tilt field is necessary to lower the minimum optical beam power required to provoke a
reorientational response in the nematic, known as the Fréedericksz transition threshold. A pre-
tilt in the direction of polarisation of the electric field of the input beam then allows the initial
beam to evolve into a nematicon at a lower optical power, since the increase in refractive index
required to self-focus the beam is reduced due to the initial increase in refractive index caused
by the pre-tilt. Not only is there a saving in power consumption (since beams require less
power to form nematicons when an appropriate pre-tilt is introduced), but this also reduces the
unwanted effects of thermal local nonlinearities on nematicons. An ideal pre-tilt forms an angle
of π/4 with respect to the direction of propagation of an initial beam, as then the Fréedricksz
threshold is zero [16]. It is worth noting that a pre-tilt can also be achieved by different
methods usually involving a change in the anchoring conditions of the nematic molecules at
the boundary of the NLC cell, which affects the molecular orientation in the bulk NLC. One
method involves coating the glass slide interfaces bounding the cell with Polyvinyl alcohol
(PVA) and then rubbing them. Doing so affects the molecular anchoring and mean orientation
at the boundaries and has a knock-on effect with respect to the orientation of molecules in
the bulk cell [15, 17]. Another method is to mix the NLC with a small amount of dye dopant
[16]; an external beam shone into the dye-doped nematic liquid crystal (DD-NLC) causes an
interaction between dye molecules and molecules on the inner surface of the glass interface
at the boundary of the DD-NLC layer. This interaction can be tuned to change anchoring
conditions of nematic molecules at the boundaries which also changes the molecular orientation
throughout the illuminated region of the bulk DD-NLC, allowing an increase or decrease of the
refractive index according to the wavelength and/or intensity of the external beam [16]. The
effect that an illumination has on a propagating nematicon in a DD-NLC layer is the focus of
Chapter 5.

Whichever way a pre-tilt is achieved it must have a component in the same plane as that of
the electric field of the beam to have any effect, due to the birefringent nature of NLCs. As an
example, an x-polarised input beam will diffract if the applied electric field is in the y direction
since the pre-tilt will be in the (y, z)-plane. There will be no pre-tilt in the (x, z)-plane meaning
that the Fréedericksz threshold cannot be overcome, molecular reorientation cannot occur and
the beam will not self-focus [18]. Of course, if the beam had an optical power high enough to
overcome the Fréedericksz threshold without a pre-tilt it could self-focus and form a nematicon
but additional local nonlinearities would play a significant role and the possibility of strong
self-focusing increases the chances of the nematicon becoming unstable [9].

Figure 1.2 shows experimental results taken from Ref. [9] for which a linearly x-polarised
Gaussian input beam was launched from a laser into a bulk planar NLC cell. Beam propagation
was monitored in the (y, z)-plane using a charge coupled device (CCD) camera attached to
a microscope which collected light scattered in the x direction. Figure 1.2 (a) reveals that
with no pre-tilt field a weak beam could not overcome the Fréedericksz transition threshold
and diffracted at z ≈ 55µm. However, when an external static/low-frequency electric field
was applied a pre-tilt was induced, eliminating the Fréedrick’s effect and allowing nonlinear
molecular reorientation to cause self-focusing which, in Figure 1.2 (b), balanced diffraction
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Figure 1.2: Experimental results of beams with input power 4.2mW where (a) no external
static/low-frequency electric field is applied, and (b) a field of 0.8V at 1kHz is applied across
the 75µm cell. Permission of use of image taken from Ref. [9] kindly given by Prof. G. Assanto.

and lead to a stable solitary wave propagating unchanged over a distance of 1mm, roughly 20
times the diffraction length observed in Figure 1.2 (a). It is noticeable that the beam did not
propagate in the z direction but at an angle to the z axis. This angular path deviation is known
as ‘walk-off’ and will be discussed later.

Once formed nematicons exhibit a wide range of interesting behaviour. For example, ne-
maticons have been observed confining beams with equal polarisation. These “probe” beams
can have different wavelengths, different intensities and different input angles, yet still remain
trapped in the nematicon waveguide [19]. Speckled light, white light and distorted beams have
been employed as input beams and yet still a nematicon can form [6]. As shown in Figure 1.2,
nematicons additionally experience a ‘walk-off’ effect which could be used to all-optically steer
a nematicon. More complex experiments have been conducted which show equally interesting
nematicon behaviour. Two or more identical nematicons have been colaunched exhibiting at-
traction, walk-off, interlacing, spiralling and fusion [12, 19, 20, 21]. Similar phenomena have
been both predicted and experimentally verified for two colaunched nematicon beams of differ-
ent wavelengths [17, 22, 23, 24], known as two-colour nematicons. Beam dynamics of two-colour
nematicons will be studied in depth in Chapters 3 & 4.

The phenomenon that has been termed ‘walk-off’ throughout the introduction will be clar-
ified here. Walk-off can be defined as “an effective angular deviation of propagation direction
from the initial input alignment” [25, 26]. The walk-off of an individual initial beam is due to
the birefringent nature of the nematic molecules because they have different optical properties
parallel and perpendicular to their axis. The refractive index is then tensorial and the disper-
sion relation has two components; the ordinary component which is parallel to the input beam
and the extraordinary component which has walk-off. The refractive index of the extraordinary
beam is affected by reorientation, and so this beam can form a solitary wave. Walk-off is linearly
related to the optical beam power. Peccianti et al [18] highlighted the tuneability of walk-off
subject to various external field powers, revealing that appropriately polarised input beams
form nematicons and have output positions with respect to x and y arranged in a semi-circle
when external field power is raised from 0V to saturation of the nonlinearity, i.e. from when
there is no pre-tilt until the nematic molecules are perpendicular to the direction of the external
electric field. Walk-off angles were observed of up to 7◦ [18].

The first observations of nematicons were modelled with respect to the crystal axes (x, y, z)
and walk-off was deemed a paraxial phenomenon in most theoretical models, i.e. walk-off of
the beam from the z axis was assumed to be negligible [6, 9, 19, 20, 27, 28, 29]. Whilst these
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theoretical models accounted for many phenomena, such as unusual beam interactions caused
by nonlocality [19], it was not until the propagation of nematicons was considered in a frame
of reference paraxial to the direction of beam propagation subject to walk-off that theoretical
models accurately portrayed nematicon evolution [16, 17]. For an initial beam with no particular
polarisation for which the walk-off is a constant δ with respect to z, this is equivalent to a
rotation of the (x, y, z) coordinate system by the walk-off angle δ [17], resulting in a new ‘ray’
coordinate system (r, t, s) [19]. When the walk-off is not constant, for example due to a varying
pre-tilt field, the ray is not straight and the ray direction must be locally solved [19].

If the principal optical axis, and therefore the pre-tilt δ, are in the (x, z)-plane, the electric
field of the beam is polarised in the x direction, and the input beam direction is parallel to
z, then walk-off is in the (x, z)-plane solely, with no y component. A suitable ‘ray’ coordinate
system equivalent to the one above is (x, t, s); a rotation of (x, y, z) about x by the walk-off angle
in the (x, z)-plane, δ. This experimental set-up was used to observe two-colour nematicons in
Ref. [17].

In the present work pre-tilts and beam polarisations have been taken as above, but rather
than use ‘ray’ coordinates the (x, y, z) coordinate system has been used and walk-off has been
incorporated implicitly by a phase factor transformation of the electric fields of the beam(s)
in the governing equations [23]. A full account of this transformation is given in Chapter 3.
One major consequence of incorporating walk-off into the governing equations is that any other
walk-off observed in these models is an additional effect which has not been accounted for in
previous models. The nature of any additional walk-off will be analysed and explained for each
regime presented in Chapters 3, 4 & 5.

1.4 Aim of Thesis

Theoretical models, both numerical and analytical, predicting the various nematicon phenom-
ena described above have been put forward before. Some have even been compared to experi-
mental data and good agreement has been found [9, 15, 17, 19]. Yet no analytical model had
been proposed, to the author’s knowledge, which accurately portrayed nematicon evolution over
large distances until the work of Garćıa-Reimbert et al in 2006 [30]. In this work the evolution
of a single nematicon in a bulk NLC was analysed numerically and analytically in the local
nonlinear response regime. To study beam behaviour analytically they employed an extended
variational method yielding modulation equations for the beam parameters from an averaged
Lagrangian formulation of approximated governing equations for a nematicon in the local limit
[30]. The most important features of the method are the inclusion of

• a shelf of diffractive radiation which travels with the beam as it propagates, and has been
shown to form as a nematicon evolves from numerical simulations, see Figure 1.3.

• diffractive losses radiated from the beam over large z, resulting in a damping of oscillations
of the beam parameters such as amplitude, width and position, as the beam settles to a
steady nematicon.

This technique was first proposed by Kath & Smyth when studying (1+ 1)-D soliton evolution
in a nonlinear optical fibre governed by the NLS equation [31]. It was found, in this work
and the work of Garćıa-Reimbert et al, that the mechanism allowing the initial pulse/beam to
settle to a steady state soliton was radiation loss. In a related piece of work, Smyth & Kath
used the same extended variational technique to show that two symmetric interacting initial
beams in a birefringent nonlinear optical fibre emit radiation during collision and that this shed
radiation was responsible for the initial beams settling to a steady vector soliton, when this
is energetically allowed [32], which had previously been reported by Yang using a completely
different method [33].

In this thesis the extended variational method of Kath & Smyth will be adapted to model
nematicon beam(s) evolution in a NLC bulk medium over a large z distance. Two beam
collisions, the formation and propagation of two-colour vector nematicons and single beam
steering via a DD-NLC refractive index defect will be explored analytically and numerically.
In the analytical method the radiation shelf travelling with the beam(s), predicted by previous
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Figure 1.3: Numerically calculated (2 + 1)-D nematicon exhibiting a shelf of radiation during
evolution in z with y = 0.

numerical results (and seen in Figure 1.3), and the effect of diffractive radiative losses as the
beam(s) evolve will be included to explain nematicon evolution over large z. It will also be
shown that numerical and analytical solutions of the nematicon equations agree very well for
all nematicon regimes investigated.

The thesis is organised as follows. Chapter 2 begins with a brief discussion about the basic
equations governing nematicon evolution. The important principles underlying the analytical
method used to solve these nematicon governing equations are then explained. This is followed
by a review of the numerical method employed to solve the nematicon governing equations.
Using the techniques outlined in Chapter 2, Chapter 3 explores the formation and evolution of
two-colour nematicons in a NLC with a nonlocal nonlinear response. Approximate modulation
equations will be found and their solutions compared with numerical solutions of the nemati-
con governing equations. In Chapter 4 the same methods are used to investigate two-colour
nematicons propagating in a NLC with a local response. A comparison between nematicons
propagating in the local and nonlocal nonlinear response regimes will be given and differences
between the solutions will be highlighted. Again the accuracy of the analytical model will be
tested against numerical solutions of the two-colour nematicon governing equations. Equations
modelling a single nematicon’s evolution as it propagates through a bulk DD-NLC with a re-
fractive index defect will be discussed in Chapter 5, using the same methods outlined above.
Chapters 3, 4 & 5 will additionally have a focus on the effects of walk-off, as this is an important
property of nematicon propagation, particularly when discussed in the context of future appli-
cations of spatial optical solitons in the optoelectronics industry. Finally, a general analysis
of the results, main outcomes, methodology and possible future research will be conducted in
Chapter 6.
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Chapter 2

Methods

2.1 The Governing Equations

The equations governing soliton evolution, and any other electromagnetic wave evolution, in any
material medium are all essentially based on the classical Maxwell’s equations. A full solution
of Maxwell’s four partial differential equations (PDEs) would be prohibitively time consuming
and could only be done via numerical methods. Additionally, for the beams travelling in a
nonlocal nematic liquid crystal (NLC) there are other effects to consider due to the interaction
of the beams with the nematic medium [34]. To avoid these problems an asymptotic analysis
of Maxwell’s equations can be conducted, from which simpler PDEs are derived to model beam
dynamics. Such an analysis was undertaken by Peccianti et al around the time that nematicons
were first discovered and the equations governing the electric field of the light beam in the
presence of a static/low-frequency electric field were found to closely resemble the (2 + 1)-D
nonlinear Schrödinger (NLS) equation [9]. These governing equations cast nematicon evolution
as a propagation problem in the time-like coordinate z. For a single optical beam Assanto et al
[6, 19] and Peccianti et al [18] showed that the equations for the electric field of an optical beam
and the optical axis, or director, in the presence of an applied static/low-frequency electric field
are a coupled system consisting of an NLS-like equation for the beam and a Poisson equation
for the director, these equations being

2ik
∂E

∂Z
+∇2

XY E + k20εa

(
sin2 ϕ− sin2 θ̂

)
E = 0, (2.1)

4K∇2ϕ+ 2∆ϵRFE
2
S sin(2ϕ) + ε0εa sin(2ϕ)|E|2 = 0, (2.2)

where E is the magnitude of the electric field of the beam, ϕ = θ̂+ θ is the total mean director
rotation induced by the static/low-frequency electric field and the beam. θ̂ is the pre-tilt and θ

the optically-induced reorientation of the director, where θ ≪ θ̂. k is the propagation constant
(wavenumber) of the beam and k0 = 2π/λ is the input wavenumber of the beam with λ its
input wavelength. The constants εa = n2q −n2⊥ and ε0 are the birefringence and permittivity of
free space respectively, (nq and n⊥ being the refractive indices for an optical beam parallel and
normal to the director alignment [19]). ES is the static/low frequency external electric field
and ∆ϵRF is the static/low frequency anisotropy. K is the Frank constant which measures the
elasticity of the medium and is taken equal for splay, twist and bend deformations of the NLC
molecules. A full derivation of these equations for the reorientation of the beam can be found
in Ref. [19] and a full derivation from Maxwell’s equations of similar governing equations was
presented by Karpierz whilst studying nematicons in a waveguide [13].

Using the nondimensional variables x, y, z and u, with X = Ax, Y = Ay, Z = Bz and
E = Cueiψz, where ψ is used to eliminate constant factors in the electric field equation, the
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governing equations can be nondimensionalised to

iuz +
1

2
∇2
xyu− cos(2ϕ)u = 0, (2.3)

ν∇2ϕ+ p sin(2ϕ) + 2|u|2 sin(2ϕ) = 0, (2.4)

where

ν =
8Kk

ε0εa
, p =

4∆ϵRFE
2
S

ε0εa
, (2.5)

and the constants A, B, C and ψ have been chosen appropriately. Equation (2.3) is called
the Foch-Leontovich equation. These equations can be further simplified by separating the
contributions to the total director orientation ϕ of the pre-tilt θ̂ and the reorientation θ. At the
boundaries of the cell (x = ±L) ϕ = 0. To obtain analytically tractable equations, this director

equation will now be expanded by perturbing about the pre-tilt angle θ̂ [35]. Without a beam
being present, the director angle satisfies the equation

ν∇2θ̂ + p sin(2θ̂) = 0, ϕ(−L) = ϕ(L) = 0. (2.6)

It is possible to adjust p (which is the square of the static/low-frequency electric field) so that
ϕ > π/4 in the centre of the liquid crystal cell [27, 28]. This is justified as ϕ varies from ϕ = 0
at the boundaries to a possible ϕ = π/2 when the static/low-frequency field is strong and the

molecules align with the direction of the field. By decomposing the director angle ϕ = θ̂ + θ,
the director equation (2.4) can be expanded to give

ν∇2θ̂+ν∇2θ+p sin 2θ̂ cos 2θ+p cos 2θ̂ sin 2θ+2|u|2 sin 2θ̂ cos 2θ+2|u|2 cos 2θ̂ sin 2θ = 0. (2.7)

The maximal self-focusing response is achieved when the Fréedericksz threshold is zero, which
occurs at a pre-tilt of θ̂ = π/4. The static/low-frequency electric field can be adjusted so that

the pre-tilt angle θ̂ is above π/4 but close to it. On using the static director equation (2.6), the
director equation (2.7) becomes

ν∇2θ + p cos 2θ̂ sin 2θ + 2|u|2 sin 2θ̂ cos 2θ = 0, (2.8)

to first order in small |θ|. Since the pre-tilt θ̂ is a slowly-varying function, a suitable re-scaling

of variables allows the factors cos 2θ̂ and sin 2θ̂ to be scaled out. It should be noted that it is
important that cos 2θ̂ < 0 since the static/low-frequency field has been chosen so that θ̂ > π/4,
but close to π/4, in the centre of the cell. After re-scaling, this director equation becomes

ν∇2θ − q sin 2θ + 2|u|2 cos 2θ = 0, (2.9)

where q is the scaled p. For small director deviation θ this director equation is the same as that
derived by Conti et al [27] for a single nematicon travelling through a NLC with an applied
static/low-frequency electric field.

In a similar manner, the Foch-Leontovich equation (2.3) can be nondimensionalised and
rewritten in the form

iuz +
1

2
∇2
xyu+ sin(2θ)u = 0. (2.10)

Equations (2.10) & (2.9) are the basic equations describing nematicon evolution which will be
used and developed to investigate a wide range of nematicon behaviour in both the local and
nonlocal limits. There are no exact solutions of equations (2.10) & (2.9). The nematicon gov-
erning equations in the cases that will be presented in this work are variants of these equations
and consequently have no exact solutions either. To determine the evolution of these beams
one can solve the governing equations numerically, which yields few insights into nematicon
dynamics and its underlying mechanisms yet provides an accurate portrayal of beam evolution,
or one can solve the governing equations approximately.
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2.2 Approximate Method

The approximate method that will be used in this work is a variational method which yields
modulation equations for each of the nematicon parameters and allows the incorporation of
the diffractive radiation shed as the beams evolve. This technique has the potential to be
inaccurate if the simplifications imposed on the governing equations and beam profile remove
key features of the true beam evolution or form. However, if the governing equations are solved
approximately and compare well to numerically determined solutions, one can gain insight
into the mechanics of beam formation, propagation and dynamical behaviour. The variational
method is a highly useful tool, which has been used in the scientific investigation of dynamical
systems for decades. Anderson was the first to apply the method to problems involving optical
solitons governed by the NLS equation in 1983 [34, 36] and the method has been utilised in a
variety of different areas of optics ever since.

To define the variational method the governing equations must first be rewritten in their
equivalent Lagrangian formulation, L(uz, ux, u), where x represents the spatial coordinates of
the system, in this case not including the time-like coordinate z. The Lagrangian formulation
describes the system in terms of its kinetic and potential energy. The averaged Lagrangian L
can then be defined by

L =

∫
Ldx, (2.11)

The variational method is based around the principle of stationary action which, when applied
to the action of a system, allows the equations of motion to be found. The action is a functional
which takes the trajectory of the system as its argument and whose integrand is the averaged
Lagrangian

A =

∫ zf

z0

Ldz, (2.12)

where z is a time-like evolution coordinate and z0 and zf are the initial and final z points
respectively. The principal of stationary action states that the action must be stationary in the
sense that the action does not vary to first order when small perturbations are applied to the
trajectory

δA = δ

∫ zf

z0

Ldz = 0. (2.13)

In other words, the physical system must always take the trajectory whereby the action is
stationary. By this reasoning variations of the averaged Lagrangian may be taken for a defined
trial function which are equivalently a perturbation of the true beam trajectory.

If the principle of stationary action is satisfied by the averaged Lagrangian, the next step is
to insert an appropriate trial function (also known as an ansatz) into the averaged Lagrangian,
as the exact nematicon solution is not known. The choice of trial function is not dictated by
any mathematical rules and has no direct relationship with the (unknown) nematicon steady
state solution. It must be chosen either as a good match to solutions obtained from numerical
simulations or by experience, or a combination of both. Generally speaking, trial functions take
the form of a basic beam profile with certain parameters (pi(z) say, where i = 1, . . . , N and
N is the total number of parameters) such as amplitude, width and phase, which are allowed
to vary with z. Once the trial function is inserted into the averaged Lagrangian, the resultant
averaged Lagrangian equation is a function of the variable parameters and their derivatives [34].
Consequently, variational equations, also known as modulation equations, of the form

d

dz

∂L
∂(dpi/dz)

− ∂L
∂pi

= 0, (2.14)

representing modulations of the beam parameters can be extracted from the averaged La-
grangian and these modulation equations can then be solved by simple numerical methods.

Nöther’s theorem states that for any differentiable symmetry of the action of a conservative
physical system there exists a corresponding conservation equation relating to some fundamental
property of the system. The principle of stationary action and, by association, the variational
method are therefore closely linked to the infinite number of conservation equations found in
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integrable systems. In fact, each of the variational equations can be obtained by calculating
the corresponding conserved quantity associated with the governing equations [25].

The basic variational method, outlined above, has been used to approximate a variety
of physical systems, yet the inherent need for the system to be conservative has limited the
usefulness of such approximations. An extension to the averaged Lagrangian method was first
introduced by Kath & Smyth [31]. In this work they analysed (1 + 1)-D solitons in nonlinear
optic fibres. They had noticed that variational approximations matched physical systems well
over small intervals of the evolutionary variable (z or time) but the approximation gradually
became less accurate over greater intervals. They concluded that numerical solutions were
exhibiting losses to radiation and that these losses were the reason for the inaccuracy of the
variational method over larger intervals. Kath & Smyth linked these losses to the evolution of
parameters from oscillatory states to the steady state. Their technique consists of utilising the
well known variational method for conservative systems, shown above, but with the addition
of a radiation loss term incorporated into one or more of the modulation equations [31, 32].
The inclusion of loss terms allows oscillations of various parameters to settle to steady values
in a manner which closely matches that of numerical simulations. It was later found that this
extended variational method has a wide range of applications, particularly in the field of optical
solitons.

2.2.1 A Simple System excluding Shed Radiation

To demonstrate the extended variational method, a simpler case, related to the models that
will be described in this thesis, is examined for which minimal technical details are given. The
(1 + 1)-D NLS equation governs the evolution of pulses travelling in polarisation-preserving,
single-mode nonlinear optical fibers [5, 31] and is given in nondimensional form by

i
∂u

∂z
+

1

2

∂2u

∂x2
+ |u|2u = 0, (2.15)

where u is the slowly varying envelope of the electric field, z is the direction along the fibre
and x is time. In an optical fibre x would normally be replaced by t and would represent the
normalised time. This equation would then yield temporal soliton solutions with nonlinearity
acting against dispersion [25]. However, here the (1 + 1)-D NLS equation is introduced as a
simple starting point to demonstrate the analytical methods used in the following chapters.

The NLS equation (2.15) has the corresponding Lagrangian formulation

L = i(u∗uz − uu∗z)− |ux|2 + |u|4, (2.16)

where the superscript ∗ denotes the complex conjugate. One can check the validity of any
Lagrangian by taking variations with respect to the function(s) it contains. This action returns
the original governing equation(s). For the current example, taking variations of equation (2.16)
with respect to u yields the complex conjugate of the governing equation (2.15), from which
equation (2.15) is easily obtained. As mentioned earlier, the NLS equation possesses an infinite
number of conservation equations. These conservation equations are derived from the integrals
of motion [5, 25], some important examples of which are

P =

∫ ∞

−∞
|u|2dx, M = i

∫ ∞

−∞
(u∗xu− uxu

∗) dx, H =
1

2

∫ ∞

−∞

(
|ux|2 − |u|4

)
dx. (2.17)

These equations represent mass (P ), momentum (M) and the total energy or Hamiltonian (H)
respectively. Conservation equations for mass, momentum and energy are then

d

dz

∫ ∞

−∞
|u|2dx = 0,

d

dz

i

2

∫ ∞

−∞
(u∗xu− uxu

∗) dx = 0,
dH

dz
=

d

dz

∫ ∞

−∞

(
|ux|2 − |u|4

)
dx = 0.

(2.18)
The relationship between these conserved quantities and the Lagrangian is obvious when the
two are compared. They are associated with invariances of the Lagrangian; mass conservation
relates to invariances with respect to phase changes, momentum conservation to invariances
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with respect to translations in x and the Hamiltonian to invariances with respect to translations
in z [31, 37]. These three conservation equations will be shown to play a central role in the
calculation of radiative losses for all nematicon regimes presented in the following chapters.

The next step in the approximate method is to choose a trial function, or ansatz, that
represents a soliton-like pulse whose parameters vary realistically. An ansatz that has indepen-
dently varying amplitude a, width w and phase σ is therefore desirable. The form of the exact
solution (1.2) of the NLS equation suggests that a sech profile will match the soliton profile
well. Also, from numerical simulations conducted by Kath & Smyth [31], it was shown that
a low amplitude shelf of radiation, shed by a pulse as it evolves, develops in its vicinity. The
existence of this shelf of low wavenumber radiation under the pulse was further demonstrated
from soliton perturbation theory and perturbed inverse scattering [31, 33]. A simple argument
to show why it occurs can be obtained from group velocity. The group velocity for linear waves
for the NLS equation is cg = k, so that low wavenumber waves have low group velocity and
thusly remain in the vicinity of the soliton. The shelf and pulse continually interact [31, 32].
To account for this interaction a parameter representing variations of the amplitude of the shelf
(g) is also included. With these considerations a suitable trial function is

u = a sech(x/w)eiσ + igeiσ, (2.19)

where a, w, σ and shelf amplitude g are all functions of z. Soliton perturbation theory and
perturbed inverse scattering show that the shelf and the soliton are π/2 out of phase [31, 33]
which is accounted for by i. The radiation shelf travelling with the pulse cannot continue to be
flat, so it is assumed to be zero outside a certain undetermined length, ℓ. Hence it is required
that the radiation shelf is non-zero when −ℓ < x < ℓ. The form of the radiation outside of this
region will be taken up below.

Whilst a suitably chosen trial function can incorporate radiation shed by the pulse yet still
travelling in its vicinity, radiation shed to the far field as the pulse propagates is not naturally
included. Dispersive radiation is essential for soliton pulses to evolve to their steady state.
Without its inclusion pulse parameters oscillate indefinitely around their fixed points. This is
not a critical problem when modelling pulse behaviour over small t, but makes a big difference
over longer time intervals, particularly when multiple pulses (beams) are continually interacting,
as will be shown and discussed in Chapters 3 & 4.

Substituting the trial function (2.19) into the averaged Lagrangian given by

L =

∫ ∞

−∞
Ldx, (2.20)

yields

L = πg

(
w
da

dz
+ a

dw

dz

)
− πaw

dg

dz
− 2a2w

dσ

dz
− ℓg2

dσ

dz
− a2

3w
+

2a4w

3
, (2.21)

where ℓ is the length of the shelf of radiation travelling with the pulse, still to be determined.
Variations of the averaged Lagrangian are taken for each of the pulse parameters

δa : −πwdg
dz

− 2aw
dσ

dz
− a

3w
+

4

3
a3w = 0, (2.22)

δw : −2πa
dg

dz
− 2a2

dσ

dz
+

a2

3w2
+

2

3
a4 = 0, (2.23)

δσ :
d

dz

(
2a2w + ℓg2

)
= 0, (2.24)

δg : π
d

dz
(aw)− ℓg

dσ

dz
= 0, (2.25)
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which can be rewritten, after suitable rearrangement, as

dg

dz
= − 2a

3π

(
a2 − 1

w2

)
, (2.26)

d

dz
(aw) =

ℓg

π

(
a2 − 1

2w2

)
, (2.27)

dσ

dz
= a2 − 1

2w2
, (2.28)

d

dz

(
a2

w
− 2a4w

)
= 0. (2.29)

There is still a quantity to determine however; the length of the radiation shelf ℓ. With this in
mind, linearising the equations about their fixed point determines the nature of the fixed point.
The fixed point is easily found to be a centre and as such soliton solutions orbit, or oscillate,
around it, where the period of oscillation is determined by ℓ [31]. Kath & Smyth presented
numerical solutions of pulse profiles which revealed that the radiation shelf has small amplitude,
|g| ≪ a, and is relatively flat in comparison to the pulse itself [31]. Consequently the nonlinear
term in the NLS can be neglected for this shelf and the linearised NLS equation

i
∂u

∂z
+

1

2

∂2u

∂x2
= 0, (2.30)

can be used to determine the governing equation for the shelf g as

igz − σzg +
1

2
gxx = 0. (2.31)

At the edge of the shelf, x ∼ ℓ, it is clear that gxx ∼ 0, so equation (2.31) reduces to

igz = σzg, (2.32)

which expresses that the period of oscillation of the shelf of radiation matches the oscillation
period of the pulse [31, 38]. Kath & Symth [31] then obtained an expression for the length of
the shelf in terms of the fixed point â

ℓ =
3π2ŵ

8
, where â = â(ŵ), ŵ =

1

â
. (2.33)

The fixed point â is found from the energy conservation equation (2.29) as

â =

(
2a40w0 −

a20
w0

)1/3

, (2.34)

with a0 and w0 the initial values of a and w. Equations (2.26)–(2.29) form a complete system
of evolution equations now that ℓ has been defined, but radiation losses have been neglected so
far.

Before tackling the problem of incorporating radiation loss into the modulation equations
it is worth summarising what has been shown so far. The various nematicon regimes presented
in Chapters 3, 4 & 5 are analysed using the exact same technique presented here. This section
has been included to show the standard variational method applied to a simple system in order
that the critical decisions and important details can be highlighted. These points are universal
to the technique and consist of

• deriving equations that accurately model the particular dynamical system of interest.

• choosing an appropriate trial function which has parameters that vary realistically.

There are also several key details common to the variational method for determining the
evolution of both NLS solitons and nematicons;
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• trial functions have the same form, with a sech profile for the pulse/beam and a term
representing a shelf of radiation.

• shelf amplitude is small in comparison to that of the pulse/beam.

• the length of the radiation shelf is determined by matching the soliton oscillation frequency
to the frequency of shelf oscillations.

• soliton solutions oscillate about the fixed point, which is a centre.

• solitons require radiative losses to damp oscillations around the centre and fall to their
steady state.

The final point is discussed in more detail for the simple NLS system in the following section.

2.2.2 A Simple System including Shed Radiation

Radiation shed by the pulses as they evolve must be included if agreement between numerical
and approximate solutions is to be good over large z. More specifically, the critical points of
a Hamiltonian system such as the one described are always centres and, as a consequence, the
pulse trajectory will infinitely oscillate about the fixed point in a stable orbit unless the motion
of the pulse is coupled to the radiation field, which will cause a damping of oscillations, allowing
the pulse to settle [31].

Radiation outside the vicinity of the pulse has been shown numerically to be of low amplitude
in comparison to the amplitude of the pulse itself [31]. Hence the nonlinear term in the governing
equation can be neglected and a linearised pulse equation governs evolution outside of the pulse
vicinity, namely

i
∂u

∂z
+

1

2

∂2u

∂x2
= 0. (2.35)

The exact solution of this linearised NLS equation yields the form of the radiation shed by
the pulse. However, the complete details of this solution are not needed, only the amount of
conserved quantities shed in radiation. Since loss of mass is the major contributor to radiation
shed by the pulse, it is not surprising that the conservation of mass equation plays the most
important role in the calculation of shed radiation [31]. Mass density is ρ = |u|2 and mass flux
density is J = i

2 (uu
∗
x − u∗ux). Hence the conservation of mass equation is given by

∂ρ

∂z
+
∂J

∂x
=

∂

∂z
|u|2 + ∂

∂x

i

2
(uu∗x − u∗ux) = 0, (2.36)

which, when integrated in x, is
d

dz

∫ ∞

−∞
|u|2dx = 0, (2.37)

for both the linearised NLS equation and the NLS equation itself. The mass conservation
equation will be shown to be integral to the calculation of mass flux, and therefore radiation
loss [31].

If Λ = ℓ/2 represents the length from the centre of the pulse to the edge of the radiation
shelf then the mass radiated to the right of the pulse will be radiated into the region Λ < x <∞
and is therefore given by

d

dz

∫ ∞

Λ

|u|2dx = Im(u∗ux)|x=Λ. (2.38)

By taking the Laplace transform of the linearised NLS equation (2.35) and manipulating the
result appropriately an equation for ux in terms of u can be found. The linearised NLS equation
has the Laplace transform

iζũ+
1

2

d2ũ

dx2
= 0 with ũ(ζ) =

∫ ∞

0

e−ζzudz = L{u(z)}, (2.39)
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where L{u(z)} is the Laplace transform of u in z. The solution ũ of this ordinary differential
equation (ODE) in Laplace space and its derivative with respect to x respectively are

ũ = Ae−
√
−2iζx where x > Λ,

dũ

dx
= −

√
2ζe−

iπ
4 ũ. (2.40)

The convolution theorem is then applied to invert the Laplace transform, yielding

ux = −
√
2e−

iπ
4
d

dz

∫ z

0

u(Λ, s)√
π (z − s)

ds, (2.41)

at x = Λ. Therefore equation (2.38) may be rewritten

d

dz

∫ ∞

Λ

|u|2dx = Im

(
− u∗(Λ, z)

√
2e−iπ/4

d

dz

∫ z

0

u(Λ, s)√
π(z − s)

ds

)
. (2.42)

On noting that the mass radiated to the left and right are the same due to the symmetry of the
problem and that the mass lost to dispersive radiation has to come from mass contained in the
vicinity of the pulse, −Λ < x < Λ, for which the mass conservation equation (2.36) has already
been obtained, a modified total mass conservation equation where the mass in the vicinity of
the pulse is equated to the mass radiated away from the pulse is derived and given by

d

dz

(
2a2w + 2Λg2

)
= 2

√
2 Im

(
u∗(Λ, z)e−iπ/4

d

dz

∫ z

0

u(Λ, s)√
π(z − s)

ds

)
. (2.43)

Yet u(Λ, s), the radiation at the edge of the shelf, is still to be identified. From numerical
solutions it was found that the shelf of radiation has low amplitude and is relatively flat in
comparison to the pulse. Therefore it can be assumed that its phase is slowly varying relative
to the shed radiation and can be approximated as being constant [31]. If this approximation is
taken then u(Λ, s) and u∗(Λ, s) can be replaced by r = |u(Λ, s)| and equation (2.43) is

d

dz

(
2a2w + 2Λg2

)
= −2r

d

dz

∫ z

0

r√
π(z − s)

ds. (2.44)

At the edge of the shelf x = Λ, u(Λ, z) is given by

u(Λ, z) =

(
a sech(

Λ

w
) + ig − â sech(

Λ

ŵ
)

)
eiσz. (2.45)

Then r may be defined as

r = |u(Λ, z)| =

√(
a sech(

Λ

w
)− â sech(

Λ

ŵ
)

)2

+ g2. (2.46)

Expanding the real part of the shelf in the above expression for r = |u(Λ, z)| in a Taylor series
about the fixed point to first order yields(

a sech(
Λ

w
)− â sech(

Λ

ŵ
)

)2

≈ a2w − â2ŵ

Λ
, (2.47)

which is the mass difference between the solitary wave and the fixed point soliton [38]. Substi-
tuting equation (2.47) into equation (2.46) for r = |u(Λ, z)| gives

r2 = |u(Λ, z)|2 ≈ 1

Λ

(
a2w − â2ŵ + Λg2

)
, (2.48)

allowing the calculation of the integral in equation (2.44).
What remains is to incorporate mass loss into the variational equations (2.26)–(2.29). Since
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pulse damping is a function of g and mass loss and the height of the shelf g are both zero
initially, it is natural to include the loss term, denoted δ, in the variational equation for g
[31, 32]. With this inclusion the approximate evolution equations for a NLS soliton are

dg

dz
= − 2a

3π

(
a2 − 1

w2

)
− 2δg, (2.49)

d

dz
(aw) =

2Λg

π

(
a2 − 1

2w2

)
, (2.50)

dθ

dz
= a2 − 1

2w2
, (2.51)

d

dz

(
a2

w
− 2a4w

)
= 0, (2.52)

where

δ =
9π2

128Λr

d

dz

∫ z

0

r√
π(z − s)

ds, (2.53)

r2 = |u(Λ, z)|2 =
1

Λ

(
a2w − â2ŵ + Λg2

)
. (2.54)

The modulation equations (2.49)–(2.52) are now complete and can be solved numerically
via the Runge-Kutta method or an equivalent iterative method.

2.2.3 A Single Nematicon System

Whilst the example of a temporal soliton pulse governed by a (1+1)-D NLS equation is of great
importance to understanding the method of approximation, particularly when considering the
incorporation of radiation loss, there are two major differences between this and the method for
approximately solving equations governing nematicon propagation which require highlighting
and clarification before proceeding further. Firstly, the evolution equations presented in this
work model (2 + 1)-D spatial soliton beams. Moving from 1 to 2 spatial transverse dimensions
extends the modulation equations and complicates the calculation of radiation loss. Secondly, an
interaction between nematic molecules and the optical beam, discussed in Chapter 1, introduces
a second governing equation required to model the evolution of the director, which must be
coupled to the familiar NLS-like equation governing beam evolution. For the approximate
modulation equations to be simple enough for a meaningful analysis of beam evolution to be
made, these governing equations and the associated Lagrangian must be simplified which adds
another layer of approximation to the approximate method. An additional complication arises
from the inclusion of a director equation into the calculation of the already simplified averaged
Lagrangian requiring that further approximations are needed for it to be evaluated.

Complications to the calculation of the modulation equations associated with the inclusion
of a director equation will be highlighted for each particular regime presented in Chapters 3, 4
& 5, but the difficulties common to each regime encountered when calculating radiation loss in
higher dimensions are presented here since the radiation calculation varies little from case to
case.

To highlight the differences between calculating radiation loss for a (1 + 1)-D NLS solitary
wave and that of (2+1)-D nematicons, the propagation of a typical (2+1)-D nematicon in the
local regime will be presented briefly, followed by a detailed study of the changes required to
include diffractive radiation losses. The local regime has been chosen as nonlocality causes an
additional complication to the radiation shelf calculation which will be discussed in Chapter 3.
The radiation calculation for nematicons in the local regime was presented in full by Garćıa-
Reimbert et al [30]. However the author suggests that a full summary of this calculation is
essential if a complete understanding of the modulation method is to be obtained, since the
additional beams of Chapters 3 & 4 and the index defect of Chapter 5 add more equations,
variables and parameters to an already complicated problem. Furthermore, radiation losses are
calculated in an identical fashion for all of the regimes presented in this work, so one detailed
analysis of the calculation here, with adjustments mentioned in the relevant chapters for each
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regime, is the most efficient way of presenting the calculation.
The equations governing single nematicon evolution were derived in Section 2.1 and are

i
∂u

∂z
+

1

2
∇2u+ sin (2θ)u = 0, (2.55)

ν∇2θ − q sin (2θ) + 2|u|2 cos (2θ) = 0, (2.56)

which can, in the local limit with ν small and small |u|, be simplified to the higher-order NLS
equation [30]

i
∂u

∂z
+

1

2
∇2u+

2

q
|u|2u− 4

q3
|u|6u = 0, (2.57)

where u is the envelope of the electric field and ν and q are constants whose physical meanings
were touched upon previously and will be explained further in Chapter 3. The Laplacian ∇2

is in the (x, y)-plane and the beam initially propagates in the z direction. Using the same
modulation technique as for the one-dimensional NLS equation, described in Section 2.2.1, the
governing equations are converted to the equivalent Lagrangian formulation. To calculate the
double integral averaged Lagrangian

L =

∫ ∞

−∞

∫ ∞

−∞
L dxdy, (2.58)

a suitable trial function is chosen

u = a sech

√
x2 + y2

w
eiσ + igeiσ, (2.59)

where beam amplitude a, beam width w, phase σ and shelf amplitude g are functions of z.
This trial function is then inserted into L. Variations are taken with respect to each of the
parameters a, w, σ and g. As for the (1 + 1)-D NLS soliton, nematicons form a radiation shelf
travelling under and with the beam during propagation. The existence of this shelf was shown
numerically for single nematicons by Garćıa-Reimbert et al [30] and Minzoni et al [39] and can
also be clearly seen in Figure 1.3. This shelf is in (2 + 1)-D and therefore forms a disc under
the beam whose radius is given by ℓ. To simplify some of the calculations Λ is introduced,
whose relation to ℓ is Λ = 1

2ℓ
2 [30]. The modulation equations for a single nematicon are then

found to have exactly the same structure as those for the NLS soliton, with a few changes to
coefficients, namely

d

dz

(
I2a

2w2 + Λg2
)
= 0, (2.60)

d

dz

(
I1aw

2
)
= Λg

dσ

dz
, (2.61)

I1
dg

dz
=
I22a

2w2
− I4a

3

q
+

3I8a
7

q3
, (2.62)

I2
dσ

dz
= −I22

w2
+

3I4a
2

q
− 7I8a

6

q3
. (2.63)

The Is are various constants given by integrals [30]. These constants are defined later (see (3.18)
& (4.16)). Now that the modulation equations (2.60)–(2.63) are known a detailed analysis of
the shed radiation can be presented.

The linearised NLS equation (2.35) is the equation governing radiation shed to the far field
for the NLS solitary wave. Similarly, by linearising the governing Schrödinger-like equation
(2.57) and assuming circular symmetry, radiation propagating away from the nematicon beam
is governed in polar coordinates by

i
∂u

∂z
+

1

2

∂2u

∂χ2
+

1

2χ

∂u

∂χ
= 0, (2.64)

where χ2 = x2 + y2. Since the governing equation for shed radiation is now linearised what
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follows is identical for single nematicons in both local and nonlocal regimes [30, 39] because
radiative losses are too small to have a non-negligible nonlinear interaction with the medium.

Equation (2.64) is solved coupled with a boundary condition (S(z)) at the edge of the shelf
which matches the shelf of radiation with shed radiation, i.e. u = S(z) on χ = ℓ, for the purpose
of finding the mass flux to radiation. The shelf radius ℓ has already been assumed to be slowly
varying so for the purposes of calculating radiation it will be assumed to be constant. Mass
conservation in standard form is given as

d

dz

∫ ∞

−∞
χ|u|2dχ = 0, (2.65)

equivalent to equation (2.37) for the NLS solitary wave. Thus the mass flux into the far field is
radiated from the edge of the shelf into the region ℓ < χ <∞ and is given by

d

dz

∫ ∞

ℓ

χ|u|2dχ = Im (χu∗uχ) |χ=ℓ, (2.66)

on neglecting higher-order terms. Again an expression relating u and uχ must be found and
R = |u(Λ, z)| calculated.

The Laplace transform of the linearised NLS-like equation (2.64) is

2iζχũ+ χ
d2ũ

dχ2
+
dũ

dχ
= 0 with ũ(ζ) =

∫ ∞

0

e−ζzudz = L{u(z)}, (2.67)

Setting χ = αr, equation (2.67) may be rewritten

2iζα2rũ+ r
d2ũ

dr2
+
dũ

dr
= 0. (2.68)

A suitable choice of α allows equation (2.68) to be given in the form

r
d2ũ

dr2
+
dũ

dr
− rũ = 0 with α =

eiπ/4√
2ζ
. (2.69)

The solution of this equation is the modified Bessel function of order 0

ũ = AK0(r) = AK0[
√

2ζe−iπ/4χ], (2.70)

where A is some constant. From this description of ũ, ũχ can also be found

ũχ = −
√
2ζeiπ/4AK1, (2.71)

whereK1 is the modified Bessel function of order 1. The undefined constant A can be eliminated
to leave

ũχ = −
√
2ζeiπ/4ũK1

K0
. (2.72)

Utilising the convolution theorem, as was done for the earlier NLS soliton example, the inverse
Laplace transform of equation (2.72) yields

uχ|χ=ℓ = − 1

2iπ

∫
C

√
2se−

iπ
4

K1

[
ℓ
√
2se−

iπ
4

]
K0

[
ℓ
√
2se−

iπ
4

] S̃eszds, (2.73)

where S is the as yet undetermined boundary condition for u at χ = ℓ, S̃ the Laplace transform
of S, s is the Laplace transform variable and the contour C lies to the right of all singularities
of the integrand [30]. Equation (2.73) gives the flux product

u∗uχ = S(z)∗
∫ z

0

G (z − z′)S(z′)dz′, (2.74)
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where G, the Green’s function, is given by

G(τ) = − 1

2iπ

∫
C

√
2se

−iπ
4

K1

[
ℓ
√
2se−

iπ
4

]
K0

[
ℓ
√
2se−

iπ
4

]esτds. (2.75)

From observations made for the (1 + 1)-D NLS soliton [31], S can be assumed to have slowly
varying phase ϕ and equation (2.74) may be rewritten as

u∗uχ = R(z)

∫ ∞

0

G(z − z′)R(z′)dz′, where S(z) = R(z)eiϕz. (2.76)

This equation can be used to provide an accurate calculation of the radiation flux, but the
Green’s function is not suitably explicit for the analysis of radiation loss.

Since K1 is the derivative with respect to s of K0, the Green’s function G (equation (2.75))
can be rearranged to

G(τ) =
1

2iπ

∫
C

2s

ℓ

d

ds
ln
(
K0

[
ℓ
√
2se−

iπ
4

])
esτds. (2.77)

Taking the asymptotic expansion of the Bessel function K0 as s→ 0, corresponding to z large,
an approximation of K0 is obtained as

K0(ψ) ∼ − ln(
ψ

2
) where ψ → 0. (2.78)

This approximation misses the early transient of the shelf formation and is only accurate for
relatively large z, where the Laplace transform variable s → 0. However, radiation damps the
nematicon over large z so the approximation is valid on the scales of interest for the regimes
that will be presented in this work. Inserting this asymptotic approximation into the equation
for the Green’s function then yields

G(τ) = − 1

2iπℓ

∫
C

2esτ

ln s+ lnΛ− iπ/2
ds. (2.79)

The Green’s functionG can now be calculated. The integral in equation (2.79) is evaluated along
the inverse Laplace transform contour C. The contour C is closed around the branch point of
ln s. Since a large z approximation has been taken, the integral is then asymptotically evaluated
using the method of stationary phase, otherwise known as the saddle-point approximation.
Transforming the variable s such that Re s = −eξ deforms the contour on the branch cuts and
leads to the explicit expression

G(τ) =
1

4ℓ

∫ ∞

−∞

e−e
ξτ+ξ(

ξ
2 + ln Λ

2

)2
− (iπ/2)

(
ξ
2 + ln Λ

2

)
+ 3π2

16

dξ. (2.80)

A standard stationary phase analysis can then be made by letting

4ℓG(τ) =

∫ ∞

−∞
g(ξ)ef(ξ)dξ, (2.81)

where

f(ξ) = −eξτ + ξ, g(ξ) =

((
ξ

2
+

lnΛ

2

)2

− iπ

2

(
ξ

2
+

lnΛ

2

)
+

3π2

16

)−1

, (2.82)

to asymptotically evaluate the integral for large τ , estimating the major contributions to the
integral. The integral is dominated by the highest stationary point of f , which will be a saddle
point (since the integral is evaluated in the complex plane). The result is derived from the
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Taylor series of f about the point ξ0, where ξ0 is chosen such that df(ξ0)/dξ = 0, namely

4ℓG(τ) ≈ g(ξ0)e
f(ξ0)

(
2π

|d2f(ξ0)/dξ2|

)1/2

. (2.83)

The asymptotic form of the Green’s function for large τ is then equation (2.83). It is then
simple to approximate uχ for large z, which is given after some algebra by

uχ = −
√
2π

4ℓe

∫ z

0

R(z′)

(z − z′)
({

1
2 ln(

z−z′
Λ )− iπ

4

}2 − π2

4

)dz′. (2.84)

Mass flux is then found in exactly the same manner as equation (2.44) was found for a NLS
solitary wave. From equation (2.66) for mass flux to radiation the modified mass conservation
equation is

d

dz

∫ ℓ

0

χ|u|2dχ =
d

dz

(
a2w2I2 + Λg2

)
= Im


√
2πR(z)

4e

∫ z

0

R(z′)({
1
2 ln

(
z−z′
Λ − iπ

4

)}2 − π2

4

) dz′

(z − z′)

 .

(2.85)
The function R(z) representing the height of the shelf still needs to be determined and is found
in the exact same manner that r was found in the (1+1)-D NLS soliton case. Namely, the area
of the shelf is equated to the difference in mass between the solution at z and the fixed point
solitary wave so that

|R|2Λ =
(
I2a

2w2 − I2â
2ŵ2 + Λg2

)
. (2.86)

All that remains to be done is to incorporate the mass loss found into the variational equation
for g, equation (2.62). This is an identical process to that shown before for the NLS equation
and the final modified equation is

I1
dg

dz
=
I22a

2w2
− I4a

3

q
+

3I8a
7

q3
− 2δg, (2.87)

where δ is the loss coefficient calculated below. R2 = g2 at the fixed point so the conservation
of mass equation (2.60) is

d

dz

(
a2w2I2

)
+ 2Λg

dg

dz
= − Im {ℓRuχ|χ=ℓ} . (2.88)

At the fixed point it is also reasonable to assume that the main contribution to the left hand
side of equation (2.87) comes from the loss term [38]. If this assumption is taken then

dg

dz
∼ −2δg

I1
, (2.89)

and equation (2.88) yields

−4Λ

I1
δg2 = −4Λ

I1
δR2 = − Im {ℓRuχ|χ=ℓ} . (2.90)

Consequently, the loss coefficient δ is calculated as

δ =
I1ℓ

4ΛR
Im {uχ|χ=ℓ} = −π

√
2πI1

32eRΛ

∫ z

0

R(z′) ln[ z−z
′

Λ ](({
1
4 ln

[
z−z′
Λ

]}2
+ 3π2

16

)2
+ π2

16

{
ln
[
z−z′
Λ

]}2) dz′

(z − z′)
.

(2.91)
With this definition of δ the modulation equations (2.60), (2.61) and (2.63) with the extended
equation (2.87) form a full set of modulation equations approximating single nematicon evolu-
tion in the local regime. The extended variational approximation yielding modulation equations
governing NLS soliton and nematicon evolution has been fully presented. The numerical tech-
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nique used to solve these equations is the subject of the next section.

2.2.4 Numerical Method of Solving Approximate Equations

Analysis of the modulation equations uncovers interesting information about beam evolution
and conserved quantities, yet these equations still need to be solved numerically to be compared
with their counterpart numerical solutions of the full governing equations. The modulation
equations found in sections 2.2.2 & 2.2.3 and in subsequent chapters are all first order ODE
systems which can be solved easily using the standard fourth order Runge-Kutta method or a
suitable equivalent technique.

Generally an ODE system obtained via the variational method may be rewritten in the form
of a matrix equation

Ax′ = b, (2.92)

where A is the matrix of coefficients of x′, which is the vector of derivatives of each of the beam
parameters as a function of z. b is the vector of the inhomogeneous right hand sides of each of
the differential equations. To solve equation (2.92) using the Runge-Kutta method the system
must be inverted. To this end, the LU decomposition is utilised. A can be factorised into lower
and upper triangular matrices respectively

Ax′ = LUx′ = b. (2.93)

Introducing y = Ux′, equation (2.93) can be replaced by the coupled system of first order
ODEs

Ly = b, Ux′ = y. (2.94)

These triangular matrices L and U can be inverted more easily than A. Numerical forward
substitution is used to solve for y and then backward substitution solves Ux′ = y for x′. The
main advantage of using the LU decomposition over simply inverting the matrix A is that there
is an efficiency gain of about a factor of three. Then for each bi in b = (b1 b2 . . . bn), where n
is the number of differential equations, the triangular matrices are quickly solved. If Gaussian
elimination were used to compute x′ for each bi the computation would be dramatically slowed
by having to perform Gaussian elimination n times [40].

The system (2.92) is now solved using the standard fourth order Runge-Kutta scheme for
x′ using the initial values of the beam parameters. For the vector of parameters x the initial
value problem is defined as

x′ = f(z,x), x(z0) = x0, (2.95)

where f is the operator A−1b, yet to be calculated. With these definitions the fourth order
Runge-Kutta algorithm is summarised as

xm+1 = xm +
1

6
(a1 + 2a2 + 2a3 + a1) ,

zm+1 = zm + h. (2.96)

The estimates of the slope ai of the solution, within the step of length h, are given by

a1 = f(zm, xm),

a2 = f(zm +
1

2
h, xm +

1

2
ha1),

a3 = f(zm +
1

2
h, xm +

1

2
ha2),

a2 = f(zm + h, xm + ha3). (2.97)

xm are the values of the n parameters at the position zm after m steps and xm+1 are the values
of the parameters x at the next z step determined by the step length h. This method is fourth
order accurate in h and solves the ODE system, yet once again the incorporation of radiation
shed as the beam evolves brings with it complications.
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A Simple System including Radiation

For the simple NLS solitary wave described in Section 2.2.2, the loss term δ was given by

δ =
9π2

128Λr

d

dz
(Γ) =

9π2

128Λr

d

dz

∫ z

0

r√
π(z − s)

ds. (2.98)

The integral Γ can easily be evaluated using the Trapezoidal Rule over most of the interval,
except at the upper limit z = s, where it is singular. Miksis & Ting developed a numerical
method to solve general integral-differential systems [41]. In this work they circumvented the
difficulties of calculating an integral with a singularity by separating the integral into two parts;
one integral is calculated using the composite Trapezoidal Rule as there is no singularity in its
range, the other lies in an interval near and including the singularity, expressed as a sum of
integrals easily approximated by a linear polynomial, apart from the term involving z which is
solved using standard Picard iteration.

For the NLS soliton example given above, the integral Γ is then given by

Γ = Γ1 + Γ2 =

∫ L

0

r(s)√
π(z − s)

ds+

∫ z

L

r(s)√
π(z − s)

ds. (2.99)

Γ1 is calculated directly using the composite Trapezoidal Rule since there is no singularity in
the range of integration. L, the integral change-over point, is chosen far enough away from z to
ensure that the integrand in Γ1 is smooth, but close enough to z so that it contains the major
part of the region of integration. This is done because the composite Trapezoidal Rule is more
accurate over identical step lengths than the method for evaluating Γ2 near the singularity.

Γ2 may be expressed as a sum of integrals

Γ2 =

n∑
i=k

∫ zi+1

zi

r(s)√
π(z − s)

ds, (2.100)

where k is chosen so that zk = L. The linear polynomial approximation for r on each interval
zi < s < zi+1 is given by

r(s) ≈ r(zi) + (s− zi)
r(zi+1)− r(zi)

zi+1 − zi
, (2.101)

which is then inserted into equation (2.100). The resulting integral is then evaluated exactly,
giving

Γ2 =

n∑
i=k

(
2

(
r(zi) +

(
r(zi+1)− r(zi)

zi+1 − zi

)
(z − zi)

)(√
z − zi −

√
z − zi+1

)
+
2

3

r(zi+1)− r(zi)

zi+1 − zi

(
(z − zi+1)

3/2 − (z − zi)
3/2
))

. (2.102)

Miksis & Ting used variable step sizes to take advantage of the smooth nature of the integrand
of Γ1 [41]. By taking a small step size for Γ2 near the singularity and then increasing the step
size for Γ1 over 0 < s < L they managed to increase computational efficiency. But this is
impossible for the calculation of the radiation loss coefficient δ presented here since r has only
been calculated at each z step and is therefore not the smooth continuous function required for
variable step sizes. Splitting of the integral in this manner is still necessary and advantageous,
however, as by choosing the integral change-over point L to be as close to z as possible the more
accurate composite Trapezoidal Rule can be used to calculate most of the integral and only a
small range of s requires the less accurate linear polynomial approximation near the singularity.
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A Single Nematicon System

The radiation loss integral for a single nematicon, which is identical to the loss integrals for
each of the cases presented in this work, was given by

δ = −π
√
2πI1

32eRΛ
Γ = −π

√
2πI1

32eRΛ

∫ z

0

R(z′) ln[ z−z
′

Λ ](({
1
4 ln

[
z−z′
Λ

]}2
+ 3π2

16

)2
+ π2

16

{
ln
[
z−z′
Λ

]}2) dz′

(z − z′)
.

(2.103)
It seems natural to use the method of Miksis & Ting once again. However this method is valid
for integrals of the form ∫ z

0

f(z′)

(z − z′)
a dz

′, (2.104)

where f is some non-singular function and 0 < a < 1, or at least has a singularity which can
be integrated exactly. If a ≥ 1 the integral is divergent. The denominator of the integrand
of equation (2.103) has a = 1, yet this integral is convergent as z → z′ since the denominator
includes terms involving squared logarithms. A careful analysis of the singularity near z = z′,
taking account of the logarithms in the denominator, shows that the singularity is integrable.
An extended version of the method of Miksis & Ting can be used to evaluate the integral near
the singularity [30]. As a result, the integral Γ is split into two parts, as for the numerical
calculation of the radiation loss term for the NLS soliton, with the denominator approximated
by its leading order singularity as z′ → z. Now that radiation has been calculated, the nematicon
modulation equations can be numerically solved and their solutions compared with numerical
solutions of the full governing equations. The method used to solve the full nematicon equations
will be outlined in the next section.

2.3 Numerical Method

For any deductions to be made from the solutions of the modulation equations, the validity of
such solutions must be established as they have been derived under a number of approximations.
This is done by calculating numerical solutions of the full governing nematicon equations and
comparing them with the modulation solutions.

Naturally a numerical method must be chosen with proven accuracy and efficiency. For this
reason a pseudo-spectral method based on the method developed by Fornberg & Whitham [42]
will be used. Fornberg & Whitham’s Fourier method has been analysed and compared with
other numerical techniques by various authors and has been found to be competitive, yielding
accurate solutions with low computational cost compared to other popular methods, such as
finite difference or finite element methods. Furthermore, Garćıa-Reimbert et al [43] compared
an alternative finite difference method to the method which will be used here and described
below. In this work they analysed the full governing single nematicon equations (2.55)–(2.56)
which were solved using the method of the present work and using a standard method based on
the Dufort-Frankel finite difference scheme to solve equation (2.55) and a Gauss-Siedel iteration
with successive over relaxation to solve equation (2.56). Identical step sizes were taken and it
was found that agreement was excellent [43].

The numerical scheme presented here is developed somewhat from that derived by Fornberg
& Whitham in that the z integration has been calculated using a fourth order Runge-Kutta
method in Fourier space, as opposed to the original stepping in z of Fornberg & Whitham which
was calculated using a second order scheme in physical space. Additionally, a damping layer has
been included at the boundaries to reduce the effects of wave reflection there on the solitary
wave, as proposed by If et al [44]. The nematicons presented in this thesis have governing
equations which include a director equation similar to equation (2.56), which also needs to be
solved. This is achieved using a standard fast Fourier transform (FFT)-based boundary value
numerical method [45].

The (1 + 1)-D NLS equation will be used as an example once again to highlight the main
features of the full numerical method. Later the numerical method for the (2+1)-D nematicon
governing equation will be discussed. Any further adjustments to the numerical scheme for any
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particular regime presented in this thesis will be included in the Results section of the specific
chapter.

To damp any waves reflected at the boundaries, damping terms around these boundaries
are added to the NLS equation (2.15). This adjustment adds an additional term to the NLS
which simulates dispersive radiation travelling away from the beam indefinitely. Radiation is
absorbed just before it reaches the boundary, in effect simulating an infinite grid. With the
addition of this damping term the adjusted NLS equation is

iuz +
1

2
uxx + |u|2u+ iε(x)u = 0 where,

ε(x) = ε0
[
sech2 (η(x− L/2)) + sech2 (η(x+ L/2))

]
. (2.105)

L is the computational domain length, so that the boundaries are x = −L/2 and x = L/2.
ε0 and 1/η are the strength and width of the damping layer, respectively. The inclusion of
a damping term allows smaller spatial intervals to be chosen, which in turn allows greater
computational speed. To solve the modified NLS equation (2.105) it must first be transformed
into Fourier space via the Fourier transform, which yields

dū

dz
+
i

2
ω2ū− iF

{
|u|2u

}
+ F {εu} = 0, (2.106)

where the Fourier transform of u(x, z) and its inverse respectively are defined by

ū (ω, z) = F {u} =
1√
2π

∫ ∞

−∞
u (x, z) e−iωxdx, u(x, z) = F−1 {ū} =

1√
2π

∫ ∞

−∞
ū(ω, z)eiωxdω.

(2.107)
Equation (2.106) can now be rewritten in Fourier space by multiplying by an integrating factor,

eiω
2z/2, from which the name of the method was taken, and which yields a first order ODE

d

dz

(
ūeiω

2z/2
)
=
(
iF
{
|u|2u

}
+ F {εu}

)
eiω

2z/2. (2.108)

To solve equation (2.108) for u(x, z) numerically requires the equation to be discretised. The
discrete form of equation (2.108) is given by

d

dz

(
ūje

iω2
j z/2

)
=
(
iF
{
|u|2u

}
+ F {εu}

)
eiω

2
j z/2, (2.109)

where

ωj =
2πj

L
, j =

−N
2

+ 1, . . . ,
N

2
. (2.110)

N is the number of spatial points and u(x, t) is now numerically defined on these points. It can
be solved using the standard forward FFT algorithm to calculate the Fourier transforms, then
the Runge-Kutta method or an equivalent iterative method in Fourier space to calculate ū at
the next z step. Finally ū is multiplied by the inverse integrating factor and then the backward
FFT algorithm calculates the inverse Fourier transform of ū, namely u. These algorithms, and
further details of the method, will be described below for a nematicon.

The (2+ 1)-D single nematicon governing equations including a damping term are given by

i
∂u

∂z
+

1

2
∇2u+ sin (2θ)u+ iεu = 0, (2.111)

ν∇2θ − q sin (2θ) + 2|u|2 cos (2θ) = 0. (2.112)

Taking the Fourier transform of equation (2.111) yields

∂ū

∂z
− i

2
ω2
xū− i

2
ω2
yū− iF {u sin 2θ}+ F {εu} = 0, (2.113)

where ωx is the Fourier transform dummy variable corresponding to spatial variable x and ωy
the dummy variable corresponding to y. The integrating factor method is used in an identical
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fashion to that for the NLS example to reduce equation (2.113) to

d

dz

(
ūeiω

2
xz/2

)
=

(
i

[
1

2
ω2
yū+ F {u sin 2θ}

]
− F {εu}

)
eiω

2
xz/2. (2.114)

Assuming u is known for a given z then ū, the Fourier transform of u, is also calculable. At
each z step the Fourier transform of the second derivative of u with respect to y can then be
calculated. F {u sin 2θ} requires the computation of θ which is found from the director equation
(2.112). To solve this equation it is rewritten in the form

ν∇2θ − 2qθ = q sin 2θ − 2qθ − 2|u|2 cos 2θ, (2.115)

with boundary conditions

∂2θ

∂x2
= 0 if x = 0,

∂2θ

∂y2
= 0 if y = 0,

θ → 0 as x→ ∞, y → ∞. (2.116)

It was found that equation (2.115) had better convergence properties than the original director
equation (2.112) [30, 35, 39]. ∂2θ/∂x2 is solved using standard second order finite differences.
On taking FFTs in the x direction this reduces to a two-point boundary value problem in y
which is solved using a standard Picard iteration, where the right hand side is evaluated at the
previous iteration. The other term {εu} is solved simply in physical space. u sin 2θ and εu are
transformed from physical space to Fourier space via the FFT algorithm.

Equation (2.114) can now be considered a first order ODE in Fourier space which, upon
discretisation, will be solved using the fourth order Runge-Kutta scheme. Discretising equation
(2.114) yields the single nematicon equivalent of equation (2.108) for a NLS soliton, namely

d

dz

(
ūjke

iω2
j z/2

)
=

(
i

2
ω2
kūjk + iF {u sin 2θ} − F {εu}

)
eiω

2
j z/2, (2.117)

where

ωj =
2πj

Lx
, ωk =

2πk

Ly
, (2.118)

j =
−Nx
2

+ 1, . . . ,
Nx
2
, k =

−Ny
2

+ 1, . . . ,
Ny
2
. (2.119)

Lx, Nx are the interval length and number of points respectively in the x direction and Ly, Ny
the same in the y direction.

Fornberg & Whitham used a leapfrog z stepping scheme whereby uz was approximated by
uz ≈ u(x, z+∆z)−u(x, z−∆z)/2∆z [42]. Here however the calculation of uz is more accurately
performed in Fourier space using the fourth order Runge-Kutta method. To calculate u at the
next space step (z +∆z), the right hand side of equation (2.117) is calculated at z, z +∆z/2
and z +∆z. Equation (2.117) is estimated for the smallest step ∆z/2 to be

d

dz
(ϕjk) =

d

dz
(ūjk (n∆z)) e

i
4ω

2
j∆zη(ujk)e

i
4ω

2
j∆z = G(u, z), (2.120)

where

ϕ = ūeiω
2
xz/2, η(u) =

i

2
ω2
yū+ iF {u sin 2θ} − F {εu} , (2.121)

and n is the current step. The nonlinear part of equation (2.117) is calculated exactly in physical
space, then transformed to Fourier space numerically using the forward FFT algorithm.

With these definitions the Runge-Kutta method takes ϕnjk, the Fourier transform of u mul-

tiplied by the integrating factor at the current step n, and computes ϕn+1
jk at the next z step

n+ 1. The algorithm is explained in detail as follows;
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•
U1 = ϕnj +

∆z

2
G(u, z).

u is known at z therefore G(u, z) is easily calculated. U1 is an Euler step of length ∆z/2,
yielding an estimate of ϕ at z +∆z/2.

•
U2 = ϕnj +

∆z

2
G(F−1 (U1) , z +

∆z

2
).

If U1 is multiplied by the inverse integrating factor and then the inverse Fourier transform
of U1 is taken, an estimate of u at z +∆z/2 is found. Consequently G(u, z +∆z/2) can
be calculated.

•
U3 = ϕnj +∆zG(F−1 (U2) , z +

∆z

2
).

U2 is known at z+∆z/2 therefore G(F−1(U2), z+∆z/2) is easily calculated. Notice that
U3 is an Euler step of length ∆z, yielding an estimate of ϕ at z +∆z.

•
U4 = −ϕnj +

∆z

2
G(F−1 (U3) , z +∆z).

If U3 is multiplied by the inverse integrating factor and then the inverse Fourier transform
of U3 is taken, an estimate of u at z + ∆z is found. Consequently G(F−1(U3), z + ∆z)
can be calculated.

The solution at n+ 1, ϕn+1
jk , is given by a weighted average of the estimates U1–U4, namely

ϕn+1
jk =

1

3
U1 +

2

3
U2 +

1

3
U3 +

1

3
U4. (2.122)

un+1, which is u at the next z step, is then extracted from ϕn+1
jk by multiplying by the integrating

factor and then inverting ū using the backward FFT algorithm to return u to physical space.
This process is repeated until the final z value has been reached.

In this chapter the analytical method for approximating nematicon dynamics has been
described along with the numerical scheme used to solve the resultant modulation equations.
A description of the numerical method used to solve the full nematicon governing equations
has also been given. How to extend these methods to more complicated nematicon regimes can
now be investigated.
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Chapter 3

Two-Colour Nematicons in the
Nonlocal Limit

3.1 Background

Unlike soliton collisions in integrable systems, collisions in nonintegrable systems display un-
usual and interesting features. Collision effects for solitons governed by nonlinear Schrödinger-
like (NLS-like) equations can depend on several parameters including wavelengths, intensities,
collision angles and relative phases of the beams. In most media in-phase beams attract, possibly
leading to beam fusion where the two beams form a single vector soliton with large parameter
oscillations. In certain circumstances an additional beam may form and 3 solitons emerge from
the collision [11]. Otherwise the beams pass through one another emerging intact but with
oscillations of the beam parameters, a positional shift and some losses to radiation. Generally,
out of phase beams repel one another [5, 39]. One interesting feature of the nonlocal nematic
liquid crystal (NLC) reorientational response is that the interaction is always attractive because
there is always an attractive positive refractive index perturbation caused by one beam on the
other that extends beyond the beams themselves to the overlap of the respective refractive
index perturbations. This nonlocal attraction counteracts any repulsion in cases where beams
are out of phase, making the interaction between nematicons predominantly phase-independent
[19, 20, 28, 39].

The first step in the observation of two-colour nematicons was made by Peccianti et al
where waveguiding of weak signals by nematicons was reported [9]. In this work a single
nematicon caused a refractive index change in the NLC, creating a self-induced waveguide in
which a weak signal was passively steered. Later, Assanto et al conducted experiments with
two symmetric nematicons of similar intensity co-propagating in a NLC. They noted that the
interaction was always attractive and that “no phase dependence was observed” [19]. The same
group led by Prof. Assanto once again were the first to discover nematicon interaction and
co-propagation between two light beams of different colours, termed ‘two-colour nematicons’
[17]. Nonlinear self-focusing of individual beams caused by the reorientational response of the
nematic has been shown to prompt a walk-off effect which displays a linear relation between
the walk-off angle and initial beam power, with increased power producing a greater walk-
off angle. In the two-colour nematicon experiments, when two beams were colaunched the
addition of nonlinear cross-phase modulation (XPM) between the two beams enhanced the
nonlinear response, allowing a vector nematicon to form from which a combined vector walk-
off could be calculated. Varying the wavelengths (colours) of the beams introduced aperiodic
breathing features and had an effect on walk-off yet the beams were stable, in contrast to
predictions made by Shen et al for two-colour solitons in nonlocal Kerr-type nonlinear materials
[46]. Additionally, the authors presented governing equations which were solved numerically.
Comparisons between experimental data and numerical solutions of the governing equations
were excellent [17]. An experimental observation of a two-colour nematicon with wavelengths
632.8nm (red) and 1064nm (near infrared (NIR)) for each colour respectively, is shown in Figure
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Figure 3.1: Experimental results and superimposed numerical contour maps for (a) two co-
launched beams with negligible XPM diffracting, (b) a single beam diffracting and (c) two
colaunched beams interacting to form a two-colour nematicon. Permission of use of image
taken from Ref. [17] kindly given by Prof. G. Assanto.

3.1(c), with a contour map of the intensity profile calculated by Alberucci et al represented by
the white lines [17]. It should be noted that walk-off is not seen in these figures as the (x, y, z)
coordinate system has been replaced by a system (x, t, s) which is a rotation about the x axis
accounting for the combined walk-off of the vector soliton. Figure 3.1(a) shows two copolarised
beams, one weak (0.1mW ) and the other relatively strong (1.2mW ), colaunched into a NLC
cell. The strong beam cannot self-focus to form a waveguide for the weak beam and, as a result,
they both diffract. A single red beam of average power (0.4mW ) is launched into the cell in
Figure 3.1(b) and diffracts. However, when an average power (0.4mW ) red beam is colaunched
with a strong (1.2mW ) NIR beam, XPM allows the two beams to form a vector soliton, or
two-colour nematicon, as seen in Figure 3.1(c) [17].

The experimental setup did not include an externally applied electric field as it was assumed
that additional walk-off effects would be observed in this regime [17]. However other investi-
gations into nematicon behaviour have been conducted with an externally applied electric field
so it is of interest to discover whether additional walk-off is indeed observed under these new
conditions and, if so, what the nature of this additional effect is. From a mathematical point of
view, when there is no static/low-frequency applied electric field the nematic response does not
have a pulse shape, so the appropriate boundary conditions at the cell walls must be accounted
for [47]. With an applied field the nematic response is localised. Consequently the boundaries
can be ignored for small beam to cell width ratios, resulting in a much simpler mathematical
analysis [48]. Another motivation for the present work is that nematicon experimental results
have so far been limited to mm distances, meaning that investigations of the role that radiative
losses play in the evolution of the beams have not been carried out [9]. To this end, large
propagation distances will be investigated which have the added advantage of showing beam
evolution approaching or reaching the steady state [39].

A model including an externally applied electric field incorporating the walk-off observed
by Alberucci et al will be introduced. This means that any further walk-off effects observed
here would be in addition to the ones described by Alberucci et al and would therefore be
of a different nature arising from the added externally applied electric field. Therefore to
differentiate between the two types of walk-off, the walk-off observed by Alberucci et al will be
described as ‘Poynting vector walk-off’ and any walk-off observed in this work will be named
‘momentum walk-off.’

Let us consider two polarised, coherent light beams of different colours (wavelengths) prop-
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Figure 3.2: Schematic diagram of a liquid crystal cell with two x polarised light beams of
different colours interacting.

agating through a planar nematic liquid crystal cell, taking the direction down the cell to be
the z direction, with the (x, y)-plane orthogonal to this, as illustrated in Figure 3.2. The input
light beams are polarised so that their electric fields are in the x direction. The Fréedericksz
threshold is overcome by applying a static/low-frequency electric field in the x direction which

causes the optical director angle to be pre-tilted by an angle θ̂ to the z direction. When light
beams are incident the optical director angle is perturbed by a further angle θ.

Alberucci et al derived the equations for two-colour nematicon propagation in the absence of
an applied static/low-frequency electric field [17]. These equations can be extended to include
an applied static/low-frequency electric field in a similar way to that described in Section 2.1
for a single nematicon. The equations governing the propagation of two-colour nematicons
then consist of coupled nonlinear Schrödinger-like (CNLS-like) equations for each colour and a
director (Poisson) equation which is the two beam equivalent of equation (2.9) derived before.
In nondimensional form these equations are

i
∂u

∂z
+

1

2
Du∇2u+Auu sin 2θ = 0, (3.1)

i
∂v

∂z
+

1

2
Dv∇2v +Avv sin 2θ = 0, (3.2)

q sin 2θ − 2 cos 2θ
(
Au|u|2 +Av|v|2

)
= ν∇2θ, (3.3)

where the Laplacian∇2 is in the (x, y)-plane. Ak andDk are coupling and diffraction coefficients
respectively, where k = u, v. q is proportional to the square of the pre-tilting field [17]. The
parameter ν measures the strength of the elastic response of the nematic, and so measures
its degree of nonlocality, with a nonlocal response corresponding to ν large. The variables u
and v are the complex-valued, slowly varying envelopes of the electric fields of the two beams,
modified by a phase factor which accounts for Poynting vector walk-off. Peccianti et al showed
that Poynting vector walk-off is a departure of propagation direction from z in the x direction
[49]. If Poynting vector walk-off were to be included in the current model, equations (3.1) and
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(3.2) would become

i
∂U

∂z
+ i tan∆u

∂U

∂z
+

1

2
Du∇2U +AuU sin 2θ = 0, (3.4)

i
∂V

∂z
+ i tan∆v

∂V

∂z
+

1

2
Dv∇2V +AvV sin 2θ = 0. (3.5)

U and V are then the field envelopes of the beams without the Poynting vector walk-off factored
out. As ∆u and ∆v are the walk-off angles for each colour beam then the phase transformation

U = ue((i/2)z tan
2 ∆u−ix tan∆u)/Du , V = ve((i/2)z tan

2 ∆v−ix tan∆v)/Dv ,

eliminates the Poynting vector walk-off terms, and so validates the application of equations
(3.1)–(3.3) to study additional deviation of propagation direction relative to the Poynting vector
walk-off.

It is important to note that if v = 0 and Au = Du = 1 equations (3.1)–(3.3) reduce to the
governing equations (2.55) & (2.56) found in Section 2.2.3 for a single beam propagating in a
NLC [30, 39].

3.2 Analysis

3.2.1 Modulation Equations

In the nonlocal, ν large, limit it can be seen from the director equation (3.3) that θ, the optically

induced deviation of the optical director angle from the pre-tilt angle θ̂, is small at low input
beam powers. In this |θ| small limit the governing equations may be approximated by

i
∂u

∂z
+

1

2
Du∇2u+ 2Auuθ = 0, (3.6)

i
∂v

∂z
+

1

2
Dv∇2v + 2Avvθ = 0, (3.7)

2qθ − 2
(
Au|u|2 +Av|v|2

)
= ν∇2θ. (3.8)

Since no exact solutions of (3.6)–(3.8) exist, alternative methods must be used to study the
evolution of two-colour nematicons. By applying the approximate variational method described
in Chapter 2 modulation equations are derived for the beam parameters, solutions of which will
be compared with numerical solutions of the full governing equations (3.1)–(3.3).

Following the variational approximation method outlined in Chapter 2 the two-colour ne-
maticon governing equations (3.6)–(3.8) have the Lagrangian

L =
∑
k=u,v

[
i (k∗kz − kk∗z)−Dk|∇k|2 + 4Akθ|k|2

]
− ν|∇θ|2 − 2qθ2. (3.9)

Appropriate trial functions are then inserted into the averaged Lagrangian

L =

∫ ∞

−∞

∫ ∞

−∞
L dxdy, (3.10)

from which variational equations, termed modulation equations, are derived for the beam pa-
rameters. Gaussians have been widely employed as trial functions for spatial optical solitons
(SOS) in the highly nonlocal limit. These trial functions are valid approximations to the nemati-
con profile in the limit of infinite nonlocality, which is not the experimental regime. Generally,
experimental values of ν have been shown to be of the order of ν = 200 [50]. The (1 + 1)-D
NLS equation yields exact hyperbolic secant solutions. Additionally, sech trial functions have
been successfully employed to find approximate modulation solutions for the CNLS equation
[32, 51] and (2 + 1)-D nematicon NLS-like and CNLS-like equations [30, 35, 39, 43, 46]. Since
the integrals involved in equation (3.10) need to be evaluated analytically, trial functions are
required to be reasonably simple, yet this requirement must be balanced against the need for
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Figure 3.3: Numerical solution of the full governing equations (3.1)–(3.3) showing the radiation
shelf profile of a u colour beam at z = 60, y = 0. The amplitude of the beam is a ≈ 1.1.

some complexity in order to at least model basic features of beam evolution and interaction
[34]. Suitable trial functions are then

k = ak sech
χk
wk

eiψk + igke
iψk , k = u, v,

θ =
∑
k=u,v

αk sech
2 χk
βk
, (3.11)

where

χk =

√
(x− ξk)

2
+ y2, ψk = σk + Vk (x− ξk) , (3.12)

and the nematicon parameters are functions of z, these being the electric field amplitudes
ak and widths wk, nematicon positions ξk, velocities Vk, phases σk, shelf amplitudes gk and
director beam amplitudes αk and widths βk. The first terms in the trial functions for u and v
represent varying soliton-like beams, while the second terms represent the diffractive radiation
of low wavenumber which accumulates under the evolving nematicons. The radiation shelves
travelling with the beams protrude from the beam tails, as demonstrated in Figure 3.3 which
shows a numerical solution of the u colour beam after significant evolution. This beam has an
amplitude (au ≈ 1.1) much larger than the observed shelf amplitude (gu ≈ 0.04) so the shelf
can be assumed to be approximately flat, which has been done in the trial function. It is also
clear from observation that the radiation shelf is finite, in this case becoming negligibly small
around x ≈ 35. It is assumed then that gk are non-zero in the discs 0 ≤

√
(x− ξk)2 + y2 ≤ Rk.

The form of the diffractive radiation outside of these discs will be discussed at the end of this
section. The director beam is the sum of the director beams associated with the individual light
beams. These director beams have been chosen to have a sech2 profile due to the |k|2 terms in
equation (3.8). Numerical simulations further confirm this shape to be a good fit to the actual
director beam profile.

Modulation equations for the nematicon parameters are now found by substituting the trial
functions (3.11) into the averaged Lagrangian (3.10), modulation equations being obtained as
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variational equations with respect to the nematicon parameters. Upon substitution, all of the
resulting integrals can be evaluated except those consisting of a product of hyperbolic secants
with different widths, of the form ∫ ∞

−∞

∫ ∞

−∞
θ|k|2 dxdy. (3.13)

These integrals can be evaluated numerically, but the solution would be a function of the
nematicon amplitude and therefore not a fixed number [30]. Essentially then this would defeat
the object of finding a simple finite dimensional ordinary differential equation (ODE) system
approximating a partial differential equation (PDE) system with infinitely many dimensions of
freedom.

To avert this potential problem the concept of an ‘equivalent’ Gaussian is used, as in Minzoni
et al [30] and Garćıa-Reimbert et al [39], whereby, for these integrals only, the sech trial functions
are replaced by Gaussians as

sech
χk
βk

→ e−χ
2
k/(Aβk)

2

and sech
χk
wk

→ e−χ
2
k/(Bwk)

2

, (3.14)

so that the problematic cross integrals can be approximately evaluated in closed form. The
scaling parameters A and B will be determined by matching the Taylor series of the resulting
averaged Lagrangian using Gaussians with the Taylor series of the known averaged Lagrangian
using sech trial functions in the symmetric limit Au = Av and Du = Dv with ξu = ξv. Both
are expanded in the highly nonlocal limit wk ≪ βk.

Since Gaussians were used to evaluate integrals of the form (3.13) it is natural then to also
investigate the potential of using Gaussians as trial functions, as noted previously. Indeed, in
experiments the input beams used have a Gaussian profile [17], so one could argue that the
final steady state nematicon profile could be close to a Gaussian shape. Section 3.3 reviews
solutions using both trial functions and details the drawbacks of the latter approach.

With the equivalent Gaussian approximate evaluation of the problematic integrals the av-
eraged Lagrangian (3.10) for the sech trial function is given by

L = LI −
∑
k=u,v

[
2(I2a

2
kw

2
k − Λkg

2
k)(σ

′
k − Vkξ

′
k) + 2I1akw

2
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′
k − 2I1w

2
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′
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′
k

+IDka
2
k +Dk(I2a

2
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2
k − Λkg

2
k)V

2
k + 4νI42α

2
k + 2qI4αkβk2

]
,

(3.15)

where ′ denotes differentiation with respect to z and Λk = R2
k/2. The interaction component

LI of the averaged Lagrangian is

LI = AuA
2B2a2uw

2
u

(
αuβ

2
u

Q1
+
αvβ

2
v

Q2
e−2γ1

)
+AvA

2B2a2vw
2
v

(
αvβ

2
v

Q3
+
αuβ

2
u

Q4
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)
−2ναuαvβ

2
uβ

2
v

Q5
(1− 4γ3) e

−2γ3 − qαuαvβ
2
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2
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2

Q5
e−2γ3 .

(3.16)

In these equations

Q1 = A2β2
u +B2w2

u, Q2 = A2β2
v +B2w2

u, Q3 = A2β2
v +B2w2

v, Q4 = A2β2
u +B2w2

v,

Q5 = β2
u + β2

v , ρ = ξu − ξv, γ1 =
ρ2

Q2
, γ2 =

ρ2

Q4
, γ3 =

ρ2

A2Q5
,

Λu = R2
u/2, A =

I2
√
2√

I32
, B =

√
2I2. (3.17)
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The integrals Ii and Iij are

I1 =

∫ ∞

0

x sechx dx = 2C,

I2 =

∫ ∞

0

x sech2 x dx = ln 2, (3.18)

I22 =

∫ ∞

0

x sech2 x tanh2 x dx =
1

3
ln 2 +

1

6
,

I32 =

∫ ∞

0

x3 sech2 x dx = 1.3523145016 . . . ,

I42 =
1

4

∫ ∞

0

x

[
d

dx
sech2 x

]2
dx =

2

15
ln 2 +

1

60
,

where C is the Catalan constant C = 0.915965594 . . .. It is immediately apparent that without
the interaction component LI , equation (3.15) is the averaged Lagrangian for two separate
single nematicons [39].

Taking variations with respect to each of the nematicon parameters yields the modulation
equations

δσu :
d

dz

(
I2a

2
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2
u + Λug

2
u

)
= 0, (3.19)
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−DuVu

)(
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2
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2
u

)
= 0, (3.20)
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d
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(
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2
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+

1
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u
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= 0, (3.21)
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= 0, (3.22)
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v) = 0, (3.24)

plus the symmetric equivalent variational equations for the v colour beam and also algebraic
equations representing the variations of the parameters αu, αv and βu, βv which are not pre-
sented here for brevity, but will be presented in a suitably rearranged form below.

In total 16 equations govern the 8 parameters for each of the two beams. The modulation
equations (3.19)–(3.24) are reduced by rearrangement to simpler first order ODE modulation
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equations
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(3.30)

and the algebraic equations for variations with respect to α and β reduce to

4
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plus the symmetric modulation equations and algebraic equations for the v colour.
The modulation equations (3.25)–(3.32) form a conservative system as loss to diffractive

radiation has been neglected so far. A number of details of the evolution of the nematicons
can be found from conservation equations resulting from this neglect of shed radiation. The
three fundamental conserved quantities are mass, momentum and the Hamiltonian, H, which
is related to energy. Equation (3.30) is the momentum conservation equation and equation
(3.25) the mass conservation equation for the u colour beam. For these equations the term
including gu describes the momentum and mass respectively that seeps from the u colour beam
into the radiation shelf. ‘Mass’ does not refer to any physical mass but, in an optical context is
defined as the optical power or intensity of the light beam [31]. Other conserved quantities are
more difficult to interpret physically so it is sensible and far simpler to regard these quantities
as resulting from the application of Nöther’s Theorem to invariances of the Lagrangian (3.9)
[24, 31]. Adding the momentum equation (3.30) in the u colour to its symmetric counterpart
in the v colour gives the equation for total momentum conservation in the system as

d

dz

∑
k=u,v

(
I2a

2
kw

2
k + Λkg

2
k

)
Vk = 0. (3.33)

In addition to this momentum conservation equation, the modulation equations also possess
an energy conservation equation by Nöther’s Theorem applied to the Lagrangian (3.9) using
invariances in z [25]. The averaged form of the energy conservation equation for an individual
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beam k is then

dH

dz
=

d

dz

∫ ∞

−∞

∫ ∞

−∞

ν|∇θ|2 + 2qθ2 +
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(
Dk|∇k|2 − 4Akθ|k|2

) dxdy = 0. (3.34)

Inserting the trial functions (3.11) into equation (3.34) and using the mass and momentum equa-
tions (3.25) and (3.30) and their v colour counterparts then gives the total energy conservation
equation
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The modulation equations (3.25)–(3.32) have a family of fixed point solutions which are the
steady nematicon solutions of the governing equations. The final steady nematicon states
for the two beams are determined by energy conservation [39]. There are two types of fixed
points. The first type occurs when the nematicons interact but at some point pass through and
travel away from one another, resulting in separate single nematicons, where |ξu − ξv| → ∞ as
z → ∞. The second type interact indefinitely, forming a coupled vector nematicon as z → ∞
with ξ = ξu = ξv. In the present work the case of interest is the coupled vector nematicon since
the large z interaction provides a greater range of dynamical behaviour, such as walk-off and
beam fusion. On a more fundamental level this case is of interest because two-colour vector
solitons may find a use in all-optical interconnects in future communications devices, so their
evolution and interaction is of particular importance.

Denoting fixed point values of the beam parameters by aˆsuperscript and boundary values
at z = 0 by a subscript 0, we then have ξ̂u = ξ̂v, ĝu = ĝv = 0 and gu0 = gv0 = 0 since the
shelf does not exist initially, and steady state nematicons have no radiation shelf. Using the
momentum conservation equation (3.33), the mass conservation equation (3.25), the position
equation (3.27) and their v colour counterparts, the combined momentum walk-off of the vector
nematicon is

ξ̂′ = ξ̂′u = ξ̂′v =
DuDvM0

I2 (Dua2v0w
2
v0 +Dva2u0w

2
u0)

, (3.36)

where
M0 = I2

∑
k=u,v

a2k0w
2
k0Vk0, (3.37)

is the initial total momentum, which is conserved. Equation (3.36) will be useful in revealing
the extent to which radiative losses influence momentum walk-off.

The final quantities to determine are the shelf radii Λk. In previous work the shelf radius of
a nematicon has been calculated by linearising the modulation equations about the fixed point
g = 0, resulting in a simple harmonic oscillator equation whose frequency is matched to the
known nematicon frequency at the fixed point [30, 31, 33, 39, 43]. Rearrangement then leads
to an expression for the shelf radius. In this case however the calculation is intractable. To
simplify the calculation somewhat certain approximations can be made. In experiments the
diffraction coefficients Dk and the coupling coefficients Ak take similar values. For instance,
for the experiments of Alberucci et al the diffraction coefficients were 0.805 for red (632.8nm)
and 0.823 for NIR (1064nm) light [17]. By taking Du = Dv and Au = Av and using the
energy conservation equation (3.36) appropriately, an approximation to the fixed points of the
modulation equations can then be found [24]. As stated before, these fixed points are required
to find the shelf radii Λu & Λv whose calculation is fully presented in Appendix A. The final
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result is

Λk =
−Σ̂

′

kI
2
1 ŵk (ŵk + 2âkφ)

Θ
, (3.38)

where Σ̂
′

k, φ and Θ depend on the fixed point beam parameters in a complicated way. The
definitions of these terms are given in Appendix A.

3.2.2 Radiation Calculation

To complete the modulation equations the effect of shed diffractive radiation needs to be in-
corporated. Garćıa-Reimbert et al [30] calculated the diffractive radiation shed by a single
nematicon as it evolves and included the effect of this shed radiation in the modulation equa-
tions for nematicon evolution in the local limit. These calculations have also been presented in
Chapter 2. If it is assumed that the shed radiation from one beam does not interact with the
shed radiation from the other beam, then radiative losses for the two beams can be treated as for
two non-interacting single nematicons. Radiative losses are governed by the linearised electric
field equations since radiative losses are of small amplitude and consequently have a negligible
nonlinear interaction with the nematic. These linearised equations are the same equations for
both local and nonlocal nematicons, as noted by Minzoni et al [39]. The linearised form of the
field equations (3.6) and (3.7) are just two uncoupled equations for a single nematicon and are
in fact Schrödinger’s equation. They can be written in polar coordinates as

i
∂u

∂z
+

1

2r
Du

∂

∂r

(
r
∂u

∂r

)
= 0, (3.39)

i
∂v

∂z
+

1

2r
Dv

∂

∂r

(
r
∂v

∂r

)
= 0. (3.40)

Equations (3.39) & (3.40) are solved using Laplace transforms, as shown in Chapter 2, and
differ from equation (2.64) only by the linear diffraction coefficients Dk. However, there is
a complication in the calculation of the radiation shelf here in that there is an additional
component to the shelf relating to its nonlocal interaction with the director beam [39]. In the
local regime the refractive index perturbation of the medium is localised to the close vicinity
of the beam. Contrasting this, for highly nonlocal regimes the director beam, also known as
optical axis beam or refractive index perturbation, is broader than the optical beam with an
extended tail, as shown in Figure 1.1. This causes the electric fields of the beams to have
long, low, flat tails as well. Consequently there is an inner component of the shelf due to the
interaction of the beam with the radiation travelling with the beam, and an outer component
created by the director beams reaction to the optical axis. The radiation shelf components
travelling and interacting with the beams were discussed in Section 3.2.1, and have radii Ru,
Rv, whereas the components relating to the shelves’ interactions with the director have separate
radii, which will be denoted ρu, ρv.

Minzoni et al estimated the values of ρk, where k = u, v, from numerical solutions [39]. In
this work they judged that the half-widths of the optical director beams βk1/2 are approximately
related to the radii ρk by ρk = 7βk1/2, where a half-width βk1/2 of a director beam of width βk
is defined by

βk1/2 = βk sech
−1
(
1/
√
2
)
. (3.41)

Since the original shelf radii Rk were described by their areas modulo 2π, Λk = R2
k/2, analogous

relations will be used for the outer shelves

Λ̃k =
1

2
ρ2k =

(
7βk1/2

)2
. (3.42)

As shown in Chapter 2, mass shed from the beams forms the major contribution of the
radiation shed as the beams propagate. Therefore the mass conservation equations for the
linearised equations (3.39) & (3.40) are required and are given by

i
∂

∂z

(
r|k|2

)
+

1

2
Dk

∂

∂r
(rk∗kr − rkk∗r ) = 0. (3.43)
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The mass flux lost to dispersive radiation from the beams is found in this case by integrating
the mass equation from the edge of the outer shelf r = ρk to infinity

d

dz

∫ ∞

ρk

r|k|2dr = Dk Im (rk∗kr) |r=ρk +⃝[ρk(z)]. (3.44)

In order to determine this mass loss, shed radiation must be matched to the shelves under
the beams at the boundary between them. Following the steps carried out in Section 2.2.3
and being careful to include the diffraction coefficients Dk, the final result is that the mass
conservation equation (3.25) and equation (3.28) for the radiation shelf height gu, plus their
symmetric equivalents in the v colour, gain a loss term

d
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2
uw

2
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2
u

)
= −2DuδuΛ̃uκ

2
u, (3.45)
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− 2Duδugu. (3.46)

For a single nematicon radiative losses were accounted for by including a loss term in the
modulation equation for g (see Section 2.2.3), which coupled the rate of mass loss to the
equation for the shelf height g. Here, both the mass conservation equation and the equation
for g have been modified because two nematicons not only incur losses from their propagation
but also losses via interactions with one another.

With the replacement of the original shelf radii Λk with the outer shelf radii Λ̃k in the loss
calculation, the loss coefficient δu is found in an identical fashion to that described in Chapter
2 and is

δu = −
√
2πI1

2eκuΛ̃u

∫ z
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Finally
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[
I2a

2
uw

2
u − I2â

2
uŵ

2
u + Λ̃ug

2
u

]
, (3.48)

gives the difference between the u colour beam mass at z and its mass at the fixed point.
Equations (3.26), (3.27), (3.29)–(3.32), (3.45) and (3.46), plus their symmetric equivalents

for the v colour, form the full set of 12 modulation equations and four algebraic equations
approximating the evolution of the two-colour nematicons.

3.2.3 Adjustments to Numerical Methods

The numerical scheme used to solve the modulation equations varies little from that given in
Section 2.2.4 for a single nematicon in the local regime. Modulation equations (3.26), (3.27),
(3.29), (3.30), (3.45) & (3.46) plus their symmetric equivalents for the v colour beam are
solved using the fourth order Runge-Kutta method. The parameters αk and βk are found by
rearranging appropriately, then solving exactly, equations (3.31) & (3.32) and their v colour
counterparts. The shelf radii Λk are calculated using equation (3.38) at each z step.

Whereas the modulation equations for the single nematicon included the energy conservation
equation, here the mass equation is retained with a loss term representing radiation shed by
the beams, equation (3.45).

The full two-colour nematicon equations (3.1) and (3.2) were solved using a pseudo-spectral
method similar to that of Fornberg and Whitham [42]. The director equation (3.3) was solved
as a boundary value problem using a Fourier method. These methods are described in more
detail in Section 2.3 where they are applied to a single nematicon problem, and few changes
need to be made here. The additional field equation for the v colour beam is solved in an
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identical manner to the u beam simultaneously, where θ at the previous z step has been used
in their calculation. u and v are then used to calculate θ at the current step.

Although no results have been presented for Gaussian trial functions, the modulation equa-
tions and the numerically solved full governing equations with Gaussian trial functions were
solved for comparison to the sech trial functions. The modulation equations are identical to
those of the hyperbolic secant trial function except that the Ii, Iij integrals have different values
(see Section 4.2.1 in Chapter 4). Consequently these modulation equations are solved in an
identical manner to that described above. The full governing equations with Gaussian trial
functions were solved numerically using the same scheme as for the sech trial functions, only
requiring a change of the initial beam profile.

3.3 Results

In this section numerical solutions of the full two-colour nematicon equations (3.1)–(3.3) will
be compared with solutions of the modulation equations. The full governing equations were
numerically solved using step sizes ∆x = ∆y = 0.4 and ∆z = 0.005, with spatial intervals 102.4
in the x and y directions respectively. Comparisons were taken for different step sizes and it
was found that smaller step sizes did not increase the accuracy to any great extent, especially
to graphical accuracy. This combination was the most efficient, with excellent accuracy and
reasonable speed. The ample computational domain, combined with damping boundaries,
discussed in Chapter 2, ensured that waves reflected at the boundaries had an insignificant
impact on the beams. The modulation equations were solved with an equal z stepping of
∆z = 0.005.

Equations (3.6)–(3.8) are approximations to the nematicon equations (3.1)–(3.3) where it
has been assumed that θ, the optical director angle perturbation, is small enough that the first
terms of the Taylor series of sin 2θ and cos 2θ may be taken. This assumption is, however, only
valid in highly nonlocal media for which ν > 100 for nondimensional optical powers of O(1),
since the angle θ decreases as the degree of nonlocality ν increases [23]. Minzoni et al found
that the θ small limit could be achieved at ν = 10 for a single nematicon [39]. ν ≈ 10 is not
valid in this case as the optical beams induce a larger combined reorientation of the director
angle from equation (3.3). Many experiments have been conducted in nematic media with
nonlocality ν ≈ 200. As a result, ν = 500 has been taken which is a value at the upper end of
the experimental range [18, 27], and is large enough that the small θ approximation is valid.

Gaussian trial functions require much higher values of ν than hyperbolic secant trial func-
tions for θ to be sufficiently small that the approximate equations (3.6)–(3.8) are valid. It was
found that Gaussian trial functions required ν > 2000, which is well outside the experimental
range. Hence no results for Gaussian trial functions will be reported here. Above ν = 2000
the solutions were very similar to those for the hyperbolic secant ansatz. This is in accord
with the Snyder & Mitchell asymptotic solution which shows that a Gaussian becomes a better
approximation to the nematicon profile as ν increases [52]. Here the Snyder & Mitchell model is
invalid since their assumption is that soliton width and separation are negligible in comparison
to the spatial extent of the director beam [52]. This is the situation only in extreme cases of
highly nonlocal media where ν → ∞.

Diffraction and coupling coefficients for the two beams were taken that had similar relations
as experimental values. For example, for red and NIR beams the diffraction coefficients had
the relation Dred ≈ 0.98 × DNIR. It then follows that the nondimensionalised diffraction
coefficients of the present work should be given the values Du = 1, Dv = 0.98. Similarly
Au = 1 and Av = 0.95 were chosen as coupling coefficients for the u and v beams respectively.
In the following analysis numerical solutions of the full governing equations [(3.1)–(3.3)] are
referred to as ‘full numerical solutions’ and numerical solutions of the modulation equations
[(3.26), (3.27), (3.29), (3.30), (3.45) & (3.46) and the equivalent equations for the v colour
beam] are termed ‘modulation solutions.’

Figure 3.4 shows a comparison between the full numerical and modulation solutions for
boundary values for which the beams evolved into a bound vector nematicon. It can be seen
from Figure 3.4(a) that the position comparison is good. The mean momentum walk-off as given
by the modulation and full numerical solutions is in near perfect agreement, and there is little
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Figure 3.4: Comparisons for the initial values au = av = 1.8, wu = wv = 3.0, ξu = 1.0,
ξv = −1.0, Vu0 = −0.1, Vv0 = −0.05 with ν = 500, q = 2, Au = 1.0, Av = 0.95, Du = 1.0,
Dv = 0.98. Full numerical solution for the u colour ( — )[red] and v colour ( — — — )[green]
beams; solution of modulation equations for the u colour ( – – – )[blue] and v colour ( - - -
)[violet] beams; momentum conservation result (3.36) ( – · – · – ·) [turquoise]. (a) Positions,
(b) Amplitudes.
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Figure 3.6: Comparisons for the initial values au = av = 1.2, wu = wv = 4.0, ξu = 1.0,
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difference between the modulation solutions’ mean momentum walk-off and that calculated from
the momentum conservation equation (3.36). The maxima, minima and period of the position
oscillations are also in very good agreement. In the local regime, as the beams approach a
collision they experience a sudden acceleration accompanied by radiative losses, which result in
a rapid reduction of peak position oscillations, as will be seen in Chapter 4. Nonlocal nematicon
collisions do not involve such rapid accelerations because the beams interact at both distance,
due to the nonlocality of the nematic, and upon collision. Consequently all interactions are
relatively smooth in the nonlocal regime. However, this does not stop anharmonicity of the
position oscillations for the full numerical solutions. As the beams experience a continual non-
symmetric interaction the position of the beam peaks are perturbed by competing effects such as
acceleration, attraction and distortion resulting in highly anharmonic position oscillations. The
modulation solutions represent two beams of a fixed general shape that undergo perturbations
of their parameters, which rules out the possibility of distorting the beams from their basic
profiles and consequently the position oscillations are smooth. These differences between the
modulation and full numerical solutions, however, do not effect the agreement in period, peak
oscillations nor momentum walk-off.

In contrast to the position comparison, the amplitude comparison shown in Figure 3.4(b)
is not as good. The modulation and full numerical solutions agree in the mean with the mean
amplitude being the final steady state amplitude of the nematicon(s), but the damping of the
oscillations of the modulation solution is larger than that of the full numerical solution. Mass
and momentum losses are largely influenced by the acceleration of the beams. As acceleration
does not play such a large part in beam evolution and interaction in the nonlocal regime, the
inclusion of two radiative loss terms in the modulation equations slightly overestimates the
effect that losses have. It is also clear from Figure 3.4 when comparing the modulation and
full numerical solutions that, whilst position oscillations largely agree in period, amplitude
oscillations do not. The modulation equations form a nonlinear oscillator. Accordingly the
amplitude and period are linked, meaning that the lower amplitude of the modulation solutions
results in the amplitude oscillation period being longer than the full numerical period [39]. This
lower amplitude is caused by the overestimation of shed radiation.

Figure 3.5 shows the full numerical u colour solution profile at z = 100 and y = 0 for
ν = 250, ν = 500 and ν = 1000. As ν increases the deviation of the director angle θ decreases.
Królikowski et al found that in similar media an increase in nonlocality ν for fixed amplitude
causes the width of the resultant beam to increase [53], “nonlocality smooths out the refractive
index profile thereby leading to a broadening of the beam.” Here, as nonlocality increases a width
increase is clearly seen, as is a marked decrease in the final amplitude as noted by Nikolov et
al [54]. The effect of acceleration is shown by the asymmetry of the radiation shelves near the
tails of the beams. It can be seen that symmetry increases as nonlocality grows, as discussed
above. There is also a noticeable reduction in the peaks of the radiation shelves as ν increases.
This figure confirms the conclusion that beam acceleration and radiative losses from the beams
decrease as ν increases, the latter in agreement with experimental observations [24]. While
the modulation solutions’ positions reveal a harmonic oscillation over the full range of ν, the
full numerical positions exhibit more complicated behaviour. As the degree of nonlocality is
increased, from ν ∼ 100 to ν ∼ 1000, harmonicity of the full numerical position oscillation
increases. Nematicons in the latter case experience a strong continual interaction with each
other, but the profile shape change is much reduced. One reason for anharmonicity of the beam
position oscillations is that beam distortions become amplified as accelerative and radiative
effects take on a more significant role. These effects are more prevalent at lower values of ν. To
highlight this further, a comparison of two full numerical solutions for different values of ν is
shown in Figure 3.6. Clearly the evolution of position and amplitude is smooth and harmonic
for the highly nonlocal regime (ν = 1000), but warped and irregular for ν = 250. Part of
the reason for these large irregular changes in the latter case is that the initial conditions are
quite far from stable vector nematicons and the beams are close to instability. Consequently
the beam amplitudes grow until nonlocality eventually halts their progress and reverses the
increase.

In the local limit the nematicons oscillate about each other for large z, with these oscillations
gradually decreasing in amplitude until the two nematicons eventually have the same position
[22]. In Figures 3.4(a) & 3.6(a) the decay of the position oscillations is much less obvious,
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and it is not clear whether the beams eventually merge or continue oscillating as z → ∞.
Beam interactions for nonlocal nematicons are attractive. However in the local case these
interactions can be repulsive if the two beams are out of phase [11, 43]. Similarly dipole
nematicons, symmetric bound vector solitons in nonlocal NLC, have been shown to have stable
positional oscillations when they are π/2 out of phase due to a balance between the soliton
phase repulsion and the nonlocal nematic attraction [43, 55]. It was shown that for small
initial separations, as here, beams of the same wavelength rapidly merged, regardless of their
phase difference [43]. Two-colour nematicons with angular momentum have been investigated
and found to form a bound state in which they spin around each other without merging [21,
24, 56]. Whilst this situation seems qualitatively similar to the case in the present work, the
mechanism that stabilises spinning nematicons is a balance between an attractive potential and
the centrifugal force, similar to the two-body problem of classical mechanics [24, 43]. The most
likely explanation then of the apparently stable positional oscillations, or orbits, that the two
nematicons form in the present work comes from the relationship that radiative losses have with
nonlocality. As has been shown in numerous works [22, 30, 35, 39, 43, 57, 58], beams evolve
to their steady state via decaying positional oscillations brought about by radiative losses.
However, beams leak little radiation in the nonlocal regime. Single nematicons in the nonlocal
regime were investigated by Minzoni et al and it was found that beam oscillations reduced over
large z but the initial beams settle to steady nematicons over huge z values (≫ 400) [39]. The
nonlocality parameter is 50× larger in the present work than that investigated by Minzoni et al
and consequently individual initial beams shed even less radiation. As a result, it is reasonable
to conclude that two-colour beam initial conditions settle to steady two-colour bound vector
nematicons over z distances that are too large for practical numerical simulations. Whilst the
orbits appear stable it is the author’s opinion that they are actually very slowly decaying to
the fixed point at which the two beams finally merge.

The reduction of radiative losses with increased nonlocality can be explained as follows. The
waveguides formed by the beams are much wider than the beams themselves in the nonlocal
regime. Shed radiation then starts at the tails of the director beams rather than from the tails
of the electric field beams. Consequently this shed radiation has lower amplitude than it would
have if it were generated at the edges of the shelves. Since shelf height determines the rate at
which radiative losses are shed [31], a reduction in the height of the shelves causes a reduction
in the amount of radiation shed by the beams as they evolve. One particularly noticeable effect
of reduced radiative losses is that the nonlocal momentum walk-off is well approximated by the
conservation result (3.36), in contrast to the local case [22].

Due to the lack of strong damping of positional oscillations and the fact that full numerical
solutions appear anharmonic, the mean momentum walk-off is found by taking a large final z
and plotting the collision points of the u and v colour beams. Linear regression is then applied
to obtain a value for the mean momentum walk-off of the two-colour vector nematicon. Figure
3.7 compares the mean momentum walk-off ξ̂′ for the two beams as a function of the initial
velocity of the v colour beam, Vv0, as given by the full numerical solution, the modulation
solution and the momentum conservation result, which can be obtained from equation (3.36).
As will be shown for the local case in Chapter 4, the agreement for momentum walk-off between
the full numerical and modulation solutions is excellent. However in the nonlocal limit the
momentum conservation result (3.36) is in much better agreement than in the local case, in
fact the agreement is near perfect. This result is to be expected from the analysis of Figures
3.6(a) & (b).

Finally, beam profiles taken of full numerical u colour nematicon solutions at z = 6 and
z = 100 are compared to fitted sech profiles in Figure 3.8. Early in the evolution, Figure 3.8(a),
the beam generally conforms to a hyperbolic secant profile, but later in the evolution, Figure
3.8(b), the beam distorts. It is clear that profile distortions and accelerations continue for large
z, although these distortions are not large in comparison to those in the local case. However,
beam profile distortions do explain anharmonic position oscillations observed in Figures 3.4(a)
& 3.6(a) which are not modelled by the modulation equations, as discussed earlier. As a
consequence of large distortions in the beam position oscillations, amplitude oscillations also
become distorted. This effect is most easily observed in Figure 3.6(b).

It is remarkable then that modulation equations, derived from simplified governing equa-
tions, neglecting beam accelerations with a beam profile that cannot account for large shape
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changes, agree so well with numerical solutions of the full governing equations. Momentum loss
due to acceleration cannot easily be incorporated into the present approximate method, since
this would require the solution of a moving boundary value problem for which the boundary
is unknown [32]. However, in the nonlocal limit qualitative and quantitative beam behaviour
is clearly well approximated by the variational method employed, validating this approach for
studying the evolution and interaction phenomena of two-colour nematicons in the nonlocal
limit.

3.4 Discussion

The evolution and interaction of two-colour nematicons has been considered in the nonlocal
regime for cases in which the two nematicon beams form a vector nematicon. A numerical
method has been used to solve the nematicon governing equations exactly and these solutions
have been used as a comparison to solutions of approximate modulation equations derived
from simplified governing equations. The modulation equations were modified to include ra-
diative losses caused by the beams evolution and interaction. Excellent agreement was found
between full numerical solutions and solutions of the modulation equations for a variety of dif-
ferent properties. Agreement between position oscillation amplitude and period was remarkably
good, and momentum walk-off was in near perfect agreement. Furthermore, the mean of the
amplitude oscillations, representing the steady state amplitude of the final nematicon, was in
very good agreement, although amplitude oscillation period and the maxima and minima of
these oscillations was not in agreement due to an overestimation of radiative losses.

It was found that radiative losses and beam acceleration during collision decreased as the
nonlocality of the nematic increased, in accord with experimental observations. Consequently,
in the highly nonlocal regime investigated (ν = 500), radiative losses had a small impact
on beam propagation. However it is thought that this same shed radiation is the essential
mechanism behind the eventual decay of the position oscillations of the two beams and their
eventual merging.

Quite apart from the fact that the variational method is an intrinsically approximate method
in itself that imposes a fixed shape on the beam profile and cannot account for beam acceler-
ation effects, there have been several additional approximations made in the calculation of the
modulation equations. Firstly, the original governing equations were simplified so that a rela-
tively simple equivalent Lagrangian could be derived, then the resulting averaged Lagrangian
required an equivalent Gaussian approximation of the trial function for certain integrals to be
calculated. The inner shelves Λk under the beams were approximated by radiation shelves taken
from the symmetric limit; these symmetric shelves being calculated via linearisation about the
nematicons fixed points with the requirement that the frequencies of the shelves matched the
respective fixed point nematicon frequencies. Finally the outer shelves Λ̃k were estimated from
a particular numerical solution of a single nematicon beam [39]. What is surprising then is that,
despite all of these assumptions and approximations, the solutions of the modulation equations
are in excellent agreement with exact numerical solutions of the full governing equations.

A direct comparison with experimental two-colour vector nematicon results would have
been useful to not only gauge the accuracy of the solutions of the approximate modulation
equations but also to see how well the full nematicon governing equations model experiments.
Yet several difficulties arise in attempting such a comparison. Firstly, to the authors knowledge,
these two-colour nematicons have only been produced once experimentally in Ref. [17]. In
this work, a pre-tilt of π/6 was induced via rubbing. Incorporating this pre-tilt via rubbing
requires the incorporation of the boundary conditions at the cell walls because the optic axis
response does not have a pulse shape, but extends to the cell walls in this case [48]. This
greatly increases the complexity of the mathematical analysis. Secondly, the distances that
nematicons have been observed to propagate are roughly 20× their Rayleigh lengths [17]. Not
long after this point experimental errors creep into the results due to scattering losses. Since
the nematicon equations have been nondimensionalised by the Rayleigh lengths, and scattering
losses have been shown to have a more prominent effect at larger z values, any comparison
over large distances would be meaningless as scattering losses have not been incorporated into
the mathematical analysis. Additionally, if the opposite approach were taken, and instead
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experimental factors were incorporated into the theoretical model, the resulting variational
equations would be rendered intractable. However, a pre-tilt of θ̂ ≈ π/4, achieved via an
externally applied electric field, has been used in the formation of nematicons before [9, 12, 19,
59] and could theoretically be used for the formation of two-colour nematicons, as has been
shown here.

One final note may be made on the initial conditions that were chosen for comparison.
For all of the numerical solutions presented in this chapter and the following chapter, initial
electric field amplitudes ak and widths wk and the shelf amplitudes gk were chosen that were
identical for the u and v colour beams. Symmetric values for the nematicon positions ξu = −ξv
were also taken. Clearly gu = gv = 0 initially and the symmetry of initial positions was just
chosen for convenience, but there is no fundamental reason for choosing symmetric ak and wk.
Numerical solutions with unequal initial conditions for these parameters were explored and it
was found that the initial beams evolved to two-colour nematicons when the parameter values
for the u and v beams were close to one another. When there were large differences between
these initial values the beams could not form the vector nematicon fixed point and, after an
initial collision, propagated as two separate single nematicons. For small differences between
the initial amplitudes (or widths) it was found that these inequalities can affect beam evolution,
interaction and momentum walk-off which could have lead to misinterpretation of the observed
behaviour. Consequently equal amplitudes (and widths) were taken for the two beams so that
a clear understanding of the effect that two nematicons of different wavelengths have on one
another could be gained.

The next chapter completes the analysis of two-colour nematicons by considering the local
nonlinear response regime.
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Chapter 4

Two-Colour Nematicons in the
Local Limit

4.1 Background

Essentially the equations governing two-colour nematicon propagation and interactions in the
local and nonlocal regimes are identical, the value of the nonlocality parameter ν being the
only obvious change. Yet this change is important and fundamental. By taking ν small, the
interaction of the beams with the nematic is ruled by a completely different mechanism. The
nematic medium responds only in the vicinity of the beams and consequently only affects them
locally, resulting in an increase in radiation shed as they evolve. The interactions between
the beams themselves are also far more local so that the influence that one beam has on the
other is only significant when they are in close proximity. However, Chapter 3 and the work
of Conti et al [27] have shown that nematicon propagation is stabilised by the nonlocal nature
of the interaction of the beam with the nematic medium. It is of interest then to see if stable
two-colour nematicon evolution can be achieved in the local regime and, if so, what the nature
of this stability is and what differences can be observed between the dynamics of nematicons
in the local and nonlocal regimes.

(2 + 1)-D soliton solutions of the nonlinear Schrödinger (NLS) equation, and consequently
the coupled nonlinear Schrödinger (CNLS) equation, are unstable with eventual total collapse
or infinite self-focusing, depending on an initial amplitude threshold, a certainty [5, 35]. The
main reason for instability is that these solitons in (2 + 1)-D have more dimensions of freedom
than needed for stable propagation, which leads to a greater likelihood that perturbations
will lead to instabilities [11, 25]. However, by introducing an upper limit to the nonlinearity,
the conventional NLS and CNLS equations with a modified nonlinear term admit stable soliton
solutions, the resulting modified nonlinearity being termed a saturating nonlinearity. Saturation
of the nonlinear response prevents the unlimited self-focusing or collapse seen in the standard
(2 + 1)-D NLS equation. What is found in the case of a local nonlinear response of a nematic
liquid crystal (NLC) is that nematicons are stabilised by this same saturation of the local
nonlinearity.

Locality in a purely mathematical sense refers to a nonlinear refractive index change that is
dependent on the intensity of the optical beam at that exact spatial point [60]. An example is
the cubic Kerr response. However, in many physical situations there is some nonlocality in the
medium response and some interaction between the medium and the beam in the close vicinity
of the point under scrutiny. Experimentalists have defined locality more loosely. An effective
local response is then one in which the refractive index change caused by the beams presence
does not leak into the surrounding space over a significant fraction of the wavelength of the
beam [60]. There are a number of different ways to achieve such a local nonlinear response
in a NLC. Cooling the medium can reduce nonlocality. This has the effect of strengthening
the bonds between nematic molecules, making it more difficult for molecular reorientation to
occur. The stronger molecular bonding results in an upper limit on molecular reorientation and
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therefore an upper limit on the nonlinear response. Another method is to introduce a pre-tilt
of the nematic molecules by applying a static/low-frequency electric field to the bulk medium.
In Chapter 3 for the nonlocal regime a pre-tilt was introduced which was close to π/4. This
pre-tilt produces the optimum nonlocal response. However, a stronger static/low-frequency
field can pre-tilt the molecules to such a degree that they almost align along the x axis, i.e. a
pre-tilt close to π/2. An optical beam will increase the reorientation of the nematic molecules
but the molecules have already been pre-tilted close to their maximum angle π/2. A stronger
optical beam then cannot reorientate the nematic molecules any further and saturation once
again prevents unlimited self-focusing.

Spatial optical solitons have been observed in many other media where a saturation of the
perturbation to the refractive index of the medium is responsible for a local nonlinear response.
However, many of these materials only admit solitons at very high beam intensities. In some
instances the high intensities involved have lead experimentalists to pulse the beam to avoid
material degradation [60]. Some examples of such local response media where solitons have been
investigated include fused silica and similar related glasses, metal vapours such as Rubidium
and crystals exhibiting a quadratic nonlinear response [60]. The most promising materials
reported are the photorefractive crystals, such as Lithium Niobate and Barium Titanate. The
propagation of a soliton in such materials can be modelled by a saturable NLS equation similar
to the equation governing soliton propagation in a NLC [35]. There are two types of solitons
that can be formed in photorefractives, namely screening solitons and photovoltaic solitons
where an optically induced space-charge electric field and an externally applied static/low-
frequency electric field are the means of achieving local nonlinear refractive index changes
respectively. The fundamental difference between these photorefractive solitons and nematicons
is that the waveguide formed by a photorefractive soliton will persist after the beam itself has
been removed, whereas the waveguides formed in NLCs are transient [5]. Additionally the
mechanism perturbing the refractive index is different.

Whilst there have been no experimental observations of two-colour nematicons in the local
regime to the authors knowledge, the fact that theoretical and experimental investigations
have proven the existence and stability of nonlocal two-colour nematicons, combined with the
knowledge that a local response can be induced in a NLC, from which experimental observations
of single nematicons have already been taken, suggests local two-colour nematicons could be
produced. The main motivations then of investigating local two-colour nematicon dynamics
are to determine the stability of these wave structures and to compare them to their nonlocal
counterparts.

To this end, let us consider two copolarised, coherent light beams of two different wave-
lengths (colours) propagating through a cell filled with a NLC, as illustrated in Figure 4.1, and
qualitatively identical to the model described in Chapter 3. The light initially propagates in
the z direction, with the (x, y)-plane orthogonal to this. A static/low-frequency electric field
is applied in the x direction so that in the absence of light the optical director is pre-tilted at
an angle θ̂ to the z direction. Both input light beams are polarised with their electric fields
in the x direction. Then let u and v be the electric field envelopes of the two light beams
and θ be the perturbation of the optical director angle from its static value due to the light
beams. The nematicon governing equations were derived in Chapter 3 from a combination of
the two-colour equations found by Alberucci et al for two-colour nematicons with no external
static/low-frequency electric pre-tilt field [17] and the director equation representing nonlinear
refractive index perturbations in the presence of a pre-tilt field [18, 19]. These equations were
derived and nondimensionalised in Chapter 3 and are presented again here

i
∂u

∂z
+

1

2
Du∇2u+Auu sin 2θ = 0, (4.1)

i
∂v

∂z
+

1

2
Dv∇2v +Avv sin 2θ = 0, (4.2)

ν∇2θ − q sin 2θ = −2 cos 2θ
(
Au|u|2 +Av|v|2

)
. (4.3)

The Laplacian ∇2 is taken with respect to the transverse coordinates, x and y. The coefficients
Du and Dv are the diffraction coefficients for the two colours and Au and Av are the coupling
coefficients between the light and the nematic for the two colours. The parameter ν measures
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the elasticity of the nematic and q is related to the energy of the static/low-frequency electric
field which pre-tilts the nematic and is proportional to the square of the pre-tilt field.

4.2 Analysis

4.2.1 Modulation Equations

The usual operating regime for beam propagation in nematics has ν large, the so-called nonlocal
regime, which was fully investigated in Chapter 3. However, by varying the operating temper-
ature and/or the strength of the pre-tilt field (q), ν can be made to take a range of values from
small (the local regime) to large (the nonlocal regime). A pre-tilt of π/2 represents the local

regime and pre-tilts close to this, as high as θ̂ = 0.45π, have been utilised to produce local
stable nematicons and symmetric vector nematicons [12, 59]. In the present work, two-colour
nematicon evolution will be considered in the local regime with ν small. In the limit of small
ν the Laplacian term on the left hand side of the director equation (4.3) can be neglected.
Rearrangement then leads to

tan 2θ =
2

q

(
Au|u|2 +Av|v|2

)
. (4.4)

Utilising equation (4.4) for the director angle, the electric field equations (4.1) and (4.2) become
the coupled system of saturating nonlinear Schrödinger equations

i
∂u

∂z
+

1

2
Du∇2u+

2Au
(
Au|u|2 +Av|v|2

)
u√

q2 + 4 (Au|u|2 +Av|v|2)2
= 0,

(4.5)

i
∂v

∂z
+

1

2
Dv∇2v +

2Av
(
Au|u|2 +Av|v|2

)
v√

q2 + 4 (Au|u|2 +Av|v|2)2
= 0.

The final terms in (4.5) are saturating nonlinearities. This expression shows that in the local
regime the propagation of two-colour nematicons is closely approximated by a system of vector
saturating nonlinear Schrödinger equations and that this saturation of the nonlinear response
is responsible for the stability of nematicons.

The vector system (4.5) has the Lagrangian

L = i(u∗uz − uu∗z)−Du|∇u|2 + i(v∗vz − vv∗z)

−Dv|∇v|2 +
√
q2 + 4 (Au|u|2 +Av|v|2)2 − q, (4.6)

where the superscript ∗ denotes the complex conjugate. Approximate solutions will now be
sought by inserting appropriate trial functions in the averaged Lagrangian

L =

∫ ∞

−∞

∫ ∞

−∞
L dxdy. (4.7)

The first trial functions to be used in the present chapter are identical to those of Chapter 3
and have been used in various different guises in other variational approximations for nematicon
evolution [24, 30, 35, 39, 43, 57]. These trial functions for the electric field envelopes u and v
are

u = au sech
χu
wu

eiψu + igue
iψu ,

v = av sech
χv
wv

eiψv + igve
iψv , (4.8)
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Figure 4.1: Schematic diagrams of a liquid crystal cell with two x-polarised light beams of
different colours interacting. (a) the entire cell, (b) focus on the locality of the interaction
between the beams and nematic molecules.
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where

χu =

√
(x− ξu)

2
+ y2, χv =

√
(x− ξv)

2
+ y2,

(4.9)

ψu = σu + Vu (x− ξu) , ψv = σv + Vv (x− ξv) .

The electric field amplitudes au, av, widths wu, wv, nematicon positions ξu, ξv, velocities Vu, Vv,
phases σu, σv and shelf heights gu, gv are functions of z. The first terms in the trial functions
(4.8) are varying solitary waves. The second terms represent the effect of the flat shelves of shed
diffractive radiation which form under, and travel with, the evolving nematicons. It must be
assumed that gu (gv) is non-zero in a disc 0 ≤

√
(x− ξu)2 + y2 ≤ Ru (0 ≤

√
(x− ξv)2 + y2 ≤

Rv) because if the flat shelves extended beyond the beam infinitely they would have infinite
mass. In the case of the (1 + 1)-D NLS equation this shelf of low wavenumber radiation under
the pulse, or in this case beam, can be justified using inverse scattering, which is also the
justification for setting the shelf to be π/2 out of phase with the beam [31]. Whilst there are
no inverse scattering solutions to prove the existence of a shelf for the current equations, the
existence of a shelf travelling with (2+1)-D nematicons has been shown by numerical solutions
of single nematicon equations [30, 35, 39] and was demonstrated in Chapter 3 for nonlocal
two-colour nematicons.

The trial functions (4.8) are now substituted into the averaged Lagrangian (4.7), from
which variational equations are obtained for the nematicon parameters. However, the integrals
involving the nonlinear term in the Lagrangian (4.6) cannot be evaluated in closed form. To
overcome this it is assumed, as in Garćıa-Reimbert et al [35], that the amplitudes of the two
nematicons are small (or that q is large), so that the square root can be expanded in a Taylor
series. The Lagrangian is then

L = i(u∗uz − uu∗z)−Du|∇u|2 + i(v∗vz − vv∗z)−Dv|∇v|2

+
2

q

(
Au|u|2 +Av|v|2

)2 − 2

q3
(
Au|u|2 +Av|v|2

)4
, (4.10)

Whilst this then allows most of the integrals to be evaluated, four integrals involving products
of u and v still cannot be evaluated. These cross integrals are of the form∫ ∞

−∞

∫ ∞

−∞
|u|s|v|t dxdy, (4.11)

where the powers (s, t) are (2, 2), (2, 6), (4, 4) and (6, 2). To evaluate the integrals (4.11) the
idea of an ‘equivalent’ Gaussian is used, which was also used in Chapter 3 to evaluate integrals
involving products of the director beam and the optical beam. The trial functions (4.8) are
replaced by equivalent Gaussians

sech
χu
wu

→ αe−χ
2
u/(β

2w2
u), sech

χv
wv

→ αe−χ
2
v/(β

2w2
v). (4.12)

The scaling parameters α and β will be determined by matching the resulting averaged La-
grangian with the easily calculated averaged Lagrangian in the symmetric limit, Au = Av and
Du = Dv with ξu = ξv. Later in this section Gaussian trial functions will also be considered,
for which the equivalent Gaussian substitution is obviously not needed.

One notable difference between the use of equivalent Gaussians here and their use in Chapter
3 is that they are required to evaluate integrals involving the two light beams u and v instead of
integrals involving one of the light beams and the director beam θ. In Chapter 3 two different
width corrections, A for the light beam width wk and B for the director beam width βk, were
required to match the Gaussians to the hyperbolic secant trial functions in the problem integrals.
Here, however, the equivalent Gaussians can be more accurately matched by including a width
correction term β, as before, and allowing an amplitude correction α, since the widths of the
two optical beams are very similar and separate width correction terms for each of the beams
would be almost identical.
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Using the small amplitude expansion and the equivalent Gaussian approximation the aver-
aged Lagrangian (4.7) is calculated as

L = −2
(
I2a

2
uw

2
u + Λug

2
u

)
(σ′
u − Vuξ

′
u)− 2I1auw

2
ug

′
u

+ 2I1w
2
ugua

′
u + 4I1auwuguw

′
u − IDua

2
u −Du

(
I2a

2
uw

2
u + Λug

2
u

)
V 2
u

− 2
(
I2a

2
vw

2
v + Λvg

2
v

)
(σ′
v − Vvξ

′
u)− 2I1avw

2
vg

′
v (4.13)

+ 2I1w
2
vgva

′
v + 4I1avwvgvw

′
v − IDva

2
v −Dv

(
I2a

2
vw

2
v + Λvg

2
v

)
V 2
v

+
2

q
Q1 −

2

q3
Q2,

where ′ denotes differentiation with respect to z and

Q1 = A2
uI4a

4
uw

2
u +A2

vI4a
4
vw

2
v

+
AuAv

2 (w2
u + w2

v)
α4β2a2ua

2
vw

2
uw

2
ve

−2(ξu−ξv)2/(β2(w2
u+w

2
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(4.14)

Q2 = A4
uI8a

8
uw

2
u +A4

vI8a
8
vw

2
v

+
A3
uAv

(w2
u + 3w2

v)
α8β2a6ua

2
vw

2
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2
v e

−6(ξu−ξv)2/(β2(w2
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+
3

4

A2
uA

2
v

(w2
u + w2

v)
α8β2a4ua

4
vw

2
uw

2
ve

−4(ξu−ξv)2/(β2(w2
u+w

2
v))

+
AuA

3
v

(3w2
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α8β2a2ua

6
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v)).

Here, Λu and Λv are the shelf areas modulo 2π

Λu =
1

2
R2
u and Λv =

1

2
R2
v. (4.15)

The various integrals I and Ii resulting from the calculation of this averaged Lagrangian are

I =

∫ ∞

0

x sech2 x tanh2 x dx =
1

3
log 2 +

1

6
,

I1 =

∫ ∞

0

x sechx dx = 2C,

I2 =

∫ ∞

0

x sech2 x dx = log 2, (4.16)

I4 =

∫ ∞

0

x sech4 x dx =
2

3
log 2− 1

6
,

I8 =

∫ ∞

0

x sech8 x dx =
16

35
log 2− 19

105
,

where C is the Catalan constant C = 0.915965594 . . ..
The scaling parameters α and β for the equivalent Gaussians (4.12) can now be determined

by matching the calculated averaged Lagrangian for the current trial function, equation (4.13),
with the averaged Lagrangian found by Garćıa-Reimbert et al [30], which is the same in the
symmetric limit Au = Av, Du = Dv, au = av, wu = wv, gu = gv, Vu = Vv = 0, ξu = ξv,
σu = σv. The final result is

α4 =
2I8
I4

and β2 =
4I24
I8
. (4.17)

The scaling parameters are then α = 0.9794 . . . and β = 1.6027 . . ., so that the equivalent
Gaussian has nearly the same amplitude as the original trial function, with the major change
being a different width. It is noteworthy that this result justifies the approach taken in Chapter
3, where the equivalent Gaussians were assumed to have the same amplitude as hyperbolic
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secants.
Taking variations of the averaged Lagrangian (4.13) with respect to the u colour nematicon

parameters yields

δσu :
d

dz

(
auw

2
uI2 + Λug

2
u

)
= 0, (4.18)

δVu : 2

(
dξu
dz
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)(
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2
uI2 − Λug

2
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= 0, (4.19)
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= 0, (4.20)

δau : −2I2auw
2
u

(
dσu
dz

− Vu
dξu
dz

)
− I1w

2
u

dgu
dz

− I1
d

dz

(
guw

2
u

)
+ 2I1guwu

dwu
dz

−DuIau −DuI2auw
2
uV

2
u +

2

q

[
2I4A

2
ua

3
uw

2
u +

AuAvα
4β2aua

2
vw

2
uw

2
v

2 (w2
u + w2

v)
e
− 2(ξu−ξv)2

β2(w2
u+w2

v)

]
− 2

q3

[
4I8a

4
ua

7
uw

2
u +

3A3
uAvα

8β2a5ua
2
vw

2
uw

2
v

w2
u + 3w2

v

e
− 6(ξu−ξv)2

β2(w2
u+3w2

v)

+
3A2

uA
2
vα

8β2a3ua
4
vw

2
uw

2
v

2 (w2
u + w2

v)
e
− 4(ξu−ξv)2

β2(w2
u+w2

v) +
AuA

3
vα

8β2aua
6
vw

2
uw

2
v

3w2
u + w2

v

e
− 6(ξu−ξv)2

β2(3w2
u+w2

v)

]
= 0, (4.21)
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After some algebra these modulation equations can be reduced to the simpler modulation

61



equations for the u colour beam
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(4.27)
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dξu
dz

= DuVu. (4.30)

The v colour beam modulation equations require obvious symmetric substitutions of beam
parameters and constants and so will not be repeated here.

In Chapters 2 & 3 the utility of conserved quantities in the analysis of beam dynamics
was highlighted. The modulation equation (4.25) is the equation for conservation of mass and
equation (4.29), when added to the symmetric equation in the v colour, is the equation for
conservation of momentum, in the sense of invariances of the Lagrangian (4.10). Nöther’s
Theorem applied to the Lagrangian (4.10) shows that the local nematicon equations (4.5) also
possess the energy conservation equation

dH
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=

∫ ∞

−∞

∫ ∞

−∞

[
Du|∇u|2 +Dv|∇v|2 −

√
q2 + 4 (Au|u|2 +Av|v|2)2

]
dxdy = 0.

(4.31)

With the small amplitude assumption used for the evaluation of the averaged Lagrangian (4.7),
the trial functions (4.8) can be inserted into equation (4.31), which then gives the total energy
conservation equation for the two-colour nematicons
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IDua
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2

q3
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]
= 0, (4.32)

on using the mass and momentum equations (4.25) and (4.29) and their v colour counterparts.
Adding the momentum equation (4.29) in the u colour to its symmetric equation in the v colour
gives the equation for total momentum conservation as

d
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uw

2
u + Λug

2
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)
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(
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2
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2
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2
v

)
Vv
]
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These conservation equations will be used to find various beam properties, including fixed point
parameter values, momentum walk-off, shelf radii and radiative losses.

Much information about the evolution of the two-colour nematicons can be obtained by
looking at the fixed points of the modulation equations (4.25)–(4.30). These modulation equa-
tions possess two types of fixed points, as did the nonlocal nematicons of Chapter 3. The two
possible fixed points are: (i) a coupled vector nematicon with ξu = ξv as z → ∞ and (ii) sep-
arate nematicons, which become two single nematicons |ξu − ξv| → ∞ as z → ∞. As separate
single nematicons in the local regime have been studied in detail before by Garćıa-Reimbert et
al [35], it is of more interest to investigate the coupled vector nematicon fixed point. Let us
denote fixed point values of the nematicon parameters byˆand boundary values at z = 0 by
a 0 subscript. As the coupled vector nematicon boundary conditions which lead to a bound
state of the two colours are the focus for this investigation, the asymptotic beam positions ξu,
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ξv have the relation ξ̂u = ξ̂v for these boundary conditions. On noting that gu0 = gv0 = 0
and ĝu = ĝv = 0, the mass and momentum conservation equations (4.25) and (4.33), plus the
position relation (4.30), therefore give

ξ̂′u = ξ̂′v =
DuDvM0

I2 (Dva2u0w
2
u0 +Dua2v0w

2
v0)

, (4.34)

where
M0 = I2a

2
u0w

2
u0Vu0 + I2a

2
v0w

2
v0Vv0, (4.35)

is the total initial momentum from equation (4.33). The conservation expression (4.34) gives the
mean momentum walk-off of the bound two-colour nematicon if radiative losses are neglected.
These radiative losses will be discussed and calculated in the next section.

The final quantities to be determined before discussing radiative losses are the radii, Ru &
Rv, of the radiation shelves travelling with the beams. In previous work involving the NLS
equation and the single colour nematicon equations the shelf radius was determined by lin-
earising the modulation equations about their fixed point, which resulted in a simple harmonic
oscillator equation [30, 31, 32, 35, 39]. The frequency of this oscillator equation, which depends
on the shelf width, was then matched to the soliton oscillation frequency, resulting in an ex-
pression for the shelf width. The same analysis could be performed for the present modulation
equations but this would result in complicated expressions for Ru and Rv. Much simplified
expressions for the shelf radii can be obtained in the same manner as that of Chapter 3, where
the experiments of Alberucci et al on two-colour nematicons in the nonlocal limit were used
to deduce that the diffraction and interaction coefficients for the two colours take very similar
values. In a similar manner then it is reasonable to take values of Du, Dv and Au, Av which
are close to each other. The symmetric limit, where Du = Dv and Au = Av, has that the
local nematicon equations (4.5) reduce to a coupled pair of local single nematicon equations of
the type considered by Garćıa-Reimbert et al [30]. Making this approximation then, which is
equivalent to taking the symmetric limit, allows the calculation of the shelf radii, which are

Λu =
II21Duq

3

384I2I8A4
uâ

6
u

and Λv =
II21Dvq

3

384I2I8A4
vâ

6
v

, (4.36)

with the fixed point amplitudes âu and âv defined as

â6u = − I4q
2H

16II8DuA2
u

and â6v = − I4q
2H

16II8DvA2
v

. (4.37)

Here H is the (constant) energy given by equation (4.32). The calculation of expressions (4.36)
and (4.37) is presented in full in Appendix B. These equations are the same as those found by
Garćıa-Reimbert et al [30], except that here the diffraction and coupling coefficients for the two
colours have been included, which preserves the symmetry.

The trial functions (4.8) have been assumed to have the same hyperbolic secant profile as
the soliton solution of the NLS equation. Another possible choice for the trial functions is a
Gaussian, particularly as this choice obviates the need for an equivalent function in order to
explicitly calculate the various cross integrals (4.11) in the averaged Lagrangian. In this regard
it was shown by Conti et al that a nematicon has a Gaussian profile near its peak and that
its tail decays as the modified Bessel function of order zero, K0, due to the circular symmetry
[27]. A Gaussian trial function then gives a better representation of the nematicon near its
peak, while the sech profile gives a better representation of its decay closer to the tail. To
demonstrate this graphically, Figure 4.2 shows a solution of the single nematicon equations for
which a steady single nematicon has formed. This solution is then compared with calculated
Gaussian and sech profiles fitted closely to the numerical beam profile. It is clear that the
Gaussian models the beam profile well near the peak, but decays far too quickly approaching
the tail, whereas the sech profile is too steep near the peak, yet decays in a similar manner to
the steady numerical beam profile.

To further understand the effect that the choice of trial function has on the final steady
nematicon state, numerical solutions of the full two-colour nematicon governing equations will
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Figure 4.2: Numerical solution of the full governing equations showing the beam profile of a
steady single nematicon ( — )[red] taken from the results of Chapter 5 at z = 90; a fitted sech
profile ( — — — )[green]; a fitted Gaussian profile ( – – – )[blue].

be sought, along with solutions of the corresponding modulation equations, for Gaussian trial
functions. Appropriate Gaussian trial functions then include a Gaussian term representing the
optical beam and a term representing the radiation shelf travelling with the beam, which is
identical to the second term in the sech trial functions (4.8)

u = aue
−(χu/wu)

2

eiψu + igue
iψu ,

v = ave
−(χv/wv)

2

eiψv + igve
iψv . (4.38)

No new calculations are required for these new trial functions. All that is required is to replace
the integrals (4.16) by

I =

∫ ∞
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−2xe−x

2
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dx =
1

2
,
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, (4.39)

I4 =

∫ ∞

0

xe−4x2

dx =
1

8
,

I8 =

∫ ∞

0

xe−8x2

dx =
1

16
.

With these replacements for the integrals I and Ii the averaged Lagrangian and the modulation
equations for the Gaussian trial functions are identical to equations (4.13) and (4.25)–(4.30)
respectively. Clearly, as there is no call for an equivalent Gaussian when the trial functions
are Gaussians themselves, the scaling parameters are α = 1.0 and β = 1.0, which can also
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be verified by substituting the integrals (4.39) into equations (4.17). It should be noted that
the averaged Lagrangian (4.13) and the modulation equations (4.25)–(4.30) hold for any self-
similar trial functions of u and v. All that is needed is that the integrals I and Ii of (4.16)
are replaced by the equivalent first order moments of powers of this trial function and its first
derivative. This suggests that the trial function is relatively unimportant. However, a trial
function that diverges from the nematicon steady state profile by too large a degree will not
admit modulation equations whose solutions are in good agreement with numerical solutions.
In addition, numerical solutions of the governing equations where the initial conditions are
significantly different from the steady nematicon profile would show large profile changes as the
initial beams attempt to settle to steady nematicon solutions. Such large profile changes would
be impossible to replicate with trial functions with fixed profiles. Initial conditions and trial
functions that are close to the steady nematicon profile are then desirable for the solutions of
the resulting modulation equations to have good agreement with numerical solutions.

4.2.2 Radiation Calculation

To complete the modulation equations the effect of the diffractive radiation shed by the ne-
maticons as they evolve must be included in the modulation equations (4.25)–(4.30). Numerical
solutions show that the shed radiation has small amplitude relative to the nematicons. Hence
this radiation is governed by the linearised Schrödinger equations

i
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+
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(4.40)
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∂z
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(
r
∂v

∂r

)
= 0.

Solving these equations yields the form of the diffractive radiation shed as the beams evolve.
This radiation problem has already been studied by Garćıa-Reimbert et al [35] and has also
been presented in Chapters 2 & 3 for local single nematicons and nonlocal two-colour nemati-
cons, respectively. It is clear that the radiation calculation differs little from that presented
before since nonlinear coupling is neglected. Solely for completeness then, the final result of the
radiation calculation is that two modulation equations, the mass equation (4.25) and the equa-
tion for the radiation shelf height gu (4.27), plus their v colour beam equivalents, are modified
to include losses
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where the loss coefficient δu is
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√
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and
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2
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]
. (4.44)

The variable κu measures the difference between the mass of the u colour at z and its mass
at the fixed point. Notice that the radiation calculation is simplified here from the nonlocal
case in that there is only one shelf radius required, since the director and optical beams have
the same width. Consequently there is no need to split the radiation shelf into inner and outer
components. The loss coefficient and the modified equations for the v colour beam are obtained
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by obvious symmetric substitutions.
With the inclusion of diffractive radiation, the modulation equations for the two-colour

nematicons are complete.

4.2.3 Adjustments to Numerical Methods

The numerical schemes used to solve the modulation equations [(4.26), (4.28)–(4.30), (4.41) and
(4.42) plus the equivalent modulation equations for the v colour beam] and the full governing
equations [(4.1)–(4.3)] are based on the schemes presented in Sections 2.2.4 and 2.3 respectively.
These numerical schemes have been adjusted for the local two-colour nematicon problem in an
identical manner as that described in Chapter 3 for two-colour nematicons in the nonlocal
regime.

4.3 Results

In this section numerical solutions of the modulation equations will be compared with numerical
solutions of the full two-colour nematicon governing equations. For brevity numerical solutions
of the modulation equations will be named ‘modulation solutions’ and the numerical solutions
of the full governing equations will be referred to as ‘full numerical solutions.’

As for the full numerical solutions in the nonlocal limit, step sizes of ∆x = ∆y = 0.4
and ∆z = 0.005 were taken, with spatial intervals of 102.4 in the x and y directions. Sim-
ilarly, the step size chosen for the numerical scheme used to solve the modulation equations
was ∆z = 0.005. Coupling and diffraction coefficients were chosen that reflect the dimension-
alised differences in these values in experimental studies. Equal initial values of amplitude (and
width) were taken to prevent ambiguity when investigating the sources of different dynamical
behaviours. A value of ν = 0.01 was chosen to calculate the full numerical solutions. This
value corresponds to highly local behaviour. It was found that for this value of ν numerical
solutions of the full equations (4.1)–(4.3) agreed to graphical accuracy with numerical solutions
of the saturable CNLS equations (4.5), from which the modulation equations were derived.
This agreement was found by Garćıa-Reimbert et al [35] when investigating single, large am-
plitude local nematicons. Such agreement validates the comparison between the full two-colour
nematicon equations and the modulation equations derived from the local saturable equations.

Figure 4.3(a) shows a comparison of the momentum walk-off ξ̂′ = ξ̂′u = ξ̂′v, as given by
the full numerical solutions, the modulation solutions and the momentum conservation result,
as a function of Vv0 for sech initial conditions (4.8) which result in the formation of a vector
nematicon (where Vv0 is the initial value of Vv). The full numerical and modulation solutions
do not settle to the steady state until large values of z are reached. This slow evolution to the
steady state is typical of nematicon evolution. To enable a large number of numerical runs to
be made in a reasonable time, the full numerical solutions were run until the oscillations of the
positions of the nematicons about the final steady state were small and then an average was
taken of these oscillations to determine ξ̂′. It can be seen that there is near perfect agreement
between the full numerical and modulation solutions for momentum walk-off. The momentum
conservation result (4.34) was derived on the assumption that the nematicons do not shed mass
and momentum. It is therefore apparent that the inclusion of the mass and momentum shed
by the nematicons as they evolve is vital in order to obtain good agreement with full numerical
solutions, which is in stark contrast to the momentum walk-off comparison for nonlocal two-
colour nematicons for which radiative losses were shown to play a relatively insignificant role.
A physical reason for the radiation loss difference between the local and nonlocal limits is that
the wide response of the nematic in the nonlocal case forms a wide potential well from which
little radiation can escape. In contrast, the narrow response of the nematic in the local limit
allows large amounts of diffractive radiation to escape.

Figure 4.3(b) shows a similar comparison to Figure 4.3(a) for momentum walk-off, except
that here Gaussian initial conditions (4.38) were used. The results are similar to those for the
hyperbolic secant profile, with near perfect agreement between full numerical and modulation
solutions. Again the inclusion of shed mass and momentum in the modulation equations is
shown to be vital to obtain good agreement with full numerical solutions. Inspection of Figures
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Figure 4.3: Steady value ξ̂′ = ξ̂′u = ξ̂′v as a function of Vv0 for the initial conditions au = 0.35,
av = 0.35, wu = 3.0, wv = 3.0, Vu0 = −0.1, ξu = 1.0 and ξv = −1.0 with Du = 1.0, Dv = 0.8,
Au = 1.0 and Av = 0.9 for (a) the sech initial condition (4.8) and (b) the Gaussian initial
condition (4.38). Full numerical solution ( — )[red], solution of modulation equations ( — —
— )[green], momentum conservation result (4.34) ( – – – )[blue].
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4.3(a) and 4.3(b) show that there is little difference when comparing the full numerical solutions
for the sech and Gaussian trial functions. From the discussion of the use of a Gaussian trial
function in Section 4.2.1 this may have been expected since the sech and Gaussian profiles
are good approximations to the actual nematicon solution in different regions of the steady
nematicon profile. The vital point with the use of various trial functions is that as long as the
equations for certain basic gross quantities, such as mass, momentum and energy, are satisfied,
then enough constraints are placed on the approximate equations to give good agreement with
full numerical solutions. In contrast to the case for the nonlocal nematicon, the tail of a local
nematicon is not extended. Nonlocal nematicons interact at distance due to overlap of these
extended tails, whereas local nematicons interact only in close proximity to one another. As
there is less interaction solely in the tails of the beams, the tail shape becomes less important,
and consequently Gaussian trial functions seem to perform just as well as hyperbolic secants in
this local regime. This will be investigated further later in the chapter.

A comparison for the evolution of the beams between a full numerical solution and a mod-
ulation solution is shown in Figure 4.4. The sech trial function (4.8) is used for a case leading
to a vector nematicon shown in Figure 4.3(a). Figure 4.4(a) compares the positions ξu and
ξv of the maxima of the beams as they propagate over z. Figure 4.4(b) is an equivalent plot
for the amplitudes au and av. As expected from Figure 4.3(a) the agreement for the position
evolution of the two solutions is excellent in the mean, which is equivalently the momentum
walk-off of the two-colour vector nematicon. However the modulation solution peak positional
separation of the two beams about this mean is greater than that of the full numerical solution.
Additionally, for the latter solution, the two beams experience a stronger attraction initially
and cross over one another much earlier in the z evolution than for the modulation solution.
As for the position comparison, the means of the amplitude oscillations are in good agreement
in Figure 4.4(b). However the peak amplitudes as given by the modulation equations are about
7% higher than the full numerical peak amplitudes. As the modulation equations are equivalent
to those for a nonlinear oscillator, this amplitude difference causes a period difference in the
oscillations, which accounts for the increasing difference in the peak amplitude positions of the
full numerical and modulation solutions. The more rapid decay of the numerical solution to
the steady state is due to the diffractive radiation analysis slightly underestimating this shed
radiation.

A direct comparison of the beam dynamics between Figures 4.4 in the local limit and Figures
3.4 in the nonlocal limit is useful (these Figures having the same initial conditions for beam
widths, beam separations and velocities), but such a comparison is to be carried out with
caution as the mass of the nonlocal nematicons is roughly 30× that of the local nematicons.
When comparable initial conditions to those of Chapter 3 are taken here, extreme self-focusing
occurs, so much so that it leads to large numerical errors. Some observations can, however, be
made. One noticeable difference between these local results and results obtained for nonlocal
two-colour nematicons is that a clear decay of position and amplitude oscillations is observed
in the local limit. As radiation leaks more easily from the beams into the far field in this
regime, the two-colour vector nematicon steady state is reached far more rapidly. Position
oscillations decay so rapidly that anharmonicity is not observed in this regime, in contrast to
the results of Chapter 3 where increased locality caused an increase in anharmonicity for the full
numerical solutions. The large anharmonic, distorted position oscillations of beams propagating
in moderately nonlocal media (ν ≈ 250) caused corresponding anharmonicity in the amplitude
oscillations. Since the position oscillations die away very rapidly in the local limit they do not
have such an effect on the amplitude oscillations, which are consequently smooth and harmonic
in this regime.

Although the initial amplitudes are low (ak = 0.35), as the beams evolve the amplitudes
reach peaks of ak ≈ 0.9 before they begin to decay to the steady state. This large increase
can be explained in relation to the standard (2 + 1)-D NLS and CNLS equations. Solitons
obeying these equations are inherently unstable and a critical amplitude threshold dictates how
the instability manifests itself. Below this threshold total decay is certain, whereas above the
threshold infinite self-focusing will occur. The rapid amplitude increases seen in Figure 4.4(b)
then are a result of the initial amplitudes being above this threshold value. Nonlinear self-
focusing causes a rapid growth, but the effect is curtailed by the saturation of this nonlinearity
and the beams stabilise, as noted by Garćıa-Reimbert et al for a single nematicon [35].
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Figure 4.4: Solution of two-colour nematicon equations for an initial sech profile beam (4.8)
with the initial conditions au = 0.35, av = 0.35, wu = 3.0, wv = 3.0, Vu0 = −0.1, Vv0 = −0.05,
ξu = 1.0 and ξv = −1.0 with Du = 1.0, Dv = 0.8, Au = 1.0 and Av = 0.9. Full numerical
solution for the u colour ( — )[red] and v colour ( — — — )[green] beams; solution of
modulation equations for the u colour ( – – – )[blue] and v colour ( - - - )[violet] beams. (a)
Positions, (b) Amplitudes.
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Figure 4.5: Solution of two-colour nematicon equations for an initial sech profile beam (4.8)
with the initial conditions au = 0.35, av = 0.35, wu = 3.0, wv = 3.0, Vu0 = −0.1, Vv0 = 0.1,
ξu = 1.0 and ξv = −1.0 with Du = 1.0, Dv = 0.8, Au = 1.0 and Av = 0.9. Full numerical
solution for the u colour ( — )[red] and v colour ( — — — )[green] beams; solution of
modulation equations for the u colour ( – – – )[blue] and v colour ( - - - )[violet] beams. (a)
Positions, (b) Amplitudes.
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Figure 4.6: Numerical solution of the two-colour nematicon equations for the sech trial function
(4.8) with initial conditions au = 0.35, av = 0.35, wu = 3.0, wv = 3.0, Vu0 = −0.1, Vv0 = −0.05,
ξu = 1.0 and ξv = −1.0 with Du = 1.0, Dv = 0.8, Au = 1.0 and Av = 0.9. (a) contour plot of
numerical solution for |u| at z = 10, (b) contour plot of numerical solution for |v| at z = 10.

A similar comparison to Figure 4.4 is shown in Figure 4.5 for different initial values. Here the
stark differences between full numerical solutions and the modulation solutions are far clearer.
The amplitude and position oscillations do not agree in their peak separations nor in their
periodicity, as for Figures 4.4, but there are additional observations that can be made here.
The amplitude oscillations in Figure 4.5(b) no longer agree in the mean, which is equivalent to
the modulation solution and the full numerical solution settling to two different steady states.
Additionally these oscillations are anharmonic for the modulation solution, which is an effect
clearly not present in the full numerical solution. When comparing the position oscillations and
the amplitude oscillations it is clear that the large oscillations of the one affects the oscillations
of the other. The largest oscillation in position, beginning around z = 90, corresponds to a long
dip in amplitude which only begins to correct itself as the beams approach another collision.

There are a number of reasons for these various differences between the full numerical and
modulation solutions. Early small differences with respect to radiative losses will grow over z.
In addition the radiation calculation which is included in the modulation equations involves
an asymptotic approximation of the Bessel function K0 which is valid for large z [35]. The
initial approximation to the radiation loss can therefore differ significantly from the actual loss.
The importance of this difference depends on the relative weights of the initial and large z
radiation losses. To some extent this accounts for the difference in the first collision point
of the nematicons in Figures 4.4(a) & 4.5(a) and the difference in the first peak amplitudes
of Figure 4.4(b). These early differences compound as the beams evolve over large z. There
are, however, other factors that cause discrepancies between the full numerical and modulation
solutions. The first can be seen from the full numerical solutions for |u| and |v| at z = 10,
shown in Figures 4.6(a) & 4.6(b). These solutions are at a value of z just after the point
at which the two colours first collide. It can be seen that the two nematicons have become
distorted by their collision. This distortion is, of course, not accounted for in the variational
approximation since the symmetric shapes of the two nematicons are fixed by the trial functions
(4.8). Distortions will make a difference to the subsequent evolution of the nematicons. It is also
notable that more mass is concentrated on one side of each of these beams. For example, Figure
4.6(a) has that the centre of mass is to the right of the beam (positive x). This corresponds
to an acceleration of the beam in the opposite direction to the side of greater mass. These
two beams are accelerating away from one another. As discussed by Smyth & Kath [32], the
radiation calculation of Section 4.2.2 does not take acceleration into account. The inclusion of
accelerative effects on radiation loss in the terms representing mass and momentum loss in the
modulation equations is a nontrivial calculation as it involves solving a moving boundary value
problem with an unknown boundary.

As the initial velocity difference between the nematicons increases, the nematicons become
more distorted upon collision and interaction. This results in the difference in the position
oscillations about the mean (i.e. momentum walk-off) as given by the full numerical and mod-
ulation solutions becoming greater, as seen in Figure 4.5(a). Also for large velocity differences
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the approximate amplitude oscillations gain a second frequency due to an interaction with the
large position oscillations which oscillate at a different frequency. This second frequency gen-
eration is most conspicuous in Figure 4.5(b) at z ≈ 35. The full numerical solution does not
have this second frequency as the acceleration and distortion of the nematicons upon collision,
and the consequent losses to radiation, result in a rapid damping of the position oscillations
about the mean momentum walk-off. However the various dynamical differences between the
modulation and full numerical solutions for the various initial conditions does not change the
excellent agreement for the momentum walk-off.

When comparing full numerical and modulation solutions in the limit of large velocity
differences it was found that the Gaussian trial functions (4.38) gave slightly better agreement
for the amplitude evolution, while there was little difference between the Gaussian and sech
trial functions for the position evolution. For a small velocity difference between the two beams
a sech trial function gave a slightly improved agreement in the position evolution and the
agreement with respect to the amplitude evolution was very similar for the two trial functions.
A comparison of the positions ξu and ξv between the sech trial functions and the Gaussian
trial functions is given in Figure 4.7. Whilst there is almost no difference in the momentum
walk-off value and both full numerical solutions settle to the steady state quickly in an almost
identical fashion, it is interesting to note that the modulation solution with the Gaussian trial
functions settles to the steady vector nematicon over larger z distances than for the sech trial
function. This result suggests that a sech trial function is slightly better in this particular case
for modelling nematicon evolution. Evidence from Chapter 3 on nonlocal two-colour nematicons
gives further support to this conclusion.

4.4 Discussion

Two-colour vector nematicon evolution in the local regime has been considered. The full ne-
maticon governing equations were simplified to approximate nematicons travelling in a local
response NLC medium and the mechanism that allowed the stability of two-colour vector ne-
maticons was found to be a saturation of the nonlinear term in the resulting approximated
equations, which was a CNLS equation with a saturable nonlinearity. The simplified govern-
ing equations were reformulated as a Lagrangian and the variational approximate method was
then used to derive modulation equations for the beam parameters. Radiative losses were later
calculated and combined with these equations. Solutions of the modulation equations were com-
pared with numerical solutions of the full governing equations. Excellent agreement was found
between full numerical and modulation solutions, particularly when considering the momentum
walk-off. The radiative losses included in the modulation equations were found to be essential
for good agreement with respect to momentum walk-off. Whilst the agreement between the
modulation and full numerical solutions for the period and peak separation of the u & v beam
positions was not as good as for the nonlocal two-colour nematicons of Chapter 3, there was
qualitative agreement in the sense that the oscillations were damped over large z, revealing
considerable evolution to the final steady state. The conclusion of Chapter 3 that radiative
losses increase as locality increases is given further weight here as damping in the amplitude
and position oscillations was found to be much increased over that for the nonlocal limit of the
previous Chapter. However it is clear that the radiation calculation underestimates radiation
losses in this local regime, since accelerative effects cannot be included in the approximation
and acceleration was found to increase loss.

Whilst the results presented here do not make it entirely clear whether a hyperbolic secant
trial function is more appropriate than a Gaussian for modelling nematicon evolution, or indeed
two-colour vector nematicon evolution, what is clear is that a sech is on average no worse than
a Gaussian. There are, however, several reasons for preferring the use of a sech trial function,
based on previous investigations. Results of Minzoni et al [39] and Garćıa-Reimbert et al [35]
on single nematicon evolution in both local and nonlocal NLCs have suggested that a Gaussian
initial condition is more likely to split into multiple beams at moderate initial amplitudes above
a certain threshold. Garćıa-Reimbert et al even identified the source of beam splitting as the
large difference in width between an initial Gaussian beam and a nematicon [35]. Their results
and those of Chapter 5 also lead to the conclusion that a hyperbolic secant trial function has a
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Figure 4.7: Positions given by the solutions of the two-colour nematicon equations for (a) the
sech profile (4.8) and (b) the Gaussian profile (4.38) with the initial conditions au = 0.35,
av = 0.35, wu = 3.0, wv = 3.0, Vu0 = −0.1, Vv0 = −0.09, ξu = 1.0 and ξv = −1.0 with
Du = 1.0, Dv = 0.8, Au = 1.0 and Av = 0.9. Full numerical solution for the u colour ( —
)[red] and v colour ( — — — )[green] beams; solution of modulation equations for the u colour
( – – – )[blue] and v colour ( - - - )[violet] beams.
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far wider range of initial amplitude and width values that can be taken in order that the beam
evolves into a single nematicon.

Experiments have not been conducted on two-colour nematicons in the local regime, but
the ease with which a local response of the nematic can be induced suggests that it would
not be difficult to realise such an experiment. Furthermore, local responses have been found
to be far faster than nonlocal responses because of the reduced reliance on a slow diffusion of
molecular reorientation due to the optical beam(s) [60]. As multiple soliton interactions have
been a topic of interest recently for their potential in optoelectronics, the author suggests that
such an experiment is worthy of investigation.

In the next chapter, the methods developed for local and nonlocal two-colour nematicons
will be applied to a very different experimental regime. The link between the different regimes
is that each one provides a different method for steering nematicons. In the regimes presented
in Chapter 3 and this chapter the coupled nematicon waveguides steer each other and the
momentum walk-off can be adjusted by the initial separations and initial velocities. Although
not explored here, these vector nematicons can also be steered by choosing unequal initial
values of amplitude or width for the u and v colour beams. The following chapter will reveal
a completely different way of steering nematicons that does not require the mutual interaction
of two or more nematicons.
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Chapter 5

Optical Steering in DD-NLCs

5.1 Background

Nematicons form due to a balance between linear beam diffraction and the self-focusing of an
input beam, an effect brought about by the thermal and/or molecular reorientational nonlinear
response of the material to the beam, fully described in Chapter 1. Although this balance is
delicate, once created nematicons are stable and robust, allowing nematicon survival through
defects in the medium [16]. One common method of introducing a defect into a nematic liquid
crystal (NLC) is to alter the molecular reorientational response of the NLC medium to light
by introducing a small amount (∼ 1%) of photosensitive dye compound, a process known as
doping. Dye molecules can be excited to induce a guest-host effect between the dye and nematic
molecules, leading to reorientation.

A pre-tilt of the nematic molecules in a dye-doped nematic liquid crystal (DD-NLC) with
appropriate anchoring at the boundaries can be induced by the various different methods out-
lined in Section 1.3. If an external beam (control beam) of a wavelength appropriate for dye
molecule photon absorption is shone into the DD-NLC, the dye compound molecules adsorbed
onto the surface of the nematic cell are excited and further adsorption and/or desorption occurs
[61]. This changes the boundary anchoring conditions of the nematic molecules according to the
guest-host effect; whereby adsorption/desorption of dye molecules at the boundary is directly
related to surface charge adsorption/desorption, and changes to the surface charge density mod-
ify the anchoring conditions [62]. Essentially the initial molecular orientation at the boundaries
in the region of the external beam is perturbed. Due to the elasticity of the NLC medium a
perturbation of the molecular alignment at the boundary will, in turn, perturb the molecular
orientation through the bulk cell, leading to a change from the original pre-tilt. The new pre-
tilt will be observed in the direction in which the control beam is shone [61]. The resultant
reorientation of the pre-tilt field in the bulk medium is then a nonlinear effect induced by the
molecular reaction to the control beam at the boundary and is not directly caused by a molec-
ular reaction in the bulk NLC. The main effect that the inclusion of dye molecules has in the
bulk is to cause an increase in the Fréedericksz transition threshold due to the charge-screening
effect. This means that a stronger static/low-frequency electric field is required to induce an
initial pre-tilt in the nematic molecules. However, this is only of concern to experimentalists
[63]. Any other effects that the control beam or dye molecules have on molecular alignment in
the bulk can be assumed to be negligible.

A general prevalence of dye adsorption or desorption at the NLC surface when the control
beam illuminates the interface is fundamentally responsible for an increase or decrease in the
refractive index of the bulk DD-NLC in the illuminated region [63], as illustrated in the sketch
of Figure 5.1 where additional adsorption of dye molecules at the boundary leads to a reduced
director angle orientation in the bulk. This adsorption/desorption prevalence can be controlled
by the polarisation and/or intensity of the control beam [63, 64]. Consequently, the nonlinear
response, and by association the refractive index, of the DD-NLC in the illuminated region can
be indirectly optically tuned. The control beam illumination subjects an area of the DD-NLC
to what will be termed a refractive index defect. Such an index defect was placed in the path of
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Figure 5.1: Sketch of adsorption of dye molecules (red circles) at the surface of the interface
causing a change in orientation of nematic molecules (blue cigar-shapes) through the bulk cell.

nematicons propagating through a DD-NLC in experiments conducted by Piccardi et al [16]. In
this work the inherent stability of nematicons, once formed, was verified by nematicon survival
through the index defect. Furthermore, nematicon large angle refraction and total internal
reflection (TIR) were observed, induced by the perturbation of the refractive index in the
defect. Since this index perturbation can be optically tuned by the control beam parameters,
the angle of refraction or reflection was also tunable, resulting in the ability to steer nematicons
in a desired direction. In addition, copolarised weak beams were introduced and were observed
being confined by the nematicon and steered in the direction that the nematicon took.

A pre-tilt of the nematic molecules of π/4 was achieved via rubbing at one of the interfaces in
these experiments [16]. Whilst this ensured the desired pre-tilt in the bulk and planar anchoring
conditions at the boundary, a static/low-frequency electric field applied across the thickness x
can be used to control and vary the initial pre-tilt of the bulk nematic and thus control the
nonlocality of the medium. Investigations conducted by Simoni et al [63] and Lucchetti et al
[62] revealed that a low-frequency electric field applied to the DD-NLC cell creates a large
controllable nonlinear response of the medium to light beams entering the cell. It is anticipated
then that nematicons may be formed in the manner of Piccardi et al [16], but with the advantage
of control of the pre-tilt outside of the illuminated region, dictated by an applied electric field
such as that employed by Simoni et al and Lucchetti et al [62, 63].

The present work theoretically addresses the steering of nematicons passing through an
index defect in a DD-NLC with an initial pre-tilt dictated by an applied static/low-frequency
electric field. Before considering nematicon propagation, the index defect in the DD-NLC must
first be defined. Let θb be the reorientation of the director angle from the initial pre-tilt value
θ̂ caused by the control beam. This reorientation can be in the same direction as that of the
optical beam reorientation θa (discussed below) or can be in the opposite direction, depending
on the polarisation and/or intensity of the illumination [16]. If E represents the electric field
of the control beam, the equation governing the effect of the index defect on the reorientation
of the nematic molecules through z is given by

q sin 2θb + 2p|E|2 cos 2θb = ν
∂2θb
∂z2

, (5.1)

where p = ±1, the sign being determined by the direction of the refractive index reorientation.
Assuming small deviation from the pre-tilt θ̂, this equation can be approximated by

2qθb + 2p|E|2 = ν
∂2θb
∂z2

. (5.2)
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Figure 5.2: Schematic diagram of a dye-doped nematic liquid crystal cell with an optically rarer
index defect. An x-polarised beam is propagating through the cell.

Let us assume that a stripe-shaped control beam in the (x, z)-plane is shone into the DD-NLC
from the cell boundary between z = z1 and z = z2. Neglecting any beam spreading, the electric
field of the control beam is defined as

E =

{
Eb, if z1 < z < z2

0, otherwise
. (5.3)

Solving equation (5.2) with the boundary condition (5.3), the director distribution within the
index defect is given by

θb = pF (z)e−γx =


pA1e

√
2q
ν ze−γx, z < z1,

p
(
A2e

−
√

2q
ν z +A3e

√
2q
ν z − |Eb|2

q

)
e−γx, z1 < z < z2,

pA4e
−
√

2q
ν ze−γx, z > z2,

(5.4)

where

A1 =
|Eb|2

2q

(
−e−

√
2q
ν z1 + e−

√
2q
ν z2
)
,

A2 =
|Eb|2

2q
e
√

2q
ν z1 ,

A3 =
|Eb|2

2q
e−

√
2q
ν z2 ,

A4 =
|Eb|2

2q

(
e
√

2q
ν z1 − e

√
2q
ν z2
)
. (5.5)

The exponential decay in x, with decay rate γ, has been introduced to account for the observed
decay of the beam intensity due to scattering losses [64]. When the index defect causes a negative
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refractive index change, corresponding to an optically rarer region, the director distribution
is θb = F (z) exp(−γx), and for an optically denser region the director distribution is θb =
−F (z) exp(−γx).

With the index defect now defined, the equations governing nematicon propagation can be
derived. Consider an x-polarised, coherent light beam propagating through a cell filled with a
nematic liquid crystal and mixed with a small amount of dye-dopant, as illustrated in Figure
5.2. The transverse coordinates (x, y) are orthogonal to the z direction. The input beam is
launched and initially propagates at an arbitrary angle with respect to the z direction. Let θa be
the perturbation of the optical director angle due to the light beam (nematicon) from the initial

pre-tilt θ̂ determined by the external bias and θb be the perturbation of the director from the
initial pre-tilt induced by the index defect due to the control beam. If u represents the slowly-
varying electric field envelope of the light beam, the governing equations of the nematicon in
the bulk DD-NLC are

i
∂u

∂z
+

1

2
∇2u+ u sin 2 (θa + θb) = 0, (5.6)

q sin 2θa − 2|u|2 cos 2θa = ν∇2θa, (5.7)

where the Laplacian ∇2 is in the (x, y)-plane. q is determined from the square of the static/low-
frequency electric field and is related to the pre-tilt of the nematic. ν is a measure of the elastic
response, or nonlocality, of the nematic, with a local response corresponding to ν small. The
DD-NLC must be assumed to possess a nonlocal response if the indirect optical perturbation
of the pre-tilt by the control beam is to be achieved for the index defect in the bulk DD-NLC
[61]. Hence the ν large limit must be taken.

The index defects, represented by equation (5.4), are much simplified approximations to
the defects introduced by Piccardi et al, which were induced by an elliptical control beam
with a Gaussian profile that introduced a graded-index perturbation [16] into the cell. Such a
perturbation naturally spreads and decays through the thickness of the cell due to diffraction
and scattering losses. Giving a Gaussian profile to the control beam Eb would yield very
complicated, and possibly intractable, modulation equations. Additionally, if a simple control
beam was modelled by the modulation equations and solutions compared with full numerical
solutions for which the control beam was modelled as a Gaussian, the comparison would be
unreasonable since the modulation equations would be approximating a completely different
index defect. The best compromise then has been to simplify the control beam profile to a one-
dimensional stripe. Decay in x due to scattering losses is accounted for by the factor exp(−γx).
The director perturbation outside of the region illuminated by the control beam due to the
nonlocal response of the nematic is included by the terms exp(λz) for z < z1 and exp(−λz) for
z > z2, where λ =

√
2q/ν, but diffractive spreading of the perturbation as x increases is not

included in the approximation. Additionally, spreading in the (y, z)-plane has been neglected to
simplify the analysis. A typical resulting extraordinary refractive index ne is shown in Figure
5.3.

As a final note, in Chapters 3 & 4 birefringent Poynting vector walk-off was factored out of
the two-colour nematicon equations by a phase factor. This was allowed because walk-off was
constant throughout the medium. Strictly speaking here, however, the Poynting vector walk-off
cannot be treated in the same fashion because it was shown experimentally to be variable due
to the index defect deviating the nematicon path [16]. To keep the analysis reasonably simple
an approximation is made whereby it is assumed that Poynting vector walk-off is not affected
by the index perturbation. With this approximation nematicon evolution in a DD-NLC with a
simple index defect can be modelled by equations (5.6), (5.7) and (5.4).

5.2 Analysis

5.2.1 Modulation Equations

If a large pre-tilt of the nematic molecules is induced, which is close to and above the optimum
pre-tilt of π/4 with respect to the direction of propagation of the beam [16, 19], it can be seen
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Figure 5.3: Typical refractive index profile ne produced by a control beam causing a negative
reorientation of the director.

from the director equation (5.7) that θa, the optically induced deviation of the director angle
from the pre-tilt value outside the illuminated region, is small at low input beam powers. In
this |θa| small limit the governing equations (5.6) and (5.7) may be approximated by

i
∂u

∂z
+

1

2
∇2u+ 2u (θa + θb) = 0, (5.8)

2qθa − 2|u|2 = ν∇2θa, (5.9)

where θb is defined by equation (5.4), found by taking a similar small deviation assumption.
Equations (5.8) and (5.9) have the corresponding Lagrangian formulation

L = i (u∗uz − uu∗z)− |∇u|2 + 4 (θa + θb) |u|2 − ν|∇θa|2 − 2qθ2a, (5.10)

where the superscript ∗ denotes the complex conjugate. To obtain approximate modulation
equations for the beam parameters trial functions are now inserted into the averaged Lagrangian
given by

L =

∫ ∞

−∞

∫ ∞

−∞
L dxdy. (5.11)

Appropriate trial functions for the electric field of the light beam u and the director angle θa
respectively are

u = a sech
χ

w
eiψ + igeiψ, θa = α sech2

χ

β
, (5.12)

where

χ =

√
(x− ξ)

2
+ y2, ψ = σ + V (x− ξ) . (5.13)

The electric field amplitude a, width w, nematicon position ξ, velocity V , phase σ and shelf
amplitude g are functions of z. The first term in the trial function for u is a solitary wave with
variable parameters. The second term represents the out of phase interaction of the nematicon
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with a flat shelf of low-amplitude diffractive radiation which develops under the evolving beam
and travels with it. These trial functions are identical to those used in Chapter 3 and for a
variety of different nematicon regimes. If the shelf were assumed to have non-zero amplitude
throughout the bulk medium the mass of the shelf would be infinite. Hence the shelf is assigned
a radius 0 ≤ χ ≤ R within which it is non-zero [30, 31, 65].

The first step to deriving the modulation equations for these trial functions is to insert
the trial functions (5.12) into the averaged Lagrangian (5.11). All of the averaged Lagrangian
integrals can be evaluated exactly except the cross integral∫ ∞

−∞

∫ ∞

−∞
|u|2θbdxdy. (5.14)

To calculate this integral ‘equivalent’ Gaussians are once again utilised whereby sech terms
in the integral are replaced by Gaussians, sech2 (χ/w) → exp

(
−χ2/(B2w2)

)
, sech2 (χ/β) →

exp
(
−χ2/(A2β2)

)
, with width correction coefficients A and B. These equivalent Gaussians

are the same as those used in Chapter 3 and were chosen because the cross integral involves
two structures with distinct widths, where w ≪ β due to the high nonlocality of the nematic
response. A and B are calculated by matching the Taylor series of the original integral using
sech trial functions in the limit w ≪ β to the equivalent Gaussian result [39], yielding

A =
I2
√
2√

I32
, and B =

√
2I2. (5.15)

The final averaged Lagrangian for these trial functions is

L = −2
(
a2w2I2 + Λg2

)
(σ′ − V ξ′)− 2I1aw

2g′ + 2I1gw
2a′

+4I1awgw
′ − a2I22 −

(
a2w2I2 + Λg2

)
V 2 − 4νI42α

2

−2qI4α
2β2 +

2A2B2αa2β2w2

A2β2 +B2w2
+ 2F (z)a2B2w2e−γξ+γ

2B2w2/4, (5.16)

where ′ denotes differentiation with respect to z. The insertion of the trial functions (5.12)
into the averaged Lagrangian (5.11) allows variations of the beam parameters to be taken. For
simplicity we set θb = F (z)e−γx, where F (z) is defined by equation (5.4), and Λ = 1

2ℓ
2. The

modulation equations of the nematicon are given by

δσ :
d

dz

(
I2a

2w2 + Λg2
)
= 0, (5.17)

δV : 2

(
dξ

dz
− V

)(
a2w2I2 − Λg2

)
= 0, (5.18)

δg :
d

dz

(
aw2I1

)
− Λg

(
dσ

dz
− V

dξ

dz
+

1

2
V 2

)
= 0, (5.19)

δa : −2aw2I2

(
dσ

dz
− V

dξ

dz

)
− I1w

2 dg

dz
− I1

d

dz

(
gw2

)
+ 2I1wg

dw

dz
(5.20)

−aI22 − aw2I2V
2 +

2A2B2aαw2β2

A2β2 +B2w2
+ 2F (z)B2aw2e−γξ+

1
4γ

2B2w2

= 0, (5.21)

δw : −2a2wI2

(
dσ

dz
− V

dξ

dz

)
− 4I1aw

dg

dz
− I2a

2wV 2 +
2A4B2a2αwβ4

(A2β2 +B2w2)
2 (5.22)

+2F (z)B2a2we−γξ+
1
4γ

2B2w2

+
1

2
F (z)B2γ2a2w3e−γξ+

1
4γ

2B2w2

= 0, (5.23)

δξ :
d

dz

[
2
(
a2w2I2 + Λg2

)
V
]
+ 2F (z)B2γa2w2e−γξ+

1
4γ

2B2w2

= 0, (5.24)
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with the algebraic equations

δα : −4νI42α− 2qI4αβ
2 +

A2B2a2w2β2

A2β2 +B2w2
= 0, (5.25)

δβ : −qI4α2β +
A2B4a2αw4β

(A2β2 +B2w2)
2 = 0. (5.26)

Modulation equations (5.17)–(5.26) can then be rearranged to the simpler form

d

dz

(
I2a

2w2 + Λg2
)
= 0, (5.27)

d

dz

(
I1aw

2
)
=

(
dσ

dz
− V

dξ

dz
+

1

2
V 2

)
, (5.28)

I1
dg

dz
=
I22a

2w2
− A2B4aw2αβ2

(A2β2 +B2w2)
2 +

1

4
F (z)γ2B4aw2e−γξ+

1
4γ

2B2w2

, (5.29)

I2

(
dσ

dz
− V

dξ

dz

)
= −I22

w2
− 1

2
I2V

2 +
A2B2αβ2

(
A2β2 + 2B2w2

)
(A2β2 +B2w2)

2

+F (z)B2

(
1− γ2B2w2

4

)
e−γξ+

1
4γ

2B2w2

, (5.30)

d

dz

[
V
(
I2a

2w2 + Λg2
)]

= −F (z)γa2B2w2e−γξ+
1
4γ

2B2w2

, (5.31)

dξ

dz
= V , (5.32)

where

α =
A2B4a2w4

qI4 (A2β2 +B2w2)
2 and α =

A2B2a2β2w2

(A2β2 +B2w2) (4νI42 + 2qI4β2)
. (5.33)

The definite integrals Ii and Iij resulting from the averaged Lagrangian calculation are

I1 =

∫ ∞

0

x sechx dx = 2C,

I2 =

∫ ∞

0

x sech2 x dx = ln 2,

I4 =

∫ ∞

0

x sech4 x dx =
2

3
ln 2− 1

6
, (5.34)

I22 =

∫ ∞

0

x sech2 x tanh2 x dx =
1

3
ln 2 +

1

6
,

I32 =

∫ ∞

0

x3 sech2 x dx = 1.3523145016 . . . ,

I42 =
1

4

∫ ∞

0

x

[
d

dx
sech2 x

]2
dx =

2

15
ln 2 +

1

60
,

where C is the Catalan constant C = 0.915965594 . . .. Mass conservation is ruled by equation
(5.27) and equation (5.31) is the equation of momentum conservation. Some disparities between
these modulation equations and those of Chapter 3 are immediately noticeable. Equations
(5.29)–(5.31) include terms relating to the index defect. The momentum conservation equation
(5.31) is no longer homogeneous, with the rate of change of momentum of the beam now being
proportional to γ, the decay rate in x of the boundary-driven reorientational effect of the index
defect. Consequently for non-negligible values of γ, the beam will be expected to experience
a rate of change of momentum, or force, in the x direction due to the small differences in
molecular orientation on either side of the beam.

The energy equation can be derived by applying Nöther’s Theorem to the Lagrangian which
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shows that the nematicon equations possess the energy conservation equation

dH

dz
=

d

dz

∫ ∞

−∞

∫ ∞

−∞

[
|∇u|2 − 4θa|u|2 − 4θb|u|2 + ν|∇θa|2 + 2qθ2a

]
dxdy = 0. (5.35)

Inserting the trial functions into (5.35) and using the mass, momentum and ξ variational equa-
tions appropriately results in the total energy conservation equation

d

dz
[a2I22 + 4νI42α

2 + 2qI4α
2β2 − 2A2B2αβ2a2w2

A2β2 +B2w2
− 2F (z)a2B2w2e−γξ+

1
4γ

2B2w2

] = 0. (5.36)

Since energy is conserved, this equation can be used to predict the final steady state of the
nematicon from the input beam. But the decay onto the steady nematicon state has not
been modelled by the modulation equations yet. The mechanism behind this decay is loss to
diffractive radiation.

5.2.2 Radiation Calculation

Garćıa-Reimbert et al calculated the diffractive radiation shed by a nematicon as it evolves and
included the effect of this shed radiation in the modulation equations for nematicon evolution in
the local limit [30]. Radiative losses in the current regime are governed by the same linearised
field equations, which are solved using Laplace transforms. As for the radiation calculation
of Chapter 3, there is an additional component to the radiation shelf here resulting from the
nonlocality of the nematic reaction to the beam. The director beam is extended, which in
turn extends the tail of the radiation shelf travelling with the beam. To account for this
extension, the radiation shelf is split into two components; the radiation shelf with radius R
relates to the component travelling and interacting with the beam; the radius ρ relates to the
shelf’s interaction with the director, with ρ ≫ R. Minzoni et al estimated the value of ρ
from numerical solutions [39]. Denoting the half-width of the optical disturbance by β1/2, and

introducing the relation Λ̃ = ρ2/2, ρ is approximated by

Λ̃ =
1

2
ρ2 =

(
7β1/2

)2
. (5.37)

Mass shed from the beam forms the major contribution to the radiation shed as it propagates.
The mass flux lost to dispersive radiation from the beam is found by integrating the mass
equation from the edge of the shelf r = ρ to infinity

d

dz

∫ ∞

ρ

r|u|2dr = Im (ru∗ur) |r=ρ +O[ρ(z)]. (5.38)

To find this mass flux, the shed radiation must be matched to the shelf under the beam at
the boundary between them. The final result is similar to that shown in Section 3.2.2 in that
equation (5.29) for the radiation shelf height g and the mass conservation equation (5.27) gain
a loss term δ

I1
dg

dz
=
I22a

2w2
− A2B4aw2αβ2

(A2β2 +B2w2)
2 +

1

4
F (z)γ2B4aw2e−γξ+

1
4γ

2B2w2

− 2δg, (5.39)

d

dz

(
I2a

2w2 + Λg2
)
= −2δΛ̃κ2, (5.40)

where the loss coefficient δ is

δ = −
√
2πI1

2eκΛ̃

∫ z

0

πκ(z′) ln((z − z′)/Λ̃)

{[1
2
ln((z − z′)/Λ̃)

]2
+

3π2

4

}2

+π2
[
ln((z − z′)/Λ̃)

]2]−1
dz′

(z − z′)
. (5.41)

82



Finally

κ2 =
1

Λ̃

[
I2a

2w2 − I2â
2ŵ2 + Λ̃g2

]
. (5.42)

Equations (5.28), (5.30)–(5.32), (5.39) and (5.40) form the full set of modulation equations for
the evolution of a nematicon in a DD-NLC with an index defect.

5.2.3 Adjustments to Numerical Methods

The modulation equations were solved using the standard fourth order Runge-Kutta scheme.
The full nematicon electric field equation (5.6) was solved using a pseudo-spectral method based
on that of Fornberg & Whitham [42], with θb defined by equation (5.4). The main difference
from the scheme created by Fornberg & Whitham is that the stepping in the z direction is
performed in Fourier space using a fourth order Runge-Kutta method, rather than in physical
space using a second order scheme. The director equation (5.7) was solved using fast Fourier
transforms (FFTs) in the x direction, followed by a standard Picard iteration of the resultant
two-point boundary value problem in y. These methods are summarised in detail in Chapter 2.

5.3 Results

In this section solutions of the modulation equations (5.28), (5.30)–(5.32), (5.39) and (5.40)
will be compared with numerical solutions of the full nematicon equations (5.6)–(5.7). The
full governing equations have been numerically solved using step sizes ∆x = ∆y = 0.2 and
∆z = 0.005, with spatial intervals 409.6 and 204.8 in the x and y directions respectively. The
computational domain has been increased and step sizes have been reduced from those values
used to solve two-colour nematicon equations in Chapters 3 & 4. This is because there are only
two governing equations to be solved, and thus computational speed increases for equal step
sizes and domains. Whilst there is an almost negligible graphical difference when comparing
the solutions given here with those using the stepping and intervals used to solve the two-colour
nematicon equations, it will be shown that some notable comparisons can be made between the
full numerical solutions and the solutions of the modulation equations from small differences
between the two. Consequently a higher accuracy has been sought for both full numerical and
modulation solutions so as to measure these differences accurately. With this in mind, the
stepping in z for the solution of the approximate modulation equations has also been reduced
to ∆z = 0.002. A value of Eb has been taken which closely matches physical values obtained
by Piccardi et al [16] and the reorientational decay factor γ has been chosen so that significant
decay of the reorientational effect of the defect in x can be observed. Nonlocality has been
given the value ν = 200, which is experimentally realistic. For example, the nonlocality of the
DD-NLC medium in the experiments conducted by Piccardi et al was ν ≈ 144 [16, 66, 67].
Once again the numerical solutions of the modulation equations will be named ‘modulation
solutions’ and the numerical solutions of the full governing equations will be referred to as ‘full
numerical solutions.’

A comparison between a full numerical solution and a modulation solution for (a) the beam
peak position and (b) beam amplitude is presented in Figure 5.4 for a DD-NLC with an optically
rarer index defect, i.e. the defect causes a decrease in refractive index. There is near perfect
agreement in the position of the maximum of the nematicon and very good agreement for the
amplitude. A beam with an initial trajectory of V = 0 would be expected to propagate straight
parallel to the z axis with no deviation of its course. This is not the case here, as there is a clear
refraction of the beam trajectory within and near the boundaries of the illuminated region. The
cause of the observed beam refraction is the non-uniform index distribution through the bulk
which is ruled by γ, the decay in strength of the reorientational effect in the index defect through
the bulk medium in the x direction. A beam propagating through the index defect experiences
γ decay as a force which deviates it in the direction of increased molecular reorientation θb.
From the modulation equations the cause of this beam refraction can easily be verified. The
momentum equation (5.32) shows that the rate of change of momentum, or the force, exerted on
the beam is proportional to γ. It can then be shown that γ refraction is ruled by a completely
different refraction mechanism to that found by Piccardi et al, where refraction was a Poynting
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Figure 5.4: Comparisons in a DD-NLC with an optically rarer index defect for the initial
conditions a = 1.0, w = 3.5, V0 = 0.0, ξ = 0.0, Eb = 1.0, γ = 0.01, ν = 200 and q = 2 with
z1 = 30 and z2 = 60. Full numerical solution ( — )[red]; solution of modulation equations
( — — — )[green]. (a) Positions, (b) Amplitudes.

84



vector walk-off effect brought about by a complicated interaction between a variety of properties
of the medium and beam [16]. Another notable observation is that refraction begins before the
beam reaches the illuminated region. The reorientational effect, induced by the control beam
illumination in 30 < z < 60, extends beyond the region itself due to the effect of nonlocality, as
can be seen from equation (5.4) for θb, and this is clearly the reason for the observed refraction
early in the evolution. What is remarkable is that the approximate momentum equation models
the dynamical behaviour of the beam as given by the full governing equations so accurately.

Figure 5.5 is the symmetric equivalent of Figure 5.4 but here the DD-NLC contains an
optically denser index defect. An optically denser index defect is created when dye molecule
desorption prevails over adsorption at the boundary of the DD-NLC. The beam refracts by
roughly the same amount in the opposite direction due to an increase of the refractive index
within the defect. Once again the agreement between the full numerical solutions and the
modulation solutions is very good, with most features of the dynamical evolution modelled well
by the approximation.

One point of interest can be found in the difference between the large z amplitude evolution
when comparing the full numerical solutions for optically rarer (Figure 5.4) and denser (Figure
5.5) index defects. The optically rarer index defect example displays a smooth amplitude
oscillation throughout the evolution, whereas the amplitude oscillations for the optically denser
example gain a perturbation at z ≈ 80 which is almost undetectable for the solution presented
in Figure 5.5. A further example exhibiting a perturbation is given in Figure 5.6 to highlight
this behaviour. Perturbations are shown to increase when the intensity of the control beam is
increased. In this example the control beam electric field has been increased from Eb = 1.0 to
Eb = 1.5. It is also worth noting that V = 0 has been chosen to show that the effect is not
brought about by a large initial velocity. Perturbed oscillations begin when the beam exits the
index defect and returns to a region of lower refractive index. Figure 5.6 shows that the beam
becomes destabilised by the amplitude oscillation perturbations and eventually forms multiple
nematicons. This effect is most clear in Figure 5.6(a) where the beam maximum position can
be seen to discontinuously jolt from one of the two newly formed beams to the other near
z = 80. An even more extreme perturbation can be induced when a nematicon is given a high
initial velocity and passes through an index defect induced by a high intensity control beam,
as shown in Figure 5.7. In this figure the beam has split into two nematicons and the director
beam has also split along similar lines. These profiles have diverged from the steady nematicon
profile which resembles sech and Gaussian profiles closely. Consequently, a combination of high
nematicon beam velocity and high control beam intensity cannot be modelled by a fixed ansatz
approach, limiting the range of the approximate method. A control beam intensity of Eb = 1.5
is physically unrealistic, therefore this result is only of theoretical interest.

Figure 5.8 highlights the fundamental role that the decay factor γ plays for nematicon
evolution in the current regime. The comparisons of peak position and amplitude, respectively,
are for two nematicons with sech trial functions and equal initial conditions other than the
value of γ, where the decay is 10 times stronger for the dashed green-coloured beam. The
stronger decay causes abrupt changes in the amplitude of the nematicon very early in its
propagation. Momentum dependence on γ means that there is then a larger refraction of the
beam for larger γ which affects amplitude & width oscillations. This result is in accord with
the results obtained for two-colour nematicons in Chapters 3 & 4 which showed that position
& velocity oscillations were largely independent of amplitude & width oscillations, but if one
of these oscillations grows significantly then the other oscillation is influenced. Unfortunately a
comparison with modulation solutions is impossible here since the decay is too strong for any
modulation solutions to be found. For γ > 0.025 there are no modulation solutions, whereas
full numerical solutions exist for 0 6 γ < 0.2. It is clear that the full numerical solution
experiences extreme amplitude changes and corresponding changes in position as γ increases.
Such behaviour suggests that the solution diverges wildly from the initial sech beam profile.
These changes cannot be modelled by the modulation equations. Whilst it is interesting that
the range of modulation solutions is limited in comparison with full numerical solutions, values
of γ beyond γ ≈ 0.02 are not experimentally realistic. The decay rate of γ = 0.01, which has
been chosen for most of the results presented, is a physically reasonable one. For this value the
modulation solutions are remarkably accurate, particularly in relation to refraction, as shown
in Figure 5.4. It is encouraging to note that both full numerical solutions and modulation

85



-14

-12

-10

-8

-6

-4

-2

 0

9060300

ξ

z

(a)

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

9060300

a

z

(b)

Figure 5.5: Comparisons in a DD-NLC with an optically denser index defect for the initial
conditions a = 1.0, w = 3.5, V0 = 0.0, ξ = 0.0, Eb = 1.0, γ = 0.01, ν = 200 and q = 2 with
z1 = 30 and z2 = 60. Full numerical solution ( — )[red]; solution of modulation equations
( — — — )[green]. (a) Positions, (b) Amplitudes.
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Figure 5.6: Comparisons for the initial values a = 1.0, w = 3.5, V0 = 0.0, ξ = 0.0, Eb = 1.5,
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solutions exist for physically realistic constants and initial conditions. It is also promising that
no solutions exist outside of this physically realistic range. Both of these results justify the
approach and the governing equations chosen.

The accuracy of the modulation solutions with respect to beam refraction for different initial
V values is revealed in Figure 5.9. It is clear that the modulation theory is highly accurate for all
values of V0 presented, particularly for values close to 0. Figure 5.9(b) shows that differences
begin to appear between the modulation and full numerical solutions for large negative V0
values. One possible reason for this is that the beam begins to experience large profile changes
at these higher velocities which cannot be modelled by the approximation with its fixed trial
function.

Two-colour nematicons were steered by changing the initial velocity V0 of one or both of
the beams and nematicons travelling through a DD-NLC with an index defect can be steered in
this way as well. But steering can also be achieved in the current regime by choosing different
electric field strengths of the control beam Eb. Figure 5.10(a) shows the refraction angle as
given by the modulation solutions and full numerical solutions for a nematicon where the initial
velocity is set at V0 = 0 and the control beam field strength is varied from Eb = 0 to Eb = 2.0.
It is immediately clear that this steering technique allows a very large range of refraction angles
to be achieved, although a negative refraction angle (refraction in the opposite direction in x)
can only be achieved by varying V0. Figure 5.9(b) showed that the modulation solution is highly
accurate for V0 = 0.0, Eb = 1.0 so it is not surprising that modulations solutions are highly
accurate across the range of Eb in Figure 5.10(b), for which velocity has been chosen such that
V0 = 0.0.

Piccardi et al reported their observation of total internal reflection at the index defect for
appropriate initial conditions [16]. Here, TIR cannot occur as the index defect has been chosen
to be orthogonal to the z direction. A beam reflecting from the index defect would thus be
required to propagate in the negative z direction. In other words, TIR is not possible within the
current paraxial nonlinear Schrödinger-like (NLS-like) equation (5.6) model because z has been
chosen as a time-like forward propagating coordinate. To account for TIR the NLS-like equation
(5.6) must be replaced by one in ‘ray’ coordinates, for which the time-like variable z is replaced
by the arc length s along the nematicon trajectory (ray) [18]. As the arc length increases
monotonically, there is no ‘backwards’ propagation in the time-like variable when total internal
reflection occurs. This approach leads to further complications in the analysis. Fortunately
what has been found here are indications of where the beam would have reflected had the
modelling approach allowed for TIR. Solutions were sought for increasingly large Eb and it was
found that no modulation solutions exist for values Eb > 2.4 and no full numerical solutions
exist for Eb > 3.5. This suggests that the higher refractive index perturbation caused by the
increase in the control beam field grows to a value large enough to induce TIR. Similar trials
were conducted for increasingly large |V0| and it was found that solutions could not be obtained
for values of |V0| > 0.5. Such a result reveals qualitative agreement with the experimental
results of Piccardi et al who showed that, for appropriate initial conditions, beams reflect when
incident upon an index defect at acute angles [16].

Figure 5.11 is analogous to Figure 5.9 comparing the refraction angles found for full numer-
ical and modulations solutions, but here the comparison is made for nematicons propagating
in a DD-NLC with an optically denser index defect. Once again the modulation solutions show
excellent agreement with the full numerical results with respect to refraction. There is one
noticeable difference, however, with the results obtained for an optically rarer index defect.
The accuracy of the modulation solutions is lost when Eb → 2.0 since the beam approaches
and reaches an instability which cannot be modelled by the ansatz approach. This instability
is caused by the beam passing from an optically denser region to an optically rarer region as it
exits the right hand side of the index defect. For higher values of Eb this change is pronounced
and abrupt, and causes a destabilisation of the nematicon. In the optically rarer index defect
regime nematicons experience TIR for high values of Eb. TIR is not occurring here because
it is clear from Figure 5.6 that the beams have split. Some general comments can be made,
however. Despite the impossibility of modelling beam splitting in the modulation equations,
due to the fixed trial function, the average beam path of the multi-nematicons formed is still
modelled well by the modulation theory. Furthermore, full numerical and modulation solutions
cannot be found beyond the same control beam intensity of Eb ≈ 1.9, showing that the most
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Figure 5.7: Full numerical solution for a sech initial profile at z = 57 with initial values a = 1.0,
w = 3.5, V0 = −1.0, ξ = 0.0, Eb = 1.5, γ = 0.01, ν = 200 and q = 2 where z1 = 30 and z2 = 60.
(a) Solution for |u|, (b) Solution for θ.
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Figure 5.8: Full numerical solutions for initial values a = 1.0, w = 3.5, V0 = 0.02, ξ = 0.0,
Eb = 1.5, ν = 200 and q = 2 where z1 = 30 and z2 = 60 with a sech initial profile where
γ = 0.01 ( — )[red]; γ = 0.1 ( – – – )[green]. (a) Positions, (b) Amplitudes.
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Figure 5.9: (a) Refraction angle ϕ as given by the full numerical solutions ( — + — )[red]
and the modulation solutions ( – – × – – )[green]; (b) Refraction angle relative error ϕRE
( — + — )[red] through an optically rarer index defect as given by the modulation solutions
relative to the numerical solutions, as a function of V0 with initial values a = 1.0, w = 3.5,
ξ = 0.0, Eb = 1.0, γ = 0.01, ν = 200, q = 2 where z1 = 30, z2 = 60.
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Figure 5.10: (a) Refraction angle ϕ as given by the full numerical solutions ( — + — )[red]
and the modulation solutions ( – – × – – )[green]; (b) Refraction angle relative error ϕRE
( — + — )[red] through an optically rarer index defect as given by the modulation solutions
relative to the numerical solutions, as a function of Eb with initial values a = 1.0, w = 3.5,
ξ = 0.0, V0 = 0.0, γ = 0.01, ν = 200, q = 2 where z1 = 30, z2 = 60.
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important features of nematicon behaviour are modelled well by the modulation equations.
The effects of changes to the initial velocity of the nematicon are even more sensitive in

this optically denser index defect regime. Whilst modulation solutions have been obtained
for the same range of V0 values as were obtained for nematicons in the optically rarer index
defect regime, only a small range of V0 allow sensible full numerical solutions. Outside of this
smaller range the beams experience huge profile changes. Violent reactions at the right hand
interface between the defect and the unaltered DD-NLC are observed. These large interactions
are impossible to approximately model and so have been omitted from this analysis.

Figure 5.12 shows the influence that radiation has on the accuracy of the modulation so-
lutions. Clearly, over the relatively short z range chosen for most of the results presented
(z ∈ [0, 90]), radiation has little effect on nematicon evolution. However, over large z, radiation
allows the initial beam to settle to the steady state nematicon solution. The early decay of
the initial beam to the steady state can be seen in Figure 5.12(b), where the amplitude os-
cillations clearly begin to decay for the solution including radiation loss. Solutions excluding
radiation show no oscillatory decay. It is found that removing radiation loss from the mod-
ulation equations does not affect the beam position propagation significantly, as can be seen
in Figure 5.12(a). This is because the approximation is almost identical whether including or
excluding radiation loss near the index defect, when the index defect is placed relatively early
in the z evolution. Placing the defect further into the z evolution allows significant parameter
differences to manifest between the beams including and excluding radiation loss and therefore
markedly affects the refraction angle.

Figure 5.13 is a similar comparison of beam peak position and amplitude to Figure 5.5, but
here the comparison is made between two full numerical solutions. A solution with a sech trial
function, whose initial conditions are a = 1.0 and w = 3.5, is compared to a solution with
a Gaussian trial function with initial conditions a = 1.5 and w = 5.0. Initial conditions for
the Gaussian equal to those of the sech trial function were impossible because Gaussian initial
conditions require more mass to form nematicons as they decay faster. A direct comparison of
amplitude, for instance, is not possible due to the higher initial amplitude of the Gaussian initial
beam. But it is immediately apparent that a comparison of position reveals that refraction has
little to no dependence on initial beam profile, nor initial mass, since the agreement is once
again near perfect. This is a surprising result since momentum walk-off observed in Chapters 3
& 4 was shown to be highly dependent on initial mass. Moreover Gaussian initial conditions did
not admit nematicon solutions at all in the nonlocal regime until unphysically large nonlocality
values were taken (ν ∼ 2000). Beam refraction observed by Piccardi et al was found to be
highly dependent on the initial beam profile [16]. Additionally, previous results obtained by
Garćıa-Reimbert et al, Minzoni et al and others whilst analysing nematicon dynamics have
shown a strong dependence of beam evolution on beam initial conditions [30, 39]. Interestingly,
when solutions of the approximate equations with Gaussian and sech trial functions, represented
in Figure 5.14, are compared to the full numerical results of Figure 5.13 it is found that there
is excellent agreement for the modulation solution with a hyperbolic secant trial function, but
little agreement when a Gaussian trial function is used. This implies that a Gaussian initial
condition undergoes significant profile changes as it evolves.

The solution of the modulation equations for a Gaussian trial function in Figure 5.14 has
a very high amplitude oscillation periodicity when compared to all of the other modulation
solutions presented here. Also, the amplitude more than doubles for the modulation solution,
in contrast to the full numerical solution shown in Figure 5.13. This large increase in ampli-
tude is indicative of the initial conditions being close to instability, as observed for the local
two-colour nematicons of Chapter 4, for which the initial beam rapidly self-focused followed
by a reversal caused by the nature of the nonlinearity. Modulation solutions are not expected
to agree with numerical solutions near these regions of instability. But this does not explain
the excellent agreement that the Gaussian full numerical solution has with the results obtained
for the hyperbolic secant trial function. The discrepancy then is due to the regime and initial
conditions being more suited to a hyperbolic secant trial function, i.e. the hyperbolic secant
profile is closer to that of the steady state nematicon profile than the Gaussian profile. Since
the full numerical solution allows the beam profile to change, a Gaussian initial condition may
evolve to a shape more akin to a sech profile. But this option is not available when solving the
modulation equations, for which the Gaussian initial profile remains a Gaussian and the beam
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Figure 5.11: (a) Refraction angle ϕ as given by the full numerical solutions ( — + — )[red]
and the modulation solutions ( – – × – – )[green]; (b) Refraction angle relative error ϕRE
( — + — )[red] through an optically denser index defect as given by the modulation solutions
relative to the numerical solutions, as a function of Eb with initial values a = 1.0, w = 3.5,
ξ = 0.0, V0 = 0.0, γ = 0.01, ν = 200, q = 2 where z1 = 30, z2 = 60.
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Figure 5.12: Comparisons in a DD-NLC with an optically rarer index defect for the initial
conditions a = 1.0, w = 3.5, V0 = 0.0, ξ = 0.0, Eb = 1.5, γ = 0.02, ν = 200 and q = 2 with
z1 = 30 and z2 = 60. Modulation solution including radiation loss ( — )[red]; modulation
solution excluding radiation loss ( — — — )[green]. (a) Positions, (b) Amplitudes.
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evolves to a separate steady state. A comparison of solutions obtained with sech and Gaus-
sian trial functions in Chapter 4 revealed that the agreement between the modulation solutions
and the full numerical solutions depended on the regime in question and the quantity under
investigation. The results of Chapter 3 also showed that agreement improved dramatically for
a Gaussian initial condition when higher values of nonlocality (ν ≈ 2000) were taken. However,
the most interesting point about the comparison between solutions obtained with Gaussian and
sech trial functions is not that the modulation solutions and full numerical solutions do not
match well, nor is it that the Gaussian full numerical solution compares so well to solutions
obtained with a sech trial function. It is that the Gaussian gives such good agreement for posi-
tion with a completely different initial mass. Further investigation has revealed that changing
the amplitude and/or width, and hence the mass, of the initial beam has little effect on the
trajectory of the beam. This result is remarkable because the combined momentum walk-off
found in Chapters 3 & 4 was found to be highly dependent on the initial mass of the beam.

The reason for the independence of the beam trajectory on the beam profile and its initial
amplitude and width can be seen from the momentum equation (5.31). Noting that B2 = 2I2
and neglecting the radiation shelf term Λg2 on the left hand side of the momentum equation,
the terms I2a

2w2 and a2w2B2/2 cancel out on both sides of the momentum equation, with the
term γ2B2w2/4 in the exponential on the right hand side being negligible for small γ. All of
the terms in the momentum equation containing the profile of the beam then fall out and the
beam trajectory is independent of the beam profile and its mass. The numerical observation
that the beam trajectory is independent of the beam profile and its mass shows that the beam
is shedding little diffractive radiation as it evolves, in accord with Figure 5.12. Index defect
refraction then bears no relation to Poynting vector walk-off, nor the momentum walk-off found
in Chapters 3 & 4.

5.4 Discussion

The evolution of a nematicon in a DD-NLC with an optical index defect has been considered.
Solutions obtained in optically rarer and denser index defect regimes have been compared and
contrasted. Numerical solutions of the full governing equations have been compared with so-
lutions of approximate modulation equations, which were found in a similar manner to the
approximate equations in Chapters 3 & 4. Initial velocity and the strength of the control beam
electric field were varied to all-optically steer the nematicon beams. It was found that ap-
proximate solutions were in excellent agreement with full numerical solutions when considering
the evolution of a variety of beam parameters. Interestingly, modulation solutions obtained
for nematicons travelling in a DD-NLC with an optically rarer index defect displayed better
agreement with full numerical solutions than those found for nematicons passing through an
optically denser defect. Additionally, it was found that varying the initial velocity of nematicons
travelling through an optically denser index defect could cause beams to split, whereas doing
so in the optically rarer index defect regime could allow TIR. Finally, it was shown that initial
beam mass and profile has little influence on refraction angle, and that refraction in this regime
is governed by a completely different mechanism to Poynting vector walk-off and momentum
walk-off observed for the two-colour nematicons in Chapters 3 & 4

It has been shown that control of nematicon beam paths can be achieved by varying the
beam’s initial velocity and the control beam field. The results suggest that varying both the
velocity and the control beam field strength allows large nematicon refraction angles to be
achieved.

The results obtained are experimentally realistic, yet a direct comparison could not be made
between these results and those obtained by Piccardi et al experimentally [16] for a variety of
reasons. In the work of Chapters 3 & 4 Poynting vector walk-off was accounted for by a phase
factor transformation. Here, the same technique was used. However, the transformation is not
fully justified since Poynting vector walk-off varies through the index defect. Another difficulty
was found in modelling the index defect itself. The defect created in the experiments of Piccardi
et al was too complex to be incorporated into a variational approximation due to the spreading
of the control beam [16]. As a consequence, a simplified index defect model was chosen. Whilst
these significant simplifications render direct comparisons with experimental results impossible,
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Figure 5.13: Full numerical solutions with initial values V0 = 0.02, ξ = 0.0, Eb = 1.5, γ = 0.01,
ν = 200 and q = 2 with z1 = 30 and z2 = 60; with a sech initial profile where a = 1.0, w = 3.5
( — )[red]; with a Gaussian initial profile where a = 1.5, w = 5 ( — — — )[green]. (a)
Positions, (b) Amplitudes.
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Figure 5.14: Modulation solutions with initial values V0 = 0.0, ξ = 0.0, Eb = 1.5, γ = 0.01,
ν = 200 and q = 2 with z1 = 30 and z2 = 60; with a sech initial profile where a = 1.0, w = 3.5
( — )[red]; with a Gaussian initial profile where a = 1.5, w = 5 ( — — — )[green]. (a)
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many interesting results and conclusions have been made from such a simplified model.
Similar difficulties to those found in earlier chapters were found when calculating approx-

imate modulation equations here. Equivalent Gaussians were used to calculate otherwise in-
tractable integrals, an asymptotic approximation of radiation loss was made and the radiation
shelf was once again modelled as being flat with an approximately calculated radius. With all
of these approximations needed to calculate the modulation equations, it is remarkable that
so many properties of the approximate solutions matched those of the full numerical solutions
almost perfectly.
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Chapter 6

Conclusions

6.1 Summary of Research

The field of liquid crystal research is now a vast and varied multi-disciplinary area with invest-
ment from industry funding investigations focusing on numerous technological applications.
Nematics are just one of a large array of liquid crystals which have been utilised for their non-
linear optical properties. The nematic liquid crystal (NLC) nonlinear response to light is highly
nonlocal, a result of molecular reorientation. This response is of particular interest due to its
exceptional controllability. Consequently much research has been devoted to exploring and
harnessing it. Introducing a beam with appropriate initial conditions into a NLC, experimental
researchers have managed to balance the nonlocal nonlinear response, which causes the beam
to self-focus, against natural local beam diffraction, in essence self-localising the beam and
allowing soliton creation. The soliton form is highly desirable due to its robustness. Solitons
can carry weaker beams, and have therefore been proposed as ideal candidates for data trans-
mission. Furthermore, beams can be steered utilising a variety of different properties of the
medium and light. In-plane nematicon steering is important as it has been proposed as a basis
for switching and logic operations [6]. With so many swift developments in the experimental
field, a full mathematical description of nematicon evolution in all regimes has had to follow.
However, by mathematically modelling NLC nematicon problems and solving them numeri-
cally, much has already been learned about the underpinning physics. A deeper understanding
has been delivered by approximating nematicons using a variety of different techniques. Work
by Smyth, Garćıa-Reimbert, Minzoni, Worthy, Marchant, Garza-Hume, Bang, Rasmussen, Hu,
Assanto and many more has begun to bridge the gap between experimental results and physical
descriptions through mathematical modelling. This thesis has been a further extension to the
work of those mentioned above.

Two-colour nematicons were created in the laboratory by Alberucci et al [17]. It was shown
that the additional nonlinear effect of cross-phase modulation (XPM) allowed colaunched beams
of different colours to form a vector nematicon. These vector nematicons were effectively steered
by changing the wavelengths of the two beams. To induce an appropriate nonlinear response
the NLC director had to be pre-tilted. In the experiments this was achieved by coating the
boundary interfaces with polyvinyl alcohol (PVA) and then rubbing them, which induces a
pre-tilt of π/6 [17]. This pre-tilt could have been achieved via an applied external static/low-
frequency electric field, but it was thought that doing so would cause additional walk-off effects.
Essentially then, Chapter 3 addresses the additional vector nematicon walk-off found when a
static/low-frequency electric field is used to create a pre-tilt of the NLC director.

Chapter 4 is a similar investigation of the vector nematicon problem of Chapter 3, but in
the local nonlinear response regime. This work can be thought of as the complement to that of
Chapter 3. Experiments have focused mainly on the nonlocal nonlinear response regime which
is a novel feature of the NLC. However, a local response is possible when the medium is cooled
or a large pre-tilt induced. The equations governing vector nematicon evolution in the local
and nonlocal regimes are derived from the same coupled nonlinear Schrödinger-like (CNLS-
like) equations (also coupled to a director equation), but the material response and underlying
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physics are completely different. In the local regime beams are stabilised by saturation. As
nonlinearity is no longer governed by molecular reorientation, the nonlinear reaction is faster.
There are also fundamental differences in the large z evolution of vector nematicons in each
regime. Locality allows beams to leak diffractive radiation at a far greater rate during beam
evolution and collision, and the inclusion of this radiation in the approximation was shown to
make a significant difference to the quality of agreement between numerical solutions of the
full governing equations and solutions of the approximate equations, whereas in the nonlocal
regime, the inclusion of radiation was shown to be less necessary for good agreement.

Chapters 3 and 4 focused on the steering of nematicons using coupled beams. Chapter 5
offered an alternative approach to nematicon steering. Taking inspiration from experiments
conducted by Piccardi et al [16], a model of single nematicon beams steered by an index defect
was created. Experiments have shown that a highly tuneable index defect can be created in
a dye-doped nematic liquid crystal (DD-NLC) by shining a control beam through the nematic
cell wall into the nematic cell, this control beam acting on the dye molecules and inducing a
reorientation of the molecular director. This technique can increase or decrease the refractive
index of the DD-NLC in the defect. The results of Chapter 5 revealed that beams propagating
through such refractive index defects experience refraction, allowing large angle deviation of
the nematicon path, in accord with experimental results [16]. The work of Chapter 5 revealed
that this refraction is caused by a deviation force acting on the beam due to the dependence of
momentum on the decay of the reorientation strength in the index defect through the bulk.

To investigate the problems of Chapters 3, 4 and 5 equations governing the evolution of
nematicon beams were derived. In Chapters 3 and 4 these equations were derived from the
equations governing two-colour nematicons in the absence of an applied static/low-frequency
electric field [17]. They can also be thought of as the two beam equivalents of single nematicon
equations derived by Garćıa-Reimbert et al [30]. From these general equations [(3.1)–(3.3)],
simplified equations were found in the nonlocal and local limits respectively. The governing
equations of Chapter 5 were also a simple extension from those obtained by Garćıa-Reimbert et
al [30]. With appropriate governing equations, soliton solutions could then be sought. Accurate
numerical solutions of the full governing nematicon equations were found which revealed the
detailed evolution of nematicons and these were used to analyse the accuracy of approximate
solutions obtained from simplified nematicon equations. The latter solutions provided far more
insight into the mechanics of nematicon evolution.

The approximate method was based on the method of Kath & Smyth [31]. Essentially this
is an extended variational approximation where certain appropriate modulation equations are
extended to include a radiation loss term derived from an asymptotic analysis of the linearised
governing equations. Also, simple trial functions with a hyperbolic secant or Gaussian profile
were extended to include a radiation shelf travelling with the beam(s). This radiation shelf was
justified by numerical solutions of the full governing equations which revealed a (reasonably) flat
finite shelf extending beyond the tail(s) of the beam(s). Further justification lies in the results
of Kath & Smyth where a shelf was observed for a perturbed inverse scattering solution of the
NLS equation [31]. Once the final modulation equations representing variations of the beam
parameters were found, they were solved numerically using the standard fourth order Runge-
Kutta scheme, with radiation calculated via numerical evaluation of the radiation integral at
each z step. The full governing equations were solved numerically using a pseudo-spectral
method, with z stepping performed using the fourth order Runge-Kutta scheme once again,
however this time in Fourier space.

The Results sections of each chapter showed that combining an accurate numerical portrayal
with an approximate one allows for a detailed mechanical description and understanding of
nematicon evolution. Agreement between full numerical solutions and approximate solutions
has been, in general, excellent. Additionally, those results that did not agree provided an
interesting insight into what was missed by the approximation and how the approximation
could have been improved.
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6.2 Analysis of Methodology

The extended variational method allows much deeper insight into beam dynamics than can be
achieved by a purely numerical approach. However, such a method places severe constraints on
the problems under investigation. The experiments conducted by Alberucci et al [17], in which
experimental two-colour nematicons were created for the first time, could not be replicated
exactly for several reasons. Firstly, the variational approximation requires that the governing
equations are simple enough for the equivalent Lagrangian formulation to be found. The full
nematicon equations were too complex for a variational analysis to be conducted, so limits
of the nonlocality/elasticity parameter ν had to be taken for nonlocal and local NLC regimes
respectively. Secondly, in Chapter 5 further difficulties in the implementation of the approx-
imate method lay in creating an index defect similar to that introduced experimentally by
Piccardi et al in a DD-NLC. The experimental defect was created by an elliptical control beam
with a Gaussian profile [16]. Such a complicated defect would render the variational problem
analytically intractable. Consequently a highly simplified index defect was chosen.

Once the governing equations had been simplified enough so that a variational analysis could
be conducted, several approximations had to be made so that modulation equations could be de-
rived. Many of these approximations were common to each of the regimes. Firstly, the radiation
shelf travelling with the beam had to be assumed flat. This is clearly not the case as Figure
3.3 shows. However, allowing the shelf shape to vary in the trial function(s) would severely
complicate the variational analysis. Secondly, when computing the averaged Lagrangian for
hyperbolic secant trial functions, certain integrals were incalculable. As a result, equivalent
Gaussians were used to replace the trial functions in these integrals. To minimise the effect
that this approximation had on the final results, the equivalent Gaussians were given scaling
parameters so that they matched the sech profile as closely as possible. Whilst it is difficult to
know exactly what effect, if any, this approximation had, it is reasonable to assume that the
damage was minimal. Other significant approximations and assumptions were applied to the
radiation calculation, the computation of the shelf lengths, Λ̃ and Λ, and the form of the trial
functions. Improvements could potentially be made to all of these calculations which would im-
prove the accuracy of the extended variational method in approximating nematicon evolution.
For example, the secondary (outer) shelf length Λ̃, required in the approximate analysis of non-
local nematicons, was not directly calculated but was determined from a particular numerical
solution of the single nematicon problem [39]. It is possible that an analytical calculation of
this value could be made.

The trial functions chosen gave an accurate portrayal of the nematicon beam shape for most
quantities analysed, although some improvements could have been made. One such improve-
ment would have been to extend the trial functions to have an elliptical cross-section [24, 43].
This would have allowed the nematicon to “oscillate in the major and minor axes of the el-
lipse” so that beam trajectory distortions, observed particularly in Chapter 3, could have been
modelled [24]. Such an elliptical trial function could have been of the form

u = a sech

(√
(x− ξx)2

w2
x

+
(y − ξy)2

w2
y

)
ei(σ+Vx(x−ξx)+Vy(y−ξy)) (6.1)

where wm, ξm and Vm with m = x, y are the widths, positions and velocities of the beam in
each direction. Whilst the inclusion of this beam distortion would have undoubtedly improved
qualitative agreement, the modulation equations would have been even more difficult to derive
and would have been extended and complicated to such a degree that their analysis would have
lost any meaning. In choosing trial functions, a fine balance has to be made between accurately
portraying beam dynamics and returning simple modulation equations from which a meaningful
analysis can be conducted [34].

The extended variational method allowed fundamental conclusions to be drawn for much
of the dynamical behaviour observed. The inclusion of a radiation loss term showed that the
mechanism allowing initial beams to evolve to the steady state nematicon was radiation. Ra-
diation losses allow the decay of a single beam to the steady state [30, 35, 39], but it had not
previously been shown for a two-colour vector nematicon. Another notable general conclusion
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was that nematicons have a beam profile very close to a sech or Gaussian profile and that a shelf
of radiation does indeed form as an initial beam evolves to the steady nematicon state. As the
variational method is highly dependent on the fixed beam profile, the agreement between full
numerical and modulation solutions proves the quality of the trial function(s) chosen. Momen-
tum walk-off was calculated via the momentum conservation equation in Chapters 3 and 4. This
showed that momentum walk-off was a direct result of the non-symmetric optical parameters
of the two beams. Additionally, the refractive walk-off observed in Chapter 5 was shown to be
caused by a difference in the rate of change of momentum on each side of the beam which forced
the beam to refract. These results were fundamental to the work and the mechanical reasons
behind nematicon beam refraction could not have been found if a purely numerical approach
had been taken.

Some notable conclusions were also made from what the approximation could not model.
Position and amplitude evolution were shown to be directly affected by beam distortions and
acceleration when two beams approach collision. Radiative losses resulted from these violent
collisions and the subsequent evolution was influenced. Interestingly in Chapter 4 the numeri-
cally calculated position, amplitude and width oscillations decayed rapidly in comparison with
those of the modulation solutions. However, the higher decay rate observed in the full numer-
ical solutions had no influence on the momentum walk-off which matched exactly that of the
modulation solutions.

Radiation loss was shown to be the essential mechanism allowing beams to evolve to steady
nematicons. This result is important, yet the effects that losses have were shown to be variable.
In Chapter 3 it was not clear whether beams do indeed settle to the steady state or infinitely
oscillate around one another, as they do for spinning two-colour nematicons [24]. In the nonlocal
regime then radiative losses were shown to be relatively unimportant and were not necessary
for good agreement between full numerical and approximate solutions. It should also be noted
that radiative losses only affected the accuracy of the modulation solutions over large z for
the regimes presented in Chapters 4 and 5. For the short length scales found in experimental
situations a standard variational analysis is more appropriate as it is less time consuming and
just as accurate.

Clearly there are two key factors in the extended variational method necessary for good
agreement between numerical solutions of the full governing equations and solutions of the
modulation equations. Firstly, trial functions are required that accurately portray the param-
eter oscillations displayed in full numerical solutions. This requires that amplitude & width
oscillations vary independently of velocity & position oscillations. Including radiation shelves
representing radiation travelling with the beams aids agreement between the two solutions.
Secondly, diffractive radiation shed by the beams as they evolve must be included in the modu-
lation equations for the large z behaviour to match full numerical results well and to represent
the essential mechanism allowing initial beams to develop into steady nematicons. If these
requirements are met there is no reason why the same techniques could not be used in various
other nematicon problems, or, indeed, other liquid crystal soliton problems.

6.3 Future Research

In-plane interactions of two-colour nematicons in the local and nonlocal regimes have been rep-
resented in Chapters 3 & 4. The natural extension of this work would be to investigate multiple
colour nematicons. Assanto et al investigated the possible application of three nematicons to
create an all-optical XNOR logic gate utilising the mutual attraction of nematicons [6]. In this
work, a signal beam had one wavelength and the two control beams had another. The presence
of one, both or neither control beam changed the output position of the signal beam. The
similarity of this problem to the ones investigated here may therefore mean that it would be of
interest to investigate this multiple nematicon problem further. One other obvious progression
from the work of this thesis would have been to represent two-colour nematicons with angular
momentum, or spiralling vector nematicons. But this problem has already been investigated.
To find suitable modulation equations for the variational approximation merely required the
addition of a y axis position coordinate ηk and velocity Uk in the trial function(s) used in
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Chapters 3 and 4, namely

uk =
[
ak sech

(√
(x− ξk)2 + (y − ηk)2/wk

)
+ igk

]
ei(σk+Uk(x−ξk)+Vk(y−ηk)), (6.2)

k = 1, 2. The calculation of the modulation equations was carried out by Smyth and co-
workers in tandem with the two-colour work presented here. Working in this way, mutual
verification of equations and results was possible. The full results of the spiralling vector
nematicon investigation can be found in Ref. [24].

There are a number of potential avenues of further research involving steering single nemati-
cons. Firstly, the index defect described in Chapter 5 could be refined, mimicking more closely
the experimental index defect created by Piccardi et al [16]. In the experimental work the index
defect lay in the (x, z)-plane at an angle to the propagation direction of the beam. This allowed
the beam to experience total internal reflection (TIR), an effect that could not be duplicated
in this thesis because the defect lay perpendicular to the z axis. Improvements in the profile
and decay of the perturbed refractive index through the bulk could also be made, allowing
more direct comparisons with experimental data. Secondly, research into the incorporation of
Poynting vector walk-off could be conducted. The current model assumes that Poynting vector
walk-off remains constant through the index defect, but this is only an approximation and it
would be interesting to observe the combined walk-off and refraction effects in this regime.

The index defect created by Piccardi et al is just one of many new ways of steering light
that have been found. One experimental set-up looked purely at TIR at the interface between
two NLC media with different nonlocality and nonlinearity [68], another similar investigation
focused on shining a point beam perturbing molecular orientation across the thickness of a NLC
cell and deviating or splitting the nematicon beam path [69]. Beams can also be deviated by
altering the optical density of regions of the NLC. This is done by applying different voltages
to patterned electrodes which create regions with differing static/low-frequency electric fields
[69, 70]. Negative refraction and negative reflection have been reported recently in birefringent
NLC utilising beam properties at interfaces [71]. Also, investigations into the nonlinear repul-
sion of nematicons at the boundaries of NLC cells have been conducted [72]. Many of these
experimental advances provide ideal motivation for future work in the mathematical modelling
of nematicons.

A more general area of possible future research involving multiple nematicons lies in im-
proving the approximate method for interacting beams. As two beams approach collision, the
numerical results showed that they experience an acceleration which could not be incorporated
into the variational method, the reason being that acceleration incorporation requires the solu-
tion of a moving boundary value problem for which the boundary is undetermined. Overcoming
this nontrivial difficulty would be a valuable extension to the method.

There is one large general improvement that could be made to the approach to tackling
the nematicon problems visited in this work. Namely, the inclusion of time. Beeckman et al
investigated how nematicons form in planar NLC cells [15]. In a separate study Strinić et al
looked into spatiotemporal optical instabilities of nematicons [73, 74]. In both of these works
the beam envelope, u, was governed by a NLS-like equation similar to the ones investigated
here, but the molecular director was described as a time evolution problem. This allowed both
teams to describe the evolution of beams in both space and time. Whilst this approach has clear
advantages, the spatiotemporal governing equations cannot be easily approximated, meaning
that all of the benefits associated with approximating soliton evolution are lost.

The extended variational method was developed by Kath & Smyth to approximate the
evolution of a pulse in an optical fibre [31]. Since then it has been used to approximate solutions
for a variety of different soliton problems where evolution is governed by NLS-like equations or
CNLS-like equations (the method has also been used to approximate soliton evolution governed
by the Sine-Gordon equation [75]) and radiation plays a key role in the evolution. Particular
emphasis has been given to nematicons recently, but there is no reason why the method could not
be applied to other problems fulfilling these criteria. There are close relationships between the
nematicon governing equations and equations governing solitons in completely different media.
In fact, the nematicon governing equations are the same as those governing a thermoelastic
waveguide [14]. Other similar equations are found governing solitons in colloidal suspensions
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[53, 76], media with an optical thermal nonlinearity [14, 77] and photorefractive liquid crystals
[78, 79]. Such a diverse range of governing equations suitable for the application of the extended
variational approximation suggests a bright future for this approximate method.
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Appendix A

Shelf Radius Chapter 3

The shelf radii, Ru and Rv, are determined by linearising the modulation equations about their
fixed point (ak = âk + ak0, wk = ŵk +wk0 and σk = σ̂k + σk0 where k = u, v and |ak0| << âk,
|wk0| << ŵk and |σk0| << σ̂k), assuming that diffraction and coupling coefficients can be taken
as equal for the two beams (Du = Dv and Au = Av), as justified by the work of Alberucci
et al [17]. Linearising in this manner, and after some algebra, the simple harmonic oscillator
equation for gk can be found and is given by

g′′k − ΘΛkΣ̂
′

k

I21 (ŵ
2
k + 2âkŵkφ)

gk = 0, (A.1)

where

Σ̂
′

k = σ̂
′

k −
1

2
DkV̂

2
k , φ =

DkI22Γ
2 −AkA

2B2ŵ2
kβ̂

2
kΓ (2α̂k + âkW1)

AkA2B2âkŵkβ̂kΦ
,

Φ = 2A2α̂kβ̂
3
k + ŵkβ̂kW2Γ + 2B2ŵ3

kα̂kW0, Γ = A2β̂2
k +B2ŵ2

k, (A.2)

W1 =
4AkA

2B4âkŵ
4
k

q (I4 +A2/4) Γ2
, W0 =

2q
(
I4 +A2/4

)
B2ŵkβ̂

2
k + ν (8I42 + 1)B2ŵk

2qβ̂k (I4 +A2/4)
(
2A2β̂2

k −B2ŵ2
k

) ,

W2 =
8AkA

4B4â2kŵ
3
kβ̂k

q (I4 +A2/4) Γ3

(
β̂k − ŵkW0

)
, Θ =

DkI22
2ŵ2

k

[
P0 −

(P1 + P2)

α̂kŵkβ̂k

]
, P0 = 1− 2âkφ

ŵk
,

P1 = ŵkβ̂k [α̂k + âk (W1 + φW2)] , P2 = 2α̂kâkφ
(
A2β̂2

k −B2ŵ2
k

)(
β̂k −W0

)
Γ−1,

and ′ denotes differentiation with respect to z.
As in Kath & Smyth, Garćıa-Reimbert et al and Minzoni et al [30, 31, 39, 43] the frequency

of equation (A.1) is matched to the nematicon oscillation frequency Σ̂
′

k given by

Σ̂
′

k = 2AkA
2B2α̂kŵ

2
kβ̂

2
k

(
A2β̂2

k − 2B2ŵ2
k

) (
I2Γ

2
)−1

, (A.3)

which results in an expression for the shelf radius of the beams

Λk =
−Σ̂

′

kI
2
1 ŵk (ŵk + 2âkφ)

Θ
. (A.4)
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Appendix B

Shelf Radius Chapter 4

The shelf radii for the two-colour nematicons are difficult to calculate in this case. Normally one
would linearise the modulation equations about the fixed points and g = 0, which yield simple
harmonic oscillator equations for u and v, then one would match the frequencies of oscillation
of these equations, which depend on the shelf radii, Λu and Λv, to the nematicon frequencies

at the fixed points (dΣ̂u

dz ,dΣ̂v

dz ) resulting in an expressions for the shelf radii, as was described
in Appendix A for the nonlocal two-colour nematicon problem. However these calculations
are laborious and complicated in the local regime due to the number of variables involved in
the calculation, the size of the equations being linearised and the relationship between the two
separate soliton frequencies, σ̂u and σ̂v.

Consequently a simplified approach has been taken. If it is assumed that the nematicons
are symmetric the nematicon equations reduce to a coupled pair of local nematicon equations.
The shelf radii, Ru and Rv, can then be determined by linearising the reduced modulation
equations about their fixed point. Taking ak = âk + ak0, wk = ŵk + wk0 and σk = σak + σk0
where k = u, v and |ak0| << âk, |wk0| << ŵk and |σk0| << σ̂k, where k = u, v it is then
possible to linearise the modulation equations. The equation for gu, equation (4.27), can be
linearised in this was and then rearranged which yields

âuŵ
2
uI1

dg

dz
=

−192A4
uI8

q3
â8uŵuwu0, (B.1)

IDu =
4A2

uI4
q

â2uŵ
2
u. (B.2)

Equation (B.1) can then be differentiated

d2g

dz2
+

192A4
uI8â

7
u

q3I1ŵu

dwu0
dz

= 0. (B.3)

dwu0/dz is found by linearising equation (4.26)

I1âuŵu
dwu0
dz

= Λug
dΣu0
dz

, (B.4)

where
dΣu0
dz

=
dσu0
dz

− 1

2
DuV

2
u0, (B.5)

and a simple harmonic oscillator equation follows directly from (B.3) and (B.4)

d2g

dz2
+

192I8A
4
uΛuâ

6
u

q3I21 ŵ
2
u

dΣu0
dz

g = 0. (B.6)
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An expression for Λu is derived directly from the above calculations, namely

Λu =
q3I21 ŵ

2
u

192A4
uI8â

6
u

dΣu0
dz

(B.7)

By linearising equation (4.28) a simple expression of dΣu0

dz can be derived. Substituting this
into (B.6), the resultant shelf radius Λu for the u beam can finally be given by

Λu =
II21Duq

3

384A4I2I8â6u
. (B.8)

The above expression is the two beam equivalent of that calculated by Garćıa-Reimbert et al for
a single nematicon in the local regime [30]. Obvious symmetric substitutions yield an equivalent
expression for Λv
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Appendix C

Published Papers

In addition to the presentation of research at numerous international conferences, the author
of this thesis has also co-authored the following articles

• B. D. Skuse and N. F. Smyth, “Two-color vector-solitons in nematic liquid crystals in the
local response regime,” Phys. Rev. A 77, 013817 (2008).

URL: http://link.aps.org/doi/10.1103/PhysRevA.77.013817

• B. D. Skuse and N. F. Smyth, “Two-colour nematicon interactions in local crystals,”
IEEE/LEOS Winter Topicals Meetings Series 2008, 14–16 January 2008, 125–126 (2008).

URL: http://www.maths.ed.ac.uk/∼noel/twocoloursorrento.pdf

• B. D. Skuse and N. F. Smyth, “Interaction of two-color solitary waves in a liquid crystal
in the nonlocal regime,” Phys. Rev. A 79, 063806 (2009).

URL: http://link.aps.org/doi/10.1103/PhysRevA.79.063806

• G. Assanto, B. D. Skuse and N. F. Smyth, “Optical path control of solitary waves in
dye-doped nematic liquid crystals,” Photon. Lett. Pol 1, 154–156 (2009).

URL: http://photonics.pl/PLP/index.php/letters/article/view/1-52
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